Science.gov

Sample records for acute ischemic injury

  1. Acute vertebrobasilar ischemic stroke due to electric injury.

    PubMed

    Singh Jain, Rajendra; Kumar, Sunil; Suresh, Desai Tushar; Agarwal, Rakesh

    2015-07-01

    Electrical injuries are most commonly due to household accidents.Various factors determine the severity of electric injury, including type of current, amperage, voltage, tissue resistance, pathway of current,and duration of contact with the body. Various types of neurologic damage due to electrical injury have been described in literature. It may manifest as peripheral nerve injury, spinal cord damage, seizures, cerebellarataxia, hypoxic encephalopathy, and intracerebral hemorrhage. Acute ischemic stroke is an infrequent complication of electrical injury. Herein,we report a case of middle-aged man, who accidentally sustained high voltage electrical injury followed by acute vertebrobasilar ischemic stroke. Magnetic resonance imaging of the brain showed acute infarctin bilateral cerebellar and medial occipital regions. Computed tomographic angiogram of the brain and neck vessels was normal. Possibly,in our patient, the mechanism could be related to direct vascular injury due to electric current. PMID:25684743

  2. [Uncaria tomentosa and acute ischemic kidney injury in rats].

    PubMed

    de Fátima Fernandes Vattimo, Maria; da Silva, Natalia Oliveira

    2011-03-01

    The objective of this study was to evaluate the renoprotective effects of Uncaria Tomentosa (cat's claw) on ischemic acute kidney injury induced by renal clamping in rats. The hypoxia and hypoperfusion increase the production of reactive species already present in the inflammatory process. Results showed that the renal function evaluated by creatinine clearance, the urinary excretion of peroxides and malondealdehyde indexes demonstrated that UT induced renoprotection, probably related to its antioxidant activities. PMID:21445508

  3. Protein methionine oxidation augments reperfusion injury in acute ischemic stroke

    PubMed Central

    Gu, Sean X.; Blokhin, Ilya O.; Wilson, Katina M.; Dhanesha, Nirav; Doddapattar, Prakash; Grumbach, Isabella M.; Chauhan, Anil K.; Lentz, Steven R.

    2016-01-01

    Reperfusion injury can exacerbate tissue damage in ischemic stroke, but little is known about the mechanisms linking ROS to stroke severity. Here, we tested the hypothesis that protein methionine oxidation potentiates NF-κB activation and contributes to cerebral ischemia/reperfusion injury. We found that overexpression of methionine sulfoxide reductase A (MsrA), an antioxidant enzyme that reverses protein methionine oxidation, attenuated ROS-augmented NF-κB activation in endothelial cells, in part, by protecting against the oxidation of methionine residues in the regulatory domain of calcium/calmodulin-dependent protein kinase II (CaMKII). In a murine model, MsrA deficiency resulted in increased NF-κB activation and neutrophil infiltration, larger infarct volumes, and more severe neurological impairment after transient cerebral ischemia/reperfusion injury. This phenotype was prevented by inhibition of NF-κB or CaMKII. MsrA-deficient mice also exhibited enhanced leukocyte rolling and upregulation of E-selectin, an endothelial NF-κB–dependent adhesion molecule known to contribute to neurovascular inflammation in ischemic stroke. Finally, bone marrow transplantation experiments demonstrated that the neuroprotective effect was mediated by MsrA expressed in nonhematopoietic cells. These findings suggest that protein methionine oxidation in nonmyeloid cells is a key mechanism of postischemic oxidative injury mediated by NF-κB activation, leading to neutrophil recruitment and neurovascular inflammation in acute ischemic stroke. PMID:27294204

  4. TNFR1-dependent pulmonary apoptosis during ischemic acute kidney injury

    PubMed Central

    White, Laura E.; Santora, Rachel J.; Cui, Yan; Moore, Frederick A.

    2012-01-01

    Despite advancements in renal replacement therapy, the mortality rate for acute kidney injury (AKI) remains unacceptably high, likely due to remote organ injury. Kidney ischemia-reperfusion injury (IRI) activates cellular and soluble mediators that incite a distinct pulmonary proinflammatory and proapoptotic response. Tumor necrosis factor receptor 1 (TNFR1) has been identified as a prominent death receptor activated in the lungs during ischemic AKI. We hypothesized that circulating TNF-α released from the postischemic kidney induces TNFR1-mediated pulmonary apoptosis, and we aimed to elucidate molecular pathways to programmed cell death. Using an established murine model of kidney IRI, we characterized the time course for increased circulatory and pulmonary TNF-α levels and measured concurrent upregulation of pulmonary TNFR1 expression. We then identified TNFR1-dependent pulmonary apoptosis after ischemic AKI using TNFR1−/− mice. Subsequent TNF-α signaling disruption with Etanercept implicated circulatory TNF-α as a key soluble mediator of pulmonary apoptosis and lung microvascular barrier dysfunction during ischemic AKI. We further elucidated pathways of TNFR1-mediated apoptosis with NF-κB (Complex I) and caspase-8 (Complex II) expression and discovered that TNFR1 proapoptotic signaling induces NF-κB activation. Additionally, inhibition of NF-κB (Complex I) resulted in a proapoptotic phenotype, lung barrier leak, and altered cellular flice inhibitory protein signaling independent of caspase-8 (Complex II) activation. Ischemic AKI activates soluble TNF-α and induces TNFR1-dependent pulmonary apoptosis through augmentation of the prosurvival and proapoptotic TNFR1 signaling pathway. Kidney-lung crosstalk after ischemic AKI represents a complex pathological process, yet focusing on specific biological pathways may yield potential future therapeutic targets. PMID:22728466

  5. Vitamin D deficiency aggravates ischemic acute kidney injury in rats

    PubMed Central

    de Bragança, Ana Carolina; Volpini, Rildo A; Canale, Daniele; Gonçalves, Janaína G; Shimizu, Maria Heloisa M; Sanches, Talita R; Seguro, Antonio C; Andrade, Lúcia

    2015-01-01

    Vitamin D deficiency (VDD) increases the risk of death in hospitalized patients. Renal ischemia/reperfusion injury (IRI) induces acute kidney injury (AKI), which activates cell cycle inhibitors, including p21, a cyclin-dependent kinase inhibitor and genomic target of 25-hydroxyvitamin D, which is in turn a potent immunomodulator with antiproliferative effects. In this study, we assess the impact of VDD in renal IRI. Wistar rats were divided into groups, each evaluated for 30 days: control (receiving a standard diet); VDD (receiving a vitamin D-free diet); IRI (receiving a standard diet and subjected to 45-min bilateral renal ischemia on day 28); and VDD + IRI (receiving a vitamin D-free diet and subjected to 45-min bilateral renal ischemia on day 28). At 48 h after IRI, animals were euthanized; blood, urine, and kidney tissue samples were collected. Compared with IRI rats, VDD + IRI rats showed a more severe decrease in glomerular filtration rate, greater urinary protein excretion, a higher kidney/body weight ratio and lower renal aquaporin 2 expression, as well as greater morphological damage, characterized by increased interstitial area and tubular necrosis. Our results suggest that the severity of tubular damage in IRI may be associated with downregulation of vitamin D receptors and p21. VDD increases renal inflammation, cell proliferation and cell injury in ischemic AKI. PMID:25780095

  6. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents

    PubMed Central

    Eisenmann, Eric D.; Rorabaugh, Boyd R.; Zoladz, Phillip R.

    2016-01-01

    Cardiovascular disease (CVD) is the largest cause of mortality worldwide, and stress is a significant contributor to the development of CVD. The relationship between acute and chronic stress and CVD is well evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia–reperfusion injury (IRI). Conversely, chronic stress is arrhythmogenic and increases sensitivity to myocardial IRI. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions. PMID:27199778

  7. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents.

    PubMed

    Eisenmann, Eric D; Rorabaugh, Boyd R; Zoladz, Phillip R

    2016-01-01

    Cardiovascular disease (CVD) is the largest cause of mortality worldwide, and stress is a significant contributor to the development of CVD. The relationship between acute and chronic stress and CVD is well evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia-reperfusion injury (IRI). Conversely, chronic stress is arrhythmogenic and increases sensitivity to myocardial IRI. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions. PMID:27199778

  8. Ischemic preconditioning attenuates functional, metabolic, and morphologic injury from ischemic acute renal failure in the rat.

    PubMed

    Cochrane, J; Williams, B T; Banerjee, A; Harken, A H; Burke, T J; Cairns, C B; Shapiro, J I

    1999-03-01

    Ischemic preconditioning has been shown to ameliorate injury due to subsequent ischemia in several organs. However, relatively little is known about preconditioning and the kidney. To address this, rats were randomized to control (C, N = 14), 2 min of ischemic preconditioning (P2 N = 10), 3 periods of 2 min of ischemia separated by 5 min periods of reflow (P2,3 N = 7), or three 5 min periods of ischemia separated by 5 min of reflow (P5,3 N = 6) prior to 45 min of bilateral renal ischemia followed by 24 hours of reperfusion. We observed a lower serum creatinine after 24 hours of reflow in P2, P2, 3 but not P5, 3 rats compared with C. Histology was examined in the C and P2, 3 groups and demonstrated less severe injury in the P2, 3 group. To gain insight into the mechanism by which preconditioning ameliorated ischemic injury, we performed near IR spectroscopy and 31P NMR spectroscopy. Based on near IR spectroscopy, the P2, 3 group had closer coupling of cytochrome aa3 redox state with that of hemoglobin during reflow. In the 31P NMR studies, the changes in ATP and pHi were similar during ischemia, but the P2, 3 group recovered ATP and pHi faster than C. These data suggest that ischemic preconditioning may ameliorate ischemic renal injury as assessed by functional, metabolic and morphological methods. The mechanism(s) by which this occurs requires additional study. PMID:10088174

  9. Acute effects of all-trans-retinoic acid in ischemic injury

    Technology Transfer Automated Retrieval System (TEKTRAN)

    All-trans-retinoic acid (ATRA) is a vitamin A derivative that is important in neuronal patterning, survival, and neurite outgrowth. We investigated the relatively acute effects of ATRA (100 nM and 1 µM) on cell swelling in ischemic injury and on key features hypothesized to contribute to cell swelli...

  10. Excessive α-tocopherol exacerbates microglial activation and brain injury caused by acute ischemic stroke

    PubMed Central

    Khanna, Savita; Heigel, Mallory; Weist, Jessica; Gnyawali, Surya; Teplitsky, Seth; Roy, Sashwati; Sen, Chandan K.; Rink, Cameron

    2015-01-01

    The vitamin E family includes both tocopherols and tocotrienols, where α-tocopherol (αTOC) is the most bioavailable form. Clinical trials testing the therapeutic efficacy of high-dose αTOC against stroke have largely failed or reported negative outcomes when a “more is better” approach to supplementation (>400 IU/d) was used. This work addresses mechanisms by which supraphysiologic αTOC may contribute to stroke-induced brain injury. Ischemic stroke injury and the neuroinflammatory response were studied in tocopherol transfer protein-deficient mice maintained on a diet containing αTOC vitamin E at the equivalent human dose of 1680 IU/d. Ischemic stroke-induced brain injury was exacerbated in the presence of supraphysiologic brain αTOC levels. At 48 h after stroke, S100B and RAGE expression was increased in stroke-affected cortex of mice with elevated brain αTOC levels. Such increases were concomitant with aggravated microglial activation and neuroinflammatory signaling. A poststroke increase in markers of oxidative injury and neurodegeneration in the presence of elevated brain αTOC establish that at supraphysiologic levels, αTOC potentiates neuroinflammatory responses to acute ischemic stroke. Exacerbation of microglial activation by excessive αTOC likely depends on its unique cell signaling regulatory properties independent of antioxidant function. Against the background of clinical failure for high-dose αTOC, outcomes of this work identify risk for exacerbating stroke-induced brain injury as a result of supplementing diet with excessive levels of αTOC.—Khanna, S., Heigel,M., Weist, J., Gnyawali, S., Teplitsky, S., Roy, S., Sen, C. K., Rink, C. Excessive α-tocopherol exacerbates microglial activation and brain injury caused by acute ischemic stroke. PMID:25411436

  11. Role of fibrinogen in acute ischemic kidney injury.

    PubMed

    Sörensen-Zender, I; Rong, S; Susnik, N; Lange, J; Gueler, F; Degen, J L; Melk, A; Haller, H; Schmitt, R

    2013-09-01

    Renal ischemia-reperfusion (I/R) is associated with activation of the coagulation system and accumulation of blood clotting factors in the kidney. The aim of the present study was to examine the functional impact of fibrinogen on renal inflammation, damage, and repair in the context of I/R injury. In this study, we found that I/R was associated with a significant increase in the renal deposition of circulating fibrinogen. In parallel, I/R stress induced the de novo expression of fibrinogen in tubular epithelial cells, as reflected by RT-PCR, immunofluorescence, and in situ hybridization. In vitro, fibrinogen expression was induced by oncostatin M and hyper-IL-6 in primary tubular epithelial cells, and fibrinogen-containing medium had an inhibitory effect on tubular epithelial cell adhesion and migration. Fibrinogen(+/-) mice showed similar survival as wild-type mice but better preservation in early postischemic renal function. In fibrinogen(-/-) mice, renal function and survival were significantly worse than in fibrinogen(+/-) mice. Renal transplant experiments revealed reduced expression of tubular damage markers and attenuated proinflammatory cytokine expression but increased inflammatory cell infiltrates and transforming growth factor-β expression in fibrinogen(-/-) isografts. These data point to heterogeneous effects of fibrinogen in renal I/R injury. While a complete lack of fibrinogen may be detrimental, partial reduction of fibrinogen in heterozygous mice can improve renal function and overall outcome. PMID:23804451

  12. Acute Neuronal Injury and Blood Genomic Profiles in a Nonhuman Primate Model for Ischemic Stroke

    PubMed Central

    Rodriguez-Mercado, Rafael; Ford, Gregory D; Xu, Zhenfeng; Kraiselburd, Edmundo N; Martinez, Melween I; Eterović, Vesna A; Colon, Edgar; Rodriguez, Idia V; Portilla, Peter; Ferchmin, Pedro A; Gierbolini, Lynette; Rodriguez-Carrasquillo, Maria; Powell, Michael D; Pulliam, John VK; McCraw, Casey O; Gates, Alicia; Ford, Byron D

    2012-01-01

    The goal of this study was to characterize acute neuronal injury in a novel nonhuman primate (NHP) ischemic stroke model by using multiple outcome measures. Silk sutures were inserted into the M1 segment of the middle cerebral artery of rhesus macaques to achieve permanent occlusion of the vessel. The sutures were introduced via the femoral artery by using endovascular microcatheterization techniques. Within hours after middle cerebral artery occlusion (MCAO), infarction was detectable by using diffusion-weighted MRI imaging. The infarcts expanded by 24 h after MCAO and then were detectable on T2-weighted images. The infarcts seen by MRI were consistent with neuronal injury demonstrated histologically. Neurobehavioral function after MCAO was determined by using 2 neurologic testing scales. Neurologic assessments indicated that impairment after ischemia was limited to motor function in the contralateral arm; other neurologic and behavioral parameters were largely unaffected. We also used microarrays to examine gene expression profiles in peripheral blood mononuclear cells after MCAO-induced ischemia. Several genes were altered in a time-dependent manner after MCAO, suggesting that this ischemia model may be suitable for identifying blood biomarkers associated with the presence and severity of ischemia. This NHP stroke model likely will facilitate the elucidation of mechanisms associated with acute neuronal injury after ischemia. In addition, the ability to identify candidate blood biomarkers in NHP after ischemia may prompt the development of new strategies for the diagnosis and treatment of ischemic stroke in humans. PMID:23114047

  13. Hypothermia inhibits the propagation of acute ischemic injury by inhibiting HMGB1.

    PubMed

    Lee, Jung Ho; Yoon, Eun Jang; Seo, Jeho; Kavoussi, Adriana; Chung, Yong Eun; Chung, Sung Phil; Park, Incheol; Kim, Chul Hoon; You, Je Sung

    2016-01-01

    Acute ischemic stroke causes significant chronic disability worldwide. We designed this study to clarify the mechanism by which hypothermia helps alleviate acute ischemic stroke. In a middle cerebral artery occlusion model (4 h ischemia without reperfusion), hypothermia effectively reduces mean infarct volume. Hypothermia also prevents neurons in the infarct area from releasing high mobility group box 1 (HMGB1), the most well-studied damage-associated molecular pattern protein. By preventing its release, hypothermia also prevents the typical middle cerebral artery occlusion-induced increase in serum HMGB1. We also found that both glycyrrhizin-mediated inhibition of HMGB1 and intracerebroventricular neutralizing antibody treatments before middle cerebral artery occlusion onset diminish infarct volume. This suggests a clear neuroprotective effect of HMGB1 inhibition by hypothermia in the brain. We next used real-time polymerase chain reaction to measure the levels of pro-inflammatory cytokines in peri-infarct regions. Although middle cerebral artery occlusion increases the expression of interleukin-1β and tissue necrosis factor-α, this elevation is suppressed by both hypothermia and glycyrrhizin treatment. We show that hypothermia reduces the production of inflammatory cytokines and helps salvage peri-infarct regions from the propagation of ischemic injury via HMGB1 blockade. In addition to suggesting a potential mechanism for hypothermia's therapeutic effects, our results suggest HMGB1 modulation may lengthen the therapeutic window for stroke treatments. PMID:27544687

  14. Ischemic tissue injury.

    PubMed Central

    Jennings, R. B.; Ganote, C. E.; Reimer, K. A.

    1975-01-01

    The subendocardial to subepicardial gradient in the severity of ischemia following acute coronary occlusion is described. The effects of mild, moderate, and severe ischemia on cell structure and function are compared in summary form, and special attention is given to the effects of severe ischemia on myocardial cells. The characteristics of reversible and irreversible ischemic injury are defined in biologic terms. The failure of cell volume regulation in cells which have entered an irreversible state of ischemic injury is demonstrated by the use of free-hand slices in vitro. Irreversibility is associated with structural defects in the plasma membrane and is reflected in an increased slice inulin-diffusible space, increased slice H2O and Na+ content, and failure of the tissue to maintain the high K+ and Mg2+ levels characteristic of normal left ventricular myocardium. Defective cell membrane function is an early feature of irreversible ischemic injury and may be a primary event in the genesis of the irreversible state. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:1180331

  15. Multiparametric, Longitudinal Optical Coherence Tomography Imaging Reveals Acute Injury and Chronic Recovery in Experimental Ischemic Stroke

    PubMed Central

    Srinivasan, Vivek J.; Mandeville, Emiri T.; Can, Anil; Blasi, Francesco; Climov, Mihail; Daneshmand, Ali; Lee, Jeong Hyun; Yu, Esther; Radhakrishnan, Harsha; Lo, Eng H.; Sakadžić, Sava; Eikermann-Haerter, Katharina; Ayata, Cenk

    2013-01-01

    Progress in experimental stroke and translational medicine could be accelerated by high-resolution in vivo imaging of disease progression in the mouse cortex. Here, we introduce optical microscopic methods that monitor brain injury progression using intrinsic optical scattering properties of cortical tissue. A multi-parametric Optical Coherence Tomography (OCT) platform for longitudinal imaging of ischemic stroke in mice, through thinned-skull, reinforced cranial window surgical preparations, is described. In the acute stages, the spatiotemporal interplay between hemodynamics and cell viability, a key determinant of pathogenesis, was imaged. In acute stroke, microscopic biomarkers for eventual infarction, including capillary non-perfusion, cerebral blood flow deficiency, altered cellular scattering, and impaired autoregulation of cerebral blood flow, were quantified and correlated with histology. Additionally, longitudinal microscopy revealed remodeling and flow recovery after one week of chronic stroke. Intrinsic scattering properties serve as reporters of acute cellular and vascular injury and recovery in experimental stroke. Multi-parametric OCT represents a robust in vivo imaging platform to comprehensively investigate these properties. PMID:23940761

  16. εPKC confers acute tolerance to cerebral ischemic reperfusion injury

    PubMed Central

    Bright, Rachel; Sun, Guo-Hua; Yenari, Midori A.; Steinberg, Gary K.; Mochly-Rosen, Daria

    2008-01-01

    In response to mild ischemic stress, the brain elicits endogenous survival mechanisms to protect cells against a subsequent lethal ischemic stress, referred to as ischemic tolerance. The molecular signals that mediate this protection are thought to involve the expression and activation of multiple kinases, including protein kinase C (PKC). Here we demonstrate that εPKC mediates cerebral ischemic tolerance in vivo. Systemic delivery of ψεRACK, an εPKC-selective peptide activator, confers neuroprotection against a subsequent cerebral ischemic event when delivered immediately prior to stroke. In addition, activation of εPKC by ψεRACK treatment decreases vascular tone in vivo, as demonstrated by a reduction in microvascular cerebral blood flow. Here we demonstrate the role of acute and transient εPKC in early cerebral tolerance in vivo and suggest that extra-parenchymal mechanisms, such as vasoconstriction, may contribute to the conferred protection. PMID:18586397

  17. A new approach to define acute kidney injury in term newborns with hypoxic ischemic encephalopathy

    PubMed Central

    Gupta, Charu; Massaro, An N.

    2016-01-01

    Background Current definitions of acute kidney injury (AKI) are not sufficiently sensitive to identify all newborns with AKI during the first week of life. Methods To determine whether the rate of decline of serum creatinine (SCr) during the first week of life can be used to identify newborns with AKI, we reviewed the medical records of 106 term neonates at risk of AKI who were treated with hypothermia for hypoxic ischemic encephalopathy (HIE). Results Of the newborns enrolled in the study, 69 % showed a normal rate of decline of SCr to ≥50 % and/or reached SCr levels of ≤0.6 mg/dl before the 7th day of life, and therefore had an excellent clinical outcome (control group). Thirteen newborns with HIE (12 %) developed AKI according to an established neonatal definition (AKI–KIDGO group), and an additional 20 newborns (19 %) showed a rate of decline of SCr of <33, <40, and <46 % from birth to days 3, 5, or 7 of life, respectively (delayed rise in estimated SCr clearance group). Compared to the control group, newborns in the other two groups required more days of mechanical ventilation and vasopressor drugs and had higher gentamicin levels, more fluid overload, lower urinary epidermal growth factor levels, and a prolonged length of stay. Conclusions The rate of decline of SCr provides a sensitive approach to identify term newborns with AKI during the first week of life. PMID:26857710

  18. Neuroinflammation and Neuroimmune Dysregulation after Acute Hypoxic-Ischemic Injury of Developing Brain

    PubMed Central

    Bhalala, Utpal S.; Koehler, Raymond C.; Kannan, Sujatha

    2015-01-01

    Hypoxic-ischemic (HI) injury to developing brain results from birth asphyxia in neonates and from cardiac arrest in infants and children. It is associated with varying degrees of neurologic sequelae, depending upon the severity and length of HI. Global HI triggers a series of cellular and biochemical pathways that lead to neuronal injury. One of the key cellular pathways of neuronal injury is inflammation. The inflammatory cascade comprises activation and migration of microglia – the so-called “brain macrophages,” infiltration of peripheral macrophages into the brain, and release of cytotoxic and proinflammatory cytokines. In this article, we review the inflammatory and immune mechanisms of secondary neuronal injury after global HI injury to developing brain. Specifically, we highlight the current literature on microglial activation in relation to neuronal injury, proinflammatory and anti-inflammatory/restorative pathways, the role of peripheral immune cells, and the potential use of immunomodulators as neuroprotective compounds. PMID:25642419

  19. NQDI-1, an inhibitor of ASK1 attenuates acute perinatal hypoxic-ischemic cerebral injury by modulating cell death

    PubMed Central

    HAO, HU; LI, SITAO; TANG, HUI; LIU, BINGQING; CAI, YAO; SHI, CONGCONG; XIAO, XIN

    2016-01-01

    Apoptosis signal-regulating kinase 1 (ASK1) is a ubiquitously expressed protein kinase, which regulates cell fate in numerous injury conditions. Therefore, ASK1 may be a promising novel therapeutic target for injury. However, the expression and distribution of ASK1 in the perinatal brain following hypoxia-ischemia (HI) remains to be elucidated. In the present study, western blotting and immunofluorescence were used to determine the expression and distribution of ASK1 and any associated downstream targets in the perinatal rat brain following HI. NQDI-1, a specific inhibitor of ASK1 was intracerebroventricularly injected following neonatal rats brain insult for neuroprotection. The results revealed an increased expression of ASK1 and this expression was localized to the neurons and astrocytes, compared with the sham controls. Additionally, it was demonstrated that the ASK1/c-Jun N-terminal kinases (JNK) pathway was involved in the brain damage following HI in neonatal rats. Notably, NQDI-1 significantly inhibited the in vivo expression levels of ASK1, phosphorylated (p-)JNK, p-c-Jun, p53 and caspase 3. Reduced acute hypoxic-ischemic cerebral injury and cell apoptosis was observed following the injection of NQDI-1. Collectively, NQDI-1 attenuated acute perinatal hypoxic-ischemic cerebral injury by inhibiting the expression of ASK1 and cell apoptosis. This may be a promising novel neuroprotective inhibitor for perinatal cerebra injury. PMID:27081917

  20. A Novel Therapy to Attenuate Acute Kidney Injury and Ischemic Allograft Damage after Allogenic Kidney Transplantation in Mice

    PubMed Central

    Gueler, Faikah; Shushakova, Nelli; Mengel, Michael; Hueper, Katja; Chen, Rongjun; Liu, Xiaokun; Park, Joon-Keun; Haller, Hermann

    2015-01-01

    Ischemia followed by reperfusion contributes to the initial damage to allografts after kidney transplantation (ktx). In this study we tested the hypothesis that a tetrapeptide EA-230 (AQGV), might improve survival and attenuate loss of kidney function in a mouse model of renal ischemia/reperfusion injury (IRI) and ischemia-induced delayed graft function after allogenic kidney transplantation. IRI was induced in male C57Bl/6N mice by transient bilateral renal pedicle clamping for 35 min. Treatment with EA-230 (20–50mg/kg twice daily i.p. for four consecutive days) was initiated 24 hours after IRI when acute kidney injury (AKI) was already established. The treatment resulted in markedly improved survival in a dose dependent manner. Acute tubular injury two days after IRI was diminished and tubular epithelial cell proliferation was significantly enhanced by EA-230 treatment. Furthermore, CTGF up-regulation, a marker of post-ischemic fibrosis, at four weeks after IRI was significantly less in EA-230 treated renal tissue. To learn more about these effects, we measured renal blood flow (RBF) and glomerular filtration rate (GFR) at 28 hours after IRI. EA-230 improved both GFR and RBF significantly. Next, EA-230 treatment was tested in a model of ischemia-induced delayed graft function after allogenic kidney transplantation. The recipients were treated with EA-230 (50 mg/kg) twice daily i.p. which improved renal function and allograft survival by attenuating ischemic allograft damage. In conclusion, EA-230 is a novel and promising therapeutic agent for treating acute kidney injury and preventing IRI-induced post-transplant ischemic allograft injury. Its beneficial effect is associated with improved renal perfusion after IRI and enhanced regeneration of tubular epithelial cells. PMID:25617900

  1. Ischemic preconditioning protects against ischemic brain injury.

    PubMed

    Ma, Xiao-Meng; Liu, Mei; Liu, Ying-Ying; Ma, Li-Li; Jiang, Ying; Chen, Xiao-Hong

    2016-05-01

    In this study, we hypothesized that an increase in integrin αvβ3 and its co-activator vascular endothelial growth factor play important neuroprotective roles in ischemic injury. We performed ischemic preconditioning with bilateral common carotid artery occlusion for 5 minutes in C57BL/6J mice. This was followed by ischemic injury with bilateral common carotid artery occlusion for 30 minutes. The time interval between ischemic preconditioning and lethal ischemia was 48 hours. Histopathological analysis showed that ischemic preconditioning substantially diminished damage to neurons in the hippocampus 7 days after ischemia. Evans Blue dye assay showed that ischemic preconditioning reduced damage to the blood-brain barrier 24 hours after ischemia. This demonstrates the neuroprotective effect of ischemic preconditioning. Western blot assay revealed a significant reduction in protein levels of integrin αvβ3, vascular endothelial growth factor and its receptor in mice given ischemic preconditioning compared with mice not given ischemic preconditioning 24 hours after ischemia. These findings suggest that the neuroprotective effect of ischemic preconditioning is associated with lower integrin αvβ3 and vascular endothelial growth factor levels in the brain following ischemia. PMID:27335560

  2. Ischemic preconditioning protects against ischemic brain injury

    PubMed Central

    Ma, Xiao-meng; Liu, Mei; Liu, Ying-ying; Ma, Li-li; Jiang, Ying; Chen, Xiao-hong

    2016-01-01

    In this study, we hypothesized that an increase in integrin αvβ3 and its co-activator vascular endothelial growth factor play important neuroprotective roles in ischemic injury. We performed ischemic preconditioning with bilateral common carotid artery occlusion for 5 minutes in C57BL/6J mice. This was followed by ischemic injury with bilateral common carotid artery occlusion for 30 minutes. The time interval between ischemic preconditioning and lethal ischemia was 48 hours. Histopathological analysis showed that ischemic preconditioning substantially diminished damage to neurons in the hippocampus 7 days after ischemia. Evans Blue dye assay showed that ischemic preconditioning reduced damage to the blood-brain barrier 24 hours after ischemia. This demonstrates the neuroprotective effect of ischemic preconditioning. Western blot assay revealed a significant reduction in protein levels of integrin αvβ3, vascular endothelial growth factor and its receptor in mice given ischemic preconditioning compared with mice not given ischemic preconditioning 24 hours after ischemia. These findings suggest that the neuroprotective effect of ischemic preconditioning is associated with lower integrin αvβ3 and vascular endothelial growth factor levels in the brain following ischemia. PMID:27335560

  3. Hydrosulfide attenuates acute myocardial ischemic injury through the glycogen synthase kinase-3β/β-catenin signaling pathway

    PubMed Central

    GE, NING; LIU, CHAO; LI, GUOFENG; XIE, LIJUN; ZHANG, QINZENG; LI, LIPING; HAO, NA; ZHANG, JIANXIN

    2016-01-01

    The endogenous signaling gasotransmitter, hydrosulfide (H2S), has been shown to exert cardioprotective effects against acute myocardial infarction (AMI) due to ischemic injury. However, the mechanisms responsible for these effects are not yet fully understood. In this study, we investigated whether sodium hydrogen sulfide (NaHS), an H2S donor, attenuates acute myocardial ischemic injury through glycogen synthase kinase-3β (GSK-3β)/β-catenin signaling. For this purpose, we utilized an in vivo rat model of AMI by occluding the left anterior descending coronary artery. NaHS (0.39, 0.78 or 1.56 mg/kg, intraperitoneally), the GSK-3β inhibitor, SB216763 (0.6 mg/kg, intravenously), or 1% dimethylsulfoxide (2 ml/kg, intravenously) were administered to the rats. The results demonstrated that the administration of medium- and high-dose NaHS and SB216763 significantly improved rat cardiac function, as evidenced by an increase in the mean arterial pressure, left ventricular developed pressure, contraction and relaxation rates, as well as a decrease in left ventricular end-diastolic pressure. In addition, the administration of NaHS and SB216763 attenuated myocardial injury as reflected by a decrease in apoptotic cell death and in the serum lactate dehydrogenase concentrations, and prevented myocardial structural changes. The administration of NaHS and SB216763 increased the concentrations of phosphorylated (p-)GSK-3β, the p-GSK-3β/t-GSK-3β ratio and downstream protein β-catenin. Moreover, western blot and immunohistochemical analyses of apoptotic signaling pathway proteins further established the cardioprotective potential of NaHS, as reflected by the upregulation of Bcl-2 expression, the downregulation of Bax expression, and a decrease in the number of TUNEL-positive stained cells. These findings suggest that hydrosulfide exerts cardioprotective effects against AMI-induced apoptosis through the GSK-3β/β-catenin signaling pathway. PMID:27035393

  4. Acute Ischemic Stroke Intervention.

    PubMed

    Khandelwal, Priyank; Yavagal, Dileep R; Sacco, Ralph L

    2016-06-01

    Acute ischemic stroke (AIS) is the leading cause of disability worldwide and among the leading causes of mortality. Although intravenous tissue plasminogen activator (IV-rtPA) was approved nearly 2 decades ago for treatment of AIS, only a minority of patients receive it due to a narrow time window for administration and several contraindications to its use. Endovascular approaches to recanalization in AIS developed in the 1980s, and recently, 5 major randomized trials showed an overwhelming superior benefit of combining endovascular mechanical thrombectomy with IV-rtPA over IV-rtPA alone. In this paper, we discuss the evolution of catheter-based treatment from first-generation thrombectomy devices to the game-changing stent retrievers, results from recent trials, and the evolving stroke systems of care to provide timely access to acute stroke intervention to patients in the United States. PMID:27256835

  5. Critical Role of Interleukin-11 in Isoflurane-mediated Protection against Ischemic Acute Kidney Injury in Mice

    PubMed Central

    Ham, Ahrom; Kim, Mihwa; Kim, Joo Yun; Brown, Kevin M.; Yeh, James; D’Agati, Vivette D.; Lee, H. Thomas

    2013-01-01

    Background Isoflurane releases renal tubular transforming growth factor-beta 1 (TGF-β1) and protects against ischemic acute kidney injury (AKI). Recent studies suggest that TGF-β1 can induce a cytoprotective cytokine interleukin (IL)-11. Here, we tested the hypothesis that isoflurane protects against ischemic AKI by direct induction of renal tubular IL-11 synthesis. Methods Human kidney proximal tubule (HK-2) cells were treated with 1.25-2.5% isoflurane or carrier gas (room air+5% carbon dioxide) for 0-16 h. We also anesthetized C57BL/6 mice with 1.2% isoflurane or with equi-anesthetic dose of pentobarbital for 4 h. In addition, we subjected IL-11 receptor (IL-11R) wild type, IL-11R deficient or IL-11 neutralized mice to 30-min renal ischemia followed by reperfusion under 4 h of pentobarbital or isoflurane (1.2%) anesthesia. Results Isoflurane increased IL-11 synthesis in human (~300-500% increase, N = 6) and mouse (23 ± 4 (mean ± SD) fold over carrier gas group, N = 4) proximal tubule cells that were attenuated by a TGF-β1 neutralizing antibody. Mice anesthetized with isoflurane showed significantly increased kidney IL-11 messenger RNA (13.8 ± 2 fold over carrier gas group, N = 4) and protein (31 ± 9 vs. 18±2 pg/mg protein or ~80% increase, N = 4) expression compared to pentobarbital anesthetized mice and this increase was also attenuated by a TGF-β1 neutralizing antibody. Furthermore, isoflurane-mediated renal protection in IL-11R wild-type mice were absent in IL-11R deficient mice or in IL-11R wild-type mice treated with IL-11 neutralizing antibody (N = 4-6). Conclusions Our studies suggest that isoflurane induces renal tubular IL-11 via TGF-β1 signaling to protect against ischemic AKI. PMID:24037316

  6. Imaging acute ischemic stroke.

    PubMed

    González, R Gilberto; Schwamm, Lee H

    2016-01-01

    Acute ischemic stroke is common and often treatable, but treatment requires reliable information on the state of the brain that may be provided by modern neuroimaging. Critical information includes: the presence of hemorrhage; the site of arterial occlusion; the size of the early infarct "core"; and the size of underperfused, potentially threatened brain parenchyma, commonly referred to as the "penumbra." In this chapter we review the major determinants of outcomes in ischemic stroke patients, and the clinical value of various advanced computed tomography and magnetic resonance imaging methods that may provide key physiologic information in these patients. The focus is on major strokes due to occlusions of large arteries of the anterior circulation, the most common cause of a severe stroke syndrome. The current evidence-based approach to imaging the acute stroke patient at the Massachusetts General Hospital is presented, which is applicable for all stroke types. We conclude with new information on time and stroke evolution that imaging has revealed, and how it may open the possibilities of treating many more patients. PMID:27432672

  7. Flow Augmentation in Acute Ischemic Stroke.

    PubMed

    Yadollahikhales, Golnaz; Borhani-Haghighi, Afshin; Torabi-Nami, Mohammad; Edgell, Randall; Cruz-Flores, Salvador

    2016-01-01

    There is an urgent need for additional therapeutic options for acute ischemic stroke considering the major pitfalls of the options available. Herein, we briefly review the role of cerebral blood flow, collaterals, vasoreactivity, and reperfusion injury in acute ischemic stroke. Then, we reviewed pharmacological and interventional measures such as volume expansion and induced hypertension, intra-aortic balloon counterpulsation, partial aortic occlusion, extracranial-intracranial carotid bypass surgery, sphenopalatine ganglion stimulation, and transcranial laser therapy with regard to their effects on flow augmentation and neuroprotection. PMID:25475112

  8. [Cerebrolysin for acute ischemic stroke].

    PubMed

    iganshina, L E; Abakumova, T R

    2013-01-01

    The review discusses existing evidence of benefits and risks of cerebrolysin--a mixture of low-molecular-weight peptides and amino acids derived from pigs' brain tissue with proposed neuroprotective and neurotrophic properties, for acute ischemic stroke. The review presents results of systematic search and analysis of randomised clinical trials comparing cerebrolysin with placebo in patients with acute ischemic stroke. Only one trial was selected as meeting quality criteria. No difference in death and adverse events between cerebrolysin and placebo was established. The authors conclude about insufficiency of evidence to evaluate the effect of cerebrolysin on survival and dependency in people with acute ischemic stroke. PMID:23805635

  9. Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury

    SciTech Connect

    Chen, Lijuan; Wang, Yingjie; Pan, Yaohua; Zhang, Lan; Shen, Chengxing; Qin, Gangjian; Ashraf, Muhammad; Weintraub, Neal; Ma, Genshan; Tang, Yaoliang

    2013-02-15

    Highlights: ► Cardiac progenitor-derived (CPC) Exosomes protect H9C2 from apoptosis in vitro. ► CPC-exosomes protect cardiomyoyctes from MI/R induced apoptosis in vivo. ► CPC-exosomes were taken up by H9C2 with high efficiency using PKH26 labeling. ► miR-451, one of GATA4-responsive miRNA cluster, is enriched in CPC-exosomes. -- Abstract: Background: Cardiac progenitors (CPC) mediate cardioprotection via paracrine effects. To date, most of studies focused on secreted paracrine proteins. Here we investigated the CPC-derived-exosomes on protecting myocardium from acute ischemia/reperfusion (MI/R) injury. Methods and results: CPC were isolated from mouse heart using two-step protocol. Exosomes were purified from conditional medium, and confirmed by electron micrograph and Western blot using CD63 as a marker. qRT-PCR shows that CPC-exosomes have high level expression of GATA4-responsive-miR-451. Exosomes were ex vivo labeled with PKH26, We observed exosomes can be uptaken by H9C2 cardiomyoblasts with high efficiency after 12 h incubation. CPC-exosomes protect H9C2 from oxidative stress by inhibiting caspase 3/7 activation invitro. In vivo delivery of CPC-exosomes in an acute mouse myocardial ischemia/reperfusion model inhibited cardiomyocyte apoptosis by about 53% in comparison with PBS control (p < 0.05). Conclusion: Our results suggest, for the first time, the CPC-exosomes can be used as a therapeutic vehicle for cardioprotection, and highlights a new perspective for using non-cell exosomes for cardiac disease.

  10. Remote ischemic conditioning for acute ischemic stroke: dawn in the darkness.

    PubMed

    Pan, Jingrui; Li, Xiangpen; Peng, Ying

    2016-07-01

    Stroke is a leading cause of disability with high morbidity and mortality worldwide. Of all strokes, 87% are ischemic. The only approved treatments for acute ischemic stroke are intravenous thrombolysis with alteplase within 4.5 h and thrombectomy within 8 h after symptom onset, which can be applied to just a few patients. During the past decades, ischemic preconditioning has been widely studied to confirm its neuroprotection against subsequent ischemia/reperfusion injury in the brain, including preconditioning in situ or in a remote organ (such as a limb) before onset of brain ischemia, the latter of which is termed as remote ischemic preconditioning. Because acute stroke is unpredicted, ischemic preconditioning is actually not suitable for clinical application. So remote ischemic conditioning performed during or after the ischemic duration of the brain was then designed to study its neuroprotection alone or in combination with alteplase in animals and patients, which is named as remote ischemic perconditioning or remote ischemic postconditioning. As expected, animal experiments and clinical trials both showed exciting results, indicating that an evolution in the treatment for acute ischemic stroke may not be far away. However, some problems or disputes still exist. This review summarizes the research progress and unresolved issues of remote ischemic conditioning (pre-, per-, and post-conditioning) in treating acute ischemic stroke, with the hope of advancing our understanding of this promising neuroprotective strategy for ischemic stroke in the near future. PMID:26812782

  11. Inhibition of Toll-Like Receptor 4 Signaling Mitigates Microvascular Loss but Not Fibrosis in a Model of Ischemic Acute Kidney Injury

    PubMed Central

    Dagher, Pierre C.; Hato, Takashi; Mang, Henry E.; Plotkin, Zoya; Richardson, Quentin V.; Massad, Michael; Mai, Erik; Kuehl, Sarah E.; Graham, Paige; Kumar, Rakesh; Sutton, Timothy A.

    2016-01-01

    The development of chronic kidney disease (CKD) following an episode of acute kidney injury (AKI) is an increasingly recognized clinical problem. Inhibition of toll-like receptor 4 (TLR4) protects renal function in animal models of AKI and has become a viable therapeutic strategy in AKI. However, the impact of TLR4 inhibition on the chronic sequelae of AKI is unknown. Consequently, we examined the chronic effects of TLR4 inhibition in a model of ischemic AKI. Mice with a TLR4-deletion on a C57BL/6 background and wild-type (WT) background control mice (C57BL/6) were subjected to bilateral renal artery clamping for 19 min and reperfusion for up to 6 weeks. Despite the acute protective effect of TLR4 inhibition on renal function (serum creatinine 1.6 ± 0.4 mg/dL TLR4-deletion vs. 2.8 ± 0.3 mg/dL·WT) and rates of tubular apoptosis following ischemic AKI, we found no difference in neutrophil or macrophage infiltration. Furthermore, we observed significant protection from microvascular rarefaction at six weeks following injury with TLR4-deletion, but this did not alter development of fibrosis. In conclusion, we validate the acute protective effect of TLR4 signal inhibition in AKI but demonstrate that this protective effect does not mitigate the sequential fibrogenic response in this model of ischemic AKI. PMID:27136544

  12. Intravenous Administration of Cilostazol Nanoparticles Ameliorates Acute Ischemic Stroke in a Cerebral Ischemia/Reperfusion-Induced Injury Model

    PubMed Central

    Nagai, Noriaki; Yoshioka, Chiaki; Ito, Yoshimasa; Funakami, Yoshinori; Nishikawa, Hiroyuki; Kawabata, Atsufumi

    2015-01-01

    It was reported that cilostazol (CLZ) suppressed disruption of the microvasculature in ischemic areas. In this study, we have designed novel injection formulations containing CLZ nanoparticles using 0.5% methylcellulose, 0.2% docusate sodium salt, and mill methods (CLZnano dispersion; particle size 81 ± 59 nm, mean ± S.D.), and investigated their toxicity and usefulness in a cerebral ischemia/reperfusion-induced injury model (MCAO/reperfusion mice). The pharmacokinetics of injections of CLZnano dispersions is similar to that of CLZ solutions prepared with 2-hydroxypropyl-β-cyclodextrin, and no changes in the rate of hemolysis of rabbit red blood cells, a model of cell injury, were observed with CLZnano dispersions. In addition, the intravenous injection of 0.6 mg/kg CLZnano dispersions does not affect the blood pressure and blood flow, and the 0.6 mg/kg CLZnano dispersions ameliorate neurological deficits and ischemic stroke in MCAO/reperfusion mice. It is possible that the CLZnano dispersions will provide effective therapy for ischemic stroke patients, and that injection preparations of lipophilic drugs containing drug nanoparticles expand their therapeutic usage. PMID:26690139

  13. Neuroimmunomodulatory effects of transcranial laser therapy combined with intravenous tPA administration for acute cerebral ischemic injury

    PubMed Central

    Peplow, Philip V.

    2015-01-01

    At present, the only FDA approved treatment for ischemic strokes is intravenous administration of tissue plasminogen activator within 4.5 hours of stroke onset. Owing to this brief window only a small percentage of patients receive tissue plasminogen activator. Transcranial laser therapy has been shown to be effective in animal models of acute ischemic stroke, resulting in significant improvement in neurological score and function. NEST-1 and NEST-2 clinical trials in human patients have demonstrated the safety and positive trends in efficacy of transcranial laser therapy for the treatment of ischemic stroke when initiated close to the time of stroke onset. Combining intravenous tissue plasminogen activator treatment with transcranial laser therapy may provide better functional outcomes. Statins given within 4 weeks of stroke onset improve stroke outcomes at 90 days compared to patients not given statins, and giving statins following transcranial laser therapy may provide an effective treatment for patients not able to be given tissue plasminogen activator due to time constraints. PMID:26487831

  14. Microglia in ischemic brain injury

    PubMed Central

    Weinstein, Jonathan R; Koerner, Ines P; Möller, Thomas

    2010-01-01

    Microglia are resident CNS immune cells that are active sensors in healthy brain and versatile effectors under pathological conditions. Cerebral ischemia induces a robust neuroinflammatory response that includes marked changes in the gene-expression profile and phenotype of a variety of endogenous CNS cell types (astrocytes, neurons and microglia), as well as an influx of leukocytic cells (neutrophils, macrophages and T-cells) from the periphery. Many molecules and conditions can trigger a transformation of surveying microglia to microglia of an alerted or reactive state. Here we review recent developments in the literature that relate to microglial activation in the experimental setting of in vitro and in vivo ischemia. We also present new data from our own laboratory demonstrating the direct effects of in vitro ischemic conditions on the microglial phenotype and genomic profile. In particular, we focus on the role of specific molecular signaling systems, such as hypoxia inducible factor-1 and Toll-like receptor-4, in regulating the microglial response in this setting. We then review histological and novel radiological data that confirm a key role for microglial activation in the setting of ischemic stroke in humans. We also discuss recent progress in the pharmacologic and molecular targeting of microglia in acute ischemic stroke. Finally, we explore how recent studies on ischemic preconditioning have increased interest in pre-emptively targeting microglial activation in order to reduce stroke severity. PMID:20401171

  15. Hyperglycemia, p53 and mitochondrial pathway of apoptosis are involved in the susceptibility of diabetic models to ischemic acute kidney injury

    PubMed Central

    Peng, Jianping; Li, Xiaoning; Zhang, Dongshan; Chen, Jian-Kang; Su, Yunchao; Smith, Sylvia B.; Dong, Zheng

    2014-01-01

    Patients with chronic kidney diseases, including diabetic nephropathy, are more susceptible to acute kidney injury (AKI) and have a worse prognosis following AKI. However, the underlying mechanism is unclear. Here we tested whether diabetic mice were more sensitive to AKI and show that renal ischemia-reperfusion induced significantly more severe AKI and higher mortality in the streptozotocin and the Akita diabetic mouse models. The severity of AKI in the mice correlated with their blood glucose levels. In vitro, high glucose-conditioned renal proximal tubular cells showed higher apoptosis and caspase activation following ATP-depletion and hypoxic injury, accompanied by a heightened mitochondrial accumulation of Bax and release of cytochrome c. In response to injury, both glucose-conditioned renal proximal tubular cells and diabetic kidney tissues showed markedly higher p53 induction. Suppression of p53 diminished the sensitivity of high glucose-conditioned cells to acute injury in vitro. Moreover, blockade of p53 by pifithrin-α, siRNA, or proximal tubule-targeted gene ablation reduced ischemic AKI in diabetic mice. Insulin reduced blood glucose in diabetic mice and largely attenuated their AKI sensitivity. Thus, our results suggest the involvement of hyperglycemia, p53 and mitochondrial pathway of apoptosis in the susceptibility of diabetic models to AKI. PMID:24963915

  16. Role of Cystathionine Gamma-Lyase in Immediate Renal Impairment and Inflammatory Response in Acute Ischemic Kidney Injury.

    PubMed

    Markó, Lajos; Szijártó, István A; Filipovic, Milos R; Kaßmann, Mario; Balogh, András; Park, Joon-Keun; Przybyl, Lukasz; N'diaye, Gabriele; Krämer, Stephanie; Anders, Juliane; Ishii, Isao; Müller, Dominik N; Gollasch, Maik

    2016-01-01

    Hydrogen sulfide (H2S) is known to act protectively during renal ischemia/reperfusion injury (IRI). However, the role of the endogenous H2S in acute kidney injury (AKI) is largely unclear. Here, we analyzed the role of cystathionine gamma-lyase (CTH) in acute renal IRI using CTH-deficient (Cth(-/-)) mice whose renal H2S levels were approximately 50% of control (wild-type) mice. Although levels of serum creatinine and renal expression of AKI marker proteins were equivalent between Cth(-/-) and control mice, histological analysis revealed that IRI caused less renal tubular damage in Cth(-/-) mice. Flow cytometric analysis revealed that renal population of infiltrated granulocytes/macrophages was equivalent in these mice. However, renal expression levels of certain inflammatory cytokines/adhesion molecules believed to play a role in IRI were found to be lower after IRI only in Cth(-/-) mice. Our results indicate that the systemic CTH loss does not deteriorate but rather ameliorates the immediate AKI outcome probably due to reduced inflammatory responses in the kidney. The renal expression of CTH and other H2S-producing enzymes was markedly suppressed after IRI, which could be an integrated adaptive response for renal cell protection. PMID:27273292

  17. Role of Cystathionine Gamma-Lyase in Immediate Renal Impairment and Inflammatory Response in Acute Ischemic Kidney Injury

    PubMed Central

    Markó, Lajos; Szijártó, István A.; Filipovic, Milos R.; Kaßmann, Mario; Balogh, András; Park, Joon-Keun; Przybyl, Lukasz; N’diaye, Gabriele; Krämer, Stephanie; Anders, Juliane; Ishii, Isao; Müller, Dominik N.; Gollasch, Maik

    2016-01-01

    Hydrogen sulfide (H2S) is known to act protectively during renal ischemia/reperfusion injury (IRI). However, the role of the endogenous H2S in acute kidney injury (AKI) is largely unclear. Here, we analyzed the role of cystathionine gamma-lyase (CTH) in acute renal IRI using CTH-deficient (Cth−/−) mice whose renal H2S levels were approximately 50% of control (wild-type) mice. Although levels of serum creatinine and renal expression of AKI marker proteins were equivalent between Cth−/− and control mice, histological analysis revealed that IRI caused less renal tubular damage in Cth−/− mice. Flow cytometric analysis revealed that renal population of infiltrated granulocytes/macrophages was equivalent in these mice. However, renal expression levels of certain inflammatory cytokines/adhesion molecules believed to play a role in IRI were found to be lower after IRI only in Cth−/− mice. Our results indicate that the systemic CTH loss does not deteriorate but rather ameliorates the immediate AKI outcome probably due to reduced inflammatory responses in the kidney. The renal expression of CTH and other H2S-producing enzymes was markedly suppressed after IRI, which could be an integrated adaptive response for renal cell protection. PMID:27273292

  18. Toll-Like Receptors and Ischemic Brain Injury

    PubMed Central

    Gesuete, Raffaella; Kohama, Steven G.; Stenzel-Poore, Mary

    2014-01-01

    Toll-like receptors (TLRs) are master regulators of innate immunity and play an integral role in the activation of the inflammatory response during infections. In addition, TLRs influence the body’s response to numerous forms of injury. Recent data have shown that TLRs play a modulating role in ischemic brain damage after stroke. Interestingly, their stimulation prior to ischemia induces a tolerant state that is neuroprotective. This phenomenon, referred to as TLR preconditioning, is the result of reprogramming of the TLR response to ischemic injury. This review addresses the role of TLRs in brain ischemia and the activation of endogenous neuroprotective pathways in the setting of preconditioning. We highlight the protective role of the interferon-related response and the potential site of action for TLR preconditioning involving the blood-brain-barrier. Pharmacological modulation of TLR activation to promote protection against stroke is a promising approach for the development of prophylactic and acute therapies targeting ischemic brain injury. PMID:24709682

  19. Obesity Exacerbates Rat Cerebral Ischemic Injury through Enhancing Ischemic Adiponectin-Containing Neuronal Apoptosis.

    PubMed

    Wu, Ming-Hsiu; Chio, Chung-Ching; Tsai, Kuen-Jer; Chang, Ching-Ping; Lin, Nan-Kai; Huang, Chao-Ching; Lin, Mao-Tsun

    2016-08-01

    A diet consisting of high levels of saturated fat has been linked to a dramatic rise in obesity. Long-term exposure to high fat, "Western diet" (WD), is detrimental to ischemic brain injury. Adiponectin receptor 1 (ADR-1) activation is also shown to exacerbate ischemic neuronal death. However, it is not known whether increasing percentages of adiponectin (APN)-containing neurons attenuates ischemic neuronal apoptosis by modulating ADRS. To explore the role of APN and its ADRs in the development of acute cerebral injury, we subjected WD and control diet (CD) rats to 1 h of middle cerebral artery occlusion followed by 23 h of reperfusion. Compared with CD rats, WD rats exhibited higher levels of brain infarct, neurologic deficits, brain edema, and apoptosis of APN-containing neurons; upregulation of both ADR-1 and P38 mitogen-activated protein kinase (P38MAPK); and downregulation of ADR-2 in ischemic brain tissues including frontal cortex, striatum, and hippocampus. Increasing percentages of APN-containing neurons by baculovirus-mediated administration of APN, in addition to reducing apoptosis of APN-containing neurons in ischemic brain tissues, significantly attenuated brain infarct and edema, neurologic deficits, and altered expression of ADR-1, P38MAPK, and ADR-2 in both WD and CD group rats. These data suggest a negative correlation between percentages of APN-containing neurons and cerebral ischemic injury. Obesity could exacerbate rat cerebral ischemic injury by enhancing apoptosis of APN-containing neurons in ischemic brain tissues probably via modulating ADRs and P38MAPK. PMID:26126515

  20. Optimizing Mouse Surgery with Online Rectal Temperature Monitoring and Preoperative Heat Supply. Effects on Post-Ischemic Acute Kidney Injury

    PubMed Central

    Holderied, Alexander; Anders, Hans-Joachim

    2016-01-01

    Body temperature affects outcomes of tissue injury. We hypothesized that online body core temperature recording and selective interventions help to standardize peri-interventional temperature control and the reliability of outcomes in experimental renal ischemia reperfusion injury (IRI). We recorded core temperature in up to seven mice in parallel using a Thermes USB recorder and ret-3-iso rectal probes with three different protocols. Setup A: Heating pad during ischemia time; Setup B: Heating pad from incision to wound closure; Setup C: A ventilated heating chamber before surgery and during ischemia time with surgeries performed on a heating pad. Temperature profile recording displayed significant declines upon installing anesthesia. The profile of the baseline experimental setup A revealed that <1% of the temperature readings were within the target range of 36.5 to 38.5°C. Setup B and C increased the target range readings to 34.6 ± 28.0% and 99.3 ± 1.5%, respectively. Setup C significantly increased S3 tubular necrosis, neutrophil influx, and mRNA expression of kidney injury markers. In addition, using setup C different ischemia times generated a linear correlation with acute tubular necrosis parameters at a low variability, which further correlated with the degree of kidney atrophy 5 weeks after surgery. Changing temperature control setup A to C was equivalent to 10 minutes more ischemia time. We conclude that body temperature drops quickly in mice upon initiating anesthesia. Immediate heat supply, e.g. in a ventilated heating chamber, and online core temperature monitoring can help to standardize and optimize experimental outcomes. PMID:26890071

  1. Clinical and morphological correlations in acute ischemic stroke.

    PubMed

    Slujitoru, Anca Stefania; Enache, Andreea Lorena; Pintea, Irina Lavinia; Rolea, Elisabeta; Stocheci, Cristina Mariana; Pop, O T; Predescu, Anca

    2012-01-01

    We studied the clinical and histopathological changes in twenty-seven cases of acute ischemic stroke, aged between 65 and 75 years. All deaths occurred within 30 days after stroke. The aim of our study was to establish the clinical and histological correlations in acute ischemic stroke to detect prognostic factors. Brain lesions after acute stroke were observed in all regions. Our study describes the heterogeneity of brain injury after acute ischemic stroke with the participation of all brain components and the chronology in which these lesions develop and evolve. By histological and immunohistochemical studies, we identified neuronal, glial and vascular damage. The neurons had undergone in the area of lesion a process of necrosis, ballooning or condensation process. In the ischemic penumbra, we observed the presence of red neurons. Vascular lesions were represented by the discontinuity of capillaries, always associated with a marked perivascular edema. The following clinical and morphological correlations were established: liquefactive necrosis, astrocyte gliosis, phagocytosis phenomena are the more intense the later the death of the patient; apoptosis phenomena are the more intense the faster the death of the patient; the entire cerebral microcirculation presented microscopic modifications following the ischemic strokes, regardless of the time since the lesion occurred and the histological examination was made; the major neurological complications of the ischemic stroke - the hemorrhagic transformation phenomena, cerebral edema, were microscopically objectified, regardless of the time since the lesion occurred and the histological examination was made. PMID:23303014

  2. Meclofenamate elicits a nephropreventing effect in a rat model of ischemic acute kidney injury by suppressing indoxyl sulfate production and restoring renal organic anion transporters.

    PubMed

    Saigo, Chika; Nomura, Yui; Yamamoto, Yuko; Sagata, Masataka; Matsunaga, Rika; Jono, Hirofumi; Nishi, Kazuhiko; Saito, Hideyuki

    2014-01-01

    ischemic acute kidney injury. PMID:25143712

  3. Meclofenamate elicits a nephropreventing effect in a rat model of ischemic acute kidney injury by suppressing indoxyl sulfate production and restoring renal organic anion transporters

    PubMed Central

    Saigo, Chika; Nomura, Yui; Yamamoto, Yuko; Sagata, Masataka; Matsunaga, Rika; Jono, Hirofumi; Nishi, Kazuhiko; Saito, Hideyuki

    2014-01-01

    ischemic acute kidney injury. PMID:25143712

  4. Spectroscopic Monitoring of Kidney Tissue Ischemic Injury

    SciTech Connect

    Demos, S G; Fitzgerald, J T; Michalopoulou, A P; Troppmann, C

    2004-03-11

    Noninvasive evaluation of tissue viability of donor kidneys used for transplantation is an issue that current technology is not able to address. In this work, we explore optical spectroscopy for its potential to assess the degree of ischemic damage in kidney tissue. We hypothesized that ischemic damage to kidney tissue will give rise to changes in its optical properties which in turn may be used to asses the degree of tissue injury. The experimental results demonstrate that the autofluorescence intensity of the injured kidney is decreasing as a function of time exposed to ischemic injury. Changes were also observed in the NIR light scattering intensities most probably arising from changes due to injury and death of the tissue.

  5. Lebetin 2, a Snake Venom-Derived Natriuretic Peptide, Attenuates Acute Myocardial Ischemic Injury through the Modulation of Mitochondrial Permeability Transition Pore at the Time of Reperfusion.

    PubMed

    Tourki, Bochra; Matéo, Philippe; Morand, Jessica; Elayeb, Mohamed; Godin-Ribuot, Diane; Marrakchi, Naziha; Belaidi, Elise; Messadi, Erij

    2016-01-01

    Cardiac ischemia is one of the leading causes of death worldwide. It is now well established that natriuretic peptides can attenuate the development of irreversible ischemic injury during myocardial infarction. Lebetin 2 (L2) is a new discovered peptide isolated from Macrovipera lebetina venom with structural similarity to B-type natriuretic peptide (BNP). Our objectives were to define the acute cardioprotective actions of L2 in isolated Langendorff-perfused rat hearts after regional or global ischemia-reperfusion (IR). We studied infarct size, left ventricular contractile recovery, survival protein kinases and mitochondrial permeability transition pore (mPTP) opening in injured myocardium. L2 dosage was determined by preliminary experiments at its ability to induce cyclic guanosine monophosphate (cGMP) release without changing hemodynamic effects in normoxic hearts. L2 was found to be as effective as BNP in reducing infarct size after the induction of either regional or global IR. Both peptides equally improved contractile recovery after regional IR, but only L2 increased coronary flow and reduced severe contractile dysfunction after global ischemia. Cardioprotection afforded by L2 was abolished after isatin or 5-hydroxydecanote pretreatment suggesting the involvement of natriuretic peptide receptors and mitochondrial KATP (mitoKATP) channels in the L2-induced effects. L2 also increased survival protein expression in the reperfused myocardium as evidenced by phosphorylation of signaling pathways PKCε/ERK/GSK3β and PI3K/Akt/eNOS. IR induced mitochondrial pore opening, but this effect was markedly prevented by L2 treatment. These data show that L2 has strong cardioprotective effect in acute ischemia through stimulation of natriuretic peptide receptors. These beneficial effects are mediated, at least in part, by mitoKATP channel opening and downstream activated survival kinases, thus delaying mPTP opening and improving IR-induced mitochondrial dysfunction. PMID

  6. Therapeutic hypothermia for acute ischemic stroke.

    PubMed

    Froehler, Michael T; Ovbiagele, Bruce

    2010-04-01

    Intravenous recombinant tissue plasminogen activator remains the only US FDA-approved treatment for acute ischemic stroke. However, the very limited time window for its administration restricts its usefulness. Furthermore, it is becoming increasingly clear that, given the numerous pathways via which cerebral ischemia causes cell death, the capacity to inhibit multiple mechanisms simultaneously may provide additive or synergistic beneficial clinical effects for stroke patients. Although no clinical trials have yet investigated the efficacy of therapeutic hypothermia in focal cerebral ischemia, its pleiotropic neuroprotective actions, positive results in preclinical studies, as well as proven enhancement of neurologic outcomes in survivors of cardiac arrest and newborns with hypoxic-ischemic encephalopathy, make this neuroprotective strategy highly promising. This review presents an overview of the potential role of hypothermia in the treatment of acute ischemic stroke and discusses ischemic cell death pathophysiology, neuroprotective mechanisms of hypothermia, methodologies employed for the induction of hypothermia, results from animal models of cerebral ischemia, and finally, currently available clinical trial data. Two valuable lessons learned thus far are that first, rapid induction of hypothermia is key and is best accomplished with a combination of ice-cold saline infusion and the use of endovascular cooling devices, and second, that shivering can be overcome with aggressive anti-shivering protocols including meperidine, buspirone and surface warming. We await the results of clinical trials to determine the utility of therapeutic hypothermia in acute ischemic stroke. If proven efficacious, hypothermia would be a welcome complement to established reperfusion therapies for ischemic stroke patients. PMID:20397832

  7. White matter injury in ischemic stroke.

    PubMed

    Wang, Yuan; Liu, Gang; Hong, Dandan; Chen, Fenghua; Ji, Xunming; Cao, Guodong

    2016-06-01

    Stroke is one of the major causes of disability and mortality worldwide. It is well known that ischemic stroke can cause gray matter injury. However, stroke also elicits profound white matter injury, a risk factor for higher stroke incidence and poor neurological outcomes. The majority of damage caused by stroke is located in subcortical regions and, remarkably, white matter occupies nearly half of the average infarct volume. Indeed, white matter is exquisitely vulnerable to ischemia and is often injured more severely than gray matter. Clinical symptoms related to white matter injury include cognitive dysfunction, emotional disorders, sensorimotor impairments, as well as urinary incontinence and pain, all of which are closely associated with destruction and remodeling of white matter connectivity. White matter injury can be noninvasively detected by MRI, which provides a three-dimensional assessment of its morphology, metabolism, and function. There is an urgent need for novel white matter therapies, as currently available strategies are limited to preclinical animal studies. Optimal protection against ischemic stroke will need to encompass the fortification of both gray and white matter. In this review, we discuss white matter injury after ischemic stroke, focusing on clinical features and tools, such as imaging, manifestation, and potential treatments. We also briefly discuss the pathophysiology of WMI and future research directions. PMID:27090751

  8. Histone Deacetylases Exert Class-Specific Roles in Conditioning the Brain and Heart Against Acute Ischemic Injury

    PubMed Central

    Aune, Sverre E.; Herr, Daniel J.; Kutz, Craig J.; Menick, Donald R.

    2015-01-01

    Ischemia-reperfusion (IR) injury comprises a significant portion of morbidity and mortality from heart and brain diseases worldwide. This enduring clinical problem has inspired myriad reports in the scientific literature of experimental interventions seeking to elucidate the pathology of IR injury. Elective cardiac surgery presents perhaps the most viable scenario for protecting the heart and brain from IR injury due to the opportunity to condition the organs prior to insult. The physiological parameters for the preconditioning of vital organs prior to insult through mechanical and pharmacological maneuvers have been heavily examined. These investigations have revealed new insights into how preconditioning alters cellular responses to IR injury. However, the promise of preconditioning remains unfulfilled at the clinical level, and research seeking to implicate cell signals essential to this protection continues. Recent discoveries in molecular biology have revealed that gene expression can be controlled through posttranslational modifications, without altering the chemical structure of the genetic code. In this scenario, gene expression is repressed by enzymes that cause chromatin compaction through catalytic removal of acetyl moieties from lysine residues on histones. These enzymes, called histone deacetylases (HDACs), can be inhibited pharmacologically, leading to the de-repression of protective genes. The discovery that HDACs can also alter the function of non-histone proteins through posttranslational deacetylation has expanded the potential impact of HDAC inhibitors for the treatment of human disease. HDAC inhibitors have been applied in a very small number of experimental models of IR. However, the scientific literature contains an increasing number of reports demonstrating that HDACs converge on preconditioning signals in the cell. This review will describe the influence of HDACs on major preconditioning signaling pathways in the heart and brain. PMID

  9. Acute kidney injury.

    PubMed

    Patschan, Daniel; Müller, Gerhard Anton

    2015-01-01

    Acute kidney injury is a frequent and serious complication in hospitalized patients. Mortality rates have not substantially been decreased during the last 20 years. In most patients AKI results from transient renal hypoperfusion or ischemia. The consequences include tubular cell dysfunction/damage, inflammation of the organ, and post-ischemic microvasculopathy. The two latter events perpetuate kidney damage in AKI. Clinical manifestations result from diminished excretion of water, electrolytes, and endogenous / exogenous waste products. Patients are endangered by cardiovascular complications such as hypertension, heart failure, and arrhythmia. In addition, the whole organism may be affected by systemic toxification (uremia). The diagnostic approach in AKI involves several steps with renal biopsy inevitable in some patients. The current therapy focuses on preventing further kidney damage and on treatment of complications. Different pharmacological strategies have failed to significantly improve prognosis in AKI. If dialysis treatment becomes mandatory, intermittent and continuous renal replacement therapies are equally effective. Thus, new therapies are urgently needed in order to reduce short- and long-term outcome in AKI. In this respect, stem cell-based regimens may offer promising perspectives. PMID:25618438

  10. Acute kidney injury

    PubMed Central

    Müller, Gerhard Anton

    2015-01-01

    Abstract: Acute kidney injury is a frequent and serious complication in hospitalized patients. Mortality rates have not substantially been decreased during the last 20 years. In most patients AKI results from transient renal hypoperfusion or ischemia. The consequences include tubular cell dysfunction/damage, inflammation of the organ, and post-ischemic microvasculopathy. The two latter events perpetuate kidney damage in AKI. Clinical manifestations result from diminished excretion of water, electrolytes, and endogenous / exogenous waste products. Patients are endangered by cardiovascular complications such as hypertension, heart failure, and arrhythmia. In addition, the whole organism may be affected by systemic toxification (uremia). The diagnostic approach in AKI involves several steps with renal biopsy inevitable in some patients. The current therapy focuses on preventing further kidney damage and on treatment of complications. Different pharmacological strategies have failed to significantly improve prognosis in AKI. If dialysis treatment becomes mandatory, intermittent and continuous renal replacement therapies are equally effective. Thus, new therapies are urgently needed in order to reduce short- and long-term outcome in AKI. In this respect, stem cell-based regimens may offer promising perspectives. PMID:25618438

  11. Aging has small effects on initial ischemic acute kidney injury development despite changing intrarenal immunologic micromilieu in mice.

    PubMed

    Jang, Hye Ryoun; Park, Ji Hyeon; Kwon, Ghee Young; Park, Jae Berm; Lee, Jung Eun; Kim, Dae Joong; Kim, Yoon-Goo; Kim, Sung Joo; Oh, Ha Young; Huh, Wooseong

    2016-02-15

    Inflammatory process mediated by innate and adaptive immune systems is a major pathogenic mechanism of renal ischemia-reperfusion injury (IRI). There are concerns that organ recipients may be at increased risk of developing IRI after receiving kidneys from elder donors. To reveal the effects of aging on the development of renal IRI, we compared the immunologic micromilieu of normal and postischemic kidneys from mice of three different ages (9 wk, 6 mo, and 12 mo). There was a higher number of total T cells, especially effector memory CD4/CD8 T cells, and regulatory T cells in the normal kidneys of old mice. On day 2 after IRI, the proportion of necrotic tubules and renal functional changes were comparable between groups although old mice had a higher proportion of damaged tubule compared with young mice. More T cells, but less B cells, trafficked into the postischemic kidneys of old mice. The infiltration of NK T cells was similar across the groups. Macrophages and neutrophils were comparable between groups in both normal kidneys and postischemic kidneys. The intrarenal expressions of TNF-α and VEGF were decreased in normal and postischemic kidneys of aged mice. These mixed effects of aging on lymphocytes and cytokines/chemokines were not different between the two groups of old mice. Our study demonstrates that aging alters the intrarenal micromilieu but has small effects on the development of initial renal injury after IRI. Further study investigating aging-dependent differences in the repair process of renal IRI may be required. PMID:26661651

  12. Susceptibility of the pancreas to ischemic injury in shock.

    PubMed Central

    Warshaw, A L; O'Hara, P J

    1978-01-01

    The pancreas, like the kidney, is highly vulnerable to ischemic necrosis. This form of pancreatic injury may express itself as prolonged hyperamylasemia with only minimal signs or symptoms of inflammation, or may produce severe pancreatitis followed by abscesses and death. Autopsy examination of patients dying after oligemic shock showed a 9% incidence of major pancreatic injury if there was not concomitant acute renal tubular necrosis (ATN), but a 50% incidence in those with ATN. Similarly, among patients dying after non-oligemic shock, 12% of those without ATN had major pancreatic injury but 35% with ATN also had pancreatic ischemic injury. Among 13 selected patients examined prospectively after being in shock, pancreatic injury was indicated by hyperamylasemia, hyperlipasemia, elevated amylase/creatinine clearance ratio, and elevated circulating isoamylases specifically of pancreatic origin. Four of the 13 had clinical manifestations of pancreatitis. Not only must shock be added to this list of causes of pancreatitis, but pancreatic ischemia due to hypoperfusion may also be the critical factor which causes the progression from edema to necrosis in other forms of pancreatitis, including those associated with alcohol and biliary disease. PMID:686887

  13. Evolving Treatments for Acute Ischemic Stroke.

    PubMed

    Zerna, Charlotte; Hegedus, Janka; Hill, Michael D

    2016-04-29

    The purpose of this article is to review advances in stroke treatment in the hyperacute period. With recent evolutions of technology in the fields of imaging, thrombectomy devices, and emergency room workflow management, as well as improvement in statistical methods and study design, there have been ground breaking changes in the treatment of acute ischemic stroke. We describe how stroke presents as a clinical syndrome and how imaging as the most important biomarker will help differentiate between stroke subtypes and treatment eligibility. The evolution of hyperacute treatment has led to the current standard of care: intravenous thrombolysis with tissue-type plasminogen activator and endovascular treatment for proximal vessel occlusion in the anterior cerebral circulation. All patients with acute ischemic stroke are in need of hyperacute secondary prevention because the risk of recurrence is highest closest to the index event. The dominant themes of modern stroke care are the use of neurovascular imaging and speed of diagnosis and treatment. PMID:27126651

  14. Acute kidney injury.

    PubMed

    Lang, Joanna; Zuber, Kim; Davis, Jane

    2016-04-01

    Acute kidney injury (AKI) complicates up to 20% of all hospital admissions. Responding to the increase in admissions, complications, mortality, morbidity, and cost of AKI, Kidney Disease: Improving Global Outcomes convened an expert panel to study the issue, review the literature, and publish guidelines to evaluate and treat patients with AKI in the acute setting. This article reviews those guidelines. PMID:27023656

  15. Drug repurposing for immune modulation in acute ischemic stroke.

    PubMed

    Amantea, Diana; Bagetta, Giacinto

    2016-02-01

    Innate immune cells play a dualistic role in the evolution of ischemic brain damage, with classic phenotypes promoting injury, and alternatively activated M2 microglia/macrophages or N2 neutrophils providing tissue remodelling and repair. Recently, a number of drugs commonly used for other indications (i.e., azithromycin, minocycline, bexarotene, rosiglitazone, metformin) was reported to provide neuroprotection in preclinical stroke models by promoting immune polarization towards non-inflammatory, protective phenotypes. Repurposing drugs with a well-established safety profile should allow a reduction in the risk of clinical trial failure that has dominated the unsuccessful development of neuroprotective drugs in stroke during the last decades. The clinical validation of the proof of concept, followed by the assessment of safety and efficacy of immune-polarizing repurposed drugs will definitively offer new opportunities for the acute treatment of ischemic stroke. PMID:26657075

  16. Remote ischemic preconditioning as treatment for non-ischemic gastrointestinal disorders: beyond ischemia-reperfusion injury.

    PubMed

    Camara-Lemarroy, Carlos Rodrigo

    2014-04-01

    Common gastrointestinal diseases such as radiation enteritis (RE), acute pancreatitis, inflammatory bowel diseases (IBD) and drug-induced hepatotoxicity share pathophysiological mechanisms at the molecular level, mostly involving the activation of many pathways of the immune response, ultimately leading to tissue injury. Increased oxidative stress, inflammatory cytokine release, inflammatory cell infiltration and activation and the up-regulation of inflammatory transcription factors participate in the pathophysiology of these complex entities. Treatment varies in each specific disease, but at least in the cases of RE and IBD immunosuppressors are effective. However, full therapeutic responses are not always achieved. The pathophysiology of ischemia-reperfusion (IR) injury shares many of these mechanisms. Brief and repetitive periods of ischemia in an organ or limb have been shown to protect against subsequent major IR injury in distant organs, a phenomenon called remote ischemic preconditioning (RIP). This procedure has been shown to protect the gut, pancreas and liver by modulating many of the same inflammatory mechanisms. Since RIP is safe and tolerable, and has shown to be effective in some recent clinical trials, I suggest that RIP could be used as a physiologically relevant adjunct treatment for non-ischemic gastrointestinal inflammatory conditions. PMID:24707140

  17. Cellular Basis of Anoxic-Ischemic Brain Injury

    PubMed Central

    Bronshvag, Michael M.

    1978-01-01

    Anoxic-ischemic cerebral disease is an important primary cause of morbidity and mortality, and also complicates a number of systemic diseases. Its clinical manifestations, such as hemiparesis and coma, represent cellular injury sustained by the complex, inhomogeneous brain. An understanding of the nature and pattern of anoxic-ischemic cerebral injury, and of the logical basis for avenues of therapy, is necessary to the management of patients with the various anoxic-ischemic disorders. PMID:685270

  18. [Therapy of acute ischemic stroke].

    PubMed

    Sobesky, J

    2009-11-01

    New diagnostic and therapeutic developments have led to an innovative approach to stroke therapy. The slogan "time is brain" emphasizes that stroke is a medical emergency comparable to myocardial infarction. The stroke unit conception is an evidence based therapy for all stroke patients and improves outcome significantly. The monitoring of vital signs and the management of stroke specific complications are highly effective. Early secondary prophylaxis reduces the risk of recurrence. The effect of CT based thrombolysis within the time window of 4,5 h has been substantiated by current data. Stroke MRI holds the promise for an improved therapy by patient stratification and by opening the time window. Interventional recanalisation, vascular interventions and hemicraniectomy complement the therapeutic options in the acute phase of stroke. PMID:19838656

  19. Endovascular treatment of acute ischemic stroke.

    PubMed

    Leslie-Mazwi, Thabele; Rabinov, James; Hirsch, Joshua A

    2016-01-01

    Endovascular thrombectomy is an effective treatment for major acute ischemic stroke syndromes caused by major anterior circulation artery occlusions (commonly referred to as large vessel occlusion) and is superior to intravenous thrombolysis and medical management. Treatment should occur as quickly as is reasonably possible. All patients with moderate to severe symptoms (National Institutes of Health stroke scale >8) and a treatable occlusion should be considered. The use of neuroimaging is critical to exclude hemorrhage and large ischemic cores. Very shortly after stroke onset (<3 hours) computed tomography (CT) and CT angiography provide sufficient information to proceed; diffusion magnetic resonance imaging (MRI) is less reliable during this early stage. After 3 hours from onset diffusion MRI is the most reliable method to define ischemic core size and should be used in centers that can offer it rapidly. Recanalization is highly effective with a stentriever or using a direct aspiration technique, with the patient awake or under conscious sedation rather than general anesthesia, if it may be performed safely. After thrombectomy the patient should be admitted to an intensive care setting and inpatient rehabilitation undertaken as soon as feasible. Patient outcomes should be assessed at 3 months, preferably using the modified Rankin score. PMID:27430469

  20. Endothelial progenitor cells in acute ischemic stroke

    PubMed Central

    Martí-Fàbregas, Joan; Crespo, Javier; Delgado-Mederos, Raquel; Martínez-Ramírez, Sergi; Peña, Esther; Marín, Rebeca; Dinia, Lavinia; Jiménez-Xarrié, Elena; Fernández-Arcos, Ana; Pérez-Pérez, Jesús; Querol, Luis; Suárez-Calvet, Marc; Badimon, Lina

    2013-01-01

    Objectives The levels of circulating endothelial progenitor cells (EPCs) in ischemic stroke have not been studied extensively and reported results are inconsistent. We aimed to investigate the time course, the prognostic relevance, and the variables associated with EPC counts in patients with ischemic stroke at different time points. Material and methods We studied prospectively 146 consecutive patients with ischemic stroke within the first 48 h from the onset of symptoms (baseline). We evaluated demographic data, classical vascular risk factors, treatment with thrombolysis and statins, stroke etiology, National Institute of Health and Stroke Scale score and outcome (favorable when Rankin scale score 0–2). Blood samples were collected at baseline, at day 7 after stroke (n = 121) and at 3 months (n = 92). The EPC were measured by flow cytometry. Results We included 146 patients with a mean age of 70.8 ± 12.2 years. The circulating EPC levels were higher on day 7 than at baseline or at 3 months (P = 0.045). Pretreatment with statins (odds ratio [OR] 3.11, P = 0.008) and stroke etiology (P = 0.032) were predictive of EPC counts in the baseline sample. EPC counts were not associated with stroke severity or functional outcome in all the patients. However, using multivariate analyses, a better functional outcome was found in patients with higher EPC counts in large-artery atherosclerosis and small-vessel disease etiologic subtypes. Conclusions After acute ischemic stroke, circulating EPC counts peaked at day 7. Pretreatment with statins increased the levels of EPC. In patients with large-artery atherosclerosis and small-vessel disease subtypes, higher counts were related to better outcome at 3 months. PMID:24363968

  1. Leukocyte Recruitment and Ischemic Brain Injury

    PubMed Central

    Yilmaz, Gokhan

    2010-01-01

    Leukocytes are recruited into the cerebral microcirculation following an ischemic insult. The leukocyte–endothelial cell adhesion manifested within a few hours after ischemia (followed by reperfusion, I/R) largely reflects an infiltration of neutrophils, while other leukocyte populations appear to dominate the adhesive interactions with the vessel wall at 24 h of reperfusion. The influx of rolling and adherent leukocytes is accompanied by the recruitment of adherent platelets, which likely enhances the cytotoxic potential of the leukocytes to which they are attached. The recruitment of leukocytes and platelets in the postischemic brain is mediated by specific adhesion glycoproteins expressed by the activated blood cells and on cerebral microvascular endothelial cells. This process is also modulated by different signaling pathways (e.g., CD40/CD40L, Notch) and cytokines (e.g., RANTES) that are activated/released following I/R. Some of the known risk factors for cardiovascular disease, including hypercholesterolemia and obesity appear to exacerbate the leukocyte and platelet recruitment elicited by brain I/R. Although lymphocyte–endothelial cell and –platelet interactions in the postischemic cerebral microcirculation have not been evaluated to date, recent evidence in experimental animals implicate both CD4+ and CD8+ T-lymphocytes in the cerebral microvascular dysfunction, inflammation, and tissue injury associated with brain I/R. Evidence implicating regulatory T-cells as cerebroprotective modulators of the inflammatory and tissue injury responses to brain I/R support a continued focus on leukocytes as a target for therapeutic intervention in ischemic stroke. PMID:19579016

  2. Local and remote ischemic preconditioning protect against intestinal ischemic/reperfusion injury after supraceliac aortic clamping

    PubMed Central

    Erling, Nilon; de Souza Montero, Edna Frasson; Sannomiya, Paulina; Poli-de-Figueiredo (in memoriam), Luiz Francisco

    2013-01-01

    OBJECTIVES: This study tests the hypothesis that local or remote ischemic preconditioning may protect the intestinal mucosa against ischemia and reperfusion injuries resulting from temporary supraceliac aortic clamping. METHODS: Twenty-eight Wistar rats were divided into four groups: the sham surgery group, the supraceliac aortic occlusion group, the local ischemic preconditioning prior to supraceliac aortic occlusion group, and the remote ischemic preconditioning prior to supraceliac aortic occlusion group. Tissue samples from the small bowel were used for quantitative morphometric analysis of mucosal injury, and blood samples were collected for laboratory analyses. RESULTS: Supraceliac aortic occlusion decreased intestinal mucosal length by reducing villous height and elevated serum lactic dehydrogenase and lactate levels. Both local and remote ischemic preconditioning mitigated these histopathological and laboratory changes. CONCLUSIONS: Both local and remote ischemic preconditioning protect intestinal mucosa against ischemia and reperfusion injury following supraceliac aortic clamping. PMID:24473514

  3. Predicting Hemorrhagic Transformation of Acute Ischemic Stroke

    PubMed Central

    Marsh, Elisabeth B.; Llinas, Rafael H.; Schneider, Andrea L.C.; Hillis, Argye E.; Lawrence, Erin; Dziedzic, Peter; Gottesman, Rebecca F.

    2016-01-01

    Abstract Hemorrhagic transformation (HT) increases the morbidity and mortality of ischemic stroke. Anticoagulation is often indicated in patients with atrial fibrillation, low ejection fraction, or mechanical valves who are hospitalized with acute stroke, but increases the risk of HT. Risk quantification would be useful. Prior studies have investigated risk of systemic hemorrhage in anticoagulated patients, but none looked specifically at HT. In our previously published work, age, infarct volume, and estimated glomerular filtration rate (eGFR) significantly predicted HT. We created the hemorrhage risk stratification (HeRS) score based on regression coefficients in multivariable modeling and now determine its validity in a prospectively followed inpatient cohort. A total of 241 consecutive patients presenting to 2 academic stroke centers with acute ischemic stroke and an indication for anticoagulation over a 2.75-year period were included. Neuroimaging was evaluated for infarct volume and HT. Hemorrhages were classified as symptomatic versus asymptomatic, and by severity. HeRS scores were calculated for each patient and compared to actual hemorrhage status using receiver operating curve analysis. Area under the curve (AUC) comparing predicted odds of hemorrhage (HeRS score) to actual hemorrhage status was 0.701. Serum glucose (P < 0.001), white blood cell count (P < 0.001), and warfarin use prior to admission (P = 0.002) were also associated with HT in the validation cohort. With these variables, AUC improved to 0.854. Anticoagulation did not significantly increase HT; but with higher intensity anticoagulation, hemorrhages were more likely to be symptomatic and more severe. The HeRS score is a valid predictor of HT in patients with ischemic stroke and indication for anticoagulation. PMID:26765425

  4. Innate immune inflammatory response in the acutely ischemic myocardium.

    PubMed

    Deftereos, Spyridon; Angelidis, Christos; Bouras, Georgios; Raisakis, Konstantinos; Gerckens, Ulrich; Cleman, Michael W; Giannopoulos, Georgios

    2014-01-01

    The "holy grail" of modern interventional cardiology is the salvage of viable myocardial tissue in the distribution of an acutely occluded coronary artery. Thrombolysis and percutaneous coronary interventions, provided they can be delivered on time, can interrupt the occlusion and save tissue. At the same time restoring the patency of the coronary vessels and providing the ischemic myocardium with blood can cause additional tissue damage. A key element of ischemic and reperfusion injury and major determinant of the evolution of damage in the injured myocardium is the inflammatory response. The innate immune system initiates and directs this response which is a prerequisite for subsequent healing. The complement cascade is set in motion following the release of subcellular membrane constituents. Endogenous 'danger' signals known as danger-associated molecular patterns (DAMPs) released from ischemic and dying cells alert the innate immune system and activate several signal transduction pathways through interactions with the highly conserved Toll like receptors (TLRs). Reactive oxygen species (ROS) generation directly induces pro-inflammatory cascades and triggers formation of the inflammasome. The challenge lies into designing strategies that specifically block the inflammatory cascades responsible for tissue damage without affecting those concerned with tissue healing. PMID:25102201

  5. Inhibition of cyclophilin D by cyclosporin A promotes retinal ganglion cell survival by preventing mitochondrial alteration in ischemic injury

    PubMed Central

    Kim, S Y; Shim, M S; Kim, K-Y; Weinreb, R N; Wheeler, L A; Ju, W-K

    2014-01-01

    Cyclosporin A (CsA) inhibits the opening of the mitochondrial permeability transition pore (MPTP) by interacting with cyclophilin D (CypD) and ameliorates neuronal cell death in the central nervous system against ischemic injury. However, the molecular mechanisms underlying CypD/MPTP opening-mediated cell death in ischemic retinal injury induced by acute intraocular pressure (IOP) elevation remain unknown. We observed the first direct evidence that acute IOP elevation significantly upregulated CypD protein expression in ischemic retina at 12 h. However, CsA prevented the upregulation of CypD protein expression and promoted retinal ganglion cell (RGC) survival against ischemic injury. Moreover, CsA blocked apoptotic cell death by decreasing cleaved caspase-3 protein expression in ischemic retina. Of interest, although the expression level of Bcl-xL protein did not show a significant change in ischemic retina treated with vehicle or CsA at 12 h, ischemic damage induced the reduction of Bcl-xL immunoreactivity in RGCs. More importantly, CsA preserved Bcl-xL immunoreactivity in RGCs of ischemic retina. In parallel, acute IOP elevation significantly increased phosphorylated Bad (pBad) at Ser112 protein expression in ischemic retina at 12 h. However, CsA significantly preserved pBad protein expression in ischemic retina. Finally, acute IOP elevation significantly increased mitochondrial transcription factor A (Tfam) protein expression in ischemic retina at 12 h. However, CsA significantly preserved Tfam protein expression in ischemic retina. Studies on mitochondrial DNA (mtDNA) content in ischemic retina showed that there were no statistically significant differences in mtDNA content among control and ischemic groups treated with vehicle or CsA. Therefore, these results provide evidence that the activation of CypD-mediated MPTP opening is associated with the apoptotic pathway and the mitochondrial alteration in RGC death of ischemic retinal injury. On the basis

  6. Ischemic Acute Kidney Injury Perturbs Homeostasis of Serine Enantiomers in the Body Fluid in Mice: Early Detection of Renal Dysfunction Using the Ratio of Serine Enantiomers

    PubMed Central

    Sasabe, Jumpei; Suzuki, Masataka; Miyoshi, Yurika; Tojo, Yosuke; Okamura, Chieko; Ito, Sonomi; Konno, Ryuichi; Mita, Masashi; Hamase, Kenji; Aiso, Sadakazu

    2014-01-01

    The imbalance of blood and urine amino acids in renal failure has been studied mostly without chiral separation. Although a few reports have shown the presence of D-serine, an enantiomer of L-serine, in the serum of patients with severe renal failure, it has remained uncertain how serine enantiomers are deranged in the development of renal failure. In the present study, we have monitored serine enantiomers using a two-dimensional HPLC system in the serum and urine of mice after renal ischemia-reperfusion injury (IRI), known as a mouse model of acute kidney injury. In the serum, the level of D-serine gradually increased after renal IRI in parallel with that of creatinine, whereas the L-serine level decreased sharply in the early phase after IRI. The increase of D-serine was suppressed in part by genetic inactivation of a D-serine-degrading enzyme, D-amino acid oxidase (DAO), but not by disruption of its synthetic enzyme, serine racemase, in mice. Renal DAO activity was detected exclusively in proximal tubules, and IRI reduced the number of DAO-positive tubules. On the other hand, in the urine, D-serine was excreted at a rate nearly triple that of L-serine in mice with sham operations, indicating that little D-serine was reabsorbed while most L-serine was reabsorbed in physiological conditions. IRI significantly reduced the ratio of urinary D−/L-serine from 2.82±0.18 to 1.10±0.26 in the early phase and kept the ratio lower than 0.5 thereafter. The urinary D−/L-serine ratio can detect renal ischemia earlier than kidney injury molecule-1 (KIM-1) or neutrophil gelatinase-associated lipocalin (NGAL) in the urine, and more sensitively than creatinine, cystatin C, or the ratio of D−/L-serine in the serum. Our findings provide a novel understanding of the imbalance of amino acids in renal failure and offer a potential new biomarker for an early detection of acute kidney injury. PMID:24489731

  7. Estrogenic Impact on Cardiac Ischemic/Reperfusion Injury.

    PubMed

    Sivasinprasasn, Sivaporn; Shinlapawittayatorn, Krekwit; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2016-02-01

    The increase in cardiovascular disease and metabolic syndrome incidence following the onset of menopause has highlighted the role of estrogen as a cardiometabolic protective agent. Specifically regarding the heart, estrogen induced an improvement in cardiac function, preserved calcium homeostasis, and inhibited the mitochondrial apoptotic pathway. The beneficial effects of estrogen in relation to cardiac ischemia/reperfusion (I/R) injury, such as reduced infarction and ameliorated post-ischemic recovery, have also been shown. Nevertheless, controversial findings exist and estrogen therapy is reported to be related to a higher rate of thromboembolic events and atrial fibrillation in post-menopausal women. Therefore, greater clarification is needed to evaluate the exact potential of estrogen use in cases of cardiac I/R injury. This article reviews the effects of estrogen, in both acute and chronic treatment, and collates the studies with regard to their in vivo, in vitro, or clinical trial settings in cases of cardiac I/R injury and myocardial infarction. PMID:26786980

  8. Management of Acute Hypertensive Response in Patients With Ischemic Stroke.

    PubMed

    AlSibai, Ahmad; Qureshi, Adnan I

    2016-07-01

    High blood pressure (BP) >140/90 mm Hg is seen in 75% of patients with acute ischemic stroke and in 80% of patients with acute intracerebral hemorrhages and is independently associated with poor functional outcome. While BP reduction in patients with chronic hypertension remains one of the most important factors in primary and secondary stroke prevention, the proper management strategy for acute hypertensive response within the first 72 hours of acute ischemic stroke has been a matter of debate. Recent guidelines recommend clinical trials to ascertain whether antihypertensive therapy in the acute phase of stroke is beneficial. This review summarizes the current data on acute hypertensive response or elevated BP management during the first 72 hours after an acute ischemic stroke. Based on the potential deleterious effect of lowering BP observed in some clinical trials in patients with acute ischemic stroke and because of the lack of convincing evidence to support acute BP lowering in those situations, aggressive BP reduction in patients presenting with acute ischemic stroke is currently not recommended. While the early use of angiotensin receptor antagonists may help reduce cardiovascular events, this benefit is not necessarily related to BP reduction. PMID:27366297

  9. Acute Inhalation Injury

    PubMed Central

    Gorguner, Metin; Akgun, Metin

    2010-01-01

    Inhaled substances may cause injury in pulmonary epithelium at various levels of respiratory tract, leading from simple symptoms to severe disease. Acute inhalation injury (AII) is not uncommon condition. There are certain high risk groups but AII may occur at various places including home or workplace. Environmental exposure is also possible. In addition to individual susceptibility, the characteristics of inhaled substances such as water solubility, size of substances and chemical properties may affect disease severity as well as its location. Although AII cases may recover in a few days but AII may cause long-term complications, even death. We aimed to discuss the effects of short-term exposures (minutes to hours) to toxic substances on the lungs. PMID:25610115

  10. Inhibition of HDAC2 Protects the Retina From Ischemic Injury

    PubMed Central

    Fan, Jie; Alsarraf, Oday; Dahrouj, Mohammad; Platt, Kenneth A.; Chou, C. James; Rice, Dennis S.; Crosson, Craig E.

    2013-01-01

    Purpose. Protein acetylation is an essential mechanism in regulating transcriptional and inflammatory events. Studies have shown that nonselective histone deacetylase (HDAC) inhibitors can protect the retina from ischemic injury in rats. However, the role of specific HDAC isoforms in retinal degenerative processes remains obscure. The purpose of this study was to investigate the role of HDAC2 isoform in a mouse model of ischemic retinal injury. Methods. Localization of HDAC2 in mice retinas was evaluated by immunohistochemical analyses. To investigate whether selective reduction in HDAC2 activity can protect the retina from ischemic injury, Hdac2+/− mice were utilized. Electroretinographic (ERG) and morphometric analyses were used to assess retinal function and morphology. Results. Our results demonstrated that HDAC2 is primarily localized in nuclei in inner nuclear and retinal ganglion cell layers, and HDAC2 activity accounted for approximately 35% of the total activities of HDAC1, 2, 3, and 6 in the retina. In wild-type mice, ERG a- and b-waves from ischemic eyes were significantly reduced when compared to pre-ischemia baseline values. Morphometric examination of these eyes revealed significant degeneration of inner retinal layers. In Hdac2+/− mice, ERG a- and b-waves from ischemic eyes were significantly greater than those measured in ischemic eyes from wild-type mice. Morphologic measurements demonstrated that Hdac2+/− mice exhibit significantly less retinal degeneration than wild-type mice. Conclusions. This study demonstrated that suppressing HDAC2 expression can effectively reduce ischemic retinal injury. Our results support the idea that the development of selective HDAC2 inhibitors may provide an efficacious treatment for ischemic retinal injury. PMID:23696608

  11. Extracellular membrane vesicles from umbilical cord blood-derived MSC protect against ischemic acute kidney injury, a feature that is lost after inflammatory conditioning

    PubMed Central

    Kilpinen, Lotta; Impola, Ulla; Sankkila, Lotta; Ritamo, Ilja; Aatonen, Maria; Kilpinen, Sami; Tuimala, Jarno; Valmu, Leena; Levijoki, Jouko; Finckenberg, Piet; Siljander, Pia; Kankuri, Esko; Mervaala, Eero; Laitinen, Saara

    2013-01-01

    Background Mesenchymal stromal cells (MSC) are shown to have a great therapeutic potential in many immunological disorders. Currently the therapeutic effect of MSCs is considered to be mediated via paracrine interactions with immune cells. Umbilical cord blood is an attractive but still less studied source of MSCs. We investigated the production of extracellular membrane vesicles (MVs) from human umbilical cord blood derived MSCs (hUCBMSC) in the presence (MVstim) or absence (MVctrl) of inflammatory stimulus. Methods hUCBMSCs were cultured in serum free media with or without IFN-γ and MVs were collected from conditioned media by ultracentrifugation. The protein content of MVs were analyzed by mass spectrometry. Hypoxia induced acute kidney injury rat model was used to analyze the in vivo therapeutic potential of MVs and T-cell proliferation and induction of regulatory T cells were analyzed by co-culture assays. Results Both MVstim and MVctrl showed similar T-cell modulation activity in vitro, but only MVctrls were able to protect rat kidneys from reperfusion injury in vivo. To clarify this difference in functionality we made a comparative mass spectrometric analysis of the MV protein contents. The IFN-γ stimulation induced dramatic changes in the protein content of the MVs. Complement factors (C3, C4A, C5) and lipid binding proteins (i.e apolipoproteins) were only found in the MVctrls, whereas the MVstim contained tetraspanins (CD9, CD63, CD81) and more complete proteasome complex accompanied with MHCI. We further discovered that differently produced MV pools contained specific Rab proteins suggesting that same cells, depending on external signals, produce vesicles originating from different intracellular locations. Conclusions We demonstrate by both in vitro and in vivo models accompanied with a detailed analysis of molecular characteristics that inflammatory conditioning of MSCs influence on the protein content and functional properties of MVs revealing the

  12. Delivery of interleukin-10 via injectable hydrogels improves renal outcomes and reduces systemic inflammation following ischemic acute kidney injury in mice.

    PubMed

    Soranno, Danielle E; Rodell, Christopher B; Altmann, Christopher; Duplantis, Jane; Andres-Hernando, Ana; Burdick, Jason A; Faubel, Sarah

    2016-08-01

    Injectable hydrogels can be used to deliver drugs in situ over a sustained period of time. We hypothesized that sustained delivery of interleukin-10 (IL-10) following acute kidney injury (AKI) would mitigate the local and systemic proinflammatory cascade induced by AKI and reduce subsequent fibrosis. Wild-type C57BL/6 mice underwent ischemia-reperfusion AKI with avertin anesthesia. Three days later, mice were treated with either hyaluronic acid injectable hydrogel with or without IL-10, or IL-10 suspended in saline, injected under the capsule of the left kidney, or hydrogel with IL-10 injected subcutaneously. Untreated AKI served as controls. Serial in vivo optical imaging tracked the location and degradation of the hydrogel over time. Kidney function was assessed serially. Animals were killed 28 days following AKI and the following were evaluated: serum IL-6, lung inflammation, urine neutrophil gelatinase-associated lipocalin, and renal histology for fibroblast activity, collagen type III deposition and fibrosis via Picrosirius Red staining and second harmonic imaging. Our model shows persistent systemic inflammation, and renal inflammation and fibrosis 28 days following AKI. The hydrogels are biocompatible and reduced serum IL-6 and renal collagen type III 28 days following AKI even when delivered without IL-10. Treatment with IL-10 reduced renal and systemic inflammation, regardless of whether the IL-10 was delivered in a sustained manner via the injectable hydrogel under the left kidney capsule, as a bolus injection via saline under the left kidney capsule, or via the injectable hydrogel subcutaneously. Injectable hydrogels are suitable for local drug delivery following renal injury, are biocompatible, and help mitigate local and systemic inflammation. PMID:26962109

  13. Acute Kidney Injury.

    PubMed

    Zuk, Anna; Bonventre, Joseph V

    2016-01-01

    Acute kidney injury (AKI) is a global public health concern associated with high morbidity, mortality, and healthcare costs. Other than dialysis, no therapeutic interventions reliably improve survival, limit injury, or speed recovery. Despite recognized shortcomings of in vivo animal models, the underlying pathophysiology of AKI and its consequence, chronic kidney disease (CKD), is rich with biological targets. We review recent findings relating to the renal vasculature and cellular stress responses, primarily the intersection of the unfolded protein response, mitochondrial dysfunction, autophagy, and the innate immune response. Maladaptive repair mechanisms that persist following the acute phase promote inflammation and fibrosis in the chronic phase. Here macrophages, growth-arrested tubular epithelial cells, the endothelium, and surrounding pericytes are key players in the progression to chronic disease. Better understanding of these complex interacting pathophysiological mechanisms, their relative importance in humans, and the utility of biomarkers will lead to therapeutic strategies to prevent and treat AKI or impede progression to CKD or end-stage renal disease (ESRD). PMID:26768243

  14. Perfusion Angiography in Acute Ischemic Stroke.

    PubMed

    Scalzo, Fabien; Liebeskind, David S

    2016-01-01

    Visualization and quantification of blood flow are essential for the diagnosis and treatment evaluation of cerebrovascular diseases. For rapid imaging of the cerebrovasculature, digital subtraction angiography (DSA) remains the gold standard as it offers high spatial resolution. This paper lays out a methodological framework, named perfusion angiography, for the quantitative analysis and visualization of blood flow parameters from DSA images. The parameters, including cerebral blood flow (CBF) and cerebral blood volume (CBV), mean transit time (MTT), time-to-peak (TTP), and T max, are computed using a bolus tracking method based on the deconvolution of the time-density curve on a pixel-by-pixel basis. The method is tested on 66 acute ischemic stroke patients treated with thrombectomy and/or tissue plasminogen activator (tPA) and also evaluated on an estimation task with known ground truth. This novel imaging tool provides unique insights into flow mechanisms that cannot be observed directly in DSA sequences and might be used to evaluate the impact of endovascular interventions more precisely. PMID:27446232

  15. [Acute postop ischemic hepatitis and hypotension].

    PubMed

    Uzhva, V P

    2000-01-01

    The significance of the pronounced durable systemic arterial hypotension (SAH) in the origin of an acute postoperative ischemic hepatitis (APIH) was established, basing on the analysis of 40 clinical observations. Its occurrence is promoted by hemorrhage with 30% and more the circulating blood volume (CBV) deficiency, chronic cardiovascular system and pulmonary diseases, liver cirrhosis, shock, massive infusions of the blood and its components, the abdominal aorta atherosclerosis with stenosis of tr. coeliacus, a. hepatica. Forgoing SAH, the presence of promoting factors, jaundice, the transpherase activity raising in 3-5 times, the level of blood coagulating factors reduction, stable intestinal paresis were diagnostically significant symptoms. Experimental model of an APIH was elaborated in dogs, which occurs due to hypotension, caused by CBV reduction by 40% during two hours. The refractoriness of a. hepatica propria to the blood reinfusion was established. In the APIH occurrence threat the perftoran application in the 20 ml/kg dosage is the prophylaxis method as well as the method of the curative tactics choice. PMID:10857279

  16. Perfusion Angiography in Acute Ischemic Stroke

    PubMed Central

    Liebeskind, David S.

    2016-01-01

    Visualization and quantification of blood flow are essential for the diagnosis and treatment evaluation of cerebrovascular diseases. For rapid imaging of the cerebrovasculature, digital subtraction angiography (DSA) remains the gold standard as it offers high spatial resolution. This paper lays out a methodological framework, named perfusion angiography, for the quantitative analysis and visualization of blood flow parameters from DSA images. The parameters, including cerebral blood flow (CBF) and cerebral blood volume (CBV), mean transit time (MTT), time-to-peak (TTP), and Tmax, are computed using a bolus tracking method based on the deconvolution of the time-density curve on a pixel-by-pixel basis. The method is tested on 66 acute ischemic stroke patients treated with thrombectomy and/or tissue plasminogen activator (tPA) and also evaluated on an estimation task with known ground truth. This novel imaging tool provides unique insights into flow mechanisms that cannot be observed directly in DSA sequences and might be used to evaluate the impact of endovascular interventions more precisely. PMID:27446232

  17. Acute lung injury review.

    PubMed

    Tsushima, Kenji; King, Landon S; Aggarwal, Neil R; De Gorordo, Antonio; D'Alessio, Franco R; Kubo, Keishi

    2009-01-01

    The first report of acute respiratory distress syndrome (ARDS) was published in 1967, and even now acute lung injury (ALI) and ARDS are severe forms of diffuse lung disease that impose a substantial health burden all over the world. Recent estimates indicate approximately 190,000 cases per year of ALI in the United States each year, with an associated 74,500 deaths per year. Common causes of ALI/ARDS are sepsis, pneumonia, trauma, aspiration pneumonia, pancreatitis, and so on. Several pathologic stages of ALI/ARDS have been described: acute inflammation with neutrophil infiltration, fibroproliferative phase with hyaline membranes, with varying degrees of interstitial fibrosis, and resolution phase. There has been intense investigation into the pathophysiologic events relevant to each stage of ALI/ARDS, and much has been learned in the alveolar epithelial, endobronchial homeostasis, and alveolar cell immune responses, especially neutrophils and alveolar macrophages in an animal model. However, these effective results in the animal models are not equally adoptive to those in randomized, controlled trials. The clinical course of ALI/ARDS is variable with the likely pathophysiologic complexity of human ALI/ARDS. In 1994, the definition was recommended by the American-European Consensus Conference Committee, which facilitated easy nomination of patients with ALI/ARDS for a randomized, clinical trial. Here, we review the recent randomized, clinical trials of ALI/ARDS. PMID:19420806

  18. Perioperative ischemic injury after coronary bypass graft surgery

    SciTech Connect

    Li, W.; Hanelin, L.G.; Riggins, R.C.; Agnew, R.C.; Annest, L.S.; Anderson, R.P.

    1985-07-01

    Two hundred twelve patients who underwent isolated coronary bypass graft surgery were prospectively evaluated for perioperative ischemic injury. All patients underwent preoperative and postoperative testing with technetium 99m pyrophosphate first-pass ventriculography combined with myocardial uptake scans, 12-lead electrocardiography, and serial creatinine phosphokinase MB determination. Fifteen percent of the patients had ischemic injury with at least two test results positive, but only 4 percent had positive results of all three tests. No single test proved adequate. Enzyme levels were highly sensitive and had value as a screening test. The electrocardiogram was specific but only moderately sensitive. The single best test was the radionuclide scan with good sensitivity and no false-positive results. All three tests are required to rigorously diagnose ischemic injury.

  19. Characteristics of Misclassified CT Perfusion Ischemic Core in Patients with Acute Ischemic Stroke

    PubMed Central

    Geuskens, Ralph R. E. G.; Borst, Jordi; Lucas, Marit; Boers, A. M. Merel; Berkhemer, Olvert A.; Roos, Yvo B. W. E. M.; van Walderveen, Marianne A. A.; Jenniskens, Sjoerd F. M.; van Zwam, Wim H.; Dippel, Diederik W. J.; Majoie, Charles B. L. M.; Marquering, Henk A.

    2015-01-01

    Background CT perfusion (CTP) is used to estimate the extent of ischemic core and penumbra in patients with acute ischemic stroke. CTP reliability, however, is limited. This study aims to identify regions misclassified as ischemic core on CTP, using infarct on follow-up noncontrast CT. We aim to assess differences in volumetric and perfusion characteristics in these regions compared to areas that ended up as infarct on follow-up. Materials and Methods This study included 35 patients with >100 mm brain coverage CTP. CTP processing was performed using Philips software (IntelliSpace 7.0). Final infarct was automatically segmented on follow-up noncontrast CT and used as reference. CTP and follow-up noncontrast CT image data were registered. This allowed classification of ischemic lesion agreement (core on CTP: rMTT≥145%, aCBV<2.0 ml/100g and infarct on follow-up noncontrast CT) and misclassified ischemic core (core on CTP, not identified on follow-up noncontrast CT) regions. False discovery ratio (FDR), defined as misclassified ischemic core volume divided by total CTP ischemic core volume, was calculated. Absolute and relative CTP parameters (CBV, CBF, and MTT) were calculated for both misclassified CTP ischemic core and ischemic lesion agreement regions and compared using paired rank-sum tests. Results Median total CTP ischemic core volume was 49.7ml (IQR:29.9ml-132ml); median misclassified ischemic core volume was 30.4ml (IQR:20.9ml-77.0ml). Median FDR between patients was 62% (IQR:49%-80%). Median relative mean transit time was 243% (IQR:198%-289%) and 342% (IQR:249%-432%) for misclassified and ischemic lesion agreement regions, respectively. Median absolute cerebral blood volume was 1.59 (IQR:1.43–1.79) ml/100g (P<0.01) and 1.38 (IQR:1.15–1.49) ml/100g (P<0.01) for misclassified ischemic core and ischemic lesion agreement, respectively. All CTP parameter values differed significantly. Conclusion For all patients a considerable region of the CTP ischemic core

  20. The potential for nanotechnology to improve delivery of therapy to the acute ischemic heart.

    PubMed

    Evans, Cameron W; Iyer, K Swaminathan; Hool, Livia C

    2016-04-01

    Treatment of acute cardiac ischemia remains an area in which there are opportunities for therapeutic improvement. Despite significant advances, many patients still progress to cardiac hypertrophy and heart failure. Timely reperfusion is critical in rescuing vulnerable ischemic tissue and is directly related to patient outcome, but reperfusion of the ischemic myocardium also contributes to damage. Overproduction of reactive oxygen species, initiation of an inflammatory response and deregulation of calcium homeostasis all contribute to injury, and difficulties in delivering a sufficient quantity of drug to the affected tissue in a controlled manner is a limitation of current therapies. Nanotechnology may offer significant improvements in this respect. Here, we review recent examples of how nanoparticles can be used to improve delivery to the ischemic myocardium, and suggest some approaches that may lead to improved therapies for acute cardiac ischemia. PMID:26980180

  1. Neurotoxic lipid peroxidation species formed by ischemic stroke increase injury

    PubMed Central

    Zeiger, Stephanie L. H.; Musiek, Erik S.; Zanoni, Giuseppe; Vidari, Giovanni; Morrow, Jason D.; Milne, Ginger J.; McLaughlin, BethAnn

    2009-01-01

    Stroke is the third leading cause of death in the United States yet no neuroprotective agents for treatment are clinically available. There is a pressing need to understand the signaling molecules which mediate ischemic cell death and identify novel neuroprotective targets. Cyclopentenone isoprostanes (IsoP), formed following free radical mediated peroxidation of arachidonic acid, are used as markers of stress but their bioactivity is poorly understood. We have recently shown that 15-A2t-Isop is a potent neurotoxin in vitro and increases the free radical burden in neurons. In this work, we demonstrate that 15-A2t-IsoP is abundantly produced in stroke infarcted human cortical tissue. Using primary neuronal cultures we found that minimally toxic exposure to 15-A2t-IsoP does not alter ATP content, but in combination with oxygen glucose deprivation resulted in a significant hyperpolarization of the mitochondrial membrane and dramatically increased neuronal cell death. In the presence of Ca2+, 15-A2t-IsoP led to a rapid induction of the permeability transition pore and release of cytochrome c. Taken with our previous work, these data support a model in which ischemia causes generation of reactive oxygen species, calcium influx, lipid peroxidation and 15-A2t-IsoP formation. These factors combine to enhance opening of the permeability transition pore leading to cell death subsequent to mitochondrial cytochrome c release. This data is the first documentation of significant 15-A2t-IsoP formation following acute ischemic stroke and suggests addition of 15-A2t-IsoP to in vitro models of ischemia may help to more fully recapitulate stroke injury. PMID:19699297

  2. Anesthesia for Endovascular Approaches to Acute Ischemic Stroke.

    PubMed

    Avitsian, Rafi; Machado, Sandra B

    2016-09-01

    Involvement of the Anesthesiologist in the early stages of care for acute ischemic stroke patient undergoing endovascular treatment is essential. Anesthetic management includes the anesthetic technique (general anesthesia vs sedation), a matter of much debate and an area in need of well-designed prospective studies. The large numbers of confounding factors make the design of such studies a difficult process. A universally agreed point in the endovascular management of acute ischemic stroke is the importance of decreasing the time to revascularization. Hemodynamic and ventilatory management and implementation of neuroprotective modalities and treatment of acute procedural complications are important components of the anesthetic plan. PMID:27521194

  3. The neuroprotective roles of BDNF in hypoxic ischemic brain injury.

    PubMed

    Chen, Ai; Xiong, Li-Jing; Tong, Yu; Mao, Meng

    2013-03-01

    Hypoxia-ischemia (H/I) brain injury results in various degrees of damage to the body, and the immature brain is particularly fragile to oxygen deprivation. Hypothermia and erythropoietin (EPO) have long been known to be neuroprotective in ischemic brain injury. Brain-derived neurotrophic factor (BDNF) has recently been recognized as a potent modulator capable of regulating a wide repertoire of neuronal functions. This review was based on studies concerning the involvement of BDNF in the protection of H/I brain injury following a search in PubMed between 1995 and December, 2011. We initially examined the background of BDNF, and then focused on its neuroprotective mechanisms against ischemic brain injury, including its involvement in promoting neural regeneration/cognition/memory rehabilitation, angiogenesis within ischemic penumbra and the inhibition of the inflammatory process, neurotoxicity, epilepsy and apoptosis. We also provided a literature overview of experimental studies, discussing the safety and the potential clinical application of BDNF as a neuroprotective agent in the ischemic brain injury. PMID:24648914

  4. Hyperoxic Acute Lung Injury

    PubMed Central

    Kallet, Richard H; Matthay, Michael A

    2013-01-01

    Prolonged breathing of very high FIO2 (FIO2 ≥ 0.9) uniformly causes severe hyperoxic acute lung injury (HALI) and, without a reduction of FIO2, is usually fatal. The severity of HALI is directly proportional to PO2 (particularly above 450 mm Hg, or an FIO2 of 0.6) and exposure duration. Hyperoxia produces extraordinary amounts of reactive O2 species that overwhelms natural antioxidant defenses and destroys cellular structures through several pathways. Genetic predisposition has been shown to play an important role in HALI among animals, and some genetics-based epidemiologic research suggests that this may be true for humans as well. Clinically, the risk of HALI likely occurs when FIO2exceeds 0.7, and may become problematic when FIO2 exceeds 0.8 for an extended period of time. Both high-stretch mechanical ventilation and hyperoxia potentiate lung injury and may promote pulmonary infection. During the 1960s, confusion regarding the incidence and relevance of HALI largely reflected such issues as the primitive control of FIO2, the absence of PEEP, and the fact that at the time both ALI and ventilator-induced lung injury were unknown. The advent of PEEP and precise control over FIO2, as well as lung-protective ventilation, and other adjunctive therapies for severe hypoxemia, has greatly reduced the risk of HALI for the vast majority of patients requiring mechanical ventilation in the 21st century. However, a subset of patients with very severe ARDS requiring hyperoxic therapy is at substantial risk for developing HALI, therefore justifying the use of such adjunctive therapies. PMID:23271823

  5. Heart Failure in Acute Ischemic Stroke

    PubMed Central

    Cuadrado-Godia, Elisa; Ois, Angel; Roquer, Jaume

    2010-01-01

    Heart failure (HF) is a complex clinical syndrome that can result from any structural or functional cardiac disorder that impairs the ability of the ventricle to fill with or eject blood. Due to the aging of the population it has become a growing public health problem in recent decades. Diagnosis of HF is clinical and there is no diagnostic test, although some basic complementary testing should be performed in all patients. Depending on the ejection fraction (EF), the syndrome is classified as HF with low EF or HF with normal EF (HFNEF). Although prognosis in HF is poor, HFNEF seems to be more benign. HF and ischemic stroke (IS) share vascular risk factors such as age, hypertension, diabetes mellitus, coronary artery disease and atrial fibrillation. Persons with HF have higher incidence of IS, varying from 1.7% to 10.4% per year across various cohort studies. The stroke rate increases with length of follow-up. Reduced EF, independent of severity, is associated with higher risk of stroke. Left ventricular mass and geometry are also related with stroke incidence, with concentric hypertrophy carrying the greatest risk. In HF with low EF, the stroke mechanism may be embolism, cerebral hypoperfusion or both, whereas in HFNEF the mechanism is more typically associated with chronic endothelial damage of the small vessels. Stroke in patients with HF is more severe and is associated with a higher rate of recurrence, dependency, and short term and long term mortality. Cardiac morbidity and mortality is also high in these patients. Acute stroke treatment in HF includes all the current therapeutic options to more carefully control blood pressure. For secondary prevention, optimal control of all vascular risk factors is essential. Antithrombotic therapy is mandatory, although the choice of a platelet inhibitor or anticoagulant drug depends on the cardiac disease. Trials are ongoing to evaluate anticoagulant therapy for prevention of embolism in patients with low EF who are at

  6. Matrix Metalloproteinases and Blood-Brain Barrier Disruption in Acute Ischemic Stroke

    PubMed Central

    Lakhan, Shaheen E.; Kirchgessner, Annette; Tepper, Deborah; Leonard, Aidan

    2013-01-01

    Ischemic stroke continues to be one of the most challenging diseases in translational neurology. Tissue plasminogen activator (tPA) remains the only approved treatment for acute ischemic stroke, but its use is limited to the first hours after stroke onset due to an increased risk of hemorrhagic transformation over time resulting in enhanced brain injury. In this review we discuss the role of matrix metalloproteinases (MMPs) in blood-brain barrier (BBB) disruption as a consequence of ischemic stroke. MMP-9 in particular appears to play an important role in tPA-associated hemorrhagic complications. Reactive oxygen species can enhance the effects of tPA on MMP activation through the loss of caveolin-1 (cav-1), a protein encoded in the cav-1 gene that serves as a critical determinant of BBB permeability. This review provides an overview of MMPs’ role in BBB breakdown during acute ischemic stroke. The possible role of MMPs in combination treatment of acute ischemic stroke is also examined. PMID:23565108

  7. Potential microRNA biomarkers for acute ischemic stroke.

    PubMed

    Zeng, Ye; Liu, Jing-Xia; Yan, Zhi-Ping; Yao, Xing-Hong; Liu, Xiao-Heng

    2015-12-01

    Acute ischemic stroke is a significant cause of high morbidity and mortality in the aging population globally. However, current therapeutic strategies for acute ischemic stroke are limited. Atherosclerotic plaque is considered an independent risk factor for acute ischemic stroke. To identify biomarkers for carotid atheromatous plaque, bioinformatics analysis of the gene microarray data of plaque and intact tissue from individuals was performed. Differentially expressed genes (DEGs) were identified using the Multtest and Limma packages of R language, including 56 downregulated and 69 upregulated DEGs. Enriched microRNA (miRNA or miR) DEGs networks were generated using WebGestalt software and the STRING databases, and the miRNAs were validated using serum from acute ischemic stroke patients with reverse transcription quantitative PCR (RT‑qPCR). Four confirmed differentially expressed miRNAs (miR‑9, ‑22, ‑23 and ‑125) were associated with 28 upregulated DEGs, and 7 miRNAs (miR‑9, ‑30, ‑33, ‑124, ‑181, ‑218 and ‑330) were associated with 25 downregulated DEGs. Gene ontology (GO) function suggested that the confirmed miRNA‑targeted DEGs predominantly associated with signal transduction, the circulatory system, biological adhesion, striated muscle contraction, wound healing and the immune system. The confirmed miRNA‑targeted genes identified serve as potential therapeutic targets for acute ischemic stroke. PMID:26459744

  8. Suppression of Acid Sphingomyelinase Protects the Retina from Ischemic Injury

    PubMed Central

    Fan, Jie; Wu, Bill X.; Crosson, Craig E.

    2016-01-01

    Purpose Acid sphingomyelinase (ASMase) catalyzes the hydrolysis of sphingomyelin to ceramide and mediates multiple responses involved in inflammatory and apoptotic signaling. However, the role ASMase plays in ischemic retinal injury has not been investigated. The purpose of this study was to investigate how reduced ASMase expression impacts retinal ischemic injury. Methods Changes in ceramide levels and ASMase activity were determined by high performance liquid chromatography-tandem mass spectrometry analysis and ASMase activity. Retinal function and morphology were assessed by electroretinography (ERG) and morphometric analyses. Levels of TNF-α were determined by ELISA. Activation of p38 MAP kinase was assessed by Western blot analysis. Results In wild-type mice, ischemia produced a significant increase in retinal ASMase activity and ceramide levels. These increases were associated with functional deficits as measured by ERG analysis and significant structural degeneration in most retinal layers. In ASMase+/− mice, retinal ischemia did not significantly alter ASMase activity, and the rise in ceramide levels were significantly reduced compared to levels in retinas from wild-type mice. In ASMase+/− mice, functional and morphometric analyses of ischemic eyes revealed significantly less retinal degeneration than in injured retinas from wild-type mice. The ischemia-induced increase in retinal TNF-α levels was suppressed by the administration of the ASMase inhibitor desipramine, or by reducing ASMase expression. Conclusions Our results demonstrate that reducing ASMase expression provides partial protection from ischemic injury. Hence, the production of ceramide and subsequent mediators plays a role in the development of ischemic retinal injury. Modulating ASMase may present new opportunities for adjunctive therapies when treating retinal ischemic disorders. PMID:27571014

  9. OMA1 mediates OPA1 proteolysis and mitochondrial fragmentation in experimental models of ischemic kidney injury

    PubMed Central

    Xiao, Xiao; Hu, Yanzhong; Quirós, Pedro M.; Wei, Qingqing; López-Otín, Carlos

    2014-01-01

    Acute kidney injury (AKI) is associated with mitochondrial fragmentation, which contributes to mitochondrial damage and tubular cell apoptosis. Mitochondrial fragmentation involves the cleavage of both mitochondrial outer and inner membranes. Cleavage of the outer membrane results from Drp-1-mediated fission activation and Bak-promoted fusion arrest, but the molecular mechanism of inner membrane cleavage remains elusive. OMA1-mediated proteolysis of OPA1, a key inner membrane fusion protein, was recently suggested to account for inner membrane cleavage during cell stress. In this study, we determined the role of OMA1 in OPA1 proteolysis and mitochondrial fragmentation in experimental models of ischemic AKI. In ATP-depletion injury, knockdown of OMA1 suppressed OPA1 proteolysis, mitochondrial fragmentation, cytochrome c release, and consequent apoptosis in renal proximal tubular cells. In mice, OMA1 deficiency prevented ischemic AKI as indicated by better renal function, less tubular damage, and lower apoptosis. OPA1 proteolysis and mitochondrial injury during ischemic AKI were ameliorated in OMA1-deficient mice. Thus, OMA1-mediated OPA1 proteolysis plays an important role in the disruption of mitochondrial dynamics in ischemic AKI. PMID:24671334

  10. [Ascites and acute kidney injury].

    PubMed

    Piano, Salvatore; Tonon, Marta; Angeli, Paolo

    2016-07-01

    Ascites is the most common complication of cirrhosis. Ascites develops as a consequence of an abnormal splanchnic vasodilation with reduction of effecting circulating volume and activation of endogenous vasoconstrictors system causing salt and water retention. Patients with ascites have a high risk to develop further complications of cirrhosis such as hyponatremia, spontaneous bacterial peritonitis and acute kidney injury resulting in a poor survival. In recent years, new studies helped a better understanding of the pathophysiology of ascites and acute kidney injury in cirrhosis. Furthermore, new diagnostic criteria have been proposed for acute kidney injury and hepatorenal syndrome and a new algorithm for their management has been recommended with the aim of an early diagnosis and treatment. Herein we will review the current knowledge on the pathophysiology, diagnosis and treatment of ascites and acute kidney injury in patients with cirrhosis and we will identify the unmet needs that should be clarified in the next years. PMID:27571467

  11. MG53 permeates through blood-brain barrier to protect ischemic brain injury

    PubMed Central

    Li, Haichang; Han, Yu; Chen, Ken; Wang, Zhen; Zeng, Jing; Liu, Yukai; Wang, Xinquan; Li, Yu; He, Duofen; Lin, Peihui; Zhou, Xinyu; Park, Ki Ho; Bian, Zehua; Chen, Zhishui; Gong, Nianqiao; Tan, Tao; Zhou, Jingsong; Zhang, Meng; Ma, Jianjie; Zeng, Chunyu

    2016-01-01

    Ischemic injury to neurons represents the underlying cause of stroke to the brain. Our previous studies identified MG53 as an essential component of the cell membrane repair machinery. Here we show that the recombinant human (rh)MG53 protein facilitates repair of ischemia-reperfusion (IR) injury to the brain. MG53 rapidly moves to acute injury sites on neuronal cells to form a membrane repair patch. IR-induced brain injury increases permeability of the blood-brain-barrier, providing access of MG53 from blood circulation to target the injured brain tissues. Exogenous rhMG53 protein can protect cultured neurons against hypoxia/reoxygenation-induced damages. Transgenic mice with increased levels of MG53 in the bloodstream are resistant to IR-induced brain injury. Intravenous administration of rhMG53, either prior to or after ischemia, can effectively alleviate brain injuries in rats. rhMG53-mediated neuroprotection involves suppression of apoptotic neuronal cell death, as well as activation of the pro-survival RISK signaling pathway. Our data indicate a physiological function for MG53 in the brain and suggest that targeting membrane repair or RISK signaling may be an effective means to treat ischemic brain injury. PMID:26967557

  12. Investigation of Reperfusion Injury and Ischemic Preconditioning in Microsurgry

    PubMed Central

    Wang, Wei Zhong

    2008-01-01

    Ischemia/reperfusion (I/R) is inevitable in many vascular and musculoskeletal traumas, diseases, free tissue transfers, and during time-consuming reconstructive surgeries in the extremities. Salvage of a prolonged ischemic extremity or flap still remains a challenge for the microvascular surgeon. One of the common complications after microsurgery is I/R-induced tissue death or I/R injury. Twenty years after the discovery, ischemic preconditioning (IPC) has emerged as a powerful method for attenuating I/R injury in a variety of organs or tissues. However, its therapeutic expectations still need to be fulfilled. In this article, the author reviews some important experimental evidences of I/R injury as well as preconditioning-induced protection in the fields relevant to microsurgery. PMID:18946882

  13. Astaxanthin reduces ischemic brain injury in adult rats.

    PubMed

    Shen, Hui; Kuo, Chi-Chung; Chou, Jenny; Delvolve, Alice; Jackson, Shelley N; Post, Jeremy; Woods, Amina S; Hoffer, Barry J; Wang, Yun; Harvey, Brandon K

    2009-06-01

    Astaxanthin (ATX) is a dietary carotenoid of crustaceans and fish that contributes to their coloration. Dietary ATX is important for development and survival of salmonids and crustaceans and has been shown to reduce cardiac ischemic injury in rodents. The purpose of this study was to examine whether ATX can protect against ischemic injury in the mammalian brain. Adult rats were injected intracerebroventricularly with ATX or vehicle prior to a 60-min middle cerebral artery occlusion (MCAo). ATX was present in the infarction area at 70-75 min after onset of MCAo. Treatment with ATX, compared to vehicle, increased locomotor activity in stroke rats and reduced cerebral infarction at 2 d after MCAo. To evaluate the protective mechanisms of ATX against stroke, brain tissues were assayed for free radical damage, apoptosis, and excitoxicity. ATX antagonized ischemia-mediated loss of aconitase activity and reduced glutamate release, lipid peroxidation, translocation of cytochrome c, and TUNEL labeling in the ischemic cortex. ATX did not alter physiological parameters, such as body temperature, brain temperature, cerebral blood flow, blood gases, blood pressure, and pH. Collectively, our data suggest that ATX can reduce ischemia-related injury in brain tissue through the inhibition of oxidative stress, reduction of glutamate release, and antiapoptosis. ATX may be clinically useful for patients vulnerable or prone to ischemic events. PMID:19218497

  14. Astaxanthin reduces ischemic brain injury in adult rats

    PubMed Central

    Shen, Hui; Kuo, Chi-Chung; Chou, Jenny; Delvolve, Alice; Jackson, Shelley N.; Post, Jeremy; Woods, Amina S.; Hoffer, Barry J.; Wang, Yun; Harvey, Brandon K.

    2009-01-01

    Astaxanthin (ATX) is a dietary carotenoid of crustaceans and fish that contributes to their coloration. Dietary ATX is important for development and survival of salmonids and crustaceans and has been shown to reduce cardiac ischemic injury in rodents. The purpose of this study was to examine whether ATX can protect against ischemic injury in the mammalian brain. Adult rats were injected intracerebroventricularly with ATX or vehicle prior to a 60-min middle cerebral artery occlusion (MCAo). ATX was present in the infarction area at 70-75 min after onset of MCAo. Treatment with ATX, compared to vehicle, increased locomotor activity in stroke rats and reduced cerebral infarction at 2 d after MCAo. To evaluate the protective mechanisms of ATX against stroke, brain tissues were assayed for free radical damage, apoptosis, and excitoxicity. ATX antagonized ischemia-mediated loss of aconitase activity and reduced glutamate release, lipid peroxidation, translocation of cytochrome c, and TUNEL labeling in the ischemic cortex. ATX did not alter physiological parameters, such as body temperature, brain temperature, cerebral blood flow, blood gases, blood pressure, and pH. Collectively, our data suggest that ATX can reduce ischemia-related injury in brain tissue through the inhibition of oxidative stress, reduction of glutamate release, and antiapoptosis. ATX may be clinically useful for patients vulnerable or prone to ischemic events.—Shen, H., Kuo, C.-C., Chou, J., Delvolve, A., Jackson, S. N., Post, J., Woods, A. S., Hoffer, B. J., Wang, Y., Harvey, B. K. Astaxanthin reduces ischemic brain injury in adult rats. PMID:19218497

  15. Clinical Scenarios in Acute Kidney Injury: Parenchymal Acute Kidney Injury-Tubulo-Interstitial Diseases.

    PubMed

    Meola, Mario; Samoni, Sara; Petrucci, Ilaria; Ronco, Claudio

    2016-01-01

    Acute tubular necrosis (ATN) is the most common type of acute kidney injury (AKI) related to parenchymal damage (90% of cases). It may be due to a direct kidney injury, such as sepsis, drugs, toxins, contrast media, hemoglobinuria and myoglobinuria, or it may be the consequence of a prolonged systemic ischemic injury. Conventional ultrasound (US) shows enlarged kidneys with hypoechoic pyramids. Increased volume is largely sustained by the increase of anteroposterior diameter, while longitudinal axis usually maintains its normal length. Despite the role of color Doppler in AKI still being debated, many studies demonstrate that renal resistive indexes (RIs) vary on the basis of primary disease. Moreover, several studies assessed that higher RI values are predictive of persistent AKI. Nevertheless, due to the marked heterogeneity among the studies, further investigations focused on timing of RI measurement and test performances are needed. Acute interstitial nephritis is also a frequent cause of AKI, mainly due to non-steroidal anti-inflammatory drugs and antibiotics administration. The development of acute interstitial nephritis is due to an immunological reaction against nephritogenic exogenous antigens, processed by tubular cells. In acute interstitial nephritis, as well as in ATN, conventional US does not allow a definitive diagnosis. Kidneys appear enlarged and widely hyperechoic due to interstitial edema and inflammatory infiltration. Also, in this condition, hemodynamic changes are closely correlated to the severity and the progression of the anatomical damage. PMID:27169885

  16. Acute kidney injury in children.

    PubMed

    Merouani, A; Flechelles, O; Jouvet, P

    2012-04-01

    Acute kidney injury (AKI) affects 5% of critically ill hospitalized children and is a risk factor for increased morbidity and mortality. The current review focuses on new definitions of acute kidney injury, standardized to reflect the entire spectrum of the disease, as well as on ongoing research to identify early biomarkers of kidney injury. Its also provides an overview of current practice and available therapies, with emphasis on new strategies for the prevention and pharmacological treatment of diarrhea-associated hemolytic uremic syndrome. Furthermore, a decision-making algorithm is presented for the use of renal replacement therapies in critically ill children with AKI. PMID:22495187

  17. Enhanced recovery from chronic ischemic injury by bone marrow cells in a rat model of ischemic stroke.

    PubMed

    Yoo, Jongman; Seo, Jin-Ju; Eom, Jang-Hyeon; Hwang, Dong-Youn

    2015-01-01

    Even after decades of intensive studies, therapeutic options for patients with stroke are rather limited. Thrombolytic drugs effectively treat the very acute stage of stroke, and several neuroprotectants that are designed to treat secondary injury following stroke are being tested in clinical trials. However, these pharmacological approaches primarily focus on acute stroke recovery, and few options are available for treating chronic stroke patients. In recent years, stem cell-mediated regenerative approaches have emerged as promising therapeutic strategies for treating the chronic stage of stroke. In this study, we examined whether systemically administered bone marrow cells (BMCs) could have beneficial effects in a rat model of chronic ischemia. Our transplantation experiments using BMCs obtained from ischemic donor rats showed functional and structural recovery during the chronic stage of stroke. BMC-mediated neural proliferation was prominent in the brains of rats with chronic stroke, and most of the new cells eventually became neurons instead of astrocytes. BMC-mediated enhanced neural proliferation coincided with a significant reduction (∼50%) in the number of activated microglia, which is consistent with previous reports of enhanced neural proliferation being linked to microglial inactivation. Strikingly, approximately 57% of the BMCs that infiltrated the chronic ischemic brain were CD25(+) cells, suggesting that these cells may exert the beneficial effects associated with BMC transplantation. Based on the reported anti-inflammatory role of CD25(+) regulatory T-cells in acute experimental stroke, we propose a working model delineating the positive effects of BMC transplantation during the chronic phase of stroke; infiltrating BMCs (mostly CD25(+) cells) reduce activated microglia, which leads to enhanced neural proliferation and enhanced recovery from neuronal damage in this rat model of chronic stroke. This study provides valuable insights into the effect

  18. Combined iron sucrose and protoporphyrin treatment protects against ischemic and toxin-mediated acute renal failure.

    PubMed

    Zager, Richard A; Johnson, Ali C M; Frostad, Kirsten B

    2016-07-01

    Tissue preconditioning, whereby various short-term stressors initiate organ resistance to subsequent injury, is well recognized. However, clinical preconditioning of the kidney for protection against acute kidney injury (AKI) has not been established. Here we tested whether a pro-oxidant agent, iron sucrose, combined with a protoporphyrin (Sn protoporphyrin), can induce preconditioning and protect against acute renal failure. Mice were pretreated with iron sucrose, protoporphyrin, cyanocobalamin, iron sucrose and protoporphyrin, or iron sucrose and cyanocobalamin. Eighteen hours later, ischemic, maleate, or glycerol models of AKI were induced, and its severity was assessed the following day (blood urea nitrogen, plasma creatinine concentrations; post-ischemic histology). Agent impact on cytoprotective gene expression (heme oxygenase 1, hepcidin, haptoglobin, hemopexin, α1-antitrypsin, α1-microglobulin, IL-10) was assessed as renal mRNA and protein levels. AKI-associated myocardial injury was gauged by plasma troponin I levels. Combination agent administration upregulated multiple cytoprotective genes and, unlike single agent administration, conferred marked protection against each tested model of acute renal failure. Heme oxygenase was shown to be a marked contributor to this cytoprotective effect. Preconditioning also blunted AKI-induced cardiac troponin release. Thus, iron sucrose and protoporphyrin administration can upregulate diverse cytoprotective genes and protect against acute renal failure. Associated cardiac protection implies potential relevance to both AKI and its associated adverse downstream effects. PMID:27165818

  19. Bone Fracture Pre-Ischemic Stroke Exacerbates Ischemic Cerebral Injury in Mice

    PubMed Central

    Zou, Dingquan; Zhan, Lei; Li, Zhengxi; Zhu, Wan; Su, Hua

    2016-01-01

    Ischemic stroke is a devastating complication of bone fracture. Bone fracture shortly after stroke enhances stroke injury by augmenting inflammation. We hypothesize that bone fracture shortly before ischemic stroke also exacerbates ischemic cerebral injury. Tibia fracture was performed 6 or 24 hours before permanent middle cerebral artery occlusion (pMCAO) on C57BL/6J mice or Ccr2RFP/+Cx3cr1GFP/+ mice that have the RFP gene knocked into one allele of Ccr2 gene and GFP gene knocked into one allele of Cx3cr1 gene. Behavior was tested 3 days after pMCAO. Infarct volume, the number of CD68+ cells, apoptotic neurons, bone marrow-derived macrophages (RFP+), and microgila (GFP+) in the peri-infarct region were quantified. Compared to mice subjected to pMCAO only, bone fracture 6 or 24 hours before pMCAO increased behavioral deficits, the infarct volume, and the number of CD68+ cells and apoptotic neurons in the peri-infarct area. Both bone marrow-derived macrophages (CCR2+) and microglia (CX3CR1+) increased in the peri-infarct regions of mice subjected to bone fracture before pMCAO compared to stroke-only mice. The mice subjected to bone fracture 6 hours before pMCAO had more severe injury than mice that had bone fracture 24 hours before pMCAO. Our data showed that bone fracture shortly before stroke also increases neuroinflammation and exacerbates ischemic cerebral injury. Our findings suggest that inhibition of neuroinflammation or management of stroke risk factors before major bone surgery would be beneficial for patients who are likely to suffer from stroke. PMID:27089041

  20. Acute injuries in Taekwondo.

    PubMed

    Schlüter-Brust, K; Leistenschneider, P; Dargel, J; Springorum, H P; Eysel, P; Michael, J W-P

    2011-08-01

    Although Taekwondo is becoming an increasingly popular sport, there is a lack of reliable epidemiologic data on Taekwondo injuries. To perform an epidemiologic study on the variety of types of injury in professional and amateur Taekwondo athletes and to find a relation between Taekwondo style, skill level, weight-class and warm-up routine and the occurrence of injuries, we analysed the injury data using a 7-page questionnaire from a total of 356 Taekwondo athletes who were randomly selected. Overall, we registered a total of 2,164 injuries in 356 athletes. Most traumas were contusions and sprains in the lower extremities. Professional Taekwondo athletes have an increased risk of injury in comparison to recreational athletes. Taekwondo style, weight class and tournament frequency have an influence on the athlete's injury profile. Warm-up routines were found to have a positive effect on injury rates. Overall, Taekwondo may be considered a rather benign activity, if injuries during Taekwondo tournaments can be avoided. If not, Taekwondo can result in serious musculoskeletal problems. PMID:21563037

  1. Antisense oligonucleotide for tissue factor inhibits hepatic ischemic reperfusion injury.

    PubMed

    Nakamura, Kenji; Kadotani, Yayoi; Ushigome, Hidetaka; Akioka, Kiyokazu; Okamoto, Masahiko; Ohmori, Yoshihiro; Yaoi, Takeshi; Fushiki, Shinji; Yoshimura, Rikio; Yoshimura, Norio

    2002-09-27

    Tissue factor (TF) is an initiation factor for blood coagulation and its expression is induced on endothelial cells during inflammatory or immune responses. We designed an antisense oligodeoxynucleotide (AS-1/TF) for rat TF and studied its effect on hepatic ischemic reperfusion injury. AS-1/TF was delivered intravenously to Lewis rats. After 10 h, hepatic artery and portal vein were partially clamped. Livers were reperfused after 180 min and harvested. TF expression was studied using immunohistochemical staining. One of 10 rats survived in a 5-day survival rate and TF was strongly stained on endothelial cells in non-treatment group. However, by treatment with AS-1/TF, six of seven survived and TF staining was significantly reduced. Furthermore, we observed that fluorescein-labeled AS-1/TF was absorbed into endothelial cells. These results suggest that AS-1/TF can strongly suppress the expression of TF and thereby inhibit ischemic reperfusion injury to the rat liver. PMID:12270110

  2. Ischemic postconditioning protects against ischemic brain injury by up-regulation of acid-sensing ion channel 2a

    PubMed Central

    Duanmu, Wang-sheng; Cao, Liu; Chen, Jing-yu; Ge, Hong-fei; Hu, Rong; Feng, Hua

    2016-01-01

    Ischemic postconditioning renders brain tissue tolerant to brain ischemia, thereby alleviating ischemic brain injury. However, the exact mechanism of action is still unclear. In this study, a rat model of global brain ischemia was subjected to ischemic postconditioning treatment using the vessel occlusion method. After 2 hours of ischemia, the bilateral common carotid arteries were blocked immediately for 10 seconds and then perfused for 10 seconds. This procedure was repeated six times. Ischemic postconditioning was found to mitigate hippocampal CA1 neuronal damage in rats with brain ischemia, and up-regulate acid-sensing ion channel 2a expression at the mRNA and protein level. These findings suggest that ischemic postconditioning up-regulates acid-sensing ion channel 2a expression in the rat hippocampus after global brain ischemia, which promotes neuronal tolerance to ischemic brain injury. PMID:27212927

  3. Curcumin protects against ischemic spinal cord injury: The pathway effect.

    PubMed

    Zhang, Jinhua; Wei, Hao; Lin, Meimei; Chen, Chunmei; Wang, Chunhua; Liu, Maobai

    2013-12-25

    Inducible nitric oxide synthase and N-methyl-D-aspartate receptors have been shown to participate in nerve cell injury during spinal cord ischemia. This study observed a protective effect of curcumin on ischemic spinal cord injury. Models of spinal cord ischemia were established by ligating the lumbar artery from the left renal artery to the bifurcation of the abdominal aorta. At 24 hours after model establishment, the rats were intraperitoneally injected with curcumin. Reverse transcription-polymerase chain reaction and immunohistochemical results demonstrated that after spinal cord ischemia, inducible nitric oxide synthase and N-methyl-D-aspartate receptor mRNA and protein expression significantly increased. However, curcumin significantly decreased inducible nitric oxide synthase and N-methyl-D-aspartate receptor mRNA and protein expression in the ischemic spinal cord. Tarlov scale results showed that curcumin significantly improved motor function of the rat hind limb after spinal cord ischemia. The results demonstrate that curcumin exerts a neuroprotective fect against ischemic spinal cord injury by decreasing inducible nitric oxide synthase and N-methyl-D-aspartate receptor expression. PMID:25206661

  4. Optical spectroscopy for the detection of ischemic tissue injury

    DOEpatents

    Demos, Stavros; Fitzgerald, Jason; Troppmann, Christoph; Michalopoulou, Andromachi

    2009-09-08

    An optical method and apparatus is utilized to quantify ischemic tissue and/or organ injury. Such a method and apparatus is non-invasive, non-traumatic, portable, and can make measurements in a matter of seconds. Moreover, such a method and apparatus can be realized through optical fiber probes, making it possible to take measurements of target organs deep within a patient's body. Such a technology provides a means of detecting and quantifying tissue injury in its early stages, before it is clinically apparent and before irreversible damage has occurred.

  5. The effects of citicoline on acute ischemic stroke: a review.

    PubMed

    Overgaard, Karsten

    2014-08-01

    Early reopening of the occluded artery is, thus, important in ischemic stroke, and it has been calculated that 2 million neurons die every minute in an ischemic stroke if no effective therapy is given; therefore, "Time is Brain." In massive hemispheric infarction and edema, surgical decompression lowers the risk of death or severe disability defined as a modified Rankin Scale score greater than 4 in selected patients. The majority, around 80%-85% of all ischemic stroke victims, does not fulfill the criteria for revascularization therapy, and also for these patients, there is no effective acute therapy. Also there is no established effective acute treatment of spontaneous intracerebral bleeding. Therefore, an effective therapy applicable to all stroke victims is needed. The neuroprotective drug citicoline has been extensively studied in clinical trials with volunteers and more than 11,000 patients with various neurologic disorders, including acute ischemic stroke (AIS). The conclusion is that citicoline is safe to use and may have a beneficial effect in AIS patients and most beneficial in less severe stroke in older patients not treated with recombinant tissue plasminogen activator. No other neuroprotective agent had any beneficial effect in confirmative clinical trials or had any positive effect in the subgroup analysis. Citicoline is the only drug that in a number of different clinical stroke trials continuously had some neuroprotective benefit. PMID:24739589

  6. Factoring in Factor VIII With Acute Ischemic Stroke

    PubMed Central

    Siegler, James E.; Samai, Alyana; Albright, Karen C.; Boehme, Amelia K.; Martin-Schild, Sheryl

    2016-01-01

    There is growing research interest into the etiologies of cryptogenic stroke, in particular as it relates to hypercoagulable states. An elevation in serum levels of the procoagulant factor VIII is recognized as one such culprit of occult cerebral infarctions. It is the objective of the present review to summarize the molecular role of factor VIII in thrombogenesis and its clinical use in the diagnosis and prognosis of acute ischemic stroke. We also discuss the utility of screening for serum factor VIII levels among patients at risk for, or those who have experienced, ischemic stroke. PMID:25669199

  7. Early embolic events complicating intravenous thrombolysis for acute ischemic stroke.

    PubMed

    Chou, Ping Song; Lin, Chien Hung; Chao, Hai Lun; Chao, A Ching

    2012-11-01

    Intravenous recombinant tissue plasminogen activator (IV rt-PA) is the only established thrombolytic therapy for acute ischemic stroke. However, secondary embolism after IV rt-PA for acute ischemic stroke is recognized as an uncommon complication, and the pathophysiology is unclear. We describe a 72-year-old man with acute infarction in the territory of left anterior cerebral artery who developed new infarction in the territory of right middle cerebral artery and acute peripheral arterial occlusion after IV rt-PA therapy. It suggested a central embolic source. Because the patient has paroxysmal atrial fibrillation (Af), the possible embolic sources may come from fragmentation of pre-existing intra-atrial clot. Although Af and the presence of cardiac thrombus are not contraindication for IV rt-PA in acute ischemic stroke, our case and review suggested that the administration of IV rt-PA to patients with known Af and intracardiac thrombus could represent a particular risk situation and should be carefully evaluated. PMID:22205004

  8. Autonomic dysfunction in acute ischemic stroke: an underexplored therapeutic area?

    PubMed

    De Raedt, Sylvie; De Vos, Aurelie; De Keyser, Jacques

    2015-01-15

    Impaired autonomic function, characterized by a predominance of sympathetic activity, is common in patients with acute ischemic stroke. This review describes methods to measure autonomic dysfunction in stroke patients. It summarizes a potential relationship between ischemic stroke-associated autonomic dysfunction and factors that have been associated with worse outcome, including cardiac complications, blood pressure variability changes, hyperglycemia, immune depression, sleep disordered breathing, thrombotic effects, and malignant edema. Involvement of the insular cortex has been suspected to play an important role in causing sympathovagal imbalance, but its exact role and that of other brain regions remain unclear. Although sympathetic overactivity in patients with ischemic stroke appears to be a negative prognostic factor, it remains to be seen whether therapeutic strategies that reduce sympathetic activity or increase parasympathetic activity might improve outcome. PMID:25541326

  9. Acute kidney injury after pediatric cardiac surgery

    PubMed Central

    Singh, Sarvesh Pal

    2016-01-01

    Acute kidney injury is a common complication after pediatric cardiac surgery. The definition, staging, risk factors, biomarkers and management of acute kidney injury in children is detailed in the following review article. PMID:27052074

  10. MR Perfusion Imaging in Acute Ischemic Stroke

    PubMed Central

    Copen, William A.; Schaefer, Pamela W.; Wu, Ona

    2011-01-01

    MR perfusion imaging offers the potential for measuring brain perfusion in acute stroke patients, at a time when treatment decisions based upon these measurements may affect outcomes dramatically. Rapid advancements in both acute stroke therapy and perfusion imaging techniques have resulted in continuing redefinition of the role that perfusion imaging should play in patient management. This review first discusses the basic pathophysiology of acute stroke, with specific attention to alterations in the various perfusion-related parameters that can be studied by MR perfusion imaging. Although these parameters are sometimes treated as somewhat interchangeable, they reveal greatly different information about brain perfusion. Therefore, subsequent discussion of the utility of different kinds of perfusion images focuses on the differences between them, as well as important artifacts that can complicate their interpretation. Finally, research on the continually evolving role of MR perfusion imaging in acute stroke care is summarized. PMID:21640299

  11. Targets of vascular protection in acute ischemic stroke differ in type 2 diabetes.

    PubMed

    Kelly-Cobbs, Aisha I; Prakash, Roshini; Li, Weiguo; Pillai, Bindu; Hafez, Sherif; Coucha, Maha; Johnson, Maribeth H; Ogbi, Safia N; Fagan, Susan C; Ergul, Adviye

    2013-03-15

    Hemorrhagic transformation is an important complication of acute ischemic stroke, particularly in diabetic patients receiving thrombolytic treatment with tissue plasminogen activator, the only approved drug for the treatment of acute ischemic stroke. The objective of the present study was to determine the effects of acute manipulation of potential targets for vascular protection [i.e., NF-κB, peroxynitrite, and matrix metalloproteinases (MMPs)] on vascular injury and functional outcome in a diabetic model of cerebral ischemia. Ischemia was induced by middle cerebral artery occlusion in control and type 2 diabetic Goto-Kakizaki rats. Treatment groups received a single dose of the peroxynitrite decomposition catalyst 5,10,15,20-tetrakis(4-sulfonatophenyl)prophyrinato iron (III), the nonspecific NF-κB inhibitor curcumin, or the broad-spectrum MMP inhibitor minocycline at reperfusion. Poststroke infarct volume, edema, hemorrhage, neurological deficits, and MMP-9 activity were evaluated. All acute treatments reduced MMP-9 and hemorrhagic transformation in diabetic groups. In addition, acute curcumin and minocycline therapy reduced edema in these animals. Improved neurological function was observed in varying degrees with treatment, as indicated by beam-walk performance, modified Bederson scores, and grip strength; however, infarct size was similar to untreated diabetic animals. In control animals, all treatments reduced MMP-9 activity, yet bleeding was not improved. Neuroprotection was only conferred by curcumin and minocycline. Uncovering the underlying mechanisms contributing to the success of acute therapy in diabetes will advance tailored stroke therapies. PMID:23335797

  12. Hepatitis C and recurrent treatment-resistant acute ischemic stroke

    PubMed Central

    Tarsia, Joseph; Dunn, Casey; Aysenne, Aimee; Shah, Basil; Moore, David F.

    2013-01-01

    Since the introduction of recombinant tissue plasminogen activator and thrombolysis, acute ischemic stroke has become a treatable disorder if the patient presents within the 4.5-hour time window. Typically, sporadic stroke is caused by atherosclerotic disease involving large or small cerebral arteries or secondary to a cardioembolic source often associated with atrial fibrillation. In the over-65-year age group, more rare causes of stroke, such as antiphospholipid syndromes, are unusual; such stroke etiologies are mostly seen in a younger age group (<55 years). Here we describe acute ischemic stroke in three patients >65 years with hepatitis C–associated antiphospholipid antibodies. We suggest that screening for antiphospholipid disorders in the older patient might be warranted, with potential implications for therapeutic management and secondary stroke prevention. PMID:23543984

  13. Therapeutic hypothermia for acute ischemic stroke: ready to start large randomized trials?

    PubMed Central

    van der Worp, H Bart; Macleod, Malcolm R; Kollmar, Rainer

    2010-01-01

    Therapeutic hypothermia is a means of neuroprotection well established in the management of acute ischemic brain injuries such as anoxic encephalopathy after cardiac arrest and perinatal asphyxia. As such, it is the only neuroprotective strategy for which there is robust evidence for efficacy. Although there is overwhelming evidence from animal studies that cooling also improves outcome after focal cerebral ischemia, this has not been adequately tested in patients with acute ischemic stroke. There are still some uncertainties about crucial factors relating to the delivery of hypothermia, and the resolution of these would allow improvements in the design of phase III studies in these patients and improvements in the prospects for successful translation. In this study, we discuss critical issues relating first to the targets for therapy including the optimal depth and duration of cooling, second to practical issues including the methods of cooling and the management of shivering, and finally, of factors relating to the design of clinical trials. Consideration of these factors should inform the development of strategies to establish beyond doubt the place of hypothermia in the management of acute ischemic stroke. PMID:20354545

  14. Autophagy in acute brain injury.

    PubMed

    Galluzzi, Lorenzo; Bravo-San Pedro, José Manuel; Blomgren, Klas; Kroemer, Guido

    2016-08-01

    Autophagy is an evolutionarily ancient mechanism that ensures the lysosomal degradation of old, supernumerary or ectopic cytoplasmic entities. Most eukaryotic cells, including neurons, rely on proficient autophagic responses for the maintenance of homeostasis in response to stress. Accordingly, autophagy mediates neuroprotective effects following some forms of acute brain damage, including methamphetamine intoxication, spinal cord injury and subarachnoid haemorrhage. In some other circumstances, however, the autophagic machinery precipitates a peculiar form of cell death (known as autosis) that contributes to the aetiology of other types of acute brain damage, such as neonatal asphyxia. Here, we dissect the context-specific impact of autophagy on non-infectious acute brain injury, emphasizing the possible therapeutic application of pharmacological activators and inhibitors of this catabolic process for neuroprotection. PMID:27256553

  15. Nonlinear Dynamic Theory of Acute Cell Injuries and Brain Ischemia

    NASA Astrophysics Data System (ADS)

    Taha, Doaa; Anggraini, Fika; Degracia, Donald; Huang, Zhi-Feng

    2015-03-01

    Cerebral ischemia in the form of stroke and cardiac arrest brain damage affect over 1 million people per year in the USA alone. In spite of close to 200 clinical trials and decades of research, there are no treatments to stop post-ischemic neuron death. We have argued that a major weakness of current brain ischemia research is lack of a deductive theoretical framework of acute cell injury to guide empirical studies. A previously published autonomous model based on the concept of nonlinear dynamic network was shown to capture important facets of cell injury, linking the concept of therapeutic to bistable dynamics. Here we present an improved, non-autonomous formulation of the nonlinear dynamic model of cell injury that allows multiple acute injuries over time, thereby allowing simulations of both therapeutic treatment and preconditioning. Our results are connected to the experimental data of gene expression and proteomics of neuron cells. Importantly, this new model may be construed as a novel approach to pharmacodynamics of acute cell injury. The model makes explicit that any pro-survival therapy is always a form of sub-lethal injury. This insight is expected to widely influence treatment of acute injury conditions that have defied successful treatment to date. This work is supported by NIH NINDS (NS081347) and Wayne State University President's Research Enhancement Award.

  16. Ischemic retinopathy and neovascular proliferation secondary to severe head injury.

    PubMed

    Coban-Karatas, Muge; Altan-Yaycioglu, Rana

    2014-01-01

    We report a case with severe head trauma and perforating globe injury in one eye and ischemic retinopathy and neovascular proliferation in the other eye. A 37-year-old male was brought to the emergency department after a motor vehicle accident with severe maxillofacial trauma. Ophthalmic examination revealed hematoma of the left eyelids as well as traumatic rupture and disorganization of the left globe. On the right eye, anterior segment and fundoscopic examination were normal. Primary globe repair was performed. At postoperative one-month visit, the right eye revealed no pathology of the optic disc and macula but severe neovascularization in the temporal peripheral retina. The patient was diagnosed as ischemic retinopathy and neovascular proliferation due to head trauma. PMID:25143848

  17. Treatment with Evasin-3 reduces atherosclerotic vulnerability for ischemic stroke, but not brain injury in mice

    PubMed Central

    Copin, Jean-Christophe; da Silva, Rafaela F; Fraga-Silva, Rodrigo A; Capettini, Luciano; Quintao, Silvia; Lenglet, Sébastien; Pelli, Graziano; Galan, Katia; Burger, Fabienne; Braunersreuther, Vincent; Schaller, Karl; Deruaz, Maud; Proudfoot, Amanda E; Dallegri, Franco; Stergiopulos, Nikolaos; Santos, Robson A S; Gasche, Yvan; Mach, François; Montecucco, Fabrizio

    2013-01-01

    Neutrophilic inflammation might have a pathophysiological role in both carotid plaque rupture and ischemic stroke injury. Here, we investigated the potential benefits of the CXC chemokine-binding protein Evasin-3, which potently inhibits chemokine bioactivity and related neutrophilic inflammation in two mouse models of carotid atherosclerosis and ischemic stroke, respectively. In the first model, the chronic treatment with Evasin-3 as compared with Vehicle (phosphate-buffered saline (PBS)) was investigated in apolipoprotein E-deficient mice implanted of a ‘cast' carotid device. In the second model, acute Evasin-3 treatment (5 minutes after cerebral ischemia onset) was assessed in mice subjected to transient left middle cerebral artery occlusion. Although CXCL1 and CXCL2 were upregulated in both atherosclerotic plaques and infarcted brain, only CXCL1 was detectable in serum. In carotid atherosclerosis, treatment with Evasin-3 was associated with reduction in intraplaque neutrophil and matrix metalloproteinase-9 content and weak increase in collagen as compared with Vehicle. In ischemic stroke, treatment with Evasin-3 was associated with reduction in ischemic brain neutrophil infiltration and protective oxidants. No other effects in clinical and histological outcomes were observed. We concluded that Evasin-3 treatment was associated with reduction in neutrophilic inflammation in both mouse models. However, Evasin-3 administration after cerebral ischemia onset failed to improve poststroke outcomes. PMID:23250107

  18. Mechanical Thrombectomy in Acute Ischemic Stroke: A Systematic Review.

    PubMed

    Lambrinos, Anna; Schaink, Alexis K; Dhalla, Irfan; Krings, Timo; Casaubon, Leanne K; Sikich, Nancy; Lum, Cheemun; Bharatha, Aditya; Pereira, Vitor Mendes; Stotts, Grant; Saposnik, Gustavo; Kelloway, Linda; Xie, Xuanqian; Hill, Michael D

    2016-07-01

    Although intravenous thrombolysis increases the probability of a good functional outcome in carefully selected patients with acute ischemic stroke, a substantial proportion of patients who receive thrombolysis do not have a good outcome. Several recent trials of mechanical thrombectomy appear to indicate that this treatment may be superior to thrombolysis. We therefore conducted a systematic review and meta-analysis to evaluate the clinical effectiveness and safety of new-generation mechanical thrombectomy devices with intravenous thrombolysis (if eligible) compared with intravenous thrombolysis (if eligible) in patients with acute ischemic stroke caused by a proximal intracranial occlusion. We systematically searched seven databases for randomized controlled trials published between January 2005 and March 2015 comparing stent retrievers or thromboaspiration devices with best medical therapy (with or without intravenous thrombolysis) in adults with acute ischemic stroke. We assessed risk of bias and overall quality of the included trials. We combined the data using a fixed or random effects meta-analysis, where appropriate. We identified 1579 studies; of these, we evaluated 122 full-text papers and included five randomized control trials (n=1287). Compared with patients treated medically, patients who received mechanical thrombectomy were more likely to be functionally independent as measured by a modified Rankin score of 0-2 (odds ratio, 2.39; 95% confidence interval, 1.88-3.04; I2=0%). This finding was robust to subgroup analysis. Mortality and symptomatic intracerebral hemorrhage were not significantly different between the two groups. Mechanical thrombectomy significantly improves functional independence in appropriately selected patients with acute ischemic stroke. PMID:27071728

  19. Acute Shoulder Injuries in Adults.

    PubMed

    Monica, James; Vredenburgh, Zachary; Korsh, Jeremy; Gatt, Charles

    2016-07-15

    Acute shoulder injuries in adults are often initially managed by family physicians. Common acute shoulder injuries include acromioclavicular joint injuries, clavicle fractures, glenohumeral dislocations, proximal humerus fractures, and rotator cuff tears. Acromioclavicular joint injuries and clavicle fractures mostly occur in young adults as the result of a sports injury or direct trauma. Most nondisplaced or minimally displaced injuries can be treated conservatively. Treatment includes pain management, short-term use of a sling for comfort, and physical therapy as needed. Glenohumeral dislocations can result from contact sports, falls, bicycle accidents, and similar high-impact trauma. Patients will usually hold the affected arm in their contralateral hand and have pain with motion and decreased motion at the shoulder. Physical findings may include a palpable humeral head in the axilla or a dimple inferior to the acromion laterally. Reduction maneuvers usually require intra-articular lidocaine or intravenous analgesia. Proximal humerus fractures often occur in older patients after a low-energy fall. Radiography of the shoulder should include a true anteroposterior view of the glenoid, scapular Y view, and axillary view. Most of these fractures can be managed nonoperatively, using a sling, early range-of-motion exercises, and strength training. Rotator cuff tears can cause difficulty with overhead activities or pain that awakens the patient from sleep. On physical examination, patients may be unable to hold the affected arm in an elevated position. It is important to recognize the sometimes subtle signs and symptoms of acute shoulder injuries to ensure proper management and timely referral if necessary. PMID:27419328

  20. Delayed Postconditioning Protects against Focal Ischemic Brain Injury in Rats

    PubMed Central

    Ren, Chuancheng; Gao, Xuwen; Niu, Gang; Yan, Zhimin; Chen, Xiaoyuan; Zhao, Heng

    2008-01-01

    Background We and others have reported that rapid ischemic postconditioning, interrupting early reperfusion after stroke, reduces infarction in rats. However, its extremely short therapeutic time windows, from a few seconds to minutes after reperfusion, may hinder its clinical translation. Thus, in this study we explored if delayed postconditioning, which is conducted a few hours after reperfusion, offers protection against stroke. Methods and Results Focal ischemia was generated by 30 min occlusion of bilateral common carotid artery (CCA) combined with permanent occlusion of middle cerebral artery (MCA); delayed postconditioning was performed by repetitive, brief occlusion and release of the bilateral CCAs, or of the ipsilateral CCA alone. As a result, delayed postconditioning performed at 3h and 6h after stroke robustly reduced infarct size, with the strongest protection achieved by delayed postconditioning with 6 cycles of 15 min occlusion/15 min release of the ipsilateral CCA executed from 6h. We found that this delayed postconditioning provided long-term protection for up to two months by reducing infarction and improving outcomes of the behavioral tests; it also attenuated reduction in 2-[18F]-fluoro-2-deoxy-D-glucose (FDG)-uptake therefore improving metabolism, and reduced edema and blood brain barrier leakage. Reperfusion in ischemic stroke patients is usually achieved by tissue plasminogen activator (tPA) application, however, t-PA's side effect may worsen ischemic injury. Thus, we tested whether delayed postconditioning counteracts the exacerbating effect of t-PA. The results showed that delayed postconditioning mitigated the worsening effect of t-PA on infarction. Conclusion Delayed postconditioning reduced ischemic injury after focal ischemia, which opens a new research avenue for stroke therapy and its underlying protective mechanisms. PMID:19066627

  1. [Intervention effect of Tibetan patent medicine Ruyi Zhenbao pills in acute ischemic stroke in rats].

    PubMed

    Liu, Rui-ying; Wu, Wei-jie; Tan, Rui; Xie, Bin; Zhong, Zhen-dong; He, Jing-ping; Chen, Yao; Kang, Xin-li

    2015-02-01

    Ischemic stroke is a primary cause of death and long-term disability all over the world. This disease is resulted from ischemia and hypoxia in brain tissues because of insufficient blood supply and causes a series of physiochemical metabolism disorders and physiological dysfunction. Its high disability ratio has bright huge burdens to society, governments and families. However, there is not efficacious medicine to treat it. In this study, a right middle cerebral artery occlusion was established in rats to observe the multi-path and multi-aspect intervention effects of Tibetan patent medicine Ruyi Zhenbao pills in reducing injuries to Nissl bodies, cerebral edema and inflammatory reactions and preventing cellular apoptosis, in order to lay a foundation for defining its therapeutic mechanism in acute ischemic stroke. PMID:26084187

  2. Proton-sensitive cation channels and ion exchangers in ischemic brain injury: new therapeutic targets for stroke?

    PubMed Central

    Leng, Tiandong; Shi, Yejie; Xiong, Zhi-Gang; Sun, Dandan

    2014-01-01

    Ischemic brain injury results from complicated cellular mechanisms. The present therapy for acute ischemic stroke is limited to thrombolysis with the recombinant tissue plasminogen activator (rtPA) and mechanical recanalization. Therefore, a better understanding of ischemic brain injury is needed for the development of more effective therapies. Disruption of ionic homeostasis plays an important role in cell death following cerebral ischemia. Glutamate receptor-mediated ionic imbalance and neurotoxicity have been well established in cerebral ischemia after stroke. However, non-NMDA receptor-dependent mechanisms, involving acid-sensing ion channel 1a (ASIC1a), transient receptor potential melastatin 7 (TRPM7), and Na+/H+ exchanger isoform 1 (NHE1), have recently emerged as important players in the dysregulation of ionic homeostasis in the CNS under ischemic conditions. These H+-sensitive channels and/or exchangers are expressed in the majority of cell types of the neurovascular unit. Sustained activation of these proteins causes excessive influx of cations, such as Ca2+, Na+, and Zn2+, and leads to ischemic reperfusion brain injury. In this review, we summarize recent pre-clinical experimental research findings on how these channels/exchangers are regulated in both in vitro and in vivo models of cerebral ischemia. The blockade or transgenic knockdown of these proteins was shown to be neuroprotective in these ischemia models. Taken together, these non-NMDA receptor-dependent mechanisms may serve as novel therapeutic targets for stroke intervention. PMID:24467911

  3. Copolymer-1 promotes neurogenesis and improves functional recovery after acute ischemic stroke in rats.

    PubMed

    Cruz, Yolanda; Lorea, Jonathan; Mestre, Humberto; Kim-Lee, Jennifer Hyuna; Herrera, Judith; Mellado, Raúl; Gálvez, Vanesa; Cuellar, Leopoldo; Musri, Carolina; Ibarra, Antonio

    2015-01-01

    Stroke triggers a systemic inflammatory response that exacerbates the initial injury. Immunizing with peptides derived from CNS proteins can stimulate protective autoimmunity (PA). The most renowned of these peptides is copolymer-1 (Cop-1) also known as glatiramer acetate. This peptide has been approved for use in the treatment of multiple sclerosis. Cop-1-specific T cells cross the blood-brain barrier and secrete neurotrophins and anti-inflammatory cytokines that could stimulate proliferation of neural precursor cells and recruit them to the injury site; making it an ideal therapy for acute ischemic stroke. The aim of this work was to evaluate the effect of Cop-1 on neurogenesis and neurological recovery during the acute phase (7 days) and the chronic phase of stroke (60 days) in a rat model of transient middle cerebral artery occlusion (tMCAo). BDNF and NT-3 were quantified and infarct volumes were measured. We demonstrated that Cop-1 improves neurological deficit, enhances neurogenesis (at 7 and 60 days) in the SVZ, SGZ, and cerebral cortex through an increase in NT-3 production. It also decreased infarct volume even at the chronic phase of tMCAo. The present manuscript fortifies the support for the use of Cop-1 in acute ischemic stroke. PMID:25821957

  4. Copolymer-1 Promotes Neurogenesis and Improves Functional Recovery after Acute Ischemic Stroke in Rats

    PubMed Central

    Cruz, Yolanda; Lorea, Jonathan; Mestre, Humberto; Kim-Lee, Jennifer Hyuna; Herrera, Judith; Mellado, Raúl; Gálvez, Vanesa; Cuellar, Leopoldo; Musri, Carolina; Ibarra, Antonio

    2015-01-01

    Stroke triggers a systemic inflammatory response that exacerbates the initial injury. Immunizing with peptides derived from CNS proteins can stimulate protective autoimmunity (PA). The most renowned of these peptides is copolymer-1 (Cop-1) also known as glatiramer acetate. This peptide has been approved for use in the treatment of multiple sclerosis. Cop-1-specific T cells cross the blood-brain barrier and secrete neurotrophins and anti-inflammatory cytokines that could stimulate proliferation of neural precursor cells and recruit them to the injury site; making it an ideal therapy for acute ischemic stroke. The aim of this work was to evaluate the effect of Cop-1 on neurogenesis and neurological recovery during the acute phase (7 days) and the chronic phase of stroke (60 days) in a rat model of transient middle cerebral artery occlusion (tMCAo). BDNF and NT-3 were quantified and infarct volumes were measured. We demonstrated that Cop-1 improves neurological deficit, enhances neurogenesis (at 7 and 60 days) in the SVZ, SGZ, and cerebral cortex through an increase in NT-3 production. It also decreased infarct volume even at the chronic phase of tMCAo. The present manuscript fortifies the support for the use of Cop-1 in acute ischemic stroke. PMID:25821957

  5. Therapeutic Impact of Follistatin-Like 1 on Myocardial Ischemic Injury in Preclinical Models

    PubMed Central

    Ogura, Yasuhiro; Ouchi, Noriyuki; Ohashi, Koji; Shibata, Rei; Kataoka, Yoshiyuki; Kambara, Takahiro; Kito, Tetsutaro; Maruyama, Sonomi; Yuasa, Daisuke; Matsuo, Kazuhiro; Enomoto, Takashi; Uemura, Yusuke; Miyabe, Megumi; Ishii, Masakazu; Yamamoto, Takashi; Shimizu, Yuuki; Walsh, Kenneth; Murohara, Toyoaki

    2012-01-01

    Background Acute coronary syndrome is a leading cause of death in developed countries. Follistatin-like 1 (FSTL1) is a myocyte-derived secreted protein that is upregulated in the heart in response to ischemic insult. Here, we investigated the therapeutic impact of FSTL1 on acute cardiac injury in small and large preclinical animal models of ischemia/reperfusion and dissected its molecular mechanism. Methods and Results Administration of human FSTL1 protein significantly attenuated myocardial infarct size in a mouse or pig model of ischemia/reperfusion, which was associated with a reduction of apoptosis and inflammatory responses in the ischemic heart. Administration of FSTL1 enhanced the phosphorylation of AMP-activated protein kinase in the ischemia/reperfusion–injured heart. In cultured cardiac myocytes, FSTL1 suppressed apoptosis in response to hypoxia/reoxygenation and lipopolysaccharide-stimulated expression of proinflammatory genes through its ability to activate AMP-activated protein kinase. Ischemia/reperfusion led to enhancement of bone morphogenetic protein-4 expression and Smad1/5/8 phosphorylation in the heart, and FSTL1 suppressed the increased phosphorylation of Smad1/5/8 in ischemic myocardium. Treating cardiac myocytes with FSTL1 abolished the bone morphogenetic protein-4 –stimulated increase in apoptosis, Smad1/5/8 phosphorylation, and proinflammatory gene expression. In cultured macrophages, FSTL1 diminished lipopolysaccharide-stimulated expression of proinflammatory genes via activation of AMP-activated protein kinase and abolished bone morphogenetic protein-4 – dependent induction of proinflammatory mediators. Conclusions Our data indicate that FSTL1 can prevent myocardial ischemia/reperfusion injury by inhibiting apoptosis and inflammatory response through modulation of AMP-activated protein kinase– and bone morphogenetic protein-4 – dependent mechanisms, suggesting that FSTL1 could represent a novel therapeutic target for post

  6. Acute Kidney Injury in Cirrhosis.

    PubMed

    Karvellas, Constantine J; Durand, Francois; Nadim, Mitra K

    2015-10-01

    Acute kidney injury (AKI) is a frequent complication of end-stage liver disease, especially in those with acute-on-chronic liver failure, occurring in up to 50% of hospitalized patients with cirrhosis. There is no specific blood or urine biomarker that can reliably identify the cause of AKI in cirrhotic patients. This review examines studies used to assess renal dysfunction in cirrhotic patients including new diagnostic criteria and potential novel biomarkers. Although biomarker development to differentiate the cause of AKI in cirrhosis has promise, the utility of biomarkers to determine irreversible renal dysfunction with liver transplant remains lacking, warranting further investigation. PMID:26410141

  7. Myricetin and quercetin attenuate ischemic injury in glial cultures by different mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have demonstrated that polyphenols from cinnamon and green tea reduce cell swelling and mitochondrial dysfunction in C6 glial cultures following ischemic injury. We tested the protective effects of the flavonoid polyphenols, myricetin and quercetin, on key features of ischemic injury. C6 cultures...

  8. Magnetic resonance imaging in acute ischemic stroke treatment.

    PubMed

    Kim, Bum Joon; Kang, Hyun Goo; Kim, Hye-Jin; Ahn, Sung-Ho; Kim, Na Young; Warach, Steven; Kang, Dong-Wha

    2014-09-01

    Although intravenous administration of tissue plasminogen activator is the only proven treatment after acute ischemic stroke, there is always a concern of hemorrhagic risk after thrombolysis. Therefore, selection of patients with potential benefits in overcoming potential harms of thrombolysis is of great importance. Despite the practical issues in using magnetic resonance imaging (MRI) for acute stroke treatment, multimodal MRI can provide useful information for accurate diagnosis of stroke, evaluation of the risks and benefits of thrombolysis, and prediction of outcomes. For example, the high sensitivity and specificity of diffusion-weighted image (DWI) can help distinguish acute ischemic stroke from stroke-mimics. Additionally, the lesion mismatch between perfusion-weighted image (PWI) and DWI is thought to represent potential salvageable tissue by reperfusion therapy. However, the optimal threshold to discriminate between benign oligemic areas and the penumbra is still debatable. Signal changes of fluid-attenuated inversion recovery image within DWI lesions may be a surrogate marker for ischemic lesion age and might indicate risks of hemorrhage after thrombolysis. Clot sign on gradient echo image may reflect the nature of clot, and their location, length and morphology may provide predictive information on recanalization by reperfusion therapy. However, previous clinical trials which solely or mainly relied on perfusion-diffusion mismatch for patient selection, failed to show benefits of MRI-based thrombolysis. Therefore, understanding the clinical implication of various useful MRI findings and comprehensively incorporating those variables into therapeutic decision-making may be a more reasonable approach for expanding the indication of acute stroke thrombolysis. PMID:25328872

  9. Magnetic Resonance Imaging in Acute Ischemic Stroke Treatment

    PubMed Central

    Kim, Bum Joon; Kang, Hyun Goo; Kim, Hye-Jin; Ahn, Sung-Ho; Kim, Na Young; Warach, Steven

    2014-01-01

    Although intravenous administration of tissue plasminogen activator is the only proven treatment after acute ischemic stroke, there is always a concern of hemorrhagic risk after thrombolysis. Therefore, selection of patients with potential benefits in overcoming potential harms of thrombolysis is of great importance. Despite the practical issues in using magnetic resonance imaging (MRI) for acute stroke treatment, multimodal MRI can provide useful information for accurate diagnosis of stroke, evaluation of the risks and benefits of thrombolysis, and prediction of outcomes. For example, the high sensitivity and specificity of diffusion-weighted image (DWI) can help distinguish acute ischemic stroke from stroke-mimics. Additionally, the lesion mismatch between perfusion-weighted image (PWI) and DWI is thought to represent potential salvageable tissue by reperfusion therapy. However, the optimal threshold to discriminate between benign oligemic areas and the penumbra is still debatable. Signal changes of fluid-attenuated inversion recovery image within DWI lesions may be a surrogate marker for ischemic lesion age and might indicate risks of hemorrhage after thrombolysis. Clot sign on gradient echo image may reflect the nature of clot, and their location, length and morphology may provide predictive information on recanalization by reperfusion therapy. However, previous clinical trials which solely or mainly relied on perfusion-diffusion mismatch for patient selection, failed to show benefits of MRI-based thrombolysis. Therefore, understanding the clinical implication of various useful MRI findings and comprehensively incorporating those variables into therapeutic decision-making may be a more reasonable approach for expanding the indication of acute stroke thrombolysis. PMID:25328872

  10. Epigenetics in acute kidney injury

    PubMed Central

    Tang, Jinhua; Zhuang, Shougang

    2015-01-01

    Purpose of review Recent advances in epigenetics indicate the involvement of several epigenetic modifications in the pathogenesis of acute kidney injury (AKI). The purpose of this review is to summarize our understanding of recent advances in epigenetic regulation of AKI and provide mechanistic insight into the role of acetylation, methylation, and microRNA expression in the pathological processes of AKI. Recent findings Enhancement of protein acetylation by pharmacological inhibition of histone deacetylases (HDACs) leads to more severe tubular injury and impairment of renal structural and functional recovery. The changes in promoter DNA methylation occur in the kidney with ischemia/reperfusion. microRNA expression is associated with regulation of both renal injury and regeneration after AKI. Summary Recent studies on epigenetic regulation indicate that acetylation, methylation, and microRNA expression are critically implicated in the pathogenesis of AKI. Strategies targeting epigenetic processes may hold a therapeutic potential for patients with AKI. PMID:26050122

  11. Review of current and emerging therapies in acute ischemic stroke.

    PubMed

    Novakovic, R; Toth, G; Purdy, P D

    2009-07-01

    The statistics for stroke in the USA reads like a familiar ad slogan cited in most papers pertaining to acute ischemic stroke (AIS). Stroke is the third leading cause of death in the USA. While stroke ranks third among all causes of death, behind diseases of the heart and cancer, it is the leading cause of serious long-term disability in the USA.(1) Approximately 795 000 people, 87% of whom are ischemic, suffer from stroke each year in the USA.(2) That means that on average, every 40 seconds someone within the USA develops a stroke. For 2009 the combined direct and indirect cost of stroke, from hospitalization and rehabilitation to institutionalization, is estimated at $68.9 billion within the USA.(2). PMID:21994100

  12. Suppression of Etk/Bmx protects against ischemic brain injury.

    PubMed

    Chen, Kai-Yun; Wu, Chung-Che; Chang, Cheng-Fu; Chen, Yuan-Hao; Chiu, Wen-Ta; Lou, Ya-Hsin; Chen, Yen-Hua; Shih, Hsiu-Ming; Chiang, Yung-Hsiao

    2012-01-01

    Etk/Bmx (epithelial and endothelial tyrosine kinase, also known as BMX), a member of the Tec (tyrosine kinase expressed in hepatocellular carcinoma) family of protein-tyrosine kinases, is an important regulator of signal transduction for the activation of cell growth, differentiation, and development. We have previously reported that activation of Etk leads to apoptosis in MDA-MB-468 cells. The purpose of this study was to examine the role of Etk in neuronal injury induced by H(2)O(2) or ischemia. Using Western blot analysis and immunohistochemistry, we found that treatment with H(2)O(2) significantly enhanced phosphorylation of Etk and its downstream signaling molecule Stat1 in primary cortical neurons. Inhibiting Etk activity by LFM-A13 or knocking down Etk expression by a specific shRNA increased the survival of primary cortical neurons. Similarly, at 1 day after a 60-min middle cerebral artery occlusion (MCAo) in adult rats, both phosphorylated Etk and Stat1 were coexpressed with apoptotic markers in neurons in the penumbra. Pretreatment with LFM-A13 or an adenoviral vector encoding the kinase deletion mutant Etkk attenuated caspase-3 activity and infarct volume in ischemic brain. All together, our data suggest that Etk is activated after neuronal injury. Suppressing Etk activity protects against neurodegeneration in ischemic brain. PMID:21929872

  13. Hemodilution increases cerebral blood flow in acute ischemic stroke

    SciTech Connect

    Vorstrup, S.; Andersen, A.; Juhler, M.; Brun, B.; Boysen, G.

    1989-07-01

    We measured cerebral blood flow in 10 consecutive, but selected, patients with acute ischemic stroke (less than 48 hours after onset) before and after hemodilution. Cerebral blood flow was measured by xenon-133 inhalation and emission tomography, and only patients with focal hypoperfusion in clinically relevant areas were included. Hemodilution was done according to the hematocrit level: for a hematocrit greater than or equal to 42%, 500 ml whole blood was drawn and replaced by the same volume of dextran 40; for a hematocrit between 37% and 42%, only 250 ml whole blood was drawn and replaced by 500 cc of dextran 40. Mean hematocrit was reduced by 16%, from 46 +/- 5% (SD) to 39 +/- 5% (SD) (p less than 0.001). Cerebral blood flow increased in both hemispheres by an average of 20.9% (p less than 0.001). Regional cerebral blood flow increased in the ischemic areas in all cases, on an average of 21.4 +/- 12.0% (SD) (p less than 0.001). In three patients, a significant redistribution of flow in favor of the hypoperfused areas was observed, and in six patients, the fractional cerebral blood flow increase in the hypoperfused areas was of the same magnitude as in the remainder of the brain. In the last patient, cerebral blood flow increased relatively less in the ischemic areas. Our findings show that cerebral blood flow increases in the ischemic areas after hemodilution therapy in stroke patients. The marked regional cerebral blood flow increase seen in some patients could imply an improved oxygen delivery to the ischemic tissue.

  14. Brimonidine Blocks Glutamate Excitotoxicity-Induced Oxidative Stress and Preserves Mitochondrial Transcription Factor A in Ischemic Retinal Injury

    PubMed Central

    Lee, Dongwook; Kim, Keun-Young; Noh, You Hyun; Chai, Stephen; Lindsey, James D.; Ellisman, Mark H.; Weinreb, Robert N.; Ju, Won-Kyu

    2012-01-01

    Glutamate excitotoxicity-induced oxidative stress have been linked to mitochondrial dysfunction in retinal ischemia and optic neuropathies including glaucoma. Brimonindine (BMD), an alpha 2-adrenergic receptor agonist, contributes to the neuroprotection of retinal ganglion cells (RGCs) against glutamate excitotoxicity or oxidative stress. However, the molecular mechanisms of BMD-associated mitochondrial preservation in RGC protection against glutamate excitotoxicity-induced oxidative stress following retinal ischemic injury remain largely unknown. Here, we tested whether activation of alpha 2 adrenergic receptor by systemic BMD treatment blocks glutamate excitotoxicity-induced oxidative stress, and preserves the expression of mitochondrial transcription factor A (Tfam) and oxidative phosphorylation (OXPHOS) complex in ischemic retina. Sprague-Dawley rats received BMD (1 mg/kg/day) or vehicle (0.9% saline) systemically and then transient ischemia was induced by acute intraocular pressure elevation. Systemic BMD treatment significantly increased RGC survival at 4 weeks after ischemia. At 24 hours, BMD significantly decreased Bax expression but increased Bcl-xL and phosphorylated Bad protein expression in ischemic retina. Importantly. BMD significantly blocked the upregulations of N-methyl-D-aspartate receptors 1 and 2A protein expression, as well as of SOD2 protein expression in ischemic retina at 24 hours. During the early neurodegeneration following ischemic injury (12–72 hours), Tfam and OXPHOS complex protein expression were significantly increased in vehicle-treated retina. At 24 hours after ischemia, Tfam immunoreactivity was increased in the outer plexiform layer, inner nuclear layer, inner plexiform layer and ganglion cell layer. Further, Tfam protein was expressed predominantly in RGCs. Finally, BMD preserved Tfam immunoreactivity in RGCs as well as Tfam/OXPHOS complex protein expression in the retinal extracts against ischemic injury. Our findings suggest

  15. Imaging of occlusive thrombi in acute ischemic stroke

    PubMed Central

    Gasparian, GG; Sanossian, N; Shiroishi, MS; Liebeskind, DS

    2015-01-01

    Thrombi, or clots, often occlude proximal segments of the cerebral arterial circulation in acute ischemic stroke. Thromboembolic occlusion or thrombi superimposed on atherosclerotic plaque are the principal focus of acute stroke therapies such as thrombolysis or thrombectomy. We review the imaging characteristics of thrombi on multimodal CT and MRI, angiography and ultrasonography, summarizing recent studies that facilitate therapeutic decision-making from these noninvasive studies. Information about the location, size and imaging characteristics can be ascertained using these techniques. Imaging findings in relation to occlusive thrombus have been correlated with clot pathology, response to therapeutic interventions, and clinical outcome. Diagnostic evaluation of occlusive thrombi on noninvasive studies now constitutes an integral component of acute stroke management. PMID:25545291

  16. Pathophysiology of Acute Kidney Injury

    PubMed Central

    Basile, David P.; Anderson, Melissa D.; Sutton, Timothy A.

    2014-01-01

    Acute kidney injury (AKI) is the leading cause of nephrology consultation and is associated with high mortality rates. The primary causes of AKI include ischemia, hypoxia or nephrotoxicity. An underlying feature is a rapid decline in GFR usually associated with decreases in renal blood flow. Inflammation represents an important additional component of AKI leading to the extension phase of injury, which may be associated with insensitivity to vasodilator therapy. It is suggested that targeting the extension phase represents an area potential of treatment with the greatest possible impact. The underlying basis of renal injury appears to be impaired energetics of the highly metabolically active nephron segments (i.e., proximal tubules and thick ascending limb) in the renal outer medulla, which can trigger conversion from transient hypoxia to intrinsic renal failure. Injury to kidney cells can be lethal or sublethal. Sublethal injury represents an important component in AKI, as it may profoundly influence GFR and renal blood flow. The nature of the recovery response is mediated by the degree to which sublethal cells can restore normal function and promote regeneration. The successful recovery from AKI depends on the degree to which these repair processes ensue and these may be compromised in elderly or CKD patients. Recent data suggest that AKI represents a potential link to CKD in surviving patients. Finally, earlier diagnosis of AKI represents an important area in treating patients with AKI that has spawned increased awareness of the potential that biomarkers of AKI may play in the future. PMID:23798302

  17. Intestinal ischemic preconditioning reduces liver ischemia reperfusion injury in rats

    PubMed Central

    XUE, TONG-MIN; TAO, LI-DE; ZHANG, JIE; ZHANG, PEI-JIAN; LIU, XIA; CHEN, GUO-FENG; ZHU, YI-JIA

    2016-01-01

    The aim of the current study was to investigate whether intestinal ischemic preconditioning (IP) reduces damage to the liver during hepatic ischemia reperfusion (IR). Sprague Dawley rats were used to model liver IR injury, and were divided into the sham operation group (SO), IR group and IP group. The results indicated that IR significantly increased Bax, caspase 3 and NF-κBp65 expression levels, with reduced expression of Bcl-2 compared with the IP group. Compared with the IR group, the levels of AST, ALT, MPO, MDA, TNF-α and IL-1 were significantly reduced in the IP group. Immunohistochemistry for Bcl-2 and Bax indicated that Bcl-2 expression in the IP group was significantly increased compared with the IR group. In addition, IP reduced Bax expression compared with the IR group. The average liver injury was worsened in the IR group and improved in the IP group, as indicated by the morphological evaluation of liver tissues. The present study suggested that IP may alleviates apoptosis, reduce the release of pro-inflammatory cytokines, ameloriate reductions in liver function and reduce liver tissue injury. To conclude, IP provided protection against hepatic IR injury. PMID:26821057

  18. Trans-system mechanisms against ischemic myocardial injury.

    PubMed

    Liu, Shu Q; Ma, Xin-Liang; Qin, Gangjian; Liu, Qingping; Li, Yan-Chun; Wu, Yu H

    2015-01-01

    A mammalian organism possesses a hierarchy of naturally evolved protective mechanisms against ischemic myocardial injury at the molecular, cellular, and organ levels. These mechanisms comprise regional protective processes, including upregulation and secretion of paracrine cell-survival factors, inflammation, angiogenesis, fibrosis, and resident stem cell-based cardiomyocyte regeneration. There are also interactive protective processes between the injured heart, circulation, and selected remote organs, defined as trans-system protective mechanisms, including upregulation and secretion of endocrine cell-survival factors from the liver and adipose tissue as well as mobilization of bone marrow, splenic, and hepatic cells to the injury site to mediate myocardial protection and repair. The injured heart and activated remote organs exploit molecular and cellular processes, including signal transduction, gene expression, cell proliferation, differentiation, migration, mobilization, and/or extracellular matrix production, to establish protective mechanisms. Both regional and trans-system cardioprotective mechanisms are mediated by paracrine and endocrine messengers and act in coordination and synergy to maximize the protective effect, minimize myocardial infarction, and improve myocardial function, ensuring the survival and timely repair of the injured heart. The concept of the trans-system protective mechanisms may be generalized to other organ systems-injury in one organ may initiate regional as well as trans-system protective responses, thereby minimizing injury and ensuring the survival of the entire organism. Selected trans-system processes may serve as core protective mechanisms that can be exploited by selected organs in injury. These naturally evolved protective mechanisms are the foundation for developing protective strategies for myocardial infarction and injury-induced disorders in other organ systems. PMID:25589268

  19. Novel Thrombolytics for Acute Ischemic Stroke: Challenges and Opportunities.

    PubMed

    Logallo, Nicola; Kvistad, Christopher E; Nacu, Aliona; Thomassen, Lars

    2016-02-01

    Progress in finding a better alternative to alteplase has been slow. Tenecteplase and desmoteplase have better pharmacological profiles compared with alteplase, but definite clinical evidence of their superiority is lacking. The two major phase III studies that have tested the efficacy and safety of desmoteplase in ischemic stroke patients have shown neutral results and a promising safety profile, but the trials compared desmoteplase with placebo only in late admitted patients. Future trials should focus on testing novel thrombolytics in the early time window either as the sole acute recanalizing treatment or combined with thrombectomy. PMID:26798040

  20. Biomarkers of Acute Kidney Injury

    PubMed Central

    Vaidya, Vishal S.; Ferguson, Michael A.; Bonventre, Joseph V.

    2009-01-01

    Acute kidney injury (AKI) is a common condition with a high risk of death. The standard metrics used to define and monitor the progression of AKI, such as serum creatinine and blood urea nitrogen levels, are insensitive, nonspecific, and change significantly only after significant kidney injury and then with a substantial time delay. This delay in diagnosis not only prevents timely patient management decisions, including administration of putative therapeutic agents, but also significantly affects the preclinical evaluation of toxicity thereby allowing potentially nephrotoxic drug candidates to pass the preclinical safety criteria only to be found to be clinically nephrotoxic with great human costs. Studies to establish effective therapies for AKI will be greatly facilitated by two factors: (a) development of sensitive, specific, and reliable biomarkers for early diagnosis/prognosis of AKI in preclinical and clinical studies, and (b) development and validation of high-throughput innovative technologies that allow rapid multiplexed detection of multiple markers at the bedside. PMID:17937594

  1. Aspirin Resistance in the Acute Stages of Acute Ischemic Stroke Is Associated with the Development of New Ischemic Lesions

    PubMed Central

    Kim, Joon-Tae; Heo, Suk-Hee; Lee, Ji Sung; Choi, Min-Ji; Choi, Kang-Ho; Nam, Tai-Seung; Lee, Seung-Han; Park, Man-Seok; Kim, Byeong C.; Kim, Myeong-Kyu; Cho, Ki-Hyun

    2015-01-01

    Background Aspirin is a primary antiplatelet agent for the secondary prevention of ischemic stroke. However, if aspirin fails to inhibit platelet function, as is expected in acute ischemic stroke (AIS), it may increase the rate of early clinical events. Therefore, we sought to determine whether aspirin resistance in the acute stage was associated with early radiological events, including new ischemic lesions (NILs). Methods This study was a single-center, prospective, observational study conducted between April 2012 and May 2013. Aspirin 300 mg was initially administered followed by maintenance doses of 100 mg daily. The acute aspirin reaction unit (aARU) was consistently measured after 3 hours of aspirin loading. An aARU value ≥550 IU was defined as biological aspirin resistance (BAR). NILs on follow-up diffusion-weighted imaging (DWI) were defined as lesions separate from index lesions, which were not detected on the initial DWI. Results A total of 367 patients were analyzed in this study. BAR in aARU was detected in 60 patients (16.3%). On follow-up DWI, 81 patients (22.1%) had NILs, which were frequently in the same territory as the index lesions (79%), pial infarcts (61.7%), and located within the cortex (59.3%). BAR was independently associated with NILs on follow-up DWI (adjusted OR 2.00, 95% CIs 1.01–3.96; p = 0.047). Conclusion In conclusion, BAR in aARU could be associated with NILs on follow-up DWI in AIS. Therefore, a further prospective study with a longer follow-up period is necessary to evaluate the clinical implications of aARU in AIS. PMID:25849632

  2. Cardioprotection against experimental myocardial ischemic injury using cornin.

    PubMed

    Xu, Y; Xu, Y; Luan, H; Jiang, Y; Tian, X; Zhang, S

    2016-02-01

    Phosphorylated-cyclic adenosine monophosphate response element-binding protein (Phospho-CREB) has an important role in the pathogenesis of myocardial ischemia. We isolated the iridoid glycoside cornin from the fruit of Verbena officinalis L, investigated its effects against myocardial ischemia and reperfusion (I/R) injury in vivo, and elucidated its potential mechanism in vitro. Effects of cornin on cell viability, as well as expression of phospho-CREB and phospho-Akt in hypoxic H9c2 cells in vitro, and myocardial I/R injury in vivo, were investigated. Cornin attenuated hypoxia-induced cytotoxicity significantly in H9c2 cells in a concentration-dependent manner. Treatment of H9c2 cells with cornin (10 µM) blocked the reduction of expression of phospho-CREB and phospho-Akt in a hypoxic condition. Treatment of rats with cornin (30 mg/kg, iv) protected them from myocardial I/R injury as indicated by a decrease in infarct volume, improvement in hemodynamics, and reduction of severity of myocardial damage. Cornin treatment also attenuated the reduction of expression of phospho-CREB and phospho-Akt in ischemic myocardial tissue. These data suggest that cornin exerts protective effects due to an increase in expression of phospho-CREB and phospho-Akt. PMID:26871971

  3. Cardioprotection against experimental myocardial ischemic injury using cornin

    PubMed Central

    Xu, Y.; Xu, Y.; Luan, H.; Jiang, Y.; Tian, X.; Zhang, S.

    2016-01-01

    Phosphorylated-cyclic adenosine monophosphate response element-binding protein (Phospho-CREB) has an important role in the pathogenesis of myocardial ischemia. We isolated the iridoid glycoside cornin from the fruit of Verbena officinalis L, investigated its effects against myocardial ischemia and reperfusion (I/R) injury in vivo, and elucidated its potential mechanism in vitro. Effects of cornin on cell viability, as well as expression of phospho-CREB and phospho-Akt in hypoxic H9c2 cells in vitro, and myocardial I/R injury in vivo, were investigated. Cornin attenuated hypoxia-induced cytotoxicity significantly in H9c2 cells in a concentration-dependent manner. Treatment of H9c2 cells with cornin (10 µM) blocked the reduction of expression of phospho-CREB and phospho-Akt in a hypoxic condition. Treatment of rats with cornin (30 mg/kg, iv) protected them from myocardial I/R injury as indicated by a decrease in infarct volume, improvement in hemodynamics, and reduction of severity of myocardial damage. Cornin treatment also attenuated the reduction of expression of phospho-CREB and phospho-Akt in ischemic myocardial tissue. These data suggest that cornin exerts protective effects due to an increase in expression of phospho-CREB and phospho-Akt. PMID:26871971

  4. Exenatide induced acute kidney injury.

    PubMed

    Aijazi, Ishma; Abdulla, Fadhil M; Zuberi, Beyla J; Elhassan, Ahmed

    2014-01-01

    Exenatide is an incretin mimetic. It was approved by the federal drug authority in 2005 for the treatment of type-2 diabetes. Since it is a relatively new medicine clinicians have limited experience with regards to its side effects and safety profile. We report a 47 year old lady who presented with exenatide associated acute kidney injury. She had type-2 diabetes for 10 years with mild micro albuminuria and normal renal functions. She was also taking a stable dose of metformin, gliclazide, angiotensin converting enzyme inhibitor and diuretic for over a year and there was no history of any recent use of non-steroid anti-inflammatory medications. One week after starting exenatide, she developed severe vomiting, followed by hypotension. She presented with acute renal insufficiency and severe lactic acidosis and had to be dialyzed on emergency basis. To our knowledge this is probably the first case reported in the local United Arab Emirate (U.A.E) population. PMID:25672206

  5. Effect and Safety of Rosuvastatin in Acute Ischemic Stroke

    PubMed Central

    Heo, Ji Hoe; Song, Dongbeom; Nam, Hyo Suk; Kim, Eung Yeop; Kim, Young Dae; Lee, Kyung-Yul; Lee, Ki-Jeong; Yoo, Joonsang; Kim, Youn Nam; Lee, Byung Chul; Yoon, Byung-Woo; Kim, Jong S.

    2016-01-01

    Background and Purpose The benefit of statins in acute stroke remains uncertain. Statins may prevent stroke recurrence during the acute stage of stroke via pleiotropic effects. However, statins may increase the risk of intracerebral hemorrhage. We investigated the effect and safety of rosuvastatin in acute stroke patients. Methods This randomized, double-blind, multi-center trial compared rosuvastatin 20 mg and placebo in statin-naïve stroke patients who underwent diffusion-weighted imaging (DWI) within 48 hours after symptom onset. The primary outcome was occurrence of new ischemic lesions on DWI at 5 or 14 days. Results This trial was stopped early after randomization of 316 patients due to slow enrollment. Among 289 patients with at least one follow-up imaging, the frequency of new ischemic lesions on DWI was not different between groups (rosuvastatin: 27/137, 19.7% vs. placebo: 36/152, 23.6%) (relative risk 0.83, 95% confidence interval 0.53–1.30). Infarct volume growth at 5 days (log-transformed volume change, rosuvastatin: 0.2±1.0 mm3 vs. placebo: 0.3±1.3 mm3; P=0.784) was not different, either. However, hemorrhagic infarction or parenchymal/subarachnoid hemorrhage on gradient-recalled echo magnetic resonance imaging occurred less frequently in the rosuvastatin group (6/137, 4.4%) than the placebo group (22/152, 14.5%, P=0.007). Among 314 patients with at least one dose of study medication, progression or clinical recurrence of stroke tended to occur less frequently in the rosuvastatin group (1/155, 0.6% vs. 7/159, 4.4%, P=0.067). Adverse events did not differ between groups. Conclusions The efficacy of rosuvastatin in reducing recurrence in acute stroke was inconclusive. However, statin use was safe and reduced hemorrhagic transformation. PMID:26846760

  6. Ischemic post-conditioning to counteract intestinal ischemia/reperfusion injury

    PubMed Central

    Guan, Yan-Fang; Pritts, Timothy A; Montrose, Marshall H

    2010-01-01

    Intestinal ischemia is a severe disorder with a variety of causes. Reperfusion is a common occurrence during treatment of acute intestinal ischemia but the injury resulting from ischemia/reperfusion (IR) may lead to even more serious complications from intestinal atrophy to multiple organ failure and death. The susceptibility of the intestine to IR-induced injury (IRI) appears from various experimental studies and clinical settings such as cardiac and major vascular surgery and organ transplantation. Whereas oxygen free radicals, activation of leukocytes, failure of microvascular perfusion, cellular acidosis and disturbance of intracellular homeostasis have been implicated as important factors in the pathogenesis of intestinal IRI, the mechanisms underlying this disorder are not well known. To date, increasing attention is being paid in animal studies to potential pre- and post-ischemia treatments that protect against intestinal IRI such as drug interference with IR-induced apoptosis and inflammation processes and ischemic pre-conditioning. However, better insight is needed into the molecular and cellular events associated with reperfusion-induced damage to develop effective clinical protection protocols to combat this disorder. In this respect, the use of ischemic post-conditioning in combination with experimentally prolonged acidosis blocking deleterious reperfusion actions may turn out to have particular clinical relevance. PMID:21607154

  7. Pre-ischemic treadmill training for prevention of ischemic brain injury via regulation of glutamate and its transporter GLT-1.

    PubMed

    Yang, Xiaojiao; He, Zhijie; Zhang, Qi; Wu, Yi; Hu, Yongshan; Wang, Xiaolou; Li, Mingfen; Wu, Zhiyuan; Guo, Zhenzhen; Guo, Jingchun; Jia, Jie

    2012-01-01

    Pre-ischemic treadmill training exerts cerebral protection in the prevention of cerebral ischemia by alleviating neurotoxicity induced by excessive glutamate release following ischemic stroke. However, the underlying mechanism of this process remains unclear. Cerebral ischemia-reperfusion injury was observed in a rat model after 2 weeks of pre-ischemic treadmill training. Cerebrospinal fluid was collected using the microdialysis sampling method, and the concentration of glutamate was determined every 40 min from the beginning of ischemia to 4 h after reperfusion with high-performance liquid chromatography (HPLC)-fluorescence detection. At 3, 12, 24, and 48 h after ischemia, the expression of the glutamate transporter-1 (GLT-1) protein in brain tissues was determined by Western blot respectively. The effect of pre-ischemic treadmill training on glutamate concentration and GLT-1 expression after cerebral ischemia in rats along with changes in neurobehavioral score and cerebral infarct volume after 24 h ischemia yields critical information necessary to understand the protection mechanism exhibited by pre-ischemic treadmill training. The results demonstrated that pre-ischemic treadmill training up-regulates GLT-1 expression, decreases extracellular glutamate concentration, reduces cerebral infarct volume, and improves neurobehavioral score. Pre-ischemic treadmill training is likely to induce neuroprotection after cerebral ischemia by regulating GLT-1 expression, which results in re-uptake of excessive glutamate. PMID:22949807

  8. Administration of Uric Acid in the Emergency Treatment of Acute Ischemic Stroke.

    PubMed

    Llull, Laura; Amaro, Sergio; Chamorro, Ángel

    2016-01-01

    Oxidative stress is one of the main mechanisms implicated in the pathophysiology of inflammatory and neurodegenerative diseases of the central nervous system (CNS). Uric acid (UA) is the end product of purine catabolism in humans, and it is the main endogenous antioxidant in blood. Low circulating UA levels have been associated with an increased prevalence and worse clinical course of several neurodegenerative and inflammatory diseases of the CNS, including Parkinson's disease and multiple sclerosis. Moreover, the exogenous administration of UA exerts robust neuroprotective properties in experimental models of CNS disease, including brain ischemia, spinal cord injury, meningitis, and experimental allergic encephalitis. In experimental brain ischemia, exogenous UA and the thrombolytic agent alteplase exert additive neuroprotective effects when administered in combination. UA is rapidly consumed following acute ischemic stroke, and higher UA levels at stroke admission are associated with a better outcome and reduced infarct growth at follow-up. A recent phase II trial demonstrated that the combined intravenous administration of UA and alteplase is safe and prevents an early decrease of circulating UA levels in acute ischemic stroke patients. Moreover, UA prevents the increase in the circulating levels of the lipid peroxidation marker malondialdehyde and of active matrix metalloproteinase (MMP) 9, a marker of blood-brain barrier disruption. The moderately sized URICOICTUS phase 2b trial showed that the addition of UA to thrombolytic therapy resulted in a 6% absolute increase in the rate of excellent outcome at 90 days compared to placebo. The trial also showed that UA administration resulted in a significant increment of excellent outcome in patients with pretreatment hyperglycemia, in females and in patients with moderate strokes. Overall, the encouraging neuroprotective effects of UA therapy in acute ischemic stroke warrants further investigation in adequately

  9. [Acute kidney injury in children].

    PubMed

    Amira-Peco-Antić; Paripović, Dusan

    2014-01-01

    Acute kidney injury (AKI) is a clinical condition considered to be the consequence of a sudden decrease (> 25%) or discontinuation of renal function. The term AKI is used instead of the previous term acute renal failure, because it has been demonstrated that even minor renal lesions may cause far-reaching consequences on human health. Contemporary classifications of AKI (RIFLE and AKIN) are based on the change of serum creatinine and urinary output. In the developed countries, AKI is most often caused by renal ischemia, nephrotoxins and sepsis, rather than a (primary) diffuse renal disease, such as glomerulonephritis, interstitial nephritis, renovascular disorder and thrombotic microangiopathy. The main risk factors for hospital AKI are mechanical ventilation, use of vasoactive drugs, stem cell transplantation and diuretic-resistant hypervolemia. Prerenal and parenchymal AKI (previously known as acute tubular necrosis) jointly account for 2/3 of all AKI causes. Diuresis and serum creatinine concentration are not early diagnostic markers of AKI. Potential early biomarkers of AKI are neutrophil gelatinase-associated lipocalin (NGAL), cystatin C, kidney injury molecule-1 (KIM-1), interleukins 6, 8 and 18, and liver-type fatty acid-binding protein (L-FABP). Early detection of kidney impairment, before the increase of serum creatinine, is important for timely initiated therapy and recovery. The goal of AKI treatment is to normalize the fluid and electrolyte status, as well as the correction of acidosis and blood pressure. Since a severe fluid overload resistant to diuretics and inotropic agents is associated with a poor outcome, the initiation of dialysis should not be delayed. The mortality rate of AKI is highest in critically ill children with multiple organ failure and hemodynamically unstable patients. PMID:25033598

  10. The cell cycle and acute kidney injury

    PubMed Central

    Price, Peter M.; Safirstein, Robert L.; Megyesi, Judit

    2009-01-01

    Acute kidney injury (AKI) activates pathways of cell death and cell proliferation. Although seemingly discrete and unrelated mechanisms, these pathways can now be shown to be connected and even to be controlled by similar pathways. The dependence of the severity of renal-cell injury on cell cycle pathways can be used to control and perhaps to prevent acute kidney injury. This review is written to address the correlation between cellular life and death in kidney tubules, especially in acute kidney injury. PMID:19536080

  11. Effect of melatonin on kidney cold ischemic preservation injury

    PubMed Central

    Aslaner, Arif; Gunal, Omer; Turgut, Hamdi Taner; Celik, Erdal; Yildirim, Umran; Demirci, Rojbin Karakoyun; Gunduz, Umut Riza; Calis, Hasan; Dogan, Sami

    2013-01-01

    Melatonin is a potent free radical scavenger of reactive oxygen species, nitric oxide synthase inhibitor and a well-known antioxidant secreted from pineal gland. This hormone has been reported to protect tissue from oxidative damage. In this study, we aim to investigate the effect of melatonin on kidney cold ischemia time when added to preservation solution. Thirty male Wistar albino rats were divided equally into three groups; Ringer Lactate (RL) solution, University of Wisconsin (UW) solution with and without melatonin. The serum Lactate Dehydrogenase (LDH) activities of the preservation solutions at 2nd, 24th, 36th, and 48th hours were determined. Tissue malondialdehyde (MDA) levels were also measured and a histological examination was performed at 48th hour. Melatonin that added to preservation solution prevented enzyme elevation and decreased lipid peroxidation in preservation solution when compared to the control group (p<0.05). The histological examination revealed that UW solution containing melatonin significantly prevented the kidney from pathological injury (p<0.05). Melatonin added to preservation solutions such as UW solution seemed to protect the tissue preserved effectively from cold ischemic injury for up to 48 hour. PMID:24179573

  12. Role of mitochondria in ischemic acute renal failure.

    PubMed

    Burke, T J; Wilson, D R; Levi, M; Gordon, J A; Arnold, P E; Schrier, R W

    1983-01-01

    Ischemic ARF is characterized by progressive mitochondrial accumulation of Ca++ which is inversely correlated with the level of oxidative phosphorylation. At least two possibilities exist which would be compatible with these data 1) depressed respiration leads to Ca++ accumulation or 2) increased mitochondrial Ca++ leads to reduced mitochondrial respiration. We favor the latter hypothesis for the reasons outlined above; furthermore, this conclusion is supported by the observations of Lehninger, made some 20 years ago: first, that either oxidative phosphorylation or mitochondrial Ca++ accumulation can be accomplished by intact mitochondria but that these events cannot occur simultaneously and second, that Ca++ accumulation takes precedence over oxidative phosphorylation. Our observation made during post-ischemic reflow that mitochondrial Ca++ accumulation occurs to a significant degree, strongly suggest a potential role for mitochondrial Ca++ overload in the pathogenesis of ARF. Nevertheless, this is not an irreversible pathogenetic process. Clearly, impermeant solutes, vasodilators and Ca++ membrane blockers will alter the natural history of this injury and prevent the severity of the functional defect. A common mechanism of action may involve direct or indirect modification of cellular Ca++ overload in renal vascular and epithelial tissue. The vascular smooth muscle may then revert to a less constricted state with a subsequent more rapid recovery of renal blood flow and that the renal epithelial cell death may be minimized thereby reducing tubular obstruction. PMID:6883804

  13. Rock Climbing Injuries: Acute and Chronic Repetitive Trauma.

    PubMed

    Chang, Connie Y; Torriani, Martin; Huang, Ambrose J

    2016-01-01

    Rock climbing has increased in popularity as a sport, and specific injuries related to its practice are becoming more common. Chronic repetitive injuries are more common than acute injuries, although acute injuries tend to be more severe. We review both acute and chronic upper and lower extremity injuries. Understanding the injury pattern in rock climbers is important for accurate diagnosis. PMID:26360057

  14. Hyperbaric Oxygen Therapy in Acute Ischemic Stroke: A Review

    PubMed Central

    Ding, Zheng; Tong, Wesley C.; Lu, Xiao-Xin; Peng, Hui-Ping

    2014-01-01

    Stroke, also known as cerebrovascular disease, is a common and serious neurological disease, which is also the fourth leading cause of death in the United States so far. Hyperbaric medicine, as an emerging interdisciplinary subject, has been applied in the treatment of cerebral vascular diseases since the 1960s. Now it is widely used to treat a variety of clinical disorders, especially hypoxia-induced disorders. However, owing to the complex mechanisms of hyperbaric oxygen (HBO) treatment, the therapeutic time window and the undefined dose as well as some common clinical side effects (such as middle ear barotrauma), the widespread promotion and application of HBO was hindered, slowing down the hyperbaric medicine development. In August 2013, the US Food and Drug Administration declared artery occlusion as one of the 13 specific indications for HBO therapy. This provides opportunities, to some extent, for the further development of hyperbaric medicine. Currently, the mechanisms of HBO therapy for ischemic stroke are still not very clear. This review focuses on the potential mechanisms of HBO therapy in acute ischemic stroke as well as the time window. PMID:25337089

  15. Timing of blood pressure lowering in acute ischemic stroke.

    PubMed

    Carcel, Cheryl; Anderson, Craig S

    2015-08-01

    Whether there are any benefits without harm from early lowering of blood pressure (BP) in the setting of acute ischemic stroke (AIS) has been a longstanding controversy in medicine. Whilst most studies have consistently shown associations between elevated BP, particularly systolic BP, and poor outcome, some also report that very low BP (systolic <130 mmHg) and large reductions in systolic BP are associated with poor outcomes in AIS. However, despite these associations, the observed U- or J-shaped relationship between BP and outcome in these patients may not be causally related. Patients with more severe strokes may have a more prominent autonomic response and later lower BP as their condition worsens, often pre-terminally. Fortunately, substantial progress has been made in recent years with new evidence arising from well-conducted randomized trials. This review outlines new evidence and recommendations for clinical practice over BP management in AIS. PMID:26041479

  16. Nephrology Update: Acute Kidney Injury.

    PubMed

    Sarabu, Nagaraju; Rahman, Mahboob

    2016-05-01

    Acute kidney injury (AKI) refers to any acute decrease in glomerular filtration rate, regardless of etiology. Staging of AKI has been recommended to stratify AKI patients according to severity of the condition, based on serum creatinine level and urine output. Classification of AKI into prerenal, intrinsic renal, and postrenal etiologies is helpful in differential diagnosis and management. AKI in hospitalized patients typically occurs due to decreased renal perfusion. Drug-induced, contrast-associated, postoperative, and sepsis-associated AKI also can occur. Clinical assessment of a patient with AKI involves a medical record review, thorough history and physical examination, urinary and blood tests, renal imaging, and, in some instances, renal biopsy. Contrast-induced nephropathy is a common iatrogenic etiology of AKI associated with administration of intravenous iodinated contrast media. Measures to prevent AKI should be taken before administration of intravenous iodinated contrast. AKI can result in many short- and long-term complications, including chronic kidney disease and end-stage renal disease. Appropriate treatment of AKI patients involves management of the underlying etiology, when possible, and use of nondialytic and dialytic therapies. PMID:27163760

  17. Retrosternal mass: An interesting allergic reaction to intravenous thrombolytic therapy for acute ischemic stroke

    PubMed Central

    Motamed, Mohammad Reza; Aghaei, Mahboubeh; Badi, Zahra

    2013-01-01

    Stroke is an important cause of disability and death worldwide, with the majority of strokes occurring in older people. Thrombolysis with recombinant tissue plasminogen activator (r-TPA) is the approved treatment for acute ischemic stroke. A major concern of physicians, who treat acute ischemic stroke with recombinant tissue plasminogen activator (r-TPA,) is the risk of intracerebral hemorrhage. However, other adverse reactions, including anaphylaxis and angioedema, can also occur. Here we report an interesting soft tissue reaction to intravenous r-TPA in an 80 year-old male who was treated for acute ischemic stroke. PMID:24250917

  18. Retrosternal mass: An interesting allergic reaction to intravenous thrombolytic therapy for acute ischemic stroke.

    PubMed

    Mehrpour, Masoud; Motamed, Mohammad Reza; Aghaei, Mahboubeh; Badi, Zahra

    2013-01-01

    Stroke is an important cause of disability and death worldwide, with the majority of strokes occurring in older people. Thrombolysis with recombinant tissue plasminogen activator (r-TPA) is the approved treatment for acute ischemic stroke. A major concern of physicians, who treat acute ischemic stroke with recombinant tissue plasminogen activator (r-TPA,) is the risk of intracerebral hemorrhage. However, other adverse reactions, including anaphylaxis and angioedema, can also occur. Here we report an interesting soft tissue reaction to intravenous r-TPA in an 80 year-old male who was treated for acute ischemic stroke. PMID:24250917

  19. Endothelial Dysfunction and Procoagulant Activity in Acute Ischemic Stroke

    PubMed Central

    Blum, Arnon; Vaispapir, Vladimir; Keinan-Boker, Lital; Soboh, Soboh; Yehuda, Hila; Tamir, Snait

    2012-01-01

    Endothelium-dependent vasodilator function may be regarded as an index of inflammation. Endothelial dysfunction has been observed in stroke patients and has been related to stroke physiopathology, stroke subtypes, clinical severity, and outcome. Our aim was to measure systemic vascular function directly (using forearm flow mediated dilatation) in patients with acute ischemic stroke and to clarify whether recent acute ischemic stroke is associated with impaired vascular function. Patients who were not eligible for thrombolytic therapy because of delayed arrival were randomly recruited to the study after signing a consent form. All 43 patients were conscious and had an acute ischemic stroke. Brain CT was performed on admission, and clinical evaluation was carried out by a neurologist on admission and four days later. Vascular responsiveness was evaluated by ABI and by endothelial function measurements on admission. Levels of P-selectin were measured during the first 24 hrs and on day 4. Forty-three patients (28 men and 15 women) and 23 healthy men (control) were enrolled in the study. Patients were older (62.4±12.5 y vs 44.2±11.6 y, p=0.001), had worse endothelial dysfunction (–4.4±7.4% vs 16.6±7.6%, p=0.001), and had a higher BMI (28±6 vs 24±5, p=0.001). No gender effect was found in endothelial function (–5.1±7.8% vs –2.5±6.6%, p=0.25) and ABI (1.0±0.26 vs 1.0±0.5, p=0.29). However, men had lower BMIs compared to women (26.8±5.8 vs 31.4±5.5, p=0.01). The neurological scale decreased from 4.9±3.4 to 3.2±3.0 on day 4 (p=0.001). In men, it was 4.8±3.8 on admission, and decreased to 3.2±3.4 on day 4 (p=0.001). In women, it was 5.0±2.7, and decreased to 3.3±2.3 on day 4 (p=0.001). P-selectin levels were high on admission (68.0±55.5 pg/ml) and increased 4 days later (102.3±72.0 pg/ml) (p=0.01). Men had higher levels on admission (79.1± 66.7 pg/ml vs 48.9± 15.4 pg/ml, p=0.02) and rose on day 4 to 113.6±82.6 pg/ml (p=0.05); in women P

  20. Erythropoietin administration protects retinal neurons from acute ischemia-reperfusion injury

    PubMed Central

    Junk, Anna K.; Mammis, Antonios; Savitz, Sean I.; Singh, Manjeet; Roth, Steven; Malhotra, Samit; Rosenbaum, Pearl S.; Cerami, Anthony; Brines, Michael; Rosenbaum, Daniel M.

    2002-01-01

    Erythropoietin (EPO) plays an important role in the brain's response to neuronal injury. Systemic administration of recombinant human EPO (rhEPO) protects neurons from injury after middle cerebral artery occlusion, traumatic brain injury, neuroinflammation, and excitotoxicity. Protection is in part mediated by antiapoptotic mechanisms. We conducted parallel studies of rhEPO in a model of transient global retinal ischemia induced by raising intraocular pressure, which is a clinically relevant model for retinal diseases. We observed abundant expression of EPO receptor (EPO-R) throughout the ischemic retina. Neutralization of endogenous EPO with soluble EPO-R exacerbated ischemic injury, which supports a crucial role for an endogenous EPO/EPO-R system in the survival and recovery of neurons after an ischemic insult. Systemic administration of rhEPO before or immediately after retinal ischemia not only reduced histopathological damage but also promoted functional recovery as assessed by electroretinography. Exogenous EPO also significantly diminished terminal deoxynucleotidyltransferase-mediated dUTP end labeling labeling of neurons in the ischemic retina, implying an antiapoptotic mechanism of action. These results further establish EPO as a neuroprotective agent in acute neuronal ischemic injury. PMID:12130665

  1. Cystathionine β-Synthase Inhibition Is a Potential Therapeutic Approach to Treatment of Ischemic Injury

    PubMed Central

    Chan, Su Jing; Chai, Chou; Lim, Tze Wei; Yamamoto, Mie; Lo, Eng H; Lai, Mitchell Kim Peng

    2015-01-01

    Hydrogen sulfide (H2S) has been reported to exacerbate stroke outcome in experimental models. Cystathionine β-synthase (CBS) has been implicated as the predominant H2S-producing enzyme in central nervous system. When SH-SY5Y cells were transfected to overexpress CBS, these cells were able to synthesize H2S when exposed to high levels of enzyme substrates but not substrate concentrations that may reflect normal physiological conditions. At the same time, these cells demonstrated exacerbated cell death when subjected to oxygen and glucose deprivation (OGD) together with high substrate concentrations, indicating that H2S production has a detrimental effect on cell survival. This effect could be abolished by CBS inhibition. The same effect was observed with primary astrocytes exposed to OGD and high substrates or sodium hydrosulfide. In addition, CBS was upregulated and activated by truncation in primary astrocytes subjected to OGD. When rats were subjected to permanent middle cerebral artery occlusion, CBS activation was also observed. These results imply that in acute ischemic conditions, CBS is upregulated and activated by truncation causing an increased production of H2S, which exacerbate the ischemic injuries. Therefore, CBS inhibition may be a viable approach to stroke treatment. PMID:25873304

  2. Targeting Iron Homeostasis in Acute Kidney Injury.

    PubMed

    Walker, Vyvyca J; Agarwal, Anupam

    2016-01-01

    Iron is an essential metal involved in several major cellular processes required to maintain life. Because of iron's ability to cause oxidative damage, its transport, metabolism, and storage is strictly controlled in the body, especially in the small intestine, liver, and kidney. Iron plays a major role in acute kidney injury and has been a target for therapeutic intervention. However, the therapies that have been effective in animal models of acute kidney injury have not been successful in human beings. Targeting iron trafficking via ferritin, ferroportin, or hepcidin may offer new insights. This review focuses on the biology of iron, particularly in the kidney, and its implications in acute kidney injury. PMID:27085736

  3. Role of Mitochondria in Neonatal Hypoxic-Ischemic Brain Injury

    PubMed Central

    Lu, Yujiao; Tucker, Donovan; Dong, Yan; Zhao, Ningjun; Zhuo, Xiaoying; Zhang, Quanguang

    2016-01-01

    Hypoxic-ischemia (HI) causes severe brain injury in neonates. It’s one of the leading causes to neonatal death and pediatric disability, resulting in devastating consequences, emotionally and economically, to their families. A series of events happens in this process, e.g. excitatory transmitter release, extracelluar Ca2+ influxing, mitochondrial dysfunction, energy failure, and neuron death. There are two forms of neuron death after HI insult: necrosis and apoptosis, apoptosis being the more prevalent form. Mitochondria handle a series of oxidative reactions, and yield energy for various cellular activities including the maintainance of membrane potential and preservation of intracellular ionic homeostasis. Therefore mitochondria play a critical role in neonatal neurodegeneration following HI, and mitochondrial dysfunction is the key point in neurodegenerative evolution. Because of this, exploring effective mitochondria-based clinical strategies is crucial. Today the only efficacious clinic treatment is hypothermia. However, due to its complex management, clinical complication and autoimmune decrease, its clinical application is limited. So far, many mitochondria-based strategies have been reported neuroprotective in animal models, which offers promise on neonatal therapy. However, since their clinical effectiveness are still unclear, plenty of studies need to be continued in the future. According to recent reports, two novel strategies have been proposed: methylene blue (MB) and melatonin. Although they are still in primary stage, the underlying mechanisms indicate promising clinical applications. Every neurological therapeutic strategy has its intrinsic deficit and limited efficacy, therefore in the long run, the perfect clinical therapy for hypoxic-ischemic neonatal brain injury will be based on the combination of multiple strategies. PMID:27441209

  4. [Pathology and strategies for the treatment of ischemic brain injury].

    PubMed

    Takagi, Norio

    2009-10-01

    Cerebral ischemia, a pathological condition in which brain tissue experiences a shortage or lack of glucose and oxygen, provokes an irreversible neurodegenerative disorder that may lead clinically to a progressive dementia and global cognitive deterioration. Accumulating evidence indicates many biochemical cascades that lead ultimately to ischemia-induced cell death. However, the cellular and molecular aspects of cerebral ischemia are not yet fully understood. Since the pattern of pathophysiological alterations is not the same for all cells in the ischemic brain, a good understanding of the cellular and molecular alterations induced by cerebral ischemia is needed to develop strategies for the treatment of stroke. This review summarizes recent advances concerning the pathophysiological alterations caused by cerebral ischemia, focusing on the modification of properties of glutamate receptors, which modification may be linked to the development of cerebral infarction. Furthermore, the effects of hepatocyte growth factor on learning dysfunction and cerebral vessel injury after cerebral ischemia are also summarized. Finally, this review describes a possible ameliorative effect of the injection of exogenous neural progenitor cells on cerebral ischemia-induced learning and memory dysfunction. PMID:19797876

  5. Risk Factors and Outcomes of Acute Kidney Injury in Patients With Acute Liver Failure

    PubMed Central

    Tujios, Shannan R.; Hynan, Linda S.; Vazquez, Miguel A.; Larson, Anne M.; Seremba, Emmanuel; Sanders, Corron M.; Lee, William M.

    2016-01-01

    BACKGROUND & AIMS Patients with acute liver failure (ALF) frequently develop renal dysfunction, yet its overall incidence and outcomes have not been fully assessed. We investigated the incidence of acute kidney injury (AKI) among patients with ALF, using defined criteria to identify risk factors and to evaluate its effect on overall outcomes. METHODS We performed a retrospective review of data from 1604 patients enrolled in the Acute Liver Failure Study Group, from 1998 through 2010. Patients were classified by the Acute Kidney Injury Network criteria, as well as for etiology of liver failure (acetaminophen-based, ischemic, and all others). RESULTS Seventy percent of patients with ALF developed AKI, and 30% received renal replacement therapy (RRT). Patients with severe AKI had higher international normalized ratio values than those without renal dysfunction (P < .001), and a higher proportion had advanced-grade coma (coma grades 3 or 4; P < .001) or presented with hypotension requiring vasopressor therapy (P < .001). A greater proportion of patients with acetaminophen-induced ALF had severe kidney injury than of patients with other etiologies of ALF; 34% required RRT, compared with 25% of patients with ALF not associated with acetaminophen or ischemia (P < .002). Of the patients with ALF who were alive at 3 weeks after study entry, significantly fewer with AKI survived for 1 year. Although AKI reduced the overall survival time, more than 50% of patients with acetaminophen-associated or ischemic ALF survived without liver transplantation (even with RRT), compared with 19% of patients with ALF attribute to other causes (P < .001). Only 4% of patients requiring RRT became dependent on dialysis. CONCLUSIONS Based on a retrospective analysis of data from more than 1600 patients, AKI is common in patients with ALF and affects short- and long-term outcomes, but rarely results in chronic kidney disease. Acetaminophen-induced kidney injury is frequent, but patients have

  6. Transglutaminase 2 gene ablation protects against renal ischemic injury by blocking constant NF-{kappa}B activation

    SciTech Connect

    Kim, Dae-Seok; Kim, Bora; Tahk, Hongmin; Kim, Dong-Hyun; Ahn, Eu-Ree; Choi, Changsun; Jeon, Yoon; Park, Seo Young; Lee, Ho; Oh, Seung Hyun; Kim, Soo-Youl

    2010-12-17

    Research highlights: {yields} No acute renal tubular necrotic lesions were found in TGase2{sup -/-} mice with ischemic kidney injury. {yields} NF-{kappa}B activation is reduced in TGase2{sup -/-} mice with ischemic kidney injury. {yields} Hypoxic stress did not increase NF-{kappa}B activity in MEFs from TGase2{sup -/-} mice. {yields} COX-2 induction is suppressed in TGase2{sup -/-} mice with ischemic kidney injury. -- Abstract: Transglutaminase 2 knockout (TGase2{sup -/-}) mice show significantly reduced inflammation with decreased myofibroblasts in a unilateral ureteral obstruction (UUO) model, but the mechanism remains to be clarified. Nuclear factor-{kappa}B (NF-{kappa}B) activation plays a major role in the progression of inflammation in an obstructive nephropathy model. However, the key factors extending the duration of NF-{kappa}B activation in UUO are not known. In several inflammatory diseases, we and others recently found that TGase 2 plays a key role in extending NF-{kappa}B activation, which contributes to the pathogenesis of disease. In the current study, we found that NF-{kappa}B activity in mouse embryogenic fibroblasts (MEFs) from TGase2{sup -/-} mice remained at the control level while the NF-{kappa}B activity of wild-type (WT) MEFs was highly increased under hypoxic stress. Using the obstructive nephropathy model, we found that NF-{kappa}B activity remained at the control level in TGase2{sup -/-} mouse kidney tissues, as measured by COX-2 expression, but was highly increased in WT tissues. We conclude that TGase 2 gene ablation reduces the duration of NF-{kappa}B activation in ischemic injury.

  7. Protective effects of drag-reducing polymers on ischemic reperfusion injury of isolated rat heart.

    PubMed

    Hu, Feng; Wang, Yali; Gong, Kaizheng; Ge, Gaoyuan; Cao, Mingqiang; Zhao, Pei; Sun, Xiaoning; Zhang, Zhengang

    2016-01-01

    Drag-reducing polymers (DRPs) are blood-soluble macromolecules that can increase blood flow and reduce vascular resistance. The purpose of the present study was to observe the effect of DRPs on ischemic reperfusion (I/R) injury of isolated rat hearts. Experiments were performed on isolated rat hearts subjected to 30 min of ischemia followed by 90 min of reperfusion in Langendorff preparations. Adult Wistar rats were divided into the following five groups: control group, I/R group, group III (I/R and 2×10(-7)  g/ml PEO reperfusion), group IV (I/R and 1×10(-6)  g/ml PEO reperfusion), and group V (I/R and 5×10(-6)  g/ml PEO reperfusion). Left ventricular end-diastolic pressure (LVEDP), left ventricular systolic pressure (LVSP), maximum rate of ventricular pressure increase and decrease ( ± dp/dtmax), heart rate (HR) and coronary flow were measured. Lactate dehydrogenase (LDH) and creatine kinase (CK) activity and coronary flow, myocardial infarction size and cardiomyocytes apoptosis were also assayed. Our results showed that PEO decreased LVEDP and increased LVSP, ± dP/dtmax in group IV and group V compared with the I/R group (all P <  0.05). The coronary flow significantly increased and the activities of LDH and CK in the coronary flow significantly decreased in group IV and group V compared with those in the I/R group (all P <  0.05). Cell apoptosis and myocardial infarction size were reduced in group IV and group V compared with the I/R group (all P <  0.05). Collectively, these results suggested that DRPs had a protective effect on cardiac I/R injury of isolated rat hearts and it may offer a new potential approach for the treatment of acute ischemic heart diseases. PMID:25633566

  8. Vascular endothelial growth factor: an attractive target in the treatment of hypoxic/ischemic brain injury

    PubMed Central

    Guo, Hui; Zhou, Hui; Lu, Jie; Qu, Yi; Yu, Dan; Tong, Yu

    2016-01-01

    Cerebral hypoxia or ischemia results in cell death and cerebral edema, as well as other cellular reactions such as angiogenesis and the reestablishment of functional microvasculature to promote recovery from brain injury. Vascular endothelial growth factor is expressed in the central nervous system after hypoxic/ischemic brain injury, and is involved in the process of brain repair via the regulation of angiogenesis, neurogenesis, neurite outgrowth, and cerebral edema, which all require vascular endothelial growth factor signaling. In this review, we focus on the role of the vascular endothelial growth factor signaling pathway in the response to hypoxic/ischemic brain injury, and discuss potential therapeutic interventions. PMID:26981109

  9. Vascular endothelial growth factor: an attractive target in the treatment of hypoxic/ischemic brain injury.

    PubMed

    Guo, Hui; Zhou, Hui; Lu, Jie; Qu, Yi; Yu, Dan; Tong, Yu

    2016-01-01

    Cerebral hypoxia or ischemia results in cell death and cerebral edema, as well as other cellular reactions such as angiogenesis and the reestablishment of functional microvasculature to promote recovery from brain injury. Vascular endothelial growth factor is expressed in the central nervous system after hypoxic/ischemic brain injury, and is involved in the process of brain repair via the regulation of angiogenesis, neurogenesis, neurite outgrowth, and cerebral edema, which all require vascular endothelial growth factor signaling. In this review, we focus on the role of the vascular endothelial growth factor signaling pathway in the response to hypoxic/ischemic brain injury, and discuss potential therapeutic interventions. PMID:26981109

  10. Extracellular Spermine Exacerbates Ischemic Neuronal Injury through Sensitization of ASIC1a Channels to Extracellular Acidosis

    PubMed Central

    Duan, Bo; Wang, Yi-Zhi; Yang, Tao; Chu, Xiang-Ping; Yu, Ye; Huang, Yu; Cao, Hui; Hansen, Jillian; Simon, Roger P.; Zhu, Michael X.; Xiong, Zhi-Gang; Xu, Tian-Le

    2011-01-01

    Ischemic brain injury is a major problem associated with stroke. It has been increasingly recognized that acid-sensing ion channels (ASICs) contribute significantly to ischemic neuronal damage, but the underlying mechanism has remained elusive. Here, we show that extracellular spermine, one of the endogenous polyamines, exacerbates ischemic neuronal injury through sensitization of ASIC1a channels to extracellular acidosis. Pharmacological blockade of ASIC1a or deletion of the ASIC1 gene greatly reduces the enhancing effect of spermine in ischemic neuronal damage both in cultures of dissociated neurons and in a mouse model of focal ischemia. Mechanistically, spermine profoundly reduces desensitization of ASIC1a by slowing down desensitization in the open state, shifting steady-state desensitization to more acidic pH, and accelerating recovery between repeated periods of acid stimulation. Spermine-mediated potentiation of ASIC1a activity is occluded by PcTX1 (psalmotoxin 1), a specific ASIC1a inhibitor binding to its extracellular domain. Functionally, the enhanced channel activity is accompanied by increased acid-induced neuronal membrane depolarization and cytoplasmic Ca2+ overload, which may partially explain the exacerbated neuronal damage caused by spermine. More importantly, blocking endogenous spermine synthesis significantly attenuates ischemic brain injury mediated by ASIC1a but not that by NMDA receptors. Thus, extracellular spermine contributes significantly to ischemic neuronal injury through enhancing ASIC1a activity. Our data suggest new neuroprotective strategies for stroke patients via inhibition of polyamine synthesis and subsequent spermine–ASIC interaction. PMID:21307247

  11. [Perioperative acute kidney injury and failure].

    PubMed

    Chhor, Vibol; Journois, Didier

    2014-04-01

    Perioperative period is very likely to lead to acute renal failure because of anesthesia (general or perimedullary) and/or surgery which can cause acute kidney injury. Characterization of acute renal failure is based on serum creatinine level which is imprecise during and following surgery. Studies are based on various definitions of acute renal failure with different thresholds which skewed their comparisons. The RIFLE classification (risk, injury, failure, loss, end stage kidney disease) allows clinicians to distinguish in a similar manner between different stages of acute kidney injury rather than using a unique definition of acute renal failure. Acute renal failure during the perioperative period can mainly be explained by iatrogenic, hemodynamic or surgical causes and can result in an increased morbi-mortality. Prevention of this complication requires hemodynamic optimization (venous return, cardiac output, vascular resistance), discontinuation of nephrotoxic drugs but also knowledge of the different steps of the surgery to avoid further degradation of renal perfusion. Diuretics do not prevent acute renal failure and may even push it forward especially during the perioperative period when venous retourn is already reduced. Edema or weight gain following surgery are not correlated with the vascular compartment volume, much less with renal perfusion. Treatment of perioperative acute renal failure is similar to other acute renal failure. Renal replacement therapy must be mastered to prevent any additional risk of hemodynamic instability or hydro-electrolytic imbalance. PMID:24656890

  12. Management of acute spinal cord injury.

    PubMed

    Wagner, F C

    1977-06-01

    Based on the experience with 58 patients with acute spinal cord injuries, a system for rapidly evaluating such patients has been developed. With the knowledge that has been acquired clinically and experimentally of spinal cord injury and with the information provided by laminography and by either air or Pantopaque myelography, a reasonably certain diagnosis of the type of spinal cord injury may be made. Treatment designed to restore neurological function may then be instituted promptly. PMID:882906

  13. Elevation of troponin I in acute ischemic stroke

    PubMed Central

    Su, Yu-Chin; Huang, Kuo-Feng; Yang, Fu-Yi

    2016-01-01

    Background. Cardiac morbidities account for 20% of deaths after ischemic stroke and is the second commonest cause of death in acute stroke population. Elevation of cardiac troponin has been regarded as a prognostic biomarker of poor outcome in patients with acute stroke. Methods. This retrospective study enrolled 871 patients with acute ischemic stroke from August 2010 to March 2015. Data included vital signs, laboratory parameters collected in the emergency department, and clinical features during hospitalization. National Institutes of Health Stroke Scale (NIHSS), Barthel index, and modified Rankin Scale (mRS) were used to assess stroke severity and outcome. Results. Elevated troponin I (TnI) > 0.01 µg/L was observed in 146 (16.8%) patients. Comparing to patients with normal TnI, patients with elevated TnI were older (median age 77.6 years vs. 73.8 years), had higher median heart rates (80 bpm vs. 78 bpm), higher median white blood cells (8.40 vs. 7.50 1,000/m3) and creatinine levels (1.40 mg/dL vs. 1.10 mg/dL), lower median hemoglobin (13.0 g/dL vs. 13.7 g/dL) and hematocrit (39% vs. 40%) levels, higher median NIHSS scores on admission (11 vs. 4) and at discharge (8 vs. 3), higher median mRS scores (4 vs3) but lower Barthel index scores (20 vs. 75) at discharge (p < 0.001). Multivariate analysis revealed that age ≥ 76 years (OR 2.25, CI [1.59–3.18]), heart rate ≥ 82 bpm (OR 1.47, CI [1.05–2.05]), evidence of clinical deterioration (OR 9.45, CI [4.27–20.94]), NIHSS score ≥ 12 on admission (OR 19.52, CI [9.59–39.73]), and abnormal TnI (OR 1.98, CI [1.18–3.33]) were associated with poor outcome. Significant factors for in-hospital mortality included male gender (OR 3.69, CI [1.45–9.44]), evidence of clinical deterioration (OR 10.78, CI [4.59–25.33]), NIHSS score ≥ 12 on admission (OR 8.08, CI [3.04–21.48]), and elevated TnI level (OR 5.59, CI [2.36–13.27]). C-statistics revealed that abnormal TnI improved the predictive power of both poor

  14. Acute forefoot and midfoot injuries.

    PubMed

    Laird, R Clinton

    2015-04-01

    Forefoot and midfoot injuries in the athlete are common. Injuries of the digits include subungual hematomas and fractures. Metatarsal fractures occur frequently in sports, and their treatments range greatly. Hyperflexion and extension injuries about the first metatarsophalangeal joint can be very debilitating. Midfoot sprains and fractures require a high index of suspicion for diagnosis. PMID:25804712

  15. Carotid Artery Stenosis with Acute Ischemic Stroke: Stenting versus Angioplasty

    PubMed Central

    Villwock, Mark R.; Padalino, David J.; Deshaies, Eric M.

    2015-01-01

    Background When a patient with carotid artery stenosis presents emergently with acute ischemic stroke, the optimum treatment plan is not clearly defined. If intervention is warranted, and open surgery is prohibitive, endovascular revascularization may be performed. The use of stents places the patient at additional risk due to their thrombogenic potential. The intent of this study was to compare outcomes following endovascular approaches (angioplasty alone vs. stent) in the setting of acute stroke. Methods We extracted a population from the National Inpatient Sample (2012) and the Nationwide Inpatient Sample (2003–2011) composed of patients with carotid artery stenosis with infarction that were admitted nonelectively and received endovascular revascularization. Patients treated with mechanical thrombectomy or thrombolysis were excluded. Categorical variables were compared between treatment groups with Chi-squared tests. Binary logistic regression was performed to evaluate mortality and iatrogenic stroke while controlling for age, case severity, and comorbidity burden. Results About 6,333 admissions met our criteria. A majority were treated via stenting (89%, n = 5,608). The angioplasty-alone group had significantly higher mortality (9.0% vs. 3.8%, p < 0.001) and iatrogenic stroke rate (3.9% vs. 1.9%, p < 0.001) than the stent group. The adjusted odds ratios of mortality and iatrogenic stroke for patients treated with angioplasty alone were 1.953 (p < 0.001) and 1.451 (p = 0.105), respectively, in comparison to patients treated with carotid stenting. Conclusion Multivariate analysis found the risk of mortality to be elevated following angioplasty alone. This may represent selection bias, but it also may indicate that symptomatic patients with stroke suffer from severe stenosis and unstable plaques that would benefit from stent placement. These results would caution angioplasty alone as an arm of a future randomized trial involving this severely burdened patient

  16. Cardiovascular risk factors for acute stroke: Risk profiles in the different subtypes of ischemic stroke

    PubMed Central

    Arboix, Adrià

    2015-01-01

    Timely diagnosis and control of cardiovascular risk factors is a priority objective for adequate primary and secondary prevention of acute stroke. Hypertension, atrial fibrillation and diabetes mellitus are the most common risk factors for acute cerebrovascular events, although novel risk factors, such as sleep-disordered breathing, inflammatory markers or carotid intima-media thickness have been identified. However, the cardiovascular risk factors profile differs according to the different subtypes of ischemic stroke. Atrial fibrillation and ischemic heart disease are more frequent in patients with cardioembolic infarction, hypertension and diabetes in patients with lacunar stroke, and vascular peripheral disease, hypertension, diabetes, previous transient ischemic attack and chronic obstructive pulmonary disease in patients with atherothrombotic infarction. This review aims to present updated data on risk factors for acute ischemic stroke as well as to describe the usefulness of new and emerging vascular risk factors in stroke patients. PMID:25984516

  17. Developing drug strategies for the neuroprotective treatment of acute ischemic stroke.

    PubMed

    Tuttolomondo, Antonino; Pecoraro, Rosaria; Arnao, Valentina; Maugeri, Rosario; Iacopino, Domenico Gerardo; Pinto, Antonio

    2015-01-01

    Developing new treatment strategies for acute ischemic stroke in the last twenty years has offered some important successes, but also several failures. Most trials of neuroprotective therapies have been uniformly negative to date. Recent research has reported how excitatory amino acids act as the major excitatory neurotransmitters in the cerebral cortex and hippocampus. Furthermore, other therapeutic targets such as free radical scavenger strategies and the anti-inflammatory neuroprotective strategy have been evaluated with conflicting data in animal models and human subjects with acute ischemic stroke. Whereas promising combinations of neuroprotection and neurorecovery, such as citicoline, albumin and cerebrolysin have been tested with findings worthy of further evaluation in larger randomized clinical trials. Understanding the complexities of the ischemic cascade is essential to developing pharmacological targets for acute ischemic stroke in neuroprotective or flow restoration therapeutic strategies. PMID:26469760

  18. Targeted Lipid Profiling Discovers Plasma Biomarkers of Acute Brain Injury

    PubMed Central

    Sheth, Sunil A.; Iavarone, Anthony T.; Liebeskind, David S.; Won, Seok Joon; Swanson, Raymond A.

    2015-01-01

    Prior efforts to identify a blood biomarker of brain injury have relied almost exclusively on proteins; however their low levels at early time points and poor correlation with injury severity have been limiting. Lipids, on the other hand, are the most abundant molecules in the brain and readily cross the blood-brain barrier. We previously showed that certain sphingolipid (SL) species are highly specific to the brain. Here we examined the feasibility of using SLs as biomarkers for acute brain injury. A rat model of traumatic brain injury (TBI) and a mouse model of stroke were used to identify candidate SL species though our mass-spectrometry based lipid profiling approach. Plasma samples collected after TBI in the rat showed large increases in many circulating SLs following injury, and larger lesions produced proportionately larger increases. Plasma samples collected 24 hours after stroke in mice similarly revealed a large increase in many SLs. We constructed an SL score (sum of the two SL species showing the largest relative increases in the mouse stroke model) and then evaluated the diagnostic value of this score on a small sample of patients (n = 14) who presented with acute stroke symptoms. Patients with true stroke had significantly higher SL scores than patients found to have non-stroke causes of their symptoms. The SL score correlated with the volume of ischemic brain tissue. These results demonstrate the feasibility of using lipid biomarkers to diagnose brain injury. Future studies will be needed to further characterize the diagnostic utility of this approach and to transition to an assay method applicable to clinical settings. PMID:26076478

  19. Current knowledge on the neuroprotective and neuroregenerative properties of citicoline in acute ischemic stroke.

    PubMed

    Martynov, Mikhail Yu; Gusev, Eugeny I

    2015-01-01

    Ischemic stroke is one of the leading causes of long-lasting disability and death. Two main strategies have been proposed for the treatment of ischemic stroke: restoration of blood flow by thrombolysis or mechanical thrombus extraction during the first few hours of ischemic stroke, which is one of the most effective treatments and leads to a better functional and clinical outcome. The other direction of treatment, which is potentially applicable to most of the patients with ischemic stroke, is neuroprotection. Initially, neuroprotection was mainly targeted at protecting gray matter, but during the past few years there has been a transition from a neuron-oriented approach toward salvaging the whole neurovascular unit using multimodal drugs. Citicoline is a multimodal drug that exhibits neuroprotective and neuroregenerative effects in a variety of experimental and clinical disorders of the central nervous system, including acute and chronic cerebral ischemia, intracerebral hemorrhage, and global cerebral hypoxia. Citicoline has a prolonged therapeutic window and is active at various temporal and biochemical stages of the ischemic cascade. In acute ischemic stroke, citicoline provides neuroprotection by attenuating glutamate exitotoxicity, oxidative stress, apoptosis, and blood-brain barrier dysfunction. In the subacute and chronic phases of ischemic stroke, citicoline exhibits neuroregenerative effects and activates neurogenesis, synaptogenesis, and angiogenesis and enhances neurotransmitter metabolism. Acute and long-term treatment with citicoline is safe and in most clinical studies is effective and improves functional outcome. PMID:27186142

  20. Current knowledge on the neuroprotective and neuroregenerative properties of citicoline in acute ischemic stroke

    PubMed Central

    Martynov, Mikhail Yu; Gusev, Eugeny I

    2015-01-01

    Ischemic stroke is one of the leading causes of long-lasting disability and death. Two main strategies have been proposed for the treatment of ischemic stroke: restoration of blood flow by thrombolysis or mechanical thrombus extraction during the first few hours of ischemic stroke, which is one of the most effective treatments and leads to a better functional and clinical outcome. The other direction of treatment, which is potentially applicable to most of the patients with ischemic stroke, is neuroprotection. Initially, neuroprotection was mainly targeted at protecting gray matter, but during the past few years there has been a transition from a neuron-oriented approach toward salvaging the whole neurovascular unit using multimodal drugs. Citicoline is a multimodal drug that exhibits neuroprotective and neuroregenerative effects in a variety of experimental and clinical disorders of the central nervous system, including acute and chronic cerebral ischemia, intracerebral hemorrhage, and global cerebral hypoxia. Citicoline has a prolonged therapeutic window and is active at various temporal and biochemical stages of the ischemic cascade. In acute ischemic stroke, citicoline provides neuroprotection by attenuating glutamate exitotoxicity, oxidative stress, apoptosis, and blood–brain barrier dysfunction. In the subacute and chronic phases of ischemic stroke, citicoline exhibits neuroregenerative effects and activates neurogenesis, synaptogenesis, and angiogenesis and enhances neurotransmitter metabolism. Acute and long-term treatment with citicoline is safe and in most clinical studies is effective and improves functional outcome. PMID:27186142

  1. Animal models of acute lung injury

    PubMed Central

    Matute-Bello, Gustavo; Frevert, Charles W.; Martin, Thomas R.

    2008-01-01

    Acute lung injury in humans is characterized histopathologically by neutrophilic alveolitis, injury of the alveolar epithelium and endothelium, hyaline membrane formation, and microvascular thrombi. Different animal models of experimental lung injury have been used to investigate mechanisms of lung injury. Most are based on reproducing in animals known risk factors for ARDS, such as sepsis, lipid embolism secondary to bone fracture, acid aspiration, ischemia-reperfusion of pulmonary or distal vascular beds, and other clinical risks. However, none of these models fully reproduces the features of human lung injury. The goal of this review is to summarize the strengths and weaknesses of existing models of lung injury. We review the specific features of human ARDS that should be modeled in experimental lung injury and then discuss specific characteristics of animal species that may affect the pulmonary host response to noxious stimuli. We emphasize those models of lung injury that are based on reproducing risk factors for human ARDS in animals and discuss the advantages and disadvantages of each model and the extent to which each model reproduces human ARDS. The present review will help guide investigators in the design and interpretation of animal studies of acute lung injury. PMID:18621912

  2. The Quest for Arterial Recanalization in Acute Ischemic Stroke-The Past, Present and the Future

    PubMed Central

    L.L.Yeo, Leonard; Sharma, Vijay K

    2013-01-01

    Ischemic stroke is one of the major causes of mortality and long-term disability. In the recent past, only very few treatment options were available and a considerable proportion of stroke survivors remained permanently disabled. However, over the last 2 decades rapid advances in acute stroke care have resulted in a corresponding improvement in mortality rates and functional outcomes. In this review, we describe the evolution of systemic thrombolytic agents and various interventional devices, their current status as well as some of the future prospects. We reviewed literature pertaining to acute ischemic stroke reperfusion treatment. We explored the current accepted treatment strategies to attain cerebral reperfusion via intravenous modalities and compare and contrast them within the boundaries of their clinical trials. Subsequently we reviewed the trials for interventional devices for acute ischemic stroke, categorizing them into thrombectomy devices, aspiration devices, clot disruption devices and thrombus entrapment devices. Finally we surveyed several of the alternative reperfusion strategies available. We also shed some light on the controversies surrounding the current strategies of treatment of acute ischemic stroke. Acute invasive interventional strategies continue to improve along with the noninvasive modalities. Both approaches appear promising. We conducted a comprehensive chronological review of the existing treatments as well as upcoming remedies for acute ischemic stroke. PMID:23864913

  3. Therapeutic Hypothermia as a Neuroprotective Strategy in Neonatal Hypoxic-Ischemic Brain Injury and Traumatic Brain Injury

    PubMed Central

    Ma, H.; Sinha, B.; Pandya, R.S.; Lin, N.; Popp, A.J.; Li, J.; Yao, J.; Wang, X.

    2014-01-01

    Evidence shows that artificially lowering body and brain temperature can significantly reduce the deleterious effects of brain injury in both newborns and adults. Although the benefits of therapeutic hypothermia have long been known and applied clinically, the underlying molecular mechanisms have yet to be elucidated. Hypoxic-ischemic brain injury and traumatic brain injury both trigger a series of biochemical and molecular events that cause additional brain insult. Induction of therapeutic hypothermia seems to ameliorate the molecular cascade that culminates in neuronal damage. Hypothermia attenuates the toxicity produced by the initial injury that would normally produce reactive oxygen species, neurotransmitters, inflammatory mediators, and apoptosis. Experiments have been performed on various depths and levels of hypothermia to explore neuroprotection. This review summarizes what is currently known about the beneficial effects of therapeutic hypothermia in experimental models of neonatal hypoxic-ischemic brain injury and traumatic brain injury, and explores the molecular mechanisms that could become the targets of novel therapies. In addition, this review summarizes the clinical implications of therapeutic hypothermia in newborn hypoxic-ischemic encephalopathy and adult traumatic brain injury. PMID:22834830

  4. Mechanical thrombectomy for acute ischemic stroke in pregnancy using the penumbra system.

    PubMed

    Aaron, Sanjith; Shyamkumar, N K; Alexander, Sunithi; Babu, P Suresh; Prabhakar, A T; Moses, Vinu; Murthy, T V; Alexander, Mathew

    2016-01-01

    Even though intravenous thrombolysis with tissue plasminogen activator (IV tPA) is the standard of care in acute ischemic stroke, its use in pregnancy is not clearly defined. Mechanical thrombectomy devices can be an option; however, literature on the use of such mechanical devices in stroke in pregnancy is lacking. Here we describe two cases that developed acute embolic stroke during pregnancy who were successfully treated by mechanical clot retrieval using the Penumbra system 28 (Penumbra Inc., Alameda, California, USA). To the best of our knowledge, these are the only case reports on the use of the Penumbra device in pregnant patients with acute ischemic stroke. PMID:27293343

  5. Mechanical thrombectomy for acute ischemic stroke in pregnancy using the penumbra system

    PubMed Central

    Aaron, Sanjith; Shyamkumar, N. K.; Alexander, Sunithi; Babu, P. Suresh; Prabhakar, A. T.; Moses, Vinu; Murthy, T. V.; Alexander, Mathew

    2016-01-01

    Even though intravenous thrombolysis with tissue plasminogen activator (IV tPA) is the standard of care in acute ischemic stroke, its use in pregnancy is not clearly defined. Mechanical thrombectomy devices can be an option; however, literature on the use of such mechanical devices in stroke in pregnancy is lacking. Here we describe two cases that developed acute embolic stroke during pregnancy who were successfully treated by mechanical clot retrieval using the Penumbra system 28 (Penumbra Inc., Alameda, California, USA). To the best of our knowledge, these are the only case reports on the use of the Penumbra device in pregnant patients with acute ischemic stroke. PMID:27293343

  6. Molecular dialogues between the ischemic brain and the peripheral immune system: Dualistic roles in injury and repair

    PubMed Central

    An, Chengrui; Shi, Yejie; Li, Peiying; Hu, Xiaoming; Gan, Yu; Stetler, Ruth A.; Leak, Rehana K.; Gao, Yanqin; Sun, Bao-Liang; Zheng, Ping; Chen, Jun

    2014-01-01

    Immune and inflammatory responses actively modulate the pathophysiological processes of acute brain injuries such as stroke. Soon after the onset of stroke, signals such as brain-derived antigens, danger-associated molecular patterns (DAMPs), cytokines, and chemokines are released from the injured brain into the systemic circulation. The injured brain also communicates with peripheral organs through the parasympathetic and sympathetic branches of the autonomic nervous system. Many of these diverse signals not only activate resident immune cells in the brain, but also trigger robust immune responses in the periphery. Peripheral immune cells then migrate toward the site of injury and release additional cytokines, chemokines, and other molecules, causing further disruptive or protective effects in the ischemic brain. Bidirectional communication between the injured brain and the peripheral immune system is now known to regulate the progression of stroke pathology as well as tissue repair. In the end, this exquisitely coordinated crosstalk helps determine the fate of animals after stroke. This article reviews the literature on ischemic brain-derived signals through which peripheral immune responses are triggered, and the potential impact of these peripheral responses on brain injury and repair. Pharmacological strategies and cell-based therapies that target the dialogue between the brain and peripheral immune system show promise as potential novel treatments for stroke. PMID:24374228

  7. Molecular dialogs between the ischemic brain and the peripheral immune system: dualistic roles in injury and repair.

    PubMed

    An, Chengrui; Shi, Yejie; Li, Peiying; Hu, Xiaoming; Gan, Yu; Stetler, Ruth A; Leak, Rehana K; Gao, Yanqin; Sun, Bao-Liang; Zheng, Ping; Chen, Jun

    2014-04-01

    Immune and inflammatory responses actively modulate the pathophysiological processes of acute brain injuries such as stroke. Soon after the onset of stroke, signals such as brain-derived antigens, danger-associated molecular patterns (DAMPs), cytokines, and chemokines are released from the injured brain into the systemic circulation. The injured brain also communicates with peripheral organs through the parasympathetic and sympathetic branches of the autonomic nervous system. Many of these diverse signals not only activate resident immune cells in the brain, but also trigger robust immune responses in the periphery. Peripheral immune cells then migrate toward the site of injury and release additional cytokines, chemokines, and other molecules, causing further disruptive or protective effects in the ischemic brain. Bidirectional communication between the injured brain and the peripheral immune system is now known to regulate the progression of stroke pathology as well as tissue repair. In the end, this exquisitely coordinated crosstalk helps determine the fate of animals after stroke. This article reviews the literature on ischemic brain-derived signals through which peripheral immune responses are triggered, and the potential impact of these peripheral responses on brain injury and repair. Pharmacological strategies and cell-based therapies that target the dialog between the brain and peripheral immune system show promise as potential novel treatments for stroke. PMID:24374228

  8. Statins in Acute Ischemic Stroke: A Systematic Review

    PubMed Central

    Hong, Keun-Sik; Lee, Ji Sung

    2015-01-01

    Background and Purpose Statins have pleiotropic effects of potential neuroprotection. However, because of lack of large randomized clinical trials, current guidelines do not provide specific recommendations on statin initiation in acute ischemic stroke (AIS). The current study aims to systematically review the statin effect in AIS. Methods From literature review, we identified articles exploring prestroke and immediate post-stroke statin effect on imaging surrogate markers, initial stroke severity, functional outcome, and short-term mortality in human AIS. We summarized descriptive overview. In addition, for subjects with available data from publications, we conducted meta-analysis to provide pooled estimates. Results In total, we identified 70 relevant articles including 6 meta-analyses. Surrogate imaging marker studies suggested that statin might enhance collaterals and reperfusion. Our updated meta-analysis indicated that prestroke statin use was associated with milder initial stroke severity (odds ratio [OR] [95% confidence interval], 1.24 [1.05-1.48]; P=0.013), good functional outcome (1.50 [1.29-1.75]; P<0.001), and lower mortality (0.42 [0.21-0.82]; P=0.0108). In-hospital statin use was associated with good functional outcome (1.31 [1.12-1.53]; P=0.001), and lower mortality (0.41 [0.29-0.58]; P<0.001). In contrast, statin withdrawal was associated with poor functional outcome (1.83 [1.01-3.30]; P=0.045). In patients treated with thrombolysis, statin was associated with good functional outcome (1.44 [1.10-1.89]; P=0.001), despite an increased risk of symptomatic hemorrhagic transformation (1.63 [1.04-2.56]; P=0.035). Conclusions The current study findings support the use of statin in AIS. However, the findings were mostly driven by observational studies at risk of bias, and thereby large randomized clinical trials would provide confirmatory evidence. PMID:26437994

  9. Determination of the Role of Oxygen in Suspected Acute Myocardial Infarction by Biomarkers

    ClinicalTrials.gov

    2016-01-25

    Acute Myocardial Infarction (AMI); Acute Coronary Syndrome (ACS); ST Elevation (STEMI) Myocardial Infarction; Ischemic Reperfusion Injury; Non-ST Elevation (NSTEMI) Myocardial Infarction; Angina, Unstable

  10. History, Evolution, and Importance of Emergency Endovascular Treatment of Acute Ischemic Stroke.

    PubMed

    Holodinsky, Jessalyn K; Yu, Amy Y X; Assis, Zarina A; Al Sultan, Abdulaziz S; Menon, Bijoy K; Demchuk, Andrew M; Goyal, Mayank; Hill, Michael D

    2016-05-01

    More than 800,000 people in North America suffer a stroke each year, with ischemic stroke making up the majority of these cases. The outcomes of ischemic stroke range from complete functional and cognitive recovery to severe disability and death; outcome is strongly associated with timely reperfusion treatment. Historically, ischemic stroke has been treated with intravenous thrombolytic agents with moderate success. However, five recently published positive trials have established the efficacy of endovascular treatment in acute ischemic stroke. In this review, we will discuss the history of stroke treatments moving from various intravenous thrombolytic drugs to intra-arterial thrombolysis, early mechanical thrombectomy devices, and finally modern endovascular devices. Early endovascular therapy failures, recent successes, and implications for current ischemic stroke management and future research directions are discussed. PMID:27021771

  11. Acute kidney injury due to decompression illness.

    PubMed

    Viecelli, Andrea; Jamboti, Jagadish; Waring, Andrew; Banham, Neil; Ferrari, Paolo

    2014-08-01

    Decompression illness is a rare but serious complication of diving caused by intravascular or extravascular gas bubble formation. We report the first case of acute kidney injury in a 27-year-old diver following three rapid ascents. He presented with transient neurological symptoms and abdominal pain followed by rapidly progressive acute kidney injury (creatinine peak 1210 µmol/L) due to arterial air emboli. He received supportive care and 100% oxygen followed by hyperbaric therapy and recovered fully. Arterial air emboli caused by rapid decompression can affect multiple organs including the kidneys. Early transfer to a hyperbaric unit is important as complications may present delayed. PMID:25852912

  12. Acute kidney injury due to decompression illness

    PubMed Central

    Viecelli, Andrea; Jamboti, Jagadish; Waring, Andrew; Banham, Neil; Ferrari, Paolo

    2014-01-01

    Decompression illness is a rare but serious complication of diving caused by intravascular or extravascular gas bubble formation. We report the first case of acute kidney injury in a 27-year-old diver following three rapid ascents. He presented with transient neurological symptoms and abdominal pain followed by rapidly progressive acute kidney injury (creatinine peak 1210 µmol/L) due to arterial air emboli. He received supportive care and 100% oxygen followed by hyperbaric therapy and recovered fully. Arterial air emboli caused by rapid decompression can affect multiple organs including the kidneys. Early transfer to a hyperbaric unit is important as complications may present delayed. PMID:25852912

  13. The Use of Hypothermia Therapy in Traumatic Ischemic/Reperfusional Brain Injury: Review of the Literatures

    PubMed Central

    Frantzen, Janek; Bullock, Ross; Gajavelli, Shyam; Burks, Stephen; Bramlett, Helen; Dietrich, W. Dalton

    2011-01-01

    Therapeutic mild hypothermia has been widely used in brain injury. It has been evaluated in numerous clinical trials, and there is strong evidence for the use of hypothermia in treating patients with several types of ischemic/reperfusional (I/R) injuries, the examples being cardiac arrest and neonatal hypoxic-ischemic encephalopathy. In spite of many basic research projects demonstrating effectiveness, therapeutic hypothermia has not been proved effective for the heterogeneous group of patients with traumatic brain injury (TBI) in multicenter clinical trials. In the latest clinical trial, however, researchers were able to demonstrate the significant beneficial effects of hypothermia in one specific group; patients with mass evacuated lesions. This suggested that mild therapeutic hypothermia might be effective for I/R related TBI. In this article, we have reviewed much of the previous literature concerning the mechanisms of I/R injury to the protective effects of mild therapeutic hypothermia. PMID:23439678

  14. Advance in spinal cord ischemia reperfusion injury: Blood-spinal cord barrier and remote ischemic preconditioning.

    PubMed

    Yu, Qijing; Huang, Jinxiu; Hu, Ji; Zhu, Hongfei

    2016-06-01

    The blood-spinal cord barrier (BSCB) is the physiological and metabolic substance diffusion barrier between blood circulation and spinal cord tissues. This barrier plays a vital role in maintaining the microenvironment stability of the spinal cord. When the spinal cord is subjected to ischemia/reperfusion (I/R) injury, the structure and function of the BSCB is disrupted, further destroying the spinal cord homeostasis and ultimately leading to neurological deficit. Remote ischemic preconditioning (RIPC) is an approach in which interspersed cycles of preconditioning ischemia is followed by reperfusion to tissues/organs to protect the distant target tissues/organs against subsequent lethal ischemic injuries. RIPC is an innovation of the treatment strategies that protect the organ from I/R injury. In this study, we review the morphological structure and function of the BSCB, the injury mechanism of BSCB resulting from spinal cord I/R, and the effect of RIPC on it. PMID:27060223

  15. Radon inhalation protects against transient global cerebral ischemic injury in gerbils.

    PubMed

    Kataoka, Takahiro; Etani, Reo; Takata, Yuji; Nishiyama, Yuichi; Kawabe, Atsushi; Kumashiro, Masayuki; Taguchi, Takehito; Yamaoka, Kiyonori

    2014-10-01

    Although brain disorders are not the main indication for radon therapy, our previous study suggested that radon inhalation therapy might mitigate brain disorders. In this study, we assessed whether radon inhalation protects against transient global cerebral ischemic injury in gerbils. Gerbils were treated with inhaled radon at a concentration of 2,000 Bq/m(3) for 24 h. After radon inhalation, transient global cerebral ischemia was induced by bilateral occlusion of the common carotid artery. Results showed that transient global cerebral ischemia induced neuronal damage in hippocampal CA1, and the number of damaged neurons was significantly increased compared with control. However, radon treatment inhibited ischemic damage. Superoxide dismutase (SOD) activity in the radon-treated gerbil brain was significantly higher than that in sham-operated gerbils. These findings suggested that radon inhalation activates antioxidative function, especially SOD, thereby inhibiting transient global cerebral ischemic injury in gerbils. PMID:24792782

  16. Building a "brain attack" team to administer thrombolytic therapy for acute ischemic stroke

    PubMed Central

    Hill, M D; Barber, P A; Demchuk, A M; Sevick, R J; Newcommon, N J; Green, T; Buchan, A M

    2000-01-01

    Before tissue plasminogen activator (tPA) was licensed for use in Canada, in February 1999, the Calgary Regional Stroke Program spearheaded the development and organization of local resources to use thrombolytic therapy in patients who had experienced acute ischemic stroke. In 1996 special permission was obtained from the Calgary Regional Health Authority to use intravenously administered tPA for acute ischemic stroke, and ethical and scientific review boards approved the protocols. After 3 years our efforts have resulted in improved patient outcomes, shorter times from symptom onset to treatment and acceptable adverse event rates. Areas for continued improvement include the door-to-needle time and broader education of the public about the symptoms of acute ischemic stroke. PMID:10862236

  17. The role of autophagic and lysosomal pathways in ischemic brain injury

    PubMed Central

    Gu, Zhaohua; Sun, Yinyi; Liu, Kangyong; Wang, Fen; Zhang, Ting; Li, Qiang; Shen, Liwei; Zhou, Ling; Dong, Liang; Shi, Nan; Zhang, Qian; Zhang, Wei; Zhao, Meizhen; Sun, Xiaojiang

    2013-01-01

    Autophagy is involved in neural cell death after cerebral ischemia. Our previous studies showed that rapamycin-induced autophagy decreased the rate of apoptosis, but the rate of apoptosis was creased after the autophagy inhibitor, 3-methyladenine, was used. In this study, a suture-occluded method was performed to generate a rat model of brain ischemia. Under a transmission electron microscope, autophagic bodies and autophagy lysosomes were markedly accumulated in neurons at 4 hours post brain ischemic injury, with their numbers gradually reducing over time. Western blotting demonstrated that protein levels of light chain 3-II and cathepsin B were significantly increased within 4 hours of ischemic injury, but these levels were not persistently upregulated over time. Confocal microscopy showed that autophagy was mainly found in neurons with positive light chain 3 signal. Injection of rapamycin via tail vein promoted the occurrence of autophagy in rat brain tissue after cerebral ischemia and elevated light chain 3 and cathepsin B expression. However, injection of 3-methyladenine significantly diminished light chain 3-II and cathepsin B expression. Results verified that autophagic and lysosomal activity is increased in ischemic neurons. Abnormal components in cells can be eliminated through upregulating cell autophagy or inhibiting autophagy after ischemic brain injury, resulting in a dynamic balance of substances in cells. Moreover, drugs that interfere with autophagy may be potential therapies for the treatment of brain injury. PMID:25206520

  18. Automated Detection of Brain Abnormalities in Neonatal Hypoxia Ischemic Injury from MR Images

    PubMed Central

    Ghosh, Nirmalya; Sun, Yu; Bhanu, Bir; Ashwal, Stephen; Obenaus, Andre

    2014-01-01

    We compared the efficacy of three automated brain injury detection methods, namely symmetry-integrated region growing (SIRG), hierarchical region splitting (HRS) and modified watershed segmentation (MWS) in human and animal magnetic resonance imaging (MRI) datasets for the detection of hypoxic ischemic injuries (HII). Diffusion weighted imaging (DWI, 1.5T) data from neonatal arterial ischemic stroke (AIS) patients, as well as T2-weighted imaging (T2WI, 11.7T, 4.7T) at seven different time-points (1, 4, 7, 10, 17, 24 and 31 days post HII) in rat-pup model of hypoxic ischemic injury were used to check the temporal efficacy of our computational approaches. Sensitivity, specificity, similarity were used as performance metrics based on manual (‘gold standard’) injury detection to quantify comparisons. When compared to the manual gold standard, automated injury location results from SIRG performed the best in 62% of the data, while 29% for HRS and 9% for MWS. Injury severity detection revealed that SIRG performed the best in 67% cases while HRS for 33% data. Prior information is required by HRS and MWS, but not by SIRG. However, SIRG is sensitive to parameter-tuning, while HRS and MWS are not. Among these methods, SIRG performs the best in detecting lesion volumes; HRS is the most robust, while MWS lags behind in both respects. PMID:25000294

  19. Hyperintense Acute Reperfusion Marker on FLAIR in a Patient with Transient Ischemic Attack

    PubMed Central

    Förster, Alex; Wenz, Holger; Groden, Christoph

    2016-01-01

    The hyperintense acute reperfusion marker (HARM) has initially been described in acute ischemic stroke. The phenomenon is caused by blood-brain barrier disruption following acute reperfusion and consecutive delayed gadolinium enhancement in the subarachnoid space on fluid attenuated inversion recovery (FLAIR) images. Here we report the case of an 80-year-old man who presented with transient paresis and sensory loss in the right arm. Initial routine stroke MRI including diffusion- and perfusion-weighted imaging demonstrated no acute pathology. Follow-up MRI after three hours demonstrated subarachnoid gadolinium enhancement in the left middle cerebral artery territory consistent with HARM that completely resolved on follow-up MRI three days later. This case illustrates that even in transient ischemic attack patients disturbances of the blood-brain barrier may be present which significantly exceed the extent of acute ischemic lesions on diffusion-weighted imaging. Inclusion of FLAIR images with delayed acquisition after intravenous contrast agent application in MRI stroke protocols might facilitate the diagnosis of a recent acute ischemic stroke. PMID:27127673

  20. Mechanism of acute pancreatitis complicated with injury of intestinal mucosa barrier*

    PubMed Central

    Zhang, Xi-ping; Zhang, Jie; Song, Qiao-ling; Chen, Han-qin

    2007-01-01

    Acute pancreatitis (AP) is a common acute abdomen in clinic with a rapid onset and dangerous pathogenetic condition. AP can cause an injury of intestinal mucosa barrier, leading to translocation of bacteria or endotoxin through multiple routes, bacterial translocation (BT), gutorigin endotoxaemia, and secondary infection of pancreatic tissue, and then cause systemic inflammatory response syndrome (SIRS) or multiple organ dysfunction syndrome (MODS), which are important factors influencing AP’s severity and mortality. Meanwhile, the injury of intestinal mucosa barrier plays a key role in AP’s process. Therefore, it is clinically important to study the relationship between the injury of intestinal mucosa barrier and AP. In addition, many factors such as microcirculation disturbance, ischemical reperfusion injury, excessive release of inflammatory mediators and apoptosis may also play important roles in the damage of intestinal mucosa barrier. In this review, we summarize studies on mechanisms of AP. PMID:18257123

  1. CAPing inflammation and acute kidney injury.

    PubMed

    Inoue, Tsuyoshi; Rosin, Diane L; Okusa, Mark D

    2016-09-01

    The cholinergic anti-inflammatory pathway has been shown to modulate inflammation in disease models such as rheumatoid arthritis and inflammatory bowel disease. A recent study demonstrated a protective effect of vagus nerve stimulation with activation of the cholinergic anti-inflammatory pathway in the ischemia reperfusion model of acute kidney injury. PMID:27521104

  2. Unilateral Renal Ischemia as a Model of Acute Kidney Injury and Renal Fibrosis in Cats.

    PubMed

    Schmiedt, C W; Brainard, B M; Hinson, W; Brown, S A; Brown, C A

    2016-01-01

    The objectives of this study were to define the acute and chronic effects of 1-hour unilateral in vivo renal ischemia on renal function and histology in cats. Twenty-one adult purpose-bred research cats were anesthetized, and 1 kidney underwent renal artery and vein occlusion for 1 hour. Serum creatinine and urea concentrations, urine protein:creatinine ratio, urine-specific gravity, glomerular filtration rate, hematocrit, platelet concentration and function, and white blood cell count were measured at baseline and variable time points after ischemia. Renal histopathology was evaluated on days 3, 6, 12, 21, 42, and 70 postischemia; changes in smooth muscle actin and interstitial collagen were examined. Following ischemia, whole animal glomerular filtration rate was significantly reduced (57% of baseline on day 6; P < .05). At the early time points, the ischemic kidneys exhibited severe acute epithelial necrosis accompanied by evidence of regeneration of tubules predominantly within the corticomedullary junction. At later periods, postischemic kidneys had evidence of tubular atrophy and interstitial inflammation with significantly more smooth muscle actin and interstitial collagen staining and interstitial fibrosis when compared with the contralateral control kidneys. This study characterizes the course of ischemic acute kidney injury in cats and demonstrates that ischemic acute kidney injury triggers chronic fibrosis, interstitial inflammation, and tubular atrophy in feline kidneys. These late changes are typical of those observed in cats with naturally occurring chronic kidney disease. PMID:26319781

  3. A SCUBA diver with acute kidney injury.

    PubMed

    Gleeson, Patrick James; Kelly, Yvelynne; Ni Sheaghdha, Eadaoin; Lappin, David

    2015-01-01

    An otherwise healthy young man was transferred to our hospital after a diving incident. He had made an uncontrolled ascent from 10 m. On arrival he appeared well. No hypotensive episodes occurred during the transfer. He denied having arthralgias, back pain, dyspnoea or neurological symptoms. Laboratory investigations revealed acutely elevated creatinine (170 µmol/L) and creatine kinase (909 U/L). Radiology was consistent with a focus of pulmonary barotrauma and intrinsic renal disease. Creatine kinase is a marker of arterial gas embolism (AGE). We determined that our patient suffered acute kidney injury as a result of gas embolisation to his renal vasculature from an area of pulmonary barotrauma. Creatinine fell the following day in response to aggressive intravenous fluids. This is the first reported case of acute kidney injury secondary to AGE. Biochemical studies should be part of the routine assessment of patients involved in diving incidents. PMID:25948841

  4. Myocardial ischemic post-conditioning attenuates ischemia reperfusion injury via PTEN/Akt signal pathway

    PubMed Central

    Li, Chun-Mei; Shen, Shu-Wen; Wang, Tao; Zhang, Xing-Hua

    2015-01-01

    Objectives: To investigate whether myocardial ischemic post-conditioning attenuates ischemia reperfusion injury via PTEN/Akt signal pathway. Design: Forty-five male Sprague-Dawley rats were randomly divided into three groups: Sham, Ischemia reperfusion (I/R) and Ischemic post-conditioning (IPost) group. After the experiment finished, myocardial infarction area was examined. Serum creatine phosphokinase and lactate dehydrogenase activity were detected at baseline and the end of reperfusion. The protein levels of PTEN, Akt, p-Akt, Bax and Bcl-2 were measured by Western blot method. Results: Myocardial infarct size was significantly reduced in IPost as compared to I/R. Results were confirmed by serum creatine phosphokinase and lactate dehydrogenase activity. In addition, PTEN and Bax protein expression were inhibited and the p-Akt and bcl-2 protein expression were enhanced in IPost compared with I/R (P < 0.05). At the same time, the ratio of Bax and Bcl-2 was decreased in IPost (P < 0.05). However, ischemic post conditioning did not affect the total Akt level (P > 0.05). Conclusions: We confirmed that ischemic post-conditioning protects the heart against reperfusion injury. It is important that we demonstrated that the cardioprotective effect of ischemic post-conditioning was involved in the inhibition of PTEN, activation of the PI3K/Akt pathway and reduction of the cardiomyocyte apoptosis. PMID:26629079

  5. A metabolic index of ischemic injury for perfusion-recovery of cadaveric rat livers.

    PubMed

    Perk, Sinem; Izamis, Maria-Louisa; Tolboom, Herman; Uygun, Basak; Berthiaume, Francois; Yarmush, Martin L; Uygun, Korkut

    2011-01-01

    With over 110,000 patients waiting for organ transplantation, the current crisis in organ transplantation is based on a lack of donors after brain-death (DBD). A very large alternative pool of donor organs that remain untapped are the donors after cardiac death (DCD), recovered after cardiac activity has ceased and therefore sustained some ischemic injury. Machine perfusion has been proposed as a novel modality of organ preservation and treatment to render such cadaveric organs, and in particular livers, transplantable. Two key issues that remain unaddressed are how to assess whether a DCD liver is damaged beyond repair, and whether machine perfusion has rendered an injured organ sufficiently viable for transplantation. In this work, we present a metabolic analysis of the transient responses of cadaveric rat livers during normothermic machine perfusion (NMP), and develop an index of ischemia that enables evaluation of the organ ischemic injury level. Further, we perform a discriminant analysis to construct a classification algorithm with >0.98 specificity to identify whether a given perfused liver is ischemic or fresh, in effect a precursor for an index of transplantability and a basis for the use of statistical process control measures for automated feedback control of treatment of ischemic injury in DCD livers. The analyses yield an index based on squared prediction error (SPE) as log(SPE) >1.35 indicating ischemia. The differences between metabolic functions of fresh and ischemic livers during perfusion are outlined and the metabolites that varied significantly for ischemic livers are identified as ornithine, arginine, albumin and tyrosine. PMID:22194843

  6. A Metabolic Index of Ischemic Injury for Perfusion-Recovery of Cadaveric Rat Livers

    PubMed Central

    Tolboom, Herman; Uygun, Basak; Berthiaume, Francois; Yarmush, Martin L.; Uygun, Korkut

    2011-01-01

    With over 110,000 patients waiting for organ transplantation, the current crisis in organ transplantation is based on a lack of donors after brain-death (DBD). A very large alternative pool of donor organs that remain untapped are the donors after cardiac death (DCD), recovered after cardiac activity has ceased and therefore sustained some ischemic injury. Machine perfusion has been proposed as a novel modality of organ preservation and treatment to render such cadaveric organs, and in particular livers, transplantable. Two key issues that remain unaddressed are how to assess whether a DCD liver is damaged beyond repair, and whether machine perfusion has rendered an injured organ sufficiently viable for transplantation. In this work, we present a metabolic analysis of the transient responses of cadaveric rat livers during normothermic machine perfusion (NMP), and develop an index of ischemia that enables evaluation of the organ ischemic injury level. Further, we perform a discriminant analysis to construct a classification algorithm with >0.98 specificity to identify whether a given perfused liver is ischemic or fresh, in effect a precursor for an index of transplantability and a basis for the use of statistical process control measures for automated feedback control of treatment of ischemic injury in DCD livers. The analyses yield an index based on squared prediction error (SPE) as log(SPE) >1.35 indicating ischemia. The differences between metabolic functions of fresh and ischemic livers during perfusion are outlined and the metabolites that varied significantly for ischemic livers are identified as ornithine, arginine, albumin and tyrosine. PMID:22194843

  7. Chapter 7. Mouse models of ischemic angiogenesis and ischemia-reperfusion injury.

    PubMed

    Greenberg, Joshua I; Suliman, Ahmed; Barillas, Samuel; Angle, Niren

    2008-01-01

    Ischemia and ischemia-reperfusion (I/R) events are distinct but interrelated processes etiologic to the most prevalent human diseases. A delicate balance exists whereby ischemic injury can result in beneficial angiogenesis or in detrimental reperfusion injury overwhelming the organism. Here, we describe in vivo models of ischemia and ischemia-reperfusion injury with emphasis on murine hindlimb ischemia models. We also provide a brief introduction to murine myocardial ischemia experiments. Each model is described in the context of human disease. Emphasis is made on the strengths and weaknesses of the available techniques, particularly as it relates to data analysis, interpretation, and translational relevance. PMID:19007664

  8. Accelerated recovery from acute brain injuries: clinical efficacy of neurotrophic treatment in stroke and traumatic brain injuries.

    PubMed

    Bornstein, N; Poon, W S

    2012-04-01

    Stroke is one of the most devastating vascular diseases in the world as it is responsible for almost five million deaths per year. Almost 90% of all strokes are ischemic and mainly due to atherosclerosis, cardiac embolism and small-vessel disease. Intracerebral or subarachnoid hemorrhage can lead to hemorrhagic stroke, which usually has the poorest prognosis. Cerebrolysin is a peptide preparation which mimics the action of a neurotrophic factor, protecting stroke-injured neurons and promoting neuroplasticity and neurogenesis. Cerebrolysin has been widely studied as a therapeutic tool for both ischemic and hemorrhagic stroke, as well as traumatic brain injury. In ischemic stroke, Cerebrolysin given as an adjuvant therapy to antiplatelet and rheologically active medication resulted in accelerated improvement in global, neurological and motor functions, cognitive performance and activities of daily living. Cerebrolysin was also safe and well tolerated when administered in patients suffering from hemorrhagic stroke. Traumatic brain injury leads to transient or chronic impairments in physical, cognitive, emotional and behavioral functions. This is associated with deficits in the recognition of basic emotions, the capacity to interpret the mental states of others, and executive functioning. Pilot clinical studies with adjuvant Cerebrolysin in the acute and postacute phases of the injury have shown faster recovery, which translates into an earlier onset of rehabilitation and shortened hospitalization time. PMID:22514794

  9. SUR1-Associated Mechanisms Are Not Involved in Ischemic Optic Neuropathy 1 Day Post-Injury

    PubMed Central

    Nicholson, James D.; Guo, Yan; Bernstein, Steven L.

    2016-01-01

    Ischemia-reperfusion injury after central nervous system (CNS) injury presents a major health care challenge with few promising treatments. Recently, it has become possible to reduce edema after CNS injury by antagonizing a sulfonylurea receptor 1 (SUR1) regulated ion channel expressed after injury. SUR1 upregulation after injury is a necessary precondition for the formation of this channel, and has been implicated in white matter injury after clinical spinal cord trauma. Glibenclamide, an SUR1 antagonist, appears to have neuroprotective effect against cerebral stroke in an open-label small clinical trial and great effectiveness in reducing damage after varied experimental CNS injury models. Despite its importance in CNS injuries, SUR1 upregulation appears to play no part in rodent anterior ischemic optic neuropathy (rAION) injury as tested by real-time PCR and immunohistochemical staining of rAION-injured rat optic nerve (ON). Furthermore, the SUR1 antagonist glibenclamide administered immediately after rAION injury provided no protection to proximal ON microvasculature 1 day post-injury but may reduce optic nerve head edema in a manner unrelated to ON SUR1 expression. Our results suggest that there may be fundamental differences between rAION optic nerve ischemia and other CNS white matter injuries where SUR1 appears to play a role. PMID:27560494

  10. SUR1-Associated Mechanisms Are Not Involved in Ischemic Optic Neuropathy 1 Day Post-Injury.

    PubMed

    Nicholson, James D; Guo, Yan; Bernstein, Steven L

    2016-01-01

    Ischemia-reperfusion injury after central nervous system (CNS) injury presents a major health care challenge with few promising treatments. Recently, it has become possible to reduce edema after CNS injury by antagonizing a sulfonylurea receptor 1 (SUR1) regulated ion channel expressed after injury. SUR1 upregulation after injury is a necessary precondition for the formation of this channel, and has been implicated in white matter injury after clinical spinal cord trauma. Glibenclamide, an SUR1 antagonist, appears to have neuroprotective effect against cerebral stroke in an open-label small clinical trial and great effectiveness in reducing damage after varied experimental CNS injury models. Despite its importance in CNS injuries, SUR1 upregulation appears to play no part in rodent anterior ischemic optic neuropathy (rAION) injury as tested by real-time PCR and immunohistochemical staining of rAION-injured rat optic nerve (ON). Furthermore, the SUR1 antagonist glibenclamide administered immediately after rAION injury provided no protection to proximal ON microvasculature 1 day post-injury but may reduce optic nerve head edema in a manner unrelated to ON SUR1 expression. Our results suggest that there may be fundamental differences between rAION optic nerve ischemia and other CNS white matter injuries where SUR1 appears to play a role. PMID:27560494

  11. [Ischemic stroke as reaction to an acute stressful event].

    PubMed

    Ibrahimagić, Omer C; Sinanović, Osman; Cickusić, Amra; Smajlović, Dzevdet

    2005-01-01

    The period following ischemic stroke can be considered as a reaction to a stressful event. Changes in cortisol secretion are one of the indicators of stress reaction. The aim of the study was to determine morning serum levels of cortisol in stroke patients within 48 hours and 15 days of ischemic stroke onset. Study group included 40 patients, 20 of them were females, mean age 65.3 +/- 10.3 years. The patients did not receive any corticosteroid agents or spironolactone, and did not suffer from Cushing's or Addison's syndrome. Ischemic stroke was verified by computed tomography of the brain. The fluorometric method with DELFIA Cortisol immunoassay was used to determine morning serum cortisol levels. Reference values of the measured hormone were 201-681 nmol/l. The mean level of serum cortisol within 48 hours of stroke was 560.9 +/- 318.9 nmol/l, and on day 15 it was 426.2 +/- 159.3 nmol/l, i.e. significantly lower (p < 0.02). On the first measurement, the level of serum cortisol was elevated in 32%, and on the second measurement in only 7.5% patients, which was also significantly lower (p < 0.001). It was concluded that the stress reaction in ischemic stroke patients was more pronounced within the first 48 hours of stroke onset. Judging from the morning cortisol levels, the reaction to stress was considerably less pronounced 15 days after stroke onset. PMID:15875466

  12. MicroRNA-378 Alleviates Cerebral Ischemic Injury by Negatively Regulating Apoptosis Executioner Caspase-3.

    PubMed

    Zhang, Nan; Zhong, Jie; Han, Song; Li, Yun; Yin, Yanling; Li, Junfa

    2016-01-01

    miRNAs have been linked to many human diseases, including ischemic stroke, and are being pursued as clinical diagnostics and therapeutic targets. Among the aberrantly expressed miRNAs in our previous report using large-scale microarray screening, the downregulation of miR-378 in the peri-infarct region of middle cerebral artery occluded (MCAO) mice can be reversed by hypoxic preconditioning (HPC). In this study, the role of miR-378 in the ischemic injury was further explored. We found that miR-378 levels significantly decreased in N2A cells following oxygen-glucose deprivation (OGD) treatment. Overexpression of miR-378 significantly enhanced cell viability, decreased TUNEL-positive cells and the immunoreactivity of cleaved-caspase-3. Conversely, downregulation of miR-378 aggravated OGD-induced apoptosis and ischemic injury. By using bioinformatic algorithms, we discovered that miR-378 may directly bind to the predicted 3'-untranslated region (UTR) of Caspase-3 gene. The protein level of caspase-3 increased significantly upon OGD treatment, and can be downregulated by pri-miR-378 transfection. The luciferase reporter assay confirmed the binding of miR-378 to the 3'-UTR of Caspase-3 mRNA and repressed its translation. In addition, miR-378 agomir decreased cleaved-caspase-3 ratio, reduced infarct volume and neural cell death induced by MCAO. Furthermore, caspase-3 knockdown could reverse anti-miR-378 mediated neuronal injury. Taken together, our data demonstrated that miR-378 attenuated ischemic injury by negatively regulating the apoptosis executioner, caspase-3, providing a potential therapeutic target for ischemic stroke. PMID:27598143

  13. Acute kidney injury: current concepts and new insights

    PubMed Central

    Koza, Yavuzer

    2016-01-01

    Abstract: Background: Acute kidney injury, which was previously named as acute renal failure, is a complex clinical disorder and continues to be associated with poor outcomes. It is frequently seen in hospitalized patients, especially in critically ill patients. The primary causes of acute kidney injury are divided into three categories: prerenal, intrinsic renal and postrenal. The definition and staging of acute kidney injury are mainly based on the risk, injury, failure, loss, end-stage kidney disease (RIFLE) criteria and the acute kidney injury network (AKIN) criteria, which have previously been defined. However the clinical utility of these criteria is still uncertain. Several biomarkers such as Cystatin C and neutrophil gelatinase-associated lipocalin have been suggested for the diagnosis, severity classification and most importantly, the modification of outcome in acute kidney injury. Methods: Current literature on the definition, biomarkers, management and epidemiology of acute kidney injury was reviewed by searching keywords in Medline and PubMed databases. Results: The epidemiology, pathophysiology and diagnosis of acute kidney injury were discussed. The clinical implications of novel biomarkers and management of acute kidney injury were also discussed. Conclusions: The current definitions of acute kidney injury are based on the RIFLE, AKIN and KDIGO criteria. Although these criteria have been widely validated, some of limitations are still remain. Since acute kidney injury is common and harmful, all preventive measures should be taken to avoid its occurrence. Currently, there is no a definitive role for novel biomarkers. PMID:26804946

  14. Noninvasive ventilatory correction as an adjunct to an experimental systemic reperfusion therapy in acute ischemic stroke.

    PubMed

    Barlinn, Kristian; Balucani, Clotilde; Palazzo, Paola; Zhao, Limin; Sisson, April; Alexandrov, Andrei V

    2010-01-01

    Background. Obstructive sleep apnea (OSA) is a common condition in patients with acute ischemic stroke and associated with early clinical deterioration and poor functional outcome. However, noninvasive ventilatory correction is hardly considered as a complementary treatment option during the treatment phase of acute ischemic stroke. Summary of Case. A 55-year-old woman with an acute middle cerebral artery (MCA) occlusion received intravenous tissue plasminogen activator (tPA) and enrolled into a thrombolytic research study. During tPA infusion, she became drowsy, developed apnea episodes, desaturated and neurologically deteriorated without recanalization, re-occlusion or intracerebral hemorrhage. Urgent noninvasive ventilatory correction with biphasic positive airway pressure (BiPAP) reversed neurological fluctuation. Her MCA completely recanalized 24 hours later. Conclusions. Noninvasive ventilatory correction should be considered more aggressively as a complementary treatment option in selected acute stroke patients. Early initiation of BiPAP can stabilize cerebral hemodynamics and may unmask the true potential of other therapies. PMID:21052540

  15. Acute Kidney Injury in the Surgical Patient.

    PubMed

    Hobson, Charles; Singhania, Girish; Bihorac, Azra

    2015-10-01

    Perioperative acute kidney injury (AKI) is a common, morbid, and costly surgical complication. Current efforts to understand and manage AKI in surgical patients focus on prevention, mitigation of further injury when AKI has occurred, treatment of associated conditions, and facilitation of renal recovery. Lesser severity AKI is now understood to be much more common, and more morbid, than was previously thought. The ability to detect AKI within hours of onset would be helpful in protecting the kidney and in preserving renal function, and several imaging and biomarker modalities are currently being evaluated. PMID:26410139

  16. Acute ischemic non-embolic stroke and serum level of uric acid

    PubMed Central

    Sheykholeslami, Nazanin Zia; Gadari, Faranak; Ahmady, Jafar

    2012-01-01

    Background Impact of high level of uric acid on stroke is still controversial. We conducted this study to investigate the relationship between acute ischemic non-embolic stroke and serum levels of uric acid. Methods This was a case-control study on patients with acute ischemic non-embolic stroke in Rafsanjan, Iran. The control group consisted of normal persons who were similar to the case group in terms of age and gender. Serum level of uric acid in the first 24 hours of admission was measured with photometry method. Results In a total of 130 patients (59 mens), hyperuricemia was seen in 13.0% of subjects in the control group and 10.7% of subjects in the case group. Nine patients in case group and 7 patients in control group with hyperuricemia were women. No significant relationship was found between acute ischemic non-embolic stroke and serum level of uric acid. Conclusion There was no relationship between uric acid and acute ischemic non-embolic stroke. PMID:24250850

  17. Clinical Implications of Preserving Subvalvular Apparatus During Mitral Valve Replacement for Acute Ischemic Papillary Muscle Rupture.

    PubMed

    de Cannière, Didier; Vandenbossche, Jean-Luc; Nouar, Elias; Faict, Sebastian; Falchetti, Alessandro; Unger, Philippe

    2016-07-01

    We report the case of a patient who presented with sequential rupture of two papillary muscle bellies after emergent mitral valve replacement with subvalvular apparatus preservation for acute severe mitral regurgitation and cardiogenic shock during acute myocardial infarction. We discuss the possibility that the remaining chordae may have meanwhile contributed to muscle avulsion by exerting traction on ischemic myocardium and prevented embolization of the secondarily detached papillary muscle heads. PMID:27343501

  18. Amelioration of myocardial ischemic reperfusion injury with Calendula officinalis.

    PubMed

    Ray, Diptarka; Mukherjee, Subhendu; Falchi, Mario; Bertelli, Aldo; Das, Dipak K

    2010-12-01

    Calendula officinalis of family Asteraceae, also known as marigold, has been widely used from time immemorial in Indian and Arabic cultures as an anti-inflammatory agent to treat minor skin wound and infections, burns, bee stings, sunburn and cancer. At a relatively high dose, calendula can lower blood pressure and cholesterol. Since inflammatory responses are behind many cardiac diseases, we sought to evaluate if calendula could be cardioprotective against ischemic heart disease Two groups of hearts were used: the treated rat hearts were perfused with calendula solution at 50 mM in KHB buffer (in mM: sodium chloride 118, potassium chloride 4.7, calcium chloride 1.7, sodium bicarbonate 25, potassium biphosphate 0.36, magnesium sulfate 1.2, and glucose 10) for 15 min prior to subjecting the heart to ischemia, while the control group was perfused with the buffer only. Calendula achieved cardioprotection by stimulating left ventricular developed pressure and aortic flow as well as by reducing myocardial infarct size and cardiomyocyte apoptosis. Cardioprotection appears to be achieved by changing ischemia reperfusion-mediated death signal into a survival signal by modulating antioxidant and anti-inflammatory pathways as evidenced by the activation of Akt and Bcl2 and depression of TNFα. The results further strengthen the concept of using natural products in degeneration diseases like ischemic heart disease. PMID:20874690

  19. No Effect of Remote Ischemic Conditioning Strategies on Recovery from Renal Ischemia-Reperfusion Injury and Protective Molecular Mediators

    PubMed Central

    Kierulf-Lassen, Casper; Kristensen, Marie Louise Vindvad; Birn, Henrik; Jespersen, Bente; Nørregaard, Rikke

    2015-01-01

    Ischemia-reperfusion injury (IRI) is the major cause of acute kidney injury. Remote ischemic conditioning (rIC) performed as brief intermittent sub-lethal ischemia and reperfusion episodes in a distant organ may protect the kidney against IRI. Here we investigated the renal effects of rIC applied either prior to (remote ischemic preconditioning; rIPC) or during (remote ischemic perconditioning; rIPerC) sustained ischemic kidney injury in rats. The effects were evaluated as differences in creatinine clearance (CrCl) rate, tissue tubular damage marker expression, and potential kidney recovery mediators. One week after undergoing right-sided nephrectomy, rats were randomly divided into four groups: sham (n = 7), ischemia and reperfusion (IR; n = 10), IR+rIPC (n = 10), and IR+rIPerC (n = 10). The rIC was performed as four repeated episodes of 5-minute clamping of the infrarenal aorta followed by 5-minute release either before or during 37 minutes of left renal artery clamping representing the IRI. Urine and blood were sampled prior to ischemia as well as 3 and 7 days after reperfusion. The kidney was harvested for mRNA and protein isolation. Seven days after IRI, the CrCl change from baseline values was similar in the IR (δ: 0.74 mL/min/kg [-0.45 to 1.94]), IR+rIPC (δ: 0.21 mL/min/kg [-0.75 to 1.17], p > 0.9999), and IR+rIPerC (δ: 0.41 mL/min/kg [-0.43 to 1.25], p > 0.9999) groups. Kidney function recovery was associated with a significant up-regulation of phosphorylated protein kinase B (pAkt), extracellular regulated kinase 1/2 (pERK1/2), and heat shock proteins (HSPs) pHSP27, HSP32, and HSP70, but rIC was not associated with any significant differences in tubular damage, inflammatory, or fibrosis marker expression. In our study, rIC did not protect the kidney against IRI. However, on days 3–7 after IRI, all groups recovered renal function. This was associated with pAkt and pERK1/2 up-regulation and increased HSP expression at day 7. PMID:26720280

  20. No Effect of Remote Ischemic Conditioning Strategies on Recovery from Renal Ischemia-Reperfusion Injury and Protective Molecular Mediators.

    PubMed

    Kierulf-Lassen, Casper; Kristensen, Marie Louise Vindvad; Birn, Henrik; Jespersen, Bente; Nørregaard, Rikke

    2015-01-01

    Ischemia-reperfusion injury (IRI) is the major cause of acute kidney injury. Remote ischemic conditioning (rIC) performed as brief intermittent sub-lethal ischemia and reperfusion episodes in a distant organ may protect the kidney against IRI. Here we investigated the renal effects of rIC applied either prior to (remote ischemic preconditioning; rIPC) or during (remote ischemic perconditioning; rIPerC) sustained ischemic kidney injury in rats. The effects were evaluated as differences in creatinine clearance (CrCl) rate, tissue tubular damage marker expression, and potential kidney recovery mediators. One week after undergoing right-sided nephrectomy, rats were randomly divided into four groups: sham (n = 7), ischemia and reperfusion (IR; n = 10), IR+rIPC (n = 10), and IR+rIPerC (n = 10). The rIC was performed as four repeated episodes of 5-minute clamping of the infrarenal aorta followed by 5-minute release either before or during 37 minutes of left renal artery clamping representing the IRI. Urine and blood were sampled prior to ischemia as well as 3 and 7 days after reperfusion. The kidney was harvested for mRNA and protein isolation. Seven days after IRI, the CrCl change from baseline values was similar in the IR (δ: 0.74 mL/min/kg [-0.45 to 1.94]), IR+rIPC (δ: 0.21 mL/min/kg [-0.75 to 1.17], p > 0.9999), and IR+rIPerC (δ: 0.41 mL/min/kg [-0.43 to 1.25], p > 0.9999) groups. Kidney function recovery was associated with a significant up-regulation of phosphorylated protein kinase B (pAkt), extracellular regulated kinase 1/2 (pERK1/2), and heat shock proteins (HSPs) pHSP27, HSP32, and HSP70, but rIC was not associated with any significant differences in tubular damage, inflammatory, or fibrosis marker expression. In our study, rIC did not protect the kidney against IRI. However, on days 3-7 after IRI, all groups recovered renal function. This was associated with pAkt and pERK1/2 up-regulation and increased HSP expression at day 7. PMID:26720280

  1. Acute Kidney Injury: the beginning of the end of the dark ages

    PubMed Central

    Winterberg, Pamela D.; Lu, Christopher Y.

    2011-01-01

    There has been enormous progress in the understanding of acute kidney injury (AKI) over the last five years. This article reviews some of the salient new findings, the challenges revealed by these findings, and new insights into the pathogenesis of ischemic AKI. Clinical studies have demonstrated that even a small, transient rise in serum creatinine increases the risk of mortality in hospitalized patients and that a single event of AKI increases the risk for developing chronic kidney disease. Although the overall mortality rate from AKI has improved over the last two decades, it continues to be significant. Current treatment is focused on maintaining renal perfusion and avoiding volume overload. However, new therapeutic targets are emerging for the treatment of AKI as our understanding of the pathogenesis of ischemic injury and inflammation increases. Early diagnosis, however, continues to be challenging as the search continues for sensitive and specific biomarkers. PMID:21817881

  2. Neuron specific enolase: a promising therapeutic target in acute spinal cord injury.

    PubMed

    Haque, Azizul; Ray, Swapan K; Cox, April; Banik, Naren L

    2016-06-01

    Enolase is a multifunctional protein, which is expressed abundantly in the cytosol. Upon stimulatory signals, enolase can traffic to cell surface and contribute to different pathologies including injury, autoimmunity, infection, inflammation, and cancer. Cell-surface expression of enolase is often detected on activated macrophages, microglia/macrophages, microglia, and astrocytes, promoting extracellular matrix degradation, production of pro-inflammatory cytokines/chemokines, and invasion of inflammatory cells in the sites of injury and inflammation. Inflammatory stimulation also induces translocation of enolase from the cytosolic pool to the cell surface where it can act as a plasminogen receptor and promote extracellular matrix degradation and tissue damage. Spinal cord injury (SCI) is a devastating debilitating condition characterized by progressive pathological changes including complex and evolving molecular cascades, and insights into the role of enolase in multiple inflammatory events have not yet been fully elucidated. Neuronal damage following SCI is associated with an elevation of neuron specific enolase (NSE), which is also known to play a role in the pathogenesis of hypoxic-ischemic brain injury. Thus, NSE is now considered as a biomarker in ischemic brain damage, and it has recently been suggested to be a biomarker in traumatic brain injury (TBI), stroke and anoxic encephalopathy after cardiac arrest and acute SCI as well. This review article gives an overview of the current basic research and clinical studies on the role of multifunctional enolase in neurotrauma, with a special emphasis on NSE in acute SCI. PMID:26847611

  3. Early treatment of hypertension in acute ischemic and intracerebral hemorrhagic stroke: progress achieved, challenges, and perspectives.

    PubMed

    Feldstein, Carlos A

    2014-03-01

    Hypertension is the leading risk factor for ischemic and intracerebral hemorrhagic subtypes of stroke. Additionally, high blood pressure (BP) in the acute cerebrovascular event is associated with poor outcome, and a high percentage of stroke survivors have inadequate control of hypertension. The present is a systematic review of prospective, randomized, and controlled trials carried out on safety and efficacy of antihypertensive treatment of both subtypes of acute stroke. Six trials involving 7512 patients were included, which revealed controversies on the speed and the goals of treatment. These controversies could be due at least in part, from the fact that some studies analyzed the results of antihypertensive treatment in ischemic and intracerebral hemorrhagic subtypes of acute stroke together, and from a different prevalence of past-stroke in the randomized groups. Further research is necessary to establish whether standard antihypertensive treatment provides greater benefit than simple observation in patients with ischemic acute stroke and Stage 2 hypertension of JNC 7, albeit they were not candidates for acute reperfusion. In that case, the target reduction in BP could be 10% to 15% within 24 hours. The recently published INTERACT 2 has provided evidence that patients with hemorrhagic stroke may receive intensive antihypertensive treatment safely with the goal of reducing systolic BP to levels no lower than 130 mm Hg. It is important to take into account that marked BP lowering in acute stroke increases the risk of poor outcome by worsening cerebral ischemia from deterioration of cerebral blood flow autoregulation. PMID:24220549

  4. First aid for acute sports injuries.

    PubMed

    Bull, R C

    1987-09-01

    This article deals with management of acute sports injuries on the field or on the ice and in the dressing room or in the arena's first-aid room. Its most vital message is "Be prepared". A team approach and suitable ambulance and hospital back-up are mandatory. Individual management of a specific acute injury should be approached with a practice plan. Collars, splints, back board, doctor's bag, ambu bag, suture tray and emergency medications should be at hand. Care must be taken that no long-term harm befalls the player. The attending physician must be knowledgeable about preventive equipment and immediate institution of rehabilitation procedures, and must try to inform the coach or trainer and parent as to when the athlete can safely return to play. It is important that the athlete not return to play until he/she is 100% fit. PMID:21263977

  5. Sodium hypochlorite-induced acute kidney injury.

    PubMed

    Peck, Brandon W; Workeneh, Biruh; Kadikoy, Huseyin; Abdellatif, Abdul

    2014-03-01

    Sodium hypochlorite (bleach) is commonly used as an irrigant during dental procedures as well as a topical antiseptic agent. Although it is generally safe when applied topically, reports of accidental injection of sodium hypochlorite into tissue have been reported. Local necrosis, pain and nerve damage have been described as a result of exposure, but sodium hypo-chlorite has never been implicated as a cause of an acute kidney injury (AKI). In this report, we describe the first case of accidental sodium hypochlorite injection into the infraorbital tissue during a dental procedure that precipitated the AKI. We speculate that oxidative species induced by sodium hypochlorite caused AKI secondary to the renal tubular injury, causing mild acute tubular necrosis. PMID:24626008

  6. Reduction of zinc accumulation in mitochondria contributes to decreased cerebral ischemic injury by normobaric hyperoxia treatment in an experimental stroke model.

    PubMed

    Dong, Wen; Qi, Zhifeng; Liang, Jia; Shi, Wenjuan; Zhao, Yongmei; Luo, Yumin; Ji, Xunming; Liu, Ke Jian

    2015-10-01

    Cerebral ischemia interrupts oxygen supply to the affected tissues. Our previous studies have reported that normobaric hyperoxia (NBO) can maintain interstitial partial pressure of oxygen (pO2) in the penumbra of ischemic stroke rats at the physiological level, thus affording significant neuroprotection. However, the mechanisms that are responsible for the penumbra rescue by NBO treatment are not fully understood. Recent studies have shown that zinc, an important mediator of intracellular and intercellular neuronal signaling, accumulates in neurons and leads to ischemic neuronal injury. In this study, we investigate whether NBO could regulate zinc accumulation in the penumbra and prevent mitochondrial damage in penumbral tissue using a transient cerebral ischemic rat model. Our results showed that NBO significantly reduced zinc-staining positive cells and zinc-staining intensity in penumbral tissues, but not in the ischemic core. Moreover, ischemia-induced zinc accumulation in mitochondria, isolated from penumbral tissues, was greatly attenuated by NBO or a zinc-specific chelator, N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN). NBO or TPEN administration stabilized the mitochondrial membrane potential in the penumbra after cerebral ischemia. Finally, ischemia-induced cytochrome c release from mitochondria in penumbral tissues was significantly reduced by NBO or TPEN treatment. These findings demonstrate a novel mechanism for NBO's neuroprotection, especially to penumbral tissues, providing further evidence for the potential clinical benefit of NBO for acute ischemic stroke. PMID:25891441

  7. Ischaemic Markers in Acute Hepatic Injury

    PubMed Central

    Jena, Sushanta Kumar; Nanda, Rachita; Mangaraj, Manaswini; Nayak, Parsuram

    2016-01-01

    Introduction Hepatic injury of varied aetiology may progress to Acute Liver Failure (ALF). Compromised microcirculation is thought to be a deciding factor of hepatic hypoxia may be involved in disease progression that needs early detection. Ischaemia markers like serum Ischaemia- modified albumin (IMA), ALT-LDH ratio and ALT-LDH index have been suggested for its detection at early stage. Aim To find out the association of Ischaemia markers like serum IMA, ALT-LDH ratio and ALT-LDH index in acute hepatic injury cases. Materials and Methods Forty one diagnosed acute liver injury cases of varied aetiology admitted in Department of Medicine, and Gastroenterology of SCB Medical College, Cuttack were enrolled in the study along with 30 age and sex matched healthy controls. Blood collected at time of admission and at time of discharge (1st day and 7th day) were evaluated for FPG, RFT, LFT, Serum Albumin along with serum LDH, IMA, PT-INR and platelet count. Result Serum bilirubin, hepatic enzymes, IMA, PT-INR was more markedly raised in cases than controls on the 1st day of admission. ALT-LDH ratio and index were significantly low in complicated cases. However, on responding to treatment the ALT-LDH index on 7th day registered a rise in comparison to the 1st day, while serum IMA revealed an insignificant decline showing improvement in hepatic hypoxia. ALT-LDH ratio remains more or less same on response to treatment. Conclusion Serum IMA and ALT-LDH Index reveals association with disease process in Acute Hepatic Injury cases both clinically and biochemically and can be used as supportive parameters for the diagnosis of disease process. PMID:27190791

  8. Dengue-associated acute kidney injury

    PubMed Central

    Oliveira, João Fernando Picollo; Burdmann, Emmanuel A.

    2015-01-01

    Dengue is presently the most relevant viral infection transmitted by a mosquito bite that represents a major threat to public health worldwide. Acute kidney injury (AKI) is a serious and potentially lethal complication of this disease, and the actual incidence is unknown. In this review, we will assess the most relevant epidemiological and clinical data regarding dengue and the available evidence on the frequency, etiopathogenesis, outcomes and treatment of dengue-associated AKI. PMID:26613023

  9. Modulation of acute lung injury by integrins.

    PubMed

    Sheppard, Dean

    2012-07-01

    Acute lung injury is a common disorder with a high mortality rate, but previous efforts to develop drugs to treat this disorder have been unsuccessful. In an effort to develop more effective treatments, we have been studying the molecular pathways that regulate the dysfunction of alveolar epithelial cells and endothelial cells that serve as a final common pathway leading to alveolar flooding. Using integrin subunit knockout mice and antibodies we developed by immunizing these mice, we have found important and distinct roles for the αvβ6 integrin on epithelial cells and the αvβ5 integrin on endothelial cells in mediating increases in alveolar permeability in multiple models of acute lung injury. We have also found therapeutic effects of αvβ5 inhibition in two models of septic shock even when the antibody was administered to animals that were obviously ill. These results identify αvβ6 and αvβ5 as promising therapeutic targets for the treatment of acute lung injury and septic shock. PMID:22802286

  10. Genetic Ablation of Pannexin1 Protects Retinal Neurons from Ischemic Injury

    PubMed Central

    Dvoriantchikova, Galina; Ivanov, Dmitry; Barakat, David; Grinberg, Alexander; Wen, Rong; Slepak, Vladlen Z.; Shestopalov, Valery I.

    2012-01-01

    Pannexin1 (Panx1) forms large nonselective membrane channel that is implicated in paracrine and inflammatory signaling. In vitro experiments suggested that Panx1 could play a key role in ischemic death of hippocampal neurons. Since retinal ganglion cells (RGCs) express high levels of Panx1 and are susceptible to ischemic induced injury, we hypothesized that Panx1 contributes to rapid and selective loss of these neurons in ischemia. To test this hypothesis, we induced experimental retinal ischemia followed by reperfusion in live animals with the Panx1 channel genetically ablated either in the entire mouse (Panx1 KO), or only in neurons using the conditional knockout (Panx1 CKO) technology. Here we report that two distinct neurotoxic processes are induced in RGCs by ischemia in the wild type mice but are inactivated in Panx1KO and Panx1 CKO animals. First, the post-ischemic permeation of RGC plasma membranes is suppressed, as assessed by dye transfer and calcium imaging assays ex vivo and in vitro. Second, the inflammasome-mediated activation of caspase-1 and the production of interleukin-1β in the Panx1 KO retinas are inhibited. Our findings indicate that post-ischemic neurotoxicity in the retina is mediated by previously uncharacterized pathways, which involve neuronal Panx1 and are intrinsic to RGCs. Thus, our work presents the in vivo evidence for neurotoxicity elicited by neuronal Panx1, and identifies this channel as a new therapeutic target in ischemic pathologies. PMID:22384122

  11. Treatment with Isorhamnetin Protects the Brain Against Ischemic Injury in Mice.

    PubMed

    Zhao, Jin-Jing; Song, Jin-Qing; Pan, Shu-Yi; Wang, Kai

    2016-08-01

    Ischemic stroke is a major cause of morbidity and mortality, yet lacks effective neuroprotective treatments. The aim of this work was to investigate whether treatment with isorhamnetin protected the brain against ischemic injury in mice. Experimental stroke mice underwent the filament model of middle cerebral artery occlusion with reperfusion. Treatment with isorhamnetin or vehicle was initiated immediately at the onset of reperfusion. It was found that treatment of experimental stroke mice with isorhamnetin reduced infarct volume and caspase-3 activity (a biomarker of apoptosis), and improved neurological function recovery. Treatment of experimental stroke mice with isorhamnetin attenuated cerebral edema, improved blood-brain barrier function, and upregulated gene expression of tight junction proteins including occludin, ZO-1, and claudin-5. Treatment of experimental stroke mice with isorhamnetin activated Nrf2/HO-1, suppressed iNOS/NO, and led to reduced formation of MDA and 3-NT in ipsilateral cortex. In addition, treatment of experimental stroke mice with isorhamnetin suppressed activity of MPO (a biomarker of neutrophil infiltration) and reduced protein levels of IL-1β, IL-6, and TNF-α in ipsilateral cortex. Furthermore, it was found that treatment of experimental stroke mice with isorhamnetin reduced mRNA and protein expression of NMDA receptor subunit NR1 in ipsilateral cortex. In conclusion, treatment with isorhamnetin protected the brain against ischemic injury in mice. Isorhamnetin could thus be envisaged as a countermeasure for ischemic stroke but remains to be tested in humans. PMID:27161367

  12. Sex-dependent effects of sleep deprivation on myocardial sensitivity to ischemic injury.

    PubMed

    Zoladz, Phillip R; Krivenko, Anna; Eisenmann, Eric D; Bui, Albert D; Seeley, Sarah L; Fry, Megan E; Johnson, Brandon L; Rorabaugh, Boyd R

    2016-01-01

    Sleep deprivation is associated with increased risk of myocardial infarction. However, it is unknown whether the effects of sleep deprivation are limited to increasing the likelihood of experiencing a myocardial infarction or if sleep deprivation also increases the extent of myocardial injury. In this study, rats were deprived of paradoxical sleep for 96 h using the platform-over-water method. Control rats were subjected to the same condition except the control platform was large enough for the rats to sleep. Hearts from sleep deprived and control rats were subjected to 20 min ischemia on a Langendorff isolated heart system. Infarct size and post ischemic recovery of contractile function were unaffected by sleep deprivation in male hearts. In contrast, hearts from sleep-deprived females exhibited significantly larger infarcts than hearts from control females. Post ischemic recovery of rate pressure product and + dP/dT were significantly attenuated by sleep deprivation in female hearts, and post ischemic recovery of end diastolic pressure was significantly elevated in hearts from sleep deprived females compared to control females, indicating that post ischemic recovery of both systolic and diastolic function were worsened by sleep deprivation. These data provide evidence that sleep deprivation increases the extent of ischemia-induced injury in a sex-dependent manner. PMID:26953626

  13. The role of Na+/Ca2+ exchanger subtypes in neuronal ischemic injury.

    PubMed

    Shenoda, Botros

    2015-06-01

    The Na(+)/Ca(2+) exchanger (NCX) plays an important role in the maintenance of Na(+) and Ca(2+) homeostasis in most cells including neurons under physiological and pathological conditions. It exists in three subtypes (NCX1-3) with different tissue distributions but all of them are present in the brain. NCX transports Na(+) and Ca(2+) in either Ca(2+)-efflux (forward) or Ca(2+)-influx (reverse) mode, depending on membrane potential and transmembrane ion gradients. During neuronal ischemia, Na(+) and Ca(2+) ionic disturbances favor NCX to work in reverse mode, giving rise to increased intracellular Ca(2+) levels, while it may regain its forward mode activity on reperfusion. The exact significance of NCX in neuronal ischemic and reperfusion states remains unclear. The differential role of NCX subtypes in ischemic neuronal injury has been extensively investigated using various pharmacological tools as well as genetic models. This review discusses the mode of action of NCX in ischemic and reperfusion states, the differential roles played by NCX subtypes in these states as well as the role of NCX in pre- and postconditioning. NCX subtypes carry variable roles in ischemic injury. Furthermore, the mode of action of each subtype varies in ischemia and reperfusion states. Thus, therapeutic targeting of NCX in stroke should be based on appropriate timing of the administration of NCX subtype-specific strategies. PMID:25860439

  14. Acute kidney injury due to rhabdomyolysis.

    PubMed

    Lima, Rafael Siqueira Athayde; da Silva Junior, Geraldo Bezerra; Liborio, Alexandre Braga; Daher, Elizabeth De Francesco

    2008-09-01

    Rhabdomyolysis is a clinical and biochemical syndrome that occurs when skeletal muscle cells disrupt and release creatine phosphokinase (CK), lactate dehydrogenase (LDH), and myoglobin into the interstitial space and plasma. The main causes of rhabdomyolysis include direct muscular injury, strenuous exercise, drugs, toxins, infections, hyperthermia, seizures, meta-bolic and/or electrolyte abnormalities, and endocrinopathies. Acute kidney injury (AKI) occurs in 33-50% of patients with rhabdomyolysis. The main pathophysiological mechanisms of renal injury are renal vasoconstriction, intraluminal cast formation, and direct myoglobin toxicity. Rhabdo-myolysis can be asymptomatic, present with mild symptoms such as elevation of muscular en-zymes, or manifest as a severe syndrome with AKI and high mortality. Serum CK five times higher than the normal value usually confirms rhabdomyolysis. Early diagnosis and saline volume expansion may reduce the risk of AKI. Further studies are necessary to establish the importance of bicarbonate and mannitol in the prevention of AKI due to rhabdomyolysis. PMID:18711286

  15. Antifibrinolytic drugs for acute traumatic injury.

    PubMed

    McCaul, Michael; Kredo, Tamara

    2016-08-01

    In South Africa, trauma is a major concern, with violence and road traffic accidents being the fifth and seventh leading causes of death, respectively. Antifibrinolytic agents have been used in trauma and major surgery to prevent fibrinolysis and reduce blood loss. We highlight an updated Cochrane review investigating the effect of antifibrinolytic drugs in patients with acute traumatic injury. The review authorsconducted comprehensive literature searches in January 2015 with regard to all randomised controlled trials comparing antifibrinolytic agents after acute traumatic injury. Three randomised controlled trials, of which two (n=20 451) assessed the effect of tranexamic acid (TXA), were included. The authors concluded that TXA safely reduces mortality in trauma with bleeding without increasing the risk ofadverse events. TXA should be administered as early as possible, and within 3 hours of injury. There is still uncertainty with regard to the effect of TXA on patients with traumatic brain injury; however, ongoing randomised controlled trials should shed more light on this. PMID:27499400

  16. Interleukin-1 and acute brain injury

    PubMed Central

    Murray, Katie N.; Parry-Jones, Adrian R.; Allan, Stuart M.

    2015-01-01

    Inflammation is the key host-defense response to infection and injury, yet also a major contributor to a diverse range of diseases, both peripheral and central in origin. Brain injury as a result of stroke or trauma is a leading cause of death and disability worldwide, yet there are no effective treatments, resulting in enormous social and economic costs. Increasing evidence, both preclinical and clinical, highlights inflammation as an important factor in stroke, both in determining outcome and as a contributor to risk. A number of inflammatory mediators have been proposed as key targets for intervention to reduce the burden of stroke, several reaching clinical trial, but as yet yielding no success. Many factors could explain these failures, including the lack of robust preclinical evidence and poorly designed clinical trials, in addition to the complex nature of the clinical condition. Lack of consideration in preclinical studies of associated co-morbidities prevalent in the clinical stroke population is now seen as an important omission in previous work. These co-morbidities (atherosclerosis, hypertension, diabetes, infection) have a strong inflammatory component, supporting the need for greater understanding of how inflammation contributes to acute brain injury. Interleukin (IL)-1 is the prototypical pro-inflammatory cytokine, first identified many years ago as the endogenous pyrogen. Research over the last 20 years or so reveals that IL-1 is an important mediator of neuronal injury and blocking the actions of IL-1 is beneficial in a number of experimental models of brain damage. Mechanisms underlying the actions of IL-1 in brain injury remain unclear, though increasing evidence indicates the cerebrovasculature as a key target. Recent literature supporting this and other aspects of how IL-1 and systemic inflammation in general contribute to acute brain injury are discussed in this review. PMID:25705177

  17. Serum activity of angiotensin converting enzyme 2 is decreased in patients with acute ischemic stroke.

    PubMed

    Bennion, Douglas M; Rosado, Christian A; Haltigan, Emily A; Regenhardt, Robert W; Sumners, Colin; Waters, Michael F

    2016-07-01

    Levels of angiotensin converting enzyme 2 (ACE2), a cardio and neuro-protective carboxypeptidase, are dynamically altered after stroke in preclinical models. We sought to characterize the previously unexplored changes in serum ACE2 activity of stroke patients and the mechanism of these changes. Serum samples were obtained from patients during acute ischemic stroke (n=39), conditions mimicking stroke (stroke-alert, n=23), or from control participants (n=20). Enzyme activity levels were analyzed by fluorometric assay and correlated with clinical variables by regression analyses. Serum ACE2 activity was significantly lower in acute ischemic stroke as compared to both control and stroke-alert patients, followed by an increase to control levels at three days. Serum ACE2 activity significantly correlated with the presence of ischemic stroke after controlling for other factors (P=0.01). Additional associations with ACE2 activity included a positive correlation with systolic blood pressure at presentation in stroke-alert (R(2)=0.24, P=0.03), while stroke levels showed no correlation (R(2)=0.01, P=0.50). ACE2 sheddase activity was unchanged between groups. These dynamic changes in serum ACE2 activity in stroke, which concur with preclinical studies, are not likely to be driven primarily by acute changes in blood pressure or sheddase activity. These findings provide new insight for developing therapies targeting this protective system in ischemic stroke. PMID:27488276

  18. Inhibition of miR-15 Protects Against Cardiac Ischemic Injury

    PubMed Central

    Hullinger, Thomas G.; Montgomery, Rusty L.; Seto, Anita G.; Dickinson, Brent A.; Semus, Hillary M.; Lynch, Joshua M.; Dalby, Christina M.; Robinson, Kathryn; Stack, Christianna; Latimer, Paul A.; Hare, Joshua M.; Olson, Eric N.; van Rooij, Eva

    2012-01-01

    Rationale Myocardial infarction (MI) is a leading cause of death worldwide. Because endogenous cardiac repair mechanisms are not sufficient for meaningful tissue regeneration, MI results in loss of cardiac tissue and detrimental remodeling events. MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression in a sequence dependent manner. Our previous data indicate that miRNAs are dysregulated in response to ischemic injury of the heart and actively contribute to cardiac remodeling after MI. Objective This study was designed to determine whether miRNAs are dysregulated on ischemic damage in porcine cardiac tissues and whether locked nucleic acid (LNA)-modified anti-miR chemistries can target cardiac expressed miRNAs to therapeutically inhibit miR-15 on ischemic injury. Methods and Results Our data indicate that the miR-15 family, which includes 6 closely related miRNAs, is regulated in the infarcted region of the heart in response to ischemia-reperfusion injury in mice and pigs. LNA-modified chemistries can effectively silence miR-15 family members in vitro and render cardiomyocytes resistant to hypoxia-induced cardiomyocyte cell death. Correspondingly, systemic delivery of miR-15 anti-miRs dose-dependently represses miR-15 in cardiac tissue of both mice and pigs, whereas therapeutic targeting of miR-15 in mice reduces infarct size and cardiac remodeling and enhances cardiac function in response to MI. Conclusions Oligonucleotide-based therapies using LNA-modified chemistries for modulating cardiac miRNAs in the setting of heart disease are efficacious and validate miR-15 as a potential therapeutic target for the manipulation of cardiac remodeling and function in the setting of ischemic injury. PMID:22052914

  19. HCaRG Accelerates Tubular Repair after Ischemic Kidney Injury

    PubMed Central

    Matsuda, Hiroyuki; Lavoie, Julie L.; Gaboury, Louis; Hamet, Pavel

    2011-01-01

    The repair of the kidney after ischemia/reperfusion injury involves proliferation of proximal tubular epithelial cells as well as cell migration and differentiation. Immediately after reperfusion, expression of hypertension-related calcium-regulated gene (HCaRG/COMMD5) decreases, but its expression increases even higher than baseline during repair. HCaRG inhibits proliferation and accelerates wound healing and differentiation in cultured cells, but whether HCaRG can stimulate renal repair after ischemia/reperfusion injury is unknown. Here, transgenic mice overexpressing human HCaRG survived longer and recovered renal function faster than littermate controls after ischemia/reperfusion (64% versus 25% survival at 7 days). Proliferation of proximal tubular epithelial cells stopped earlier after ischemia/reperfusion injury, E-cadherin levels recovered more rapidly, and vimentin induction abated faster in transgenic mice. HCaRG overexpression also reduced macrophage infiltration and inflammation after injury. Taken together, these data suggest that HCaRG accelerates repair of renal proximal tubules by modulating cell proliferation of resident tubular epithelial cells and by facilitating redifferentiation. PMID:21921141

  20. Prenatal methamphetamine differentially alters myocardial sensitivity to ischemic injury in male and female adult hearts.

    PubMed

    Rorabaugh, Boyd R; Seeley, Sarah L; Bui, Albert D; Sprague, Lisanne; D'Souza, Manoranjan S

    2016-02-15

    Methamphetamine is one of the most common illicit drugs abused during pregnancy. The neurological effects of prenatal methamphetamine are well known. However, few studies have investigated the potential effects of prenatal methamphetamine on adult cardiovascular function. Previous work demonstrated that prenatal cocaine exposure increases sensitivity of the adult heart to ischemic injury. Methamphetamine and cocaine have different mechanisms of action, but both drugs exert their effects by increasing dopaminergic and adrenergic receptor stimulation. Thus the goal of this study was to determine whether prenatal methamphetamine also worsens ischemic injury in the adult heart. Pregnant rats were injected with methamphetamine (5 mg·kg(-1)·day(-1)) or saline throughout pregnancy. When pups reached 8 wk of age, their hearts were subjected to ischemia and reperfusion by means of a Langendorff isolated heart system. Prenatal methamphetamine had no significant effect on infarct size, preischemic contractile function, or postischemic recovery of contractile function in male hearts. However, methamphetamine-treated female hearts exhibited significantly larger infarcts and significantly elevated end-diastolic pressure during recovery from ischemia. Methamphetamine significantly reduced protein kinase Cε expression and Akt phosphorylation in female hearts but had no effect on these cardioprotective proteins in male hearts. These data indicate that prenatal methamphetamine differentially affects male and female sensitivity to myocardial ischemic injury and alters cardioprotective signaling proteins in the adult heart. PMID:26683901

  1. The role of morphine in a rat model of hypoxic-ischemic injury.

    PubMed

    Festekjian, Ara; Ashwal, Stephen; Obenaus, Andre; Angeles, Danilyn M; Denmark, T Kent

    2011-08-01

    We investigated whether morphine plays a neuroprotective role in a neonatal rat pup model of bilateral carotid artery occlusion with hypoxia. At postnatal day 10, rats received either morphine (n = 7), naloxone (n = 7), or saline placebo (n = 15) after hypoxic-ischemic injury. Survival (days), weight gain and animal testing (negative geotaxis, surface righting, and rotarod) were compared between treatment groups. Lesion volume was delineated with magnetic resonance imaging at days 7 and 28-57 after injury. Survival in rats treated with morphine, naloxone, or saline was, respectively, 14, 29, and 73%. Median number of days of survival after bilateral carotid artery occlusion with hypoxia treated with morphine was 4 (95% confidence interval 4 to 22), with naloxone was 3 (95% confidence interval -1.4 to 21), and with placebo was 28 (95% confidence interval 18 to 28). There were no statistically significant differences in magnetic resonance imaging-derived ischemic lesion volumes, weight gain, or behavioral testing measures between the groups. Morphine was ineffective as a neuroprotectant in rat pups with severe hypoxic-ischemic injury and may have contributed to their decreased survival. PMID:21763946

  2. Ameliorative effects of Gualou Guizhi decoction on inflammation in focal cerebral ischemic-reperfusion injury

    PubMed Central

    ZHANG, YUQIN; ZHANG, SHENGNAN; LI, HUANG; HUANG, MEI; XU, WEI; CHU, KEDAN; CHEN, LIDIAN; CHEN, XIANWEN

    2015-01-01

    Gualou Guizhi decoction (GLGZD) is a well-established Traditional Chinese Medicinal formulation which has long been used to treat stroke in a clinical setting in China. The present study investigated the ameliorative effects of GLGZD on inflammation in focal cerebral ischemic-reperfusion injury. A rat model of middle cerebral artery occlusion (MCAO) was employed. Rats were administrated GLGZD (7.2 and 14.4 g/kg per day) or saline as control 2 h after reperfusion and daily over the following seven days. Neurological deficit score and screen test were evaluated at 1, 3, 5 and 7 days after MCAO. Brain infarct size and brain histological changes were observed via 2,3,5-triphenyltetrazolium chloride staining and regular hematoxylin & eosin staining. Furthermore, inflammation mediators and nuclear factor-κB (NF-κB) were investigated using ELISA and immunohistochemistry. GLGZD treatment significantly improved neurological function, ameliorated histological changes to the brain and decreased infarct size in focal cerebral ischemic-reperfusion injury. GLGZD was found to significantly reduce interleukin (IL)-1, tumor necrosis factor-α and NF-κB levels, while increasing levels of IL-10. In conclusion, the present study suggested that GLGZD has a neuroprotective effect on focal cerebral ischemic-reperfusion injury and this effect is likely to be associated with the anti-inflammatory function of GLGZD. PMID:25815894

  3. Quality Improvement in Acute Ischemic Stroke Care in Taiwan: The Breakthrough Collaborative in Stroke.

    PubMed

    Hsieh, Fang-I; Jeng, Jiann-Shing; Chern, Chang-Ming; Lee, Tsong-Hai; Tang, Sung-Chun; Tsai, Li-Kai; Liao, Hsun-Hsiang; Chang, Hang; LaBresh, Kenneth A; Lin, Hung-Jung; Chiou, Hung-Yi; Chiu, Hou-Chang; Lien, Li-Ming

    2016-01-01

    In the management of acute ischemic stroke, guideline adherence is often suboptimal, particularly for intravenous thrombolysis or anticoagulation for atrial fibrillation. We sought to improve stroke care quality via a collaborative model, the Breakthrough Series (BTS)-Stroke activity, in a nationwide, multi-center activity in Taiwan. A BTS Collaborative, a short-term learning system for a large number of multidisciplinary teams from hospitals, was applied to enhance acute ischemic stroke care quality. Twenty-four hospitals participated in and submitted data for this stroke quality improvement campaign in 2010-2011. Totally, 14 stroke quality measures, adopted from the Get With The Guideline (GWTG)-Stroke program, were used to evaluate the performance and outcome of the ischemic stroke patients. Data for a one-year period from 24 hospitals with 13,181 acute ischemic stroke patients were analyzed. In 14 hospitals, most stroke quality measures improved significantly during the BTS-activity compared with a pre-BTS-Stroke activity period (2006-08). The rate of intravenous thrombolysis increased from 1.2% to 4.6%, door-to-needle time ≤60 minutes improved from 7.1% to 50.8%, symptomatic hemorrhage after intravenous thrombolysis decreased from 11.0% to 5.6%, and anticoagulation therapy for atrial fibrillation increased from 32.1% to 64.1%. The yearly composite measures of five stroke quality measures revealed significant improvements from 2006 to 2011 (75% to 86.3%, p<0.001). The quarterly composite measures also improved significantly during the BTS-Stroke activity. In conclusion, a BTS collaborative model is associated with improved guideline adherence for patients with acute ischemic stroke. GWTG-Stroke recommendations can be successfully applied in countries besides the United States. PMID:27487190

  4. Quality Improvement in Acute Ischemic Stroke Care in Taiwan: The Breakthrough Collaborative in Stroke

    PubMed Central

    Chern, Chang-Ming; Lee, Tsong-Hai; Tang, Sung-Chun; Tsai, Li-Kai; Liao, Hsun-Hsiang; Chang, Hang; LaBresh, Kenneth A.; Lin, Hung-Jung; Chiou, Hung-Yi; Chiu, Hou-Chang; Lien, Li-Ming

    2016-01-01

    In the management of acute ischemic stroke, guideline adherence is often suboptimal, particularly for intravenous thrombolysis or anticoagulation for atrial fibrillation. We sought to improve stroke care quality via a collaborative model, the Breakthrough Series (BTS)-Stroke activity, in a nationwide, multi-center activity in Taiwan. A BTS Collaborative, a short-term learning system for a large number of multidisciplinary teams from hospitals, was applied to enhance acute ischemic stroke care quality. Twenty-four hospitals participated in and submitted data for this stroke quality improvement campaign in 2010–2011. Totally, 14 stroke quality measures, adopted from the Get With The Guideline (GWTG)-Stroke program, were used to evaluate the performance and outcome of the ischemic stroke patients. Data for a one-year period from 24 hospitals with 13,181 acute ischemic stroke patients were analyzed. In 14 hospitals, most stroke quality measures improved significantly during the BTS-activity compared with a pre-BTS-Stroke activity period (2006–08). The rate of intravenous thrombolysis increased from 1.2% to 4.6%, door-to-needle time ≤60 minutes improved from 7.1% to 50.8%, symptomatic hemorrhage after intravenous thrombolysis decreased from 11.0% to 5.6%, and anticoagulation therapy for atrial fibrillation increased from 32.1% to 64.1%. The yearly composite measures of five stroke quality measures revealed significant improvements from 2006 to 2011 (75% to 86.3%, p<0.001). The quarterly composite measures also improved significantly during the BTS-Stroke activity. In conclusion, a BTS collaborative model is associated with improved guideline adherence for patients with acute ischemic stroke. GWTG-Stroke recommendations can be successfully applied in countries besides the United States. PMID:27487190

  5. Mechanisms of Neurovascular Dysfunction in Acute Ischemic Brain

    PubMed Central

    Terasaki, Y.; Liu, Y.; Hayakawa, K.; Pham, L.D.; Lo, E.H.; Ji, X.; Arai, K.

    2014-01-01

    The neurovascular unit is now well accepted as a conceptual framework for investigating the mechanisms of ischemic stroke. From a molecular and cellular perspective, three broad mechanisms may underlie stroke pathophysiology – excitotoxicity, oxidative stress and inflammation. To date, however, most investigations of these basic mechanisms have focused on neuronal responses. In this mini-review, we ask whether these mechanisms of excitotoxicity, oxidative stress and inflammation can also be examined in terms of non-neuronal interactions in the neurovascular unit, including the release of extracellular vesicles for cell-cell signaling. PMID:24372202

  6. Birth Asphyxia and Hypoxic-Ischemic Brain Injury in the Preterm Infant.

    PubMed

    Laptook, Abbot R

    2016-09-01

    Birth asphyxia, also termed perinatal hypoxia-ischemia, is a modifiable condition as evidenced by improved outcomes of infants ≥36 weeks' gestation provided hypothermia treatment in randomized trials. Preterm animal models of asphyxia in utero demonstrate that hypothermia can provide short-term neuroprotection for the developing brain, supporting the interest in extending therapeutic hypothermia to preterm infants. This review focuses on the challenge of identifying preterm infants with perinatal asphyxia; the neuropathology of hypoxic-ischemic brain injury across extreme, moderate, and late preterm infants; and patterns of brain injury, use of therapeutic hypothermia, and approach to patient selection for neuroprotective treatments among preterm infants. PMID:27524452

  7. Ameliorative Effect of Recombinant Human Erythropoietin and Ischemic Preconditioning on Renal Ischemia Reperfusion Injury in Rats

    PubMed Central

    Elshiekh, Mohammed; Kadkhodaee, Mehri; Seifi, Behjat; Ranjbaran, Mina; Ahghari, Parisa

    2015-01-01

    Background: Ischemia-reperfusion (IR) injury is one of the most common causes of renal dysfunction. There is increasing evidence about the role of the reactive oxygen species (ROS) in these injuries and endogenous antioxidants seem to have an important role in decreasing the renal tissue injury. Objectives: The aim of this study was to compare the effect of recombinant human erythropoietin (EPO) and ischemic preconditioning (IPC) on renal IR injury. Materials and Methods: Twenty four male Wistar rats were allocated into four experimental groups: sham-operated, IR, EPO + IR, and IPC + IR. Rats were underwent 50 minutes bilateral ischemia followed by 24 hours reperfusion. Erythropoietin (5000 IU/kg, i.p) was administered 30 minutes before onset of ischemia. Ischemic preconditioning was performed by three cycles of 3 minutes ischemia followed by 3 minutes reperfusion. Plasma concentrations of urea and creatinine were measured. Kidney samples were taken for reactive oxidative species (ROS) measurement including superoxide dismutase (SOD) activity, glutathione (GSH) contents, and malondialdehyde (MDA) levels. Results: Compared to the sham group, IR led to renal dysfunction as evidenced by significantly higher plasma urea and creatinine. Treatment with EPO or IPC decreased urea, creatinine, and renal MDA levels and increased SOD activity and GSH contents in the kidney. Conclusions: Pretreatment with EPO and application of IPC significantly ameliorated the renal injury induced by bilateral renal IR. However, both treatments attenuated renal dysfunction and oxidative stress in kidney tissues. There were no significant differences between pretreatment with EPO or application of IPC. PMID:26866008

  8. Cromolyn ameliorates acute and chronic injury in a rat lung transplant model

    PubMed Central

    Chang, Jui-Chih; Leung, Jason; Tang, Tao; Holzknecht, Zoie E.; Hartwig, Matthew G.; Davis, R. Duane; Parker, William; Abraham, Soman N.; Lin, Shu S.

    2015-01-01

    BACKGROUND Mast cells have been associated with obliterative bronchiolitis (OB) in human pulmonary allografts, although their role in the development of OB remains unknown. METHODS In this study, we evaluated the role of mast cells in pulmonary allograft rejection using an orthotopic rat pulmonary allograft model that utilizes chronic aspiration of gastric fluid to reliably obtain OB. Pulmonary allograft recipients (n = 35) received chronic aspiration of gastric fluid with (n = 10) and without (n = 16) treatment with a mast cell membrane stabilizer, cromolyn sodium, or chronic aspiration with normal saline (n = 9) as a control. RESULTS The acute graft injury associated with long ischemic time in the model (6 hours total ischemic time; typical acute graft injury rate ~30%) was apparently blocked by cromolyn, because peri-operative mortality associated with the acute graft injury was not observed in any of the animals receiving cromolyn (p = 0.045). Further, the rats receiving cromolyn developed significantly fewer OB lesions than those treated with gastric fluid alone (p < 0.001), with a mean reduction of 46% of the airways affected. CONCLUSIONS These findings provide impetus for further studies aimed at elucidating the effects of cromolyn and the role of mast cells in pulmonary allotransplantation. PMID:24768366

  9. Totarol prevents neuronal injury in vitro and ameliorates brain ischemic stroke: Potential roles of Akt activation and HO-1 induction.

    PubMed

    Gao, Yuanxue; Xu, Xiaojun; Chang, Sai; Wang, Yunjie; Xu, Yazhou; Ran, Siqi; Huang, Zhangjian; Li, Ping; Li, Jia; Zhang, Luyong; Saavedra, Juan M; Liao, Hong; Pang, Tao

    2015-12-01

    The natural product totarol, a phenolic diterpenoid and a major constituent isolated from the sap of Podocarpus totara, has been reported to have a potent antimicrobial activity. In this study, we determined whether totarol possessed an additional neuroprotective activity in vitro and in vivo. We found that totarol prevented glutamate- and oxygen and glucose deprivation-induced neuronal death in primary rat cerebellar granule neuronal cells and cerebral cortical neurons. Totarol increased Akt and GSK-3β phosphorylation, Nrf2 and heme oxygenase-1 (HO-1) protein expressions and suppressed oxidative stress by increasing GSH and SOD activities. The PI3K/Akt inhibitor LY294002 prevented totarol neuroprotective effect by suppressing the totarol-induced changes in HO-1 expression and the activities of GSH and SOD. The HO-1 inhibitor ZnPPIX also prevented totarol-increased GSH and SOD activities. In a model of acute cerebral ischemic injury in Sprague-Dawley rats, produced by occlusion of the middle cerebral artery for 2h followed by 22 h or 46 h of reperfusion, totarol significantly reduced infarct volume and improved the neurological deficit. In this model, totarol increased HO-1 expression and the activities of GSH and SOD. These observations suggest that totarol may be a novel activator of the Akt/HO-1 pathway protecting against ischemic stroke through reduction of oxidative stress. PMID:26440581

  10. A fast multiparameter MRI approach for acute stroke assessment on a 3T clinical scanner: preliminary results in a non-human primate model with transient ischemic occlusion

    PubMed Central

    Tong, Frank; Li, Chun-Xia; Yan, Yumei; Nair, Govind; Nagaoka, Tsukasa; Tanaka, Yoji; Zola, Stuart; Howell, Leonard

    2014-01-01

    Many MRI parameters have been explored and demonstrated the capability or potential to evaluate acute stroke injury, providing anatomical, microstructural, functional, or neurochemical information for diagnostic purposes and therapeutic development. However, the application of multiparameter MRI approach is hindered in clinic due to the very limited time window after stroke insult. Parallel imaging technique can accelerate MRI data acquisition dramatically and has been incorporated in modern clinical scanners and increasingly applied for various diagnostic purposes. In the present study, a fast multiparameter MRI approach including structural T1-weighted imaging (T1W), T2-weighted imaging (T2W), diffusion tensor imaging (DTI), T2-mapping, proton magnetic resonance spectroscopy, cerebral blood flow (CBF), and magnetization transfer (MT) imaging, was implemented and optimized for assessing acute stroke injury on a 3T clinical scanner. A macaque model of transient ischemic stroke induced by a minimal interventional approach was utilized for evaluating the multiparameter MRI approach. The preliminary results indicate the surgical procedure successfully induced ischemic occlusion in the cortex and/or subcortex in adult macaque monkeys (n=4). Application of parallel imaging technique substantially reduced the scanning duration of most MRI data acquisitions, allowing for fast and repeated evaluation of acute stroke injury. Hence, the use of the multiparameter MRI approach with up to five quantitative measures can provide significant advantages in preclinical or clinical studies of stroke disease. PMID:24834423

  11. Epidemiology of Overuse and Acute Injuries Among Competitive Collegiate Athletes

    PubMed Central

    Yang, Jingzhen; Tibbetts, Abigail S.; Covassin, Tracey; Cheng, Gang; Nayar, Saloni; Heiden, Erin

    2012-01-01

    Context: Although overuse injuries are gaining attention, epidemiologic studies on overuse injuries in male and female collegiate athletes are lacking. (70.7%) acute injuries were reported. The overall injury rate was Objective: To report the epidemiology of overuse injuries sustained by collegiate athletes and to compare the rates of overuse and acute injuries. Design: Descriptive epidemiology study. Setting: A National Collegiate Athletic Association Division I university. Patients or Other Participants: A total of 1317 reported injuries sustained by 573 male and female athletes in 16 collegiate sports teams during the 2005–2008 seasons. Main Outcome Measure(s): The injury and athlete-exposure (AE) data were obtained from the Sports Injury Monitoring System. An injury was coded as either overuse or acute based on the nature of injury. Injury rate was calculated as the total number of overuse (or acute) injuries during the study period divided by the total number of AEs during the same period. Results: A total of 386 (29.3%) overuse injuries and 931 63.1 per 10000 AEs. The rate ratio (RR) of acute versus overuse injuries was 2.34 (95% confidence interval [CI] = 2.05, 2.67). Football had the highest RR (RR = 8.35, 95% CI = 5.38, 12.97), and women's rowing had the lowest (RR = 0.75, 95% CI = 0.51, 1.10). Men had a higher acute injury rate than women (49.8 versus 38.6 per 10000 AEs). Female athletes had a higher rate of overuse injury than male athletes (24.6 versus 13.2 per 10000 AEs). More than half of the overuse injuries (50.8%) resulted in no time loss from sport. Conclusions: Additional studies are needed to examine why female athletes are at greater risk for overuse injuries and identify the best practices for prevention and rehabilitation of overuse injuries. PMID:22488286

  12. Endoplasmic reticulum stress-regulated CXCR3 pathway mediates inflammation and neuronal injury in acute glaucoma

    PubMed Central

    Ha, Y; Liu, H; Xu, Z; Yokota, H; Narayanan, S P; Lemtalsi, T; Smith, S B; Caldwell, R W; Caldwell, R B; Zhang, W

    2015-01-01

    Acute glaucoma is a leading cause of irreversible blindness in East Asia. The mechanisms underlying retinal neuronal injury induced by a sudden rise in intraocular pressure (IOP) remain obscure. Here we demonstrate that the activation of CXCL10/CXCR3 axis, which mediates the recruitment and activation of inflammatory cells, has a critical role in a mouse model of acute glaucoma. The mRNA and protein expression levels of CXCL10 and CXCR3 were significantly increased after IOP-induced retinal ischemia. Blockade of the CXCR3 pathway by deleting CXCR3 gene significantly attenuated ischemic injury-induced upregulation of inflammatory molecules (interleukin-1β and E-selectin), inhibited the recruitment of microglia/monocyte to the superficial retina, reduced peroxynitrite formation, and prevented the loss of neurons within the ganglion cell layer. In contrast, intravitreal delivery of CXCL10 increased leukocyte recruitment and retinal cell apoptosis. Inhibition of endoplasmic reticulum (ER) stress with chemical chaperones partially blocked ischemic injury-induced CXCL10 upregulation, whereas induction of ER stress with tunicamycin enhanced CXCL10 expression in retina and primary retinal ganglion cells. Interestingly, deleting CXCR3 attenuated ER stress-induced retinal cell death. In conclusion, these results indicate that ER stress-medicated activation of CXCL10/CXCR3 pathway has an important role in retinal inflammation and neuronal injury after high IOP-induced ischemia. PMID:26448323

  13. Mouse models and methods for studying human disease, acute kidney injury (AKI).

    PubMed

    Ramesh, Ganesan; Ranganathan, Punithavathi

    2014-01-01

    Acute kidney injury (AKI) is serious complication in hospitalized patients with high level of mortality. There is not much progress made for the past 50 years in reducing the mortality rate despite advances in understanding disease pathology. Using variety of animal models of acute kidney injury, scientist studies the pathogenic mechanism of AKI and to test therapeutic drugs, which may reduce renal injury. Among them, renal pedicle clamping and cisplatin induced nephrotoxicity in mice are most prominently used, mainly due to the availability of gene knockouts to study specific gene functions, inexpensive and availability of the inbred strain with less genetic variability. However, ischemic mouse model is highly variable and require excellent surgical skills to reduce variation in the observation. In this chapter, we describe a detailed protocol of the mouse model of bilateral renal ischemia-reperfusion and cisplatin induced nephrotoxicity. We also discuss the protocol for the isolation and analysis of infiltrated inflammatory cell into the kidney by flow cytometry. Information provided in this chapter will help scientist who wants to start research on AKI and want to establish the mouse model for ischemic and toxic kidney injury. PMID:25064118

  14. Incidence and Risk Factors for Acute Kidney Injury Following Mannitol Infusion in Patients With Acute Stroke: A Retrospective Cohort Study.

    PubMed

    Lin, Shin-Yi; Tang, Sung-Chun; Tsai, Li-Kai; Yeh, Shin-Joe; Shen, Li-Jiuan; Wu, Fe-Lin Lin; Jeng, Jiann-Shing

    2015-11-01

    Mannitol, an osmotic diuretic, is commonly used to treat patients with acute brain edema, but its use also increases the risk of developing acute kidney injury (AKI). In this study, we investigated the incidence and risk factors of mannitol-related AKI in acute stroke patients.A total of 432 patients (ischemic stroke 62.3%) >20 years of age who were admitted to the neurocritical care center in a tertiary hospital and received mannitol treatment were enrolled in this study. Clinical parameters including the scores of National Institutes of Health Stroke Scale (NIHSS) at admission, vascular risk factors, laboratory data, and concurrent nephrotoxic medications were registered. Acute kidney injury was defined as an absolute elevation in the serum creatinine (Scr) level of ≥0.3 mg/dL from the baseline or a ≥50% increase in Scr.The incidence of mannitol-related AKI was 6.5% (95% confidence interval, 4.5%-9.3%) in acute stroke patients, 6.3% in patients with ischemic stroke, and 6.7% in patients with intracerebral hemorrhage. Multivariate analysis revealed that diabetes, lower estimated glomerular filtration rate at baseline, higher initial NIHSS score, and concurrent use of diuretics increased the risk of mannitol-related AKI. When present, the combination of these elements displayed an area under the receiver operating characteristic curve of 0.839 (95% confidence interval, 0.770-0.909). In conclusion, mannitol-related AKI is not uncommon in the treatment of acute stroke patients, especially in those with vulnerable risk factors. PMID:26632702

  15. A Smoothened receptor agonist is neuroprotective and promotes regeneration after ischemic brain injury

    PubMed Central

    Chechneva, O V; Mayrhofer, F; Daugherty, D J; Krishnamurty, R G; Bannerman, P; Pleasure, D E; Deng, W

    2014-01-01

    Ischemic stroke occurs as a result of blood supply interruption to the brain causing tissue degeneration, patient disabilities or death. Currently, treatment of ischemic stroke is limited to thrombolytic therapy with a narrow time window of administration. The sonic hedgehog (Shh) signaling pathway has a fundamental role in the central nervous system development, but its impact on neural cell survival and tissue regeneration/repair after ischemic stroke has not been well investigated. Here we report the neuroprotective properties of a small-molecule agonist of the Shh co-receptor Smoothened, purmorphamine (PUR), in the middle cerebral artery occlusion model of ischemic stroke. We found that intravenous administration of PUR at 6 h after injury was neuroprotective and restored neurological deficit after stroke. PUR promoted a transient upregulation of tissue-type plasminogen activator in injured neurons, which was associated with a reduction of apoptotic cell death in the ischemic cortex. We also observed a decrease in blood–brain barrier permeability after PUR treatment. At 14 d postinjury, attenuation of inflammation and reactive astrogliosis was found in PUR-treated animals. PUR increased the number of newly generated neurons in the peri-infarct and infarct area and promoted neovascularization in the ischemic zone. Notably, PUR treatment did not significantly alter the ischemia-induced level of Gli1, a Shh target gene of tumorigenic potential. Thus our study reports a novel pharmacological approach for postischemic treatment using a small-molecule Shh agonist, providing new insights into hedgehog signaling-mediated mechanisms of neuroprotection and regeneration after stroke. PMID:25341035

  16. Inflammatory sequences in acute pulmonary radiation injury.

    PubMed Central

    Slauson, D. O.; Hahn, F. F.; Benjamin, S. A.; Chiffelle, T. L.; Jones, R. K.

    1976-01-01

    The histopathologic events in the developing acute pulmonary inflammatory reaction to inhaled particles of Yttrium 90 are detailed. In animals that died or were sacrificed during the first year after inhalation exposure, microscopic findings of acute inflammation predominated and included vascular congestion; stasis, focal hemorrhage; edema; various inflammatory cell infiltrates; cytolysis and desquamation of bronchiolar and alveolar epithelium followed by regeneration; vascular injury and repair; and the eventual development of pulmonary fibrosis. Accumulation of alveolar fibrin deposits was an additional characteristic, though not a constant feature of the early stages of radiation pneumonitis. In addition to the direct effects of radiation on pulmonary cell populations, the histopathologic findings were suggestive of diverse activation of various cellular and humoral mediation systems in their pathogenesis. The potential interrelationships of systems responsible for increased vascular permeability, coagulation and fibrinolysis, chemotaxis, and direct cellular injury were discussed and related to the pathogenesis of the microscopic findings characteristic of early pulmonary radiation injury. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 PMID:1258976

  17. Acute Kidney Injury in Patients with Cirrhosis

    PubMed Central

    Russ, Kirk B.; Stevens, Todd M; Singal, Ashwani K.

    2015-01-01

    Acute kidney injury (AKI) occurs commonly in patients with advanced cirrhosis and negatively impacts pre- and post-transplant outcomes. Physiologic changes that occur in patients with decompensated cirrhosis with ascites, place these patients at high risk of AKI. The most common causes of AKI in cirrhosis include prerenal injury, acute tubular necrosis (ATN), and the hepatorenal syndrome (HRS), accounting for more than 80% of AKI in this population. Distinguishing between these causes is particularly important for prognostication and treatment. Treatment of Type 1 HRS with vasoconstrictors and albumin improves short term survival and renal function in some patients while awaiting liver transplantation. Patients with HRS who fail to respond to medical therapy or those with severe renal failure of other etiology may require renal replacement therapy. Simultaneous liver kidney transplant (SLK) is needed in many of these patients to improve their post-transplant outcomes. However, the criteria to select patients who would benefit from SLK transplantation are based on consensus and lack strong evidence to support them. In this regard, novel serum and/or urinary biomarkers such as neutrophil gelatinase-associated lipocalin, interleukins-6 and 18, kidney injury molecule-1, fatty acid binding protein, and endothelin-1 are emerging with a potential for accurately differentiating common causes of AKI. Prospective studies are needed on the use of these biomarkers to predict accurately renal function recovery after liver transplantation alone in order to optimize personalized use of SLK. PMID:26623266

  18. [Drug-induced acute kidney injury].

    PubMed

    Derungs, Adrian

    2015-12-01

    Due to their physiological function, the kidneys are exposed to high concentrations of numerous drugs and their metabolites, making them vulnerable to drug-related injuries. This article provides an overview of the pathophysiological mechanisms involved in nephrotoxicity, the most common nephrotoxic drugs, and the risk factors for the occurrence of drug-induced acute kidney injuries. NSAIDs, diuretics, ACE inhibitors, and angiotensin II receptor blockers (ARBs} are the most frequent prerenal causes of an acute elevation in creatinine levels. Primary vascular damage arises from thrombotic microangiopathy (e. g. due to cic/osporin, tacrolimus, muromonab-CD3, mitomycin C, quinine, ticlopidine, clopidogrel}. Anticoagulants and thrombolytic medications lead to secondary blood vessel damage by cholesterol emboli, embolism of thrombus material into the periphery or bleeding. Tubulopathies can be observed on treatment with ifosfamide and cisplatin (rarely with cyclophosphamide or carboplatin), aminoglycosides, vancomycin, and radiocontrast agents. Immunological mechanisms underlie interstitial nephritides, which are induced by drugs in about 85% of cases. In drug-induced glomerulopathies;- renal biopsy allows closer identification of the triggering medication. Drug-induced systemic lupus erythematosus (SLE} represents a special form of immune complex glomerulonephritis and can be triggered by procainamide, hydralazine, isoniazid, methyldopa, quinidine, chlorpromazine, and propylthiouracil. Crystal-induced kidney injury is caused by precipitation of drugs (e. g. aciclovir, sulfonamide antibiotics, methotrexate, indinavir) in the renal tubules and the urine-conducting organs with consecutive obstruction thereof. PMID:26654816

  19. Study on the Mechanism of mTOR-Mediated Autophagy during Electroacupuncture Pretreatment against Cerebral Ischemic Injury

    PubMed Central

    Wu, Zhou-Quan; Cui, Su-yang; Zhu, Liang

    2016-01-01

    This study is aimed at investigating the association between the electroacupuncture (EA) pretreatment-induced protective effect against early cerebral ischemic injury and autophagy. EA pretreatment can protect cerebral ischemic and reperfusion injuries, but whether the attenuation of early cerebral ischemic injury by EA pretreatment was associated with autophagy is not yet clear. This study used the middle cerebral artery occlusion model to monitor the process of ischemic injury. For rats in the EA pretreatment group, EA pretreatment was conducted at Baihui acupoint before ischemia for 30 min for 5 consecutive days. The results suggested that EA pretreatment significantly increased the expression of autophagy in the cerebral cortical area on the ischemic side of rats. But the EA pretreatment-induced protective effects on the brain could be reversed by the specific inhibitor 3-methyladenine of autophagy. Additionally, the Pearson correlation analysis indicated that the impact of EA pretreatment on p-mTOR (2481) was negatively correlated with its impact on autophagy. In conclusion, the mechanism of EA pretreatment at Baihui acupoint against cerebral ischemic injury is mainly associated with the upregulation of autophagy expression, and its regulation of autophagy may depend on mTOR-mediated signaling pathways. PMID:27547233

  20. Plasma C-Reactive Protein and Clinical Outcomes after Acute Ischemic Stroke: A Prospective Observational Study

    PubMed Central

    Matsuo, Ryu; Ago, Tetsuro; Hata, Jun; Wakisaka, Yoshinobu; Kuroda, Junya; Kuwashiro, Takahiro; Kitazono, Takanari; Kamouchi, Masahiro

    2016-01-01

    Background and Purpose Although plasma C-reactive protein (CRP) is elevated in response to inflammation caused by brain infarction, the association of CRP with clinical outcomes after acute ischemic stroke remains uncertain. This study examined whether plasma high-sensitivity CRP (hsCRP) levels at onset were associated with clinical outcomes after acute ischemic stroke independent of conventional risk factors and acute infections after stroke. Methods We prospectively included 3653 patients with first-ever ischemic stroke who had been functionally independent and were hospitalized within 24 h of onset. Plasma hsCRP levels were measured on admission and categorized into quartiles. The association between hsCRP levels and clinical outcomes, including neurological improvement, neurological deterioration, and poor functional outcome (modified Rankin scale ≥3 at 3 months), were investigated using a logistic regression analysis. Results Higher hsCRP levels were significantly associated with unfavorable outcomes after adjusting for age, sex, baseline National Institutes of Health Stroke Scale score, stroke subtype, conventional risk factors, intravenous thrombolysis and endovascular therapy, and acute infections during hospitalization (multivariate-adjusted odds ratios [95% confidence interval] in the highest quartile versus the lowest quartile as a reference: 0.80 [0.65–0.97] for neurological improvement, 1.72 [1.26–2.34] for neurological deterioration, and 2.03 [1.55–2.67] for a poor functional outcome). These associations were unchanged after excluding patients with infectious diseases occurring during hospitalization, or those with stroke recurrence or death. These trends were similar irrespective of stroke subtypes or baseline stroke severity, but more marked in patients aged <70 years (Pheterogeneity = 0.001). Conclusions High plasma hsCRP is independently associated with unfavorable clinical outcomes after acute ischemic stroke. PMID:27258004

  1. Diagnosis and acute management of perinatal arterial ischemic stroke

    PubMed Central

    Ferriero, Donna M.

    2014-01-01

    Summary Perinatal arterial ischemic stroke (PAIS) can be an unrecognized cause of short- and long-term neurologic disability. Focal clonic seizure in the newborn period is the most common clinical presentation of PAIS. MRI is optimal in diagnosing PAIS; negative cranial ultrasound or CT does not rule out PAIS. Given the low rate of recurrence in combination with risk factors thought to be isolated to the maternal-fetal unit, anticoagulation or antiplatelet treatment is usually not recommended. The majority of newborns with PAIS do not go on to develop epilepsy, although further research is warranted in this area. Long-term morbidity, including motor, cognitive, and behavioral disabilities, can follow PAIS, necessitating early recognition, diagnosis, and therapy initiation. PMID:25317375

  2. Proton relaxation in acute and subacute ischemic brain edema

    SciTech Connect

    Boisvert, D.P.; Handa, Y.; Allen, P.S. )

    1990-01-01

    The relation between regional ischemic brain edema and tissue proton relaxation rates (R1 = 1/T1; R2 = 1/T2) were studied in 16 macaque monkeys subjected to MCA occlusion. In vivo R2 measurements were obtained from multiple spin-echo (eight echoes) images taken at 2-, 3-, 4-, and 72-hr postischemia. In vitro R1 and R2 values were determined for corresponding regions after sacrifice at 4 hr (n = 8) or at 72-hr postischemia in seven surviving animals. The water content of the white and gray matter tissue samples was measured by the wet/dry method. Four animals (25%) showed ipsilateral regions of increased signal intensity as early as 2 hr after MCA occlusion. All seven animals imaged at 72 hr displayed such regions. Despite the absence of measured changes in tissue water content, significant decreases in R2, but not in R1, occurred at 4 hr. At this stage, R2 values correlated more closely than R1 with individual variations in water content. At 72 hr, marked decreases in both R1 and R2 were measured in ischemic deep gray matter and white matter. Cortical gray matter was unchanged. In edematous gray and white matter, both R1 and R2 correlated closely with tissue water content, but R2 was consistently 10 to 20 times more sensitive than R1. Biexponential R2 decay was observed at 4 and 72 hr, but only in the white matter region that became severely edematous at 72 hr.

  3. Severe hypertriglyceridemia does not protect from ischemic brain injury in gene-modified hypertriglyceridemic mice.

    PubMed

    Chen, Yong; Liu, Ping; Qi, Rong; Wang, Yu-Hui; Liu, George; Wang, Chun

    2016-05-15

    Hypertriglyceridemia (HTG) is a weak risk factor in primary ischemic stroke prevention. However, clinical studies have found a counterintuitive association between a good prognosis after ischemic stroke and HTG. This "HTG paradox" requires confirmation and further explanation. The aim of this study was to experimentally assess this paradox relationship using the gene-modified mice model of extreme HTG. We first used the human Apolipoprotein CIII transgenic (Tg-ApoCIII) mice and non-transgenic (Non-Tg) littermates to examine the effect of HTG on stroke. To our surprise, infarct size, neurological deficits, brain edema, BBB permeability, neuron density and lipid peroxidation were the same in Tg-ApoCIII mice and Non-Tg mice after temporary middle cerebral artery occlusion (tMCAO). In the late phase (21 days after surgery), no differences were found in brain atrophy, neurological dysfunctions, weight and mortality between the two groups. To confirm the results in Tg-ApoCIII mice, Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1(GPIHBP1) knockout mice, another severe HTG mouse model, were used and yielded similar results. Our study demonstrates for the first time that extreme HTG does not affect ischemic brain injuries in the tMCAO mouse model, indicating that the association between HTG and good outcomes after ischemic stroke probably represents residual unmeasured confounding. Further clinical and prospective population-based studies are needed to explore variables that contribute to the paradox. PMID:26970521

  4. Acute kidney injury in patients with acute coronary syndromes.

    PubMed

    Marenzi, Giancarlo; Cosentino, Nicola; Bartorelli, Antonio L

    2015-11-01

    Acute kidney injury (AKI) is increasingly being seen in patients with acute coronary syndromes (ACSs). This condition has a complex pathogenesis, an incidence that can reach 30% and it is associated with higher short-term and long-term morbidity and mortality. Nevertheless, AKI is still characterised by lack of a single accepted definition, unclear pathophysiology understanding and insensitive diagnostic tools that make its detection difficult, particularly in the setting of ACS. Recent data suggested that patients with AKI during ACS, even those in whom renal function seems to fully recover, face an increased, persisting risk of future AKI and may develop chronic kidney disease. Thus, in these patients, nephrology follow-up, after hospital discharge, and secondary preventive measures should possibly be implemented. In this review, we aim at providing a framework of knowledge to increase cardiologists' awareness of AKI, with the goal of improving the outcome of patients with ACS. PMID:26243789

  5. Acute kidney injury: A rare cause.

    PubMed

    Mendonca, Satish; Barki, Satish; Mishra, Mayank; Kumar, R S V; Gupta, Devika; Gupta, Pooja

    2015-09-01

    We present a young lady who consumed hair dye, which contained paraphenylene diamine (PPD), as a means of deliberate self-harm. This resulted in severe angio-neurotic edema for which she had to be ventilated, and thereafter developed rhabdomyolysis leading to acute kidney injury (AKI). The unusual aspect was that the patient continued to have flaccid quadriparesis and inability to regain kidney function. Renal biopsy performed 10 weeks after the dye consumption revealed severe acute tubular necrosis with myoglobin pigment casts. This suggests that PPD has a long-term effect leading to ongoing myoglobinuria, causing flaccid paralysis to persist and preventing the recovery of AKI. In such instances, timely treatment to prevent AKI in the form alkalinization of urine should be initiated promptly. Secondly, because PPD is a nondialyzable toxin, and its long-term effect necessitates its speedy removal, hemoperfusion might be helpful and is worth considering. PMID:26354573

  6. Ischemic preconditioning and inflammatory response syndrome after reperfusion injury: an experimental model in diabetic rats.

    PubMed

    Grigorescu, Bianca Liana; Georgescu, Anca Meda; Cioc, Adrian-Dan; Fodor, Raluca-Ştefania; Cotoi, Ovidiu Simion; Fodor, Pal; Copotoiu, Sanda Maria; Azamfirei, Leonard

    2015-01-01

    Quantification of local ischemia and inflammatory response syndrome correlated with histological changes associated with ischemia-reperfusion injury (IRI) after revascularization techniques. We included 12 adult male Wistar rats, aged eight weeks that were randomly divided into two groups. The first group acted as the control and at the second group, we induced diabetes by intraperitoneal streptozotocin administration (60 mg/kg). After eight weeks, the rats were subject to ischemic preconditioning for 10 minutes at three regular intervals. Twenty-four hours post-preconditioning, both groups were subject to ischemia for 20 minutes, followed by 30 minutes of reperfusion. Oxygen extraction was higher in Group 1, the arterio-venous CO2 gradient was higher in the control group, but not significant. The lactate production was higher in Group 1. The second group had a higher Na+ and also a significant difference in K+ values. Receptor for Advanced Glycation End (RAGE) values were higher in the second group but with no significant difference (RAGE1=0.32 ng/mL versus RAGE2=0.40 ng/mL). The muscle samples from the control group displayed significant rhabdomyolysis, damage to the nucleus, while the preconditioned group showed almost normal morphological characteristics. The lungs and kidneys were most damaged in the control group, with damage expressed as thickened alveolar septa, neutrophil infiltrates, eosinophilic precipitates in the proximal convolute tubule. Ischemic preconditioning significantly attenuates the ischemic reperfusion injury. PMID:26743274

  7. Absolute and Relative Contraindications to IV rt-PA for Acute Ischemic Stroke

    PubMed Central

    Rabinstein, Alejandro A.

    2015-01-01

    Most of the contraindications to the administration of intravenous (IV) recombinant tissue plasminogen activator (rtPA) originated as exclusion criteria in major stroke trials. These were derived from expert consensus for the National Institute of Neurological Disorders and Stroke (NINDS) trial. Despite the fact that the safety and efficacy of IV rtPA has been repeatedly confirmed in large international observational studies over the past 20 years, most patients with acute ischemic stroke disappointingly still do not receive thrombolytic treatment. Some of the original exclusion criteria have proven to be unnecessarily restrictive in real-world clinical practice. It has been suggested that application of relaxed exclusion criteria might increase the IV thrombolysis rate up to 20% with comparable outcomes to thrombolysis with more conventional criteria. We review the absolute and relative contraindications to IV rtPA for acute ischemic stroke, discussing the underlying rationale and evidence supporting these exclusion criteria. PMID:26288669

  8. Meta-Analysis of Local Endovascular Therapy for Acute Ischemic Stroke.

    PubMed

    Kennedy, Sean A; Baerlocher, Mark O; Baerlocher, Felix; Socko, Daniel; Sacks, David; Nikolic, Boris; Wojak, Joan C; Haskal, Ziv J

    2016-03-01

    A meta-analysis was performed to assess randomized controlled trials comparing local endovascular therapy (with and without intravenous thrombolysis) versus standard care (intravenous thrombolysis alone when appropriate) for acute ischemic stroke. Local endovascular therapy showed a significant improvement in functional independence versus standard care (odds ratio, 1.779; 95% confidence interval, 1.262-2.507; P < .001). This benefit strengthened further on subgroup analyses of trials in which a majority of cases used stent retrievers, trials with intravenous thrombolysis use in both arms when appropriate, and trials that required preprocedural imaging of all patients. There were no significant differences between arms in terms of mortality, hemicraniectomy, intracranial hemorrhage, and cerebral edema rates (P > .05). In conclusion, in the treatment of acute ischemic stroke, local endovascular therapy leads to improved functional independence compared with standard care. PMID:26803573

  9. Binge Eating Leading to Acute Gastric Dilatation, Ischemic Necrosis and Rupture -A Case Report.

    PubMed

    Dewangan, Manish; Khare, Manish Kumar; Mishra, Sumanta; Marhual, Jogesh Chandra

    2016-03-01

    Acute gastric dilatation is a rarely encountered clinical scenario in our day to day practice. This is very rapidly progressing condition and can lead to ischemic necrosis and perforation/rupture of the stomach. It could be fatal if not timely intervened. We report such a case of a 17-year-old, otherwise healthy boy, who presented with pain and distension of abdomen following binge eating episode after 24 hours of prolonged fasting. On exploration, stomach was dilated with necrosis and perforation at fundus near greater curvature. He was managed with excision of all the devitalized area and primary repair with feeding jejunostomy. The case is presented due to its rarity. Acute gastric dilatation (AGD) leading to ischemic necrosis and perforation because of binge eating episode in an otherwise healthy person is an exceptional occurrence with only few cases reported in literature. The clinician should be aware of this condition for prompt and appropriate management. PMID:27134932

  10. Binge Eating Leading to Acute Gastric Dilatation, Ischemic Necrosis and Rupture –A Case Report

    PubMed Central

    Khare, Manish Kumar; Mishra, Sumanta; Marhual, Jogesh Chandra

    2016-01-01

    Acute gastric dilatation is a rarely encountered clinical scenario in our day to day practice. This is very rapidly progressing condition and can lead to ischemic necrosis and perforation/rupture of the stomach. It could be fatal if not timely intervened. We report such a case of a 17-year-old, otherwise healthy boy, who presented with pain and distension of abdomen following binge eating episode after 24 hours of prolonged fasting. On exploration, stomach was dilated with necrosis and perforation at fundus near greater curvature. He was managed with excision of all the devitalized area and primary repair with feeding jejunostomy. The case is presented due to its rarity. Acute gastric dilatation (AGD) leading to ischemic necrosis and perforation because of binge eating episode in an otherwise healthy person is an exceptional occurrence with only few cases reported in literature. The clinician should be aware of this condition for prompt and appropriate management. PMID:27134932

  11. Mechanical thrombectomy in pediatric acute ischemic stroke: Clinical outcomes and literature review.

    PubMed

    Madaelil, Thomas P; Kansagra, Akash P; Cross, DeWitte T; Moran, Christopher J; Derdeyn, Colin P

    2016-08-01

    There are limited data on outcomes of mechanical thrombectomy for pediatric stroke using modern devices. In this study, we report two cases of pediatric acute ischemic stroke treated with mechanical thrombectomy, both with good angiographic result (TICI 3) and clinical outcome (no neurological deficits at 90 days). In addition, we conducted a literature review of all previously reported cases describing the use of modern thrombectomy devices. Including our two cases, the aggregate rate of partial or complete vessel recanalization was 100% (22/22), and the aggregate rate of favorable clinical outcome was 91% (20/22). This preliminary evidence suggests that mechanical thrombectomy with modern devices may be a safe and effective treatment option in pediatric patients with acute ischemic stroke. PMID:26945589

  12. Successful intravenous thrombolysis in a patient with antiphospholipid syndrome, acute ischemic stroke and severe thrombocytopenia.

    PubMed

    Camara-Lemarroy, Carlos R; Infante-Valenzuela, Adrian; Andrade-Vazquez, Catalina J; Enriquez-Noyola, Raul V; Garcia-Valadez, Erick A; Gongora-Rivera, Fernando

    2016-04-01

    Alteplase is the only approved drug for the treatment of acute ischemic stroke, but it is offered to a minority of patients, not only because of the short therapeutic window but also because of the numerous contraindications associated with thrombolysis, such as thrombocytopenia. There is some controversy on the true risk associated with thrombolysis in patients with thrombocytopenia. Here we report the case of a young patient, who developed an in-hospital acute ischemic stroke involving a large territory of the right middle cerebral artery, who was successfully treated with intravenous alteplase, despite having thrombocytopenia and prolonged prothrombin times due to systemic lupus erythematosus and antiphospholipid syndrome. This case exemplifies the need to reassess contraindications for thrombolysis, many based on expert opinion and not clinical evidence, especially in complex clinical situations. PMID:26575492

  13. Thaliporphine derivative improves acute lung injury after traumatic brain injury.

    PubMed

    Chen, Gunng-Shinng; Huang, Kuo-Feng; Huang, Chien-Chu; Wang, Jia-Yi

    2015-01-01

    Acute lung injury (ALI) occurs frequently in patients with severe traumatic brain injury (TBI) and is associated with a poor clinical outcome. Aquaporins (AQPs), particularly AQP1 and AQP4, maintain water balances between the epithelial and microvascular domains of the lung. Since pulmonary edema (PE) usually occurs in the TBI-induced ALI patients, we investigated the effects of a thaliporphine derivative, TM-1, on the expression of AQPs and histological outcomes in the lung following TBI in rats. TM-1 administered (10 mg/kg, intraperitoneal injection) at 3 or 4 h after TBI significantly reduced the elevated mRNA expression and protein levels of AQP1 and AQP4 and diminished the wet/dry weight ratio, which reflects PE, in the lung at 8 and 24 h after TBI. Postinjury TM-1 administration also improved histopathological changes at 8 and 24 h after TBI. PE was accompanied with tissue pathological changes because a positive correlation between the lung injury score and the wet/dry weight ratio in the same animal was observed. Postinjury administration of TM-1 improved ALI and reduced PE at 8 and 24 h following TBI. The pulmonary-protective effect of TM-1 may be attributed to, at least in part, downregulation of AQP1 and AQP4 expression after TBI. PMID:25705683

  14. Quality of Life after Intra-arterial Therapy for Acute Ischemic Stroke

    PubMed Central

    Cortez, Melissa M.; Wilder, Michael; McFadden, Molly; Majersik, Jennifer J.

    2014-01-01

    Few data exist about health-related quality of life outcomes after intra-arterial therapy for acute ischemic stroke. We assessed stroke-specific quality of life in stroke survivors after intra-arterial therapy. Consecutive patients undergoing intra-arterial therapy for acute ischemic stroke from 2005-2010 were retrospectively identified via an institutional database. Stroke-specific quality of life (using the Stroke-Specific Quality of Life Score) and disability status (modified Rankin Scale) were prospectively assessed via mailed questionnaire. We analyzed quality of life scores by domain and summary score, with a summary score of ≥ 4 defined as a good outcome. Analysis of variance was used to model the effect of final recanalization status, stroke severity, and modified Rankin Scale on total quality of life score. ANOVA and Pearson's correlations were used to test the association between stroke severity/modified Rankin Scale and quality of life/time since stroke respectively. Of ninety-nine acute ischemic stroke patients, 61 responded yielding: 11 interim deaths, 7 incomplete surveys, and 43 complete surveys for analysis. Among responding survivors, overall quality of life score was 3.9 (SD 0.7); 77% of these reported good quality of life. Scores were higher in recanalized patients in 11 of 12 domains, but was significant only for mood. Although modified Rankin Scale was associated with stroke severity, quality of life was independent of both. Seventy-seven percent of acute ischemic stroke survivors who received intra-arterial therapy reported good quality of life. Furthermore, these data suggest that stroke-specific quality of life is an independent outcome from stroke severity and disability status. PMID:24813258

  15. Effect of IMOD™ on the inflammatory process after acute ischemic stroke: a randomized clinical trial

    PubMed Central

    2013-01-01

    Background and purpose of the study Considering the role of inflammation in acute cerebrovascular accidents, anti-inflammatory treatment has been considered as an option in cerebrovascular diseases. Regarding the properties of Setarud (IMOD™) in immune regulation, the aim of the present study was to evaluate the role of this medication in treating patients with acute ischemic stroke. Methods In this randomized clinical trial, 99 patients with their first ever acute ischemic stroke were divided into two groups of IMOD™ (n = 49) and control (n = 50). The control group underwent routine treatment and the intervention group underwent routine treatment plus daily intermittent infusion of IMOD™ (250mg on the first day and then 375mg into DW5% serum during a 30-minute period for 7 days). The serum levels of inflammatory markers were evaluated on the first day (baseline) and on 4th and 7th days. Data were analyzed and the results were compared. Results and major conclusion 58 males (58.6%) and 41 females (41.4%) with a mean age of 67.00 ± 8.82 years, who had their first ever stroke attack, were enrolled in this trial. Treatment with IMOD™ showed a decreasing trend in IL-6 levels compared to the control group (p = 0.04). In addition, the treatment resulted in the control of increasing serum levels of hsCRP after 7 days compared to the control group (p = 0.02). There was an insignificant decrease in TNF-α and IL-1 levels in the IMOD™ group. Considering the prominent role of inflammation after an ischemic cerebral damage, it appears that treatment with IMOD™ improves the inflammatory profile. Therefore, IMOD™ (Setarud) might be considered as a therapeutic option in the acute ischemic stroke. However, future studies are necessary on its long-term results and clinical efficacy. PMID:23514014

  16. Cerebrovascular autoregulation and neurologic injury in neonatal hypoxic-ischemic encephalopathy

    PubMed Central

    Howlett, Jessica A.; Northington, Frances J.; Gilmore, Maureen M.; Tekes, Aylin; Huisman, Thierry A.G.M.; Parkinson, Charlamaine; Chung, Shang-En; Jennings, Jacky M.; Jamrogowicz, Jessica J.; Larson, Abby C.; Lehmann, Christoph U.; Jackson, Eric; Brady, Ken M.; Koehler, Raymond C.; Lee, Jennifer K.

    2014-01-01

    Background Neonates with hypoxic-ischemic encephalopathy (HIE) are at risk of cerebral blood flow dysregulation. Our objective was to describe the relationship between autoregulation and neurologic injury in HIE. Methods Neonates with HIE had autoregulation monitoring with the hemoglobin volume index (HVx) during therapeutic hypothermia, rewarming, and the first 6 h of normothermia. The 5-mmHg range of mean arterial blood pressure (MAP) with best vasoreactivity (MAPOPT) was identified. The percentage of time spent with MAP below MAPOPT and deviation in MAP from MAPOPT were measured. Neonates received brain MRIs 3–7 days after treatment. MRIs were coded as no, mild, or moderate/severe injury in five regions. Results HVx identified MAPOPT in 79% (19/24), 77% (17/22), and 86% (18/21) of neonates during hypothermia, rewarming, and normothermia, respectively. Neonates with moderate/severe injury in paracentral gyri, white matter, basal ganglia, and thalamus spent a greater proportion of time with MAP below MAPOPT during rewarming than neonates with no or mild injury. Neonates with moderate/severe injury in paracentral gyri, basal ganglia, and thalamus had greater MAP deviation below MAPOPT during rewarming than neonates without injury. Conclusion Maintaining MAP within or above MAPOPT may reduce the risk of neurologic injuries in neonatal HIE. PMID:23942555

  17. Platelets Proteomic Profiles of Acute Ischemic Stroke Patients

    PubMed Central

    Baykal, Ahmet Tarik; Sener, Azize

    2016-01-01

    Platelets play a crucial role in the pathogenesis of stroke and antiplatelet agents exist for its treatment and prevention. Through the use of LC-MS based protein expression profiling, platelets from stroke patients were analyzed and then correlated with the proteomic analyses results in the context of this disease. This study was based on patients who post ischemic stroke were admitted to hospital and had venous blood drawn within 24 hrs of the incidence. Label-free protein expression analyses of the platelets’ tryptic digest was performed in triplicate on a UPLC-ESI-qTOF-MS/MS system and ProteinLynx Global Server (v2.5, Waters) was used for tandem mass data extraction. The peptide sequences were searched against the reviewed homo sapiens database (www.uniprot.org) and the quantitation of protein variation was achieved through Progenesis LC-MS software (V4.0, Nonlinear Dynamics). These Label-free differential proteomics analysis of platelets ensured that 500 proteins were identified and 83 of these proteins were found to be statistically significant. The differentially expressed proteins are involved in various processes such as inflammatory response, cellular movement, immune cell trafficking, cell-to-cell signaling and interaction, hematological system development and function and nucleic acid metabolism. The expressions of myeloperoxidase, arachidonate 12-Lipoxygenase and histidine-rich glycoprotein are involved in cellular metabolic processes, crk-like protein and ras homolog gene family member A involved in cell signaling with vitronectin, thrombospondin 1, Integrin alpha 2b, and integrin beta 3 involved in cell adhesion. Apolipoprotein H, immunoglobulin heavy constant gamma 1 and immunoglobulin heavy constant gamma 3 are involved in structural, apolipoprotein A-I, and alpha-1-microglobulin/bikunin precursor is involved in transport, complement component 3 and clusterin is involved in immunity proteins as has been discussed. Our data provides an insight

  18. Platelets Proteomic Profiles of Acute Ischemic Stroke Patients.

    PubMed

    Cevik, Ozge; Baykal, Ahmet Tarik; Sener, Azize

    2016-01-01

    Platelets play a crucial role in the pathogenesis of stroke and antiplatelet agents exist for its treatment and prevention. Through the use of LC-MS based protein expression profiling, platelets from stroke patients were analyzed and then correlated with the proteomic analyses results in the context of this disease. This study was based on patients who post ischemic stroke were admitted to hospital and had venous blood drawn within 24 hrs of the incidence. Label-free protein expression analyses of the platelets' tryptic digest was performed in triplicate on a UPLC-ESI-qTOF-MS/MS system and ProteinLynx Global Server (v2.5, Waters) was used for tandem mass data extraction. The peptide sequences were searched against the reviewed homo sapiens database (www.uniprot.org) and the quantitation of protein variation was achieved through Progenesis LC-MS software (V4.0, Nonlinear Dynamics). These Label-free differential proteomics analysis of platelets ensured that 500 proteins were identified and 83 of these proteins were found to be statistically significant. The differentially expressed proteins are involved in various processes such as inflammatory response, cellular movement, immune cell trafficking, cell-to-cell signaling and interaction, hematological system development and function and nucleic acid metabolism. The expressions of myeloperoxidase, arachidonate 12-Lipoxygenase and histidine-rich glycoprotein are involved in cellular metabolic processes, crk-like protein and ras homolog gene family member A involved in cell signaling with vitronectin, thrombospondin 1, Integrin alpha 2b, and integrin beta 3 involved in cell adhesion. Apolipoprotein H, immunoglobulin heavy constant gamma 1 and immunoglobulin heavy constant gamma 3 are involved in structural, apolipoprotein A-I, and alpha-1-microglobulin/bikunin precursor is involved in transport, complement component 3 and clusterin is involved in immunity proteins as has been discussed. Our data provides an insight into

  19. Acute ischemic stroke in a child due to basilar artery occlusion treated successfully with a stent retriever.

    PubMed

    Savastano, Luis; Gemmete, Joseph J; Pandey, Aditya S; Roark, Christopher; Chaudhary, Neeraj

    2016-08-01

    Ischemic strokes in childhood are rare. Thrombolytic therapy with intravenous (IV) tissue plasminogen activator (tPA) has been the main intervention for the management of pediatric stroke patients, but safety data are lacking and efficacy has been questioned. Recently, successful endovascular treatments for acute ischemic stroke in children have been reported with increasing frequency, suggesting that mechanical thrombectomy can be a safe and effective treatment. We present the case of a 22-month-old child with acute ischemic stroke due to basilar artery occlusion that was successfully treated with a stent retriever. PMID:26156170

  20. The yin and yang of autophagy in acute kidney injury.

    PubMed

    Melk, Anette; Baisantry, Arpita; Schmitt, Roland

    2016-03-01

    Antagonizing the strongly activated pathway of autophagy in renal ischemic injury has been associated with poor outcome. In our recent study we used mice with a selective deletion of Atg5 in the S3 proximal tubule segment, which is most susceptible to ischemic damage. In line with the notion that autophagy is a prosurvival mechanism our studies revealed an early accelerated cell death of heavily damaged tubular cells in the S3 segment of these mice. Interestingly, this expedited loss of cells was associated with better long-term outcome as reflected by less inflammation, improved tubular repair, and function and reduced accumulation of senescent cells. While these data confirm the role of tubular autophagy as a prosurvival mechanism in ischemic kidney injury, they also show that autophagy may enable severely damaged cells to persist and exert deleterious effects. Such ambivalent effects might be of relevance if modulating autophagy is considered as a therapeutic option. PMID:26761120

  1. Ischemic brain injury in hemodialysis patients: which is more dangerous, hypertension or intradialytic hypotension?

    PubMed

    McIntyre, Christopher W; Goldsmith, David J

    2015-06-01

    Abnormalities of cognitive function and high levels of depression incidence are characteristic of hemodialysis patients. Although previously attributed to the humoral effects of uremia, it is becoming increasingly appreciated that many elements of the overall disease state in CKD patients contribute to functional disturbances and physical brain injury. These factors range from those associated with the underlying primary diseases (cardiovascular, diabetes etc.) to those specifically associated with the requirement for dialysis (including consequences of the hemodialysis process itself). They are, however, predominantly ischemic threats to the integrity of brain tissue. These evolving insights are starting to allow nephrologists to appreciate the potential biological basis of dependency and depression in our patients, as well as develop and test new therapeutic approaches to this increasingly prevalent and important issue. This review aims to summarize the current understanding of brain injury in this setting, as well as examine recent advances being made in the modification of dialysis-associated brain injury. PMID:25853331

  2. Renal protective effects of erythropoietin on ischemic reperfusion injury.

    PubMed

    Moriyama, Manabu T; Tanaka, Tatsuro; Morita, Nobuyo; Ishii, Takeo; Chikazawa, Ippei; Suga, Kodai; Miyazawa, Katsuhito; Suzuki, Koji

    2010-01-01

    enzymes, which had also shown increases in the serum as well as the occurrence of renal dysfunction, showed clear decreases in the serum, even though changes with a significant difference were not observed in the rhEPO administration group. The active oxygen did not show changes before and after ischemia-reperfusion nor changes due to the rhEPO administration. When examining the status of apoptosis in the tissues, apoptosis was shown to be inhibited due to the rhEPO administration. It is believed that the main preservation effects of rhEPO are the elimination of cytopathy/cell death, as derived from the resulting ischemic condition that extends to the target organ before ischemia occurs. In this examination, no direct effects of rhEPO administration on the emergence of active oxygen were observed. It is therefore suggested that there is a possibility of preserving the renal function in marginal donors with a longer agonal stage by effectively using rhEPO. PMID:20525439

  3. Effect of Extended CT Perfusion Acquisition Time on Ischemic Core and Penumbra Volume Estimation in Patients with Acute Ischemic Stroke due to a Large Vessel Occlusion

    PubMed Central

    Borst, Jordi; Marquering, Henk A.; Beenen, Ludo F. M.; Berkhemer, Olvert A.; Dankbaar, Jan Willem; Riordan, Alan J.; Majoie, Charles B. L. M.

    2015-01-01

    Background and Purpose It has been suggested that CT Perfusion acquisition times <60 seconds are too short to capture the complete in and out-wash of contrast in the tissue, resulting in incomplete time attenuation curves. Yet, these short acquisitions times are not uncommon in clinical practice. The purpose of this study was to investigate the occurrence of time attenuation curve truncation in 48 seconds CT Perfusion acquisition and to quantify its effect on ischemic core and penumbra estimation in patients with acute ischemic stroke due to a proximal intracranial arterial occlusion of the anterior circulation. Materials and Methods We analyzed CT Perfusion data with 48 seconds and extended acquisition times, assuring full time attenuation curves, of 36 patients. Time attenuation curves were classified as complete or truncated. Ischemic core and penumbra volumes resulting from both data sets were compared by median paired differences and interquartile ranges. Controlled experiments were performed using a digital CT Perfusion phantom to investigate the effect of time attenuation curve truncation on ischemic core and penumbra estimation. Results In 48 seconds acquisition data, truncation was observed in 24 (67%) cases for the time attenuation curves in the ischemic core, in 2 cases for the arterial input function and in 5 cases for the venous output function. Analysis of extended data resulted in smaller ischemic cores and larger penumbras with a median difference of 13.2 (IQR: 4.3–26.0)ml (P<0.001) and; 12.4 (IQR: 4.1–25.7)ml (P<0.001), respectively. The phantom data showed increasing ischemic core overestimation with increasing tissue time attenuation curve truncation. Conclusions Truncation is common in patients with large vessel occlusion and results in repartitioning of the area of hypoperfusion into larger ischemic core and smaller penumbra estimations. Phantom experiments confirmed that truncation results in overestimation of the ischemic core. PMID

  4. Acute ischemic colitis secondary to air embolism after diving

    PubMed Central

    Payor, Austin Daniel; Tucci, Veronica

    2011-01-01

    Ischemic colitis (IC) secondary to air embolism from decompression sickness or barotrauma during diving is an extremely rare condition. After extensive review of the available literature, we found that there has been only one reported case of IC secondary to air embolism from diving. Although air embolization from diving and the various medical complications that follow have been well documented, the clinical manifestation of IC from an air embolism during diving is very rare and thus far unstudied. Common symptoms of IC include abdominal pain, bloody or non-bloody diarrhea or nausea or vomiting or any combination. Emergency physicians and Critical Care specialists should consider IC as a potential diagnosis for a patient with the above-mentioned symptoms and a history of recent diving. We report a case of IC from air embolism after a routine dive to 75 feet below sea level in a 53-year-old White female who presented to a community Emergency Department complaining of a 2-day history of diffuse abdominal pain and nausea. She was diagnosed by colonoscopy with biopsies and treated conservatively with antibiotics, bowel rest, and a slow advancement in diet. PMID:22096777

  5. Acute complications of spinal cord injuries.

    PubMed

    Hagen, Ellen Merete

    2015-01-18

    The aim of this paper is to give an overview of acute complications of spinal cord injury (SCI). Along with motor and sensory deficits, instabilities of the cardiovascular, thermoregulatory and broncho-pulmonary system are common after a SCI. Disturbances of the urinary and gastrointestinal systems are typical as well as sexual dysfunction. Frequent complications of cervical and high thoracic SCI are neurogenic shock, bradyarrhythmias, hypotension, ectopic beats, abnormal temperature control and disturbance of sweating, vasodilatation and autonomic dysreflexia. Autonomic dysreflexia is an abrupt, uncontrolled sympathetic response, elicited by stimuli below the level of injury. The symptoms may be mild like skin rash or slight headache, but can cause severe hypertension, cerebral haemorrhage and death. All personnel caring for the patient should be able to recognize the symptoms and be able to intervene promptly. Disturbance of respiratory function are frequent in tetraplegia and a primary cause of both short and long-term morbidity and mortality is pulmonary complications. Due to physical inactivity and altered haemostasis, patients with SCI have a higher risk of venous thromboembolism and pressure ulcers. Spasticity and pain are frequent complications which need to be addressed. The psychological stress associated with SCI may lead to anxiety and depression. Knowledge of possible complications during the acute phase is important because they may be life threatening and/ or may lead to prolonged rehabilitation. PMID:25621207

  6. Human models of acute lung injury

    PubMed Central

    Proudfoot, Alastair G.; McAuley, Danny F.; Griffiths, Mark J. D.; Hind, Matthew

    2011-01-01

    Acute lung injury (ALI) is a syndrome that is characterised by acute inflammation and tissue injury that affects normal gas exchange in the lungs. Hallmarks of ALI include dysfunction of the alveolar-capillary membrane resulting in increased vascular permeability, an influx of inflammatory cells into the lung and a local pro-coagulant state. Patients with ALI present with severe hypoxaemia and radiological evidence of bilateral pulmonary oedema. The syndrome has a mortality rate of approximately 35% and usually requires invasive mechanical ventilation. ALI can follow direct pulmonary insults, such as pneumonia, or occur indirectly as a result of blood-borne insults, commonly severe bacterial sepsis. Although animal models of ALI have been developed, none of them fully recapitulate the human disease. The differences between the human syndrome and the phenotype observed in animal models might, in part, explain why interventions that are successful in models have failed to translate into novel therapies. Improved animal models and the development of human in vivo and ex vivo models are therefore required. In this article, we consider the clinical features of ALI, discuss the limitations of current animal models and highlight how emerging human models of ALI might help to answer outstanding questions about this syndrome. PMID:21357760

  7. Acute complications of spinal cord injuries

    PubMed Central

    Hagen, Ellen Merete

    2015-01-01

    The aim of this paper is to give an overview of acute complications of spinal cord injury (SCI). Along with motor and sensory deficits, instabilities of the cardiovascular, thermoregulatory and broncho-pulmonary system are common after a SCI. Disturbances of the urinary and gastrointestinal systems are typical as well as sexual dysfunction. Frequent complications of cervical and high thoracic SCI are neurogenic shock, bradyarrhythmias, hypotension, ectopic beats, abnormal temperature control and disturbance of sweating, vasodilatation and autonomic dysreflexia. Autonomic dysreflexia is an abrupt, uncontrolled sympathetic response, elicited by stimuli below the level of injury. The symptoms may be mild like skin rash or slight headache, but can cause severe hypertension, cerebral haemorrhage and death. All personnel caring for the patient should be able to recognize the symptoms and be able to intervene promptly. Disturbance of respiratory function are frequent in tetraplegia and a primary cause of both short and long-term morbidity and mortality is pulmonary complications. Due to physical inactivity and altered haemostasis, patients with SCI have a higher risk of venous thromboembolism and pressure ulcers. Spasticity and pain are frequent complications which need to be addressed. The psychological stress associated with SCI may lead to anxiety and depression. Knowledge of possible complications during the acute phase is important because they may be life threatening and/ or may lead to prolonged rehabilitation. PMID:25621207

  8. Electrophysiologic monitoring in acute brain injury.

    PubMed

    Claassen, Jan; Vespa, Paul

    2014-12-01

    To determine the optimal use and indications of electroencephalography (EEG) in critical care management of acute brain injury (ABI). An electronic literature search was conducted for articles in English describing electrophysiological monitoring in ABI from January 1990 to August 2013. A total of 165 studies were included. EEG is a useful monitor for seizure and ischemia detection. There is a well-described role for EEG in convulsive status epilepticus and cardiac arrest (CA). Data suggest EEG should be considered in all patients with ABI and unexplained and persistent altered consciousness and in comatose intensive care unit (ICU) patients without an acute primary brain condition who have an unexplained impairment of mental status. There remain uncertainties about certain technical details, e.g., the minimum duration of EEG studies, the montage, and electrodes. Data obtained from both EEG and EP studies may help estimate prognosis in ABI patients, particularly following CA and traumatic brain injury. Data supporting these recommendations is sparse, and high quality studies are needed. EEG is used to monitor and detect seizures and ischemia in ICU patients and indications for EEG are clear for certain disease states, however, uncertainty remains on other applications. PMID:25208668

  9. Targeted deletion of p53 in the proximal tubule prevents ischemic renal injury.

    PubMed

    Ying, Yuan; Kim, Jinu; Westphal, Sherry N; Long, Kelly E; Padanilam, Babu J

    2014-12-01

    The contribution of p53 to kidney dysfunction, inflammation, and tubular cell death, hallmark features of ischemic renal injury (IRI), remains undefined. Here, we studied the role of proximal tubule cell (PTC)-specific p53 activation on the short- and long-term consequences of renal ischemia/reperfusion injury in mice. After IRI, mice with PTC-specific deletion of p53 (p53 knockout [KO]) had diminished whole-kidney expression levels of p53 and its target genes, improved renal function, which was shown by decreased plasma levels of creatinine and BUN, and attenuated renal histologic damage, oxidative stress, and infiltration of neutrophils and macrophages compared with wild-type mice. Notably, necrotic cell death was attenuated in p53 KO ischemic kidneys as well as oxidant-injured p53-deficient primary PTCs and pifithrin-α-treated PTC lines. Reduced oxidative stress and diminished expression of PARP1 and Bax in p53 KO ischemic kidneys may account for the decreased necrosis. Apoptosis and expression of proapoptotic p53 targets, including Bid and Siva, were also significantly reduced, and cell cycle arrest at the G2/M phase was attenuated in p53 KO ischemic kidneys. Furthermore, IRI-induced activation of TGF-β and the long-term development of inflammation and interstitial fibrosis were significantly reduced in p53 KO mice. In conclusion, specific deletion of p53 in the PTC protects kidneys from functional and histologic deterioration after IRI by decreasing necrosis, apoptosis, and inflammation and modulates the long-term sequelae of IRI by preventing interstitial fibrogenesis. PMID:24854277

  10. Post-injury administration of allicin attenuates ischemic brain injury through sphingosine kinase 2: In vivo and in vitro studies.

    PubMed

    Lin, Jia-Ji; Chang, Ting; Cai, Wen-Ke; Zhang, Zhuo; Yang, Yong-Xiang; Sun, Chao; Li, Zhu-Yi; Li, Wei-Xin

    2015-10-01

    Allicin, one of the main biologically active compounds derived from garlic, has been shown to exert various pharmacological activities and is considered to have therapeutic potential for many pathologic conditions. In the present study, we investigated the potential post-ischemic neuroprotective effects of allicin and its underlying mechanisms. Using a rat middle cerebral artery occlusion (MCAO) model, we found that intraperitoneal treatment with 50 mg/kg allicin significantly reduced brain infarct volume, attenuated cerebral edema and decreased the neurological deficit score. Allicin treatment also diminished TUNEL positive cells and inhibited the activation of caspase-3 after MCAO. These protective effects could be observed even if the administration was delayed to 6 h after injury. In addition, we evaluated the in vitro protective effects of allicin against oxygen glucose deprivation (OGD) induced neuronal injury in primary cultured cortical neurons. Allicin (50 μM) increased neuronal viability, decreased lactate dehydrogenase (LDH) release and inhibited apoptotic neuronal death after OGD. These protective effects could be observed even if the administration was delayed to 4 h after injury. Furthermore, allicin significantly increased the expression of sphingosine kinases 2 (Sphk2) both in vivo and in vitro. Pretreatment with the Sphk2 inhibitor ABC294640 partially reversed the protective effects of allicin against MCAO and OGD injury, indicating that an Sphk2-mediated mechanism was involved in allicin-induced protection in our models. The combination of findings suggests that post-injury administration of allicin has potential as a neuroprotective strategy for ischemic stroke. PMID:26275594

  11. Sex differences in patients with acute ischemic stroke in Tuzla region, Bosnia and Herzegovina.

    PubMed

    Salihović, Denisa; Smajlović, Dzevdet; Sinanović, Osman; Kojić, Biljana

    2010-05-01

    Although many aspects of stroke are similar at both sexes, however, there are some differences and characteristics as well. The aim of this study was to analyze sex differences in patients with acute ischemic stroke (IS) regarding to risk factors, subtypes, stroke severity and outcome. From January 1st 2001 to December 31st 2005 at the Department of Neurology Tuzla 2833 patients were admitted with acute ischemic stroke (IS). We were analyzed risk factors, subtypes, stroke severity (Scandinavian Stroke Scale), and thirty-day outcome. There were 1484 (52.3%) female, and they were older than male (67.8 +/- 10.6 vs. 65.7 +/- 10.5, p<0.0001). Hypertension (78% vs. 67%, p<0.0001), heart diseases (50% vs. 45%, p=0.009), atrial fibrillation (22% vs. 14%, p<0.0001) and diabetes mellitus (33% vs. 21%, p<0.0001) were frequently in female, while smoking (45% vs. 14%) and alcohol overuse (18% vs. 0,6%) in male (p<0.0001). Atherothrombotic type of ischemic stroke was frequently in male (37.4% vs. 31.6%, p=0.0013) and cardioembolic in female (21.7% vs. 15.5%, p<0.0001). At admission female had lower SS (SS 31.0 +/- 15 vs. 34.0 +/- 15, p<0.0001). Thirty-day mortality was significantly higher in female (23.3% vs. 18.4%, p=0.0015), and favourable outcome within one month (Rankin Scale ischemic stroke is higher in female who are older than male. There are some sex differences according to the distribution of risk factors and subtypes of ischemic stroke. Stroke severity at admission, thirty-day mortality, and disability are higher in female. PMID:20507291

  12. Acute Kidney Injury Subsequent to Cardiac Surgery

    PubMed Central

    Kramer, Robert S.; Herron, Crystal R.; Groom, Robert C.; Brown, Jeremiah R.

    2015-01-01

    Abstract: Acute kidney injury (AKI) after cardiac surgery is a common and underappreciated syndrome that is associated with poor short- and long-term outcomes. AKI after cardiac surgery may be epiphenomenon, a signal for adverse outcomes by virtue of other affected organ systems, and a consequence of multiple factors. Subtle increases in serum creatinine (SCr) postoperatively, once considered inconsequential, have been shown to reflect a kidney injury that likely occurred in the operating room during cardiopulmonary bypass (CPB) and more often in susceptible individuals. The postoperative elevation in SCr is a delayed signal reflecting the intraoperative injury. Preoperative checklists and the conduct of CPB represent opportunities for prevention of AKI. Newer definitions of AKI provide us with an opportunity to scrutinize perioperative processes of care and determine strategies to decrease the incidence of AKI subsequent to cardiac surgery. Recognizing and mitigating risk factors preoperatively and optimizing intraoperative practices may, in the aggregate, decrease the incidence of AKI. This review explores the pathophysiology of AKI and addresses the features of patients who are the most vulnerable to AKI. Preoperative strategies are discussed with particular attention to a readiness for surgery checklist. Intraoperative strategies include minimizing hemodilution and maximizing oxygen delivery with specific suggestions regarding fluid management and plasma preservation. PMID:26390675

  13. Acute Kidney Injury Subsequent to Cardiac Surgery.

    PubMed

    Kramer, Robert S; Herron, Crystal R; Groom, Robert C; Brown, Jeremiah R

    2015-03-01

    Acute kidney injury (AKI) after cardiac surgery is a common and underappreciated syndrome that is associated with poor shortand long-term outcomes. AKI after cardiac surgery may be epiphenomenon, a signal for adverse outcomes by virtue of other affected organ systems, and a consequence of multiple factors. Subtle increases in serum creatinine (SCr) postoperatively, once considered inconsequential, have been shown to reflect a kidney injury that likely occurred in the operating room during cardiopulmonary bypass (CPB) and more often in susceptible individuals. The postoperative elevation in SCr is a delayed signal reflecting the intraoperative injury. Preoperative checklists and the conduct of CPB represent opportunities for prevention of AKI. Newer definitions of AKI provide us with an opportunity to scrutinize perioperative processes of care and determine strategies to decrease the incidence of AKI subsequent to cardiac surgery. Recognizing and mitigating risk factors preoperatively and optimizing intraoperative practices may, in the aggregate, decrease the incidence of AKI. This review explores the pathophysiology of AKI and addresses the features of patients who are the most vulnerable to AKI. Preoperative strategies are discussed with particular attention to a readiness for surgery checklist. Intraoperative strategies include minimizing hemodilution and maximizing oxygen delivery with specific suggestions regarding fluid management and plasma preservation. PMID:26390675

  14. Uncoupling of the autonomic and cardiovascular systems in acute brain injury.

    PubMed

    Goldstein, B; Toweill, D; Lai, S; Sonnenthal, K; Kimberly, B

    1998-10-01

    We hypothesized that acute brain injury results in decreased heart rate (HR) variability and baroreflex sensitivity indicative of uncoupling of the autonomic and cardiovascular systems and that the degree of uncoupling should be proportional to the degree of neurological injury. We used HR and blood pressure (BP) power spectral analysis to measure neuroautonomic regulation of HR and BP and the transfer function magnitude (TF) between BP and HR as a measure of baroreflex modulation of HR. In 24 brain-injured patients [anoxic/ischemic injury (n = 7), multiple trauma (n = 6), head trauma (n = 5), central nervous system infection (n = 4), and intracranial hemorrhage (n = 2)], neurological injury and survival was associated with low-frequency (0.01-0.15 Hz) HR and BP power and TF. Brain-dead patients showed decreased low-frequency HR power [0. 51 +/- 0.36 (SE) vs. 2.54 +/- 0.14 beats/min2, P = 0.03] and TF [0. 61 +/- 0.16 (SE) vs. 1.29 +/- 0.07 beats . min-1 . mmHg-1, P = 0.05] compared with non-brain-dead patients. We conclude that 1) severity of neurological injury and outcome are inversely associated with HR and BP variability and 2) there is direct evidence for cardiovascular and autonomic uncoupling in acute brain injury with complete uncoupling during brain death. PMID:9756562

  15. Galectin-1-secreting neural stem cells elicit long-term neuroprotection against ischemic brain injury

    PubMed Central

    Wang, Jiayin; Xia, Jinchao; Zhang, Feng; Shi, Yejie; Wu, Yun; Pu, Hongjian; Liou, Anthony K. F.; Leak, Rehana K.; Yu, Xinguang; Chen, Ling; Chen, Jun

    2015-01-01

    Galectin-1 (gal-1), a special lectin with high affinity to β-galactosides, is implicated in protection against ischemic brain injury. The present study investigated transplantation of gal-1-secreting neural stem cell (s-NSC) into ischemic brains and identified the mechanisms underlying protection. To accomplish this goal, secretory gal-1 was stably overexpressed in NE-4C neural stem cells. Transient cerebral ischemia was induced in mice by middle cerebral artery occlusion for 60 minutes and s-NSCs were injected into the striatum and cortex within 2 hours post-ischemia. Brain infarct volume and neurological performance were assessed up to 28 days post-ischemia. s-NSC transplantation reduced infarct volume, improved sensorimotor and cognitive functions, and provided more robust neuroprotection than non-engineered NSCs or gal-1-overexpressing (but non-secreting) NSCs. White matter injury was also ameliorated in s-NSC-treated stroke mice. Gal-1 modulated microglial function in vitro, by attenuating secretion of pro-inflammatory cytokines (TNF-α and nitric oxide) in response to LPS stimulation and enhancing production of anti-inflammatory cytokines (IL-10 and TGF-β). Gal-1 also shifted microglia/macrophage polarization toward the beneficial M2 phenotype in vivo by reducing CD16 expression and increasing CD206 expression. In sum, s-NSC transplantation confers robust neuroprotection against cerebral ischemia, probably by alleviating white matter injury and modulating microglial/macrophage function. PMID:25858671

  16. Multi-parametric imaging of cerebral hemodynamic and metabolic response followed by ischemic injury

    NASA Astrophysics Data System (ADS)

    Qin, Jia; Shi, Lei; Dziennis, Suzan; Wang, Ruikang K.

    2014-02-01

    We use rodent parietal cortex as a model system and utilize a synchronized dual wavelength laser speckle imaging (SDW-LSCI) technique to explore the hemodynamic response of infarct and penumbra to a brain injury (middle cerebral artery occlusion (MCAO) model). The SDW-LSCI system is able to take snapshots rapidly (maximum 500 Hz) over the entire brain surface, providing key information about the hemodynamic response, in terms of which it may be used to elucidate evolution of penumbra region from onsite to 90 min of MCAO. Changes in flow are quantified as to the flow experiencing physical occlusions of the MCA normalized to that of baseline. Furthermore, the system is capable of providing information as to the changes of the concentration of oxygenated, (HbO) deoxygenated (Hb), and total hemoglobin (HbT) in the cortex based on the spectral characteristics of HbO and Hb. We observe that the oxygenation variations in the four regions are detectable and distinct. Combining the useful information, four regions of interest (ROI), infarct, penumbra, reduced flow and contralateral portions in the brain upon ischemic injury may be differentiated. Implications of our results are discussed with respect to current understanding of the mechanisms underlying MCAO. We anticipate that SDW-LSCI holds promise for rapid and large field of view localization of ischemic injury.

  17. Aging causes collateral rarefaction and increased severity of ischemic injury in multiple tissues

    PubMed Central

    Faber, James E.; Zhang, Hua; Lassance-Soares, Roberta M.; Prabhakar, Pranay; Najafi, Amir H.; Burnett, Mary Susan; Epstein, Stephen E.

    2011-01-01

    Objective Aging is a major risk factor for increased ischemic tissue injury. Whether collateral rarefaction and impaired remodeling contribute to this is unknown. We quantified the number and diameter of native collaterals, and their remodeling in 3-, 16-, 24-, and 31-months-old mice. Methods and Results Aging caused an “age-dose-dependent” greater drop in perfusion immediately after femoral artery ligation, followed by a diminished recovery of flow and increase in tissue injury. These effects were associated with a decline in collateral number, diameter and remodeling. Angiogenesis was also impaired. Mechanistically, these changes were not accompanied by reduced recruitment of T-cells or macrophages to remodeling collaterals. However, eNOS signaling was dysfunctional, as indicated by increased protein nitrosylation and less phosphorylated eNOS and VASP in collateral wall cells. The cerebral circulation exhibited a similar age-dose-dependent loss of collateral number and diameter and increased tortuosity, resulting in an increase in collateral resistance and infarct volume (e.g., 6- and 3-fold, respectively, in 24-months-old mice) after artery occlusion. This was not associated with rarefaction of similarly-sized arterioles. Collateral remodeling was also reduced. Conclusions Our findings demonstrate that aging causes rarefaction and insufficiency of the collateral circulation in multiple tissues, resulting in more severe ischemic tissue injury. PMID:21617137

  18. Protective effects of flunarizine on ischemic injury in the rat retina.

    PubMed

    Takahashi, K; Lam, T T; Edward, D P; Buchi, E R; Tso, M O

    1992-06-01

    Intracellular calcium overload has been implicated to be a major factor in triggering cell death after ischemic neuronal injury. We investigated the effects of flunarizine hydrochloride, a calcium-overload blocker, on pressure-induced retinal ischemia in a rat model. Retinal ischemia was induced in intraocular pressure to 110 mm Hg for 45 minutes. Two regimens of treatment with flunarizine were examined: (1) prophylactic treatment, in which flunarizine was administered before ischemia and in the early phase of reperfusion; and (2) postischemic treatment, in which flunarizine was administered only in the early phase of reperfusion. Injury was evaluated morphologically and morphometrically by measuring the thickness of the inner retinal layers on plastic-embedded retinal sections and by counting the retinal ganglion cells on retinal flat preparations. By morphologic and morphometric criteria, a significant but partial protection of the inner retinal layers was noted in the groups given either regimen. This protective effect of flunarizine suggests that elevated intracellular calcium concentration may play an important role in ischemic retinal injury. PMID:1596236

  19. Melatonin Ameliorates Injury and Specific Responses of Ischemic Striatal Neurons in Rats

    PubMed Central

    Ma, Yuxin; Feng, Qiqi; Ma, Jing; Feng, Zhibo; Zhan, Mali; OuYang, Lisi; Mu, Shuhua; Liu, Bingbing; Jiang, Zhuyi; Jia, Yu; Li, Youlan

    2013-01-01

    Studies have confirmed that middle cerebral artery occlusion (MCAO) causes striatal injury in which oxidative stress is involved in the pathological mechanism. Increasing evidence suggests that melatonin may have a neuroprotective effect on cerebral ischemic damage. This study aimed to examine the morphological changes of different striatal neuron types and the effect of melatonin on striatal injury by MCAO. The results showed that MCAO induced striatum-related dysfunctions of locomotion, coordination, and cognition, which were remarkably relieved with melatonin treatment. MCAO induced severe striatal neuronal apoptosis and loss, which was significantly decreased with melatonin treatment. Within the outer zone of the infarct, the number of Darpp-32+ projection neurons and the densities of dopamine-receptor-1 (D1)+ and dopamine-receptor-2 (D2)+ fibers were reduced; however, both parvalbumin (Parv)+ and choline acetyltransferase (ChAT)+ interneurons were not significantly decreased in number, and neuropeptide Y (NPY)+ and calretinin (Cr)+ interneurons were even increased. With melatonin treatment, the loss of projection neurons and characteristic responses of interneurons were notably attenuated. The present study demonstrates that the projection neurons are rather vulnerable to ischemic damage, whereas the interneurons display resistance and even hyperplasia against injury. In addition, melatonin alleviates striatal dysfunction, neuronal loss, and morphological transformation of interneurons resulting from cerebral ischemia. PMID:23686363

  20. [Pre-hospital care management of acute spinal cord injury].

    PubMed

    Hess, Thorsten; Hirschfeld, Sven; Thietje, Roland; Lönnecker, Stefan; Kerner, Thoralf; Stuhr, Markus

    2016-04-01

    Acute injury to the spine and spinal cord can occur both in isolation as also in the context of multiple injuries. Whereas a few decades ago, the cause of paraplegia was almost exclusively traumatic, the ratio of traumatic to non-traumatic causes in Germany is currently almost equivalent. In acute treatment of spinal cord injury, restoration and maintenance of vital functions, selective control of circulation parameters, and avoidance of positioning or transport-related additional damage are in the foreground. This article provides information on the guideline for emergency treatment of patients with acute injury of the spine and spinal cord in the preclinical phase. PMID:27070515

  1. Eriodictyol-7-O-glucoside activates Nrf2 and protects against cerebral ischemic injury

    SciTech Connect

    Jing, Xu; Ren, Dongmei; Wei, Xinbing; Shi, Huanying; Zhang, Xiumei; Perez, Ruth G.; Lou, Haiyan; Lou, Hongxiang

    2013-12-15

    Stroke is a complex disease that may involve oxidative stress-related pathways in its pathogenesis. The nuclear factor erythroid-2-related factor 2/antioxidant response element (Nrf2/ARE) pathway plays an important role in inducing phase II detoxifying enzymes and antioxidant proteins and thus has been considered a potential target for neuroprotection in stroke. The aim of the present study was to determine whether eriodictyol-7-O-glucoside (E7G), a novel Nrf2 activator, can protect against cerebral ischemic injury and to understand the role of the Nrf2/ARE pathway in neuroprotection. In primary cultured astrocytes, E7G increased the nuclear localization of Nrf2 and induced the expression of the Nrf2/ARE-dependent genes. Exposure of astrocytes to E7G provided protection against oxygen and glucose deprivation (OGD)-induced oxidative insult. The protective effect of E7G was abolished by RNA interference-mediated knockdown of Nrf2 expression. In vivo administration of E7G in a rat model of focal cerebral ischemia significantly reduced the amount of brain damage and ameliorated neurological deficits. These data demonstrate that activation of Nrf2/ARE signaling by E7G is directly associated with its neuroprotection against oxidative stress-induced ischemic injury and suggest that targeting the Nrf2/ARE pathway may be a promising approach for therapeutic intervention in stroke. - Highlights: • E7G activates Nrf2 in astrocytes. • E7G stimulates expression of Nrf2-mediated cytoprotective proteins in astrocytes. • E7G protects astrocytes against OGD-induced cell death and apoptosis. • The neuroprotective effect of E7G involves the Nrf2/ARE pathway. • E7G protects rats against cerebral ischemic injury.

  2. Retinal ischemic injury rescued by sodium 4-phenylbutyrate in a rat model.

    PubMed

    Jeng, Yung-Yue; Lin, Nien-Ting; Chang, Pen-Heng; Huang, Yuan-Ping; Pang, Victor Fei; Liu, Chen-Hsuan; Lin, Chung-Tien

    2007-03-01

    Retinal ischemia is a common cause of visual impairment for humans and animals. Herein, the neuroprotective effects of phenylbutyrate (PBA) upon retinal ischemic injury were investigated using a rat model. Retinal ganglion cells (RGCs) were retrograde labeled with the fluorescent tracer fluorogold (FG) applied to the superior collicoli of test Sprague-Dawley rats. High intraocular pressure and retinal ischemia were induced seven days subsequent to such FG labeling. A dose of either 100 or 400 mg/kg PBA was administered intraperitoneally to test rats at two time points, namely 30 min prior to the induction of retinal ischemia and 1 h subsequent to the cessation of the procedure inducing retinal ischemia. The test-rat retinas were collected seven days subsequent to the induction of retinal ischemia, and densities of surviving RGCs were estimated by counting FG-labeled RGCs within the retina. Histological analysis revealed that ischemic injury caused the loss of retinal RGCs and a net decrease in retinal thickness. For PBA-treated groups, almost 100% of the RGCs were preserved by a pre-ischemia treatment with PBA (at a dose of either 100 or 400 mg/kg), while post-ischemia treatment of RGCs with PBA did not lead to the preservation of RGCs from ischemic injury by PBA as determined by the counting of whole-mount retinas. Pre-ischemia treatment of RGCs with PBA (at a dose of either 100 or 400 mg/kg) significantly reduced the level of ischemia-associated loss of thickness of the total retina, especially the inner retina, and the inner plexiform layer of retina. Besides, PBA treatment significantly reduced the ischemia-induced loss of cells in the ganglion-cell layer of the retina. Taken together, these results suggest that PBA demonstrates a marked neuroprotective effect upon high intraocular pressure-induced retinal ischemia when the PBA is administered prior to ischemia induction. PMID:17178414

  3. Cell tracking technologies for acute ischemic brain injury

    PubMed Central

    Gavins, Felicity NE; Smith, Helen K

    2015-01-01

    Stem cell therapy has showed considerable potential in the treatment of stroke over the last decade. In order that these therapies may be optimized, the relative benefits of growth factor release, immunomodulation, and direct tissue replacement by therapeutic stem cells are widely under investigation. Fundamental to the progress of this research are effective imaging techniques that enable cell tracking in vivo. Direct analysis of the benefit of cell therapy includes the study of cell migration, localization, division and/or differentiation, and survival. This review explores the various imaging tools currently used in clinics and laboratories, addressing image resolution, long-term cell monitoring, imaging agents/isotopes, as well as safety and costs associated with each technique. Finally, burgeoning tracking techniques are discussed, with emphasis on multimodal imaging. PMID:25966948

  4. Babesiosis-induced acute kidney injury with prominent urinary macrophages.

    PubMed

    Luciano, Randy L; Moeckel, Gilbert; Palmer, Matthew; Perazella, Mark A

    2013-10-01

    Babesia is an obligate intracellular erythrocyte parasite that can infect humans. Severe symptomatic disease from massive hemolysis and multiorgan system failure, including acute kidney injury (AKI), occurs. Acute tubular injury from a combination of volume depletion and heme pigment toxicity from profound hemolysis is the most common cause of AKI. We present a case of severe babesiosis complicated by dialysis-requiring AKI with the unique finding of large macrophages containing engulfed erythrocyte fragments in urine sediment. This urinary finding raised the possibility of another diagnosis distinct from acute tubular injury. Subsequent kidney biopsy demonstrated infection-associated acute interstitial nephritis. PMID:23643302

  5. Progesterone in the treatment of neonatal arterial ischemic stroke and acute seizures: Role of BDNF/TrkB signaling.

    PubMed

    Atif, Fahim; Yousuf, Seema; Stein, Donald G

    2016-08-01

    Neonatal stroke is among the top ten causes of childhood death and permanent disability in survivors, but no safe and effective acute treatments exist. To advance understanding of its neuroprotective mechanisms, we examined the effects of progesterone (PROG) on local and systemic inflammation (IL-1β, IL-6, TNFα), brain derived neurotrophic factor/Tropomyosin receptor kinase B (BDNF/TrkB) signaling, vascular damage (vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 (MMP-9)), acute behavioral seizures and brain infarction size following neonatal arterial ischemic stroke in mice. CD1 mouse pups (postnatal day 12, mixed gender) received permanent unilateral right common carotid ligation (pUCCL) or sham surgery. Pups showing seizure activity during the first hour post-pUCCL were randomly assigned to receive PROG (8 mg/kg) or vehicle injections. PROG treatment significantly (p < 0.05) reduced seizure occurrence by ∼44% compared to vehicle and attenuated the expression of pro-inflammatory cytokines in serum and brain at different time-points. PROG differentially regulated the expression of BDNF and TrkB and the activity of VEGF and MMP-9 over the 7d period. Permanent UCCL resulted in severe hemispheric damage measured at 7 days post-pUCCL but PROG treatment produced a significant (p < 0.05) reduction in infarct volume (∼70%) compared to vehicle. A gender-based comparison of data revealed significantly greater seizure activity in males compared to females. However, we did not observe significant sex differences on any other markers of the injury at this early stage of development. PROG treatment is neuroprotective through a number of signaling pathways and can be beneficial in treating neonatal arterial ischemic stroke in CD1 mice. PMID:27039043

  6. The feasibility of imaging myocardial ischemic/reperfusion injury using 99mTc-labeled duramycin in a porcine model

    PubMed Central

    Wang, Lei; Wang, Feng; Fang, Wei; Johnson, Steven E.; Audi, Said; Zimmer, Michael; Holly, Thomas A; Lee, Daniel; Zhu, Bao; Zhu, Haibo; Zhao, Ming

    2015-01-01

    When pathologically externalized, phosphatidylethanolamine (PE) is a potential surrogate marker for detecting tissue injuries. 99mTc-labeled duramycin is a peptide-based imaging agent that binds PE with high affinity and specificity. The goal of the current study was to investigate the clearance kinetics of 99mTc-labeled duramycin in a large animal model (normal pigs) and to assess its uptake in the heart using a pig model of myocardial ischemia-reperfusion injury. Methods The clearance and distribution of intravenously injected 99mTc-duramycin were characterized in sham-operated animals (n = 5). In a closed chest model of myocardial ischemia, coronary occlusion was induced by balloon angioplasty (n = 9). 99mTc-duramycin (10-15 mCi) was injected intravenously at 1 hour after reperfusion. SPECT/CT was acquired at 1 and 3 hours after injection. Cardiac tissues were analyzed for changes associated with acute cellular injuries. Autoradiography and gamma counting was used to determine radioactivity uptake. For the remaining animals, 99mTc-tetrafosamin scan was performed on the second day to identify the infarct site. Results Intravenously injected 99mTc-duramycin cleared from circulation predominantly via the renal/urinary tract with an α-phase half-life of 3.6 ± 0.3 minutes and β-phase half-life of 179.9 ± 64.7 minutes. In control animals, the ratios between normal heart and lung were 1.76 ± 0.21, 1.66 ± 0.22, 1.50 ± 0.20 and 1.75 ± 0.31 at 0.5, 1, 2 and 3 hours post injection, respectively. The ratios between normal heart and liver were 0.88 ± 0.13, 0.80 ± 0.13, 0.82 ± 0.19 and 0.88 ± 0.14. In vivo visualization of focal radioactivity uptake in the ischemic heart was attainable as early as 30 min post injection. The in vivo ischemic-to-normal uptake ratios were 3.57 ± 0.74 and 3.69 ± 0.91 at 1 and 3 hours post injection, respectively. Ischemic-to-lung ratios were 4.89 ± 0.85 and 4.93 ± 0.57; and ischemic-to-liver ratios were 2.05 ± 0.30 to 3.23 ± 0

  7. The Transcription Factor Interferon Regulatory Factor 1 Is Expressed after Cerebral Ischemia and Contributes to Ischemic Brain Injury

    PubMed Central

    Iadecola, Costantino; Salkowski, Cindy A.; Zhang, Fangyi; Aber, Tracy; Nagayama, Masao; Vogel, Stefanie N.; Elizabeth Ross, M.

    1999-01-01

    The transcription factor interferon regulatory factor 1 (IRF-1) is involved in the molecular mechanisms of inflammation and apoptosis, processes that contribute to ischemic brain injury. In this study, the induction of IRF-1 in response to cerebral ischemia and its role in ischemic brain injury were investigated. IRF-1 gene expression was markedly upregulated within 12 h of occlusion of the middle cerebral artery in C57BL/6 mice. The expression reached a peak 4 d after ischemia (6.0 ± 1.8-fold; P < 0.001) and was restricted to the ischemic regions of the brain. The volume of ischemic injury was reduced by 23 ± 3% in IRF-1+/− and by 46 ± 9% in IRF-1−/− mice (P < 0.05). The reduction in infarct volume was paralleled by a substantial attenuation in neurological deficits. Thus, IRF-1 is the first nuclear transacting factor demonstrated to contribute directly to cerebral ischemic damage and may be a novel therapeutic target in ischemic stroke. PMID:9989987

  8. Treatment with polyamine oxidase inhibitor reduces microglial activation and limits vascular injury in ischemic retinopathy.

    PubMed

    Patel, C; Xu, Z; Shosha, E; Xing, J; Lucas, R; Caldwell, R W; Caldwell, R B; Narayanan, S P

    2016-09-01

    Retinal vascular injury is a major cause of vision impairment in ischemic retinopathies. Insults such as hyperoxia, oxidative stress and inflammation contribute to this pathology. Previously, we showed that hyperoxia-induced retinal neurodegeneration is associated with increased polyamine oxidation. Here, we are studying the involvement of polyamine oxidases in hyperoxia-induced injury and death of retinal vascular endothelial cells. New-born C57BL6/J mice were exposed to hyperoxia (70% O2) from postnatal day (P) 7 to 12 and were treated with the polyamine oxidase inhibitor MDL 72527 or vehicle starting at P6. Mice were sacrificed after different durations of hyperoxia and their retinas were analyzed to determine the effects on vascular injury, microglial cell activation, and inflammatory cytokine profiling. The results of this analysis showed that MDL 72527 treatment significantly reduced hyperoxia-induced retinal vascular injury and enhanced vascular sprouting as compared with the vehicle controls. These protective effects were correlated with significant decreases in microglial activation as well as levels of inflammatory cytokines and chemokines. In order to model the effects of polyamine oxidation in causing microglial activation in vitro, studies were performed using rat brain microvascular endothelial cells treated with conditioned-medium from rat retinal microglia stimulated with hydrogen peroxide. Conditioned-medium from activated microglial cultures induced cell stress signals and cell death in microvascular endothelial cells. These studies demonstrate the involvement of polyamine oxidases in hyperoxia-induced retinal vascular injury and retinal inflammation in ischemic retinopathy, through mechanisms involving cross-talk between endothelial cells and resident retinal microglia. PMID:27239699

  9. Inhibition of Notch signaling by Dll4-Fc promotes reperfusion of acutely ischemic tissues

    SciTech Connect

    Liu, Ren; Trindade, Alexandre; Sun, Zhanfeng; Kumar, Ram; Weaver, Fred A.; Krasnoperov, Valery; Naga, Kranthi; Duarte, Antonio; Gill, Parkash S.

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Low dose Dll4-Fc increases vascular proliferation and overall perfusion. Black-Right-Pointing-Pointer Low dose Dll4-Fc helps vascular injury recovery in hindlimb ischemia model. Black-Right-Pointing-Pointer Low dose Dll4-Fc helps vascular injury recovery in skin flap model. Black-Right-Pointing-Pointer Dll4 heterozygous deletion promotes vascular injury recovery. Black-Right-Pointing-Pointer Dll4 overexpression delays vascular injury recovery. -- Abstract: Notch pathway regulates vessel development and maturation. Dll4, a high-affinity ligand for Notch, is expressed predominantly in the arterial endothelium and is induced by hypoxia among other factors. Inhibition of Dll4 has paradoxical effects of reducing the maturation and perfusion in newly forming vessels while increasing the density of vessels. We hypothesized that partial and/or intermittent inhibition of Dll4 may lead to increased vascular response and still allow vascular maturation to occur. Thus tissue perfusion can be restored rapidly, allowing quicker recovery from ischemia or tissue injury. Our studies in two different models (hindlimb ischemia and skin flap) show that inhibition of Dll4 at low dose allows faster recovery from vascular and tissue injury. This opens a new possibility for Dll4 blockade's therapeutic application in promoting recovery from vascular injury and restoring blood supply to ischemic tissues.

  10. Gender differences in patients with acute ischemic stroke.

    PubMed

    Caso, Valeria; Paciaroni, Maurizio; Agnelli, Giancarlo; Corea, Francesco; Ageno, Walter; Alberti, Andrea; Lanari, Alessia; Micheli, Sara; Bertolani, Luca; Venti, Michele; Palmerini, Francesco; Billeci, Antonia M R; Comi, Giancarlo; Previdi, Paolo; Silvestrelli, Giorgio

    2010-01-01

    Stroke has a greater effect on women than men owing to the fact that women have more stroke events and are less likely to recover. Age-specific stroke rates are higher in men; however, because of women's longer life expectancy and the much higher incidence of stroke at older ages, women have more stroke events than men overall. The aims of this prospective study in consecutive patients were to assess whether there are gender differences in stroke risk factors, treatment or outcome. Consecutive patients with ischemic stroke were included in this prospective study at four study centers. Disability was assessed using a modified Rankin Scale score (>or=3 indicating disabling stroke) in both genders at 90 days. Outcomes and risk factors in both genders were compared using the chi(2) test. Multiple logistic regression analysis was used to identify any independent predictors of outcome. A total of 1136 patients were included in this study; of these, 494 (46%) were female. Women were statistically older compared with men: 76.02 (+/- 12.93) and 72.68 (+/- 13.27) median years of age, respectively. At admission, females had higher NIH Stroke Scale scores compared with males (9.4 [+/- 6.94] vs 7.6 [+/- 6.28] for men; p = 0.0018). Furthermore, females tended to have more cardioembolic strokes (153 [30%] vs 147 [23%] for men; p = 0.004). Males had lacunar and atherosclerotic strokes more often (146 [29%] vs 249 [39%] for men; p = 0.002, and 68 [13%] vs 123 [19%] for men; p = 0.01, respectively). The mean modified Rankin Scale score at 3 months was also significantly different between genders, at 2.5 (+/- 2.05) for women and 2.1 (+/- 2.02) for men (p = 0.003). However, at multivariate analysis, female gender was not an indicator for negative outcome. It was concluded that female gender was not an independent factor for negative outcome. In addition, both genders demonstrated different stroke pathophysiologies. These findings should be taken into account when diagnostic workup and

  11. Thrombolysis for acute ischemic stroke by tenecteplase in the emergency department of a Moroccan hospital

    PubMed Central

    Belkouch, Ahmed; Jidane, Said; Chouaib, Naoufal; Elbouti, Anass; Nebhani, Tahir; Sirbou, Rachid; Bakkali, Hicham; Belyamani, Lahcen

    2015-01-01

    Introduction Thrombolysis has radically changed the prognosis of acute ischemic stroke. Tenecteplase is a modified form of rt-PA with greater specificity for fibrin and a longer half-life. We report the experience of a Moroccan tertiary hospital in thrombolysis using Tenecteplase. Methods We conducted an open prospective study of all patients who were treated with Tenecteplase for an acute ischemic stroke admitted to our emergency department. Tenecteplase was administered intravenously at a dose of 0.4 mg/kg single bolus. The primary outcome measure was the proportion of patients achieving significant early neurological recovery defined as an improvement of 4 or more points on the NIHSS score at 24h. Results 13 patients had been treated by intravenous thrombolysis. 31% were women. Mean age was 63 years old. The mean NIHSS score at admission was 14.3 and 24h after was at 9.1. The right middle cerebral artery was involved in 69% of cases. The carotid atherosclerosis was predominant 63.3% and the cardio embolic etiology 27%. The mean time to the first medical contact after the onset of symptoms was 3h 30 min. One patient presented a capsulo-lenticular hematoma of 5 mm3 in the same side of the ischemic stroke. Conclusion Tenecteplase is a more interesting thrombolytic than alteplase, it seems to be more suitable for thrombolysis in our center. PMID:26405473

  12. Role of imaging in current acute ischemic stroke workflow for endovascular therapy.

    PubMed

    Menon, Bijoy K; Campbell, Bruce C V; Levi, Christopher; Goyal, Mayank

    2015-06-01

    Ischemic stroke is caused by a thrombus that blocks an intracranial artery. Brain tissue beyond the blocked artery survives for a variable period of time because of blood and nutrients received through tiny vessels called collaterals. Imaging the brain and the vasculature that supplies it is therefore a vital first step in treating patients with acute ischemic stroke. In this review, we focus on current evidence for imaging selection of patients for endovascular therapy in the context of the recently positive clinical trials, such as Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands (MR CLEAN), Endovascular Treatment for Small Core and Anterior Circulation Proximal Occlusion With Emphasis on Minimizing Computed Tomography to Recanalization Times (ESCAPE), Solitaire With the Intention for Thrombectomy as Primary Endovascular Treatment (SWIFT PRIME), and Extending the Time for Thrombolysis in Emergency Neurological Deficits-Intra-Arterial (EXTEND-IA). We discuss evidence for and use of the various imaging paradigms available. We discuss how to set up quick and efficient imaging protocols for patient selection and address common concerns about the use of imaging, including time spent, contrast, radiation, and other advantages and disadvantages. Finally, we briefly comment on how imaging can integrate itself within various health systems of care in the future, thereby potentially improving patient outcomes further. PMID:25944319

  13. Kidney ischemic injury genes expressed after donor brain death are predictive for the outcome of kidney transplantation.

    PubMed

    Kamińska, D; Kościelska-Kasprzak, K; Drulis-Fajdasz, D; Hałoń, A; Polak, W; Chudoba, P; Jańczak, D; Mazanowska, O; Patrzałek, D; Klinger, M

    2011-10-01

    The results of deceased donor kidney transplantation largely depend on the extent of organ injury induced by brain death and the transplantation procedure. In this study, we analyzed the preprocurement intragraft expression of 29 genes involved in apoptosis, tissue injury, immune cell migration, and activation. We also assessed their influence on allograft function. Before flushing with cold solution we obtained 50 kidney core biopsies of deceased donor kidneys immediately after organ retrieval. The control group included 18 biopsies obtained from living donors. Gene expression was analyzed with low-density arrays (Taqman). LCN2/lipocalin-2 is considered a biomarker of kidney epithelial ischemic injury with a renoprotective function. HAVCR1/KIM-1 is associated with acute tubular injury. Comparison of deceased donor kidneys to control organs revealed a significantly higher expression of LCN2 (8.0-fold P=.0006) and HAVCR1 (4.7-fold, P<.0001). Their expressions positively correlated with serum creatinine concentrations after 6 months after transplantation: LCN2 (r=.65, P<.0001), HAVCR1 (r=.44, P=.006). Kidneys displaying delayed graft function and/or an acute rejection episode in the first 6 months after showed higher LCN2 expression compared to event-free ones (1.7-fold, P=.027). A significantly higher increase in expression of TLR2 (5.2-fold), Interleukin (IL) 18 (4.6-fold), HMGB1 (4.1-fold), GUSB (2.4-fold), CASP3 (2.0-fold) FAS (1.8-fold), and TP53 (1.6-fold) was observed among deceased donor kidneys compared with the control group. Their expression levels were not related to clinical outcomes: however, they showed significant correlations with one another (r>.6, P<.0001). We also observed a slightly reduced expression of IL10 (0.6-fold, P=.004). Our data suggested that increased LCN2 and HAVCR1 expression observed in the kidneys after donor brain death were hallmarks of the organ injury process. LCN2 expression level in retrieved kidneys can predict kidney

  14. Ischemic penumbra in acute stroke: Demonstration by PET with fluorine-18 fluoromisonidazole

    SciTech Connect

    Yeh, S.H.; Liu, R.S.; Hu, H.H.

    1994-05-01

    Ischemic penumbra (IP) in acute stroke has gained clinical interest since tissue functions may be recovered if perfusion can be reestablished. However, such therapeutic intervention is {open_quotes}blind{close_quotes} since clinical examination can not distinguish IP from developing infarction. In vivo demonstration of IP may have significance for stroke patient management. This study was a preliminary evaluation of detecting IP in vivo by F-18 fluoromisonidazole ([F-18]-FMISO), a hypoxic imaging agent. Static PET imaging was performed after IV injection of 370 MBq of [F-18]-FMISO at 20 and 120 min. Tomograms were reconstructed and evaluated visually in correlation with CT or MR scans. In acute stroke, patients (pts) were called back for the second PET study one month after the initial study. CT was used for confirming infarction. In 6 pts with acute cerebral infarction, three of them had intense [F-18]-FMISO retention in the penumbra surrounding the central, eclipse-like zone of absent radio-activity (infarction) at 2 hr in the acute state, and the penumbra disappeared in association with increased area of infarction on CT in one case in the chronic state. In five pts with chronic infarction, all had no penumbra of [F-18]-FMISO retention. In summary, our preliminary results demonstrate the feasibility of using [F-18]-FMISO PET to detect ischemic penumbra in vivo.

  15. Phase-based metamorphosis of diffusion lesion in relation to perfusion values in acute ischemic stroke.

    PubMed

    Rekik, Islem; Allassonnière, Stéphanie; Luby, Marie; Carpenter, Trevor K; Wardlaw, Joanna M

    2015-01-01

    Examining the dynamics of stroke ischemia is limited by the standard use of 2D-volume or voxel-based analysis techniques. Recently developed spatiotemporal models such as the 4D metamorphosis model showed promise for capturing ischemia dynamics. We used a 4D metamorphosis model to evaluate acute ischemic stroke lesion morphology from the acute diffusion-weighted imaging (DWI) to final T2-weighted imaging (T2-w). In 20 representative patients, we metamorphosed the acute lesion to subacute lesion to final infarct. From the DWI lesion deformation maps we identified dynamic lesion areas and examined their association with perfusion values inside and around the lesion edges, blinded to reperfusion status. We then tested the model in ten independent patients from the STroke Imaging Repository (STIR). Perfusion values varied widely between and within patients, and were similar in contracting and expanding DWI areas in many patients in both datasets. In 25% of patients, the perfusion values were higher in DWI-contracting than DWI-expanding areas. A similar wide range of perfusion values and ongoing expansion and contraction of the DWI lesion were seen subacutely. There was more DWI contraction and less expansion in patients who received thrombolysis, although with widely ranging perfusion values that did not differ. 4D metamorphosis modeling shows promise as a method to improve use of multimodal imaging to understand the evolution of acute ischemic tissue towards its fate. PMID:26288755

  16. Pseudoradial Nerve Palsy Caused by Acute Ischemic Stroke.

    PubMed

    Tahir, Hassan; Daruwalla, Vistasp; Meisel, Jeremy; Kodsi, Samir E

    2016-01-01

    Pseudoperipheral palsy has been used to characterize isolated monoparesis secondary to stroke. Isolated hand nerve palsy is a rare presentation for acute cerebral stroke. Our patient presented with clinical features of typical peripheral radial nerve palsy and a normal computed tomography scan of the head, which, without a detailed history and neurological examination, could have been easily misdiagnosed as a peripheral nerve lesion deferring further investigation for a stroke. We stress the importance of including cerebral infarction as a critical differential diagnosis in patients presenting with sensory-motor deficit in an isolated peripheral nerve pattern. A good history and physical exam can differentiate stroke from peripheral neuropathy as the cause of radial nerve palsy. PMID:27493976

  17. Pseudoradial Nerve Palsy Caused by Acute Ischemic Stroke

    PubMed Central

    Tahir, Hassan; Daruwalla, Vistasp; Meisel, Jeremy; Kodsi, Samir E.

    2016-01-01

    Pseudoperipheral palsy has been used to characterize isolated monoparesis secondary to stroke. Isolated hand nerve palsy is a rare presentation for acute cerebral stroke. Our patient presented with clinical features of typical peripheral radial nerve palsy and a normal computed tomography scan of the head, which, without a detailed history and neurological examination, could have been easily misdiagnosed as a peripheral nerve lesion deferring further investigation for a stroke. We stress the importance of including cerebral infarction as a critical differential diagnosis in patients presenting with sensory-motor deficit in an isolated peripheral nerve pattern. A good history and physical exam can differentiate stroke from peripheral neuropathy as the cause of radial nerve palsy. PMID:27493976

  18. Acute Kidney Injury Associated with Linagliptin.

    PubMed

    Nandikanti, Deepak K; Gosmanova, Elvira O; Gosmanov, Aidar R

    2016-01-01

    Linagliptin is a dipeptidyl peptidase-IV (DPP-IV) inhibitor that is approved for the treatment of type 2 diabetes mellitus. About 5% of linagliptin is eliminated by the kidneys and no dose adjustment is recommended in kidney impairment. We report a first case of linagliptin-associated acute kidney injury (AKI) in a patient with preexisting chronic kidney disease (CKD). We hypothesize that AKI was due to renal hypoperfusion from linagliptin-induced natriuresis and intravascular volume contraction in the setting of concomitant lisinopril use, which is known to impair autoregulation and potentiate hypotension-induced AKI. It may be prudent to exert caution and closely monitor kidney function when initiating linagliptin in combination with ACE-inhibitors in CKD patients. PMID:26981294

  19. Contrast Medium-Induced Acute Kidney Injury

    PubMed Central

    Sadat, Umar; Usman, Ammara; Boyle, Jonathan R.; Hayes, Paul D.; Solomon, Richard J.

    2015-01-01

    Contrast medium-induced acute kidney injury (CI-AKI) is a predominant cause of hospital-acquired renal insufficiency. With an increasing number of contrast medium-enhanced radiological procedures being performed in a rapidly increasing ageing population in the Western world, it is imperative that more attention is given to understand the aetiology of CI-AKI to devise novel diagnostic methods and to formulate effective prophylactic and therapeutic regimens to reduce its incidence and its associated morbidity and mortality. This article presents high-yield information on the above-mentioned aspects of CI-AKI, primarily based on results of randomised controlled trials, meta-analyses, systematic reviews and international consensus guidelines. PMID:26195974

  20. Acute Kidney Injury Associated with Linagliptin

    PubMed Central

    Nandikanti, Deepak K.; Gosmanova, Elvira O.; Gosmanov, Aidar R.

    2016-01-01

    Linagliptin is a dipeptidyl peptidase-IV (DPP-IV) inhibitor that is approved for the treatment of type 2 diabetes mellitus. About 5% of linagliptin is eliminated by the kidneys and no dose adjustment is recommended in kidney impairment. We report a first case of linagliptin-associated acute kidney injury (AKI) in a patient with preexisting chronic kidney disease (CKD). We hypothesize that AKI was due to renal hypoperfusion from linagliptin-induced natriuresis and intravascular volume contraction in the setting of concomitant lisinopril use, which is known to impair autoregulation and potentiate hypotension-induced AKI. It may be prudent to exert caution and closely monitor kidney function when initiating linagliptin in combination with ACE-inhibitors in CKD patients. PMID:26981294

  1. Transfusion-related acute lung injury (TRALI).

    PubMed

    Roberts, George H

    2004-01-01

    Transfusion is an inevitable event in the life of many individuals. Transfusion medicine personnel attempt to provide blood products that will result in a safe and harmless transfusion. However, this is not always possible since no laboratory test gives totally accurate and reliable results all the time and testing in routine transfusion services is devoted primarily to the identification of red blood cell problems. Thus, when patients are transfused, several possible adverse effects may occur in the transfused patient even though quality testing indicates no potential problem. These adverse events include infectious complications, hemolytic reactions, anaphylaxis, urticaria, circulatory overload, transfusion-associated graft-versus-host disease, chills and fever, immunomodulation, and transfusion-related acute lung injury (TRALI). PMID:15314887

  2. Acute kidney injury in HCT: an update.

    PubMed

    Lopes, J A; Jorge, S; Neves, M

    2016-06-01

    Acute kidney injury (AKI) is highly prevalent whether the patients undergo myeloablative or non-myeloablative hematopoietic cell transplantation (HCT); however, the pathogenesis and risk factors leading to AKI can differ between the two. The prognosis of AKI in patients receiving HCT is poor. In fact, AKI following HCT is associated not only with increased short- and long-term mortality, but also with progression to chronic kidney disease. Herein, the authors provide a comprehensive and up-to-date review of the definition and diagnosis, as well as of the incidence, pathogenesis and outcome of AKI in patients undergoing HCT, centering on the differences between myeloablative and non-myeloablative regimens. PMID:26855155

  3. Macrophage-derived Lipocalin-2 contributes to ischemic resistance mechanisms by protecting from renal injury

    PubMed Central

    Jung, Michaela; Brüne, Bernhard; Hotter, Georgina; Sola, Anna

    2016-01-01

    Renal ischemia-reperfusion injury triggers an inflammatory response associated to infiltrating macrophages which determines the further outcome of disease. Brown Norway rats are known to show endogenous resistance to ischemia-induced renal damage. By contrast, Sprague Dawley rats exhibit a higher susceptibility to ischemic injury. In order to ascertain cytoprotective mechanisms, we focused on the implication of lipocalin-2 protein in main resistance mechanisms in renal ischemia/reperfusion injury by using adoptive macrophage administration, genetically modified ex vivo either to overexpress or to knockdown lipocalin-2. In vitro experiments with bone marrow-derived macrophages both from Brown Norway rats and from Sprague Dawley rats under hypoxic conditions showed endogenous differences regarding cytokine and lipocalin-2 expression profile in the two strains. Most interestingly, we observed that macrophages of the resistant strain express significantly more lipocalin-2. In vivo studies showed that tubular epithelial cell apoptosis and renal injury significantly increased and reparative markers decreased in Brown Norway rats after injection of lipocalin-2-knockdown macrophages, while the administration of lipocalin-2-overexpressing cells significantly decreased Sprague Dawley susceptibility. These data point to a crucial role of macrophage-derived lipocalin-2 in endogenous cytoprotective mechanisms. We conclude that expression of lipocalin-2 in tissue-infiltrating macrophages is pivotal for kidney-intrinsic cytoprotective pathways during ischemia reperfusion injury. PMID:26911537

  4. A procyanidin type A trimer from cinnamon extract attenuates glial cell swelling and the reduction in glutamate uptake following ischemic injury in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary polyphenols exert neuroprotective effects in ischemic injury. The protective effects of a procyanidin type A trimer (trimer 1) isolated from a water soluble cinnamon extract (CE) were investigated on key features of ischemic injury including cell swelling, increased free radical production, ...

  5. Intravenous thrombolysis in a patient with left atrial myxoma with acute ischemic stroke

    PubMed Central

    Kulkarni, Girish Baburao; Yadav, Ravi; Mustare, Veerendrakumar; Modi, Sailesh

    2014-01-01

    Intravenous thrombolysis (IVT) is an accepted therapy in patients with acute ischemic stroke presenting within 3-4.5 hours of symptom onset. Selection of the patient for thrombolysis depends on the careful assessment for the risk of post thrombolysis symptomatic haemorrhage (6.2-8.9%) which may be fatal. Atrial myxomas which are the commonest tumors of the heart are associated with stroke due to tumor/clot embolism. There are very few case reports of IVT and its outcome in patients with atrial myxoma with stroke. Some have reported successful thrombolysis, while others have reported intracerebral bleeding. In this report we describe our experience of IVT in atrial myxoma patient with ischemic stroke and review the relevant literature. PMID:25506173

  6. [Promising new treatment for acute ischemic stroke--Sonothrombolysis can enhance the effect of intravenous thrombolysis].

    PubMed

    Gu, Thomas; Wester, Per; Johansson, Elias

    2015-01-01

    Intravenous thrombolysis has been a break-through for treatment of acute ischemic stroke. However, total recanalization is only achieved in 18%. Sonothrombolysis aims at enhancing the recanalization effect by adding continuous transcranial ultrasound. Sonothrombolysis may facilitate the recanalization rate without increased risk of intracerebral hemorrhage. This further results in decreased risk of disability compared with only intravenous thrombolysis. Intravenously applied micro-bubbles is an additive treatment to sonothrombolysis which might further increase the recanalization rate but perhaps at the expense of increased risk of intracerebral hemorrhage. In a case-series at Umeå Stroke Center, we report the results of the first 20 ischemic stroke patients treated with sonothrombolysis in Sweden. Our initial results look promising with recanalization rates similar to earlier published data. No intracerebral hemorrhage occurred among our sonothrombolysed patients. PMID:25647105

  7. A Case of Acute Ischemic Duodenal Ulcer Associated with Superior Mesenteric Artery Dissection After Transarterial Chemoembolization for Hepatocellular Carcinoma

    SciTech Connect

    Jang, Eun Sun; Jeong, Sook-Hyang Kim, Jin Wook; Lee, Sang Hyub; Yoon, Chang Jin; Kang, Sung Gwon

    2009-03-15

    We report a case of transarterial chemoembolization (TACE)-related acute ischemic duodenal ulcer that developed in association with dissection of the superior mesenteric artery. We conclude that the acute duodenal ulcer was developed by ischemia related to superior mesenteric artery dissection during TACE. TACE should be conducted carefully with continuous observation of abdominal arteries.

  8. The Anatomic Pattern of Injuries in Acute Inversion Ankle Sprains

    PubMed Central

    Khor, Yuet Peng; Tan, Ken Jin

    2013-01-01

    Background: There are little data on the incidence and patterns of injuries seen on magnetic resonance imaging (MRI) in acute inversion ankle sprains. This study may help in the understanding of the pathomechanics, natural history, and outcomes of this common injury. Study Design: Case series; Level of evidence, 4. Methods: From June 2011 to June 2013, a total of 64 consecutive patients had MRI of the ankle performed for acute inversion injury to the ankle. All injuries/pathologies reported were recorded. Results: Only 22% of patients had isolated lateral ligament complex injuries. Twenty-two percent of patients had other pathologies but no lateral ligament injury, and 53% had lateral ligament injuries in combination with other pathologies or injuries. The most common associated finding with lateral ligament injuries was bone bruising (76%) followed by deltoid ligament injury (50%). The overall incidence of bone bruising was 50%. Thirty percent of ankles had tendon pathology, 27% had deltoid ligament injury, and 22% had occult fractures. Conclusion: Isolated lateral ligament ankle injury is not as common as is believed. The pattern of injury seems complex, and most patients appear to have more injuries than expected. MRI reveals additional information that may have significance in terms of diagnosis, treatment, and prognosis in this common injury. PMID:26535261

  9. Growth factors for the treatment of ischemic brain injury (growth factor treatment).

    PubMed

    Larpthaveesarp, Amara; Ferriero, Donna M; Gonzalez, Fernando F

    2015-01-01

    In recent years, growth factor therapy has emerged as a potential treatment for ischemic brain injury. The efficacy of therapies that either directly introduce or stimulate local production of growth factors and their receptors in damaged brain tissue has been tested in a multitude of models for different Central Nervous System (CNS) diseases. These growth factors include erythropoietin (EPO), vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and insulin-like growth factor (IGF-1), among others. Despite the promise shown in animal models, the particular growth factors that should be used to maximize both brain protection and repair, and the therapeutic critical period, are not well defined. We will review current pre-clinical and clinical evidence for growth factor therapies in treating different causes of brain injury, as well as issues to be addressed prior to application in humans. PMID:25942688

  10. [Advance in study on pharmacological mechanisms of Qingkailing injection in intervention of ischemic cerebral injury].

    PubMed

    Chen, Yin-Ying; Wang, Zhong

    2012-11-01

    As a severe threat to human health, ischemic brain injury has a very complex pathological mechanism involving excitotoxic amino acids, oxygen free radical formation, nitric oxide (NO), Ca2+ overload and inflammation. Traditional Chinese medicine Qingkailing injection have shown good clinical efficacy in the treatment of cerebrovascular disease, and thus it is very significant to studies on its pharmacological mechanism. This essay summarizes relevant studies on pharmacological mechanism of a new compound traditional Chinese medicine Jingzhiqiangkailing (JZQKL) injection in treatment on cerebral ischemia, and explains the pharmacological mechanism of its single effective compounds and their compatibility in treatment of schemic brain injury in the aspects of regulating inflammatory response, neurotrophic factors, vascular protection, blood-brain barrier (BBB) protection and others, and thus providing information for further studies. PMID:23397712

  11. Salusins protect myocardium against ischemic injury by alleviating endoplasmic reticulum stress.

    PubMed

    Wang, Jianfei; Wang, Yin; Shan, Shifu; Hu, Tiantian; Chen, Huyan; Tian, Jing; Ren, Anjing; Zhou, Xu; Yuan, Wenjun; Lin, Li

    2012-04-01

    Salusins are regulatory peptides that affect cardiovascular function. We previously reported that salusin-α and -β protected cultured cardiomyocytes from serum deprivation-induced cell death through upregulating glucose-regulated protein 78 (GRP78), an endoplasmic reticulum (ER) resident protein whose overexpression acts as a marker and suppressor of ER stress. The present study examined whether salusin-α and -β inhibit ER stress in ischemic myocardium. In a rat model of myocardial infarction created by ligating the left anterior descending coronary artery (LAD), salusin-α or -β was intravenously injected at 5 or 15 nmol kg(-1) 15 min prior to 2 h of LAD occlusion. The high dose of salusin-α and -β significantly improved heart function and hemodynamics in LAD-occluded rats, but had no effects in sham-operated rats. The arrhythmias caused by LAD occlusion were markedly attenuated by salusin-α and -β. The apoptotic rate in ischemic myocardium was reduced from 31.5%±3.7% to 19.8%±2.2% and 12.3%±2.2%, and the infarct size was reduced from 53.4%±4.0% of the risk area to 26.5%±9.7% and 23.7%±8.9% by 15 nmol kg(-1) salusin-α and -β, respectively. Furthermore, salusin-α and -β prevented the activation of GRP78 and ER stress-specific apoptotic effectors caspase-12 and CHOP (C/EBP homologous protein), and attenuated the reduction of an ER stress-associated antiapoptotic protein Bcl-2 in ischemic cardiac tissue. The salusins also inhibited the ER stress induced by tunicamycin in cultured rat H9c2 cardiomyocytes. These results indicate that salusins protect myocardium against ischemic injury by inhibiting ER stress and ER stress-associated apoptosis. PMID:22566093

  12. Mild ischemic Injury Leads to Long-Term Alterations in the Kidney: Amelioration by Spironolactone Administration

    PubMed Central

    Barrera-Chimal, Jonatan; Pérez-Villalva, Rosalba; Ortega, Juan Antonio; Sánchez, Andrea; Rodríguez-Romo, Roxana; Durand, Marta; Jaisser, Frederic; Bobadilla, Norma A.

    2015-01-01

    Administration of the mineralocorticoid receptor antagonist spironolactone prevents the development of chronic kidney disease (CKD) after a severe ischemic injury. However, whether brief periods of ischemia lead to CKD and whether spironolactone administration after ischemia may be a useful therapeutic strategy to prevent the gradual deterioration of structure and function remains unexplored. Nineteen male Wistar rats were divided into four groups: rats that underwent renal bilateral ischemia for 10, 20, or 45 min were compared with sham operated rats. Additionally, thirteen male Wistar rats that underwent renal bilateral ischemia for 20 min were divided into an untreated ischemic group (I) and two groups receiving spironolactone, 20 mg/kg by gavage, at either 0 (Sp0) or 1.5-h after ischemia (Sp1.5). The rats were followed up and studied after 9 months. Mild (20 min) and severe (45 min) ischemia induced a progressive increase in proteinuria at varying magnitudes, whereas minor ischemia (10 min) did not modify proteinuria. CKD induced by moderate ischemia was characterized by renal hypertrophy and tubulointerstitial fibrosis. These effects were associated with activation of the transforming growth factor β (TGFβ) signaling pathway and up-regulation of endothelin receptor A (ETA) and alpha smooth muscle actin (αSMA). Spironolactone treatment immediately or 1.5-h after the ischemic insult prevented the onset of these disorders. Our results show that moderate ischemic insult leads to long-term structural and molecular changes that may compromise renal function in later stages. Additionally, we demonstrate that spironolactone administration after mild ischemia prevents this detrimental effect. PMID:26157344

  13. Mild ischemic injury leads to long-term alterations in the kidney: amelioration by spironolactone administration.

    PubMed

    Barrera-Chimal, Jonatan; Pérez-Villalva, Rosalba; Ortega, Juan Antonio; Sánchez, Andrea; Rodríguez-Romo, Roxana; Durand, Marta; Jaisser, Frederic; Bobadilla, Norma A

    2015-01-01

    Administration of the mineralocorticoid receptor antagonist spironolactone prevents the development of chronic kidney disease (CKD) after a severe ischemic injury. However, whether brief periods of ischemia lead to CKD and whether spironolactone administration after ischemia may be a useful therapeutic strategy to prevent the gradual deterioration of structure and function remains unexplored. Nineteen male Wistar rats were divided into four groups: rats that underwent renal bilateral ischemia for 10, 20, or 45 min were compared with sham operated rats. Additionally, thirteen male Wistar rats that underwent renal bilateral ischemia for 20 min were divided into an untreated ischemic group (I) and two groups receiving spironolactone, 20 mg/kg by gavage, at either 0 (Sp0) or 1.5-h after ischemia (Sp1.5). The rats were followed up and studied after 9 months. Mild (20 min) and severe (45 min) ischemia induced a progressive increase in proteinuria at varying magnitudes, whereas minor ischemia (10 min) did not modify proteinuria. CKD induced by moderate ischemia was characterized by renal hypertrophy and tubulointerstitial fibrosis. These effects were associated with activation of the transforming growth factor β (TGFβ) signaling pathway and up-regulation of endothelin receptor A (ETA) and alpha smooth muscle actin (αSMA). Spironolactone treatment immediately or 1.5-h after the ischemic insult prevented the onset of these disorders. Our results show that moderate ischemic insult leads to long-term structural and molecular changes that may compromise renal function in later stages. Additionally, we demonstrate that spironolactone administration after mild ischemia prevents this detrimental effect. PMID:26157344

  14. Protection from ischemic heart injury by a vigilant heme oxygenase-1 plasmid system.

    PubMed

    Tang, Yao Liang; Tang, Yi; Zhang, Y Clare; Qian, Keping; Shen, Leping; Phillips, M Ian

    2004-04-01

    Although human heme oxygenase-1 (hHO-1) could provide a useful approach for cellular protection in the ischemic heart, constitutive overexpression of hHO-1 may lead to unwanted side effects. To avoid this, we designed a hypoxia-regulated hHO-1 gene therapy system that can be switched on and off. This vigilant plasmid system is composed of myosin light chain-2v promoter and a gene switch that is based on an oxygen-dependent degradation domain from the hypoxia inducible factor-1-alpha. The vector can sense ischemia and switch on the hHO-1 gene system, specifically in the heart. In an in vivo experiment, the vigilant hHO-1 plasmid or saline was injected intramyocardially into myocardial infarction mice or sham operation mice. After gene transfer, expression of hHO-1 was only detected in the ischemic heart treated with vigilant hHO-1 plasmids. Masson trichrome staining showed significantly fewer fibrotic areas in vigilant hHO-1 plasmids-treated mice compared with saline control (43.0%+/-4.8% versus 62.5%+/-3.3%, P<0.01). The reduction of interstitial fibrosis is accompanied by an increase in myocardial hHO-1 expression in peri-infarct border areas, concomitant with higher Bcl-2 levels and lower Bax, Bak, and caspase 3 levels in the ischemic myocardium compared with saline control. By use of a cardiac catheter, heart from vigilant hHO-1 plasmids-treated mice showed improved recovery of contractile and diastolic performance after myocardial infarction compared with saline control. This study documents the beneficial regulation and therapeutic potential of vigilant plasmid-mediated hHO-1 gene transfer. This novel gene transfer strategy can provide cardiac-specific protection from future repeated bouts of ischemic injury. PMID:14981066

  15. Cardiac Surgery-Associated Acute Kidney Injury

    PubMed Central

    Mao, Huijuan; Katz, Nevin; Ariyanon, Wassawon; Blanca-Martos, Lourdes; Adýbelli, Zelal; Giuliani, Anna; Danesi, Tommaso Hinna; Kim, Jeong Chul; Nayak, Akash; Neri, Mauro; Virzi, Grazia Maria; Brocca, Alessandra; Scalzotto, Elisa; Salvador, Loris; Ronco, Claudio

    2013-01-01

    Cardiac surgery-associated acute kidney injury (CSA-AKI) is a common and serious postoperative complication of cardiac surgery requiring cardiopulmonary bypass (CPB), and it is the second most common cause of AKI in the intensive care unit. Although the complication has been associated with the use of CPB, the etiology is likely multifactorial and related to intraoperative and early postoperative management including pharmacologic therapy. To date, very little evidence from randomized trials supporting specific interventions to protect from or prevent AKI in broad cardiac surgery populations has been found. The definition of AKI employed by investigators influences not only the incidence of CSA-AKI, but also the identification of risk variables. The advent of novel biomarkers of kidney injury has the potential to facilitate the subclinical diagnosis of CSA-AKI, the assessment of its severity and prognosis, and the early institution of interventions to prevent or reduce kidney damage. Further studies are needed to determine how to optimize cardiac surgical procedures, CPB parameters, and intraoperative and early postoperative blood pressure and renal blood flow to reduce the risk of CSA-AKI. No pharmacologic strategy has demonstrated clear efficacy in the prevention of CSA-AKI; however, some agents, such as the natriuretic peptide nesiritide and the dopamine agonist fenoldopam, have shown promising results in renoprotection. It remains unclear whether CSA-AKI patients can benefit from the early institution of such pharmacologic agents or the early initiation of renal replacement therapy. PMID:24454314

  16. Septic acute kidney injury: the glomerular arterioles.

    PubMed

    Bellomo, Rinaldo; Wan, Li; Langenberg, Christoph; Ishikawa, Ken; May, Clive N

    2011-01-01

    Acute kidney injury (AKI) is a serious condition that affects many intensive care unit (ICU) patients. The most common causes of AKI in the ICU are severe sepsis and septic shock. The mortality of AKI in septic critically ill patients remains high despite our increasing ability to support vital organs. This is partly due to our poor understanding of the pathogenesis of sepsis-induced renal dysfunction. However, new concepts are emerging to explain the pathogenesis of septic AKI, which challenge previously held dogma. Throughout the past half century, septic AKI has essentially been considered secondary to tubular injury, which, in turn, has been considered secondary to renal ischemia. This belief is curious because the hallmark of septic AKI and AKI in general is the loss of glomerular filtration rate (GFR). It would seem logical, therefore, to focus on the glomerulus in trying to understand why such loss of GFR occurs. Recent experimental observations suggest that, at least in the initial phases of septic AKI, profound changes occur which involve glomerular hemodynamics and lead to loss of GFR. These observations imply that changes in the vasoconstrictor tone of both the afferent and efferent arterioles are an important component of the pathogenesis of septic AKI. PMID:21921614

  17. Sepsis-Associated Acute Kidney Injury

    PubMed Central

    Alobaidi, Rashid; Basu, Rajit K.; Goldstein, Stuart L.; Bagshaw, Sean M.

    2015-01-01

    Summary Acute kidney injury (AKI) is an epidemic problem. Sepsis has long been recognized as a foremost precipitant of AKI. Sepsis-associated AKI (SA-AKI) portends a high burden of morbidity and mortality in both children and adults with critical illness. Although our understanding of its pathophysiology is incomplete, SA-AKI likely represents a distinct subset of AKI contributed to by a unique constellation of hemodynamic, inflammatory, and immune mechanisms. SA-AKI poses significant clinical challenges for clinicians. To date, no singular effective therapy has been developed to alter the natural history of SA-AKI. Rather, current strategies to alleviate poor outcomes focus on clinical risk identification, early detection of injury, modifying clinician behavior to avoid harm, early appropriate antimicrobial therapy, and surveillance among survivors for the longer-term sequelae of kidney damage. Recent evidence has confirmed that patients no longer die with AKI, but from AKI. To improve the care and outcomes for sufferers of SA-AKI, clinicians need a robust appreciation for its epidemiology and current best-evidence strategies for prevention and treatment. PMID:25795495

  18. [Transfusion-related acute lung injury].

    PubMed

    Tank, S; Sputtek, A; Kiefmann, R

    2013-04-01

    Transfusion-related acute lung injury (TRALI) developed into the leading cause of transfusion-related morbidity and mortality after the first description by Popovsky et al. approximately three decades ago. It was the most frequent reason for transfusion-related fatalities worldwide before implementation of risk minimization strategies by donor selection. Plasma-rich blood products, such as fresh frozen plasma and apheresis platelets seem to be the leading triggers of TRALI. Hypoxemia and development of pulmonary edema within 6 h of transfusion are the diagnostic criteria for TRALI. The differentiation between cardiac failure and other transfusion-related lung injuries, such astransfusion-associated circulatory overload ( TACO) is difficult and causal treatment is not available. Therapy is based on supportive measures, such as oxygen insufflationor mechanical ventilation. The exactly pathogenesis is still unknown but the most propagated hypothesis is the two-event-model. Neutrophils are primed by the underlying condition, e.g. sepsis or trauma during the first event and these primed neutrophils are activated by transfused leukoagglutinating antibodies (immunogen) or bioreactive mediators (non-immunogen) during the second-event. Transfusion of leukoagglutinating antibodies from female donors with one or more previous pregnancies is the most frequent reason. No more TRALI fatalities were reported after implementation of the donor selection in Germany in 2009. PMID:23558721

  19. Cardiac surgery-associated acute kidney injury.

    PubMed

    Mao, Huijuan; Katz, Nevin; Ariyanon, Wassawon; Blanca-Martos, Lourdes; Adýbelli, Zelal; Giuliani, Anna; Danesi, Tommaso Hinna; Kim, Jeong Chul; Nayak, Akash; Neri, Mauro; Virzi, Grazia Maria; Brocca, Alessandra; Scalzotto, Elisa; Salvador, Loris; Ronco, Claudio

    2013-10-01

    Cardiac surgery-associated acute kidney injury (CSA-AKI) is a common and serious postoperative complication of cardiac surgery requiring cardiopulmonary bypass (CPB), and it is the second most common cause of AKI in the intensive care unit. Although the complication has been associated with the use of CPB, the etiology is likely multifactorial and related to intraoperative and early postoperative management including pharmacologic therapy. To date, very little evidence from randomized trials supporting specific interventions to protect from or prevent AKI in broad cardiac surgery populations has been found. The definition of AKI employed by investigators influences not only the incidence of CSA-AKI, but also the identification of risk variables. The advent of novel biomarkers of kidney injury has the potential to facilitate the subclinical diagnosis of CSA-AKI, the assessment of its severity and prognosis, and the early institution of interventions to prevent or reduce kidney damage. Further studies are needed to determine how to optimize cardiac surgical procedures, CPB parameters, and intraoperative and early postoperative blood pressure and renal blood flow to reduce the risk of CSA-AKI. No pharmacologic strategy has demonstrated clear efficacy in the prevention of CSA-AKI; however, some agents, such as the natriuretic peptide nesiritide and the dopamine agonist fenoldopam, have shown promising results in renoprotection. It remains unclear whether CSA-AKI patients can benefit from the early institution of such pharmacologic agents or the early initiation of renal replacement therapy. PMID:24454314

  20. Sonothrombolysis in the management of acute ischemic stroke.

    PubMed

    Rubiera, Marta; Alexandrov, Andrei V

    2010-01-01

    Multiple in vitro and animal models have demonstrated the efficacy of ultrasound to enhance fibrinolysis. Mechanical pressure waves produced by ultrasound energy improve the delivery and penetration of alteplase (recombinant tissue plasminogen activator [tPA]) inside the clot. In human stroke, the CLOTBUST phase II trial showed that the combination of alteplase plus 2 hours of continuous transcranial Doppler (TCD) increased recanalization rates, producing a trend toward better functional outcomes compared with alteplase alone. Other small clinical trials also showed an improvement in clot lysis when transcranial color-coded sonography was combined with alteplase. In contrast, low-frequency ultrasound increased the symptomatic intracranial hemorrhage rate in a clinical trial. Administration of microbubbles (MBs) may further enhance the effect of ultrasound on thrombolysis by lowering the ultrasound-energy threshold needed to induce acoustic cavitation. Initial clinical trials have been encouraging, and a multicenter international study, TUCSON, determined a dose of newly developed MBs that can be safely administered with alteplase and TCD. Even in the absence of alteplase, the ultrasound energy, with or without MBs, could increase intrinsic fibrinolysis. The intra-arterial administration of ultrasound with the EKOS NeuroWave catheter is another ultrasound application for acute stroke that is currently being studied in the IMS III trial. Operator-independent devices, different MB-related techniques, and other ultrasound parameters for improving and spreading sonothrombolysis are being tested. PMID:20104930

  1. Pathogenesis of acute ischemic mitral regurgitation in three dimensions.

    PubMed

    Gorman, R C; McCaughan, J S; Ratcliffe, M B; Gupta, K B; Streicher, J T; Ferrari, V A; St John-Sutton, M G; Bogen, D K; Edmunds, L H

    1995-04-01

    Changes in the geometric and intravalvular relationships between subunits of the ovine mitral valve were measured before and after acute posterior wall myocardial infarction in three dimensions by means of sonomicrometry array localization. In 13 sheep, nine sonomicrometer transducers were attached around the mitral anulus and to the tip and base of each papillary muscle. Five additional transducers were placed on the epicardium. Snares were placed around three branches of the circumflex coronary artery. One to 2 weeks later, echocardiograms, dimension measurements, and left ventricular pressures were obtained before and after the coronary arteries were occluded. Data were obtained from seven sheep. Coronary occlusion infarcted 32% of the posterior left ventricle and produced 2 to 3+ mitral regurgitation by Doppler color flow mapping. Multidimensional scaling of dimension measurements obtained from sonomicrometry transducers produced three-dimensional spatial coordinates of each transducer location throughout the cardiac cycle before and after infarction and onset of mitral regurgitation. After posterior infarction, the mitral anulus enlarges asymmetrically along the posterior anulus, and the tip of the posterior papillary muscle moves 1.5 +/- 0.3 mm closer to the posterior commissure at end-systole. The posterior papillary muscle also elongates 1.9 +/- 0.3 mm at end-systole. The left ventricle enlarges asymmetrically and ventricular torsion along the long axis changes. The development of postinfarction mitral regurgitation appears to be the consequence of multiple small changes in ventricular shape and contractile deformation and in the spatial relationship of mitral valvular subunits. PMID:7715215

  2. Acute renal injury after partial hepatectomy

    PubMed Central

    Peres, Luis Alberto Batista; Bredt, Luis Cesar; Cipriani, Raphael Flavio Fachini

    2016-01-01

    Currently, partial hepatectomy is the treatment of choice for a wide variety of liver and biliary conditions. Among the possible complications of partial hepatectomy, acute kidney injury (AKI) should be considered as an important cause of increased morbidity and postoperative mortality. Difficulties in the data analysis related to postoperative AKI after liver resections are mainly due to the multiplicity of factors to be considered in the surgical patients, moreover, there is no consensus of the exact definition of AKI after liver resection in the literature, which hampers comparison and analysis of the scarce data published on the subject. Despite this multiplicity of risk factors for postoperative AKI after partial hepatectomy, there are main factors that clearly contribute to its occurrence. First factor relates to large blood losses with renal hypoperfusion during the operation, second factor relates to the occurrence of post-hepatectomy liver failure with consequent distributive circulatory changes and hepatorenal syndrome. Eventually, patients can have more than one factor contributing to post-operative AKI, and frequently these combinations of acute insults can be aggravated by sepsis or exposure to nephrotoxic drugs. PMID:27478539

  3. Acute renal injury after partial hepatectomy.

    PubMed

    Peres, Luis Alberto Batista; Bredt, Luis Cesar; Cipriani, Raphael Flavio Fachini

    2016-07-28

    Currently, partial hepatectomy is the treatment of choice for a wide variety of liver and biliary conditions. Among the possible complications of partial hepatectomy, acute kidney injury (AKI) should be considered as an important cause of increased morbidity and postoperative mortality. Difficulties in the data analysis related to postoperative AKI after liver resections are mainly due to the multiplicity of factors to be considered in the surgical patients, moreover, there is no consensus of the exact definition of AKI after liver resection in the literature, which hampers comparison and analysis of the scarce data published on the subject. Despite this multiplicity of risk factors for postoperative AKI after partial hepatectomy, there are main factors that clearly contribute to its occurrence. First factor relates to large blood losses with renal hypoperfusion during the operation, second factor relates to the occurrence of post-hepatectomy liver failure with consequent distributive circulatory changes and hepatorenal syndrome. Eventually, patients can have more than one factor contributing to post-operative AKI, and frequently these combinations of acute insults can be aggravated by sepsis or exposure to nephrotoxic drugs. PMID:27478539

  4. Ischemic preconditioning protects the brain against injury via inhibiting CaMKII-nNOS signaling pathway.

    PubMed

    Wang, Mei; Qi, Da-Shi; Zhou, Cui; Han, Dong; Li, Pei-Pei; Zhang, Fang; Zhou, Xiao-Yan; Han, Meng; Di, Jie-Hui; Ye, Jun-Song; Yu, Hong-Min; Song, Yuan-Jian; Zhang, Guang-Yi

    2016-03-01

    Although studies have shown that cerebral ischemic preconditioning (IPC) can ameliorate ischemia/reperfusion (I/R) induced brain damage, but its precise mechanisms remain unknown. Therefore, the aim of this study was to investigate the neuroprotective mechanisms of IPC against ischemic brain damage induced by cerebral I/R and to explore whether the Calcium/calmodulin-dependent protein kinase II (CaMKII)-mediated up-regulation of nNOS ser847-phosphorylation signaling pathway contributed to the protection provided by IPC. Transient global brain ischemia was induced by 4-vessel occlusion in adult male Sprague-Dawley rats. The rats were pretreated with 3min of IPC alone or KN62 (selective antagonist of CaMKII) treatment before IPC, after reperfusion for 3 days, 6min ischemia was induced. Cresyl violet staining was used to examine the survival of hippocampal CA1 pyramidal neurons. Immunoblotting was performed to measure the phosphorylation of CaMKII, nNOS, c-Jun and the expression of FasL. Immunoprecipitation was used to examine the binding between PSD95 and nNOS. The results showed that IPC could significantly protect neurons against cerebral I/R injury, furthermore, the combination of PSD95 and nNOS was increased, coinstantaneously the phosphorylation of CaMKII and nNOS (ser847) were up-regulated, however the activation of c-Jun and FasL were reduced. Conversely, KN62 treatment before IPC reversed all these effects of IPC. Taken together, the results suggest that IPC could diminish ischemic brain injury through CaMKII-mediated up-regulation of nNOS ser847-phosphorylation signaling pathway. PMID:26794251

  5. Sex-dependent effects of chronic psychosocial stress on myocardial sensitivity to ischemic injury.

    PubMed

    Rorabaugh, Boyd R; Krivenko, Anna; Eisenmann, Eric D; Bui, Albert D; Seeley, Sarah; Fry, Megan E; Lawson, Joseph D; Stoner, Lauren E; Johnson, Brandon L; Zoladz, Phillip R

    2015-01-01

    Individuals with post-traumatic stress disorder (PTSD) experience many debilitating symptoms, including intrusive memories, persistent anxiety and avoidance of trauma-related cues. PTSD also results in numerous physiological complications, including increased risk for cardiovascular disease (CVD). However, characterization of PTSD-induced cardiovascular alterations is lacking, especially in preclinical models of the disorder. Thus, we examined the impact of a psychosocial predator-based animal model of PTSD on myocardial sensitivity to ischemic injury. Male and female Sprague-Dawley rats were exposed to psychosocial stress or control conditions for 31 days. Stressed rats were given two cat exposures, separated by a period of 10 days, and were subjected to daily social instability throughout the paradigm. Control rats were handled daily for the duration of the experiment. Rats were tested on the elevated plus maze (EPM) on day 32, and hearts were isolated on day 33 and subjected to 20 min ischemia and 2 h reperfusion on a Langendorff isolated heart system. Stressed male and female rats gained less body weight relative to controls, but only stressed males exhibited increased anxiety on the EPM. Male, but not female, rats exposed to psychosocial stress exhibited significantly larger infarcts and attenuated post-ischemic recovery of contractile function compared to controls. Our data demonstrate that predator stress combined with daily social instability sex-dependently increases myocardial sensitivity to ischemic injury. Thus, this manipulation may be useful for studying potential mechanisms underlying cardiovascular alterations in PTSD, as well as sex differences in the cardiovascular stress response. PMID:26458179

  6. Mutant Erythropoietin without Erythropoietic Activity is Neuroprotective against Ischemic Brain Injury

    PubMed Central

    Gan, Yu; Xing, Juan; Jing, Zheng; Stetler, R. Anne; Zhang, Feng; Luo, Yumin; Ji, Xunmin; Gao, Yanqin; Cao, Guodong

    2012-01-01

    Background and Purpose Erythropoietin (EPO) confers potent neuroprotection against ischemic injury. However, treatment for stroke requires high doses and multiple administrations of EPO, which may cause deleterious side effects due to its erythropoietic activity. This study identifies a novel non-erythropoietic mutant EPO (MEPO) and investigates its potential neuroprotective effects and underlying mechanism in animal model of cerebral ischemia. Methods We constructed a series of MEPOs, each containing a single amino acid mutation within the erythropoietic motif, and tested their erythropoietic activity. Using cortical neuronal cultures exposed to NMDA neurotoxicity and a murine model of transient middle cerebral artery occlusion (MCAO), neuroprotection and neurofunctional outcomes were assessed as well as activation of intracellular signaling pathways. Results The serine to isoleucine mutation at position 104 (S104I-EPO) completely abolished the erythropoietic and platelet-stimulating activity of EPO. Administration of S104I-EPO significantly inhibited NMDA-induced neuronal death in primary cultures, and protected against cerebral infarction and neurological deficits with an efficacy similar to that of wild-type EPO. Both S104I-EPO and wild-type EPO activated similar pro-survival signaling pathways, such as PI3K/AKT, MAPK/ERK1/2 and STAT5. Inhibition of PI3K/AKT or MAPK/ERK1/2 signaling pathways significantly attenuated the neuroprotective effects of S104I-EPO, indicating that activation of these pathways underlies the neuroprotective mechanism of MEPO against cerebral ischemia. Conclusions S104I-EPO confers neuroprotective effects comparable to those of wild-type EPO against ischemic brain injury, with the added benefit of lacking erythropoietic and platelet-stimulating side effects. Our novel findings suggest that the non-erythropoietic mutant EPO is a legitimate candidate for ischemic stroke intervention. PMID:22984011

  7. CITED4 induces physiologic hypertrophy and promotes functional recovery after ischemic injury

    PubMed Central

    Bezzerides, Vassilios J.; Platt, Colin; Lerchenmüller, Carolin; Paruchuri, Kaavya; Oh, Nul Loren; Xiao, Chunyang; Cao, Yunshan; Mann, Nina; Spiegelman, Bruce M.; Rosenzweig, Anthony

    2016-01-01

    The mechanisms by which exercise mediates its multiple cardiac benefits are only partly understood. Prior comprehensive analyses of the cardiac transcriptional components and microRNAs dynamically regulated by exercise suggest that the CBP/p300-interacting protein CITED4 is a downstream effector in both networks. While CITED4 has documented functional consequences in neonatal cardiomyocytes in vitro, nothing is known about its effects in the adult heart. To investigate the impact of cardiac CITED4 expression in adult animals, we generated transgenic mice with regulated, cardiomyocyte-specific CITED4 expression. Cardiac CITED4 expression in adult mice was sufficient to induce an increase in heart weight and cardiomyocyte size with normal systolic function, similar to the effects of endurance exercise training. After ischemia-reperfusion, CITED4 expression did not change initial infarct size but mediated substantial functional recovery while reducing ventricular dilation and fibrosis. Forced cardiac expression of CITED4 also induced robust activation of the mTORC1 pathway after ischemic injury. Moreover, pharmacological inhibition of mTORC1 abrogated CITED4’s effects in vitro and in vivo. Together, these data establish CITED4 as a regulator of mTOR signaling that is sufficient to induce physiologic hypertrophy at baseline and mitigate adverse ventricular remodeling after ischemic injury. PMID:27430023

  8. Resveratrol attenuates peripheral and brain inflammation and reduces ischemic brain injury in aged female mice.

    PubMed

    Jeong, Sae Im; Shin, Jin A; Cho, Sunghee; Kim, Hye Won; Lee, Ji Yoon; Kang, Jihee Lee; Park, Eun-Mi

    2016-08-01

    Resveratrol is known to improve metabolic dysfunction associated with obesity. Visceral obesity is a sign of aging and is considered a risk factor for ischemic stroke. In this study, we investigated the effects of resveratrol on inflammation in visceral adipose tissue and the brain and its effects on ischemic brain injury in aged female mice. Mice treated with resveratrol (0.1 mg/kg, p.o.) for 10 days showed reduced levels of interleukin-1β and tumor necrosis factor-α, as well as a reduction in the size of adipocytes in visceral adipose tissue. Resveratrol also reduced interleukin-1β and tumor necrosis factor-α protein levels and immunoglobulin G extravasation in the brain. Mice treated with resveratrol demonstrated smaller infarct size, improved neurological function, and blunted peripheral inflammation at 3 days postischemic stroke. These results showed that resveratrol counteracted inflammation in visceral adipose tissue and in the brain and reduced stroke-induced brain injury and peripheral inflammation in aged female mice. Therefore, resveratrol administration can be a valuable strategy for the prevention of age-associated and disease-provoked inflammation in postmenopausal women. PMID:27318135

  9. Diagnostic Potential of the NMDA Receptor Peptide Assay for Acute Ischemic Stroke

    PubMed Central

    Dambinova, Svetlana A.; Bettermann, Kerstin; Glynn, Theodore; Tews, Matthew; Olson, David; Weissman, Joseph D.; Sowell, Richard L.

    2012-01-01

    Background The acute assessment of patients with suspected ischemic stroke remains challenging. The use of brain biomarker assays may improve the early diagnosis of ischemic stroke. The main goal of the study was to evaluate whether the NR2 peptide, a product of the proteolytic degradation of N-methyl-D-aspartate (NMDA) receptors, can differentiate acute ischemic stroke (IS) from stroke mimics and persons with vascular risk factors/healthy controls. A possible correlation between biomarker values and lesion sizes was investigated as the secondary objective. Methods and Findings A total of 192 patients with suspected stroke who presented within 72 h of symptom onset were prospectively enrolled. The final diagnosis was determined based on clinical observations and radiological findings. Additionally gender- and age-matched healthy controls (n = 52) and persons with controlled vascular risk factors (n = 48) were recruited to compare NR2 peptide levels. Blinded plasma was assayed by rapid magnetic particles (MP) ELISA for NR2 peptide within 30 min and results for different groups compared using univariate and multivariate statistical analyses. There was a clinical diagnosis of IS in 101 of 192 (53%) and non-stroke in 91 (47%) subjects. The non-stroke group included presented with acute stroke symptoms who had no stroke (n = 71) and stroke mimics (n = 20). The highest NR2 peptide elevations where found in patients with IS that peaked at 12 h following symptom onset. When the biomarker cut off was set at 1.0 ug/L, this resulted in a sensitivity of 92% and a specificity of 96% to detect IS. A moderate correlation (rs = 0.73) between NR2 peptide values and acute ischemic cortical lesions (<200 mL) was found. Conclusions This study suggests that the NR2 peptide may be a brain specific biomarker to diagnose acute IS and may allow the differentiation of IS from stroke mimics and controls. Additional larger scale clinical validation studies are required

  10. Whole-Brain CT Perfusion to Quantify Acute Ischemic Penumbra and Core.

    PubMed

    Lin, Longting; Bivard, Andrew; Krishnamurthy, Venkatesh; Levi, Christopher R; Parsons, Mark W

    2016-06-01

    underestimated when brain coverage was 40 mm or less (P < .0001). Conclusion Correct threshold setting and whole-brain coverage CT perfusion allowed differentiation of the penumbra from the ischemic core in patients with acute ischemic stroke. (©) RSNA, 2016 Online supplemental material is available for this article. PMID:26785041

  11. Repair and regeneration of tracheal surface epithelium and submucosal glands in a mouse model of hypoxic-ischemic injury

    PubMed Central

    HEGAB, AHMED E.; NICKERSON, DEREK W.; HA, VI LUAN; DARMAWAN, DAPHNE O.; GOMPERTS, BRIGITTE N.

    2012-01-01

    Background and objective The heterotopic syngeneic tracheal transplant mouse model is an acute hypoxic-ischemic injury model that undergoes complete repair and regeneration. We hypothesized that the repair and regeneration process of the surface epithelium and submucosal glands would occur in a reproducible pattern that could be followed by the expression of specific markers of epithelial cell types. Methods We used the syngeneic heterotopic tracheal transplant model to develop a temporal and spatial map of cellular repair and regeneration by examining the tracheal grafts at post-transplant days 1, 3, 5, 7, 10 and 14. We used pulsed BrdU and immunofluorescent staining to identify and follow proliferating and repairing cell populations. Results We confirmed the reproducibility of the injury and repair in the model and we found a distinct sequence of reappearance of the various stem/ progenitor and differentiated cell populations of the tracheal surface epithelium and submucosal glands. In the initial phase, the basal and duct cells that survived the injury proliferated to re-epithelialize the basement membrane with K5 and K14 expressing cells. Then these cells proliferated further and differentiated to restore the function of the epithelium. During this repair process, TROP-2 marked all repairing submucosal gland tubules and ducts. Non-CCSP-expressing serous cells were found to differentiate 4–5 days before Clara, mucus and ciliated cells. Conclusions Improving our understanding of the reparative process of the airway epithelium will allow us to identify cell-specific mechanisms of repair that could be used as novel therapeutic approaches for abnormal repair leading to airway diseases. PMID:22617027

  12. Wasp sting-induced acute kidney injury

    PubMed Central

    Dhanapriya, Jeyachandran; Dineshkumar, Thanigachalam; Sakthirajan, Ramanathan; Shankar, Palaniselvam; Gopalakrishnan, Natarajan; Balasubramaniyan, Thoppalan

    2016-01-01

    Background Wasp stings are a common form of envenomation in tropical countries, especially in farmers. The aim of this study was to document the clinical presentation, treatment and outcomes of patients with acute kidney injury (AKI) due to multiple wasp stings in a tertiary care hospital. Methods We conducted a retrospective observational study of patients with multiple wasp stings and AKI at the Department of Nephrology between July 2011 and August 2015. The clinical features, laboratory data, treatment details and outcomes were noted. Results A total of 11 patients were included. All were from rural areas. All of them were males with age ranging from 21 to 70 years, mean age 45 ± 23 years. Six had oliguria and two had hypotension. All 11 patients had evidence of rhabdomyolysis and three also had hemolysis. Ten patients required hemodialysis with a mean number of hemodialysis sessions of 8.7 ± 2.8. Renal biopsy carried out on four patients, showed acute interstitial nephritis (AIN) in one patient, acute tubular necrosis (ATN) in two patients, and one patient had both AIN and ATN. The two patients with AIN were given steroids, while all other patients were managed with supportive measures. One patient died within 48 h of presentation due to shock. At a mean follow-up of 24 months, one had progressed to chronic kidney disease and the remaining nine had normal renal function. Conclusions Wasp sting is an occupational hazard. AKI was most commonly due to rhabdomyolysis. Early renal biopsy is indicated in those patients who do not respond to supportive measures. Timely dialysis and steroid in the case of AIN improves renal survival. PMID:26985369

  13. The Relation Between GABA and L-Arginine Levels With Some Stroke Risk Factors in Acute Ischemic Stroke Patients

    PubMed Central

    Hosinian, Mohsen; Qujeq, Durdi; Ahmadi Ahangar, Alijan

    2016-01-01

    Changes in extra and intracellular neurotransmitter amino acids concentration in the early stage of acute cerebral ischemia have been reported. In this the study, serum level of gamma aminobutyric acid (GABA) and L-Arginine in acute ischemic stroke patients was assessed. 60 patients with acute ischemic stroke and sixthy healthy volunteers as a control group were assessed. Serum GABA was measured with modified enzymatic method and serum L- Arginine was measured by modified Sakaguchi method. Serum GABA level in stroke cases was lower than that of the control group. There was no relationship between GABA level and age or gender. Also, no significant correlation was observed between GABA levels with ischemic stroke risk factors such as smoking, diabetes mellitus, and hypertension. Serum L- Arginine level in patients was slightly increased in comparison with control group. There was a positive relationship between serum L- Arginine level and acute ischemic stroke risk factors. Serum GABA level was reduced in patients and had no correlation with acute ischemic stroke risk factors. PMID:27478806

  14. The Relation Between GABA and L-Arginine Levels With Some Stroke Risk Factors in Acute Ischemic Stroke Patients.

    PubMed

    Hosinian, Mohsen; Qujeq, Durdi; Ahmadi Ahangar, Alijan

    2016-01-01

    Changes in extra and intracellular neurotransmitter amino acids concentration in the early stage of acute cerebral ischemia have been reported. In this the study, serum level of gamma aminobutyric acid (GABA) and L-Arginine in acute ischemic stroke patients was assessed. 60 patients with acute ischemic stroke and sixthy healthy volunteers as a control group were assessed. Serum GABA was measured with modified enzymatic method and serum L- Arginine was measured by modified Sakaguchi method. Serum GABA level in stroke cases was lower than that of the control group. There was no relationship between GABA level and age or gender. Also, no significant correlation was observed between GABA levels with ischemic stroke risk factors such as smoking, diabetes mellitus, and hypertension. Serum L- Arginine level in patients was slightly increased in comparison with control group. There was a positive relationship between serum L- Arginine level and acute ischemic stroke risk factors. Serum GABA level was reduced in patients and had no correlation with acute ischemic stroke risk factors. PMID:27478806

  15. Acute Kidney Injury Predicts Mortality after Charcoal Burning Suicide

    PubMed Central

    Chen, Yu-Chin; Tseng, Yi-Chia; Huang, Wen-Hung; Hsu, Ching-Wei; Weng, Cheng-Hao; Liu, Shou-Hsuan; Yang, Huang-Yu; Chen, Kuan-Hsin; Chen, Hui-Ling; Fu, Jen-Fen; Lin, Wey-Ran; Wang, I-Kuan; Yen, Tzung-Hai

    2016-01-01

    A paucity of literature exists on risk factors for mortality in charcoal burning suicide. In this observational study, we analyzed the data of 126 patients with charcoal burning suicide that seen between 2002 and 2013. Patients were grouped according to status of renal damage as acute kidney injury (N = 49) or non-acute kidney injury (N = 77). It was found that patients with acute kidney injury suffered severer complications such as respiratory failure (P = 0.002), myocardial injury (P = 0.049), hepatic injury (P < 0.001), rhabdomyolysis (P = 0.045) and out-of-hospital cardiac arrest (P = 0.028) than patients without acute kidney injury. Moreover, patients with acute kidney injury suffered longer hospitalization duration (16.9 ± 18.3 versus 10.7 ± 10.9, P = 0.002) and had higher mortality rate (8.2% versus 0%, P = 0.011) than patients without injury. In a multivariate Cox regression model, it was demonstrated that serum creatinine level (P = 0.019) and heart rate (P = 0.022) were significant risk factors for mortality. Finally, Kaplan-Meier analysis revealed that patients with acute kidney injury suffered lower cumulative survival than without injury (P = 0.016). In summary, the overall mortality rate of charcoal burning suicide population was 3.2%, and acute kidney injury was a powerful predictor of mortality. Further studies are warranted. PMID:27430168

  16. Acute Kidney Injury Predicts Mortality after Charcoal Burning Suicide.

    PubMed

    Chen, Yu-Chin; Tseng, Yi-Chia; Huang, Wen-Hung; Hsu, Ching-Wei; Weng, Cheng-Hao; Liu, Shou-Hsuan; Yang, Huang-Yu; Chen, Kuan-Hsin; Chen, Hui-Ling; Fu, Jen-Fen; Lin, Wey-Ran; Wang, I-Kuan; Yen, Tzung-Hai

    2016-01-01

    A paucity of literature exists on risk factors for mortality in charcoal burning suicide. In this observational study, we analyzed the data of 126 patients with charcoal burning suicide that seen between 2002 and 2013. Patients were grouped according to status of renal damage as acute kidney injury (N = 49) or non-acute kidney injury (N = 77). It was found that patients with acute kidney injury suffered severer complications such as respiratory failure (P = 0.002), myocardial injury (P = 0.049), hepatic injury (P < 0.001), rhabdomyolysis (P = 0.045) and out-of-hospital cardiac arrest (P = 0.028) than patients without acute kidney injury. Moreover, patients with acute kidney injury suffered longer hospitalization duration (16.9 ± 18.3 versus 10.7 ± 10.9, P = 0.002) and had higher mortality rate (8.2% versus 0%, P = 0.011) than patients without injury. In a multivariate Cox regression model, it was demonstrated that serum creatinine level (P = 0.019) and heart rate (P = 0.022) were significant risk factors for mortality. Finally, Kaplan-Meier analysis revealed that patients with acute kidney injury suffered lower cumulative survival than without injury (P = 0.016). In summary, the overall mortality rate of charcoal burning suicide population was 3.2%, and acute kidney injury was a powerful predictor of mortality. Further studies are warranted. PMID:27430168

  17. Extravasation into brain and subsequent spread beyond the ischemic core of a magnetic resonance contrast agent following a step-down infusion protocol in acute cerebral ischemia

    PubMed Central

    2014-01-01

    Background Limiting expansion of the ischemic core lesion by reinstating blood flow and protecting the penumbral cells is a priority in acute stroke treatment. However, at present, methods are not available for effective drug delivery to the ischemic penumbra. To address these issues this study compared the extravasation and subsequent interstitial spread of a magnetic resonance contrast agent (MRCA) beyond the ischemic core into the surrounding brain in a rat model of ischemia-reperfusion for bolus injection and step-down infusion (SDI) protocols. Methods Male Wistar rats underwent middle cerebral artery (MCA) occlusion for 3 h followed by reperfusion. Perfusion-diffusion mismatched regions indicating the extent of spread were identified by measuring cerebral blood flow (CBF) deficits by arterial spin-labeled magnetic resonance imaging and the extent of the ischemic core by mapping the apparent diffusion coefficient (ADC) of water with diffusion-weighted imaging. Vascular injury was assessed via MRCA, gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) penetration, by Look-Locker T1-weighted MR imaging after either a bolus injection (n = 8) or SDI (n = 6). Spatial and temporal expansion of the MRCA front during a 25 min imaging period was measured from images obtained at 2.5 min intervals. Results The mean ADC lesion was 20 ± 7% of the hemispheric area whereas the CBF deficit area was 60 ± 16%, with the difference between the areas suggesting the possible presence of a penumbra. The bolus injection led to MRCA enhancement with an area that initially spread into the ischemic core and then diminished over time. The SDI produced a gradual increase in the area of MRCA enhancement that slowly enlarged to occupy the core, eventually expanded beyond it into the surrounding tissue and then plateaued. The integrated area from SDI extravasation was significantly larger than that for the bolus (p = 0.03). The total number of pixels covered by the

  18. Effectiveness of CT Computed Tomography Perfusion in Diagnostics of Acute Ischemic Stroke

    PubMed Central

    Menzilcioglu, Mehmet Sait; Mete, Ahmet; Ünverdi, Zeyni

    2015-01-01

    Summary Background Stroke is the third most common death reason after the cardiovascular disorders and cancer. Cerebral ischemia is a pathology that stems from a decrease in cerebral perfusion. Computed Tomography Perfusion (CTP) is an additional method to the conventional Computed Tomography (CT) that could be performed by using developed softwares, in a short period of time and with a low risk of complications. CTP not only allows early detection of cerebral ischemia but also gives valuable information on the ischemic penumbra which are very important in early diagnosis and treatment. Acute Ischemic Stroke (AIS) can be cured by trombolytic treapy within 3–6 hours after symptom onset. Since rapid screening and accurate diagnosis increase the success of the treatment, the role of neuroradiology in acute ischemia diagnostics and treatment has become more important. Our aim was to define CT skills in early diagnosis of AIS, to define its contribution to patient’s diagnosis and treatment and to define its importance regarding patient’s prognosis. Material/Methods We included 42 patients that presented to the emergency service and neurology outpatient clinic with the symptoms of acute cerebral incidence. Results In our study, we found that Cerebral Blood Flow (CBF) is 90.91% sensitive and 100% specific in examining ischemia. Conclusions Tissue hemodynamic data, especially sensitivity and specificity rates, which cannot be acquired by conventional CT and MRI methods, can be acquired by the CTP method. PMID:26740827

  19. Acute development of collateral circulation and therapeutic prospects in ischemic stroke

    PubMed Central

    Iwasawa, Eri; Ichijo, Masahiko; Ishibashi, Satoru; Yokota, Takanori

    2016-01-01

    In acute ischemic stroke, collateral circulation plays an important role in maintaining blood flow to the tissue that is at risk of progressing into ischemia, and in increasing the successful recanalization rate without hemorrhagic transformation. We have reported that well-developed collateral circulation is associated with smaller infarct volume and better long-term neurological outcome, and it disappears promptly once the effective recanalization is achieved. Contrary to the belief that collateral vessels develop over time in chronic stenotic condition, there exists a phenomenon that collateral circulation develops immediately in acute stenosis or occlusion of the arteries and it seems to be triggered by fluid shear stress, which occurs between the territories of stenotic/occluded arteries and those fed by surrounding intact arteries. We believe that this acute development of collateral circulation is a target of novel therapeutics in ischemic stroke and refer our recent attempt in enhancing collateral circulation by modulating sphingosine-1-phosphate receptor 1, which is a known shear-stress mechanosensing protein. PMID:27127459

  20. Analysis of the risk factors for the short-term prognosis of acute ischemic stroke

    PubMed Central

    Liang, Jin; Liu, Wenbo; Sun, Jianping; Gu, Xinyi; Ma, Qiang; Tong, Weijun

    2015-01-01

    This study investigated the risk factors for the short-term prognosis of acute ischemic stroke to provide a scientific evidence for improving prevention and treatment. A total of 2557 cases of acute ischemic stroke were included in the study. We collected the data on demographic characteristics, life style-related risk factors, clinical feature, and other clinical characteristics for all the participants. The outcomes were assessed using the modified Rankin scale (mRs) on day 14 or at discharge. According to the mRs score, the subjects were divided into three groups, namely, the control group (0≤ mRs ≤2), the disability group (3≤ mRs ≤5), and the death group (mRs = 6). The general conditions of these three groups were compared. An mRs score of 3≤ mRs ≤6 belonged to the composite outcome group. Logistic regression was also applied to analyze the risk factors of short-term prognosis. Monovariant logistic regression showed that age, on-set admission, hospital stays, temperature, heart rate, stroke subtype, hypertension, hyperglycemia, history of heart disease, history of atrial fibrillation, history of cerebral stroke, drinking, count of WBC, count of mononuclear leucocyte, and rate of neutrophile granulocyte were statically significant. To further control the confounding factors, multivariant logistic regression analysis was carried out. The result showed that age, on-set admission, hospital stays, temperature, heart rate, hyperglycemia, history of atrial fibrillation, and cerebral stroke history were related to the short-term prognosis. Age, on-set admission, hospital stays, temperature, heart rate, hyperglycemia, history of atrial fibrillation, and cerebral stroke history were the risk factors of the short-term prognosis of acute ischemic stroke. PMID:26885162

  1. Cost-Effectiveness of Thrombolysis within 4.5 Hours of Acute Ischemic Stroke in China

    PubMed Central

    Zhao, Xingquan; Liao, Xiaoling; Wang, Chunjuan; Du, Wanliang; Liu, Gaifen; Liu, Liping; Wang, Chunxue; Wang, Yilong; Wang, Yongjun

    2014-01-01

    Background Previous economic studies conducted in developed countries showed intravenous tissue-type plasminogen activator (tPA) is cost-effective for acute ischemic stroke. The present study aimed to determine the cost-effectiveness of tPA treatment in China, the largest developing country. Methods A combination of decision tree and Markov model was developed to determine the cost-effectiveness of tPA treatment versus non-tPA treatment within 4.5 hours after stroke onset. Outcomes and costs data were derived from the database of Thrombolysis Implementation and Monitor of acute ischemic Stroke in China (TIMS-China) study. Efficacy data were derived from a pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Costs and quality-adjusted life-years (QALYs) were compared in both short term (2 years) and long term (30 years). One-way and probabilistic sensitivity analyses were performed to test the robustness of the results. Results Comparing to non-tPA treatment, tPA treatment within 4.5 hours led to a short-term gain of 0.101 QALYs at an additional cost of CNY 9,520 (US$ 1,460), yielding an incremental cost-effectiveness ratio (ICER) of CNY 94,300 (US$ 14,500) per QALY gained in 2 years; and to a long-term gain of 0.422 QALYs at an additional cost of CNY 6,530 (US$ 1,000), yielding an ICER of CNY 15,500 (US$ 2,380) per QALY gained in 30 years. Probabilistic sensitivity analysis showed that tPA treatment is cost-effective in 98.7% of the simulations at a willingness-to-pay threshold of CNY 105,000 (US$ 16,200) per QALY. Conclusions Intravenous tPA treatment within 4.5 hours is highly cost-effective for acute ischemic strokes in China. PMID:25329637

  2. Comparison of Performance Achievement Award Recognition With Primary Stroke Center Certification for Acute Ischemic Stroke Care

    PubMed Central

    Fonarow, Gregg C.; Liang, Li; Smith, Eric E.; Reeves, Mathew J.; Saver, Jeffrey L.; Xian, Ying; Hernandez, Adrian F.; Peterson, Eric D.; Schwamm, Lee H.

    2013-01-01

    Background Hospital certification and recognition programs represent 2 independent but commonly used systems to distinguish hospitals, yet they have not been directly compared. This study assessed acute ischemic stroke quality of care measure conformity by hospitals receiving Primary Stroke Center (PSC) certification and those receiving the American Heart Association's Get With The Guidelines‐Stroke (GWTG‐Stroke) Performance Achievement Award (PAA) recognition. Methods and Results The patient and hospital characteristics as well as performance/quality measures for acute ischemic stroke from 1356 hospitals participating in the GWTG‐Stroke Program 2010–2012 were compared. Hospitals were classified as PAA+/PSC+ (hospitals n=410, patients n=169 302), PAA+/PSC− (n=415, n=129 454), PAA−/PSC+ (n=88, n=26 386), and PAA−/PSC− (n=443, n=75 565). A comprehensive set of stroke measures were compared with adjustment for patient and hospital characteristics. Patient characteristics were similar by PAA and PSC status but PAA−/PSC− hospitals were more likely to be smaller and nonteaching. Measure conformity was highest for PAA+/PSC+ and PAA+/PSC− hospitals, intermediate for PAA−/PSC+ hospitals, and lowest for PAA−/PSC− hospitals (all‐or‐none care measure 91.2%, 91.2%, 84.3%, and 76.9%, respectively). After adjustment for patient and hospital characteristics, PAA+/PSC+, PAA+/PSC−, and PAA−/PSC+ hospitals had 3.15 (95% CIs 2.86 to 3.47); 3.23 (2.93 to 3.56) and 1.72 (1.47 to 2.00), higher odds for providing all indicated stroke performance measures to patients compared with PAA−/PSC− hospitals. Conclusions While both PSC certification and GWTG‐Stroke PAA recognition identified hospitals providing higher conformity with care measures for patients hospitalized with acute ischemic stroke, PAA recognition was a more robust identifier of hospitals with better performance. PMID:24125846

  3. Simvastatin Reduces Lipopolysaccharides-Accelerated Cerebral Ischemic Injury via Inhibition of Nuclear Factor-kappa B Activity.

    PubMed

    Anthony Jalin, Angela M A; Lee, Jae-Chul; Cho, Geum-Sil; Kim, Chunsook; Ju, Chung; Pahk, Kisoo; Song, Hwa Young; Kim, Won-Ki

    2015-11-01

    Preceding infection or inflammation such as bacterial meningitis has been associated with poor outcomes after stroke. Previously, we reported that intracorpus callosum microinjection of lipopolysaccharides (LPS) strongly accelerated the ischemia/reperfusion-evoked brain tissue damage via recruiting inflammatory cells into the ischemic lesion. Simvastatin, 3-hydroxy-3-methylgultaryl (HMG)-CoA reductase inhibitor, has been shown to reduce inflammatory responses in vascular diseases. Thus, we investigated whether simvastatin could reduce the LPS-accelerated ischemic injury. Simvastatin (20 mg/kg) was orally administered to rats prior to cerebral ischemic insults (4 times at 72, 48, 25, and 1-h pre-ischemia). LPS was microinjected into rat corpus callosum 1 day before the ischemic injury. Treatment of simvastatin reduced the LPS-accelerated infarct size by 73%, and decreased the ischemia/reperfusion-induced expressions of pro-inflammatory mediators such as iNOS, COX-2 and IL-1β in LPS-injected rat brains. However, simvastatin did not reduce the infiltration of microglial/macrophageal cells into the LPS-pretreated brain lesion. In vitro migration assay also showed that simvastatin did not inhibit the monocyte chemoattractant protein-1-evoked migration of microglial/macrophageal cells. Instead, simvastatin inhibited the nuclear translocation of NF-κB, a key signaling event in expressions of various proinflammatory mediators, by decreasing the degradation of IκB. The present results indicate that simvastatin may be beneficial particularly to the accelerated cerebral ischemic injury under inflammatory or infectious conditions. PMID:26535078

  4. Necroptosis and parthanatos are involved in remote lung injury after receiving ischemic renal allografts in rats.

    PubMed

    Zhao, Hailin; Ning, Jiaolin; Lemaire, Alexandre; Koumpa, Foteini-Stefania; Sun, James J; Fung, Anthony; Gu, Jianteng; Yi, Bin; Lu, Kaizhi; Ma, Daqing

    2015-04-01

    Early renal graft injury could result in remote pulmonary injury due to kidney-lung cross talk. Here we studied the possible role of regulated necrosis in remote lung injury in a rat allogeneic transplantation model. In vitro, human lung epithelial cell A549 was challenged with TNF-α and conditioned medium from human kidney proximal tubular cells (HK-2) after hypothermia-hypoxia insults. In vivo, the Brown-Norway rat renal grafts were extracted and stored in 4 °C Soltran preserving solution for up to 24 h and transplanted into Lewis rat recipients, and the lungs were harvested on day 1 and day 4 after grafting for further analysis. Ischemia-reperfusion injury in the renal allograft caused pulmonary injury following engraftment. PARP-1 (marker for parthanatos) and receptor interacting protein kinase 1 (Rip1) and Rip3 (markers for necroptosis) expression was significantly enhanced in the lung. TUNEL assays showed increased cell death of lung cells. This was significantly reduced after treatment with necrostatin-1 (nec-1) or/and 3-aminobenzamide (3-AB). Acute immune rejection exacerbated the remote lung injury and 3-AB or/and Nec-1 combined with cyclosporine A conferred optimal lung protection. Thus, renal graft injury triggered remote lung injury, likely through regulated necrosis. This study could provide the molecular basis for combination therapy targeting both pathways of regulated necrosis to treat such complications after renal transplantation. PMID:25517913

  5. Cerebral hemodynamics in human acute ischemic stroke: a study with diffusion- and perfusion-weighted magnetic resonance imaging and SPECT.

    PubMed

    Liu, Y; Karonen, J O; Vanninen, R L; Ostergaard, L; Roivainen, R; Nuutinen, J; Perkiö, J; Könönen, M; Hämäläinen, A; Vanninen, E J; Soimakallio, S; Kuikka, J T; Aronen, H J

    2000-06-01

    Nineteen patients with acute ischemic stroke (<24 hours) underwent diffusion-weighted and perfusion-weighted (PWI) magnetic resonance imaging at the acute stage and 1 week later. Eleven patients also underwent technetium-99m ethyl cysteinate dimer single-photon emission computed tomography (SPECT) at the acute stage. Relative (ischemic vs. contralateral control) cerebral blood flow (relCBF), relative cerebral blood volume, and relative mean transit time were measured in the ischemic core, in the area of infarct growth, and in the eventually viable ischemic tissue on PWI maps. The relCBF was also measured from SPECT. There was a curvilinear relationship between the relCBF measured from PWI and SPECT (r = 0.854; P < 0.001). The tissue proceeding to infarction during the follow-up had significantly lower initial CBF and cerebral blood volume values on PWI maps (P < 0.001) than the eventually viable ischemic tissue had. The best value for discriminating the area of infarct growth from the eventually viable ischemic tissue was 48% for PWI relCBF and 87% for PWI relative cerebral blood volume. Combined diffusion and perfusion-weighted imaging enables one to detect hemodynamically different subregions inside the initial perfusion abnormality. Tissue survival may be different in these subregions and may be predicted. PMID:10894174

  6. Acute Kidney Injury: Quoi de Neuf?

    PubMed Central

    Reichel, Ronald R.

    2014-01-01

    Background Acute kidney injury (AKI) is frequently encountered in the nephrology practice. Serum creatinine, with its many shortcomings, is still the main biomarker used to detect AKI. Methods This review focuses on recent advances in definition, diagnosis, risk factors, and molecular mechanisms of AKI. In addition, specific AKI syndromes such as contrast-induced AKI, hepatorenal syndrome, and acute decompensated heart failure are discussed. The connection between AKI and subsequent chronic kidney disease and recent developments in renal replacement therapy are also covered. Results Novel biomarkers such as cystatin C and neutrophil gelatinase–associated lipocalin (NGAL) are being investigated to replace serum creatinine in the detection of AKI. Recent studies suggest that intravenous (IV) fluid use is beneficial for the prevention of contrast-induced AKI, while N-acetylcysteine use is not as well established. Diuretics are clearly beneficial in the treatment of acute decompensated heart failure. Ultrafiltration is less promising and can lead to adverse side effects. Although terlipressin use in hepatorenal syndrome is associated with reduced mortality, it is not available in the United States; combination therapy with midodrine, octreotide, and albumin provides an alternative. Fluid resuscitation is frequently used in critically ill patients with AKI; however, overly aggressive fluid resuscitation is frequently associated with an increased risk of mortality. A 3-step approach that combines guided fluid resuscitation, establishment of an even fluid balance, and an appropriate rate of fluid removal may be beneficial. If fluid resuscitation is needed, crystalloid solutions are preferred over hetastarch solutions. Renal replacement therapy is the last resort in AKI treatment, and timing, modality, and dosing are discussed. Research suggests that AKI leads to an increased incidence of subsequent chronic kidney disease. However, this relationship has not been fully

  7. Long-Term Survival in Older Critically Ill Patients with Acute Ischemic Stroke

    PubMed Central

    Liou, Jinn-Ing; Smith, Maureen A.

    2009-01-01

    Objective To compare survival in older patients with acute ischemic stroke admitted to intensive care units (ICU) with those not requiring ICU care and to assess the impact of mechanical ventilation (MV) and percutaneous gastrostomy tubes (PEG) on long-term mortality. Design Multi-center retrospective cohort study. Setting Administrative data from the Centers for Medicare and Medicaid Services covering 93 metropolitan counties primarily in the Eastern half of the United States. Patients 31,301 patients discharged with acute ischemic stroke in 2000. Interventions None Measurements Mortality from the time of index hospitalization up to the end of the follow-up period of 12 months. Information was also gathered on use of mechanical ventilation, percutaneous gastrostomy, sociodemographic variables and a host of comorbid conditions. Main Results 26% of all patients with acute ischemic stroke required ICU admission. The crude death rate for ICU stroke patients was 21% at 30 days and 40% at 1-year follow-up. At 30 days, after adjustment of sociodemographic variables and comorbidities, ICU patients had a 29% higher mortality hazard compared to non-ICU patients. Mechanical ventilation was associated with a five-fold higher mortality hazard (hazard ratio 5.59, confidence interval 4.93–6.34). The use of PEG was not associated with mortality at 30 days. By contrast, at 1-year follow up in 30-day survivors, ICU admission was not associated with mortality hazard (hazard ratio 1.01; 95% confidence interval 0.93–1.09). Mechanical ventilation still had a higher risk of death (hazard ratio 1.88, 95% confidence interval 1.57–2.25), and PEG patients had a 2.59 fold greater mortality hazard (95% confidence interval 2.38–2.82). Conclusions Both short-term and long-term mortality in older patients with acute ischemic stroke admitted to ICUs is lower than previously reported. The need for MV and PEG are markers for poor long-term outcome. Future research should focus on the

  8. Endovascular Interventions in Acute Ischemic Stroke: Recent Evidence, Current Challenges, and Future Prospects.

    PubMed

    Appireddy, Ramana; Zerna, Charlotte; Menon, Bijoy K; Goyal, Mayank

    2016-07-01

    After many years of clinical research, endovascular thrombectomy has been conclusively proven to be an effective treatment in acute ischemic stroke. The evidence is compelling; however, it is generated in high volume stroke centers with stroke expertise. Challenges remain ahead on translating and implementing this evidence in routine clinical care across the world. The current evidence has opened up avenues for further research and innovation in this field. In this review, we will discuss the evolution of evidence on endovascular thrombectomy followed by a discussion of challenges and future prospects in this exciting field of stroke care. PMID:27221502

  9. Pathophysiology and Treatments of Oxidative Injury in Ischemic Stroke: Focus on the Phagocytic NADPH Oxidase 2

    PubMed Central

    Carbone, Federico; Teixeira, Priscila Camillo; Braunersreuther, Vincent; Mach, François; Vuilleumier, Nicolas

    2015-01-01

    Abstract Significance: Phagocytes play a key role in promoting the oxidative stress after ischemic stroke occurrence. The phagocytic NADPH oxidase (NOX) 2 is a membrane-bound enzyme complex involved in the antimicrobial respiratory burst and free radical production in these cells. Recent Advances: Different oxidants have been shown to induce opposite effects on neuronal homeostasis after a stroke. However, several experimental models support the detrimental effects of NOX activity (especially the phagocytic isoform) on brain recovery after stroke. Therapeutic strategies selectively targeting the neurotoxic ROS and increasing neuroprotective oxidants have recently produced promising results. Critical Issues: NOX2 might promote carotid plaque rupture and stroke occurrence. In addition, NOX2-derived reactive oxygen species (ROS) released by resident and recruited phagocytes enhance cerebral ischemic injury, activating the inflammatory apoptotic pathways. The aim of this review is to update evidence on phagocyte-related oxidative stress, focusing on the role of NOX2 as a potential therapeutic target to reduce ROS-related cerebral injury after stroke. Future Directions: Radical scavenger compounds (such as Ebselen and Edaravone) are under clinical investigation as a therapeutic approach against stroke. On the other hand, NOX inhibition might represent a promising strategy to prevent the stroke-related injury. Although selective NOX inhibitors are not yet available, nonselective compounds (such as apocynin and fasudil) provided encouraging results in preclinical studies. Whereas additional studies are needed to better evaluate this therapeutic potential in human beings, the development of specific NOX inhibitors (such as monoclonal antibodies, small-molecule inhibitors, or aptamers) might further improve brain recovery after stroke. Antioxid. Redox Signal. 23, 460–489. PMID:24635113

  10. Memory deficit associated with increased brain proinflammatory cytokine levels and neurodegeneration in acute ischemic stroke.

    PubMed

    Silva, Bruno; Sousa, Larissa; Miranda, Aline; Vasconcelos, Anilton; Reis, Helton; Barcelos, Lucíola; Arantes, Rosa; Teixeira, Antonio; Rachid, Milene Alvarenga

    2015-08-01

    The present study aimed to investigate behavioral changes and neuroinflammatory process following left unilateral common carotid artery occlusion (UCCAO), a model of cerebral ischemia. Post-ischemic behavioral changes following 15 min UCCAO were recorded 24 hours after reperfusion. The novel object recognition task was used to assess learning and memory. After behavioral test, brains from sham and ischemic mice were removed and processed to evaluate central nervous system pathology by TTC and H&E techniques as well as inflammatory mediators by ELISA. UCCAO promoted long-term memory impairment after reperfusion. Infarct areas were observed in the cerebrum by TTC stain. Moreover, the histopathological analysis revealed cerebral necrotic cavities surrounded by ischemic neurons and hippocampal neurodegeneration. In parallel with memory dysfunction, brain levels of TNF-a, IL-1b and CXCL1 were increased post ischemia compared with sham-operated group. These findings suggest an involvement of central nervous system inflammatory mediators and brain damage in cognitive impairment following unilateral acute ischemia. PMID:26222355

  11. Infant acute life-threatening event--dysphagic choking versus nonaccidental injury.

    PubMed

    Barnes, Patrick D; Galaznik, John; Gardner, Horace; Shuman, Mark

    2010-03-01

    A 4-month-old male infant presented to the emergency room with a history of choking while bottle feeding at home, and was found by emergency medical services (EMS) to be apneic and pulseless. He subsequently developed disseminated intravascular coagulopathy and died. Computed tomography (CT) and magnetic resonance imaging (MRI) showed subdural hemorrhages (SDHs), subarachnoid hemorrhage (SAH), and retinal hemorrhages (RHs), along with findings of hypoxic-ischemic encephalopathy (HIE). The caretaker account appeared to be inconsistent with the clinical and imaging features, and a diagnosis of nonaccidental injury with "shaken baby syndrome" was made. The autopsy revealed diffuse anoxic central nervous system (CNS) changes with marked edema, SAH, and SDH, but no evidence of "CNS trauma." Although NAI could not be ruled out, the autopsy findings provided further evidence that the child's injury could result from a dysphagic choking type of acute life threatening event (ALTE) as consistently described by the caretaker. PMID:20434683

  12. Ginsenoside Rd Is Efficacious Against Acute Ischemic Stroke by Suppressing Microglial Proteasome-Mediated Inflammation.

    PubMed

    Zhang, Guangyun; Xia, Feng; Zhang, Yunxia; Zhang, Xiao; Cao, Yuhong; Wang, Ling; Liu, Xuedong; Zhao, Gang; Shi, Ming

    2016-05-01

    A great deal of attention has been paid to neuroprotective therapies for cerebral ischemic stroke. Our two recent clinical trials showed that ginsenoside Rd (Rd), a kind of monomeric compound extracted from Chinese herbs, Panax ginseng and Panax notoginseng, was safe and efficacious for the treatment of ischemic stroke. In this study, we conducted a pooled analysis of the data from 199 patients with acute ischemic stroke in the first trial and 390 in the second to reanalyze the efficacy and safety of Rd. Moreover, animal stroke models were carried out to explore the possible molecular mechanisms underlying Rd neuroprotection. The pooled analysis showed that compared with placebo group, Rd could improve patients' disability as assessed by modified Rankin Scale (mRS) score on day 90 post-stroke and reduce neurologic deficits on day 15 or day 90 post-stroke as assessed by NIH Stroke Scale (NIHSS) and Barthel Index (BI) scores. For neuroprotective mechanisms, administration of Rd 4 h after stroke could inhibit ischemia-induced microglial activation, decrease the expression levels of various proinflammatory cytokines, and suppress nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor, alpha (IκBα) phosphorylation and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) nuclear translocation. An in vitro proteasome activity assay revealed a significant inhibitory effect of Rd on proteasome activity in microglia. Interestingly, Rd was showed to have less side effects than glucocorticoid. Therefore, our study demonstrated that Rd could safely improve the outcome of patients with ischemic stroke, and this therapeutic effect may result from its capability of suppressing microglial proteasome activity and sequential inflammation. PMID:26081140

  13. Brief exposure to hyperoxia depletes the glial progenitor pool and impairs functional recovery after hypoxic-ischemic brain injury

    PubMed Central

    Koch, Joshua D; Miles, Darryl K; Gilley, Jennifer A; Yang, Cui-Ping; Kernie, Steven G

    2009-01-01

    Patterns of hypoxic-ischemic brain injury in infants and children suggest vulnerability in regions of white matter development, and injured patients develop defects in myelination resulting in cerebral palsy and motor deficits. Reperfusion exacerbates the oxidative stress that occurs after such injuries and may impair recovery. Resuscitation after hypoxic-ischemic injury is routinely performed using 100% oxygen, and this practice may increase the oxidative stress that occurs during reperfusion and further damage an already compromised brain. We show that brief exposure (30 mins) to 100% oxygen during reperfusion worsens the histologic injury in young mice after unilateral brain hypoxia–ischemia, causes an accumulation of the oxidative metabolite nitrotyrosine, and depletes preoligodendrocyte glial progenitors present in the cortex. This damage can be reversed with administration of the antioxidant ebselen, a glutathione peroxidase mimetic. Moreover, mice recovered in 100% oxygen have a more disrupted pattern of myelination and develop a static motor deficit that mimics cerebral palsy and manifests itself by significantly worse performance on wire hang and rotorod motor testing. We conclude that exposure to 100% oxygen during reperfusion after hypoxic-ischemic brain injury increases secondary neural injury, depletes developing glial progenitors, interferes with myelination, and ultimately impairs functional recovery. PMID:18334993

  14. Intraoperative Targeted Temperature Management in Acute Brain and Spinal Cord Injury.

    PubMed

    Kraft, Jacqueline; Karpenko, Anna; Rincon, Fred

    2016-02-01

    Acute brain and spinal cord injuries affect hundreds of thousands of people worldwide. Though advances in pre-hospital and emergency and neurocritical care have improved the survival of some to these devastating diseases, very few clinical trials of potential neuro-protective strategies have produced promising results. Medical therapies such as targeted temperature management (TTM) have been trialed in traumatic brain injury (TBI), spinal cord injury (SCI), acute ischemic stroke (AIS), subarachnoid hemorrhage (SAH), and intracranial hemorrhage (ICH), but in no study has a meaningful effect on outcome been demonstrated. To this end, patient selection for potential neuro-protective therapies such as TTM may be the most important factor to effectively demonstrate efficacy in clinical trials. The use of TTM as a strategy to treat and prevent secondary neuronal damage in the intraoperative setting is an area of ongoing investigation. In this review we will discuss recent and ongoing studies that address the role of TTM in combination with surgical approaches for different types of brain injury. PMID:26759319

  15. MicroRNAs in acute kidney injury.

    PubMed

    Fan, Pei-Chun; Chen, Chia-Chun; Chen, Yung-Chang; Chang, Yu-Sun; Chu, Pao-Hsien

    2016-01-01

    Acute kidney injury (AKI) is an important clinical issue that is associated with significant morbidity and mortality. Despite research advances over the past decades, the complex pathophysiology of AKI is not fully understood. The regulatory mechanisms underlying post-AKI repair and fibrosis have not been clarified either. Furthermore, there is no definitively effective treatment for AKI. MicroRNAs (miRNAs) are endogenous single-stranded noncoding RNAs of 19~23 nucleotides that have been shown to be crucial to the post-transcriptional regulation of various cellular biological functions, including proliferation, differentiation, metabolism, and apoptosis. In addition to being fundamental to normal development and physiology, miRNAs also play important roles in various human diseases. In AKI, some miRNAs appear to act pathogenically by promoting inflammation, apoptosis, and fibrosis, while others may act protectively by exerting anti-inflammatory, anti-apoptotic, anti-fibrotic, and pro-angiogenic effects. Thus, miRNAs have not only emerged as novel biomarkers for AKI; they also hold promise to be potential therapeutic targets. PMID:27608623

  16. Albumin Administration in Acute Ischemic Stroke: Safety Analysis of the ALIAS Part 2 Multicenter Trial

    PubMed Central

    Hill, Michael D.; Martin, Renee H.; Palesch, Yuko Y.; Moy, Claudia S.; Tamariz, Diego; Ryckborst, Karla J.; Jones, Elizabeth B.; Weisman, David; Pettigrew, Creed; Ginsberg, Myron D.

    2015-01-01

    Background Albumin treatment of ischemic stroke was associated with cardiopulmonary adverse events in previous studies and a low incidence of intracranial hemorrhage. We sought to describe the neurological and cardiopulmonary adverse events in the ALIAS Part 2 Multicenter Trial. Methods Ischemic stroke patients, aged 18–83 and a baseline NIHSS ≥ 6, were randomized to treatment with ALB or saline control within 5 hours of stroke onset. Neurological adverse events included symptomatic intracranial hemorrhage, hemicraniectomy, neurological deterioration and neurological death. Cardiopulmonary adverse events included pulmonary edema/congestive heart failure, acute coronary syndromes, atrial fibrillation, pneumonia and pulmonary thromboembolism. Results Among 830 patients, neurological and cardiopulmonary adverse events were not differentially associated with poor outcome between ALB and saline control subjects. The rate of symptomatic intracranial hemorrhage in the first 24h was low overall (2.9%, 24/830) but more common in the ALB treated subjects (RR = 2.4, CI95 1.01–5.8). The rate of pulmonary edema/CHF in the first 48h was 7.9% (59/830) and was more common among ALB treated subjects (RR = 10.7, CI95 4.3–26.6); this complication was expected and was satisfactorily managed with mandated diuretic administration and intravenous fluid guidelines. Troponin elevations in the first 48h were common, occurring without ECG change or cardiac symptoms in 52 subjects (12.5%). Conclusions ALB therapy was associated with an increase in symptomatic ICH and pulmonary edema/congestive heart failure but this did not affect final outcomes. Troponin elevation occurs routinely in the first 48 hours after acute ischemic stroke. Trial Registration ClincalTrials.gov NCT00235495 PMID:26325387

  17. Intranasal Insulin and Insulin-Like Growth Factor 1 as Neuroprotectants in Acute Ischemic Stroke.

    PubMed

    Lioutas, Vasileios-Arsenios; Alfaro-Martinez, Freddy; Bedoya, Francisco; Chung, Chen-Chih; Pimentel, Daniela A; Novak, Vera

    2015-08-01

    Treatment options for stroke remain limited. Neuroprotective therapies, in particular, have invariably failed to yield the expected benefit in stroke patients, despite robust theoretical and mechanistic background and promising animal data. Insulin and insulin-like growth factor 1 (IGF-1) play a pivotal role in critical brain functions, such as energy homeostasis, neuronal growth, and differentiation. They may exhibit neuroprotective properties in acute ischemic stroke based upon their vasodilatory, anti-inflammatory and antithrombotic effects, as well as improvements of functional connectivity, neuronal metabolism, neurotransmitter regulation, and remyelination. Intranasally administered insulin has demonstrated a benefit for prevention of cognitive decline in older people, and IGF-1 has shown potential benefit to improve functional outcomes in animal models of acute ischemic stroke. The intranasal route presents a feasible, tolerable, safe, and particularly effective administration route, bypassing the blood-brain barrier and maximizing distribution to the central nervous system (CNS), without the disadvantages of systemic side effects and first-pass metabolism. This review summarizes the neuroprotective potential of intranasally administered insulin and IGF-1 in stroke patients. We present the theoretical background and pathophysiologic mechanisms, animal and human studies of intranasal insulin and IGF-1, and the safety and feasibility of intranasal route for medication administration to the CNS. PMID:26040423

  18. Lower Serum Caveolin-1 Is Associated with Cerebral Microbleeds in Patients with Acute Ischemic Stroke

    PubMed Central

    Zhang, Jun; Zhu, Wusheng; Xiao, Lulu; Cao, Qinqin; Zhang, Hao; Wang, Huaiming; Ye, Zusen; Hao, Yonggang; Dai, Qiliang; Sun, Wen; Liu, Xinfeng; Ye, Ruidong

    2016-01-01

    Caveolin-1 (Cav-1) plays pivotal roles in the endothelial damage following stroke. The present study aimed to investigate whether serum Cav-1 level is associated with the presence of cerebral small vessel disease (cSVD) in patients with acute ischemic stroke. To this end, 156 patients were consecutively enrolled. Cranial magnetic resonance imaging was analyzed to determine the surrogates of cSVD, including cerebral microbleeds (CMBs), silent lacunar infarcts (SLIs), and white matter hyperintensities (WMHs). After adjusting for potential confounders, patients with low Cav-1 level had a higher risk of CMBs than patients with high Cav-1 level (OR: 4.05, 95% CI: 1.77–9.30). However, there was no relationship between Cav-1 and the presence of SLIs or WMHs. When CMBs were stratified by location and number, a similar association was found in patients with deep or infratentorial CMBs (OR: 4.04, 95% CI: 1.59–10.25) and with multiple CMBs (OR: 3.18, 95% CI: 1.16–8.72). These results suggest lower serum Cav-1 levels may be associated with CMBs, especially those that are multiple and located in deep brain or infratentorial structures, in patients with acute ischemic stroke. Cav-1 may be involved in the pathophysiology of CMBs, and may act as a potential target for treating cSVD. PMID:27119011

  19. Neuroprotective effect of osthole against acute ischemic stroke on middle cerebral ischemia occlusion in rats.

    PubMed

    Chao, Xiaodong; Zhou, Jun; Chen, Tao; Liu, Wenbo; Dong, Wenpeng; Qu, Yan; Jiang, Xiaofan; Ji, Xituan; Zhen, Haining; Fei, Zhou

    2010-12-01

    Osthole, a natural coumarin derivative, has taken considerable attention because of its diverse pharmacological functions. It has been reported to be useful in the treatment of chronic cerebral hypoperfusion and neuronal damage. In the present study, we examined the neuroprotective effect of osthole and its potential mechanisms against acute ischemic stroke induced by middle cerebral artery occlusion (MCAO) in rats. The rats were pretreated with osthole 10, 20 and 40 mg/kg 30 min before MCAO. The neuroprotective effect of osthole against acute ischemic stroke was evaluated by neurological deficit score (NDS), dry-wet weight and 2,3,5-triphenyltetrazolium chloride (TTC) staining. The contents of malondialdehyde (MDA) and glutathione (GSH), activity of myeloperoxidase (MPO) and the level of interleukin (IL)-1β and IL-8 after 2h of MCAO in rats were detected to investigate its anti-oxidative action and anti-inflammatory property. Pretreatment with osthole significantly increased in GSH, and decreased the volume of infarction, NDS, edema, MDA, MPO, IL-1β and IL-8 compared with rats in the MCAO group at 24h after MCAO. The study suggests the neuroprotective effect of osthole in the MCAO model of rats. The anti-oxidative action and anti-inflammatory property of osthole may contribute to a beneficial effect against stroke. PMID:20869955

  20. Roles of NAD+, PARP-1, and Sirtuins in Cell Death, Ischemic Brain Injury, and Synchrotron Radiation X-Ray-Induced Tissue Injury

    PubMed Central

    2013-01-01

    NAD+ plays crucial roles in a variety of biological processes including energy metabolism, aging, and calcium homeostasis. Multiple studies have also shown that NAD+ administration can profoundly decrease oxidative cell death and ischemic brain injury. A number of recent studies have further indicated that NAD+ administration can decrease ischemic brain damage, traumatic brain damage and synchrotron radiation X-ray-induced tissue injury by such mechanisms as inhibiting inflammation, decreasing autophagy, and reducing DNA damage. Our latest study that applies nano-particles as a NAD+ carrier has also provided first direct evidence demonstrating a key role of NAD+ depletion in oxidative stress-induced ATP depletion. Poly(ADP-ribose) polymerase-1 (PARP-1) and sirtuins are key NAD+-consuming enzymes that mediate multiple biological processes. Recent studies have provided new information regarding PARP-1 and sirtuins in cell death, ischemic brain damage and synchrotron radiation X-ray-induced tissue damage. These findings have collectively supported the hypothesis that NAD+ metabolism, PARP-1 and sirtuins play fundamental roles in oxidative stress-induced cell death, ischemic brain injury, and radiation injury. The findings have also supported “the Central Regulatory Network Hypothesis”, which proposes that a fundamental network that consists of ATP, NAD+ and Ca2+ as its key components is the essential network regulating various biological processes. PMID:24386592

  1. Mice lacking glutamate carboxypeptidase II are protected from peripheral neuropathy and ischemic brain injury.

    PubMed

    Bacich, Dean J; Wozniak, Krystyna M; Lu, X-C May; O'Keefe, Denize S; Callizot, Noelle; Heston, Warren D W; Slusher, Barbara S

    2005-10-01

    Excessive glutamate release is associated with neuronal damage. A new strategy for the treatment of neuronal injury involves inhibition of the neuropeptidase glutamate carboxypeptidase II (GCP II), also known as N-acetylated alpha-linked acidic dipeptidase. GCP II is believed to mediate the hydrolysis of N-acetyl-aspartyl-glutamate (NAAG) to glutamate and N-acetyl-aspartate, and inhibition of NAAG peptidase activity (by GCP II and other peptidases) is neuroprotective. Mice were generated in which the Folh1 gene encoding GCP II was disrupted (Folh1-/- mice). No overt behavioral differences were apparent between Folh1-/- mice and wild-type littermates, with respect to their overall performance in locomotion, coordination, pain threshold, cognition and psychiatric behavioral paradigms. Morphological analysis of peripheral nerves, however, showed significantly smaller axons (reduced myelin sheaths and axon diameters) in sciatic nerves from Folh1-/- mice. Following sciatic nerve crush, Folh1-/- mice suffered less injury and recovered faster than wild-type littermates. In a model of ischemic injury, the Folh1-/- mice exhibited a significant reduction (p < 0.05) in infarct volume compared with their wild-type littermates when subjected to middle cerebral artery occlusion, a model of stroke. These findings support the hypothesis that GCP II inhibitors may represent a novel treatment for peripheral neuropathies as well as stroke. PMID:16190866

  2. Changes in Cerebral Oxidative Metabolism during Neonatal Seizures Following Hypoxic–Ischemic Brain Injury

    PubMed Central

    Mitra, Subhabrata; Bale, Gemma; Mathieson, Sean; Uria-Avellanal, Cristina; Meek, Judith; Tachtsidis, Ilias; Robertson, Nicola J.

    2016-01-01

    Seizures are common following hypoxic–ischemic brain injury in newborn infants. Prolonged or recurrent seizures have been shown to exacerbate neuronal damage in the developing brain; however, the precise mechanism is not fully understood. Cytochrome-c-oxidase is responsible for more than 90% of ATP production inside mitochondria. Using a novel broadband near-infrared spectroscopy system, we measured the concentration changes in the oxidation state of cerebral cytochrome-c-oxidase (Δ[oxCCO]) and hemodynamics during recurrent neonatal seizures following hypoxic–ischemic encephalopathy in a newborn infant. A rapid increase in Δ[oxCCO] was noted at the onset of seizures along with a rise in the baseline of amplitude-integrated electroencephalogram. Cerebral oxygenation and cerebral blood volume fell just prior to the seizure onset but recovered rapidly during seizures. Δ[oxCCO] during seizures correlated with changes in mean electroencephalogram voltage indicating an increase in neuronal activation and energy demand. The progressive decline in the Δ[oxCCO] baseline during seizures suggests a progressive decrease of mitochondrial oxidative metabolism. PMID:27559538

  3. Transplantation of placenta-derived mesenchymal stem cells enhances angiogenesis after ischemic limb injury in mice.

    PubMed

    Xie, Nanzi; Li, Zhihong; Adesanya, Timothy M; Guo, Weixin; Liu, Yang; Fu, Minghuan; Kilic, Ahmet; Tan, Tao; Zhu, Hua; Xie, Xiaoyun

    2016-01-01

    Mesenchymal stem cell-based therapy has emerged as a promising approach for the treatment of peripheral arterial disease. The purpose of this study was to examine the potential effects of human placenta-derived mesenchymal stem cells (PMSCs) on mouse hindlimb ischemia. PMSCs were isolated from human placenta tissue and characterized by flow cytometry. An in vivo surgical ligation-induced murine limb ischemia model was generated with fluorescent dye (CM-DiI) labelled PMSCs delivered via intramuscular injection. Our data show that PMSCs treatment significantly enhanced microvessel density, improved blood perfusion and diminished pathologies in ischemic mouse hindlimbs as compared to those in the control group. Further immunostaining studies suggested that injected PMSCs can incorporate into the vasculature and differentiate into endothelial and smooth muscle cells to enhance angiogenesis in ischemic hind limbs. This may in part explain the beneficial effects of PMSCs treatment. Taken together, we found that PMSCs treatment might be an effective treatment modality for treatment of ischemia-induced injury to mouse hind limbs by enhancement of angiogenesis. PMID:26282458

  4. Changes in Cerebral Oxidative Metabolism during Neonatal Seizures Following Hypoxic-Ischemic Brain Injury.

    PubMed

    Mitra, Subhabrata; Bale, Gemma; Mathieson, Sean; Uria-Avellanal, Cristina; Meek, Judith; Tachtsidis, Ilias; Robertson, Nicola J

    2016-01-01

    Seizures are common following hypoxic-ischemic brain injury in newborn infants. Prolonged or recurrent seizures have been shown to exacerbate neuronal damage in the developing brain; however, the precise mechanism is not fully understood. Cytochrome-c-oxidase is responsible for more than 90% of ATP production inside mitochondria. Using a novel broadband near-infrared spectroscopy system, we measured the concentration changes in the oxidation state of cerebral cytochrome-c-oxidase (Δ[oxCCO]) and hemodynamics during recurrent neonatal seizures following hypoxic-ischemic encephalopathy in a newborn infant. A rapid increase in Δ[oxCCO] was noted at the onset of seizures along with a rise in the baseline of amplitude-integrated electroencephalogram. Cerebral oxygenation and cerebral blood volume fell just prior to the seizure onset but recovered rapidly during seizures. Δ[oxCCO] during seizures correlated with changes in mean electroencephalogram voltage indicating an increase in neuronal activation and energy demand. The progressive decline in the Δ[oxCCO] baseline during seizures suggests a progressive decrease of mitochondrial oxidative metabolism. PMID:27559538

  5. Inductive and Deductive Approaches to Acute Cell Injury

    PubMed Central

    DeGracia, Donald J.; Tri Anggraini, Fika; Taha, Doaa Taha Metwally; Huang, Zhi-Feng

    2014-01-01

    Many clinically relevant forms of acute injury, such as stroke, traumatic brain injury, and myocardial infarction, have resisted treatments to prevent cell death following injury. The clinical failures can be linked to the currently used inductive models based on biological specifics of the injury system. Here we contrast the application of inductive and deductive models of acute cell injury. Using brain ischemia as a case study, we discuss limitations in inductive inferences, including the inability to unambiguously assign cell death causality and the lack of a systematic quantitative framework. These limitations follow from an overemphasis on qualitative molecular pathways specific to the injured system. Our recently developed nonlinear dynamical theory of cell injury provides a generic, systematic approach to cell injury in which attractor states and system parameters are used to quantitatively characterize acute injury systems. The theoretical, empirical, and therapeutic implications of shifting to a deductive framework are discussed. We illustrate how a deductive mathematical framework offers tangible advantages over qualitative inductive models for the development of therapeutics of acutely injured biological systems. PMID:27437490

  6. [PARTICULAR QUALITIES OF DIAGNOSTIC ACUTE LATERAL ANKLE LIGAMENT INJURIES].

    PubMed

    Krasnoperov, S N; Shishka, I V; Golovaha, M L

    2015-01-01

    Delayed diagnosis of acute lateral ankle ligaments injury and subsequent inadequate treatment leads to the development of chronic instability and rapid progression of degenerative processes in the joint. The aim of our work was to improve treatment results by developing an diagnostic algorithm and treatment strategy of acute lateral ankle ligament injuries. The study included 48 patients with history of acute inversion ankle injury mechanism. Diagnostic protocol included clinical and radiological examination during 48 hours and after 7-10 days after injury. According to the high rate of inaccurate clinical diagnosis in the first 48 hours of the injury a short course of conservative treatment for 7-10 days is needed with follow-up and controlling clinical and radiographic instability tests. Clinical symptoms of ankle inversion injury showed that the combination of local tenderness in the projection of damaged ligaments, the presence of severe periarticular hematoma in the lateral department and positive anterior drawer and talar tilt tests in 7-10 days after the injury in 87% of cases shows the presence of ligament rupture. An algorithm for diagnosis of acute lateral ankle ligament injury was developed, which allowed us to determine differential indications for surgical repair of the ligaments and conservative treatment of these patients. PMID:27089717

  7. Absence of malonyl coenzyme A decarboxylase in mice increases cardiac glucose oxidation and protects the heart from ischemic injury

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acute pharmacological inhibition of cardiac malonyl coenzyme A decarboxylase (MCD) protects the heart from ischemic damage by inhibiting fatty acid oxidation and stimulating glucose oxidation. However, it is unknown whether chronic inhibition of MCD results in altered cardiac function, energy metabo...

  8. Neonatal Hypoxic/Ischemic Brain Injury Induces Production of Calretinin-Expressing Interneurons in the Striatum

    PubMed Central

    YANG, ZHENGANG; YOU, YAN; LEVISON, STEVEN W.

    2011-01-01

    Ischemia-induced striatal neurogenesis from progenitors in the adjacent subventricular zone (SVZ) in young and adult rodents has been reported. However, it has not been established whether the precursors that reside in the SVZ retain the capacity to produce the full range of striatal neurons that has been destroyed. By using a neonatal rat model of hypoxic/ischemic brain damage, we show here that virtually all of the newly produced striatal neurons are calretinin (CR)-immunoreactive (+), but not DARPP-32+, calbindin-D-28K+, parvalbumin+, somatostatin+, or choline acetyltransferase+. Retroviral fate-mapping studies confirm that these newly born CR++neurons are indeed descendants of the SVZ. Our studies indicate that, although the postnatal SVZ has the capacity to produce a range of neurons, only a subset of this repertoire is manifested in the brain after injury. PMID:18720478

  9. Ischemic Conditioning: Implications for Emergency Medicine.

    PubMed

    Frumkin, Kenneth; Bloom, Adam S

    2016-09-01

    Ischemic conditioning refers to the ability of brief episodes of controlled hypoperfusion around the time of an acute ischemic event to protect the target organ from reperfusion injury. A considerable body of literature suggests that interventions as simple and safe as repetitively inflating a blood pressure cuff could reduce the size and long-term morbidity of myocardial and cerebral infarction. This review introduces and summarizes the body of evidence contributing to these impressions. PMID:26973174

  10. MRI in acute ligamentous injuries of the ankle.

    PubMed

    Martella, Ilenia; Azzali, Emanuele; Milanese, Gianluca; Praticò, Francesco Emanuele; Ruggirello, Margherita; Trunfio, Vincenzo; Parziale, Raffaele; Corrado, Michele; Della Casa, Giovanni; Capasso, Raffaella; De Filippo, Massimo

    2016-01-01

    Ankle sprains are the most common lower limb injuries and affect more frequently young athletes; imaging is needed for an accurate diagnosis of such traumatic injuries. The purpose of this review is to analyse the magnetic resonance (MR) findings of both normal and pathological ankle's ligaments; indeed, MRI is the gold standard for the diagnosis of acute traumatic injuries and is useful for differentiation of the causes of ankle instability as well as for pre-operative planning. PMID:27467862

  11. Molecular Mechanisms of Renal Ischemic Conditioning Strategies.

    PubMed

    Kierulf-Lassen, Casper; Nieuwenhuijs-Moeke, Gertrude J; Krogstrup, Nicoline V; Oltean, Mihai; Jespersen, Bente; Dor, Frank J M F

    2015-01-01

    Ischemia-reperfusion injury is the leading cause of acute kidney injury in a variety of clinical settings such as renal transplantation and hypovolemic and/or septic shock. Strategies to reduce ischemia-reperfusion injury are obviously clinically relevant. Ischemic conditioning is an inherent part of the renal defense mechanism against ischemia and can be triggered by short periods of intermittent ischemia and reperfusion. Understanding the signaling transduction pathways of renal ischemic conditioning can promote further clinical translation and pharmacological advancements in this era. This review summarizes research on the molecular mechanisms underlying both local and remote ischemic pre-, per- and postconditioning of the kidney. The different types of conditioning strategies in the kidney recruit similar powerful pro-survival mechanisms. Likewise, renal ischemic conditioning mobilizes many of the same protective signaling pathways as in other organs, but differences are recognized. PMID:26330099

  12. BrdU-positive cells in the neonatal mouse hippocampus following hypoxic-ischemic brain injury

    PubMed Central

    Bartley, John; Soltau, Thomas; Wimborne, Hereward; Kim, Sunjun; Martin-Studdard, Angeline; Hess, David; Hill, William; Waller, Jennifer; Carroll, James

    2005-01-01

    Background Mechanisms that affect recovery from fetal and neonatal hypoxic-ischemic (H-I) brain injury have not been fully elucidated. The incidence of intrapartum asphyxia is approximately 2.5%, but the occurrence of adverse clinical outcome is much lower. One of the factors which may account for this relatively good outcome is the process of neurogenesis, which has been described in adult animals. We used a neonatal mouse model to assess new cells in the hippocampus after H-I injury. Results Neonatal mice underwent permanent unilateral carotid ligation on the seventh postnatal day followed by exposure to 8% hypoxia for 75 minutes. The presence of new cells was determined by bromodeoxyuridine (BrdU) incorporation into cells with sacrifice of the animals at intervals. Brain sections were stained for BrdU in combination with neuronal, glial, endothelial and microglial stains. We found a significant increase in BrdU-positive cells in the neonatal mouse hippocampus in the injured area compared to the non-injured area, most prominent in the dentate gyrus (DG) (154.5 ± 59.6 v. 92.9 ± 32.7 at 3 days after injury; 68.9 ± 23.4 v. 52.4 ± 17.1 at 35 days after injury, p < 0.0011). Among the cells which showed differentiation, those which were stained as either microglial or endothelial cells showed a peak increase at three days after the injury in the DG, injured versus non-injured side (30.5 ± 17.8 v. 2.7 ± 2.6, p < 0.0002). As in the adult animal, neurogenesis was significantly increased in the DG with injury (15.0 ± 4.6 v. 5.2 ± 1.6 at 35 days after injury, p < 0.0002), and this increase was subsequent to the appearance of the other dividing cells. Numbers of new oligodendrocytes were significantly higher in the DG on the non-injured side (7.0 ± 24.2 v. 0.1 ± 0.3, p < 0.0002), suggesting that oligodendrocyte synthesis was reduced in the injured hippocampus. Conclusion These findings demonstrate that the neonatal animal responds to brain injury with neurogenesis

  13. Unique aspects of downhill ski injuries part 2: diagnosis and acute management of specific injuries.

    PubMed

    Buck, P G; Sophocles, A M; Beckenbaugh, R D

    1982-04-01

    As in many sports, a wide spectrum of injuries is seen in skiing (Table 1). This includes injuries to the upper and lower extremities as well as miscellaneous injuries and medical problems (frostbite, hypothermia, and high altitude effects). Six relatively unique injuries in skiing will be presented in detail. The discussion will focus on the acute management of these injuries: subluxing peroneal tendons, fibular stress fractures, tibial shaft fractures (spiral, transverse), medical compartment knee injuries, anterior shoulder dislocations with associated greater tuberosity fractures, and gamekeeper's thumb. PMID:24822536

  14. The Traditional Herbal Medicine, Dangkwisoo-San, Prevents Cerebral Ischemic Injury through Nitric Oxide-Dependent Mechanisms

    PubMed Central

    Kim, Ji Hyun; Park, Sun Haeng; Kim, Young Whan; Ha, Jung Min; Bae, Sun Sik; Lee, Guem San; Cho, Su In; Choi, Byung Tae; Shin, Hwa Kyoung

    2011-01-01

    Dangkwisoo-San (DS) is an herbal extract that is widely used in traditional Korean medicine to treat traumatic ecchymosis and pain by promoting blood circulation and relieving blood stasis. However, the effect of DS in cerebrovascular disease has not been examined experimentally. The protective effects of DS on focal ischemic brain were investigated in a mouse model. DS stimulated nitric oxide (NO) production in human brain microvascular endothelial cells (HBMECs). DS (10–300 μg/mL) produced a concentration-dependent relaxation in mouse aorta, which was significantly attenuated by the nitric oxide synthase (NOS) inhibitor L-NAME, suggesting that DS causes vasodilation via a NO-dependent mechanism. DS increased resting cerebral blood flow (CBF), although it caused mild hypotension. To investigate the effect of DS on the acute cerebral injury, C57/BL6J mice received 90 min of middle cerebral artery occlusion followed by 22.5 h of reperfusion. DS administered 3 days before arterial occlusion significantly reduced cerebral infarct size by 53.7% compared with vehicle treatment. However, DS did not reduce brain infarction in mice treated with the relatively specific endothelial NOS (eNOS) inhibitor, N5-(1-iminoethyl)-L-ornithine, suggesting that the neuroprotective effect of DS is primarily endothelium-dependent. This correlated with increased phosphorylation of eNOS in the brains of DS-treated mice. DS acutely improves CBF in eNOS-dependent vasodilation and reduces infarct size in focal cerebral ischemia. These data provide causal evidence that DS is cerebroprotective via the eNOS-dependent production of NO, which ameliorates blood circulation. PMID:21423636

  15. Protein disulfide isomerase as a novel target for cyclopentenone prostaglandins: implications for hypoxic ischemic injury

    PubMed Central

    Liu, Hao; Chen, Jie; Li, Wenjin; Rose, Marie E.; Shinde, Sunita N.; Balasubramani, Manimalha; Uechi, Guy T.; Mutus, Bülent; Graham, Steven H.; Hickey, Robert W.

    2016-01-01

    Cyclooxygenase-2 (COX-2) is an important contributor to ischemic brain injury. Identification of the downstream mediators of COX-2 toxicity may allow the development of targeted therapies. Of particular interest is the cyclopentenone family of prostaglandin metabolites. Cyclopentenone prostaglandins (CyPGs) are highly reactive molecules that form covalent bonds with cellular thiols. Protein disulfide isomerase (PDI) is an important molecule for the restoration of denatured proteins following ischemia. Because PDI has several thiols, including thiols within the active thioredoxin-like domain, we hypothesized that PDI is a target of CyPGs and that CyPG binding of PDI is detrimental. CyPG–PDI binding was detected in vitro via immunoprecipitation and MS. CyPG–PDI binding decreased PDI enzymatic activity in recombinant PDI treated with CyPG, and PDI immunoprecipitated from neuronal culture treated with CyPG or anoxia. Toxic effects of binding were demonstrated in experiments showing that: (a) pharmacologic inhibition of PDI increased cell death in anoxic neurons, (b) PDI overexpression protected neurons exposed to anoxia and SH-SY5Y cells exposed to CyPG, and (c) PDI overexpression in SH-SY5Y cells attenuated ubiquitination of proteins and decreased activation of pro-apoptotic caspases. In conclusion, CyPG production and subsequent binding of PDI is a novel and potentially important mechanism of ischemic brain injury. We show that CyPGs bind to PDI, cyclopentenones inhibit PDI activity, and CyPG–PDI binding is associated with increased neuronal susceptibility to anoxia. Additional studies are necessary to determine the relative role of CyPG-dependent inhibition of PDI activity in ischemia and other neurodegenerative disorders. PMID:25754985

  16. Acute traumatic injuries in automotive manufacturing.

    PubMed

    Warner, M; Baker, S P; Li, G; Smith, G S

    1998-10-01

    Motor vehicle manufacturing, with its varied tasks, challenging work environment, and diverse worker populations, presents many hazards to employees. This study examined routinely collected surveillance data from a major motor vehicle manufacturer to identify injury types, high-risk workers, causes of injury, and factors associated with work loss. Injury and personnel data were used to calculate injury rates. Injury data were from the routinely collected medical and safety surveillance system on occupational injuries. The number of persons working in the plants was estimated using year-end personnel reports. Key word searches supplementing the analyses provided insight into the specific circumstances of injury. The most common injuries were sprains/strains (39% of the total), lacerations (22%), and contusions (15%). Forty-nine percent of the injuries resulted in one or more lost or restricted workdays; 25% resulted in 7 or more lost or restricted workdays. The injuries most likely to result in work loss were amputations, hernias and fractures. Sprains/strains accounted for 65% of all lost workdays. Injury rates ranged from 13.8 per 100 person-years at stamping plants to 28.7 at parts depots. Even within similar types of plants, injury rates varied widely, with a twofold difference among the individual assembly plants in overall injury rates. Injury surveillance systems with descriptive data on injury events shed light on the circumstances under which certain types of injuries occur and can provide the basis for preventive interventions. Sources of variation and potential biases are discussed, providing guidance for those interested in designing and using surveillance systems for occupational injuries. PMID:9750941

  17. Pediatric traumatic brain injury: acute and rehabilitation costs.

    PubMed

    Jaffe, K M; Massagli, T L; Martin, K M; Rivara, J B; Fay, G C; Polissar, N L

    1993-07-01

    Pediatric traumatic brain injury constitutes an enormous public health problem, but little is known about the economic costs of such injury. Using charges as a proxy for cost, we prospectively collected data on initial hospital charges and professional fees for emergency department services, acute inpatient care, and acute inpatient rehabilitation for 96 patients with mild, moderate, and severe traumatic brain injuries. We also examined the relationship between these costs and injury severity and etiology. Acute care and rehabilitation median costs were $5,233 per child, $11,478 for hospitalized children, and $230 for those only seen in the emergency department. Median costs for injuries due to motor vehicles, bicycles, and falls were $15,213, $6,311, and $792, respectively. Using Glasgow Coma Scale criteria, median cost of mild, moderate, and severe traumatic brain injuries were $598, $12,022, and $53,332, respectively. Injury etiology added modestly but significantly to the prediction of cost over and above that predicted by injury severity alone. Rehabilitation costs accounted for 37% of the total for all children, but 45% of those with the most severe injuries. PMID:8328886

  18. Fire-Heat and Qi Deficiency Syndromes as Predictors of Short-term Prognosis of Acute Ischemic Stroke

    PubMed Central

    Cheng, Shu-Chen; Lin, Chien-Hsiung; Chang, Yeu-Jhy; Lee, Tsong-Hai; Ryu, Shan-Jin; Chen, Chun-Hsien; Chang, Her-Kun; Chang, Chee-Jen

    2013-01-01

    Abstract Objectives To explore the relationships between traditional Chinese medicine (TCM) syndromes and disease severity and prognoses after ischemic stroke, such as neurologic deficits and decline in activities of daily living (ADLs). Methods The study included 211 patients who met the inclusion criteria of acute ischemic stroke based on clinical manifestations, computed tomography or magnetic resonance imaging findings, and onset of ischemic stroke within 72 hours with clear consciousness. To assess neurologic function and ADLs in patients with different TCM syndromes, the TCM Syndrome Differentiation Diagnostic Criteria for Apoplexy scale (containing assessments of wind, phlegm, blood stasis, fire-heat, qi deficiency, and yin deficiency with yang hyperactivity syndromes) was used within 72 hours of stroke onset, and Western medicine–based National Institutes of Health Stroke Scale (NIHSS) and Barthel Index (BI) assessments were performed at both admission and discharge. Results The most frequent TCM syndromes associated with acute ischemic stroke were wind syndrome, phlegm syndrome, and blood stasis syndrome. Improvement according to the BI at discharge and days of admission were significantly different between patients with and those without fire-heat syndrome. Patients with qi deficiency syndrome had longer hospital stays and worse NIHSS and BI assessments at discharge than patients without qi deficiency syndrome. All the reported differences reached statistical significance. Conclusions These results provide evidence that fire-heat syndrome and qi deficiency syndrome are essential elements that can predict short-term prognosis of acute ischemic stroke. PMID:23600945

  19. The Usefulness of the TOAST Classification and Prognostic Significance of Pyramidal Symptoms During the Acute Phase of Cerebellar Ischemic Stroke.

    PubMed

    Dziadkowiak, Edyta; Chojdak-Łukasiewicz, Justyna; Guziński, Maciej; Noga, Leszek; Paradowski, Bogusław

    2016-04-01

    Cerebellar stroke is a rare condition with very nonspecific clinical features. The symptoms in the acute phase could imitate acute peripheral vestibular disorders or a brainstem lesion. The aim of this study was to assess the usefulness of the Trial of Org 10172 in Acute Stroke Treatment (TOAST) classification in cerebellar stroke and the impact of clinical features on the prognosis. We retrospectively analyzed 107 patients with diagnosed ischemic cerebellar infarction. We studied the clinical features and compared them based on the location of the ischemic lesion and its distribution in the posterior interior cerebellar artery (PICA), superior cerebellar artery (SCA), and anterior inferior cerebellar artery (AICA) territories. According to the TOAST classification, stroke was more prevalent in atrial fibrillation (26/107) and when the lesion was in the PICA territory (39/107). Pyramidal signs occurred in 29/107 of patients and were more prevalent when the lesion was distributed in more than two vascular regions (p = 0.00640). Mortality was higher among patients with ischemic lesion caused by cardiac sources (p = 0.00094) and with pyramidal signs (p = 0.00640). The TOAST classification is less useful in assessing supratentorial ischemic infarcts. Cardioembolic etiology, location of the ischemic lesion, and pyramidal signs support a negative prognosis. PMID:26041073

  20. Influence of exercise training on ischemic brain injury in type 1 diabetic rats.

    PubMed

    Arrick, Denise M; Sun, Hong; Mayhan, William G

    2012-10-01

    While exercise training (ExT) appears to influence cerebrovascular function during type 1 diabetes (T1D), it is not clear whether this beneficial effect extends to protecting the brain from ischemia-induced brain injury. Thus our goal was to examine whether modest ExT could influence transient focal ischemia-induced brain injury along with nitric oxide synthase (NOS)-dependent dilation of cerebral (pial) arterioles during T1D. Sprague-Dawley rats were divided into four groups: nondiabetic sedentary, nondiabetic ExT, diabetic (streptozotocin; 50 mg/kg ip) sedentary, and diabetic ExT. In the first series of studies, we measured infarct volume in all groups of rats following right MCA occlusion for 2 h, followed by 24 h of reperfusion. In a second series of studies, a craniotomy was performed over the parietal cortex, and we measured responses of pial arterioles to an endothelial NOS (eNOS)-dependent, a neuronal NOS (nNOS)-dependent, and a NOS-independent agonist in all groups of rats. We found that sedentary diabetic rats had significantly larger total, cortical, and subcortical infarct volumes following ischemia-reperfusion than sedentary nondiabetic, nondiabetic ExT, and diabetic ExT rats. Infarct volumes were similar in sedentary nondiabetic, ExT nondiabetic, and ExT diabetic rats. In contrast, ExT did not alter infarct size in nondiabetic compared with sedentary nondiabetic rats. In addition, ExT diabetic rats had impaired eNOS- and nNOS-dependent, but not NOS-independent, vasodilation that was restored by ExT. Thus ExT of T1D rats lessened ischemic brain injury following middle cerebral artery occlusion and restored impaired eNOS- and nNOS-dependent vascular function. Since the incidence of ischemic stroke is increased during T1D, we suggest that our finding are significant in that modest ExT may be a viable preventative therapeutic approach to lessen ischemia-induced brain injury that may occur in T1D subjects. PMID:22858624

  1. The multifaceted role of the renal microvasculature during acute kidney injury.

    PubMed

    Maringer, Katherine; Sims-Lucas, Sunder

    2016-08-01

    Pediatric acute kidney injury (AKI) represents a complex disease process for clinicians as it is multifactorial in cause and only limited treatment or preventatives are available. The renal microvasculature has recently been implicated in AKI as a strong therapeutic candidate involved in both injury and recovery. Significant progress has been made in the ability to study the renal microvasculature following ischemic AKI and its role in repair. Advances have also been made in elucidating cell-cell interactions and the molecular mechanisms involved in these interactions. The ability of the kidney to repair post AKI is closely linked to alterations in hypoxia, and these studies are elucidated in this review. Injury to the microvasculature following AKI plays an integral role in mediating the inflammatory response, thereby complicating potential therapeutics. However, recent work with experimental animal models suggests that the endothelium and its cellular and molecular interactions are attractive targets to prevent injury or hasten repair following AKI. Here, we review the cellular and molecular mechanisms of the renal endothelium in AKI, as well as repair and recovery, and potential therapeutics to prevent or ameliorate injury and hasten repair. PMID:26493067

  2. Recent advances in the understanding of acute kidney injury

    PubMed Central

    Tögel, Florian

    2014-01-01

    Acute kidney injury (AKI) is a common clinical entity associated with high morbidity and mortality and clinical costs. The pathophysiology is multifaceted and involves inflammation, tubular injury, and vascular damage. Recently identified components include necroptosis, a special form of cell death, and autophagy. Most of the pathophysiological knowledge is obtained from animal models but these do not directly reflect the reality of the clinical situation. Tubular cells have a remarkable capacity to regenerate, and the role of stem/progenitor cells is discussed. Acute kidney injury is frequently associated with chronic kidney disease, and the implications are widespread. PMID:25343040

  3. CT Perfusion ASPECTS in the Evaluation of Acute Ischemic Stroke: Thrombolytic Therapy Perspective

    PubMed Central

    Sillanpaa, Niko; Saarinen, Jukka T.; Rusanen, Harri; Hakomaki, Jari; Lahteela, Arto; Numminen, Heikki; Elovaara, Irina; Dastidar, Prasun; Soimakallio, Seppo

    2011-01-01

    Background and Purpose Advances in the management of acute ischemic stroke and medical imaging are creating pressure to replace the rigid one-third middle cerebral artery (MCA) and non-contrast-enhanced CT (NCCT) Alberta Stroke Program Early CT Score (ASPECTS) thresholds used for the selection of patients eligible for intravenous thrombolytic therapy. The identification of potentially salvageable ischemic brain tissue lies at the core of this issue. In this study, the role of CT perfusion ASPECTS in the detection of reversible ischemia was analyzed. Materials and Methods We retrospectively reviewed the clinical and imaging data of 92 consecutive patients who received intravenous thrombolytic therapy for acute (duration <3 h) ischemic stroke. Most of the patients underwent admission multimodal CT, and all patients had follow-up NCCT at 24 h. ASPECTS was assigned to all modalities and correlated with clinical and imaging parameters. Receiver-operating characteristic curve analysis was performed to determine optimal thresholds for different parameters to predict clinical outcome. Results A perfusion defect could be detected in 50% of the patients. ASPECTS correlated inversely with the clinical outcome in the following order: follow-up NCCT > cerebral blood volume (CBV) > mean transit time (MTT) > admission NCCT. The follow-up NCCT and the CBV displayed a statistically significant difference from the admission NCCT, while the MTT did not reach statistical significance. The threshold that best differentiated between good and bad clinical outcome on admission was CBV ASPECTS ≥7. In patients with CT perfusion ASPECTS mismatch, MTT and CBV ASPECTS essentially provided the lower and upper limits for the follow-up NCCT ASPECTS, thus defining the spectrum of possible outcomes. Furthermore, CT perfusion ASPECTS mismatch strongly correlated (r = 0.83) with the mismatch between the tissue at risk and the final infarct, i.e. the amount of salvaged tissue. This finding suggests

  4. Magnesium sulfate protects oligodendrocyte lineage cells in a rat cell-culture model of hypoxic-ischemic injury.

    PubMed

    Itoh, Kanako; Maki, Takakuni; Shindo, Akihiro; Egawa, Naohiro; Liang, Anna C; Itoh, Naoki; Lo, Eng H; Lok, Josephine; Arai, Ken

    2016-05-01

    Hypoxic-ischemic (HI) brain injury in newborns results in serious damage. Magnesium sulfate has been clinically used as a cyto-protective agent against HI brain injury in newborns in some countries, including Japan. However, it is not clear how magnesium exerts this effect and how it acts on the individual types of cells within the newborn brain. In this study, we exposed cultured rat oligodendrocyte precursor cells to magnesium sulfate during the period when they differentiate into oligodendrocytes, and showed that magnesium-exposed oligodendrocytes exhibited more resistance to HI injury. Our data may support the use of magnesium sulfate in the clinical setting. PMID:26699082

  5. Demyelination as a rational therapeutic target for ischemic or traumatic brain injury.

    PubMed

    Shi, Hong; Hu, Xiaoming; Leak, Rehana K; Shi, Yejie; An, Chengrui; Suenaga, Jun; Chen, Jun; Gao, Yanqin

    2015-10-01

    Previous research on stroke and traumatic brain injury (TBI) heavily emphasized pathological alterations in neuronal cells within gray matter. However, recent studies have highlighted the equal importance of white matter integrity in long-term recovery from these conditions. Demyelination is a major component of white matter injury and is characterized by loss of the myelin sheath and oligodendrocyte cell death. Demyelination contributes significantly to long-term sensorimotor and cognitive deficits because the adult brain only has limited capacity for oligodendrocyte regeneration and axonal remyelination. In the current review, we will provide an overview of the major causes of demyelination and oligodendrocyte cell death following acute brain injuries, and discuss the crosstalk between myelin, axons, microglia, and astrocytes during the process of demyelination. Recent discoveries of molecules that regulate the processes of remyelination may provide novel therapeutic targets to restore white matter integrity and improve long-term neurological recovery in stroke or TBI patients. PMID:25819104

  6. Treatment of patients with mild acute ischemic stroke and associated large vessel occlusion.

    PubMed

    Cerejo, Russell; Cheng-Ching, Esteban; Hui, Ferdinand; Hussain, M Shazam; Uchino, Ken; Bullen, Jennifer; Toth, Gabor

    2016-08-01

    Several recent studies have shown that patients presenting with mild acute ischemic stroke (mAIS) symptoms may have an unfavorable natural history. The presence of associated large vessel occlusion (LVO) may lead to even worse outcomes, but most mAIS patients are still excluded from acute stroke treatment (AST). A retrospective review of patients with acute ischemic stroke presenting to our institution between 2010 and 2014 was carried out. Inclusion criteria were mAIS (initial National Institutes of Health Stroke Scale [NIHSS] ⩽7) due to LVO, presenting within 6hours from onset. Demographics, treatments and short-term outcomes were analyzed. Favorable 30day outcome was defined as modified Rankin Scale (mRS) ⩽2. Out of 2636 patients, 62 patients (median age 63years, 33 (53.2%) males) met inclusion criteria. The anterior circulation was involved in 74.1%. Median admission NIHSS and pre-admission mRS were 4 and 0, respectively. Twenty-three patients (71.8%) received AST (intravenous tissue plasminogen activator: 14, intra-arterial therapy: 4, both: 5). Favorable outcomes were 4.5 times higher in treated (78.3%) versus untreated (53.8%) patients (odds ratio 4.5, 95% confidence interval 1.26-19.2; p=0.028). None of the treated patients had symptomatic intracranial hemorrhage. We demonstrate that a significant proportion of untreated mAIS patients with LVO have an unfavorable natural history. Our results suggest better outcomes in patients who receive early therapy rather than conservative management. The detection of LVO, even with mild clinical symptoms, may prompt rapid treatment considerations. PMID:27050916

  7. Safety and feasibility of intravenous thrombolytic therapy in Iranian patients with acute ischemic stroke

    PubMed Central

    Aghaei, Mahboubeh; Motamed, Mohammad Reza

    2013-01-01

    Background Thrombolytic therapy is the only approved treatment for acute cerebral ischemia. The hemorrhagictransformation is the greatest complication of this treatment, which may occur after recanalization of occludedartery. The aim of this study was to determine factors associated with clinical improvement and worseningin patients with acute ischemic stroke treated with intravenous thrombolysis. Methods Thirty seven patients who were treated with intravenous thrombolysis between August 2010 andAugust 2012 who had the inclusion criteria were studied. In this prospective study, all of the admitted patients instroke unit, monitored for at least 48 hours. We registered all patients’ information in a stroke data registry andfollowed them for at least 6 months. Results Thirty seven patients with acute ischemic stroke who treated with recombinant tissue plasminogenactivator (r-TPA) were studied. There were hemorrhagic transformations in 9 (24%) patients. Seven of them(18%) revealed intracerebral hemorrhages (ICH) within the control brain CT after 24 hours without any deteriorationof neurologic symptoms (asymptomatic ICH). Although outcomes of patients with symptomatic post r-TPA hemorrhages were worse than non-hemorrhagic post r-TPA patients, there were no significant differencesbetween asymptomatic post r-TPA hemorrhages and non-hemorrhagic post r-TPA patients, according to theNational Institutes of Health Stroke Scale (NIHSS) at admission (p = 0.2), after 24 hours (p= 0.07) and after 7days (p= 0.06) post treatment. Conclusion If the r-TPA protocol is followed carefully, the risk of symptomatic hemorrhage is low (about7%). Taking r-TPA was feasible and safe in our study population; thus, it can be applied for other Iranian patients. PMID:24791120

  8. Ischemia preconditioning protects astrocytes from ischemic injury through 14-3-3γ.

    PubMed

    Pang, Ying; Chai, Chao Rui; Gao, Kai; Jia, Xi Hua; Kong, Jin Ge; Chen, Xiao Qian; Vatcher, Greg; Chen, Jian Guo; Yu, Albert Cheung Hoi

    2015-10-01

    Stroke is a leading cause of death and disability, and new strategies are required to reduce neuronal injury and improve prognosis. Ischemia preconditioning (IPC) is an intrinsic phenomenon that protects cells from subsequent ischemic injury and might provide promising mechanisms for clinical treatment. In this study, primary astrocytes exhibited significantly less cell death than control when exposed to different durations of IPC (15, 30, 60, or 120 min). A 15-min duration was the most effective IPC to protect astrocytes from 8-hr-ischemia injury. The protective mechanisms of IPC involve the upregulation of protective proteins, including 14-3-3γ, and attenuation of malondialdehyde (MDA) content and ATP depletion. 14-3-3γ is an antiapoptotic intracellular protein that was significantly upregulated for up to 84 hr after IPC. In addition, IPC promoted activation of the c-Jun N-terminal kinase (JNK), extracellular signal-related kinase (ERK)-1/2, p38, and protein kinase B (Akt) signaling pathways. When JNK was specifically inhibited with SP600125, the upregulation of 14-3-3γ induced by IPC was almost completely abolished; however, there was no effect on ATP or MDA levels. This suggests that, even though both energy preservation and 14-3-3γ up-regulation were turned on by IPC, they were controlled by different pathways. The ERK1/2, p38, and Akt signaling pathways were not involved in the 14-3-3γ upregulation and energy preservation. These results indicate that IPC could protect astrocytes from ischemia injury by inducing 14-3-3γ and by alleviating energy depletion through different pathways, suggesting multiple protection of IPC and providing new insights into potential stroke therapies. PMID:25711139

  9. Molecular determinants of acute kidney injury

    PubMed Central

    Husi, Holger; Human, Christin

    2015-01-01

    Abstract: Background: Acute kidney injury (AKI) is a condition that leads to a rapid deterioration of renal function associated with impairment to maintain electrolyte and acid balance, and, if left untreated, ultimately irreversible kidney damage and renal necrosis. There are a number of causes that can trigger AKI, ranging from underlying conditions as well as trauma and surgery. Specifically, the global rise in surgical procedures led to a substantial increase of AKI incidence rates, which in turn impacts on mortality rates, quality of life and economic costs to the healthcare system. However, no effective therapy for AKI exists. Current approaches, such as pharmacological intervention, help in alleviating symptoms in slowing down the progression, but do not prevent or reverse AKI-induced organ damage. Methods: An in-depth understanding of the molecular machinery involved in and modulated by AKI induction and progression is necessary to specifically pharmacologically target key molecules. A major hurdle to devise a successful strategy is the multifactorial and complex nature of the disorder itself, whereby the activation of a number of seemingly independent molecular pathways in the kidney leads to apoptotic and necrotic events. Results: The renin-angiotensin-aldosterone-system (RAAS) axis appears to be a common element, leading to downstream events such as triggers of immune responses via the NFB pathway. Other pathways intricately linked with AKI-induction and progression are the tumor necrosis factor alpha (TNF α) and transforming growth factor beta (TGF β) signaling cascades, as well as a number of other modulators. Surprisingly, it has been shown that the involvement of the glutamatergic axis, believed to be mainly a component of the neurological system, is also a major contributor. Conclusions: Here we address the current understanding of the molecular pathways evoked in AKI, their interplay, and the potential to pharmacologically intervene in the

  10. Molecular mediators of favism-induced acute kidney injury.

    PubMed

    García-Camín, Rosa María; Goma, Montserrat; Osuna, Rosa García; Rubio-Navarro, Alfonso; Buendía, Irene; Ortiz, Alberto; Egido, Jesús; Manzarbeitia, Félix; Chevarria, Julio Leonel; Gluksmann, María Constanza; Moreno, Juan Antonio

    2014-03-01

    Intolerance to fava beans in subjects with glucose-6-phosphate-dehydrogenase deficiency (favism) may lead to severe hemolytic crises and decreased renal function. Renal biopsy findings exploring the molecular mechanisms of renal damage in favism have not been previously reported. We report a case of favism-associated acute kidney injury in which renal biopsy showed acute tubular necrosis and massive iron deposits in tubular cells. Interestingly, iron deposit areas were characterized by the presence of oxidative stress markers (NADPH-p22 phox and heme-oxigenase-1) and macrophages expressing the hemoglobin scavenger receptor CD163. In addition, iron deposits, NADPH-p22 phox, hemeoxigenase- 1 and CD163 positive cells were observed in some glomeruli. These results identify both glomerular and tubular involvement in favism-associated acute kidney injury and suggest novel therapeutic targets to prevent or accelerate recovery from acute kidney injury. PMID:23006341

  11. The incidence of acute hospital-treated eye injuries.

    PubMed

    Karlson, T A; Klein, B E

    1986-10-01

    Little information is available on the incidence and severity of eye injuries despite the disfigurement and vision loss they cause. From a population-based study in Dane County, Wisconsin, the incidence of acute hospital-treated eye injuries was 423/100,000 residents in 1979. The most common causes of eye injuries were assaults, work-related events, sports and recreational activities, motor vehicle crashes, and falls. Consumer products were involved in almost 70% (9/13) of severe eye injuries classified as severe. Injuries from fireworks were not found at all in this population. Implementing known strategies for eye injury prevention would substantially reduce their incidence. These include requiring certified eye protectors at workplaces and in sports activities whenever possible rather than making their use voluntary. For the preponderance of eye injuries, however, modifying potentially hazardous consumer products, including the interior of passenger cars, will be necessary. PMID:3767676

  12. Very-late-antigen-4 (VLA-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke.

    PubMed

    Neumann, Jens; Riek-Burchardt, Monika; Herz, Josephine; Doeppner, Thorsten R; König, Rebecca; Hütten, Heiko; Etemire, Eloho; Männ, Linda; Klingberg, Anika; Fischer, Thomas; Görtler, Michael W; Heinze, Hans-Jochen; Reichardt, Peter; Schraven, Burkhart; Hermann, Dirk M; Reymann, Klaus G; Gunzer, Matthias

    2015-02-01

    Neuronal injury from ischemic stroke is aggravated by invading peripheral immune cells. Early infiltrates of neutrophil granulocytes and T-cells influence the outcome of stroke. So far, however, neither the timing nor the cellular dynamics of neutrophil entry, its consequences for the invaded brain area, or the relative importance of T-cells has been extensively studied in an intravital setting. Here, we have used intravital two-photon microscopy to document neutrophils and brain-resident microglia in mice after induction of experimental stroke. We demonstrated that neutrophils immediately rolled, firmly adhered, and transmigrated at sites of endothelial activation in stroke-affected brain areas. The ensuing neutrophil invasion was associated with local blood-brain barrier breakdown and infarct formation. Brain-resident microglia recognized both endothelial damage and neutrophil invasion. In a cooperative manner, they formed cytoplasmic processes to physically shield activated endothelia and trap infiltrating neutrophils. Interestingly, the systemic blockade of very-late-antigen-4 immediately and very effectively inhibited the endothelial interaction and brain entry of neutrophils. This treatment thereby strongly reduced the ischemic tissue injury and effectively protected the mice from stroke-associated behavioral impairment. Behavioral preservation was also equally well achieved with the antibody-mediated depletion of myeloid cells or specifically neutrophils. In contrast, T-cell depletion more effectively reduced the infarct volume without improving the behavioral performance. Thus, neutrophil invasion of the ischemic brain is rapid, massive, and a key mediator of functional impairment, while peripheral T-cells promote brain damage. Acutely depleting T-cells and inhibiting brain infiltration of neutrophils might, therefore, be a powerful early stroke treatment. PMID:25391494

  13. Elevated Total Homocysteine Levels in Acute Ischemic Stroke Are Associated With Long-Term Mortality

    PubMed Central

    Shi, Zhihong; Guan, Yalin; Huo, Ya Ruth; Liu, Shuling; Zhang, Meilin; Lu, Hui; Yue, Wei; Wang, Jinhuan

    2015-01-01

    Background and Purpose— Total homocysteine (tHcy) levels are associated with secondary vascular events and mortality after stroke. The aim of this study was to investigate whether tHcy levels in the acute phase of a stroke contribute to the recurrence of cerebro-cardiovascular events and mortality. Methods— A total of 3799 patients were recruited after hospital admission for acute ischemic stroke. Levels of tHcy were measured within 24 hours after primary admission. Patients were followed for a median of 48 months. Results— During the follow-up period, 233 (6.1%) patients died. After adjustment for age, smoking status, diabetes mellitus, and other cardiovascular risk factors, patients in the highest tHcy quartile (>18.6 μmol/L) had a 1.61-fold increased risk of death (adjusted hazard ratio [HR], 1.61; 95% confidence interval [CI], 1.03–2.53) compared with patients in the lowest quartile (≤10 μmol/L). Further subgroup analysis showed that this correlation was only significant in the large-artery atherosclerosis stroke subtype (adjusted HR, 1.80; 95% CI, 1.05–3.07); this correlation was not significant in the small-vessel occlusion subtype (adjusted HR, 0.80; 95% CI, 0.30–2.12). The risk of stroke-related mortality was 2.27-fold higher for patients in the third tHcy quartile (adjusted HR, 2.27; 95% CI, 1.06–4.86) and 2.15-fold more likely for patients in the fourth quartile (adjusted HR, 2.15; 95% CI, 1.01–4.63) than for patients in the lowest tHcy quartile. The risk of cardiovascular-related mortality and the risk of recurrent ischemic stroke were not associated with tHcy levels. Conclusions— Our findings suggest that elevated tHcy levels in the acute phase of an ischemic stroke can predict mortality, especially in stroke patients with the large-vessel atherosclerosis subtype. PMID:26199315

  14. Outcomes After Acute Ischemic Stroke in the United States: Does Residential ZIP Code Matter?

    PubMed Central

    Agarwal, Shikhar; Menon, Venu; Jaber, Wael A.

    2015-01-01

    Background We sought to analyze the impact of socioeconomic status (SES) on in‐hospital outcomes, cost of hospitalization, and resource use after acute ischemic stroke. Methods and Results We used the 2003–2011 Nationwide Inpatient Sample database for this analysis. All admissions with a principal diagnosis of acute ischemic stroke were identified by using International Classification of Diseases, Ninth Revision codes. SES was assessed by using median household income of the residential ZIP code for each patient. Quartile 1 and quartile 4 reflect the lowest‐income and highest‐income SES quartile, respectively. During a 9‐year period, 775 905 discharges with acute ischemic stroke were analyzed. There was a progressive increase in the incidence of reperfusion on the first admission day across the SES quartiles (P‐trend<0.001). In addition, we observed a significant reduction in discharge to nursing facility, across the SES quartiles (P‐trend<0.001). Although we did not observe a significant difference in in‐hospital mortality across the SES quartiles in the overall cohort (P‐trend=0.22), there was a significant trend toward reduced in‐hospital mortality across the SES quartiles in younger patients (<75 years) (P‐trend<0.001). The mean length of stay in the lowest‐income quartile was 5.75 days, which was significantly higher compared with other SES quartiles. Furthermore, the mean adjusted cost of hospitalization among quartiles 2, 3, and 4, compared with quartile 1, was significantly higher by $621, $1238, and $2577, respectively. Compared with the lowest‐income quartile, there was a significantly higher use of echocardiography, invasive angiography, and operative procedures, including carotid endarterectomy, in the highest‐income quartile. Conclusions Patients from lower‐income quartiles had decreased reperfusion on the first admission day, compared with patients from higher‐income quartiles. The cost of hospitalization of patients

  15. Paradoxical Association of Smoking With In‐Hospital Mortality Among Patients Admitted With Acute Ischemic Stroke

    PubMed Central

    Ali, Syed F.; Smith, Eric E.; Bhatt, Deepak L.; Fonarow, Gregg C.; Schwamm, Lee H.

    2013-01-01

    Background Compared to those who never smoked, a paradoxical effect of smoking on reducing mortality in patients admitted with myocardial ischemia has been reported. We sought to determine if this effect was present in patients hospitalized with ischemic stroke. Methods and Results Using the local Get with the Guidelines‐Stroke registry, we analyzed 4305 consecutively admitted ischemic stroke patients (March 2002–December 2011). The sample was divided into smokers versus nonsmokers. The main outcome of interest was the overall inpatient mortality. Compared to nonsmokers, tobacco smokers were younger, more frequently male and presented with fewer stroke risk factors such as hypertension, hyperlipidemia, diabetes, coronary artery disease, and atrial fibrillation. Smokers also had a lower average NIH Stroke Scale (NIHSS) and fewer received tissue plasminogen activator (tPA). Patients in both groups had similar adherence to early antithrombotics, dysphagia screening prior to oral intake, and deep vein thrombosis (DVT) prophylaxis. Smoking was associated with lower all‐cause in‐hospital mortality (6.6% versus 12.4%; unadjusted OR 0.46; CI [0.34 to 0.63]; P<0.001). In multivariable analysis, adjusted for age, gender, ethnicity, hypertension, diabetes mellitus, hyperlipidemia, CAD, atrial fibrillation, NIHSS, and tPA, smoking remained independently associated with lower mortality (adjusted OR 0.64; CI [0.42 to 0.96]; P=0.03). Conclusions Similar to myocardial ischemia, smoking was independently associated with lower inpatient mortality in acute ischemic stroke. This effect may be due to tobacco‐induced changes in cerebrovascular vasoreactivity, or may be due in part to residual confounding. Larger, multicenter studies are needed to confirm the finding and the effect on 30‐day and 1‐year mortality. PMID:23782919

  16. Optical Spectroscopy Approach for the Predictive Assessment of Kidney Functional Recovery Following Ischemic Injury

    SciTech Connect

    Raman, R N; Pivetti, C D; Rubenchik, A M; Matthews, D L; Troppmann, C; Demos, S G

    2010-02-11

    Tissue that has undergone significant yet unknown amount of ischemic injury is frequently encountered in organ transplantation and trauma clinics. With no reliable real-time method of assessing the degree of injury incurred in tissue, surgeons generally rely on visual observation which is subjective. In this work, we investigate the use of optical spectroscopy methods as a potentially more reliable approach. Previous work by various groups was strongly suggestive that tissue autofluorescence from NADH obtained under UV excitation is sensitive to metabolic response changes. To test and expand upon this concept, we monitored autofluorescence and light scattering intensities of injured vs. uninjured rat kidneys via multimodal imaging under 355 nm, 325 nm, and 266 nm excitation as well as scattering under 500 nm illumination. 355 nm excitation was used to probe mainly NADH, a metabolite, while 266 nm excitation was used to probe mainly tryptophan to correct for non-metabolic signal artifacts. The ratio of autofluorescence intensities derived under these two excitation wavelengths was calculated and its temporal profile was fit to a relaxation model. Time constants were extracted, and longer time constants were associated with kidney dysfunction. Analysis of both the autofluorescence and light scattering images suggests that changes in microstructure tissue morphology, blood absorption spectral characteristics, and pH contribute to the behavior of the observed signal which may be used to obtain tissue functional information and offer predictive capability.

  17. Optical spectroscopy approach for the predictive assessment of kidney functional recovery following ischemic injury

    NASA Astrophysics Data System (ADS)

    Raman, Rajesh N.; Pivetti, Christopher D.; Rubenchik, Alexander M.; Matthews, Dennis L.; Troppmann, Christoph; Demos, Stavros G.

    2010-02-01

    Tissue that has undergone significant yet unknown amount of ischemic injury is frequently encountered in organ transplantation and trauma clinics. With no reliable real-time method of assessing the degree of injury incurred in tissue, surgeons generally rely on visual observation which is subjective. In this work, we investigate the use of optical spectroscopy methods as a potentially more reliable approach. Previous work by various groups was strongly suggestive that tissue autofluorescence from NADH obtained under UV excitation is sensitive to metabolic response changes. To test and expand upon this concept, we monitored autofluorescence and light scattering intensities of injured vs. uninjured rat kidneys via multimodal imaging under 355 nm, 325 nm, and 266 nm excitation as well as scattering under 500 nm illumination. 355 nm excitation was used to probe mainly NADH, a metabolite, while 266 nm excitation was used to probe mainly tryptophan to correct for non-metabolic signal artifacts. The ratio of autofluorescence intensities derived under these two excitation wavelengths was calculated and its temporal profile was fit to a relaxation model. Time constants were extracted, and longer time constants were associated with kidney dysfunction. Analysis of both the autofluorescence and light scattering images suggests that changes in microstructure tissue morphology, blood absorption spectral characteristics, and pH contribute to the behavior of the observed signal which may be used to obtain tissue functional information and offer predictive capability.

  18. Immunohistochemical Analysis of Cerebral Thrombi Retrieved by Mechanical Thrombectomy from Patients with Acute Ischemic Stroke

    PubMed Central

    Schuhmann, Michael K.; Gunreben, Ignaz; Kleinschnitz, Christoph; Kraft, Peter

    2016-01-01

    Mechanical thrombectomy is a novel treatment option for patients with acute ischemic stroke (AIS). Only a few studies have previously suggested strategies to categorize retrieved clots according to their histologic composition. However, these reports did not analyze potential biomarkers that are of importance in stroke-related inflammation. We therefore histopathologically investigated 37 intracerebral thrombi mechanically retrieved from patients with AIS, and focused on the composition of immune cells and platelets. We also conducted correlation analyses of distinctive morphologic patterns (erythrocytic, serpentine, layered, red, white, mixed appearance) with clinical parameters. Most T cells and monocytes were detected in erythrocytic and red clots, in which the distribution of these cells was random. In contrast, von Willebrand factor (vWF)-positive areas co-localized with regions of fibrin and collagen. While clots with huge amounts of vWF seem to be associated with a high National Institute of Health Stroke Scale score at admission, histologic findings could not predict the clinical outcome at discharge. In summary, we provide the first histologic description of mechanically retrieved intracerebral thrombi regarding biomarkers relevant for inflammation in ischemic stroke. PMID:26927082

  19. Serum Levels of Substance P and Mortality in Patients with a Severe Acute Ischemic Stroke.

    PubMed

    Lorente, Leonardo; Martín, María M; Almeida, Teresa; Pérez-Cejas, Antonia; Ramos, Luis; Argueso, Mónica; Riaño-Ruiz, Marta; Solé-Violán, Jordi; Hernández, Mariano

    2016-01-01

    Substance P (SP), a member of tachykinin family, is involved in the inflammation of the central nervous system and in the appearance of cerebral edema. Higher serum levels of SP have been found in 18 patients with cerebral ischemia compared with healthy controls. The aim of our multi-center study was to analyze the possible association between serum levels of SP and mortality in ischemic stroke patients. We included patients with malignant middle cerebral artery infarction (MMCAI) and a Glasgow Coma Scale (GCS) lower than 9. Non-surviving patients at 30 days (n = 31) had higher serum concentrations of SP levels at diagnosis of severe MMCAI than survivors (n = 30) (p < 0.001). We found in multiple regression an association between serum concentrations of SP higher than 362 pg/mL and mortality at 30 days (Odds Ratio = 5.33; 95% confidence interval = 1.541-18.470; p = 0.008) after controlling for age and GCS. Thus, the major novel finding of our study was the association between serum levels of SP and mortality in patients suffering from severe acute ischemic stroke. PMID:27338372

  20. Immunohistochemical Analysis of Cerebral Thrombi Retrieved by Mechanical Thrombectomy from Patients with Acute Ischemic Stroke.

    PubMed

    Schuhmann, Michael K; Gunreben, Ignaz; Kleinschnitz, Christoph; Kraft, Peter

    2016-01-01

    Mechanical thrombectomy is a novel treatment option for patients with acute ischemic stroke (AIS). Only a few studies have previously suggested strategies to categorize retrieved clots according to their histologic composition. However, these reports did not analyze potential biomarkers that are of importance in stroke-related inflammation. We therefore histopathologically investigated 37 intracerebral thrombi mechanically retrieved from patients with AIS, and focused on the composition of immune cells and platelets. We also conducted correlation analyses of distinctive morphologic patterns (erythrocytic, serpentine, layered, red, white, mixed appearance) with clinical parameters. Most T cells and monocytes were detected in erythrocytic and red clots, in which the distribution of these cells was random. In contrast, von Willebrand factor (vWF)-positive areas co-localized with regions of fibrin and collagen. While clots with huge amounts of vWF seem to be associated with a high National Institute of Health Stroke Scale score at admission, histologic findings could not predict the clinical outcome at discharge. In summary, we provide the first histologic description of mechanically retrieved intracerebral thrombi regarding biomarkers relevant for inflammation in ischemic stroke. PMID:26927082

  1. Abnormal EEG Complexity and Functional Connectivity of Brain in Patients with Acute Thalamic Ischemic Stroke

    PubMed Central

    Liu, Shuang; Guo, Jie; Meng, Jiayuan; Wang, Zhijun; Yao, Yang; Yang, Jiajia; Qi, Hongzhi; Ming, Dong

    2016-01-01

    Ischemic thalamus stroke has become a serious cardiovascular and cerebral disease in recent years. To date the existing researches mostly concentrated on the power spectral density (PSD) in several frequency bands. In this paper, we investigated the nonlinear features of EEG and brain functional connectivity in patients with acute thalamic ischemic stroke and healthy subjects. Electroencephalography (EEG) in resting condition with eyes closed was recorded for 12 stroke patients and 11 healthy subjects as control group. Lempel-Ziv complexity (LZC), Sample Entropy (SampEn), and brain network using partial directed coherence (PDC) were calculated for feature extraction. Results showed that patients had increased mean LZC and SampEn than the controls, which implied the stroke group has higher EEG complexity. For the brain network, the stroke group displayed a trend of weaker cortical connectivity, which suggests a functional impairment of information transmission in cortical connections in stroke patients. These findings suggest that nonlinear analysis and brain network could provide essential information for better understanding the brain dysfunction in the stroke and assisting monitoring or prognostication of stroke evolution. PMID:27403202

  2. Serum Levels of Substance P and Mortality in Patients with a Severe Acute Ischemic Stroke

    PubMed Central

    Lorente, Leonardo; Martín, María M.; Almeida, Teresa; Pérez-Cejas, Antonia; Ramos, Luis; Argueso, Mónica; Riaño-Ruiz, Marta; Solé-Violán, Jordi; Hernández, Mariano

    2016-01-01

    Substance P (SP), a member of tachykinin family, is involved in the inflammation of the central nervous system and in the appearance of cerebral edema. Higher serum levels of SP have been found in 18 patients with cerebral ischemia compared with healthy controls. The aim of our multi-center study was to analyze the possible association between serum levels of SP and mortality in ischemic stroke patients. We included patients with malignant middle cerebral artery infarction (MMCAI) and a Glasgow Coma Scale (GCS) lower than 9. Non-surviving patients at 30 days (n = 31) had higher serum concentrations of SP levels at diagnosis of severe MMCAI than survivors (n = 30) (p < 0.001). We found in multiple regression an association between serum concentrations of SP higher than 362 pg/mL and mortality at 30 days (Odds Ratio = 5.33; 95% confidence interval = 1.541–18.470; p = 0.008) after controlling for age and GCS. Thus, the major novel finding of our study was the association between serum levels of SP and mortality in patients suffering from severe acute ischemic stroke. PMID:27338372

  3. Endovascular Treatment of Acute and Chronic Thoracic Aortic Injury

    SciTech Connect

    Raupach, Jan Ferko, Alexander; Lojik, Miroslav; Krajina, Antonin; Harrer, Jan; Dominik, Jan

    2007-11-15

    Our aim is to present midterm results after endovascular repair of acute and chronic blunt aortic injury. Between December 1999 and December 2005, 13 patients were endovascularly treated for blunt aortic injury. Ten patients, 8 men and 2 women, mean age 38.7 years, were treated for acute traumatic injury in the isthmus region of thoracic aorta. Stent-graftings were performed between the fifth hour and the sixth day after injury. Three patients (all males; mean age, 66 years; range, 59-71 years) were treated due to the presence of symptoms of chronic posttraumatic pseudoaneurysm of the thoracic aorta (mean time after injury, 29.4 years, range, 28-32). Fifteen stent-grafts were implanted in 13 patients. In the group with acute aortic injury one patient died due to failure of endovascular technique. Lower leg paraparesis appeared in one patient; the other eight patients were regularly followed up (1-72 months; mean, 35.6 months), without complications. In the group with posttraumatic pseudoaneurysms all three patients are alive. One patient suffered postoperatively from upper arm claudication, which was treated by carotidosubclavian bypass. We conclude that the endoluminal technique can be used successfully in the acute repair of aortic trauma and its consequences. Midterm results are satisfactory, with a low incidence of neurologic complications.

  4. Acute Kidney Injury is More Common in Acute Haemorrhagic Stroke in Mymensingh Medical College Hospital.

    PubMed

    Ray, N C; Chowdhury, M A; Sarkar, S R

    2016-01-01

    Acute kidney injury (AKI) is a common complication after acute stroke and is an independent predictor of both early and long-term mortality after acute stroke. Acute kidney injury is associated with increased mortality in haemorrhagic stroke patients. This cross sectional observational study was conducted in Nephrology, Neuromedicine and Medicine department of Mymensingh Medical College & Hospital, Mymensingh from July 2012 to June 2014. A total of 240 patients with newly detected acute stroke confirmed by CT scan of brain were included in this study. According to this study, 15.42% of acute stroke patients developed AKI. Among the patients with haemorrhagic stroke 21.87% developed AKI while only 13.07% patients with ischaemic stroke developed AKI. So, early diagnosis and management of AKI in patients with acute stroke especially in haemorrhagic stroke is very important to reduce the morbidity and mortality of these patients. PMID:26931240

  5. Imaging, Intervention, and Workflow in Acute Ischemic Stroke: The Calgary Approach.

    PubMed

    Zerna, C; Assis, Z; d'Esterre, C D; Menon, B K; Goyal, M

    2016-06-01

    Five recently published clinical trials showed dramatically higher rates of favorable functional outcome and a satisfying safety profile of endovascular treatment compared with the previous standard of care in acute ischemic stroke with proximal anterior circulation artery occlusion. Eligibility criteria within these trials varied by age, stroke severity, imaging, treatment-time window, and endovascular treatment devices. This focused review provides an overview of the trial results and explores the heterogeneity in imaging techniques, workflow, and endovascular techniques used in these trials and the consequent impact on practice. Using evidence from these trials and following a case from start to finish, this review recommends strategies that will help the appropriate patient undergo a fast, focused clinical evaluation, imaging, and intervention. PMID:26659339

  6. Mechanical Thrombectomy in Patients With Acute Ischemic Stroke: A Health Technology Assessment

    PubMed Central

    2016-01-01

    Background In Ontario, current treatment for eligible patients who have an acute ischemic stroke is intravenous thrombolysis (IVT). However, there are some limitations and contraindications to IVT, and outcomes may not be favourable for patients with stroke caused by a proximal intracranial occlusion. An alternative is mechanical thrombectomy with newer devices, and a number of recent studies have suggested that this treatment is more effective for improving functional independence and clinical outcomes. The objective of this health technology assessment was to evaluate the clinical effectiveness and cost-effectiveness of new-generation mechanical thrombectomy devices (with or without IVT) compared to IVT alone (if eligible) in patients with acute ischemic stroke. Methods We conducted a systematic review of the literature, limited to randomized controlled trials that examined the effectiveness of mechanical thrombectomy using stent retrievers and thromboaspiration devices for patients with acute ischemic stroke. We assessed the quality of the evidence using the GRADE approach. We developed a Markov decision-analytic model to assess the cost-effectiveness of mechanical thrombectomy (with or without IVT) versus IVT alone (if eligible), calculated incremental cost-effectiveness ratios using a 5-year time horizon, and conducted sensitivity analyses to examine the robustness of the estimates. Results There was a substantial, statistically significant difference in rate of functional independence (GRADE: high quality) between those who received mechanical thrombectomy (with or without IVT) and IVT alone (odds ratio [OR] 2.39, 95% confidence interval [CI] 1.88–3.04). We did not observe a difference in mortality (GRADE: moderate quality) (OR 0.80, 95% CI 0.60–1.07) or symptomatic intracerebral hemorrhage (GRADE: moderate quality) (OR 1.11, 95% CI 0.66–1.87). In the base-case cost-utility analysis, which had a 5 year time horizon, the costs and effectiveness for

  7. Tissue plasminogen activator for acute ischemic stroke: a New York city emergency medicine perspective.

    PubMed

    Chan, Yu-Feng; Kwiatkowski, Thomas G; Rella, Joseph G; Rennie, William P; Kwon, Robert K; Silverman, Robert A

    2005-11-01

    Nationally, only 2-3% of patients with acute ischemic stroke (AIS) currently receive tissue plasminogen activator (TPA). To better understand the reasons, we investigated the practice patterns, level of familiarity and acceptance of TPA for AIS among emergency physicians in New York City (NYC). Fifty-seven 911-receiving hospital emergency department directors were surveyed regarding TPA use. Of those responding, 37% had never used TPA to treat AIS. Lack of neurological support was reported by 33%. Departments with formal protocols were more likely to use TPA for AIS. In conclusion, there is considerable variation in the practice, knowledge, and attitudes regarding the use of TPA for AIS in NYC emergency departments. Improved educational efforts and institutional support may be necessary to ensure the appropriate use of TPA by emergency physicians. PMID:16243196

  8. Review of technology development and clinical trials of transcranial laser therapy for acute ischemic stroke treatment

    NASA Astrophysics Data System (ADS)

    Catanzaro, Brian E.; Streeter, Jackson; de Taboada, Luis

    2010-02-01

    Stroke is the one of the leading causes of mortality in the United States, claiming 600,000 lives each year. Evidence suggests that near infrared (NIR) illumination has a beneficial effect on a variety of cells when these cells are exposed to adverse conditions. Among these conditions is the hypoxic state produced by acute ischemic stroke (AIS). To demonstrate the impact NIR Transcranial Laser Therapy (TLT) has on AIS in humans, a series of double blind, placebo controlled clinical trials were designed using the NeuroThera(R) System (NTS). The NTS was designed and developed to treat subjects non-invasively using 808 nm NIR illumination. TLT, as it applies to stroke therapy, and the NTS will be described. The results of the two clinical trials: NeuroThera(R) Safety and Efficacy Trial 1 (NEST-1) and NeuroThera(R) Safety and Efficacy Trial 2 (NEST-2) will be reviewed and discussed.

  9. Insights into the role of iron in immature rat model of hypoxic-ischemic brain injury

    PubMed Central

    Wang, Zi-Wei; Yang, Li-Jun; Ding, Ying-Xue; Chang, Yan-Zhong; Cui, Hong

    2016-01-01

    This study aimed to investigate the role of iron in the occurrence and development of hypoxic-ischemic brain injury (HIBI) in immature rat models using 3-day-old Sprague Dawley rats. Normal control (NC), hypoxic-ischemic (HI), anemia, HI + ischemia, early iron treatment and late iron treatment groups were established. Rat brain tissue sections were stained with hematoxylin and eosin and pathologically evaluated. Iron content and mRNA expression levels of iron regulatory protein 2 (IRP2) and transferrin receptor in the brain tissues were measured. Ultrastructural changes in the actin, microtubules, myelin and mitochondria of oligodendrocytes and axons were examined by electron microscopy. Numbers of viable myelin sheaths and oligodendrocytes in the periventricular area were also observed. Pathological damage of brain tissue in the HI group was markedly increased compared with that in the NC group. Furthermore, there was a higher iron content and reduced number of viable oligodendrocytes in the periventricular area of the HI group compared with the NC group. No significant difference in iron content was observed between the HI + anemia and NC groups. The number of viable oligodendrocytes in the HI + anemia group was increased compared with that in the HI group, and the number in the HI + anemia group with late iron treatment was lower compared with that in the NC group and increased compared with that in the HI + anemia group. Electron microscopy revealed a significantly higher number of myelin sheaths in the HI + anemia group than in the HI group. IRP2 mRNA expression levels in the brain tissues were significantly decreased in the HI + anemia group compared with the HI group. The results suggest that anemia may reduce the rate of increase of iron content of the brain following HI. However, the early occurrence of anemia may protect against HIBI. PMID:27602087

  10. Sympathetic nervous response to ischemia-reperfusion injury in humans is altered with remote ischemic preconditioning.

    PubMed

    Lambert, Elisabeth A; Thomas, Colleen J; Hemmes, Robyn; Eikelis, Nina; Pathak, Atul; Schlaich, Markus P; Lambert, Gavin W

    2016-08-01

    Sympathetic neural activation may be detrimentally involved in tissue injury caused by ischemia-reperfusion (IR). We examined the effects of experimental IR in the forearm on sympathetic nerve response, finger reactive hyperemia, and oxidative stress, and the protection afforded by applying remote ischemic preconditioning (RIPC). Ischemia was induced in the forearm for 20 min in healthy volunteers. RIPC was induced by applying two cycles, 5 min each, of ischemia and reperfusion to the upper leg immediately before IR. We examined muscle sympathetic nerve activity (MSNA) in the contralateral leg using microneurography, finger reactive hyperemia [ischemic reactive hyperemia index (RHI)], erythrocyte production of reduced gluthathione (GSH), and plasma nitric oxide (NO) concentration. In controls (no RIPC; n = 15), IR increased MSNA in the early and late phase of ischemia (70% at 5 min; 101% at 15 min). In subjects who underwent RIPC (n = 15), the increase in MSNA was delayed to the late phase of ischemia and increased only by 40%. GSH increased during ischemia in the control group (P = 0.05), but not in those who underwent RIPC. Nitrate and nitrite concentration, taken as an index of NO availability, decreased during the reperfusion period in control individuals (P < 0.05), while no change was observed in those who underwent RIPC. Experimental IR did not affect RHI in the control condition, but a significant vasodilatory response occurred in the RIPC group (P < 0.05). RIPC attenuated ischemia-induced sympathetic activation, prevented the production of an erythrocyte marker of oxidative stress and the reduction of NO availability, and ameliorated RHI. PMID:27288436

  11. Effects of progesterone on hippocampal ultrastructure and expression of inflammatory mediators in neonatal rats with hypoxic-ischemic brain injury.

    PubMed

    Li, Xiaojuan; Zhang, Junhe; Zhu, Xiaoqian; Hou, Ruanling; Li, Xinjuan; Dong, Xianhong; Wang, Xiaoyin; Lu, Chengbiao

    2014-05-01

    Progesterone (PROG) has been shown to exhibit a protective function against hypoxic-ischemic brain damage. The aim of the present study was to study the effects of PROG in a neonatal rat model of hypoxic-ischemic brain injury. A total of 30 Wistar rats, aged 7 days, were randomly divided into three groups: Sham, model and PROG. The rats in the model and PROG groups underwent a left common carotid artery ligation and were placed in a sealed container at 37°C with 8% O2 and 92% N2 gas mixtures for 2.5 h to establish animal models of hypoxic-ischemic encephalopathy. The rats in the PROG group were intraperitoneally treated with 8 mg/kg PROG solution 30 min prior to the induction of hypoxia-ischemia. All animals were sacrificed after 24 h and neuronal changes were observed with electron microscopy to investigate the hypoxic-ischemic brain damage. The protein and mRNA expression levels of tumor necrosis factor-α (TNF-α) and nuclear factor-κB (NF-κB) in the hippocampus were detected by immunohistochemistry and quantitative polymerase chain reaction, respectively. The results revealed that the neuronal structures in the sham group were normal. The neuronal structures in the model group exhibited cavitation changes, but these were reduced following PROG administration. The protein and mRNA expression levels of TNF-α and NF-κB in the hippocampal neurons were increased in the model group, and pretreatment with 8 mg/kg PROG was shown to reduce the expression levels of these inflammatory mediators. Therefore, PROG was shown to exert an important protective function in hypoxic-ischemic brain injury by inhibiting the cascade of inflammatory injury induced by TNF-α and NF-κB. PMID:24940430

  12. Acute blast injury reduces brain abeta in two rodent species.

    PubMed

    De Gasperi, Rita; Gama Sosa, Miguel A; Kim, Soong Ho; Steele, John W; Shaughness, Michael C; Maudlin-Jeronimo, Eric; Hall, Aaron A; Dekosky, Steven T; McCarron, Richard M; Nambiar, Madhusoodana P; Gandy, Sam; Ahlers, Stephen T; Elder, Gregory A

    2012-01-01

    Blast-induced traumatic brain injury (TBI) has been a major cause of morbidity and mortality in the conflicts in Iraq and Afghanistan. How the primary blast wave affects the brain is not well understood. In particular, it is unclear whether blast injures the brain through mechanisms similar to those found in non-blast closed impact injuries (nbTBI). The β-amyloid (Aβ) peptide associated with the development of Alzheimer's disease is elevated acutely following TBI in humans as well as in experimental animal models of nbTBI. We examined levels of brain Aβ following experimental blast injury using enzyme-linked immunosorbent assays for Aβ 40 and 42. In both rat and mouse models of blast injury, rather than being increased, endogenous rodent brain Aβ levels were decreased acutely following injury. Levels of the amyloid precursor protein (APP) were increased following blast exposure although there was no evidence of axonal pathology based on APP immunohistochemical staining. Unlike the findings in nbTBI animal models, levels of the β-secretase, β-site APP cleaving enzyme 1, and the γ-secretase component presenilin-1 were unchanged following blast exposure. These studies have implications for understanding the nature of blast injury to the brain. They also suggest that strategies aimed at lowering Aβ production may not be effective for treating acute blast injury to the brain. PMID:23267342

  13. Mechanical thrombectomy in patients with acute ischemic stroke: a cost-utility analysis

    PubMed Central

    Xie, Xuanqian; Lambrinos, Anna; Chan, Brian; Dhalla, Irfan A.; Krings, Timo; Casaubon, Leanne K.; Lum, Cheemun; Sikich, Nancy; Bharatha, Aditya; Pereira, Vitor Mendes; Stotts, Grant; Saposnik, Gustavo; O'Callaghan, Christina; Kelloway, Linda; Hill, Michael D.

    2016-01-01

    Background: The beneficial effects of endovascular treatment with new-generation mechanical thrombectomy devices compared with intravenous thrombolysis alone to treat acute large-artery ischemic stroke have been shown in randomized controlled trials (RCTs). This study aimed to estimate the cost utility of mechanical thrombectomy compared with the established standard of care. Methods: We developed a Markov decision process analytic model to assess the cost-effectiveness of treatment with mechanical thrombectomy plus intravenous thrombolysis versus treatment with intravenous thrombolysis alone from the public payer perspective in Canada. We conducted comprehensive literature searches to populate model inputs. We estimated the efficacy of mechanical thrombectomy plus intravenous thrombolysis from a meta-analysis of 5 RCTs, and we used data from the Oxford Vascular Study to model long-term clinical outcomes. We calculated incremental cost-effectiveness ratios (ICER) using a 5-year time horizon. Results: The base case analysis showed the cost and effectiveness of treatment with mechanical thrombectomy plus intravenous thrombolysis to be $126 939 and 1.484 quality-adjusted life-years (QALYs), respectively, and the cost and effectiveness of treatment with intravenous thrombolysis alone to be $124 419 and 1.273 QALYs, respectively. The mechanical thrombectomy plus intravenous thrombolysis strategy was associated with an ICER of $11 990 per QALY gained. Probabilistic sensitivity analysis showed that the probability of treatment with mechanical thrombectomy plus intravenous thrombolysis being cost-effective was 57.5%, 89.7% and 99.6% at thresholds of $20 000, $50 000 and $100 000 per QALY gained, respectively. The main factors influencing the ICER were time horizon, extra cost of mechanical thrombectomy treatment and age of the patient. Interpretation: Mechanical thrombectomy as an adjunct therapy to intravenous thrombolysis is cost-effective compared with

  14. Cerebrolysin effects on neurological outcomes and cerebral blood flow in acute ischemic stroke

    PubMed Central

    Amiri-Nikpour, Mohammad Reza; Nazarbaghi, Surena; Ahmadi-Salmasi, Babak; Mokari, Tayebeh; Tahamtan, Urya; Rezaei, Yousef

    2014-01-01

    Background Cerebrolysin, a brain-derived neuropeptide, has been shown to improve the neurological outcomes of stroke, but no study has demonstrated its effect on cerebral blood flow. This study aimed to determine the cerebrolysin impact on the neurological outcomes and cerebral blood flow. Methods In a randomized, double-blinded, placebo-controlled trial, 46 patients who had acute focal ischemic stroke were randomly assigned into two groups to receive intravenously either 30 mL of cerebrolysin diluted in normal saline daily for 10 days (n=23) or normal saline alone (n=23) adjunct to 100 mg of aspirin daily. All patients were examined using the National Institutes of Health Stroke Scale and transcranial Doppler to measure the mean flow velocity and pulsatility index (PI) of their cerebral arteries at baseline as well as on days 30, 60, and 90. Results The patients’ mean age was 60±9.7 years, and 51.2% of patients were male. The National Institutes of Health Stroke Scale was significantly lower in the cerebrolysin group compared with the placebo group on day 60 (median 10, interquartile range 9–11, P=0.008) and day 90 (median 11, interquartile range 10–13.5, P=0.001). The median of PI in the right middle cerebral artery was significantly lower in the cerebrolysin group compared with the placebo group on days 30, 60, and 90 (P<0.05). One patient in the cerebrolysin group and two patients in the placebo group died before day 30 (4.3% versus 8.7%). Conclusion Cerebrolysin can be useful to improve the neurological outcomes and the PI of middle cerebral artery in patients with acute focal ischemic stroke. PMID:25516711

  15. Inhibition of glutamate carboxypeptidase II (NAALADase) protects against dynorphin A-induced ischemic spinal cord injury in rats.

    PubMed

    Long, Joseph B; Yourick, Debra L; Slusher, Barbara S; Robinson, Michael B; Meyerhoff, James L

    2005-01-31

    Glutamate carboxypeptidase (GCP) II (EC 3.4.17.21), which is also known as N-acetylated-alpha-linked acidic dipeptidase (NAALADase), hydrolyses the endogenous acidic dipeptide N-acetylaspartylglutamate (NAAG), yielding N-acetyl-aspartate and glutamate. Inhibition of this enzyme by 2-(phosphonomethyl) pentanedioic acid (2-PMPA) has been shown to protect against ischemic injury to the brain and hypoxic and metabolic injury to neuronal cells in culture, presumably by increasing and decreasing the extracellular concentrations of NAAG and glutamate, respectively. Since both NAAG and GCP II are found in especially high concentrations in the spinal cord, injuries to the spinal cord involving pathophysiological elevations in extracellular glutamate might be particularly responsive to GCP II inhibition. Lumbar subarachnoid injections of dynorphin A in rats cause ischemic spinal cord injury, elevated extracellular glutamate and a persistent hindlimb paralysis that is mediated through excitatory amino acid receptors. We therefore used this injury model to evaluate the protective effects of 2-PMPA. When coadministered with dynorphin A, 2-PMPA significantly attenuated the dynorphin A-induced elevations in cerebrospinal fluid glutamate levels and by 24 h postinjection caused significant dose-dependent improvements in motor scores that were associated with marked histopathological improvements. These results indicate that 2-PMPA provides effective protection against excitotoxic spinal cord injury. PMID:15680261

  16. Acute kidney injury: what part do toll-like receptors play?

    PubMed Central

    Vallés, Patricia G; Lorenzo, Andrea Gil; Bocanegra, Victoria; Vallés, Roberto

    2014-01-01

    The innate immune system plays an important role as a first response to tissue injury. This first response is carried out via germline-encoded receptors. Toll-like receptors (TLRs) are the first identified and best studied family of pattern recognition receptors. TLRs are expressed on a variety of cell types, including epithelial cells, endothelia, dendritic cells, monocytes/macrophages, and B- and T-cells. TLRs initiate innate immune responses and concurrently shape the subsequent adaptive immune response. They are sensors of both pathogens, through the exogenous pathogen-associated molecular patterns (PAMPs), and tissue injury, through the endogenous danger-associated molecular patterns (DAMPs). TLR signaling is critical in defending against invading microorganisms; however, sustained receptor activation is also implicated in the pathogenesis of inflammatory diseases. Ischemic kidney injury involves early TLR-driven immunopathology, and the resolution of inflammation is needed for rapid regeneration of injured tubule cells. Notably, the activation of TLRs also has been implicated in epithelial repair. This review focuses on the role of TLRs and their endogenous ligands within the inflammatory response of acute kidney injury. PMID:24971030

  17. AIM2 and NLRC4 inflammasomes contribute with ASC to acute brain injury independently of NLRP3.

    PubMed

    Denes, Adam; Coutts, Graham; Lénárt, Nikolett; Cruickshank, Sheena M; Pelegrin, Pablo; Skinner, Joanne; Rothwell, Nancy; Allan, Stuart M; Brough, David

    2015-03-31

    Inflammation that contributes to acute cerebrovascular disease is driven by the proinflammatory cytokine interleukin-1 and is known to exacerbate resulting injury. The activity of interleukin-1 is regulated by multimolecular protein complexes called inflammasomes. There are multiple potential inflammasomes activated in diverse diseases, yet the nature of the inflammasomes involved in brain injury is currently unknown. Here, using a rodent model of stroke, we show that the NLRC4 (NLR family, CARD domain containing 4) and AIM2 (absent in melanoma 2) inflammasomes contribute to brain injury. We also show that acute ischemic brain injury is regulated by mechanisms that require ASC (apoptosis-associated speck-like protein containing a CARD), a common adaptor protein for several inflammasomes, and that the NLRP3 (NLR family, pyrin domain containing 3) inflammasome is not involved in this process. These discoveries identify the NLRC4 and AIM2 inflammasomes as potential therapeutic targets for stroke and provide new insights into how the inflammatory response is regulated after an acute injury to the brain. PMID:25775556

  18. AIM2 and NLRC4 inflammasomes contribute with ASC to acute brain injury independently of NLRP3

    PubMed Central

    Denes, Adam; Coutts, Graham; Lénárt, Nikolett; Cruickshank, Sheena M.; Pelegrin, Pablo; Skinner, Joanne; Rothwell, Nancy; Allan, Stuart M.; Brough, David

    2015-01-01

    Inflammation that contributes to acute cerebrovascular disease is driven by the proinflammatory cytokine interleukin-1 and is known to exacerbate resulting injury. The activity of interleukin-1 is regulated by multimolecular protein complexes called inflammasomes. There are multiple potential inflammasomes activated in diverse diseases, yet the nature of the inflammasomes involved in brain injury is currently unknown. Here, using a rodent model of stroke, we show that the NLRC4 (NLR family, CARD domain containing 4) and AIM2 (absent in melanoma 2) inflammasomes contribute to brain injury. We also show that acute ischemic brain injury is regulated by mechanisms that require ASC (apoptosis-associated speck-like protein containing a CARD), a common adaptor protein for several inflammasomes, and that the NLRP3 (NLR family, pyrin domain containing 3) inflammasome is not involved in this process. These discoveries identify the NLRC4 and AIM2 inflammasomes as potential therapeutic targets for stroke and provide new insights into how the inflammatory response is regulated after an acute injury to the brain. PMID:25775556

  19. [Acute and overuse injuries in elite paracycling - an epidemiological study].

    PubMed

    Kromer, P; Röcker, K; Sommer, A; Baur, H; Konstantinidis, L; Gollhofer, A; Südkamp, N P; Hirschmüller, A

    2011-09-01

    Although paracycling is a growing discipline in high level competitive sports as well as in posttraumatic rehabilitation, epidemiological data of resulting injuries is still missing. Therefore, 19 athletes of the German national paracycling team were asked about their injuries during the 2008 season using a standardized questionnaire. Overall, 18 (94.7 %) of 19 athletes reported overuse injuries; most commonly localized at the back (83.3 %), neck/shoulder (77.8 %), knee (50 %), groin/buttock (50 %) and hands/wrists (38.9 %). Altogether, 18 accidents were registered, corresponding to an injury rate of 0,95 acute injuries per athlete per year (0,07 / 1000 km). The most common acute injuries were abrasions (69.2 %) and contusions (61.5 %), whereas fractures were stated only twice (11.8 %). The anatomical distribution of overuse injuries in disabled cyclists confirms the results of studies in able-bodied cycling, although the incidences in low-back pain and neck/shoulder pain is clearly higher in disabled cycling, as well as the rate of traumatic injuries. PMID:21922439

  20. Transcriptome Analysis of Renal Ischemia/Reperfusion Injury and Its Modulation by Ischemic Pre-Conditioning or Hemin Treatment

    PubMed Central

    Amano, Mariane Tami; Gonçalves, Giselle Martins; Hyane, Meire Ioshie; Cenedeze, Marcos Antonio; Renesto, Paulo Guilherme; Pacheco-Silva, Alvaro; Moreira-Filho, Carlos Alberto; Câmara, Niels Olsen Saraiva

    2012-01-01

    Ischemia/reperfusion injury (IRI) is a leading cause of acute renal failure. The definition of the molecular mechanisms involved in renal IRI and counter protection promoted by ischemic pre-conditioning (IPC) or Hemin treatment is an important milestone that needs to be accomplished in this research area. We examined, through an oligonucleotide microarray protocol, the renal differential transcriptome profiles of mice submitted to IRI, IPC and Hemin treatment. After identifying the profiles of differentially expressed genes observed for each comparison, we carried out functional enrichment analysis to reveal transcripts putatively involved in potential relevant biological processes and signaling pathways. The most relevant processes found in these comparisons were stress, apoptosis, cell differentiation, angiogenesis, focal adhesion, ECM-receptor interaction, ion transport, angiogenesis, mitosis and cell cycle, inflammatory response, olfactory transduction and regulation of actin cytoskeleton. In addition, the most important overrepresented pathways were MAPK, ErbB, JAK/STAT, Toll and Nod like receptors, Angiotensin II, Arachidonic acid metabolism, Wnt and coagulation cascade. Also, new insights were gained about the underlying protection mechanisms against renal IRI promoted by IPC and Hemin treatment. Venn diagram analysis allowed us to uncover common and exclusively differentially expressed genes between these two protective maneuvers, underscoring potential common and exclusive biological functions regulated in each case. In summary, IPC exclusively regulated the expression of genes belonging to stress, protein modification and apoptosis, highlighting the role of IPC in controlling exacerbated stress response. Treatment with the Hmox1 inducer Hemin, in turn, exclusively regulated the expression of genes associated with cell differentiation, metabolic pathways, cell cycle, mitosis, development, regulation of actin cytoskeleton and arachidonic acid metabolism

  1. Protective effect of ischemic preconditioning on the jejunal graft mucosa injury during cold preservation.

    PubMed

    Jonecova, Zuzana; Toth, Stefan; Maretta, Milan; Ciccocioppo, Rachele; Varga, Jan; Rodrigo, Luis; Kruzliak, Peter

    2015-10-01

    Protection of intestinal graft mucosa during cold preservation is still an unmet need in clinical practice, thus affecting the success of transplantation. The present study investigates the ability of two ischemic preconditioning (IPC) procedures to limit cold preservation injury. Three groups of Sprague-Dawley rats were recruited (n=11 each) as follows: the short IPC (SIPC) performed through 4 cycles of mesenteric ischemia of 4 min each followed by 10 min of reperfusion, the long IPC (LIPC) obtained by 2 ischemic cycles of 12 min each followed by 10 min of reperfusion, and the control group (C) without IPC. Grafts were then stored in cold histidine-tryptophan-ketoglutarate solution and samples were taken at 0, 3, 6 and 9 h lasting preservation. Both IPC groups showed an advanced degree of preservation with delayed development of graft mucosa damage, mainly in the crypt region. At the beginning of preservation, the graft mucosa in both IPC groups showed lower degree of mucosal injury index (MII) by 50% in comparison with C group. Specifically, a significant improvement of MII was observed after 3h of preservation in the LIPC group (p<0.05) in comparison with untreated C grafts. Significant atrophy of the intestinal mucosa in C group was found after 3h of preservation (p<0.01), in SIPC group the progress of atrophy was delayed to 6 h (p<0.001), and in LIPC group only moderate decrease in that was found. A parallel increase of laminin expression with the MII rate after 6 and 9h of preservation in comparison with the level at time 0 was observed in all grafts (p<0.001 and p<0.01, respectively). In both IPC groups the apoptotic cell (AC) rate was significantly reduced at the beginning of cold preservation (p<0.05 both). Moreover, in both the SIPC and C groups, the progressive increase in MII rate connected with AC rate decrease was due to a predominance of necrosis. By contrast in the LIPC group, after an increase of nearly 50% in the AC rate at the 3rd hour, its level

  2. Acute assessment and management of burn injuries.

    PubMed

    Purdue, Gary F; Arnoldo, Brett D; Hunt, John L

    2011-05-01

    Burns are ubiquitous injuries in modern society, with virtually all adults having sustained a burn at some point in their lives. The skin is the largest organ of the body, basically functioning to protect self from non-self. Burn injury to the skin is painful, resource-intensive, and often associated with scarring, contracture formation, and long-term disability. Larger burns are associated with morbidity and mortality disproportionate to their initial appearance. Electrical and chemical burns are less common injuries but are often associated with significant morbidity. PMID:21624716

  3. Acute aortic dissection from cross-clamp injury.

    PubMed

    Litchford, B; Okies, J E; Sugimura, S; Starr, A

    1976-11-01

    Acute dissection of the ascending aorta secondary to cross-clamp injury can be successfully managed if the problem is recognized immediately. Bypass must be instituted after recannulation at a point distal to the innominate artery so that proper exposure of the site of injury can be obtained. Systemic as well as local hypothermia for myocardial preservation are both necessary. Direct suture closure of all layers at the site of dissection over Teflon felt can terminate this process. PMID:979312

  4. Ammonium dichromate poisoning: A rare cause of acute kidney injury

    PubMed Central

    Radhakrishnan, H.; Gopi, M.; Arumugam, A.

    2014-01-01

    Ammonium dichromate is an inorganic compound frequently used in screen and color printing. Being a strong oxidizing agent, it causes oxygen free radical injury resulting in organ failure. We report a 25-year-old female who presented with acute kidney injury after consumption of ammonium dichromate. She was managed successfully with hemodialysis and supportive measures. This case is reported to highlight the toxicity of ammonium dichromate. PMID:25484533

  5. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells

    PubMed Central

    Jin, Rong; Yang, Guojun; Li, Guohong

    2010-01-01

    Inflammation plays an important role in the pathogenesis of ischemic stroke and other forms of ischemic brain injury. Experimentally and clinically, the brain responds to ischemic injury with an acute and prolonged inflammatory process, characterized by rapid activation of resident cells (mainly microglia), production of proinflammatory mediators, and infiltration of various types of inflammatory cells (including neutrophils, different subtypes of T cells, monocyte/macrophages, and other cells) into the ischemic brain tissue. These cellular events collaboratively contribute to ischemic brain injury. Despite intense investigation, there are still numerous controversies concerning the time course of the recruitment of inflammatory cells in the brain and their pathogenic roles in ischemic brain injury. In this review, we provide an overview of the time-dependent recruitment of different inflammatory cells following focal cerebral I/R. We discuss how these cells contribute to ischemic brain injury and highlight certain recent findings and currently unanswered questions about inflammatory cells in the pathophysiology of ischemic stroke. PMID:20130219

  6. Acute Management of Nutritional Demands after Spinal Cord Injury

    PubMed Central

    Thibault-Halman, Ginette; Casha, Steven; Singer, Shirley

    2011-01-01

    Abstract A systematic review of the literature was performed to address pertinent clinical questions regarding nutritional management in the setting of acute spinal cord injury (SCI). Specific metabolic challenges are present following spinal cord injury. The acute stage is characterized by a reduction in metabolic activity, as well as a negative nitrogen balance that cannot be corrected, even with aggressive nutritional support. Metabolic demands need to be accurately monitored to avoid overfeeding. Enteral feeding is the optimal route following SCI. When oral feeding is not possible, nasogastric, followed by nasojejunal, then by percutaneous endoscopic gastrostomy, if necessary, is suggested. PMID:20373845

  7. Preservation of peritubular capillary endothelial integrity and increasing pericytes may be critical to recovery from postischemic acute kidney injury

    PubMed Central

    Kwon, Osun; Hong, Seok-Min; Sutton, Timothy A.; Temm, Constance J.

    2008-01-01

    Decreased renal blood flow following an ischemic insult contributes to a reduction in glomerular filtration. However, little is known about the underlying cellular or subcellular mechanisms mediating reduced renal blood flow in human ischemic acute kidney injury (AKI) or acute renal failure (ARF). To examine renal vascular injury following ischemia, intraoperative graft biopsies were performed after reperfusion in 21 cadaveric renal allografts. Confocal fluorescence microscopy was utilized to examine vascular smooth muscle and endothelial cell integrity as well as peritubular interstitial pericytes in the biopsies. The reperfused, transplanted kidneys exhibited postischemic injury to the renal vasculature, as demonstrated by disorganization/disarray of the actin cytoskeleton in vascular smooth muscle cells and disappearance of von Willebrand factor from vascular endothelial cells. Damage to peritubular capillary endothelial cells was more severe in subjects destined to have sustained ARF than in those with rapid recovery of their graft function. In addition, peritubular pericytes/myofibroblasts were more pronounced in recipients destined to recover than those with sustained ARF. Taken together, these data suggest damage to the renal vasculature occurs after ischemia-reperfusion in human kidneys. Preservation of peritubular capillary endothelial integrity and increasing pericytes may be critical to recovery from postischemic AKI. PMID:18562634

  8. Differential expression of embryonic epicardial progenitor markers and localization of cardiac fibrosis in adult ischemic injury and hypertensive heart disease.

    PubMed

    Braitsch, Caitlin M; Kanisicak, Onur; van Berlo, Jop H; Molkentin, Jeffery D; Yutzey, Katherine E

    2013-12-01

    During embryonic heart development, the transcription factors Tcf21, Wt1, and Tbx18 regulate activation and differentiation of epicardium-derived cells, including fibroblast lineages. Expression of these epicardial progenitor factors and localization of cardiac fibrosis were examined in mouse models of cardiovascular disease and in human diseased hearts. Following ischemic injury in mice, epicardial fibrosis is apparent in the thickened layer of subepicardial cells that express Wt1, Tbx18, and Tcf21. Perivascular fibrosis with predominant expression of Tcf21, but not Wt1 or Tbx18, occurs in mouse models of pressure overload or hypertensive heart disease, but not following ischemic injury. Areas of interstitial fibrosis in ischemic and hypertensive hearts actively express Tcf21, Wt1, and Tbx18. In all areas of fibrosis, cells that express epicardial progenitor factors are distinct from CD45-positive immune cells. In human diseased hearts, differential expression of Tcf21, Wt1, and Tbx18 also is detected with epicardial, perivascular, and interstitial fibrosis, indicating conservation of reactivated developmental mechanisms in cardiac fibrosis in mice and humans. Together, these data provide evidence for distinct fibrogenic mechanisms that include Tcf21, separate from Wt1 and Tbx18, in different fibroblast populations in response to specific types of cardiac injury. PMID:24140724

  9. Risk-prediction model for ischemic stroke in patients hospitalized with an acute coronary syndrome (from the global registry of acute coronary events [GRACE]).

    PubMed

    Park, Kay Lee; Budaj, Andrzej; Goldberg, Robert J; Anderson, Frederick A; Agnelli, Giancarlo; Kennelly, Brian M; Gurfinkel, Enrique P; Fitzgerald, Gordon; Gore, Joel M

    2012-09-01

    The risk of stroke in patients hospitalized with an acute coronary syndrome (ACS) ranges from <1% to ≥ 2.5%. The aim of this study was to develop a simple predictive tool for bedside risk estimation of in-hospital ischemic stroke in patients with ACS to help guide clinicians in the acute management of these high-risk patients. Data were obtained from 63,118 patients enrolled from April 1999 to December 2007 in the Global Registry of Acute Coronary Events (GRACE), a multinational registry involving 126 hospitals in 14 countries. A regression model was developed to predict the occurrence of in-hospital ischemic stroke in patients hospitalized with an ACS. The main study outcome was the development of ischemic stroke during the index hospitalization for an ACS. Eight risk factors for stroke were identified: older age, atrial fibrillation on index electrocardiogram, positive initial cardiac biomarkers, presenting systolic blood pressure ≥ 160 mm Hg, ST-segment change on index electrocardiogram, no history of smoking, higher Killip class, and lower body weight (c-statistic 0.7). The addition of coronary artery bypass graft surgery and percutaneous coronary intervention into the model increased the prediction of stroke risk. In conclusion, the GRACE stroke risk score is a simple tool for predicting in-hospital ischemic stroke risk in patients admitted for the entire spectrum of ACS, which is widely applicable to patients in various hospital settings and will assist in the management of high-risk patients with ACS. PMID:22608950

  10. Coagulation factors and recurrence of ischemic and bleeding adverse events in patients with acute coronary syndromes.

    PubMed

    Campo, Gianluca; Pavasini, Rita; Pollina, Alberto; Tebaldi, Matteo; Ferrari, Roberto

    2013-08-01

    In the last years, management and prognosis of patients with acute coronary syndromes (ACS) are significantly improved. Nowadays antithrombotic (antiplatelet plus anticoagulant drugs) therapy represents the main treatment of ACS patients. Anticoagulant drugs are particularly helpful in the acute phase of ACS, whereas in the chronic phase are maintained only in selected cases. Many studies demonstrate that exists a significant variability in the coagulation factor levels between patients affected by ACS. This variation on coagulation factors levels is due to environmental (smoking, inflammation, sex, oral contraceptive, triglycerides, diabetes mellitus) and genetic determinants. Particularly several gene polymorphisms have been selected and clearly associated with significant variations in the coagulation factors values. The heightened levels of tissue factor, factor VII and fibrinogen are related with a "hypercoagulable status" and with a higher occurrence of ischemic complications after ACS and/or PCI. On the contrary, less data are available regarding the relationship between coagulation factors levels (or their gene polymorphisms) and bleeding complications. Recently, new anticoagulant drugs have been developed. They show less side effects and a better tolerability and, probably, their selected use in patients with a "hypercoagulable status" may improve the clinical outcome after ACS. In this review we analyze the current available data and we discuss how this finding may be useful for planning future studies to optimize the treatment of ACS patients. PMID:23827698

  11. Cyclooxygenase-2 inhibition provides lasting protection against neonatal hypoxic-ischemic brain injury

    PubMed Central

    Fathali, Nancy; Ostrowski, Robert P.; Lekic, Tim; Jadhav, Vikram; Tong, Wenni; Tang, Jiping; Zhang, John H.

    2009-01-01

    Objective The development of brain inflammation largely contributes to neonatal brain injury that may lead to a lifetime of neurologic deficits. The present study was designed to investigate whether inhibition of cyclooxygenase-2 (COX-2), a critical component of the inflammatory pathway, is neuroprotective in a neonatal rat model of cerebral hypoxia-ischemia (HI). Design Laboratory investigation. Setting University research laboratory. Subjects Postnatal day-10 Sprague-Dawley rats. Interventions Neonatal HI was induced by ligation of the right common carotid artery followed by two hours of hypoxia (8% O2). The pups in treatment groups were administered 10mg/kg (low dose) or 30mg/kg (high dose) of a known selective COX-2 inhibitor (NS398). Animals were euthanized at three time points: 72hrs, 2wks, or 6wks. Inflammation outcomes were assessed at 72hrs; brain damage was assessed at 2- and 6wks along with other organs (heart, spleen). Detailed neurobehavioral examination was performed at 6wks. Measurements and Main Results Pharmacological inhibition of COX-2 markedly increased survivability within the first 72hrs compared to untreated rats (100% vs. 72%). Low- and high-dose NS398 significantly attenuated the loss of brain and body weights observed after HI. Neurobehavioral outcomes were significantly improved in some parameters with low dose treatment; while, high dose treatment consistently improved all neurological deficits. Immunohistochemical results showed a marked decrease in macrophage, microglial, and neutrophil abundance in ipsilateral brain of NS398 treated group along with a reduction in interleukin-6 expression. Conclusions Selective COX-2 inhibition protected neonatal rats against death, progression of brain injury, growth retardation, and neurobehavioral deficits after a hypoxic-ischemic insult. PMID:20029340

  12. The Relationship between C-Reactive Protein Level and Discharge Outcome in Patients with Acute Ischemic Stroke

    PubMed Central

    Geng, He-Hong; Wang, Xin-Wang; Fu, Rong-Li; Jing, Meng-Juan; Huang, Ling-Ling; Zhang, Qing; Wang, Xiao-Xiao; Wang, Pei-Xi

    2016-01-01

    Previous studies showed that C-reactive protein (CRP), an inflammatory marker, was associated with stroke severity and long-term outcome. However, the relationship between the acute-phase CRP level and discharge outcome has received little attention. We prospectively studied 301 patients with acute ischemic stroke (over a period of two weeks) from two hospital stroke wards and one rehabilitation department in Henan, China. Patients’ demographic and clinical data were collected and evaluated at admission. Poor discharge outcome was assessed in patients at discharge using the Modified Rankin Scale (MRS > 2). Multivariate logistic regression analysis was performed to determine the risk factors of poor discharge outcome after adjusting for potential confounders. Poor discharge outcome was observed in 78 patients (25.9%). Univariate analyses showed that factors significantly influencing poor discharge outcome were age, residence, recurrent acute ischemic stroke, coronary heart disease, the National Institutes of Health Stroke Scale (NIHSS) score at admission, non-lacunar stroke, time from onset of stroke to admission, CRP, TBIL (total bilirubin), direct bilirubin (DBIL), ALB (albumin), FIB (fibrinogen) and D-dimer (p < 0.05). After adjusting for age, residence, recurrent ischemic stroke, coronary heart disease, NIHSS score at admission, lacunar stroke, time from onset of stroke to admission, CRP, TBIL, DBIL, ALB, FIB and D-dimer, multivariate logistic regression analyses revealed that poor outcome at discharge was associated with recurrent acute ischemic stroke (OR, 2.115; 95% CI, 1.094–4.087), non-lacunar stroke (OR, 2.943; 95% CI, 1.436–6.032), DBIL (OR, 1.795; 95% CI, 1.311–2.458), and CRP (OR, 4.890; 95% CI, 3.063–7.808). In conclusion, the CRP level measured at admission was found to be an independent predictor of poor outcome at discharge. Recurrent acute ischemic stroke, non-lacunar stroke and DBIL were also significantly associated with discharge

  13. Early effects of high-fat diet on neurovascular function and focal ischemic brain injury.

    PubMed

    Li, Weiguo; Prakash, Roshini; Chawla, Dhruv; Du, Wenting; Didion, Sean P; Filosa, Jessica A; Zhang, Quanguang; Brann, Darrell W; Lima, Victor V; Tostes, Rita C; Ergul, Adviye

    2013-06-01

    Obesity is a risk factor for stroke, but the early effects of high-fat diet (HFD) on neurovascular function and ischemic stroke outcomes remain unclear. The goal of this study was to test the hypotheses that HFD beginning early in life 1) impairs neurovascular coupling, 2) causes cerebrovascular dysfunction, and 3) worsens short-term outcomes after cerebral ischemia. Functional hyperemia and parenchymal arteriole (PA) reactivity were measured in rats after 8 wk of HFD. The effect of HFD on basilar artery function after middle cerebral artery occlusion (MCAO) and associated O-GlcNAcylation were assessed. Neuronal cell death, infarct size, hemorrhagic transformation (HT) frequency/severity, and neurological deficit were evaluated after global ischemia and transient MCAO. HFD caused a 10% increase in body weight and doubled adiposity without a change in lipid profile, blood glucose, and blood pressure. Functional hyperemia and PA relaxation were decreased with HFD. Basilar arteries from stroked HFD rats were more sensitive to contractile factors, and acetylcholine-mediated relaxation was impaired. Vascular O-GlcNAcylated protein content was increased with HFD. This group also showed greater mortality rate, infarct volume, HT occurrence rate, and HT severity and poor functional outcome compared with the control diet group. These results indicate that HFD negatively affects neurovascular coupling and cerebrovascular function even in the absence of dyslipidemia. These early cerebrovascular changes may be the cause of greater cerebral injury and poor outcomes of stroke in these animals. PMID:23576615

  14. Ischemic tissue injury and progenitor cell tropism: significant contributors to the pathogenesis of pterygium.

    PubMed

    Kim, Kyoung Woo; Ha, Hyo Shin; Kim, Jae Chan

    2015-03-01

    Pterygium is a common ocular surface disease characterized by triangular wing-like growth consisting of subconjunctival hypertrophic connective tissue. Pterygium is easily complicated by adhesion to the eyelid and diplopia related to motility restriction of the eyeball. Beyond the cosmetic problems, this condition has a catastrophic effect on quality of life. Post-surgical recurrence rates of pterygium excision have been reported to be very high. Therefore, identifying the distinct pathogenic pathways of the disease may lead to new therapeutic strategies with lower risk of treatment failure. Based on the relatively low vascularity and known-predominance of disease occurrence in the nasal conjunctiva of normal eyes, we proposed that hypoxic ischemic injury can elicit the development of pterygium. Here, we review hypoxia-inducible factor (HIF)-1alpha-induced activation of the stromal cell-derived factor-1 (SDF-1)/chemokine receptor type 4 (CXCR4) signaling pathway as a possible mechanism. Supporting this concept of pathogenic mechanism, we also highlight bone marrow-derived progenitor cell tropism as a main contributor to pterygium pathogenesis. PMID:25314135

  15. Repair of Ischemic Injury by Pluripotent Stem Cell Based Cell Therapy without Teratoma through Selective Photosensitivity

    PubMed Central

    Cho, Seung-Ju; Kim, So-Yeon; Jeong, Ho-Chang; Cheong, Hyeonsik; Kim, Doseok; Park, Soon-Jung; Choi, Jong-Jin; Kim, Hyongbum; Chung, Hyung-Min; Moon, Sung-Hwan; Cha, Hyuk-Jin

    2015-01-01

    Summary Stem-toxic small molecules have been developed to induce selective cell death of pluripotent stem cells (PSCs) to lower the risk of teratoma formation. However, despite their high efficacies, chemical-based approaches may carry unexpected toxicities on specific differentiated cell types. Herein, we took advantage of KillerRed (KR) as a suicide gene, to selectively induce phototoxicity using visible light via the production of reactive oxygen species. PSCs in an undifferentiated state that exclusively expressed KR (KR-PSCs) were eliminated by a single exposure to visible light. This highly selective cell death in KR-PSCs was exploited to successfully inhibit teratoma formation. In particular, endothelial cells from KR-mPSCs remained fully functional in vitro and sufficient to repair ischemic injury in vivo regardless of light exposure, suggesting that a genetic approach in which KR is expressed in a tightly controlled manner would be a viable strategy to inhibit teratoma formation for future safe PSC-based therapies. PMID:26584542

  16. Early effects of high-fat diet on neurovascular function and focal ischemic brain injury

    PubMed Central

    Li, Weiguo; Prakash, Roshini; Chawla, Dhruv; Du, Wenting; Didion, Sean P.; Filosa, Jessica A.; Zhang, Quanguang; Brann, Darrell W.; Lima, Victor V.; Tostes, Rita C.

    2013-01-01

    Obesity is a risk factor for stroke, but the early effects of high-fat diet (HFD) on neurovascular function and ischemic stroke outcomes remain unclear. The goal of this study was to test the hypotheses that HFD beginning early in life 1) impairs neurovascular coupling, 2) causes cerebrovascular dysfunction, and 3) worsens short-term outcomes after cerebral ischemia. Functional hyperemia and parenchymal arteriole (PA) reactivity were measured in rats after 8 wk of HFD. The effect of HFD on basilar artery function after middle cerebral artery occlusion (MCAO) and associated O-GlcNAcylation were assessed. Neuronal cell death, infarct size, hemorrhagic transformation (HT) frequency/severity, and neurological deficit were evaluated after global ischemia and transient MCAO. HFD caused a 10% increase in body weight and doubled adiposity without a change in lipid profile, blood glucose, and blood pressure. Functional hyperemia and PA relaxation were decreased with HFD. Basilar arteries from stroked HFD rats were more sensitive to contractile factors, and acetylcholine-mediated relaxation was impaired. Vascular O-GlcNAcylated protein content was increased with HFD. This group also showed greater mortality rate, infarct volume, HT occurrence rate, and HT severity and poor functional outcome compared with the control diet group. These results indicate that HFD negatively affects neurovascular coupling and cerebrovascular function even in the absence of dyslipidemia. These early cerebrovascular changes may be the cause of greater cerebral injury and poor outcomes of stroke in these animals. PMID:23576615

  17. Repair of Ischemic Injury by Pluripotent Stem Cell Based Cell Therapy without Teratoma through Selective Photosensitivity.

    PubMed

    Cho, Seung-Ju; Kim, So-Yeon; Jeong, Ho-Chang; Cheong, Hyeonsik; Kim, Doseok; Park, Soon-Jung; Choi, Jong-Jin; Kim, Hyongbum; Chung, Hyung-Min; Moon, Sung-Hwan; Cha, Hyuk-Jin

    2015-12-01

    Stem-toxic small molecules have been developed to induce selective cell death of pluripotent stem cells (PSCs) to lower the risk of teratoma formation. However, despite their high efficacies, chemical-based approaches may carry unexpected toxicities on specific differentiated cell types. Herein, we took advantage of KillerRed (KR) as a suicide gene, to selectively induce phototoxicity using visible light via the production of reactive oxygen species. PSCs in an undifferentiated state that exclusively expressed KR (KR-PSCs) were eliminated by a single exposure to visible light. This highly selective cell death in KR-PSCs was exploited to successfully inhibit teratoma formation. In particular, endothelial cells from KR-mPSCs remained fully functional in vitro and sufficient to repair ischemic injury in vivo regardless of light exposure, suggesting that a genetic approach in which KR is expressed in a tightly controlled manner would be a viable strategy to inhibit teratoma formation for future safe PSC-based therapies. PMID:26584542

  18. Therapeutic Administration of Plasminogen Activator Inhibitor-1 Prevents Hypoxic–Ischemic Brain Injury in Newborns

    PubMed Central

    Yang, Dianer; Nemkul, Niza; Shereen, Ahmed; Jone, Alice; Dunn, R. Scott; Lawrence, Daniel A.; Lindquist, Diana

    2009-01-01

    Disruption of the integrity of the blood–brain barrier (BBB) is an important mechanism of cerebrovascular diseases, including neonatal cerebral hypoxia–ischemia (HI). Although both tissue-type plasminogen activator (tPA) and matrix metalloproteinase-9 (MMP-9) can produce BBB damage, their relationship in neonatal cerebral HI is unclear. Here we use a rodent model to test whether the plasminogen activator (PA) system is critical for MMP-9 activation and HI-induced brain injury in newborns. To test this hypothesis, we examined the therapeutic effect of intracerebroventricular injection of plasminogen activator inhibitor-1 (PAI-1) in rat pups subjected to unilateral carotid artery occlusion and systemic hypoxia. We found that the injection of PAI-1 greatly reduced the activity of both tPA and urokinase-type plasminogen activator after HI. It also blocked HI-induced MMP-9 activation and BBB permeability at 24 h of recovery. Furthermore, magnetic resonance imaging and histological analysis showed the PAI-1 treatment reduced brain edema, axonal degeneration, and cortical cell death at 24–48 h of recovery. Finally, the PAI-1 therapy provided a dose-dependent decrease of brain tissue loss at 7 d of recovery, with the therapeutic window at 4 h after the HI insult. Together, these results suggest that the brain PA system plays a pivotal role in neonatal cerebral HI and may be a promising therapeutic target in infants suffering hypoxic–ischemic encephalopathy. PMID:19587273

  19. Ischemic Preconditioning protects hepatocytes from ischemia-reperfusion injury via TGR5-mediated anti-apoptosis.

    PubMed

    Zhuang, Lin; Fan, Ye; Lu, Ling; Ding, Wenbin; Ni, Chuangye; Wang, Xuehao; Zhang, Feng; Rao, Jianhua

    2016-05-13

    Ischemic preconditioning (IP) has been shown to protect hepatic tissue from liver ischemia-reperfusion injury (IRI). TGR5, as a new-type bile acid receptor, has been shown protective roles in several liver diseases. However, the relationship between TGR5 and IP is still unknown. This study investigated effects of IP on TGR5 as well as the roles of TGR5 on hepatic tissue lesions and apoptosis in liver IRI. We showed that TGR5 was significantly upregulated in liver tissues after IP. To further analyzed effects of the TGR5 on liver IRI, wild type and TGR5 knockout mice were used to establish the liver IRI model. IP effectively alleviated liver IRI, but TGR5 deficiency significantly neutralized IP-related liver protection, as evidenced by serum alanine aminotransferase levels, histological liver damage, hepatocellular apoptosis and cytokines expressions. In addition, molecules related to apoptosis were detected by Western Blot, which showed that activation of TGR5 by IP increased expression of Bcl-2, and inhibited expressions of IRAK4 and cleaved caspase-3, but TGR5 deficiency abolished IP-induced expressions of anti-apoptosis molecule. In vitro, effects of TGR5 on hepatocytes were further analyzed by TGR5 agonist (INT-777) and hypoxia/reoxygenation (H/R), which displayed that INT-777 markedly attenuated H/R-induced hepatocellular apoptosis. In conclusion, our study indicates that IP alleviates hepatocellular apoptosis, and reduces liver IRI through TGR5-mediated anti-apoptosis functions. PMID:27045083

  20. Enhanced Delivery of Erythropoietin Across the Blood-Brain Barrier for Neuroprotection against Ischemic Neuronal Injury

    PubMed Central

    Zhang, Feng; Xing, Juan; Liou, Anthony Kian-Fong; Wang, Suping; Gan, Yu; Luo, Yumin; Ji, Xuming; Stetler, R. Anne; Chen, Jun; Cao, Guodong

    2010-01-01

    Due to limited penetration of the BBB, many therapeutic agents in clinical use require higher doses in order to reach effective concentrations in brain. In some instances, these high doses elicit severe side effects. In the case of erythropoietin (EPO), an established neuroprotectant against ischemic brain injury, its low BBB permeability requires such a high therapeutic dose that it can induce dangerous complications such as polycythmia and secondary stroke. The purpose of this study is to generate a modified EPO that has increased facility crossing the BBB without losing its neuroprotective element. We have engineered a fusion protein (EPO-TAT) by tagging a protein transduction domain derived from HIV TAT to the EPO protein. This sequence enhanced the capacity of EPO to cross the BBB in animals at least twofold when IP administered and up to five-fold when IV administered. In vitro experiments showed that this EPO fusion protein retained all its protective properties against neuronal death elicited by oxygen-glucose deprivation and NMDA insults. The needed therapeutic dose of the EPO-TAT was decreased by ~10-fold compared to that of regular EPO to achieve equivalent neuroprotection in terms of reducing volume of infarction induced by middle cerebral artery occlusion in mice. Our results support the approach of using a protein transduction domain coupled to therapeutic agents. In this way, not only can the therapeutic doses be lowered, but agents without BBB permeability may now be available for clinical applications. PMID:20577577

  1. Neuroprotective properties of Melissa officinalis after hypoxic-ischemic injury both in vitro and in vivo

    PubMed Central

    2012-01-01

    Background Brain ischemia initiates several metabolic events leading to neuronal death. These events mediate large amount of damage that arises after some neurodegenerative disorders as well as transient brain ischemia. Melissa officinalis is considered as a helpful herbal plant in the prevention of various neurological diseases like Alzheimer that is related with oxidative stress. Methods We examined the effect of Melissa officinalis on hypoxia induced neuronal death in a cortical neuronal culture system as in vitro model and transient hippocampal ischemia as in vivo model. Transient hippocampal ischemia was induced in male rats by tow vessel-occlusion for 20 min. After reperfusion, the histopathological changes and the levels inflammation, oxidative stress status, and caspase-3 activity in hippocampus were measured. Results Cytotoxicity assays showed a significant protection of a 10 μg/ml dose of Melissa against hypoxia in cultured neurons which was confirmed by a conventional staining (P<0.05). Melissa treatment decrease caspase3 activity (P<0.05) and TUNEL-positive cells significantly (P<0.01). Melissa oil has also inhibited malon dialdehyde level and attenuated decrease of Antioxidant Capacity in the hippocampus. Pro-inflammatory cytokines TNF-α, IL-1β and HIF-1α mRNA levels were highly increased after ischemia and treatment with Melissa significantly suppressed HIF-1α gene expression (P<0.05). Discussion Results showed that Melissa officinalis could be considered as a protective agent in various neurological diseases associated with ischemic brain injury. PMID:23351182

  2. Inhibition of Mitochondrial P53 Abolishes the Detrimental Effects of Social Isolation on Ischemic Brain Injury

    PubMed Central

    Venna, Venugopal Reddy; Verma, Rajkumar; O'Keefe, Lena M; Xu, Yan; Crapser, Joshua; Friedler, Brett; McCullough, Louise D.

    2014-01-01

    Background and Purpose Social Isolation (SI) increases stroke incidence and delays post-stroke recovery. Women may be at greater risk from the negative consequences of SI, but few studies have examined both sexes in experimental models, and none have evaluated the effects of isolation initiated after stroke. The effects of post-stroke SI in males and females were examined and the role of mitochondrial P53 was evaluated. Methods C57Bl6 mice were pair-housed (male and ovariectomized female) for 2 weeks, subjected to stroke and then assigned to a housing condition (isolated or pair-housed (PH)). The effects of housing on infarct volume and recovery were examined. Changes in Bcl-2 and mitochondrial p53 were assessed by western blot. A mitochondrial p53 inhibitor (PFT-μ) was given to mice of both sexes. Results Compared to PH mice, post-stroke SI significantly increased infarct size in both sexes; SI mice also had worse neurological deficits. The detrimental effects of SI paralleled increases in mitochondrial p53 levels. Pharmacological inhibition of mitochondrial p53 using PFT-μ abolished the detrimental effects of SI and reduced cell death. Conclusions Post-stroke SI results in increased ischemic injury in both sexes. The effect of housing on infarct was more pronounced in females. Targeting the mitochondrial P53 pathway could minimize the detrimental effects of isolation after stroke. PMID:25205311

  3. Calpain-mediated cleavage of Beclin-1 and autophagy deregulation following retinal ischemic injury in vivo

    PubMed Central

    Russo, R; Berliocchi, L; Adornetto, A; Varano, G P; Cavaliere, F; Nucci, C; Rotiroti, D; Morrone, L A; Bagetta, G; Corasaniti, M T

    2011-01-01

    Autophagy is the major intracellular degradation pathway that regulates long-lived proteins and organelles turnover. This process occurs at basal levels in all cells but it is rapidly upregulated in response to starvation and cellular stress. Although being recently implicated in neurodegeneration, it remains still unclear whether autophagy has a detrimental or protective role. In this study, we investigated the dynamics of the autophagic process in retinal tissue that has undergone transient ischemia, an experimental model that recapitulates features of ocular pathologies, including glaucoma, anterior ischemic optic neuropathy and retinal vessels occlusion. Retinal ischemia, induced in adult rats by increasing the intraocular pressure, was characterized by a reduction in the phosphatidylethanolamine-modified form of LC3 (LC3II) and by a significant decrease in Beclin-1. The latter event was associated with a proteolytic cleavage of Beclin-1, leading to the accumulation of a 50-kDa fragment. This event was prevented by intravitreal treatment with the non-competitive N-methyl-D-aspartate antagonist MK801 and calpain inhibitors or by calpain knockdown. Blockade of autophagy by pharmacological inhibition or Beclin-1 silencing in RGC-5 increased cell death, suggesting a pro-survival role of the autophagic process in this neuronal cell type. Altogether, our results provide original evidence for calpain-mediated cleavage of Beclin-1 and deregulation of basal autophagy in the rat retina that has undergone ocular ischemia/reperfusion injury. PMID:21490676

  4. Severe but reversible acute kidney injury resulting from Amanita punctata poisoning

    PubMed Central

    Kang, Eunjung; Cheong, Ka-Young; Lee, Min-Jeong; Kim, Seirhan; Shin, Gyu-Tae; Kim, Heungsoo; Park, In-Whee

    2015-01-01

    Mushroom-related poisoning can cause acute kidney injury. Here we report a case of acute kidney injury after ingestion of Amanita punctata, which is considered an edible mushroom. Gastrointestinal symptoms occurred within 24 hours from the mushroom intake and were followed by an asymptomatic period, acute kidney injury, and elevation of liver and pancreatic enzymes. Kidney function recovered with supportive care. Nephrotoxic mushroom poisoning should be considered as a cause of acute kidney injury. PMID:26779427

  5. The Effects of Different Repetitive Transcranial Magnetic Stimulation (rTMS) Protocols on Cortical Gene Expression in a Rat Model of Cerebral Ischemic-Reperfusion Injury

    PubMed Central

    Ljubisavljevic, Milos R.; Javid, Asma; Oommen, Joji; Parekh, Khatija; Nagelkerke, Nico; Shehab, Safa; Adrian, Thomas E.

    2015-01-01

    Although repetitive Transcranial Magnetic Stimulation (rTMS) in treatment of stroke in humans has been explored over the past decade the data remain controversial in terms of optimal stimulation parameters and the mechanisms of rTMS long-term effects. This study aimed to explore the potential of different rTMS protocols to induce changes in gene expression in rat cortices after acute ischemic-reperfusion brain injury. The stroke was induced by middle cerebral artery occlusion (MCAO) with subsequent reperfusion. Changes in the expression of 96 genes were examined using low-density expression arrays after MCAO alone and after MCAO combined with 1Hz, 5Hz, continuous (cTBS) and intermittent (iTBS) theta-burst rTMS. rTMS over the lesioned hemisphere was given for two weeks (with a 2-day pause) in a single daily session and a total of 2400 pulses. MCAO alone induced significant upregulation in the expression of 44 genes and downregulation in 10. Two weeks of iTBS induced significant increase in the expression of 52 genes. There were no downregulated genes. 1Hz and 5Hz had no significant effects on gene expression, while cTBS effects were negligible. Upregulated genes included those involved in angiogenesis, inflammation, injury response and cellular repair, structural remodeling, neuroprotection, neurotransmission and neuronal plasticity. The results show that long-term rTMS in acute ischemic-reperfusion brain injury induces complex changes in gene expression that span multiple pathways, which generally promote the recovery. They also demonstrate that induced changes primarily depend on the rTMS frequency (1Hz and 5Hz vs. iTBS) and pattern (cTBS vs. iTBS). The results further underlines the premise that one of the benefits of rTMS application in stroke may be to prime the brain, enhancing its potential to cope with the injury and to rewire. This could further augment its potential to favorably respond to rehabilitation, and to restore some of the loss functions. PMID

  6. Does hypokalemia contribute to acute kidney injury in chronic laxative abuse?

    PubMed

    Lee, Eun-Young; Yoon, Hyaejin; Yi, Joo-Hark; Jung, Woon-Yong; Han, Sang-Woong; Kim, Ho-Jung

    2015-06-01

    Prolonged hypokalemia from chronic laxative abuse is recognized as the cause of chronic tubulointerstitial disease, known as "hypokalemic nephropathy," but it is not clear whether it contributes to acute kidney injury (AKI). A 42-year-old woman with a history of chronic kidney disease as a result of chronic laxative abuse from a purging type of anorexia nervosa (AN-P), developed an anuric AKI requiring hemodialysis and a mild AKI 2 months later. Both episodes of AKI involved severe to moderate hypokalemia (1.2 and 2.7 mmol/L, respectively), volume depletion, and mild rhabdomyolysis. The histologic findings of the first AKI revealed the remnants of acute tubular necrosis with advanced chronic tubulointerstitial nephritis and ischemic glomerular injury. Along with these observations, the intertwined relationship among precipitants of recurrent AKI in AN-P is discussed, and then we postulate a contributory role of hypokalemia involved in the pathophysiology of the renal ischemia-induced AKI. PMID:26484031

  7. Does hypokalemia contribute to acute kidney injury in chronic laxative abuse?

    PubMed Central

    Lee, Eun-Young; Yoon, Hyaejin; Yi, Joo-Hark; Jung, Woon-Yong; Han, Sang-Woong; Kim, Ho-Jung

    2015-01-01

    Prolonged hypokalemia from chronic laxative abuse is recognized as the cause of chronic tubulointerstitial disease, known as “hypokalemic nephropathy,” but it is not clear whether it contributes to acute kidney injury (AKI). A 42-year-old woman with a history of chronic kidney disease as a result of chronic laxative abuse from a purging type of anorexia nervosa (AN-P), developed an anuric AKI requiring hemodialysis and a mild AKI 2 months later. Both episodes of AKI involved severe to moderate hypokalemia (1.2 and 2.7 mmol/L, respectively), volume depletion, and mild rhabdomyolysis. The histologic findings of the first AKI revealed the remnants of acute tubular necrosis with advanced chronic tubulointerstitial nephritis and ischemic glomerular injury. Along with these observations, the intertwined relationship among precipitants of recurrent AKI in AN-P is discussed, and then we postulate a contributory role of hypokalemia involved in the pathophysiology of the renal ischemia-induced AKI. PMID:26484031

  8. Oxidative stress in post-acute ischemic stroke patients after intensive neurorehabilitation.

    PubMed

    Ciancarelli, Irene; De Amicis, Daniela; Di Massimo, Caterina; Carolei, Antonio; Ciancarelli, Maria Giuliana Tozzi

    2012-11-01

    We investigated in post-acute ischemic stroke patients the influence of intensive neurorehabilitation on oxidative stress balance during recovery of neurological deficits. For this purpose, fourteen patients were included in the study within 30 days of stroke onset. Outcome measures were the National Institutes of Health Stroke Scale (NIHSS), the modified Rankin Scale (mRS), the Barthel Index, and the Katz Index. Redox balance was assessed by measuring plasma peroxidative by-products, nitrite/nitrate metabolites (NOx), as an index of nitric oxide (NO), Cu/Zn Superoxide Dismutase (Cu/Zn SOD) activity, serum urate concentration, autoantibodies against ox-LDL (OLAB) serum level and plasma antioxidant capacity. Assessments were made before and after neurorehabilitation. Fifteen apparently healthy controls were investigated to compare redox markers. Intensive neurorehabilitation was associated with an improvement of all the outcome measures (P < 0.05). Decreased values of peroxidative by-products and of NOx (P < 0.05) were observed after neurorehabilitation in stroke patients even though their values were higher than in controls (P < 0.05). Changes observed before and after neurorehabilitation in NIHSS scores (Δ NIHSS scores) and in plasma NOx amount (Δ NOx) correlated positively (r=0.79; P < 0.005). No differences in EC-SOD activity, OLAB and serum urate concentrations were found between stroke patients and controls, before and after neurorehabilitation. Total plasma antioxidant capacity, lower in stroke patients than in controls before neurorehabilitation, was unchanged thereafter. Our data provide evidence of the effectiveness of neurorehabilitation on reducing redox unbalance in stroke patients and hints the role of NO as a messenger involved in post-i