Science.gov

Sample records for acute ischemic injury

  1. DNA repair in ischemic acute kidney injury.

    PubMed

    Pressly, Jeffrey D; Park, Frank

    2017-04-01

    Ischemia-reperfusion injury (IRI) is a common cause of acute kidney injury leading to an induction of oxidative stress, cellular dysfunction, and loss of renal function. DNA damage, including oxidative base modifications and physical DNA strand breaks, is a consequence of renal IRI. Like many other organs in the body, a redundant and highly conserved set of endogenous repair pathways have evolved to selectively recognize the various types of cellular DNA damage and combat its negative effects on cell viability. Severe damage to the DNA, however, can trigger cell death and elimination of the injured tubular epithelial cells. In this minireview, we summarize the state of the current field of DNA damage and repair in the kidney and provide some expected and, in some cases, unexpected effects of IRI on DNA damage and repair in the kidney. These findings may be applicable to other forms of acute kidney injury and could provide new opportunities for renal research.

  2. Protein methionine oxidation augments reperfusion injury in acute ischemic stroke

    PubMed Central

    Gu, Sean X.; Blokhin, Ilya O.; Wilson, Katina M.; Dhanesha, Nirav; Doddapattar, Prakash; Grumbach, Isabella M.; Chauhan, Anil K.; Lentz, Steven R.

    2016-01-01

    Reperfusion injury can exacerbate tissue damage in ischemic stroke, but little is known about the mechanisms linking ROS to stroke severity. Here, we tested the hypothesis that protein methionine oxidation potentiates NF-κB activation and contributes to cerebral ischemia/reperfusion injury. We found that overexpression of methionine sulfoxide reductase A (MsrA), an antioxidant enzyme that reverses protein methionine oxidation, attenuated ROS-augmented NF-κB activation in endothelial cells, in part, by protecting against the oxidation of methionine residues in the regulatory domain of calcium/calmodulin-dependent protein kinase II (CaMKII). In a murine model, MsrA deficiency resulted in increased NF-κB activation and neutrophil infiltration, larger infarct volumes, and more severe neurological impairment after transient cerebral ischemia/reperfusion injury. This phenotype was prevented by inhibition of NF-κB or CaMKII. MsrA-deficient mice also exhibited enhanced leukocyte rolling and upregulation of E-selectin, an endothelial NF-κB–dependent adhesion molecule known to contribute to neurovascular inflammation in ischemic stroke. Finally, bone marrow transplantation experiments demonstrated that the neuroprotective effect was mediated by MsrA expressed in nonhematopoietic cells. These findings suggest that protein methionine oxidation in nonmyeloid cells is a key mechanism of postischemic oxidative injury mediated by NF-κB activation, leading to neutrophil recruitment and neurovascular inflammation in acute ischemic stroke. PMID:27294204

  3. Vitamin D deficiency aggravates ischemic acute kidney injury in rats

    PubMed Central

    de Bragança, Ana Carolina; Volpini, Rildo A; Canale, Daniele; Gonçalves, Janaína G; Shimizu, Maria Heloisa M; Sanches, Talita R; Seguro, Antonio C; Andrade, Lúcia

    2015-01-01

    Vitamin D deficiency (VDD) increases the risk of death in hospitalized patients. Renal ischemia/reperfusion injury (IRI) induces acute kidney injury (AKI), which activates cell cycle inhibitors, including p21, a cyclin-dependent kinase inhibitor and genomic target of 25-hydroxyvitamin D, which is in turn a potent immunomodulator with antiproliferative effects. In this study, we assess the impact of VDD in renal IRI. Wistar rats were divided into groups, each evaluated for 30 days: control (receiving a standard diet); VDD (receiving a vitamin D-free diet); IRI (receiving a standard diet and subjected to 45-min bilateral renal ischemia on day 28); and VDD + IRI (receiving a vitamin D-free diet and subjected to 45-min bilateral renal ischemia on day 28). At 48 h after IRI, animals were euthanized; blood, urine, and kidney tissue samples were collected. Compared with IRI rats, VDD + IRI rats showed a more severe decrease in glomerular filtration rate, greater urinary protein excretion, a higher kidney/body weight ratio and lower renal aquaporin 2 expression, as well as greater morphological damage, characterized by increased interstitial area and tubular necrosis. Our results suggest that the severity of tubular damage in IRI may be associated with downregulation of vitamin D receptors and p21. VDD increases renal inflammation, cell proliferation and cell injury in ischemic AKI. PMID:25780095

  4. Preventive mechanisms of agmatine against ischemic acute kidney injury in rats.

    PubMed

    Sugiura, Takahiro; Kobuchi, Shuhei; Tsutsui, Hidenobu; Takaoka, Masanori; Fujii, Toshihide; Hayashi, Kentaro; Matsumura, Yasuo

    2009-01-28

    The excitation of renal sympathetic nervous system plays an important role in the development of ischemic acute kidney injury in rats. Recently, we found that agmatine, an adrenaline alpha(2)/imidazoline I(1)-receptor agonist, has preventive effects on ischemic acute kidney injury by suppressing the enhanced renal sympathetic nerve activity during renal ischemia and by decreasing the renal venous norepinephrine overflow after reperfusion. In the present study, we investigated preventive mechanisms of agmatine against ischemic acute kidney injury in rats. Ischemic acute kidney injury was induced by clamping the left renal artery and vein for 45 min followed by reperfusion, 2 weeks after the contralateral nephrectomy. Pretreatment with efaroxan (30 mumol/kg, i.v.), an alpha(2)/I(1)-receptor antagonist, abolished the suppressive effects of agmatine on the enhanced renal sympathetic nerve activity during renal ischemia and on the elevated norepinephrine overflow after reperfusion, and eliminated the preventing effects of agmatine on the ischemia/reperfusion-induced renal dysfunction and histological damage. On the other hand, pretreatment with yohimbine (6 mumol/kg, i.v.), an alpha(2)-receptor antagonist, eliminated the preventing effects of agmatine on the ischemia/reperfusion-induced renal injury and norepinephrine overflow, without affecting the lowering effect of agmatine on renal sympathetic nerve activity. These results indicate that agmatine prevents the ischemic renal injury by sympathoinhibitory effect probably via I(1) receptors in central nervous system and by suppressing the norepinephrine overflow through alpha(2) or I(1) receptors on sympathetic nerve endings.

  5. Sensitivity to acute cerebral ischemic injury in migraineurs

    PubMed Central

    Mawet, Jerome; Eikermann-Haerter, Katharina; Park, Kwang-Yeol; Helenius, Johanna; Daneshmand, Ali; Pearlman, Lea; Avery, Ross; Negro, Andrea; Velioglu, Murat; Arsava, Ethem Murat

    2015-01-01

    Objective: Migraine, particularly with aura, is a risk factor for ischemic stroke. Recent data in migraine mutant mice suggest that cerebral hyperexcitability associated with migraine accelerates recruitment of ischemic penumbra into the core, resulting in faster infarct growth compared with wild type. We hypothesized that individuals with a history of migraine are more likely to exhibit increased recruitment of ischemic tissue into the infarct in acute stroke. Methods: In this retrospective case-control study, we identified participants with reliably documented migraine history, measured lesion volumes on diffusion-weighted and perfusion-weighted MRI obtained within 72 hours of symptom onset, calculated the proportion of ischemic tissue on perfusion-weighted imaging (PWI) hyperintense on diffusion-weighted imaging (DWI), and compared the proportion of patients with no-mismatch pattern defined as DWI lesion >83% of PWI lesion. Results: Migraineurs (n = 45) were younger, more often female, less likely to have vascular risk factors, and more often had cervical artery dissection, but otherwise did not differ from controls (n = 27). A significantly larger proportion of migraineurs had no-mismatch pattern, indicating that the entire perfusion defect was recruited into the infarct by the time of MRI (22% vs 4% of migraineurs and controls, respectively; p = 0.044). The difference was even more prominent in migraineurs with aura (36% vs 4%, p = 0.019). The association between migraine and no-mismatch pattern persisted after adjustment for time to MRI (p = 0.041). Conclusions: This case-control study supports the hypothesis that a history of migraine, particularly with aura, is associated with a no-mismatch pattern during acute ischemic stroke, consistent with data obtained in migraine mutant mice. PMID:26537055

  6. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents

    PubMed Central

    Eisenmann, Eric D.; Rorabaugh, Boyd R.; Zoladz, Phillip R.

    2016-01-01

    Cardiovascular disease (CVD) is the largest cause of mortality worldwide, and stress is a significant contributor to the development of CVD. The relationship between acute and chronic stress and CVD is well evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia–reperfusion injury (IRI). Conversely, chronic stress is arrhythmogenic and increases sensitivity to myocardial IRI. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions. PMID:27199778

  7. Endoplasmic reticulum stress and its effects on renal tubular cells apoptosis in ischemic acute kidney injury.

    PubMed

    Xu, Yan; Guo, Min; Jiang, Wei; Dong, Hui; Han, Yafei; An, Xiao-Fei; Zhang, Jisheng

    2016-06-01

    Ischemia is the most frequent cause of acute kidney injury (AKI), which is characterized by apoptosis of renal tubular cell. A common result of ischemia in AKI is dysfunction of endoplasmic reticulum (ER), which causes the protein-folding capacity to lag behind the protein-folding load. The abundance of misfolded proteins stressed the ER and results in induction of the unfolded protein response (UPR). While the UPR is an adaptive response, over time it can result in apoptosis when cells are unable to recover quickly. Recent research suggests that ER stress is a major factor in renal tubular cell apoptosis resulting from ischemic AKI. Thus, ER stress may be an important new progression factor in the pathology of ischemic AKI. In this article, we review UPR signaling, describe pathology and pathophysiology mechanisms of ischemic AKI, and highlight the dual function of ER stress on renal tubular cell apoptosis.

  8. Multiparametric, Longitudinal Optical Coherence Tomography Imaging Reveals Acute Injury and Chronic Recovery in Experimental Ischemic Stroke

    PubMed Central

    Srinivasan, Vivek J.; Mandeville, Emiri T.; Can, Anil; Blasi, Francesco; Climov, Mihail; Daneshmand, Ali; Lee, Jeong Hyun; Yu, Esther; Radhakrishnan, Harsha; Lo, Eng H.; Sakadžić, Sava; Eikermann-Haerter, Katharina; Ayata, Cenk

    2013-01-01

    Progress in experimental stroke and translational medicine could be accelerated by high-resolution in vivo imaging of disease progression in the mouse cortex. Here, we introduce optical microscopic methods that monitor brain injury progression using intrinsic optical scattering properties of cortical tissue. A multi-parametric Optical Coherence Tomography (OCT) platform for longitudinal imaging of ischemic stroke in mice, through thinned-skull, reinforced cranial window surgical preparations, is described. In the acute stages, the spatiotemporal interplay between hemodynamics and cell viability, a key determinant of pathogenesis, was imaged. In acute stroke, microscopic biomarkers for eventual infarction, including capillary non-perfusion, cerebral blood flow deficiency, altered cellular scattering, and impaired autoregulation of cerebral blood flow, were quantified and correlated with histology. Additionally, longitudinal microscopy revealed remodeling and flow recovery after one week of chronic stroke. Intrinsic scattering properties serve as reporters of acute cellular and vascular injury and recovery in experimental stroke. Multi-parametric OCT represents a robust in vivo imaging platform to comprehensively investigate these properties. PMID:23940761

  9. Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke.

    PubMed

    Srinivasan, Vivek J; Mandeville, Emiri T; Can, Anil; Blasi, Francesco; Climov, Mihail; Daneshmand, Ali; Lee, Jeong Hyun; Yu, Esther; Radhakrishnan, Harsha; Lo, Eng H; Sakadžić, Sava; Eikermann-Haerter, Katharina; Ayata, Cenk

    2013-01-01

    Progress in experimental stroke and translational medicine could be accelerated by high-resolution in vivo imaging of disease progression in the mouse cortex. Here, we introduce optical microscopic methods that monitor brain injury progression using intrinsic optical scattering properties of cortical tissue. A multi-parametric Optical Coherence Tomography (OCT) platform for longitudinal imaging of ischemic stroke in mice, through thinned-skull, reinforced cranial window surgical preparations, is described. In the acute stages, the spatiotemporal interplay between hemodynamics and cell viability, a key determinant of pathogenesis, was imaged. In acute stroke, microscopic biomarkers for eventual infarction, including capillary non-perfusion, cerebral blood flow deficiency, altered cellular scattering, and impaired autoregulation of cerebral blood flow, were quantified and correlated with histology. Additionally, longitudinal microscopy revealed remodeling and flow recovery after one week of chronic stroke. Intrinsic scattering properties serve as reporters of acute cellular and vascular injury and recovery in experimental stroke. Multi-parametric OCT represents a robust in vivo imaging platform to comprehensively investigate these properties.

  10. NQDI 1, an inhibitor of ASK1 attenuates acute ischemic renal injury by modulating oxidative stress and cell death.

    PubMed

    El Eter, Eman

    2013-09-01

    Apoptosis signal-regulating kinase 1 (ASK1) is among the signaling events that lead to postischemic cell death. Inhibition of ASK1 pathway protected hearts from ischemic damage. The present study evaluated the renal protective effects of NQDI 1, an inhibitor of ASK1, in an animal model of acute ischemic renal failure. Male Wistar rats were subjected to right nephrectomy and clamping of left renal pedicle for 45 min, or sham operation. The administration of NQDI 1 attenuated renal dysfunction and histological changes characteristic for renal ischemia/reperfusion injury (IRI). Apoptosis of renal tissues, as detected by TUNEL staining, was also reduced together with p53 protein expression, and renal levels of MDA and SOD with NQDI 1 administration and BCL2 was up regulated. In conclusion, inhibition of ASK1 is of therapeutic potential against acute ischemic renal injury. Its protective effects are mediated via inhibition of apoptosis and oxidative stress.

  11. NLRP3 inflammasome knockout mice are protected against ischemic but not cisplatin-induced acute kidney injury.

    PubMed

    Kim, Hyun-Jung; Lee, Dong Won; Ravichandran, Kameswaran; O Keys, Daniel; Akcay, Ali; Nguyen, Quocan; He, Zhibin; Jani, Alkesh; Ljubanovic, Danica; Edelstein, Charles L

    2013-09-01

    We have demonstrated that caspase-1 is a mediator of both cisplatin-induced acute kidney injury (AKI) and ischemic AKI. As caspase-1 is activated in the inflammasome, we investigated the inflammasome in cisplatin-induced and ischemic AKI. Mice were injected with cisplatin or subjected to bilateral renal pedicle clamping. Immunoblot analysis of whole kidney after cisplatin-induced AKI revealed: 1) an increase in apoptosis-associated Speck-like protein containing a caspase recruitment domain (ASC), the major protein that complexes with nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing proteins (NLRP) 1 or 3 to form the inflammasome; 2) an increase in caspase-1 activity, caspase-5, and NLRP1, components of the NLRP1 inflammasome; and 3) a trend toward increased NLRP3. To determine whether the NLRP3 inflammasome plays an injurious role in cisplatin-induced AKI, we studied NLRP knockout (NLRP3(-/-)) mice. In cisplatin-induced AKI, the blood urea nitrogen, serum creatinine, acute tubular necrosis score, and tubular apoptosis score were not significantly decreased in NALP3(-/-) mice compared with wild-type mice. We have previously demonstrated the injurious role of caspase-1 in ischemic AKI. NLRP3, but not ASC or NLRP1, is increased in ischemic AKI. NLRP3(-/-) mice with ischemic AKI had significantly lower blood urea nitrogen, serum creatinine, and acute tubular necrosis and apoptosis scores than the wild-type controls. The difference in protection against cisplatin-induced AKI compared with ischemic AKI in NLRP3(-/-) mice was not explained by the differences in proinflammatory cytokines interleukin (IL)-1β, IL-6, chemokine (C-X-C motif) ligand 1, or tumor necrosis factor α. NLRP3 inflammasome is a mediator of ischemic AKI but not cisplatin-induced AKI, and further investigation of the NLRP1 inflammasome in cisplatin-induced AKI should prove interesting.

  12. Delayed administration of darbepoetin or erythropoietin protects against ischemic acute renal injury and failure.

    PubMed

    Johnson, D W; Pat, B; Vesey, D A; Guan, Z; Endre, Z; Gobe, G C

    2006-05-01

    Administration of human recombinant erythropoietin (EPO) at time of acute ischemic renal injury (IRI) inhibits apoptosis, enhances tubular epithelial regeneration, and promotes renal functional recovery. The present study aimed to determine whether darbepoetin-alfa (DPO) exhibits comparable renoprotection to that afforded by EPO, whether pro or antiapoptotic Bcl-2 proteins are involved, and whether delayed administration of EPO or DPO 6 h following IRI ameliorates renal dysfunction. The model of IRI involved bilateral renal artery occlusion for 45 min in rats (N = 4 per group), followed by reperfusion for 1-7 days. Controls were sham-operated. Rats were treated at time of ischemia or sham operation (T0), or post-treated (6 h after the onset of reperfusion, T6) with EPO (5000 IU/kg), DPO (25 mug/kg), or appropriate vehicle by intraperitoneal injection. Renal function, structure, and immunohistochemistry for Bcl-2, Bcl-XL, and Bax were analyzed. DPO or EPO at T0 significantly abrogated renal dysfunction in IRI animals (serum creatinine for IRI 0.17 +/- 0.05 mmol/l vs DPO-IRI 0.08 +/- 0.03 mmol/l vs EPO-IRI 0.04 +/- 0.01 mmol/l, P = 0.01). Delayed administration of DPO or EPO (T6) also significantly abrogated subsequent renal dysfunction (serum creatinine for IRI 0.17 +/- 0.05 mmol/l vs DPO-IRI 0.06 +/- 0.01 mmol/l vs EPO-IRI 0.03 +/- 0.03 mmol/l, P = 0.01). There was also significantly decreased tissue injury (apoptosis, P < 0.05), decreased proapoptotic Bax, and increased regenerative capacity, especially in the outer stripe of the outer medulla, with DPO or EPO at T0 or T6. These results reaffirm the potential clinical application of DPO and EPO as novel renoprotective agents for patients at risk of ischemic acute renal failure or after having sustained an ischemic renal insult.

  13. Early peritoneal dialysis reduces lung inflammation in mice with ischemic acute kidney injury.

    PubMed

    Altmann, Chris; Ahuja, Nilesh; Kiekhaefer, Carol M; Andres Hernando, Ana; Okamura, Kayo; Bhargava, Rhea; Duplantis, Jane; Kirkbride-Romeo, Lara A; Huckles, Jill; Fox, Benjamin M; Kahn, Kashfi; Soranno, Danielle; Gil, Hyo-Wook; Teitelbaum, Isaac; Faubel, Sarah

    2017-03-16

    Although dialysis has been used in the care of patients with acute kidney injury (AKI) for over 50 years, very little is known about the potential benefits of uremic control on systemic complications of AKI. Since the mortality of AKI requiring renal replacement therapy (RRT) is greater than half in the intensive care unit, a better understanding of the potential of RRT to improve outcomes is urgently needed. Therefore, we sought to develop a technically feasible and reproducible model of RRT in a mouse model of AKI. Models of low- and high-dose peritoneal dialysis (PD) were developed and their effect on AKI, systemic inflammation, and lung injury after ischemic AKI was examined. High-dose PD had no effect on AKI, but effectively cleared serum IL-6, and dramatically reduced lung inflammation, while low-dose PD had no effect on any of these three outcomes. Both models of RRT using PD in AKI in mice reliably lowered urea in a dose-dependent fashion. Thus, use of these models of PD in mice with AKI has great potential to unravel the mechanisms by which RRT may improve the systemic complications that have led to increased mortality in AKI. In light of recent data demonstrating reduced serum IL-6 and improved outcomes with prophylactic PD in children, we believe that our results are highly clinically relevant.

  14. Role of spleen-derived monocytes/macrophages in acute ischemic brain injury

    PubMed Central

    Kim, Eunhee; Yang, Jiwon; D Beltran, Cesar; Cho, Sunghee

    2014-01-01

    Monocytes/macrophages (MMs), mononuclear phagocytes, have been implicated in stroke-induced inflammation and injury. However, the presence of pro-inflammatory Ly-6Chigh and antiinflammatory Ly-6Clow monocyte subsets raises uncertainty regarding their role in stroke pathologic assessment. With recent identification of the spleen as an immediate reservoir of MMs, this current study addresses whether the spleen-derived MMs are required for stroke pathologic assessment. We observed that the spleen was contracted in poststroke animals and the contraction was accompanied by decreased number of Ly-6Chigh and Ly-6Clow subsets in the spleen. The deployment of these subsets from the spleen temporally coincided with respective increases in the ischemic brain. Compared to mice with the spleen, mice receiving a splenectomy just before the stroke displayed less accumulation of Ly-6Chigh and Ly-6Clow MMs in the brain. Despite the reduced accumulation of both subsets, infarct size and swelling were not reduced in the asplenic mice. The dissociative findings of infarct size and extent of MM infiltration in the postischemic brain indicate minimal involvement of spleen-derived total MMs in acute infarct development. Selective Ly-6Chigh or Ly-6Clow MM targeting is suggested to address the contribution of the individual subset to acute stroke pathologic assessment. PMID:24865998

  15. NADPH oxidase 4 deficiency increases tubular cell death during acute ischemic reperfusion injury

    PubMed Central

    Nlandu-Khodo, Stellor; Dissard, Romain; Hasler, Udo; Schäfer, Matthias; Pircher, Haymo; Jansen-Durr, Pidder; Krause, Karl Heinz; Martin, Pierre-Yves; de Seigneux, Sophie

    2016-01-01

    NADPH oxidase 4 (NOX4) is highly expressed in kidney proximal tubular cells. NOX4 constitutively produces hydrogen peroxide, which may regulate important pro-survival pathways. Renal ischemia reperfusion injury (IRI) is a classical model mimicking human ischemic acute tubular necrosis. We hypothesized that NOX4 plays a protective role in kidney IRI. In wild type (WT) animals subjected to IRI, NOX4 protein expression increased after 24 hours. NOX4 KO (knock-out) and WT littermates mice were subjected to IRI. NOX4 KO mice displayed decreased renal function and more severe tubular apoptosis, decreased Bcl-2 expression and higher histologic damage scores compared to WT. Activation of NRF2 was decreased in NOX4 KO mice in response to IRI. This was related to decreased KEAP1 oxidation leading to decreased NRF2 stabilization. This resulted in decreased glutathione levels. In vitro silencing of NOX4 in cells showed an enhanced propensity to apoptosis, with reduced expression of NRF2, glutathione content and Bcl-2 expression, similar to cells derived from NOX4 KO mice. Overexpression of a constitutively active form of NRF2 (caNRF2) in NOX4 depleted cells rescued most of this phenotype in cultured cells, implying that NRF2 regulation by ROS issued from NOX4 may play an important role in its anti-apoptotic property. PMID:27924932

  16. Neuroinflammation and Neuroimmune Dysregulation after Acute Hypoxic-Ischemic Injury of Developing Brain

    PubMed Central

    Bhalala, Utpal S.; Koehler, Raymond C.; Kannan, Sujatha

    2015-01-01

    Hypoxic-ischemic (HI) injury to developing brain results from birth asphyxia in neonates and from cardiac arrest in infants and children. It is associated with varying degrees of neurologic sequelae, depending upon the severity and length of HI. Global HI triggers a series of cellular and biochemical pathways that lead to neuronal injury. One of the key cellular pathways of neuronal injury is inflammation. The inflammatory cascade comprises activation and migration of microglia – the so-called “brain macrophages,” infiltration of peripheral macrophages into the brain, and release of cytotoxic and proinflammatory cytokines. In this article, we review the inflammatory and immune mechanisms of secondary neuronal injury after global HI injury to developing brain. Specifically, we highlight the current literature on microglial activation in relation to neuronal injury, proinflammatory and anti-inflammatory/restorative pathways, the role of peripheral immune cells, and the potential use of immunomodulators as neuroprotective compounds. PMID:25642419

  17. ST2/IL-33-Dependent Microglial Response Limits Acute Ischemic Brain Injury.

    PubMed

    Yang, Yuanyuan; Liu, Huan; Zhang, Haiyue; Ye, Qing; Wang, Jianyi; Yang, Boyu; Mao, Leilei; Zhu, Wen; Leak, Rehana K; Xiao, Bo; Lu, Binfeng; Chen, Jun; Hu, Xiaoming

    2017-04-07

    ST2, a member of the interleukin 1 receptor family, and its ligand interleukin 33 (IL-33) play critical roles in immune regulation and inflammatory responses. This study explores the roles of endogenous IL-33/ST2 signaling in ischemic brain injury and elucidates the underlying mechanisms of action. The expression of IL-33 rapidly increased in oligodendrocytes and astrocytes after 60 min transient middle cerebral artery occlusion (tMCAO). ST2 receptor deficiency exacerbated brain infarction 3d after tMCAO as well as distal permanent MCAO. ST2 deficiency also aggravated neurological deficits up to 7d after tMCAO. Conversely, intracerebroventricular infusions of IL-33 after tMCAO attenuated brain infarction. Flow cytometry analyses demonstrated high levels of ST2 expression on microglia, and this expression was dramatically enhanced after tMCAO. The absence of ST2 enhanced the expression of M1 polarization markers on microglia/macrophages, and impaired the expression of M2 polarization markers after tMCAO. In vitro studies on various types of cultures and co-culture systems confirmed that IL-33/ST2 signaling potentiated expression of IL-10 and other M2 genes in primary microglia. The activation of ST2 on microglia led to a protective phenotype that enhanced neuronal survival against oxygen glucose deprivation (OGD). Further in vitro studies revealed that IL-33-activated microglia released IL-10, and that this was critical for their neuroprotective effects. Similarly, intracerebroventricular infusions of IL-33 into IL-10 knockout mice failed to provide neuroprotection against tMCAO in vivo These results shed new light on the IL-33/ST2 axis as an immune regulatory mechanism that serves as a natural brake on the progression of ischemic brain injury.Significance:This is the first study to identify the function of IL-33/ST2 signaling in post-stroke microglial responses and neuroprotection against ischemia. Using two models of ischemic stroke, we demonstrate here that ST2

  18. Dibucaine Mitigates Spreading Depolarization in Human Neocortical Slices and Prevents Acute Dendritic Injury in the Ischemic Rodent Neocortex

    PubMed Central

    Risher, W. Christopher; Lee, Mark R.; Fomitcheva, Ioulia V.; Hess, David C.; Kirov, Sergei A.

    2011-01-01

    Background Spreading depolarizations that occur in patients with malignant stroke, subarachnoid/intracranial hemorrhage, and traumatic brain injury are known to facilitate neuronal damage in metabolically compromised brain tissue. The dramatic failure of brain ion homeostasis caused by propagating spreading depolarizations results in neuronal and astroglial swelling. In essence, swelling is the initial response and a sign of the acute neuronal injury that follows if energy deprivation is maintained. Choosing spreading depolarizations as a target for therapeutic intervention, we have used human brain slices and in vivo real-time two-photon laser scanning microscopy in the mouse neocortex to study potentially useful therapeutics against spreading depolarization-induced injury. Methodology/Principal Findings We have shown that anoxic or terminal depolarization, a spreading depolarization wave ignited in the ischemic core where neurons cannot repolarize, can be evoked in human slices from pediatric brains during simulated ischemia induced by oxygen/glucose deprivation or by exposure to ouabain. Changes in light transmittance (LT) tracked terminal depolarization in time and space. Though spreading depolarizations are notoriously difficult to block, terminal depolarization onset was delayed by dibucaine, a local amide anesthetic and sodium channel blocker. Remarkably, the occurrence of ouabain-induced terminal depolarization was delayed at a concentration of 1 µM that preserves synaptic function. Moreover, in vivo two-photon imaging in the penumbra revealed that, though spreading depolarizations did still occur, spreading depolarization-induced dendritic injury was inhibited by dibucaine administered intravenously at 2.5 mg/kg in a mouse stroke model. Conclusions/Significance Dibucaine mitigated the effects of spreading depolarization at a concentration that could be well-tolerated therapeutically. Hence, dibucaine is a promising candidate to protect the brain from

  19. Acute ischemic stroke update.

    PubMed

    Baldwin, Kathleen; Orr, Sean; Briand, Mary; Piazza, Carolyn; Veydt, Annita; McCoy, Stacey

    2010-05-01

    Stroke is the third most common cause of death in the United States and is the number one cause of long-term disability. Legislative mandates, largely the result of the American Heart Association, American Stroke Association, and Brain Attack Coalition working cooperatively, have resulted in nationwide standardization of care for patients who experience a stroke. Transport to a skilled facility that can provide optimal care, including immediate treatment to halt or reverse the damage caused by stroke, must occur swiftly. Admission to a certified stroke center is recommended for improving outcomes. Most strokes are ischemic in nature. Acute ischemic stroke is a heterogeneous group of vascular diseases, which makes targeted treatment challenging. To provide a thorough review of the literature since the 2007 acute ischemic stroke guidelines were developed, we performed a search of the MEDLINE database (January 1, 2004-July 1, 2009) for relevant English-language studies. Results (through July 1, 2009) from clinical trials included in the Internet Stroke Center registry were also accessed. Results from several pivotal studies have contributed to our knowledge of stroke. Additional data support the efficacy and safety of intravenous alteplase, the standard of care for acute ischemic stroke since 1995. Due to these study results, the American Stroke Association changed its recommendation to extend the time window for administration of intravenous alteplase from within 3 hours to 4.5 hours of symptom onset; this recommendation enables many more patients to receive the drug. Other findings included clinically useful biomarkers, the role of inflammation and infection, an expanded role for placement of intracranial stents, a reduced role for urgent carotid endarterectomy, alternative treatments for large-vessel disease, identification of nontraditional risk factors, including risk factors for women, and newly published pediatric stroke guidelines. In addition, new devices for

  20. The ischemic/nephrotoxic acute kidney injury and the use of renal biomarkers in clinical practice.

    PubMed

    Andreucci, Michele; Faga, Teresa; Pisani, Antonio; Perticone, Maria; Michael, Ashour

    2017-04-01

    The term Acute Renal Failure (ARF) has been replaced by the term Acute Kidney Injury (AKI). AKI indicates an abrupt (within 24-48h) decrease in Glomerular Filtraton Rate, due to renal damage, that causes fluid and metabolic waste retention and alteration of electrolyte and acid-base balance. The renal biomarkers of AKI are substances or processes that are indicators of normal or impaired function of the kidney. The most used renal biomarker is still serum creatinine that is inadequate for several reasons, one of which is its inability to differentiate between hemodynamic changes of renal function ("prerenal azotemia") from intrinsic renal failure or obstructive nephropathy. Cystatin C is no better in this respect. After the description of the pathophysiology of "prerenal azotemia" and of Acute Kidney Injury (AKI) due to ischemia or nephrotoxicity, the renal biomarkers are listed and described: urinary NAG, urinary and serum KIM-1, serum and urinary NGAL, urinary IL-18, urinary L-FABP, serum Midkine, urinary IGFBP7 and TIMP2, urinary α-GST and π-GST, urinary ɣGT and AP, urinary β2M, urinary RBP, serum and urinary miRNA. All have been shown to appear much earlier than the rise of serum Creatinine. Some of them have been demonstrated to predict the clinical outcomes of AKI, such as the need for initiation of dialysis and mortality.

  1. Vitamin D deficiency contributes to vascular damage in sustained ischemic acute kidney injury.

    PubMed

    de Bragança, Ana C; Volpini, Rildo A; Mehrotra, Purvi; Andrade, Lúcia; Basile, David P

    2016-07-01

    Reductions in renal microvasculature density and increased lymphocyte activity may play critical roles in the progression of chronic kidney disease (CKD) following acute kidney injury (AKI) induced by ischemia/reperfusion injury (IRI). Vitamin D deficiency is associated with tubulointerstitial damage and fibrosis progression following IRI-AKI We evaluated the effect of vitamin D deficiency in sustained IRI-AKI, hypothesizing that such deficiency contributes to the early reduction in renal capillary density or alters the lymphocyte response to IRI Wistar rats were fed vitamin D-free or standard diets for 35 days. On day 28, rats were randomized into four groups: control, vitamin D deficient (VDD), bilateral IRI, and VDD+IRI Indices of renal injury and recovery were evaluated for up to 7 days following the surgical procedures. VDD rats showed reduced capillary density (by cablin staining), even in the absence of renal I/R. In comparison with VDD and IRI rats, VDD+IRI rats manifested a significant exacerbation of capillary rarefaction as well as higher urinary volume, kidney weight/body weight ratio, tissue injury scores, fibroblast-specific protein-1, and alpha-smooth muscle actin. VDD+IRI rats also had higher numbers of infiltrating activated CD4(+) and CD8(+) cells staining for interferon gamma and interleukin-17, with a significant elevation in the Th17/T-regulatory cell ratio. These data suggest that vitamin D deficiency impairs renal repair responses to I/R injury, exacerbates changes in renal capillary density, as well as promoting fibrosis and inflammation, which may contribute to the transition from AKI to CKD.

  2. P2X7 receptor inhibition protects against ischemic acute kidney injury in mice.

    PubMed

    Yan, Yanli; Bai, Jianwen; Zhou, Xiaoxu; Tang, Jinhua; Jiang, Chunming; Tolbert, Evelyn; Bayliss, George; Gong, Rujun; Zhao, Ting C; Zhuang, Shougang

    2015-03-15

    Activation of the purinergic P2X7 receptor (P2X7R) has been associated with the development of experimental nephritis and diabetic and hypertensive nephropathy. However, its role in acute kidney injury (AKI) remains unknown. In this study, we examined the effects of P2X7R inhibition in a murine model of ischemia-reperfusion (I/R)-induced AKI using A438079, a selective inhibitor of P2X7R. At 24 h after I/R, mice developed renal dysfunction and renal tubular damage, which was accompanied by elevated expression of P2X7R. Early administration of A438079 immediately or 6 h after the onset of reperfusion protected against renal dysfunction and attenuated kidney damage whereas delayed administration of A438079 at 24 h after restoration of perfusion had no protective effects. The protective actions of A438079 were associated with inhibition of renal tubule injury and cell death and suppression of renal expression of monocyte chemotactic protein-1 and regulated upon expression normal T cell expressed and secreted (RANTES). Moreover, I/R injury led to an increase in phosphorylation (activation) of extracellular signal-regulated kinases 1/2 in the kidney; treatment with A438079 diminished this response. Collectively, these results indicate that early P2X7R inhibition is effective against renal tubule injury and proinflammatory response after I/R injury and suggest that targeting P2X7R may be a promising therapeutic strategy for treatment of AKI.

  3. Acute hepatic ischemic-reperfusion injury induces a renal cortical "stress response," renal "cytoresistance," and an endotoxin hyperresponsive state.

    PubMed

    Zager, Richard A; Johnson, Ali C M; Frostad, Kirsten B

    2014-10-01

    Hepatic ischemic-reperfusion injury (HIRI) is considered a risk factor for clinical acute kidney injury (AKI). However, HIRI's impact on renal tubular cell homeostasis and subsequent injury responses remain ill-defined. To explore this issue, 30-45 min of partial HIRI was induced in CD-1 mice. Sham-operated or normal mice served as controls. Renal changes and superimposed injury responses (glycerol-induced AKI; endotoxemia) were assessed 2-18 h later. HIRI induced mild azotemia (blood urea nitrogen ∼45 mg/dl) in the absence of renal histologic injury or proteinuria, implying a "prerenal" state. However, marked renal cortical, and isolated proximal tubule, cytoprotective "stress protein" gene induction (neutrophil gelatinase-associated lipocalin, heme oxygenase-1, hemopexin, hepcidin), and increased Toll-like receptor 4 (TLR4) expression resulted (protein/mRNA levels). Ischemia caused release of hepatic heme-based proteins (e.g., cytochrome c) into the circulation. This corresponded with renal cortical oxidant stress (malondialdehyde increases). That hepatic derived factors can evoke redox-sensitive "stress protein" induction was implied by the following: peritoneal dialysate from HIRI mice, soluble hepatic extract, or exogenous cytochrome c each induced the above stress protein(s) either in vivo or in cultured tubule cells. Functional significance of HIRI-induced renal "preconditioning" was indicated by the following: 1) HIRI conferred virtually complete morphologic protection against glycerol-induced AKI (in the absence of hyperbilirubinemia) and 2) HIRI-induced TLR4 upregulation led to a renal endotoxin hyperresponsive state (excess TNF-α/MCP-1 gene induction). In conclusion, HIRI can evoke "renal preconditioning," likely due, in part, to hepatic release of pro-oxidant factors (e.g., cytochrome c) into the systemic circulation. The resulting renal changes can impact subsequent AKI susceptibility and TLR4 pathway-mediated stress.

  4. A neuronal population in hypothalamus that dramatically resists acute ischemic injury compared to neocortex.

    PubMed

    Brisson, C Devin; Andrew, R David

    2012-07-01

    Pyramidal neurons (PyNs) of the cortex are highly susceptible to acute stroke damage, yet "lower" brain regions like hypothalamus and brain stem better survive global ischemia. Here we show for the first time that a "lower" neuron population intrinsically resists acute strokelike injury. In rat brain slices deprived of oxygen and glucose (OGD), we imaged anoxic depolarization (AD) as it propagated through neocortex or hypothalamus. AD, the initial electrophysiological event of stroke, is a front of depolarization that drains residual energy in compromised gray matter. The extent of AD reliably determines ensuing cortical damage, but do all CNS neurons generate a robust AD? During 10 min of OGD, PyNs depolarize without functional recovery. In contrast, magnocellular neuroendocrine cells (MNCs) in hypothalamus under identical stress generate a weak and delayed AD, resist complete depolarization, and rapidly repolarize when oxygen and glucose are restored. They recover their membrane potential, input resistance, and spike amplitude and can survive multiple OGD exposures. Two-photon microscopy in slices derived from a fluorescent mouse line confirms this protection, revealing PyN swelling and dendritic beading after OGD, whereas MNCs are not injured. Exposure to the Na(+)-K(+)-ATPase inhibitor ouabain (100 μM) induces AD similar to OGD in both cell types. Moreover, elevated extracellular K(+) concentration ([K(+)](o)) evokes spreading depression (SD), a milder version of AD, in PyNs but not MNCs. Therefore overriding the pump by OGD, ouabain, or elevated [K(+)](o) evokes a propagating depolarization in higher gray matter but not in MNCs. We suggest that variation in Na(+)-K(+)-ATPase pump efficiency during ischemia injury determines whether a neuronal type succumbs to or resists stroke.

  5. [Cerebrolysin for acute ischemic stroke].

    PubMed

    iganshina, L E; Abakumova, T R

    2013-01-01

    The review discusses existing evidence of benefits and risks of cerebrolysin--a mixture of low-molecular-weight peptides and amino acids derived from pigs' brain tissue with proposed neuroprotective and neurotrophic properties, for acute ischemic stroke. The review presents results of systematic search and analysis of randomised clinical trials comparing cerebrolysin with placebo in patients with acute ischemic stroke. Only one trial was selected as meeting quality criteria. No difference in death and adverse events between cerebrolysin and placebo was established. The authors conclude about insufficiency of evidence to evaluate the effect of cerebrolysin on survival and dependency in people with acute ischemic stroke.

  6. Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury

    SciTech Connect

    Chen, Lijuan; Wang, Yingjie; Pan, Yaohua; Zhang, Lan; Shen, Chengxing; Qin, Gangjian; Ashraf, Muhammad; Weintraub, Neal; Ma, Genshan; Tang, Yaoliang

    2013-02-15

    Highlights: ► Cardiac progenitor-derived (CPC) Exosomes protect H9C2 from apoptosis in vitro. ► CPC-exosomes protect cardiomyoyctes from MI/R induced apoptosis in vivo. ► CPC-exosomes were taken up by H9C2 with high efficiency using PKH26 labeling. ► miR-451, one of GATA4-responsive miRNA cluster, is enriched in CPC-exosomes. -- Abstract: Background: Cardiac progenitors (CPC) mediate cardioprotection via paracrine effects. To date, most of studies focused on secreted paracrine proteins. Here we investigated the CPC-derived-exosomes on protecting myocardium from acute ischemia/reperfusion (MI/R) injury. Methods and results: CPC were isolated from mouse heart using two-step protocol. Exosomes were purified from conditional medium, and confirmed by electron micrograph and Western blot using CD63 as a marker. qRT-PCR shows that CPC-exosomes have high level expression of GATA4-responsive-miR-451. Exosomes were ex vivo labeled with PKH26, We observed exosomes can be uptaken by H9C2 cardiomyoblasts with high efficiency after 12 h incubation. CPC-exosomes protect H9C2 from oxidative stress by inhibiting caspase 3/7 activation invitro. In vivo delivery of CPC-exosomes in an acute mouse myocardial ischemia/reperfusion model inhibited cardiomyocyte apoptosis by about 53% in comparison with PBS control (p < 0.05). Conclusion: Our results suggest, for the first time, the CPC-exosomes can be used as a therapeutic vehicle for cardioprotection, and highlights a new perspective for using non-cell exosomes for cardiac disease.

  7. Remote Ischemic Preconditioning for the Prevention of Contrast-Induced Acute Kidney Injury in Diabetics Receiving Elective Percutaneous Coronary Intervention

    PubMed Central

    Balbir Singh, Gillian; Ann, Soe Hee; Park, Jongha; Chung, Hyun Chul; Lee, Jong Soo; Kim, Eun-Sook; Choi, Jung Il; Lee, Jiho; Kim, Shin-Jae; Shin, Eun-Seok

    2016-01-01

    Objective Remote ischemic preconditioning (RIPC) induces transient episodes of ischemia by the occlusion of blood flow in non-target tissue, before a subsequent ischemia-reperfusion injury. When RIPC is applied before percutaneous coronary intervention (PCI), the kidneys may be protected against ischemia-reperfusion injury and subsequently contrast-induced acute kidney injury (CI-AKI). The aim of this study was to evaluate the efficacy of RIPC for the prevention of CI-AKI in patients with diabetes with pre-existing chronic kidney disease (CKD) undergoing elective PCI. Methods This randomized, double-blind, sham-controlled study enrolled patients with diabetes scheduled for elective PCI with eGFR ≤60 ml/min/1.73 m2 or urinary albumin creatinine ratio of >300 mg/g to receive either RIPC or the sham ischemic preconditioning. Results One hundred and two patients (68.9 ± 8.2 years old, 47.1% men) were included. Baseline eGFR, creatinine and serum NGAL was similar between RIPC and control groups (48.5 ± 12 ml/min vs. 46.6 ± 10 ml/min, p = 0.391; 1.42 ± 0.58 mg/dl vs. 1.41 ± 0.34 mg/dl, p = 0.924; and 136.0 ± 45.0 ng/ml vs. 137.6 ± 43.3 ng/ml, p = 0.961, respectively). CI-AKI occurred in 13.7% (14/102) of the total subjects, with both RIPC and control groups having an equal incidence of 13.7% (7/51). No significant differences were seen in creatinine, NGAL, cardiac enzymes (troponin T, CKMB) and hs-CRP between the groups post-procedure. Conclusions In this study, RIPC applied prior to elective PCI was not effective in preventing CI-AKI in patients with diabetes with pre-existing CKD. Trial Registration ClinicalTrials.gov NCT02329444 PMID:27723839

  8. Acute foot drop syndrome mimicking peroneal nerve injury: an atypical presentation of ischemic stroke.

    PubMed

    Ricarte, Irapuá Ferreira; Figueiredo, Marcelo Marinho de; Fukuda, Thiago Gonçalves; Pedroso, José Luiz; Silva, Gisele Sampaio

    2014-01-01

    Foot drop syndrome is a frequent neurologic condition usually caused by peroneal nerve damage. On rare occasions, foot drop may present as the single neurologic manifestation of intracranial lesions. We presented a 43-year-old man admitted to our hospital with acute weakness in the dorsiflexion of his right foot that appeared 3 days before admission. Brain magnetic resonance imaging diffusion-weighted sequence revealed a small area of restricted diffusion in the left frontal cortex. Three months later, his motor deficit had completely improved (modified Rankin scale score = 0). To our knowledge, this is the second report of sudden isolated foot drop caused by a cortical infarction.

  9. Intravenous Administration of Cilostazol Nanoparticles Ameliorates Acute Ischemic Stroke in a Cerebral Ischemia/Reperfusion-Induced Injury Model

    PubMed Central

    Nagai, Noriaki; Yoshioka, Chiaki; Ito, Yoshimasa; Funakami, Yoshinori; Nishikawa, Hiroyuki; Kawabata, Atsufumi

    2015-01-01

    It was reported that cilostazol (CLZ) suppressed disruption of the microvasculature in ischemic areas. In this study, we have designed novel injection formulations containing CLZ nanoparticles using 0.5% methylcellulose, 0.2% docusate sodium salt, and mill methods (CLZnano dispersion; particle size 81 ± 59 nm, mean ± S.D.), and investigated their toxicity and usefulness in a cerebral ischemia/reperfusion-induced injury model (MCAO/reperfusion mice). The pharmacokinetics of injections of CLZnano dispersions is similar to that of CLZ solutions prepared with 2-hydroxypropyl-β-cyclodextrin, and no changes in the rate of hemolysis of rabbit red blood cells, a model of cell injury, were observed with CLZnano dispersions. In addition, the intravenous injection of 0.6 mg/kg CLZnano dispersions does not affect the blood pressure and blood flow, and the 0.6 mg/kg CLZnano dispersions ameliorate neurological deficits and ischemic stroke in MCAO/reperfusion mice. It is possible that the CLZnano dispersions will provide effective therapy for ischemic stroke patients, and that injection preparations of lipophilic drugs containing drug nanoparticles expand their therapeutic usage. PMID:26690139

  10. Determinants of alternate-level-of-care delayed discharge among acute care survivors of hypoxic-ischemic brain injury: a population-based cohort study

    PubMed Central

    Stock, David; Cowie, Cassandra; Chan, Vincy; Colantonio, Angela; Wodchis, Walter P.; Alter, David; Cullen, Nora

    2016-01-01

    Background: Delayed discharge, captured as alternate-level-of-care days, represents inefficient use of high-demand acute care resources and results in potentially poorer patient outcomes. We performed a study to determine the extent of alternate-level-of-care days among patients who survived hypoxic-ischemic brain injury in inpatient hospital care in Ontario and to identify predictors of alternate-level-of-care use in this population. Methods: A population-based cohort of acute care survivors of hypoxic-ischemic brain injury aged 20 years or more from 2002/03 through 2011/12 was identified. We used 2 case definitions, the more specific identifying patients with a most responsible diagnosis of "anoxic brain damage," and the more sensitive capturing additional likely causative conditions as the most responsible diagnosis. Multivariable zero-inflated negative binomial regression was used to estimate independent effects on the relative incidence of alternate-level-of-care days. Results: We identified 491 patients using the specific case definition and 669 patients using the extended case definition. After deaths were excluded, 232 patients (47.2%) and 278 patients (41.6%), respectively, had at least 1 alternate-level-of-care day (median 20 and 19 d, respectively). In both cohorts, decreasing age, no special care unit hours and acute care episode earlier in the study period were predictive of increased alternate-level-of-care days relative to length of stay. Discharge disposition and psychiatric/behavioural comorbidity were most predictive of having any alternate-level-of-care days. Interpretation: Patients with hypoxic-ischemic brain injury had a greater proportion of alternate-level-of-care days than has been reported for patients with other types of acquired brain injury. This finding suggests that substantial barriers to appropriate discharge exist for this population. Predictors of increased alternate-level-of-care days were also shown to be unique. Further study

  11. Preserved Collateral Blood Flow in the Endovascular M2CAO Model Allows for Clinically Relevant Profiling of Injury Progression in Acute Ischemic Stroke

    PubMed Central

    Little, Philip; Kvist, Ola; Grankvist, Rikard; Jonsson, Stefan; Damberg, Peter; Söderman, Michael; Arnberg, Fabian; Holmin, Staffan

    2017-01-01

    Interventional treatment regimens have increased the demand for accurate understanding of the progression of injury in acute ischemic stroke. However, conventional animal models severely inhibit collateral blood flow and mimic the malignant infarction profile not suitable for treatment. The aim of this study was to provide a clinically relevant profile of the emergence and course of ischemic injury in cases suitable for acute intervention, and was achieved by employing a M2 occlusion model (M2CAO) that more accurately simulates middle cerebral artery (MCA) occlusion in humans. Twenty-five Sprague-Dawley rats were subjected to Short (90 min), Intermediate (180 min) or Extended (600 min) transient M2CAO and examined longitudinally with interleaved diffusion-, T2- and arterial spin labeling perfusion-weighted magnetic resonance imaging before and after reperfusion. We identified a rapid emergence of cytotoxic edema within tissue regions undergoing infarction, progressing in several distinct phases in the form of subsequent moderation and then reversal at 230 min (p < 0.0001). We identified also the early emergence of vasogenic edema, which increased consistently before and after reperfusion (p < 0.0001). The perfusion of the penumbra correlated more strongly to the perfusion of adjacent tissue regions than did the perfusion of regions undergoing infarction (p = 0.0088). This was interpreted as an effect of preserved collateral blood flow during M2CAO. Accordingly, we observed only limited recruitment of penumbra regions to the infarction core. However, a gradual increase in infarction size was still occurring as late as 10 hours after M2CAO. Our results indicate that patients suffering MCA branch occlusion stand to benefit from interventional therapy for an extended time period after the emergence of ischemic injury. PMID:28068417

  12. Ischemic Tissue Injury in the Dorsal Skinfold Chamber of the Mouse: A Skin Flap Model to Investigate Acute Persistent Ischemia

    PubMed Central

    Harder, Yves; Schmauss, Daniel; Wettstein, Reto; Egaña, José T.; Weiss, Fabian; Weinzierl, Andrea; Schuldt, Anna; Machens, Hans-Günther; Menger, Michael D.; Rezaeian, Farid

    2014-01-01

    Despite profound expertise and advanced surgical techniques, ischemia-induced complications ranging from wound breakdown to extensive tissue necrosis are still occurring, particularly in reconstructive flap surgery. Multiple experimental flap models have been developed to analyze underlying causes and mechanisms and to investigate treatment strategies to prevent ischemic complications. The limiting factor of most models is the lacking possibility to directly and repetitively visualize microvascular architecture and hemodynamics. The goal of the protocol was to present a well-established mouse model affiliating these before mentioned lacking elements. Harder et al. have developed a model of a musculocutaneous flap with a random perfusion pattern that undergoes acute persistent ischemia and results in ~50% necrosis after 10 days if kept untreated. With the aid of intravital epi-fluorescence microscopy, this chamber model allows repetitive visualization of morphology and hemodynamics in different regions of interest over time. Associated processes such as apoptosis, inflammation, microvascular leakage and angiogenesis can be investigated and correlated to immunohistochemical and molecular protein assays. To date, the model has proven feasibility and reproducibility in several published experimental studies investigating the effect of pre-, peri- and postconditioning of ischemically challenged tissue. PMID:25489743

  13. Role of inflammation and its mediators in acute ischemic stroke

    PubMed Central

    Jin, Rong; Liu, Lin; Zhang, Shihao; Nanda, Anil; Li, Guohong

    2013-01-01

    Inflammation plays an important role in the pathogenesis of ischemic stroke and other forms of ischemic brain injury. Increasing evidence suggests that inflammatory response is a double-edged sword, as it not only exacerbates secondary brain injury in the acute stage of stroke but also beneficially contributes to brain recovery after stroke. In this article, we provide an overview on the role of inflammation and its mediators in acute ischemic stroke. We discuss various pro-inflammatory and anti-inflammatory responses in different phases after ischemic stroke and the possible reasons for their failures in clinical trials. Undoubtedly, there is still much to be done in order to translate promising pre-clinical findings into clinical practice. A better understanding of the dynamic balance between pro- and anti-inflammatory responses and identifying the discrepancies between pre-clinical studies and clinical trials may serve as a basis for designing effective therapies. PMID:24006091

  14. Role of Cystathionine Gamma-Lyase in Immediate Renal Impairment and Inflammatory Response in Acute Ischemic Kidney Injury

    PubMed Central

    Markó, Lajos; Szijártó, István A.; Filipovic, Milos R.; Kaßmann, Mario; Balogh, András; Park, Joon-Keun; Przybyl, Lukasz; N’diaye, Gabriele; Krämer, Stephanie; Anders, Juliane; Ishii, Isao; Müller, Dominik N.; Gollasch, Maik

    2016-01-01

    Hydrogen sulfide (H2S) is known to act protectively during renal ischemia/reperfusion injury (IRI). However, the role of the endogenous H2S in acute kidney injury (AKI) is largely unclear. Here, we analyzed the role of cystathionine gamma-lyase (CTH) in acute renal IRI using CTH-deficient (Cth−/−) mice whose renal H2S levels were approximately 50% of control (wild-type) mice. Although levels of serum creatinine and renal expression of AKI marker proteins were equivalent between Cth−/− and control mice, histological analysis revealed that IRI caused less renal tubular damage in Cth−/− mice. Flow cytometric analysis revealed that renal population of infiltrated granulocytes/macrophages was equivalent in these mice. However, renal expression levels of certain inflammatory cytokines/adhesion molecules believed to play a role in IRI were found to be lower after IRI only in Cth−/− mice. Our results indicate that the systemic CTH loss does not deteriorate but rather ameliorates the immediate AKI outcome probably due to reduced inflammatory responses in the kidney. The renal expression of CTH and other H2S-producing enzymes was markedly suppressed after IRI, which could be an integrated adaptive response for renal cell protection. PMID:27273292

  15. Optimizing Mouse Surgery with Online Rectal Temperature Monitoring and Preoperative Heat Supply. Effects on Post-Ischemic Acute Kidney Injury.

    PubMed

    Marschner, Julian A; Schäfer, Hannah; Holderied, Alexander; Anders, Hans-Joachim

    2016-01-01

    Body temperature affects outcomes of tissue injury. We hypothesized that online body core temperature recording and selective interventions help to standardize peri-interventional temperature control and the reliability of outcomes in experimental renal ischemia reperfusion injury (IRI). We recorded core temperature in up to seven mice in parallel using a Thermes USB recorder and ret-3-iso rectal probes with three different protocols. Setup A: Heating pad during ischemia time; Setup B: Heating pad from incision to wound closure; Setup C: A ventilated heating chamber before surgery and during ischemia time with surgeries performed on a heating pad. Temperature profile recording displayed significant declines upon installing anesthesia. The profile of the baseline experimental setup A revealed that <1% of the temperature readings were within the target range of 36.5 to 38.5°C. Setup B and C increased the target range readings to 34.6 ± 28.0% and 99.3 ± 1.5%, respectively. Setup C significantly increased S3 tubular necrosis, neutrophil influx, and mRNA expression of kidney injury markers. In addition, using setup C different ischemia times generated a linear correlation with acute tubular necrosis parameters at a low variability, which further correlated with the degree of kidney atrophy 5 weeks after surgery. Changing temperature control setup A to C was equivalent to 10 minutes more ischemia time. We conclude that body temperature drops quickly in mice upon initiating anesthesia. Immediate heat supply, e.g. in a ventilated heating chamber, and online core temperature monitoring can help to standardize and optimize experimental outcomes.

  16. Meclofenamate elicits a nephropreventing effect in a rat model of ischemic acute kidney injury by suppressing indoxyl sulfate production and restoring renal organic anion transporters

    PubMed Central

    Saigo, Chika; Nomura, Yui; Yamamoto, Yuko; Sagata, Masataka; Matsunaga, Rika; Jono, Hirofumi; Nishi, Kazuhiko; Saito, Hideyuki

    2014-01-01

    ischemic acute kidney injury. PMID:25143712

  17. Ischemic brain injury in cerebral amyloid angiopathy

    PubMed Central

    van Veluw, Susanne J; Greenberg, Steven M

    2016-01-01

    Cerebral amyloid angiopathy (CAA) is a common form of cerebral small vessel disease and an important risk factor for intracerebral hemorrhage and cognitive impairment. While the majority of research has focused on the hemorrhagic manifestation of CAA, its ischemic manifestations appear to have substantial clinical relevance as well. Findings from imaging and pathologic studies indicate that ischemic lesions are common in CAA, including white-matter hyperintensities, microinfarcts, and microstructural tissue abnormalities as detected with diffusion tensor imaging. Furthermore, imaging markers of ischemic disease show a robust association with cognition, independent of age, hemorrhagic lesions, and traditional vascular risk factors. Widespread ischemic tissue injury may affect cognition by disrupting white-matter connectivity, thereby hampering communication between brain regions. Challenges are to identify imaging markers that are able to capture widespread microvascular lesion burden in vivo and to further unravel the etiology of ischemic tissue injury by linking structural magnetic resonance imaging (MRI) abnormalities to their underlying pathophysiology and histopathology. A better understanding of the underlying mechanisms of ischemic brain injury in CAA will be a key step toward new interventions to improve long-term cognitive outcomes for patients with CAA. PMID:25944592

  18. Spectroscopic monitoring of kidney tissue ischemic injury

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Jason T.; Michalopoulou, Andromachi P.; Troppmann, Christoph; Demos, Stavros G.

    2004-07-01

    Noninvasive evaluation of tissue viability of donor kidneys used for transplantation is an issue that current technology is not able to address. In this work, we explore optical spectroscopy for its potential to assess the degree of ischemic damage in kidney tissue. We hypothesized that ischemic damage to kidney tissue will give rise to changes in its optical properties which in turn may be used to asses the degree of tissue injury. The experimental results demonstrate that the autofluorescence intensity of the injured kidney is decreasing as a function of time exposed to ischemic injury. Changes were also observed in the NIR light scattering intensities most probably arising from changes due to injury and death of the tissue.

  19. Spectroscopic Monitoring of Kidney Tissue Ischemic Injury

    SciTech Connect

    Demos, S G; Fitzgerald, J T; Michalopoulou, A P; Troppmann, C

    2004-03-11

    Noninvasive evaluation of tissue viability of donor kidneys used for transplantation is an issue that current technology is not able to address. In this work, we explore optical spectroscopy for its potential to assess the degree of ischemic damage in kidney tissue. We hypothesized that ischemic damage to kidney tissue will give rise to changes in its optical properties which in turn may be used to asses the degree of tissue injury. The experimental results demonstrate that the autofluorescence intensity of the injured kidney is decreasing as a function of time exposed to ischemic injury. Changes were also observed in the NIR light scattering intensities most probably arising from changes due to injury and death of the tissue.

  20. Lebetin 2, a Snake Venom-Derived Natriuretic Peptide, Attenuates Acute Myocardial Ischemic Injury through the Modulation of Mitochondrial Permeability Transition Pore at the Time of Reperfusion

    PubMed Central

    Tourki, Bochra; Matéo, Philippe; Morand, Jessica; Elayeb, Mohamed; Godin-Ribuot, Diane; Marrakchi, Naziha; Belaidi, Elise; Messadi, Erij

    2016-01-01

    Cardiac ischemia is one of the leading causes of death worldwide. It is now well established that natriuretic peptides can attenuate the development of irreversible ischemic injury during myocardial infarction. Lebetin 2 (L2) is a new discovered peptide isolated from Macrovipera lebetina venom with structural similarity to B-type natriuretic peptide (BNP). Our objectives were to define the acute cardioprotective actions of L2 in isolated Langendorff-perfused rat hearts after regional or global ischemia-reperfusion (IR). We studied infarct size, left ventricular contractile recovery, survival protein kinases and mitochondrial permeability transition pore (mPTP) opening in injured myocardium. L2 dosage was determined by preliminary experiments at its ability to induce cyclic guanosine monophosphate (cGMP) release without changing hemodynamic effects in normoxic hearts. L2 was found to be as effective as BNP in reducing infarct size after the induction of either regional or global IR. Both peptides equally improved contractile recovery after regional IR, but only L2 increased coronary flow and reduced severe contractile dysfunction after global ischemia. Cardioprotection afforded by L2 was abolished after isatin or 5-hydroxydecanote pretreatment suggesting the involvement of natriuretic peptide receptors and mitochondrial KATP (mitoKATP) channels in the L2-induced effects. L2 also increased survival protein expression in the reperfused myocardium as evidenced by phosphorylation of signaling pathways PKCε/ERK/GSK3β and PI3K/Akt/eNOS. IR induced mitochondrial pore opening, but this effect was markedly prevented by L2 treatment. These data show that L2 has strong cardioprotective effect in acute ischemia through stimulation of natriuretic peptide receptors. These beneficial effects are mediated, at least in part, by mitoKATP channel opening and downstream activated survival kinases, thus delaying mPTP opening and improving IR-induced mitochondrial dysfunction. PMID

  1. White matter injury in ischemic stroke.

    PubMed

    Wang, Yuan; Liu, Gang; Hong, Dandan; Chen, Fenghua; Ji, Xunming; Cao, Guodong

    2016-06-01

    Stroke is one of the major causes of disability and mortality worldwide. It is well known that ischemic stroke can cause gray matter injury. However, stroke also elicits profound white matter injury, a risk factor for higher stroke incidence and poor neurological outcomes. The majority of damage caused by stroke is located in subcortical regions and, remarkably, white matter occupies nearly half of the average infarct volume. Indeed, white matter is exquisitely vulnerable to ischemia and is often injured more severely than gray matter. Clinical symptoms related to white matter injury include cognitive dysfunction, emotional disorders, sensorimotor impairments, as well as urinary incontinence and pain, all of which are closely associated with destruction and remodeling of white matter connectivity. White matter injury can be noninvasively detected by MRI, which provides a three-dimensional assessment of its morphology, metabolism, and function. There is an urgent need for novel white matter therapies, as currently available strategies are limited to preclinical animal studies. Optimal protection against ischemic stroke will need to encompass the fortification of both gray and white matter. In this review, we discuss white matter injury after ischemic stroke, focusing on clinical features and tools, such as imaging, manifestation, and potential treatments. We also briefly discuss the pathophysiology of WMI and future research directions.

  2. Histone Deacetylases Exert Class-Specific Roles in Conditioning the Brain and Heart Against Acute Ischemic Injury

    PubMed Central

    Aune, Sverre E.; Herr, Daniel J.; Kutz, Craig J.; Menick, Donald R.

    2015-01-01

    Ischemia-reperfusion (IR) injury comprises a significant portion of morbidity and mortality from heart and brain diseases worldwide. This enduring clinical problem has inspired myriad reports in the scientific literature of experimental interventions seeking to elucidate the pathology of IR injury. Elective cardiac surgery presents perhaps the most viable scenario for protecting the heart and brain from IR injury due to the opportunity to condition the organs prior to insult. The physiological parameters for the preconditioning of vital organs prior to insult through mechanical and pharmacological maneuvers have been heavily examined. These investigations have revealed new insights into how preconditioning alters cellular responses to IR injury. However, the promise of preconditioning remains unfulfilled at the clinical level, and research seeking to implicate cell signals essential to this protection continues. Recent discoveries in molecular biology have revealed that gene expression can be controlled through posttranslational modifications, without altering the chemical structure of the genetic code. In this scenario, gene expression is repressed by enzymes that cause chromatin compaction through catalytic removal of acetyl moieties from lysine residues on histones. These enzymes, called histone deacetylases (HDACs), can be inhibited pharmacologically, leading to the de-repression of protective genes. The discovery that HDACs can also alter the function of non-histone proteins through posttranslational deacetylation has expanded the potential impact of HDAC inhibitors for the treatment of human disease. HDAC inhibitors have been applied in a very small number of experimental models of IR. However, the scientific literature contains an increasing number of reports demonstrating that HDACs converge on preconditioning signals in the cell. This review will describe the influence of HDACs on major preconditioning signaling pathways in the heart and brain. PMID

  3. Acute kidney injury during pregnancy.

    PubMed

    Van Hook, James W

    2014-12-01

    Acute kidney injury complicates the care of a relatively small number of pregnant and postpartum women. Several pregnancy-related disorders such as preeclampsia and thrombotic microangiopathies may produce acute kidney injury. Prerenal azotemia is another common cause of acute kidney injury in pregnancy. This manuscript will review pregnancy-associated acute kidney injury from a renal functional perspective. Pathophysiology of acute kidney injury will be reviewed. Specific conditions causing acute kidney injury and treatments will be compared.

  4. Aging has small effects on initial ischemic acute kidney injury development despite changing intrarenal immunologic micromilieu in mice.

    PubMed

    Jang, Hye Ryoun; Park, Ji Hyeon; Kwon, Ghee Young; Park, Jae Berm; Lee, Jung Eun; Kim, Dae Joong; Kim, Yoon-Goo; Kim, Sung Joo; Oh, Ha Young; Huh, Wooseong

    2016-02-15

    Inflammatory process mediated by innate and adaptive immune systems is a major pathogenic mechanism of renal ischemia-reperfusion injury (IRI). There are concerns that organ recipients may be at increased risk of developing IRI after receiving kidneys from elder donors. To reveal the effects of aging on the development of renal IRI, we compared the immunologic micromilieu of normal and postischemic kidneys from mice of three different ages (9 wk, 6 mo, and 12 mo). There was a higher number of total T cells, especially effector memory CD4/CD8 T cells, and regulatory T cells in the normal kidneys of old mice. On day 2 after IRI, the proportion of necrotic tubules and renal functional changes were comparable between groups although old mice had a higher proportion of damaged tubule compared with young mice. More T cells, but less B cells, trafficked into the postischemic kidneys of old mice. The infiltration of NK T cells was similar across the groups. Macrophages and neutrophils were comparable between groups in both normal kidneys and postischemic kidneys. The intrarenal expressions of TNF-α and VEGF were decreased in normal and postischemic kidneys of aged mice. These mixed effects of aging on lymphocytes and cytokines/chemokines were not different between the two groups of old mice. Our study demonstrates that aging alters the intrarenal micromilieu but has small effects on the development of initial renal injury after IRI. Further study investigating aging-dependent differences in the repair process of renal IRI may be required.

  5. [Acute radiation injury].

    PubMed

    Saito, Tsutomu

    2012-03-01

    Cell death due to DNA damage by ionizing radiation causes acute radiation injury of tissues and organs. Frequency and severity of the injuries increase according to dose increase, when the dose becomes more than threshold dose. The threshold dose of acute human radiation death is 1 Gy and LD50 of human is 4 Gy. Human dies due to the cerebrovascular syndrome, the gastrointestinal syndrome or the hematopoetic syndrome, when he received more than 20 Gy, 10-20 Gy or 3-8 Gy to his total body, respectively. Any tissue or organ, including embryo and fetus, does not show the acute injury, when it received less than 100 mSv. Acute injuries are usually reversible, and late injuries are sometimes irreversible.

  6. High blood pressure in acute ischemic stroke and clinical outcome.

    PubMed

    Manabe, Yasuhiro; Kono, Syoichiro; Tanaka, Tomotaka; Narai, Hisashi; Omori, Nobuhiko

    2009-11-16

    This study aimed to evaluate the prognostic value of acute phase blood pressure in patients with acute ischemic stroke by determining whether or not it contributes to clinical outcome. We studied 515 consecutive patients admitted within the first 48 hours after the onset of ischemic strokes, employing systolic and diastolic blood pressure measurements recorded within 36 hours after admission. High blood pressure was defined when the mean of at least 2 blood pressure measurements was ≥200 mmHg systolic and/or ≥110 mmHg diastolic at 6 to 24 hours after admission or ≥180 mmHg systolic and/or ≥105 mmHg diastolic at 24 to 36 hours after admission. The high blood pressure group was found to include 16% of the patients. Age, sex, diabetes mellitus, hypercholesterolemia, atrial fibrillation, ischemic heart disease, stroke history, carotid artery stenosis, leukoaraiosis, NIH Stroke Scale (NIHSS) on admission and mortality were not significantly correlated with either the high blood pressure or non-high blood pressure group. High blood pressure on admission was significantly associated with a past history of hypertension, kidney disease, the modified Rankin Scale (mRS) on discharge and the length of stay. On logistic regression analysis, with no previous history of hypertension, diabetes mellitus, atrial fibrillation, and kidney disease were independent risk factors associated with the presence of high blood pressure [odds ratio (OR), 1.85 (95% confidence interval (CI): 1.06-3.22), 1.89 (95% CI: 1.11-3.22), and 3.31 (95% CI: 1.36-8.04), respectively]. Multi-organ injury may be presented in acute stroke patients with high blood pressure. Patients with high blood pressure had a poor functional outcome after acute ischemic stroke.

  7. Fyn in Neurodevelopment and Ischemic Brain Injury

    PubMed Central

    Knox, Renatta; Jiang, Xiangning

    2016-01-01

    The Src Family kinases (SFKs) are nonreceptor protein tyrosine kinases that are implicated in many normal and pathological processes in the nervous system. The SFKs Fyn, Src, Yes, Lyn and Lck are expressed in the brain. This review will focus on Fyn, as Fyn mutant mice have striking phenotypes in the brain and Fyn has been shown to be involved in ischemic brain injury in adult rodents, and with our work, in neonatal animals. An understanding of Fyn’s role in neurodevelopment and disease will allow researchers to target pathological pathways while preserving protective ones. PMID:25720756

  8. Remote ischemic preconditioning as treatment for non-ischemic gastrointestinal disorders: Beyond ischemia-reperfusion injury

    PubMed Central

    Camara-Lemarroy, Carlos Rodrigo

    2014-01-01

    Common gastrointestinal diseases such as radiation enteritis (RE), acute pancreatitis, inflammatory bowel diseases (IBD) and drug-induced hepatotoxicity share pathophysiological mechanisms at the molecular level, mostly involving the activation of many pathways of the immune response, ultimately leading to tissue injury. Increased oxidative stress, inflammatory cytokine release, inflammatory cell infiltration and activation and the up-regulation of inflammatory transcription factors participate in the pathophysiology of these complex entities. Treatment varies in each specific disease, but at least in the cases of RE and IBD immunosuppressors are effective. However, full therapeutic responses are not always achieved. The pathophysiology of ischemia-reperfusion (IR) injury shares many of these mechanisms. Brief and repetitive periods of ischemia in an organ or limb have been shown to protect against subsequent major IR injury in distant organs, a phenomenon called remote ischemic preconditioning (RIP). This procedure has been shown to protect the gut, pancreas and liver by modulating many of the same inflammatory mechanisms. Since RIP is safe and tolerable, and has shown to be effective in some recent clinical trials, I suggest that RIP could be used as a physiologically relevant adjunct treatment for non-ischemic gastrointestinal inflammatory conditions. PMID:24707140

  9. [Acute Kidney Injury].

    PubMed

    Brix, Silke; Stahl, Rolf

    2017-02-01

    Acute kidney injury (AKI) is an important part of renal diseases and a common clinical problem. AKI is an acute decline in renal function. Due to a lack of therapeutic options, prevention and optimal management of patients with AKI are the most important strategies. Although seldom the sole cause of patients' death, AKI is associated with a significant increase in mortality. Our objective is to draw the attention towards the prevention of AKI of non-renal causes.

  10. Acute injuries in orienteerers.

    PubMed

    Kujala, U M; Nylund, T; Taimela, S

    1995-02-01

    The aim of this study was to characterize the type and severeity of acute injuries occurring in Finnish orienteerers in 1987 to 1991. The study is based on the orienteering license insurance records accounting for 2189 orienteering injuries during 69268 person-years of exposure in active orienteerers. Of these orienteerers, 73.0% were male; 73.5% (N = 1608) of all injuries occurred in males, so the injury rate was similar in males and females. The rate was highest in orienteerers 20 to 24 years of age and lowest in children. Injuries occurred most commonly during May to September (78.9% or all injuries), the months which include the orienteering competition season, and were more common during competitions (59.8%) than during training. A high number of the injuries occurred during weekends (58.9% of injuries) including 68.1% of all competition injuries and 44.9% of all training injuries. The lower limbs were involved in 1611 (73.6%) of cases, the ankle (28.7%) and the knee (23.2%) being the two most common injury locations. Sprains, strains and contusions were the most common injuries. Wounds were proportionally more common in males than in females while ankle sprains were more common in females. Fractures, seven open and 94 closed, accounted for 4.6% of injuries; they were most common in the hand/wrist/forearm (N = 44) and ankle (N = 16), and were more frequent during competition (62.3%) than during training. The most important areas for preventive measures seem to be the ankle and the knee.

  11. Innate immune inflammatory response in the acutely ischemic myocardium.

    PubMed

    Deftereos, Spyridon; Angelidis, Christos; Bouras, Georgios; Raisakis, Konstantinos; Gerckens, Ulrich; Cleman, Michael W; Giannopoulos, Georgios

    2014-01-01

    The "holy grail" of modern interventional cardiology is the salvage of viable myocardial tissue in the distribution of an acutely occluded coronary artery. Thrombolysis and percutaneous coronary interventions, provided they can be delivered on time, can interrupt the occlusion and save tissue. At the same time restoring the patency of the coronary vessels and providing the ischemic myocardium with blood can cause additional tissue damage. A key element of ischemic and reperfusion injury and major determinant of the evolution of damage in the injured myocardium is the inflammatory response. The innate immune system initiates and directs this response which is a prerequisite for subsequent healing. The complement cascade is set in motion following the release of subcellular membrane constituents. Endogenous 'danger' signals known as danger-associated molecular patterns (DAMPs) released from ischemic and dying cells alert the innate immune system and activate several signal transduction pathways through interactions with the highly conserved Toll like receptors (TLRs). Reactive oxygen species (ROS) generation directly induces pro-inflammatory cascades and triggers formation of the inflammasome. The challenge lies into designing strategies that specifically block the inflammatory cascades responsible for tissue damage without affecting those concerned with tissue healing.

  12. Ischemic Stroke Injury Is Mediated by Aberrant Cdk5

    PubMed Central

    Meyer, Douglas A.; Torres-Altoro, Melissa I.; Tan, Zhenjun; Tozzi, Alessandro; Di Filippo, Massimiliano; DiNapoli, Vincent; Plattner, Florian; Kansy, Janice W.; Benkovic, Stanley A.; Huber, Jason D.; Miller, Diane B.; Greengard, Paul; Calabresi, Paolo; Rosen, Charles L.

    2014-01-01

    Ischemic stroke is one of the leading causes of morbidity and mortality. Treatment options are limited and only a minority of patients receive acute interventions. Understanding the mechanisms that mediate neuronal injury and death may identify targets for neuroprotective treatments. Here we show that the aberrant activity of the protein kinase Cdk5 is a principal cause of neuronal death in rodents during stroke. Ischemia induced either by embolic middle cerebral artery occlusion (MCAO) in vivo or by oxygen and glucose deprivation in brain slices caused calpain-dependent conversion of the Cdk5-activating cofactor p35 to p25. Inhibition of aberrant Cdk5 during ischemia protected dopamine neurotransmission, maintained field potentials, and blocked excitotoxicity. Furthermore, pharmacological inhibition or conditional knock-out (CKO) of Cdk5 prevented neuronal death in response to ischemia. Moreover, Cdk5 CKO dramatically reduced infarctions following MCAO. Thus, targeting aberrant Cdk5 activity may serve as an effective treatment for stroke. PMID:24920629

  13. DNA damage response in nephrotoxic and ischemic kidney injury.

    PubMed

    Yan, Mingjuan; Tang, Chengyuan; Ma, Zhengwei; Huang, Shuang; Dong, Zheng

    2016-10-27

    DNA damage activates specific cell signaling cascades for DNA repair, cell cycle arrest, senescence, and/or cell death. Recent studies have demonstrated DNA damage response (DDR) in experimental models of acute kidney injury (AKI). In cisplatin-induced AKI or nephrotoxicity, the DDR pathway of ATR/Chk2/p53 is activated and contributes to renal tubular cell apoptosis. In ischemic AKI, DDR seems more complex and involves at least the ataxia telangiectasia mutated (ATM), a member of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, and p53; however, while ATM may promote DNA repair, p53 may trigger cell death. Targeting DDR for kidney protection in AKI therefore relies on a thorough elucidation of the DDR pathways in various forms of AKI.

  14. Ischemia reperfusion injury, ischemic conditioning and diabetes mellitus.

    PubMed

    Lejay, Anne; Fang, Fei; John, Rohan; Van, Julie A D; Barr, Meredith; Thaveau, Fabien; Chakfe, Nabil; Geny, Bernard; Scholey, James W

    2016-02-01

    Ischemia/reperfusion, which is characterized by deficient oxygen supply and subsequent restoration of blood flow, can cause irreversible damages to tissue. Mechanisms contributing to the pathogenesis of ischemia reperfusion injury are complex, multifactorial and highly integrated. Extensive research has focused on increasing organ tolerance to ischemia reperfusion injury, especially through the use of ischemic conditioning strategies. Of morbidities that potentially compromise the protective mechanisms of the heart, diabetes mellitus appears primarily important to study. Diabetes mellitus increases myocardial susceptibility to ischemia reperfusion injury and also modifies myocardial responses to ischemic conditioning strategies by disruption of intracellular signaling responsible for enhancement of resistance to cell death. The purpose of this review is twofold: first, to summarize mechanisms underlying ischemia reperfusion injury and the signal transduction pathways underlying ischemic conditioning cardioprotection; and second, to focus on diabetes mellitus and mechanisms that may be responsible for the lack of effect of ischemic conditioning strategies in diabetes.

  15. Xanthine oxidase inhibition attenuates ischemic-reperfusion lung injury

    SciTech Connect

    Lynch, M.J.; Grum, C.M.; Gallagher, K.P.; Bolling, S.F.; Deeb, G.M.; Morganroth, M.L.

    1988-05-01

    Ischemic-reperfusion lung injury is a factor potentially limiting the usefulness of distant organ procurement for heart-lung transplantation. Toxic oxygen metabolites are considered a major etiologic factor in reperfusion injury. Although oxygen-free radicals may be generated by many mechanisms, we investigated the role of xanthine oxidase in this injury process by using lodoxamide, a xanthine oxidase inhibitor, to inhibit ischemic-reperfusion injury in an isolated rat lung model. Isolated rat lungs were perfused with physiologic salt solution (PSS) osmotically stabilized with Ficoll until circulating blood elements were nondetectable in the pulmonary venous effluent. Lungs were rendered ischemic by interrupting ventilation and perfusion for 2 hr at 37/sup 0/C. After the ischemic interval, the lungs were reperfused with whole blood and lung injury was determined by measuring the accumulation of /sup 125/I-bovine serum albumin in lung parenchyma and alveolar lavage fluid as well as by gravimetric measurements. Lung effluent was collected immediately pre- and postischemia for analysis of uric acid by high-pressure liquid chromatography. Lodoxamide (1 mM) caused significant attenuation of postischemic lung injury. Uric acid levels in the lung effluent confirmed inhibition of xanthine oxidase. Protection from injury was not complete, however, implying that additional mechanisms may contribute to ischemic-reperfusion injury in the lung.

  16. Bone Fracture Exacerbates Murine Ischemic Cerebral Injury

    PubMed Central

    Degos, Vincent; Maze, Mervyn; Vacas, Susana; Hirsch, Jan; Guo, Yi; Shen, Fanxia; Jun, Kristine; van Rooijen, Nico; Gressens, Pierre; Young, William L.; Su, Hua

    2014-01-01

    Background Bone fracture increases alarmins and pro-inflammatory cytokines in the blood, and provokes macrophage infiltration and pro-inflammatory cytokine expression in the hippocampus. We recently reported that stroke is an independent risk factor after bone surgery for adverse outcome, the impact of bone fracture on stroke outcome is unknown. We tested the hypothesis that bone fracture, shortly after ischemic stroke, enhances stroke-related injuries by augmenting the neuroinflammatory response. Methods Tibia fracture (bone fracture) was induced in mice one day after permanent occlusion of the distal middle cerebral artery (stroke). High-mobility-group box chromosomal protein-1 (HMGB1) was tested to mimic the bone fracture effects. HMGB1 neutralizing antibody and clodrolip (macrophage depletion) were tested to attenuate the bone fracture effects. Neurobehavioral function (n=10), infarct volume, neuronal death, and macrophages/microglia-infiltration (n=6–7) were analyzed three days after. Results We found that mice with both stroke and bone fracture had larger infarct volumes (mean percentage of ipsilateral hemisphere±SD: 30±7% vs. 12±3%, n=6, P<0.001) more severe neurobehavioral dysfunction, and more macrophages/microglia in the peri-infarct region than mice with stroke only. Intraperitoneal injection of HMGB1 mimicked, whereas neutralizing HMGB1 attenuated, the bone fracture effects and the macrophage/microglia infiltration. Depleting macrophages with clodrolip also attenuated the aggravating effects of bone fracture on stroke lesion and behavioral dysfunction. Conclusions These novel findings suggest that bone fracture shortly after stroke enhances stroke injury via augmented inflammation through HMGB1 and macrophage/microglia infiltration. Interventions to modulate early macrophage/microglia activation could be therapeutic goals to limit the adverse consequences of bone fracture after stroke. PMID:23438676

  17. Developing practice recommendations for endovascular revascularization for acute ischemic stroke

    PubMed Central

    Lazzaro, Marc A.; Alexandrov, Andrei V.; Darkhabani, Ziad; Edgell, Randall C.; English, Joey; Frei, Donald; Jamieson, Dara G.; Janardhan, Vallabh; Janjua, Nazli; Janjua, Rashid M.; Katzan, Irene; Khatri, Pooja; Kirmani, Jawad F.; Liebeskind, David S.; Linfante, Italo; Nguyen, Thanh N.; Saver, Jeffrey L.; Shutter, Lori; Xavier, Andrew; Yavagal, Dileep; Zaidat, Osama O.

    2012-01-01

    Guidelines have been established for the management of acute ischemic stroke; however, specific recommendations for endovascular revascularization therapy are lacking. Burgeoning investigation of endovascular revascularization therapies for acute ischemic stroke, rapid device development, and a diverse training background of the providers performing the procedures underscore the need for practice recommendations. This review provides a concise summary of the Society of Vascular and Interventional Neurology endovascular acute ischemic stroke roundtable meeting. This document was developed to review current clinical efficacy of pharmacologic and mechanical revascularization therapy, selection criteria, periprocedure management, and endovascular time metrics and to highlight current practice patterns. It therefore provides an outline for the future development of multisociety guidelines and recommendations to improve patient selection, procedural management, and organizational strategies for revascularization therapies in acute ischemic stroke. PMID:23008406

  18. Acute Inhalation Injury

    PubMed Central

    Gorguner, Metin; Akgun, Metin

    2010-01-01

    Inhaled substances may cause injury in pulmonary epithelium at various levels of respiratory tract, leading from simple symptoms to severe disease. Acute inhalation injury (AII) is not uncommon condition. There are certain high risk groups but AII may occur at various places including home or workplace. Environmental exposure is also possible. In addition to individual susceptibility, the characteristics of inhaled substances such as water solubility, size of substances and chemical properties may affect disease severity as well as its location. Although AII cases may recover in a few days but AII may cause long-term complications, even death. We aimed to discuss the effects of short-term exposures (minutes to hours) to toxic substances on the lungs. PMID:25610115

  19. Acute hand injuries in athletes.

    PubMed

    Rosenbaum, Yoseph A; Awan, Hisham M

    2017-03-22

    Hand and wrist injuries in athletes are common, representing between 3 and 25% of all sports injuries. As many as a quarter of all sports injuries involve the hand or wrist. We review the recent literature regarding acute hand injuries in athletes based on the structures involved - bone, muscle/tendon, ligament, and neurovascular - including diagnosis and pathophysiology of these injuries, focusing on athlete-specific facets of treatment, and when available, opinions on return to play.

  20. Delayed treatment with ADAMTS13 ameliorates cerebral ischemic injury without hemorrhagic complication.

    PubMed

    Nakano, Takafumi; Irie, Keiichi; Hayakawa, Kazuhide; Sano, Kazunori; Nakamura, Yoshihiko; Tanaka, Masayoshi; Yamashita, Yuta; Satho, Tomomitsu; Fujioka, Masayuki; Muroi, Carl; Matsuo, Koichi; Ishikura, Hiroyasu; Futagami, Kojiro; Mishima, Kenichi

    2015-10-22

    Tissue plasminogen activator (tPA) is the only approved therapy for acute ischemic stroke. However, delayed tPA treatment increases the risk of cerebral hemorrhage and can result in exacerbation of nerve injury. ADAMTS13, a von Willebrand factor (VWF) cleaving protease, has a protective effect against ischemic brain injury and may reduce bleeding risk by cleaving VWF. We examined whether ADAMTS13 has a longer therapeutic time window in ischemic stroke than tPA in mice subjected to middle cerebral artery occlusion (MCAO). ADAMTS13 (0.1mg/kg) or tPA (10mg/kg) was administered i.v., immediately after reperfusion of after 2-h or 4-h MCAO for comparison of the therapeutic time windows in ischemic stroke. Infarct volume, hemorrhagic volume, plasma high-mobility group box1 (HMGB1) levels and cerebral blood flow were measured 24h after MCAO. Both ADAMTS13 and tPA improved the infarct volume without hemorrhagic complications in 2-h MCAO mice. On the other hand, ADAMTS13 reduced the infarct volume and plasma HMGB1 levels, and improved cerebral blood flow without hemorrhagic complications in 4-h MCAO mice, but tPA was not effective and these animals showed massive intracerebral hemorrhage. These results indicated that ADAMTS13 has a longer therapeutic time window in ischemic stroke than tPA, and ADAMTS13 may be useful as a new therapeutic agent for ischemic stroke.

  1. Acute Kidney Injury

    PubMed Central

    Zuk, Anna; Bonventre, Joseph V.

    2016-01-01

    Acute kidney injury (AKI) is a global public health concern associated with high morbidity, mortality, and healthcare costs. Other than dialysis, no therapeutic interventions reliably improve survival, limit injury, or speed recovery. Despite recognized shortcomings of in vivo animal models, the underlying pathophysiology of AKI and its consequence, chronic kidney disease (CKD), is rich with biological targets. We review recent findings relating to the renal vasculature and cellular stress responses, primarily the intersection of the unfolded protein response, mitochondrial dysfunction, autophagy, and the innate immune response. Maladaptive repair mechanisms that persist following the acute phase promote inflammation and fibrosis in the chronic phase. Here macrophages, growth-arrested tubular epithelial cells, the endothelium, and surrounding pericytes are key players in the progression to chronic disease. Better understanding of these complex interacting pathophysiological mechanisms, their relative importance in humans, and the utility of biomarkers will lead to therapeutic strategies to prevent and treat AKI or impede progression to CKD or end-stage renal disease (ESRD). PMID:26768243

  2. Perfusion Angiography in Acute Ischemic Stroke

    PubMed Central

    Liebeskind, David S.

    2016-01-01

    Visualization and quantification of blood flow are essential for the diagnosis and treatment evaluation of cerebrovascular diseases. For rapid imaging of the cerebrovasculature, digital subtraction angiography (DSA) remains the gold standard as it offers high spatial resolution. This paper lays out a methodological framework, named perfusion angiography, for the quantitative analysis and visualization of blood flow parameters from DSA images. The parameters, including cerebral blood flow (CBF) and cerebral blood volume (CBV), mean transit time (MTT), time-to-peak (TTP), and Tmax, are computed using a bolus tracking method based on the deconvolution of the time-density curve on a pixel-by-pixel basis. The method is tested on 66 acute ischemic stroke patients treated with thrombectomy and/or tissue plasminogen activator (tPA) and also evaluated on an estimation task with known ground truth. This novel imaging tool provides unique insights into flow mechanisms that cannot be observed directly in DSA sequences and might be used to evaluate the impact of endovascular interventions more precisely. PMID:27446232

  3. Normobaric oxygen treatment in acute ischemic stroke: a clinical perspective

    PubMed Central

    Shi, Shu-hai; Qi, Zhi-feng; Luo, Yu-min; Ji, Xun-ming; Liu, Ke Jian

    2016-01-01

    Acute ischemic stroke is a common and serious neurological disease. Oxygen therapy has been shown to increase oxygen supply to ischemic tissues and improve outcomes after cerebral ischemia/reperfusion. Normobaric hyperoxia (NBO), an easily applicable and non-invasive method, shows protective effects on acute ischemic stroke animals and patients in pilot studies. However, many critical scientific questions are still unclear, such as the therapeutic time window of NBO, the long-term effects and the benefits of NBO in large clinic trials. In this article, we review the current literatures on NBO treatment of acute ischemic stroke in preclinical and clinical studies and try to analyze and identify the key gaps or unknowns in our understanding about NBO. Based on these analyses, we provide suggestions for future studies. PMID:27867482

  4. The potential for nanotechnology to improve delivery of therapy to the acute ischemic heart.

    PubMed

    Evans, Cameron W; Iyer, K Swaminathan; Hool, Livia C

    2016-04-01

    Treatment of acute cardiac ischemia remains an area in which there are opportunities for therapeutic improvement. Despite significant advances, many patients still progress to cardiac hypertrophy and heart failure. Timely reperfusion is critical in rescuing vulnerable ischemic tissue and is directly related to patient outcome, but reperfusion of the ischemic myocardium also contributes to damage. Overproduction of reactive oxygen species, initiation of an inflammatory response and deregulation of calcium homeostasis all contribute to injury, and difficulties in delivering a sufficient quantity of drug to the affected tissue in a controlled manner is a limitation of current therapies. Nanotechnology may offer significant improvements in this respect. Here, we review recent examples of how nanoparticles can be used to improve delivery to the ischemic myocardium, and suggest some approaches that may lead to improved therapies for acute cardiac ischemia.

  5. Anti-oxidative aspect of inhaled anesthetic gases against acute brain injury

    PubMed Central

    Yang, Tuo; Sun, Yang; Zhang, Feng

    2016-01-01

    Acute brain injury is a critical and emergent condition in clinical settings, which needs to be addressed urgently. Commonly acute brain injuries include traumatic brain injury, ischemic and hemorrhagic strokes. Oxidative stress is a key contributor to the subsequent injuries and impedes the reparative process after acute brain injury; therefore, facilitating an anti-oxidative approach is important in the care of those diseases. Readiness to deliver and permeability to blood brain barrier are essential for the use of this purpose. Inhaled anesthetic gases are a group of such agents. In this article, we discuss the anti-oxidative roles of anesthetic gases against acute brain injury. PMID:28217295

  6. Hyperoxic Acute Lung Injury

    PubMed Central

    Kallet, Richard H; Matthay, Michael A

    2013-01-01

    Prolonged breathing of very high FIO2 (FIO2 ≥ 0.9) uniformly causes severe hyperoxic acute lung injury (HALI) and, without a reduction of FIO2, is usually fatal. The severity of HALI is directly proportional to PO2 (particularly above 450 mm Hg, or an FIO2 of 0.6) and exposure duration. Hyperoxia produces extraordinary amounts of reactive O2 species that overwhelms natural antioxidant defenses and destroys cellular structures through several pathways. Genetic predisposition has been shown to play an important role in HALI among animals, and some genetics-based epidemiologic research suggests that this may be true for humans as well. Clinically, the risk of HALI likely occurs when FIO2exceeds 0.7, and may become problematic when FIO2 exceeds 0.8 for an extended period of time. Both high-stretch mechanical ventilation and hyperoxia potentiate lung injury and may promote pulmonary infection. During the 1960s, confusion regarding the incidence and relevance of HALI largely reflected such issues as the primitive control of FIO2, the absence of PEEP, and the fact that at the time both ALI and ventilator-induced lung injury were unknown. The advent of PEEP and precise control over FIO2, as well as lung-protective ventilation, and other adjunctive therapies for severe hypoxemia, has greatly reduced the risk of HALI for the vast majority of patients requiring mechanical ventilation in the 21st century. However, a subset of patients with very severe ARDS requiring hyperoxic therapy is at substantial risk for developing HALI, therefore justifying the use of such adjunctive therapies. PMID:23271823

  7. The neuroprotective roles of BDNF in hypoxic ischemic brain injury

    PubMed Central

    CHEN, AI; XIONG, LI-JING; TONG, YU; MAO, MENG

    2013-01-01

    Hypoxia-ischemia (H/I) brain injury results in various degrees of damage to the body, and the immature brain is particularly fragile to oxygen deprivation. Hypothermia and erythropoietin (EPO) have long been known to be neuroprotective in ischemic brain injury. Brain-derived neurotrophic factor (BDNF) has recently been recognized as a potent modulator capable of regulating a wide repertoire of neuronal functions. This review was based on studies concerning the involvement of BDNF in the protection of H/I brain injury following a search in PubMed between 1995 and December, 2011. We initially examined the background of BDNF, and then focused on its neuroprotective mechanisms against ischemic brain injury, including its involvement in promoting neural regeneration/cognition/memory rehabilitation, angiogenesis within ischemic penumbra and the inhibition of the inflammatory process, neurotoxicity, epilepsy and apoptosis. We also provided a literature overview of experimental studies, discussing the safety and the potential clinical application of BDNF as a neuroprotective agent in the ischemic brain injury. PMID:24648914

  8. Autophagy in Acute Kidney Injury

    PubMed Central

    Livingston, Man J.; Dong, Zheng

    2014-01-01

    Acute kidney injury is a major kidney disease associated with poor clinical outcomes. The pathogenesis of acute kidney injury is multifactorial and is characterized by tubular cell injury and death. Recent studies have demonstrated autophagy induction in proximal tubular cells during acute kidney injury. The regulatory mechanisms of tubular cell autophagy are poorly understood; however, some recent findings have set up a foundation for further investigation. Although autophagy may promote cell death under certain experimental conditions, pharmacological and autophagy-related gene knockout studies have established a renoprotective role for autophagy in acute kidney injury. The mechanisms by which autophagy protects cells from injury and how, possibly, its pro-survival role switches to pro-death under certain conditions are discussed. Further research is expected to help us understand the regulatory network of tubular cell autophagy, define its precise roles in specific context of acute kidney injury, and identify autophagy-targeting strategies for the prevention and treatment of acute kidney injury. PMID:24485026

  9. Heart Failure in Acute Ischemic Stroke

    PubMed Central

    Cuadrado-Godia, Elisa; Ois, Angel; Roquer, Jaume

    2010-01-01

    Heart failure (HF) is a complex clinical syndrome that can result from any structural or functional cardiac disorder that impairs the ability of the ventricle to fill with or eject blood. Due to the aging of the population it has become a growing public health problem in recent decades. Diagnosis of HF is clinical and there is no diagnostic test, although some basic complementary testing should be performed in all patients. Depending on the ejection fraction (EF), the syndrome is classified as HF with low EF or HF with normal EF (HFNEF). Although prognosis in HF is poor, HFNEF seems to be more benign. HF and ischemic stroke (IS) share vascular risk factors such as age, hypertension, diabetes mellitus, coronary artery disease and atrial fibrillation. Persons with HF have higher incidence of IS, varying from 1.7% to 10.4% per year across various cohort studies. The stroke rate increases with length of follow-up. Reduced EF, independent of severity, is associated with higher risk of stroke. Left ventricular mass and geometry are also related with stroke incidence, with concentric hypertrophy carrying the greatest risk. In HF with low EF, the stroke mechanism may be embolism, cerebral hypoperfusion or both, whereas in HFNEF the mechanism is more typically associated with chronic endothelial damage of the small vessels. Stroke in patients with HF is more severe and is associated with a higher rate of recurrence, dependency, and short term and long term mortality. Cardiac morbidity and mortality is also high in these patients. Acute stroke treatment in HF includes all the current therapeutic options to more carefully control blood pressure. For secondary prevention, optimal control of all vascular risk factors is essential. Antithrombotic therapy is mandatory, although the choice of a platelet inhibitor or anticoagulant drug depends on the cardiac disease. Trials are ongoing to evaluate anticoagulant therapy for prevention of embolism in patients with low EF who are at

  10. Peripheral administration of fetuin-A attenuates early cerebral ischemic injury in rats

    PubMed Central

    Wang, Haichao; Li, Wei; Zhu, Shu; Li, Jianhua; D'Amore, Jason; Ward, Mary F; Yang, Huan; Wu, Rongqian; Jahnen-Dechent, Willi; Tracey, Kevin J; Wang, Ping; Sama, Andrew E

    2010-01-01

    Cerebral ischemia-elicited inflammatory responses are driven by inflammatory mediators produced both by central (e.g., neurons and microglia) and infiltrating peripheral immune cells (e.g., macrophage/monocyte), and contribute to the evolution of tissue injury. A ubiquitous molecule, spermine, is released from injured cells, and counter-regulates release of various proinflammatory cytokines. However, the spermine-mediated anti-inflammatory activities are dependent on the availability of fetuin-A, a liver-derived negative acute-phase protein. Using an animal model of focal cerebral ischemia (i.e., permanent middle cerebral artery occlusion, MCAo), we found that levels of fetuin-A in the ischemic brain tissue were elevated in a time-dependent manner, starting between 2 and 6 h, peaking around 24 to 48 h, and returning to baseline 72 h after MCAo. When administered peripherally, exogenous fetuin-A gained entry across the BBB into the ischemic brain tissue, and dose dependently reduced brain infarct volume at 24 h after MCAo. Meanwhile, fetuin-A effectively attenuated (i) ischemia-induced HMGB1 depletion from the ischemic core; (ii) activation of centrally (e.g., microglia) and peripherally derived immune cells (e.g., macrophage/monocytes); and (iii) TNF production in ischemic brain tissue. Taken together, these experimental data suggest that fetuin-A protects against early cerebral ischemic injury partly by attenuating the brain inflammatory response. PMID:19953099

  11. Phase I and Phase II Therapies for Acute Ischemic Stroke: An Update on Currently Studied Drugs in Clinical Research

    PubMed Central

    Reis, Cesar; Akyol, Onat; Ho, Wing Mann; Araujo, Camila; Huang, Lei; Applegate II, Richard

    2017-01-01

    Acute ischemic stroke is a devastating cause of death and disability, consequences of which depend on the time from ischemia onset to treatment, the affected brain region, and its size. The main targets of ischemic stroke therapy aim to restore tissue perfusion in the ischemic penumbra in order to decrease the total infarct area by maintaining blood flow. Advances in research of pathological process and pathways during acute ischemia have resulted in improvement of new treatment strategies apart from restoring perfusion. Additionally, limiting the injury severity by manipulating the molecular mechanisms during ischemia has become a promising approach, especially in animal research. The purpose of this article is to review completed and ongoing phases I and II trials for the treatment of acute ischemic stroke, reviewing studies on antithrombotic, thrombolytic, neuroprotective, and antineuroinflammatory drugs that may translate into more effective treatments. PMID:28286764

  12. Suppression of Acid Sphingomyelinase Protects the Retina from Ischemic Injury

    PubMed Central

    Fan, Jie; Wu, Bill X.; Crosson, Craig E.

    2016-01-01

    Purpose Acid sphingomyelinase (ASMase) catalyzes the hydrolysis of sphingomyelin to ceramide and mediates multiple responses involved in inflammatory and apoptotic signaling. However, the role ASMase plays in ischemic retinal injury has not been investigated. The purpose of this study was to investigate how reduced ASMase expression impacts retinal ischemic injury. Methods Changes in ceramide levels and ASMase activity were determined by high performance liquid chromatography-tandem mass spectrometry analysis and ASMase activity. Retinal function and morphology were assessed by electroretinography (ERG) and morphometric analyses. Levels of TNF-α were determined by ELISA. Activation of p38 MAP kinase was assessed by Western blot analysis. Results In wild-type mice, ischemia produced a significant increase in retinal ASMase activity and ceramide levels. These increases were associated with functional deficits as measured by ERG analysis and significant structural degeneration in most retinal layers. In ASMase+/− mice, retinal ischemia did not significantly alter ASMase activity, and the rise in ceramide levels were significantly reduced compared to levels in retinas from wild-type mice. In ASMase+/− mice, functional and morphometric analyses of ischemic eyes revealed significantly less retinal degeneration than in injured retinas from wild-type mice. The ischemia-induced increase in retinal TNF-α levels was suppressed by the administration of the ASMase inhibitor desipramine, or by reducing ASMase expression. Conclusions Our results demonstrate that reducing ASMase expression provides partial protection from ischemic injury. Hence, the production of ceramide and subsequent mediators plays a role in the development of ischemic retinal injury. Modulating ASMase may present new opportunities for adjunctive therapies when treating retinal ischemic disorders. PMID:27571014

  13. Biomarkers in acute lung injury.

    PubMed

    Mokra, Daniela; Kosutova, Petra

    2015-04-01

    Acute respiratory distress syndrome (ARDS) and its milder form acute lung injury (ALI) may result from various diseases and situations including sepsis, pneumonia, trauma, acute pancreatitis, aspiration of gastric contents, near-drowning etc. ALI/ARDS is characterized by diffuse alveolar injury, lung edema formation, neutrophil-derived inflammation, and surfactant dysfunction. Clinically, ALI/ARDS is manifested by decreased lung compliance, severe hypoxemia, and bilateral pulmonary infiltrates. Severity and further characteristics of ALI/ARDS may be detected by biomarkers in the plasma and bronchoalveolar lavage fluid (or tracheal aspirate) of patients. Changed concentrations of individual markers may suggest injury or activation of the specific types of lung cells-epithelial or endothelial cells, neutrophils, macrophages, etc.), and thereby help in diagnostics and in evaluation of the patient's clinical status and the treatment efficacy. This chapter reviews various biomarkers of acute lung injury and evaluates their usefulness in diagnostics and prognostication of ALI/ARDS.

  14. Early neurological stability predicts adverse outcome after acute ischemic stroke.

    PubMed

    Irvine, Hannah J; Battey, Thomas Wk; Ostwaldt, Ann-Christin; Campbell, Bruce Cv; Davis, Stephen M; Donnan, Geoffrey A; Sheth, Kevin N; Kimberly, W Taylor

    2016-10-01

    Background Deterioration in the National Institutes of Health Stroke Scale (NIHSS) in the early days after stroke is associated with progressive infarction, brain edema, and/or hemorrhage, leading to worse outcome. Aims We sought to determine whether a stable NIHSS score represents an adverse or favorable course. Methods Brain magnetic resonance images from a research cohort of acute ischemic stroke patients were analyzed. Using NIHSS scores at baseline and follow-up (day 3-5), patients were categorized into early neurological deterioration (ΔNIHSS ≥ 4), early neurological recovery (ΔNIHSS ≤ -4) or early neurological stability (ΔNIHSS between -3 and 3). The association between these categories and volume of infarct growth, volume of swelling, parenchymal hemorrhage, and 3-month modified Rankin Scale score were evaluated. Results Patients with early neurological deterioration or early neurological stability were less likely to be independent (modified Rankin Scale = 0-2) at 3 months compared to those with early neurological recovery ( P < 0.001). Patients with early neurological deterioration or early neurological stability were observed to have significantly greater infarct growth and swelling volumes than those with early neurological recovery ( P = 0.03; P < 0.001, respectively). Brain edema was more common than the other imaging markers investigated and was independently associated with a stable or worsening NIHSS score after adjustment for age, baseline stroke volume, infarct growth volume, presence of parenchymal hemorrhage, and reperfusion ( P < 0.0001). Conclusions Stable NIHSS score in the subacute period after ischemic stroke may not be benign and is associated with tissue injury, including infarct growth and brain edema. Early improvement is considerably more likely to occur in the absence of these factors.

  15. Neonatal Acute Kidney Injury.

    PubMed

    Selewski, David T; Charlton, Jennifer R; Jetton, Jennifer G; Guillet, Ronnie; Mhanna, Maroun J; Askenazi, David J; Kent, Alison L

    2015-08-01

    In recent years, there have been significant advancements in our understanding of acute kidney injury (AKI) and its impact on outcomes across medicine. Research based on single-center cohorts suggests that neonatal AKI is very common and associated with poor outcomes. In this state-of-the-art review on neonatal AKI, we highlight the unique aspects of neonatal renal physiology, definition, risk factors, epidemiology, outcomes, evaluation, and management of AKI in neonates. The changes in renal function with gestational and chronologic age are described. We put forth and describe the neonatal modified Kidney Diseases: Improving Global Outcomes AKI criteria and provide the rationale for its use as the standardized definition of neonatal AKI. We discuss risk factors for neonatal AKI and suggest which patient populations may warrant closer surveillance, including neonates <1500 g, infants who experience perinatal asphyxia, near term/ term infants with low Apgar scores, those treated with extracorporeal membrane oxygenation, and those requiring cardiac surgery. We provide recommendations for the evaluation and treatment of these patients, including medications and renal replacement therapies. We discuss the need for long-term follow-up of neonates with AKI to identify those children who will go on to develop chronic kidney disease. This review highlights the deficits in our understanding of neonatal AKI that require further investigation. In an effort to begin to address these needs, the Neonatal Kidney Collaborative was formed in 2014 with the goal of better understanding neonatal AKI, beginning to answer critical questions, and improving outcomes in these vulnerable populations.

  16. Arterial Spin Label Imaging of Acute Ischemic Stroke and Transient Ischemic Attack

    PubMed Central

    Zaharchuk, Greg

    2011-01-01

    Since acute ischemic stroke and transient ischemic attack (TIA) are fundamentally disruptions of brain hemodynamics, neuroimaging of brain perfusion might be expected to be of clinical utility. Recently, a noncontrast method of measuring CBF using arterial spin labeling (ASL) has become feasible in the clinical setting. It has advantages when compared to dynamic susceptibility contrast (DSC) bolus contrast perfusion-weighted imaging (PWI) that include lack of exposure to gadolinium-based contrast materials, improved quantitation, and decreased sensitivity to susceptibility artifacts and motion. Drawbacks of ASL include reduced signal-to-noise (SNR) and high sensitivity to arterial transit delays. While deleterious for quantitative perfusion measurements, the sensitivity of ASL to late arriving blood can be beneficial to visualize collateral flow. This chapter will discuss ASL imaging findings in patients presenting with acute ischemic stroke and TIA, focusing on typical appearances, common artifacts, and comparisons with bolus contrast PWI. PMID:21640300

  17. Targeting MMP-2 to treat ischemic heart injury.

    PubMed

    Hughes, Bryan G; Schulz, Richard

    2014-07-01

    Matrix metalloproteinase (MMPs) are long understood to be involved in remodeling of the extracellular matrix. However, over the past decade, it has become clear that one of the most ubiquitous MMPs, MMP-2, has numerous intracellular targets in cardiac myocytes. Notably, MMP-2 proteolyzes components of the sarcomere, and its intracellular activity contributes to ischemia-reperfusion injury of the heart. Together with the well documented role played by MMPs in the myocardial remodeling that occurs following myocardial infarction, this has led to great interest in targeting MMPs to treat cardiac ischemic injury. In this review we will describe the expanding understanding of intracellular MMP-2 biology, and how this knowledge may lead to improved treatments for ischemic heart injury. We also critically review the numerous preclinical studies investigating the effects of MMP inhibition in animal models of myocardial infarction and ischemia-reperfusion injury, as well as the recent clinical trials that are part of the effort to translate these results into clinical practice. Acknowledging the disappointing results of past clinical trials of MMP inhibitors for other diseases, we discuss the need for carefully designed preclinical and clinical studies to avoid mistakes that have been previously made. We conclude that inhibition of MMPs, and in particular MMP-2, shows promise as a therapy to prevent the progression from ischemic injury to heart failure. However, it is critical that the full breadth of MMP-2 biology be taken into account as such therapies are developed.

  18. Thrombolysis and Thrombectomy for Acute Ischemic Stroke: Strengths and Synergies.

    PubMed

    Campbell, Bruce C V

    2017-03-01

    Acute ischemic stroke is responsible for around 80% of all strokes and is a leading cause of disability and death globally. There are two potential treatment strategies: restoring blood flow (reperfusion) and preventing cellular injury (neuroprotection). As yet, all the successful trials have involved reperfusion with numerous failures of neuroprotectants. There are two proven reperfusion strategies. Intravenous thrombolysis with alteplase was first demonstrated to reduce disability with publication of the National Institute of Neurological Disorders and Stroke tissue plasminogen activator trial in 1995. Since that time further trials have solidified the evidence base and demonstrated benefit when alteplase is administered within 4.5 hours of stroke onset. Exploration of potentially more effective thrombolytics is still underway with tenecteplase but others, such as desmoteplase, have been unsuccessful in clinical trials. The second proven reperfusion strategy is endovascular clot retrieval. This has been practiced for several years but came of age with the publication of five strongly positive trials in 2015. This review discusses the evidence for intravenous and intra-arterial reperfusion strategies and the advantages, disadvantages, and synergies of the two approaches.

  19. [Paradoxical air embolism resulted in acute myocardial infarction and massive ischemic brain injury in a patient operated on in a sitting position].

    PubMed

    Anan'ev, E P; Polupan, A A; Savin, I A; Goryachev, A S; Troitskiy, A P; Kolokol'nikov, A E; Kulikovskiy, V P; Matskovskiy, I V; Abramov, T A; Podlepich, V V; Krylov, K Yu; Sychev, A A; Tabasaranskiy, T F; Pashin, A A; Lubnin, A Yu

    2016-01-01

    Paradoxical air embolism (PAE) is a rare life-threatening complication when air emboli enter arteries of the systemic circulation and cause their occlusion. Here, we describe a clinical case of PAE developed during neurosurgery in a patient in the sitting position. PAE led to injuries to the cerebral blood vessels, coronary arteries, and lungs, which caused death of the patient. An effective measure for preventing PAE is abandoning surgery in the sitting position in favor of surgery in the prone position.

  20. Burn-induced subepicardial injury in frog heart: a simple model mimicking ST segment changes in ischemic heart disease.

    PubMed

    Kazama, Itsuro

    2016-02-01

    To mimic ischemic heart disease in humans, several animal models have been created, mainly in rodents by surgically ligating their coronary arteries. In the present study, by simply inducing burn injuries on the bullfrog heart, we reproduced abnormal ST segment changes in the electrocardiogram (ECG), mimicking those observed in ischemic heart disease, such as acute myocardial infarction and angina pectoris. The "currents of injury" created by a voltage gradient between the intact and damaged areas of the myocardium, negatively deflected the ECG vector during the diastolic phase, making the ST segment appear elevated during the systolic phase. This frog model of heart injury would be suitable to explain the mechanisms of ST segment changes observed in ischemic heart disease.

  1. Acute injuries in Taekwondo.

    PubMed

    Schlüter-Brust, K; Leistenschneider, P; Dargel, J; Springorum, H P; Eysel, P; Michael, J W-P

    2011-08-01

    Although Taekwondo is becoming an increasingly popular sport, there is a lack of reliable epidemiologic data on Taekwondo injuries. To perform an epidemiologic study on the variety of types of injury in professional and amateur Taekwondo athletes and to find a relation between Taekwondo style, skill level, weight-class and warm-up routine and the occurrence of injuries, we analysed the injury data using a 7-page questionnaire from a total of 356 Taekwondo athletes who were randomly selected. Overall, we registered a total of 2,164 injuries in 356 athletes. Most traumas were contusions and sprains in the lower extremities. Professional Taekwondo athletes have an increased risk of injury in comparison to recreational athletes. Taekwondo style, weight class and tournament frequency have an influence on the athlete's injury profile. Warm-up routines were found to have a positive effect on injury rates. Overall, Taekwondo may be considered a rather benign activity, if injuries during Taekwondo tournaments can be avoided. If not, Taekwondo can result in serious musculoskeletal problems.

  2. Mechanisms of gender-linked ischemic brain injury

    PubMed Central

    Liu, Mingyue; Dziennis, Suzan; Hurn, Patricia D.; Alkayed, Nabil J.

    2010-01-01

    Biological sex is an important determinant of stroke risk and outcome. Women are protected from cerebrovascular disease relative to men, an observation commonly attributed to the protective effect of female sex hormones, estrogen and progesterone. However, sex differences in brain injury persist well beyond the menopause and can be found in the pediatric population, suggesting that the effects of reproductive steroids may not completely explain sexual dimorphism in stroke. We review recent advances in our understanding of sex steroids (estradiol, progesterone and testosterone) in the context of ischemic cell death and neuroprotection. Understanding the molecular and cell-based mechanisms underlying sex differences in ischemic brain injury will lead to a better understanding of basic mechanisms of brain cell death and is an important step toward designing more effective therapeutic interventions in stroke. PMID:19531872

  3. Ischemic postconditioning protects against ischemic brain injury by up-regulation of acid-sensing ion channel 2a

    PubMed Central

    Duanmu, Wang-sheng; Cao, Liu; Chen, Jing-yu; Ge, Hong-fei; Hu, Rong; Feng, Hua

    2016-01-01

    Ischemic postconditioning renders brain tissue tolerant to brain ischemia, thereby alleviating ischemic brain injury. However, the exact mechanism of action is still unclear. In this study, a rat model of global brain ischemia was subjected to ischemic postconditioning treatment using the vessel occlusion method. After 2 hours of ischemia, the bilateral common carotid arteries were blocked immediately for 10 seconds and then perfused for 10 seconds. This procedure was repeated six times. Ischemic postconditioning was found to mitigate hippocampal CA1 neuronal damage in rats with brain ischemia, and up-regulate acid-sensing ion channel 2a expression at the mRNA and protein level. These findings suggest that ischemic postconditioning up-regulates acid-sensing ion channel 2a expression in the rat hippocampus after global brain ischemia, which promotes neuronal tolerance to ischemic brain injury. PMID:27212927

  4. The effects of citicoline on acute ischemic stroke: a review.

    PubMed

    Overgaard, Karsten

    2014-08-01

    Early reopening of the occluded artery is, thus, important in ischemic stroke, and it has been calculated that 2 million neurons die every minute in an ischemic stroke if no effective therapy is given; therefore, "Time is Brain." In massive hemispheric infarction and edema, surgical decompression lowers the risk of death or severe disability defined as a modified Rankin Scale score greater than 4 in selected patients. The majority, around 80%-85% of all ischemic stroke victims, does not fulfill the criteria for revascularization therapy, and also for these patients, there is no effective acute therapy. Also there is no established effective acute treatment of spontaneous intracerebral bleeding. Therefore, an effective therapy applicable to all stroke victims is needed. The neuroprotective drug citicoline has been extensively studied in clinical trials with volunteers and more than 11,000 patients with various neurologic disorders, including acute ischemic stroke (AIS). The conclusion is that citicoline is safe to use and may have a beneficial effect in AIS patients and most beneficial in less severe stroke in older patients not treated with recombinant tissue plasminogen activator. No other neuroprotective agent had any beneficial effect in confirmative clinical trials or had any positive effect in the subgroup analysis. Citicoline is the only drug that in a number of different clinical stroke trials continuously had some neuroprotective benefit.

  5. Factoring in Factor VIII With Acute Ischemic Stroke.

    PubMed

    Siegler, James E; Samai, Alyana; Albright, Karen C; Boehme, Amelia K; Martin-Schild, Sheryl

    2015-10-01

    There is growing research interest into the etiologies of cryptogenic stroke, in particular as it relates to hypercoagulable states. An elevation in serum levels of the procoagulant factor VIII is recognized as one such culprit of occult cerebral infarctions. It is the objective of the present review to summarize the molecular role of factor VIII in thrombogenesis and its clinical use in the diagnosis and prognosis of acute ischemic stroke. We also discuss the utility of screening for serum factor VIII levels among patients at risk for, or those who have experienced, ischemic stroke.

  6. Optical spectroscopy for the detection of ischemic tissue injury

    DOEpatents

    Demos, Stavros; Fitzgerald, Jason; Troppmann, Christoph; Michalopoulou, Andromachi

    2009-09-08

    An optical method and apparatus is utilized to quantify ischemic tissue and/or organ injury. Such a method and apparatus is non-invasive, non-traumatic, portable, and can make measurements in a matter of seconds. Moreover, such a method and apparatus can be realized through optical fiber probes, making it possible to take measurements of target organs deep within a patient's body. Such a technology provides a means of detecting and quantifying tissue injury in its early stages, before it is clinically apparent and before irreversible damage has occurred.

  7. Acute kidney injury after pediatric cardiac surgery

    PubMed Central

    Singh, Sarvesh Pal

    2016-01-01

    Acute kidney injury is a common complication after pediatric cardiac surgery. The definition, staging, risk factors, biomarkers and management of acute kidney injury in children is detailed in the following review article. PMID:27052074

  8. ISCHEMIC MODEL OF OPTIC NERVE INJURY

    PubMed Central

    Cioffi, George A

    2005-01-01

    Purpose It is proposed that the anterior optic nerve is specifically susceptible to microcirculatory compromise contributing to the development of glaucomatous optic neuropathy. Methods Ischemic optic neuropathy was induced by delivering endothelin-1 (ET-1) to the retrobulbar space in one eye of 12 primates for 6 to 12 months. Regional ganglion cell axonal sizes and densities were compared with the normal, contralateral eyes. Results Without changes of intraocular pressure, mean axonal density was significantly decreased in ET-1 eyes compared to controls (P = .03, paired t test). Two-way matched-pair analysis of variance showed a significant effect of ET-1 on overall axonal density (P < .0001). Among the animals with significant axonal loss, the mean axonal loss was 11.6%, and loss varied from 4% to 21%. Axonal loss was commonly localized within specific quadrants. Five animals were examined for preferential axonal size loss. As a group, there appears to be a tendency toward preferential large axonal loss, but the mean axonal loss of large and small axons did not meet significant differences (P = .1) However, examination of individual animals with significant loss shows significantly greater loss of large axons as compared to the small axons in three of the animals. Conclusions Chronic optic nerve ischemia causes demonstrable and localized damage of the optic nerve, without intraocular pressure elevation. There is preferential loss of large retinal ganglion cell axons in animals with significant axonal loss. Ischemia-induced focal axonal loss is similar to human glaucoma and may represent a differential regional vulnerability. PMID:17057819

  9. Nicotinamide restores the reduction of parvalbumin in cerebral ischemic injury.

    PubMed

    Koh, Phil-Ok

    2013-02-01

    The aim of this study investigated whether nicotinamide affects parvalbumin expression in focal cerebral ischemic injury. Rats were treated with vehicle or nicotinamide (500 mg/kg) 2 hr after middle cerebral artery occlusion (MCAO), and cerebral cortex tissues were collected 24 hr after MCAO. Nicotinamide significantly decreases the volume of infarct areas in the cerebral cortex. A proteomic approach revealed that MCAO induces decreases of parvalbumin levels, while nicotinamide treatment prevents injury-induced decreases in parvalbumin. RT-PCR and Western blot analyses demonstrated that nicotinamide restores injury-induced decreases in parvalbumin. Moreover, immunohistochemical staining confirmed that the numbers of parvalbumin-positive cells were decreased in vehicle-treated animals with MCAO, and that nicotinamide averted this decrease. In cultured hippocampal cells, nicotinamide treatment prevents the glutamate exposure-induced increase in intracellular Ca(2+) concentration and decrease in parvalbumin expression. These results suggest the fact that the maintenance of parvalbumin expression is mediated to the neuroprotective function of nicotinamide against ischemic brain injury.

  10. Nonlinear Dynamic Theory of Acute Cell Injuries and Brain Ischemia

    NASA Astrophysics Data System (ADS)

    Taha, Doaa; Anggraini, Fika; Degracia, Donald; Huang, Zhi-Feng

    2015-03-01

    Cerebral ischemia in the form of stroke and cardiac arrest brain damage affect over 1 million people per year in the USA alone. In spite of close to 200 clinical trials and decades of research, there are no treatments to stop post-ischemic neuron death. We have argued that a major weakness of current brain ischemia research is lack of a deductive theoretical framework of acute cell injury to guide empirical studies. A previously published autonomous model based on the concept of nonlinear dynamic network was shown to capture important facets of cell injury, linking the concept of therapeutic to bistable dynamics. Here we present an improved, non-autonomous formulation of the nonlinear dynamic model of cell injury that allows multiple acute injuries over time, thereby allowing simulations of both therapeutic treatment and preconditioning. Our results are connected to the experimental data of gene expression and proteomics of neuron cells. Importantly, this new model may be construed as a novel approach to pharmacodynamics of acute cell injury. The model makes explicit that any pro-survival therapy is always a form of sub-lethal injury. This insight is expected to widely influence treatment of acute injury conditions that have defied successful treatment to date. This work is supported by NIH NINDS (NS081347) and Wayne State University President's Research Enhancement Award.

  11. Quantitation of the critically ischemic zone at risk during acute coronary occlusion using PET

    SciTech Connect

    Merhige, M.; Garza, D.; Sease, D.; Rowe, R.W.; Tewson, T.; Emran, A.; Bolomey, L.; Gould, K.L. )

    1991-08-01

    Critical myocardial ischemia has been defined experimentally during acute coronary occlusion as flow reduction of 50% or more since cellular ATP depletion begins to occur beyond this flow reduction threshold, placing tissue at risk of cellular injury. To test the hypothesis that critically ischemic fractional left ventricular mass can be measured noninvasively with PET, nine dogs were imaged in a multi-slice positron camera using the perfusion tracer 13N-ammonia, while radiolabeled microspheres were injected into the left atrium during acute coronary occlusion. Images were processed using a 50% threshold and the size of the resulting perfusion defect was expressed as a fraction of total left ventricular image volume. The critically ischemic left ventricular fraction determined in vitro from the microsphere perfusion data, ranged from 5% to 30% of the total left ventricular weight and correlated closely with that determined noninvasively by PET with r = 0.94 (y = 1.05X - 2.0%). The authors conclude that the fraction of left ventricular myocardium rendered critically ischemic during acute coronary occlusion can be measured accurately and noninvasively in vivo using perfusion imaging with positron emission tomography.

  12. Spontaneous sternocleidomastoid muscle hematoma following thrombolysis for acute ischemic stroke.

    PubMed

    Giannantoni, Nadia Mariagrazia; Della Marca, Giacomo; Broccolini, Aldobrando; Pilato, Fabio; Profice, Paolo; Morosetti, Roberta; Caliandro, Pietro; Frisullo, Giovanni

    2014-06-15

    Spontaneous or traumatic bleeding is a common complication of systemic thrombolysis in patients with acute ischemic stroke. We report the case of an 83 y.o. woman with right facio-brachio-crural hemiparesis, left deviation of the head and aphasia who developed, after thrombolytic therapy, a spontaneous sternocleidomastoid muscle hematoma that regressed few days later. To our knowledge, this is the first case reported in the literature of asymptomatic and spontaneous skeletal muscle hematoma following thrombolysis for the treatment of acute ischemic stroke. The occurrence of lateral cervical tuberculosis lymphadenitis ipsilateral to sternocleidomastoid muscle hematoma may suggest a causal relationship between local chronic inflammation of active mycobacterial infection and thrombolysis-related extravasation. This case should suggest caution in thrombolytic treatment in patients with chronic immune dysregulation and vascular inflammation such as extra-pulmonary tuberculosis.

  13. Treatment with Evasin-3 reduces atherosclerotic vulnerability for ischemic stroke, but not brain injury in mice

    PubMed Central

    Copin, Jean-Christophe; da Silva, Rafaela F; Fraga-Silva, Rodrigo A; Capettini, Luciano; Quintao, Silvia; Lenglet, Sébastien; Pelli, Graziano; Galan, Katia; Burger, Fabienne; Braunersreuther, Vincent; Schaller, Karl; Deruaz, Maud; Proudfoot, Amanda E; Dallegri, Franco; Stergiopulos, Nikolaos; Santos, Robson A S; Gasche, Yvan; Mach, François; Montecucco, Fabrizio

    2013-01-01

    Neutrophilic inflammation might have a pathophysiological role in both carotid plaque rupture and ischemic stroke injury. Here, we investigated the potential benefits of the CXC chemokine-binding protein Evasin-3, which potently inhibits chemokine bioactivity and related neutrophilic inflammation in two mouse models of carotid atherosclerosis and ischemic stroke, respectively. In the first model, the chronic treatment with Evasin-3 as compared with Vehicle (phosphate-buffered saline (PBS)) was investigated in apolipoprotein E-deficient mice implanted of a ‘cast' carotid device. In the second model, acute Evasin-3 treatment (5 minutes after cerebral ischemia onset) was assessed in mice subjected to transient left middle cerebral artery occlusion. Although CXCL1 and CXCL2 were upregulated in both atherosclerotic plaques and infarcted brain, only CXCL1 was detectable in serum. In carotid atherosclerosis, treatment with Evasin-3 was associated with reduction in intraplaque neutrophil and matrix metalloproteinase-9 content and weak increase in collagen as compared with Vehicle. In ischemic stroke, treatment with Evasin-3 was associated with reduction in ischemic brain neutrophil infiltration and protective oxidants. No other effects in clinical and histological outcomes were observed. We concluded that Evasin-3 treatment was associated with reduction in neutrophilic inflammation in both mouse models. However, Evasin-3 administration after cerebral ischemia onset failed to improve poststroke outcomes. PMID:23250107

  14. Mechanical Thrombectomy in Acute Ischemic Stroke: A Systematic Review.

    PubMed

    Lambrinos, Anna; Schaink, Alexis K; Dhalla, Irfan; Krings, Timo; Casaubon, Leanne K; Sikich, Nancy; Lum, Cheemun; Bharatha, Aditya; Pereira, Vitor Mendes; Stotts, Grant; Saposnik, Gustavo; Kelloway, Linda; Xie, Xuanqian; Hill, Michael D

    2016-07-01

    Although intravenous thrombolysis increases the probability of a good functional outcome in carefully selected patients with acute ischemic stroke, a substantial proportion of patients who receive thrombolysis do not have a good outcome. Several recent trials of mechanical thrombectomy appear to indicate that this treatment may be superior to thrombolysis. We therefore conducted a systematic review and meta-analysis to evaluate the clinical effectiveness and safety of new-generation mechanical thrombectomy devices with intravenous thrombolysis (if eligible) compared with intravenous thrombolysis (if eligible) in patients with acute ischemic stroke caused by a proximal intracranial occlusion. We systematically searched seven databases for randomized controlled trials published between January 2005 and March 2015 comparing stent retrievers or thromboaspiration devices with best medical therapy (with or without intravenous thrombolysis) in adults with acute ischemic stroke. We assessed risk of bias and overall quality of the included trials. We combined the data using a fixed or random effects meta-analysis, where appropriate. We identified 1579 studies; of these, we evaluated 122 full-text papers and included five randomized control trials (n=1287). Compared with patients treated medically, patients who received mechanical thrombectomy were more likely to be functionally independent as measured by a modified Rankin score of 0-2 (odds ratio, 2.39; 95% confidence interval, 1.88-3.04; I2=0%). This finding was robust to subgroup analysis. Mortality and symptomatic intracerebral hemorrhage were not significantly different between the two groups. Mechanical thrombectomy significantly improves functional independence in appropriately selected patients with acute ischemic stroke.

  15. Loss of matrix metalloproteinase-8 is associated with worsened recovery after ischemic kidney injury.

    PubMed

    Basu, Rajit K; Donaworth, Emily; Siroky, Brian; Devarajan, Prasad; Wong, Hector R

    2015-04-01

    Acute kidney injury (AKI) leads to chronic kidney disease. The mechanisms involved with recovery from AKI are poorly understood and molecular mediators responsible for healing and restoration of kidney function are understudied. We previously discovered differential expression of matrix metalloproteinase-8 (MMP-8) mRNA and protein in patients with severe sepsis associated AKI versus sepsis without AKI. Here, we demonstrate the involvement of MMP-8 in purely ischemic AKI. Mice subjected to 30 min of bilateral renal ischemia developed increased plasma creatinine and MMP-8 expression within 24 h versus sham controls. After an initial surge and subsequent return toward baseline, both kidney MMP-8 expression and activity exhibited a late increase (Days 5-7 post-ischemia reperfusion) in mice subjected to AKI. Neutrophil infiltration of the kidney was significantly higher after AKI in wild-type mice than in MMP-8 null mice, starting at 4 days. Additionally, MMP-8 null mice subjected to AKI demonstrated a persistent histopathologic and functional injury and worsened health (greater overall weight loss) versus wild-type cohorts after seven days. Taken together, our findings suggest that MMP-8 is involved with restoration of baseline kidney health after ischemic kidney injury and that a potential mechanism involves the interaction of MMP-8 and neutrophil recruitment to the site of injury.

  16. Neuroanatomical correlates of severe cardiac arrhythmias in acute ischemic stroke.

    PubMed

    Seifert, Frank; Kallmünzer, Bernd; Gutjahr, Isabell; Breuer, Lorenz; Winder, Klemens; Kaschka, Iris; Kloska, Stephan; Doerfler, Arnd; Hilz, Max-Josef; Schwab, Stefan; Köhrmann, Martin

    2015-05-01

    Neurocardiological interactions can cause severe cardiac arrhythmias in patients with acute ischemic stroke. The relationship between the lesion location in the brain and the occurrence of cardiac arrhythmias is still discussed controversially. The aim of the present study was to correlate the lesion location with the occurrence of cardiac arrhythmias in patients with acute ischemic stroke. Cardiac arrhythmias were systematically assessed in patients with acute ischemic stroke during the first 72 h after admission to a monitored stroke unit. Voxel-based lesion-symptom mapping (VLSM) was used to correlate the lesion location with the occurrence of clinically relevant severe arrhythmias. Overall 150 patients, 56 with right-hemispheric and 94 patients with a left-hemispheric lesion, were eligible to be included in the VLSM study. Severe cardiac arrhythmias were present in 49 of these 150 patients (32.7%). We found a significant association (FDR correction, q < 0.05) between lesions in the right insular, right frontal and right parietal cortex as well as the right amygdala, basal ganglia and thalamus and the occurrence of cardiac arrhythmias. Because left- and right-hemispheric lesions were analyzed separately, the significant findings rely on the 56 patients with right-hemispheric lesions. The data indicate that these areas are involved in central autonomic processing and that right-hemispheric lesions located to these areas are associated with an elevated risk for severe cardiac arrhythmias.

  17. Reperfusion Therapies for Acute Ischemic Stroke: An Update

    PubMed Central

    Dorado, Laura; Millán, Mònica; Dávalos, Antoni

    2014-01-01

    Acute ischemic stroke is a major cause of morbidity and mortality in developed countries. Intravenous thrombolysis with tissue plasminogen activator (tPA) within 4.5 hours of symptoms onset significantly improves clinical outcomes in patients with acute ischemic stroke. This narrow window for treatment leads to a small proportion of eligible patients to be treated. Intravenous or intra-arterial trials, combined intravenous/intra-arterial trials, and newer devices to mechanically remove the clot from intracranial arteries have been investigated or are currently being explored to increase patient eligibility and to improve arterial recanalization and clinical outcome. New retrievable stent-based devices offer higher revascularization rates with shorter time to recanalization and are now generally preferred to first generation thrombectomy devices such as Merci Retriever or Penumbra System. These devices have been shown to be effective for opening up occluded vessels in the brain but its efficacy for improving outcomes in patients with acute stroke has not yet been demonstrated in a randomized clinical trial. We summarize the results of the major systemic thrombolytic trials and the latest trials employing different endovascular approaches to ischemic stroke. PMID:24646159

  18. Reperfusion therapies for acute ischemic stroke: an update.

    PubMed

    Dorado, Laura; Millán, Mònica; Dávalos, Antoni

    2014-11-01

    Acute ischemic stroke is a major cause of morbidity and mortality in developed countries. Intravenous thrombolysis with tissue plasminogen activator (tPA) within 4.5 hours of symptoms onset significantly improves clinical outcomes in patients with acute ischemic stroke. This narrow window for treatment leads to a small proportion of eligible patients to be treated. Intravenous or intra-arterial trials, combined intravenous/intra-arterial trials, and newer devices to mechanically remove the clot from intracranial arteries have been investigated or are currently being explored to increase patient eligibility and to improve arterial recanalization and clinical outcome. New retrievable stent-based devices offer higher revascularization rates with shorter time to recanalization and are now generally preferred to first generation thrombectomy devices such as Merci Retriever or Penumbra System. These devices have been shown to be effective for opening up occluded vessels in the brain but its efficacy for improving outcomes in patients with acute stroke has not yet been demonstrated in a randomized clinical trial. We summarize the results of the major systemic thrombolytic trials and the latest trials employing different endovascular approaches to ischemic stroke.

  19. Anti-Inflammatory Effects of Traditional Chinese Medicines against Ischemic Injury in In Vivo Models of Cerebral Ischemia

    PubMed Central

    2016-01-01

    Inflammation plays a crucial role in the pathophysiology of acute ischemic stroke. In the ischemic cascade, resident microglia are rapidly activated in the brain parenchyma and subsequently trigger inflammatory mediator release, which facilitates leukocyte-endothelial cell interactions in inflammation. Activated leukocytes invade the endothelial cell junctions and destroy the blood-brain barrier integrity, leading to brain edema. Toll-like receptors (TLRs) stimulation in microglia/macrophages through the activation of intercellular signaling pathways secretes various proinflammatory cytokines and enzymes and then aggravates cerebral ischemic injury. The secreted cytokines activate the proinflammatory transcription factors, which subsequently regulate cytokine expression, leading to the amplification of the inflammatory response and exacerbation of the secondary brain injury. Traditional Chinese medicines (TCMs), including TCM-derived active compounds, Chinese herbs, and TCM formulations, exert neuroprotective effects against inflammatory responses by downregulating the following: ischemia-induced microglial activation, microglia/macrophage-mediated cytokine production, proinflammatory enzyme production, intercellular adhesion molecule-1, matrix metalloproteinases, TLR expression, and deleterious transcription factor activation. TCMs also aid in upregulating anti-inflammatory cytokine expression and neuroprotective transcription factor activation in the ischemic lesion in the inflammatory cascade during the acute phase of cerebral ischemia. Thus, TCMs exert potent anti-inflammatory properties in ischemic stroke and warrant further investigation. PMID:27703487

  20. Heat shock proteins and protection against ischemic injury.

    PubMed Central

    Dillmann, W H

    1999-01-01

    Heat shock proteins present a complex family of proteins exerting chaperone-like activities that are classified according to their molecular weight. We especially explored protective functions of inducible heat shock protein 70, the mitochondrial heat shock protein 60 and 10, and the small heat shock proteins HSP27 and alphaB-crystallin against ischemic, reoxygenation-mediated injury using transgenic animals and hearts under in vivo conditions and in isolated cardiac myocyte-derived cells using adenoviral vectors. We noted with great interest that differential protective effects are exerted by specific hsps. For example, alpha-B-crystallin and constitutive hsp70 markedly protect microtubular structure in cardiac myocytes from ischemia-induced injury. Inducible hsp70, hsp60 and hsp10 when coexpressed, and hsp27 and alphaB-crystallin have an overall protective effect against ischemic injury as determined by the release of enzymes like creatine kinase and LDH. We did not note inflammatory or immune responses elicited by the expression of hsps in transgenic animals and cardiac myocytes. The specific cell types in which hsps are expressed may contribute to the protective effect of hsps versus their inflammatory and immunogenic effects when expressed in other cell types. PMID:10231010

  1. Successful Escape of Acute Ischemic Stroke Patients from Hospital to Home: Clinical Note

    PubMed Central

    Tei, Hideaki

    2012-01-01

    I describe four patients who successfully escaped from the hospital to their own home during the acute phase of ischemic stroke. This is a very rare phenomenon (seen in 0.35% of 1150 consecutive patients with first ischemic stroke within 24 h after onset), but the patients had rather uniform clinical characteristics. All were male, around 60 years old, had moderate to severe aphasia (Wernicke’s in 2 patients, Broca's in 1, and transcortical motor in 1), and cerebral infarction of the left middle cerebral artery territory. None had significant motor weakness, hemispatial neglect, or hemianopia at the time of escape. Overall functional outcome was good for all but one patient, but aphasia persisted in three. Although none of the four patients sustained serious injury during the escape, patients with such clinical characteristics must be managed cautiously to prevent serious consequences. PMID:22425726

  2. Effects of a stable prostacyclin analog on experimental ischemic acute renal failure.

    PubMed Central

    Tobimatsu, M; Ueda, Y; Saito, S; Tsumagari, T; Konomi, K

    1988-01-01

    The effect of OP-41483, a stable prostacyclin (PGI2) analog, on ischemic acute renal failure (ARF) was investigated in dogs. Administration of OP-41483 for three days after ischemia significantly increased renal cortical blood flow (RCBF) when compared with dogs treated with the saline vehicle. In the OP-41483-treated group, serum creatinine levels remained relatively low during postoperative days 1-3 and mean survival time was prolonged. Injection of a silicone rubber vascular casting compound (Microfil) revealed increased numbers of visible renal cortical glomeruli and microvessels compared to the saline vehicle group. Histologic sections showed only very limited tubular necrosis, whereas sections of kidneys treated with saline showed extensive tubular necrosis. In conclusion, this stable prostacyclin analog provided a significant degree of protection for the kidneys from ischemic injury and may be useful in a clinical setting. Images Figs. 3A-D. Figs. 4A-D. PMID:3291800

  3. Copolymer-1 promotes neurogenesis and improves functional recovery after acute ischemic stroke in rats.

    PubMed

    Cruz, Yolanda; Lorea, Jonathan; Mestre, Humberto; Kim-Lee, Jennifer Hyuna; Herrera, Judith; Mellado, Raúl; Gálvez, Vanesa; Cuellar, Leopoldo; Musri, Carolina; Ibarra, Antonio

    2015-01-01

    Stroke triggers a systemic inflammatory response that exacerbates the initial injury. Immunizing with peptides derived from CNS proteins can stimulate protective autoimmunity (PA). The most renowned of these peptides is copolymer-1 (Cop-1) also known as glatiramer acetate. This peptide has been approved for use in the treatment of multiple sclerosis. Cop-1-specific T cells cross the blood-brain barrier and secrete neurotrophins and anti-inflammatory cytokines that could stimulate proliferation of neural precursor cells and recruit them to the injury site; making it an ideal therapy for acute ischemic stroke. The aim of this work was to evaluate the effect of Cop-1 on neurogenesis and neurological recovery during the acute phase (7 days) and the chronic phase of stroke (60 days) in a rat model of transient middle cerebral artery occlusion (tMCAo). BDNF and NT-3 were quantified and infarct volumes were measured. We demonstrated that Cop-1 improves neurological deficit, enhances neurogenesis (at 7 and 60 days) in the SVZ, SGZ, and cerebral cortex through an increase in NT-3 production. It also decreased infarct volume even at the chronic phase of tMCAo. The present manuscript fortifies the support for the use of Cop-1 in acute ischemic stroke.

  4. Proton-sensitive cation channels and ion exchangers in ischemic brain injury: new therapeutic targets for stroke?

    PubMed Central

    Leng, Tiandong; Shi, Yejie; Xiong, Zhi-Gang; Sun, Dandan

    2014-01-01

    Ischemic brain injury results from complicated cellular mechanisms. The present therapy for acute ischemic stroke is limited to thrombolysis with the recombinant tissue plasminogen activator (rtPA) and mechanical recanalization. Therefore, a better understanding of ischemic brain injury is needed for the development of more effective therapies. Disruption of ionic homeostasis plays an important role in cell death following cerebral ischemia. Glutamate receptor-mediated ionic imbalance and neurotoxicity have been well established in cerebral ischemia after stroke. However, non-NMDA receptor-dependent mechanisms, involving acid-sensing ion channel 1a (ASIC1a), transient receptor potential melastatin 7 (TRPM7), and Na+/H+ exchanger isoform 1 (NHE1), have recently emerged as important players in the dysregulation of ionic homeostasis in the CNS under ischemic conditions. These H+-sensitive channels and/or exchangers are expressed in the majority of cell types of the neurovascular unit. Sustained activation of these proteins causes excessive influx of cations, such as Ca2+, Na+, and Zn2+, and leads to ischemic reperfusion brain injury. In this review, we summarize recent pre-clinical experimental research findings on how these channels/exchangers are regulated in both in vitro and in vivo models of cerebral ischemia. The blockade or transgenic knockdown of these proteins was shown to be neuroprotective in these ischemia models. Taken together, these non-NMDA receptor-dependent mechanisms may serve as novel therapeutic targets for stroke intervention. PMID:24467911

  5. Stem Cells for Ischemic Brain Injury: A Critical Review

    PubMed Central

    Burns, Terry C.; Verfaillie, Catherine M.; Low, Walter C.

    2014-01-01

    No effective therapy is currently available to promote recovery following ischemic stroke. Stem cells have been proposed as a potential source of new cells to replace those lost due to central nervous system injury, as well as a source of trophic molecules to minimize damage and promote recovery. We undertook a detailed review of data from recent basic science and preclinical studies to investigate the potential application of endogenous and exogenous stem cell therapies for treatment of cerebral ischemia. To date, spontaneous endogenous neurogenesis has been observed in response to ischemic injury, and can be enhanced via infusion of appropriate cytokines. Exogenous stem cells from multiple sources can generate neural cells that survive and form synaptic connections after transplantation in the stroke-injured brain. Stem cells from multiple sources cells also exhibit neuroprotective properties that may ameliorate stroke deficits. In many cases, functional benefits observed are likely independent of neural differentiation, though exact mechanisms remain poorly understood. Future studies of neuroregeneration will require the demonstration of function in endogenously born neurons following focal ischemia. Further, methods are currently lacking to definitively demonstrate the therapeutic effect of newly introduced neural cells. Increased plasticity following stroke may facilitate the functional integration of new neurons, but the loss of appropriate guidance cues and supporting architecture in the infarct cavity will likely impede the restoration of lost circuitry. As such careful investigation of the mechanisms underlying trophic benefits will be essential. Evidence to date suggest that continued development of stem cell therapies may ultimately lead to viable treatment options for ischemic brain injury. PMID:19399885

  6. [Neuroprotective therapy for the treatment of acute ischemic stroke].

    PubMed

    Naritomi, H

    2001-12-01

    Following cerebral ischemia, various biochemical reactions are provoked in a stepwise manner leading neuronal cells to ischemic death. The prevention of these biochemical reactions may exert neuroprotective actions and consequently reduce the magnitude of ischemic cerebral injury. On the basis of such a view, numerous neuroprotective drugs have been developed during the last decade. Quite a few drugs were found effective in reducing the infarct volume in experimental studies, and more than 15 of them were subjected to clinical phase III trials to see a therapeutic effectiveness. However, the results of phase III trials were disappointing in the majority drugs. Only three drugs, nicaravene, ebselen and edaravone, all radical scavengers, were judged effective by small-sized trials with a wide therapeutic window, 48-72 hours after stroke, in Japan. The fact suggests that a one-point prevention of biochemical reactions by single drug is unable to rescue ischemic neuronal cells. Ischemic insult causes damages of vascular wall including the endothelium which play an important role in the development of hemorrhagic changes or cerebral edema. Vascular protection is considered as important as neuroprotection in treatment of clinical stroke. Mild hypothermia has neuroprotective and vascular protective actions and hence may be more effective than neuroprotective drugs for the treatment of stroke. The prevention of fever, which often occurs in severe stroke, may exert the similar effect as hypothermia in neuroprotection. Neuroprotective therapy in the future should proceed toward the simultaneous protections of neurons and vessels using combination of multiple drugs.

  7. Endovascular vs medical management of acute ischemic stroke

    PubMed Central

    Ding, Dale; Starke, Robert M.; Mehndiratta, Prachi; Crowley, R. Webster; Liu, Kenneth C.; Southerland, Andrew M.; Worrall, Bradford B.

    2015-01-01

    Objective: To compare the outcomes between endovascular and medical management of acute ischemic stroke in recent randomized controlled trials (RCT). Methods: A systematic literature review was performed, and multicenter, prospective RCTs published from January 1, 2013, to May 1, 2015, directly comparing endovascular therapy to medical management for patients with acute ischemic stroke were included. Meta-analyses of modified Rankin Scale (mRS) and mortality at 90 days and symptomatic intracranial hemorrhage (sICH) for endovascular therapy and medical management were performed. Results: Eight multicenter, prospective RCTs (Interventional Management of Stroke [IMS] III, Local Versus Systemic Thrombolysis for Acute Ischemic Stroke [SYNTHESIS] Expansion, Mechanical Retrieval and Recanalization of Stroke Clots Using Embolectomy [MR RESCUE], Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands [MR CLEAN], Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness [ESCAPE], Extending the Time for Thrombolysis in Emergency Neurological Deficits–Intra-Arterial [EXTEND-IA], Solitaire With the Intention For Thrombectomy as Primary Endovascular Treatment [SWIFT PRIME], and Endovascular Revascularization With Solitaire Device Versus Best Medical Therapy in Anterior Circulation Stroke Within 8 Hours [REVASCAT]) comprising 2,423 patients were included. Meta-analysis of pooled data demonstrated functional independence (mRS 0–2) at 90 days in favor of endovascular therapy (odds ratio [OR] = 1.71; p = 0.005). Subgroup analysis of the 6 trials with large vessel occlusion (LVO) criteria also demonstrated functional independence at 90 days in favor of endovascular therapy (OR = 2.23; p < 0.00001). Subgroup analysis of the 5 trials that primarily utilized stent retriever devices (≥70%) in the intervention arm demonstrated functional independence at 90 days in favor of endovascular therapy

  8. The Role of Ghrelin in Neuroprotection after Ischemic Brain Injury

    PubMed Central

    Spencer, Sarah J.; Miller, Alyson A.; Andrews, Zane B.

    2013-01-01

    Ghrelin, a gastrointestinal peptide with a major role in regulating feeding and metabolism, has recently been investigated for its neuroprotective effects. In this review we discuss pre-clinical evidence suggesting ghrelin may be a useful therapeutic in protecting the brain against injury after ischemic stroke. Specifically, we will discuss evidence showing ghrelin administration can improve neuronal cell survival in animal models of focal cerebral ischemia, as well as rescue memory deficits. We will also discuss its proposed mechanisms of action, including anti-apoptotic and anti-inflammatory effects, and suggest ghrelin treatment may be a useful intervention after stroke in the clinic. PMID:24961317

  9. [Cerebrolysin in treatment of acute ischemic stroke].

    PubMed

    Domzał, T; Zaleska, B

    1995-01-01

    Cerebrolysin is composed of low molecular peptides and free amino-acids and as a nootropic drug it administered in various diseases of central nervous system. In an open clinical trial patients with acute ischaemic stroke in the region of the middle cerebral artery, were treated. Cerebrolysin was administered as intravenous infusion in daily dose of 15 ml during 21 days. Recovery in 10 patients and improvement in 3 was obtained and only one patient died. The results were compared to the large group of 108 patients treated earlier with other drugs. Therapeutic effect was similar in all groups.

  10. Influence of age and vitamin E on post-ischemic acute renal failure.

    PubMed

    Shimizu, Maria Heloisa Massola; Araujo, Magali; Borges, Sergio Murilo Mello; de Tolosa, Erasmo Magalhães C; Seguro, Antonio Carlos

    2004-05-01

    The aging process causes progressive deterioration in kidney structure and function. Aberrant generation of reactive oxygen species has been implicated in both age-related and ischemia-related tissue injury. Vitamin E (VE), one of the most powerful and effective exogenous antioxidants, prevents lipid peroxidation and protects against the effects of oxidative stress. The objective of this study was to determine the influence of age and VE on post-ischemic acute renal failure (ARF). Young adult, middle-aged and aged male Wistar rats were maintained on three different 30-day diets: Normal, VE absent and VE supplemented. On day 30, urinary protein and serum cholesterol and VE were measured. On day 31, rats were subjected to 60' clamping of the left renal artery plus right nephrectomy. Inulin clearance (InCl) was performed 48 h after renal ischemia. Malondialdehyde (MDA) was measured in the cortex of normal and 48-h post-ischemic kidneys. Urinary protein and serum cholesterol were higher in aged rats than in other rats. With aging, InCl decreased progressively. Vitamin E deficiency aggravated ARF. In middle-aged and aged rats, VE supplementation protected against ARF. In the absence of VE, MDA increased with age. In conclusion, our data suggest that ARF becomes more severe with age and that ischemia/reperfusion injury is exacerbated when antioxidant-scavenging ability of the kidney is impaired by VE deficiency. Supplementation with VE is essential for protecting aging kidneys against ischemic ARF.

  11. Myricetin and quercetin attenuate ischemic injury in glial cultures by different mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have demonstrated that polyphenols from cinnamon and green tea reduce cell swelling and mitochondrial dysfunction in C6 glial cultures following ischemic injury. We tested the protective effects of the flavonoid polyphenols, myricetin and quercetin, on key features of ischemic injury. C6 cultures...

  12. Sepsis and Acute Kidney Injury.

    PubMed

    Bilgili, Beliz; Haliloğlu, Murat; Cinel, İsmail

    2014-12-01

    Acute kindney injury (AKI) is a clinical syndrome which is generally defined as an abrupt decline in glomerular filtration rate, causing accumulation of nitrogenous products and rapid development of fluid, electrolyte and acid base disorders. In intensive care unit sepsis and septic shock are leading causes of AKI. Sepsis-induced AKI literally acts as a biologic indicator of clinical deterioration. AKI triggers variety of immune, inflammatory, metabolic and humoral patways; ultimately leading distant organ dysfunction and increases morbidity and mortality. Serial mesurements of creatinine and urine volume do not make it possible to diagnose AKI at early stages. Serum creatinine influenced by age, weight, hydration status and become apparent only when the kidneys have lost 50% of their function. For that reason we need new markers, and many biomarkers in the diagnosis of early AKI activity is assessed. Historically "Risk-Injury-Failure-Loss-Endstage" (RIFLE), "Acute Kidney Injury Netwok" (AKIN) and "The Kidney Disease/ Improving Global Outcomes" (KDIGO) classification systems are used for diagnosing easily in clinical practice and research and grading disease. Classifications including diagnostic criteria are formed for the identification of AKI. Neutrophil gelatinase associated lipocalin (NGAL), cystatin-C (Cys-C), kidney injury molecule-1 (KIM-1) and also "cell cycle arrest" molecules has been concerned for clinical use. In this review the pathophysiology of AKI, with the relationship of sepsis and the importance of early diagnosis of AKI is evaluated.

  13. Sepsis and Acute Kidney Injury

    PubMed Central

    Bilgili, Beliz; Haliloğlu, Murat; Cinel, İsmail

    2014-01-01

    Acute kindney injury (AKI) is a clinical syndrome which is generally defined as an abrupt decline in glomerular filtration rate, causing accumulation of nitrogenous products and rapid development of fluid, electrolyte and acid base disorders. In intensive care unit sepsis and septic shock are leading causes of AKI. Sepsis-induced AKI literally acts as a biologic indicator of clinical deterioration. AKI triggers variety of immune, inflammatory, metabolic and humoral patways; ultimately leading distant organ dysfunction and increases morbidity and mortality. Serial mesurements of creatinine and urine volume do not make it possible to diagnose AKI at early stages. Serum creatinine influenced by age, weight, hydration status and become apparent only when the kidneys have lost 50% of their function. For that reason we need new markers, and many biomarkers in the diagnosis of early AKI activity is assessed. Historically “Risk-Injury-Failure-Loss-Endstage” (RIFLE), “Acute Kidney Injury Netwok” (AKIN) and “The Kidney Disease/ Improving Global Outcomes” (KDIGO) classification systems are used for diagnosing easily in clinical practice and research and grading disease. Classifications including diagnostic criteria are formed for the identification of AKI. Neutrophil gelatinase associated lipocalin (NGAL), cystatin-C (Cys-C), kidney injury molecule-1 (KIM-1) and also “cell cycle arrest” molecules has been concerned for clinical use. In this review the pathophysiology of AKI, with the relationship of sepsis and the importance of early diagnosis of AKI is evaluated. PMID:27366441

  14. Stroke Code Improves Intravenous Thrombolysis Administration in Acute Ischemic Stroke

    PubMed Central

    Chen, Chih-Hao; Tang, Sung-Chun; Tsai, Li-Kai; Hsieh, Ming-Ju; Yeh, Shin-Joe; Huang, Kuang-Yu; Jeng, Jiann-Shing

    2014-01-01

    Background and Purpose Timely intravenous (IV) thrombolysis for acute ischemic stroke is associated with better clinical outcomes. Acute stroke care implemented with “Stroke Code” (SC) may increase IV tissue plasminogen activator (tPA) administration. The present study aimed to investigate the impact of SC on thrombolysis. Methods The study period was divided into the “pre-SC era” (January 2006 to July 2010) and “SC era” (August 2010 to July 2013). Demographics, critical times (stroke symptom onset, presentation to the emergency department, neuroimaging, thrombolysis), stroke severity, and clinical outcomes were recorded and compared between the two eras. Results During the study period, 5957 patients with acute ischemic stroke were admitted; of these, 1301 (21.8%) arrived at the emergency department within 3 h of stroke onset and 307 (5.2%) received IV-tPA. The number and frequency of IV-tPA treatments for patients with an onset-to-door time of <3 h increased from the pre-SC era (n = 91, 13.9%) to the SC era (n = 216, 33.3%) (P<0.001). SC also improved the efficiency of IV-tPA administration; the median door-to-needle time decreased (88 to 51 min, P<0.001) and the percentage of door-to-needle times ≤60 min increased (14.3% to 71.3%, P<0.001). The SC era group tended to have more patients with good outcome (modified Rankin Scale ≤2) at discharge (49.5 vs. 39.6%, P = 0.11), with no difference in symptomatic hemorrhage events or in-hospital mortality. Conclusion The SC protocol increases the percentage of acute ischemic stroke patients receiving IV-tPA and decreases door-to-needle time. PMID:25111200

  15. HIF-1α inhibition ameliorates neonatal brain injury in a rat pup hypoxic-ischemic model

    PubMed Central

    Chen, Wanqiu; Jadhav, Vikram; Tang, Jiping; Zhang, John H.

    2008-01-01

    Hypoxia-inducible factor-1alpha (HIF-1α) has been considered as a regulator of both prosurvival and prodeath pathways in the nervous system. The present study was designed to elucidate the role of HIF-1α in neonatal hypoxic-ischemic (HI) brain injury. Rice-Vannucci model of neonatal hypoxic-ischemic brain injury was used in seven-day-old rats, by subjecting unilateral carotid artery ligation followed by 2h of hypoxia (8% O2 at 37°C). HIF-1α activity was inhibited by 2-methoxyestradiol (2ME2) and enhanced by dimethyloxalylglycine (DMOG). Results showed that 2ME2 exhibited dose-dependent neuroprotection by decreasing infarct volume and reducing brain edema at 48 h post HI. The neuroprotection was lost when 2ME2 was administered 3 h post HI. HIF-1α upregulation by DMOG increased the permeability of the BBB and brain edema compared with HI group. 2ME2 attenuated the increase in HIF-1α and VEGF 24 h after HI. 2ME2 also had a long-term effect of protecting against the loss of brain tissue. The study showed that the early inhibition of HIF-1α acutely after injury provided neuroprotection after neonatal hypoxia-ischemia which was associated with preservation of BBB integrity, attenuation of brain edema, and neuronal death. PMID:18602008

  16. Ischemic postconditioning may not influence early brain injury induced by focal cerebral ischemia/reperfusion in rats

    PubMed Central

    Kim, Yoo Kyung; Shin, Jin Woo; Joung, Kyoung Woon

    2010-01-01

    Background Experimental studies have shown that ischemic postconditioning can reduce neuronal injury in the setting of cerebral ischemia, but the mechanisms are not yet clearly elucidated. This study was conducted to determine whether ischemic postconditioning can alter expression of heat shock protein 70 and reduce acute phase neuronal injury in rats subjected to transient focal cerebral ischemia/reperfusion. Methods Focal cerebral ischemia was induced by intraluminal middle cerebral artery occlusion for 60 min in twenty male Sprague-Dawley rats (250-300 g). Rats were randomized into control group and an ischemic postconditioning group (10 rats per group). The animals of control group had no intervention either before or after MCA occlusion. Ischemic postconditioning was elicited by 3 cycles of 30 s reperfusion interspersed by 10 s ischemia immediately after onset of reperfusion. The infarct ratios, brain edema ratios and motor behavior deficits were analyzed 24 hrs after ischemic insult. Caspase-3 reactive cells and cells showing heat shock protein 70 activity were counted in the caudoputamen and frontoparietal cortex. Results Ischemic postconditiong did not reduce infarct size and brain edema ratios compared to control group. Neurologic scores were not significantly different between groups. The number of caspase-3 reactive cells in the ischemic postconditioning group was not significantly different than the value of the control group in the caudoputamen and frontoparietal cortex. The number of cells showing heat shock protein 70 activity was not significantly different than the control group, as well. Conclusions These results suggest that ischemic postconditioning may not influence the early brain damage induced by focal cerebral ischemia in rats. PMID:20498797

  17. Cerebral Vascular Disease and Neurovascular Injury in Ischemic Stroke.

    PubMed

    Hu, Xiaoming; De Silva, T Michael; Chen, Jun; Faraci, Frank M

    2017-02-03

    The consequences of cerebrovascular disease are among the leading health issues worldwide. Large and small cerebral vessel disease can trigger stroke and contribute to the vascular component of other forms of neurological dysfunction and degeneration. Both forms of vascular disease are driven by diverse risk factors, with hypertension as the leading contributor. Despite the importance of neurovascular disease and subsequent injury after ischemic events, fundamental knowledge in these areas lag behind our current understanding of neuroprotection and vascular biology in general. The goal of this review is to address select key structural and functional changes in the vasculature that promote hypoperfusion and ischemia, while also affecting the extent of injury and effectiveness of therapy. In addition, as damage to the blood-brain barrier is one of the major consequences of ischemia, we discuss cellular and molecular mechanisms underlying ischemia-induced changes in blood-brain barrier integrity and function, including alterations in endothelial cells and the contribution of pericytes, immune cells, and matrix metalloproteinases. Identification of cell types, pathways, and molecules that control vascular changes before and after ischemia may result in novel approaches to slow the progression of cerebrovascular disease and lessen both the frequency and impact of ischemic events.

  18. VEGF expression in human brain tissue after acute ischemic stroke.

    PubMed

    Mărgăritescu, Otilia; Pirici, D; Mărgăritescu, Cl

    2011-01-01

    Ischemic stroke is the third most common cause of death in humans, requiring further studies to elucidate its pathophysiological background. One potential mechanism to increase oxygen delivery to the affected tissue is induction of angiogenesis. The most potent proangiogenic factor is VEGF. For this reason, our study investigated immunohistochemically VEGF reactivity in different cellular brain compartments from 15 ischemic stroke patients, as well as from 2 age control cases. By enzymatic immunohistochemistry, we investigate VEGF expression in different brain cell compartments and then we quantified its signal intensity by assessing integrated optical densities (IOD). To establish the exact cellular brain topography of VEGF immunoreactivity we performed double fluorescent immunohistochemistry series (VEGF÷NeuN, GFAP, CD68, CD105). In control samples, VEGF reactivity was observed especially in neurons from the Brodmann cortical layers IV to VI and in protoplasmic astrocytes from the deeper layers of gray matter and in endothelial cells from normal blood vessels because of systemic hypoxia generated after death. In acute ischemic stroke samples, this reactivity was noticed in all brain cellular compartments but with different intensities. The most reactive compartment was the neurons, the intensity of VEGF reaction decreasing with the lesional age from the core infarct toward intact adjacent brain cortex. With a lower intensity, VEGF reaction was noticed in astrocytes compartments, especially in gemistocytic astrocytes adjacent to the liquefaction zone. We also noticed a weak reaction in activated non-phagocytic microglia from the periphery of liquefaction zones, and high VEGF-CD105 colocalization values at the level of microvessels that surround the infarcted brain area. In conclusion, this reactivity could suggest that VEGF might exhibit neuronal and glial protective effects and also a neoangiogenic property in acute ischemic stroke, facts that may have

  19. A practical approach to remote ischemic preconditioning and ischemic preconditioning against myocardial ischemia/reperfusion injury

    PubMed Central

    Totzeck, Matthias; Hendgen-Cotta, Ulrike B.; French, Brent A.; Rassaf, Tienush

    2016-01-01

    Although urgently needed in clinical practice, a cardioprotective therapeutic approach against myocardial ischemia/ reperfusion injury remains to be established. Remote ischemic preconditioning (rIPC) and ischemic preconditioning (IPC) represent promising tools comprising three entities: the generation of a protective signal, the transfer of the signal to the target organ, and the response to the transferred signal resulting in cardioprotection. However, in light of recent scientific advances, many controversies arise regarding the efficacy of the underlying signaling. We here show methods for the generation of the signaling cascade by rIPC as well as IPC in a mouse model for in vivo myocardial ischemia/ reperfusion injury using highly reproducible approaches. This is accomplished by taking advantage of easily applicable preconditioning strategies compatible with the clinical setting. We describe methods for using laser Doppler perfusion imaging to monitor the cessation and recovery of perfusion in real time. The effects of preconditioning on cardiac function can also be assessed using ultrasound or magnetic resonance imaging approaches. On a cellular level, we confirm how tissue injury can be monitored using histological assessment of infarct size in conjunction with immunohistochemistry to assess both aspects in a single specimen. Finally, we outline, how the rIPC-associated signaling can be transferred to the target cell via conservation of the signal in the humoral (blood) compartment. This compilation of experimental protocols including a conditioning regimen comparable to the clinical setting should proof useful to both beginners and experts in the field of myocardial infarction, supplying information for the detailed procedures as well as troubleshooting guides. PMID:28066791

  20. Pathophysiology of Acute Kidney Injury

    PubMed Central

    Basile, David P.; Anderson, Melissa D.; Sutton, Timothy A.

    2014-01-01

    Acute kidney injury (AKI) is the leading cause of nephrology consultation and is associated with high mortality rates. The primary causes of AKI include ischemia, hypoxia or nephrotoxicity. An underlying feature is a rapid decline in GFR usually associated with decreases in renal blood flow. Inflammation represents an important additional component of AKI leading to the extension phase of injury, which may be associated with insensitivity to vasodilator therapy. It is suggested that targeting the extension phase represents an area potential of treatment with the greatest possible impact. The underlying basis of renal injury appears to be impaired energetics of the highly metabolically active nephron segments (i.e., proximal tubules and thick ascending limb) in the renal outer medulla, which can trigger conversion from transient hypoxia to intrinsic renal failure. Injury to kidney cells can be lethal or sublethal. Sublethal injury represents an important component in AKI, as it may profoundly influence GFR and renal blood flow. The nature of the recovery response is mediated by the degree to which sublethal cells can restore normal function and promote regeneration. The successful recovery from AKI depends on the degree to which these repair processes ensue and these may be compromised in elderly or CKD patients. Recent data suggest that AKI represents a potential link to CKD in surviving patients. Finally, earlier diagnosis of AKI represents an important area in treating patients with AKI that has spawned increased awareness of the potential that biomarkers of AKI may play in the future. PMID:23798302

  1. Nitroxyl exacerbates ischemic cerebral injury and oxidative neurotoxicity.

    PubMed

    Choe, Chi-un; Lewerenz, Jan; Fischer, Gerry; Uliasz, Tracy F; Espey, Michael Graham; Hummel, Friedhelm C; King, Stephen Bruce; Schwedhelm, Edzard; Böger, Rainer H; Gerloff, Christian; Hewett, Sandra J; Magnus, Tim; Donzelli, Sonia

    2009-09-01

    Nitroxyl (HNO) donor compounds function as potent vasorelaxants, improve myocardial contractility and reduce ischemia-reperfusion injury in the cardiovascular system. With respect to the nervous system, HNO donors have been shown to attenuate NMDA receptor activity and neuronal injury, suggesting that its production may be protective against cerebral ischemic damage. Hence, we studied the effect of the classical HNO-donor, Angeli's salt (AS), on a cerebral ischemia/reperfusion injury in a mouse model of experimental stroke and on related in vitro paradigms of neurotoxicity. I.p. injection of AS (40 mumol/kg) in mice prior to middle cerebral artery occlusion exacerbated cortical infarct size and worsened the persistent neurological deficit. AS not only decreased systolic blood pressure, but also induced systemic oxidative stress in vivo indicated by increased isoprostane levels in urine and serum. In vitro, neuronal damage induced by oxygen-glucose-deprivation of mature neuronal cultures was exacerbated by AS, although there was no direct effect on glutamate excitotoxicity. Finally, AS exacerbated oxidative glutamate toxicity - that is, cell death propagated via oxidative stress in immature neurons devoid of ionotropic glutamate receptors. Taken together, our data indicate that HNO might worsen cerebral ischemia-reperfusion injury by increasing oxidative stress and decreasing brain perfusion at concentrations shown to be cardioprotective in vivo.

  2. [Efficacy of сerebrolysin in acute ischemic stroke].

    PubMed

    Petrova, O P; Chuprasov, A V; Matveev, N V

    2014-01-01

    Objective. To study the effect of cerebrolysin used in dose 30 ml daily during 10 days on rehabilitation measures in patients with acute ischemic stroke. Material and methods. The 1st group consisited of 23 patients who received standard treatment and cerebrolysin, the 2nd group included 89 patients who received standard treatment only. The severity of neurological deficits (NIHSS) and the level of disability (mRS) were assessed. Results and conclusion. A significantly earlier recovery (p<0,05) and decrease in disability were identified. A more pronounced effect was seen in young patinets and when treatment started early.

  3. Trans-system mechanisms against ischemic myocardial injury.

    PubMed

    Liu, Shu Q; Ma, Xin-Liang; Qin, Gangjian; Liu, Qingping; Li, Yan-Chun; Wu, Yu H

    2015-01-01

    A mammalian organism possesses a hierarchy of naturally evolved protective mechanisms against ischemic myocardial injury at the molecular, cellular, and organ levels. These mechanisms comprise regional protective processes, including upregulation and secretion of paracrine cell-survival factors, inflammation, angiogenesis, fibrosis, and resident stem cell-based cardiomyocyte regeneration. There are also interactive protective processes between the injured heart, circulation, and selected remote organs, defined as trans-system protective mechanisms, including upregulation and secretion of endocrine cell-survival factors from the liver and adipose tissue as well as mobilization of bone marrow, splenic, and hepatic cells to the injury site to mediate myocardial protection and repair. The injured heart and activated remote organs exploit molecular and cellular processes, including signal transduction, gene expression, cell proliferation, differentiation, migration, mobilization, and/or extracellular matrix production, to establish protective mechanisms. Both regional and trans-system cardioprotective mechanisms are mediated by paracrine and endocrine messengers and act in coordination and synergy to maximize the protective effect, minimize myocardial infarction, and improve myocardial function, ensuring the survival and timely repair of the injured heart. The concept of the trans-system protective mechanisms may be generalized to other organ systems-injury in one organ may initiate regional as well as trans-system protective responses, thereby minimizing injury and ensuring the survival of the entire organism. Selected trans-system processes may serve as core protective mechanisms that can be exploited by selected organs in injury. These naturally evolved protective mechanisms are the foundation for developing protective strategies for myocardial infarction and injury-induced disorders in other organ systems.

  4. The Association of Lesion Location and Sleep Related Breathing Disorder in Patients with Acute Ischemic Stroke

    PubMed Central

    Teuber, Anja; Wersching, Heike; Young, Peter; Dittrich, Ralf; Ritter, Martin; Dziewas, Rainer; Minnerup, Jens

    2017-01-01

    Background and aims Sleep related breathing disorders (SRBD) are common in patients with ischemic stroke and are associated with poor outcome. SRBD after stroke were assumed to be a direct consequence of injury of specific central nervous system structures. However, whether specific locations of ischemic infarcts cause SRBD is yet unknown. We therefore investigated the association of ischemic lesion location with SRBD. Methods Patients with acute ischemic stroke treated on our stroke unit were included in a prospective observational study. All patients underwent magnetic resonance imaging (MRI) and polygraphy in the acute phase after stroke. SRBD was defined by an apnea—hypopnea index (AHI) ≥10. MRI were evaluated using standardized maps to depict voxel-wise probability distribution of infarction for patients with and without SRBD. Groups were compared using logistic regression analysis. Results Of 142 patients included, 86 (59%) had a SRBD. Age, body mass index and prevalence of arterial hypertension were significantly higher in patients with SRBD. There was no statistically significant association between any lesion location and SRBD. Conclusion We found no association of lesion location and SRBD in stroke patients, whereas established risk factors for SRBD, known from general population, were significantly associated with SRBD. Given the high prevalence of SRBD in stroke patients, these findings suggest that cerebral ischemia facilitates the occurrence of SRBD in patients with pre-existing risk factors rather than causing it by damaging specific central nervous system structures. Our findings can be used to identify stroke patients who might benefit from polygraphy screening. PMID:28135315

  5. Forebrain neurogenesis after focal Ischemic and traumatic brain injury.

    PubMed

    Kernie, Steven G; Parent, Jack M

    2010-02-01

    Neural stem cells persist in the adult mammalian forebrain and are a potential source of neurons for repair after brain injury. The two main areas of persistent neurogenesis, the subventricular zone (SVZ)-olfactory bulb pathway and hippocampal dentate gyrus, are stimulated by brain insults such as stroke or trauma. Here we focus on the effects of focal cerebral ischemia on SVZ neural progenitor cells in experimental stroke, and the influence of mechanical injury on adult hippocampal neurogenesis in models of traumatic brain injury (TBI). Stroke potently stimulates forebrain SVZ cell proliferation and neurogenesis. SVZ neuroblasts are induced to migrate to the injured striatum, and to a lesser extent to the peri-infarct cortex. Controversy exists as to the types of neurons that are generated in the injured striatum, and whether adult-born neurons contribute to functional restoration remains uncertain. Advances in understanding the regulation of SVZ neurogenesis in general, and stroke-induced neurogenesis in particular, may lead to improved integration and survival of adult-born neurons at sites of injury. Dentate gyrus cell proliferation and neurogenesis similarly increase after experimental TBI. However, pre-existing neuroblasts in the dentate gyrus are vulnerable to traumatic insults, which appear to stimulate neural stem cells in the SGZ to proliferate and replace them, leading to increased numbers of new granule cells. Interventions that stimulate hippocampal neurogenesis appear to improve cognitive recovery after experimental TBI. Transgenic methods to conditionally label or ablate neural stem cells are beginning to further address critical questions regarding underlying mechanisms and functional significance of neurogenesis after stroke or TBI. Future therapies should be aimed at directing appropriate neuronal replacement after ischemic or traumatic injury while suppressing aberrant integration that may contribute to co-morbidities such as epilepsy or

  6. Effect of dexamethasone on brain oedema following acute ischemic stroke.

    PubMed

    Shaikh, A K; Mohammad, Q D; Ullah, M A; Ahsan, M M; Rahman, A; Shakoor, M A

    2011-07-01

    A randomized clinical trial was conducted to asses the effects of dexamethasone on brain oedema following acute ischemic stroke in the departments of Medicine of different hospitals from July, 2003 to December, 2006. A total of 60 patients were included in the study. They were divided into two groups keeping the similarity regarding the age, sex and severity of the stroke between two groups. There were 30 patients in experimental group and 30 in control group. The level of consciousness was compared by Glasgow Coma Scale (GCS) on 3rd, 7th and 10th day of intervention and improvement was found in both the groups, but the improvement of level of consciousness was statistically significant in Dexamethasone treated group. The volume of hypodense area did not differ significantly in two groups in CT scans before and after treatment (p=0.74). The study results demonstrate that Dexamethasone improves the level of consciousness in acute ischemic stroke associated with brain oedema but did not reduce volume of hypodense area.

  7. Ischemic post-conditioning to counteract intestinal ischemia/reperfusion injury

    PubMed Central

    Guan, Yan-Fang; Pritts, Timothy A; Montrose, Marshall H

    2010-01-01

    Intestinal ischemia is a severe disorder with a variety of causes. Reperfusion is a common occurrence during treatment of acute intestinal ischemia but the injury resulting from ischemia/reperfusion (IR) may lead to even more serious complications from intestinal atrophy to multiple organ failure and death. The susceptibility of the intestine to IR-induced injury (IRI) appears from various experimental studies and clinical settings such as cardiac and major vascular surgery and organ transplantation. Whereas oxygen free radicals, activation of leukocytes, failure of microvascular perfusion, cellular acidosis and disturbance of intracellular homeostasis have been implicated as important factors in the pathogenesis of intestinal IRI, the mechanisms underlying this disorder are not well known. To date, increasing attention is being paid in animal studies to potential pre- and post-ischemia treatments that protect against intestinal IRI such as drug interference with IR-induced apoptosis and inflammation processes and ischemic pre-conditioning. However, better insight is needed into the molecular and cellular events associated with reperfusion-induced damage to develop effective clinical protection protocols to combat this disorder. In this respect, the use of ischemic post-conditioning in combination with experimentally prolonged acidosis blocking deleterious reperfusion actions may turn out to have particular clinical relevance. PMID:21607154

  8. Acute T3 treatment protects the heart against ischemia-reperfusion injury via TRα1 receptor.

    PubMed

    Pantos, Constantinos; Mourouzis, Iordanis; Saranteas, Theodosios; Brozou, Vassiliki; Galanopoulos, Georgios; Kostopanagiotou, Georgia; Cokkinos, Dennis V

    2011-07-01

    We have previously shown that acute thyroid hormone treatment could limit reperfusion injury and increase post-ischemic recovery of function. In the present study, we further explore potential initiating mechanisms of this response. Thus, isolated rat hearts were subjected to 30 min zero-flow global ischemia (I) followed by 60-min reperfusion (R). Reperfusion injury was assessed by post-ischemic recovery of left ventricular developed pressure (LVDP%) and LDH release. T3 at a dose of 60 nM which had no effect on contractile function of non-ischemic myocardium, significantly increased LVDP% [48% (2.9) vs. 30.2% (3.3) for untreated group, P < 0.05] and reduced LDH release [8.3 (0.3) vs. 10 (0.42) for untreated group, P < 0.05] when administered at R. T4 (60 and 400 nM) had no effect on contractile function either in non-ischemic or ischemic myocardium. Administration of debutyl-dronedarone (DBD), a TRα1 antagonist abolished the T3-limiting effect on reperfusion injury: Thus, co-administration of T3 and DBD resulted in significantly lower LVDP%, [23% (4.7) vs. 48% (2.9) for T3 group, P < 0.05] and higher LDH release [9.9 (0.3) vs. 8.3 (0.3), for T3 group, P < 0.05]. In conclusion, acute T3 and not T4 treatment will be able to protect against reperfusion injury. T3 can exert this beneficial effect on ischemic myocardium at a dose that has no effects on non-ischemic myocardium. Acute T3-limiting effect on reperfusion injury is mediated, at least in part, via TRα1 receptor.

  9. Limb apraxia in acute ischemic stroke: a neglected clinical challenge?

    PubMed

    Schell, Caroline; Suchan, Julia; Himmelbach, Marc; Haarmeier, Thomas; Borchers, Svenja

    2014-04-01

    Symptoms of limb apraxia and executive dysfunctions are currently not explicitly considered by the National Institutes of Health Stroke Scale and, thus, not routinely tested by clinicians in the acute care of patients with suspected stroke. Neuropsychological testing, clinical examination, MRI, and functional magnetic resonance imaging (fMRI) were performed in a right-handed patient with acute onset of left-sided sensorimotor hemiparesis due to a right hemisphere ischemic stroke. Deficits in the execution of meaningless and meaningful gestures were not detected properly on initial clinical examination but were revealed later on through neuropsychological testing. Instead, the patient's inability to respond to specific instructions in the acute care setting was mistaken to reflect severe deficits in auditory comprehension. fMRI revealed right-hemispheric localization of language in the right-handed patient. We suggest including a bedside test for limb apraxia symptoms in acute clinical care of stroke patients. The distinction between deficits in limb praxis and impairments of language can be complicated owing to the common hemispheric co-localization of the two functions.

  10. The effect of Euryale ferox (Makhana), an herb of aquatic origin, on myocardial ischemic reperfusion injury.

    PubMed

    Das, Samarjit; Der, Peter; Raychaudhuri, Utpal; Maulik, Nilanjana; Das, Dipak K

    2006-09-01

    Fox nut or gorgon nut (Euryale ferox--Family Nymphaeaceae), popularly known as Makhana, has been widely used in traditional oriental medicine to cure a variety of diseases including kidney problems, chronic diarrhea, excessive leucorrhea and hypofunction of the spleen. Based on the recent studies revealing antioxidant activities of Euryale ferox and its glucosides composition, we sought to determine if Euryale ferox seeds (Makhana) could reduce myocardial ischemic reperfusion injury. Two different models were used: acute model, where isolated rat hearts were preperfused for 15 min with Krebs Henseleit bicarbonate (KHB) buffer containing three different doses of makhana (25, 125 or 250 microg/ml) followed by 30 min of ischemia and 2 h of reperfusion; and chronic model, where rats were given two different doses of makhana (250 and 500 mg/kg/day) for 21 days, after which isolated hearts were subjected to 30 min of ischemia followed by 2 h of reperfusion. In both cases, the hearts of the Makhana treated rats were resistant to ischemic reperfusion injury as evidenced by their improved post-ischemic ventricular function and reduced myocardial infarct size. Antibody array technique was used to identify the cardioprotective proteins. The Makhana-treated hearts had increased amounts of thioredoxin-1 (Trx-1) and thioredoxin-related protein-32 (TRP32) compared to the control hearts. Western blot analysis confirmed increased expression of TRP32 and thioredoxin proteins. In vitro studies revealed that Makhana extracts had potent reactive oxygen species scavenging activities. Taken together, the results of this study demonstrate cardioprotective properties of Makhana and suggest that such cardioprotective properties may be linked with the ability of makhana to induce TRP32 and Trx-1 proteins and to scavenge ROS.

  11. Nicotinamide reduces hypoxic ischemic brain injury in the newborn rat.

    PubMed

    Feng, Yangzheng; Paul, Ian A; LeBlanc, Michael H

    2006-03-31

    Nicotinamide reduces ischemic brain injury in adult rats. Can similar brain protection be seen in newborn animals? Seven-day-old rat pups had the right carotid artery permanently ligated followed by 2.5 h of 8% oxygen. Nicotinamide 250 or 500 mg/kg was administered i.p. 5 min after reoxygenation, with a second dose given at 6 h after the first. Brain damage was evaluated by weight deficit of the right hemisphere at 22 days following hypoxia. Nicotinamide 500 mg/kg reduced brain weight loss from 24.6 +/- 3.6% in vehicle pups (n = 28) to 11.9 +/- 2.6% in the treated pups (n = 29, P < 0.01), but treatment with 250 mg/kg did not affect brain weight. Nicotinamide 500 mg/kg also improved behavior in rotarod performance. Levels of 8-isoprostaglandin F2alpha measured in the cortex by enzyme immune assay 16 h after reoxygenation was 115 +/- 7 pg/g in the shams (n = 6), 175 +/- 17 pg/g in the 500 mg/kg nicotinamide treated (n = 7), and 320 +/- 79 pg/g in the vehicle treated pups (n = 7, P < 0.05 versus sham, P < 0.05 versus nicotinamide). Nicotinamide reduced the increase in caspase-3 activity caused by hypoxic ischemia (P < 0.01). Nicotinamide reduces brain injury in the neonatal rat, possibly by reducing oxidative stress and caspase-3 activity.

  12. Impedance spectroscopy for monitoring ischemic injury in the intestinal mucosa.

    PubMed

    González, César A; Villanueva, Cleva; Othman, Salah; Narváez, Raúl; Sacristán, Emilio

    2003-05-01

    This work evaluates the feasibility of monitoring ischemic injury in the gastrointestinal mucosa by impedance spectroscopy, using a minimally invasive intestinal catheter. The disruption of the intestinal mucosa plays a key role in the evolution of shock and is the 'motor of multiple organ failure'. Different technologies have been developed to monitor mucosal perfusion, oxygenation and/or ischemia, but no practical method exists to assess tissue damage, which may be crucial for preventing multiple organ failure. The experimental protocol of this study relied on an isobaric model of hypovolemic shock in 16 anaesthetized rabbits assigned to three groups: sham (n = 6), ischemia (n = 5) and ischemia + reperfusion (n = 5). Complex impedance spectra were recorded in the range of 0.05 to 300 kHz, with simultaneous measurements of tonometric pHi in the ileum every 30 min for 4 h. Impedance spectra were reproducible, and those of tissue under prolonged ischemia were clearly differentiable from those of normally perfused tissue. The dynamic changes in impedance did not correlate directly with either tissue perfusion or pHi, but instead correlated well with the duration of ischemia. It is concluded that impedance spectroscopy does indeed measure changes in tissue injury, and could be a very useful tool to guide therapy of patients in shock.

  13. Nicotinamide reduces hypoxic ischemic brain injury in the newborn rat

    PubMed Central

    Feng, Yangzheng; Paul, Ian A.; LeBlanc, Michael H.

    2011-01-01

    Nicotinamide reduces ischemic brain injury in adult rats. Can similar brain protection be seen in newborn animals? Seven-day-old rat pups had the right carotid artery permanently ligated followed by 2.5 h of 8% oxygen. Nicotinamide 250 or 500 mg/kg was administered i.p. 5 min after reoxygenation, with a second dose given at 6 h after the first. Brain damage was evaluated by weight deficit of the right hemisphere at 22 days following hypoxia. Nicotinamide 500 mg/kg reduced brain weight loss from 24.6 ± 3.6% in vehicle pups (n = 28) to 11.9 ± 2.6% in the treated pups (n = 29, P < 0.01), but treatment with 250 mg/kg did not affect brain weight. Nicotinamide 500 mg/kg also improved behavior in rotarod performance. Levels of 8-isoprostaglandin F2α measured in the cortex by enzyme immune assay 16 h after reoxygenation was 115 ± 7 pg/g in the shams (n = 6), 175 ± 17 pg/g in the 500 mg/kg nicotinamide treated (n = 7), and 320 ± 79 pg/g in the vehicle treated pups (n = 7, P < 0.05 versus sham, P < 0.05 versus nicotinamide). Nicotinamide reduced the increase in caspase-3 activity caused by hypoxic ischemia (P < 0.01). Nicotinamide reduces brain injury in the neonatal rat, possibly by reducing oxidative stress and caspase-3 activity. PMID:16533659

  14. Effect of melatonin on kidney cold ischemic preservation injury

    PubMed Central

    Aslaner, Arif; Gunal, Omer; Turgut, Hamdi Taner; Celik, Erdal; Yildirim, Umran; Demirci, Rojbin Karakoyun; Gunduz, Umut Riza; Calis, Hasan; Dogan, Sami

    2013-01-01

    Melatonin is a potent free radical scavenger of reactive oxygen species, nitric oxide synthase inhibitor and a well-known antioxidant secreted from pineal gland. This hormone has been reported to protect tissue from oxidative damage. In this study, we aim to investigate the effect of melatonin on kidney cold ischemia time when added to preservation solution. Thirty male Wistar albino rats were divided equally into three groups; Ringer Lactate (RL) solution, University of Wisconsin (UW) solution with and without melatonin. The serum Lactate Dehydrogenase (LDH) activities of the preservation solutions at 2nd, 24th, 36th, and 48th hours were determined. Tissue malondialdehyde (MDA) levels were also measured and a histological examination was performed at 48th hour. Melatonin that added to preservation solution prevented enzyme elevation and decreased lipid peroxidation in preservation solution when compared to the control group (p<0.05). The histological examination revealed that UW solution containing melatonin significantly prevented the kidney from pathological injury (p<0.05). Melatonin added to preservation solutions such as UW solution seemed to protect the tissue preserved effectively from cold ischemic injury for up to 48 hour. PMID:24179573

  15. Rock Climbing Injuries: Acute and Chronic Repetitive Trauma.

    PubMed

    Chang, Connie Y; Torriani, Martin; Huang, Ambrose J

    2016-01-01

    Rock climbing has increased in popularity as a sport, and specific injuries related to its practice are becoming more common. Chronic repetitive injuries are more common than acute injuries, although acute injuries tend to be more severe. We review both acute and chronic upper and lower extremity injuries. Understanding the injury pattern in rock climbers is important for accurate diagnosis.

  16. Elevated blood pressure management in acute ischemic stroke remains controversial: could this issue be resolved?

    PubMed

    Hadjiev, Dimiter I; Mineva, Petya P

    2013-01-01

    A transient elevated arterial blood pressure is common in acute ischemic stroke and is often associated with a poor prognosis. The underlying mechanisms of blood pressure elevation are not well understood and its management is still unresolved. This article focuses on pathophysiology and management of elevated blood pressure in acute ischemic stroke. There is evidence that the main causes of a transient blood pressure elevation in acute ischemic stroke are the focal cerebral hypoperfusion and the stress responses with neuroendocrine systems activation. Clinical trials have reported that blood pressure lowering in acute ischemic stroke may have detrimental effect, probably because of impaired cerebral autoregulation. However, quantitative assessment of cerebral perfusion has not been performed during emergency blood pressure reduction in acute ischemic stroke. We suggest that ultrasound carotid artery disease evaluation and cerebral hemodynamics monitoring using bilateral transcranial ultrasonography, during blood pressure management in acute ischemic stroke might contribute to maintaining of an adequate penumbral perfusion and prevent infarct enlargement. Such an approach could individualize the antihypertensive treatment in acute ischemic stroke and improve functional outcome. Prospective studies are needed to confirm such a treatment strategy.

  17. Laryngeal Elevation Velocity and Aspiration in Acute Ischemic Stroke Patients

    PubMed Central

    Zhang, Jing; Zhou, Yun; Wei, Na; Yang, Bo; Wang, Anxin; Zhou, Hai; Zhao, Xingquan; Wang, Yongjun; Liu, Liping; Ouyoung, Melody; Villegas, Brenda; Groher, Michael

    2016-01-01

    Objectives Aspiration after stroke has been associated with aspiration pneumonia, which contributes to increased mortality of stroke. Laryngeal elevation is a core mechanism for protection from aspiration. Few studies have explored the predictive value of laryngeal elevation velocity for aspiration after stroke. This study aimed to explore the ability of laryngeal elevation velocity to predict aspiration in patients with acute ischemic stroke. Methods This was a prospective cohort study that included consecutive acute ischemic stroke patients treated at a teaching hospital during a 10-month period. Patients underwent magnetic resonance imaging (MRI) to confirm the diagnosis of acute ischemic stroke. Patients who were at risk of aspiration and could swallow 5 ml of diluted barium (40%, w/v) for a videofluoroscopic swallowing (VFS) study were included. The association between abnormal indices in the oral and pharyngeal phase of the VFS study and aspiration was examined using univariate analyses. These indices included the lip closure, tongue movement and control, laryngeal elevation velocity and range, the latency of pharyngeal swallowing, pharyngeal transit time (PTT), abnormal epiglottis tilt, residual barium in the pharynx, and the duration of upper esophageal sphincter (UES) opening. The laryngeal elevation velocity (%/s) was calculated as the range of laryngeal elevation (%) from the resting position to the maximum superior position or to the position where the laryngeal vestibule is fully closed divided by the corresponding duration of laryngeal elevation. The range of laryngeal elevation (%) was the percentage calculated as the distance between the resting laryngeal position and the maximum superior excursion position or position where the laryngeal vestibule is fully closed divided by the distance between the resting laryngeal position and the lowest edge of the mandible. A logistic regression analysis was used to determine the predictive value for aspiration

  18. [Effects of mycophenolate mofetil in ischemic acute renal failure in rats].

    PubMed

    Chávez-Velásquez, M; Pons, H; Medina, M; Quiroz, Y; Parra, G; Herrera, J

    2007-01-01

    Mycophenolate mofetil (MMF) is a purine synthesis inhibitor commonly used as immunosupresive agent in transplantation. Kidney grafts undergo more or less prolonged cold ischemia after harvesting which results in variable degrees of ischemia reperfusion injury. To determine whether the inhibition of early events of cellular infiltration may influence the severity of damage induced by ischemic acute renal failure, 45 Sprague Dawley rats were given MMF at a dose of 20mg/kg/day (MMF-rats) by gavage 2 days before (pre-MMF group, n=15) or after (post-MMF group, n=15) clamping the left renal artery for 40 minutes followed by rigt-sided nephrectomy. (control group, n=15) received vehicle. Serum Creatinine (Screat) was measured daily in all groups. On the 2nd post-ischemic day Screat was significantly lower (p=0.001) in pre-MMF group compared with post-MMF group and control group (4 +/- 2mg/dl post-MMF group vs 1.7 +/- 1.2 mg/dl pre-MMF group, control group 5+/-2, p< 0.05). Kidney biopsies shown that the histologic damage was 54 +/- 28% in post-MMF group vs 34+/- 22% in pre-MMF group and 61 +/- 25% in control group (pre-MMF vs post-MMF, p NS). On the 5th day post-ischemic, MMF-rats showed more severe tubulointerstitial necrosis (pre-MMF group: 17 +/- 20 %, post-MMF group: 33 +/- 27%) than controls (4 +/- 5%). The severity of ATN was significantly higher in post-MMF group compared with controls (p=0.01). Tubulointersticial T-lymphocyte (T CD 5) and monocyte (ED 1) infiltration evaluated on the 2nd post-ischemic day was less intense in group I (T CD5: 3 +/- 3, ED 1: 10 +/- 9, cel/mm2) compared to post-MMF group (T CD 5: 10 +/- 4, ED 1: 55 +/- 40) and to control group (T CD 5: 10+/- 4, ED 1: 64 +/- 46). However, on the 5th post-ischemia day, ED 1 infiltration was significantly higher in post-MMF group (24 +/- 18%) compared to pre-MMF group (5 +/- 5, p NS) and also in pre-MMF group vs control group (31 +/- 33, p< 0.05). Our results suggest that MMF given before a renal ischemic

  19. Hemorrhagic transformation and cerebral edema in acute ischemic stroke: Link to cerebral autoregulation

    PubMed Central

    Castro, Pedro; Azevedo, Elsa; Serrador, Jorge; Rocha, Isabel; Sorond, Farzaneh

    2017-01-01

    Background Hemorrhagic transformation and cerebral edema are feared complications of acute ischemic stroke but mechanisms are poorly understood and reliable early markers are lacking. Early assessment of cerebrovascular hemodynamics may advance our knowledge in both areas. We examined the relationship between dynamic cerebral autoregulation (CA) in the early hours post ischemia, and the risk of developing hemorrhagic transformation and cerebral edema at 24 h post stroke Methods We prospectively enrolled 46 patients from our center with acute ischemic stroke in the middle cerebral artery territory. Cerebrovascular resistance index was calculated. Dynamic CA was assessed by transfer function analysis (coherence, phase and gain) of the spontaneous blood flow velocity and blood pressure oscillations. Infarct volume, hemorrhagic transformation, cerebral edema, and white matter changes were collected from computed tomography performed at presentation and 24 h. Results At admission, phase was lower (worse CA) in patients with hemorrhagic transformation [6.6 ± 30 versus 45 ± 38°; adjusted odds ratio 0.95 (95% confidence internal 0.94–0.98), p = 0.023] and with cerebral edema [6.6 ± 30 versus 45 ± 38°, adjusted odds ratio 0.96 (0.92–0.999), p = 0.044]. Progression to edema was associated with lower cerebrovascular resistance (1.4 ± 0.2 versus 2.3 ± 1.5 mm Hg/cm/s, p = 0.033) and increased cerebral blood flow velocity (51 ± 25 versus 42 ± 17 cm/s, p = 0.033) at presentation. All hemodynamic differences resolved at 3 months Conclusions Less effective CA in the early hour post ischemic stroke is associated with increased risk of hemorrhagic transformation and cerebral edema, possibly reflecting breakthrough hyperperfusion and microvascular injury. Early assessment of dynamic CA could be useful in identifying individuals at risk for these complications. PMID:28017224

  20. Cystathionine β-Synthase Inhibition Is a Potential Therapeutic Approach to Treatment of Ischemic Injury

    PubMed Central

    Chan, Su Jing; Chai, Chou; Lim, Tze Wei; Yamamoto, Mie; Lo, Eng H; Lai, Mitchell Kim Peng

    2015-01-01

    Hydrogen sulfide (H2S) has been reported to exacerbate stroke outcome in experimental models. Cystathionine β-synthase (CBS) has been implicated as the predominant H2S-producing enzyme in central nervous system. When SH-SY5Y cells were transfected to overexpress CBS, these cells were able to synthesize H2S when exposed to high levels of enzyme substrates but not substrate concentrations that may reflect normal physiological conditions. At the same time, these cells demonstrated exacerbated cell death when subjected to oxygen and glucose deprivation (OGD) together with high substrate concentrations, indicating that H2S production has a detrimental effect on cell survival. This effect could be abolished by CBS inhibition. The same effect was observed with primary astrocytes exposed to OGD and high substrates or sodium hydrosulfide. In addition, CBS was upregulated and activated by truncation in primary astrocytes subjected to OGD. When rats were subjected to permanent middle cerebral artery occlusion, CBS activation was also observed. These results imply that in acute ischemic conditions, CBS is upregulated and activated by truncation causing an increased production of H2S, which exacerbate the ischemic injuries. Therefore, CBS inhibition may be a viable approach to stroke treatment. PMID:25873304

  1. Greatly improved neuroprotective efficiency of citicoline by stereotactic delivery in treatment of ischemic injury.

    PubMed

    Xu, Fangjingwei; Hongbin Han; Yan, Junhao; Chen, He; He, Qingyuan; Xu, Weiguo; Zhu, Ning; Zhang, Hong; Zhou, Fugen; Lee, Kejia

    2011-01-01

    Limited penetration of neuroprotective drug citicoline into the central nervous system (CNS) by systemic administration led to poor efficiency. A novel method of stereotactic drug delivery was explored to make citicoline bypass the blood brain barrier (BBB) and take effect by direct contact with ischemic neurons. A permanent middle cerebral artery occlusion (pMCAO) model of rats was prepared. To get the optimal conditions for citicoline administration by the novel stereotactic delivery pathway, magnetic resonance imaging (MRI) tracer method was used, and a dose-dependent effect was given. Examinations of MRI, behavior evaluation, infarct volume assessment and histological staining were performed to evaluate the outcome. This MRI-guided stereotactic delivery of citicoline resulted in a notable reduction (>80%) in infarct size and a delayed ischemic injury in cortex 12 hours after onset of acute ischemia when compared with the systematic delivery. The improved neuroprotective efficiency was realized by a full distribution of citicoline in most of middle cerebral artery (MCA) territory and an adequate drug reaction in the involved areas of the brain. Brain lesions of treated rats by stereotactic delivery of citicoline were well predicted in the lateral ventricle and thalamus due to a limited drug deposition by MRI tracer method. Our study realized an improved neuroprotective efficiency of citicoline by stereotactic delivery, and an optimal therapeutic effect of this administration pathway can be achieved under MRI guidance.

  2. Coenzyme Q10 ameliorates oxidative stress and prevents mitochondrial alteration in ischemic retinal injury.

    PubMed

    Lee, Dongwook; Kim, Keun-Young; Shim, Myoung Sup; Kim, Sang Yeop; Ellisman, Mark H; Weinreb, Robert N; Ju, Won-Kyu

    2014-04-01

    Coenzyme Q10 (CoQ10) acts by scavenging reactive oxygen species for protecting neuronal cells against oxidative stress in neurodegenerative diseases. We tested whether a diet supplemented with CoQ10 ameliorates oxidative stress and mitochondrial alteration, as well as promotes retinal ganglion cell (RGC) survival in ischemic retina induced by intraocular pressure elevation. A CoQ10 significantly promoted RGC survival at 2 weeks after ischemia. Superoxide dismutase 2 (SOD2) and heme oxygenase-1 (HO-1) expression were significantly increased at 12 h after ischemic injury. In contrast, the CoQ10 significantly prevented the upregulation of SOD2 and HO-1 protein expression in ischemic retina. In addition, the CoQ10 significantly blocked activation of astroglial and microglial cells in ischemic retina. Interestingly, the CoQ10 blocked apoptosis by decreasing caspase-3 protein expression in ischemic retina. Bax and phosphorylated Bad (pBad) protein expression were significantly increased in ischemic retina at 12 h. Interestingly, while CoQ10 significantly decreased Bax protein expression in ischemic retina, CoQ10 showed greater increase of pBad protein expression. Of interest, ischemic injury significantly increased mitochondrial transcription factor A (Tfam) protein expression in the retina at 12 h, however, CoQ10 significantly preserved Tfam protein expression in ischemic retina. Interestingly, there were no differences in mitochondrial DNA content among control- or CoQ10-treated groups. Our findings demonstrate that CoQ10 protects RGCs against oxidative stress by modulating the Bax/Bad-mediated mitochondrial apoptotic pathway as well as prevents mitochondrial alteration by preserving Tfam protein expression in ischemic retina. Our results suggest that CoQ10 may provide neuroprotection against oxidative stress-mediated mitochondrial alterations in ischemic retinal injury.

  3. A multicenter, randomized trial on neuroprotection with remote ischemic per-conditioning during acute ischemic stroke: the REmote iSchemic Conditioning in acUtE BRAin INfarction study protocol.

    PubMed

    Pico, Fernando; Rosso, Charlotte; Meseguer, Elena; Chadenat, Marie-Laure; Cattenoy, Amina; Aegerter, Philippe; Deltour, Sandrine; Yeung, Jennifer; Hosseini, Hassan; Lambert, Yves; Smadja, Didier; Samson, Yves; Amarenco, Pierre

    2016-10-01

    Rationale Remote ischemic per-conditioning-causing transient limb ischemia to induce ischemic tolerance in other organs-reduces final infarct size in animal stroke models. Aim To evaluate whether remote ischemic per-conditioning during acute ischemic stroke (<6 h) reduces brain infarct size at 24 h. Methods and design This study is being performed in five French hospitals using a prospective randomized open blinded end-point design. Adults with magnetic resonance imaging confirmed ischemic stroke within 6 h of symptom onset and clinical deficit of 5-25 according to National Institutes of Health Stroke Scale will be randomized 1:1 to remote ischemic per-conditioning or control (stratified by center and intravenous fibrinolysis use). Remote ischemic per-conditioning will consist of four cycles of electronic tourniquet inflation (5 min) and deflation (5 min) to a thigh within 6 h of symptom onset. Magnetic resonance imaging is repeated 24 h after stroke onset. Sample size estimates For a difference of 15 cm(3) in brain infarct growth between groups, 200 patients will be included for 5% significance and 80% power. Study outcomes The primary outcome will be the difference in brain infarct growth from baseline to 24 h in the intervention versus control groups (by diffusion-weighted image magnetic resonance imaging). Secondary outcomes include: National Institutes of Health Stroke Scale score absolute difference between baseline and 24 h, three-month modified Rankin score and daily living activities, mortality, and tolerance and side effects of remote ischemic per-conditioning. Discussion The only remote ischemic per-conditioning trial in humans with stroke did not show remote ischemic per-conditioning to be effective. REmote iSchemic Conditioning in acUtE BRAin INfarction, which has important design differences, should provide more information on the use of this intervention in patients with acute ischemic stroke.

  4. Association between pneumonia in acute stroke stage and 3-year mortality in patients with acute first-ever ischemic stroke.

    PubMed

    Yu, Yi-Jing; Weng, Wei-Chieh; Su, Feng-Chieh; Peng, Tsung-I; Chien, Yu-Yi; Wu, Chia-Lun; Lee, Kuang-Yung; Wei, Yi-Chia; Lin, Shun-Wen; Zhu, Jun-Xiao; Huang, Wen-Yi

    2016-11-01

    The influence of pneumonia in acute stroke stage on the clinical presentation and long-term outcomes of patients with acute ischemic stroke is still controversial. We investigate the influence of pneumonia in acute stroke stage on the 3-year outcomes of patients with acute first-ever ischemic stroke. Nine-hundred and thirty-four patients with acute first-ever ischemic stroke were enrolled and had been followed for 3years. Patients were divided into two groups according to whether pneumonia occurred during acute stroke stage or not. Clinical presentations, risk factors for stroke, laboratory data, co-morbidities, and outcomes were recorded. The result showed that a total of 100 patients (10.7%) had pneumonia in acute stroke stage. The prevalence of older age, atrial fibrillation was significantly higher in patients with pneumonia in acute stroke stage. Total anterior circulation syndrome and posterior circulation syndrome occurred more frequently among patients with pneumonia in acute stroke stage (P<0.001 and P=0.009, respectively). Multivariate Cox regression revealed that pneumonia in acute stroke stage is a significant predictor of 3-year mortality (hazard ratio=6.39, 95% confidence interval=4.03-10.11, P<0.001). In conclusion, pneumonia during the acute stroke stage is associated with increased risk of 3-year mortality. Interventions to prevent pneumonia in acute stroke stage might improve ischemic stroke outcome.

  5. Retina Is Protected by Neuroserpin from Ischemic/Reperfusion-Induced Injury Independent of Tissue-Type Plasminogen Activator

    PubMed Central

    Gu, R. P.; Fu, L. L.; Jiang, C. H.; Xu, Y. F.; Wang, X.; Yu, J.

    2015-01-01

    The purpose of the present study was to investigate the potential neuroprotective effect of neuroserpin (NSP) on acute retinal ischemic/reperfusion-induced (IR) injury. An IR injury model was established by elevating intraocular pressure (IOP) for 60 minutes in wild type and tPA-deficient (tPA-/-) mice. Prior to IR injury, 1 μL of 20 μmol/L NSP or an equal volume of bovine serum albumin (BSA) was intravitreally administered. Retinal function was evaluated by electroretinograph (ERG) and the number of apoptotic neurons was determined via TUNEL labeling. Caspase-3, -8, -9,poly (ADP-ribose) polymerase (PARP)and their cleaved forms were subsequently analyzed. It was found that IR injury significantly damaged retinal function, inducing apoptosis in the retina, while NSP attenuated the loss of retinal function and significantly reduced the number of apoptotic neurons in both wild type and tPA-/- mice. The levels of cleaved caspase-3, cleaved PARP (the substrate of caspase-3) and caspase-9 (the modulator of the caspase-3), which had increased following IR injury, were significantly inhibited by NSP in both wild type and tPA-/- mice. NSP increased ischemic tolerance in the retina at least partially by inhibiting the intrinsic cell death signaling pathway of caspase-3. It was therefore concluded that the protective effect of neuroserpin maybe independent from its canonical interaction with a tissue-type plasminogen activator. PMID:26176694

  6. Cardioprotective effects of grape seed proanthocyanidin against ischemic reperfusion injury.

    PubMed

    Sato, M; Maulik, G; Ray, P S; Bagchi, D; Das, D K

    1999-06-01

    There is increasing evidence to indicate cardioprotective effects of red wine consumption. Such cardioprotective properties of wine have been attributed to certain polyphenolic constituents of grapes. The purpose of this investigation was to examine whether proanthocyanidins derived from grape seeds possess cardioprotective properties. Rats were randomly divided into two groups: grape-seed proanthocyanidin was administered orally to one group of rats (100 mg/kg/day) for 3 weeks while the other group served as control. After 3 weeks, rats were killed, hearts excised, mounted on the perfusion apparatus and perfused with Krebs-Henseleit bicarbonate (KHB) buffer. After stabilization hearts were perfused in the working mode for baseline measurements of contractile functions. Hearts were then subjected to 30 min of global ischemia followed by 2 h of reperfusion. Coronary perfusates were collected to monitor malonaldehyde formation, a presumptive marker for oxidative stress development. At the end of each experiment, the heart was processed for infarct size determination. Peroxyl radical scavenging activity of proanthocyanidin was determined by examining its ability to remove peroxyl radical generated by 2,2'-azobis (2-amidinopropane) dihydrochloride while hydroxyl radical scavenging activity was tested with its ability to reduce 7-OH.-coumarin-3-carboxylic acid. The results of our study demonstrated that proanthocyanidin-fed animals were resistant to myocardial ischemia reperfusion injury as evidenced by improved recovery of post-ischemic contractile functions. The proanthocyanidin-fed group revealed reduced extent of myocardial infarction compared to the control group. Fluorimetric study demonstrated the antioxidant property of proanthocyanidin as judged by its ability to directly scavenge peroxyl radicals. Taken together, the results of this study showed that grape seed-proanthocyanidins possess a cardioprotective effect against ischemia reperfusion injury. Such

  7. Vitamin D ameliorates hepatic ischemic/reperfusion injury in rats.

    PubMed

    Seif, Ansam Aly; Abdelwahed, Doaa Mohamed

    2014-09-01

    Vitamin D, most commonly associated with the growth and remodeling of bone, has been shown to ameliorate ischemia/reperfusion injury (IRI) in some tissues, yet its underlying mechanism remains elusive. This study was designed to examine the protective effect of vitamin D, if any, against hepatic IRI in rats and the underlying mechanism involved. Adult female Wistar rats were randomly divided into control, sham-operated (sham), ischemia/reperfusion (I/R), and ischemic-reperfused vitamin D-treated (vit D) groups. Rats in the I/R and vit D groups were subjected to partial (70%) hepatic ischemia for 45 min, followed by 1 h of reperfusion. Vitamin D was given to rats orally in a dose of 500 IU/kg daily for 2 weeks before being subjected to I/R. Markers of liver damage, oxidative stress, inflammation and apoptosis were evaluated. Hepatic morphology was also examined. Vit D-treated rats had significantly lower serum levels of alanine aminotransferase, aspartate aminotransferase, and γ glutamyl transferase compared to rats in the I/R group. Also, vit D-treated rats showed a significant decrease in malondialdehyde, interleukin-1 beta, interleukin-6, tumor necrosis factor-α, nuclear factor κB, B cell leukemia/lymphoma 2-associated X protein, cytochrome c, and caspase-3 levels, with higher levels of glutathione peroxidase and B cell lymphoma 2 protein levels in liver tissues compared to I/R rats. Histological examination showed less damaged liver tissues with amelioration of apoptotic signs in the vit D group compared to the I/R group. In conclusion, vitamin D supplementation ameliorates hepatic IRI mostly by alleviating the inflammatory-apoptotic response mediated by the oxidative reperfusion injury insult.

  8. Role of Mitochondria in Neonatal Hypoxic-Ischemic Brain Injury

    PubMed Central

    Lu, Yujiao; Tucker, Donovan; Dong, Yan; Zhao, Ningjun; Zhuo, Xiaoying; Zhang, Quanguang

    2016-01-01

    Hypoxic-ischemia (HI) causes severe brain injury in neonates. It’s one of the leading causes to neonatal death and pediatric disability, resulting in devastating consequences, emotionally and economically, to their families. A series of events happens in this process, e.g. excitatory transmitter release, extracelluar Ca2+ influxing, mitochondrial dysfunction, energy failure, and neuron death. There are two forms of neuron death after HI insult: necrosis and apoptosis, apoptosis being the more prevalent form. Mitochondria handle a series of oxidative reactions, and yield energy for various cellular activities including the maintainance of membrane potential and preservation of intracellular ionic homeostasis. Therefore mitochondria play a critical role in neonatal neurodegeneration following HI, and mitochondrial dysfunction is the key point in neurodegenerative evolution. Because of this, exploring effective mitochondria-based clinical strategies is crucial. Today the only efficacious clinic treatment is hypothermia. However, due to its complex management, clinical complication and autoimmune decrease, its clinical application is limited. So far, many mitochondria-based strategies have been reported neuroprotective in animal models, which offers promise on neonatal therapy. However, since their clinical effectiveness are still unclear, plenty of studies need to be continued in the future. According to recent reports, two novel strategies have been proposed: methylene blue (MB) and melatonin. Although they are still in primary stage, the underlying mechanisms indicate promising clinical applications. Every neurological therapeutic strategy has its intrinsic deficit and limited efficacy, therefore in the long run, the perfect clinical therapy for hypoxic-ischemic neonatal brain injury will be based on the combination of multiple strategies. PMID:27441209

  9. Transglutaminase 2 gene ablation protects against renal ischemic injury by blocking constant NF-{kappa}B activation

    SciTech Connect

    Kim, Dae-Seok; Kim, Bora; Tahk, Hongmin; Kim, Dong-Hyun; Ahn, Eu-Ree; Choi, Changsun; Jeon, Yoon; Park, Seo Young; Lee, Ho; Oh, Seung Hyun; Kim, Soo-Youl

    2010-12-17

    Research highlights: {yields} No acute renal tubular necrotic lesions were found in TGase2{sup -/-} mice with ischemic kidney injury. {yields} NF-{kappa}B activation is reduced in TGase2{sup -/-} mice with ischemic kidney injury. {yields} Hypoxic stress did not increase NF-{kappa}B activity in MEFs from TGase2{sup -/-} mice. {yields} COX-2 induction is suppressed in TGase2{sup -/-} mice with ischemic kidney injury. -- Abstract: Transglutaminase 2 knockout (TGase2{sup -/-}) mice show significantly reduced inflammation with decreased myofibroblasts in a unilateral ureteral obstruction (UUO) model, but the mechanism remains to be clarified. Nuclear factor-{kappa}B (NF-{kappa}B) activation plays a major role in the progression of inflammation in an obstructive nephropathy model. However, the key factors extending the duration of NF-{kappa}B activation in UUO are not known. In several inflammatory diseases, we and others recently found that TGase 2 plays a key role in extending NF-{kappa}B activation, which contributes to the pathogenesis of disease. In the current study, we found that NF-{kappa}B activity in mouse embryogenic fibroblasts (MEFs) from TGase2{sup -/-} mice remained at the control level while the NF-{kappa}B activity of wild-type (WT) MEFs was highly increased under hypoxic stress. Using the obstructive nephropathy model, we found that NF-{kappa}B activity remained at the control level in TGase2{sup -/-} mouse kidney tissues, as measured by COX-2 expression, but was highly increased in WT tissues. We conclude that TGase 2 gene ablation reduces the duration of NF-{kappa}B activation in ischemic injury.

  10. Marine Compound Xyloketal B Reduces Neonatal Hypoxic-Ischemic Brain Injury

    PubMed Central

    Xiao, Ai-Jiao; Chen, Wenliang; Xu, Baofeng; Liu, Rui; Turlova, Ekaterina; Barszczyk, Andrew; Sun, Christopher Lf; Liu, Ling; Deurloo, Marielle; Wang, Guan-Lei; Feng, Zhong-Ping; Sun, Hong-Shuo

    2014-01-01

    Neonatal hypoxic-ischemic encephalopathy causes neurodegeneration and brain injury, leading to sensorimotor dysfunction. Xyloketal B is a novel marine compound isolated from a mangrove fungus Xylaria species (no. 2508) with unique antioxidant effects. In this study, we investigated the effects and mechanism of xyloketal B on oxygen-glucose deprivation-induced neuronal cell death in mouse primary cortical culture and on hypoxic-ischemic brain injury in neonatal mice in vivo. We found that xyloketal B reduced anoxia-induced neuronal cell death in vitro, as well as infarct volume in neonatal hypoxic-ischemic brain injury model in vivo. Furthermore, xyloketal B improved functional behavioral recovery of the animals following hypoxic-ischemic insult. In addition, xyloketal B significantly decreased calcium entry, reduced the number of TUNEL-positive cells, reduced the levels of cleaved caspase-3 and Bax proteins, and increased the level of Bcl-2 protein after the hypoxic-ischemic injury. Our findings indicate that xyloketal B is effective in models of hypoxia-ischemia and thus has potential as a treatment for hypoxic-ischemic brain injury. PMID:25546517

  11. Stenting in the Treatment of Acute Ischemic Stroke: Literature Review

    PubMed Central

    Samaniego, Edgar A.; Dabus, Guilherme; Linfante, Italo

    2011-01-01

    Recanalization of acute large artery occlusions is a strong predictor of good outcome. The development of thrombectomy devices resulted in a significant improvement in recanalization rates compared to thrombolytics alone. However, clinical trials and registries with these thrombectomy devices in acute ischemic stroke (AIS) have shown recanalization rates in the range of 40–81%. The last decade has seen the development of nickel titanium self-expandable stents (SES). These stents, in contrast to balloon-mounted stents, allow better navigability and deployment in tortuous vessels and therefore are optimal for the cerebral circulation. SES were initially used for stent-assisted coil embolization of intracranial aneurysms and for treatment of intracranial stenosis. However, a few authors have recently reported feasibility of deployment of SES in AIS. The use of these devices yielded higher recanalization rates compared to traditional thrombectomy devices. Encouraged by these results, retrievable SES systems have been recently used in AIS. These devices offer the advantage of resheathing and retrieving of the stent even after full deployment. Some of these stents can also be detached in case permanent stent placement is needed. Retrievable SES are being used in Europe and currently tested in clinical trials in the United States. We review the recent literature in the use of stents for the treatment of AIS secondary to large vessel occlusion. PMID:22163225

  12. Peripheral Frequency of CD4+ CD28− Cells in Acute Ischemic Stroke

    PubMed Central

    Tuttolomondo, Antonino; Pecoraro, Rosaria; Casuccio, Alessandra; Di Raimondo, Domenico; Buttà, Carmelo; Clemente, Giuseppe; Corte, Vittoriano della; Guggino, Giuliana; Arnao, Valentina; Maida, Carlo; Simonetta, Irene; Maugeri, Rosario; Squatrito, Rosario; Pinto, Antonio

    2015-01-01

    Abstract CD4+ CD28− T cells also called CD28 null cells have been reported as increased in the clinical setting of acute coronary syndrome. Only 2 studies previously analyzed peripheral frequency of CD28 null cells in subjects with acute ischemic stroke but, to our knowledge, peripheral frequency of CD28 null cells in each TOAST subtype of ischemic stroke has never been evaluated. We hypothesized that CD4+ cells and, in particular, the CD28 null cell subset could show a different degree of peripheral percentage in subjects with acute ischemic stroke in relation to clinical subtype and severity of ischemic stroke. The aim of our study was to analyze peripheral frequency of CD28 null cells in subjects with acute ischemic stroke in relation to TOAST diagnostic subtype, and to evaluate their relationship with scores of clinical severity of acute ischemic stroke, and their predictive role in the diagnosis of acute ischemic stroke and diagnostic subtype We enrolled 98 consecutive subjects admitted to our recruitment wards with a diagnosis of ischemic stroke. As controls we enrolled 66 hospitalized patients without a diagnosis of acute ischemic stroke. Peripheral frequency of CD4+ and CD28 null cells has been evaluated with a FACS Calibur flow cytometer. Subjects with acute ischemic stroke had a significantly higher peripheral frequency of CD4+ cells and CD28 null cells compared to control subjects without acute ischemic stroke. Subjects with cardioembolic stroke had a significantly higher peripheral frequency of CD4+ cells and CD28 null cells compared to subjects with other TOAST subtypes. We observed a significant relationship between CD28 null cells peripheral percentage and Scandinavian Stroke Scale and NIHSS scores. ROC curve analysis showed that CD28 null cell percentage may be useful to differentiate between stroke subtypes. These findings seem suggest a possible role for a T-cell component also in acute ischemic stroke clinical setting showing a different

  13. Acute kidney injury in pregnancy: the thrombotic microangiopathies.

    PubMed

    Ganesan, Chitra; Maynard, Sharon E

    2011-01-01

    Acute kidney injury (AKI) is a rare but serious complication of pregnancy. Although prerenal and ischemic causes of AKI are most common, renal insufficiency can complicate several other pregnancy-specific conditions. In particular, severe preeclampsia/HELLP syndrome, acute fatty liver of pregnancy (AFLP) and thrombotic thrombocytopenic purpura (TTP) are all frequently complicated by AKI, and share several clinical features which pose diagnostic challenges to the clinician. In this article, we discuss the clinical and laboratory features, pathophysiology and treatment of these 3 conditions, with particular attention to renal manifestations. It is imperative to distinguish these conditions to make appropriate therapeutic decisions which can be lifesaving for the mother and fetus. Typically AFLP and HELLP improve after delivery of the fetus, whereas plasma exchange is the first-line treatment for TTP.

  14. Pathophysiology of ischaemic acute kidney injury.

    PubMed

    Kanagasundaram, Nigel Suren

    2015-03-01

    Acute kidney injury is common, dangerous and costly, affecting around one in five patients emergency admissions to hospital. Although survival decreases as disease worsens, it is now apparent that even modest degrees of dysfunction are not only associated with higher mortality but are an independent risk factor for death. This review focuses on the pathophysiology of acute kidney injury secondary to ischaemia - its commonest aetiology. The haemodynamic disturbances, endothelial injury, epithelial cell injury and immunological mechanisms underpinning its initiation and extension will be discussed along with the considerable and complex interplay between these factors that lead to an intense, pro-inflammatory state. Mechanisms of tubular recovery will be discussed but also the pathophysiology of abnormal repair with its direct consequences for long-term renal function. Finally, the concept of 'organ cross-talk' will be introduced as a potential explanation for the higher mortality observed with acute kidney injury that might be deemed modest in conventional biochemical terms.

  15. Ischemia-Reperfusion Injury and Ischemic-Type Biliary Lesions following Liver Transplantation

    PubMed Central

    Cursio, Raffaele; Gugenheim, Jean

    2012-01-01

    Ischemia-reperfusion (I-R) injury after liver transplantation (LT) induces intra- and/or extrahepatic nonanastomotic ischemic-type biliary lesions (ITBLs). Subsequent bile duct stricture is a significant cause of morbidity and even mortality in patients who underwent LT. Although the pathogenesis of ITBLs is multifactorial, there are three main interconnected mechanisms responsible for their formation: cold and warm I-R injury, injury induced by cytotoxic bile salts, and immunological-mediated injury. Cold and warm ischemic insult can induce direct injury to the cholangiocytes and/or damage to the arterioles of the peribiliary vascular plexus, which in turn leads to apoptosis and necrosis of the cholangiocytes. Liver grafts from suboptimal or extended-criteria donors are more susceptible to cold and warm I-R injury and develop more easily ITBLs than normal livers. This paper, focusing on liver I-R injury, reviews the risk factors and mechanisms leading to ITBLs following LT. PMID:22530107

  16. Astragaloside IV enhances cardioprotection of remote ischemic conditioning after acute myocardial infarction in rats

    PubMed Central

    Cheng, Songyi; Yu, Peng; Yang, Li; Shi, Haibo; He, Anxia; Chen, Hanyu; Han, Jie; Xie, Liang; Chen, Jiandong; Chen, Xiaohu

    2016-01-01

    Background: Remote ischemic conditioning (RIC) has been shown to be a practical method for protecting the heart from ischemic/reperfusion (I/R) injury. In the present study, we investigated whether or not the combination of RIC and Astragaloside IV (AS-IV) could improve cardioprotection against acute myocardial infarction (AMI)-induced heart failure (HF) when compared with individual treatments. Material and Methods: A rat model of AMI was established via permanent ligation of the left anterior descending coronary artery (LAD). Postoperatively, the rats were randomly grouped into a sham group (n=10), a model group (n=15), an AS-IV alone group (n=15), an RIC alone group (n=15) and a combined treatment group (AS-IV+RIC; n=15). All treatments were administered for 2 weeks. Results: After treatment for 2 weeks, the survival rate was improved, the cardiac function was preserved and the infarcted size was limited in AS-IV alone and RIC alone treatment groups compared to the model group, whereas the combined treatment yielded the most optimal protective effects. Additional studies suggested that AS-IV enhanced the cardioprotective effects of RIC by alleviating myocardial fibrosis, suppressing inflammation, attenuating apoptosis and ameliorating impairment of the myocardial ultrastructural. Conclusion: AS-IV enhances the cardioprotective effects of RIC against AMI-induced HF and ventricular remodeling, which represents a potential therapeutic approach for preserving cardiac function and improving the prognosis of AMI. PMID:27904669

  17. Vascular endothelial growth factor: an attractive target in the treatment of hypoxic/ischemic brain injury

    PubMed Central

    Guo, Hui; Zhou, Hui; Lu, Jie; Qu, Yi; Yu, Dan; Tong, Yu

    2016-01-01

    Cerebral hypoxia or ischemia results in cell death and cerebral edema, as well as other cellular reactions such as angiogenesis and the reestablishment of functional microvasculature to promote recovery from brain injury. Vascular endothelial growth factor is expressed in the central nervous system after hypoxic/ischemic brain injury, and is involved in the process of brain repair via the regulation of angiogenesis, neurogenesis, neurite outgrowth, and cerebral edema, which all require vascular endothelial growth factor signaling. In this review, we focus on the role of the vascular endothelial growth factor signaling pathway in the response to hypoxic/ischemic brain injury, and discuss potential therapeutic interventions. PMID:26981109

  18. Traditional Chinese Patent Medicine for Acute Ischemic Stroke

    PubMed Central

    Zhang, Xin; Liu, Xue-Ting; Kang, De-Ying

    2016-01-01

    Abstract The aim of the study is to conduct an overview of systematic reviews (SRs) to provide a contemporary review of the evidence for delivery of Traditional Chinese Patent Medicine (TCPMs) for patients with acute ischemic stroke. SRs were assessed for quality using the Assessment of Multiple Systematic Reviews (AMSTAR) tool and the Oxman-Guyatt Overview Quality Assessment Questionnaire (OQAQ). We assessed the quality of the evidence of high methodological quality (an AMSTAR score ≥9 or an OQAQ score ≥7) for reported outcomes using the GRADE (the Grading of Recommendations Assessment, Development and Evaluation) approach. (1) Dan Shen agents: tiny trends toward the improvement in different neurological outcomes (RR = 1.16, 1.10, 1.23, 1.08, 1.12); (2) Mailuoning: a tiny trend toward improvement in the neurological outcome (RR = 1.18); (3) Ginkgo biloba: tiny trends toward improvement in the neurological outcome (RR = 1.18, MD = 0.81); (4) Dengzhanhua: a tiny trend toward an improvement in neurological (RR = 1.23); (5) Acanthopanax: a small positive (RR = 1.17, 1.31) result on neurological improvement reported; (6) Chuanxiong-type preparations: neurological functional improved (MD = 2.90);(7) Puerarin: no better effect on the rate of death or disability (OR = 0.81, 95% CI 0.35–1.87); (8) Milk vetch: no better effect on the rate of death (OR = 0.66, 95% CI: 0.11–2.83);(9) Qingkailing: rate of death reduced (OR = 0.66, 95% CI: 0.11–2.83). Limitations in the methodological quality of the RCTs, inconsistency and imprecision led to downgrading of the quality of the evidence, which varied by review and by outcome. Consequently, there are currently only weak evidences to support those TCPMs. The 9 TCPMs may be effective in the treatment of acute ischemic stroke, as the GRADE approach indicated a weak recommendation for those TCPMs’ usage. PMID:27015174

  19. Deregulation of inflammatory response in the diabetic condition is associated with increased ischemic brain injury

    PubMed Central

    2014-01-01

    Background Although elicited inflammation contributes to tissue injury, a certain level of inflammation is necessary for subsequent tissue repair/remodeling. Diabetes, a chronic low-grade inflammatory state, is a predisposing risk factor for stroke. The condition is associated with delayed wound healing, presumably due to disrupted inflammatory responses. With inclusion of the diabetic condition in an experimental animal model of stroke, this study investigates whether the condition alters inflammatory response and influences stroke-induced brain injury. Methods C57BL/6 mice were fed a diabetic diet (DD) for 8 weeks to induce an experimental diabetic condition or a normal diet (ND) for the same duration. Gene expression of inflammatory factors including monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6), CCR2, and CD36 was assessed in the peripheral immune cells and brains of normal and diabetic mice before and after focal cerebral ischemia. The expression of these factors was also determined in lipopolysaccharide (LPS)-treated cultured normal and diabetic macrophages. Ischemic outcome was assessed in these mice at 3 days post-ischemia. Results DD intervention in mice resulted in obesity and elevated insulin and glucose level in the blood. The peritoneal immune cells from the diabetic mice showed higher MCP-1 mRNA levels before and after stroke. Compared to normal mice, diabetic mice showed reduced MCP-1, IL-6, and CCR2 gene expression in the brain at 6 h post-ischemia. LPS-stimulated inflammatory responses were also reduced in the diabetic macrophages. The diabetic mice showed larger infarct size and percent swelling. Conclusions These results showed that diabetic conditions deregulate acute inflammatory response and that the condition is associated with increased stroke-induced injury. The study suggests that interventions aimed at restoring appropriate inflammatory response in peripheral immune cells/macrophages may be beneficial in reducing

  20. Discovery of Metabolite Biomarkers for Acute Ischemic Stroke Progression.

    PubMed

    Liu, Peifang; Li, Ruiting; Antonov, Anton A; Wang, Lihua; Li, Wei; Hua, Yunfei; Guo, Huimin; Wang, Lijuan; Liu, Peijia; Chen, Lixia; Tian, Yuan; Xu, Fengguo; Zhang, Zunjian; Zhu, Yulan; Huang, Yin

    2017-02-03

    Stroke remains a major public health problem worldwide; it causes severe disability and is associated with high mortality rates. However, early diagnosis of stroke is difficult, and no reliable biomarkers are currently established. In this study, mass-spectrometry-based metabolomics was utilized to characterize the metabolic features of the serum of patients with acute ischemic stroke (AIS) to identify novel sensitive biomarkers for diagnosis and progression. First, global metabolic profiling was performed on a training set of 80 human serum samples (40 cases and 40 controls). The metabolic profiling identified significant alterations in a series of 26 metabolites with related metabolic pathways involving amino acid, fatty acid, phospholipid, and choline metabolism. Subsequently, multiple algorithms were run on a test set consisting of 49 serum samples (26 cases and 23 controls) to develop different classifiers for verifying and evaluating potential biomarkers. Finally, a panel of five differential metabolites, including serine, isoleucine, betaine, PC(5:0/5:0), and LysoPE(18:2), exhibited potential to differentiate AIS samples from healthy control samples, with area under the receiver operating characteristic curve values of 0.988 and 0.971 in the training and test sets, respectively. These findings provided insights for the development of new diagnostic tests and therapeutic approaches for AIS.

  1. Evolution of endovascular mechanical thrombectomy for acute ischemic stroke

    PubMed Central

    Przybylowski, Colin J; Ding, Dale; Starke, Robert M; Durst, Christopher R; Crowley, R Webster; Liu, Kenneth C

    2014-01-01

    Acute ischemic stroke (AIS) is a common medical problem associated with significant morbidity and mortality worldwide. A small proportion of AIS patients meet eligibility criteria for intravenous thrombolysis (IVT) with recombinant tissue plasminogen activator, and its efficacy for large vessel occlusion is poor. Therefore, an increasing number of patients with AIS are being treated with endovascular mechanical thrombectomy when IVT is ineffective or contraindicated. Rapid advancement in catheter-based and endovascular device technology has led to significant improvements in rates of cerebral reperfusion with these devices. Stentrievers and modern aspiration catheters have now surpassed earlier generation devices in the degree and rapidity of revascularization. This progress has been achieved with no concurrent increase in risk of major complications or mortality, both when used alone or in combination with IVT. The initial randomized controlled trials comparing endovascular therapy to IVT for AIS failed to show superior outcomes with endovascular treatment, but key limitations of each trial may limit the significance of these results to current practice. While endovascular devices and operator experience continue to evolve, we are optimistic that this will be accompanied by improvements in patient outcomes. This review highlights the major endovascular devices used in current practice and the trials which have investigated their efficacy. PMID:25405185

  2. Evolution of endovascular mechanical thrombectomy for acute ischemic stroke.

    PubMed

    Przybylowski, Colin J; Ding, Dale; Starke, Robert M; Durst, Christopher R; Crowley, R Webster; Liu, Kenneth C

    2014-11-16

    Acute ischemic stroke (AIS) is a common medical problem associated with significant morbidity and mortality worldwide. A small proportion of AIS patients meet eligibility criteria for intravenous thrombolysis (IVT) with recombinant tissue plasminogen activator, and its efficacy for large vessel occlusion is poor. Therefore, an increasing number of patients with AIS are being treated with endovascular mechanical thrombectomy when IVT is ineffective or contraindicated. Rapid advancement in catheter-based and endovascular device technology has led to significant improvements in rates of cerebral reperfusion with these devices. Stentrievers and modern aspiration catheters have now surpassed earlier generation devices in the degree and rapidity of revascularization. This progress has been achieved with no concurrent increase in risk of major complications or mortality, both when used alone or in combination with IVT. The initial randomized controlled trials comparing endovascular therapy to IVT for AIS failed to show superior outcomes with endovascular treatment, but key limitations of each trial may limit the significance of these results to current practice. While endovascular devices and operator experience continue to evolve, we are optimistic that this will be accompanied by improvements in patient outcomes. This review highlights the major endovascular devices used in current practice and the trials which have investigated their efficacy.

  3. Developing drug strategies for the neuroprotective treatment of acute ischemic stroke.

    PubMed

    Tuttolomondo, Antonino; Pecoraro, Rosaria; Arnao, Valentina; Maugeri, Rosario; Iacopino, Domenico Gerardo; Pinto, Antonio

    2015-01-01

    Developing new treatment strategies for acute ischemic stroke in the last twenty years has offered some important successes, but also several failures. Most trials of neuroprotective therapies have been uniformly negative to date. Recent research has reported how excitatory amino acids act as the major excitatory neurotransmitters in the cerebral cortex and hippocampus. Furthermore, other therapeutic targets such as free radical scavenger strategies and the anti-inflammatory neuroprotective strategy have been evaluated with conflicting data in animal models and human subjects with acute ischemic stroke. Whereas promising combinations of neuroprotection and neurorecovery, such as citicoline, albumin and cerebrolysin have been tested with findings worthy of further evaluation in larger randomized clinical trials. Understanding the complexities of the ischemic cascade is essential to developing pharmacological targets for acute ischemic stroke in neuroprotective or flow restoration therapeutic strategies.

  4. Cardiovascular risk factors for acute stroke: Risk profiles in the different subtypes of ischemic stroke

    PubMed Central

    Arboix, Adrià

    2015-01-01

    Timely diagnosis and control of cardiovascular risk factors is a priority objective for adequate primary and secondary prevention of acute stroke. Hypertension, atrial fibrillation and diabetes mellitus are the most common risk factors for acute cerebrovascular events, although novel risk factors, such as sleep-disordered breathing, inflammatory markers or carotid intima-media thickness have been identified. However, the cardiovascular risk factors profile differs according to the different subtypes of ischemic stroke. Atrial fibrillation and ischemic heart disease are more frequent in patients with cardioembolic infarction, hypertension and diabetes in patients with lacunar stroke, and vascular peripheral disease, hypertension, diabetes, previous transient ischemic attack and chronic obstructive pulmonary disease in patients with atherothrombotic infarction. This review aims to present updated data on risk factors for acute ischemic stroke as well as to describe the usefulness of new and emerging vascular risk factors in stroke patients. PMID:25984516

  5. Endovascular therapy in children with acute ischemic stroke: review and recommendations.

    PubMed

    Ellis, Michael J; Amlie-Lefond, Catherine; Orbach, Darren B

    2012-09-25

    This review provides a summary of the currently available data pertaining to the interventional management of acute ischemic stroke in children. The literature is scarce and is lacking much-needed prospective trials. No study in the literature on the well-established systemic or local thrombolysis trials has included children. Mechanical thrombectomy trials using clot retriever devices have also excluded patients younger than 18 years. The current review is limited to case series of interventional acute ischemic stroke therapy in children and the potential future of endovascular ischemic stroke therapy in this patient population. Recommendations in this review represent the opinion of the authors, based on review of the limited literature covering endovascular acute ischemic stroke therapy in children.

  6. Targeted Lipid Profiling Discovers Plasma Biomarkers of Acute Brain Injury

    PubMed Central

    Sheth, Sunil A.; Iavarone, Anthony T.; Liebeskind, David S.; Won, Seok Joon; Swanson, Raymond A.

    2015-01-01

    Prior efforts to identify a blood biomarker of brain injury have relied almost exclusively on proteins; however their low levels at early time points and poor correlation with injury severity have been limiting. Lipids, on the other hand, are the most abundant molecules in the brain and readily cross the blood-brain barrier. We previously showed that certain sphingolipid (SL) species are highly specific to the brain. Here we examined the feasibility of using SLs as biomarkers for acute brain injury. A rat model of traumatic brain injury (TBI) and a mouse model of stroke were used to identify candidate SL species though our mass-spectrometry based lipid profiling approach. Plasma samples collected after TBI in the rat showed large increases in many circulating SLs following injury, and larger lesions produced proportionately larger increases. Plasma samples collected 24 hours after stroke in mice similarly revealed a large increase in many SLs. We constructed an SL score (sum of the two SL species showing the largest relative increases in the mouse stroke model) and then evaluated the diagnostic value of this score on a small sample of patients (n = 14) who presented with acute stroke symptoms. Patients with true stroke had significantly higher SL scores than patients found to have non-stroke causes of their symptoms. The SL score correlated with the volume of ischemic brain tissue. These results demonstrate the feasibility of using lipid biomarkers to diagnose brain injury. Future studies will be needed to further characterize the diagnostic utility of this approach and to transition to an assay method applicable to clinical settings. PMID:26076478

  7. Current knowledge on the neuroprotective and neuroregenerative properties of citicoline in acute ischemic stroke

    PubMed Central

    Martynov, Mikhail Yu; Gusev, Eugeny I

    2015-01-01

    Ischemic stroke is one of the leading causes of long-lasting disability and death. Two main strategies have been proposed for the treatment of ischemic stroke: restoration of blood flow by thrombolysis or mechanical thrombus extraction during the first few hours of ischemic stroke, which is one of the most effective treatments and leads to a better functional and clinical outcome. The other direction of treatment, which is potentially applicable to most of the patients with ischemic stroke, is neuroprotection. Initially, neuroprotection was mainly targeted at protecting gray matter, but during the past few years there has been a transition from a neuron-oriented approach toward salvaging the whole neurovascular unit using multimodal drugs. Citicoline is a multimodal drug that exhibits neuroprotective and neuroregenerative effects in a variety of experimental and clinical disorders of the central nervous system, including acute and chronic cerebral ischemia, intracerebral hemorrhage, and global cerebral hypoxia. Citicoline has a prolonged therapeutic window and is active at various temporal and biochemical stages of the ischemic cascade. In acute ischemic stroke, citicoline provides neuroprotection by attenuating glutamate exitotoxicity, oxidative stress, apoptosis, and blood–brain barrier dysfunction. In the subacute and chronic phases of ischemic stroke, citicoline exhibits neuroregenerative effects and activates neurogenesis, synaptogenesis, and angiogenesis and enhances neurotransmitter metabolism. Acute and long-term treatment with citicoline is safe and in most clinical studies is effective and improves functional outcome. PMID:27186142

  8. Acute extensive ischemic enteritis in a young man diagnosed with wireless capsule endoscopy: a case report.

    PubMed

    Jeong, Woo Seong; Song, Hyun Joo; Na, Soo Young; Boo, Sun Jin; Kim, Heung Up; Kim, Jinseok; Choi, Guk Myung

    2013-03-25

    Ischemic enteritis is caused by either the interruption or significant reduction of arterial inflow to the small intestine. Risk factors are old age, diabetes mellitus and cardiovascular disease. It is very rare in young patients. We experienced a 21-year-old man with recurrent acute ischemic enteritis who was diagnosed with capsule endoscopy. He had previously taken medications for pulmonary hypertension and obstruction of both carotid arteries, and about 20 months earlier, he had been admitted due to hematochezia. Two sessions of angiography did not reveal the cause of hematochezia. At that time, capsule endoscopy showed mucosal edema and erythema in the terminal ileum, suggesting healed ischemic enteritis. The patient was admitted again due to hematochezia. Abdominal computed tomography showed focal celiac trunk stenosis and diffuse wall thickening of the small intestine, suggesting ischemic enteritis. Capsule endoscopy showed multiple active ulcers and severe hemorrhage with exudate, extending from the proximal jejunum to the terminal ileum. Using capsule endoscopy, the patient was diagnosed with acute extensive ischemic enteritis. Because endoscopic images of ischemic enteritis have rarely been reported, we report a case of a 21-year-old man who was diagnosed acute extensive ischemic enteritis with capsule endoscopy.

  9. Non-Coding RNAs as Potential Neuroprotectants against Ischemic Brain Injury.

    PubMed

    Kaur, Prameet; Liu, Fujia; Tan, Jun Rong; Lim, Kai Ying; Sepramaniam, Sugunavathi; Karolina, Dwi Setyowati; Armugam, Arunmozhiarasi; Jeyaseelan, Kandiah

    2013-03-20

    Over the past decade, scientific discoveries have highlighted new roles for a unique class of non-coding RNAs. Transcribed from the genome, these non-coding RNAs have been implicated in determining the biological complexity seen in mammals by acting as transcriptional and translational regulators. Non-coding RNAs, which can be sub-classified into long non-coding RNAs, microRNAs, PIWI-interacting RNAs and several others, are widely expressed in the nervous system with roles in neurogenesis, development and maintenance of the neuronal phenotype. Perturbations of these non-coding transcripts have been observed in ischemic preconditioning as well as ischemic brain injury with characterization of the mechanisms by which they confer toxicity. Their dysregulation may also confer pathogenic conditions in neurovascular diseases. A better understanding of their expression patterns and functions has uncovered the potential use of these riboregulators as neuroprotectants to antagonize the detrimental molecular events taking place upon ischemic-reperfusion injury. In this review, we discuss the various roles of non-coding RNAs in brain development and their mechanisms of gene regulation in relation to ischemic brain injury. We will also address the future directions and open questions for identifying promising non-coding RNAs that could eventually serve as potential neuroprotectants against ischemic brain injury.

  10. Acute epididymitis: a work-related injury?

    PubMed Central

    Sawyer, E. K.; Anderson, J. R.

    1996-01-01

    Occupational medicine physicians frequently are presented with requests by employers to determine the work-relatedness of medical illnesses or injuries. Occasionally, this involves a sudden onset of acute epididymitis in the male employee after strenuous activity in the workplace. Because the vast majority of acute epididymitis cases have an underlying sexually transmitted disease component, this poses a real dilemma for the consulting physician. This article discusses the etiology and pathogenesis of acute epididymitis along with its epidemiologic significance and reviews workers' compensation and its possible legal interpretation when acute epididymitis occurs at the worksite. PMID:8691501

  11. Statin Prescription Adhered to Guidelines for Patients Hospitalized due to Acute Ischemic Stroke or Transient Ischemic Attack

    PubMed Central

    Hong, Keun-Sik; Oh, Mi Sun; Choi, Hye-Yeon; Cho, A-Hyun; Kwon, Hyung-Min; Yu, Kyung-Ho; Bae, Hee-Joon; Lee, Juneyoung

    2013-01-01

    Background and Purpose Secondary stroke prevention guidelines recommend statins for the management of dyslipidemia in ischemic stroke and transient ischemic attack (TIA). This study assessed the guideline-based statin prescription (GBSP) rate in Korea and the associated physician and patient factors. Methods A survey was conducted to assess Korean neurologists' knowledge of and attitude toward the current dyslipidemia management guidelines. The characteristics and discharge statin prescription for all consecutive patients with acute ischemic stroke or TIA treated by participating neurologists during the 6 months prior to the survey were abstracted. Using algorithms to determine GBSP, we assessed the rate and independent factors of GBSP. Results Of the 174 participating neurologists, 79 (45.4%) were categorized as a higher-level knowledge group. For the 4407 patients (mean age, 66.4 years; female, 42.5%; 90.6% with ischemic stroke and 9.4% with TIA) enrolled in this study, the GBSP rate at discharge was 78.6%. The GBSP rate increased significantly with increasing physician knowledge level (test for trend, p<0.0001), and was higher among patients treated by the higher-level knowledge group than for those treated by the lower-level knowledge group (81.6% vs. 74.7%; unadjusted p<0.0001 and adjusted p=0.045). Other independent factors associated with a higher GBSP rate were hypercholesterolemia and higher low-density lipoprotein cholesterol level, while those associated with a lower GBSP rate were cardioembolism, undetermined etiology due to negative or incomplete work-up, other determined etiology, and TIA presentation. Conclusions More than three-quarters of acute ischemic stroke survivors and TIA patients receive a GBSP at discharge, and this proportion would be further improved by improving the knowledge of dyslipidemia management guidelines among neurologists. PMID:24285962

  12. Determination of the Role of Oxygen in Suspected Acute Myocardial Infarction by Biomarkers

    ClinicalTrials.gov

    2017-03-02

    Acute Myocardial Infarction (AMI); Acute Coronary Syndrome (ACS); ST Elevation (STEMI) Myocardial Infarction; Ischemic Reperfusion Injury; Non-ST Elevation (NSTEMI) Myocardial Infarction; Angina, Unstable

  13. Acute kidney injury: changing lexicography, definitions, and epidemiology.

    PubMed

    Himmelfarb, J; Ikizler, T A

    2007-05-01

    In recent years, there have been numerous advances in understanding the molecular determinants of functional kidney injury after ischemic and/or toxic exposure. However, translation of successful novel therapies designed to attenuate kidney functional injury from animal models to the clinical sphere has had modest results. This lack of translatability is at least in part due to lack of sufficient standardization in definitions and classification of cases of acute kidney injury (AKI), an incomplete understanding of the natural history of human AKI, and a limited understanding of how kidney injury interacts with other organ system failure in the context of systemic metabolic abnormalities. A concerted effort is now being made by nephrologists and intensivists to arrive at standardized terminology and classification of AKI. There have also been dramatic advances in our understanding of the epidemiology and natural history of AKI, particularly in the hospital and intensive care unit setting. Promising strategies are now being developed which may ultimately lead to improved outcomes for patients at risk for or who have developed AKI, which should be readily testable in the coming decade.

  14. Molecular dialogs between the ischemic brain and the peripheral immune system: dualistic roles in injury and repair.

    PubMed

    An, Chengrui; Shi, Yejie; Li, Peiying; Hu, Xiaoming; Gan, Yu; Stetler, Ruth A; Leak, Rehana K; Gao, Yanqin; Sun, Bao-Liang; Zheng, Ping; Chen, Jun

    2014-04-01

    Immune and inflammatory responses actively modulate the pathophysiological processes of acute brain injuries such as stroke. Soon after the onset of stroke, signals such as brain-derived antigens, danger-associated molecular patterns (DAMPs), cytokines, and chemokines are released from the injured brain into the systemic circulation. The injured brain also communicates with peripheral organs through the parasympathetic and sympathetic branches of the autonomic nervous system. Many of these diverse signals not only activate resident immune cells in the brain, but also trigger robust immune responses in the periphery. Peripheral immune cells then migrate toward the site of injury and release additional cytokines, chemokines, and other molecules, causing further disruptive or protective effects in the ischemic brain. Bidirectional communication between the injured brain and the peripheral immune system is now known to regulate the progression of stroke pathology as well as tissue repair. In the end, this exquisitely coordinated crosstalk helps determine the fate of animals after stroke. This article reviews the literature on ischemic brain-derived signals through which peripheral immune responses are triggered, and the potential impact of these peripheral responses on brain injury and repair. Pharmacological strategies and cell-based therapies that target the dialog between the brain and peripheral immune system show promise as potential novel treatments for stroke.

  15. Molecular dialogues between the ischemic brain and the peripheral immune system: Dualistic roles in injury and repair

    PubMed Central

    An, Chengrui; Shi, Yejie; Li, Peiying; Hu, Xiaoming; Gan, Yu; Stetler, Ruth A.; Leak, Rehana K.; Gao, Yanqin; Sun, Bao-Liang; Zheng, Ping; Chen, Jun

    2014-01-01

    Immune and inflammatory responses actively modulate the pathophysiological processes of acute brain injuries such as stroke. Soon after the onset of stroke, signals such as brain-derived antigens, danger-associated molecular patterns (DAMPs), cytokines, and chemokines are released from the injured brain into the systemic circulation. The injured brain also communicates with peripheral organs through the parasympathetic and sympathetic branches of the autonomic nervous system. Many of these diverse signals not only activate resident immune cells in the brain, but also trigger robust immune responses in the periphery. Peripheral immune cells then migrate toward the site of injury and release additional cytokines, chemokines, and other molecules, causing further disruptive or protective effects in the ischemic brain. Bidirectional communication between the injured brain and the peripheral immune system is now known to regulate the progression of stroke pathology as well as tissue repair. In the end, this exquisitely coordinated crosstalk helps determine the fate of animals after stroke. This article reviews the literature on ischemic brain-derived signals through which peripheral immune responses are triggered, and the potential impact of these peripheral responses on brain injury and repair. Pharmacological strategies and cell-based therapies that target the dialogue between the brain and peripheral immune system show promise as potential novel treatments for stroke. PMID:24374228

  16. Intravenous Thrombolysis for Acute Ischemic Stroke: Review of 97 Patients

    PubMed Central

    Mehta, Anish; Mahale, Rohan; Buddaraju, Kiran; Majeed, Anas; Sharma, Suryanarayana; Javali, Mahendra; Acharya, Purushottam; Srinivasa, Rangasetty

    2017-01-01

    Background: Intravenous thrombolysis (IVT) has now become a standard treatment in eligible patients with acute ischemic stroke (AIS) who present within 4.5 h of symptom onset. Objective: To determine the usefulness of IVT and the subset of patients who will benefit from IVT in AIS within 4.5 h. Materials and Methods: Patients with AIS within 4.5 h of symptom onset who underwent IVT were studied prospectively. The study period was from October 2011 to October 2015. Results: A total of 97 patients were thrombolysed intravenously. The mean onset to needle time in all patients was 177.2 ± 62 min (range: 60–360). At 3 months follow-up, favorable outcome was seen in 65 patients (67.1%) and poor outcome including death in the remaining 32 patients (32.9%). Factors predicting favorable outcome was age <65 years (P = 0.02), the National Institute of Health Stroke Scale (NIHSS) <15 (P < 0.001), small vessel occlusion (P = 0.006), cardioembolism (P = 0.006), and random blood sugar (RBS) <250 mg/dl (P < 0.001). Factors predicting poor outcome was diabetes mellitus (P = 0.01), dyslipidemia (P = 0.01), NIHSS at admission >15 (P = 0.03), RBS >250 mg/dl (P = 0.01), Dense cerebral artery sign, age, glucose level on admission, onset-to-treatment time, NIHSS on admission score >5 (P = 0.03), and occlusion of large artery (P = 0.02). Conclusion: Milder baseline stroke severity, blood glucose <250 mg/dL, younger patients (<65 years), cardioembolic stroke, and small vessel occlusion benefit from recombinant tissue plasminogen activator. PMID:28149079

  17. Prophylactic Edaravone Prevents Transient Hypoxic-Ischemic Brain Injury: Implications for Perioperative Neuroprotection

    PubMed Central

    Sun, Yu-Yo; Li, Yikun; Wali, Bushra; Li, Yuancheng; Lee, Jolly; Heinmiller, Andrew; Abe, Koji; Stein, Donald G.; Mao, Hui; Sayeed, Iqbal; Kuan, Chia-Yi

    2015-01-01

    Background and Purpose Hypoperfusion-induced thrombosis is an important mechanism for post-surgery stroke and cognitive decline, but there are no perioperative neuroprotectants to date. This study investigated whether prophylactic application of Edaravone, a free radical scavenger already used in treating ischemic stroke in Japan, can prevent infarct and cognitive deficits in a murine model of transient cerebral hypoxia-ischemia. Methods Adult male C57BL/6 mice were subjected to transient hypoxic-ischemic (tHI) insult that consists of 30-min occlusion of the unilateral common carotid artery and exposure to 7.5% oxygen. Edaravone or saline was prophylactically applied to compare their effects on cortical oxygen saturation, blood flow, coagulation, oxidative stress, metabolites, and learning-memory using methods that include photoacoustic imaging, laser speckle contrast imaging, solid state NMR and Morris water maze. The effects on infarct size by Edaravone application at different time-points after tHI were also compared. Results Prophylactic administration of Edaravone (4.5 mg/kg × 2, IP, 1 h before and 1 h after tHI) improved vascular reperfusion, oxygen saturation, and the maintenance of brain metabolites, while reducing oxidative stress, thrombosis, white-matter injury, and learning impairment after tHI insult. Delayed Edaravone treatment after 3 h post-tHI became unable to reduce infarct size. Conclusions Acute application of Edaravone may be a useful strategy to prevent post-surgery stroke and cognitive impairment, especially in patients with severe carotid stenosis. PMID:26060244

  18. Improving Reconstituted HDL Composition for Efficient Post-Ischemic Reduction of Ischemia Reperfusion Injury

    PubMed Central

    Brulhart-Meynet, Marie-Claude; Braunersreuther, Vincent; Brinck, Jonas; Montecucco, Fabrizio; Prost, Jean-Christophe; Thomas, Aurelien; Galan, Katia; Pelli, Graziano; Pedretti, Sarah; Vuilleumier, Nicolas; Mach, François; Lecour, Sandrine; James, Richard W.; Frias, Miguel A.

    2015-01-01

    Background New evidence shows that high density lipoproteins (HDL) have protective effects beyond their role in reverse cholesterol transport. Reconstituted HDL (rHDL) offer an attractive means of clinically exploiting these novel effects including cardioprotection against ischemia reperfusion injury (IRI). However, basic rHDL composition is limited to apolipoprotein AI (apoAI) and phospholipids; addition of bioactive compound may enhance its beneficial effects. Objective The aim of this study was to investigate the role of rHDL in post-ischemic model, and to analyze the potential impact of sphingosine-1-phosphate (S1P) in rHDL formulations. Methods and Results The impact of HDL on IRI was investigated using complementary in vivo, ex vivo and in vitro IRI models. Acute post-ischemic treatment with native HDL significantly reduced infarct size and cell death in the ex vivo, isolated heart (Langendorff) model and the in vivo model (-48%, p<0.01). Treatment with rHDL of basic formulation (apoAI + phospholipids) had a non-significant impact on cell death in vitro and on the infarct size ex vivo and in vivo. In contrast, rHDL containing S1P had a highly significant, protective influence ex vivo, and in vivo (-50%, p<0.01). This impact was comparable with the effects observed with native HDL. Pro-survival signaling proteins, Akt, STAT3 and ERK1/2 were similarly activated by HDL and rHDL containing S1P both in vitro (isolated cardiomyocytes) and in vivo. Conclusion HDL afford protection against IRI in a clinically relevant model (post-ischemia). rHDL is significantly protective if supplemented with S1P. The protective impact of HDL appears to target directly the cardiomyocyte. PMID:25781943

  19. Acute injuries from mountain biking.

    PubMed Central

    Chow, T K; Bracker, M D; Patrick, K

    1993-01-01

    We questioned members of 2 southern California off-road bicycling organizations about injuries associated with the use of all-terrain bicycles. Cyclists were asked about riding and safety habits, the kind(s) of injury sustained with their most recent accident and whether they sought medical treatment, and the circumstances of the accident. Of 459 mailed surveys, 268 (58.4%) were returned. Respondents (82.8% of whom were male) ranged in age from 14 to 68 years. Of these, 225 (84%) had been injured while riding all-terrain bicycles, 51% in the past year. Although most injuries were characterized as minor, 26% required professional medical care, and 4.4% of those injured were admitted to hospital. Extremity injuries--abrasions, lacerations, contusions--occurred in 201 (90%) cyclists with 27 (12%) sustaining a fracture or dislocation. High levels of helmet use (88%) may explain the low occurrence of head and neck trauma (12%). Frequent riding and riding on paved terrain were associated with increased severity of injury, although most accidents--197 (87.6%)--occurred off paved roads. These results suggest that, compared with regular bicyclists, all-terrain cyclists have more, but not necessarily more severe, injuries. Clinicians and emergency medical personnel should be aware that the increasing popularity of off-road cycling may change the frequency and nature of bicycling injuries. PMID:8212679

  20. [The acute knee injury - practical considerations].

    PubMed

    Bouaicha, Samy

    2014-04-09

    The acute knee injury represents one of the most common reasons to visit a general practitioner or an emergency department in a hospital. The initial assessment of an acute knee injury usually is affected by severe swelling, pain and a significant lack of motion. Conventional radiographs in three planes may provide additional information to limit the differential diagnosis. A clinical re-evaluation after five to ten days usually allows proper functional testing and therefore correct diagnosis in the majority of cases can be made. With suspicious clinical findings, MRI may be helpful to evaluate ligamentous, meniscal and cartilaginous structures. Femoro-tibial knee dislocation represents the most harmful acute knee injury and needs to be further evaluated and treated in an adequate medical institution in every suspicious case. Rapid vascular diagnostic with (CT)-angiography is crucial. Behind a multi-ligament injury of the knee a spontaneously reduced dislocation may hide and proper neuro-vascular exam therefore is mandatory in every patient. When fracture, blocking and major instability can be excluded at initial assessment, there is usually no need for any acute surgical intervention and initial conservative treatment may be conducted on an out-patient basis for most of the patients. Priority of surgical treatment depends on the injury pattern and delayed intervention with a pre-habilitative phase may be beneficial for certain pathologies.

  1. Carnosine protects the brain of rats and Mongolian gerbils against ischemic injury: after-stroke-effect.

    PubMed

    Dobrota, Dusan; Fedorova, Tatiana; Stvolinsky, Sergey; Babusikova, Eva; Likavcanova, Katarina; Drgova, Anna; Strapkova, Adriana; Boldyrev, Alexander

    2005-10-01

    Carnosine, a specific constituent of excitable tissues of vertebrates, exhibits a significant antioxidant protecting effect on the brain damaged by ischemic-reperfusion injury when it was administered to the animals before ischemic episode. In this study, the therapeutic effect of carnosine was estimated on animals when this drug was administered intraperitoneally (100 mg/kg body weight) after ischemic episode induced by experimental global brain ischemia. Treatment of the animals with carnosine after ischemic episode under long-term (7-14 days) reperfusion demonstrated its pronounced protective effect on neurological symptoms and animal mortality. Carnosine also prevented higher lipid peroxidation of brain membrane structures and increased a resistance of neuronal membranes to the in vitro induced oxidation. Measurements of malonyl dialdehyde (MDA) in brain homogenates showed its increase in the after brain stroke animals and decreased MDA level in the after brain stroke animals treated with carnosine. We concluded that carnosine compensates deficit in antioxidant defense system of brain damaged by ischemic injury. The data presented demonstrate that carnosine is effective in protecting the brain in the post-ischemic period.

  2. Thrombolysis and thrombectomy in patients treated with dabigatran with acute ischemic stroke: Expert opinion.

    PubMed

    Diener, H C; Bernstein, R; Butcher, K; Campbell, B; Cloud, G; Davalos, A; Davis, S; Ferro, J M; Grond, M; Krieger, D; Ntaios, G; Slowik, A; Touzé, E

    2017-01-01

    Systemic thrombolysis with rt-PA is contraindicated in patients with acute ischemic stroke anticoagulated with dabigatran. This expert opinion provides guidance on the use of the specific reversal agent idarucizumab followed by rt-PA and/or thrombectomy in patients with ischemic stroke pre-treated with dabigatran. The use of idarucizumab followed by rt-PA is covered by the label of both drugs.

  3. Fueling the fire in acute kidney injury: endothelial cells collect their Toll.

    PubMed

    Sutton, Timothy A; Dagher, Pierre C

    2011-02-01

    Chen et al. demonstrate endothelial expression of Toll-like receptor 4 (TLR4) in the outer medulla of the kidney early in the course of ischemic acute kidney injury. Furthermore, they provide data that support the hypothesis that activation of endothelial TLR4 in the early extension phase of AKI by damage-associated molecular pattern molecules released from injured tubules results in endothelial activation. This activation can serve to amplify inflammation and tubular damage.

  4. [Pregnancy-related acute kidney injury].

    PubMed

    Filipowicz, Ewa; Staszków, Monika

    Acute kidney injury (AKI) in obstetrics may be caused by the same disorders that are observed in the general population or may be specific for a pregnancy such as: preeclampsia, HELLP syndrome or acute fatty liver of pregnancy. The renal changes may be only temporary, and resolve within a few weeks postpartum, or may become irreversible leading to a progression of chronic kidney disease (CKD). In the article the most important pregnancy related syndromes associated with AKI have been shortly reviewed.

  5. A3 adenosine receptor agonist reduces brain ischemic injury and inhibits inflammatory cell migration in rats.

    PubMed

    Choi, In-Young; Lee, Jae-Chul; Ju, Chung; Hwang, Sunyoung; Cho, Geum-Sil; Lee, Hyuk Woo; Choi, Won Jun; Jeong, Lak Shin; Kim, Won-Ki

    2011-10-01

    A3 adenosine receptor (A3AR) is recognized as a novel therapeutic target for ischemic injury; however, the mechanism underlying anti-ischemic protection by the A3AR agonist remains unclear. Here, we report that 2-chloro-N(6)-(3-iodobenzyl)-5'-N-methylcarbamoyl-4'-thioadenosine (LJ529), a selective A3AR agonist, reduces inflammatory responses that may contribute to ischemic cerebral injury. Postischemic treatment with LJ529 markedly reduced cerebral ischemic injury caused by 1.5-hour middle cerebral artery occlusion, followed by 24-hour reperfusion in rats. This effect was abolished by the simultaneous administration of the A3AR antagonist MRS1523, but not the A2AAR antagonist SCH58261. LJ529 prevented the infiltration/migration of microglia and monocytes occurring after middle cerebral artery occlusion and reperfusion, and also after injection of lipopolysaccharides into the corpus callosum. The reduced migration of microglia by LJ529 could be related with direct inhibition of chemotaxis and down-regulation of spatiotemporal expression of Rho GTPases (including Rac, Cdc42, and Rho), rather than by biologically relevant inhibition of inflammatory cytokine/chemokine release (eg, IL-1β, TNF-α, and MCP-1) or by direct inhibition of excitotoxicity/oxidative stress (not affected by LJ529). The present findings indicate that postischemic activation of A3AR and the resultant reduction of inflammatory response should provide a promising therapeutic strategy for the treatment of ischemic stroke.

  6. Thrombin induces ischemic LTP (iLTP): implications for synaptic plasticity in the acute phase of ischemic stroke

    PubMed Central

    Stein, Efrat Shavit; Itsekson-Hayosh, Zeev; Aronovich, Anna; Reisner, Yair; Bushi, Doron; Pick, Chaim G.; Tanne, David; Chapman, Joab; Vlachos, Andreas; Maggio, Nicola

    2015-01-01

    Acute brain ischemia modifies synaptic plasticity by inducing ischemic long-term potentiation (iLTP) of synaptic transmission through the activation of N-Methyl-D-aspartate receptors (NMDAR). Thrombin, a blood coagulation factor, affects synaptic plasticity in an NMDAR dependent manner. Since its activity and concentration is increased in brain tissue upon acute stroke, we sought to clarify whether thrombin could mediate iLTP through the activation of its receptor Protease-Activated receptor 1 (PAR1). Extracellular recordings were obtained in CA1 region of hippocampal slices from C57BL/6 mice. In vitro ischemia was induced by acute (3 minutes) oxygen and glucose deprivation (OGD). A specific ex vivo enzymatic assay was employed to assess thrombin activity in hippocampal slices, while OGD-induced changes in prothrombin mRNA levels were assessed by (RT)qPCR. Upon OGD, thrombin activity increased in hippocampal slices. A robust potentiation of excitatory synaptic strength was detected, which occluded the ability to induce further LTP. Inhibition of either thrombin or its receptor PAR1 blocked iLTP and restored the physiological, stimulus induced LTP. Our study provides important insights on the early changes occurring at excitatory synapses after ischemia and indicates the thrombin/PAR1 pathway as a novel target for developing therapeutic strategies to restore synaptic function in the acute phase of ischemic stroke. PMID:25604482

  7. Efficacy of telemedicine for thrombolytic therapy in acute ischemic stroke: a meta-analysis.

    PubMed

    Zhai, Yun-kai; Zhu, Wei-jun; Hou, Hong-li; Sun, Dong-xu; Zhao, Jie

    2015-04-01

    The aim of this study was to assess the benefits of telemedicine in the delivery of thrombolytic therapy for patients with acute ischemic stroke. We performed a meta-analysis using combinations of the following terms: telestroke, telemedicine, tissue plasminogen activator/t-PA, and acute ischemic stroke. The primary outcome was favorable outcome based on the modified Rankin score. Secondary outcomes were incidence of symptomatic intracranial hemorrhage and overall mortality. We found no significant difference in favorable outcome between the telemedicine and control groups, and no significant difference was found between these groups in the rate of symptomatic intracranial hemorrhage or overall mortality. Patients with acute ischemic stroke who were treated with intravenous thrombolysis had similar outcomes regardless of whether telemedicine was used or they were treated in-person at a medical facility. Telemedicine can be used to support hospitals with limited experience in administering thrombolytic therapy for stroke.

  8. Acute ischemic stroke after cardiac catheterization: the protamine low-dose recombinant tissue plasminogen activator pathway.

    PubMed

    Guevara, Carlos; Quijada, Alonso; Rosas, Carolina; Bulatova, Katya; Lara, Hugo; Nieto, Elena; Morales, Marcelo

    2016-05-20

    Intravenous thrombolysis is the preferred treatment for acute ischemic stroke; however, it remains unestablished in the area of cardiac catheterization. We report three patients with acute ischemic stroke after cardiac catheterization. After reversing the anticoagulant effect of unfractionated heparin with protamine, all of the patients were successfully off-label thrombolyzed with reduced doses of intravenous recombinant tissue plasminogen activator (0.6 mg/kg). This dose was preferred to reduce the risk of symptomatic cerebral or systemic bleeding. The sequential pathway of protamine recombinant tissue plasminogen activator at reduced doses may be safer for reducing intracranial or systemic bleeding events, whereas remaining efficacious for the treatment of acute ischemic stroke after cardiac catheterization.

  9. Acute ischemic preconditioning of skeletal muscle prior to flap elevation augments muscle-flap survival.

    PubMed

    Carroll, C M; Carroll, S M; Overgoor, M L; Tobin, G; Barker, J H

    1997-07-01

    Ischemic preconditioning of the myocardium with repeated brief periods of ischemia and reperfusion prior to prolonged ischemia significantly reduces subsequent myocardial infarction. Following ischemic preconditioning, two "windows of opportunity" (early and late) exist, during which time prolonged ischemia can occur with reduced infarction size. The early window occurs at approximately 4 hours and the late window at 24 hours following ischemic preconditioning of the myocardium. We investigated if ischemic preconditioning of skeletal muscle prior to flap creation improved subsequent flap survival and perfusion immediately or 24 hours following ischemic preconditioning. Currently, no data exist on the utilization of ischemic preconditioning in this fashion. The animal model used was the latissimus dorsi muscle of adult male Sprague-Dawley rats. Animals were assigned to three groups, and the right or left latissimus dorsi muscle was chosen randomly in each animal. Group 1 (n = 12) was the control group, in which the entire latissimus dorsi muscle was elevated acutely without ischemic preconditioning. Group 2 (n = 8) investigated the effects of ischemic preconditioning in the early window. In this group, the latissimus dorsi muscle was elevated immediately following preconditioning. Group 3 (n = 8) investigated the effects of ischemic preconditioning in the late window, with elevation of the latissimus dorsi muscle 24 hours following ischemic preconditioning. The preconditioning regimen used in groups 2 and 3 was two 30-minute episodes of normothermic global ischemia with intervening 10-minute episodes of reperfusion. Latissimus dorsi muscle ischemia was created by occlusion of the thoracodorsal artery and vein and the intercostal perforators, after isolation of the muscle on these vessels. Muscle perfusion was assessed by a laser-Doppler perfusion imager. One week after flap elevation, muscle necrosis was quantified in all groups by means of computer-assisted digital

  10. The Prognostic Values of Leukocyte Rho Kinase Activity in Acute Ischemic Stroke

    PubMed Central

    Cheng, Cheng-I.; Lin, Yu-Chun; Tsai, Tzu-Hsien; Lin, Hung-Sheng; Liou, Chia-Wei; Chang, Wen-Neng; Lu, Cheng-Hsien; Yuen, Chun-Man; Yip, Hon-Kan

    2014-01-01

    Objective. It has been reported that leukocyte ROCK activity is elevated in patients after ischemic stroke, but it is unclear whether leukocyte ROCK activity is associated with clinical outcomes following acute stroke events. The objective of this study is to investigate if leukocyte ROCK activity can predict the outcomes in patients with acute ischemic stroke. Materials and Methods. We enrolled 110 patients of acute ischemic stroke and measured the leukocyte ROCK activity and plasma level of inflammatory cytokines to correlate the clinical outcomes of these patients. Results. The leukocyte ROCK activity at 48 hours after admission in acute ischemic stroke patients was higher as compared to a risk-matched population. The leukocyte ROCK activity significantly correlated with National Institute of Health Stroke Scale (NIHSS) difference between admission and 90 days after stroke event. Kaplan-Meier survival estimates showed lower stroke-free survival during follow-up period in patients with high leukocyte ROCK activity or plasma hsCRP level. Leukocyte ROCK activity independently predicted the recurrent stroke in patients with atherosclerotic stroke. Conclusions. This study shows elevated leukocyte ROCK activity in patients with ischemic stroke as compared to risk-matched subjects and is an independent predictor for recurrent stroke. PMID:24716192

  11. Renal Ischemia/Reperfusion Injury in Diabetic Rats: The Role of Local Ischemic Preconditioning

    PubMed Central

    Ozbilgin, Sule; Ozkardesler, Sevda; Akan, Mert; Boztas, Nilay; Ozbilgin, Mucahit; Ergur, Bekir Ugur; Derici, Serhan; Guneli, Mehmet Ensari; Meseri, Reci

    2016-01-01

    Background. The aim of this study was to evaluate the effects of local ischemic preconditioning using biochemical markers and histopathologically in the diabetic rat renal IR injury model. Methods. DM was induced using streptozotocin. Rats were divided into four groups: Group I, nondiabetic sham group (n = 7), Group II, diabetic sham group (n = 6), Group III, diabetic IR group (diabetic IR group, n = 6), and Group IV, diabetic IR + local ischemic preconditioning group (diabetic IR + LIPC group, n = 6). Ischemic renal injury was induced by clamping the bilateral renal artery for 45 min. 4 h following ischemia, clearance protocols were applied to assess biochemical markers and histopathologically in rat kidneys. Results. The histomorphologic total cell injury scores of the nondiabetic sham group were significantly lower than diabetic sham, diabetic IR, and diabetic IR + LIPC groups. Diabetic IR group scores were not significantly different than the diabetic sham group. But diabetic IR + LIPC group scores were significantly higher than the diabetic sham and diabetic IR groups. Conclusion. Local ischemic preconditioning does not reduce the risk of renal injury induced by ischemia/reperfusion in diabetic rat model. PMID:26925416

  12. Unilateral Renal Ischemia as a Model of Acute Kidney Injury and Renal Fibrosis in Cats.

    PubMed

    Schmiedt, C W; Brainard, B M; Hinson, W; Brown, S A; Brown, C A

    2016-01-01

    The objectives of this study were to define the acute and chronic effects of 1-hour unilateral in vivo renal ischemia on renal function and histology in cats. Twenty-one adult purpose-bred research cats were anesthetized, and 1 kidney underwent renal artery and vein occlusion for 1 hour. Serum creatinine and urea concentrations, urine protein:creatinine ratio, urine-specific gravity, glomerular filtration rate, hematocrit, platelet concentration and function, and white blood cell count were measured at baseline and variable time points after ischemia. Renal histopathology was evaluated on days 3, 6, 12, 21, 42, and 70 postischemia; changes in smooth muscle actin and interstitial collagen were examined. Following ischemia, whole animal glomerular filtration rate was significantly reduced (57% of baseline on day 6; P < .05). At the early time points, the ischemic kidneys exhibited severe acute epithelial necrosis accompanied by evidence of regeneration of tubules predominantly within the corticomedullary junction. At later periods, postischemic kidneys had evidence of tubular atrophy and interstitial inflammation with significantly more smooth muscle actin and interstitial collagen staining and interstitial fibrosis when compared with the contralateral control kidneys. This study characterizes the course of ischemic acute kidney injury in cats and demonstrates that ischemic acute kidney injury triggers chronic fibrosis, interstitial inflammation, and tubular atrophy in feline kidneys. These late changes are typical of those observed in cats with naturally occurring chronic kidney disease.

  13. Sex differences in ischemia/reperfusion-induced acute kidney injury are dependent on the renal sympathetic nervous system.

    PubMed

    Tanaka, Ryosuke; Tsutsui, Hidenobu; Ohkita, Mamoru; Takaoka, Masanori; Yukimura, Tokihito; Matsumura, Yasuo

    2013-08-15

    Resistance to ischemic acute kidney injury has been shown to be higher in female rats than in male rats. We found that renal venous norepinephrine overflow after reperfusion played important roles in the development of ischemic acute kidney injury. In the present study, we investigated whether sex differences in the pathogenesis of ischemic acute kidney injury were derived from the renal sympathetic nervous system using male and female Sprague-Dawley rats. Ischemia/reperfusion-induced acute kidney injury was achieved by clamping the left renal artery and vein for 45 min followed by reperfusion, 2 weeks after contralateral nephrectomy. Renal function was impaired after reperfusion in both male and female rats; however, renal dysfunction and histological damage were more severe in male rats than in female rats. Renal venous plasma norepinephrine levels after reperfusion were markedly elevated in male rats, but were not in female rats. These sex differences were eliminated by ovariectomy or treatment with tamoxifen, an estrogen receptor antagonist, in female rats. Furthermore, an intravenous injection of hexamethonium (25mg/kg), a ganglionic blocker, 5 min before ischemia suppressed the elevation in renal venous plasma norepinephrine levels after reperfusion, and attenuated renal dysfunction and histological damage in male rats, and ovariectomized and tamoxifen-treated female rats, but not in intact females. Thus, the present findings confirmed sex differences in the pathogenesis of ischemic acute kidney injury, and showed that the attenuation of ischemia/reperfusion-induced acute kidney injury observed in intact female rats may be dependent on depressing the renal sympathetic nervous system with endogenous estrogen.

  14. Protective effect of moxonidine on ischemia/reperfusion-induced acute kidney injury through α2/imidazoline I1 receptor.

    PubMed

    Tsutsui, Hidenobu; Sugiura, Takahiro; Hayashi, Kentaro; Yukimura, Tokihito; Ohkita, Mamoru; Takaoka, Masanori; Matsumura, Yasuo

    2013-10-15

    Enhancement of renal sympathetic nerve activity during renal ischemia and norepinephrine overflow from the kidney after reperfusion play important roles in the development of ischemic acute kidney injury. Recently, we have found that moxonidine, an α2/imidazoline Ι1-receptor agonist, has preventive effects on ischemic acute kidney injury by suppressing the excitation of renal sympathetic nervous system after reperfusion. In the present study, to clarify the renoprotective mechanisms of moxonidine (360 nmol/kg, i.v.) against ischemic acute kidney injury, we investigated the effect of intravenous (i.v.) and intracerebroventricular (i.c.v.) injection of efaroxan, an α2/Ι1 receptor antagonist, on the moxonidine-exhibited actions. Ischemic acute kidney injury was induced by clamping the left renal artery and vein for 45 min followed by reperfusion, 2 weeks after contralateral nephrectomy. The suppressive effect of moxonidine on enhanced renal sympathetic nerve activity during renal ischemia was not observed in the rat treated with either i.v. (360 nmol/kg) or i.c.v. (36 nmol/kg) of efaroxan. Furthermore, i.v. injection of efaroxan eliminated the preventive effect of moxonidine on ischemia/reperfusion-induced kidney injury and norepinephrine overflow, and i.c.v. injection of efaroxan did not completely inhibit the moxonidine's effects. These results indicate that moxonidine prevents the ischemic kidney injury by sympathoinhibitory effect probably via α2/Ι1 receptors in central nervous system and by suppressing the norepinephrine overflow through α2/Ι1 receptors on sympathetic nerve endings.

  15. Neuroprotective effects of pre-treatment with l-carnitine and acetyl-L-carnitine on ischemic injury in vivo and in vitro.

    PubMed

    Zhang, Rui; Zhang, Hong; Zhang, Zhongxia; Wang, Tao; Niu, Jingya; Cui, Dongsheng; Xu, Shunjiang

    2012-01-01

    The therapeutic effect of stroke is hampered by the lack of neuroprotective drugs against ischemic insults beyond the acute phase. Carnitine plays important roles in mitochondrial metabolism and in modulating the ratio of coenzyme A (CoA)/acyl-CoA. Here, we investigate the neuroprotective effects of l-carnitine (LC) and Acetyl-l-carnitine (ALC) pre-treatment on ischemic insults under the same experimental conditions. We used a transient middle cerebral artery occlusion (MCAO) model to evaluate the protective roles of LC and ALC in acute focal cerebral ischemia in vivo and to understand the possible mechanisms using model of PC12 cell cultures in vitro. Results showed that ALC, but not LC, decreased infarction size in SD rats after MCAO in vivo. However, both LC and ALC pretreatment reduced oxygen-glucose deprivation (OGD)-induced cell injury and decreased OGD-induced cell apoptosis and death in vitro; at the same time, both of them increased the activities of super oxide dismutase (SOD) and ATPase, and decreased the concentration of malondialdehyde (MDA) in vitro. Thus, our findings suggested that LC and ALC pre-treatment are highly effective in the prevention of neuronal cell against ischemic injury in vitro, however, only ALC has the protective effect on neuronal cell injury after ischemia in vivo.

  16. Association of Serum Calcium Levels with Infarct Size in Acute Ischemic Stroke: Observations from Northeast India

    PubMed Central

    Borah, Meghna; Dhar, Sriparna; Gogoi, Dipankar Mall; Ruram, Alice Abraham

    2016-01-01

    Background: Calcium is known to be major mediator in ischemic neuronal cell death. Recent studies have shown that elevated serum calcium levels at admission in patients with stroke have been associated with less severe clinical deficits and with better outcomes. Aim: The aim of this to determine the correlation between serum calcium (total, corrected, and ionized) and infarct size (IS) in patients with acute ischemic stroke. Materials and Methods: Data were collected from 61 patients presenting with acute ischemic stroke from May 2015 to April 2016 at a tertiary care institute in Northeast India. Only patients aged ≥40 years and diagnosed as having acute ischemic cerebrovascular stroke with clinical examination and confirmed by a computed tomography scan were included in the study. Serum calcium levels (total, albumin corrected, and ionized) were collapsed into quartiles, and these quartile versions were used for calculating correlation. Pearson's correlation coefficient was used for comparing calcium levels with IS. Results: Total calcium, albumin-corrected calcium, and ionized calcium had a statistically significant negative correlation with IS with r = −0.578, −0.5396, and −0.5335, respectively. Total and ionized calcium showed a significant negative correlation with IS across all four quartiles. Albumin-corrected calcium levels showed a significant negative correlation with IS only across the lowest and highest quartiles. Conclusion: The findings in our study suggest that serum calcium can be used as a prognostic indicator in ischemic stroke as its levels directly correlates with the IS. PMID:28163502

  17. Accelerated recovery from acute brain injuries: clinical efficacy of neurotrophic treatment in stroke and traumatic brain injuries.

    PubMed

    Bornstein, N; Poon, W S

    2012-04-01

    Stroke is one of the most devastating vascular diseases in the world as it is responsible for almost five million deaths per year. Almost 90% of all strokes are ischemic and mainly due to atherosclerosis, cardiac embolism and small-vessel disease. Intracerebral or subarachnoid hemorrhage can lead to hemorrhagic stroke, which usually has the poorest prognosis. Cerebrolysin is a peptide preparation which mimics the action of a neurotrophic factor, protecting stroke-injured neurons and promoting neuroplasticity and neurogenesis. Cerebrolysin has been widely studied as a therapeutic tool for both ischemic and hemorrhagic stroke, as well as traumatic brain injury. In ischemic stroke, Cerebrolysin given as an adjuvant therapy to antiplatelet and rheologically active medication resulted in accelerated improvement in global, neurological and motor functions, cognitive performance and activities of daily living. Cerebrolysin was also safe and well tolerated when administered in patients suffering from hemorrhagic stroke. Traumatic brain injury leads to transient or chronic impairments in physical, cognitive, emotional and behavioral functions. This is associated with deficits in the recognition of basic emotions, the capacity to interpret the mental states of others, and executive functioning. Pilot clinical studies with adjuvant Cerebrolysin in the acute and postacute phases of the injury have shown faster recovery, which translates into an earlier onset of rehabilitation and shortened hospitalization time.

  18. SUR1-Associated Mechanisms Are Not Involved in Ischemic Optic Neuropathy 1 Day Post-Injury

    PubMed Central

    Nicholson, James D.; Guo, Yan; Bernstein, Steven L.

    2016-01-01

    Ischemia-reperfusion injury after central nervous system (CNS) injury presents a major health care challenge with few promising treatments. Recently, it has become possible to reduce edema after CNS injury by antagonizing a sulfonylurea receptor 1 (SUR1) regulated ion channel expressed after injury. SUR1 upregulation after injury is a necessary precondition for the formation of this channel, and has been implicated in white matter injury after clinical spinal cord trauma. Glibenclamide, an SUR1 antagonist, appears to have neuroprotective effect against cerebral stroke in an open-label small clinical trial and great effectiveness in reducing damage after varied experimental CNS injury models. Despite its importance in CNS injuries, SUR1 upregulation appears to play no part in rodent anterior ischemic optic neuropathy (rAION) injury as tested by real-time PCR and immunohistochemical staining of rAION-injured rat optic nerve (ON). Furthermore, the SUR1 antagonist glibenclamide administered immediately after rAION injury provided no protection to proximal ON microvasculature 1 day post-injury but may reduce optic nerve head edema in a manner unrelated to ON SUR1 expression. Our results suggest that there may be fundamental differences between rAION optic nerve ischemia and other CNS white matter injuries where SUR1 appears to play a role. PMID:27560494

  19. [Bilateral ischemic optic neuropathy secondary to acute ergotism].

    PubMed

    Sommer, S; Delemazure, B; Wagner, M; Xenard, L; Rozot, P

    1998-02-01

    We report a case of a 31 year-old man who presented a bilateral ischemic optic neuropathy associated with headaches and severe systemic hypertension. This episode appeared after administration of ergotamine tartrate and macrolides. This medication probably led to a vasospasm which occurs in patients with hypertension. The cardiovascular and serum lipid evaluations were normal. A migraine optic neuropathy can be evoked.

  20. Visualizing the Propagation of Acute Lung Injury

    PubMed Central

    Cereda, Maurizio; Xin, Yi; Meeder, Natalie; Zeng, Johnathan; Jiang, YunQing; Hamedani, Hooman; Profka, Harrilla; Kadlecek, Stephen; Clapp, Justin; Deshpande, Charuhas G.; Wu, Jue; Gee, James C.; Kavanagh, Brian P.; Rizi, Rahim R.

    2015-01-01

    Background Mechanical ventilation worsens acute respiratory distress syndrome (ARDS), but this secondary ‘ventilator-associated’ injury is variable and difficult to predict. We aimed to visualize the propagation of such ventilator-induced injury, in the presence (and absence) of a primary underlying lung injury, and to determine the predictors of propagation. Methods Anesthetized rats (n=20) received acid aspiration (HCl) followed by ventilation with moderate tidal volume (VT). In animals surviving ventilation for at least two hours, propagation of injury was quantified using serial computed tomography (CT). Baseline lung status was assessed by oxygenation, lung weight, and lung strain (VT/expiratory lung volume). Separate groups of rats without HCl aspiration were ventilated with large (n=10) or moderate (n=6) VT. Results In 15 rats surviving longer than two hours, CT opacities spread outwards from the initial site of injury. Propagation was associated with higher baseline strain (propagation vs. no propagation, mean ± SD: 1.52 ± 0.13 vs. 1.16 ± 0.20, p<0.01), but similar oxygenation and lung weight. Propagation did not occur where baseline strain <1.29. In healthy animals, large VT caused injury that was propagated inwards from the lung periphery; in the absence of preexisting injury, propagation did not occur where strain was <2.0. Conclusions Compared with healthy lungs, underlying injury causes propagation to occur at a lower strain threshold and, it originates at the site of injury; this suggests that tissue around the primary lesion is more sensitive. Understanding how injury is propagated may ultimately facilitate a more individualized monitoring or management. PMID:26536308

  1. Ambient Air Pollution and the Risk of Acute Ischemic Stroke

    PubMed Central

    Wellenius, Gregory A.; Burger, Mary R.; Coull, Brent A.; Schwartz, Joel; Suh, Helen H.; Koutrakis, Petros; Schlaug, Gottfried; Gold, Diane R.; Mittleman, Murray A.

    2013-01-01

    Background The link between daily changes in ambient fine particulate matter air pollution (PM2.5) and cardiovascular morbidity and mortality is well established. Whether PM2.5 at levels below current US National Ambient Air Quality Standards also increases the risk of ischemic stroke remains uncertain. Methods We reviewed the medical records of 1705 Boston-area patients hospitalized with neurologist-confirmed ischemic stroke and abstracted data on the time of symptom onset and clinical characteristics. PM2.5 concentrations were measured at a central monitoring station. We used the time-stratified case-crossover study design to assess the association between the risk of ischemic stroke onset and PM2.5 levels in the hours and days preceding each event. We examined whether the association with PM2.5 differed by ischemic stroke etiology and patient characteristics. Results The estimated odds ratio of ischemic stroke onset was 1.34 (95% confidence interval (CI): 1.13, 1.58; p<0.001) following a 24-hour period classified as “moderate” (PM2.5 15–40 μg/m3) by the US Environmental Protection Agency’s (EPA) Air Quality Index compared to a 24-hour period classified as “good” (≤15 μg/m3). Considering PM2.5 as a continuous variable, the estimated odds ratio of ischemic stroke onset was 1.11 (95% CI: 1.03, 1.20; p=0.006) per interquartile range increase in PM2.5 (6.4 μg/m3). The increase in risk was greatest within 12–14 hours of exposure to PM2.5 and was most strongly associated with markers of traffic-related pollution. Conclusion These results suggest that exposure to PM2.5 levels considered generally safe by the US EPA increase the risk of ischemic stroke onset within hours of exposure. PMID:22332153

  2. MicroRNA-378 Alleviates Cerebral Ischemic Injury by Negatively Regulating Apoptosis Executioner Caspase-3

    PubMed Central

    Zhang, Nan; Zhong, Jie; Han, Song; Li, Yun; Yin, Yanling; Li, Junfa

    2016-01-01

    miRNAs have been linked to many human diseases, including ischemic stroke, and are being pursued as clinical diagnostics and therapeutic targets. Among the aberrantly expressed miRNAs in our previous report using large-scale microarray screening, the downregulation of miR-378 in the peri-infarct region of middle cerebral artery occluded (MCAO) mice can be reversed by hypoxic preconditioning (HPC). In this study, the role of miR-378 in the ischemic injury was further explored. We found that miR-378 levels significantly decreased in N2A cells following oxygen-glucose deprivation (OGD) treatment. Overexpression of miR-378 significantly enhanced cell viability, decreased TUNEL-positive cells and the immunoreactivity of cleaved-caspase-3. Conversely, downregulation of miR-378 aggravated OGD-induced apoptosis and ischemic injury. By using bioinformatic algorithms, we discovered that miR-378 may directly bind to the predicted 3′-untranslated region (UTR) of Caspase-3 gene. The protein level of caspase-3 increased significantly upon OGD treatment, and can be downregulated by pri-miR-378 transfection. The luciferase reporter assay confirmed the binding of miR-378 to the 3′-UTR of Caspase-3 mRNA and repressed its translation. In addition, miR-378 agomir decreased cleaved-caspase-3 ratio, reduced infarct volume and neural cell death induced by MCAO. Furthermore, caspase-3 knockdown could reverse anti-miR-378 mediated neuronal injury. Taken together, our data demonstrated that miR-378 attenuated ischemic injury by negatively regulating the apoptosis executioner, caspase-3, providing a potential therapeutic target for ischemic stroke. PMID:27598143

  3. Forced Arterial Suction Thrombectomy Using Distal Access Catheter in Acute Ischemic Stroke

    PubMed Central

    Lee, Ho-Cheol; Kang, Dong-Hun; Hwang, Yang-Ha; Kim, Yong-Sun

    2017-01-01

    Historical innovations in mechanical thrombectomy devices and strategies for ischemic stroke have resulted in improved angiographic outcomes and better clinical outcomes. Various devices have been used, but the two most common approaches are aspiration thrombectomy and stent-retrieval thrombectomy. Aspiration thrombectomy has advanced from the traditional Penumbra system to forced arterial suction thrombectomy and a direct aspiration first-pass technique. Newer generation aspiration catheters with flexible distal tips and a larger bore have demonstrated faster and better recanalization relative to older devices. Recently, several species of distal access catheters have similar structural characteristics to the Penumbra reperfusion catheter. Therefore, we used the distal access catheter for forced arterial suction thrombectomy in three patients with acute ischemic stroke. In each case, we achieved fast and complete recanalization without significant complications. Forced arterial suction thrombectomy using a distal access catheter might provide another option for mechanical thrombectomy in patients with acute ischemic stroke. PMID:28316869

  4. Cortical neurogenesis in adult rats after ischemic brain injury: most new neurons fail to mature.

    PubMed

    Li, Qing-Quan; Qiao, Guan-Qun; Ma, Jun; Fan, Hong-Wei; Li, Ying-Bin

    2015-02-01

    The present study examines the hypothesis that endogenous neural progenitor cells isolated from the neocortex of ischemic brain can differentiate into neurons or glial cells and contribute to neural regeneration. We performed middle cerebral artery occlusion to establish a model of cerebral ischemia/reperfusion injury in adult rats. Immunohistochemical staining of the cortex 1, 3, 7, 14 or 28 days after injury revealed that neural progenitor cells double-positive for nestin and sox-2 appeared in the injured cortex 1 and 3 days post-injury, and were also positive for glial fibrillary acidic protein. New neurons were labeled using bromodeoxyuridine and different stages of maturity were identified using doublecortin, microtubule-associated protein 2 and neuronal nuclei antigen immunohistochemistry. Immature new neurons coexpressing doublecortin and bromodeoxyuridine were observed in the cortex at 3 and 7 days post-injury, and semi-mature and mature new neurons double-positive for microtubule-associated protein 2 and bromodeoxyuridine were found at 14 days post-injury. A few mature new neurons coexpressing neuronal nuclei antigen and bromodeoxyuridine were observed in the injured cortex 28 days post-injury. Glial fibrillary acidic protein/bromodeoxyuridine double-positive astrocytes were also found in the injured cortex. Our findings suggest that neural progenitor cells are present in the damaged cortex of adult rats with cerebral ischemic brain injury, and that they differentiate into astrocytes and immature neurons, but most neurons fail to reach the mature stage.

  5. Oxidized cellulose as the cause of an acute ischemic event after coronary revascularization.

    PubMed

    Alvarez, Jose Rubio; Quiroga, Juan Sierra; Cereijo, Jose Martinez; Lopez, Laura Reija

    2010-10-01

    Absorbable topical hemostatic agents are commonly used in cardiac surgery. In this study, we report an unusual case of an acute ischemic event after coronary revascularization produced by interaction between oxidized cellulose and epsilon aminocaproic acid (EACA). An in vitro study was also performed to test the interaction between oxidized cellulose and EACA.

  6. Hyperhomocysteinemia, Folateo and B12 Vitamin in Iranian Patients with Acute Ischemic Stroke

    PubMed Central

    Omrani, Hoseinali Qeilichnia; Qabai, Mojdeh; Chaman, Reza; Fard, Hamed Amiri; Qaffarpoor, Majid

    2011-01-01

    BACKGROUND The objective of this study was to evaluate the association of some factors such as serum levels of homocysteine, folate and B12 vitamin with stroke in acute ischemic stroke patients. METHODS In this case control study, serum levels of homocysteine, folate and B12 vitamin in 93 patients with acute ischemic stroke admitted to Imam Khomeini Hospital between September 2008 and January 2010, and 93 healthy controls were measured. Cerebrovascular risk factors including age, sex, hypertension, hyperlipidemia, smoking, diabetes mellitus, alcohol consumption, coronary artery disease and obesity were recorded. The results were compared between the case and control groups. RESULTS The mean ± standard deviation (SD) of fasting total homocysteine (tHcy) level in acute ischemic stroke patients was 20.58 ± 19.6 µmol/l, which was significantly higher than that of control group being 14.11 ± 9.5 µmol/l (P = 0.002). 39 (41.9%) stroke cases and 25 (26.8%) controls had hyperhomocysteinemia. There were no significant relationships between tHcy, folate and B12 vitamin levels with the above mentioned cerebrovascular risk factors except for smoking (p> 0.05). No significant difference in B12 vitamin and folate levels between patients and healthy controls were detected (P> 0.05). CONCLUSION Hyperhomocysteinemia is common in Iranian patients with acute ischemic stroke and might play a role as an independent risk factor in stroke. PMID:22577454

  7. Acute ischemic stroke in a child with cyanotic congenital heart disease due to non-compliance of anticoagulation

    PubMed Central

    Mohammad, Misbahuddin; James, Anish F.; Qureshi, Raheel S.; Saraf, Sapan; Ahluwalia, Tina; Mukherji, Joy Dev; Kole, Tamorish

    2012-01-01

    BACKGROUND: Stroke is a common presentation in geriatric patients in emergency department but rarely seen in pediatric patients. In case of acute ischemic stroke in pediatric age group, management is different from that of adult ischemic stroke where thrombolysis is a good op. METHODS: We report a case of a 17-year-old male child presenting in emergency with an episode of acute ischemic stroke causing left hemiparesis with left facial weakness and asymmetry. The patient suffered from cyanotic congenital heart disease for which he had undergone Fontan operation previously. He had a history of missing his daily dose of warfarin for last 3 days prior to the stroke. RESULTS: The patient recovered from acute ischemic stroke without being thrombolyzed. CONCLUSION: In pediatric patients, acute ischemic stroke usually is evolving and may not require thrombolysis. PMID:25215056

  8. Sodium hypochlorite-induced acute kidney injury.

    PubMed

    Peck, Brandon W; Workeneh, Biruh; Kadikoy, Huseyin; Abdellatif, Abdul

    2014-03-01

    Sodium hypochlorite (bleach) is commonly used as an irrigant during dental procedures as well as a topical antiseptic agent. Although it is generally safe when applied topically, reports of accidental injection of sodium hypochlorite into tissue have been reported. Local necrosis, pain and nerve damage have been described as a result of exposure, but sodium hypo-chlorite has never been implicated as a cause of an acute kidney injury (AKI). In this report, we describe the first case of accidental sodium hypochlorite injection into the infraorbital tissue during a dental procedure that precipitated the AKI. We speculate that oxidative species induced by sodium hypochlorite caused AKI secondary to the renal tubular injury, causing mild acute tubular necrosis.

  9. GSK-3β inhibitors suppressed neuroinflammation in rat cortex by activating autophagy in ischemic brain injury.

    PubMed

    Zhou, Xiaogang; Zhou, Jian; Li, Xilei; Guo, Chang'an; Fang, Taolin; Chen, Zhengrong

    2011-07-29

    Previous studies have shown that GSK-3β inhibitor could reduce infarct volume after ischemia brain injury. However, the underlying mechanisms of GSK-3β inhibitor involving neuroprotection remain poorly understood. In the present study, we demonstrated that GSK-3β inhibitor suppressed insult-induced neuroinflammation in rat cortex by increasing autophagy activation in ischemic injury. Male rats were subjected to pMCAO (permanent middle cerebral artery occlusion) followed by treating with SB216763, a GSK-3β inhibitor. We found that insult-induced inflammatory response was significantly decreased by intraperitoneal infusion of SB216763 in rat cortex. A higher level of autophagy was also detected after SB216763 treatment. In the cultured primary microglia, SB216763 activated autophagy and suppressed inflammatory response. Importantly, inhibition of autophagy by Beclin1-siRNA increased inflammatory response in the SB216763-treated microglia. These data suggest that GSK-3β inhibitor suppressed neuroinflammation by activating autophagy after ischemic brain injury, thus offering a new target for prevention of ischemic brain injury.

  10. Amelioration of myocardial ischemic reperfusion injury with Calendula officinalis.

    PubMed

    Ray, Diptarka; Mukherjee, Subhendu; Falchi, Mario; Bertelli, Aldo; Das, Dipak K

    2010-12-01

    Calendula officinalis of family Asteraceae, also known as marigold, has been widely used from time immemorial in Indian and Arabic cultures as an anti-inflammatory agent to treat minor skin wound and infections, burns, bee stings, sunburn and cancer. At a relatively high dose, calendula can lower blood pressure and cholesterol. Since inflammatory responses are behind many cardiac diseases, we sought to evaluate if calendula could be cardioprotective against ischemic heart disease Two groups of hearts were used: the treated rat hearts were perfused with calendula solution at 50 mM in KHB buffer (in mM: sodium chloride 118, potassium chloride 4.7, calcium chloride 1.7, sodium bicarbonate 25, potassium biphosphate 0.36, magnesium sulfate 1.2, and glucose 10) for 15 min prior to subjecting the heart to ischemia, while the control group was perfused with the buffer only. Calendula achieved cardioprotection by stimulating left ventricular developed pressure and aortic flow as well as by reducing myocardial infarct size and cardiomyocyte apoptosis. Cardioprotection appears to be achieved by changing ischemia reperfusion-mediated death signal into a survival signal by modulating antioxidant and anti-inflammatory pathways as evidenced by the activation of Akt and Bcl2 and depression of TNFα. The results further strengthen the concept of using natural products in degeneration diseases like ischemic heart disease.

  11. Dengue-associated acute kidney injury

    PubMed Central

    Oliveira, João Fernando Picollo; Burdmann, Emmanuel A.

    2015-01-01

    Dengue is presently the most relevant viral infection transmitted by a mosquito bite that represents a major threat to public health worldwide. Acute kidney injury (AKI) is a serious and potentially lethal complication of this disease, and the actual incidence is unknown. In this review, we will assess the most relevant epidemiological and clinical data regarding dengue and the available evidence on the frequency, etiopathogenesis, outcomes and treatment of dengue-associated AKI. PMID:26613023

  12. Neuroprotection in acute ischemic stroke – current status

    PubMed Central

    Auriel, E; Bornstein, NM

    2010-01-01

    Abstract With the growing understanding of the mechanism of cell death in ischemia, new approaches for treatment such as neuroprotection have emerged. The basic aim of this strategy is to interfere with the events of the ischemic cascade, blocking the pathological processes and preventing the death of nerve cells in the ischemic penumebra. This concept involves inhibition of the pathological molecular events which eventually leads to the influx of calcium, activation of free radicals and neuronal death. Despite encouraging data from experimental animal models, all clinical trials of neuroprotective therapies have to date been unsuccessful. This article reviews some of the reasons for the failure of neuroprotection in the clinical trials so far. Despite all the negative reports, we believe it would be wrong to give up at this point, since there is still reasonable hope of finding an effective neuroprotection for stroke. PMID:20716132

  13. Case Report of False-Negative Diffusion-Weighted Image of Brain Magnetic Resonance Imaging (MRI) in Acute Ischemic Stroke

    PubMed Central

    Chang, Wei-Lun; Lai, Ji-Ching; Chen, Rong-Fu; Hu, Han-Hwa; Pan, Chau-Shiung

    2017-01-01

    Patient: Male, 75 Final Diagnosis: Acute ischemic stroke Symptoms: Dizziness • unsteady gait Medication: — Clinical Procedure: None Specialty: Radiology Objective: Challenging differential diagnosis Background: Acute ischemic stroke is a major cause of mortality and morbidity in Taiwan. Diffusion-weighted image (DWI) is a sensitive and common strategy used for imaging acute ischemic stroke. Case report: We present a case of a negative DWI MRI for detecting acute ischemic stroke in a clinical setting. A 75-year-old male had a DWI performed after onset of symptoms suggesting acute ischemic stroke. The initial DWI result was negative at 72 hours of presentation. The neurological symptoms of the patient persisted and DWI was repeated. After 14 days, the DWI data confirmed and demonstrated an acute ischemic stroke. The delay in DWI confirmation, from symptom onset until DWI diagnosis, was 336 hours. Conclusions: DWI may not have 100% sensitivity and accuracy in early stages of acute ischemic stroke. The time course to the development of abnormalities detected by DWI may be longer than anticipated. PMID:28111452

  14. 2-Methoxystypandrone ameliorates brain function through preserving BBB integrity and promoting neurogenesis in mice with acute ischemic stroke.

    PubMed

    Chern, Chang-Ming; Wang, Yea-Hwey; Liou, Kuo-Tong; Hou, Yu-Chang; Chen, Chien-Chih; Shen, Yuh-Chiang

    2014-02-01

    2-Methoxystypandrone (2-MS), a naphthoquinone, has been shown to display an immunomodulatory effect in a cellular model. To explore whether 2-MS could protect mice against cerebral ischemic/reperfusion (I/R)-induced brain injury, we evaluated 2-MS's protective effects on an acute ischemic stroke by inducing a middle cerebral artery occlusion/reperfusion (MCAO) injury in murine model. Treatment of mice that have undergone I/R injury with 2-MS (10-100 μg/kg, i.v.) at 2 h after MCAO enhanced survival rate and ameliorated neurological deficits, brain infarction, neural dysfunction and massive oxidative stress, due to an enormous production of free radicals and breakdown of blood-brain barrier (BBB) by I/R injury; this primarily occurred with extensive infiltration of CD11b-positive inflammatory cells and upexpression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 and p65 nuclear factor-kappa B (NF-κB). All of these pathological changes were diminished by 2-MS; 2-MS also intensively limited cortical infarction and promoted upexpression of neurodevelopmental genes near peri-infarct cortex and endogenous neurogenesis near subgranular zone of hippocampal dentate gyrus and the subventricular zone, most possibly by inactivation of GSK3β which in turn upregulating β-catenin, Bcl-2 adam11 and adamts20. We conclude that 2-MS blocks inflammatory responses by impairing NF-κB signaling to limit the inflammation and oxidative stress for preservation of BBB integrity; 2-MS also concomitantly promotes neurodevelopmental protein expression and endogenous neurogenesis through inactivation of GSK3β to enhance β-catenin signaling for upexpression of neuroprotective genes and proteins.

  15. Chronic hyperglycemia is related to poor functional outcome after acute ischemic stroke.

    PubMed

    Luitse, Merel Ja; Velthuis, Birgitta K; Kappelle, L Jaap; van der Graaf, Yolanda; Biessels, Geert Jan

    2017-02-01

    Background Acute hyperglycemia is associated with poor functional outcome after ischemic stroke, but the association between chronic antecedent hyperglycemia and outcome is unclear. Aim We assessed the association between chronic hyperglycemia, measured by hemoglobin A1c, and functional outcome in patients with acute ischemic stroke. Methods We included 812 patients with acute ischemic stroke (mean age 66 ± 14 years; 61.5% male). Patients were categorized per hemoglobin A1c level: no (<39 mmol/mol), moderate (39-42 mmol/mol), or severe chronic hyperglycemia (>42 mmol/mol). Poor functional outcome was defined as modified Rankin Scale score > 2 after 3 months. The relation between chronic hyperglycemia and functional outcome was assessed with a Poisson regression analysis and expressed as risk ratios with 95% confidence intervals with no chronic hyperglycemia as the reference. Results Moderate chronic hyperglycemia was present in 234 (28.8%) patients and severe chronic hyperglycemia in 183 (22.5%) patients. Acute hyperglycemia on admission was present in 338 (41.6%) patients. Severe chronic hyperglycemia was associated with poor outcome (risk ratios 1.40; 95% confidence interval 1.09-1.79). After adjustment for age, sex, stroke severity, vascular risk factors, and acute hyperglycemia on admission the risk ratios was 1.35 (95% confidence interval 1.04-1.76). Moderate chronic hyperglycemia was not associated with poor outcome (risk ratios 1.12; 95% confidence interval 0.87-1.44). Conclusion Severe chronic hyperglycemia is associated with poor functional outcome in patients with acute ischemic stroke. This association is independent of hyperglycemia in the acute stage of stroke and of an unfavorable vascular risk factor profile.

  16. Activation of cannabinoid CB2 receptor-mediated AMPK/CREB pathway reduces cerebral ischemic injury.

    PubMed

    Choi, In-Young; Ju, Chung; Anthony Jalin, Angela M A; Lee, Da In; Prather, Paul L; Kim, Won-Ki

    2013-03-01

    The type 2 cannabinoid receptor (CB2R) was recently shown to mediate neuroprotection in ischemic injury. However, the role of CB2Rs in the central nervous system, especially neuronal and glial CB2Rs in the cortex, remains unclear. We, therefore, investigated anti-ischemic mechanisms of cortical CB2R activation in various ischemic models. In rat cortical neurons/glia mixed cultures, a CB2R agonist, trans-caryophyllene (TC), decreased neuronal injury and mitochondrial depolarization caused by oxygen-glucose deprivation/re-oxygenation (OGD/R); these effects were reversed by the selective CB2R antagonist, AM630, but not by a type 1 cannabinoid receptor antagonist, AM251. Although it lacked free radical scavenging and antioxidant enzyme induction activities, TC reduced OGD/R-evoked mitochondrial dysfunction and intracellular oxidative stress. Western blot analysis demonstrated that TC enhanced phosphorylation of AMP-activated protein kinase (AMPK) and cAMP responsive element-binding protein (CREB), and increased expression of the CREB target gene product, brain-derived neurotrophic factor. However, TC failed to alter the activity of either Akt or extracellular signal-regulated kinase, two major CB2R signaling pathways. Selective AMPK and CREB inhibitors abolished the neuroprotective effects of TC. In rats, post-ischemic treatment with TC decreased cerebral infarct size and edema, and increased phosphorylated CREB and brain-derived neurotrophic factor expression in neurons. All protective effects of TC were reversed by co-administration with AM630. Collectively, these data demonstrate that cortical CB2R activation by TC ameliorates ischemic injury, potentially through modulation of AMPK/CREB signaling, and suggest that cortical CB2Rs might serve as a putative therapeutic target for cerebral ischemia.

  17. [Acute kidney injury and septic shock: experiences in treatment].

    PubMed

    Pozzato, Marco; Ferrari, Fiorenza; Livigni, Sergio; Quarello, Francesco

    2012-01-01

    Acute kidney injury (AKI) occurs in 5-45% of critically ill patients, and renal replacement therapy (RRT) is required in 4-10% of patients with AKI. AKI has long been considered to be hemodynamic damage from low blood flow resulting in shock, and efforts have been made to prevent and cure it by increasing the renal blood flow and improving the cardiac output and perfusion pressure. In recent years, new experimental studies on patients with septic AKI have shown that the renal blood flow remains unaltered or even increases in septic shock. An important mechanism in the pathophysiology of sepsis and septic shock appears to be apoptosis rather than ischemic necrosis. The type of treatment as well as the dose and timing of initiation of RRT seem to have strategic importance in the recovery of AKI in patients admitted to the ICU. In critically ill (often postsurgical and septic) patients with acute renal failure the use of new anticoagulation strategies has permitted to perform treatments for a sufficient number of hours to achieve the correct level of purification by minimizing the downtime and the bleeding risk. In our center the use of protocols for different methods and different types of anticoagulants has simplified the treatment of all patients with AKI and septic shock admitted to the ICU.

  18. Sex-dependent effects of sleep deprivation on myocardial sensitivity to ischemic injury.

    PubMed

    Zoladz, Phillip R; Krivenko, Anna; Eisenmann, Eric D; Bui, Albert D; Seeley, Sarah L; Fry, Megan E; Johnson, Brandon L; Rorabaugh, Boyd R

    2016-01-01

    Sleep deprivation is associated with increased risk of myocardial infarction. However, it is unknown whether the effects of sleep deprivation are limited to increasing the likelihood of experiencing a myocardial infarction or if sleep deprivation also increases the extent of myocardial injury. In this study, rats were deprived of paradoxical sleep for 96 h using the platform-over-water method. Control rats were subjected to the same condition except the control platform was large enough for the rats to sleep. Hearts from sleep deprived and control rats were subjected to 20 min ischemia on a Langendorff isolated heart system. Infarct size and post ischemic recovery of contractile function were unaffected by sleep deprivation in male hearts. In contrast, hearts from sleep-deprived females exhibited significantly larger infarcts than hearts from control females. Post ischemic recovery of rate pressure product and + dP/dT were significantly attenuated by sleep deprivation in female hearts, and post ischemic recovery of end diastolic pressure was significantly elevated in hearts from sleep deprived females compared to control females, indicating that post ischemic recovery of both systolic and diastolic function were worsened by sleep deprivation. These data provide evidence that sleep deprivation increases the extent of ischemia-induced injury in a sex-dependent manner.

  19. Treatment with Isorhamnetin Protects the Brain Against Ischemic Injury in Mice.

    PubMed

    Zhao, Jin-Jing; Song, Jin-Qing; Pan, Shu-Yi; Wang, Kai

    2016-08-01

    Ischemic stroke is a major cause of morbidity and mortality, yet lacks effective neuroprotective treatments. The aim of this work was to investigate whether treatment with isorhamnetin protected the brain against ischemic injury in mice. Experimental stroke mice underwent the filament model of middle cerebral artery occlusion with reperfusion. Treatment with isorhamnetin or vehicle was initiated immediately at the onset of reperfusion. It was found that treatment of experimental stroke mice with isorhamnetin reduced infarct volume and caspase-3 activity (a biomarker of apoptosis), and improved neurological function recovery. Treatment of experimental stroke mice with isorhamnetin attenuated cerebral edema, improved blood-brain barrier function, and upregulated gene expression of tight junction proteins including occludin, ZO-1, and claudin-5. Treatment of experimental stroke mice with isorhamnetin activated Nrf2/HO-1, suppressed iNOS/NO, and led to reduced formation of MDA and 3-NT in ipsilateral cortex. In addition, treatment of experimental stroke mice with isorhamnetin suppressed activity of MPO (a biomarker of neutrophil infiltration) and reduced protein levels of IL-1β, IL-6, and TNF-α in ipsilateral cortex. Furthermore, it was found that treatment of experimental stroke mice with isorhamnetin reduced mRNA and protein expression of NMDA receptor subunit NR1 in ipsilateral cortex. In conclusion, treatment with isorhamnetin protected the brain against ischemic injury in mice. Isorhamnetin could thus be envisaged as a countermeasure for ischemic stroke but remains to be tested in humans.

  20. Interleukin-1 and acute brain injury

    PubMed Central

    Murray, Katie N.; Parry-Jones, Adrian R.; Allan, Stuart M.

    2015-01-01

    Inflammation is the key host-defense response to infection and injury, yet also a major contributor to a diverse range of diseases, both peripheral and central in origin. Brain injury as a result of stroke or trauma is a leading cause of death and disability worldwide, yet there are no effective treatments, resulting in enormous social and economic costs. Increasing evidence, both preclinical and clinical, highlights inflammation as an important factor in stroke, both in determining outcome and as a contributor to risk. A number of inflammatory mediators have been proposed as key targets for intervention to reduce the burden of stroke, several reaching clinical trial, but as yet yielding no success. Many factors could explain these failures, including the lack of robust preclinical evidence and poorly designed clinical trials, in addition to the complex nature of the clinical condition. Lack of consideration in preclinical studies of associated co-morbidities prevalent in the clinical stroke population is now seen as an important omission in previous work. These co-morbidities (atherosclerosis, hypertension, diabetes, infection) have a strong inflammatory component, supporting the need for greater understanding of how inflammation contributes to acute brain injury. Interleukin (IL)-1 is the prototypical pro-inflammatory cytokine, first identified many years ago as the endogenous pyrogen. Research over the last 20 years or so reveals that IL-1 is an important mediator of neuronal injury and blocking the actions of IL-1 is beneficial in a number of experimental models of brain damage. Mechanisms underlying the actions of IL-1 in brain injury remain unclear, though increasing evidence indicates the cerebrovasculature as a key target. Recent literature supporting this and other aspects of how IL-1 and systemic inflammation in general contribute to acute brain injury are discussed in this review. PMID:25705177

  1. Endogenous level of TIGAR in brain is associated with vulnerability of neurons to ischemic injury.

    PubMed

    Cao, Lijuan; Chen, Jieyu; Li, Mei; Qin, Yuan-Yuan; Sun, Meiling; Sheng, Rui; Han, Feng; Wang, Guanghui; Qin, Zheng-Hong

    2015-10-01

    In previous studies, we showed that TP53-induced glycolysis and apoptosis regulator (TIGAR) protects neurons against ischemic brain injury. In the present study, we investigated the developmental changes of TIGAR level in mouse brain and the correlation of TIGAR expression with the vulnerability of neurons to ischemic injury. We found that the TIGAR level was high in the embryonic stage, dropped at birth, partially recovered in the early postnatal period, and then continued to decline to a lower level in early adult and aged mice. The TIGAR expression was higher after ischemia/reperfusion in mouse brain 8 and 12 weeks after birth. Four-week-old mice had smaller infarct volumes, lower neurological scores, and lower mortality rates after ischemia than 8- and 12-week-old mice. TIGAR expression also increased in response to oxygen glucose deprivation (OGD)/reoxygenation insult or H2O2 treatment in cultured primary neurons from different embryonic stages (E16 and E20). The neurons cultured from the early embryonic period had a greater resistance to OGD and oxidative insult. Higher TIGAR levels correlated with higher pentose phosphate pathway activity and less oxidative stress. Older mice and more mature neurons had more severe DNA and mitochondrial damage than younger mice and less mature neurons in response to ischemia/reperfusion or OGD/reoxygenation insult. Supplementation of cultured neurons with nicotinamide adenine dinuclectide phosphate (NADPH) significantly reduced ischemic injury. These results suggest that TIGAR expression changes during development and its expression level may be correlated with the vulnerability of neurons to ischemic injury.

  2. Increased Circulating Exosomal miRNA-223 Is Associated with Acute Ischemic Stroke

    PubMed Central

    Chen, Yajing; Song, Yaying; Huang, Jun; Qu, Meijie; Zhang, Yu; Geng, Jieli; Zhang, Zhijun; Liu, Jianrong; Yang, Guo-Yuan

    2017-01-01

    Recent studies have demonstrated that exosomal microRNAs (miRNAs) are novel biomarkers and therapeutic targets for various diseases including vascular disease. However, specific exosomal miRNAs expression in stroke patients has not been reported yet. Here, we explored whether circulating exosomal miRNAs can serve as potential biomarkers for the diagnosis of acute ischemic stroke and discussed the potential for clinical application. Blood samples were collected from acute ischemic stroke patients within the first 72 h (n = 50). Circulating exosomes were exacted by Exoquick exosome isolation kit and characterized by transmission electron microscopy. Western blot was performed to assess the expression of exosomal protein makers. Exosomal miRNA-223 (miR-223) was detected by RT-PCR assay. The relationship between the expression levels of miR-223 and National Institutes of Health Stroke Scale (NIHSS) scores, brain infarct volume, and neurological outcomes were analyzed. Circulating exosomes were isolated and the size of vesicles ranged between 30 and 100 nm. The identification of exosomes was further confirmed by the detection of specific exosomal protein markers CD9, CD63, and Tsg101. Exosomal miR-223 in acute ischemic stroke patients was significantly upregulated compared to control group (p < 0.001). Exosomal miR-223 level was positively correlated with NIHSS scores (r = 0.31, p = 0.03). Exosomal miR-223 expression in stroke patients with poor outcomes was higher than those with good outcomes (p < 0.05). Increased exosomal miR-223 was associated with acute ischemic stroke occurrence, stroke severity, and short-term outcomes. Future studies with large sample are needed to assess the clinical application of exosomal miR-223 as a novel biomarker for ischemic stroke diagnosis. PMID:28289400

  3. Enriched Endogenous Omega-3 Polyunsaturated Fatty Acids Protect Cortical Neurons from Experimental Ischemic Injury.

    PubMed

    Shi, Zhe; Ren, Huixia; Luo, Chuanming; Yao, Xiaoli; Li, Peng; He, Chengwei; Kang, Jing-X; Wan, Jian-Bo; Yuan, Ti-Fei; Su, Huanxing

    2016-11-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert therapeutic potential in a variety of neurological disorders, including ischemic stroke. However, the underlying mechanisms still lack investigation. Here, we report that cultured cortical neurons isolated from fat-1 mice with high endogenous n-3 PUFAs were tolerant to oxygen-glucose deprivation/reperfusion (OGD/R) injury. Fat-1 neurons exhibited significantly attenuated reactive oxygen species (ROS) activation induced by OGD/R injury, upregulated antiapoptotic proteins Bcl-2 and Bcl-xL, and reduced cleaved caspase-3. Exogenous administration of docosahexaenoic acid (DHA), a major component of the n-3 PUFA family, resulted in similar protective effects on cultured cortex neurons. We further verified the protective effects of n-3 PUFAs in vivo, using a mini ischemic model with a reproducible cortical infarct and manifest function deficits by occlusion of the distal branch of the middle cerebral artery with focused femtosecond laser pulses. The Fat-1 animals showed decreased ROS expression and higher level of glutathione in the injured brain, associated with improved functional recovery. We therefore provide evidence that n-3 PUFAs exert their protective effects against ischemic injury both in vitro and in vivo, partly through inhibiting ROS activation.

  4. Prenatal methamphetamine differentially alters myocardial sensitivity to ischemic injury in male and female adult hearts.

    PubMed

    Rorabaugh, Boyd R; Seeley, Sarah L; Bui, Albert D; Sprague, Lisanne; D'Souza, Manoranjan S

    2016-02-15

    Methamphetamine is one of the most common illicit drugs abused during pregnancy. The neurological effects of prenatal methamphetamine are well known. However, few studies have investigated the potential effects of prenatal methamphetamine on adult cardiovascular function. Previous work demonstrated that prenatal cocaine exposure increases sensitivity of the adult heart to ischemic injury. Methamphetamine and cocaine have different mechanisms of action, but both drugs exert their effects by increasing dopaminergic and adrenergic receptor stimulation. Thus the goal of this study was to determine whether prenatal methamphetamine also worsens ischemic injury in the adult heart. Pregnant rats were injected with methamphetamine (5 mg·kg(-1)·day(-1)) or saline throughout pregnancy. When pups reached 8 wk of age, their hearts were subjected to ischemia and reperfusion by means of a Langendorff isolated heart system. Prenatal methamphetamine had no significant effect on infarct size, preischemic contractile function, or postischemic recovery of contractile function in male hearts. However, methamphetamine-treated female hearts exhibited significantly larger infarcts and significantly elevated end-diastolic pressure during recovery from ischemia. Methamphetamine significantly reduced protein kinase Cε expression and Akt phosphorylation in female hearts but had no effect on these cardioprotective proteins in male hearts. These data indicate that prenatal methamphetamine differentially affects male and female sensitivity to myocardial ischemic injury and alters cardioprotective signaling proteins in the adult heart.

  5. Regulation of PINK1 by NR2B-containing NMDA receptors in ischemic neuronal injury.

    PubMed

    Shan, Yuexin; Liu, Baosong; Li, Lijun; Chang, Ning; Li, Lei; Wang, Hanbin; Wang, Dianshi; Feng, Hua; Cheung, Carol; Liao, Mingxia; Cui, Tianyuan; Sugita, Shuzo; Wan, Qi

    2009-12-01

    Dysfunction of PTEN-induced kinase-1 (PINK1) is implicated in neurodegeneration. We report here that oxygen-glucose deprivation (OGD), an in vitro insult mimicking ischemic neuron injury, resulted in a significant reduction of PINK1 protein expression in cultured cortical neurons. The decrease of PINK1 expression was blocked by the antagonists of NMDA receptors. We revealed that the overactivation of NR2B-containing NMDA receptors (NR2BRs) was responsible for the OGD-induced PINK1 reduction. The overactivated NR2BRs also inhibited the phosphorylation, but not the protein expression, of the cell survival-promoting kinase Akt after OGD insult, indicating that OGD-induced reduction of PINK1 protein is specific in the injury paradigm. We further showed that enhancing the protein expression of PINK1 antagonized OGD-induced reduction of Akt phosphorylation, suggesting that Akt may be a downstream target of PINK1 in ischemic neuron injury. Importantly, we provided evidence that both NR2BR antagonist and PINK1 over-expression protected against OGD-induced neuronal death. These results suggest that the overactivation of NR2BRs may contribute to ischemic neuron death through suppressing PINK1-dependent survival signaling. Thus, selectively antagonizing NR2BR signal pathway-induced neurotoxicity may be a potential neuroprotection strategy.

  6. Diannexin protects against renal ischemia reperfusion injury and targets phosphatidylserines in ischemic tissue.

    PubMed

    Wever, Kimberley E; Wagener, Frank A D T G; Frielink, Cathelijne; Boerman, Otto C; Scheffer, Gert J; Allison, Anthony; Masereeuw, Rosalinde; Rongen, Gerard A

    2011-01-01

    Renal ischemia/reperfusion injury (IRI) frequently complicates shock, renal transplantation and cardiac and aortic surgery, and has prognostic significance. The translocation of phosphatidylserines to cell surfaces is an important pro-inflammatory signal for cell-stress after IRI. We hypothesized that shielding of exposed phosphatidylserines by the annexin A5 (ANXA5) homodimer Diannexin protects against renal IRI. Protective effects of Diannexin on the kidney were studied in a mouse model of mild renal IRI. Diannexin treatment before renal IRI decreased proximal tubule damage and leukocyte influx, decreased transcription and expression of renal injury markers Neutrophil Gelatinase Associated Lipocalin and Kidney Injury Molecule-1 and improved renal function. A mouse model of ischemic hind limb exercise was used to assess Diannexin biodistribution and targeting. When comparing its biodistribution and elimination to ANXA5, Diannexin was found to have a distinct distribution pattern and longer blood half-life. Diannexin targeted specifically to the ischemic muscle and its affinity exceeded that of ANXA5. Targeting of both proteins was inhibited by pre-treatment with unlabeled ANXA5, suggesting that Diannexin targets specifically to ischemic tissues via phosphatidylserine-binding. This study emphasizes the importance of phosphatidylserine translocation in the pathophysiology of IRI. We show for the first time that Diannexin protects against renal IRI, making it a promising therapeutic tool to prevent IRI in a clinical setting. Our results indicate that Diannexin is a potential new imaging agent for the study of phosphatidylserine-exposing organs in vivo.

  7. Ameliorative effects of Gualou Guizhi decoction on inflammation in focal cerebral ischemic-reperfusion injury

    PubMed Central

    ZHANG, YUQIN; ZHANG, SHENGNAN; LI, HUANG; HUANG, MEI; XU, WEI; CHU, KEDAN; CHEN, LIDIAN; CHEN, XIANWEN

    2015-01-01

    Gualou Guizhi decoction (GLGZD) is a well-established Traditional Chinese Medicinal formulation which has long been used to treat stroke in a clinical setting in China. The present study investigated the ameliorative effects of GLGZD on inflammation in focal cerebral ischemic-reperfusion injury. A rat model of middle cerebral artery occlusion (MCAO) was employed. Rats were administrated GLGZD (7.2 and 14.4 g/kg per day) or saline as control 2 h after reperfusion and daily over the following seven days. Neurological deficit score and screen test were evaluated at 1, 3, 5 and 7 days after MCAO. Brain infarct size and brain histological changes were observed via 2,3,5-triphenyltetrazolium chloride staining and regular hematoxylin & eosin staining. Furthermore, inflammation mediators and nuclear factor-κB (NF-κB) were investigated using ELISA and immunohistochemistry. GLGZD treatment significantly improved neurological function, ameliorated histological changes to the brain and decreased infarct size in focal cerebral ischemic-reperfusion injury. GLGZD was found to significantly reduce interleukin (IL)-1, tumor necrosis factor-α and NF-κB levels, while increasing levels of IL-10. In conclusion, the present study suggested that GLGZD has a neuroprotective effect on focal cerebral ischemic-reperfusion injury and this effect is likely to be associated with the anti-inflammatory function of GLGZD. PMID:25815894

  8. A fast multiparameter MRI approach for acute stroke assessment on a 3T clinical scanner: preliminary results in a non-human primate model with transient ischemic occlusion

    PubMed Central

    Tong, Frank; Li, Chun-Xia; Yan, Yumei; Nair, Govind; Nagaoka, Tsukasa; Tanaka, Yoji; Zola, Stuart; Howell, Leonard

    2014-01-01

    Many MRI parameters have been explored and demonstrated the capability or potential to evaluate acute stroke injury, providing anatomical, microstructural, functional, or neurochemical information for diagnostic purposes and therapeutic development. However, the application of multiparameter MRI approach is hindered in clinic due to the very limited time window after stroke insult. Parallel imaging technique can accelerate MRI data acquisition dramatically and has been incorporated in modern clinical scanners and increasingly applied for various diagnostic purposes. In the present study, a fast multiparameter MRI approach including structural T1-weighted imaging (T1W), T2-weighted imaging (T2W), diffusion tensor imaging (DTI), T2-mapping, proton magnetic resonance spectroscopy, cerebral blood flow (CBF), and magnetization transfer (MT) imaging, was implemented and optimized for assessing acute stroke injury on a 3T clinical scanner. A macaque model of transient ischemic stroke induced by a minimal interventional approach was utilized for evaluating the multiparameter MRI approach. The preliminary results indicate the surgical procedure successfully induced ischemic occlusion in the cortex and/or subcortex in adult macaque monkeys (n=4). Application of parallel imaging technique substantially reduced the scanning duration of most MRI data acquisitions, allowing for fast and repeated evaluation of acute stroke injury. Hence, the use of the multiparameter MRI approach with up to five quantitative measures can provide significant advantages in preclinical or clinical studies of stroke disease. PMID:24834423

  9. Epidemiology of Overuse and Acute Injuries Among Competitive Collegiate Athletes

    PubMed Central

    Yang, Jingzhen; Tibbetts, Abigail S.; Covassin, Tracey; Cheng, Gang; Nayar, Saloni; Heiden, Erin

    2012-01-01

    Context: Although overuse injuries are gaining attention, epidemiologic studies on overuse injuries in male and female collegiate athletes are lacking. (70.7%) acute injuries were reported. The overall injury rate was Objective: To report the epidemiology of overuse injuries sustained by collegiate athletes and to compare the rates of overuse and acute injuries. Design: Descriptive epidemiology study. Setting: A National Collegiate Athletic Association Division I university. Patients or Other Participants: A total of 1317 reported injuries sustained by 573 male and female athletes in 16 collegiate sports teams during the 2005–2008 seasons. Main Outcome Measure(s): The injury and athlete-exposure (AE) data were obtained from the Sports Injury Monitoring System. An injury was coded as either overuse or acute based on the nature of injury. Injury rate was calculated as the total number of overuse (or acute) injuries during the study period divided by the total number of AEs during the same period. Results: A total of 386 (29.3%) overuse injuries and 931 63.1 per 10000 AEs. The rate ratio (RR) of acute versus overuse injuries was 2.34 (95% confidence interval [CI] = 2.05, 2.67). Football had the highest RR (RR = 8.35, 95% CI = 5.38, 12.97), and women's rowing had the lowest (RR = 0.75, 95% CI = 0.51, 1.10). Men had a higher acute injury rate than women (49.8 versus 38.6 per 10000 AEs). Female athletes had a higher rate of overuse injury than male athletes (24.6 versus 13.2 per 10000 AEs). More than half of the overuse injuries (50.8%) resulted in no time loss from sport. Conclusions: Additional studies are needed to examine why female athletes are at greater risk for overuse injuries and identify the best practices for prevention and rehabilitation of overuse injuries. PMID:22488286

  10. Endoplasmic reticulum stress-regulated CXCR3 pathway mediates inflammation and neuronal injury in acute glaucoma.

    PubMed

    Ha, Y; Liu, H; Xu, Z; Yokota, H; Narayanan, S P; Lemtalsi, T; Smith, S B; Caldwell, R W; Caldwell, R B; Zhang, W

    2015-10-08

    Acute glaucoma is a leading cause of irreversible blindness in East Asia. The mechanisms underlying retinal neuronal injury induced by a sudden rise in intraocular pressure (IOP) remain obscure. Here we demonstrate that the activation of CXCL10/CXCR3 axis, which mediates the recruitment and activation of inflammatory cells, has a critical role in a mouse model of acute glaucoma. The mRNA and protein expression levels of CXCL10 and CXCR3 were significantly increased after IOP-induced retinal ischemia. Blockade of the CXCR3 pathway by deleting CXCR3 gene significantly attenuated ischemic injury-induced upregulation of inflammatory molecules (interleukin-1β and E-selectin), inhibited the recruitment of microglia/monocyte to the superficial retina, reduced peroxynitrite formation, and prevented the loss of neurons within the ganglion cell layer. In contrast, intravitreal delivery of CXCL10 increased leukocyte recruitment and retinal cell apoptosis. Inhibition of endoplasmic reticulum (ER) stress with chemical chaperones partially blocked ischemic injury-induced CXCL10 upregulation, whereas induction of ER stress with tunicamycin enhanced CXCL10 expression in retina and primary retinal ganglion cells. Interestingly, deleting CXCR3 attenuated ER stress-induced retinal cell death. In conclusion, these results indicate that ER stress-medicated activation of CXCL10/CXCR3 pathway has an important role in retinal inflammation and neuronal injury after high IOP-induced ischemia.

  11. Ameliorative Effect of Recombinant Human Erythropoietin and Ischemic Preconditioning on Renal Ischemia Reperfusion Injury in Rats

    PubMed Central

    Elshiekh, Mohammed; Kadkhodaee, Mehri; Seifi, Behjat; Ranjbaran, Mina; Ahghari, Parisa

    2015-01-01

    Background: Ischemia-reperfusion (IR) injury is one of the most common causes of renal dysfunction. There is increasing evidence about the role of the reactive oxygen species (ROS) in these injuries and endogenous antioxidants seem to have an important role in decreasing the renal tissue injury. Objectives: The aim of this study was to compare the effect of recombinant human erythropoietin (EPO) and ischemic preconditioning (IPC) on renal IR injury. Materials and Methods: Twenty four male Wistar rats were allocated into four experimental groups: sham-operated, IR, EPO + IR, and IPC + IR. Rats were underwent 50 minutes bilateral ischemia followed by 24 hours reperfusion. Erythropoietin (5000 IU/kg, i.p) was administered 30 minutes before onset of ischemia. Ischemic preconditioning was performed by three cycles of 3 minutes ischemia followed by 3 minutes reperfusion. Plasma concentrations of urea and creatinine were measured. Kidney samples were taken for reactive oxidative species (ROS) measurement including superoxide dismutase (SOD) activity, glutathione (GSH) contents, and malondialdehyde (MDA) levels. Results: Compared to the sham group, IR led to renal dysfunction as evidenced by significantly higher plasma urea and creatinine. Treatment with EPO or IPC decreased urea, creatinine, and renal MDA levels and increased SOD activity and GSH contents in the kidney. Conclusions: Pretreatment with EPO and application of IPC significantly ameliorated the renal injury induced by bilateral renal IR. However, both treatments attenuated renal dysfunction and oxidative stress in kidney tissues. There were no significant differences between pretreatment with EPO or application of IPC. PMID:26866008

  12. Downregulation of miRNA-134 protects neural cells against ischemic injury in N2A cells and mouse brain with ischemic stroke by targeting HSPA12B.

    PubMed

    Chi, W; Meng, F; Li, Y; Wang, Q; Wang, G; Han, S; Wang, P; Li, J

    2014-09-26

    MicroRNAs (miRNAs) have emerged as a major regulator in neurological diseases, and understanding their molecular mechanism in modulating cerebral ischemic injury may provide potential therapeutic targets for ischemic stroke. However, as one of 19 differentially expressed miRNAs in mouse brain with middle cerebral artery occlusion (MCAO), the role of miR-134 in ischemic injury is not well understood. In this study, the miR-134 expression level was manipulated both in oxygen-glucose deprivation (OGD)-treated N2A neuroblastoma cells in vitro and mouse brain with MCAO-induced ischemic stroke in vivo, and its possible targets of heat shock protein A5 (HSPA5) and HSPA12B were determined by bioinformatics analysis and dual luciferase assay. The results showed that overexpression of miR-134 exacerbated cell death and apoptosis both in vitro and in vivo. Conversely, downregulating miR-134 levels reduced cell death and apoptosis. Furthermore, non-expression of miR-134 enhanced HSPA12B protein levels in OGD-treated N2A cells as well as in the ischemic region. It could attenuate brain infarction size and neural cell damage, and improve neurological outcomes in mice with ischemic stroke, whereas upregulation of miR-134 had the opposite effect. In addition, HSPA12B was validated to be a target of miR-134 and its short interfering RNAs (siRNAs) could block miR-134 inhibitor-induced neuroprotection in OGD-treated N2A cells. In conclusion, downregulation of miR-134 could induce neuroprotection against ischemic injury in vitro and in vivo by negatively upregulating HSPA12B protein expression.

  13. Bayés syndrome and acute cardioembolic ischemic stroke

    PubMed Central

    Arboix, Adrià; Martí, Lucía; Dorison, Sebastien; Sánchez, María José

    2017-01-01

    Bayés syndrome is an under-recognized clinical condition characterized by advanced interatrial block. Bayés syndrome is a subclinical disease that manifests electrocardiographically as a prolonged P wave duration > 120 ms with biphasic morphology ± in the inferior leads. The clinical relevance of Bayés syndrome lies in the fact that is a clear arrhythmological syndrome and has a strong association with supraventricular arrhythmias, particularly atypical atrial flutter and atrial fibrillation. Likewise, Bayés syndrome has been recently identified as a novel risk factor for non-lacunar cardioembolic ischemic stroke and vascular dementia. Advanced interatrial block can be a risk for embolic stroke due to its known sequelae of left atrial dilation, left atrial electromechanical dysfunction or atrial tachyarrhythmia (paroxysmal or persistent atrial fibrillation), conditions predisposing to thromboembolism. Bayés syndrome may be responsible for some of the unexplained ischemic strokes and shall be considered and investigated as a possible cause for cryptogenetic stroke. In summary, Bayés syndrome is a poorly recognized cardiac rhythm disorder with important cardiologic and neurologic implications. PMID:28352633

  14. Infection after Acute Ischemic Stroke: Risk Factors, Biomarkers, and Outcome

    PubMed Central

    Wartenberg, Katja E.; Stoll, Anett; Funk, Andreas; Meyer, Andreas; Schmidt, J. Michael; Berrouschot, Joerg

    2011-01-01

    Background. The activation of inflammatory cascades triggered by ischemic stroke may play a key role in the development of infections. Methods. Patients admitted with ischemic stroke within 24 hours were prospectively enrolled. Biomarkers of infection were measured on days 1, 3, and 5. The patients were continuously monitored for predefined infections. Results. Patients with infection were older (OR 1.06 per year, 95% CI 1.01–1.11) and had a higher National Institute of Health Stroke Scale Score (NIHSS, OR 1.21, 95% CI 1.10–1.34), localization in the insula, and higher stroke volumes on diffusion-weighted imaging. The maximum temperature on days 1 and 3, leukocytes, interleukin-6, lipopolysaccharide-binding protein on days 1, 3, and 5, C-reactive protein on days 3 and 5, and procalcitonin on day 5 were higher and HLA-DR-expression on monocytes on days 1, 3, and 5 lower in patients with infection. Age and NIHSS predicted the development of infections. Infection was an independent predictor of poor functional outcome. Conclusions. Severe stroke and increasing age were shown to be early predictors for infections after stroke. PMID:21789273

  15. Management of acute traumatic spinal cord injuries.

    PubMed

    Shank, C D; Walters, B C; Hadley, M N

    2017-01-01

    Acute traumatic spinal cord injury (SCI) is a devastating disease process affecting tens of thousands of people across the USA each year. Despite the increase in primary prevention measures, such as educational programs, motor vehicle speed limits, automobile running lights, and safety technology that includes automobile passive restraint systems and airbags, SCIs continue to carry substantial permanent morbidity and mortality. Medical measures implemented following the initial injury are designed to limit secondary insult to the spinal cord and to stabilize the spinal column in an attempt to decrease devastating sequelae. This chapter is an overview of the contemporary management of an acute traumatic SCI patient from the time of injury through the stay in the intensive care unit. We discuss initial triage, immobilization, and transportation of the patient by emergency medical services personnel to a definitive treatment facility. Upon arrival at the emergency department, we review initial trauma protocols and the evidence-based recommendations for radiographic evaluation of the patient's vertebral column. Finally, we outline closed cervical spine reduction and various aggressive medical therapies aimed at improving neurologic outcome.

  16. Acute Kidney Injury in Patients with Cirrhosis

    PubMed Central

    Russ, Kirk B.; Stevens, Todd M; Singal, Ashwani K.

    2015-01-01

    Acute kidney injury (AKI) occurs commonly in patients with advanced cirrhosis and negatively impacts pre- and post-transplant outcomes. Physiologic changes that occur in patients with decompensated cirrhosis with ascites, place these patients at high risk of AKI. The most common causes of AKI in cirrhosis include prerenal injury, acute tubular necrosis (ATN), and the hepatorenal syndrome (HRS), accounting for more than 80% of AKI in this population. Distinguishing between these causes is particularly important for prognostication and treatment. Treatment of Type 1 HRS with vasoconstrictors and albumin improves short term survival and renal function in some patients while awaiting liver transplantation. Patients with HRS who fail to respond to medical therapy or those with severe renal failure of other etiology may require renal replacement therapy. Simultaneous liver kidney transplant (SLK) is needed in many of these patients to improve their post-transplant outcomes. However, the criteria to select patients who would benefit from SLK transplantation are based on consensus and lack strong evidence to support them. In this regard, novel serum and/or urinary biomarkers such as neutrophil gelatinase-associated lipocalin, interleukins-6 and 18, kidney injury molecule-1, fatty acid binding protein, and endothelin-1 are emerging with a potential for accurately differentiating common causes of AKI. Prospective studies are needed on the use of these biomarkers to predict accurately renal function recovery after liver transplantation alone in order to optimize personalized use of SLK. PMID:26623266

  17. PHLPP1 gene deletion protects the brain from ischemic injury

    PubMed Central

    Chen, Bo; Van Winkle, Jessica A; Lyden, Patrick D; Brown, Joan H; Purcell, Nicole H

    2013-01-01

    A recently discovered protein phosphatase PHLPP (PH domain Leucine-rich repeat Protein Phosphatase) has been shown to dephosphorylate Akt on its hydrophobic motif (Ser473) thereby decreasing Akt kinase activity. We generated PHLPP1 knockout (KO) mice and used them to explore the ability of enhanced in vivo Akt signaling to protect the brain against ischemic insult. Brains from KO mice subjected to middle cerebral artery occlusion (MCAO) for 2 hours showed significantly greater increases in Akt activity and less neurovascular damage after reperfusion than wild-type (WT) mice. Remarkably, infarct volume in the PHLPP1 KO was significantly reduced compared with WT (12.7±2.7% versus 22.9±3.1%) and this was prevented by Akt inhibition. Astrocytes from KO mice and neurons in which PHLPP1 was downregulated showed enhanced Akt activation and diminished cell death in response to oxygen-glucose deprivation. Thus, deletion of PHLPP1 can enhance Akt activation in neurons and astrocytes, and can significantly increase cell survival and diminish infarct size after MCAO. Inhibition of PHLPP could be a therapeutic approach to minimize damage after focal ischemia. PMID:23072745

  18. Platelet aggregation but not activation and degranulation during the acute post-ischemic reperfusion phase in livers with no underlying disease

    PubMed Central

    van Golen, Rowan F.; Stevens, Katarzyna M.; Colarusso, Pina; Jaeschke, Hartmut; Heger, Michal

    2016-01-01

    Background Platelets and P-selectin (CD62P) play an unequivocal role in the pathology of hepatic ischemia/reperfusion (I/R) injury. Inhibition or knock-out of P-selectin or immunodepletion of platelets results in amelioration of post-ischemic inflammation, reduced hepatocellular damage, and improved survival. However, P-selectin expression on platelets and endothelial cells, which concurs with platelet activation, has never been clearly demonstrated in I/R-subjected livers. Aims To determine whether platelets become activated and degranulate in the acute phase of liver I/R and whether the platelets interact with neutrophils. Methods Hepatic I/R was induced in male C57BL/6J mice (N = 12) using 37.5-min ischemia time. Platelets, endothelial cells, and neutrophils were fluorescently labeled by systemic administration of non-blocking antibodies. Cell kinetics were monitored by intravital spinning disk confocal microscopy during 90 min of reperfusion. Image analysis and quantification was performed with dedicated software. Results Platelets adhered to sinusoids more extensively in post-ischemic livers compared to livers not subjected to I/R and formed aggregates, which occurred directly after ischemia. Platelets and endothelial cells did not express P-selectin in post-ischemic livers. There was no interaction between platelets and neutrophils. Conclusions Platelets aggregate but do not become activated and do not degranulate in post-ischemic livers. There is no platelet-neutrophil interplay during the early reperfusion phase in a moderate model of hepatic I/R injury. The mechanisms underlying the biological effects of platelets and P-selectin in this setting warrant further investigation. Relevance for patients I/R in surgical liver patients may compromise outcome due to post-ischemic oxidative stress and sterile inflammation. Both processes are mediated in part by platelets. Understanding platelet function during I/R is key to developing effective interventions for I

  19. Acute BMP2 upregulation following induction of ischemic osteonecrosis in immature femoral head.

    PubMed

    Kamiya, Nobuhiro; Shafer, Sasha; Oxendine, Ila; Mortlock, Douglas P; Chandler, Ronald L; Oxburgh, Leif; Kim, Harry K W

    2013-03-01

    Juvenile ischemic osteonecrosis of the femoral head (IOFH) is one of the most serious hip conditions causing the femoral head deformity. Little is known about BMP signaling following ischemic osteonecrosis. In this study, we found acute BMP2 upregulation in the femoral head cartilage 24h after ischemic induction using our immature pig IOFH model. Similarly, in our ischemic osteonecrosis mouse model, BMP2 expression and BMP signaling were enhanced in the articular cartilage surrounding the necrotic bone. BMP2 was increased in cartilage explants and primary chondrocytes under hypoxia (1% O(2)) compared with normoxia (21% O(2)). Addition of the hypoxia inducible factor 1 (HIF1) activator DFO significantly increased BMP2 while HIF1 silencing (siHIF1) only partially reduced BMP2, suggesting other mechanisms of BMP2 upregulation being present. Hypoxia is known to induce the production of free oxygen radicals, which are converted to hydrogen peroxide (H(2)O(2)) by superoxide dismutase 2 (SOD2). As an alternative mechanism, we investigated the effect of H(2)O(2)/SOD2 production on BMP2 upregulation. Chondrocytes produced more H(2)O(2) under hypoxia than normoxia. H(2)O(2) addition to the chondrocyte culture also significantly increased BMP2 expression. SOD2 was also dramatically increased in the ischemic pig cartilage at 24h following surgery and in primary chondrocytes/cartilage explants culture under hypoxia. SOD2 protein addition to the chondrocyte culture significantly increased BMP2. Moreover, DFO significantly increased SOD2 while HIF1 silencing only partially reduced SOD2. These results suggest that the acute BMP2 response of chondrocytes to ischemic osteonecrosis is more dominantly through the H(2)O(2) production and only partly through the HIF1 pathway.

  20. Rhabdomyolysis and acute kidney injury after acupuncture sessions.

    PubMed

    Papasotiriou, Marios; Betsi, Grigoria; Tsironi, Maria; Assimakopoulos, Georgios

    2014-05-01

    Rhabdomyolysis is usually caused by muscle injury, drugs or alcohol and presents with muscle weakness and pain. It is characterized by rise in serum creatine kinase, aminotransferases and electrolytes as well as myoglobinuria. Myoglobinuria may cause acute kidney injury by direct proximal tubule cytotoxicity, renal vasoconstriction, intraluminal cast formation and distal tubule obstruction. Muscle pain and weakness as well as vascular injury have been reported after acupuncture. We report a case of severe rhabdomyolysis and acute kidney injury after acupuncture sessions.

  1. Multi-Center Prediction of Hemorrhagic Transformation in Acute Ischemic Stroke using Permeability Imaging Features

    PubMed Central

    Scalzo, Fabien; Alger, Jeffry R.; Hu, Xiao; Saver, Jeffrey L.; Dani, Krishna A.; Muir, Keith W.; Demchuk, Andrew M.; Coutts, Shelagh B.; Luby, Marie; Warach, Steven; Liebeskind, David S.

    2013-01-01

    Permeability images derived from magnetic resonance (MR) perfusion images are sensitive to blood-brain barrier derangement of the brain tissue and have been shown to correlate with subsequent development of hemorrhagic transformation (HT) in acute ischemic stroke. This paper presents a multi-center retrospective study that evaluates the predictive power in terms of HT of six permeability MRI measures including contrast slope (CS), final contrast (FC), maximum peak bolus concentration (MPB), peak bolus area (PB), relative recirculation (rR), and percentage recovery (%R). Dynamic T2*-weighted perfusion MR images were collected from 263 acute ischemic stroke patients from four medical centers. An essential aspect of this study is to exploit a classifier-based framework to automatically identify predictive patterns in the overall intensity distribution of the permeability maps. The model is based on normalized intensity histograms that are used as input features to the predictive model. Linear and nonlinear predictive models are evaluated using a crossvalidation to measure generalization power on new patients and a comparative analysis is provided for the different types of parameters. Results demonstrate that perfusion imaging in acute ischemic stroke can predict HT with an average accuracy of more than 85% using a predictive model based on a nonlinear regression model. Results also indicate that the permeability feature based on the percentage of recovery performs significantly better than the other features. This novel model may be used to refine treatment decisions in acute stroke. PMID:23587928

  2. Plasma C-Reactive Protein and Clinical Outcomes after Acute Ischemic Stroke: A Prospective Observational Study

    PubMed Central

    Matsuo, Ryu; Ago, Tetsuro; Hata, Jun; Wakisaka, Yoshinobu; Kuroda, Junya; Kuwashiro, Takahiro; Kitazono, Takanari; Kamouchi, Masahiro

    2016-01-01

    Background and Purpose Although plasma C-reactive protein (CRP) is elevated in response to inflammation caused by brain infarction, the association of CRP with clinical outcomes after acute ischemic stroke remains uncertain. This study examined whether plasma high-sensitivity CRP (hsCRP) levels at onset were associated with clinical outcomes after acute ischemic stroke independent of conventional risk factors and acute infections after stroke. Methods We prospectively included 3653 patients with first-ever ischemic stroke who had been functionally independent and were hospitalized within 24 h of onset. Plasma hsCRP levels were measured on admission and categorized into quartiles. The association between hsCRP levels and clinical outcomes, including neurological improvement, neurological deterioration, and poor functional outcome (modified Rankin scale ≥3 at 3 months), were investigated using a logistic regression analysis. Results Higher hsCRP levels were significantly associated with unfavorable outcomes after adjusting for age, sex, baseline National Institutes of Health Stroke Scale score, stroke subtype, conventional risk factors, intravenous thrombolysis and endovascular therapy, and acute infections during hospitalization (multivariate-adjusted odds ratios [95% confidence interval] in the highest quartile versus the lowest quartile as a reference: 0.80 [0.65–0.97] for neurological improvement, 1.72 [1.26–2.34] for neurological deterioration, and 2.03 [1.55–2.67] for a poor functional outcome). These associations were unchanged after excluding patients with infectious diseases occurring during hospitalization, or those with stroke recurrence or death. These trends were similar irrespective of stroke subtypes or baseline stroke severity, but more marked in patients aged <70 years (Pheterogeneity = 0.001). Conclusions High plasma hsCRP is independently associated with unfavorable clinical outcomes after acute ischemic stroke. PMID:27258004

  3. Clinical pathophysiology of hypoxic ischemic brain injury after cardiac arrest: a "two-hit" model.

    PubMed

    Sekhon, Mypinder S; Ainslie, Philip N; Griesdale, Donald E

    2017-04-13

    Hypoxic ischemic brain injury (HIBI) after cardiac arrest (CA) is a leading cause of mortality and long-term neurologic disability in survivors. The pathophysiology of HIBI encompasses a heterogeneous cascade that culminates in secondary brain injury and neuronal cell death. This begins with primary injury to the brain caused by the immediate cessation of cerebral blood flow following CA. Thereafter, the secondary injury of HIBI takes place in the hours and days following the initial CA and reperfusion. Among factors that may be implicated in this secondary injury include reperfusion injury, microcirculatory dysfunction, impaired cerebral autoregulation, hypoxemia, hyperoxia, hyperthermia, fluctuations in arterial carbon dioxide, and concomitant anemia.Clarifying the underlying pathophysiology of HIBI is imperative and has been the focus of considerable research to identify therapeutic targets. Most notably, targeted temperature management has been studied rigorously in preventing secondary injury after HIBI and is associated with improved outcome compared with hyperthermia. Recent advances point to important roles of anemia, carbon dioxide perturbations, hypoxemia, hyperoxia, and cerebral edema as contributing to secondary injury after HIBI and adverse outcomes. Furthermore, breakthroughs in the individualization of perfusion targets for patients with HIBI using cerebral autoregulation monitoring represent an attractive area of future work with therapeutic implications.We provide an in-depth review of the pathophysiology of HIBI to critically evaluate current approaches for the early treatment of HIBI secondary to CA. Potential therapeutic targets and future research directions are summarized.

  4. Neurohormonal activation in ischemic stroke: effects of acute phase disturbances on long-term mortality.

    PubMed

    Anne, Mäkikallio; Juha, Korpelainen; Timo, Mäkikallio; Mikko, Tulppo; Olli, Vuolteenaho; Kyösti, Sotaniemi; Heikki, Huikuri; Vilho, Myllylä

    2007-08-01

    A stress response consisting of elevated levels of cortisol and catecholamines is common after acute stroke. The plasma levels of natriuretic peptides are known to be elevated after ischemic stroke, but the relations of these neurohormonal systems in the acute phase of stroke and their impact on long-term prognosis have not been studied previously. A series of 51 consecutive patients (mean age 68+/-11 years) with an ischemic first-ever stroke underwent a comprehensive clinical investigation, scoring of their neurologic deficit by Scandinavian Stroke Scale (SSS), Barthel Index (BI) and Modified Ranking Scale (MRS) as well as measurements of plasma cortisol, norepinephrine, epinephrine, ACTH and atrial (N-ANP) and brain (N-BNP) natriuretic peptides on the 2nd and 7th days after ischemic stroke. The patients were followed up for 44+/-21 months. Higher levels of cortisol, ACTH and natriuretic peptides were observed in the stroke patients who died (n=22) during the follow-up than in the stroke survivors. Cortisol levels associated significantly with the 2nd and 7th day N-ANP and N-BNP levels, catecholamine levels (r= 0.55 - 0.94, p<0.01 for all) and measures of neurologic deficit (r= 0.36 - -0.44, p<0.05). High acute phase cortisol levels assessed either in the morning (RR=5.4, p<0.05) or in the evening (RR=5.8, p<0.05) predicted long-term mortality after stroke in multivariate analysis. Activation of the hypothalamus-pituitary-adrenal axis in ischemic stroke is associated with elevated levels of natriuretic peptides. High cortisol and natriuretic peptide values predict long-term mortality after ischemic stroke, suggesting that this profound neurohumoral disturbance is prognostically unfavourable.

  5. Worse Neurological State During Acute Ischemic Stroke is Associated with a Decrease in Serum Albumin Levels.

    PubMed

    Bielewicz, Joanna; Kurzepa, Jacek; Czekajska-Chehab, Elżbieta; Kamieniak, Piotr; Daniluk, Beata; Bartosik-Psujek, Halina; Rejdak, Konrad

    2016-04-01

    High serum albumin levels during ischemic stroke (IS) decrease the risk of a poor outcome. This study aimed to determine whether serum albumin levels within the first days after IS correlate with radiological and biochemical markers of brain tissue damage. Fifty-six IS patients were enrolled into the study. Neurological examinations were based on the National Institute of Health Stroke Scale. Serum albumin levels and S100BB were evaluated using commercially available ELISA kits. The albumin decrease index (ADI) was calculated as the difference between serum albumin levels measured on days 1 and 10 of IS. All parameters were estimated on the 1st, 3rd, 5th, and 10th days of IS, and the volume of ischemic focus was measured on the 10th day. Mean serum albumin levels were decreased during acute IS. There were correlations between the ADI and mean S100BB serum levels (r = 0.36, p < 0.05), the volume of ischemic focus (r = 0.39, p < 0.05), and the patients' neurological state when measured on day 10 of IS (r = 0.59, p < 0.001). A decrease in serum albumin levels during the acute phase of IS corresponds to a worse neurological state as a result of a large ischemic focus with intense catabolic processes.

  6. The Effect of Diagnostic Catheter Angiography on Outcomes of Acute Ischemic Stroke Patients Being Considered for Endovascular Treatment

    PubMed Central

    Qureshi, Adnan I.; Saleem, Muhammad A.; Aytaç, Emrah; Malik, Ahmed A.

    2017-01-01

    Background The risk of catheter-based angiograms alone (non-therapeutic angiogram that does not lead to therapeutic intervention) in acute ischemic stroke patients who are considered for endovascular treatment is not well studied. Methods We compared the rates of neurological deterioration within 24 h; symptomatic intracranial hemorrhage (ICH) within 30 h; acute kidney injury (AKI) and major non-ICH within five days; and functional independence (defined by modified Rankin scale of 0–2) at three months among subjects who underwent a non-therapeutic catheter-based angiogram with subjects who did not undergo catheter-based angiogram in a multicenter clinical trial. Logistic regression analyses was performed to adjust for age, baseline Alberta stroke program early CT score (ASPECTS) strata (0–7 and 8–10), and baseline National Institutes of Health Stroke Scale (NIHSS) score strata (≤9, 10–19, and ≥20). Results Compared with subjects who did not undergo any catheter-based angiogram (n = 222), 89 subjects who underwent a non-therapeutic catheter-based angiogram had similar adjusted rates of neurological deterioration [odds ratio (OR) = 1; 95% confidence interval (CI) 0.4–2.3; p = 1] and symptomatic ICH (OR = 0.4; 95% CI 0.1–1.8; p = 0.2). There was no difference in the adjusted rates of AKI, or non-ICH between the two groups. The rate of functional independence at three months was significantly higher among the patients who received a catheter-based angiogram (OR = 2; 95% CI 1.1–3.5; p = 0.016) after adjusting for potential confounders. Conclusion Non-therapeutic catheter-based angiograms in acute ischemic stroke patients who are being considered for endovascular treatment do not adversely affect patient outcomes. PMID:28243351

  7. Acute kidney injury in the cancer patient.

    PubMed

    Campbell, G Adam; Hu, Daniel; Okusa, Mark D

    2014-01-01

    Acute kidney injury (AKI) is a frequent and significant complication of cancer and cancer therapy. Cancer patients frequently encounter risk factors for AKI including older age, CKD, prerenal conditions, sepsis, exposure to nephrotoxins, and obstructive physiology. AKI can also be secondary to paraneoplastic conditions, including glomerulonephritis and microangiopathic processes. This complication can have significant consequences, including effects on patients' ability to continue to receive therapy for their malignancy. This review will serve to summarize potential etiologies of AKI that present in patients with cancer as well as to highlight specific patient populations, such as the critically ill cancer patient.

  8. Synthetic cannabinoids and acute kidney injury

    PubMed Central

    Jamal, Faisal; Prabhakar, Sharma

    2015-01-01

    Synthetic cannabinoids (SCB) are a family of chemicals that bind to cannabinoid receptors and cause psychoactive effects. Over the past few years, they have been increasingly used for recreational purposes, especially by young adults, and have been reported to have many adverse effects. Acute kidney injury (AKI) has been recently reported; the pathophysiology of SCB-induced AKI is unknown. We report three cases of AKI in the setting of SCB use. The peak serum creatinine levels ranged from 3.0 to 5.7 mg/dL; one patient required hemodialysis. SCB can induce AKI. PMID:26424946

  9. Acute kidney injury in the elderly.

    PubMed

    Rosner, Mitchell H

    2013-08-01

    Most patients who develop acute kidney injury (AKI) are older than 65 years. Specific structural and functional changes that occur in the aging kidney predispose the elderly patient to AKI. This risk is further compounded by comorbid conditions, polypharmacy, and the need for invasive procedures. When AKI does occur, it is associated with significant morbidity and mortality. Although morbidity and mortality increases with advancing age, many elderly patients can survive AKI and do well. Thus, decision making should be thoughtful and individualized, and not dependent on age. Whenever possible, preventive approaches should be pursued to lessen the burden of AKI.

  10. Acute Kidney Injury: Diagnostic Approaches and Controversies

    PubMed Central

    Makris, Konstantinos; Spanou, Loukia

    2016-01-01

    Acute kidney injury (AKI) is a significant independent risk factor for morbidity and mortality. In the last ten years a large number of publications have highlighted the limitations of traditional approaches and the inadequacies of conventional biomarkers to diagnose and monitor renal insufficiency in the acute setting. A great effort was directed not only to the discovery and validation of new biomarkers aimed to detect AKI more accurately but also to standardise the definition of AKI. Despite the advances in both areas, biomarkers have not yet entered into routine clinical practice and the definition of this syndrome has many areas of uncertainty. This review will discuss the controversies in diagnosis and the potential of novel biomarkers to improve the definition of the syndrome. PMID:28167845

  11. Acute kidney injury in the pregnant patient.

    PubMed

    Nwoko, Rosemary; Plecas, Darko; Garovic, Vesna D

    2012-12-01

    Acute kidney injury (AKI) is costly and is associated with increased mortality and morbidity. An understanding of the renal physiologic changes that occur during pregnancy is essential for proper evaluation, diagnosis, and management of AKI. As in the general population, AKI can occur from prerenal, intrinsic, and post-renal causes. Major causes of pre-renal azotemia include hyperemesis gravidarum and uterine hemorrhage in the setting of placental abruption. Intrinsic etiologies include infections from acute pyelonephritis and septic abortion, bilateral cortical necrosis, and acute tubular necrosis. Particular attention should be paid to specific conditions that lead to AKI during the second and third trimesters, such as preeclampsia, HELLP syndrome, acute fatty liver of pregnancy, and TTP-HUS. For each of these disorders, delivery of the fetus is the recommended therapeutic option, with additional therapies indicated for each specific disease entity. An understanding of the various etiologies of AKI in the pregnant patient is key to the appropriate clinical management, prevention of adverse maternal outcomes, and safe delivery of the fetus. In pregnant women with pre-existing kidney disease, the degree of renal dysfunction is the major determining factor of pregnancy outcomes, which may further be complicated by a prior history of hypertension.

  12. A Randomized Controlled Pilot Study of the Triple Stimulation Technique in the Assessment of Electroacupuncture for Motor Function Recovery in Patients with Acute Ischemic Stroke

    PubMed Central

    Tan, Feng; Wang, Xuewen; Li, Hui-qin; Lu, Lin; Li, Ming; Li, Ji-huang; Fang, Meifeng; Meng, Di

    2013-01-01

    The objective of this pilot study was to objectively assess electroacupuncture for motor function recovery in patients with acute ischemic stroke using the triple-stimulation technique (TST). The patients received either electroacupuncture plus western conventional medication (WCM) (n = 32) or single WCM (n = 31) for 14 days. The total clinical effective rate was statistically significantly superior in electroacupuncture group to that in WCM group (P < 0.01). Fugl-Meyer Assessment Scale (FMA) score, National Institutes of Health Stroke Scale (NIHSS) score, and TSTratio were statistically more significant in electroacupuncture group than those in WCM group (P < 0.01). There was positive correlation between TSTratio and NIHS score both before and after treatment (P < 0.01) and negative correlation between TSTratio and FAM score both before treatment and after treatment (P < 0.01). Comparing between the two groups or between pretreatment and posttreatment, adverse events, electrocardiogram, liver function, and kidney function showed no statistically significant difference (P > 0.05). In conclusion, electroacupuncture was beneficial for the motor function recovery of patients with acute ischemic stroke and was generally safe. TST can be used for quantitative evaluation of electroacupuncture for motor function recovery in patients with acute ischemic stroke because it can objectively analyze the injury and recovery of corticospinal tract impairments. PMID:23840255

  13. Binge Eating Leading to Acute Gastric Dilatation, Ischemic Necrosis and Rupture –A Case Report

    PubMed Central

    Khare, Manish Kumar; Mishra, Sumanta; Marhual, Jogesh Chandra

    2016-01-01

    Acute gastric dilatation is a rarely encountered clinical scenario in our day to day practice. This is very rapidly progressing condition and can lead to ischemic necrosis and perforation/rupture of the stomach. It could be fatal if not timely intervened. We report such a case of a 17-year-old, otherwise healthy boy, who presented with pain and distension of abdomen following binge eating episode after 24 hours of prolonged fasting. On exploration, stomach was dilated with necrosis and perforation at fundus near greater curvature. He was managed with excision of all the devitalized area and primary repair with feeding jejunostomy. The case is presented due to its rarity. Acute gastric dilatation (AGD) leading to ischemic necrosis and perforation because of binge eating episode in an otherwise healthy person is an exceptional occurrence with only few cases reported in literature. The clinician should be aware of this condition for prompt and appropriate management. PMID:27134932

  14. [Investigation of mechanisms of neuro-protective effect of semax in acute period of ischemic stroke].

    PubMed

    Miasoedova, N F; Skvortsova, V I; Nasonov, E L; Zhuravleva, E Iu; Grivennikov, I A; Arsen'eva, E L; Sukhanov, I I

    1999-01-01

    Semax is the first domestic nootropic drug of an unexhausted type from the group of neuropeptides. In experimental studies it showed angioprotective, antihypoxic and neurotrophic activity in the doses 100-150 micrograms/kg. A combined clinical-electrophysiologic study revealed its high efficiency in acute ischemic stroke. A clinical trial was performed of immunobiochemical mechanisms of neuroprotective properties of Semax in acute period of ischemic stroke. A retrospective comparative clinicoimmunobiochemical analysis provided objective data on the molecular level on activating influence of Semax on antiinflammatory postischemic reactions in the brain. Shifting neuromediatory balance toward a prevalence of the antiinflammatory agents (interleukin-10, tumor necrosis factor-alpha) over the factors maintaining the inflammation (interleukin-8, C-reactive protein).

  15. Absolute and Relative Contraindications to IV rt-PA for Acute Ischemic Stroke

    PubMed Central

    Rabinstein, Alejandro A.

    2015-01-01

    Most of the contraindications to the administration of intravenous (IV) recombinant tissue plasminogen activator (rtPA) originated as exclusion criteria in major stroke trials. These were derived from expert consensus for the National Institute of Neurological Disorders and Stroke (NINDS) trial. Despite the fact that the safety and efficacy of IV rtPA has been repeatedly confirmed in large international observational studies over the past 20 years, most patients with acute ischemic stroke disappointingly still do not receive thrombolytic treatment. Some of the original exclusion criteria have proven to be unnecessarily restrictive in real-world clinical practice. It has been suggested that application of relaxed exclusion criteria might increase the IV thrombolysis rate up to 20% with comparable outcomes to thrombolysis with more conventional criteria. We review the absolute and relative contraindications to IV rtPA for acute ischemic stroke, discussing the underlying rationale and evidence supporting these exclusion criteria. PMID:26288669

  16. Ischemic postconditioning provides protection against ischemia-reperfusion injury in intestines of rats.

    PubMed

    Chu, Weiwei; Li, Sheng; Wang, Shanwei; Yan, Aili; Nie, Lei

    2015-01-01

    In the present study, we investigated the protective role of ischemic postconditioning (IPOST) against intestine ischemia-reperfusion (I/R) injury in rats. Male Sprague-Dawley rats were divided into sham-operation group (S), I/R group (I/R), ischemic preconditioning group (IPC), ischemic postconditioning group (IPOST). After reperfusion, small intestines were resected for histopathologic evaluations. To evaluate DNA fragmentation, resolving agarose gel electrophoresis was performed. To measure cellular apoptotic rates in intestine tissues, we performed TUNEL staining. To examine lipid peroxidation, production of superoxide radicals and tissue neutrophil infiltration, we tested the content of malondialdehyde and activities of superoxidase dismutase and myeloperoxidase in intestine tissues, respectively. Under light microscope, intestinal mucosal impairment in IPOST and IPC groups was found milder than that in I/R group (P < 0.05). The number of apoptosis cells in I/R group was significantly higher than that in IPOST and IPC groups (P < 0.05). The content of malondialdehyde and activity of myeloperoxidase were significantly reduced in IPOST group and IPC group compared with I/R group, but the activity of superoxidase dismutase in IPOST group and IPC group was enhanced compared with I/R group (P < 0.05). These results suggest that IPOST results in protection against intestine I/R injury, which may be related to reduced production of reactive oxygen species, enhanced activities of antioxidant systems and inhibited apoptosis of intestinal mucosal cells.

  17. Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity

    PubMed Central

    Li, Minshu; Li, Zhiguo; Yao, Yang; Jin, Wei-Na; Wood, Kristofer; Liu, Qiang; Shi, Fu-Dong; Hao, Junwei

    2017-01-01

    Astrocytes are believed to bridge interactions between infiltrating lymphocytes and neurons during brain ischemia, but the mechanisms for this action are poorly understood. Here we found that interleukin-15 (IL-15) is dramatically up-regulated in astrocytes of postmortem brain tissues from patients with ischemic stroke and in a mouse model of transient focal brain ischemia. We generated a glial fibrillary acidic protein (GFAP) promoter-controlled IL-15–expressing transgenic mouse (GFAP–IL-15tg) line and found enlarged brain infarcts, exacerbated neurodeficits after the induction of brain ischemia. In addition, knockdown of IL-15 in astrocytes attenuated ischemic brain injury. Interestingly, the accumulation of CD8+ T and natural killer (NK) cells was augmented in these GFAP–IL-15tg mice after brain ischemia. Of note, depletion of CD8+ T or NK cells attenuated ischemic brain injury in GFAP–IL-15tg mice. Furthermore, knockdown of the IL-15 receptor α or blockade of cell-to-cell contact diminished the activation and effector function of CD8+ T and NK cells in GFAP–IL-15tg mice, suggesting that astrocytic IL-15 is delivered in trans to target cells. Collectively, these findings indicate that astrocytic IL-15 could aggravate postischemic brain damage via propagation of CD8+ T and NK cell-mediated immunity. PMID:27994144

  18. Ischemic postconditioning as a novel avenue to protect against brain injury after stroke

    PubMed Central

    Zhao, Heng

    2009-01-01

    Ischemic postconditioning initially referred to a stuttering reperfusion performed immediately after reperfusion, for preventing ischemia/reperfusion injury in both myocardial and cerebral infarction. It has evolved into a concept that can be induced by a broad range of stimuli or triggers, and may even be performed as late as 6 h after focal ischemia and 2 days after transient global ischemia. The concept is thought to be derived from ischemic preconditioning or partial/gradual reperfusion, but in fact the first experiment for postconditioning was carried out much earlier than that of preconditioning or partial/gradual reperfusion, in the research on myocardial ischemia. This review first examines the protective effects and parameters of postconditioning in various cerebral ischemic models. Thereafter, it provides insights into the protective mechanisms of postconditioning associated with reperfusion injury and the Akt, mitogen-activated protein kinase (MAPK), protein kinase C (PKC), and ATP-sensitive K+ (KATP) channel cell signaling pathways. Finally, some open issues and future challenges regarding clinical translation of postconditioning are discussed. PMID:19240739

  19. Anti-inflammation effects of picroside 2 in cerebral ischemic injury rats

    PubMed Central

    2010-01-01

    Background Excitatory amino acid toxicity, oxidative stress, intracellular calcium overload, as well as inflammation and apoptosis are involved in the pathological process after cerebral ischemic reperfusion injury. Picrodide 2 could inhibit neuronal apoptosis and play anti-oxidant and anti-inflammation role in cerebral ischemia/reperfusion injuries, but the exact mechanism is not very clear. This study aims to explore the anti-inflammation mechanism of picroside 2 in cerebral ischemic reperfusion injury in rats. Methods The middle cerebral artery occlusion reperfusion models were established with intraluminal thread methods in 90 adult healthy female Wistar rats. Picroside 2 and salvianic acid A sodium were respectively injected from tail vein at the dosage of 10 mg/kg for treatment. The neurobehavioral function was evaluated with Bederson's test and the cerebral infarction volume was observed with tetrazolium chloride (TTC) staining. The apoptotic cells were counted by in situ terminal deoxynucleotidyl transferase-mediated biotinylated deoxyuridine triphosphate nick end labeling (TUNEL) assay. The immunohistochemistry stain was used to determine the expressions of toll-like receptor 4 (TLR4), nuclear transcription factor κB (NFκB) and tumor necrosis factor α (TNFα). The concentrations of TLR4, NFκB and TNFα in brain tissue were determined by enzyme linked immunosorbent assay (ELISA). Results After cerebral ischemic reperfusion, the rats showed neurobehavioral function deficit and cerebral infarction in the ischemic hemisphere. The number of apoptotic cells, the expressions and the concentrations in brain tissue of TLR4, NFκB and TNFα in ischemia control group increased significantly than those in the sham operative group (P < 0.01). Compared with the ischemia control group, the neurobehavioral scores, the infarction volumes, the apoptotic cells, the expressions and concentrations in brain tissue of TLR4, NFκB and TNFα were obviously decreased both in

  20. Effect of IMOD™ on the inflammatory process after acute ischemic stroke: a randomized clinical trial

    PubMed Central

    2013-01-01

    Background and purpose of the study Considering the role of inflammation in acute cerebrovascular accidents, anti-inflammatory treatment has been considered as an option in cerebrovascular diseases. Regarding the properties of Setarud (IMOD™) in immune regulation, the aim of the present study was to evaluate the role of this medication in treating patients with acute ischemic stroke. Methods In this randomized clinical trial, 99 patients with their first ever acute ischemic stroke were divided into two groups of IMOD™ (n = 49) and control (n = 50). The control group underwent routine treatment and the intervention group underwent routine treatment plus daily intermittent infusion of IMOD™ (250mg on the first day and then 375mg into DW5% serum during a 30-minute period for 7 days). The serum levels of inflammatory markers were evaluated on the first day (baseline) and on 4th and 7th days. Data were analyzed and the results were compared. Results and major conclusion 58 males (58.6%) and 41 females (41.4%) with a mean age of 67.00 ± 8.82 years, who had their first ever stroke attack, were enrolled in this trial. Treatment with IMOD™ showed a decreasing trend in IL-6 levels compared to the control group (p = 0.04). In addition, the treatment resulted in the control of increasing serum levels of hsCRP after 7 days compared to the control group (p = 0.02). There was an insignificant decrease in TNF-α and IL-1 levels in the IMOD™ group. Considering the prominent role of inflammation after an ischemic cerebral damage, it appears that treatment with IMOD™ improves the inflammatory profile. Therefore, IMOD™ (Setarud) might be considered as a therapeutic option in the acute ischemic stroke. However, future studies are necessary on its long-term results and clinical efficacy. PMID:23514014

  1. Adenosine and protection from acute kidney injury

    PubMed Central

    Yap, Steven C.; Lee, H. Thomas

    2012-01-01

    Purpose of Review Acute Kidney Injury (AKI) is a major clinical problem without effective therapy. Development of AKI among hospitalized patients drastically increases mortality, and morbidity. With increases in complex surgical procedures together with a growing elderly population, the incidence of AKI is rising. Renal adenosine receptor (AR) manipulation may have great therapeutic potential in mitigating AKI. In this review, we discuss renal AR biology and potential clinical therapies for AKI. Recent Findings The 4 AR subtypes (A1AR, A2AAR, A2BAR and A3AR) have diverse effects on the kidney. The pathophysiology of AKI may dictate the specific AR subtype activation needed to produce renal protection. The A1AR activation in renal tubules and endothelial cells produces beneficial effects against ischemia and reperfusion (IR) injury by modulating metabolic demand, decreasing necrosis, apoptosis and inflammation. The A2AAR protects against AKI by modulating leukocyte-mediated renal and systemic inflammation whereas the A2BAR activation protects by direct activation of renal parenchymal ARs. In contrast, the A1AR antagonism may play a protective role in nephrotoxic AKI and radiocontrast induced nephropathy by reversing vascular constriction and inducing naturesis and diuresis. Furthermore, as the A3AR-activation exacerbates apoptosis and tissue damage due to renal IR, selective A3AR antagonism may hold promise to attenuate renal IR injury. Finally, renal A1AR activation also protects against renal endothelial dysfunction caused by hepatic IR injury. Summary Despite the current lack of therapies for the treatment and prevention of AKI, recent research suggests that modulation of renal ARs holds promise in treating AKI and extrarenal injury. PMID:22080856

  2. The yin and yang of autophagy in acute kidney injury.

    PubMed

    Melk, Anette; Baisantry, Arpita; Schmitt, Roland

    2016-01-01

    Antagonizing the strongly activated pathway of autophagy in renal ischemic injury has been associated with poor outcome. In our recent study we used mice with a selective deletion of Atg5 in the S3 proximal tubule segment, which is most susceptible to ischemic damage. In line with the notion that autophagy is a prosurvival mechanism our studies revealed an early accelerated cell death of heavily damaged tubular cells in the S3 segment of these mice. Interestingly, this expedited loss of cells was associated with better long-term outcome as reflected by less inflammation, improved tubular repair, and function and reduced accumulation of senescent cells. While these data confirm the role of tubular autophagy as a prosurvival mechanism in ischemic kidney injury, they also show that autophagy may enable severely damaged cells to persist and exert deleterious effects. Such ambivalent effects might be of relevance if modulating autophagy is considered as a therapeutic option.

  3. The yin and yang of autophagy in acute kidney injury

    PubMed Central

    Melk, Anette; Baisantry, Arpita; Schmitt, Roland

    2016-01-01

    ABSTRACT Antagonizing the strongly activated pathway of autophagy in renal ischemic injury has been associated with poor outcome. In our recent study we used mice with a selective deletion of Atg5 in the S3 proximal tubule segment, which is most susceptible to ischemic damage. In line with the notion that autophagy is a prosurvival mechanism our studies revealed an early accelerated cell death of heavily damaged tubular cells in the S3 segment of these mice. Interestingly, this expedited loss of cells was associated with better long-term outcome as reflected by less inflammation, improved tubular repair, and function and reduced accumulation of senescent cells. While these data confirm the role of tubular autophagy as a prosurvival mechanism in ischemic kidney injury, they also show that autophagy may enable severely damaged cells to persist and exert deleterious effects. Such ambivalent effects might be of relevance if modulating autophagy is considered as a therapeutic option. PMID:26761120

  4. Platelets Proteomic Profiles of Acute Ischemic Stroke Patients

    PubMed Central

    Baykal, Ahmet Tarik; Sener, Azize

    2016-01-01

    Platelets play a crucial role in the pathogenesis of stroke and antiplatelet agents exist for its treatment and prevention. Through the use of LC-MS based protein expression profiling, platelets from stroke patients were analyzed and then correlated with the proteomic analyses results in the context of this disease. This study was based on patients who post ischemic stroke were admitted to hospital and had venous blood drawn within 24 hrs of the incidence. Label-free protein expression analyses of the platelets’ tryptic digest was performed in triplicate on a UPLC-ESI-qTOF-MS/MS system and ProteinLynx Global Server (v2.5, Waters) was used for tandem mass data extraction. The peptide sequences were searched against the reviewed homo sapiens database (www.uniprot.org) and the quantitation of protein variation was achieved through Progenesis LC-MS software (V4.0, Nonlinear Dynamics). These Label-free differential proteomics analysis of platelets ensured that 500 proteins were identified and 83 of these proteins were found to be statistically significant. The differentially expressed proteins are involved in various processes such as inflammatory response, cellular movement, immune cell trafficking, cell-to-cell signaling and interaction, hematological system development and function and nucleic acid metabolism. The expressions of myeloperoxidase, arachidonate 12-Lipoxygenase and histidine-rich glycoprotein are involved in cellular metabolic processes, crk-like protein and ras homolog gene family member A involved in cell signaling with vitronectin, thrombospondin 1, Integrin alpha 2b, and integrin beta 3 involved in cell adhesion. Apolipoprotein H, immunoglobulin heavy constant gamma 1 and immunoglobulin heavy constant gamma 3 are involved in structural, apolipoprotein A-I, and alpha-1-microglobulin/bikunin precursor is involved in transport, complement component 3 and clusterin is involved in immunity proteins as has been discussed. Our data provides an insight

  5. A male Fabry disease patient treated with intravenous thrombolysis for acute ischemic stroke.

    PubMed

    Saarinen, Jukka T; Sillanpää, Niko; Kantola, Ilkka

    2015-02-01

    The use of intravenous thrombolytic therapy for acute ischemic stroke is associated with improved outcomes. Fabry disease is an X-linked glycosphingolipid storage disease with vascular endothelial deposits. Affected males with the classic phenotype develop renal, cardiac, and cerebrovascular disease and die prematurely. However, Fabry disease is rare in young men with first ischemic stroke of undetermined cause. We report a 38-year-old man with acute aphasia and a left M2 segment of the middle cerebral artery thrombus with no recanalization who was finally diagnosed with Fabry disease after left ventricular hypertrophy of undetermined cause had been identified. A gene test revealed a R227X mutation typical of Fabry disease with the classical phenotype. To our knowledge our patient is the first reported male Fabry patient who was given intravenous thrombolytic therapy and the first reported Fabry patient who received intravenous thrombolytic therapy between 3 and 4.5 hours of the symptom onset. Despite favorable prognostic indicators on admission imaging, our patient suffered a significant stroke and had an unfavorable clinical outcome. Fortunately, the episode was not complicated by intracranial hemorrhage. Further studies are needed to evaluate the efficacy and safety of intravenous thrombolytic therapy in treating patients with Fabry disease and acute ischemic stroke.

  6. Increased Blood Pressure Variability Is Associated with Worse Neurologic Outcome in Acute Anterior Circulation Ischemic Stroke

    PubMed Central

    Bennett, Alicia; Stoddard, Gregory J.; Smith, Gordon; Wang, Haimei; Wold, Jana; Chung, Lee; Tirschwell, David L.; Majersik, Jennifer J.

    2016-01-01

    Background. Although research suggests that blood pressure variability (BPV) is detrimental in the weeks to months after acute ischemic stroke, it has not been adequately studied in the acute setting. Methods. We reviewed acute ischemic stroke patients from 2007 to 2014 with anterior circulation stroke. Mean blood pressure and three BPV indices (standard deviation, coefficient of variation, and successive variation) for the intervals 0–24, 0–72, and 0–120 hours after admission were correlated with follow-up modified Rankin Scale (mRS) in ordinal logistic regression models. The correlation between BPV and mRS was further analyzed by terciles of clinically informative stratifications. Results. Two hundred and fifteen patients met inclusion criteria. At all time intervals, increased systolic BPV was associated with higher mRS, but the relationship was not significant for diastolic BPV or mean blood pressure. This association was strongest in patients with proximal stroke parent artery vessel occlusion and lower mean blood pressure. Conclusion. Increased early systolic BPV is associated with worse neurologic outcome after ischemic stroke. This association is strongest in patients with lower mean blood pressure and proximal vessel occlusion, often despite endovascular or thrombolytic therapy. This hypothesis-generating dataset suggests potential benefit for interventions aimed at reducing BPV in this patient population. PMID:27974991

  7. Dynamic functional cerebral blood volume responses to normobaric hyperoxia in acute ischemic stroke

    PubMed Central

    Wu, Ona; Lu, Jie; Mandeville, Joseph B; Murata, Yoshihiro; Egi, Yasu; Dai, Guangping; Marota, John J; Diwan, Izzuddin; Dijkhuizen, Rick M; Kwong, Kenneth K; Lo, Eng H; Singhal, Aneesh B

    2012-01-01

    Studies suggest that neuroprotective effects of normobaric oxygen (NBO) therapy in acute stroke are partly mediated by hemodynamic alterations. We investigated cerebral hemodynamic effects of repeated NBO exposures. Serial magnetic resonance imaging (MRI) was performed in Wistar rats subjected to focal ischemic stroke. Normobaric oxygen-induced functional cerebral blood volume (fCBV) responses were analyzed. All rats had diffusion-weighted MRI (DWI) lesions within larger perfusion deficits, with DWI lesion expansion after 3 hours. Functional cerebral blood volume responses to NBO were spatially and temporally heterogeneous. Contralateral healthy tissue responded consistently with vasoconstriction that increased with time. No significant responses were evident in the acute DWI lesion. In hypoperfused regions surrounding the acute DWI lesion, tissue that remained viable until the end of the experiment showed relative preservation of mean fCBV at early time points, with some rats showing increased fCBV (vasodilation); however, these regions later exhibited significantly decreased fCBV (vasoconstriction). Tissue that became DWI abnormal by study-end initially showed marginal fCBV changes that later became moderate fCBV reductions. Our results suggest that a reverse-steal hemodynamic effect may occur in peripheral ischemic zones during NBO treatment of focal stroke. In addition, CBV responses to NBO challenge may have potential as an imaging marker to distinguish ischemic core from salvageable tissues. PMID:22739619

  8. Remote Limb Ischemic Postconditioning Protects Against Neonatal Hypoxic–Ischemic Brain Injury in Rat Pups by the Opioid Receptor/Akt Pathway

    PubMed Central

    Zhou, Yilin; Fathali, Nancy; Lekic, Tim; Ostrowski, Robert P.; Chen, Chunhua; Martin, Robert D.; Tang, Jiping; Zhang, John H.

    2013-01-01

    Background and Purpose Remote ischemic postconditoning, a phenomenon in which brief ischemic stimuli of 1 organ protect another organ against an ischemic insult, has been demonstrated to protect the myocardium and adult brain in animal models. However, mediators of the protection and underlying mechanisms remain to be elucidated. In the present study, we tested the hypothesis that remote limb ischemic postconditioning applied immediately after hypoxia provides neuroprotection in a rat model of neonatal hypoxia–ischemia (HI) by mechanisms involving activation of the opioid receptor/phosphatidylinositol-3-kinase/Akt signaling pathway. Methods HI was induced in postnatal Day 10 rat pups by unilateral carotid ligation and 2 hours of hypoxia. Limb ischemic postconditioning was induced by 4 conditioning cycles of 10 minutes of ischemia and reperfusion on both hind limbs immediately after HI. The opioid antagonist naloxone, phosphatidylinositol-3-kinase inhibitor wortmannin, or opioid agonist morphine was administered to determine underlying mechanisms. Infarct volume, brain atrophy, and neurological outcomes after HI were evaluated. Expression of phosphorylated Akt, Bax, and phosphorylated ERK1/2 was determined by Western blotting. Results Limb ischemic postconditioning significantly reduced infarct volume at 48 hours and improved functional outcomes at 4 weeks after HI. Naloxone and wortmannin abrogated the postconditioning-mediated infarct-limiting effect. Morphine given immediately after hypoxia also decreased infarct volume. Furthermore, limb ischemic postconditioning recovered Akt activity and decreased Bax expression, whereas no differences in phosphorylated ERK1/2expression were observed. Conclusions Limb ischemic postconditioning protects against neonatal HI brain injury in rats by activating the opioid receptor/phosphatidylinositol-3-kinase/Akt signaling pathway. PMID:21183744

  9. [Preservation of kidneys with ischemic injury using hypothermic storage and mechanical prolonged perfusion].

    PubMed

    Wienand, P; Grundmann, R; Bischoff, A; Pichlmaier, H

    1978-01-01

    Dog kidneys were flushed and stored in Collins (n = 30) and Sacks (n = 32) solution under hypothermia. These results were compared with those gained by mechanical perfusion (n = 21). Before preservation, the kidneys were subjected to 15 - 60 min of warm ischemia then stored for 12 - 24 h. It was concluded that 12-h preservation time after 15-min ischemic injury was the limit of hypothermic storage preservation. Sacks' solution gave better results than Collins' solution as regards the immediate function after transplantation. In contrast, mechanical perfusion was well tolerated for 24-h preservation time after a warm ischemia of 30 min. In case of warm ischemic damage, mechanical perfusion should be preferred to hypothermic storage.

  10. Protective role of cisplatin in ischemic liver injury through induction of autophagy.

    PubMed

    Cardinal, Jon; Pan, Pinhua; Tsung, Allan

    2009-11-01

    High mobility group box 1 (HMGB1) is a nuclear protein released from stressed or damaged cells that activates inflammatory cascades involved in the pathogenesis of liver ischemia reperfusion (I/R) injury. In efforts to develop strategies aimed at preventing its release from ischemic cells following I/R, we studied the use of cisplatin, a member of the platinating chemotherapeutic agents capable of inducing DNA lesions that have high binding affinities for high mobility group proteins inside the nucleus of cells. In addition to demonstrating that cisplatin prevents liver damage associated with liver I/R by sequestering HMGB1 inside the nucleus of ischemic cells, cisplatin also alters cell survival signaling through autophagy. Our results provide a potential approach involving the use of platinating agents and their effects on autophagy in mitigating the deleterious effects of ischemia reperfusion-mediated disease processes.

  11. Effect of Extended CT Perfusion Acquisition Time on Ischemic Core and Penumbra Volume Estimation in Patients with Acute Ischemic Stroke due to a Large Vessel Occlusion

    PubMed Central

    Borst, Jordi; Marquering, Henk A.; Beenen, Ludo F. M.; Berkhemer, Olvert A.; Dankbaar, Jan Willem; Riordan, Alan J.; Majoie, Charles B. L. M.

    2015-01-01

    Background and Purpose It has been suggested that CT Perfusion acquisition times <60 seconds are too short to capture the complete in and out-wash of contrast in the tissue, resulting in incomplete time attenuation curves. Yet, these short acquisitions times are not uncommon in clinical practice. The purpose of this study was to investigate the occurrence of time attenuation curve truncation in 48 seconds CT Perfusion acquisition and to quantify its effect on ischemic core and penumbra estimation in patients with acute ischemic stroke due to a proximal intracranial arterial occlusion of the anterior circulation. Materials and Methods We analyzed CT Perfusion data with 48 seconds and extended acquisition times, assuring full time attenuation curves, of 36 patients. Time attenuation curves were classified as complete or truncated. Ischemic core and penumbra volumes resulting from both data sets were compared by median paired differences and interquartile ranges. Controlled experiments were performed using a digital CT Perfusion phantom to investigate the effect of time attenuation curve truncation on ischemic core and penumbra estimation. Results In 48 seconds acquisition data, truncation was observed in 24 (67%) cases for the time attenuation curves in the ischemic core, in 2 cases for the arterial input function and in 5 cases for the venous output function. Analysis of extended data resulted in smaller ischemic cores and larger penumbras with a median difference of 13.2 (IQR: 4.3–26.0)ml (P<0.001) and; 12.4 (IQR: 4.1–25.7)ml (P<0.001), respectively. The phantom data showed increasing ischemic core overestimation with increasing tissue time attenuation curve truncation. Conclusions Truncation is common in patients with large vessel occlusion and results in repartitioning of the area of hypoperfusion into larger ischemic core and smaller penumbra estimations. Phantom experiments confirmed that truncation results in overestimation of the ischemic core. PMID

  12. Treatment Strategies for Acute Ischemic Stroke Caused by Carotid Artery Occlusion

    PubMed Central

    Li, Wei; Yin, Qin; Xu, Gelin; Liu, Xinfeng

    2016-01-01

    Background: Acute ischemic stroke caused by internal carotid artery (ICA) occlusion usually has a poor prognosis, especially the T occlusion cases without functional collaterals. The efficacy of intravenous (IV) or intra-arterial (IA) thrombolysis with recombinant tissue plasminogen activator (rt-PA) remains ambiguous in these patients. Eendovascular recanalization of the occluded carotid has been attempted in recent years as a potential strategy. However, the different etiologies of ICA occlusion pose a significant challenge to neurointerventionists. Recently, several endovascular evolvements have been reported in treating carotid occlusion-related stroke. This review summarizes the current status of treatment for acute ICA occlusion. PMID:27781043

  13. Acute ischemic colitis secondary to air embolism after diving

    PubMed Central

    Payor, Austin Daniel; Tucci, Veronica

    2011-01-01

    Ischemic colitis (IC) secondary to air embolism from decompression sickness or barotrauma during diving is an extremely rare condition. After extensive review of the available literature, we found that there has been only one reported case of IC secondary to air embolism from diving. Although air embolization from diving and the various medical complications that follow have been well documented, the clinical manifestation of IC from an air embolism during diving is very rare and thus far unstudied. Common symptoms of IC include abdominal pain, bloody or non-bloody diarrhea or nausea or vomiting or any combination. Emergency physicians and Critical Care specialists should consider IC as a potential diagnosis for a patient with the above-mentioned symptoms and a history of recent diving. We report a case of IC from air embolism after a routine dive to 75 feet below sea level in a 53-year-old White female who presented to a community Emergency Department complaining of a 2-day history of diffuse abdominal pain and nausea. She was diagnosed by colonoscopy with biopsies and treated conservatively with antibiotics, bowel rest, and a slow advancement in diet. PMID:22096777

  14. Acute Kidney Injury Subsequent to Cardiac Surgery

    PubMed Central

    Kramer, Robert S.; Herron, Crystal R.; Groom, Robert C.; Brown, Jeremiah R.

    2015-01-01

    Abstract: Acute kidney injury (AKI) after cardiac surgery is a common and underappreciated syndrome that is associated with poor short- and long-term outcomes. AKI after cardiac surgery may be epiphenomenon, a signal for adverse outcomes by virtue of other affected organ systems, and a consequence of multiple factors. Subtle increases in serum creatinine (SCr) postoperatively, once considered inconsequential, have been shown to reflect a kidney injury that likely occurred in the operating room during cardiopulmonary bypass (CPB) and more often in susceptible individuals. The postoperative elevation in SCr is a delayed signal reflecting the intraoperative injury. Preoperative checklists and the conduct of CPB represent opportunities for prevention of AKI. Newer definitions of AKI provide us with an opportunity to scrutinize perioperative processes of care and determine strategies to decrease the incidence of AKI subsequent to cardiac surgery. Recognizing and mitigating risk factors preoperatively and optimizing intraoperative practices may, in the aggregate, decrease the incidence of AKI. This review explores the pathophysiology of AKI and addresses the features of patients who are the most vulnerable to AKI. Preoperative strategies are discussed with particular attention to a readiness for surgery checklist. Intraoperative strategies include minimizing hemodilution and maximizing oxygen delivery with specific suggestions regarding fluid management and plasma preservation. PMID:26390675

  15. A new idea about reducing reperfusion injury in ischemic stroke: Gradual reperfusion.

    PubMed

    Shi, Jingfei; Liu, Yi; Duan, Yunxia; Sun, Zhishan; Wang, Bincheng; Meng, Ran; Ji, Xunming

    2013-02-01

    Around the world, stroke is the second most common cause of death and a major cause of disability. The main direct cause of stroke is the occlusion of intracranial artery, which leads to cell death in the core suffered region, or cell functional impairment surrounding the dead core (termed ischemic penumbra). Opening the occluded artery to save the ischemic penumbra is the aim of thrombolysis therapy. But the reperfusion induced injury counteracts the potential profit by thrombolysis. Herein, we assume that gradual reperfusion can reduce the reperfusion injury by reducing the production of free radicals during reperfusion. The reason is: free radicals are critical in the reperfusion injury; free radicals come from the penumbra during reperfusion; the respiratory chain is the main source of free radical; the enzyme activity of the respiratory chain is upgraded during ischemia; once reperfused, the activity upgraded enzymes in the respiratory chain meet normal amount of oxygen and glucose, which produces exceeding intermediates (free radicals); while gradual reperfusion reduces the production of free radicals, because it can confine the amount of oxygen and glucose.

  16. Galectin-1-secreting neural stem cells elicit long-term neuroprotection against ischemic brain injury

    PubMed Central

    Wang, Jiayin; Xia, Jinchao; Zhang, Feng; Shi, Yejie; Wu, Yun; Pu, Hongjian; Liou, Anthony K. F.; Leak, Rehana K.; Yu, Xinguang; Chen, Ling; Chen, Jun

    2015-01-01

    Galectin-1 (gal-1), a special lectin with high affinity to β-galactosides, is implicated in protection against ischemic brain injury. The present study investigated transplantation of gal-1-secreting neural stem cell (s-NSC) into ischemic brains and identified the mechanisms underlying protection. To accomplish this goal, secretory gal-1 was stably overexpressed in NE-4C neural stem cells. Transient cerebral ischemia was induced in mice by middle cerebral artery occlusion for 60 minutes and s-NSCs were injected into the striatum and cortex within 2 hours post-ischemia. Brain infarct volume and neurological performance were assessed up to 28 days post-ischemia. s-NSC transplantation reduced infarct volume, improved sensorimotor and cognitive functions, and provided more robust neuroprotection than non-engineered NSCs or gal-1-overexpressing (but non-secreting) NSCs. White matter injury was also ameliorated in s-NSC-treated stroke mice. Gal-1 modulated microglial function in vitro, by attenuating secretion of pro-inflammatory cytokines (TNF-α and nitric oxide) in response to LPS stimulation and enhancing production of anti-inflammatory cytokines (IL-10 and TGF-β). Gal-1 also shifted microglia/macrophage polarization toward the beneficial M2 phenotype in vivo by reducing CD16 expression and increasing CD206 expression. In sum, s-NSC transplantation confers robust neuroprotection against cerebral ischemia, probably by alleviating white matter injury and modulating microglial/macrophage function. PMID:25858671

  17. Predicting value of cerebrospinal fluid proinflammatory factors in acute phase of ischemic stroke.

    PubMed

    Beridze, M; Shakarishvili, R

    2006-03-01

    Study purposed to establish the correlation between proinflammatory cytokines' initial CSF levels and neurological outcome on 7th day of acute ischemic stroke. 58 patients with acute ischemic stroke have been investigated. Neurological impairment assessed in 48 hours and on 7th day of stroke applying the international scales NIHSS and GCS. Patients divided into two groups: with severe stroke (GCS>9, NIHSS>15) and stroke with moderate severity (GCS=14,15; NIHSS=10-15). On 7th day increase of NIHSS score and decrease of GCS score at least 1 point was considered as deterioration and decrease of NIHSS score and increase of GCS score at least 1 point was considered as amelioration. CSF levels of proinflamatory cytokines determined using the enzyme-linked immunosorbent assay (ELISA). Control consisted with 15 patients, which were taken CSF in relation with vertebral discopathies. Means calculated by t-paired test. Pearson correlation and multivariate logistic regression were used. In 48 hours of stroke onset the CSF levels of interleukine-1beta (IL-1beta), interleukine-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) were elevated compared to control. Statistical differences were not found between groups regarding the initial CSF levels of IL-1beta and TNF-alpha (p<0,5), while the significant statistical differences were found in regard with IL-6 CSF levels (p<0,05) between groups and against control. Significant positive correlation was found between initial CSF IL-6 levels and ischemic lesion size and neurological outcome at 1 week as well (r=+0,48 p<0,05 and r=+0,54 p<0,01 respectively). Thus, the IL-6 CSF levels in acute stage of ischemic stroke might be considered as the relatively stable prognostic indicator of clinical course of the disease.

  18. Therapeutic effects of umbilical cord blood plasma in a rat model of acute ischemic stroke

    PubMed Central

    Seo, Jin-Ju; Eom, Jang-Hyoun; Choi, Seong-Mi; Park, Sanghyun; Kim, Dong-Wook; Hwang, Dong-Youn

    2016-01-01

    Umbilical cord blood plasma (UCB-PL) contains various cytokines, growth factors, and immune modulatory factors that regulate the proliferation and function of immune cells and adult stem cells. Despite its therapeutic potential, the effects of UCB-PL treatment in conditions of ischemic brain injury have yet to be investigated. In this study, we demonstrated that both behavioral and structural impairments resulting from ischemic brain injury were significantly prevented/reversed after intravenous administration of UCB-PL relative to the vehicle control. As early as 1-week post-ischemia, an increased number of newborn cells in the subventricular zone and a reduced number of activated microglial cells in the peri-infarct area were observed in the UCB-PL group, suggesting that enhanced neurogenesis and/or the suppression of inflammation may have contributed to functional protection/recovery. Moreover, UCB-PL was more effective than plasma derived from a 65-year-old healthy adult for the treatment of ischemia-related structural and functional deficits, indicating that UCB-PL had greater therapeutic potential. This study provides valuable insights into the development of a safe, effective, and cell-free strategy for the treatment of ischemic brain damage and a much-needed alternative for patients who are ineligible for thrombolytic therapy. PMID:27816964

  19. Cell tracking technologies for acute ischemic brain injury

    PubMed Central

    Gavins, Felicity NE; Smith, Helen K

    2015-01-01

    Stem cell therapy has showed considerable potential in the treatment of stroke over the last decade. In order that these therapies may be optimized, the relative benefits of growth factor release, immunomodulation, and direct tissue replacement by therapeutic stem cells are widely under investigation. Fundamental to the progress of this research are effective imaging techniques that enable cell tracking in vivo. Direct analysis of the benefit of cell therapy includes the study of cell migration, localization, division and/or differentiation, and survival. This review explores the various imaging tools currently used in clinics and laboratories, addressing image resolution, long-term cell monitoring, imaging agents/isotopes, as well as safety and costs associated with each technique. Finally, burgeoning tracking techniques are discussed, with emphasis on multimodal imaging. PMID:25966948

  20. Eriodictyol-7-O-glucoside activates Nrf2 and protects against cerebral ischemic injury

    SciTech Connect

    Jing, Xu; Ren, Dongmei; Wei, Xinbing; Shi, Huanying; Zhang, Xiumei; Perez, Ruth G.; Lou, Haiyan; Lou, Hongxiang

    2013-12-15

    Stroke is a complex disease that may involve oxidative stress-related pathways in its pathogenesis. The nuclear factor erythroid-2-related factor 2/antioxidant response element (Nrf2/ARE) pathway plays an important role in inducing phase II detoxifying enzymes and antioxidant proteins and thus has been considered a potential target for neuroprotection in stroke. The aim of the present study was to determine whether eriodictyol-7-O-glucoside (E7G), a novel Nrf2 activator, can protect against cerebral ischemic injury and to understand the role of the Nrf2/ARE pathway in neuroprotection. In primary cultured astrocytes, E7G increased the nuclear localization of Nrf2 and induced the expression of the Nrf2/ARE-dependent genes. Exposure of astrocytes to E7G provided protection against oxygen and glucose deprivation (OGD)-induced oxidative insult. The protective effect of E7G was abolished by RNA interference-mediated knockdown of Nrf2 expression. In vivo administration of E7G in a rat model of focal cerebral ischemia significantly reduced the amount of brain damage and ameliorated neurological deficits. These data demonstrate that activation of Nrf2/ARE signaling by E7G is directly associated with its neuroprotection against oxidative stress-induced ischemic injury and suggest that targeting the Nrf2/ARE pathway may be a promising approach for therapeutic intervention in stroke. - Highlights: • E7G activates Nrf2 in astrocytes. • E7G stimulates expression of Nrf2-mediated cytoprotective proteins in astrocytes. • E7G protects astrocytes against OGD-induced cell death and apoptosis. • The neuroprotective effect of E7G involves the Nrf2/ARE pathway. • E7G protects rats against cerebral ischemic injury.

  1. Treatment with polyamine oxidase inhibitor reduces microglial activation and limits vascular injury in ischemic retinopathy

    PubMed Central

    Patel, C.; Xu, Z.; Shosha, E.; Xing, J.; Lucas, R.; Caldwell, R.W.; Caldwell, R.B.; Narayanan, S.P.

    2016-01-01

    Retinal vascular injury is a major cause of vision impairment in ischemic retinopathies. Insults such as hyperoxia, oxidative stress and inflammation contribute to this pathology. Previously, we showed that hyperoxia-induced retinal neurodegeneration is associated with increased polyamine oxidation. Here, we are studying the involvement of polyamine oxidases in hyperoxia-induced injury and death of retinal vascular endothelial cells. Newborn C57BL6/J mice were exposed to hyperoxia (70% O2) from postnatal day (P) 7 to 12 and were treated with the polyamine oxidase inhibitor MDL 72527 or vehicle starting at P6. Mice were sacrificed after different durations of hyperoxia and their retinas were analyzed to determine the effects on vascular injury, microglial cell activation, and inflammatory cytokine profiling. The results of this analysis showed that MDL 72527 treatment significantly reduced hyperoxia-induced retinal vascular injury and enhanced vascular sprouting as compared with the vehicle controls. These protective effects were correlated with significant decreases in microglial activation as well as levels of inflammatory cytokines and chemokines. In order to model the effects of polyamine oxidation in causing microglial activation in vitro, studies were performed using rat brain microvascular endothelial cells treated with conditioned-medium from rat retinal microglia stimulated with hydrogen peroxide. Conditioned-medium from activated microglial cultures induced cell stress signals and cell death in microvascular endothelial cells. These studies demonstrate the involvement of polyamine oxidases in hyperoxia-induced retinal vascular injury and retinal inflammation in ischemic retinopathy, through mechanisms involving cross-talk between endothelial cells and resident retinal microglia. PMID:27239699

  2. Gender differences in patients with acute ischemic stroke.

    PubMed

    Caso, Valeria; Paciaroni, Maurizio; Agnelli, Giancarlo; Corea, Francesco; Ageno, Walter; Alberti, Andrea; Lanari, Alessia; Micheli, Sara; Bertolani, Luca; Venti, Michele; Palmerini, Francesco; Billeci, Antonia M R; Comi, Giancarlo; Previdi, Paolo; Silvestrelli, Giorgio

    2010-01-01

    Stroke has a greater effect on women than men owing to the fact that women have more stroke events and are less likely to recover. Age-specific stroke rates are higher in men; however, because of women's longer life expectancy and the much higher incidence of stroke at older ages, women have more stroke events than men overall. The aims of this prospective study in consecutive patients were to assess whether there are gender differences in stroke risk factors, treatment or outcome. Consecutive patients with ischemic stroke were included in this prospective study at four study centers. Disability was assessed using a modified Rankin Scale score (>or=3 indicating disabling stroke) in both genders at 90 days. Outcomes and risk factors in both genders were compared using the chi(2) test. Multiple logistic regression analysis was used to identify any independent predictors of outcome. A total of 1136 patients were included in this study; of these, 494 (46%) were female. Women were statistically older compared with men: 76.02 (+/- 12.93) and 72.68 (+/- 13.27) median years of age, respectively. At admission, females had higher NIH Stroke Scale scores compared with males (9.4 [+/- 6.94] vs 7.6 [+/- 6.28] for men; p = 0.0018). Furthermore, females tended to have more cardioembolic strokes (153 [30%] vs 147 [23%] for men; p = 0.004). Males had lacunar and atherosclerotic strokes more often (146 [29%] vs 249 [39%] for men; p = 0.002, and 68 [13%] vs 123 [19%] for men; p = 0.01, respectively). The mean modified Rankin Scale score at 3 months was also significantly different between genders, at 2.5 (+/- 2.05) for women and 2.1 (+/- 2.02) for men (p = 0.003). However, at multivariate analysis, female gender was not an indicator for negative outcome. It was concluded that female gender was not an independent factor for negative outcome. In addition, both genders demonstrated different stroke pathophysiologies. These findings should be taken into account when diagnostic workup and

  3. Effects of normobaric versus hyperbaric oxygen on cell injury induced by oxygen and glucose deprivation in acute brain slices

    PubMed Central

    Chazalviel, Laurent; Blatteau, Jean-Eric; Vallée, Nicolas; Risso, Jean-Jacques; Besnard, Stéphane; Abraini, Jacques H.

    2016-01-01

    Normobaric oxygen (NBO) and hyperbaric oxygen (HBO) are emerging as a possible co-treatment of acute ischemic stroke. Both have been shown to reduce infarct volume, to improve neurologic outcome, to promote endogenous tissue plasminogen activator-induced thrombolysis and cerebral blood flow, and to improve tissue oxygenation through oxygen diffusion in the ischemic areas, thereby questioning the interest of HBO compared to NBO. In the present study, in order to investigate and compare the oxygen diffusion effects of NBO and HBO on acute ischemic stroke independently of their effects at the vascular level, we used acute brain slices exposed to oxygen and glucose deprivation, an ex vivo model of brain ischemia that allows investigating the acute effects of NBO (partial pressure of oxygen (pO2) = 1 atmospheres absolute (ATA) = 0.1 MPa) and HBO (pO2 = 2.5 ATA = 0.25 MPa) through tissue oxygenation on ischemia-induced cell injury as measured by the release of lactate dehydrogenase. We found that HBO, but not NBO, reduced oxygen and glucose deprivation-induced cell injury, indicating that passive tissue oxygenation (i.e. without vascular support) of the brain parenchyma requires oxygen partial pressure higher than 1 ATA. PMID:27867486

  4. Effects of normobaric versus hyperbaric oxygen on cell injury induced by oxygen and glucose deprivation in acute brain slices.

    PubMed

    Chazalviel, Laurent; Blatteau, Jean-Eric; Vallée, Nicolas; Risso, Jean-Jacques; Besnard, Stéphane; Abraini, Jacques H

    2016-01-01

    Normobaric oxygen (NBO) and hyperbaric oxygen (HBO) are emerging as a possible co-treatment of acute ischemic stroke. Both have been shown to reduce infarct volume, to improve neurologic outcome, to promote endogenous tissue plasminogen activator-induced thrombolysis and cerebral blood flow, and to improve tissue oxygenation through oxygen diffusion in the ischemic areas, thereby questioning the interest of HBO compared to NBO. In the present study, in order to investigate and compare the oxygen diffusion effects of NBO and HBO on acute ischemic stroke independently of their effects at the vascular level, we used acute brain slices exposed to oxygen and glucose deprivation, an ex vivo model of brain ischemia that allows investigating the acute effects of NBO (partial pressure of oxygen (pO2) = 1 atmospheres absolute (ATA) = 0.1 MPa) and HBO (pO2 = 2.5 ATA = 0.25 MPa) through tissue oxygenation on ischemia-induced cell injury as measured by the release of lactate dehydrogenase. We found that HBO, but not NBO, reduced oxygen and glucose deprivation-induced cell injury, indicating that passive tissue oxygenation (i.e. without vascular support) of the brain parenchyma requires oxygen partial pressure higher than 1 ATA.

  5. Why emergency XeCT-CBF should become routine in acute ischemic stroke before thrombolytic therapy.

    PubMed

    Meyer, J S; Rauch, G M

    2000-02-01

    Intravenous thrombolytic therapy using recombinant tissue plasminogen activator (rtpa) has been approved for the treatment of acute ischemic stroke in the USA, if treatment is initiated within 3-hours (NINDS tpa Stroke Study Group) but not 6 hours (ECASS II) after time of onset. Favorable outcome in the placebo arm was much higher than expected possibly because patients with TIA's are likely to be included as progressive ischemic stroke subjects when a brief 3-6 hours duration of stroke is defined as the therapeutic window. Yonas' group at the University of Pittsburg demonstrated that adding stable xenon inhalation to routine CT scanning performed during emergency screening of acute stroke, predicted which cases became irreversibly infarcted if thrombolytic therapy was not administered within a few hours of stroke onset, since non-contrasted CT scans are usually normal this early. Adding a few minutes for inhalation of 26% xenon is justified in order to measure LCBF values which predict size, severity and volumes of impending cerebral infarctions and rule out TIA's which have relatively normal CT-CBF values. CT-CBF measures provide positive indications for thrombolytic therapy. This is not possible by MRI and SPECT methods which are not sufficiently quantitative to discern LCBF values persistently below ischemic thresholds of 16 mls/100 gm/min, thereby predicting impending infarction.

  6. Cerebral collateral therapeutics in acute ischemic stroke: A randomized preclinical trial of four modulation strategies.

    PubMed

    Beretta, Simone; Versace, Alessandro; Carone, Davide; Riva, Matteo; Dell'Era, Valentina; Cuccione, Elisa; Cai, Ruiyao; Monza, Laura; Pirovano, Silvia; Padovano, Giada; Stiro, Fabio; Presotto, Luca; Paternò, Giovanni; Rossi, Emanuela; Giussani, Carlo; Sganzerla, Erik P; Ferrarese, Carlo

    2017-01-01

    Cerebral collaterals are dynamically recruited after arterial occlusion and highly affect tissue outcome in acute ischemic stroke. We investigated the efficacy and safety of four pathophysiologically distinct strategies for acute modulation of collateral flow (collateral therapeutics) in the rat stroke model of transient middle cerebral artery (MCA) occlusion. A composed randomization design was used to assign rats (n = 118) to receive phenylephrine (induced hypertension), polygeline (intravascular volume load), acetazolamide (cerebral arteriolar vasodilation), head down tilt (HDT) 15° (cerebral blood flow diversion), or no treatment, starting 30 min after MCA occlusion. Compared to untreated animals, treatment with collateral therapeutics was associated with lower infarct volumes (62% relative mean difference; 51.57 mm(3) absolute mean difference; p < 0.001) and higher chance of good functional outcome (OR 4.58, p < 0.001). Collateral therapeutics acutely increased cerebral perfusion in the medial (+40.8%; p < 0.001) and lateral (+19.2%; p = 0.016) MCA territory compared to pretreatment during MCA occlusion. Safety indicators were treatment-related mortality and cardiorespiratory effects. The highest efficacy and safety profile was observed for HDT. Our findings suggest that acute modulation of cerebral collaterals is feasible and provides a tissue-saving effect in the hyperacute phase of ischemic stroke prior to recanalization therapy.

  7. Ischemic penumbra in acute stroke: Demonstration by PET with fluorine-18 fluoromisonidazole

    SciTech Connect

    Yeh, S.H.; Liu, R.S.; Hu, H.H.

    1994-05-01

    Ischemic penumbra (IP) in acute stroke has gained clinical interest since tissue functions may be recovered if perfusion can be reestablished. However, such therapeutic intervention is {open_quotes}blind{close_quotes} since clinical examination can not distinguish IP from developing infarction. In vivo demonstration of IP may have significance for stroke patient management. This study was a preliminary evaluation of detecting IP in vivo by F-18 fluoromisonidazole ([F-18]-FMISO), a hypoxic imaging agent. Static PET imaging was performed after IV injection of 370 MBq of [F-18]-FMISO at 20 and 120 min. Tomograms were reconstructed and evaluated visually in correlation with CT or MR scans. In acute stroke, patients (pts) were called back for the second PET study one month after the initial study. CT was used for confirming infarction. In 6 pts with acute cerebral infarction, three of them had intense [F-18]-FMISO retention in the penumbra surrounding the central, eclipse-like zone of absent radio-activity (infarction) at 2 hr in the acute state, and the penumbra disappeared in association with increased area of infarction on CT in one case in the chronic state. In five pts with chronic infarction, all had no penumbra of [F-18]-FMISO retention. In summary, our preliminary results demonstrate the feasibility of using [F-18]-FMISO PET to detect ischemic penumbra in vivo.

  8. Erythropoietin (EPO) in acute kidney injury.

    PubMed

    Moore, Elizabeth; Bellomo, Rinaldo

    2011-03-21

    Erythropoietin (EPO) is a 30.4 kDa glycoprotein produced by the kidney, and is mostly well-known for its physiological function in regulating red blood cell production in the bone marrow. Accumulating evidence, however, suggests that EPO has additional organ protective effects, which may be useful in the prevention or treatment of acute kidney injury. These protective mechanisms are multifactorial in nature and include inhibition of apoptotic cell death, stimulation of cellular regeneration, inhibition of deleterious pathways, and promotion of recovery.In this article, we review the physiology of EPO, assess previous work that supports the role of EPO as a general tissue protective agent, and explain the mechanisms by which it may achieve this tissue protective effect. We then focus on experimental and clinical data that suggest that EPO has a kidney protective effect.

  9. Acute liver injury secondary to sertraline.

    PubMed

    Suen, Christopher F D Li Wai; Boyapati, Ray; Simpson, Ian; Dev, Anouk

    2013-09-26

    Sertraline is widely prescribed to treat depression and anxiety disorders. However, hepatitis secondary to its use is a rare entity. We report the case of a 26-year-old woman in her 20th week of pregnancy presented with nausea, vomiting, malaise and dark urine. This occurred 6 months after sertraline 50 mg daily was started for the treatment of depression. Three weeks prior to her presentation, the dose of sertraline was increased to 100 mg daily. The patient's liver biochemical profile demonstrated increased transaminases. The biopsy of the liver showed lobular hepatitis, with a mild prominence of eosinophils, suggestive of a drug-induced or toxin-induced aetiology. Extensive biochemical work-up failed to show any other pathology to account for her hepatitis. Liver function tests normalised after cessation of sertraline, indicating a probable association between sertraline use and acute hepatocellular injury in our patient.

  10. Nitric oxide and hyperoxic acute lung injury

    PubMed Central

    Liu, Wen-wu; Han, Cui-hong; Zhang, Pei-xi; Zheng, Juan; Liu, Kan; Sun, Xue-jun

    2016-01-01

    Hyperoxic acute lung injury (HALI) refers to the damage to the lungs secondary to exposure to elevated oxygen partial pressure. HALI has been a concern in clinical practice with the development of deep diving and the use of normobaric as well as hyperbaric oxygen in clinical practice. Although the pathogenesis of HALI has been extensively studied, the findings are still controversial. Nitric oxide (NO) is an intercellular messenger and has been considered as a signaling molecule involved in many physiological and pathological processes. Although the role of NO in the occurrence and development of pulmonary diseases including HALI has been extensively studied, the findings on the role of NO in HALI are conflicting. Moreover, inhalation of NO has been approved as a therapeutic strategy for several diseases. In this paper, we briefly summarize the role of NO in the pathogenesis of HALI and the therapeutic potential of inhaled NO in HALI. PMID:27867474

  11. Fluid management in acute kidney injury.

    PubMed

    Goldstein, Stuart L

    2014-01-01

    Fluid management in critical illness has undergone extensive reevaluation in the past decade. Since a significant percentage of critically ill patients develop acute kidney injury (AKI), optimal fluid management is even more paramount to prevent the ill effects of either underhydration or overhydration. The concepts of early goal-directed fluid therapy (EGDT) and conservative late fluid management permeate current clinical research, and the independent association between fluid accumulation and mortality has been repeatedly demonstrated. A number of prospective randomized trials are planned to provide an adequately powered assessment of the effect of EGDT or earlier renal replacement therapy initiation in patients with, or at risk for AKI. The aim of this analytical review is to use existing clinical and physiological studies to support a 3-phase model of fluid management in the critically ill patient with AKI.

  12. Transfusion-related acute lung injury (TRALI).

    PubMed

    Roberts, George H

    2004-01-01

    Transfusion is an inevitable event in the life of many individuals. Transfusion medicine personnel attempt to provide blood products that will result in a safe and harmless transfusion. However, this is not always possible since no laboratory test gives totally accurate and reliable results all the time and testing in routine transfusion services is devoted primarily to the identification of red blood cell problems. Thus, when patients are transfused, several possible adverse effects may occur in the transfused patient even though quality testing indicates no potential problem. These adverse events include infectious complications, hemolytic reactions, anaphylaxis, urticaria, circulatory overload, transfusion-associated graft-versus-host disease, chills and fever, immunomodulation, and transfusion-related acute lung injury (TRALI).

  13. Transfusion-related acute lung injury.

    PubMed

    Federico, Anne

    2009-02-01

    Approximately one person in 5,000 will experience an episode of transfusion-related acute lung injury (TRALI) in conjunction with the transfusion of whole blood or blood components. Its hallmarks include hypoxemia, dyspnea, fever, hypotension, and bilateral pulmonary edema (noncardiogenic). The mortality for reported cases is 16.3%. The incidence and mortality may be even higher than estimated because of under-recognition and under-reporting. Although TRALI was identified as a clinical entity in the 1980s, a lack of consensus regarding a definition was present until 2004. An exact cause has yet to be identified; however, there are two theories regarding the etiology: the "antibody" and the "two-hit" theories. These theories involve both donor and recipient factors. Further education and research are needed to assist in the development of strategies for the prevention and treatment of TRALI.

  14. Periostin Promotes Neural Stem Cell Proliferation and Differentiation following Hypoxic-Ischemic Injury.

    PubMed

    Ma, Si-Min; Chen, Long-Xia; Lin, Yi-Feng; Yan, Hu; Lv, Jing-Wen; Xiong, Man; Li, Jin; Cheng, Guo-Qiang; Yang, Yi; Qiu, Zi-Long; Zhou, Wen-Hao

    2015-01-01

    Neural stem cell (NSC) proliferation and differentiation are required to replace neurons damaged or lost after hypoxic-ischemic events and recover brain function. Periostin (POSTN), a novel matricellular protein, plays pivotal roles in the survival, migration, and regeneration of various cell types, but its function in NSCs of neonatal rodent brain is still unknown. The purpose of this study was to investigate the role of POSTN in NSCs following hypoxia-ischemia (HI). We found that POSTN mRNA levels significantly increased in differentiating NSCs. The proliferation and differentiation of NSCs in the hippocampus is compromised in POSTN knockout mice. Moreover, NSC proliferation and differentiation into neurons and astrocytes significantly increased in cultured NSCs treated with recombinant POSTN. Consistently, injection of POSTN into neonatal hypoxic-ischemic rat brains stimulated NSC proliferation and differentiation in the subventricular and subgranular zones after 7 and 14 days of brain injury. Lastly, POSTN treatment significantly improved the spatial learning deficits of rats subjected to HI. These results suggest that POSTN significantly enhances NSC proliferation and differentiation after HI, and provides new insights into therapeutic strategies for the treatment of hypoxic-ischemic encephalopathy.

  15. Electrophysiological studies of upregulated P2X7 receptors in rat superior cervical ganglia after myocardial ischemic injury.

    PubMed

    Kong, Fanjun; Liu, Shuangmei; Xu, Changshui; Liu, Jun; Li, Guodong; Li, Guilin; Gao, Yun; Lin, Hong; Tu, Guihua; Peng, Haiying; Qiu, Shuyi; Fan, Bo; Zhu, Qicheng; Yu, Shicheng; Zheng, Chaoran; Liang, Shangdong

    2013-09-01

    Myocardial ischemic injury activates cardiac sympathetic afferent fibers and elicits a sympathoexcitatory reflex by exciting sympathetic efferent action, with resultant augmentation of myocardial oxygen consumption, leading to a vicious cycle of exaggerating myocardial ischemia. P2X7 receptor participates in the neuronal functions and the neurological disorders. This study examined the role of P2X7 receptor of superior cervical ganglia (SCG) in sympathoexcitatory reflex. Our results showed that the expression of P2X7 receptor at both mRNA and protein in SCG was increased after myocardial ischemic injury. P2X7 receptor agonists at the same concentration activated much larger amplitudes of the currents in the SCG neurons of myocardial ischemic rats than those in control rats. P2X7 receptor antagonist (brilliant blue G, BBG) significantly inhibited P2X7 receptor agonist-activated currents in the SCG neurons. Excessive phosphorylation of MAPK ERK1/2 upon the activation of P2X7 receptor might be a mechanism mediating the signal transduction after myocardial ischemic injury. Therefore, the sensitized P2X7 receptor in SCG was involved in the nociceptive transmission of sympathoexcitatory reflex induced by myocardial ischemic injury.

  16. A Case of Acute Ischemic Duodenal Ulcer Associated with Superior Mesenteric Artery Dissection After Transarterial Chemoembolization for Hepatocellular Carcinoma

    SciTech Connect

    Jang, Eun Sun; Jeong, Sook-Hyang Kim, Jin Wook; Lee, Sang Hyub; Yoon, Chang Jin; Kang, Sung Gwon

    2009-03-15

    We report a case of transarterial chemoembolization (TACE)-related acute ischemic duodenal ulcer that developed in association with dissection of the superior mesenteric artery. We conclude that the acute duodenal ulcer was developed by ischemia related to superior mesenteric artery dissection during TACE. TACE should be conducted carefully with continuous observation of abdominal arteries.

  17. A procyanidin type A trimer from cinnamon extract attenuates glial cell swelling and the reduction in glutamate uptake following ischemic injury in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary polyphenols exert neuroprotective effects in ischemic injury. The protective effects of a procyanidin type A trimer (trimer 1) isolated from a water soluble cinnamon extract (CE) were investigated on key features of ischemic injury including cell swelling, increased free radical production, ...

  18. Nicotinamide attenuates the decrease of astrocytic phosphoprotein PEA-15 in focal cerebral ischemic injury.

    PubMed

    Koh, Phil-Ok

    2012-03-01

    Nicotinamide exerts neuroprotective effects against focal cerebral ischemic injury. Phosphoprotein enriched in astrocytes 15 (PEA-15) is prominently expressed in astrocytes that exert broad anti-apoptotic functions. This study investigated whether nicotinamide modulates PEA-15 and levels of two phosphorylated PEA-15 (Serine 104 and 116) in an animal model of middle cerebral artery occlusion (MCAO)-induced injury. Adult male rats were treated with vehicle or nicotinamide (500 mg/kg) 2 hr after the onset of MCAO and cerebral cortices were collected at 24 hr after MCAO. In a proteomic approach, MCAO induced decreases of PEA-15 levels, while nicotinamide treatment attenuated the injury-induced decrease in PEA-15. The results of Western blot analysis suggest that nicotinamide prevented injury-induced reduction in phospho-PEA-15 (Serine 104) and phospho-PEA-15 (Serine 116) levels. The phosphorylation of PEA-15 exerts anti-apoptotic functions, and reduction of PEA-15 phosphorylation leads to apoptotic cell death. These results suggest that nicotinamide exerts a neuroprotective effect by attenuating the injury-induced decreases of PEA-15 and phospho-PEA-15 (Ser 104 and Ser 116) proteins.

  19. Autophagy in acute kidney injury and repair.

    PubMed

    He, Liyu; Livingston, Man J; Dong, Zheng

    2014-01-01

    Acute kidney injury (AKI) is a major kidney disease associated with a poor clinical outcome both in the short and long term. Autophagy is a cellular stress response that plays important roles in the pathogenesis of various diseases. Autophagy is induced in proximal tubules during AKI. A renoprotective role of autophagy in AKI has been demonstrated by pharmacological and genetic inhibition studies. The role of autophagy in kidney recovery and repair from AKI, however, remains largely unknown. A dynamic change in autophagy during the recovery phase of AKI seems to be important for tubular proliferation and repair. In renal fibrosis, autophagy may either promote this via the induction of tubular atrophy and decomposition, or prevent it via effects on the intracellular degradation of excessive collagen. Further research is expected to improve the understanding of the regulation of autophagy in kidney injury and repair, elucidate the pathological roles of autophagy in renal fibrosis, and discover therapeutic targets for treating AKI and preventing its progression to chronic kidney disease.

  20. Growth factors for the treatment of ischemic brain injury (growth factor treatment).

    PubMed

    Larpthaveesarp, Amara; Ferriero, Donna M; Gonzalez, Fernando F

    2015-04-30

    In recent years, growth factor therapy has emerged as a potential treatment for ischemic brain injury. The efficacy of therapies that either directly introduce or stimulate local production of growth factors and their receptors in damaged brain tissue has been tested in a multitude of models for different Central Nervous System (CNS) diseases. These growth factors include erythropoietin (EPO), vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and insulin-like growth factor (IGF-1), among others. Despite the promise shown in animal models, the particular growth factors that should be used to maximize both brain protection and repair, and the therapeutic critical period, are not well defined. We will review current pre-clinical and clinical evidence for growth factor therapies in treating different causes of brain injury, as well as issues to be addressed prior to application in humans.

  1. Acute kidney injury: global health alert.

    PubMed

    Li, Philip Kam Tao; Burdmann, Emmanuel A; Mehta, Ravindra L

    2013-05-01

    Acute kidney injury (AKI) is increasingly prevalent in developing and developed countries and is associated with severe morbidity and mortality. Most etiologies of AKI can be prevented by interventions at the individual, community, regional and in-hospital levels. Effective measures must include community-wide efforts to increase an awareness of the devastating effects of AKI and provide guidance on preventive strategies, as well as early recognition and management. Efforts should be focused on minimizing causes of AKI, increasing awareness of the importance of serial measurements of serum creatinine in high-risk patients, and documenting urine volume in acutely ill people to achieve early diagnosis; there is as yet no definitive role for alternative biomarkers. Protocols need to be developed to systematically manage prerenal conditions and specific infections. More accurate data about the true incidence and clinical impact of AKI will help to raise the importance of the disease in the community, and increase awareness of AKI by governments, the public, general and family physicians and other healthcare professionals to help prevent the disease. Prevention is the key to avoid the heavy burden of mortality and morbidity associated with AKI.

  2. Acute renal injury after partial hepatectomy

    PubMed Central

    Peres, Luis Alberto Batista; Bredt, Luis Cesar; Cipriani, Raphael Flavio Fachini

    2016-01-01

    Currently, partial hepatectomy is the treatment of choice for a wide variety of liver and biliary conditions. Among the possible complications of partial hepatectomy, acute kidney injury (AKI) should be considered as an important cause of increased morbidity and postoperative mortality. Difficulties in the data analysis related to postoperative AKI after liver resections are mainly due to the multiplicity of factors to be considered in the surgical patients, moreover, there is no consensus of the exact definition of AKI after liver resection in the literature, which hampers comparison and analysis of the scarce data published on the subject. Despite this multiplicity of risk factors for postoperative AKI after partial hepatectomy, there are main factors that clearly contribute to its occurrence. First factor relates to large blood losses with renal hypoperfusion during the operation, second factor relates to the occurrence of post-hepatectomy liver failure with consequent distributive circulatory changes and hepatorenal syndrome. Eventually, patients can have more than one factor contributing to post-operative AKI, and frequently these combinations of acute insults can be aggravated by sepsis or exposure to nephrotoxic drugs. PMID:27478539

  3. Acute kidney injury in the tropics

    PubMed Central

    Mathew, Ashish Jacob; George, Jacob

    2011-01-01

    Acute kidney injury (AKI) is one of the most challenging problems faced by clinicians in the tropics owing to its fast-changing burden. AKI in the tropics is strikingly different from that in the developed world in terms of etiology and presentation. In addition, there is a stark contrast between well-developed and poor areas in the tropics. The true epidemiological picture of AKI in the tropics is not well understood due to the late presentation of patients to tertiary centers. Infections remain the major culprit in most cases of AKI, with high mortality rates in the tropics. Human immunodeficiency virus–related AKI, related to nephrotoxicity due to antiretroviral therapy, is on the rise. Acute tubular necrosis and thrombotic microangiopathy are the most common mechanisms of AKI. A notable problem in the tropics is the scarcity of resources in health centers to support patients who require critical care due to AKI. This article reviews the unique and contrasting nature of AKI in the tropics and describes its management in each situation. PMID:21911980

  4. Acute kidney injury in the tropics.

    PubMed

    Mathew, Ashish Jacob; George, Jacob

    2011-01-01

    Acute kidney injury (AKI) is one of the most challenging problems faced by clinicians in the tropics owing to its fast-changing burden. AKI in the tropics is strikingly different from that in the developed world in terms of etiology and presentation. In addition, there is a stark contrast between well-developed and poor areas in the tropics. The true epidemiological picture of AKI in the tropics is not well understood due to the late presentation of patients to tertiary centers. Infections remain the major culprit in most cases of AKI, with high mortality rates in the tropics. Human immunodeficiency virus-related AKI, related to nephrotoxicity due to antiretroviral therapy, is on the rise. Acute tubular necrosis and thrombotic microangiopathy are the most common mechanisms of AKI. A notable problem in the tropics is the scarcity of resources in health centers to support patients who require critical care due to AKI. This article reviews the unique and contrasting nature of AKI in the tropics and describes its management in each situation.

  5. [Transfusion-related acute lung injury (TRALI)].

    PubMed

    Schweisfurth, H; Sopivnik, I; Moog, R

    2014-09-01

    Transfusion-related acute lung injury (TRALI) is primarily caused by transfusion of fresh frozen plasma or platelet concentrates and occurs by definition within 6 hours after transfusion with acute shortness of breath, hypoxemia and radiographically detectable bilateral infiltrates of the lung. Mostly leucocyte antibodies in the plasma of the blood donor (immunogenic TRALI) are responsible. Apart from antibodies, other substances such as biologically active lipids, mainly arising from the storage of platelet and red blood cell concentrates, can activate neutrophilic granulocytes and trigger a non-immunogenic TRALI. Pathophysiologically, granulocytes in the capillaries of the lung vessels release oxygen radicals and enzymes which damage the endothelial cells and cause pulmonary edema. Therapeutically, nasal oxygen administration may be sufficient. In severe cases, mechanical ventilation, invasive hemodynamic monitoring and fluid intake are required. Diuretics should be avoided. The administration of glucocorticoids is controversial. Antibody-related TRALI reactions occurred mainly after transfusion of fresh frozen plasma, which had been obtained from womenimmunized during pregnancy against leukocyte antigens. Therefore, in Germany, since 2009 only plasma from female donors without a history of prior or current pregnancy or negative testing for antibodies against HLA I, II or HNA has been used with the result that since then no TRALI-related death has been registered.

  6. Alveolar edema fluid clearance and acute lung injury.

    PubMed

    Berthiaume, Yves; Matthay, Michael A

    2007-12-15

    Although lung-protective ventilation strategies have substantially reduced mortality of acute lung injury patients there is still a need for new therapies that can further decrease mortality in patients with acute lung injury. Studies of epithelial ion and fluid transport across the distal pulmonary epithelia have provided important new concepts regarding potential new therapies for acute lung injury. Overall, there is convincing evidence that the alveolar epithelium is not only a tight epithelial barrier that resists the movement of edema fluid into the alveoli, but it is also actively involved in the transport of ions and solutes, a process that is essential for edema fluid clearance and the resolution of acute lung injury. The objective of this article is to consider some areas of recent progress in the field of alveolar fluid transport under normal and pathologic conditions. Vectorial ion transport across the alveolar and distal airway epithelia is the primary determinant of alveolar fluid clearance. The general paradigm is that active Na(+) and Cl(-) transport drives net alveolar fluid clearance, as demonstrated in several different species, including the human lung. Although these transport processes can be impaired in severe lung injury, multiple experimental studies suggest that upregulation of Na(+) and Cl(-) transport might be an effective therapy in acute lung injury. We will review mechanisms involved in pharmacological modulation of ion transport in lung injury with a special focus on the use of beta-adrenergic agonists which has generated considerable interest and is a promising therapy for clinical acute lung injury.

  7. Sex-dependent effects of chronic psychosocial stress on myocardial sensitivity to ischemic injury.

    PubMed

    Rorabaugh, Boyd R; Krivenko, Anna; Eisenmann, Eric D; Bui, Albert D; Seeley, Sarah; Fry, Megan E; Lawson, Joseph D; Stoner, Lauren E; Johnson, Brandon L; Zoladz, Phillip R

    2015-01-01

    Individuals with post-traumatic stress disorder (PTSD) experience many debilitating symptoms, including intrusive memories, persistent anxiety and avoidance of trauma-related cues. PTSD also results in numerous physiological complications, including increased risk for cardiovascular disease (CVD). However, characterization of PTSD-induced cardiovascular alterations is lacking, especially in preclinical models of the disorder. Thus, we examined the impact of a psychosocial predator-based animal model of PTSD on myocardial sensitivity to ischemic injury. Male and female Sprague-Dawley rats were exposed to psychosocial stress or control conditions for 31 days. Stressed rats were given two cat exposures, separated by a period of 10 days, and were subjected to daily social instability throughout the paradigm. Control rats were handled daily for the duration of the experiment. Rats were tested on the elevated plus maze (EPM) on day 32, and hearts were isolated on day 33 and subjected to 20 min ischemia and 2 h reperfusion on a Langendorff isolated heart system. Stressed male and female rats gained less body weight relative to controls, but only stressed males exhibited increased anxiety on the EPM. Male, but not female, rats exposed to psychosocial stress exhibited significantly larger infarcts and attenuated post-ischemic recovery of contractile function compared to controls. Our data demonstrate that predator stress combined with daily social instability sex-dependently increases myocardial sensitivity to ischemic injury. Thus, this manipulation may be useful for studying potential mechanisms underlying cardiovascular alterations in PTSD, as well as sex differences in the cardiovascular stress response.

  8. Ischemic preconditioning protects the brain against injury via inhibiting CaMKII-nNOS signaling pathway.

    PubMed

    Wang, Mei; Qi, Da-Shi; Zhou, Cui; Han, Dong; Li, Pei-Pei; Zhang, Fang; Zhou, Xiao-Yan; Han, Meng; Di, Jie-Hui; Ye, Jun-Song; Yu, Hong-Min; Song, Yuan-Jian; Zhang, Guang-Yi

    2016-03-01

    Although studies have shown that cerebral ischemic preconditioning (IPC) can ameliorate ischemia/reperfusion (I/R) induced brain damage, but its precise mechanisms remain unknown. Therefore, the aim of this study was to investigate the neuroprotective mechanisms of IPC against ischemic brain damage induced by cerebral I/R and to explore whether the Calcium/calmodulin-dependent protein kinase II (CaMKII)-mediated up-regulation of nNOS ser847-phosphorylation signaling pathway contributed to the protection provided by IPC. Transient global brain ischemia was induced by 4-vessel occlusion in adult male Sprague-Dawley rats. The rats were pretreated with 3 min of IPC alone or KN62 (selective antagonist of CaMKII) treatment before IPC, after reperfusion for 3 days, 6 min ischemia was induced. Cresyl violet staining was used to examine the survival of hippocampal CA1 pyramidal neurons. Immunoblotting was performed to measure the phosphorylation of CaMKII, nNOS, c-Jun and the expression of FasL. Immunoprecipitation was used to examine the binding between PSD95 and nNOS. The results showed that IPC could significantly protect neurons against cerebral I/R injury, furthermore, the combination of PSD95 and nNOS was increased, coinstantaneously the phosphorylation of CaMKII and nNOS (ser847) were up-regulated, however the activation of c-Jun and FasL were reduced. Conversely, KN62 treatment before IPC reversed all these effects of IPC. Taken together, the results suggest that IPC could diminish ischemic brain injury through CaMKII-mediated up-regulation of nNOS ser847-phosphorylation signaling pathway.

  9. Glycyrrhizin attenuates rat ischemic spinal cord injury by suppressing inflammatory cytokines and HMGB1

    PubMed Central

    Gong, Gu; Yuan, Li-bang; Hu, Ling; Wu, Wei; Yin, Liang; Hou, Jing-li; Liu, Ying-hai; Zhou, Le-shun

    2012-01-01

    Aim: To investigate the neuroprotective effect of glycyrrhizin (Gly) against the ischemic injury of rat spinal cord and the possible role of the nuclear protein high-mobility group box 1 (HMGB1) in the process. Methods: Male Sprague-Dawley rats were subjected to 45 min aortic occlusion to induce transient lumbar spinal cord ischemia. The motor functions of the animals were assessed according to the modified Tarlov scale. The animals were sacrificed 72 h after reperfusion and the lumbar spinal cord segment (L2–L4) was taken out for histopathological examination and Western blotting analysis. Serum inflammatory cytokine and HMGB1 levels were analyzed using ELISA. Results: Gly (6 mg/kg) administered intravenously 30 min before inducing the transient lumbar spinal cord ischemia significantly improved the hind-limb motor function scores, and reduced the number of apoptotic neurons, which was accompanied by reduced levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in the plasma and injured spinal cord. Moreover, the serum HMGB1 level correlated well with the serum TNF-α, IL-1β and IL-6 levels during the time period of reperfusion. Conclusion: The results suggest that Gly can attenuate the transient spinal cord ischemic injury in rats via reducing inflammatory cytokines and inhibiting the release of HMGB1. PMID:22158106

  10. Acute Kidney Injury Predicts Mortality after Charcoal Burning Suicide

    PubMed Central

    Chen, Yu-Chin; Tseng, Yi-Chia; Huang, Wen-Hung; Hsu, Ching-Wei; Weng, Cheng-Hao; Liu, Shou-Hsuan; Yang, Huang-Yu; Chen, Kuan-Hsin; Chen, Hui-Ling; Fu, Jen-Fen; Lin, Wey-Ran; Wang, I-Kuan; Yen, Tzung-Hai

    2016-01-01

    A paucity of literature exists on risk factors for mortality in charcoal burning suicide. In this observational study, we analyzed the data of 126 patients with charcoal burning suicide that seen between 2002 and 2013. Patients were grouped according to status of renal damage as acute kidney injury (N = 49) or non-acute kidney injury (N = 77). It was found that patients with acute kidney injury suffered severer complications such as respiratory failure (P = 0.002), myocardial injury (P = 0.049), hepatic injury (P < 0.001), rhabdomyolysis (P = 0.045) and out-of-hospital cardiac arrest (P = 0.028) than patients without acute kidney injury. Moreover, patients with acute kidney injury suffered longer hospitalization duration (16.9 ± 18.3 versus 10.7 ± 10.9, P = 0.002) and had higher mortality rate (8.2% versus 0%, P = 0.011) than patients without injury. In a multivariate Cox regression model, it was demonstrated that serum creatinine level (P = 0.019) and heart rate (P = 0.022) were significant risk factors for mortality. Finally, Kaplan-Meier analysis revealed that patients with acute kidney injury suffered lower cumulative survival than without injury (P = 0.016). In summary, the overall mortality rate of charcoal burning suicide population was 3.2%, and acute kidney injury was a powerful predictor of mortality. Further studies are warranted. PMID:27430168

  11. Acute liver injury induced by weight-loss herbal supplements

    PubMed Central

    Chen, Gary C; Ramanathan, Vivek S; Law, David; Funchain, Pauline; Chen, George C; French, Samuel; Shlopov, Boris; Eysselein, Viktor; Chung, David; Reicher, Sonya; Pham, Binh V

    2010-01-01

    We report three cases of patients with acute liver injury induced by weight-loss herbal supplements. One patient took Hydroxycut while the other two took Herbalife supplements. Liver biopsies for all patients demonstrated findings consistent with drug-induced acute liver injury. To our knowledge, we are the first institute to report acute liver injury from both of these two types of weight-loss herbal supplements together as a case series. The series emphasizes the importance of taking a cautious approach when consuming herbal supplements for the purpose of weight loss. PMID:21173910

  12. Acute liver injury induced by weight-loss herbal supplements.

    PubMed

    Chen, Gary C; Ramanathan, Vivek S; Law, David; Funchain, Pauline; Chen, George C; French, Samuel; Shlopov, Boris; Eysselein, Viktor; Chung, David; Reicher, Sonya; Pham, Binh V

    2010-11-27

    We report three cases of patients with acute liver injury induced by weight-loss herbal supplements. One patient took Hydroxycut while the other two took Herbalife supplements. Liver biopsies for all patients demonstrated findings consistent with drug-induced acute liver injury. To our knowledge, we are the first institute to report acute liver injury from both of these two types of weight-loss herbal supplements together as a case series. The series emphasizes the importance of taking a cautious approach when consuming herbal supplements for the purpose of weight loss.

  13. Acute development of collateral circulation and therapeutic prospects in ischemic stroke.

    PubMed

    Iwasawa, Eri; Ichijo, Masahiko; Ishibashi, Satoru; Yokota, Takanori

    2016-03-01

    In acute ischemic stroke, collateral circulation plays an important role in maintaining blood flow to the tissue that is at risk of progressing into ischemia, and in increasing the successful recanalization rate without hemorrhagic transformation. We have reported that well-developed collateral circulation is associated with smaller infarct volume and better long-term neurological outcome, and it disappears promptly once the effective recanalization is achieved. Contrary to the belief that collateral vessels develop over time in chronic stenotic condition, there exists a phenomenon that collateral circulation develops immediately in acute stenosis or occlusion of the arteries and it seems to be triggered by fluid shear stress, which occurs between the territories of stenotic/occluded arteries and those fed by surrounding intact arteries. We believe that this acute development of collateral circulation is a target of novel therapeutics in ischemic stroke and refer our recent attempt in enhancing collateral circulation by modulating sphingosine-1-phosphate receptor 1, which is a known shear-stress mechanosensing protein.

  14. Clinical Use of CT Perfusion For Diagnosis and Prediction of Lesion Growth in Acute Ischemic Stroke

    PubMed Central

    Huisa, Branko N; Neil, William P; Schrader, Ronald; Maya, Marcel; Pereira, Benedict; Bruce, Nhu T; Lyden, Patrick D

    2012-01-01

    Background and Purpose CT perfusion (CTP) mapping in research centers correlates well with diffusion weighted imaging (DWI) lesions and may accurately differentiate the infarct core from ischemic penumbra. The value of CTP in real-world clinical practice has not been fully established. We investigated the yield of CTP– derived cerebral blood volume (CBV) and mean transient time (MTT) for the detection of cerebral ischemia and ischemic penumbra in a sample of acute ischemic stroke (AIS) patients. Methods We studied 165 patients with initial clinical symptoms suggestive of AIS. All patients had an initial non-contrast head CT, CT Perfusion (CTP), CT angiogram (CTA) and follow up brain MRI. The obtained perfusion images were used for image processing. CBV, MTT and DWI lesion volumes were visually estimated and manually traced. Statistical analysis was done using R-2.14.and SAS 9.1. Results All normal DWI sequences had normal CBV and MTT studies (N=89). Seventy-three patients had acute DWI lesions. CBV was abnormal in 23.3% and MTT was abnormal in 42.5% of these patients. There was a high specificity (91.8%)but poor sensitivity (40.0%) for MTT maps predicting positive DWI. Spearman correlation was significant between MTT and DWI lesions (ρ=0.66, p>0.0001) only for abnormal MTT and DWI lesions>0cc. CBV lesions did not correlate with final DWI. Conclusions In real-world use, acute imaging with CTP did not predict stroke or DWI lesions with sufficient accuracy. Our findings argue against the use of CTP for screening AIS patients until real-world implementations match the accuracy reported from specialized research centers. PMID:23253533

  15. Association of Geographical Factors With Administration of Tissue Plasminogen Activator for Acute Ischemic Stroke

    PubMed Central

    Kunisawa, Susumu; Morishima, Toshitaka; Ukawa, Naoto; Ikai, Hiroshi; Otsubo, Tetsuya; Ishikawa, Koichi B.; Yokota, Chiaki; Minematsu, Kazuo; Fushimi, Kiyohide; Imanaka, Yuichi

    2013-01-01

    Background Intravenous tissue plasminogen activator (tPA) is an effective treatment for acute ischemic stroke if administered within a few hours of stroke onset. Because of this time restriction, tPA administration remains infrequent. Ambulance use is an effective strategy for increasing tPA administration but may be influenced by geographical factors. The objectives of this study are to investigate the relationship between tPA administration and ambulance use and to examine how patient travel distance and population density affect tPA utilization. Methods and Results We analyzed administrative claims data from 114 194 acute ischemic stroke cases admitted to 603 hospitals between July 2010 and March 2012. Mixed‐effects logistic regression models of patients nested within hospitals with a random intercept were generated to analyze possible predictive factors (including patient characteristics, ambulance use, and driving time from home to hospital) of tPA administration for different population density categories to investigate differences in these factors in various regional backgrounds. Approximately 5.1% (5797/114 194) of patients received tPA. The composition of baseline characteristics varied among the population density categories, but adjustment for covariates resulted in all factors having similar associations with tPA administration in every category. The administration of tPA was associated with patient age and severity of stroke symptoms, but driving time showed no association. Ambulance use was significantly associated with tPA administration even after adjustment for covariates. Conclusion The association between ambulance use and tPA administration suggests the importance of calling an ambulance for suspected stroke. Promoting ambulance use for acute ischemic stroke patients may increase tPA use. PMID:24045119

  16. Urine specific gravity as a predictor of early neurological deterioration in acute ischemic stroke.

    PubMed

    Lin, L C; Fann, W C; Chou, M H; Chen, H W; Su, Y C; Chen, J C

    2011-07-01

    We previously found that a blood urea nitrogen/creatinine (BUN/Cr) ratio>15 is an independent predictor of early neurological deterioration after acute ischemic stroke, which suggests that dehydration may be a cause of early deterioration. The aim of this study was to determine whether urine specific gravity, which is another indicator of hydration status and one that is more easily obtained, is also an independent predictor of early deterioration or stroke-in-evolution (SIE). Demographic and clinical data were recorded at admission from patients with acute ischemic stroke who were prospectively enrolled from October 2007 to June 2010. We compared patients with and without stroke-in-evolution (based on an increase of 3 points or more points on the National Institutes of Health Stroke Scale within 3 days). Univariate and multivariate statistical analyses were carried out. A total of 317 patients (43 SIE and 274 non-SIE) were enrolled; the first 196 patients comprised the cohort of our previous study. The only two independent predictors of early deterioration or SIE were BUN/Cr>15 and urine specific gravity>1.010. After adjusting for age and gender, patients with a urine specific gravity>1.010 were 2.78 times more likely to develop SIE (95% CI=1.11-6.96; P=0.030). Urine specific gravity may be useful as an early predictor of early deterioration in patients with acute ischemic stroke. Patients with urine specific gravity ≤ 1.010 therefore may have a reduced likelihood of early neurological deterioration.

  17. Contralateral needling at unblocked collaterals for hemiplegia following acute ischemic stroke

    PubMed Central

    Gao, Huanmin; Li, Xugang; Gao, Xia; Ma, Benxu

    2013-01-01

    Hemiplegia caused by stroke indicates dysfunction of the network between the brain and limbs, namely collateral shock in the brain. Contralateral needling is the insertion of needles into acupoints on the relative healthy side of the body to treat diseases such as apoplexy. However, there is little well-designed and controlled clinical evidence for this practice. This study investigated whether contralateral needling could treat hemiplegia after acute ischemic stroke in 106 randomly selected patients with acute ischemic stroke. These patients were randomly assigned to three groups: 45 in the contralateral needling group, receiving acupuncture on the unaffected limbs; 45 in the tional acupuncture group, receiving acupuncture on the hemiplegic limbs; and 16 in the control group, receiving routine treatments without acupuncture. Acupuncture at acupoints Chize (LU5) in the upper limb and Jianliao (TE14) in the lower limb was performed for 45 minutes daily for 30 consecutive days. The therapeutic effective rate, Neurological Deficit Score, Modified Barthel Index and Fugl-Meyer Assessment were evaluated. The therapeutic effective rate of contralateral needling was higher than that of conventional acupuncture (46.67% vs. 31.11%, P < 0.05). The neurological deficit score of contralateral needling was significantly decreased compared with conventional acupuncture (P < 0.01). The Modified Barthel Index and Fugl-Meyer Assessment score of contralateral needling increased more significantly than those of conventional acupuncture (both P < 0.01). The present findings suggest that contralateral needling unblocks collaterals and might be more effective than conventional acupuncture in the treatment of hemiplegia following acute ischemic stroke. PMID:25206612

  18. Rat umbilical cord blood cells attenuate hypoxic–ischemic brain injury in neonatal rats

    PubMed Central

    Nakanishi, Keiko; Sato, Yoshiaki; Mizutani, Yuka; Ito, Miharu; Hirakawa, Akihiro; Higashi, Yujiro

    2017-01-01

    Increasing evidence has suggested that human umbilical cord blood cells (hUCBC) have a favorable effect on hypoxic–ischemic (HI) brain injury. However, the efficacy of using hUCBCs to treat this injury has been variable and the underlying mechanism remains elusive. Here, we investigated its effectiveness using stereological analysis in an allogeneic system to examine whether intraperitoneal injection of cells derived from UCBCs of green fluorescent protein (GFP)-transgenic rats could ameliorate brain injury in neonatal rats. Three weeks after the HI event, the estimated residual brain volume was larger and motor function improved more in the cell-injected rats than in the control (PBS-treated) rats. The GFP-positive cells were hardly detectable in the brain (0.0057% of injected cells) 9 days after injection. Although 60% of GFP-positive cells in the brain were Iba1-positive, none of these were positive for NeuroD or DCX. While the number of proliferating cells increased in the hippocampus, that of activated microglia/macrophages decreased and a proportion of M2 microglia/macrophages increased in the ipsilateral hemisphere of cell-injected rats. These results suggest that intraperitoneal injection of cells derived from UCBCs could ameliorate HI injury, possibly through an endogenous response and not by supplying differentiated neurons derived from the injected stem cells. PMID:28281676

  19. Torsade de pointes indicates early neurologic damage in acute ischemic stroke.

    PubMed

    Huang, Li-Yen; Lin, Wei-Shiang; Lin, Wen-Yu; Cheng, Cheng-Chung; Cheng, Shu-Meng; Tsai, Tsung-Neng

    2013-12-01

    Torsade de pointes (TdP) is a life-threatening polymorphic ventricular tachycardia that is related to QT prolongation. Although QT prolongation is commonly seen in acute stroke, TdP is rare. We report the case of a 78-year-old woman with ischemic stroke who presented with TdP as the initial manifestation of early neurologic deterioration. We hypothesized that an increase in intracranial pressure may result in neurohormonal activation, QT prolongation, and then myocardial damage, leading to TdP. We highlight that new onset of TdP in a patient with stroke may reflect neurologic deterioration, requiring further evaluation and specific intervention.

  20. Carotid Artery Stenting for Acute Ischemic Stroke Patients after Intravenous Recombinant Tissue Plasminogen Activator Treatment

    PubMed Central

    Deguchi, Ichiro; Hayashi, Takeshi; Neki, Hiroaki; Yamane, Fumitaka; Ishihara, Shoichiro; Tanahashi, Norio; Takao, Masaki

    2016-01-01

    We herein report three ischemic stroke patients who underwent emergency carotid artery stenting after receiving intravenous tissue plasminogen activator (t-PA) treatment. All patients received antiplatelet medications immediately before stent placement for loading as well as dual antiplatelet therapy after stenting. Under high-dose and dual antiplatelet therapy, none of the three patients showed symptomatic intracranial hemorrhaging. However, one case showed reocclusion of the placed stent after acute thrombosis. As a result, new treatment strategies for the use of antiplatelet agents during emergency stent placement must be developed, particularly for patients who have received intravenous t-PA therapy. PMID:27725550

  1. Efficacy and safety of puerarin injection in curing acute ischemic stroke

    PubMed Central

    Zheng, Qing-Hua; Li, Xiao-Li; Mei, Zhi-Gang; Xiong, Li; Mei, Qing-Xian; Wang, Jin-Feng; Tan, Ling-Jing; Yang, Song-Bai; Feng, Zhi-Tao

    2017-01-01

    Abstract Background: Previous studies indicated that the puerarin injection has been widely employed in China for the treatment of acute ischemic stroke. We aim to evaluate the efficacy and safety of the puerarin injection for the treatment of acute ischemic stroke. Methods: A systematic literature search was performed in PUBMED, EMBASE, SPRINGER LINK, Scopus, Cochrane Library, China National Knowledge Infrastructure (CNKI), VIP Journals Database, Wanfang database and the China Biological Medicine database before November 2016, randomized controlled clinical trials (RCTs) of puerarin injection treating acute ischemic stroke were included. In addition, we searched reference lists of relevant retrieved articles. Two authors extracted data independently. The effective rate, the neurologic deficit score, the blood rheology indexes, and fibrinogen were assessed and analyzed by the Review Manager 5.3 software. The continuous variables were expressed as MD with 95% CI and dichotomous data used RR or ORs. Adverse reactions related to the puerarin injection were also examined. Results: Thirty-five RCTs with a total of 3224 participants were identified in the meta-analysis. The combined results of 32 trials indicated that the puerarin injection was better than control drugs at the clinical effective rate (RR 1.22, 95% CI 1.17 to 1.28, P < 0.001) and 16 studies showed the neurological deficit was significantly improved (MD –3.69, 95% CI –4.67 to –2.71, P < 0.001); the hemorheology index and fibrinogen were much lower with the puerarin injection when compared with western conventional medicines (WCM) or other control drugs (the whole blood viscosity: MD –0.89, 95% CI –1.37 to –0.41, P < 0.001; the HCT: MD –0.04, 95% CI –0.06 to –0.02, P < 0.001; the fibrinogen: MD –0.64, 95% CI –0.96 to –0.31, P < 0.001). Eleven trials reported that the adverse reactions related to the puerarin injection included facial flushing, dizziness, vomiting

  2. Transfusion related acute lung injury presenting with acute dyspnoea: a case report

    PubMed Central

    Haji, Altaf Gauhar; Sharma, Shekhar; Vijaykumar, DK; Paul, Jerry

    2008-01-01

    Introduction Transfusion-related acute lung injury is emerging as a common cause of transfusion-related adverse events. However, awareness about this entity in the medical fraternity is low and it, consequently, remains a very under-reported and often an under-diagnosed complication of transfusion therapy. Case presentation We report a case of a 46-year old woman who developed acute respiratory and hemodynamic instability following a single unit blood transfusion in the postoperative period. Investigation results were non-specific and a diagnosis of transfusion-related acute lung injury was made after excluding other possible causes of acute lung injury. She responded to symptomatic management with ventilatory and vasopressor support and recovered completely over the next 72 hours. Conclusion The diagnosis of transfusion-related acute lung injury relies on excluding other causes of acute pulmonary edema following transfusion, such as sepsis, volume overload, and cardiogenic pulmonary edema. All plasma containing blood products have been implicated in transfusion-related acute lung injury, with the majority being linked to whole blood, packed red blood cells, platelets, and fresh-frozen plasma. The pathogenesis of transfusion-related acute lung injury may be explained by a "two-hit" hypothesis, involving priming of the inflammatory machinery and then activation of this primed mechanism. Treatment is supportive, with prognosis being substantially better than for most other causes of acute lung injury. PMID:18957111

  3. Clinical Variables Associated with Hydration Status in Acute Ischemic Stroke Patients with Dysphagia.

    PubMed

    Crary, Michael A; Carnaby, Giselle D; Shabbir, Yasmeen; Miller, Leslie; Silliman, Scott

    2016-02-01

    Acute stroke patients with dysphagia are at increased risk for poor hydration. Dysphagia management practices may directly impact hydration status. This study examined clinical factors that might impact hydration status in acute ischemic stroke patients with dysphagia. A retrospective chart review was completed on 67 ischemic stroke patients who participated in a prior study of nutrition and hydration status during acute care. Prior results indicated that patients with dysphagia demonstrated elevated BUN/Cr compared to non-dysphagia cases during acute care and that BUN/Cr increased selectively in dysphagic patients. This chart review evaluated clinical variables potentially impacting hydration status: diuretics, parenteral fluids, tube feeding, oral diet, and nonoral (NPO) status. Exposure to any variable and number of days of exposure to each variable were examined. Dysphagia cases demonstrated significantly more NPO days, tube fed days, and parenteral fluid days, but not oral fed days, or days on diuretics. BUN/Cr values at discharge were not associated with NPO days, parenteral fluid days, oral fed days, or days on diuretics. Patients on modified solid diets had significantly higher mean BUN/Cr values at discharge (27.12 vs. 17.23) as did tube fed patients (28.94 vs. 18.66). No difference was noted between these subgroups at baseline (regular diet vs. modified solids diets). Any modification of solid diets (31.11 vs. 17.23) or thickened liquids (28.50 vs. 17.81) resulted in significantly elevated BUN/Cr values at discharge. Liquid or diet modifications prescribed for acute stroke patients with dysphagia may impair hydration status in these patients.

  4. Electroacupuncture preconditioning attenuates ischemic brain injury by activation of the adenosine monophosphate-activated protein kinase signaling pathway

    PubMed Central

    Ran, Qiang-qiang; Chen, Huai-long; Liu, Yan-li; Yu, Hai-xia; Shi, Fei; Wang, Ming-shan

    2015-01-01

    Electroacupuncture has therapeutic effects on ischemic brain injury, but its mechanism is still poorly understood. In this study, mice were stimulated by electroacupuncture at the Baihui (GV20) acupoint for 30 minutes at 1 mA and 2/15 Hz for 5 consecutive days. A cerebral ischemia model was established by ligating the bilateral common carotid artery for 15 minutes. At 72 hours after injury, neuronal injury in the mouse hippocampus had lessened, and the number of terminal deoxynucleotide transferase-mediated dUTP nick-end labeling-positive cells reduced after electroacupuncture treatment. Moreover, expression of adenosine monophosphate-activated protein kinase α (AMPKα) and phosphorylated AMPKα was up-regulated. Intraperitoneal injection of the AMPK antagonist, compound C, suppressed this phenomenon. Our findings suggest that electroacupuncture preconditioning alleviates ischemic brain injury via AMPK activation. PMID:26330828

  5. Focal Brain Injury Associated with a Model of Severe Hypoxic-Ischemic Encephalopathy in Nonhuman Primates.

    PubMed

    McAdams, Ryan M; McPherson, Ronald J; Kapur, Raj P; Juul, Sandra E

    2017-03-25

    Worldwide, hypoxic-ischemic encephalopathy (HIE) is a major cause of neonatal mortality and morbidity. To better understand the mechanisms contributing to brain injury and improve outcomes in neonates with HIE, better preclinical animal models that mimic the clinical situation following birth asphyxia in term newborns are needed. In an effort to achieve this goal, we modified our nonhuman primate model of HIE induced by in utero umbilical cord occlusion (UCO) to include postnatal hypoxic episodes, in order to simulate apneic events in human neonates with HIE. We describe a cohort of 4 near-term fetal Macaca nemestrina that underwent 18 min of in utero UCO, followed by cesarean section delivery, resuscitation, and subsequent postnatal mechanical ventilation, with exposure to intermittent daily hypoxia (3 min, 8% O2 3-8 times daily for 3 days). After delivery, all animals demonstrated severe metabolic acidosis (pH 7 ± 0.12; mean ± SD) and low APGAR scores (<5 at 10 min of age). Three of 4 animals had both electrographic and clinical seizures. Serial blood samples were collected and plasma metabolites were determined by 2-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC × GC-TOFMS). The 4 UCO animals and a single nonasphyxiated animal (delivered by cesarean section but without exposure to UCO or prolonged sedation) underwent brain magnetic resonance imaging (MRI) on day 8 of life. Thalamic injury was present on MRI in 3 UCO animals, but not in the control animal. Following necropsy on day 8, brain histopathology revealed neuronal injury/loss and gliosis in portions of the ventrolateral thalamus in all 4 UCO, with 2 animals also demonstrating putamen/globus pallidus involvement. In addition, all 4 UCO animals demonstrated brain stem gliosis, with neuronal loss present in the midbrain, pons, and lateral medulla in 3 of 4 animals. Transmission electron microscopy imaging of the brain tissues was performed, which demonstrated

  6. Memory deficit associated with increased brain proinflammatory cytokine levels and neurodegeneration in acute ischemic stroke.

    PubMed

    Silva, Bruno; Sousa, Larissa; Miranda, Aline; Vasconcelos, Anilton; Reis, Helton; Barcelos, Lucíola; Arantes, Rosa; Teixeira, Antonio; Rachid, Milene Alvarenga

    2015-08-01

    The present study aimed to investigate behavioral changes and neuroinflammatory process following left unilateral common carotid artery occlusion (UCCAO), a model of cerebral ischemia. Post-ischemic behavioral changes following 15 min UCCAO were recorded 24 hours after reperfusion. The novel object recognition task was used to assess learning and memory. After behavioral test, brains from sham and ischemic mice were removed and processed to evaluate central nervous system pathology by TTC and H&E techniques as well as inflammatory mediators by ELISA. UCCAO promoted long-term memory impairment after reperfusion. Infarct areas were observed in the cerebrum by TTC stain. Moreover, the histopathological analysis revealed cerebral necrotic cavities surrounded by ischemic neurons and hippocampal neurodegeneration. In parallel with memory dysfunction, brain levels of TNF-a, IL-1b and CXCL1 were increased post ischemia compared with sham-operated group. These findings suggest an involvement of central nervous system inflammatory mediators and brain damage in cognitive impairment following unilateral acute ischemia.

  7. Pathophysiology and Treatments of Oxidative Injury in Ischemic Stroke: Focus on the Phagocytic NADPH Oxidase 2

    PubMed Central

    Carbone, Federico; Teixeira, Priscila Camillo; Braunersreuther, Vincent; Mach, François; Vuilleumier, Nicolas

    2015-01-01

    Abstract Significance: Phagocytes play a key role in promoting the oxidative stress after ischemic stroke occurrence. The phagocytic NADPH oxidase (NOX) 2 is a membrane-bound enzyme complex involved in the antimicrobial respiratory burst and free radical production in these cells. Recent Advances: Different oxidants have been shown to induce opposite effects on neuronal homeostasis after a stroke. However, several experimental models support the detrimental effects of NOX activity (especially the phagocytic isoform) on brain recovery after stroke. Therapeutic strategies selectively targeting the neurotoxic ROS and increasing neuroprotective oxidants have recently produced promising results. Critical Issues: NOX2 might promote carotid plaque rupture and stroke occurrence. In addition, NOX2-derived reactive oxygen species (ROS) released by resident and recruited phagocytes enhance cerebral ischemic injury, activating the inflammatory apoptotic pathways. The aim of this review is to update evidence on phagocyte-related oxidative stress, focusing on the role of NOX2 as a potential therapeutic target to reduce ROS-related cerebral injury after stroke. Future Directions: Radical scavenger compounds (such as Ebselen and Edaravone) are under clinical investigation as a therapeutic approach against stroke. On the other hand, NOX inhibition might represent a promising strategy to prevent the stroke-related injury. Although selective NOX inhibitors are not yet available, nonselective compounds (such as apocynin and fasudil) provided encouraging results in preclinical studies. Whereas additional studies are needed to better evaluate this therapeutic potential in human beings, the development of specific NOX inhibitors (such as monoclonal antibodies, small-molecule inhibitors, or aptamers) might further improve brain recovery after stroke. Antioxid. Redox Signal. 23, 460–489. PMID:24635113

  8. Effect of combined therapy with ephedrine and hyperbaric oxygen on neonatal hypoxic-ischemic brain injury.

    PubMed

    Chen, Siyuan; Xiao, Nong; Zhang, Xiaoping

    2009-11-13

    Perinatal hypoxic-ischemic (HI) is a major cause of brain injury in the newborn, and there is a lack of effective therapies to reduce injury-related disorders. The aim of the present study was to evaluate the effect of a combination of ephedrine and hyperbaric oxygen (HBO) on neonatal hypoxic-ischemic brain injury. 7-day-old Sprague-Dawley rat pups were randomly divided into sham operation, HI, ephedrine, HBO, and combined group. The ephedrine group was intraperitoneally injected with ephedrine, HBO group was treated for 2h at 2.5 absolute atmosphere (ATA) per day, the combined group received both ephedrine and HBO treatments, the sham operation and HI groups were intraperitoneally injected with normal saline. Rat brains at 7 days after HI, were collected to determine histopathological damage and the expression levels of Caspase-3 and Nogo-A. Four weeks after insult, animals were challenged with Morris water maze test. The expressions of Caspase-3 and Nogo-A were reduced in treating groups compared to those in HI group (P<0.01). Compared with the single treatment groups, the expression levels of Caspase-3 and Nogo-A were significantly reduced in the combined group (P<0.01). Compared with the single treatment groups, the average time of escape latency was significantly shorter (P<0.01) and the number of platform location crossing was more (P<0.05) in combined group. These findings indicate that the combination of ephedrine and HBO can enhance the neuroprotective effect in the neonatal rat HI model partially mediated by inhibiting Caspase-3 and Nogo-A pathways.

  9. The throw: biomechanics and acute injury.

    PubMed

    Gainor, B J; Piotrowski, G; Puhl, J; Allen, W C; Hagen, R

    1980-01-01

    The throw and its modifications are integral components of many sports. This study correlates case histories of acute injuries in throwing with a biomechanical analysis of the throwing mechanism. Comparisons are made with a similar analysis of the kick analyzed by the same film technique and computer program. Just prior to ball release, the pitching arm extends through an arc of about 73 degress in 40 msec, beginning with the elbow flexed at 80 degrees. This produces an axial load on the humerus and coincides with a pulse of external torque at the shoulder. This acts as stress protection to the humerus which is developing an internal torque of 14,000 inch-lb prior to ball release. The change in angular velocity, or the angular acceleration, during the throw is acquired in a much shorter time than in the kick. Torque is directly proportional to angular acceleration. This necessitates the development of substantially higher torques in the humerus during the throw than about the knee during a kick. The kinetic energy in the arm is 27,000 inch-lb during the throw. This is much higher than the kinetic energy in the kicking leg because the kinetic energy varies proportionally with the square of the angular velocity of the extremity. The angular velocity of the arm is about twice that of the leg. Thus, the pitching arm contains about four times as much kinetic energy as the kicking leg. These severe overloading conditions predispose the upper extremity to injury in the throwing mechanism.

  10. An example of US Food and Drug Administration device regulation: medical devices indicated for use in acute ischemic stroke.

    PubMed

    Peña, Carlos; Li, Khan; Felten, Richard; Ogden, Neil; Melkerson, Mark

    2007-06-01

    The Food and Drug Administration has established requirements for protecting the public health by assuring the safety and effectiveness of a variety of medical products including drugs, devices, and biological products, and for promoting public health by expediting the approval of treatments that are safe and effective. The Center for Devices and Radiological Health is the center within the agency that is responsible for pre- and postmarket regulation of medical devices. In this article, we review current regulation of medical devices, research and development programs, pre- and postmarket perspectives, and future considerations of medical devices, particularly as they relate to devices targeting acute ischemic stroke as an example of the process. We also review the Center for Devices and Radiological Health's historical perspective of acute ischemic stroke trials and clinical trial design considerations used in prior studies that have led to US market clearance as they are related to currently marketed devices indicated for acute ischemic stroke.

  11. N-acetylaspartate decrease in acute stage of ischemic stroke: a perspective from experimental and clinical studies.

    PubMed

    Igarashi, Hironaka; Suzuki, Yuji; Huber, Vincent J; Ida, Masahiro; Nakada, Tsutomu

    2015-01-01

    N-acetylaspartate (NAA) appears in a prominent peak in proton magnetic resonance spectroscopy ((1)H-MRS) of the brain. Exhibition by NAA of time-dependent attenuation that reflects energy metabolism during the acute stage of cerebral ischemia makes this metabolite a unique biomarker for assessing ischemic stroke. Although magnetic resonance (MR) imaging is a powerful technique for inspecting the pathological changes that occur during ischemic stroke, biomarkers that directly reflect the drastic metabolic changes associated with acute-stage ischemia are strongly warranted for appropriate therapeutic decision-making in daily clinical settings. In this review, we provide a brief overview of NAA metabolism and focus on the use of attenuation in NAA as a means for assessing the pathophysiological changes that occur during the acute stage of ischemic stroke.

  12. Spectroscopic imaging for detection of ischemic injury in rat kidneys by use of changes in intrinsic optical properties

    NASA Astrophysics Data System (ADS)

    Michalopoulou, Andromachi P.; Fitzgerald, Jason T.; Troppmann, Christoph; Demos, Stavros G.

    2005-04-01

    It is currently impossible to consistently predict kidney graft viability and function before and after transplantation. We explored optical spectroscopy to assess the degree of ischemic damage in kidney tissue. Tunable UV laser excitation was used to record autofluorescence images, at different spectral ranges, of injured and contralateral control rat kidneys to reveal the excitation conditions that offered optimal contrast. Autofluorescence and near-infrared cross-polarized light-scattering imaging were both used to monitor changes in intensity and spectral characteristics, as a function of exposure time to ischemic injury. These two modalities provided different temporal behaviors, arguably arising from two different mechanisms providing direct correlation of intrinsic optical signatures to ischemic injury time.

  13. [Positive end-expiratory pressure : adjustment in acute lung injury].

    PubMed

    Bruells, C S; Dembinski, R

    2012-04-01

    Treatment of patients suffering from acute lung injury is a challenge for the treating physician. In recent years ventilation of patients with acute hypoxic lung injury has changed fundamentally. Besides the use of low tidal volumes, the most beneficial setting of positive end-expiratory pressure (PEEP) has been in the focus of researchers. The findings allow adaption of treatment to milder forms of acute lung injury and severe forms. Additionally computed tomography techniques to assess the pulmonary situation and recruitment potential as well as bed-side techniques to adjust PEEP on the ward have been modified and improved. This review gives an outline of recent developments in PEEP adjustment for patients suffering from acute hypoxic and hypercapnic lung injury and explains the fundamental pathophysiology necessary as a basis for correct treatment.

  14. Acute Pre-operative Infarcts and Poor Cerebrovascular Reserve are Independent Risk Factors for Severe Ischemic Complications Following Direct Extracranial-Intracranial Bypass for Moyamoya Disease

    PubMed Central

    Pulling, T. Michael; Rosenberg, Jarrett; Marks, Michael P.; Steinberg, Gary K.; Zaharchuk, Greg

    2015-01-01

    Background and Purpose Severe ischemic changes are a rare but devastating complication following direct superficial temporal artery to middle cerebral artery (STA MCA) bypass in Moyamoya patients. This study was undertaken to determine whether pre-operative MR imaging and/or cerebrovascular reserve (CVR) assessment using reference standard stable xenon enhanced computed tomography (xeCT) could predict such complications. Materials and Methods Among all adult patients receiving direct bypass at our institution between 2005 and 2010 who received a clinically interpretable xeCT examination, we identified index cases (patients with >15 ml post-operative infarcts) and control cases (patients without post-operative infarcts and without transient or permanent ischemic symptoms). Differences between groups were evaluated using the Mann Whitney test. Univariate and multivariate generalized linear model regression were employed to test predictors of post-operative infarct. Results Six index cases were identified and compared with 25 controls. Infarct size in the index cases was 95±55 ml. Four of six index cases (67%), but no control patients, had pre-operative acute infarcts. Baseline CBF was similar, but CVR was significantly lower in the index cases compared with control cases. For example, in the anterior circulation, median CVR was 0.4% (range: −38.0% to 16.6%) in index vs. 26.3% (range: −8.2% to 60.5%) in control patients (p=0.003). Multivariate analysis demonstrated that the presence of a small pre-operative infarct (regardless of location) and impaired CVR were independent, significant predictors of severe post-operative ischemic injury. Conclusion Acute infarcts and impaired CVR on pre operative imaging are independent risk factors for severe ischemic complications following STA MCA bypass in Moyamoya disease. PMID:26564435

  15. CpG preconditioning regulates miRNA expression that modulates genomic reprogramming associated with neuroprotection against ischemic injury

    PubMed Central

    Vartanian, Keri B; Mitchell, Hugh D; Stevens, Susan L; Conrad, Valerie K; McDermott, Jason E; Stenzel-Poore, Mary P

    2015-01-01

    Cytosine-phosphate-guanine (CpG) preconditioning reprograms the genomic response to stroke to protect the brain against ischemic injury. The mechanisms underlying genomic reprogramming are incompletely understood. MicroRNAs (miRNAs) regulate gene expression; however, their role in modulating gene responses produced by CpG preconditioning is unknown. We evaluated brain miRNA expression in response to CpG preconditioning before and after stroke using microarray. Importantly, we have data from previous gene microarrays under the same conditions, which allowed integration of miRNA and gene expression data to specifically identify regulated miRNA gene targets. CpG preconditioning did not significantly alter miRNA expression before stroke, indicating that miRNA regulation is not critical for the initiation of preconditioning-induced neuroprotection. However, after stroke, differentially regulated miRNAs between CpG- and saline-treated animals associated with the upregulation of several neuroprotective genes, implicating these miRNAs in genomic reprogramming that increases neuroprotection. Statistical analysis revealed that the miRNA targets were enriched in the gene population regulated in the setting of stroke, implying that miRNAs likely orchestrate this gene expression. These data suggest that miRNAs regulate endogenous responses to stroke and that manipulation of these miRNAs may have the potential to acutely activate novel neuroprotective processes that reduce damage. PMID:25388675

  16. Nonsteroidal Mineralocorticoid Receptor Antagonist Finerenone Protects Against Acute Kidney Injury-Mediated Chronic Kidney Disease: Role of Oxidative Stress.

    PubMed

    Lattenist, Lionel; Lechner, Sebastian M; Messaoudi, Smail; Le Mercier, Alan; El Moghrabi, Soumaya; Prince, Sonia; Bobadilla, Norma A; Kolkhof, Peter; Jaisser, Frédéric; Barrera-Chimal, Jonatan

    2017-05-01

    Acute kidney injury induced by ischemia/reperfusion (IR) is a frequent complication in hospitalized patients. Mineralocorticoid receptor antagonism has shown to be helpful against renal IR consequences; however, the potential benefit of novel nonsteroidal mineralocorticoid receptor antagonists such as finerenone has to be further explored. In this study, we evaluated the efficacy of finerenone to prevent the acute and chronic consequences of ischemic acute kidney injury. For the acute study (24 hours), 18 rats were divided into sham, bilateral renal ischemia of 25 minutes, and rats that received 3 doses of finerenone at 48, 24, and 1 hour before the ischemia. For the chronic study (4 months), 23 rats were divided into sham, rats that underwent 45 minutes of bilateral ischemia, and rats treated with finerenone at days 2 and 1 and 1 hour before IR. We found that after 24 hours of reperfusion, the untreated IR rats presented kidney dysfunction and tubular injury. Kidney injury molecule-1 and neutrophil gelatinase associated to lipolacin mRNA levels were increased. In contrast, the rats treated with finerenone displayed normal kidney function and significantly lesser tubular injury and kidney injury molecule-1 and neutrophil gelatinase associated to lipolacin levels. After 4 months, the IR rats developed chronic kidney disease, evidenced by kidney dysfunction, increased proteinuria and renal vascular resistance, tubular dilation, extensive tubule-interstitial fibrosis, and an increase in kidney transforming growth factor-β and collagen-I mRNA. The transition from acute kidney injury to chronic kidney disease was fully prevented by finerenone. Altogether, our data show that in the rat, finerenone is able to prevent acute kidney injury induced by IR and the chronic and progressive deterioration of kidney function and structure.

  17. Efficacy and safety of oral citicoline in acute ischemic stroke: drug surveillance study in 4,191 cases.

    PubMed

    Cho, H-J; Kim, Y J

    2009-04-01

    Citicoline is an essential precursor in the synthesis of phosphatidylcholine, a key cell membrane phospholipid, and is known to have neuroprotective effects in acute ischemic stroke. The aim of this study was to determine the efficacy and safety of oral citicoline in Korean patients with acute ischemic stroke. A drug surveillance study was carried out in 4,191 patients with a diagnosis of acute ischemic stroke. Oral citicoline (500-4000 mg/day) was administered within less than 24 h after acute ischemic stroke in 3,736 patients (early group) and later than 24 h after acute ischemic stroke in 455 patients (late group) for at least 6 weeks. For efficacy assessment, primary outcomes were patients' scores obtained with a short form of the National Institutes of Health Stroke Scale (s-NIHSS), a short form of the Barthel Index of activities of daily living (s-BI) and a modified Rankin Scale (mRS) at enrollment, after 6 weeks and at the end of therapy for those patients with extended treatment. All adverse reactions were monitored during the study period for safety assessment. All measured outcomes, including s-NIHSS, s-BI and mRS, were improved after 6 weeks of therapy (P < 0.05). Further improvement was observed in 125 patients who continued citicoline therapy for more than 12 weeks when compared with those who ended therapy at week 6. Improvements were more significant in the higher dose group (> or = 2000 mg/day) (P < 0.001). s-BI scores showed no differences between the early and late groups at the end of therapy. Citicoline safety was excellent; 37 side effects were observed in 31 patients (0.73%). The most frequent findings were nervous system-related symptoms (8 of 37, 21.62%), followed by gastrointestinal symptoms (5 of 37, 13.5%). Oral citicoline improved neurological, functional and global outcomes in patients with acute ischemic stroke without significant safety concerns.

  18. Mesenchymal stem cells protect neurons against hypoxic-ischemic injury via inhibiting parthanatos, necroptosis, and apoptosis, but not autophagy.

    PubMed

    Kong, Deyan; Zhu, Juehua; Liu, Qian; Jiang, Yongjun; Xu, Lily; Luo, Ning; Zhao, Zhenqiang; Zhai, Qijin; Zhang, Hao; Zhu, Mingyue; Liu, Xinfeng

    2017-03-01

    Cellular therapy with mesenchymal stem cells (MSCs) protects cortical neurons against hypoxic-ischemic injury of stroke. Although sorts of efforts have been made to confirm the neuroprotective effect of MSCs on neurons against hypoxic-ischemic injury, the mechanism is until now far away from clear. Here in this study, oxygen-glucose deprivation (OGD)-injured neuron model was applied to mimic the neuronal hypoxic-ischemic injury in vitro. Co-culturing with MSCs in a transwell co-culture system, the OGD injured neurons were rescued by 75.0 %. Further data demonstrated that co-culturing with MSCs protected the cortical neurons from the OGD-induced parthanatos by alleviating apoptosis-inducing factor (AIF) nuclear translocation; attenuated the neuronal necroptosis by down-regulating the expression of the two essential kinases in necroptosis, receptor interacting protein kinase1 (RIP1) and 3 (RIP3); rescued the neurons from apoptosis by deactivating caspase-3; whilst performed no significant influence on OGD-induced neuronal autophagy, according to its failed regulation on Beclin1. In conclusion, MSCs potentially protect the cortical neurons from OGD-injury in vitro, through rescuing neurons from the cell death of parthanatos, necroptosis, and apoptosis, but not autophagy, which could provide some evidence to the mechanism explanation on stem cell treatment for ischemic stroke.

  19. Acute kidney injury and dialysis in children: illustrative cases.

    PubMed

    Symons, Jordan M; Picca, Stefano

    2008-09-01

    Pediatric nephrologists and critical care physicians are faced with a heterogeneous patient population with varied epidemiology caring for children with acute kidney injury or other diseases that may require renal replacement therapy provision. We have composed 4 detailed case scenarios to highlight the challenges and interdisciplinary approach required for optimal care provision to children, and that serve to direct the different articles contained in this special issue of Seminars of Nephrology devoted to acute kidney injury in children.

  20. Plasma thrombin-cleaved osteopontin as a potential biomarker of acute atherothrombotic ischemic stroke.

    PubMed

    Ozaki, Saya; Kurata, Mie; Kumon, Yoshiaki; Matsumoto, Shirabe; Tagawa, Masahiko; Watanabe, Hideaki; Ohue, Shiro; Higaki, Jitsuo; Ohnishi, Takanori

    2017-01-01

    We investigated whether thrombin-cleaved osteopontin N-terminal is useful as a blood biomarker of acute atherothrombotic ischemic stroke. Acute ischemic stroke patients were prospectively evaluated with brain magnetic resonance imaging and cardiac evaluations for etiological diagnosis according to the Trial of Org 10172 in Acute Stroke Treatment classification. They were divided into the atherothrombotic and non-atherothrombotic groups. Thrombin-cleaved osteopontin N-terminal, osteopontin, matrix metalloproteinase-9, S100B, C-reactive protein and D-dimer levels were measured from blood samples collected at admission. After excluding patients who met the exclusion criteria or had stroke of other/undetermined etiology, 60 of the 100 patients initially enrolled were included in the final analysis. The ischemic stroke subtypes were atherothrombotic (n=28, 46.7%), cardioembolic (n=19, 31.7%) and lacunar (n=13, 21.7%). Thrombin-cleaved osteopontin N-terminal and matrix metalloproteinase-9 levels were significantly higher in the atherothrombotic than in the non-atherothrombotic group (median (interquartile range): 5.83  (0.0-8.6 ) vs. 0.0  (0.0-3.3) pmol l(-1), P=0.03 and 544   (322-749 ) vs. 343   (254-485) ng ml(-1), P=0.01, respectively). After adjustment for the prevalence of hypertension, diabetes and dyslipidemia, thrombin-cleaved osteopontin N-terminal levels of >5.47 pmol l(-1) (odds ratio, 16.81; 95% confidence interval, 3.53-80.10) and matrix metalloproteinase-9 levels of >605.5 ng ml(-1) (6.59; 1.77-24.60) were identified as independent predictors of atherothrombosis. Within 3 h from stroke onset, only thrombin-cleaved osteopontin N-terminal independently predicted atherothrombosis and thus may add valuable, time-sensitive diagnostic information in the early evaluation of ischemic stroke, especially the atherothrombotic subtype.

  1. Acute Abdominal Aorta Thrombosis and Ischemic Rhabdomyolysis Secondary to Severe Alcohol Intoxication

    PubMed Central

    Abbas, Syed Farhat; Farooq, Madeeha; Rasheed, Amna; Ali, Furqan

    2016-01-01

    Acute alcohol intoxication is a common cause of emergency visits worldwide. Although moderate alcohol consumption is protective against coronary artery disease, binge drinking is associated with adverse cardiovascular and neurological outcomes and may even cause sudden death. Although, few past accounts of venous thrombosis with alcohol binge drinking are available, arterial thrombosis with the condition has never been reported in the literature. We present the unusual case of a young Afghan male, who presented to us with painful, tender and swollen legs three days after a heavy alcohol binge on a Saturday night. He was diagnosed as a case of acute limb ischemia secondary to massive abdominal aorta and bilateral femoral artery thrombosis. He also had acute renal failure secondary to rhabdomyolysis. Cardiac workup revealed new onset paroxysmal atrial fibrillation and a large thrombus in the left ventricular cavity. His blood ethanol level was high. He was treated by a multidisciplinary team; urgent surgical thrombectomy for thrombotic complications, intravenous fluid hydration and later renal replacement therapy for acute renal failure. To the best of our knowledge, such a constellation of clinical features in association with severe acute alcohol intoxication has not been reported in the literature. We believe, the procoagulant nature of high blood ethanol levels and the onset of atrial fibrillation after the heavy alcohol binge, known as the holiday heart syndrome, precipitated the thrombotic events leading to rhabdomyolysis and acute renal failure. Through this case, we conclude that a very heavy alcohol binge may cause thrombotic occlusion of the abdominal aorta and femoral arteries resulting in ischemic rhabdomyolysis and acute renal failure. A high index of suspicion must be kept, especially for a patient presenting with tender, swollen lower limbs and acute renal failure after an alcohol binge. PMID:28083449

  2. Prostatic surgery associated acute kidney injury

    PubMed Central

    Costalonga, Elerson Carlos; Costa e Silva, Verônica Torres; Caires, Renato; Hung, James; Yu, Luis; Burdmann, Emmanuel A

    2014-01-01

    Acute kidney injury (AKI) is associated with extended hospital stays, high risks of in-hospital and long-term mortality, and increased risk of incident and progressive chronic kidney disease. Patients with urological diseases are a high-risk group for AKI owing to the coexistence of obstructive uropathy, older age, and preexistent chronic kidney disease. Nonetheless, precise data on the incidence and outcomes of postoperative AKI in urological procedures are lacking. Benign prostatic hyperplasia and prostate cancer are common diagnoses in older men and are frequently treated with surgical procedures. Whereas severe AKI after prostate surgery in general appears to be unusual, AKI associated with transurethral resection of the prostate (TURP) syndrome and with rhabdomyolysis (RM) after radical prostatectomy have been frequently described. The purpose of this review is to discuss the current knowledge regarding the epidemiology, risk factors, outcomes, prevention, and treatment of AKI associated with prostatic surgery. The mechanisms of TURP syndrome and RM following prostatic surgeries will be emphasized. PMID:25374813

  3. Acute Kidney Injury in Diabetes Mellitus

    PubMed Central

    Müller, G. A.

    2016-01-01

    Diabetes mellitus (DM) significantly increases the overall morbidity and mortality, particularly by elevating the cardiovascular risk. The kidneys are severely affected as well, partly as a result of intrarenal athero- and arteriosclerosis but also due to noninflammatory glomerular damage (diabetic nephropathy). DM is the most frequent cause of end-stage renal disease in our society. Acute kidney injury (AKI) remains a clinical and prognostic problem of fundamental importance since incidences have been increased in recent years while mortality has not substantially been improved. As a matter of fact, not many studies particularly addressed the topic “AKI in diabetes mellitus.” Aim of this article is to summarize AKI epidemiology and outcomes in DM and current recommendations on blood glucose control in the intensive care unit with regard to the risk for acquiring AKI, and finally several aspects related to postischemic microvasculopathy in AKI of diabetic patients shall be discussed. We intend to deal with this relevant topic, last but not least with regard to increasing incidences and prevalences of both disorders, AKI and DM. PMID:27974972

  4. Cardiac surgery-associated acute kidney injury

    PubMed Central

    Ortega-Loubon, Christian; Fernández-Molina, Manuel; Carrascal-Hinojal, Yolanda; Fulquet-Carreras, Enrique

    2016-01-01

    Cardiac surgery-associated acute kidney injury (CSA-AKI) is a well-recognized complication resulting with the higher morbid-mortality after cardiac surgery. In its most severe form, it increases the odds ratio of operative mortality 3–8-fold, length of stay in the Intensive Care Unit and hospital, and costs of care. Early diagnosis is critical for an optimal treatment of this complication. Just as the identification and correction of preoperative risk factors, the use of prophylactic measures during and after surgery to optimize renal function is essential to improve postoperative morbidity and mortality of these patients. Cardiopulmonary bypass produces an increased in tubular damage markers. Their measurement may be the most sensitive means of early detection of AKI because serum creatinine changes occur 48 h to 7 days after the original insult. Tissue inhibitor of metalloproteinase-2 and insulin-like growth factor-binding protein 7 are most promising as an early diagnostic tool. However, the ideal noninvasive, specific, sensitive, reproducible biomarker for the detection of AKI within 24 h is still not found. This article provides a review of the different perspectives of the CSA-AKI, including pathogenesis, risk factors, diagnosis, biomarkers, classification, postoperative management, and treatment. We searched the electronic databases, MEDLINE, PubMed, EMBASE using search terms relevant including pathogenesis, risk factors, diagnosis, biomarkers, classification, postoperative management, and treatment, in order to provide an exhaustive review of the different perspectives of the CSA-AKI. PMID:27716701

  5. Post-partum acute kidney injury.

    PubMed

    Pahwa, Naresh; Bharani, Rajesh; Kumar, Ravindra

    2014-11-01

    To determine the risk factors, course of hospital stay and mortality rate among women with post-partum acute kidney injury (AKI), we studied (of 752 patients with AKI admitted to a tertiary care center during the study period between November 2009 and August 2012) 27 (3.59%) women with post-partum AKI. The data regarding age, parity, cause of renal failure, course of hospital stay and requirement of dialysis were recorded. Sepsis was the major cause (70.3%) of post-partum AKI. Other causes included disseminated intravascular coagulation (55.5%), pre-eclampsia/eclampsia (40.7%), ante- and post-partum hemorrhage (40.7% and 22.2%) and hemolytic anemia and elevated liver enzymes and low platelet count syndrome (29.6%); most patients had more than one cause of AKI. We found a very high prevalence (18.5%) of cortical necrosis in our study patients. A significant correlation was also found between the creatinine level on admission and the period of onset of disease after delivery. In conclusion, several factors are involved in causing post-partum AKI in our population, and sepsis was the most common of them.

  6. Preventive Antibacterial Therapy in Acute Ischemic Stroke: A Randomized Controlled Trial

    PubMed Central

    Klehmet, Juliane; Rogge, Witold; Drenckhahn, Christoph; Göhler, Jos; Bereswill, Stefan; Göbel, Ulf; Wernecke, Klaus Dieter; Wolf, Tilo; Arnold, Guy; Halle, Elke; Volk, Hans-Dieter; Dirnagl, Ulrich; Meisel, Andreas

    2008-01-01

    Background Pneumonia is a major risk factor of death after acute stroke. In a mouse model, preventive antibacterial therapy with moxifloxacin not only prevents the development of post-stroke infections, it also reduces mortality, and improves neurological outcome significantly. In this study we investigate whether this approach is effective in stroke patients. Methods Preventive ANtibacterial THERapy in acute Ischemic Stroke (PANTHERIS) is a randomized, double-blind, placebo-controlled trial in 80 patients with severe, non-lacunar, ischemic stroke (NIHSS>11) in the middle cerebral artery (MCA) territory. Patients received either intravenous moxifloxacin (400 mg daily) or placebo for 5 days starting within 36 hours after stroke onset. Primary endpoint was infection within 11 days. Secondary endpoints included neurological outcome, survival, development of stroke-induced immunodepression, and induction of bacterial resistance. Findings On intention-to treat analysis (79 patients), the infection rate at day 11 in the moxifloxacin treated group was 15.4% compared to 32.5% in the placebo treated group (p = 0.114). On per protocol analysis (n = 66), moxifloxacin significantly reduced infection rate from 41.9% to 17.1% (p = 0.032). Stroke associated infections were associated with a lower survival rate. In this study, neurological outcome and survival were not significantly influenced by treatment with moxifloxacin. Frequency of fluoroquinolone resistance in both treatment groups did not differ. On logistic regression analysis, treatment arm as well as the interaction between treatment arm and monocytic HLA-DR expression (a marker for immunodepression) at day 1 after stroke onset was independently and highly predictive for post-stroke infections. Interpretation PANTHERIS suggests that preventive administration of moxifloxacin is superior in reducing infections after severe non-lacunar ischemic stroke compared to placebo. In addition, the results emphasize the

  7. Multiparametric Magnetic Resonance Imaging for Prediction of Parenchymal Hemorrhage in Acute Ischemic Stroke After Reperfusion Therapy

    PubMed Central

    R. Knitter, James; Jahan, Reza; Gornbein, Jeffery; Ajani, Zahra; Feng, Lei; Meyer, Brett C.; Schwamm, Lee H.; Yoo, Albert J.; Marshall, Randolph S.; Meyers, Philip M.; Yavagal, Dileep R.; Wintermark, Max; Liebeskind, David S.; Guzy, Judy; Starkman, Sidney; Saver, Jeffrey L.; Kidwell, Chelsea S.

    2017-01-01

    Background and Purpose— Patients with acute ischemic stroke are at increased risk of developing parenchymal hemorrhage (PH), particularly in the setting of reperfusion therapies. We have developed a predictive model to examine the risk of PH using combined magnetic resonance perfusion and diffusion parameters, including cerebral blood volume (CBV), apparent diffusion coefficient, and microvascular permeability (K2). Methods— Voxel-based values of CBV, K2, and apparent diffusion coefficient from the ischemic core were obtained using pretreatment magnetic resonance imaging data from patients enrolled in the MR RESCUE clinical trial (Mechanical Retrieval and Recanalization of Stroke Clots Using Embolectomy). The associations between PH and extreme values of imaging parameters were assessed in univariate and multivariate analyses. Receiver-operating characteristic curve analysis was performed to determine the optimal parameter(s) and threshold for predicting PH. Results— In 83 patients included in this analysis, 20 developed PH. Univariate analysis showed significantly lower 10th percentile CBV and 10th percentile apparent diffusion coefficient values and significantly higher 90th percentile K2 values within the infarction core of patients with PH. Using classification tree analysis, the 10th percentile CBV at threshold of 0.47 and 90th percentile K2 at threshold of 0.28 resulted in overall predictive accuracy of 88.7%, sensitivity of 90.0%, and specificity of 87.3%, which was superior to any individual or combination of other classifiers. Conclusions— Our results suggest that combined 10th percentile CBV and 90th percentile K2 is an independent predictor of PH in patients with acute ischemic stroke with diagnostic accuracy superior to individual classifiers alone. This approach may allow risk stratification for patients undergoing reperfusion therapies. Clinical Trial Registration— URL: https://www.clinicaltrials.gov. Unique identifier: NCT00389467. PMID

  8. Albumin Administration in Acute Ischemic Stroke: Safety Analysis of the ALIAS Part 2 Multicenter Trial

    PubMed Central

    Hill, Michael D.; Martin, Renee H.; Palesch, Yuko Y.; Moy, Claudia S.; Tamariz, Diego; Ryckborst, Karla J.; Jones, Elizabeth B.; Weisman, David; Pettigrew, Creed; Ginsberg, Myron D.

    2015-01-01

    Background Albumin treatment of ischemic stroke was associated with cardiopulmonary adverse events in previous studies and a low incidence of intracranial hemorrhage. We sought to describe the neurological and cardiopulmonary adverse events in the ALIAS Part 2 Multicenter Trial. Methods Ischemic stroke patients, aged 18–83 and a baseline NIHSS ≥ 6, were randomized to treatment with ALB or saline control within 5 hours of stroke onset. Neurological adverse events included symptomatic intracranial hemorrhage, hemicraniectomy, neurological deterioration and neurological death. Cardiopulmonary adverse events included pulmonary edema/congestive heart failure, acute coronary syndromes, atrial fibrillation, pneumonia and pulmonary thromboembolism. Results Among 830 patients, neurological and cardiopulmonary adverse events were not differentially associated with poor outcome between ALB and saline control subjects. The rate of symptomatic intracranial hemorrhage in the first 24h was low overall (2.9%, 24/830) but more common in the ALB treated subjects (RR = 2.4, CI95 1.01–5.8). The rate of pulmonary edema/CHF in the first 48h was 7.9% (59/830) and was more common among ALB treated subjects (RR = 10.7, CI95 4.3–26.6); this complication was expected and was satisfactorily managed with mandated diuretic administration and intravenous fluid guidelines. Troponin elevations in the first 48h were common, occurring without ECG change or cardiac symptoms in 52 subjects (12.5%). Conclusions ALB therapy was associated with an increase in symptomatic ICH and pulmonary edema/congestive heart failure but this did not affect final outcomes. Troponin elevation occurs routinely in the first 48 hours after acute ischemic stroke. Trial Registration ClincalTrials.gov NCT00235495 PMID:26325387

  9. Neuroprotective role of Z-ligustilide against forebrain ischemic injury in ICR mice.

    PubMed

    Kuang, X; Yao, Y; Du, J R; Liu, Y X; Wang, C Y; Qian, Z M

    2006-08-02

    Radix Angelica sinensis, known as Danggui in Chinese, has been used to treat cardiovascular and cerebrovascular diseases in Traditional Chinese Medicine for a long time. Modern phytochemical studies showed that Z-ligustilide (LIG) is the main lipophilic component of Danggui. In this study, we examined whether LIG could protect ischemia/reperfusion-induced brain injury by minimizing oxidative stress and anti-apoptosis. Transient forebrain cerebral ischemia (FCI) was induced by the bilateral common carotid arteries occlusion for 30 min. LIG was intraperitoneally injected to ICR mice at the beginning of reperfusion. As determined via 2,3,5-triphenyl tetrazolium chloride (TTC) staining at 24 h following ischemia, the infarction volume in the FCI mice treated without LIG (22.1 +/- 2.6%) was significantly higher than that in the FCI mice treated with 5 mg/kg (11.8 +/- 5.2%) and 20 mg/kg (2.60 +/- 1.5%) LIG (P < 0.05 or P < 0.01). LIG treatment significantly decreased the level of malondialdehyde (MDA) and increased the activities of the antioxidant enzyme glutathione peroxidase (GSH-PX) and superoxide dismutase (SOD) in the ischemic brain tissues (P < 0.05 or P < 0.01 vs. FCI group). In addition, LIG provided a great increase in Bcl-2 expression as well as a significant decrease in Bax and caspase-3 immunoreactivities in the ischemic cortex. The findings demonstrated that LIG could significantly protect the brain from damage induced by transient forebrain cerebral ischemia. The antioxidant and anti-apoptotic properties of LIG may contribute to the neuroprotective potential of LIG in cerebral ischemic damage.

  10. A pathophysiological role of TRPV1 in ischemic injury after transient focal cerebral ischemia in mice.

    PubMed

    Miyanohara, Jun; Shirakawa, Hisashi; Sanpei, Kazuaki; Nakagawa, Takayuki; Kaneko, Shuji

    2015-11-20

    Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel with high Ca(2+) permeability, which functions as a polymodal nociceptor activated by heat, protons and several vanilloids, including capsaicin and anandamide. Although TRPV1 channels are widely distributed in the mammalian brain, their pathophysiological roles in the brain remain to be elucidated. In this study, we investigated whether TRPV1 is involved in cerebral ischemic injury using a middle cerebral artery (MCA) occlusion model in wild-type (WT) and TRPV1-knockout (KO) mice. For transient ischemia, the left MCA of C57BL/6 mice was occluded for 60 min and reperfused at 1 and 2 days after ischemia. We found that neurological and motor deficits, and infarct volumes in TRPV1-KO mice were lower than those of WT mice. Consistent with these results, intracerebroventricular injection of a TRPV1 antagonist, capsazepine (20 nmol), 30 min before the onset of ischemia attenuated neurological and motor deficits and improved infarct size without influencing cerebral blood flow in the occluded MCA territory. The protective effect of capsazepine on ischemic brain damage was not observed in TRPV1-KO mice. WT and TRPV1-KO mice did not show any differences with respect to the increased number of Iba1-positive microglia/macrophages, GFAP-positive astrocytes, and Gr1-positive neutrophils at 1 and 2 days after cerebral ischemia. Taken together, we conclude that brain TRPV1 channels are activated by ischemic stroke and cause neurological and motor deficits and infarction after brain ischemia.

  11. Update on traumatic acute spinal cord injury. Part 1.

    PubMed

    Galeiras Vázquez, R; Ferreiro Velasco, M E; Mourelo Fariña, M; Montoto Marqués, A; Salvador de la Barrera, S

    2017-02-01

    Traumatic spinal cord injury requires a multidisciplinary approach both for specialized treatment of the acute phase and for dealing with the secondary complications. A suspicion or diagnosis of spinal cord injury is the first step for a correct management. A review is made of the prehospital management and characteristics of the acute phase of spinal cord injury. Respiratory monitoring for early selective intubation, proper identification and treatment of neurogenic shock are essential for the prevention of secondary spinal cord injury. The use of corticosteroids is currently not a standard practice in neuroprotective treatment, and hemodynamic monitoring and early surgical decompression constitute the cornerstones of adequate management. Traumatic spinal cord injury usually occurs as part of multiple trauma, and this can make diagnosis difficult. Neurological examination and correct selection of radiological exams prevent delayed diagnosis of spinal cord injuries, and help to establish the prognosis.

  12. Evaluation of ischemia-modified albumin, oxidative stress, and antioxidant status in acute ischemic stroke patients

    PubMed Central

    Jena, Itishri; Nayak, Sarthak Ranjan; Behera, Sudeshna; Singh, Bratati; Ray, Subhashree; Jena, Diptimayee; Singh, Santosh; Sahoo, Subrat Kumar

    2017-01-01

    Background: Oxidative stress is characterized by increased production of reactive oxygen species resulting in the generation of lipid peroxides such as malondialdehyde (MDA). The studies have shown that ischemia-modified albumin (IMA), which has widely been studied as a marker of ischemia, also increases as result of oxidative stress. Hence, the current study was done to evaluate the serum MDA, IMA along with serum uric acid, and albumin, which are important metabolic antioxidants. Materials and Methods: Fifty patients with acute ischemic stroke were taken as cases and compared with 50 age- and sex-matched controls. Serum MDA, IMA, uric acid, and albumin were estimated both in cases and controls. Serum MDA was estimated by the method of Satoh and IMA by Bar-Or et al. The results were analyzed statistically. Results: Serum MDA and IMA values were significantly increased in cases (P < 0.0001), whereas serum uric acid and albumin values were significantly decreased (P < 0.05) in comparison to controls. There was also highly significant positive correlation between serum IMA and MDA (r = 0.843,P < 0.0001), whereas there were significant negative correlations between serum IMA and uric acid (r = −0.237,P < 0.05), and albumin (r = −0.326,P < 0.05). Conclusion: Hence, we conclude the oxidative stress plays a major role in the etiopathogenesis of acute ischemic stroke, and the deranged oxidant-antioxidant balance further contributes to its severity. PMID:28250685

  13. Saving the limb in diabetic patients with ischemic foot lesions complicated by acute infection.

    PubMed

    Clerici, Giacomo; Faglia, Ezio

    2014-12-01

    Ischemia and infection are the most important factors affecting the prognosis of foot ulcerations in diabetic patients. To improve the outcome of these patients, it is necessary to aggressively treat 2 important pathologies--namely, occlusive arterial disease affecting the tibial and femoral arteries and infection of the ischemic diabetic foot. Each of these 2 conditions may lead to major limb amputation, and the presence of both critical limb ischemia (CLI) and acute deep infection is a major risk factor for lower-extremity amputation. Thus, the management of diabetic foot ulcers requires specific therapeutic approaches that vary significantly depending on whether foot lesions are complicated by infection and/or ischemia. A multidisciplinary team approach is the key to successful treatment of a diabetic foot ulcer: ischemic diabetic foot ulcers complicated by acute deep infection pose serious treatment challenges because high levels of skill, organization, accuracy, and timing of intervention are required to maximize the chances of limb salvage: these complex issues are better managed by a multidisciplinary clinical group.

  14. [Effectiveness of semax in acute period of hemispheric ischemic stroke (a clinical and electrophysiological study)].

    PubMed

    Gusev, E I; Skvortsova, V I; Miasoedov, N F; Nezavibat'ko, V N; Zhuravleva, E Iu; Vanichkin, A V

    1997-01-01

    Efficiency of Semax (synthetic derivative of ACTH-4-10) was studied in 30 patients in acute period of hemispherical ischemic stroke. Control group consisted of 80 patients with the strokes analogous in severity and location of the damages and which were treated by conventional therapy. Different clinical rating scales were used for both objectivization of the severity of the patients' state and estimation of the degree of neurological defect. The control of Semax influence on the functional state of the brain included monitoring of EEG with mapping, repeated analysis of somatosensory evoked potentials and their mapping. It was established that including of Semax in combined intensive therapy of acute ischemic stroke had some influence on the rate of restoration of the damaged neurological functions in terms of increasing the regress of general cerebral and focal, especially motor disorders. The most effective daily doses were 12 mg for patients with strokes of moderate severity and 18 mg for patients with severe strokes (treatment course--5 and 10 days).

  15. Clinical Analysis on Alteration of Thyroid Hormones in the Serum of Patients with Acute Ischemic Stroke

    PubMed Central

    Zhang, Yonghua; Meyer, Michael A.

    2010-01-01

    Low T3 has been associated with increased short-term mortality in intensive care unit and long-term mortality in cardiovascular disease. The objective of this retrospective study is to investigate associations of thyroid hormone status with clinical severity and outcome in acute ischemic stroke, and whether there is association between the pituitary axis abnormality and the anterior/posterior circulation involvement. Patients with no history of thyroid abnormality who presented first ever stroke were studied. Total T3, T4, TSH levels, basic and clinical characteristics were collected and categorized. Neurological impairment was assessed using NIHSS and modified Rankin Scale. Twenty-nine patients (61%) had T3 ≤ 75 ng/dL. Low T3 group had significant higher NIHSS compared to normal T3 group. There was a significant negative correlation between T3 levels and NIHSS scores on admission. A significantly smaller percentage of patients with low T3 showed favorable neurological function improvement by both NIHSS and mRS measures compared to those with normal T3. There was no significant difference for anterior or posterior circulation involvement between low T3 and normal T3 groups. It is suggested that low T3 is associated with worse neurological outcome. The severity of low T3 may be a predictor of functional improvement in acute ischemic stroke. PMID:20847898

  16. Intranasal Insulin and Insulin-Like Growth Factor 1 as Neuroprotectants in Acute Ischemic Stroke

    PubMed Central

    Lioutas, Vasileios-Arsenios; Alfaro-Martinez, Freddy; Bedoya, Francisco; Chung, Chen-Chih; Pimentel, Daniela A.; Novak, Vera

    2016-01-01

    Treatment options for stroke remain limited. Neuroprotective therapies, in particular, have invariably failed to yield the expected benefit in stroke patients, despite robust theoretical and mechanistic background and promising animal data. Insulin and insulin-like growth factor 1 (IGF-1) play a pivotal role in critical brain functions, such as energy homeostasis, neuronal growth, and differentiation. They may exhibit neuroprotective properties in acute ischemic stroke based upon their vasodilatory, anti-inflammatory and antithrombotic effects, as well as improvements of functional connectivity, neuronal metabolism, neurotransmitter regulation, and remyelination. Intranasally administered insulin has demonstrated a benefit for prevention of cognitive decline in older people, and IGF-1 has shown potential benefit to improve functional outcomes in animal models of acute ischemic stroke. The intranasal route presents a feasible, tolerable, safe, and particularly effective administration route, bypassing the blood–brain barrier and maximizing distribution to the central nervous system (CNS), without the disadvantages of systemic side effects and first-pass metabolism. This review summarizes the neuroprotective potential of intranasally administered insulin and IGF-1 in stroke patients. We present the theoretical background and pathophysiologic mechanisms, animal and human studies of intranasal insulin and IGF-1, and the safety and feasibility of intranasal route for medication administration to the CNS. PMID:26040423

  17. Advanced imaging to extend the therapeutic time window of acute ischemic stroke.

    PubMed

    Fisher, Marc; Albers, Gregory W

    2013-01-01

    Reperfusion therapy for acute stroke has evolved from the initial use of intravenous tissue plasminogen activator (tPA) within 3 hours of symptom onset to more recent guideline-recommended use up to 4.5 hours. In addition, endovascular therapy is increasingly utilized for stroke treatment and is typically initiated up to 8 hours after onset. Recent studies demonstrate that imaging of the ischemic penumbra with diffusion/perfusion magnetic resonance imaging (MRI) can identify subgroups of patients who are likely to improve following successful reperfusion (Target Mismatch profile) and others who are at increased risk for hemorrhage and poor clinical outcomes (Malignant profile). New data indicate that stent retriever devices provide better recanalization efficacy and clinical outcomes than the previously available mechanical thrombectomy devices. Going forward, we believe that the use of penumbral imaging with validated MRI techniques, as well as the currently less well-validated computed tomography (CT) perfusion approach, will maximize benefit and reduce the risk of adverse events and poor outcomes when used both early after stroke onset and at later time points. New trials that feature diffusion/perfusion MRI or CT perfusion-based patient selection for treatment with intravenous tPA and or endovascular therapies versus nonreperfused control groups are planned or in progress. We predict that these trials will confirm the hypothesis that penumbral imaging can enhance patient selection and extend the therapeutic time window for acute ischemic stroke.

  18. Magnetic resonance imaging: A new tool for diagnosis of acute ischemic colitis?

    PubMed Central

    Iacobellis, Francesca; Berritto, Daniela; Somma, Francesco; Cavaliere, Carlo; Corona, Marco; Cozzolino, Santolo; Fulciniti, Franco; Cappabianca, Salvatore; Rotondo, Antonio; Grassi, Roberto

    2012-01-01

    AIM: To define the evolution of ischemic lesions with 7T magnetic resonance imaging (7T-MRI) in an animal model of acute colonic ischemia. METHODS: Adult Sprague-Dawley rats were divided into two groups. Group I underwent inferior mesenteric artery (IMA) ligation followed by macroscopic observations and histological analysis. In group II, 7T-MRI was performed before and after IMA ligation and followed by histological analysis. RESULTS: Morphological alterations started to develop 1 h after IMA ligation, when pale areas became evident in the splenic flexure mesentery and progressively worsened up to 8 h thereafter, when the mesentery was less pale, and the splenic flexure loop appeared very dark. The 7T-MRI results reflected these alterations, showing a hyperintense signal in both the intraperitoneal space and the colonic loop wall 1 h after IMA ligation; the latter progressively increased to demonstrate a reduction in the colonic loop lumen at 6 h. Eight hours after IMA ligation, MRI showed a persistent colonic mural hyperintensity associated with a reduction in peritoneal free fluid. The 7T-MRI findings were correlated with histological alterations, varying from an attenuated epithelium with glandular apex lesions at 1 h to coagulative necrosis and loss of the surface epithelium detected 8 h after IMA ligation. CONCLUSION: MRI may be used as a substitute for invasive procedures in diagnosing and grading acute ischemic colitis, allowing for the early identification of pathological findings. PMID:22509081

  19. Serum Phenylalanine, Tyrosine, and their Ratio in Acute Ischemic Stroke: on the Trail of a Biomarker?

    PubMed

    Ormstad, Heidi; Verkerk, Robert; Sandvik, Leiv

    2016-01-01

    Fast diagnosis and appropriate treatment are of utmost importance to improving the outcome in patients with acute ischemic stroke (AIS). A rapid and sensitive blood test for ischemic stroke is required. The aim of this study was to examine the usefulness of phenylalanine (PHE) and tyrosine (TYR) as diagnostic biomarkers in AIS. Serum levels of PHE and TYR, measured using HPLC, and their ratio (PHE/TYR) were compared between 45 patients with AIS and 40 healthy control subjects. The relationship between PHE/TYR and the serum levels of several cytokines were also examined. PHE/TYR was significantly higher in AIS patients than in healthy controls (1.75 vs 1.24, p < 0.001). A receiver operating characteristic (ROC) curve analysis of PHE/TYR in AIS patients relative to healthy controls revealed promising sensitivity and specificity, which at an optimal cutoff of 1.45 were 76 and 85 %, respectively. PHE/TYR was positively correlated with interleukin (IL)-1β (r = 0.37, p = 0.011) and IL-6 (r = 0.33, p = 0.025). This study shows that PHE/TYR is highly elevated in the acute phase of AIS, and that this elevation is coupled to the inflammatory response. The ROC analysis documents the possible value of PHE/TYR as a biomarker for AIS and demonstrates its clinical potential as a blood-based test for AIS.

  20. Inductive and Deductive Approaches to Acute Cell Injury

    PubMed Central

    DeGracia, Donald J.; Tri Anggraini, Fika; Taha, Doaa Taha Metwally; Huang, Zhi-Feng

    2014-01-01

    Many clinically relevant forms of acute injury, such as stroke, traumatic brain injury, and myocardial infarction, have resisted treatments to prevent cell death following injury. The clinical failures can be linked to the currently used inductive models based on biological specifics of the injury system. Here we contrast the application of inductive and deductive models of acute cell injury. Using brain ischemia as a case study, we discuss limitations in inductive inferences, including the inability to unambiguously assign cell death causality and the lack of a systematic quantitative framework. These limitations follow from an overemphasis on qualitative molecular pathways specific to the injured system. Our recently developed nonlinear dynamical theory of cell injury provides a generic, systematic approach to cell injury in which attractor states and system parameters are used to quantitatively characterize acute injury systems. The theoretical, empirical, and therapeutic implications of shifting to a deductive framework are discussed. We illustrate how a deductive mathematical framework offers tangible advantages over qualitative inductive models for the development of therapeutics of acutely injured biological systems. PMID:27437490

  1. A Mouse Model for Fetal Maternal Stem Cell Transfer During Ischemic Cardiac Injury

    PubMed Central

    Kara, Rina J.; Bolli, Paola; Matsunaga, Iwao; Tanweer, Omar; Altman, Perry; Chaudhry, Hina W.

    2012-01-01

    Fetal cells enter the maternal circulation during pregnancies and can persist in blood and tissues for decades, creating a state of physiologic microchimerism. Microchimerism refers to acquisition of cells from another individual and can be due to bi-directional cell traffic between mother and fetus during pregnancy. Peripartum cardiomyopathy, a rare cardiac disorder associated with high mortality rates has the highest recovery rate amongst all etiologies of heart failure although the reason is unknown. Collectively, these observations led us to hypothesize that fetal cells enter the maternal circulation and may be recruited to the sites of myocardial disease or injury. The ability to genetically modify mice makes them an ideal system for studying the phenomenon of microchimerism in cardiac disease. Described here is a mouse model for ischemic cardiac injury during pregnancy designed to study microchimerism. Wild-type virgin female mice mated with eGFP male mice underwent ligation of the left anterior descending artery to induce a myocardial infarction at gestation day 12. We demonstrate the selective homing of eGFP cells to the site of cardiac injury without such homing to nonfinjured tissues suggesting the presence of precise signals sensed by fetal cells enabling them to target diseased myocardium specifically. PMID:22883609

  2. Combined Preconditioning and Postconditioning Provides Synergistic Protection against Liver Ischemic Reperfusion Injury

    PubMed Central

    Song, Xiaoyu; Zhang, Ning; XU, Hongde; Cao, Liu; Zhang, Haipeng

    2012-01-01

    Hepatic Ischemia and Reperfusion Injury (IRI) is a major cause of liver damage during liver surgery and transplantation. Ischemic preconditioning and postconditioning are strategies that can reduce IRI. In this study, different combined types of pre- and postconditioning procedures were tested in a murine warm hepatic IRI model to evaluate their protective effects. Proanthocyanidins derived from grape seed was used before ischemia process as pharmacological preconditioning to combine with technical preconditioning and postconditioning. Three pathways related to IRI, including reactive oxygen species (ROS) generation, pro-inflammatory cytokines release and hypoxia responses were examined in hepatic IRI model. Individual and combined pre- and postconditioning protocols significantly reduce liver injury by decreasing the liver ROS and cytokine levels, as well as enhancing the hypoxia tolerance response. Our data also suggested that in addition to individual preconditioning or postconditioning, the combination of these two treatments could reduce liver ischemia/reperfusion injury more effectively by increasing the activity of ROS scavengers and antioxidants. The utilization of grape seed proanthocyanidins (GSP) could improve the oxidation resistance in combined pre- and postconditioning groups. The combined protocol also further increased the liver HIF-1 alpha protein level, but had no effect on pro-inflammatory cytokines release compared to solo treatment. PMID:22701341

  3. Stachys sieboldii (Labiatae, Chorogi) Protects against Learning and Memory Dysfunction Associated with Ischemic Brain Injury.

    PubMed

    Harada, Shinichi; Tsujita, Tsukasa; Ono, Akiko; Miyagi, Kei; Mori, Takaharu; Tokuyama, Shogo

    2015-01-01

    Stachys sieboldii (Labiatae; Chinese artichoke, a tuber), "chorogi" in Japanese, has been extensively used in folk medicine, and has a number of pharmacological properties, including antioxidative activity. However, few studies have examined the neuroprotective effects of S. sieboldii tuber extract (chorogi extract), and it remains unknown whether the extract can alleviate learning and memory dysfunction associated with vascular dementia or Alzheimer's disease. Therefore, in this study, we investigated the neuroprotective effects of chorogi extract, and examined its protection against learning and memory dysfunction using Ginkgo biloba leaf extract (ginkgo extract) as a positive control. Mice were subjected to bilateral carotid artery occlusion (BCAO) for 30 min. Oral administration of chorogi extract or ginkgo extract significantly reduced post-ischemic glucose intolerance on day 1 and neuronal damage including memory impairment on day 3 after BCAO, compared with the vehicle-treated group. Neither herbal medicine affected locomotor activity. Furthermore, neither significantly alleviated scopolamine-induced learning and memory impairment. In primary neurons, neuronal survival rate was significantly reduced by hydrogen peroxide treatment. This hydrogen peroxide-induced neurotoxicity was significantly suppressed by chorogi extract and ginkgo extract. Taken together, our findings suggest that chorogi extract as well as ginkgo extract can protect against learning and memory dysfunction associated with ischemic brain injury through an antioxidative mechanism.

  4. Liver free fatty acid (FFA) accumulation as an indicator of ischemic injury during cold preservation

    SciTech Connect

    Nemoto, E.M.; Kang, Y.; DeWolf, A.M.; Lin, M.R.; Bleyaert, A.L.; Winter, P.M.

    1987-05-01

    Reliable assessment of hepatic viability prior to harvest and transplant could improve graft success and aid in evaluating the efficacy of liver preservation techniques. Hepatic tissue metabolites, protein (Pr) synthesis, and ATP have been studied, but none reliably correlate with hepatic viability. Therefore, they studied changes in liver FFA relative to changes in ATP and Pr synthesis during cold ischemic preservation. Rats mechanically ventilated on 0.5% isoflurane/70% N/sub 2/O/30% O/sub 2/ were heparinized and their livers perfused with air-equilibrated Euro-Collins solution (ECS) at 0-4/sup 0/C and kept on ice. A piece of the liver was removed after 0, 2, 6, 8, 12, 24, 36 and 48 h of preservation for ATP and FFA analysis. A portion of the liver was sliced (250 ..mu..m thick) and incubated in vitro for /sup 14/C-lysine incorporation in albumin. ATP, FFA and Pr synthesis were unchanged in the first 8 h, but markedly decreased between 8 and 12 h with little change thereafter. In contrast, between 8 and 48 h, arachidonic and stearic acids increased by 5 and 2-fold, respectively. Changes in ATP and Pr synthesis correlate with the empirically derived clinical maximum of 8 to 12 h preservation. FFA accumulation appears to reflect hepatic ischemic injury and may be a means of evaluating the quality of a donor liver.

  5. Changes in Cerebral Oxidative Metabolism during Neonatal Seizures Following Hypoxic–Ischemic Brain Injury

    PubMed Central

    Mitra, Subhabrata; Bale, Gemma; Mathieson, Sean; Uria-Avellanal, Cristina; Meek, Judith; Tachtsidis, Ilias; Robertson, Nicola J.

    2016-01-01

    Seizures are common following hypoxic–ischemic brain injury in newborn infants. Prolonged or recurrent seizures have been shown to exacerbate neuronal damage in the developing brain; however, the precise mechanism is not fully understood. Cytochrome-c-oxidase is responsible for more than 90% of ATP production inside mitochondria. Using a novel broadband near-infrared spectroscopy system, we measured the concentration changes in the oxidation state of cerebral cytochrome-c-oxidase (Δ[oxCCO]) and hemodynamics during recurrent neonatal seizures following hypoxic–ischemic encephalopathy in a newborn infant. A rapid increase in Δ[oxCCO] was noted at the onset of seizures along with a rise in the baseline of amplitude-integrated electroencephalogram. Cerebral oxygenation and cerebral blood volume fell just prior to the seizure onset but recovered rapidly during seizures. Δ[oxCCO] during seizures correlated with changes in mean electroencephalogram voltage indicating an increase in neuronal activation and energy demand. The progressive decline in the Δ[oxCCO] baseline during seizures suggests a progressive decrease of mitochondrial oxidative metabolism. PMID:27559538

  6. Role of Antioxidants in Neonatal Hypoxic-Ischemic Brain Injury: New Therapeutic Approaches.

    PubMed

    Arteaga, Olatz; Álvarez, Antonia; Revuelta, Miren; Santaolalla, Francisco; Urtasun, Andoni; Hilario, Enrique

    2017-01-28

    Hypoxic-ischemic brain damage is an alarming health and economic problem in spite of the advances in neonatal care. It can cause mortality or detrimental neurological disorders such as cerebral palsy, motor impairment and cognitive deficits in neonates. When hypoxia-ischemia occurs, a multi-faceted cascade of events starts out, which can eventually cause cell death. Lower levels of oxygen due to reduced blood supply increase the production of reactive oxygen species, which leads to oxidative stress, a higher concentration of free cytosolic calcium and impaired mitochondrial function, triggering the activation of apoptotic pathways, DNA fragmentation and cell death. The high incidence of this type of lesion in newborns can be partly attributed to the fact that the developing brain is particularly vulnerable to oxidative stress. Since antioxidants can safely interact with free radicals and terminate that chain reaction before vital molecules are damaged, exogenous antioxidant therapy may have the potential to diminish cellular damage caused by hypoxia-ischemia. In this review, we focus on the neuroprotective effects of antioxidant treatments against perinatal hypoxic-ischemic brain injury, in the light of the most recent advances.

  7. Inhibition of BDNF-AS Provides Neuroprotection for Retinal Ganglion Cells against Ischemic Injury

    PubMed Central

    Xu, Lifang; Zhang, Ziyin; Xie, Tianhua; Zhang, Xiaoyang; Dai, Tu

    2016-01-01

    Background: Brain-derived neurotrophic factor (BDNF) protects retinal ganglion cells against ischemia in ocular degenerative diseases. We aimed to determine the effect of BDNF-AS on the ischemic injury of retinal ganglion cells. Methods: The levels of BDNF and BDNF-AS were measured in retinal ganglion cells subjected to oxygen and glucose deprivation. The lentiviral vectors were constructed to either overexpress or knock out BDNF-AS. The luciferase reporter gene assay was used to determine whether BDNF-AS could target its seed sequence on BDNF mRNA. The methyl thiazolyl tetrazolium assay was used to determine cell viability, and TUNEL staining was used for cell apoptosis. Results: The levels of BDNF-AS were negatively correlated with BDNF in ischemic retinal ganglion cells. BDNF-AS directly targeted its complementary sequences on BDNF mRNA. BDNF-AS regulated the expression of BDNF and its related genes in retinal ganglion cells. Down-regulation of BDNF-AS increased cell viability and decreased the number of TUNEL-positive retinal ganglion cells under oxygen and glucose deprivation conditions. Conclusion: Inhibition of BDNF-AS protected retinal ganglion cells against ischemia by increasing the levels of BDNF. PMID:27935942

  8. Role of Antioxidants in Neonatal Hypoxic–Ischemic Brain Injury: New Therapeutic Approaches

    PubMed Central

    Arteaga, Olatz; Álvarez, Antonia; Revuelta, Miren; Santaolalla, Francisco; Urtasun, Andoni; Hilario, Enrique

    2017-01-01

    Hypoxic–ischemic brain damage is an alarming health and economic problem in spite of the advances in neonatal care. It can cause mortality or detrimental neurological disorders such as cerebral palsy, motor impairment and cognitive deficits in neonates. When hypoxia–ischemia occurs, a multi-faceted cascade of events starts out, which can eventually cause cell death. Lower levels of oxygen due to reduced blood supply increase the production of reactive oxygen species, which leads to oxidative stress, a higher concentration of free cytosolic calcium and impaired mitochondrial function, triggering the activation of apoptotic pathways, DNA fragmentation and cell death. The high incidence of this type of lesion in newborns can be partly attributed to the fact that the developing brain is particularly vulnerable to oxidative stress. Since antioxidants can safely interact with free radicals and terminate that chain reaction before vital molecules are damaged, exogenous antioxidant therapy may have the potential to diminish cellular damage caused by hypoxia–ischemia. In this review, we focus on the neuroprotective effects of antioxidant treatments against perinatal hypoxic–ischemic brain injury, in the light of the most recent advances. PMID:28134843

  9. Absence of malonyl coenzyme A decarboxylase in mice increases cardiac glucose oxidation and protects the heart from ischemic injury

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acute pharmacological inhibition of cardiac malonyl coenzyme A decarboxylase (MCD) protects the heart from ischemic damage by inhibiting fatty acid oxidation and stimulating glucose oxidation. However, it is unknown whether chronic inhibition of MCD results in altered cardiac function, energy metabo...

  10. Guanosine protects against reperfusion injury in rat brains after ischemic stroke.

    PubMed

    Connell, Barry J; Di Iorio, Patrizia; Sayeed, Iqbal; Ballerini, Patrizia; Saleh, Monique C; Giuliani, Patricia; Saleh, Tarek M; Rathbone, Michel P; Su, Caixin; Jiang, Shucui

    2013-02-01

    After ischemic stroke, early thrombolytic therapy to reestablish tissue perfusion improves outcome but triggers a cascade of deleterious cellular and molecular events. Using a collaborative approach, our groups examined the effects of guanosine (Guo) in response to ischemic reperfusion injury in vitro and in vivo. In a transient middle cerebral artery occlusion (MCAO) in rats, Guo significantly reduced infarct volume in a dose-dependent manner when given systemically either immediately before or 30 min, but not 60 min, after the onset of the 5.5-hr reperfusion period. In a separate experiment, Guo significantly reduced infarct volume after 24 hr of reperfusion when administered 5 min before reperfusion. Western blot analysis did not reveal any significant changes either in endoplasmic reticulum (ER) stress proteins (GRP 78 and 94) or HSP 70 or in levels of m-calpain. In vitro oxygen and glucose deprivation (OGD) significantly increased production of both reactive oxygen species (ROS) and interleukin-8 (IL-8) in the primary astrocytes. Guo did not alter ROS or IL-8 production when given to the astrocytes before OGD. However, Guo when added to the cells prior to or 30 min after reperfusion significantly reduced IL-8 release but not ROS formation. Our study revealed a dose- and time-dependent protective effect of Guo on reperfusion injury in vitro and vivo. The mechanisms by which Guo exerts its effect are independent of unfolded proteins in ER or the level of intracellular calcium or ROS formation. However, the effect may be induced, at least partially, by inhibiting IL-8, a marker of reperfusion-triggered proinflammatory events.

  11. Fumarase activity: an in vivo and in vitro biomarker for acute kidney injury

    PubMed Central

    Nielsen, Per Mose; Eldirdiri, Abubakr; Bertelsen, Lotte Bonde; Jørgensen, Hans Stødkilde; Ardenkjaer-Larsen, Jan Henrik; Laustsen, Christoffer

    2017-01-01

    Renal ischemia/reperfusion injury (IRI) is a leading cause of acute kidney injury (AKI), and at present, there is a lack of reliable biomarkers that can diagnose AKI and measure early progression because the commonly used methods cannot evaluate single-kidney IRI. Hyperpolarized [1,4-13C2]fumarate conversion to [1,4-13C2]malate by fumarase has been proposed as a measure of necrosis in rat tumor models and in chemically induced AKI rats. Here we show that the degradation of cell membranes in connection with necrosis leads to elevated fumarase activity in plasma and urine and secondly that hyperpolarized [1,4-13C2]malate production 24 h after reperfusion correlates with renal necrosis in a 40-min unilateral ischemic rat model. Fumarase activity screening on bio-fluids can detect injury severity, in bilateral as well as unilateral AKI models, differentiating moderate and severe AKI as well as short- and long-term AKI. Furthermore after verification of renal injury by bio-fluid analysis the precise injury location can be monitored by in vivo measurements of the fumarase activity non-invasively by hyperpolarized [1,4-13C]fumarate MR imaging. The combined in vitro and in vivo biomarker of AKI responds to the essential requirements for a new reliable biomarker of AKI. PMID:28094329

  12. The multifaceted role of the renal microvasculature during acute kidney injury

    PubMed Central

    Maringer, Katherine

    2016-01-01

    Pediatric acute kidney injury (AKI) represents a complex disease process for clinicians as it is multifactorial in cause and only limited treatment or preventatives are available. The renal microvasculature has recently been implicated in AKI as a strong therapeutic candidate involved in both injury and recovery. Significant progress has been made in the ability to study the renal microvasculature following ischemic AKI and its role in repair. Advances have also been made in elucidating cell–cell interactions and the molecular mechanisms involved in these interactions. The ability of the kidney to repair post AKI is closely linked to alterations in hypoxia, and these studies are elucidated in this review. Injury to the microvasculature following AKI plays an integral role in mediating the inflammatory response, thereby complicating potential therapeutics. However, recent work with experimental animal models suggests that the endothelium and its cellular and molecular interactions are attractive targets to prevent injury or hasten repair following AKI. Here, we review the cellular and molecular mechanisms of the renal endothelium in AKI, as well as repair and recovery, and potential therapeutics to prevent or ameliorate injury and hasten repair. PMID:26493067

  13. Glomerular haematuria, renal interstitial haemorrhage and acute kidney injury.

    PubMed

    Martín Cleary, Catalina; Moreno, Juan Antonio; Fernández, Beatriz; Ortiz, Alberto; Parra, Emilio G; Gracia, Carolina; Blanco-Colio, Luis M; Barat, Antonio; Egido, Jesús

    2010-12-01

    Macroscopic haematuria of glomerular origin has been associated with acute kidney injury. We report a patient with IgA nephropathy, macroscopic haematuria and acute kidney injury. Systemic anticoagulation may have aggravated haematuria. There was extensive interstitial and intratubular red blood cell extravasation, and interstitial haemosiderin deposits. The abundant presence of macrophages expressing the haemoglobin scavenger receptor CD163 and of cells stained for oxidative stress markers (NADPH-p22 phox and heme-oxigenase-1) in areas of interstitial haemorrhage and red blood cell cast-containing tubules provided evidence for a role for free haemoglobin in tubulointerstitial renal injury in human glomerular disease.

  14. Bath Salts: A Newly Recognized Cause of Acute Kidney Injury

    PubMed Central

    McNeely, Jonathan; Parikh, Samir; Valentine, Christopher; Haddad, Nabil; Shidham, Ganesh; Rovin, Brad; Hebert, Lee; Agarwal, Anil

    2012-01-01

    Bath salts are substance of abuse that are becoming more common and are difficult to recognize due to negative toxicology screening. Acute kidney injury due to bath salt use has not previously been described. We present the case of a previously healthy male who developed acute kidney injury and dialysis dependence after bath salt ingestion and insufflation. This was self-reported with negative toxicology screening. Clinical course was marked by severe hyperthermia, hyperkalemia, rhabdomyolysis, disseminated intravascular coagulation, oliguria, and sepsis. We discuss signs and symptoms, differential diagnoses, potential mechanisms of injury, management, and review of the literature related to bath salt toxicity. PMID:24555135

  15. Giant multinucleated macrophages occur in acute spinal cord injury.

    PubMed

    Leskovar, A; Turek, J; Borgens, R B

    2001-05-01

    Using a cell-isolation and -culture procedure specific for macrophages, we report the existence of giant (more than 50 microm diameter), multinucleated macrophages within an acute, 5-day-old adult rat spinal cord injury. The size and multinuclearity of these isolated giant cells was confirmed using transmission electron microscopy. Giant macrophages are markers for long-term infection, disease, and chronic injury in other soft tissues and are unexpected in the acute inflammatory stage of central nervous system injury. To our knowledge, this descriptive report is the first confirming the existence of giant macrophages in any injured nervous tissue, with additional data suggesting some of these cells to be multinucleated.

  16. Inhibition of HDAC6 protects against rhabdomyolysis-induced acute kidney injury.

    PubMed

    Shi, Yingfeng; Xu, Liuqing; Tang, Jinhua; Fang, Lu; Ma, Shuchen; Ma, Xiaoyan; Nie, Jing; Pi, Xiaoling; Qiu, Andong; Zhuang, Shougang; Liu, Na

    2017-03-01

    Histone deacetylase 6 (HDAC6) inhibition has been reported to protect against ischemic stroke and prolong survival after sepsis in animal models. However, it remains unknown whether HDAC6 inhibition offers a renoprotective effect after acute kidney injury (AKI). In this study, we examined the effect of tubastatin A (TA), a highly selective inhibitor of HDAC6, on AKI in a murine model of glycerol (GL) injection-induced rhabdomyolysis. Following GL injection, the mice developed severe acute tubular injury as indicated by renal dysfunction; expression of neutrophil gelatinase-associated lipocalin (NGAL), an injury marker of renal tubules; and an increase of TdT-mediated dUTP nick-end labeling (TUNEL)-positive tubular cells. These changes were companied by increased HDAC6 expression in the cytoplasm of renal tubular cells. Administration of TA significantly reduced serum creatinine and blood urea nitrogen levels as well as attenuated renal tubular damage in injured kidneys. HDAC6 inhibition also resulted in decreased expression of NGAL, reduced apoptotic cell, and inactivated caspase-3 in the kidney after acute injury. Moreover, injury to the kidney increased phosphorylation of nuclear factor (NF)-κB and expression of multiple cytokines/chemokines including tumor necrotic factor-α and interleukin-6 and monocyte chemoattractant protein-1, as well as macrophage infiltration. Treatment with TA attenuated all those responses. Finally, HDAC6 inhibition reduced the level of oxidative stress by suppressing malondialdehyde (MDA) and preserving expression of superoxide dismutase (SOD) in the injured kidney. Collectively, these data indicate that HDAC6 contributes to the pathogenesis of rhabdomyolysis-induced AKI and suggest that HDAC6 inhibitors have therapeutic potential for AKI treatment.

  17. Molecular mediators of hypoxic-ischemic injury and implications for epilepsy in the developing brain.

    PubMed

    Hossain, Mir Ahamed

    2005-09-01

    Perinatal hypoxia-ischemia (HI) is the most common cause of cerebral palsy, and an important consequence of perinatal HI is epilepsy. Epilepsy is a disorder in which the balance between cerebral excitability and inhibition is tipped toward uncontrolled excitability. Selected neuronal circuits as well as certain populations of glial cells die from the excitotoxicity triggered by HI. Excitotoxicity, a term referring to cell death caused by overstimulation of the excitatory glutamate neurotransmitter receptors, plays a critical role in brain injury caused by perinatal HI. Ample evidence suggests distinct differences between the immature and mature brain with respect to the pathology and consequences of hypoxic-ischemic brain injury. Thus, the intrinsic vulnerability of specific cell types and systems in the developing brain is particularly important in determining the final pattern of damage and functional disability caused by perinatal HI. These patterns of neuronal vulnerability are associated with clinical syndromes of neurologic disorders such as cerebral palsy, epilepsy, and seizures. Recent studies have uncovered important molecular and cellular aspects of hypoxic-ischemic brain injury. The cascade of biochemical and histopathological events initiated by HI can extend for days to weeks after the insult is triggered, which may provide a "therapeutic window" for intervening in the pathogenesis in the developing brain. Activation of apoptotic programs accounts for the majority of HI-induced pathophysiology in neonatal brain disorders. New experimental approaches to protecting brain tissue from the effects of neonatal HI include administration of neuronal growth factors and effective inhibition of the death effector pathways, such as caspase cascade, and their downstream targets, which execute apoptosis and/or induction of their regulatory cellular proteins. Our recent findings that a novel neuronal protein, neuronal pentraxin 1 (NP1), is induced following HI in

  18. Resveratrol Pretreatment Decreases Ischemic Injury and Improves Neurological Function Via Sonic Hedgehog Signaling After Stroke in Rats.

    PubMed

    Yu, Pingping; Wang, Li; Tang, Fanren; Zeng, Li; Zhou, Luling; Song, Xiaosong; Jia, Wei; Chen, Jixiang; Yang, Qin

    2017-01-01

    Resveratrol has neuroprotective effects for ischemic cerebral stroke. However, its neuroprotective mechanism for stroke is less well understood. Beneficial actions of the activated Sonic hedgehog (Shh) signaling pathway in stroke, such as improving neurological function, promoting neurogenesis, anti-oxidative, anti-apoptotic, and pro-angiogenic effects, have been noted, but relatively little is known about the role of Shh signaling in resveratrol-reduced cerebral ischemic injury after stroke. The present study tests whether the Shh pathway mediates resveratrol to decrease cerebral ischemic injury and improve neurological function after stroke. We observed that resveratrol pretreatment significantly improved neurological function, decreased infarct volume, enhanced vitality, and reduced apoptosis of neurons in vivo and vitro after stroke. Meanwhile, expression levels of Shh, Ptc-1, Smo, and Gli-1 mRNAs were significantly upregulated and Gli-1 was relocated to the nucleus. Intriguingly, in vivo and in vitro inhibition of the Shh signaling pathway with cyclopamine, a Smo inhibitor, completely reversed the above effects of resveratrol. These results suggest that decreased cerebral ischemic injury and improved neurological function by resveratrol may be mediated by the Shh signaling pathway.

  19. Treatment Result in the Initial Stage of Kanazawa Mobile Embolectomy Team for Acute Ischemic Stroke

    PubMed Central

    UCHIYAMA, Naoyuki; MISAKI, Kouichi; MOHRI, Masanao; KAMIDE, Tomoya; HIROTA, Yuichi; HIGASHI, Ryo; MINAMIDE, Hisato; KOHDA, Yukihiko; ASAHI, Takashi; SHOIN, Katsuo; IWATO, Masayuki; KITA, Daisuke; HAMADA, Yoshitaka; YOSHIDA, Yuya; NAKADA, Mitsutoshi

    2016-01-01

    Five recent multicenter randomized controlled trials (RCTs) have clearly shown the superiority of mechanical thrombectomy in large vessel occlusion acute ischemic stroke compared to systemic thrombolysis. Although 14 hospitals in Ishikawa prefecture have uninterrupted availability of systemic thrombolysis, mechanical thrombectomy is not available at all of these hospitals. Therefore, we established a Kanazawa mobile embolectomy team (KMET), which could travel to these hospitals and perform the acute reperfusion therapy. In this article, we report early treatment outcomes and validate the effectiveness of a network between affiliated hospitals and KMET. Between January 2014 and December 2015, 48 patients, aged 45–92 years (mean: 73.0 years), underwent acute reperfusion therapy provided by KMET in 10 affiliated hospitals of Kanazawa University Hospital. The pre-treatment NIHSS scores ranged from 5 to 39 (mean: 19.1). ASPECTS+W ranged from 1 to 11 (mean: 7.3). Successful revascularization, defined as thrombolysis in cerebral infarction (TICI) 2b or 3, was achieved in 38/48 cases (80%), and a good outcome, defined as modified Rankin Scale (mRS) score from 0 to 2 at 90 days after the treatment, was achieved in 24/48 cases (50%). There were two cases of intracranial bleeding (4%). Mean time from onset to recanalization was 297 min. These results, which are similar to those of five previous RCTs, suggest that a collaborative network between affiliated hospitals and KMET is effective for acute reperfusion therapy in local areas wherein experienced neuroendovascular specialists are insufficient. PMID:27725522

  20. Laboratory Test Surveillance following Acute Kidney Injury

    PubMed Central

    Matheny, Michael E.; Peterson, Josh F.; Eden, Svetlana K.; Hung, Adriana M.; Speroff, Theodore; Abdel-Kader, Khaled; Parr, Sharidan K.; Ikizler, T. Alp; Siew, Edward D.

    2014-01-01

    Background Patients with hospitalized acute kidney injury (AKI) are at increased risk for accelerated loss of kidney function, morbidity, and mortality. We sought to inform efforts at improving post-AKI outcomes by describing the receipt of renal-specific laboratory test surveillance among a large high-risk cohort. Methods We acquired clinical data from the Electronic health record (EHR) of 5 Veterans Affairs (VA) hospitals to identify patients hospitalized with AKI from January 1st, 2002 to December 31st, 2009, and followed these patients for 1 year or until death, enrollment in palliative care, or improvement in renal function to estimated GFR (eGFR) ≥60 L/min/1.73 m2. Using demographic data, administrative codes, and laboratory test data, we evaluated the receipt and timing of outpatient testing for serum concentrations of creatinine and any as well as quantitative proteinuria recommended for CKD risk stratification. Additionally, we reported the rate of phosphorus and parathyroid hormone (PTH) monitoring recommended for chronic kidney disease (CKD) patients. Results A total of 10,955 patients admitted with AKI were discharged with an eGFR<60 mL/min/1.73 m2. During outpatient follow-up at 90 and 365 days, respectively, creatinine was measured on 69% and 85% of patients, quantitative proteinuria was measured on 6% and 12% of patients, PTH or phosphorus was measured on 10% and 15% of patients. Conclusions Measurement of creatinine was common among all patients following AKI. However, patients with AKI were infrequently monitored with assessments of quantitative proteinuria or mineral metabolism disorder, even for patients with baseline kidney disease. PMID:25117447

  1. Acute kidney injury in pregnancy: a clinical challenge.

    PubMed

    Machado, Susana; Figueiredo, Nuno; Borges, Andreia; São José Pais, Maria; Freitas, Luís; Moura, Paulo; Campos, Mário

    2012-01-01

    The incidence of acute kidney injury in pregnancy declined significantly over the second half of the 20th century; however, it is still associated with major maternal and perinatal morbidity and mortality. A set of systemic and renal physiological adaptive mechanisms occur during a normal gestation that will constrain several changes in laboratory parameters of renal function, electrolytes, fluid and acid-base balances. The diagnosis of acute kidney injury in pregnancy is based on the serum creatinine increase. The usual formulas for estimating glomerular filtration rate are not validated in this population. During the first trimester of gestation, acute kidney injury develops most often due to hyperemesis gravidarum or septic abortion. In the third trimester, the differential diagnosis is more challenging for the obstetrician and the nephrologist and comprises some pathologies that are reviewed in this article: preeclampsia/HELLP syndrome, acute fatty liver of pregnancy and thrombotic microangiopathies.

  2. Renal Dysfunction and Thrombolytic Therapy in Patients With Acute Ischemic Stroke

    PubMed Central

    Hao, Zilong; Yang, Chunsong; Liu, Ming; Wu, Bo

    2014-01-01

    Abstract Renal dysfunction is a prevalent comorbidity in acute ischemic stroke patients requiring thrombolytic therapy. However, the effect of renal dysfunction on the clinical outcome of this population remains controversial. This study aimed to evaluate the safety and effectiveness of thrombolytic therapy in acute stroke patients with renal dysfunction using a meta-analysis. We systematically searched PubMed and EMBASE for studies that evaluated the relationship between renal dysfunction and intravenous tissue plasminogen activator (tPA) in patients with acute ischemic stroke. Poor outcome (modified Rankin Scale ≥2), mortality, and symptomatic intracranial hemorrhage (ICH) and any ICH were analyzed. Fourteen studies were included (N = 53,553 patients). The mean age ranged from 66 to 75 years. The proportion of male participants was 49% to 74%. The proportion of renal dysfunction varied from 21.9% to 83% according to different definitions. Based on 9 studies with a total of 7796 patients, the meta-analysis did not identify a significant difference in the odds of poor outcome (odds ratio [OR] = 1.06; 95% confidence interval [CI]: 0.96–1.16; I2 = 44.5) between patients with renal dysfunction and those without renal dysfunction. Patients with renal dysfunction were more likely to die after intravenous thrombolysis (OR = 1.13; 95% CI: 1.05–1.21; I2 = 70.3). No association was observed between symptomatic ICH (OR = 1.02; 95% CI: 0.94–1.10; I2 = 0) and any ICH (OR = 1.07; 95% CI: 0.96–1.18; I2 = 25.8). Renal dysfunction does not increase the risk of poor outcome and ICH after stroke thrombolysis. Renal dysfunction should not be a contraindication for administration of intravenous thrombolysis to eligible patients. PMID:25526464

  3. The anatomy and biomechanics of acute and chronic whiplash injury.

    PubMed

    Siegmund, Gunter P; Winkelstein, Beth A; Ivancic, Paul C; Svensson, Mats Y; Vasavada, Anita

    2009-04-01

    Whiplash injury is the most common motor vehicle injury, yet it is also one of the most poorly understood. Here we examine the evidence supporting an organic basis for acute and chronic whiplash injuries and review the anatomical sites within the neck that are potentially injured during these collisions. For each proposed anatomical site--facet joints, spinal ligaments, intervertebral discs, vertebral arteries, dorsal root ganglia, and neck muscles--we present the clinical evidence supporting that injury site, its relevant anatomy, the mechanism of and tolerance to injury, and the future research needed to determine whether that site is responsible for some whiplash injuries. This article serves as a snapshot of the current state of whiplash biomechanics research and provides a roadmap for future research to better understand and ultimately prevent whiplash injuries.

  4. Update on traumatic acute spinal cord injury. Part 2.

    PubMed

    Mourelo Fariña, M; Salvador de la Barrera, S; Montoto Marqués, A; Ferreiro Velasco, M E; Galeiras Vázquez, R

    2017-02-01

    The aim of treatment in acute traumatic spinal cord injury is to preserve residual neurologic function, avoid secondary injury, and restore spinal alignment and stability. In this second part of the review, we describe the management of spinal cord injury focusing on issues related to short-term respiratory management, where the preservation of diaphragmatic function is a priority, with prediction of the duration of mechanical ventilation and the need for tracheostomy. Surgical assessment of spinal injuries based on updated criteria is discussed, taking into account that although the type of intervention depends on the surgical team, nowadays treatment should afford early spinal decompression and stabilization. Within a comprehensive strategy in spinal cord injury, it is essential to identify and properly treat patient anxiety and pain associated to spinal cord injury, as well as to prevent and ensure the early diagnosis of complications secondary to spinal cord injury (thromboembolic disease, gastrointestinal and urinary disorders, pressure ulcers).

  5. Very-late-antigen-4 (VLA-4)-mediated brain invasion by neutrophils leads to interactions with microglia, increased ischemic injury and impaired behavior in experimental stroke.

    PubMed

    Neumann, Jens; Riek-Burchardt, Monika; Herz, Josephine; Doeppner, Thorsten R; König, Rebecca; Hütten, Heiko; Etemire, Eloho; Männ, Linda; Klingberg, Anika; Fischer, Thomas; Görtler, Michael W; Heinze, Hans-Jochen; Reichardt, Peter; Schraven, Burkhart; Hermann, Dirk M; Reymann, Klaus G; Gunzer, Matthias

    2015-02-01

    Neuronal injury from ischemic stroke is aggravated by invading peripheral immune cells. Early infiltrates of neutrophil granulocytes and T-cells influence the outcome of stroke. So far, however, neither the timing nor the cellular dynamics of neutrophil entry, its consequences for the invaded brain area, or the relative importance of T-cells has been extensively studied in an intravital setting. Here, we have used intravital two-photon microscopy to document neutrophils and brain-resident microglia in mice after induction of experimental stroke. We demonstrated that neutrophils immediately rolled, firmly adhered, and transmigrated at sites of endothelial activation in stroke-affected brain areas. The ensuing neutrophil invasion was associated with local blood-brain barrier breakdown and infarct formation. Brain-resident microglia recognized both endothelial damage and neutrophil invasion. In a cooperative manner, they formed cytoplasmic processes to physically shield activated endothelia and trap infiltrating neutrophils. Interestingly, the systemic blockade of very-late-antigen-4 immediately and very effectively inhibited the endothelial interaction and brain entry of neutrophils. This treatment thereby strongly reduced the ischemic tissue injury and effectively protected the mice from stroke-associated behavioral impairment. Behavioral preservation was also equally well achieved with the antibody-mediated depletion of myeloid cells or specifically neutrophils. In contrast, T-cell depletion more effectively reduced the infarct volume without improving the behavioral performance. Thus, neutrophil invasion of the ischemic brain is rapid, massive, and a key mediator of functional impairment, while peripheral T-cells promote brain damage. Acutely depleting T-cells and inhibiting brain infiltration of neutrophils might, therefore, be a powerful early stroke treatment.

  6. Biological Signatures of Brain Damage Associated with High Serum Ferritin Levels in Patients with Acute Ischemic Stroke and Thrombolytic Treatment

    PubMed Central

    Millán, Mónica; Sobrino, Tomás; Arenillas, Juan Francisco; Rodríguez-Yáñez, Manuel; García, María; Nombela, Florentino; Castellanos, Mar; de la Ossa, Natalia Pérez; Cuadras, Patricia; Serena, Joaquín; Castillo, José; Dávalos, Antoni

    2008-01-01

    Background and purpose: Increased body iron stores have been related to greater oxidative stress and brain injury in clinical and experimental cerebral ischemia and reperfusion. We aimed to investigate the biological signatures of excitotoxicity, inflammation and blood brain barrier disruption potentially associated with high serum ferritin levels-related damage in acute stroke patients treated with i.v. t-PA. Methods: Serum levels of ferritin (as index of increased cellular iron stores), glutamate, interleukin-6, matrix metalloproteinase-9 and cellular fibronectin were determined in 134 patients treated with i.v. t-PA within 3 hours from stroke onset in blood samples obtained before t-PA treatment, at 24 and 72 hours. Results: Serum ferritin levels before t-PA infusion correlated to glutamate (r = 0.59, p < 0.001) and interleukin-6 (r = 0.55, p <0.001) levels at baseline, and with glutamate (r = 0.57,p <0.001), interleukin-6 (r = 0.49,p <0.001), metalloproteinase-9 (r = 0.23, p = 0.007) and cellular fibronectin (r = 0.27, p = 0.002) levels measured at 24 hours and glutamate (r = 0.415, p < 0.001), interleukin-6 (r = 0.359, p < 0.001) and metalloproteinase-9 (r = 0.261, p = 0.004) at 72 hours. The association between ferritin and glutamate levels remained after adjustment for confounding factors in generalized linear models. Conclusions: Brain damage associated with increased iron stores in acute ischemic stroke patients treated with iv. tPA may be mediated by mechanisms linked to excitotoxic damage. The role of inflammation, blood brain barrier disruption and oxidative stress in this condition needs further research. PMID:19096131

  7. Nestin(+) kidney resident mesenchymal stem cells for the treatment of acute kidney ischemia injury.

    PubMed

    Jiang, Mei Hua; Li, Guilan; Liu, Junfeng; Liu, Longshan; Wu, Bingyuan; Huang, Weijun; He, Wen; Deng, Chunhua; Wang, Dong; Li, Chunling; Lahn, Bruce T; Shi, Chenggang; Xiang, Andy Peng

    2015-05-01

    Renal resident mesenchymal stem cells (MSCs) are important regulators of kidney homeostasis, repair or regeneration. However, natural distribution and the starting population properties of these cells remain elusive because of the lack of specific markers. Here, we identified post-natal kidney derived Nestin(+) cells that fulfilled all of the criteria as a mesenchymal stem cell. These isolated Nestin(+) cells expressed the typical cell-surface marker of MSC, including Sca-1, CD44, CD106, NG2 and PDGFR-α. They were capable of self-renewal, possessed high clonogenic potential and extensive proliferation for more than 30 passages. Under appropriate differentiation conditions, these cells could differentiate into adipocytes, osteocytes, chondrocytes and podocytes. After intravenous injection into acute kidney injury mice, Nestin(+) cells contributed to functional improvement by significantly decreasing the peak level of serum creatinine and BUN, and reducing the damaged cell apoptosis. Furthermore, conditioned medium from Nestin(+) cells could protect against ischemic acute renal failure partially through paracrine factor VEGF. Taken together, our findings indicate that renal resident Nestin(+) MSCs can be derived, propagated, differentiated, and repair the acute kidney injury, which may shed new light on understanding MSCs biology and developing cell replacement therapies for kidney disease.

  8. Acute lung injury in fulminant hepatic failure following paracetamol poisoning.

    PubMed Central

    Baudouin, S. V.; Howdle, P.; O'Grady, J. G.; Webster, N. R.

    1995-01-01

    BACKGROUND--There is little information on the incidence of acute lung injury or changes in the pulmonary circulation in acute liver failure. The aim of this study was to record the incidence of acute lung injury in fulminant hepatic failure caused by paracetamol poisoning, to document the associated pulmonary circulatory changes, and to assess the impact of lung injury on patient outcome. METHODS--The degree of lung injury was retrospectively assessed by a standard scoring system (modified from Murray) in all patients with fulminant hepatic failure caused by paracetamol poisoning, admitted to the intensive care unit over a one year period. The severity of liver failure and illness, other organ system failure, and patient outcome were also analysed. RESULTS--Twenty four patients with paracetamol-induced liver failure were admitted and nine developed lung injury of whom eight (33%) had severe injury (Murray score > 2.5). In two patients hypoxaemia contributed to death. Patients with lung injury had higher median encephalopathy grades (4 v 2 in the non-injured group) and APACHE II scores (29 v 16). Circulatory failure, requiring vasoconstrictor support, occurred in all patients with lung injury but in only 40% of those without. Cerebral oedema, as detected by abnormal rises in intracranial pressure, also occurred in all patients with lung injury but in only 27% of the non-injured patients. The incidence of renal failure requiring renal replacement therapy was similar in both groups (67% and 47%). Pulmonary artery occlusion pressures were normal in the lung injury group. Cardiac output was high (median 11.2 1/min), systemic vascular resistance low (median 503 dynes/s/cm-5), and pulmonary vascular resistance low (median 70 dynes/s/cm-5), but not significantly different from the group without lung injury. Mortality was much higher in the lung injury group than in the non-injured group (89% v 13%). CONCLUSIONS--Acute lung injury was common in patients with paracetamol

  9. Neuroprotective effects of oligodendrocyte progenitor cell transplantation in premature rat brain following hypoxic-ischemic injury.

    PubMed

    Chen, Long-Xia; Ma, Si-Min; Zhang, Peng; Fan, Zi-Chuan; Xiong, Man; Cheng, Guo-Qiang; Yang, Yi; Qiu, Zi-Long; Zhou, Wen-Hao; Li, Jin

    2015-01-01

    Periventricular leukomalacia (PVL) is a common ischemic brain injury in premature infants for which there is no effective treatment. The objective of this study was to determine whether transplanted mouse oligodendrocyte progenitor cells (OPCs) have neuroprotective effects in a rat model of PVL. Hypoxia-ischemia (HI) was induced in 3-day-old rat pups by left carotid artery ligation, followed by exposure to 6% oxygen for 2.5 h. Animals were assigned to OPC transplantation or sham control groups and injected with OPCs or PBS, respectively, and sacrificed up to 6 weeks later for immunohistochemical analysis to investigate the survival and differentiation of transplanted OPCs. Apoptosis was evaluated by double immunolabeling of brain sections for caspase-3 and neuronal nuclei (NeuN), while proliferation was assessed using a combination of anti-Nestin and -bromodeoxyuridine antibodies. The expression of brain-derived neurotrophic factor (BDNF) and Bcl-2 was examined 7 days after OPC transplantation. The Morris water maze was used to test spatial learning and memory. The results showed that transplanted OPCs survived and formed a myelin sheath, and stimulated BDNF and Bcl-2 expression and the proliferation of neural stem cells (NSC), while inhibiting HI-induced neuronal apoptosis relative to control animals. Moreover, deficits in spatial learning and memory resulting from HI were improved by OPC transplantation. These results demonstrate an important neuroprotective role for OPCs that can potentially be exploited in cell-based therapeutic approaches to minimize HI-induced brain injury.

  10. Estradiol alleviates the ischemic brain injury-induced decrease of neuronal calcium sensor protein hippocalcin.

    PubMed

    Koh, Phil-Ok

    2014-10-17

    Estradiol has protective and reparative effects in neurodegenerative diseases. Hippocalcin is a neuronal calcium-sensor protein that acts as a calcium buffer to regulate the intracellular concentration of Ca(2+). This study was investigated to elucidate whether estradiol regulates hippocalcin expression in a focal cerebral ischemia model and glutamate-treated neuronal cells. An ovariectomy was performed in adult female rats, and vehicle or estradiol was administered before middle cerebral artery occlusion (MCAO). Cerebral cortex tissues were collected at 24h after MCAO. A proteomic approach revealed that hippocalcin expression decreased in vehicle-treated animals with combined MCAO, while estradiol treatment attenuated this decrease. Reverse transcription-PCR and Western blot analyses also showed that estradiol administration prevented the MCAO injury-induced decrease in hippocalcin expression. In cultured hippocampal cells, glutamate exposure increased the intracellular Ca(2+) concentration, which was rescued by the presence of estradiol. Moreover, glutamate toxicity decreased hippocalcin expression, whereas estradiol attenuated this decrease. Together, these findings suggest that estradiol has a neuroprotective function by regulating hippocalcin expression and intracellular Ca(2+) levels in ischemic brain injury.

  11. The vestigial enzyme D-dopachrome tautomerase protects the heart against ischemic injury.

    PubMed

    Qi, Dake; Atsina, Kwame; Qu, Lintao; Hu, Xiaoyue; Wu, Xiaohong; Xu, Bin; Piecychna, Marta; Leng, Lin; Fingerle-Rowson, Günter; Zhang, Jiasheng; Bucala, Richard; Young, Lawrence H

    2014-08-01

    The cellular response to stress involves the recruitment and coordination of molecular signaling pathways that prevent cell death. D-dopachrome tautomerase (DDT) is an enzyme that lacks physiologic substrates in mammalian cells, but shares partial sequence and structural homology with macrophage migration inhibitory factor (MIF). Here, we observed that DDT is highly expressed in murine cardiomyocytes and secreted by the heart after ischemic stress. Antibody-dependent neutralization of secreted DDT exacerbated both ischemia-induced cardiac contractile dysfunction and necrosis. We generated cardiomyocyte-specific DDT knockout mice (Myh6-Cre Ddtfl/fl), which demonstrated normal baseline cardiac size and function, but had an impaired physiologic response to ischemia-reperfusion. Hearts from Myh6-Cre Ddtfl/fl mice exhibited more necrosis and LV contractile dysfunction than control hearts after coronary artery ligation and reperfusion. Furthermore, treatment with DDT protected isolated hearts against injury and contractile dysfunction after ischemia-reperfusion. The protective effect of DDT required activation of the metabolic stress enzyme AMP-activated protein kinase (AMPK), which was mediated by a CD74/CaMKK2-dependent mechanism. Together, our data indicate that cardiomyocyte secretion of DDT has important autocrine/paracrine effects during ischemia-reperfusion that protect the heart against injury.

  12. Optical spectroscopy approach for the predictive assessment of kidney functional recovery following ischemic injury

    NASA Astrophysics Data System (ADS)

    Raman, Rajesh N.; Pivetti, Christopher D.; Rubenchik, Alexander M.; Matthews, Dennis L.; Troppmann, Christoph; Demos, Stavros G.

    2010-02-01

    Tissue that has undergone significant yet unknown amount of ischemic injury is frequently encountered in organ transplantation and trauma clinics. With no reliable real-time method of assessing the degree of injury incurred in tissue, surgeons generally rely on visual observation which is subjective. In this work, we investigate the use of optical spectroscopy methods as a potentially more reliable approach. Previous work by various groups was strongly suggestive that tissue autofluorescence from NADH obtained under UV excitation is sensitive to metabolic response changes. To test and expand upon this concept, we monitored autofluorescence and light scattering intensities of injured vs. uninjured rat kidneys via multimodal imaging under 355 nm, 325 nm, and 266 nm excitation as well as scattering under 500 nm illumination. 355 nm excitation was used to probe mainly NADH, a metabolite, while 266 nm excitation was used to probe mainly tryptophan to correct for non-metabolic signal artifacts. The ratio of autofluorescence intensities derived under these two excitation wavelengths was calculated and its temporal profile was fit to a relaxation model. Time constants were extracted, and longer time constants were associated with kidney dysfunction. Analysis of both the autofluorescence and light scattering images suggests that changes in microstructure tissue morphology, blood absorption spectral characteristics, and pH contribute to the behavior of the observed signal which may be used to obtain tissue functional information and offer predictive capability.

  13. Optical Spectroscopy Approach for the Predictive Assessment of Kidney Functional Recovery Following Ischemic Injury

    SciTech Connect

    Raman, R N; Pivetti, C D; Rubenchik, A M; Matthews, D L; Troppmann, C; Demos, S G

    2010-02-11

    Tissue that has undergone significant yet unknown amount of ischemic injury is frequently encountered in organ transplantation and trauma clinics. With no reliable real-time method of assessing the degree of injury incurred in tissue, surgeons generally rely on visual observation which is subjective. In this work, we investigate the use of optical spectroscopy methods as a potentially more reliable approach. Previous work by various groups was strongly suggestive that tissue autofluorescence from NADH obtained under UV excitation is sensitive to metabolic response changes. To test and expand upon this concept, we monitored autofluorescence and light scattering intensities of injured vs. uninjured rat kidneys via multimodal imaging under 355 nm, 325 nm, and 266 nm excitation as well as scattering under 500 nm illumination. 355 nm excitation was used to probe mainly NADH, a metabolite, while 266 nm excitation was used to probe mainly tryptophan to correct for non-metabolic signal artifacts. The ratio of autofluorescence intensities derived under these two excitation wavelengths was calculated and its temporal profile was fit to a relaxation model. Time constants were extracted, and longer time constants were associated with kidney dysfunction. Analysis of both the autofluorescence and light scattering images suggests that changes in microstructure tissue morphology, blood absorption spectral characteristics, and pH contribute to the behavior of the observed signal which may be used to obtain tissue functional information and offer predictive capability.

  14. C60 Fullerene as Promising Therapeutic Agent for the Prevention and Correction of Skeletal Muscle Functioning at Ischemic Injury

    NASA Astrophysics Data System (ADS)

    Nozdrenko, D. M.; Zavodovskyi, D. O.; Matvienko, T. Yu.; Zay, S. Yu.; Bogutska, K. I.; Prylutskyy, Yu. I.; Ritter, U.; Scharff, P.

    2017-02-01

    The therapeutic effect of pristine C60 fullerene aqueous colloid solution (C60FAS) on the functioning of the rat soleus muscle at ischemic injury depending on the time of the general pathogenesis of muscular system and method of administration C60FAS in vivo was investigated. It was found that intravenous administration of C60FAS is the optimal for correction of speed macroparameters of contraction for ischemic muscle damage. At the same time, intramuscular administration of C60FAS shows pronounced protective effect in movements associated with the generation of maximum force responses or prolonged contractions, which increase the muscle fatigue level. Analysis of content concentration of creatine phosphokinase and lactate dehydrogenase enzymes in the blood of experimental animals indicates directly that C60FAS may be a promising therapeutic agent for the prevention and correction of ischemic-damaged skeletal muscle function.

  15. Biomarkers in acute kidney injury: Evidence or paradigm?

    PubMed

    Lombi, Fernando; Muryan, Alexis; Canzonieri, Romina; Trimarchi, Hernán

    2016-01-01

    Acute kidney injury in the critically ill represents an independent risk factor of morbidity and mortality in the short and long terms, with significant economic impacts in terms of public health costs. Currently its diagnosis is still based on the presence of oliguria and/or a gradual increase in serum creatinine, which make the diagnosis a delayed event and to detriment of the so-called 'therapeutic window'. The appearance of new biomarkers of acute kidney injury could potentially improve this situation, contributing to the detection of 'subclinical acute kidney injury', which could allow the precocious employment of multiple treatment strategies in order to preserve kidney function. However these new biomarkers display sensitive features that may threaten their full capacity of action, which focus specifically on their additional contribution in the early approach of the situation, given the lack of specific validated treatments for acute kidney injury. This review aims to analyze the strengths and weaknesses of these new tools in the early management of acute kidney injury.

  16. Serum Levels of Substance P and Mortality in Patients with a Severe Acute Ischemic Stroke

    PubMed Central

    Lorente, Leonardo; Martín, María M.; Almeida, Teresa; Pérez-Cejas, Antonia; Ramos, Luis; Argueso, Mónica; Riaño-Ruiz, Marta; Solé-Violán, Jordi; Hernández, Mariano

    2016-01-01

    Substance P (SP), a member of tachykinin family, is involved in the inflammation of the central nervous system and in the appearance of cerebral edema. Higher serum levels of SP have been found in 18 patients with cerebral ischemia compared with healthy controls. The aim of our multi-center study was to analyze the possible association between serum levels of SP and mortality in ischemic stroke patients. We included patients with malignant middle cerebral artery infarction (MMCAI) and a Glasgow Coma Scale (GCS) lower than 9. Non-surviving patients at 30 days (n = 31) had higher serum concentrations of SP levels at diagnosis of severe MMCAI than survivors (n = 30) (p < 0.001). We found in multiple regression an association between serum concentrations of SP higher than 362 pg/mL and mortality at 30 days (Odds Ratio = 5.33; 95% confidence interval = 1.541–18.470; p = 0.008) after controlling for age and GCS. Thus, the major novel finding of our study was the association between serum levels of SP and mortality in patients suffering from severe acute ischemic stroke. PMID:27338372

  17. Xenon protects left ventricular diastolic function during acute ischemia, less than ischemic preconditioning

    PubMed Central

    Baumert, Jan-H.; Roehl, Anna B.; Funcke, Sandra; Hein, Marc

    2016-01-01

    Anesthetics modify regional left ventricular (LV) dysfunction following ischemia/reperfusion but their effects on global function in this setting are less clear. Aim of this study was to test the hypothesis that xenon would limit global LV dysfunction as caused by acute anterior wall ischemia, comparable to ischemic preconditioning. In an open-chest model under thiopental anesthesia, 30 pigs underwent 60-minute left anterior descending coronary artery occlusion, followed by 120 minutes of reperfusion. A xenon group (constant inhalation from previous to ischemia through end of reperfusion) was compared to control and ischemic preconditioning. Load-independent measures of diastolic function (end-diastolic pressure-volume relation, time constant of relaxation) and systolic function (end-systolic pressure-volume relation, preload-recruitable stroke work) were determined. Heart rate, arterial pressure, cardiac output, and arterial elastance were recorded. Data were compared in 26 pigs. Ischemia impaired global diastolic but not systolic function in control, which recovered during reperfusion. Xenon limited and preconditioning abolished diastolic dysfunction during ischemia. Arterial pressure decreased during reperfusion while arterial elastance increased. Tachycardia and antero-septal wall edema during reperfusion were observed in all groups. In spite of ischemia of 40% of LV mass, global systolic function was preserved. Deterioration in global diastolic function was limited by xenon and prevented by preconditioning. PMID:27867480

  18. Endovascular Treatment of Acute and Chronic Thoracic Aortic Injury

    SciTech Connect

    Raupach, Jan Ferko, Alexander; Lojik, Miroslav; Krajina, Antonin; Harrer, Jan; Dominik, Jan

    2007-11-15

    Our aim is to present midterm results after endovascular repair of acute and chronic blunt aortic injury. Between December 1999 and December 2005, 13 patients were endovascularly treated for blunt aortic injury. Ten patients, 8 men and 2 women, mean age 38.7 years, were treated for acute traumatic injury in the isthmus region of thoracic aorta. Stent-graftings were performed between the fifth hour and the sixth day after injury. Three patients (all males; mean age, 66 years; range, 59-71 years) were treated due to the presence of symptoms of chronic posttraumatic pseudoaneurysm of the thoracic aorta (mean time after injury, 29.4 years, range, 28-32). Fifteen stent-grafts were implanted in 13 patients. In the group with acute aortic injury one patient died due to failure of endovascular technique. Lower leg paraparesis appeared in one patient; the other eight patients were regularly followed up (1-72 months; mean, 35.6 months), without complications. In the group with posttraumatic pseudoaneurysms all three patients are alive. One patient suffered postoperatively from upper arm claudication, which was treated by carotidosubclavian bypass. We conclude that the endoluminal technique can be used successfully in the acute repair of aortic trauma and its consequences. Midterm results are satisfactory, with a low incidence of neurologic complications.

  19. Diffuse Brain Injury Induces Acute Post-Traumatic Sleep

    PubMed Central

    Rowe, Rachel K.; Striz, Martin; Bachstetter, Adam D.; Van Eldik, Linda J.; Donohue, Kevin D.; O'Hara, Bruce F.; Lifshitz, Jonathan

    2014-01-01

    Objective Clinical observations report excessive sleepiness immediately following traumatic brain injury (TBI); however, there is a lack of experimental evidence to support or refute the benefit of sleep following a brain injury. The aim of this study is to investigate acute post-traumatic sleep. Methods Sham, mild or moderate diffuse TBI was induced by midline fluid percussion injury (mFPI) in male C57BL/6J mice at 9:00 or 21:00 to evaluate injury-induced sleep behavior at sleep and wake onset, respectively. Sleep profiles were measured post-injury using a non-invasive, piezoelectric cage system. In separate cohorts of mice, inflammatory cytokines in the neocortex were quantified by immunoassay, and microglial activation was visualized by immunohistochemistry. Results Immediately after diffuse TBI, quantitative measures of sleep were characterized by a significant increase in sleep (>50%) for the first 6 hours post-injury, resulting from increases in sleep bout length, compared to sham. Acute post-traumatic sleep increased significantly independent of injury severity and time of injury (9:00 vs 21:00). The pro-inflammatory cytokine IL-1β increased in brain-injured mice compared to sham over the first 9 hours post-injury. Iba-1 positive microglia were evident in brain-injured cortex at 6 hours post-injury. Conclusion Post-traumatic sleep occurs for up to 6 hours after diffuse brain injury in the mouse regardless of injury severity or time of day. The temporal profile of secondary injury cascades may be driving the significant increase in post-traumatic sleep and contribute to the natural course of recovery through cellular repair. PMID:24416145

  20. Tissue resident NK cells mediate ischemic kidney injury and are not depleted by anti-Asialo GM1 antibody

    PubMed Central

    Victorino, Francisco; Sojka, Dorothy K.; Brodsky, Kelley S.; McNamee, Eoin N.; Masterson, Joanne C.; Homann, Dirk; Yokoyama, Wayne M.; Eltzschig, Holger K.; Clambey, Eric T.

    2015-01-01

    NK cells are innate lymphoid cells important for immune surveillance, identifying and responding to stress, infection, and/or transformation. While conventional NK (cNK) cells circulate systemically, many NK cells reside in tissues where they appear to be poised to locally regulate tissue function. Here we tested the contribution of tissue-resident NK (trNK) cells to tissue homeostasis by studying ischemic injury in the mouse kidney. Parabiosis experiments demonstrate that the kidney contains a significant fraction of trNK cells under homeostatic conditions. Kidney trNK cells developed independent of NFIL3 and Tbet, and expressed a distinct cell surface phenotype as compared to cNK cells. Among these, trNK cells had reduced asialo-GM1 (AsGM1) expression relative to cNK cells, a phenotype observed in trNK cells across multiple organs and mouse strains. Strikingly, anti-AsGM1 antibody treatment, commonly used as NK cell-depleting regimen, resulted in a robust and selective depletion of cNKs, leaving trNKs largely intact. Using this differential depletion, we tested the relative contribution of cNK and trNK cells in ischemic kidney injury. Whereas anti-NK1.1 antibody effectively depleted both trNK and cNK cells and protected against ischemic-reperfusion injury, anti-AsGM1 antibody preferentially depleted cNK cells and failed to protect against injury. These data demonstrate unanticipated specificity of anti-AsGM1 antibody depletion on NK cell subsets and reveal a new approach to study the contributions of cNK and trNK cells in vivo. In total, these data demonstrate that trNK cells play a key role in modulating local responses to ischemic tissue injury in the kidney and potentially other organs. PMID:26453755

  1. Prognostic value of intravenous dipyridamole thallium scintigraphy after an acute myocardial ischemic event

    SciTech Connect

    Younis, L.T.; Byers, S.; Shaw, L.; Barth, G.; Goodgold, H.; Chaitman, B.R.

    1989-07-15

    Seventy-seven patients recovering from an acute coronary event were studied by intravenous dipyridamole thallium scintigraphy to evaluate the prognostic value and safety of the test in this patient subset. Forty-four patients (58%) had unstable angina and 33 (42%) had an acute myocardial infarction. One death occurred within 24 hours of testing. Sixty-eight patients were followed for an average of 12 months; 25, 31 and 23% had a fixed, reversible or combined thallium defect on their predischarge thallium scan. During follow-up, 10 patients died or had a nonfatal myocardial infarction; in each case, a reversible or combined myocardial thallium defect was present. Univariate analysis of 17 clinical, scintigraphic and angiographic variables showed that a reversible thallium defect and the angiographically determined extent of coronary artery disease were predictors of future cardiac events. The extent of coronary disease and global left ventricular ejection fraction were predictors of subsequent reinfarction or death. Logistic regression analyses revealed that a reversible thallium defect (p less than 0.001) and the extent of coronary disease (p less than 0.009) were the only significant predictors of a cardiac event. When death or reinfarction were the outcome variables, the extent of coronary disease (p less than 0.02) and left ventricular ejection fraction (p less than 0.06) were the only variables selected. Thus, intravenous dipyridamole thallium scintigraphy after an acute coronary ischemic syndrome is a useful and relatively safe noninvasive test to predict subsequent cardiac events.

  2. Implementing diagnostic reasoning to differentiate Todd's paralysis from acute ischemic stroke.

    PubMed

    Brosinski, Carmen M

    2014-01-01

    Emergency department clinicians with limited resources are relied upon to deliver safe and timely patient care. Clinicians rely on cognitive biases such as anchoring, availability, and premature closure based on experience and quick mental algorithms to streamline medical data and arrive at a diagnosis. Although this is a time-saving and efficient method in the management of uncomplicated illnesses, it can result in a wrong diagnosis when managing patients with complicated presentations such as a stroke or a stroke mimic. Two conditions that present similarly, making it difficult to differentiate between them, are Todd's paralysis (a stroke mimic seen in selected patients with epilepsy) and acute ischemic stroke. However, by clinical reasoning, clinicians can formulate an accurate diagnosis while avoiding diagnostic biases. Incorporating clinical reasoning into the diagnostic process consists of gathering pertinent data, performing a diagnostic time-out, and arriving at a diagnosis reflective of data findings.

  3. Developments in mechanical thrombectomy devices for the treatment of acute ischemic stroke.

    PubMed

    Mordasini, Pasquale; Gralla, Jan

    2016-01-01

    Several recent prospective randomized controlled trials of endovascular stroke therapy using latest generation thrombectomy devices, so called stent-retrievers, have shown significantly improved clinical outcome compared to the standard treatment with intra-venous thrombolysis using r-tPA alone. Despite some differences in inclusion criteria between these studies, all required non-invasive vessel imaging to proof occlusion of a major brain supplying vessel. Furthermore, in most studies additional imaging techniques were used to exclude patients with already established large cerebral infarction or unfavorable collateral or penumbral status. Patients with small infarct volume, severe neurological deficits and in whom thrombectomy can be initiated within the first 6 hours after symptom onset seem to benefit the most. Therefore, mechanical thrombectomy using stent-retrievers in addition to intra-venous thrombolysis is recommended for the treatment of acute ischemic stroke with proven major vessel occlusion in the anterior circulation.

  4. Review of technology development and clinical trials of transcranial laser therapy for acute ischemic stroke treatment

    NASA Astrophysics Data System (ADS)

    Catanzaro, Brian E.; Streeter, Jackson; de Taboada, Luis

    2010-02-01

    Stroke is the one of the leading causes of mortality in the United States, claiming 600,000 lives each year. Evidence suggests that near infrared (NIR) illumination has a beneficial effect on a variety of cells when these cells are exposed to adverse conditions. Among these conditions is the hypoxic state produced by acute ischemic stroke (AIS). To demonstrate the impact NIR Transcranial Laser Therapy (TLT) has on AIS in humans, a series of double blind, placebo controlled clinical trials were designed using the NeuroThera(R) System (NTS). The NTS was designed and developed to treat subjects non-invasively using 808 nm NIR illumination. TLT, as it applies to stroke therapy, and the NTS will be described. The results of the two clinical trials: NeuroThera(R) Safety and Efficacy Trial 1 (NEST-1) and NeuroThera(R) Safety and Efficacy Trial 2 (NEST-2) will be reviewed and discussed.

  5. Mechanical Thrombectomy in Patients With Acute Ischemic Stroke: A Health Technology Assessment

    PubMed Central

    2016-01-01

    Background In Ontario, current treatment for eligible patients who have an acute ischemic stroke is intravenous thrombolysis (IVT). However, there are some limitations and contraindications to IVT, and outcomes may not be favourable for patients with stroke caused by a proximal intracranial occlusion. An alternative is mechanical thrombectomy with newer devices, and a number of recent studies have suggested that this treatment is more effective for improving functional independence and clinical outcomes. The objective of this health technology assessment was to evaluate the clinical effectiveness and cost-effectiveness of new-generation mechanical thrombectomy devices (with or without IVT) compared to IVT alone (if eligible) in patients with acute ischemic stroke. Methods We conducted a systematic review of the literature, limited to randomized controlled trials that examined the effectiveness of mechanical thrombectomy using stent retrievers and thromboaspiration devices for patients with acute ischemic stroke. We assessed the quality of the evidence using the GRADE approach. We developed a Markov decision-analytic model to assess the cost-effectiveness of mechanical thrombectomy (with or without IVT) versus IVT alone (if eligible), calculated incremental cost-effectiveness ratios using a 5-year time horizon, and conducted sensitivity analyses to examine the robustness of the estimates. Results There was a substantial, statistically significant difference in rate of functional independence (GRADE: high quality) between those who received mechanical thrombectomy (with or without IVT) and IVT alone (odds ratio [OR] 2.39, 95% confidence interval [CI] 1.88–3.04). We did not observe a difference in mortality (GRADE: moderate quality) (OR 0.80, 95% CI 0.60–1.07) or symptomatic intracerebral hemorrhage (GRADE: moderate quality) (OR 1.11, 95% CI 0.66–1.87). In the base-case cost-utility analysis, which had a 5 year time horizon, the costs and effectiveness for

  6. Role of brain natriuretic peptide as a novel prognostic biomarker in acute ischemic stroke

    PubMed Central

    Menon, Bindu; Ramalingam, Krishnana; Conjeevaram, Jyoti; Munisusmitha, K.

    2016-01-01

    Aim: We investigated to study the prognostic importance of brain natriuretic peptide (BNP) in ischemic stroke. Materials and Methods: We prospectively enrolled 100 patients with acute ischemic stroke and measured plasma BNP levels and compared with age- and sex-matched healthy controls. Risk factors, biochemical parameters, lipid profile, carotid and vertebral Doppler, imaging, and cardiac evaluation were done. Stroke severity was assessed by the National Institutes of Health Stroke Scale (NIHSS) score on admission and functional disability by Barthel Index (BI) at 3 months. Ischemic stroke subtype was classified according to the Oxfordshire Community Stroke Project (OCSP). Data were entered in MS Excel, and appropriate statistical analysis was done using the SPSS software version 21.0. A P = 0.05 was considered as significant. Results: Mean age of patients was 55.17 ± 11.37 years with a male:female ratio 3:1. OCSP showed total anterior circulation infarct (TACI) 35, partial anterior circulation infarct 9, lacunar infarct 12, and posterior circulation infarct 44. NIHSS on admission was average 10 ± 7 and BI was 57 ± 30. BNP in patients (435 ng/ml) was very high as compared to controls (<60 ng/ml) (P < 0.001). There was a positive correlation between age and BNP (R2 = 0.34; P < 0.00); NIHSS and BNP (R2 = 0.255; P < 0.01), negative correlation between BI and BNP (R2 = −0.064; P < 0.01). Mean BNP levels across the OCSP showed higher values in TACI (F = 4.609 P = 0.005). Regression analysis showed that BNP can predict BI which was statistically significant. Conclusion: Plasma BNP levels was significantly elevated in patients with ischemic stroke. Our study concludes that high BNP levels are seen in large anterior circulation stroke and is a predictor for the poor functional outcome at 3 months. Determination of BNP levels as a biomarker could be helpful in predicting the outcome in stroke patients. PMID:27994354

  7. Acute kidney injury: what part do toll-like receptors play?

    PubMed Central

    Vallés, Patricia G; Lorenzo, Andrea Gil; Bocanegra, Victoria; Vallés, Roberto

    2014-01-01

    The innate immune system plays an important role as a first response to tissue injury. This first response is carried out via germline-encoded receptors. Toll-like receptors (TLRs) are the first identified and best studied family of pattern recognition receptors. TLRs are expressed on a variety of cell types, including epithelial cells, endothelia, dendritic cells, monocytes/macrophages, and B- and T-cells. TLRs initiate innate immune responses and concurrently shape the subsequent adaptive immune response. They are sensors of both pathogens, through the exogenous pathogen-associated molecular patterns (PAMPs), and tissue injury, through the endogenous danger-associated molecular patterns (DAMPs). TLR signaling is critical in defending against invading microorganisms; however, sustained receptor activation is also implicated in the pathogenesis of inflammatory diseases. Ischemic kidney injury involves early TLR-driven immunopathology, and the resolution of inflammation is needed for rapid regeneration of injured tubule cells. Notably, the activation of TLRs also has been implicated in epithelial repair. This review focuses on the role of TLRs and their endogenous ligands within the inflammatory response of acute kidney injury. PMID:24971030

  8. Cerebrolysin effects on neurological outcomes and cerebral blood flow in acute ischemic stroke

    PubMed Central

    Amiri-Nikpour, Mohammad Reza; Nazarbaghi, Surena; Ahmadi-Salmasi, Babak; Mokari, Tayebeh; Tahamtan, Urya; Rezaei, Yousef

    2014-01-01

    Background Cerebrolysin, a brain-derived neuropeptide, has been shown to improve the neurological outcomes of stroke, but no study has demonstrated its effect on cerebral blood flow. This study aimed to determine the cerebrolysin impact on the neurological outcomes and cerebral blood flow. Methods In a randomized, double-blinded, placebo-controlled trial, 46 patients who had acute focal ischemic stroke were randomly assigned into two groups to receive intravenously either 30 mL of cerebrolysin diluted in normal saline daily for 10 days (n=23) or normal saline alone (n=23) adjunct to 100 mg of aspirin daily. All patients were examined using the National Institutes of Health Stroke Scale and transcranial Doppler to measure the mean flow velocity and pulsatility index (PI) of their cerebral arteries at baseline as well as on days 30, 60, and 90. Results The patients’ mean age was 60±9.7 years, and 51.2% of patients were male. The National Institutes of Health Stroke Scale was significantly lower in the cerebrolysin group compared with the placebo group on day 60 (median 10, interquartile range 9–11, P=0.008) and day 90 (median 11, interquartile range 10–13.5, P=0.001). The median of PI in the right middle cerebral artery was significantly lower in the cerebrolysin group compared with the placebo group on days 30, 60, and 90 (P<0.05). One patient in the cerebrolysin group and two patients in the placebo group died before day 30 (4.3% versus 8.7%). Conclusion Cerebrolysin can be useful to improve the neurological outcomes and the PI of middle cerebral artery in patients with acute focal ischemic stroke. PMID:25516711

  9. Development and Validation of Intracranial Thrombus Segmentation on CT Angiography in Patients with Acute Ischemic Stroke

    PubMed Central

    Santos, Emilie M. M.; Marquering, Henk A.; Berkhemer, Olvert A.; van Zwam, Wim H.; van der Lugt, Aad; Majoie, Charles B.; Niessen, Wiro J.

    2014-01-01

    Background and Purpose Thrombus characterization is increasingly considered important in predicting treatment success for patients with acute ischemic stroke. The lack of intensity contrast between thrombus and surrounding tissue in CT images makes manual delineation a difficult and time consuming task. Our aim was to develop an automated method for thrombus measurement on CT angiography and validate it against manual delineation. Materials and Methods Automated thrombus segmentation was achieved using image intensity and a vascular shape prior derived from the segmentation of the contralateral artery. In 53 patients with acute ischemic stroke due to proximal intracranial arterial occlusion, automated length and volume measurements were performed. Accuracy was assessed by comparison with inter-observer variation of manual delineations using intraclass correlation coefficients and Bland–Altman analyses. Results The automated method successfully segmented the thrombus for all 53 patients. The intraclass correlation of automated and manual length and volume measurements were 0.89 and 0.84. Bland-Altman analyses yielded a bias (limits of agreement) of −0.4 (−8.8, 7.7) mm and 8 (−126, 141) mm3 for length and volume, respectively. This was comparable to the best interobserver agreement, with an intraclass correlation coefficients of 0.90 and 0.85 and a bias (limits of agreement) of −0.1 (−11.2, 10.9) mm and −17 (−216, 185) mm3. Conclusions The method facilitates automated thrombus segmentation for accurate length and volume measurements, is relatively fast and requires minimal user input, while being insensitive to high hematocrit levels and vascular calcifications. Furthermore, it has the potential to assess thrombus characteristics of low-density thrombi. PMID:25032691

  10. The Association of Body Mass Index and Mortality after Acute Ischemic Stroke

    PubMed Central

    Skolarus, Lesli E.; Sanchez, Brisa N.; Levine, Deborah A; Baek, Jonggyu; Kerber, Kevin A.; Morgenstern, Lewis B.; Smith, Melinda A.; Lisabeth, Lynda D.

    2015-01-01

    Background The prevalence of severe obesity is rising in the US. Although mild to moderately elevated Body Mass Index (BMI) is associated with reduced mortality after acute ischemic stroke, less is known about severe obesity. Methods and Results Acute ischemic stroke patients (n=1,791) aged ≥45 years were identified from the bi-ethnic population-based Brain Attack Surveillance in Corpus Christi (BASIC) study from June 1, 2005 to December 31, 2010. Median follow-up was 660 days. BMI was abstracted from the medical record. Survival was estimated by BMI category (underweight normal-weight, overweight, class 1 obesity, class 2 obesity, and severe obesity) using Kaplan-Meier methods. Hazard ratios for the relationship between BMI modeled continuously and mortality were estimated from Cox regression models after adjusting for patient factors. The median BMI was 27.1 kg/m2 (interquartile range, 23.7–31.2) and 56% were Mexican American. A total of 625 (35%) patients died during the study period. Persons with higher baseline BMI had longer survival in unadjusted analysis (P<0.01). After adjusting for demographics, stroke severity, stroke and mortality risk factors, the relationship between BMI and mortality was U-shaped. The lowest mortality risk was observed among patients with an approximate BMI of 35 kg/m2, whereas those with lower or higher BMI had higher mortality risk. Conclusions Severe obesity is associated with increased post-stroke mortality in middle-aged and older adults. Stroke patients with class 2 obesity had the lowest mortality risk. More research is needed to determine weight management goals among stroke survivors. PMID:24326935

  11. Crossed cerebellar diaschisis in acute ischemic stroke: Impact on morphologic and functional outcome.

    PubMed

    Kunz, Wolfgang G; Sommer, Wieland H; Höhne, Christopher; Fabritius, Matthias P; Schuler, Felix; Dorn, Franziska; Othman, Ahmed E; Meinel, Felix G; von Baumgarten, Louisa; Reiser, Maximilian F; Ertl-Wagner, Birgit; Thierfelder, Kolja M

    2017-01-01

    Crossed cerebellar diaschisis (CCD) is the phenomenon of hypoperfusion and hypometabolism of the contralateral cerebellar hemisphere caused by dysfunction of the related supratentorial region. Our aim was to analyze its influence on morphologic and functional outcome in acute ischemic stroke. Subjects with stroke caused by a large vessel occlusion of the anterior circulation were selected from an initial cohort of 1644 consecutive patients who underwent multiparametric CT including whole-brain CT perfusion. Two experienced readers evaluated the posterior fossa in terms of CCD absence (CCD-) or presence (CCD+). A total of 156 patients formed the study cohort with 102 patients (65.4%) categorized as CCD- and 54 (34.6%) as CCD+. In linear and logistic regression analyses, no significant association between CCD and final infarction volume (β = -0.440, p = 0.972), discharge mRS ≤ 2 (OR = 1.897, p = 0.320), or 90-day mRS ≤ 2 (OR = 0.531, p = 0.492) was detected. CCD+ patients had larger supratentorial cerebral blood flow deficits (median: 164 ml vs. 115 ml; p = 0.001) compared to CCD-patients. Regarding complications, CCD was associated with a higher rate of parenchymal hematomas (OR = 4.793, p = 0.035). In conclusion, CCD is frequently encountered in acute ischemic stroke caused by large vessel occlusion of the anterior circulation. CCD was associated with the occurrence of parenchymal hematoma in the ipsilateral cerebral infarction but did not prove to significantly influence patient outcome.

  12. Association of Cytochrome P450 Genetic Variants with Clopidogrel Resistance and Outcomes in Acute Ischemic Stroke

    PubMed Central

    Yi, Xingyang; Wang, Yanfen; Zhou, Qiang; Wang, Chun; Cheng, Wen; Chi, Lifen

    2016-01-01

    Aims: Clopidogrel is an antiplatelet drug primarily used to treat or prevent acute ischemic stroke (IS) or myocardial infarction (MI). This prodrug requires biotransformation to an active metabolite by cytochrome P450 (CYP) enzymes, and CYP single nucleotide polymorphisms (SNPs) could affect the efficiency of such biotransformation. Methods: A total of 375 consecutive IS patients were genotyped for eight CYP SNPs using mass spectrometry. Platelet aggregation activity was measured before and after the 7 – 10 day treatment. Gene–gene interactions were analyzed using generalized multifactor dimensionality reduction (GMDR) analysis. All patients received clopidogrel therapy and were followed up for six months. Primary outcomes were evaluated as a composite of recurrent ischemic stroke (RIS), MI, and death. The secondary outcome was the modified Rankin Scale (mRS). Results: Clopidogrel resistance occurred in 153 patients (40.8%). The frequency of CYP3A5 (rs776746) GG/AG and CYP2C19*2 (rs4244285) AA/AG genotypes was significantly higher in clopidogrel-resistant patients than in sensitive patients. There was a significant gene-gene interaction between CYP3A5 (rs776746) and CYP2C19*2 (rs4244285). CYP2C19*2 AA and its interaction with CYP3A5 GG were independent predictors of clopidogrel resistance and affected the activity of platelet aggregation. Diabetes mellitus, CYP2C19*2 (rs4244285), clopidogrel resistance, and the interaction of CYP2C19*2 with CYP3A5 were all independent risk factors for the primary outcomes of clopidogrel treatment. Clopidogrel-resistant patients were more likely to have poor outcomes (mRS > 2 points) compared with clopidogrel-sensitive patients. Conclusion: CYP SNPs and their interactions are associated with drug resistance and outcomes in acute IS patients. PMID:26961113

  13. Intravenous thrombolysis in acute ischemic stroke patients with negative CT perfusion: a case series

    PubMed Central

    Mehra, Ratnesh; Qahwash, Omar; Richards, Boyd; Fessler, Richard D

    2014-01-01

    Background Computed tomography perfusion (CTP) is a commonly used modality of neurophysiologic imaging to aid the selection of acute ischemic stroke patients for neuroendovascular intervention by identifying the presence of penumbra versus infarcted brain tissue. However many patients present with evidence of cerebral ischemia with normal CTP, and in that case, should intravenous thrombolytics be given? Purpose To demonstrate if tissue-type plasminogen activator (tPA)-eligible stroke patients without perfusion defects demonstrated on CTP would benefit from administration of intravenous thrombolytics. Material and Methods We retrospectively identified patients presenting with acute ischemic symptoms who received intravenous tPA (IV-tPA) from January to June 2012 without a perfusion defect on CTP. Clinical and radiographic findings including the NIHSS at presentation, 24 h, and at discharge, symptomatic and asymptomatic hemorrhagic transformation, and the modified Rankin score at 30 days were collected. A reduction of NIHSS of greater than 4 points or resolution of symptoms was considered significant. Results Seventeen patients were identified with a mean NIHSS of 8.2 prior to administration of intravenous thrombolytics, 3.5 after 24 h, and 2.5 at discharge. Among them, 13 patients had significant improvement of NIHSS with a mean reduction of 6.15 points at 24 h. One patient initially improved but had delayed hemorrhagic transformation and died. Two patients had improvement in NIHSS but were not significant and two patients had increased in NIHSS at 24 h, although one eventually improved at discharge. There was no asymptomatic hemorrhagic transformation. Mean mRS at 3 months is 1.76. Conclusion The failure to identify a perfusion deficit by CTP should not be used as a contraindication for intravenous thrombolytics. Criteria for administration of intravenous thrombolytics should still be based on time from symptom onset as previously published by NINDS. PMID

  14. Retrievable stent thrombectomy in the treatment of acute ischemic stroke: analysis of a revolutionizing treatment technique.

    PubMed

    Walcott, Brian P; Boehm, Kevin M; Stapleton, Christopher J; Mehta, Brijesh P; Nahed, Brian V; Ogilvy, Christopher S

    2013-10-01

    Acute ischemic stroke resulting from intracranial vessel occlusion is associated with high morbidity and mortality. The mainstays of therapy are fibrinolytics and mechanical thrombectomy in properly selected patients. A new Food and Drug Administration-approved technology to perform thrombectomy, retrievable stenting, may provide superior revascularization rates and improved patient outcomes. We analyzed the cumulative human experience reported for the Trevo Pro Retrieval System (Stryker, Kalamazoo, MI, USA) and the Solitaire FR Revascularization Device (ev3, Irvine, CA, USA) as the definitive treatment for acute ischemic stroke. A literature search was undertaken to identify studies using the retrievable stents published up to September 2012. Nineteen studies identified a total of 576 patients treated with either the Trevo (n=221) or Solitaire (n=355) devices. Pooled data analysis identified median baseline National Institutes of Health Stroke Scale scores of 18.5 ± 0.289 (standard error of the mean) and 17.9 ± 0.610, and time to recanalization of 53.9 ± 23.6 minutes and 59.0 ± 8.0 minutes for the Trevo and Solitaire groups, respectively. Recanalization was variably defined by individual studies, most commonly achieving at least a thrombolysis in cerebral infarction score of 2a-3 or a thrombolysis in myocardial infarction score of 2-3. Revascularization (83%, 82%), mortality (31%, 14%), hemorrhage (8%, 6%), device complications (5%, 6%), and good patient outcomes (51%, 47%) were found with the Trevo and Solitaire devices, respectively. Preliminary analysis reveals excellent clinical outcomes for retrievable stent technology. This may be attributable to both high rates of revascularization with a relatively short time to perfusion restoration.

  15. The Neuroprotective Mechanism of Erythropoietin-TAT Fusion Protein Against Neurodegeneration from Ischemic Brain Injury.

    PubMed

    Liu, P; Liu, X; Akf Liou, Emptyyn Y; Xing, J; Jing, Z; Ji, X; Liu, X; Zhao, H; Yan, F; Chen, J; Cao, G; Luo, Y

    2013-08-27

    Aims: To compare the neuroprotection of erythropoietin (EPO) and EPO fusion protein containing transduction domain derived from HIV TAT (EPO-TAT) against ischemic brain injury, inclusive of the side effect, and explore the mechanism underlying the role of EPO-TAT in a transient focal cerebral ischemia model in rats. Methods: Transient focal ischemia was induced by middle cerebral artery occlusion (MCAO) in rats. Rats were treated, respectively, with following regimens: saline, 1000 U/kg EPO, 5000 U/kg EPO, 1000 U/kg EPO-TAT, 1000 U/kg EPO-TAT + 5 µl of 10 mM LY294002 (or/plus 5 µl of 5 mM PD98059). Neurological deficit scores, infarct volume, and hematologic side effect were assessed at 72 hours after MCAO. Apoptotic cells were determined with TUNEL staining. The expression and localization of phosphorylated AKT (pAKT) and phosphorylated ERK (pERK) were detected with Western blot, immunohistochemistry, and immunofluorescence, respectively. Results: 1000 U/kg EPO-TAT exhibited a comparable neuroprotection to 5000 U/kg EPO, as evidenced by a comparable attenuation in neurological deficit, infarct volume, and number of apoptotic cells in the rat ischemic cortex after MCAO. The pAKT and pERK levels were significantly elevated solely in neurons of rodents receiving EPO or EPO-TAT treatments, suggesting the concurrent activation of these two pathways. Specific inhibition of either AKT or ERK pathway partially abolished EPO-TAT protection, but exhibited no influence on the activation status of its counterpart, suggesting no cross-modulation between these two protective pathways. Conclusion: Our study indicates that EPO-TAT at 1000 U/kg displays neuroprotection with no detectable side effects. The mechanism for neuroprotection may be attributable to the simultaneous activation of the AKT and ERK pathways, which preserve neuronal cell viability and attenuate behavioral deficits.

  16. Insights into the role of iron in immature rat model of hypoxic-ischemic brain injury

    PubMed Central

    Wang, Zi-Wei; Yang, Li-Jun; Ding, Ying-Xue; Chang, Yan-Zhong; Cui, Hong

    2016-01-01

    This study aimed to investigate the role of iron in the occurrence and development of hypoxic-ischemic brain injury (HIBI) in immature rat models using 3-day-old Sprague Dawley rats. Normal control (NC), hypoxic-ischemic (HI), anemia, HI + ischemia, early iron treatment and late iron treatment groups were established. Rat brain tissue sections were stained with hematoxylin and eosin and pathologically evaluated. Iron content and mRNA expression levels of iron regulatory protein 2 (IRP2) and transferrin receptor in the brain tissues were measured. Ultrastructural changes in the actin, microtubules, myelin and mitochondria of oligodendrocytes and axons were examined by electron microscopy. Numbers of viable myelin sheaths and oligodendrocytes in the periventricular area were also observed. Pathological damage of brain tissue in the HI group was markedly increased compared with that in the NC group. Furthermore, there was a higher iron content and reduced number of viable oligodendrocytes in the periventricular area of the HI group compared with the NC group. No significant difference in iron content was observed between the HI + anemia and NC groups. The number of viable oligodendrocytes in the HI + anemia group was increased compared with that in the HI group, and the number in the HI + anemia group with late iron treatment was lower compared with that in the NC group and increased compared with that in the HI + anemia group. Electron microscopy revealed a significantly higher number of myelin sheaths in the HI + anemia group than in the HI group. IRP2 mRNA expression levels in the brain tissues were significantly decreased in the HI + anemia group compared with the HI group. The results suggest that anemia may reduce the rate of increase of iron content of the brain following HI. However, the early occurrence of anemia may protect against HIBI. PMID:27602087

  17. Stanniocalcin-1 attenuates ischemic cardiac injury and response of differentiating monocytes/macrophages to inflammatory stimuli.

    PubMed

    Mohammadipoor, Arezoo; Lee, Ryang Hwa; Prockop, Darwin J; Bartosh, Thomas J

    2016-11-01

    Stanniocalcin-1 (STC-1) is a multifunctional glycoprotein with antioxidant and anti-inflammatory properties. Ischemic myocardial necrosis generates "danger" signals that perpetuate detrimental inflammatory reactions often involving monocyte recruitment and their subsequent differentiation into proinflammatory macrophages. Therefore, we evaluated the effects of recombinant STC-1 (rSTC-1) on monocyte phenotype and in a mouse model of myocardial infarction. Using an established protocol to differentiate human monocytes into macrophages, we demonstrated that rSTC-1 did not alter morphology of the differentiated cells, toll-like receptor (TLR) 4 expression, or expression of the myeloid cell marker CD11b. However, rSTC-1 treatment before differentiation attenuated the rise in the expression of CD14, a TLR4 coreceptor and pathogen sensor that propagates innate immune responses, and suppressed levels of inflammatory cytokines produced by the differentiated cells in response to the CD14-TLR4 ligand lipopolysaccharide. Moreover, rSTC-1 treatment reduced CD14 expression in monocytes stimulated with endogenous danger signals. Interestingly, the effects of rSTC-1 on CD14 expression were not reproduced by a superoxide dismutase mimetic. In mice with induced myocardial infarcts, intravenous administration of rSTC-1 decreased CD14 expression in the heart as well as levels of tumor necrosis factor alpha, C-X-C motif ligand 2, interleukin 1 beta, and myeloperoxidase. It also suppressed the formation of scar tissue while enhancing cardiac function. The data suggests that one of the beneficial effects of STC-1 might be attributed to suppression of CD14 on recruited monocytes and macrophages that limits their inflammatory response. STC-1 may be a promising therapy to protect the heart and other tissues from ischemic injury.

  18. MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca2+ overload and cell death

    PubMed Central

    Aurora, Arin B.; Mahmoud, Ahmed I.; Luo, Xiang; Johnson, Brett A.; van Rooij, Eva; Matsuzaki, Satoshi; Humphries, Kenneth M.; Hill, Joseph A.; Bassel-Duby, Rhonda; Sadek, Hesham A.; Olson, Eric N.

    2012-01-01

    Early reperfusion of ischemic cardiac tissue remains the most effective intervention for improving clinical outcome following myocardial infarction. However, abnormal increases in intracellular Ca2+ during myocardial reperfusion can cause cardiomyocyte death and consequent loss of cardiac function, referred to as ischemia/reperfusion (IR) injury. Therapeutic modulation of Ca2+ handling provides some cardioprotection against the paradoxical effects of restoring blood flow to the heart, highlighting the significance of Ca2+ overload to IR injury. Cardiac IR is also accompanied by dynamic changes in the expression of microRNAs (miRNAs); for example, miR-214 is upregulated during ischemic injury and heart failure, but its potential role in these processes is unknown. Here, we show that genetic deletion of miR-214 in mice causes loss of cardiac contractility, increased apoptosis, and excessive fibrosis in response to IR injury. The cardioprotective roles of miR-214 during IR injury were attributed to repression of the mRNA encoding sodium/calcium exchanger 1 (Ncx1), a key regulator of Ca2+ influx; and to repression of several downstream effectors of Ca2+ signaling that mediate cell death. These findings reveal a pivotal role for miR-214 as a regulator of cardiomyocyte Ca2+ homeostasis and survival during cardiac injury. PMID:22426211

  19. Agmatine induces gastric protection against ischemic injury by reducing vascular permeability in rats

    PubMed Central

    Masri, Abeer A Al; Eter, Eman El

    2012-01-01

    AIM: To investigate the effect of administration of agmatine (AGM) on gastric protection against ischemia reperfusion (I/R) injury. METHODS: Three groups of rats (6/group); sham, gastric I/R injury, and gastric I/R + AGM (100 mg/kg, i.p. given 15 min prior to gastric ischemia) were recruited. Gastric injury was conducted by ligating celiac artery for 30 min and reperfusion for another 30 min. Gastric tissues were histologically studied and immunostained with angiopoietin 1 (Ang-1) and Ang-2. Vascular endothelial growth factor (VEGF) and monocyte chemoattractant protein-1 (MCP-1) were measured in gastric tissue homogenate. To assess whether AKt/phosphatidyl inositol-3-kinase (PI3K) mediated the effect of AGM, an additional group was pretreated with Wortmannin (WM) (inhibitor of Akt/PI3K, 15 μg/kg, i.p.), prior to ischemic injury and AGM treatment, and examined histologically and immunostained. Another set of experiments was run to study vascular permeability of the stomach using Evan’s blue dye. RESULTS: AGM markedly reduced Evan’s blue dye extravasation (3.58 ± 0.975 μg/stomach vs 1.175 ± 0.374 μg/stomach, P < 0.05), VEGF (36.87 ± 2.71 pg/100 mg protein vs 48.4 ± 6.53 pg/100 mg protein, P < 0.05) and MCP-1 tissue level (29.5 ± 7 pg/100 mg protein vs 41.17 ± 10.4 pg/100 mg protein, P < 0.01). It preserved gastric histology and reduced congestion. Ang-1 and Ang-2 immunostaining were reduced in stomach sections of AGM-treated animals. The administration of WM abolished the protective effects of AGM and extensive hemorrhage and ulcerations were seen. CONCLUSION: AGM protects the stomach against I/R injury by reducing vascular permeability and inflammation. This protection is possibly mediated by Akt/PI3K. PMID:22611311

  20. Capillary Index Score and Correlation with Outcomes in Acute Ischemic Stroke: A Meta-analysis

    PubMed Central

    Jagani, Manoj; Brinjikji, Waleed; Murad, Mohammad H.; Rabinstein, Alejandro A.; Cloft, Harry J.; Kallmes, David F.

    2017-01-01

    Background and Purpose The capillary index score (CIS) has been recently introduced as a metric for rating the collateral circulation of ischemic stroke patients. Multiple studies in the last five years have evaluated the correlation of good CIS with clinical outcomes and suggested the use of CIS in selecting patients for endovascular treatment. We performed a meta-analysis of these studies comparing CIS with clinical outcomes. Methods We conducted a computerized search of three databases from January 2011 to November 2015 for studies related to CIS and outcomes. A CIS = 0 or 1 is considered poor (pCIS) and a CIS = 2 or 3 is considered favorable (fCIS). Using random-effect meta-analysis, we evaluated the relationship of CIS to neurological outcome (modified Rankin scale score ≤ 2), recanalization, and post-treatment hemorrhage. Meta-regression analysis of good neurological outcome was performed for adjusting baseline National Institutes of Health Stroke Scale (NIHSS) between groups. Results Six studies totaling 338 patients (212 with fCISs and 126 with pCISs) were included in the analysis. Patients with fCIS had higher likelihood of good neurological outcome [relative risk (RR) = 3.03; confidence interval (CI) = 95%, 2.05–4.47; p < 0.001] and lower risk of post-treatment hemorrhage (RR = 0.38; CI = 95%, 0.19–0.93; p = 0.04) as compared with patients in the pCIS group. When adjusting for baseline NIHSS, patients with fCIS had higher RR of good neurological outcome when compared with those with pCIS (RR = 2.94; CI = 95%, 1.23–7, p < 0.0001). Favorable CIS was not associated with higher rates of recanalization. Conclusions Observational evidence suggests that acute ischemic stroke patients with fCIS may have higher rates of good neurological outcomes compared with patients with pCIS, independent of baseline NIHSS. CIS may be used as another tool to select patients for endovascular treatment of acute ischemic stroke. PMID:28243344

  1. Acute gastroduodenal injury after ingestion of diluted herbicide pendimethalin.

    PubMed

    Tsukada, K; Azuhata, H; Katoh, H; Kuwano, H

    2009-03-01

    The herbicide, pendimethalin, is used worldwide, but its acute toxicity is not yet widely known. There have been some reported acute pendimethalin poisoning cases in humans and most of them intentionally ingested the concentrated formulation. We describe a 73-year-old man who developed corrosive gastroduodenal injury after accidental ingestion of the diluted (300 times with water) pendimethalin formulation. He had a history of reflux oesophagitis and had been taking omeprazol (10 mg/day) for a year. He consumed alcohol two hours after the accidental ingestion and then had nausea and epigastric pain. Endoscopy performed three days post-exposure revealed gastroduodenal injury. As he had consumed alcohol every day for years and had no history of gastroduodenal ulcer, the accidental ingestion may be associated with this injury. He was successfully treated by increasing his dosage of omeprazol (20 mg/day) for two weeks. This case indicates that ingestion of a small quantity of pendimethalin can provoke gastroduodenal injury.

  2. [Acute and overuse injuries in elite paracycling - an epidemiological study].

    PubMed

    Kromer, P; Röcker, K; Sommer, A; Baur, H; Konstantinidis, L; Gollhofer, A; Südkamp, N P; Hirschmüller, A

    2011-09-01

    Although paracycling is a growing discipline in high level competitive sports as well as in posttraumatic rehabilitation, epidemiological data of resulting injuries is still missing. Therefore, 19 athletes of the German national paracycling team were asked about their injuries during the 2008 season using a standardized questionnaire. Overall, 18 (94.7 %) of 19 athletes reported overuse injuries; most commonly localized at the back (83.3 %), neck/shoulder (77.8 %), knee (50 %), groin/buttock (50 %) and hands/wrists (38.9 %). Altogether, 18 accidents were registered, corresponding to an injury rate of 0,95 acute injuries per athlete per year (0,07 / 1000 km). The most common acute injuries were abrasions (69.2 %) and contusions (61.5 %), whereas fractures were stated only twice (11.8 %). The anatomical distribution of overuse injuries in disabled cyclists confirms the results of studies in able-bodied cycling, although the incidences in low-back pain and neck/shoulder pain is clearly higher in disabled cycling, as well as the rate of traumatic injuries.

  3. Adrenomedullin ameliorates lipopolysaccharide-induced acute lung injury in rats.

    PubMed

    Itoh, Takefumi; Obata, Hiroaki; Murakami, Shinsuke; Hamada, Kaoru; Kangawa, Kenji; Kimura, Hiroshi; Nagaya, Noritoshi

    2007-08-01

    Adrenomedullin (AM), an endogenous peptide, has been shown to have a variety of protective effects on the cardiovascular system. However, the effect of AM on acute lung injury remains unknown. Accordingly, we investigated whether AM infusion ameliorates lipopolysaccharide (LPS)-induced acute lung injury in rats. Rats were randomized to receive continuous intravenous infusion of AM (0.1 microg x kg(-1) x min(-1)) or vehicle through a microosmotic pump. The animals were intratracheally injected with either LPS (1 mg/kg) or saline. At 6 and 18 h after intratracheal instillation, we performed histological examination and bronchoalveolar lavage and assessed the lung wet/dry weight ratio as an index of acute lung injury. Then we measured the numbers of total cells and neutrophils and the levels of tumor necrosis factor (TNF)-alpha and cytokine-induced neutrophil chemoattractant (CINC) in bronchoalveolar lavage fluid (BALF). In addition, we evaluated BALF total protein and albumin levels as indexes of lung permeability. LPS instillation caused severe acute lung injury, as indicated by the histological findings and the lung wet/dry weight ratio. However, AM infusion attenuated these LPS-induced abnormalities. AM decreased the numbers of total cells and neutrophils and the levels of TNF-alpha and CINC in BALF. AM also reduced BALF total protein and albumin levels. In addition, AM significantly suppressed apoptosis of alveolar wall cells as indicated by cleaved caspase-3 staining. In conclusion, continuous infusion of AM ameliorated LPS-induced acute lung injury in rats. This beneficial effect of AM on acute lung injury may be mediated by inhibition of inflammation, hyperpermeability, and alveolar wall cell apoptosis.

  4. Inhibition of poly(ADP-ribose) polymerase attenuates ischemic renal injury in rats.

    PubMed

    Martin, D R; Lewington, A J; Hammerman, M R; Padanilam, B J

    2000-11-01

    The enzyme, poly(ADP-ribose) polymerase (PARP), effects repair of DNA after ischemia-reperfusion (I/R) injury to cells in nerve and muscle tissue. However, its activation in severely damaged cells can lead to ATP depletion and death. We show that PARP expression is enhanced in damaged renal proximal tubules beginning at 6-12 h after I/R injury. Intraperitoneal administration of PARP inhibitors, benzamide or 3-amino benzamide, after I/R injury accelerates the recovery of normal renal function, as assessed by monitoring the levels of plasma creatinine and blood urea nitrogen during 6 days postischemia. PARP inhibition leads to increased cell proliferation at 1 day postinjury as assessed by proliferating cell nuclear antigen and improves the histopathological appearance of kidneys examined at 7 days postinjury. Furthermore, inhibition of PARP increases levels of ATP measured at 24 h postischemia compared with those in vehicle-treated animals. Our data indicate that PARP activation is a part of the cascade of molecular events that occurs after I/R injury in the kidney. Although caution is advised, transient inhibition of PARP postischemia may constitute a novel therapy for acute renal failure.

  5. Ammonium dichromate poisoning: A rare cause of acute kidney injury.

    PubMed

    Radhakrishnan, H; Gopi, M; Arumugam, A

    2014-11-01

    Ammonium dichromate is an inorganic compound frequently used in screen and color printing. Being a strong oxidizing agent, it causes oxygen free radical injury resulting in organ failure. We report a 25-year-old female who presented with acute kidney injury after consumption of ammonium dichromate. She was managed successfully with hemodialysis and supportive measures. This case is reported to highlight the toxicity of ammonium dichromate.

  6. Acute kidney injury caused by zonisamide-induced hypersensitivity syndrome.

    PubMed

    Fujita, Yoshiro; Hasegawa, Midori; Nabeshima, Kuihiro; Tomita, Makoto; Murakami, Kazutaka; Nakai, Shigeru; Yamakita, Takashi; Matsunaga, Kayoko

    2010-01-01

    Drug rash with eosinophilia and systemic symptoms (DRESS), also known as drug-induced hypersensitivity syndrome (DIHS), is a severe adverse drug reaction affecting multiple organs caused by drug treatment. The current report describes a man who was prescribed zonisamide for epilepsy and subsequently developed widespread skin rash, acute kidney injury, high-grade fever, eosinophilia, liver dysfunction, lymphadenopathy and an increase in antihuman herpesvirus-6 immunoglobulin G titer. Hypersensitivity to zonisamide was confirmed by the skin patch test. Based on these findings, the patient was diagnosed with DRESS/DIHS caused by zonisamide. This is the first report of acute kidney injury due to zonisamide-induced DRESS/DIHS.

  7. Low Tidal Volume Ventilation in Patients Without Acute Lung Injury.

    PubMed

    Tang, Weibing; Wang, Zhi; Liu, Ye; Zhu, Jing

    2015-05-01

    Acute respiratory distress syndrome is a life threatening respiratory condition characterized by breakdown of the alveolar-capillary barrier, leading to flooding of the alveolar space producing the classical chest radiograph of bilateral pulmonary infiltrates. In this study, we employed lung protective ventilation strategies in patients without acute lung injury (ALI) to determine whether mechanical ventilation with lower tidal volume would provide more clinical benefits to patients without ALI.

  8. Differential expression of embryonic epicardial progenitor markers and localization of cardiac fibrosis in adult ischemic injury and hypertensive heart disease.

    PubMed

    Braitsch, Caitlin M; Kanisicak, Onur; van Berlo, Jop H; Molkentin, Jeffery D; Yutzey, Katherine E

    2013-12-01

    During embryonic heart development, the transcription factors Tcf21, Wt1, and Tbx18 regulate activation and differentiation of epicardium-derived cells, including fibroblast lineages. Expression of these epicardial progenitor factors and localization of cardiac fibrosis were examined in mouse models of cardiovascular disease and in human diseased hearts. Following ischemic injury in mice, epicardial fibrosis is apparent in the thickened layer of subepicardial cells that express Wt1, Tbx18, and Tcf21. Perivascular fibrosis with predominant expression of Tcf21, but not Wt1 or Tbx18, occurs in mouse models of pressure overload or hypertensive heart disease, but not following ischemic injury. Areas of interstitial fibrosis in ischemic and hypertensive hearts actively express Tcf21, Wt1, and Tbx18. In all areas of fibrosis, cells that express epicardial progenitor factors are distinct from CD45-positive immune cells. In human diseased hearts, differential expression of Tcf21, Wt1, and Tbx18 also is detected with epicardial, perivascular, and interstitial fibrosis, indicating conservation of reactivated developmental mechanisms in cardiac fibrosis in mice and humans. Together, these data provide evidence for distinct fibrogenic mechanisms that include Tcf21, separate from Wt1 and Tbx18, in different fibroblast populations in response to specific types of cardiac injury.

  9. Oral penicillin-associated acute kidney injury in an infant with acute pyelonephritis.

    PubMed

    Zieg, Jakub; Hacek, Jaromir

    2015-04-01

    Beta-lactam-associated acute tubulointerstitial nephritis (ATIN) is a rare condition in childhood. We report the case of an infant with penicillin-associated ATIN and concomitant acute pyelonephritis resulting in the development of severe acute kidney injury (AKI). The treatment consisted of penicillin suspension and appropriate AKI management, which required a short period of dialysis. Finally, full recovery and normalization of laboratory parameters occurred. We present here the first case of oral penicillin-associated ATIN in childhood.

  10. Neonatal acute kidney injury - Severity and recovery prediction and the role of serum and urinary biomarkers.

    PubMed

    Sweetman, Deirdre U

    2017-02-01

    Neonatal acute kidney injury is common, in part due to incomplete renal maturation and also due to frequent exposure to risk factors for acute kidney injury such as perinatal asphyxia, extracorporeal-membrane-oxygenation, cardiac surgery, sepsis, prematurity and nephrotoxicity. However the current method by which acute kidney injury is diagnosed is sub-optimal and not universally accepted which impairs the accurate estimation of the true incidence of neonatal acute kidney injury. Serum Cystatin-C, urinary NGAL, KIM-1 and IL-18 are promising neonatal acute kidney injury biomarkers however the diagnosis of acute kidney injury remains serum creatinine/urine output-based in many studies. Emerging biomarkers which require further study in the neonatal population include netrin-1 and EGF. Increased awareness amongst clinicians of nephrotoxic medications being a modifiable risk factor for the development of neonatal acute kidney injury is imperative. The burden of chronic kidney failure following neonatal acute kidney injury is unclear and requires further study.

  11. The new P2Y-like receptor G protein-coupled receptor 17 mediates acute neuronal injury and late microgliosis after focal cerebral ischemia in rats.

    PubMed

    Zhao, B; Zhao, C Z; Zhang, X Y; Huang, X Q; Shi, W Z; Fang, S H; Lu, Y B; Zhang, W P; Xia, Q; Wei, E Q

    2012-01-27

    G protein-coupled receptor 17 (GPR17), the new P2Y-like receptor, is phylogenetically related to the P2Y and cysteinyl leukotriene receptors, and responds to both uracil nucleotides and cysteinyl leukotrienes. GPR17 has been proposed to be a damage sensor in ischemic stroke; however, its role in brain inflammation needs further detailed investigation. Here, we extended previous studies on the spatiotemporal profiles of GPR17 expression and localization, and their implications for brain injury after focal cerebral ischemia. We found that in the ischemic core, GPR17 mRNA and protein levels were upregulated at both 12-24 h and 7-14 days, but in the boundary zone the levels increased 7-14 days after reperfusion. The spatiotemporal pattern of GPR17 expression well matched the acute and late (subacute/chronic) responses in the ischemic brain. According to previous findings, in the acute phase, after ischemia (24 h), upregulated GPR17 was localized in injured neurons in the ischemic core and in a few microglia in the ischemic core and boundary zone. In the late phase (14 days), it was localized in microglia, especially in activated (ED1-positive) microglia in the ischemic core, but weakly in most microglia in the boundary zone. No GPR17 was detectable in astrocytes. GPR17 knockdown by a small interfering RNA attenuated the neurological dysfunction, infarction, and neuron loss at 24 h, and brain atrophy, neuron loss, and microglial activation at 14 days after reperfusion. Thus, GPR17 might mediate acute neuronal injury and late microgliosis after focal cerebral ischemia.

  12. Nicotinamide prevents the down-regulation of MEK/ERK/p90RSK signaling cascade in brain ischemic injury.

    PubMed

    Sung, Jin-Hee; Kim, Myeong-Ok; Koh, Phil-Ok

    2012-01-01

    Nicotinamide attenuates neuronal cell death related to focal cerebral ischemic injury. This study investigated whether nicotinamide exerts a neuroprotective effect through the activation of Raf- mitogen-activated protein kinase kinase (MEK)-ERK and its downstream targets, including p90 ribosomal S6 kinase (p90RSK) and Bad. Adult male Sprague-Dawley rats were treated with nicotinamide (500 mg/kg) or vehicle 2 hr after the onset of middle cerebral artery occlusion (MCAO). Brains were collected 24 hr after MCAO. In the present study, nicotinamide significantly reduces the volume of infarct regions and decreases the number of positive cells by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining in the cerebral cortex. Nicotinamide prevents injury-induced decrease in Raf-1, MEK1/2, and ERK1/2 phosphorylation. As part of the downstream cascade, nicotinamide inhibits the injury-induced decrease in p90RSK and Bad phosphorylation. Moreover, nicotinamide prevents the injury-induced increase in cleaved caspase-3 levels. These findings suggest that nicotinamide protects neuronal cells against cerebral ischemic injury and that MEK-ERK-p90RSK cascade activation by nicotinamide contributes to these neuroprotective effects.

  13. Critical role of neuronal pentraxin 1 in mitochondria-mediated hypoxic-ischemic neuronal injury.

    PubMed

    Al Rahim, Md; Thatipamula, Shabarish; Hossain, Mir Ahamed

    2013-02-01

    Developing brain is highly susceptible to hypoxic-ischemic (HI) injury leading to severe neurological disabilities in surviving infants and children. Previously, we have reported induction of neuronal pentraxin 1 (NP1), a novel neuronal protein of long-pentraxin family, following HI neuronal injury. Here, we investigated how this specific signal is propagated to cause the HI neuronal death. We used wild-type (WT) and NP1 knockout (NP1-KO) mouse hippocampal cultures, modeled in vitro following exposure to oxygen glucose deprivation (OGD), and in vivo neonatal (P9-10) mouse model of HI brain injury. Our results show induction of NP1 in primary hippocampal neurons following OGD exposure (4-8 h) and in the ipsilateral hippocampal CA1 and CA3 regions at 24-48 h post-HI compared to the contralateral side. We also found increased PTEN activity concurrent with OGD time-dependent (4-8 h) dephosphorylation of Akt (Ser473) and GSK-3β (Ser9). OGD also caused a time-dependent decrease in the phosphorylation of Bad (Ser136), and Bax protein levels. Immunofluorescence staining and subcellular fractionation analyses revealed increased mitochondrial translocation of Bad and Bax proteins from cytoplasm following OGD (4 h) and simultaneously increased release of Cyt C from mitochondria followed by activation of caspase-3. NP1 protein was immunoprecipitated with Bad and Bax proteins; OGD caused increased interactions of NP1 with Bad and Bax, thereby, facilitating their mitochondrial translocation and dissipation of mitochondrial membrane potential (ΔΨ(m)). This NP1 induction preceded the increased mitochondrial release of cytochrome C (Cyt C) into the cytosol, activation of caspase-3 and OGD time-dependent cell death in WT primary hippocampal neurons. In contrast, in NP1-KO neurons there was no translocation of Bad and Bax from cytosol to the mitochondria, and no evidence of ΔΨ(m) loss, increased Cyt C release and caspase-3 activation following OGD; which resulted in

  14. Systemic thrombolysis with recombinant tissue plasminogen activator in acute ischemic stroke: first Croatian experiences.

    PubMed

    Matijević, Vesna; Alvir, Domagoj; Malojčić, Branko; Unušić, Lea; Supe, Svjetlana; Boban, Marina; Bujan-Kovač, Andrea; Habek, Mario; Poljaković, Zdravka

    2010-12-01

    In September 2003, recombinant tissue plasminogen activator (rt-PA) for acute treatment of ischemic stroke was finally approved by the Croatian Ministry of Health. For the next 5 years, only three stroke units in the country implemented this therapy in their routine practice until summer 2008, when neurological wards in most Croatian hospitals started to treat acute stroke patients with systemic thrombolysis. We present a 2-year experience of thrombolytic therapy (2006-2008) in the stroke unit of the University Hospital in Zagreb, Croatian largest hospital, serving nearly one-fifth of the citizens of Croatia. Obtained data (vitals at admission and before administration of rt-PA; NIHSS and MRS scores at admission, 2 h and 7th day after rt-PA treatment, "time to door" and "door to needle" intervals, duration of hospital treatment as well as outcomes and complications of our 66 thrombolysed patients) are presented and discussed. We also present our results regarding benefits of this therapy as well as possible reasons for complications noticed.

  15. Stent retriever thrombectomy for acute ischemic stroke: Indications, results and management in 2015.

    PubMed

    Gory, B; Riva, R; Labeyrie, P E; Turjman, F

    2016-02-01

    The functional benefit of stent retriever thrombectomy in acute ischemic stroke has been clearly demonstrated in recent positive MR CLEAN, ESCAPE, EXTEND-IA, SWIFT PRIME, REVASCAT and THRACE trials. Thrombectomy, in association with intravenous thrombolysis, should now be offered to patients with documented occlusion of the distal internal carotid or proximal middle cerebral arteries, with a relatively normal unenhanced computed tomography (CT), and within 6hours after the onset of symptoms. Thrombectomy results in a mean absolute decrease in handicap of 22% (14 to 31%). Of the 3 up to 8 patients treated, 1 is independent at 3 months according to the initial selection. In case of a contraindication to thrombolysis, early primary thrombectomy should be considered. In acute basilar artery occlusion, thrombectomy should be performed alone or combined with thrombolysis. In an effort to increase the number of patients treated, a very rapid transfer to interventional neuroradiology centers is mandatory. In the future, thrombectomy should be evaluated in patients with distal arterial occlusion, or beyond 6hours after the onset of symptoms, or when the time of symptoms onset is unknown.

  16. The Relationship between C-Reactive Protein Level and Discharge Outcome in Patients with Acute Ischemic Stroke

    PubMed Central

    Geng, He-Hong; Wang, Xin-Wang; Fu, Rong-Li; Jing, Meng-Juan; Huang, Ling-Ling; Zhang, Qing; Wang, Xiao-Xiao; Wang, Pei-Xi

    2016-01-01

    Previous studies showed that C-reactive protein (CRP), an inflammatory marker, was associated with stroke severity and long-term outcome. However, the relationship between the acute-phase CRP level and discharge outcome has received little attention. We prospectively studied 301 patients with acute ischemic stroke (over a period of two weeks) from two hospital stroke wards and one rehabilitation department in Henan, China. Patients’ demographic and clinical data were collected and evaluated at admission. Poor discharge outcome was assessed in patients at discharge using the Modified Rankin Scale (MRS > 2). Multivariate logistic regression analysis was performed to determine the risk factors of poor discharge outcome after adjusting for potential confounders. Poor discharge outcome was observed in 78 patients (25.9%). Univariate analyses showed that factors significantly influencing poor discharge outcome were age, residence, recurrent acute ischemic stroke, coronary heart disease, the National Institutes of Health Stroke Scale (NIHSS) score at admission, non-lacunar stroke, time from onset of stroke to admission, CRP, TBIL (total bilirubin), direct bilirubin (DBIL), ALB (albumin), FIB (fibrinogen) and D-dimer (p < 0.05). After adjusting for age, residence, recurrent ischemic stroke, coronary heart disease, NIHSS score at admission, lacunar stroke, time from onset of stroke to admission, CRP, TBIL, DBIL, ALB, FIB and D-dimer, multivariate logistic regression analyses revealed that poor outcome at discharge was associated with recurrent acute ischemic stroke (OR, 2.115; 95% CI, 1.094–4.087), non-lacunar stroke (OR, 2.943; 95% CI, 1.436–6.032), DBIL (OR, 1.795; 95% CI, 1.311–2.458), and CRP (OR, 4.890; 95% CI, 3.063–7.808). In conclusion, the CRP level measured at admission was found to be an independent predictor of poor outcome at discharge. Recurrent acute ischemic stroke, non-lacunar stroke and DBIL were also significantly associated with discharge

  17. Severe but reversible acute kidney injury resulting from Amanita punctata poisoning

    PubMed Central

    Kang, Eunjung; Cheong, Ka-Young; Lee, Min-Jeong; Kim, Seirhan; Shin, Gyu-Tae; Kim, Heungsoo; Park, In-Whee

    2015-01-01

    Mushroom-related poisoning can cause acute kidney injury. Here we report a case of acute kidney injury after ingestion of Amanita punctata, which is considered an edible mushroom. Gastrointestinal symptoms occurred within 24 hours from the mushroom intake and were followed by an asymptomatic period, acute kidney injury, and elevation of liver and pancreatic enzymes. Kidney function recovered with supportive care. Nephrotoxic mushroom poisoning should be considered as a cause of acute kidney injury. PMID:26779427

  18. Rapid renal alpha-1 antitrypsin gene induction in experimental and clinical acute kidney injury.

    PubMed

    Zager, Richard A; Johnson, Ali C M; Frostad, Kirsten B

    2014-01-01

    Alpha-1-antitrypsin (AAT) is a hepatic stress protein with protease inhibitor activity. Recent evidence indicates that ischemic or toxic injury can evoke selective changes within kidney that resemble a hepatic phenotype. Hence, we tested the following: i) Does acute kidney injury (AKI) up-regulate the normally renal silent AAT gene? ii) Does rapid urinary AAT excretion result? And iii) Can AAT's anti-protease/anti-neutrophil elastase (NE) activity protect injured proximal tubule cells? CD-1 mice were subjected to ischemic or nephrotoxic (glycerol, maleate, cisplatin) AKI. Renal functional and biochemical assessments were made 4-72 hrs later. Rapidly following injury, 5-10 fold renal cortical and isolated proximal tubule AAT mRNA and protein increases occurred. These were paralleled by rapid (>100 fold) increases in urinary AAT excretion. AKI also induced marked increases in renal cortical/isolated proximal tubule NE mRNA. However, sharp NE protein levels declines resulted, which strikingly correlated (r, -0.94) with rising AAT protein levels (reflecting NE complexing by AAT/destruction). NE addition to HK-2 cells evoked ∼95% cell death. AAT completely blocked this NE toxicity, as well as Fe induced oxidant HK-2 cell attack. Translational relevance of experimental AAT gene induction was indicated by ∼100-1000 fold urinary AAT increases in 22 AKI patients (matching urine NGAL increases). We conclude: i) AKI rapidly up-regulates the renal cortical/proximal tubule AAT gene; ii) NE gene induction also results; iii) AAT can confer cytoprotection, potentially by blocking/reducing cytotoxic NE accumulation; and iv) marked increases in urinary AAT excretion in AKI patients implies clinical relevance of the AKI- AAT induction pathway.

  19. Striatal astrocytes transdifferentiate into functional mature neurons following ischemic brain injury.

    PubMed

    Duan, Chun-Ling; Liu, Chong-Wei; Shen, Shu-Wen; Yu, Zhang; Mo, Jia-Lin; Chen, Xian-Hua; Sun, Feng-Yan

    2015-09-01

    To determine whether reactive astrocytes stimulated by brain injury can transdifferentiate into functional new neurons, we labeled these cells by injecting a glial fibrillary acidic protein (GFAP) targeted enhanced green fluorescence protein plasmid (pGfa2-eGFP plasmid) into the striatum of adult rats immediately following a transient middle cerebral artery occlusion (MCAO) and performed immunolabeling with specific neuronal markers to trace the neural fates of eGFP-expressing (GFP(+)) reactive astrocytes. The results showed that a portion of striatal GFP(+) astrocytes could transdifferentiate into immature neurons at 1 week after MCAO and mature neurons at 2 weeks as determined by double staining GFP-expressing cells with βIII-tubulin (GFP(+)-Tuj-1(+)) and microtubule associated protein-2 (GFP(+)-MAP-2(+)), respectively. GFP(+) neurons further expressed choline acetyltransferase, glutamic acid decarboxylase, dopamine receptor D2-like family proteins, and the N-methyl-D-aspartate receptor subunit R2, indicating that astrocyte-derived neurons could develop into cholinergic or GABAergic neurons and express dopamine and glutamate receptors on their membranes. Electron microscopy analysis indicated that GFP(+) neurons could form synapses with other neurons at 13 weeks after MCAO. Electrophysiological recordings revealed that action potentials and active postsynaptic currents could be recorded in the neuron-like GFP(+) cells but not in the astrocyte-like GFP(+) cells, demonstrating that new GFP(+) neurons possessed the capacity to fire action potentials and receive synaptic inputs. These results demonstrated that striatal astrocyte-derived new neurons participate in the rebuilding of functional neural networks, a fundamental basis for brain repair after injury. These results may lead to new therapeutic strategies for enhancing brain repair after ischemic stroke.

  20. Striatal astrocytes transdifferentiate into functional mature neurons following ischemic brain injury

    PubMed Central

    Duan, Chun‐Ling; Liu, Chong‐Wei; Shen, Shu‐Wen; Yu, Zhang; Mo, Jia‐Lin; Chen, Xian‐Hua

    2015-01-01

    To determine whether reactive astrocytes stimulated by brain injury can transdifferentiate into functional new neurons, we labeled these cells by injecting a glial fibrillary acidic protein (GFAP) targeted enhanced green fluorescence protein plasmid (pGfa2‐eGFP plasmid) into the striatum of adult rats immediately following a transient middle cerebral artery occlusion (MCAO) and performed immunolabeling with specific neuronal markers to trace the neural fates of eGFP‐expressing (GFP+) reactive astrocytes. The results showed that a portion of striatal GFP+ astrocytes could transdifferentiate into immature neurons at 1 week after MCAO and mature neurons at 2 weeks as determined by double staining GFP‐expressing cells with βIII‐tubulin (GFP+‐Tuj‐1+) and microtubule associated protein‐2 (GFP+‐MAP‐2+), respectively. GFP+ neurons further expressed choline acetyltransferase, glutamic acid decarboxylase, dopamine receptor D2‐like family proteins, and the N‐methyl‐d‐aspartate receptor subunit R2, indicating that astrocyte‐derived neurons could develop into cholinergic or GABAergic neurons and express dopamine and glutamate receptors on their membranes. Electron microscopy analysis indicated that GFP+ neurons could form synapses with other neurons at 13 weeks after MCAO. Electrophysiological recordings revealed that action potentials and active postsynaptic currents could be recorded in the neuron‐like GFP+ cells but not in the astrocyte‐like GFP+ cells, demonstrating that new GFP+ neurons possessed the capacity to fire action potentials and receive synaptic inputs. These results demonstrated that striatal astrocyte‐derived new neurons participate in the rebuilding of functional neural networks, a fundamental basis for brain repair after injury. These results may lead to new therapeutic strategies for enhancing brain repair after ischemic stroke. GLIA 2015;63:1660–1670 PMID:26031629

  1. Chronic exposure to zinc oxide nanoparticles increases ischemic-reperfusion injuries in isolated rat hearts

    NASA Astrophysics Data System (ADS)

    Milivojević, Tamara; Drobne, Damjana; Romih, Tea; Mali, Lilijana Bizjak; Marin, Irena; Lunder, Mojca; Drevenšek, Gorazd

    2016-10-01

    The use of zinc oxide nanoparticles (ZnO NPs) in numerous products is increasing, although possible negative implications of their long-term consumption are not known yet. Our aim was to evaluate the chronic, 6-week oral exposure to two different concentrations of ZnO NPs on isolated rat hearts exposed to ischemic-reperfusion injury and on small intestine morphology. Wistar rats of both sexes ( n = 18) were randomly divided into three groups: (1) 4 mg/kg ZnO NPs, (2) 40 mg/kg ZnO NPs, and (3) control. After 6 weeks of treatment, the hearts were isolated, the left ventricular pressure (LVP), the coronary flow (CF), the duration of arrhythmias and the lactate dehydrogenase release rate (LDH) were measured. A histological investigation of the small intestine was performed. Chronic exposure to ZnO NPs acted cardiotoxic dose-dependently. ZnO NPs in dosage 40 mg/kg maximally decreased LVP (3.3-fold) and CF (2.5-fold) and increased the duration of ventricular tachycardia (all P < 0.01) compared to control, whereas ZnO NPs in dosage 4 mg/kg acted less cardiotoxic. Goblet cells in the small intestine epithelium of rats, treated with 40 mg ZnO NPs/kg, were enlarged, swollen and numerous, the intestinal epithelium width was increased. Unexpectedly, ZnO NPs in both dosages significantly decreased LDH. A 6-week oral exposure to ZnO NPs dose-dependently increased heart injuries and caused irritation of the intestinal mucosa. A prolonged exposure to ZnO NPs might cause functional damage to the heart even with exposures to the recommended daily doses, which should be tested in future studies.

  2. Ischemic postconditioning prevents renal ischemia reperfusion injury through the induction of heat shock proteins in rats.

    PubMed

    Guo, Qiongmei; Du, Xuefang; Zhao, Yanli; Zhang, Dong; Yue, Lihui; Wang, Zhenxian

    2014-12-01

    Ischemic postconditioning (IPo) attenuates ischemia‑reperfusion injuries (IRI) in various organs, of both animals and humans. This study tested the hypothesis that IPo attenuates renal IRI through the upregulation of heat shock protein (HSP)70, HSP27 and heme oxygenase‑1 (HO‑1, also known as HSP 32) expression. Adult Sprague Dawley rats were subjected to bilateral renal ischemia for 45 min followed by reperfusion for up to 48 h. One group of rats received IPo prior to restoring full perfusion. Another group was administered 100 mg/kg HSP inhibitor quercetin, injected intraperitoneally 1 h prior to ischemia. Control rats received sham operations. Renal IR resulted in severe morphological and pathological changes, with increased serum creatinine and blood urea nitrogen concentrations. IR resulted in increased inflammation by inducing plasma tumor necrosis factor‑α and renal nuclear factor kappa‑light‑chain‑enhancer of activated B cells expression. IR also increased lipid peroxidation, as indicated by elevated malondialdehyde content, reduced superoxide dismutase activity and increased renal apoptosis. Renal HSP70, HSP27 and HO‑1 mRNA and protein levels were increased by IR and further elevated by IPo. IPo attenuated these changes observed in pathology, lipid peroxidation, apoptosis and inflammation. Quercetin treatment abolished all the protective effects of IPo. In conclusion, this study showed that IPo can attenuate lipid peroxidation, apoptosis and inflammation as well as renal IRI by upregulating the expression of HSP70, HSP27 and HO‑1.

  3. Pallidal neuronal apolipoprotein E in pantothenate kinase-associated neurodegeneration recapitulates ischemic injury to the globuspallidus

    PubMed Central

    Woltjer, Randall L.; Reese, Lindsay C.; Richardson, Brian E.; Tran, Huong; Green, Sarah; Pham, Thao; Chalupsky, Megan; Gabriel, Isabella; Light, Tyler; Sanford, Lynn; Jeong, Suh Y.; Hamada, Jeffrey; Schwanemann, Leila K.; Rogers, Caleb; Gregory, Allison; Hogarth, Penelope; Hayflick, Susan J.

    2015-01-01

    Pantothenate kinase-associated neurodegeneration (PKAN) is a progressive movement disorder that is due to mutations in PANK2. Pathologically, it is a member of a class of diseases known as neurodegeneration with brain iron accumulation (NBIA) and features increased tissue iron and ubiquitinated protein aceous aggregates in the globuspallidus. We have previously determined that these aggregates represent condensed residue derived from degenerated pallidal neurons. However, the protein content, other than ubiquitin, of these aggregates remains unknown. In the present study, we performed biochemical and immunohistochemical studies to characterize these aggregates and found them to be enriched in apolipoprotein E that is poorly soluble in detergent solutions. However, did not determine a significant association between APOE genotype and the clinical phenotype of disease in our database of 81 cases. Rather, we frequently identified similar ubiquitin- and apolipoprotein E-enriched lesions in these neurons in non-PKAN patients in the penumbrae of remote infarcts that involve the globuspallidus, and occasionally in other brain sites that contain large γ-aminobutyric acid (GABA)ergic neurons. Our findings, taken together, suggest that tissue or cellular hypoxic/ischemic injury within the globuspallidus may underlie the pathogenesis of PKAN. PMID:26547561

  4. Expression of the RNA-binding protein TIAR is increased in neurons after ischemic cerebral injury.

    PubMed

    Jin, K; Li, W; Nagayama, T; He, X; Sinor, A D; Chang, J; Mao, X; Graham, S H; Simon, R P; Greenberg, D A

    2000-03-15

    T-cell restricted intracellular antigen-related protein (TIAR) is an RNA recognition motif-type RNA-binding protein that has been implicated in the apoptotic death of T-lymphocytes and retinal pigment epithelial cells. Western blots prepared with a monoclonal antibody against TIAR showed expression in normal rat hippocampus, and induction by 15 min of global cerebral ischemia. This increased expression was evident at 8 hr after ischemia and maximal at 24 hr, whereas expression at 72 hr was reduced below basal levels. Expression of TIAR protein was also increased in parietal cortex 6 and 24 hr after 90 min of focal cerebral ischemia induced by middle cerebral artery (MCA) occlusion, as well as in cultured cortical neurons and astroglia after exposure to hypoxia in vitro. Immunocytochemistry showed that increased expression of TIAR occurred mainly in the CA1 sector of hippocampus 24 hr after global ischemia, and in cortical and striatal neurons 24 hr after 20 or 90 min of focal ischemia. Double-labeling studies showed that TIAR protein expression was co-localized with DNA damage in neuronal cells. The findings suggest that TIAR may be involved in neuronal cell death after cerebral ischemic injury.

  5. Neuroprotective properties of Melissa officinalis after hypoxic-ischemic injury both in vitro and in vivo

    PubMed Central

    2012-01-01

    Background Brain ischemia initiates several metabolic events leading to neuronal death. These events mediate large amount of damage that arises after some neurodegenerative disorders as well as transient brain ischemia. Melissa officinalis is considered as a helpful herbal plant in the prevention of various neurological diseases like Alzheimer that is related with oxidative stress. Methods We examined the effect of Melissa officinalis on hypoxia induced neuronal death in a cortical neuronal culture system as in vitro model and transient hippocampal ischemia as in vivo model. Transient hippocampal ischemia was induced in male rats by tow vessel-occlusion for 20 min. After reperfusion, the histopathological changes and the levels inflammation, oxidative stress status, and caspase-3 activity in hippocampus were measured. Results Cytotoxicity assays showed a significant protection of a 10 μg/ml dose of Melissa against hypoxia