Effects of a long-acting mutant bacterial cocaine esterase on acute cocaine toxicity in rats
Collins, Gregory T.; Zaks, Matthew E.; Cunningham, Alyssa R.; St. Clair, Carley; Nichols, Joseph; Narasimhan, Diwahar; Ko, Mei-Chuan; Sunahara, Roger K.; Woods, James H.
2011-01-01
Background A longer acting, double mutant bacterial cocaine esterase (CocE T172R/G173Q; DM CocE) has been shown to protect mice from cocaine-induced lethality, inhibit the reinforcing effects of cocaine in rats, and reverse cocaine’s cardiovascular effects in rhesus monkeys. The current studies evaluated the effectiveness of DM CocE to protect against, and reverse cocaine’s cardiovascular, convulsant, and lethal effects in male and female rats. Methods Pretreatment studies were used to determine the effectiveness and in vivo duration of action for DM CocE to protect rats against the occurrence of cardiovascular changes, convulsion and lethality associated with acute cocaine toxicity. Posttreatment studies were used to evaluate the capacity of DM CocE to rescue rats from the cardiovascular and lethal effects of large doses of cocaine. In addition, male and female rats were studied to determine if there were any potential effects of sex on the capacity of DM CocE to protect against, or reverse acute cocaine toxicity in rats. Results Pretreatment with DM CocE dose-dependently protected rats against cocaine-induced cardiovascular changes, convulsion and lethality, with higher doses active for up to 4 hrs, and shifting cocaine-induced lethality at least 10-fold to the right. In addition to dose-dependently recovering rats from an otherwise lethal dose of cocaine, post-treatment with DM CocE also reversed the cardiovascular effects of cocaine. There were no sex-related differences in the effectiveness of DM CocE to protect against, or reverse acute cocaine toxicity. Conclusions Together, these results support the development of DM CocE for the treatment of acute cocaine toxicity. PMID:21481548
Dote, Emi; Dote, Tomotaro; Shimizu, Hiroyasu; Shimbo, Yukari; Fujihara, Michiko; Kono, Koichi
2007-01-01
Cadmium nitrate Cd(NO(3))(2) (CdN) is commonly used in Ni-Cd battery factories. The possibility of accidental exposure to CdN is great. CdN is very soluble in water compared to other Cd compounds. Therefore, acute toxicity would be expected to be quick due to rapid absorption after exposure. However, the mechanisms of CdN toxicity have not been fully elucidated. We investigated the acute lethal toxicity and harmful systemic effects of acute exposure to large doses of CdN. The lethal dose and dose-response study of the liver and kidney were determined after intravenous administration of CdN in rats. The LD(50) of CdN was determined to be 5.5 mg/kg. Doses of 2.1, 4.2, 6.3 mg/kg were selected for the dose-response study. Liver injury was induced at doses greater than 4.2 mg/kg. Severe hepatic injury occurred in the 6.3 mg/kg group, which would have been caused by acute exposure to the high concentration of Cd that exceeded the critical concentration in hepatic tissue. A remarkable decrease in urine volume in the 6.3 mg/kg group indicated acute renal failure. A decrease in creatinine clearance suggested acute glomerular dysfunction at doses greater than 4.2 mg/kg. Increases in urinary N-acetyl-beta-D-glucosaminidase/creatinine, beta(2)-microglobulin and glucose in the 6.3 mg/kg group indicated proximal tubular injury. Secretion of K ion was also severely affected by proximal tubular injury and severe decreases in urine volume, and an increase in serum K ion was identified at doses greater than 4.2 mg/kg. Thus severe hyperkalemia might be associated with the cardiac-derived lethal toxicity of CdN.
Toxicity study of Vernonia cinerea.
Latha, L Yoga; Darah, I; Jain, K; Sasidharan, S
2010-01-01
The methanol extract of Vernonia cinerea Less (Asteraceae), which exhibited antimicrobial activity, was tested for toxicity. In an acute toxicity study using mice, the median lethal dose (LD(50)) of the extract was greater than 2000 mg/kg, and we found no pathological changes in macroscopic examination by necropsy of mice treated with extract. As well as the oral acute toxicity study, the brine shrimp lethality test was also done. Brine shrimp test LC(50) values were 3.87 mg/mL (6 h) and 2.72 mg/mL (24 h), exhibiting no significant toxicity result. In conclusion, the methanol extract of V. cinerea did not produce toxic effects in mice and brine shrimp.
A comprehensive approach to predicting chronic toxicity from acute.toxicity data was developed in which simultaneous consideration is given to concentration, degree of response, and time course of effect. onsistent endpoint (lethality) and degree of response (O%) were used to com...
Effective countermeasure against poisoning by organophosphorus insecticides and nerve agents.
Albuquerque, Edson X; Pereira, Edna F R; Aracava, Yasco; Fawcett, William P; Oliveira, Maristela; Randall, William R; Hamilton, Tracey A; Kan, Robert K; Romano, James A; Adler, Michael
2006-08-29
The nerve agents soman, sarin, VX, and tabun are deadly organophosphorus (OP) compounds chemically related to OP insecticides. Most of their acute toxicity results from the irreversible inhibition of acetylcholinesterase (AChE), the enzyme that inactivates the neurotransmitter acetylcholine. The limitations of available therapies against OP poisoning are well recognized, and more effective antidotes are needed. Here, we demonstrate that galantamine, a reversible and centrally acting AChE inhibitor approved for treatment of mild to moderate Alzheimer's disease, protects guinea pigs from the acute toxicity of lethal doses of the nerve agents soman and sarin, and of paraoxon, the active metabolite of the insecticide parathion. In combination with atropine, a single dose of galantamine administered before or soon after acute exposure to lethal doses of soman, sarin, or paraoxon effectively and safely counteracted their toxicity. Doses of galantamine needed to protect guinea pigs fully against the lethality of OPs were well tolerated. In preventing the lethality of nerve agents, galantamine was far more effective than pyridostigmine, a peripherally acting AChE inhibitor, and it was less toxic than huperzine, a centrally acting AChE inhibitor. Thus, a galantamine-based therapy emerges as an effective and safe countermeasure against OP poisoning.
Effective countermeasure against poisoning by organophosphorus insecticides and nerve agents
Albuquerque, Edson X.; Pereira, Edna F. R.; Aracava, Yasco; Fawcett, William P.; Oliveira, Maristela; Randall, William R.; Hamilton, Tracey A.; Kan, Robert K.; Romano, James A.; Adler, Michael
2006-01-01
The nerve agents soman, sarin, VX, and tabun are deadly organophosphorus (OP) compounds chemically related to OP insecticides. Most of their acute toxicity results from the irreversible inhibition of acetylcholinesterase (AChE), the enzyme that inactivates the neurotransmitter acetylcholine. The limitations of available therapies against OP poisoning are well recognized, and more effective antidotes are needed. Here, we demonstrate that galantamine, a reversible and centrally acting AChE inhibitor approved for treatment of mild to moderate Alzheimer’s disease, protects guinea pigs from the acute toxicity of lethal doses of the nerve agents soman and sarin, and of paraoxon, the active metabolite of the insecticide parathion. In combination with atropine, a single dose of galantamine administered before or soon after acute exposure to lethal doses of soman, sarin, or paraoxon effectively and safely counteracted their toxicity. Doses of galantamine needed to protect guinea pigs fully against the lethality of OPs were well tolerated. In preventing the lethality of nerve agents, galantamine was far more effective than pyridostigmine, a peripherally acting AChE inhibitor, and it was less toxic than huperzine, a centrally acting AChE inhibitor. Thus, a galantamine-based therapy emerges as an effective and safe countermeasure against OP poisoning. PMID:16914529
Cytotoxicity assays with fish cells as an alternative to the acute lethality test with fish.
Segner, Helmut
2004-10-01
In ecotoxicology, in vitro assays with fish cells are currently applied for mechanistic studies, bioanalytical purposes and toxicity screening. This paper discusses the potential of cytotoxicity assays with fish cells to reduce, refine or replace acute lethality tests using fish. Basal cytotoxicity data obtained with fish cell lines or fish primary cell cultures show a reasonable to good correlation with lethality data from acute toxicity tests, with the exception of compounds that exert a specific mode of toxic action. Basal cytotoxicity data from fish cell lines also correlate well with cytotoxicity data from mammalian cell lines. However, both the piscine and mammalian in vitro assays are clearly less sensitive than the fish test. Therefore, in vivo LC50 values (concentrations of the test compounds that are lethal to 50% of the fish in the experiment within 96 hours) currently cannot be predicted from in vitro values. This in vitro-in vivo difference in sensitivity appears to be true for both fish cell lines and mammalian cell lines. Given the good in vitro-in vivo correlation in toxicity ranking, together with the clear-cut difference in sensitivity, the role of cytotoxicity assays in a tiered alternative testing strategy could be in priority setting in relation to toxic hazard and in the toxicity classification of chemicals and environmental samples.
A method for modeling aquatic toxicity date based on the theory of accelerated life testing and a procedure for maximum likelihood fitting the proposed model is presented. he procedure is computerized as software, which can predict chronic lethality of chemicals using data from a...
Weltje, Lennart; Janz, Philipp; Sowig, Peter
2017-12-01
This paper presents a model to predict acute dermal toxicity of plant protection products (PPPs) to terrestrial amphibian life stages from (regulatory) fish data. By combining existing concepts, including interspecies correlation estimation (ICE), allometric relations, lethal body burden (LBB) and bioconcentration modelling, an equation was derived that predicts the amphibian median lethal dermal dose (LD 50 ) from standard acute toxicity values (96-h LC 50 ) for fish and bioconcentration factors (BCF) in fish. Where possible, fish BCF values were corrected to 5% lipid, and to parent compound. Then, BCF values were adjusted to an exposure duration of 96 h, in case steady state took longer to be achieved. The derived correlation equation is based on 32 LD 50 values from acute dermal toxicity experiments with 15 different species of anuran amphibians, comprising 15 different PPPs. The developed ICE model can be used in a screening approach to estimate the acute risk to amphibian terrestrial life stages from dermal exposures to PPPs with organic active substances. This has the potential to reduce unnecessary testing of vertebrates. Copyright © 2017 Elsevier Ltd. All rights reserved.
Acute lethal toxicity of environmental pollutants to aquatic organisms.
Yen, Jui-Hung; Lin, Kuo-Hsiung; Wang, Yei-Shung
2002-06-01
The acute lethal toxicity of environment pollutants including chlorophenol, haloalkane, quinone, and substituted nitrobenzene (i.e., nitrophenol, nitrobenzene, nitrotoluene, and aniline) compounds to aquatic organisms was determined. Determination of toxicity of chemicals was performed with chlorella, daphnia, carp, and tilapia. The toxicity of chlorophenols had no relation to the number of chlorine atoms on the benzene ring, but monochlorophenol had lower activity than more chlorine-substituted compounds. The tolerance levels of daphnia and carp to haloalkanes was found to be higher than that of chlorella; toxicity to chlorella was several hundred times higher than to daphnia. The toxicity of naphthoquinone compounds to chlorella and carp was higher than that of anthraquinone. A compound with a monochloride substitution on anthraquinone ring was less toxic to carp than those substituted with amine, hydroxyl, and dichlorine groups. Nitrobenzene compounds with an additional substitution group on the p position were extremely toxic to daphnia and carp. (c) 2002 Elsevier Science (USA).
Yang, Jen-Lee
2014-04-01
Acute toxicity testing were carried out the freshwater swamp shrimp, Macrobrachium nipponense, as the model animal for the semiconductor applied metals (gallium, antimony, indium, cadmium, and copper) to evaluate if the species is an suitable experimental animal of pollution in aquatic ecosystem. The static renewal test method of acute lethal concentrations determination was used, and water temperature was maintained at 24.0 ± 0.5°C. Data of individual metal obtained from acute toxicity tests were determined using probit analysis method. The median lethal concentration (96-h LC50) of gallium, antimony, indium, cadmium, and copper for M. nipponense were estimated as 2.7742, 1.9626, 6.8938, 0.0539, and 0.0313 mg/L, respectively. Comparing the toxicity tolerance of M. nipponense with other species which exposed to these metals, it is obviously that the M. nipponense is more sensitive than that of various other aquatic animals.
Knöbel, Melanie; Busser, Frans J M; Rico-Rico, Angeles; Kramer, Nynke I; Hermens, Joop L M; Hafner, Christoph; Tanneberger, Katrin; Schirmer, Kristin; Scholz, Stefan
2012-09-04
The zebrafish embryo toxicity test has been proposed as an alternative for the acute fish toxicity test, which is required by various regulations for environmental risk assessment of chemicals. We investigated the reliability of the embryo test by probing organic industrial chemicals with a wide range of physicochemical properties, toxicities, and modes of toxic action. Moreover, the relevance of using measured versus nominal (intended) exposure concentrations, inclusion of sublethal endpoints, and different exposure durations for the comparability with reported fish acute toxicity was explored. Our results confirm a very strong correlation of zebrafish embryo to fish acute toxicity. When toxicity values were calculated based on measured exposure concentrations, the slope of the type II regression line was 1 and nearly passed through the origin (1 to 1 correlation). Measured concentrations also explained several apparent outliers. Neither prolonged exposure (up to 120 h) nor consideration of sublethal effects led to a reduced number of outliers. Yet, two types of compounds were less lethal to embryos than to adult fish: a neurotoxic compound acting via sodium channels (permethrin) and a compound requiring metabolic activation (allyl alcohol).
The use of Ampelisca abdita growth rate as an indicator of sediment quality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weston, D.P.; Thompson, B.
1995-12-31
Acute lethal bioassays with amphipod crustaceans are routinely used to assess toxicity of bulk sediments. A study within the San Francisco Bay Regional Monitoring Program (RMP) is in progress to develop a chronic bioassay with the amphipod Ampelisca abdita, measuring both survivorship and growth rates. This approach is attractive because depression of growth rate is likely to be a more sensitive indicator of toxic effects than acute lethality, and natural populations of A. abdita exist throughout the Bay. Spiked sediment bioassays, using cadmium and crude oil, were used to demonstrate the relative sensitivity of the standard 10-day lethal test vs.more » the 30-day growth test. Sediments were also collected from 9 sites throughout the Bay, ranging from areas adjacent to municipal wastewater discharges to areas distant from known point source inputs. These samples were then split, and used for side-by-side comparison of acute (lethal) and chronic (growth) toxicity tests. Survivorship exceeded 90% in all tests, including those sediments collected nearest the wastewater outfalls. Growth rates were contrasted among the various treatments to examine the utility of this end point in discriminating the outfall sites. Data on the spatial distribution, abundance, and size-frequency distribution of native populations was examined within the context of using growth rate as an indicator of toxic effects in natural populations as well.« less
Syahmi, Abdul Rani Muhamad; Vijayarathna, Soundararajan; Sasidharan, Sreenivasan; Latha, Lachimanan Yoga; Kwan, Yuet Ping; Lau, Yee Ling; Shin, Lai Ngit; Chen, Yeng
2010-11-10
Elaeis guineensis (Arecaceae) is widely used in West African traditional medicine for treating various ailments. An evaluation on the toxicity of extracts of this plant is crucial to support the therapeutic claims. The acute oral toxicity and brine shrimp lethality of a methanolic extract of this plant was tested. Oral administration of crude extract at the highest dose of 5,000 mg/kg resulted in no mortalities or evidence of adverse effects, implying that E. guineensis is nontoxic. Normal behavioral pattern, clinical signs and histology of vital organs confirm this evidence. The E. guineensis extracts screened for toxicity against brine shrimp had 50% lethal concentration (LC₅₀) values of more than 1.0 mg/mL (9.00 and 3.87 mg/mL, at 6 and 24 h, respectively), confirming that the extract was not toxic. Maximum mortalities occurred at 100 mg/mL concentration while the least mortalities happened to be at 0.195 mg/mL concentration. The results of both tests confirm that E. guineensis is nontoxic and hence safe for commercial utilization.
Large Dataset of Acute Oral Toxicity Data Created for Testing in Silico Models (ASCCT meeting)
Acute toxicity data is a common requirement for substance registration in the US. Currently only data derived from animal tests are accepted by regulatory agencies, and the standard in vivo tests use lethality as the endpoint. Non-animal alternatives such as in silico models are ...
Rispin, Amy; Farrar, David; Margosches, Elizabeth; Gupta, Kailash; Stitzel, Katherine; Carr, Gregory; Greene, Michael; Meyer, William; McCall, Deborah
2002-01-01
The authors have developed an improved version of the up-and-down procedure (UDP) as one of the replacements for the traditional acute oral toxicity test formerly used by the Organisation for Economic Co-operation and Development member nations to characterize industrial chemicals, pesticides, and their mixtures. This method improves the performance of acute testing for applications that use the median lethal dose (classic LD50) test while achieving significant reductions in animal use. It uses sequential dosing, together with sophisticated computer-assisted computational methods during the execution and calculation phases of the test. Staircase design, a form of sequential test design, can be applied to acute toxicity testing with its binary experimental endpoints (yes/no outcomes). The improved UDP provides a point estimate of the LD50 and approximate confidence intervals in addition to observed toxic signs for the substance tested. It does not provide information about the dose-response curve. Computer simulation was used to test performance of the UDP without the need for additional laboratory validation.
Dorandeu, Fr; Lallement, G
2003-11-01
Toxicity assessment and demonstration of innocuousness of chemical compounds have been part of the research studies conducted in the fields of pharmacy, agriculture and chemical industry for years. Acute systemic toxicity studies are an important element of the safety evaluation. They remain compulsory for regulatory purposes and important for the public opinion that does not accept the risk anymore. Evolutions of the ethics in animal experiments foster a necessary reduction of the number of animals involved in this type of experiments, following the well-known principle of the three Rs rule of Russell and Burch (1959) (Reduction, refinement and replacement). These two views seem in contradiction. Using the example of acute toxicity testing and focusing on the now very criticized parameter lethal dose 50, we will present approaches, including statistical ones, that a toxicologist can use, when free to choose, to keep on conducting the indispensable in vivo studies while abiding by ethical recommendations.
Acute oral toxicity test of chemical compounds in silkworms.
Usui, Kimihito; Nishida, Satoshi; Sugita, Takuya; Ueki, Takuro; Matsumoto, Yasuhiko; Okumura, Hidenobu; Sekimizu, Kazuhisa
2016-02-01
This study performed an acute oral toxicity test of 59 compounds in silkworms. These compounds are listed in OECD guidelines as standard substances for a cytotoxicity test, and median lethal dose (LD(50)) werecalculated for each compound. Acute oral LD(50) values in mammals are listed in OECD guidelines and acute oral LD(50) values in silkworms were determined in this study. R(2) for the correlation between LD(50) values in mammals and LD(50) values in silkworms was 0.66. In addition, the acute oral toxicity test in silkworms was performed by two different facilities, and test results from the facilities were highly reproducible. These findings suggest that an acute oral toxicity test in silkworms is a useful way to evaluate the toxicity of compounds in mammals.
Vyas, Nimish B.; Rattner, Barnett A.
2012-01-01
Avian risk assessments for rodenticides are often driven by the results of standardized acute oral toxicity tests without regards to a toxicant's mode of action and time course of adverse effects. First generation anticoagulant rodenticides (FGARs) generally require multiple feedings over several days to achieve a threshold concentration in tissue and cause adverse effects. This exposure regimen is much different than that used in the standardized acute oral toxicity test methodology. Median lethal dose values derived from standardized acute oral toxicity tests underestimate the environmental hazard and risk of FGARs. Caution is warranted when FGAR toxicity, physiological effects, and pharmacokinetics derived from standardized acute oral toxicity testing are used for forensic confirmation of the cause of death in avian mortality incidents and when characterizing FGARs' risks to free-ranging birds.
A comprehensive approach to predicting chronic toxicity from cute toxicity data was developed in which simultaneous onsideration is given to concentration, degree of response, and ime course of effect. onsistent endpoint (lethality) and degree of response (0 percent) were used to...
Acute Toxicity of Ochratoxins A and B in Chicks 1
Peckham, John C.; Doupnik, Ben; Jones, Oscar H.
1971-01-01
Ochratoxins A and B were given to 1-day-old Babcock B-300 cockerels to evaluate acute toxic effects. Two trials with ochratoxin A gave 7-day oral median lethal dose estimates of 116 μg (3.3 mg/kg) and 135 μg (3.9 mg/kg) per chick. Chicks given daily oral doses of 100 μg of ochratoxin A died on the second day. Single subcutaneous doses of 400 μg of ochratoxin A were also lethal. The 7-day oral median lethal dose of B was estimated at 1,890 μg (54 mg/kg) per chick. Chicks given oral doses of 100 μg of ochratoxin B daily for 10 days survived. Sublethal doses of both ochratoxins A and B resulted in growth suppression which was proportional to the amount of ochratoxin given. Visceral gout was the principal gross finding. Microscopic examinations revealed acute nephrosis, hepatic degeneration or focal necrosis, and enteritis. Suppression of hematopoiesis in the bone marrow and depletion of lymphoid elements from the spleen and bursa of Fabricius were frequently seen. Both ochratoxins appeared to have similar pathological effects. This is the first report on the toxicity of ochratoxin B. PMID:4928604
Acute toxicity of 6 neonicotinoid insecticides to freshwater invertebrates.
Raby, Melanie; Nowierski, Monica; Perlov, Dmitri; Zhao, Xiaoming; Hao, Chunyan; Poirier, David G; Sibley, Paul K
2018-05-01
Neonicotinoids are a group of insecticides commonly used in agriculture. Due to their high water solubility, neonicotinoids can be transported to surface waters and have the potential to be toxic to aquatic life. The present study assessed and compared the acute (48- or 96-h) toxicity of 6 neonicotinoids (acetamiprid, clothianidin, dinotefuran, imidacloprid, thiacloprid, and thiamethoxam) to 21 laboratory-cultured and field-collected aquatic invertebrates spanning 10 aquatic arthropod orders. Test conditions mimicked species' habitat, with lentic taxa exposed under static conditions, and lotic taxa exposed under recirculating systems. Median lethal concentrations (LC50s) and median effect concentrations (EC50s; immobility) were calculated and used to construct separate lethal- and immobilization-derived species sensitivity distributions for each neonicotinoid, from which 5th percentile hazard concentrations (HC5s) were calculated. The results showed that the most sensitive invertebrates were insects from the orders Ephemeroptera (Neocloeon triangulifer) and Diptera (Chironomus dilutus), whereas cladocerans (Daphnia magna, Ceriodaphnia dubia) were the least sensitive. The HC5s were compared with neonicotinoid environmental concentrations from Ontario (Canada) monitoring studies. For all neonicotinoids except imidacloprid, the resulting hazard quotients indicated little to no hazard in terms of acute toxicity to aquatic communities in Ontario freshwater streams. For the neonicotinoid imidacloprid, a moderate hazard was found when only invertebrate immobilization, and not lethality, data were considered. Environ Toxicol Chem 2018;37:1430-1445. © 2018 SETAC. © 2018 SETAC.
Past, Present and Emerging Toxicity Issues for Jet Fuel
2011-01-01
Statistically significant dominant lethal effects were not observed for either mice or rats (Air Force, 1978). However, because of the small sample...Adams, M.M., 2004. Immunological and hematological effects observed in B6C3F1 mice exposed to JP-8 jet fuel for 14 days. J. Toxicol. Environ. Health A...acute toxicity with the adverse effects being slight dermal irritation and weak dermal sensitization in animals. JP-4 also has low acute toxicity with
Deshpande, Pallavi O; Mohan, Vishwaraman; Thakurdesai, Prasad Arvind
2017-01-01
To evaluate acute oral toxicity (AOT), subchronic (90-day repeated dose) toxicity, mutagenicity, and genotoxicity potential of IDM01, the botanical composition of 4-hydroxyisoleucine- and trigonelline-based standardized fenugreek ( Trigonella foenum-graecum L) seed extract in laboratory rats. The AOT and subchronic (90-day repeated dose) toxicity were evaluated using Sprague-Dawley rats as per the Organisation for Economic Co-operation and Development (OECD) guidelines No. 423 and No. 408, respectively. During the subchronic study, the effects on body weight, food and water consumption, organ weights with hematology, clinical biochemistry, and histology were studied. The mutagenicity and genotoxicity of IDM01 were evaluated by reverse mutation assay (Ames test, OECD guideline No. 471) and chromosome aberration test (OECD guideline No. 473), respectively. The IDM01 did not show mortality or treatment-related adverse signs during acute (limit dose of 2000 mg/kg) and subchronic (90-day repeated dose of 250, 500, and 1000 mg/kg with 28 days of recovery period) administration. The IDM01 showed oral median lethal dose (LD50) >2000 mg/kg during AOT study. The no-observed adverse effect level (NOAEL) of IDM01 was 500 mg/kg. IDM01 did not show mutagenicity up to a concentration of 5000 μg/plate during Ames test and did not induce structural chromosomal aberrations up to 50 mg/culture. IDM01 was found safe during preclinical acute and subchronic (90-day repeated dose) toxicity in rats without mutagenicity or genotoxicity. Acute oral toxicity, subchronic (90-day) oral toxicity, mutagenicity and genotoxicity of IDM01 (4-hydroxyisoleucine- and trigonelline-based standardized fenugreek seed extract) was evaluated.The median lethal dose, LD50, of IDM01 was more than 2000 mg/kg of body weight in rats.No observed adverse effect level (NOAEL) of IDM01 was 500 mg/kg of body weight in rats.IDM01 was found safe during acute and subchronic oral toxicity studies in rats without mutagenicity or genotoxicity potetial. Abbreviations Used: 2-AA: 2-aminoanthracene; 2-AF: 2-aminofluorene; 4 NQNO: 4-nitroquinolene-N-oxide; 4HI: 4-hydroxyisoleucine; ANOVA: Analysis of variance; AOT: Acute oral toxicity; DM: Diabetes mellitus; IDM01: The Botanical composition of 4-hydroxyisoleucine- and trigonelline-based standardized fenugreek seed extract; LD50: Median lethal dose; MMS: Methyl methanesulfonate; NAD: No abnormality detected; OECD: Organisation for Economic Co-operation and Development; SD: Standard deviation; UV: Ultraviolet; VC: Vehicle control. 2-AA: 2-aminoanthracene; 2-AF: 2-aminofluorene; 4 NQNO: 4-nitroquinolene-N-oxide; 4HI: 4-hydroxyisoleucine; ANOVA: Analysis of variance; AOT: Acute oral toxicity; DM: Diabetes mellitus; IDM01: The Botanical composition of 4-hydroxyisoleucine- and trigonelline-based standardized fenugreek seed extract; LD50: Median lethal dose; MMS: Methyl methanesulfonate; NAD: No abnormality detected; OECD: Organisation for Economic Co-operation and Development; SD: Standard deviation; UV: Ultraviolet; VC: Vehicle control.
Deshpande, Pallavi O.; Mohan, Vishwaraman; Thakurdesai, Prasad Arvind
2017-01-01
Objective: To evaluate acute oral toxicity (AOT), subchronic (90-day repeated dose) toxicity, mutagenicity, and genotoxicity potential of IDM01, the botanical composition of 4-hydroxyisoleucine- and trigonelline-based standardized fenugreek (Trigonella foenum-graecum L) seed extract in laboratory rats. Materials and Methods: The AOT and subchronic (90-day repeated dose) toxicity were evaluated using Sprague-Dawley rats as per the Organisation for Economic Co-operation and Development (OECD) guidelines No. 423 and No. 408, respectively. During the subchronic study, the effects on body weight, food and water consumption, organ weights with hematology, clinical biochemistry, and histology were studied. The mutagenicity and genotoxicity of IDM01 were evaluated by reverse mutation assay (Ames test, OECD guideline No. 471) and chromosome aberration test (OECD guideline No. 473), respectively. Results: The IDM01 did not show mortality or treatment-related adverse signs during acute (limit dose of 2000 mg/kg) and subchronic (90-day repeated dose of 250, 500, and 1000 mg/kg with 28 days of recovery period) administration. The IDM01 showed oral median lethal dose (LD50) >2000 mg/kg during AOT study. The no-observed adverse effect level (NOAEL) of IDM01 was 500 mg/kg. IDM01 did not show mutagenicity up to a concentration of 5000 μg/plate during Ames test and did not induce structural chromosomal aberrations up to 50 mg/culture. Conclusions: IDM01 was found safe during preclinical acute and subchronic (90-day repeated dose) toxicity in rats without mutagenicity or genotoxicity. SUMMARY Acute oral toxicity, subchronic (90-day) oral toxicity, mutagenicity and genotoxicity of IDM01 (4-hydroxyisoleucine- and trigonelline-based standardized fenugreek seed extract) was evaluated.The median lethal dose, LD50, of IDM01 was more than 2000 mg/kg of body weight in rats.No observed adverse effect level (NOAEL) of IDM01 was 500 mg/kg of body weight in rats.IDM01 was found safe during acute and subchronic oral toxicity studies in rats without mutagenicity or genotoxicity potetial. Abbreviations Used: 2-AA: 2-aminoanthracene; 2-AF: 2-aminofluorene; 4 NQNO: 4-nitroquinolene-N-oxide; 4HI: 4-hydroxyisoleucine; ANOVA: Analysis of variance; AOT: Acute oral toxicity; DM: Diabetes mellitus; IDM01: The Botanical composition of 4-hydroxyisoleucine- and trigonelline-based standardized fenugreek seed extract; LD50: Median lethal dose; MMS: Methyl methanesulfonate; NAD: No abnormality detected; OECD: Organisation for Economic Co-operation and Development; SD: Standard deviation; UV: Ultraviolet; VC: Vehicle control. 2-AA: 2-aminoanthracene; 2-AF: 2-aminofluorene; 4 NQNO: 4-nitroquinolene-N-oxide; 4HI: 4-hydroxyisoleucine; ANOVA: Analysis of variance; AOT: Acute oral toxicity; DM: Diabetes mellitus; IDM01: The Botanical composition of 4-hydroxyisoleucine- and trigonelline-based standardized fenugreek seed extract; LD50: Median lethal dose; MMS: Methyl methanesulfonate; NAD: No abnormality detected; OECD: Organisation for Economic Co-operation and Development; SD: Standard deviation; UV: Ultraviolet; VC: Vehicle control PMID:28539737
Cruz, R C D; Silva, S L C E; Souza, I A; Gualberto, S A; Carvalho, K S; Santos, F R; Carvalho, M G
2017-07-01
Plant-derived essential oils can be used as insecticides for vector control. However, to establish their safety, it is necessary to perform toxicological studies. Herein, we evaluated the chemical composition and insecticidal activity of the essential oil from the leaves of Croton argyrophyllus on the third- and fourth-instar larvae and adult Aedes aegypti (L., 1762). We also evaluated the acute toxicity of the essential oil in adult female Mus musculus. The lethal concentration 50 (LC50) and 90 (LC90) of C. argyrophyllus essential oil on larvae of Ae. aegypti were 0.31 and 0.70 mg ml-1, respectively, and 5.92 and 8.94 mg ml-1, respectively, on Ae. aegypti adults. The major components of the essential oil were spathulenol (22.80%), (E)-caryophyllene (15.41%), α-pinene (14.07%), and bicyclogermacrene (10.43%). It also displayed acute toxicity in adults of Mus musculus; the intraperitoneal and oral lethal dose 50 (LD50) were 2,000 mg kg-1 and 2,500 mg kg-1, respectively. The results showed that the essential oil from C. argyrophyllus leaves has insecticidal activity on Ae. aegypti larvae and adults at an average lethal concentration below the median lethal dose needed to cause acute toxicity in the common mouse. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Toxicity of trace element and salinity mixtures to striped bass (Morone saxatilis) and Daphnia magna
Dwyer, F.J.; Burch, S.A.; Ingersoll, C.G.; Hunn, J.B.
1992-01-01
Acute toxicity tests with reconstituted water were conducted to investigate the relationship between water hardness, salinity, and a mixture of trace elements found in irrigation drain waters entering Stillwater Wildlife Management Area (SWMA), near Fallon, Nevada. The SWMA has been the site of many fish kills in recent years, and previous toxicity studies indicated that one drain water, Pintail Bay, was acutely toxic to organisms acclimated or cultured in fresh water or salt water. This toxicity could reflect both the ionic composition of this saline water and the presence of trace elements. The lowest water salinity tested with Daphnia magna was near the upper salinity tolerance of these organisms; therefore, we were unable to differentiate between the toxic effects of ion composition and those of trace elements. In toxicity tests conducted with striped bass (Morone saxatilis), we found that the extent to which salinity was lethal to striped bass depended on the ion composition of that salinity. Survival of striped bass increased as hardness increased. In addition, a trace element mixture was toxic to striped bass, even though the concentrations of individual elements were below expected acutely lethal concentrations. Although salinity is an important water quality characteristic, the ionic composition of the water must be considered when one assesses the hazard of irrigation drain waters to aquatic organisms.
Jamil, Subia; Khan, Rafeeq Alam; Afroz, Syeda; Ahmed, Shadab
2016-11-01
Despite the widespread use of Vernonia anthelmintica seeds in traditional medicine, the need to establish the safety of the Vernonia anthelmintica is required to ascertain the safe use of this herbal medicine. The aim of the present study is to establish the acute toxicity profile of different extracts of Vernonia anthelmintica. Hexane and ethanol extract of Vernonia Anthelmintica has been studied for its brine shrimp lethality potential. Water decoction (WDVA), Hexane (HEVA) and Ethanol (EEVA) extracts of Vernonia anthelmintica has also been evaluated for their in-vivo acute oral toxicity in mice by Lorke's method. Phytochemistry of all three extracts was also evaluated for the presence of their secondary metabolites. All three extracts showed the presence of flavonoids and terpenoids, while alkaloids, tannins and fixed oils were present in HEVA and EEVA. Furthermore EEVA also showed presence of carbohydrates and HEVA also showed the presence of cardiac glycosides. Ethanol and hexane extracts of Vernonia anthelmintica showed a positive cytotoxicity in brine shrimp lethality test at 24 hours with LC50 104.16 (224.0-48.05)μg/ml and 216.11μg/ml (378.2-128.7) respectively as compared to standard drug etoposide LC50 7.46μg/ml. The oral LD50 for EEVA, HEVA and WDVA in mice by Lorke's method was greater than 5000mg/kg. The result of brine shrimp lethality test clearly exhibited the presence of bioactive compounds with cytotoxic potential; however seems to be safe for oral use since LD50 was higher than 5000mg/kg and thus safety of acute dosing in vivo practices is justified.
This study was designed to define the degree of concentration addition found for mixtures of certain xenobiotics that are thought to act through a similar or different mode of toxic action for the acute mortality and sublethal growth toxicity endpoints, and for a freshwater fish ...
Slaughter, Andrew R; Palmer, Carolyn G; Muller, Wilhelmine J
2007-04-01
In aquatic ecotoxicology, acute to chronic ratios (ACRs) are often used to predict chronic responses from available acute data to derive water quality guidelines, despite many problems associated with this method. This paper explores the comparative protectiveness and accuracy of predicted guideline values derived from the ACR, linear regression analysis (LRA), and multifactor probit analysis (MPA) extrapolation methods applied to acute toxicity data for aquatic macroinvertebrates. Although the authors of the LRA and MPA methods advocate the use of extrapolated lethal effects in the 0.01% to 10% lethal concentration (LC0.01-LC10) range to predict safe chronic exposure levels to toxicants, the use of an extrapolated LC50 value divided by a safety factor of 5 was in addition explored here because of higher statistical confidence surrounding the LC50 value. The LRA LC50/5 method was found to compare most favorably with available experimental chronic toxicity data and was therefore most likely to be sufficiently protective, although further validation with the use of additional species is needed. Values derived by the ACR method were the least protective. It is suggested that there is an argument for the replacement of ACRs in developing water quality guidelines by the LRA LC50/5 method.
Acute toxicity of 353-nonylphenol and its metabolites for zebrafish embryos.
Kammann, Ulrike; Vobach, Michael; Wosniok, Werner; Schäffer, Andreas; Telscher, Andreas
2009-03-01
Nonylphenol (NP) can be detected in the aquatic environment all over the world. It is applied as a technical mixture of isomers of which 353-NP is the most relevant both in terms of abundance (about 20% of total mass) and endocrine potential. 353-NP is metabolised in sewage sludge. The aims of the present study were to determine and to compare the acute toxicity of t-NP, 353-NP and its metabolites as well as to discuss if the toxicity of 353-NP changes during degradation. 353-NP and two of its metabolites were synthesised. The zebrafish embryo test was performed according to standard protocols. Several lethal and non-lethal endpoints during embryonal development were reported. NOEL, LOEL and EC50 were calculated. All tested compounds caused lethal as well as non-lethal malformations during embryo development. 353-NP showed a higher toxicity (EC50 for lethal endpoints 6.7 mg/L) compared to its metabolites 4-(3.5-dimethyl-3-heptyl)-2-nitrophenol (EC50 13.3 mg/L) and 4-(3,5-dimethyl-3-heptyl)-2-bromophenol (EC50 27.1 mg/L). In surface water, concentrations of NP are far below the NOEC identified by the zebrafish embryo test. However, in soils and sewage sludge, concentrations may reach or even exceed these concentrations. Therefore, sludge-treated sites close to surface waters should be analysed for NP and its metabolites in order to detect an unduly high contamination due to runoff events. The results of the present study point out that the toxicity of 353-NP probably declines during metabolisation in water, sediment and soil, but does not vanish since the major metabolites exhibit a clear toxic potential for zebrafish embryos. Metabolites of environmental pollutants should be included in the ecotoxicological test strategy for a proper risk assessment.
AQUATIC TOXICITY MODE OF ACTION STUDIES APPLIED TO QSAR DEVELOPMENT
A series of QSAR models for predicting fish acute lethality were developed using systematically collected data on more than 600 chemicals. These models were developed based on the assumption that chemicals producing toxicity through a common mechanism will have commonality in the...
Yi, Xianliang; Kang, Sung-Wook; Jung, Jinho
2010-06-15
Acute toxicity and feeding rate inhibition of effluent from a wastewater treatment plant and its adjacent stream water on Daphnia magna and Moina macrocopa were comparatively studied. The acute toxicity of the final effluent (FE) fluctuated greatly over the sampling period from January to August 2009. Toxicity identification results of the FE in July 2009 showed that Cu originating from the Fenton's reagent was likely a key toxicant. In addition, the feeding rate of both species was still inhibited by the FEs in which acute toxicity was not observed. These findings indicate that the feeding response would be a useful tool for monitoring sublethal effects of industrial effluents. For the acute toxicity test, M. macrocopa was more sensitive than D. magna, but the opposite result was true in the case of the feeding rate inhibition. These suggest that different species have different sensitivities to toxic chemicals and to the test methods. Copyright 2010 Elsevier B.V. All rights reserved.
2013-05-01
and diazepam with and without pretreatment with pyridostigmine bromide . The 24 hr median lethal dose (MLD) of VM was determined using a sequential... pyridostigmine bromide . The 24 hr median lethal dose (MLD) of VM was determined using a sequential stage approach. The efficacy of medical...with and without pyridostigmine bromide (PB) pretreatment against lethal intoxication with VM, VR or VX. Methods Animals: Adult male Hartley
Acute toxicity of fipronil to the stingless bee Scaptotrigona postica Latreille.
Jacob, Cynthia Renata Oliveira; Soares, Hellen Maria; Carvalho, Stephan Malfitano; Nocelli, Roberta Cornélio Ferreira; Malaspina, Osmar
2013-01-01
Fipronil is an insecticide widely used to control a great number of pests, thus the aim of this study was to determine the lethal dose and lethal concentration (LD(50) and LC(50)) of this insecticide to the stingless bees Scaptotrigona postica Latreille, 1807. The LD(50) and LC(50) values obtained after 24 h of exposition were of 0.54 ng a.i./bee and 0.24 ng a.i./μL diet, respectively. These values were considered highly toxic to stingless bees.
78 FR 36671 - Acetamiprid; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-19
... one of the following methods: Federal eRulemaking Portal: http://www.regulations.gov . Follow the... validity, completeness, and reliability as well as the relationship of the results of the studies to human... toxic in acute lethality studies via the oral route of exposure and is minimally toxic via the dermal...
THE CANNABINOID RECEPTOR ANTAGONIST AM251 INCREASES PARAOXON AND CHLORPYRIFOS OXON TOXICITY IN RATS
Liu, Jing; Pope, Carey
2014-01-01
Organophosphorus anticholinesterases (OPs) elicit acute toxicity by inhibiting acetylcholinesterase (AChE), leading to acetylcholine accumulation and overstimulation of cholinergic receptors. Endocannabinoids (eCBs, e.g., arachidonoyl ethanolamide [AEA] and 2-arachidonoyl glycerol [2-AG]) are neuromodulators that regulate neurotransmission by reducing neurotransmitter release. The eCBs are degraded by the enzymes fatty acid amide hydrolase (FAAH, primarily involved in hydrolysis of AEA) and monoacylglycerol lipase (MAGL, primarily responsible for metabolism of 2-AG). We previously reported that the cannabinoid receptor agonist WIN 55,212-2 reduced cholinergic toxicity after paraoxon exposure. This study compared the effects of the cannabinoid receptor antagonist AM251 on acute toxicity following either paraoxon (PO) or chlorpyrifos oxon (CPO). CPO was more potent in vitro than PO at inhibiting AChE (≈ 2 fold), FAAH (≈ 8 fold), and MAGL (≈ 19 fold). Rats were treated with vehicle, PO (0.3 and 0.6 mg/kg, sc.) or CPO (6 and 12 mg/kg, sc.) and subsets treated with AM251 (3 mg/kg, ip; 30 min after OP). Signs of toxicity were recorded for four hours and rats were then sacrificed. OP-treated rats showed dose-related involuntary movements, with AM251 increasing signs of toxicity with the lower dosages. PO and CPO elicited excessive secretions, but AM251 had no apparent effect with either OP. Lethality was increased by AM251 with the higher dosage of PO, but no lethality was noted with either dosage of CPO, with or without AM251. Both OPs caused extensive inhibition of hippocampal AChE and FAAH (>80–90%), but only CPO inhibited MAGL (37–50%). These results provide further evidence that eCB signaling can influence acute OP toxicity. The selective in vivo inhibition of MAGL by CPO may be important in the differential lethality noted between PO and CPO with AM251 co-administration. PMID:25447325
Gardiner, William W; Word, Jack Q; Word, Jack D; Perkins, Robert A; McFarlin, Kelly M; Hester, Brian W; Word, Lucinda S; Ray, Collin M
2013-01-01
The acute toxicity of physically and chemically dispersed crude oil and the dispersant Corexit 9500 were evaluated for key Arctic species. The copepod Calanus glacialis, juvenile Arctic cod (Boreogadus saida), and larval sculpin (Myoxocephalus sp.) were tested under conditions representative of the Beaufort and Chukchi Seas during the ice-free season. The toxicity of 3 water-accommodated fractions (WAF) of Alaska North Slope crude oil was examined with spiked, declining exposures. A dispersant-only test was conducted with the copepod C. glacialis. Each preparation with oil (WAF, breaking wave WAF [BWWAF], and chemically enhanced WAF [CEWAF]) produced distinct suites of hydrocarbon constituents; the total concentrations of oil were lowest in WAF and highest in CEWAF preparations. The relative sensitivity for the different species and age classes was similar within each WAF type. Median lethal concentration values based on total petroleum hydrocarbons ranged from 1.6 mg/L to 4.0 mg/L for WAF and BWWAF treatments and from 22 mg/L to 62 mg/L for CEWAF. For Corexit 9500 exposures, median lethal concentration values ranged from 17 mg/L to 50 mg/L. The differences in the relative toxicity among the accommodated fractions indicated that the majority of petroleum hydrocarbons in the CEWAF are in less acutely toxic forms than the components that dominate the WAF or BWWAF. Further evaluation showed that the parent polycyclic aromatic hydrocarbon compounds, specifically naphthalene, were highly correlated to acute toxicity. Environ Toxicol Chem 2013;32:2284–2300. PMID:23765555
40 CFR Appendix A to Part 300 - The Hazard Ranking System
Code of Federal Regulations, 2011 CFR
2011-07-01
... control groups. For HRS purposes, the response considered is cancer. [milligrams toxicant per kilogram...-2Containment factor values for surface water migration pathway. 4-3Drainage area values. 4-4Soil group... a group of exposed organisms. The LC50 is used in the HRS in assessing acute toxicity. LD 50 (lethal...
40 CFR Appendix A to Part 300 - The Hazard Ranking System
Code of Federal Regulations, 2012 CFR
2012-07-01
... control groups. For HRS purposes, the response considered is cancer. [milligrams toxicant per kilogram...-2Containment factor values for surface water migration pathway. 4-3Drainage area values. 4-4Soil group... a group of exposed organisms. The LC50 is used in the HRS in assessing acute toxicity. LD 50 (lethal...
Acute toxicity tests and meta-analysis identify gaps in tropical ecotoxicology for amphibians.
Ghose, Sonia L; Donnelly, Maureen A; Kerby, Jacob; Whitfield, Steven M
2014-09-01
Amphibian populations are declining worldwide, particularly in tropical regions where amphibian diversity is highest. Pollutants, including agricultural pesticides, have been identified as a potential contributor to decline, yet toxicological studies of tropical amphibians are very rare. The present study assesses toxic effects on amphibians of 10 commonly used commercial pesticides in tropical agriculture using 2 approaches. First, the authors conducted 8-d toxicity assays with formulations of each pesticide using individually reared red-eyed tree frog (Agalychnis callidryas) tadpoles. Second, they conducted a review of available data for the lethal concentration to kill 50% of test animals from the US Environmental Protection Agency's ECOTOX database to allow comparison with their findings. Lethal concentration estimates from the assays ranged over several orders of magnitude. The nematicides terbufos and ethoprophos and the fungicide chlorothalonil were very highly toxic, with evident effects within an order of magnitude of environmental concentrations. Acute toxicity assays and meta-analysis show that nematicides and fungicides are generally more toxic than herbicides yet receive far less research attention than less toxic herbicides. Given that the tropics have a high diversity of amphibians, the findings emphasize the need for research into the effects of commonly used pesticides in tropical countries and should help guide future ecotoxicological research in tropical regions. © 2014 SETAC.
Effects of water quality parameters on boron toxicity to Ceriodaphnia dubia.
Dethloff, Gail M; Stubblefield, William A; Schlekat, Christian E
2009-07-01
The potential modifying effects of certain water quality parameters (e.g., hardness, alkalinity, pH) on the acute toxicity of boron were tested using a freshwater cladoceran, Ceriodaphnia dubia. By comparison, boron acute toxicity was less affected by water quality characteristics than some metals (e.g., copper and silver). Increases in alkalinity over the range tested did not alter toxicity. Increases in water hardness appeared to have an effect with very hard waters (>500 mg/L as CaCO(3)). Decreased pH had a limited influence on boron acute toxicity in laboratory waters. Increasing chloride concentration did not provide a protective effect. Boron acute toxicity was unaffected by sodium concentrations. Median acute lethal concentrations (LC(50)) in natural water samples collected from three field sites were all greater than in reconstituted laboratory waters that matched natural waters in all respects except for dissolved organic carbon. Water effect ratios in these waters ranged from 1.4 to 1.8. In subsequent studies using a commercially available source of natural organic matter, acute toxicity decreased with increased dissolved organic carbon, suggesting, along with the natural water studies, that dissolved organic carbon should be considered further as a modifier of boron toxicity in natural waters where it exceeds 2 mg/L.
A Market-Basket Approach to Predict the Acute Aquatic Toxicity of Munitions and Energetic Materials.
Burgoon, Lyle D
2016-06-01
An ongoing challenge in chemical production, including the production of insensitive munitions and energetics, is the ability to make predictions about potential environmental hazards early in the process. To address this challenge, a quantitative structure activity relationship model was developed to predict acute fathead minnow toxicity of insensitive munitions and energetic materials. Computational predictive toxicology models like this one may be used to identify and prioritize environmentally safer materials early in their development. The developed model is based on the Apriori market-basket/frequent itemset mining approach to identify probabilistic prediction rules using chemical atom-pairs and the lethality data for 57 compounds from a fathead minnow acute toxicity assay. Lethality data were discretized into four categories based on the Globally Harmonized System of Classification and Labelling of Chemicals. Apriori identified toxicophores for categories two and three. The model classified 32 of the 57 compounds correctly, with a fivefold cross-validation classification rate of 74 %. A structure-based surrogate approach classified the remaining 25 chemicals correctly at 48 %. This result is unsurprising as these 25 chemicals were fairly unique within the larger set.
Busquet, François; Strecker, Ruben; Rawlings, Jane M; Belanger, Scott E; Braunbeck, Thomas; Carr, Gregory J; Cenijn, Peter; Fochtman, Przemyslaw; Gourmelon, Anne; Hübler, Nicole; Kleensang, André; Knöbel, Melanie; Kussatz, Carola; Legler, Juliette; Lillicrap, Adam; Martínez-Jerónimo, Fernando; Polleichtner, Christian; Rzodeczko, Helena; Salinas, Edward; Schneider, Katharina E; Scholz, Stefan; van den Brandhof, Evert-Jan; van der Ven, Leo T M; Walter-Rohde, Susanne; Weigt, Stefan; Witters, Hilda; Halder, Marlies
2014-08-01
The OECD validation study of the zebrafish embryo acute toxicity test (ZFET) for acute aquatic toxicity testing evaluated the ZFET reproducibility by testing 20 chemicals at 5 different concentrations in 3 independent runs in at least 3 laboratories. Stock solutions and test concentrations were analytically confirmed for 11 chemicals. Newly fertilised zebrafish eggs (20/concentration and control) were exposed for 96h to chemicals. Four apical endpoints were recorded daily as indicators of acute lethality: coagulation of the embryo, lack of somite formation, non-detachment of the tail bud from the yolk sac and lack of heartbeat. Results (LC50 values for 48/96h exposure) show that the ZFET is a robust method with a good intra- and inter-laboratory reproducibility (CV<30%) for most chemicals and laboratories. The reproducibility was lower (CV>30%) for some very toxic or volatile chemicals, and chemicals tested close to their limit of solubility. The ZFET is now available as OECD Test Guideline 236. Considering the high predictive capacity of the ZFET demonstrated by Belanger et al. (2013) in their retrospective analysis of acute fish toxicity and fish embryo acute toxicity data, the ZFET is ready to be considered for acute fish toxicity for regulatory purposes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Prihapsara, F.; Alamsyah, R. I.; Widiyani, T.; Artanti, A. N.
2018-03-01
Bay leaf (Eugenia polyantha) is widely used as an alternative therapy for diabetic and hypercholesterol. However, the administration of the extract has a low oral bioavailability, therefore it is prepared by Self Nanoemulsifying Drug Delivery Systems (SNEDDS) ethyl acetate extract of bay leaf. Therefore, acute and subchronic toxicity test is required. The toxicity test performed was an experimental study, including acute and subchronic toxicity tests. Animal experiments were used using Wistar strain rats. Acute toxicity test using 5 groups (n=5) consisted of 1 control group and 4 groups of SNEDDS dose with 48 mg/kgBW 240 mg/kg, 1200 mg/kg, and 6000 mg/kg, while for subchronic toxicity test with 1 group control and 3 groups of doses of SNEDDS with dose group variation 91.75 mg/kgBW, 183.5 mg/kg, and 367 mg/kg. Duration of observation at acute toxicity test for 14 days while for subcronic toxicity test for 28 days with continuous SNEDDS dosage. The results of the acute toxicity test showed toxic symptoms and obtained median lethal dose (LD50) values from SNEDDS from ethyl acetate extract of bay leaf 1409.30 mg/kgBW belonging to slightly toxic category. Subchronic toxicity studies show that the test drug has minor damage in liver and kidneys and moderate damage in pancreas.
Mhadhbi, Lazhar; Fumega, José; Boumaiza, Moncef; Beiras, Ricardo
2012-03-01
The environmental presence of polybrominated diphenyl ethers (PBDEs), among which BDE-47 and BDE-99 are particularly abundant, makes toxicity data necessary to assess the hazard risk posed by PBDE to aquatic organisms. This study examines the effects of BDE-47 and BDE-99 on embryo-larval stages of the marine flatfish turbot. The turbot embryos were exposed at nominal concentrations of BDE-47 and BDE-99 for 6 days. Selected dose levels were relevant for investigating sublethal and lethal effects. Both tested compounds caused lethal toxicity as well as non-lethal malformations during embryo development. We found a high toxic potency of BDE-47 compared to BDE-99 (LC₅₀ values for embryos and larvae, respectively, BDE-47: 27.35 and 14.13 μg L⁻¹; BDE-99: 38.28 and 29.64 μg L⁻¹). The present study shows high sensitivity of fish early life stages (ELS) to PBDE compounds. Based on environmental concentrations of dissolved PBDEs from various aquatic ecosystems, waterborne BDE-47 and BDE-99 pose little risk of acute toxicity to marine fish at relevant environmental concentrations. Turbot fish ELS proved to be an excellent model for the study of ecotoxicity of contaminants in seawater. The results demonstrate harmful effects of PBDE on turbot ELS at concentrations in the range of parts per billion units. In the perspective of risk assessment, ELS endpoints provide rapid, cost-effective and ecologically relevant information, and links should be sought between these short-term tests and effects of long-term exposures in more realistic scenarios.
Synergistic effect of piperonyl butoxide on acute toxicity of pyrethrins to Hyalella azteca.
Giddings, Jeffrey; Gagne, James; Sharp, Janice
2016-08-01
A series of acute toxicity tests with the amphipod Hyalella azteca was performed to quantify the synergistic effect of piperonyl butoxide (PBO) on pyrethrin toxicity. Concentrations of PBO <4 µg/L caused no toxicity enhancement, whereas toxicity increased with PBO concentrations between 4 µg/L and 15 µg/L. Additive toxicity calculations showed that true synergism accounted for an increase in pyrethrin toxicity (decrease in median lethal concentration) of 1.4-fold to 1.6-fold and varied only slightly between 4 µg/L and 15 µg/L PBO, whereas direct toxicity of PBO accounted for an additional increase in mixture toxicity (up to 3.2-fold) that was proportional to PBO concentration. The results can be used to assess the risk of measured or predicted co-occurring concentrations of PBO and pyrethrins in surface waters. Environ Toxicol Chem 2016;35:2111-2116. © 2016 SETAC. © 2016 SETAC.
Fairchild, James F; Allert, Ann; Sappington, Linda S; Nelson, Karen J; Valle, Janet
2008-03-01
We conducted 96-h static acute toxicity studies to evaluate the relative sensitivity of juveniles of the threatened bull trout (Salvelinus confluentus) and the standard cold-water surrogate rainbow trout (Onchorhyncus mykiss) to three rangeland herbicides commonly used for controlling invasive weeds in the northwestern United States. Relative species sensitivity was compared using three procedures: standard acute toxicity testing, fractional estimates of lethal concentrations, and accelerated life testing chronic estimation procedures. The acutely lethal concentrations (ALC) resulting in 50% mortality at 96 h (96-h ALC50s) were determined using linear regression and indicated that the three herbicides were toxic in the order of picloram acid > 2,4-D acid > clopyralid acid. The 96-h ALC50 values for rainbow trout were as follows: picloram, 41 mg/L; 2.4-D, 707 mg/L; and clopyralid, 700 mg/L. The 96-h ALC50 values for bull trout were as follows: picloram, 24 mg/L; 2.4-D, 398 mg/L; and clopyralid, 802 mg/L. Fractional estimates of safe concentrations, based on 5% of the 96-h ALC50, were conservative (overestimated toxicity) of regression-derived 96-h ALC5 values by an order of magnitude. Accelerated life testing procedures were used to estimate chronic lethal concentrations (CLC) resulting in 1% mortality at 30 d (30-d CLC1) for the three herbicides: picloram (1 mg/L rainbow trout, 5 mg/L bull trout), 2,4-D (56 mg/L rainbow trout, 84 mg/L bull trout), and clopyralid (477 mg/L rainbow trout; 552 mg/L bull trout). Collectively, the results indicated that the standard surrogate rainbow trout is similar in sensitivity to bull trout. Accelerated life testing procedures provided cost-effective, statistically defensible methods for estimating safe chronic concentrations (30-d CLC1s) of herbicides from acute toxicity data because they use statistical models based on the entire mortality:concentration:time data matrix.
Fairchild, J.F.; Allert, A.; Sappington, L.S.; Nelson, K.J.; Valle, J.
2008-01-01
We conducted 96-h static acute toxicity studies to evaluate the relative sensitivity of juveniles of the threatened bull trout (Salvelinus confluentus) and the standard cold-water surrogate rainbow trout (Onchorhyncus mykiss) to three rangeland herbicides commonly used for controlling invasive weeds in the northwestern United States. Relative species sensitivity was compared using three procedures: standard acute toxicity testing, fractional estimates of lethal concentrations, and accelerated life testing chronic estimation procedures. The acutely lethal concentrations (ALC) resulting in 50% mortality at 96 h (96-h ALC50s) were determined using linear regression and indicated that the three herbicides were toxic in the order of picloram acid > 2,4-D acid > clopyralid acid. The 96-h ALC50 values for rainbow trout were as follows: picloram, 41 mg/L; 2.4-D, 707 mg/L; and clopyralid, 700 mg/L. The 96-h ALC50 values for bull trout were as follows: picloram, 24 mg/L; 2.4-D, 398 mg/L; and clopyralid, 802 mg/L. Fractional estimates of safe concentrations, based on 5% of the 96-h ALC50, were conservative (overestimated toxicity) of regression-derived 96-h ALC5 values by an order of magnitude. Accelerated life testing procedures were used to estimate chronic lethal concentrations (CLC) resulting in 1% mortality at 30 d (30-d CLC1) for the three herbicides: picloram (1 mg/L rainbow trout, 5 mg/L bull trout), 2,4-D (56 mg/L rainbow trout, 84 mg/L bull trout), and clopyralid (477 mg/L rainbow trout; 552 mg/L bull trout). Collectively, the results indicated that the standard surrogate rainbow trout is similar in sensitivity to bull trout. Accelerated life testing procedures provided cost-effective, statistically defensible methods for estimating safe chronic concentrations (30-d CLC1s) of herbicides from acute toxicity data because they use statistical models based on the entire mortality:concentration: time data matrix. ?? 2008 SETAC.
An acute toxicity study of Heliotropium scottae Rendle in mice.
Wahome, W M; Muchiri, D J; Mugera, G M
1994-08-01
Twenty-four hour ip median lethal doses (LD50) of freeze-dried aqueous extracts of Heliotropium scottae Rendle leaves and stems in mice were determined and clinical signs noted. The LD50 of the leaf extract was 3.0 g/kg, while that of the stems was 3.5 g/kg. Clinical signs were excitement, prostration, rapid breathing, gasping for breath and death. The signs were the same for both the leaf and stem extracts. It was concluded that both the leaves and stems of H scottae have slight acute toxicity.
Wrubleswski, Juliana; Reichert, Francisco Wilson; Galon, Leandro; Hartmann, Paulo Afonso; Hartmann, Marilia Teresinha
2018-04-01
Brazil is the largest consumer of pesticides in the world. However, knowledge on how these pesticides affect wildlife is scarce. Among the vertebrates, amphibians are particularly important in research to assess the impact of pesticides because of the correlation between pesticide and the decline of these species. This study aimed to evaluate the acute and chronic toxicity of commercial formulations of pesticides, i.e., atrazine (herbicide), cypermethrin (insecticide), and tebuconazole (fungicide) in Physalaemus cuvieri tadpoles. Eggs were collected in nature and cultivated under controlled conditions in the laboratory. Toxicity tests were carried out under standard conditions to determine the lethal concentration (LC 50 ) after 96 h of exposure and to determine the effect of sublethal concentrations after 7 days. In addition, we performed swimming activity tests on tadpoles exposed to sublethal concentrations. The lethal concentration (LC 50 ) was 19.69 mg/L for atrazine, 0.24 mg/L for cypermethrin and 0.98 mg/L for tebuconazole. In the acute test, atrazine showed lower toxicity than cypermethrin and tebuconazole for P. cuvieri. Swimming activity was affected at sublethal doses of atrazine and cypermethrin, but was not after exposure to tebuconazole. Cypermethrin was the insecticide that most altered the swimming activity of the individuals tested. The risk evaluation analysis indicated risks for tadpoles exposed to three tested pesticides, specially cypermethrin.
Abal, Paula; Louzao, M Carmen; Antelo, Alvaro; Alvarez, Mercedes; Cagide, Eva; Vilariño, Natalia; Vieytes, Mercedes R; Botana, Luis M
2017-02-24
Tetrodotoxin (TTX) is starting to appear in molluscs from the European waters and is a hazard to seafood consumers. This toxin blocks sodium channels resulting in neuromuscular paralysis and even death. As a part of the risk assessment process leading to a safe seafood level for TTX, oral toxicity data are required. In this study, a 4-level Up and Down Procedure was designed in order to determine for the first time the oral lethal dose 50 (LD 50 ) and the No Observed Adverse Effect Level (NOAEL) in mice by using an accurate well-characterized TTX standard.
Rufli, Hans
2012-05-01
It has become common practice in many laboratories in Europe to introduce the criterion "moribund" to reduce the suffering in fish acute lethality tests. Fish with severe sublethal symptoms might be declared moribund and are removed from the test as soon as this occurs (premature discontinuation of experiment). Moribund fish affect main study outcomes as the median lethal concentration (LC50) derived on fish declared as moribund may be lower than the conventional LC50. This was evaluated by a retrospective analysis of 328 fish acute toxicity tests of an industry laboratory based on five different definitions of moribund, and of 111 tests from 10 other laboratories from Europe and the United States. Using the criterion of moribund 10 to 23% of the fish were being declared as moribund in 49 to 79% of the studies. In 36 to 52% of the studies, the LC50(moribund) was lower than the conventional LC50 depending on the definitions of moribund. An inclusion of the moribund criterion in an updated Organisation for Economic Cooperation and Development guideline for the acute fish toxicity test would reduce the period of suffering by up to 92 h, lowering the value of the main toxicity endpoint by a factor of approximately 2, and maximal by a factor of approximately 16. Copyright © 2012 SETAC.
Agatz, Annika; Schumann, Mario M; French, Bryan W; Brown, Colin D; Vidal, Stefan
2018-03-24
Characterizing lethal and sublethal control of soil-based pests with plant protection products is particularly challenging due to the complex and dynamic interplay of the system components. Here, we present two types of studies: acute toxcity experiments (homogenous exposure of individuals in soil) and rhizotron experiments (heterogeneous exposure of individuals in soil) to investigate their ability to strengthen our understanding of mechanisms driving the effectivness of the plant protection product. Experiments were conducted using larvae of the western corn rootworm Diabrotica virgifera LeConte and three pesticide active ingredients: clothianidin (neonicotinoid), chlorpyrifos (organophosphate) and tefluthrin (pyrethroid). The order of compound concentrations needed to invoke a specific effect intensity (EC 50 values) within the acute toxicity tests was chlorpyrifos > tefluthrin > clothianidin. This order changed for the rhizotron experiments because application type, fate and transport of the compounds in the soil profile, and sublethal effects on larvae also influence their effectiveness in controlling larval feeding on corn roots. Beyond the pure measurement of efficacy through observing relative changes in plant injury to control plants, the tests generate mechanistic understanding for drivers of efficacy apart from acute toxicity. The experiments have the potential to enhance efficacy testing and product development, and might be useful tools for assessing resistance development in the future. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Accelerated hematopoietic toxicity by high energy (56)Fe radiation.
Datta, Kamal; Suman, Shubhankar; Trani, Daniela; Doiron, Kathryn; Rotolo, Jimmy A; Kallakury, Bhaskar V S; Kolesnick, Richard; Cole, Michael F; Fornace, Albert J
2012-03-01
There is little information on the relative toxicity of highly charged (Z) high-energy (HZE) radiation in animal models compared to γ or X-rays, and the general assumption based on in vitro studies has been that acute toxicity is substantially greater. C57BL/6J mice were irradiated with (56)Fe ions (1 GeV/nucleon), and acute (within 30 d) toxicity compared to that of γ rays or protons (1 GeV). To assess relative hematopoietic and gastrointestinal toxicity, the effects of (56)Fe ions were compared to γ rays using complete blood count (CBC), bone marrow granulocyte-macrophage colony forming unit (GM-CFU), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay for apoptosis in bone marrow, and intestinal crypt survival. Although onset was more rapid, (56)Fe ions were only slightly more toxic than γ rays or protons with lethal dose (LD)(50/30) (a radiation dose at which 50% lethality occurs at 30-day) values of 5.8, 7.25, and 6.8 Gy, respectively, with relative biologic effectiveness for (56)Fe ions of 1.25 and 1.06 for protons. (56)Fe radiation caused accelerated and more severe hematopoietic toxicity. Early mortality correlated with more profound leukopenia and subsequent sepsis. Results indicate that there is selective enhanced toxicity to bone marrow progenitor cells, which are typically resistant to γ rays, and bone marrow stem cells, because intestinal crypt cells did not show increased HZE toxicity.
Accelerated Hematopoietic Toxicity by High Energy 56Fe Radiation
Datta, Kamal; Suman, Shubhankar; Trani, Daniela; Doiron, Kathryn; Rotolo, Jimmy A.; Kallakury, Bhaskar V. S.; Kolesnick, Richard; Cole, Michael F.; Fornace, Albert J.
2013-01-01
Purpose There is little information on the relative toxicity of highly charged (Z) high-energy (HZE) radiation in animal models compared to γ or x-rays, and the general assumption based on in vitro studies has been that acute toxicity is substantially greater. Methods C57BL/6J mice were irradiated with 56Fe ions (1 GeV/nucleon), and acute (within 30 d) toxicity compared to that of γ rays or protons (1 GeV). To assess relative hematopoietic and gastrointestinal toxicity, the effects of 56Fe ions were compared to γ rays using complete blood count (CBC), bone marrow granulocyte-macrophage colony forming unit (GM-CFU), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay for apoptosis in bone marrow, and intestinal crypt survival. Results Although onset was more rapid, 56Fe ions were only slightly more toxic than γ rays or protons with lethal dose (LD)50/30 (a radiation dose at which 50% lethality occurs at 30-day) values of 5.8, 7.25, and 6.8 Gy respectively with relative biologic effectiveness for 56Fe ions of 1.25 and 1.06 for protons. Conclusions 56Fe radiation caused accelerated and more severe hematopoietic toxicity. Early mortality correlated with more profound leukopenia and subsequent sepsis. Results indicate that there is selective enhanced toxicity to bone marrow progenitor cells, which are typically resistant to γ rays, and bone marrow stem cells, because intestinal crypt cells did not show increased HZE toxicity. PMID:22077279
Buratti, Franca M; Manganelli, Maura; Vichi, Susanna; Stefanelli, Mara; Scardala, Simona; Testai, Emanuela; Funari, Enzo
2017-03-01
Cyanobacteria were present on the earth 3.5 billion years ago; since then they have colonized almost all terrestrial and aquatic ecosystems. They produce a high number of bioactive molecules, among which some are cyanotoxins. Cyanobacterial growth at high densities, forming blooms, is increasing in extension and frequency, following anthropogenic activities and climate changes, giving rise to some concern for human health and animal life exposed to cyanotoxins. Numerous cases of lethal poisonings have been associated with cyanotoxins ingestion in wild animal and livestock. In humans few episodes of lethal or severe human poisonings have been recorded after acute or short-term exposure, but the repeated/chronic exposure to low cyanotoxin levels remains a critical issue. The properties of the most frequently detected cyanotoxins (namely, microcystins, nodularins, cylindrospermopsin and neurotoxins) are here critically reviewed, describing for each toxin the available information on producing organisms, biosynthesis/genetic and occurrence, with a focus on the toxicological profile (including kinetics, acute systemic toxicity, mechanism and mode of action, local effects, repeated toxicity, genotoxicity, carcinogenicity, reproductive toxicity; human health effects and epidemiological studies; animal poisoning) with the derivation of health-based values and considerations on the risks for human health.
Impact of non-constant concentration exposure on lethality of inhaled hydrogen cyanide.
Sweeney, Lisa M; Sommerville, Douglas R; Channel, Stephen R
2014-03-01
The ten Berge model, also known as the toxic load model, is an empirical approach in hazard assessment modeling for estimating the relationship between the inhalation toxicity of a chemical and the exposure duration. The toxic load (TL) is normally expressed as a function of vapor concentration (C) and duration (t), with TL equaling C(n) × t being a typical form. Hypothetically, any combination of concentration and time that yields the same "toxic load" will give a constant biological response. These formulas have been developed and tested using controlled, constant concentration animal studies, but the validity of applying these assumptions to time-varying concentration profiles has not been tested. Experiments were designed to test the validity of the model under conditions of non-constant acute exposure. Male Sprague-Dawley rats inhaled constant or pulsed concentrations of hydrogen cyanide (HCN) generated in a nose-only exposure system for 5, 15, or 30 min. The observed lethality of HCN for the 11 different C versus t profiles was used to evaluate the ability of the model to adequately describe the lethality of HCN under the conditions of non-constant inhalation exposure. The model was found to be applicable under the tested conditions, with the exception of the median lethality of very brief, high concentration, discontinuous exposures.
Barbee, Gary C; McClain, W Ray; Lanka, Srinivas K; Stout, Michael J
2010-09-01
Chlorantraniliprole, a novel anthranilic diamide insecticide, was recently introduced into the United States where rice-crayfish crop rotations are practiced to control rice water weevil (Lissorhoptrus oryzophilus Kuschel) infestations. Chlorantraniliprole has high margins of mammalian safety and excellent insecticidal efficacy, but its toxicity to non-target crayfish is uncertain. In this study, the acute toxicity of chlorantraniliprole to the red swamp crayfish Procambarus clarkii Girard was determined using aquatic and feeding assays. The aquatic 96 h median lethal toxicity (LC(50)) data indicate that technical-grade chlorantraniliprole is highly toxic (US EPA category) to crayfish with an LC(50) of 951 microg L(-1) (95% CL = 741-1118 microg L(-1)). A no observed effect concentration (NOEC) of 480 microg L(-1) was recorded. Neither the 36 day chronic feeding study, where crayfish fed on chlorantraniliprole-treated rice seed in aquaria, nor the 144 h acute feeding test, where crayfish fed on rice seeds treated with chlorantraniliprole, produced mortality or abnormal behavior. Chlorantraniliprole is three orders of magnitude less acutely toxic to P. clarkii than lambda-cyhalothrin and etofenprox, two pyrethroid insecticides also used in rice, and is less likely to cause acute crayfish toxicity in rice pond ecosystems. Based on acute toxicity data, the use of chlorantraniliprole should be more compatible with rice-crayfish crop rotations than pyrethroids. (c) 2010 Society of Chemical Industry.
Effects-Directed Analysis of Dissolved Organic Compounds in Oil Sands Process-Affected Water.
Morandi, Garrett D; Wiseman, Steve B; Pereira, Alberto; Mankidy, Rishikesh; Gault, Ian G M; Martin, Jonathan W; Giesy, John P
2015-10-20
Acute toxicity of oil sands process-affected water (OSPW) is caused by its complex mixture of bitumen-derived organics, but the specific chemical classes that are most toxic have not been demonstrated. Here, effects-directed analysis was used to determine the most acutely toxic chemical classes in OSPW collected from the world's first oil sands end-pit lake. Three sequential rounds of fractionation, chemical analysis (ultrahigh resolution mass spectrometry), and acute toxicity testing (96 h fathead minnow embryo lethality and 15 min Microtox bioassay) were conducted. Following primary fractionation, toxicity was primarily attributable to the neutral extractable fraction (F1-NE), containing 27% of original organics mass. In secondary fractionation, F1-NE was subfractionated by alkaline water washing, and toxicity was primarily isolated to the ionizable fraction (F2-NE2), containing 18.5% of the original organic mass. In the final round, chromatographic subfractionation of F2-NE2 resulted in two toxic fractions, with the most potent (F3-NE2a, 11% of original organic mass) containing predominantly naphthenic acids (O2(-)). The less-toxic fraction (F3-NE2b, 8% of original organic mass) contained predominantly nonacid species (O(+), O2(+), SO(+), NO(+)). Evidence supports naphthenic acids as among the most acutely toxic chemical classes in OSPW, but nonacidic species also contribute to acute toxicity of OSPW.
Development of a Chronic Toxicity Testing Method for Daphnia pulex
2015-08-01
survivorship) and sublethal endpoints (e.g., growth, reproduction) and are in concept more sensitive than acute lethality tests. • Control– negative ...organism is unable to swim /move after gentle agitation with a transfer pipette but is still alive • LC50-Lethal concentration at which a median effect on...from Zumwalt et al. (1994) The original apparatus uses water splitting channels to perform water changes on 8 beakers at once; the modified apparatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerra, C.R.; DelMonaco, J.L.; Singletary, J.H.
1979-01-01
The biological evaluation program incorporates three types of experimental tests: acute (96 hour) toxicity studies; behavioral (avoidance) response studies; and physiological (cough) response studies. In addition, specimens used in testing are examined for physical damage resulting from exposure to chlorine or ozoen. The objective of the acute (96 hour) toxicity study is to determine the respective lethal levels (LC/sub 50/) of chlorinated and ozonated waters. The objective of the behavioral (avoidance) response study is to determine what (if any) concentrations of ozone and of chlorine will be avoided. The objective of physiological (cough) response study is to determine what concentrationsmore » of ozone and of chlorine are physiologically detected. Ozonated and chlorinated waters were evaluated in all studies for both the addition of increased temperature and without it. Results indicate that ozone is less toxic than chlorine under the test conditions used. The lethal levels vary according to species of water quality measurements at Bergen Generating Station, New York are tabulated. (JBG)« less
Warkentin, Alexander A; Lopez, Michael S; Lasater, Elisabeth A; Lin, Kimberly; He, Bai-Liang; Leung, Anskar YH; Smith, Catherine C; Shah, Neil P; Shokat, Kevan M
2014-01-01
Activating mutations in FLT3 confer poor prognosis for individuals with acute myeloid leukemia (AML). Clinically active investigational FLT3 inhibitors can achieve complete remissions but their utility has been hampered by acquired resistance and myelosuppression attributed to a ‘synthetic lethal toxicity’ arising from simultaneous inhibition of FLT3 and KIT. We report a novel chemical strategy for selective FLT3 inhibition while avoiding KIT inhibition with the staurosporine analog, Star 27. Star 27 maintains potency against FLT3 in proliferation assays of FLT3-transformed cells compared with KIT-transformed cells, shows no toxicity towards normal human hematopoiesis at concentrations that inhibit primary FLT3-mutant AML blast growth, and is active against mutations that confer resistance to clinical inhibitors. As a more complete understanding of kinase networks emerges, it may be possible to define anti-targets such as KIT in the case of AML to allow improved kinase inhibitor design of clinical agents with enhanced efficacy and reduced toxicity. DOI: http://dx.doi.org/10.7554/eLife.03445.001 PMID:25531068
Kassa, Jiri; Kuca, Kamil; Cabal, Jiri; Paar, Martin
2006-10-01
The potency of newly developed asymmetric bispyridinium oximes (K027, K048) in reactivating tabun-inhibited acetylcholinesterase (AChE) and in eliminating tabun-induced acute toxic effects was compared with commonly used oximes (obidoxime, trimedoxime, the oxime HI-6) using in vivo methods. Studies determined the percent of reactivation of tabun-inhibited blood and tissue AChE in poisoned rats and showed that the reactivating efficacy of both newly developed oximes is comparable with obidoxime and trimedoxime, the most efficacious known reactivators of tabun-inhibited AChE. These were also found to be sufficiently efficacious in the elimination of acute lethal toxic effects in tabun-poisoned rats. The oxime HI-6, relatively efficacious against soman, did not seem to be an adequately effective oxime in reactivation of tabun-inhibited AChE and in counteracting acute lethal effects of tabun. In addition, our results confirm that the efficacy of oximes in reactivating tabun-inhibited AChE in blood, diaphragm, and brain correlates with the potency of oximes in protecting rats poisoned with supralethal doses of tabun.
Jiang, Pingzhe; Ni, Zaizhong; Wang, Bin; Ma, Baicheng; Duan, Huikun; Li, Xiaodan; Ma, Xiaofeng; Wei, Qian; Ji, Xiangzhen; Liu, Qiqi; Xing, Shuguang; Li, Minggang
2017-04-01
A new trend has been developed using vanadium and organic ligands to form novel compounds in order to improve the beneficial actions and reduce the toxicity of vanadium compounds. In present study, vanadyl trehalose was explored the oral acute toxicity, 28 days repeated dose toxicity and genotoxicity in Kunming mice. The Median Lethal Dose (LD 50 ) of vanadyl trehalose was revealed to be 1000 mg/kg body weight in fasted Kunming mice. Stomach and intestine were demonstrated to be the main target organs of vanadyl trehalose through 28 days repeated dose toxicity study. And vanadyl trehalose also showed particular genotoxicity through mouse bone marrow micronucleus and mouse sperm malformation assay. In brief, vanadyl trehalose presented certain, but finite toxicity, which may provide experimental basis for the clinical application. Copyright © 2017 Elsevier Inc. All rights reserved.
Hoffmann, Krista Callinan; Deanovic, Linda; Werner, Inge; Stillway, Marie; Fong, Stephanie; Teh, Swee
2016-10-01
A novel 2-tiered analytical approach was used to characterize and quantify interactions between type I and type II pyrethroids in Hyalella azteca using standardized water column toxicity tests. Bifenthrin, permethrin, cyfluthrin, and lambda-cyhalothrin were tested in all possible binary combinations across 6 experiments. All mixtures were analyzed for 4-d lethality, and 2 of the 6 mixtures (permethrin-bifenthrin and permethrin-cyfluthrin) were tested for subchronic 10-d lethality and sublethal effects on swimming motility and growth. Mixtures were initially analyzed for interactions using regression analyses, and subsequently compared with the additive models of concentration addition and independent action to further characterize mixture responses. Negative interactions (antagonistic) were significant in 2 of the 6 mixtures tested, including cyfluthrin-bifenthrin and cyfluthrin-permethrin, but only on the acute 4-d lethality endpoint. In both cases mixture responses fell between the additive models of concentration addition and independent action. All other mixtures were additive across 4-d lethality, and bifenthrin-permethrin and cyfluthrin-permethrin were also additive in terms of subchronic 10-d lethality and sublethal responses. Environ Toxicol Chem 2016;35:2542-2549. © 2016 SETAC. © 2016 SETAC.
2013-05-03
public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions...AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT Toxic load models are mathematical...equal). The Department of Defense (DOD) (2005) publication “Potential Military Chemical/Biological Agents and Compounds” currently uses the toxic load
Physiologic Conditions Affect Toxicity of Ingested Industrial Fluoride
Sauerheber, Richard
2013-01-01
The effects of calcium ion and broad pH ranges on free fluoride ion aqueous concentrations were measured directly and computed theoretically. Solubility calculations indicate that blood fluoride concentrations that occur in lethal poisonings would decrease calcium below prevailing levels. Acute lethal poisoning and also many of the chronic effects of fluoride involve alterations in the chemical activity of calcium by the fluoride ion. Natural calcium fluoride with low solubility and toxicity from ingestion is distinct from fully soluble toxic industrial fluorides. The toxicity of fluoride is determined by environmental conditions and the positive cations present. At a pH typical of gastric juice, fluoride is largely protonated as hydrofluoric acid HF. Industrial fluoride ingested from treated water enters saliva at levels too low to affect dental caries. Blood levels during lifelong consumption can harm heart, bone, brain, and even developing teeth enamel. The widespread policy known as water fluoridation is discussed in light of these findings. PMID:23840230
Physiologic conditions affect toxicity of ingested industrial fluoride.
Sauerheber, Richard
2013-01-01
The effects of calcium ion and broad pH ranges on free fluoride ion aqueous concentrations were measured directly and computed theoretically. Solubility calculations indicate that blood fluoride concentrations that occur in lethal poisonings would decrease calcium below prevailing levels. Acute lethal poisoning and also many of the chronic effects of fluoride involve alterations in the chemical activity of calcium by the fluoride ion. Natural calcium fluoride with low solubility and toxicity from ingestion is distinct from fully soluble toxic industrial fluorides. The toxicity of fluoride is determined by environmental conditions and the positive cations present. At a pH typical of gastric juice, fluoride is largely protonated as hydrofluoric acid HF. Industrial fluoride ingested from treated water enters saliva at levels too low to affect dental caries. Blood levels during lifelong consumption can harm heart, bone, brain, and even developing teeth enamel. The widespread policy known as water fluoridation is discussed in light of these findings.
Ajibade, Temitayo Olabisi; Arowolo, Ruben; Olayemi, Funsho Olakitike
2013-05-07
The seeds of Moringa oleifera were collected, air-dried, pulverized, and subjected to cold extraction with methanol. The methanol extract was screened phytochemically for its chemical components and used for acute and sub-acute toxicity studies in rats. The phytochemical screening revealed the presence of saponins, tannins, terpenes, alkaloids, flavonoids, carbohydrates, and cardiac glycosides but the absence of anthraquinones. Although signs of acute toxicity were observed at a dose of 4,000 mg kg-1 in the acute toxicity test, and mortality was recorded at 5,000 mg kg-1, no adverse effect was observed at concentrations lower than 3,000 mg kg-1. The median lethal dose of the extract in rat was 3,873 mg kg-1. Sub-acute administration of the seed extract caused significant (p<0.05) increase in the levels of alanine and aspartate transferases (ALT and AST), and significant (p<0.05) decrease in weight of experimental rats, at 1,600 mg kg-1. The study concludes that the extract of seeds of M. oleifera is safe both for medicinal and nutritional uses.
Acute aquatic toxicity and biodegradation potential of biodiesel fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haws, R.A.; Zhang, X.; Marshall, E.A.
1995-12-31
Recent studies on the biodegradation potential and aquatic toxicity of biodiesel fuels are reviewed. Biodegradation data were obtained using the shaker flask method observing the appearance of CO{sub 2} and by observing the disappearance of test substance with gas chromatography. Additional BOD{sub 5} and COD data were obtained. The results indicate the ready biodegradability of biodiesel fuels as well as the enhanced co-metabolic biodegradation of biodiesel and petroleum diesel fuel mixtures. The study examined reference diesel, neat soy oil, neat rape oil, and the methyl and ethyl esters of these vegetable oils as well as various fuel blends. Acute toxicitymore » tests on biodiesel fuels and blends were performed using Oncorhynchus mykiss (Rainbow Trout) in a static non-renewal system and in a proportional dilution flow replacement system. The study is intended to develop data on the acute aquatic toxicity of biodiesel fuels and blends under US EPA Good Laboratory Practice Standards. The test procedure is designed from the guidelines outlined in Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms and the Fish Acute Aquatic Toxicity Test guideline used to develop aquatic toxicity data for substances subject to environmental effects test regulations under TSCA. The acute aquatic toxicity is estimated by an LC50, a lethal concentration effecting mortality in 50% of the test population.« less
Development of a general baseline toxicity QSAR model for the fish embryo acute toxicity test.
Klüver, Nils; Vogs, Carolina; Altenburger, Rolf; Escher, Beate I; Scholz, Stefan
2016-12-01
Fish embryos have become a popular model in ecotoxicology and toxicology. The fish embryo acute toxicity test (FET) with the zebrafish embryo was recently adopted by the OECD as technical guideline TG 236 and a large database of concentrations causing 50% lethality (LC 50 ) is available in the literature. Quantitative Structure-Activity Relationships (QSARs) of baseline toxicity (also called narcosis) are helpful to estimate the minimum toxicity of chemicals to be tested and to identify excess toxicity in existing data sets. Here, we analyzed an existing fish embryo toxicity database and established a QSAR for fish embryo LC 50 using chemicals that were independently classified to act according to the non-specific mode of action of baseline toxicity. The octanol-water partition coefficient K ow is commonly applied to discriminate between non-polar and polar narcotics. Replacing the K ow by the liposome-water partition coefficient K lipw yielded a common QSAR for polar and non-polar baseline toxicants. This developed baseline toxicity QSAR was applied to compare the final mode of action (MOA) assignment of 132 chemicals. Further, we included the analysis of internal lethal concentration (ILC 50 ) and chemical activity (La 50 ) as complementary approaches to evaluate the robustness of the FET baseline toxicity. The analysis of the FET dataset revealed that specifically acting and reactive chemicals converged towards the baseline toxicity QSAR with increasing hydrophobicity. The developed FET baseline toxicity QSAR can be used to identify specifically acting or reactive compounds by determination of the toxic ratio and in combination with appropriate endpoints to infer the MOA for chemicals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Acute and sub-chronic toxicity studies of honokiol microemulsion.
Zhang, Qianqian; Li, Jianguo; Zhang, Wei; An, Quan; Wen, Jianhua; Wang, Aiping; Jin, Hongtao; Chen, Shizhong
2015-04-01
The purpose of this study was to investigate the acute and sub-chronic toxicity of honokiol microemulsion. In the acute toxicity tests, the mice were intravenously injected graded doses of honokiol microemulsion and were observed for toxic symptoms and mortality daily for 14 days. In the sub-chronic toxicity study, rats were injected honokiol microemulsion at doses of 100, 500, 2500 μg/kg body weight (BW) for 30 days. After 30 days treatment and 14 days recovery, the rats were sacrificed for hematological, biochemical and histological examination. In the acute toxicity tests, the estimated median lethal dosage (LD50) was 50.5mg/kg body weight in mice. In the sub-chronic toxicity tests, the non-toxic reaction dose was 500 μg/kg body weight. In each treatment group, degeneration or/and necrosis in vascular endothelial cells and structure change of vessel wall can be observed in the injection site (cauda vein) of a few animals while there were no changes in the vessels of other organs. The overall findings of this study indicate that the honokiol microemulsion is non-toxic up to 500 μg/kg body weight, and it has irritation to the vascular of the injection site which should be paid attention to in clinical medication. Copyright © 2015. Published by Elsevier Inc.
Mura, Maria Elena; Ruiu, Luca
2018-06-21
The main objective of this study was to investigate the effects of the insecticidal compound spinosad on the survival, reproduction, and immune functions of the Mediterranean fruit fly. The lethal and sub-lethal effects were determined on Ceratitis capitata Wied. (Diptera: Tephritidae) challenged with different concentrations of spinosad. A median lethal concentration of 0.28 ppm was observed on flies feeding for 5 days on a treated diet. A significant and concentration-dependent decrease in fecundity, egg hatch rate, and lifespan was also detected in treated compared with control flies. Gene expression analyses conducted on treated insects by RT-qPCR revealed an immunomodulatory action of sub-lethal concentrations of spinosad. Target transcripts included several genes involved in medfly immunity and male or female reproductive functions. While a significant upregulation was detected in treated males a short time after spinosad ingestion, most target genes were downregulated in treated females. Our study confirmed the high toxicity of spinosad to C. capitata , highlighting an indirect effect on insect lifespan and reproductive performance at sub-lethal doses. In addition to defining the acute and sub-lethal toxicity of spinosad against the fly, this study provides new insights on the interaction of this compound with insect physiology.
Abal, Paula; Louzao, M. Carmen; Antelo, Alvaro; Alvarez, Mercedes; Cagide, Eva; Vilariño, Natalia; Vieytes, Mercedes R.; Botana, Luis M.
2017-01-01
Tetrodotoxin (TTX) is starting to appear in molluscs from the European waters and is a hazard to seafood consumers. This toxin blocks sodium channels resulting in neuromuscular paralysis and even death. As a part of the risk assessment process leading to a safe seafood level for TTX, oral toxicity data are required. In this study, a 4-level Up and Down Procedure was designed in order to determine for the first time the oral lethal dose 50 (LD50) and the No Observed Adverse Effect Level (NOAEL) in mice by using an accurate well-characterized TTX standard. PMID:28245573
[Biodistribution and Postmortem Redistribution of Emamectin Benzoate in Intoxicated Mice].
Tang, Wei-wei; Lin, Yu-cai; Lu, Yan-xu
2016-02-01
To investigate the lethal blood level, the target organs and tissues, the toxicant storage depots and the postmortem redistribution in mice died of emamectin benzoate poisoning. The mice model of emamectin benzoate poisoning was established via intragastric injection. The main poisoning symptoms and the clinical death times of mice were observed and recorded dynamically in the acute poisoning group as well as the sub-acute poisoning death group. The pathological and histomorphological changes of organs and tissues were observed after poisoning death. The biodistribution and postmortem redistribution of emamectin benzoate in the organs and tissues of mice were assayed by the enzyme-linked immunosorbent assay (ELISA) at 0h, 24h, 48h and 72h after death. The lethal blood concentrations and the concentrations of emamectin benzoate were detected by high performance liquid chromatography (HPLC) at different time points after death. The symptoms of nervous and respiratory system were observed within 15-30 min after intragastric injection. The average time of death was (45.8 ± 7.9) min in the acute poisoning group and (8.0 ± 1.4) d in the sub-acute poisoning group, respectively. The range of acute lethal blood level was 447.164 0-524.463 5 mg/L. The pathological changes of the organs and tissues were observed via light microscope and immunofluorescence microscope. The changes of emamectin benzoate content in the blood, heart, liver, spleen, lung, kidney and brain of poisoning mice showed regularity within 72 h after death (P < 0.05). The target organs of emamectin benzoate poisoning include heart, liver, kidney, lung, brain and contact position (stomach). The toxicant storage depots are kidney and liver. There is emamectin benzoate postmortem redistribution in mice.
The role of monamine oxidase inhibition in the acute toxicity of chlordimeform.
DOT National Transportation Integrated Search
1977-08-01
This paper presents data from experiments on male rats performed to determine whether drugs which interfere with central amine mechanisms would decrease the lethality of the acaricide chlordimeform (and thus be of potential value as antidotes for acc...
Soil ingestion: a concern for acute toxicity in children.
Calabrese, E J; Stanek, E J; James, R C; Roberts, S M
1997-01-01
Several soil ingestion studies have indicated that some children ingest substantial amounts of soil on given days. Although the EPA has assumed that 95% of children ingest 200 mg soil/day or less for exposure assessment purposes, some children have been observed to ingest up to 25-60 g soil during a single day. In light of the potential for children to ingest such large amounts of soil, an assessment was made of the possibility for soil pica episodes to result in acute intoxication from contaminant concentrations the EPA regards as representing conservative screening values (i.e., EPA soil screening levels and EPA Region III risk-based concentrations for residential soils). For a set of 13 chemicals included in the analysis, contaminant doses resulting from a one-time soil pica episode (5-50 g of soil ingested) were compared with acute dosages shown to produce toxicity in humans in clinical studies or case reports. For four of these chemicals, a soil pica episode was found to result in a contaminant dose approximating or exceeding the acute human lethal dose. For five of the remaining chemicals, the contaminant dose from a soil pica episode was well within the reported dose range in humans for toxicity other than lethality. Because both the exposure episodes and the toxicological response information are derived from observations in humans, these findings are regarded as particularly relevant for human health risk assessment. They suggest that, for some chemicals, ostensibly conservative soil criteria based on chronic exposure using current EPA methodology may not be protective of children during acute soil pica episodes. PMID:9405323
Negreş, Simona; Scutari, Corina; Ionică, Floriana Elvira; Gonciar, Veaceslav; Velescu, Bruno Ştefan; Şeremet, Oana Cristina; Zanfirescu, Anca; Zbârcea, Cristina Elena; Ştefănescu, Emil; Ciobotaru, Emilia; ChiriŢă, Cornel
2016-01-01
Hyperforin (HY) is used to treat depression and skin irritation and has been shown a number of pharmacological activities. The literature does no cite data on changes that may occur in the body after HY intake (ethylene diammonium salt - EDS) in long-term administration. From this point of view, the present work is a key to determining the pharmacotoxicological profile of the HY-EDS, in long-term administration. In present research, the influence of toxic doses of HY-EDS was investigated on the biochemical serum parameters and the histopathological changes in internal organs on the experimental mice model. For acute toxicity determination, the HY-EDS was tested in doses of 2000-5000 mg÷kg, administered once per day orally. For subacute toxicity, the HY-EDS was tested in three groups of mice, in doses of 50, 75 and 100 mg÷kg÷day, administered once daily, for 28 consecutive days. As concern acute toxicity, a lethal effect has not occurred at any of the two tested doses and HY-EDS was classified as Class V toxic: median lethal dose (LD50) >5000 mg÷kg, p.o. After 14 days of follow-up in acute toxicity, the experimental results showed a statistically significant increase of aspartate transaminase (AST) and alanine transaminase (ALT), compared to the control group. There were no changes in creatinine and serum glucose compared to the control group. After the administration of repeated doses, it was observed an increase of serum transaminases and alkaline phosphatase. Histological examination revealed that the liver injuries were in an initial stage, making them reversible in case of HY-EDS treatment discontinuation. There was no evidence of kidney damage to any of the doses of HY-EDS.
Rico, Andreu; Sabater, Consuelo; Castillo, María-Ángeles
2016-05-01
The toxicity of five pesticides typically used in rice farming (trichlorfon, dimethoate, carbendazim, tebuconazole and prochloraz) was evaluated on different lethal and sub-lethal endpoints of the earthworm Eisenia fetida. The evaluated endpoints included: avoidance behaviour after an exposure period of 2 days; and mortality, weight loss, enzymatic activities (cholinesterase, lactate dehydrogenase and alkaline phosphatase) and histopathological effects after an exposure period of 14 days. Carbendazim was found to be highly toxic to E. fetida (LC50=2mg/kg d.w.), significantly reducing earthworm weight and showing an avoidance response at soil concentrations that are close to those predicted in rice-fields and in surrounding ecosystems. The insecticide dimethoate showed a moderate acute toxicity (LC50=28mg/kg d.w.), whereas the rest of tested pesticides showed low toxicity potential (LC50 values above 100mg/kg d.w.). For these pesticides, however, weight loss was identified as a sensitive endpoint, with NOEC values approximately 2 times or lower than the calculated LC10 values. The investigated effects on the enzymatic activities of E. fetida and the observed histopathological alterations (longitudinal and circular muscle lesions, edematous tissues, endothelial degeneration and necrosis) proved to be sensitive biomarkers to monitor pesticide contamination and are proposed as alternative measures to evaluate pesticide risks on agro-ecosystems. Copyright © 2016 Elsevier Inc. All rights reserved.
Temperature-dependent acute toxicity of methomyl pesticide on larvae of 3 Asian amphibian species.
Lau, Edward Tak Chuen; Karraker, Nancy Elizabeth; Leung, Kenneth Mei Yee
2015-10-01
Relative to other animal taxa, ecotoxicological studies on amphibians are scarce, even though amphibians are experiencing global declines and pollution has been identified as an important threat. Agricultural lands provide important habitats for many amphibians, but often these lands are contaminated with pesticides. The authors determined the acute toxicity, in terms of 96-h median lethal concentrations, of the carbamate pesticide methomyl on larvae of 3 Asian amphibian species, the Asian common toad (Duttaphrynus melanostictus), the brown tree frog (Polypedates megacephalus), and the marbled pygmy frog (Microhyla pulchra), at 5 different temperatures (15 °C, 20 °C, 25 °C, 30 °C, and 35 °C) to examine the relationships between temperature and toxicity. Significant interspecific variation in methomyl sensitivity and 2 distinct patterns of temperature-dependent toxicity were found. Because high proportions of malformation among the surviving tadpoles were observed, a further test was carried out on the tree frog to determine effect concentrations using malformation as the endpoint. Concentrations as low as 1.4% of the corresponding 96-h median lethal concentrations at 25 °C were sufficient to cause malformation in 50% of the test population. As the toxicity of pesticides may be significantly amplified at higher temperatures, temperature effects should not be overlooked in ecotoxicological studies and derivation of safety limits in environmental risk assessment and management. © 2015 SETAC.
Central nervous system damage due to acute paraquat poisoning: an experimental study with rat model.
Wu, Bailin; Song, Bo; Yang, Haiqing; Huang, Boyuan; Chi, Bo; Guo, Yansu; Liu, Huaijun
2013-03-01
Paraquat (PQ) is a common herbicide and PQ poisoning is a major medical problem in Asia. However, few studies have focused on the acute neurotoxic changes caused by PQ. Here we report the acute neurotoxicological findings of rats treated with lethal dose of PQ. In substantia nigra (SN) and striatum we found obvious microglia (labeled by Iba-1) activation within one week. In SN and hippocampus, we detected increased oxidative stress in the neurons based on NeuN/8-OHdG immunofluorescence double labeling and laser cofocal microscopy. Moreover, we provided ultrastructural evidences of astrocyte edema and neurons apoptosis in rat brain by electron microscopy. Further studies will be needed with non-lethal dose of PQ to confirm these results and demonstrate the direct CNS toxicity of PQ. Copyright © 2012 Elsevier Inc. All rights reserved.
Míguez, Diana M; Huertas, Raquel; Carrara, María V; Carnikián, Agustín; Bouvier, María E; Martínez, María J; Keel, Karen; Pioda, Carolina; Darré, Elena; Pérez, Ramiro; Viera, Santiago; Massa, Enrique
2012-04-01
Bioassays of two sites along the Rio Negro in Uruguay indicate ecotoxicity, which could be attributable to trace concentrations of lead in river sediments. Monthly samples at two sites at Baygorria and Bonete locations were analyzed for both particle size and lead. Lead was determined by atomic spectrometry in river water and sediment and particle size by sieving and sedimentation. Data showed that Baygorria's sediments have greater percentage of clay than Bonete's (20.4 and 5.8%, respectively). Lead was measurable in Baygorria's sediments, meanwhile in Bonete's, it was always below the detection limit. In water samples, lead was below detection limit at both sites. Bioassays using sub-lethal growth and survival test with Hyalella curvispina amphipod, screening with bioluminescent bacteria Photobacterium leiognathi, and acute toxicity bioassay with Pimephales promelas fish indicated toxicity at Baygorria, with much less effect at Bonete. Even though no lethal effects could be demonstrated, higher sub-lethal toxicity was found in samples from Baygorria site, showing a possible concentration of the contaminant in the clay fraction.
Melo, Karina Motta; Oliveira, Rhaul; Grisolia, Cesar Koppe; Domingues, Inês; Pieczarka, Julio Cesar; de Souza Filho, José; Nagamachi, Cleusa Yoshiko
2015-09-01
Rotenone, a natural compound derived from plants of the genera Derris and Lonchocarpus, is used worldwide as a pesticide and piscicide. This study aims to assess short-term toxicity of rotenone to early-life stages of the fish Danio rerio and Poecilia reticulata using a wide and integrative range of biomarkers (developmental, biochemical, behavioral, and histopathological). Moreover, the species sensitivity distribution (SSD) approach was used to compare rotenone acute toxicity to fish species. Toxicity tests were based on the OECD protocols, fish embryo toxicity test (for D. rerio embryos), and fish acute toxicity test (for P. reticulata juveniles). D. rerio embryos were used to estimate lethal concentrations and analyze embryonic and enzymatic alterations (activity of catalase, glutathione-S-transferase, and cholinesterase), while P. reticulata juveniles were used for the assessment of histological damage in the gills and liver. Rotenone induced significant mortality in zebrafish embryos with a 96-h lethal concentration 50% (LC50) = 12.2 μg/L. Rotenone was embryotoxic, affecting the development of D. rerio embryos, which showed cardiac edema; tail deformities; loss of equilibrium; and a general delay characterized by lack of tail detachment, delayed somite formation, yolk sac absorption, and lack of pigmentation. Biochemical biomarker inhibition was observed for concentrations ≥1 μg/L for CAT and glutathione-S-transferase (GST) and for cholinesterase (ChE) in concentration from 10 μg/L. Behavioral changes were observed for P. reticulata juveniles exposed to concentrations equal to or above 25 μg/L of rotenone; moreover, histological damage in the liver and gills of fish exposed to concentrations equal to or above 2.5 μg/L could be observed. A hazard concentration 5% (HC5) of 3.2 μg/L was estimated considering the acute toxicity data for different fish species (n = 49). Lethal and sublethal effects of rotenone raise a concern about its effects on nontarget fish species, especially because rotenone and its metabolite rotenolone are frequently reported in the microgram range in natural environments for several days after field applications. Rotenone should be used with caution. Given the high toxicity and wide range of sublethal effects here reported, further studies in a chronic exposure scenario are recommended.
Li, Fang; Wu, Xiangyang; Zou, Yanmin; Zhao, Ting; Zhang, Min; Feng, Weiwei; Yang, Liuqing
2012-05-01
Three different ligands (rutin, folate and stachyose) of chromium(III) complexes were compared to examine whether they have similar effect on anti-hyperglycemic activity as well as the acute toxicity status. Anti-hyperglycemic activities of chromium rutin complex (CrRC), chromium folate complex (CrFC) and chromium stachyose complex (CrSC) were examined in alloxan-induced diabetic mice with daily oral gavage for a period of 2 weeks at the dose of 0.5-3.0 mg Cr/kg. Acute toxicities of CrRC and CrFC were tested using ICR mice at the dose of 1.0-5.0 g/kg with a single oral gavage and observed for a period of 2 weeks. Biological activities results indicated that only CrRC and CrFC could decrease blood glucose level, reduce the activities of aspartate transaminase, alanine transaminase, alkaline phosphatase, and increase liver glycogen level. In acute toxicity study, LD(50) values for both CrRC and CrFC were above 5.0 g/kg. The minimum lethal dose for CrFC was above 5.0 g/kg, while that for CrRC was 1.0 g/kg. Anti-diabetic activity of those chromium complexes was not similar and their acute toxicities were also different. CrFC represent an optimal chromium supplement among those chromium complexes with potential therapeutic value to control blood glucose in diabetes and non-toxicity in acute toxicity. Copyright © 2012 Elsevier Ltd. All rights reserved.
McIntyre, J K; Davis, J W; Hinman, C; Macneale, K H; Anulacion, B F; Scholz, N L; Stark, J D
2015-08-01
Green stormwater infrastructure (GSI), or low impact development, encompasses a diverse and expanding portfolio of strategies to reduce the impacts of stormwater runoff on natural systems. Benchmarks for GSI success are usually framed in terms of hydrology and water chemistry, with reduced flow and loadings of toxic chemical contaminants as primary metrics. Despite the central goal of protecting aquatic species abundance and diversity, the effectiveness of GSI treatments in maintaining diverse assemblages of sensitive aquatic taxa has not been widely evaluated. In the present study we characterized the baseline toxicity of untreated urban runoff from a highway in Seattle, WA, across six storm events. For all storms, first flush runoff was toxic to the daphniid Ceriodaphnia dubia, causing up to 100% mortality or impairing reproduction among survivors. We then evaluated whether soil media used in bioretention, a conventional GSI method, could reduce or eliminate toxicity to juvenile coho salmon (Oncorhynchus kisutch) as well as their macroinvertebrate prey, including cultured C. dubia and wild-collected mayfly nymphs (Baetis spp.). Untreated highway runoff was generally lethal to salmon and invertebrates, and this acute mortality was eliminated when the runoff was filtered through soil media in bioretention columns. Soil treatment also protected against sublethal reproductive toxicity in C. dubia. Thus, a relatively inexpensive GSI technology can be highly effective at reversing the acutely lethal and sublethal effects of urban runoff on multiple aquatic species. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Willis, Alison M; Oris, James T
2014-09-01
The present study examined photo-induced toxicity and toxicokinetics for acute exposure to selected polycyclic aromatic hydrocarbons (PAHs) in zebrafish. Photo-enhanced toxicity from co-exposure to ultraviolet (UV) radiation and PAHs enhanced the toxicity and exhibited toxic effects at PAH concentrations orders of magnitude below effects observed in the absence of UV. Because environmental exposure to PAHs is usually in the form of complex mixtures, the present study examined the photo-induced toxicity of both single compounds and mixtures of PAHs. In a sensitive larval life stage of zebrafish, acute photo-induced median lethal concentrations (LC50s) were derived for 4 PAHs (anthracene, pyrene, carbazole, and phenanthrene) to examine the hypothesis that phototoxic (anthracene and pyrene) and nonphototoxic (carbazole and phenanthrene) pathways of mixtures could be predicted from single exposures. Anthracene and pyrene were phototoxic as predicted; however, carbazole exhibited moderate photo-induced toxicity and phenanthrene exhibited weak photo-induced toxicity. The toxicity of each chemical alone was used to compare the toxicity of mixtures in binary, tertiary, and quaternary combinations of these PAHs, and a predictive model for environmental mixtures was generated. The results indicated that the acute toxicity of PAH mixtures was additive in phototoxic scenarios, regardless of the magnitude of photo-enhancement. Based on PAH concentrations found in water and circumstances of high UV dose to aquatic systems, there exists potential risk of photo-induced toxicity to aquatic organisms. © 2014 SETAC.
Acute toxicity of peracetic acid (PAA) formulations to Ichthyophthirius multifiliis theronts.
Straus, David L; Meinelt, Thomas
2009-04-01
Peracetic acid (PAA) is an antimicrobial disinfectant used in agriculture, food processing, and medical facilities. It has recently been suggested as a means to control infestations of Ichthyophthirius multifiliis. The purpose of this study was to determine the acute toxicity of two products containing 4.5% and 40% PAA to I. multifiliis theronts from two geographically separate isolates. Theronts were exposed to concentrations of PAA in 96-well plates containing groundwater at 23 degrees C. Acute toxicity was observed over a 4-h period. No significant difference in the median lethal concentration (LC(50)) estimates was evident between the two isolates at 4 h with the 4.5% PAA product (0.146 versus 0.108 mg/l PAA), while there was a statistical difference between the 4 h LC(50) with the 40% PAA product (0.274 versus 0.158 mg/l PAA). These results suggest that PAA is toxic to I. multifiliis theronts at low concentrations and that one of the isolates was more resistant to this compound.
Barbieri, Edison; Moreira, Priscila; Luchini, Luiz Alberto; Hidalgo, Karla Ruiz; Muñoz, Alejandro
2016-01-01
Carbofuran (2,3-dihydro-2,2-dimethyl-7-benzofuranyl methylcarbamate; C12H15NO3) is one of the most toxic carbamate pesticides. For acute toxicity of carbofuran, juveniles of Macrobrachium olfersii were exposed to different concentrations of carbofuran using the static renewal method at different temperature levels (15, 20 and 25°C) at pH 7.0. The main purpose of the present study was to detect the acute toxicity of carbofuran to M. olfersii and investigate its effects on oxygen consumption and ammonium excretion; these tests have not been carried out in this species before. First, the acute toxicity - median lethal concentration - of carbofuran to M. olfersii for 24, 48, 72 and 96 h was examined, which resulted in the following values: 1.64, 1.22, 0.86 and 0.42 mg L(-1), respectively. Furthermore, we also found that carbofuran caused an inhibition in oxygen consumption of 60.6, 65.3 and 66.2% with respect to the control. In addition, after separate exposures to carbofuran, elevations in ammonium excretion were more than 500% with respect to the control. © The Author(s) 2013.
Relative toxicity testing of spacecraft materials. 2: Aircraft materials
NASA Technical Reports Server (NTRS)
Lawrence, W. H.
1980-01-01
The relative toxicity of thermodegradation (pyrolysis/combustion) products of aircraft materials was studied. Two approaches were taken to assess the biological activity of the pyrolysis/combustion products of these materials: (1) determine the acute lethality to rats from inhalation of these pyrolysates and (2) examine the tendency for sublethal exposure to the pyrolysates to disrupt behavioral (shock avoidance) performance of exposed rats. The ralative importance of lethality vs. behavioral effects in selection of a material may be dictated by whether or not individuals potentially exposed to such products, would have an opportunity to escape if they were behaviorally capable of doing so. If so, the second parameter would assume greater importance, but if not the first parameter may be of much greater importance in selecting materials.
Lethal effect of dehydroleucodine (DhL) on amphibian Bufo arenarum embryos.
Moreno, Liliana Elizabeth; Juárez, Américo Osvaldo; Pelzer, Lilian Eugenia
2012-03-01
The dehydroleucodine is a sesquiterpene lactone isolated from Artemisia douglasiana Besser which is used in popular medicine. Toxicity tests using embryos of amphibian have been widely used in order to predict toxic effects of different compounds. However, to our knowledge, there are not studies focussed on the toxic effects of dehydroleucodine on Bufo arenarum, which is an anuran widely distributed in South America. The effect of dehydroleucodine on the survival of embryos was evaluated in an acute test during the early life stage of B. arenarum embryos. Lethality and the degree of adverse effects were dehydroleucodine dose-dependent. Overall, amphibian early life stages appeared to be more susceptible to the embryotoxicity associated with exposure to dehydroleucodine, especially at concentration greater that 3mM. This increased susceptibility may result from the relatively high rate of cellular differentiation and morphogenesis that occurs at this early stage of development. Copyright © 2012 Elsevier Ltd. All rights reserved.
Acute toxic responses of the freshwater planarian, Dugesia dorotocephala, to methylmercury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Best, J.B.; Morita, M.; Ragin, J.
1981-07-01
Toxic responses of planaria to various aquatic habitat concentrations of methylmercury chloride (MMC) were investigated. One hundred percent lethality occurred within 5 h in 2 ppM MMC, 24 h in 1 ppM MMC, and 5 days in 0.5 ppM MMC. No deaths occurred in 0.2 ppM MMC over a 10 day period, however, non-lethal toxic responses were observed. Varying degrees of head resorption, progressing caudally from the snout were observed. With continuing exposure, partial head regeneration and recovery toward more normal appearance occurred by 10 days. Teratogenic effects were observed in surgical decapitation experiments. Head regeneration was retarded in 0.1more » and 0.2 ppM MMC. Malformations, visible lesions, or gross behavioral abnormalities were produced by 2 week exposure of planaria to concentrations of 20 ppB MMC or lower. (RJC)« less
Mielke, H; Strickland, J; Jacobs, M N; Mehta, J M
2017-10-01
A comprehensive biometrical assessment was conducted to compare the performance of multiple test designs for acute dermal systemic toxicity to support the animal welfare update to the original OECD Test Guideline (TG) 402 for acute dermal toxicity. The test designs evaluated included: (1) two, three, or five animals per dose group (2) evident toxicity or lethality endpoints and (3) absence or presence of a one-animal sighting study. The revision of TG 402 respected the 3R principles (replace, reduce, refine) of animal testing. The results demonstrate that the TG 402 test design can be optimised with reduced animal numbers per test group, such that a scenario of two animals per group following a sighting study at a starting dose of 200 mg/kg bw (unless further information is available to better define the starting dose) would provide a classification which in most cases is conservative, without compromising both the statistical ability of the study to assess dermal toxicity, or the relevant classification outcome. Copyright © 2017 Elsevier Inc. All rights reserved.
Liu, Hai-Long; Wang, Yu-Jun; Xuan, Liang; Dang, Fei; Zhou, Dong-Mei
2017-04-01
In the present study, the effects of low-molecular-weight organic acids (LMWOAs) on the toxicity of cadmium (Cd) to Eisenia fetida were investigated in a simulated soil solution. The LMWOAs protected E. fetida from Cd toxicity, as indicated by the increased median lethal concentration (LC50) values and the increased activity of superoxide dismutase. In addition, Cd concentrations in E. fetida decreased dramatically in the presence of LMWOAs. These results were likely because of the complexation between Cd and LMWOAs, which decreased the bioavailability and consequential toxicity of Cd to E. fetida. Notably, LMWOAs reduced Cd toxicity in decreasing order (ethylenediamine tetraacetic acid [EDTA] > citric acid > oxalic acid > malic acid > acetic acid), which was consistent with the decreasing complexation constants between LMWOAs and Cd. These results advance our understanding of the interactions between Cd and LMWOAs in soil. Environ Toxicol Chem 2017;36:1005-1011. © 2016 SETAC. © 2016 SETAC.
Basallote, M Dolores; De Orte, Manoela R; DelValls, T Ángel; Riba, Inmaculada
2014-01-01
Carbon capture and storage is increasingly being considered one of the most efficient approaches to mitigate the increase of CO2 in the atmosphere associated with anthropogenic emissions. However, the environmental effects of potential CO2 leaks remain largely unknown. The amphipod Ampelisca brevicornis was exposed to environmental sediments collected in different areas of the Gulf of Cádiz and subjected to several pH treatments to study the effects of CO2-induced acidification on sediment toxicity. After 10 days of exposure, the results obtained indicated that high lethal effects were associated with the lowest pH treatments, except for the Ría of Huelva sediment test. The mobility of metals from sediment to the overlying seawater was correlated to a pH decrease. The data obtained revealed that CO2-related acidification would lead to lethal effects on amphipods as well as the mobility of metals, which could increase sediment toxicity.
Previous modelling of the median lethal dose (oral rat LD50) has indicated that local class-based models yield better correlations than global models. We evaluated the hypothesis that dividing the dataset by pesticidal mechanisms would improve prediction accuracy. A linear discri...
Hoang, Tham C; Pryor, Rachel L; Rand, Gary M; Frakes, Robert A
2011-04-01
Honeybees are the standard insect test species used for toxicity testing of pesticides on nontarget insects for the U.S. Environmental Protection Agency (U.S. EPA) under the Federal Insecticide Fungicide and Rodenticide Act (FIFRA). Butterflies are another important insect order and a valued ecological resource in pollination. The current study conducted acute toxicity tests with naled, permethrin, and dichlorvos on fifth larval instar (caterpillars) and adults of different native Florida, USA, butterfly species to determine median lethal doses (24-h LD50), because limited acute toxicity data are available with this major insect group. Thorax- and wing-only applications of each insecticide were conducted. Based on LD50s, thorax and wing application exposures were acutely toxic to both caterpillars and adults. Permethrin was the most acutely toxic insecticide after thorax exposure to fifth instars and adult butterflies. However, no generalization on acute toxicity (sensitivity) of the insecticides could be concluded based on exposures to fifth instars versus adult butterflies or on thorax versus wing exposures of adult butterflies. A comparison of LD50s of the butterflies from this study (caterpillars and adults) with honeybee LD50s for the adult mosquito insecticides on a µg/organism or µg/g basis indicates that several butterfly species are more sensitive to these insecticides than are honeybees. A comparison of species sensitivity distributions for all three insecticides shows that permethrin had the lowest 10th percentile. Using a hazard quotient approach indicates that both permethrin and naled applications in the field may present potential acute hazards to butterflies, whereas no acute hazard of dichlorvos is apparent in butterflies. Butterflies should be considered as potential test organisms when nontarget insect testing of pesticides is suggested under FIFRA. Copyright © 2011 SETAC.
Toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine to larval zebrafish (Danio rerio)
Mukhi, S.; Pan, X.; Cobb, G.P.; Patino, R.
2005-01-01
Hexahydro-1,3,5-trinitro-1,3,5-triazine, a cyclonitramine commonly known as RDX, is used in the production of military munitions. Contamination of soil, sediment, and ground and surface waters with RDX has been reported in different places around the world. Acute and subacute toxicities of RDX have been relatively well documented in terrestrial vertebrates, but among aquatic vertebrates the information available is limited. The objective of this study was to characterize the acute toxicity of RDX to larval zebrafish. Mortality (LC50) and incidence of vertebral column deformities (EC50) were two of the end points measured in this study. The 96-h LC50 was estimated at 22.98 and 25.64 mg l-1 in two different tests. The estimated no-observed-effective- concentration (NOEC) values of RDX on lethality were 13.27 ?? 0.05 and 15.32 ?? 0.30 mg l-1; and the lowest-observed-effective- concentration (LOEC) values were 16.52 ?? 0.05 and 19.09 ?? 0.23 mg l-1 in these two tests, respectively. The 96-h EC50 for vertebral deformities on survivors from one of the acute lethality tests was estimated at 20.84 mg l-1, with NOEC and LOEC of 9.75 ?? 0.34 and 12.84 ?? 0.34 mg l-1, respectively. Behavioral aberrations were also noted in this acute toxicity study, including the occurrence of whirling movement and lethargic behavior. The acute effects of RDX on survival, incidence of deformities, and behavior of larval zebrafish occurred at the high end of the most frequently reported concentrations of RDX in aquatic environments. The chronic effects of RDX in aquatic vertebrates need to be determined for an adequate assessment of the ecological risk of environmental RDX. ?? 2005 Elsevier Ltd. All rights reserved.
Acute and chronic toxicity of nickel to rainbow trout (Oncorhynchus mykiss).
Brix, Kevin V; Keithly, James; DeForest, David K; Laughlin, Jim
2004-09-01
Of the fish species tested in chronic Ni exposures, rainbow trout (Oncorhynchus mykiss) is the most sensitive. To develop additional Ni toxicity data and to investigate the toxic mode of action for Ni, we conducted acute (96-h) and chronic (85-d early life-stage) flow-through studies using rainbow trout. In addition to standard toxicological endpoints, we investigated the effects of Ni on ionoregulatory physiology (Na, Ca, and Mg). The acute median lethal concentration for Ni was 20.8 mg/L, and the 24-h gill median lethal accumulation was 666 nmol/g wet weight. No effects on plasma Ca, Mg, or Na were observed during acute exposure. In the chronic study, no significant effects on embryo survival, swim-up, hatching, or fingerling survival or growth were observed at dissolved Ni concentrations up to 466 microg/L, the highest concentration tested. This concentration is considerably higher than the only other reported chronic no-observed-effect concentration (<33 microg/L) for rainbow trout. Accumulation of Ni in trout eggs indicates the chorion is only a partial barrier with 36%, 63%, and 1% of total accumulated Ni associated with the chorion, yolk, and embryo, respectively. Whole-egg ion concentrations were reduced by Ni exposure. However, most of this reduction occurred in the chorion rather than in the embryos, and no effects on hatching success or larval survival were observed as a result. Plasma ion concentrations measured in swim-up fingerlings at the end of the chronic-exposure period were not significantly reduced by exposure to Ni. Nickel accumulated on the gill in an exponential manner but plateaued in trout plasma at waterborne Ni concentrations of 118 microg/L or greater. Consistent with previous studies, Ni did not appear to disrupt ionoregulation in acute exposures of rainbow trout. Our results also suggest that Ni is not an ionoregulatory toxicant in long-term exposures, but the lack of effects in the highest Ni treatment precludes a definitive conclusion.
Key, P B; Scott, G I
1986-11-01
The mud crab, Panopeus herbstii, was acutely exposed (96-hr) to chlorine-produced oxidants (CPO), phenol, and a CPO-phenolic mixture (1:1) to determine lethal and sublethal effects. The 96-hr (LC50) values were determined for each individual compound and mixture. Additionally, whole-animal respiration rates were measured following acute exposure to sublethal concentrations of each compound or mixture. Phenol uptake/depuration rates were measured in the phenol and CPO-phenol mixture concentrations. Results indicated 96-hr LC50 values of 1.06 mg/L for CPO (fiducial limits (FL) = 0.53-2.01 mg/L), 52.8 mg/L for phenol (FL = 45.6-64.5 mg/L), and 184.7 mg/L total toxicant units (TTU) for the CPO-phenol mixture (FL = 143.7-250.2 mg/L TTU). Statistical analysis indicated that the acute toxicity of the CPO-phenol mixture was less than additive. Sublethal studies indicated that only acute exposure to sublethal concentrations of CPO caused altered respiration rates. After 96-hr depuration, metabolic rates in all CPO-exposure crabs generally returned to control rates. Uptake/depuration rate studies indicated significantly lower phenol uptake rates in crabs exposed to the CPO-phenol mixture. These findings suggest that the less-than-additive toxicity of the CPO-phenol mixture may result from lowered uptake/depuration rate kinetics and indicate that the discharge of chlorinated-phenolic waste may not result in additive and/or synergistic interactions, but rather in less-than-additive effects on decapod aquatic species.
Tallarico, Lenita de Freitas; Borrely, Sueli Ivone; Hamada, Natália; Grazeffe, Vanessa Siqueira; Ohlweiler, Fernanda Pires; Okazaki, Kayo; Granatelli, Amanda Tosatte; Pereira, Ivana Wuo; Pereira, Carlos Alberto de Bragança; Nakano, Eliana
2014-12-01
A protocol combining acute toxicity, developmental toxicity and mutagenicity analysis in freshwater snail Biomphalaria glabrata for application in ecotoxicological studies is described. For acute toxicity testing, LC50 and EC50 values were determined; dominant lethal mutations induction was the endpoint for mutagenicity analysis. Reference toxicant potassium dichromate (K2Cr2O7) was used to characterize B. glabrata sensitivity for toxicity and cyclophosphamide to mutagenicity testing purposes. Compared to other relevant freshwater species, B. glabrata showed high sensitivity: the lowest EC50 value was obtained with embryos at veliger stage (5.76mg/L). To assess the model applicability for environmental studies, influent and effluent water samples from a wastewater treatment plant were evaluated. Gastropod sensitivity was assessed in comparison to the standardized bioassay with Daphnia similis exposed to the same water samples. Sampling sites identified as toxic to daphnids were also detected by snails, showing a qualitatively similar sensitivity suggesting that B. glabrata is a suitable test species for freshwater monitoring. Holding procedures and protocols implemented for toxicity and developmental bioassays showed to be in compliance with international standards for intra-laboratory precision. Thereby, we are proposing this system for application in ecotoxicological studies. Copyright © 2014 Elsevier Inc. All rights reserved.
Guidance on health effects of toxic chemicals. Safety Analysis Report Update Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foust, C.B.; Griffin, G.D.; Munro, N.B.
1994-02-01
Martin Marietta Energy Systems, Inc. (MMES), and Martin Marietta Utility Services, Inc. (MMUS), are engaged in phased programs to update the safety documentation for the existing US Department of Energy (DOE)-owned facilities. The safety analysis of potential toxic hazards requires a methodology for evaluating human health effects of predicted toxic exposures. This report provides a consistent set of health effects and documents toxicity estimates corresponding to these health effects for some of the more important chemicals found within MMES and MMUS. The estimates are based on published toxicity information and apply to acute exposures for an ``average`` individual. The healthmore » effects (toxicological endpoints) used in this report are (1) the detection threshold; (2) the no-observed adverse effect level; (3) the onset of irritation/reversible effects; (4) the onset of irreversible effects; and (5) a lethal exposure, defined to be the 50% lethal level. An irreversible effect is defined as a significant effect on a person`s quality of life, e.g., serious injury. Predicted consequences are evaluated on the basis of concentration and exposure time.« less
Acute toxicity of some nerve agents and pesticides in rats.
Misik, Jan; Pavlikova, Ruzena; Cabal, Jiri; Kuca, Kamil
2015-01-01
Highly toxic organophosphorus compounds (V- and G-nerve agents) were originally synthesized for warfare or as agricultural pesticides. Data on their acute toxicity are rare and patchy. Therefore, there is a need for integrated summary comparing acute toxicity of organophosphates using different administration routes in the same animal model with the same methodology. Based on original data, a summary of in vivo acute toxicity of selected V- and G-nerve agents (tabun, sarin, soman, VX, Russian VX) and organophosphates paraoxon (POX) and diisopropyl fluorophosphate (DFP) in rats has been investigated. Male Wistar rats were exposed to organophosphates in several administration routes (i.m., i.p., p.o, s.c., p.c.). The acute toxicity was evaluated by the assessment of median lethal dose (LD50, mg kg(-1)) 2, 4, and 24 hours post exposure. V-agents were the most toxic presented with LD50 ranged from 0.0082 mg kg(-1) (VX, i.m.) to 1.402 mg kg(-1) (Russian VX, p.o.), followed by G-agents (LD50 = 0.069 mg kg(-1)/soman, i.m./ - 117.9 mg kg(-1)/sarin, p.c./), organophosphate POX and DFP (LD50 = 0.321 mg kg(-1)/POX, i.m./ - 420 mg kg(-1)/DFP, p.c./). Generally, i.m. administration was the most toxic throughout all tested agents and ways of administration (LD50 = 0.0082 mg kg(-1)/VX/ - 1.399 mg kg(-1)/DFP/) whereas p.c. way was responsible for lowest acute toxicity (LD50 = 0.085 mg kg(-1)/VX/ - 420 mg kg(-1)/DFP/). The acute toxicity of selected organophosphorus compounds is summarized throughout this study. Although the data assessed in rats are rather illustrative prediction for human, it presents a valuable contribution, indicating the toxic potential and harmfulness of organophosphates.
Selwood, Andrew I.; Waugh, Craig; Harwood, David T.; Rhodes, Lesley L.; Reeve, John; Sim, Jim; Munday, Rex
2017-01-01
Paralytic shellfish poisoning results from consumption of seafood naturally contaminated by saxitoxin and its congeners, the paralytic shellfish toxins (PSTs). The levels of such toxins are regulated internationally, and maximum permitted concentrations in seafood have been established in many countries. A mouse bioassay is an approved method for estimating the levels of PSTs in seafood, but this is now being superseded in many countries by instrumental methods of analysis. Such analyses provide data on the levels of many PSTs in seafood, but for risk assessment, knowledge of the relative toxicities of the congeners is required. These are expressed as “Toxicity Equivalence Factors” (TEFs). At present, TEFs are largely based on relative specific activities following intraperitoneal injection in a mouse bioassay rather than on acute toxicity determinations. A more relevant parameter for comparison would be median lethal doses via oral administration, since this is the route through which humans are exposed to PSTs. In the present study, the median lethal doses of gonyautoxin 5, gonyautoxin 6, decarbamoyl neosaxitoxin and of equilibrium mixtures of decarbamoyl gonyautoxins 2&3, C1&2 and C3&4 by oral administration to mice have been determined and compared with toxicities via intraperitoneal injection. The results indicate that the TEFs of several of these substances require revision in order to more accurately reflect the risk these toxins present to human health. PMID:28230783
Mardirosian, Mariana Noelia; Lascano, Cecilia Inés; Ferrari, Ana; Bongiovanni, Guillermina Azucena; Venturino, Andrés
2015-05-01
Arsenic (As), a natural element of ecological relevance, is found in natural water sources throughout Argentina in concentrations between 0.01 mg/L and 15 mg/L. The autochthonous toad Rhinella arenarum was selected to study the acute toxicity of As and the biochemical responses elicited by the exposure to As in water during its embryonic development. The median lethal concentration (LC50) value averaged 24.3 mg/L As and remained constant along the embryonic development. However, As toxicity drastically decreased when embryos were exposed from heartbeat-stage on day 4 of development, suggesting the onset of detoxification mechanisms. Given the environmental concentrations of As in Argentina, there is a probability of exceeding lethal levels at 1% of sites. Arsenic at sublethal concentrations caused a significant decrease in the total antioxidant potential but generated an increase in endogenous glutathione (GSH) content and glutathione S-transferase (GST) activity. This protective response might prevent a deeper decline in the antioxidant system and further oxidative damage. Alternatively, it might be linked to As conjugation with GSH for its excretion. The authors conclude that toad embryos are more sensitive to As during early developmental stages and that relatively high concentrations of this toxic element are required to elicit mortality, but oxidative stress may be an adverse effect at sublethal concentrations. © 2014 SETAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schafer, K.; Weston, D.P.
1995-12-31
Amphipod crustaceans are often used to measure the toxicity of bulk sediments. Acute lethal bioassays are commonly employed, but this study investigated the potential for using a chronic growth bioassay with Ampelisca abdita. A potential advantage of this method is that the growth rate could be a more sensitive measure of contamination than mortality. Growth rates for A. abdita in sediments spiked with cadmium and crude oil were compared to mortality rates in A. abdita, Eohaustorius estuaries, and Rhepoxynius abronius in sediments with the same concentrations of contaminants. A. abdita was more sensitive to cadmium than the other two species.more » For crude oil, there was a significant shift in size distribution from the control even at concentrations as low as 150 mg/kg of oil. The standard acute lethal tests for all species, on the other hand, did not show significant mortality until at least 1,600 mg/kg. The results confirm that growth rates are a more sensitive indicator of toxicity, and to at least the three contaminants tested, A. abdita is as sensitive as E. estuarius and R. abronius. This study also confirmed the reported high mortality rates of E. estuaries in San Francisco Bay sediments. The causes of this high mortality are unknown but give further reason for using A. abdita for toxicity tests in this region.« less
Biochemical and genotoxic response of naphthalene to fingerlings of milkfish Chanos chanos.
Palanikumar, L; Kumaraguru, A K; Ramakritinan, C M
2013-09-01
The present study investigated the acute toxicity, sub-lethal toxicity and biochemical response of naphthalene in fingerlings of milkfish Chanos chanos. The 96 h acute toxicity LC50 values for C. chanos exposed to naphthalene was 5.18 μg l(-1). The estimated no observed effect concentration and lowest observed effect concentration values for naphthalene in C. chanos were 0.42 and 0.69 μg l(-1) respectively for 30 days. The estimated maximum allowable toxicant concentration for naphthalene was 0.53 μg l(-1). Biochemical enzyme markers such as lipid peroxidation, catalase, glutathione S transferase and reduced glutathione were measured in gills and liver tissues of C. chanos exposed to sub-lethal concentrations of naphthalene. Fluctuation in lipid peroxidation and catalase level suggests that naphthalene concentrations play a vital role in induction of oxidative stress in fish. Induction of reduced glutathione level and inhibition of glutathione S-transferase level was observed in naphthalene exposed C. chanos suggesting that there may be enhanced oxidative damage due to free radicals. Increasing concentration increases in number of nuclear abnormalities. The formation of micronuclei and binucleated micronuclei induction by naphthalene confirm its genotoxic potential. The highest levels of DNA damage (% tail length) were observed at 1.24 μg l(-1) of naphthalene. The study suggests that biochemical enzymes, nuclear abnormalities and DNA damage index can serve as a biological marker for naphthalene contamination.
Acute and Subacute Toxicity Evaluation of Corn Silk Extract
Ha, Ae Wha; Kang, Hyeon Jung; Kim, Sun Lim; Kim, Myung Hwan
2018-01-01
Many studies have reported therapeutic efficacy of corn silk extract. However, research on its toxicity and safe dose range is limited. Thus, the objective of this study was to determine the acute and subacute toxicity of corn silk extract in ICR mice. To determine acute toxicity, corn silk extract containing high levels of maysin was orally administered to mice at a dose of 0 or 2,000 mg/kg. Clinical symptoms, mortality, and body weight changes were recorded for 14 days. To determine subacute toxicity, corn silk extract was orally administered to mice over a 4-week period, and then body weight, water and food consumption, and organ weight were determined. In addition, urine and serum analyses were performed. In the acute toxicity study, no death or abnormal symptoms was observed in all treatment groups during the study period. Body weights did not show any significant change compared to those of the control group. Lethal dose of corn silk extract was estimated to be more than 2,000 mg/kg. In the 4-week subacute toxicity study, there was no corn silk extract related toxic effect on body weight, water intake, food consumption, urine parameters, clinical chemistry, or organ weight. Histopathological examination showed no abnormality related to the administration of corn silk extract at 500 mg/kg. The maximum non-toxic dose of corn silk extract containing high levels of maysin was found to be more than 500 mg/kg. PMID:29662850
Acute and Subacute Toxicity Evaluation of Corn Silk Extract.
Ha, Ae Wha; Kang, Hyeon Jung; Kim, Sun Lim; Kim, Myung Hwan; Kim, Woo Kyoung
2018-03-01
Many studies have reported therapeutic efficacy of corn silk extract. However, research on its toxicity and safe dose range is limited. Thus, the objective of this study was to determine the acute and subacute toxicity of corn silk extract in ICR mice. To determine acute toxicity, corn silk extract containing high levels of maysin was orally administered to mice at a dose of 0 or 2,000 mg/kg. Clinical symptoms, mortality, and body weight changes were recorded for 14 days. To determine subacute toxicity, corn silk extract was orally administered to mice over a 4-week period, and then body weight, water and food consumption, and organ weight were determined. In addition, urine and serum analyses were performed. In the acute toxicity study, no death or abnormal symptoms was observed in all treatment groups during the study period. Body weights did not show any significant change compared to those of the control group. Lethal dose of corn silk extract was estimated to be more than 2,000 mg/kg. In the 4-week subacute toxicity study, there was no corn silk extract related toxic effect on body weight, water intake, food consumption, urine parameters, clinical chemistry, or organ weight. Histopathological examination showed no abnormality related to the administration of corn silk extract at 500 mg/kg. The maximum non-toxic dose of corn silk extract containing high levels of maysin was found to be more than 500 mg/kg.
Zheng, Lei; Pan, Luqing; Lin, Pengfei; Miao, Jingjing; Wang, Xiufen; Lin, Yufei; Wu, Jiangyue
2017-12-01
Hazardous and noxious substances (HNS) spill in the marine environment is an issue of growing concern, and it will mostly continue to do so in the future owing to the increase of high chemical traffic. Nevertheless, the effects of HNS spill on marine environment, especially on aquatic organisms are unclear. Consequently, it is emergent to provide valuable information for the toxicities to marine biota caused by HNS spill. Accordingly, the acute toxicity of three preferential HNS and sub-lethal effects of acrylonitrile on Brachionus plicatilis were evaluated. The median lethal concentration (LC 50 ) at 24 h were 47.2 mg acrylonitrile L -1 , 276.9 mg styrene L -1 , and 488.3 mg p-xylene L -1 , respectively. Sub-lethal toxicity effects of acrylonitrile on feeding behavior, development, and reproduction parameters of B. plicatilis were also evaluated. Results demonstrated that rates of filtration and ingestion were significantly reduced at 2.0, 4.0, and 8.0 mg L -1 of acrylonitrile. Additionally, reproductive period, fecundity, and life span were significantly decreased at high acrylonitrile concentrations. Conversely, juvenile period was significantly increased at the highest two doses and no effects were observed on embryonic development and post-reproductive period. Meanwhile, we found that ingestion rate decline could be a good predictor of reproduction toxicity in B. plicatilis and ecologically relevant endpoint for toxicity assessment. These data will be useful to assess and deal with marine HNS spillages.
Pardos, M; Benninghoff, C; Guéguen, C; Thomas, R; Dobrowolski, J; Dominik, J
1999-12-15
The use of Hydra attenuata in acute toxicity assessment is a potentially useful tool in (waste) water biomonitoring. The purpose of this study was to compare the sensitivity of H. attenuata with the extensively used Microtox test on 14 (waste) water samples from the Kraków region (South Poland). To this end, specific morphological changes displayed by the freshwater cnidarian Hydra attenuata (lethal LC50s and sublethal EC50s effects) and bioluminescence of the marine bacteria Vibrio fisheri (Microtox) were compared. Clearly, the Hydra assay was the more sensitive indicator of toxicity. No relationship was found among Hydra toxicological responses and water levels of As, Cd, Co, Cu, Pb and Zn. However, it appeared that toxicity to Hydra might be due to ammonia levels. Additional studies to better circumscribe the tolerance of H. attenuata to 'natural' water characteristics are needed.
Wu, Jui-Pin; Chen, Hon-Cheng; Li, Mei-Hui
2012-08-01
Although toxic responses of freshwater planarians after exposure to environmental toxicants can be observed through external toxicological end points, physiological responses inside the bodies of treated planarians have rarely been investigated. The present study was designed, using cadmium (Cd) as a reference toxicant, to determine its bioaccumulation and toxicodynamics in the freshwater planarian, Dugesia japonica, after acute toxicity was obtained. Accumulated Cd concentrations, metallothionein levels, and the oxidative status in planarians were determined after exposure to Cd. Furthermore, we hypothesized that the acute death of Cd-treated planarians was associated with increased oxidative stress. After Cd-treated planarians were coexposed to antioxidant, N-acetylcysteine (NAC), we found that NAC protected planarians from Cd lethality by maintaining the oxidative status and decreasing the bioaccumulation of Cd. The results of the present study support planarians being used as a practical model for toxicological studies of environmental contaminants in the future.
Hariharan, G; Purvaja, R; Ramesh, R
2014-01-01
Acute and chronic toxicity tests were conducted on green mussel (Perna viridis) to determine the adverse effects of lead (Pb). Exposure of organisms to acute toxicity test for 96 h and lethal concentration (LC(50)) was the endpoint of the test. Acute toxicity for 96-h LC(50) and 95% confidence intervals of P. viridis was 2.62 ± 0.12 (2.62-3.24) mg/L Pb. Chronic toxicity tests revealed that survival of exposed organisms decreased with elevated exposure concentrations. No-observed-effect concentration (NOEC) and lowest-observed-effect concentration (LOEC) were calculated based on survival of test organisms. Results of this study demonstrated an increase in toxicity in test organisms with rise in exposure time and concentration. In this study, histology and biochemical enzymes, namely, catalase, reduced glutathione, glutathione S-transferase, and lipid peroxides, were correlated with chronic value and survival endpoints of P. viridis after chronic exposure to Pb. Biochemical and histological responses to different concentrations of Pb were assessed and significant differences were observed between control and increasing exposure concentrations. Biomarker studies in internal organs confirmed that the observed changes are due to adverse effects of Pb. This assessment of toxicity was the first step to determining the seawater quality criteria for marine organisms.
2017-03-01
highly toxic based on the U.S. Environmental Protection Agency’s Acute Toxicity Categories for Pesticide Products . 15. SUBJECT TERMS Guinea pig ...in Guinea Pigs 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Wright, Linnzi K. M.; Forster, Jeffry S...intravenous exposure of adult, male guinea pigs to the individual VX enantiomers, and we compared those potencies to that for a racemic mixture. The P
Determination of glycyrrhetic acid after consumption of liquorice and application to a fatality.
Albermann, M E; Musshoff, F; Hagemeier, L; Madea, B
2010-04-15
Besides alcohol and drugs of abuse, several popular foods contain potentially toxic substances and cases of intoxication after consumption of these foods attract notice of forensic toxicology. This is also true for the case of a 34-year-old woman who was suspected to have suffered lethal acute intoxication from eating nothing but liquorice over a period of several months. The liquorice ingredient glycyrrhizin and its metabolite glycyrrhetic acid, which elicits a mineralocorticoid effect, were determined in the sort of liquorice the woman had consumed by using LC-MS/MS. In addition, a fast and sensitive procedure for the quantification of glycyrrhetic acid including a simple sample preparation was developed. The method was proven to be accurate and precise. In a liquorice ingestion experiment, 200 g of liquorice had to be eaten. Afterwards, concentrations of glycyrrhetic acid in the blood of up to 434 ng/ml were measured. Since only traces of glycyrrhetic acid had been found in the blood and stomach content of the deceased woman, the possibility of acute lethal glycyrrhetic acid intoxication could be eliminated. Excluding other causes of death, the woman is believed to have died from a lethal hyperglycemic coma. Nonetheless, the influence of harmful and toxic substances in food should be taken into consideration in special cases. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Acute oral toxicities of wildland fire control chemicals to birds
Vyas, N.B.; Spann, J.W.; Hill, E.F.
2009-01-01
Wildland fire control chemicals are released into the environment by aerial and ground applications to manage rangeland, grassland, and forest fires. Acute oral 24 h median lethal dosages (LD50) for three fire retardants (Fire-Trol GTS-R?, Phos-Chek D-75F?, and Fire-Trol LCG-R?) and two Class A fire suppressant foams (Silv-Ex? and Phos-Chek WD881?) were estimated for northern bobwhites, Colinus virginianus, American kestrels, Falco sparverius, and red-winged blackbirds, Agelaius phoeniceus. The LD50s of all chemicals for the bobwhites and red-winged blackbirds and for kestrels dosed with Phos-Chek WD881? and Silv-Ex? were above the predetermined 2000 mg chemical/kg body mass regulatory limit criteria for acute oral toxicity. The LD50s were not quantifiable for kestrels dosed with Fire-Trol GTS-R?, Phos-Chek D-75F?, and Fire-Trol LCG-R? because of the number of birds which regurgitated the dosage. These chemicals appear to be of comparatively low order of acute oral toxicity to the avian species tested.
Oral and intramuscular toxicity of inorganic and organic mercury chloride to growing quail
Hill, E.F.; Soares, J.H.
1987-01-01
The lethal toxicity of inorganic (HgCl2) and organic (CH3HgCl) mercury chloride was compared for Coturnix (Japanese quail, Coturnix japonica) of different ages from hatch through adulthood by single-dose acute oral and intramuscular injections and by a 5-d dietary trial. Sublethal mercury toxicity was studied by evaluation of plasma and brain cholinesterase activity. CH3HgCl was more toxic than HgCl2 in all tests at each age tested. LD50s consistently increased over the first 4 wk for both acute methods and both mercurials and then stabilized. The striking difference between single-dose acute and 5-d dietary tests was that CH3HgCl averaged about twice as toxic as HgCl2 by both acute methods, compared to 100 times as toxic by the dietary method. For example, at 2 wk of age, the oral LD50s for CH3HgCl and HgCl2 were 18 and 42 mg/kg and the dietary LC50s were 47 and 5086 ppm. When birds were fed HgCl2 and developed clinical signs of intoxication, they could recover once treatment was withdrawn; however, on CH3HgCl, clinical signs often commenced after treatment was withdrawn, and then actually intensified for several days and culminated in death.
Corvaro, M; Gehen, S; Andrews, K; Chatfield, R; Arasti, C; Mehta, J
2016-12-01
Acute systemic (oral, dermal, inhalation) toxicity testing of agrochemical formulations (end-use products) is mainly needed for Classification and Labelling (C&L) and definition of personal protection equipment (PPE). A retrospective analysis of 225 formulations with available in vivo data showed that: A) LD 50 /LC 50 values were above limit doses in <20.2% via oral route but only in <1% and <2.4% of cases via dermal and inhalation route, respectively; B) for each formulation the acute oral toxicity is always equal or greater than the Acute Toxicity Estimate (ATE) via the other two routes; C) the GHS (Global Harmonised System) computational method based on ATE, currently of limited acceptance, has very high accuracy and specificity for prediction of agrochemical mixture toxicity according to the internationally established classification thresholds. By integrating this evidence, an exposure- and data-based waiving strategy is proposed to determine classification and adequate PPE and to ensure only triggered animal testing is used. Safety characterisation above 2000 mg/kg body weight or 1.0 mg/L air should not be recommended, based on the agrochemical exposure scenarios. The global implementation of these tools would allow a remarkable reduction (up to 95%) in in vivo testing, often inducing lethality and/or severe toxicity, for agrochemical formulations. Copyright © 2016. Published by Elsevier Inc.
Sanderson, Hans; Thomsen, Marianne
2009-06-01
Pharmaceuticals have been reported to be ubiquitously present in surface waters prompting concerns of effects of these bioactive substances. Meanwhile, there is a general scarcity of publicly available ecotoxicological data concerning pharmaceuticals. The aim of this paper was to compile a comprehensive database based on OECD's standardized measured ecotoxicological data and to evaluate if there is generally cause of greater concern with regards to pharmaceutical aquatic toxicological profiles relative to industrial chemicals. Comparisons were based upon aquatic ecotoxicity classification under the United Nations Global Harmonized System for classification and labeling of chemicals (GHS). Moreover, we statistically explored whether the predominant mode-of-action (MOA) for pharmaceuticals is narcosis. We found 275 pharmaceuticals with 569 acute aquatic effect data; 23 pharmaceuticals had chronic data. Pharmaceuticals were found to be more frequent than industrial chemicals in GHS category III. Acute toxicity was predictable (>92%) using a generic (Q)SAR ((Quantitative) Structure Activity Relationship) suggesting a narcotic MOA. Analysis of model prediction error suggests that 68% of the pharmaceuticals have a non-specific MOA. Additionally, the acute-to-chronic ratio (ACR) for 70% of the analyzed pharmaceuticals was below 25 further suggesting a non-specific MOA. Sub-lethal receptor-mediated effects may however have a more specific MOA.
Wiesenfeld, Paddy L; Garthoff, Larry H; Sobotka, Thomas J; Suagee, Jessica K; Barton, Curtis N
2007-01-01
The oral toxicity of a single administration by gavage (10, 20 or 30 mg kg(-1) body weight) of colchicine (COL) was determined in young, mature male and female Sprague-Dawley rats. The effect of COL was evaluated in the presence or absence of additional treatment variables that included vehicle and lipopolysaccharide (LPS) pre-exposure. The vehicle for COL was either Half and Half cream (H & H) or saline, and each group included pretreatment with either saline or a low, minimally toxic dose (83 microg kg(-1) body weight) of LPS. Colchicine toxicity in both male and female age-matched rats was characterized by progressively more severe dose-related clinical signs of toxicity. These included mortality, decreased body weight and feed intake during the first several days after dosing, with recovery thereafter in surviving animals. There were differences in the severity of the toxic response to COL between male and female rats. The most notable sex-related difference was in COL lethality. Female rats were two times more susceptible to the lethal effects of COL than male rats. Saline or H & H delivery vehicles did not result in any apparent qualitative or quantitative differences in COL toxicity. LPS pretreatment significantly potentiated COL lethality in both males and females, although the potentiation in males was greater than in females. LPS pretreatment modestly increased the COL induced anorexic effect in surviving males, but not in surviving female animals. LPS did not appear to modulate either the body weights or clinical signs of COL induced toxicity in surviving males or females. (c) 2007 John Wiley & Sons, Ltd.
Vaughan, Martin; van Egmond, Roger
2010-06-01
At present, the acute toxicity of chemicals to fish is most commonly estimated by means of a short-term test on juvenile or adult animals (OECD TG 203). Although, over the last few years, the numbers used have been reduced due to the implementation of the Three Rs (Reduction, Refinement and Replacement), significant numbers of fish are still used in acute toxicity tests. With the introduction of the new European Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) system, this number is likely to increase dramatically. The aim of this work was to test the acute toxicity of a number of anionic, cationic and non-ionic surfactants to embryos of the zebrafish (Danio rerio), over 48 hours, as a possible alternative to the standard 96-hour fish acute test. We measured the toxicities of 15 surfactants, and compared the results to previously generated adult D. rerio LC50 data (or other fish species, if these data were not available). Comparison of the LC50 data showed that embryos appear to be as sensitive to cationic and non-ionic surfactants as the adult fish, but possibly are more sensitive to anionic surfactants. Toxicity testing with the embryo test can be carried out more quickly than with the adult test, uses much less space and media, requires less effort, and therefore can be performed at a reduced cost. The embryo test may also uncover additional sub-lethal effects, although these were not observed for surfactants. The data presented here show that the 48-hour embryo test can be considered as a suitable alternative to the adult acute fish test for surfactants.
Acute and subchronic toxicity of naturally weathered Exxon Valdez crude oil in mallards and ferrets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stubblefield, W.A.; Hancock, G.A.; Ford, W.H.
1995-11-01
The toxic properties of naturally weathered Exxon Valdez crude oil (WEVC) were assessed in a battery of acute and subchronic toxicity tests using mallards, Anas platyrhynchos, and European ferrets, Mustela putorius. Adult mallard acute oral toxicity study results indicated no mortalities or signs o toxicity, i.e., no-observed-adverse-effect level (NOAEL) and median lethal dose (LD50) > 5,000 mg/kg. Acute oral feeding and food avoidance tests with ducklings also indicated no toxicity (NOAEL and LC50 > 50,000 mg/kg diet) with no evidence of food avoidance (FAC50 > 20,000 mg/kg diet). No mortalities or toxic signs were noted in a 14-d feeding studymore » with adult birds at dietary concentrations up to 100,000 mg WEVC/kg diet. Among clinical and physiological end points evaluated, the only significant difference noted was an increase in liver: body weight ratios in the 100,000-mg WEVC/kg diet dose group. No differences in clinical chemistry or hematological parameters were noted, and there were no consistent differences in histological evaluations of organ tissues. Daily oral doses of up to 5,000 mg/kg of WEVC over 5 d resulted in minimal effects on ferrets. Increased serum albumin concentrations were observed in the 5,000-mg/kg dose group females and decreased spleen weights were noted in females of all WEVC treatment groups. No other significant observations were noted.« less
The use of bacteria for detecting toxic effects of pollutants in soil and water
NASA Astrophysics Data System (ADS)
Obiakor, Maximilian; Wilson, Susan; Tighe, Matthew; Pereg, Lily
2017-04-01
Microbial abundance and diversity are essential for sustaining soil structure and function and have been strongly linked to human health and wellbeing. Antimony (Sb) in the environment can present an ecological hazard and depending on concentration can be lethal. The toxic effects of Sb(III) and Sb(V) on the model soil bacterium Azospirillum brasilense Sp7 were assessed in exposure-dose-response assays and water samples from an Sb contaminated creek were analyzed for bacterial mortality. In both cases, Sb(III) and Sb(V) greatly affected the survival of A. brasilense Sp7 cells. The Sb(III) had a greater toxic effect than Sb(V) at all concentrations tested. Critical concentrations of Sb also caused variant colonies to appear, indicating both acute and sub-lethal effects, which were dose and time dependent. This work demonstrates the usefulness of A. brasilense as an indicator species to detect harmful effects of an environmental pollutant of emerging concern.
Connon, Richard; Dewhurst, Rachel E; Crane, Mark; Callaghan, Amanda
2003-10-01
A novel biomarker was developed in Daphnia magna to detect organic pollution in groundwater. The haem peroxidase assay, which is an indirect means of measuring oxidase activity, was particularly sensitive to kerosene contamination. Exposure to sub-lethal concentrations of kerosene-contaminated groundwater resulted in a haem peroxidase activity increase by dose with a two-fold activity peak at 25%. Reproduction in D. magna remained unimpaired when exposed to concentrations below 25% for 21 days, and a decline in fecundity was only observed at concentrations above the peak in enzyme activity. The measurement of haem peroxidase activity in D. magna detected sublethal effects of kerosene in just 24 h, whilst offering information on the health status of the organisms. The biomarker may be useful in determining concentrations above which detrimental effects would occur from long-term exposure for fuel hydrocarbons. Moreover, this novel assay detects exposure to chemicals in samples that would normally be classified as non-toxic by acute toxicity tests.
Hallare, Arnold V; Ruiz, Paulo Lorenzo S; Cariño, J C Earl D
2014-05-01
Consequent to the growing demand for alternative sources of energy, the seeds from Jatropha curcas remain to be the favorite for biodiesel production. However, a significant volume of the residual organic mass (seed cake) is produced during the extraction process, which raises concerns on safe waste disposal. In the present study, we assessed the toxicity of J. curcas seed cake using the zebrafish (Danio rerio) embryotoxicity test. Within 1-h post-fertilization (hpf), the fertilized eggs were exposed to five mass concentrations of J. curcas seed cake and were followed through 24, 48, and 72 hpf. Toxicity was evaluated based on lethal endpoints induced on zebrafish embryos namely egg coagulation, non-formation of somites, and non-detachment of tail. The lowest concentration tested, 1 g/L, was not able to elicit toxicity on embryos whereas 100 % mortality (based also on lethal endpoints) was recorded at the highest concentration at 2.15 g/L. The computed LC50 for the J. curcas seed cake was 1.61 g/L. No further increase in mortality was observed in the succeeding time points (48 and 72 hpf) indicating that J. curcas seed cake exerted acute toxicity on zebrafish embryos. Sublethal endpoints (yolk sac and pericardial edema) were noted at 72 hpf in zebrafish embryos exposed to higher concentrations. The observed lethal endpoints induced on zebrafish embryos were discussed in relation to the active principles, notably, phorbol esters that have remained in the seed cake even after extraction.
Hor, Sook Yee; Ahmad, Mariam; Farsi, Elham; Lim, Chung Pin; Asmawi, Mohd Zaini; Yam, Mun Fei
2011-10-11
Coriolus versicolor, which is known as Yun Zhi, is one of the commonly used Chinese medicinal herbs. Recent studies have demonstrated its antitumor activities on cancer cells which led to its widespread use in cancer patient. However, little toxicological information is available regarding its safety. The present study evaluated the potential toxicity of Coriolus versicolor standardized water extract after acute and subchronic administration in rats. In acute toxicity study, Coriolus versicolor water extract was administered by oral gavage to Sprague-Dawley (SD) rats (6 males, 6 females) at single doses of varying concentrations 1250, 2500 and 5000 mg/kg. In subchronic toxicity study, the extract was administered orally at doses of 1250, 2500 and 5000 mg/kg/day for 28 days to male and female SD rats respectively. General behavior, adverse effects and mortality were determined throughout the experimental period. Haematological and biochemical parameters, relative organ weights and histopathological were evaluated at the end of the experiment. There were no mortality and signs of toxicity in acute and subchronic toxicity studies. In the single dose acute toxicity and repeated dose 28-day subchronic toxicity studies, there were no significant difference in body weight, relative organ weight, haematological parameters, clinical chemistry, gross pathology and histopathology between treatment and control groups. Coriolus versicolor water extract did not cause remarkable adverse effect in SD rats. The oral lethal dose of Coriolus versicolor water extract is more than 5000 mg/kg and no-observed-adverse-effect level (NOAEL) of the extract for both male and female rats is 5000 mg/kg per day for 28 days. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Rattner, Barnett A.; Horak, Katherine E.; Warner, Sarah E.; Day, Daniel D.; Meteyer, Carol U.; Voler, Steven F.; Eisemann, John D.; Johnston, John J.
2011-01-01
The acute oral toxicity of the anticoagulant rodenticide diphacinone was found to be over 20 times greater in American kestrels (Falco sparverius; median lethal dose 96.8 mg/kg body weight) compared with Northern bobwhite (Colinus virginianus) and mallards (Anas platyrhynchos). Modest evidence of internal bleeding was observed at necropsy, although histological examination of heart, liver, kidney, lung, intestine, and skeletal muscle revealed hemorrhage over a wide range of doses (35.1-675 mg/kg). Residue analysis suggests that the half-life of diphacinone in the liver of kestrels that survived was relatively short, with the majority of the dose cleared within 7 d of exposure. Several precise and sensitive clotting assays (prothrombin time, Russell's viper venom time, thrombin clotting time) were adapted for use in this species, and oral administration of diphacinone at 50 mg/kg increased prothrombin time and Russell?s viper venom time at 48 and 96 h postdose compared with controls. Prolongation of in vitro clotting time reflects impaired coagulation complex activity, and generally corresponded with the onset of overt signs of toxicity and lethality. In view of the toxicity and risk evaluation data derived from American kestrels, the involvement of diphacinone in some raptor mortality events, and the paucity of threshold effects data following short-term dietary exposure for birds of prey, additional feeding trials with captive raptors are warranted to characterize more fully the risk of secondary poisoning.
Antioxidant and Toxicity Studies of 50% Methanolic Extract of Orthosiphon stamineus Benth
Lim, Chung Pin; Fung Ang, Lee; Por, Lip Yee; Wong, Siew Tung; Asmawi, Mohd. Zaini
2013-01-01
The present study evaluated the antioxidant activity and potential toxicity of 50% methanolic extract of Orthosiphon stamineus (Lamiaceae) leaves (MEOS) after acute and subchronic administration in rats. Superoxide radical scavenging, hydroxyl radical scavenging, and ferrous ion chelating methods were used to evaluate the antioxidant properties of the extract. In acute toxicity study, single dose of MEOS, 5000 mg/kg, was administered to rats by oral gavage, and the treated rats were monitored for 14 days. While in the subchronic toxicity study, MEOS was administered orally, at doses of 1250, 2500, and 5000 mg/kg/day for 28 days. From the results, MEOS showed good superoxide radical scavenging, hydroxyl radical scavenging, ferrous ion chelating, and antilipid peroxidation activities. There was no mortality detected or any signs of toxicity in acute and subchronic toxicity studies. Furthermore, there was no significant difference in bodyweight, relative organ weight, and haematological and biochemical parameters between both male and female treated rats in any doses tested. No abnormality of internal organs was observed between treatment and control groups. The oral lethal dose determined was more than 5000 mg/kg and the no-observed-adverse-effect level (NOAEL) of MEOS for both male and female rats is considered to be 5000 mg/kg per day. PMID:24490155
Ecologically-based clean-up criteria for nitroaromatic explosives using toxicity test results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duh, D.; Roberts, B.; Buzgo, S.
1995-12-31
A former trinitrotoluene (TNT) production and storage facility was the focus of a Remedial Investigation (RI). Contaminants identified during the RI included 2,4-dinitrotoluene (DNT), 2,6-DNT, and 2,4,6-TNT, PCBs, arsenic, lead and chromium. The Conceptual Site Model determined there to be several complete exposure pathways. One of these identified a route by which soil invertebrate communities could be affected through dermal contact and ingestion of soil contaminants. Maintenance of the soil invertebrate community was chosen as the assessment endpoints for this pathway in the Ecological Risk Assessment. The corresponding measurement endpoint was survival of earthworms in 14-day toxicity tests in whichmore » they were exposed to site soils. Seven surficial soil samples were collected from Areas of Concern. Each sample was evaluated for acute toxicity to earthworms using standard USEPA protocols. Chemical concentrations were also measured. An artificial soil was used as the control and diluent to establish the Lethal Concentration (LC{sub 50}) of the test soils to earthworms. From the toxicity test results and the corresponding chemical analysis, a matrix of toxicity and contaminant levels was developed. This table was used to determine a concentration of each contaminant at which no acute lethality would be expected. Lower bounds to the chemical specific LC{sub 50} values were determined and, based on sample-specific toxicity units, appropriate LC{sub 50} values were derived (333 mg/kg 2,4-DNT, 182 mg/kg 2,6-DNT, and 1960 mg/kg 2,4,6TNT). Extrapolation of this level to a chronic No Observable Adverse Effect Level (NOAEL) provided a means of proposing site-specific ecologically based clean-up criteria for the constituents of concern which would be protective of the chosen assessment endpoint.« less
Evaluation of processed borax as antidote for aconite poisoning.
Sarkar, Prasanta Kumar; Prajapati, Pradeep K; Shukla, Vinay J; Ravishankar, Basavaiah
2017-06-09
Aconite root is very poisonous; causes cardiac arrhythmias, ventricular fibrillation and ventricular tachycardia. There is no specific antidote for aconite poisoning. In Ayurveda, dehydrated borax is mentioned for management of aconite poisoning. The investigation evaluated antidotal effect of processed borax against acute and sub-acute toxicity, cardiac toxicity and neuro-muscular toxicity caused by raw aconite. For acute protection Study, single dose of toxicant (35mg/kg) and test drug (22.5mg/kg and 112.5mg/kg) was administered orally, and then 24h survival of animals was observed. The schedule was continued for 30 days in sub-acute protection Study with daily doses of toxicant (6.25mg/kg), test drug (22.5mg/kg and 112.5mg/kg) and vehicle. Hematological and biochemical tests of blood and serum, histopathology of vital organs were carried out. The cardiac activity Study was continued for 30 days with daily doses of toxicant (6.25mg/kg), test drug (22.5mg/kg), processed borax solution (22.5mg/kg) and vehicle; ECG was taken after 1h of drug administration on 1 TB , 15th and on 30th day. For neuro-muscular activity Study, the leech dorsal muscle response to 2.5µg of acetylcholine followed by response of toxicant at 25µg and 50µg doses and then response of test drug at 25µg dose were recorded. Protection index indicates that treated borax gave protection to 50% rats exposed to the lethal dose of toxicant in acute protection Study. Most of the changes in hematological, biochemical parameters and histopathological Study induced by the toxicant in sub-acute protection Study were reversed significantly by the test drug treatment. The ventricular premature beat and ventricular tachyarrhythmia caused by the toxicant were reversed by the test drug indicate reversal of toxicant induced cardio-toxicity. The acetylcholine induced contractions in leech muscle were inhibited by toxicant and it was reversed by test drug treatment. The processed borax solution is found as an effective protective agent to acute and sub-acute aconite poisoning, and aconite induced cardiac and neuro-muscular toxicity. Processed borax at therapeutic dose (22.5mg/kg) has shown better antidotal activity profile than five times more than therapeutic dose (112.5mg/kg). Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Acute and chronic bioassays with New Zealand freshwater copepods using pentachlorophenol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willis, K.J.
The suitability for laboratory culture and comparative sensitivity of three species of New Zealand freshwater copepod (Calamoecia lucasi Brady, Boeckella delicata Percival, and Mesocyclops cf. leuckarti Claus) to pentachlorophenol (PCP) was assessed. Acute bioassays used two life stages (nauplii and adults). Acute 48-h lethality tests were conducted at 22 C with laboratory-cultured animals of all species and at varying temperatures with seasonally collected C. lucasi adults. Mean 48-h median lethal concentration values for nauplii ranged from 52 to 227 {micro}g/L PCP for C. lucasi and B. delicata, respectively, and from 106 to 173 {micro}g/L for adult C. Lucasi and M.more » Leuckarti, respectively. The survival rate in controls was {ge}95% in acute tests, with the exception of C. lucasi nauplii, in which it was 60%. Mean 48-h median lethal concentration values for seasonally collected C. lucasi adults were significantly higher in summer than in all other seasons. Chronic sublethal tests starting with nauplii <24 h old measured time to metamorphosis. Pentachlorophenol delayed metamorphosis in all species. Chronic toxicity values were 14.61, and 104 {micro}g/L PCP for C. lucasi, B. delicata, and M. leuckarti, respectively. The mortality rate in controls was also high in C. lucasi sublethal tests (65%), and of the three species, they were the most difficult to culture.« less
Robidoux, Pierre Yves; Sunahara, Geoffrey I; Savard, Kathleen; Berthelot, Yann; Dodard, Sabine; Martel, Majorie; Gong, Ping; Hawari, Jalal
2004-04-01
Monocyclic nitramine explosives such as 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) are toxic to a number of ecological receptors, including earthworms. The polycyclic nitramine CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) is a powerful explosive that may replace RDX and HMX, but its toxicity is not known. In the present study, the lethal and sublethal toxicities of CL-20 to the earthworm (Eisenia andrei) are evaluated. Two natural soils, a natural sandy forest soil (designated RacFor2002) taken in the Montreal area (QC, Canada; 20% organic carbon, pH 7.2) and a Sassafras sandy loam soil (SSL) taken on the property of U.S. Army Aberdeen Proving Ground (Edgewood, MD, USA; 0.33% organic carbon, pH 5.1), were used. Results showed that CL-20 was not lethal at concentrations of 125 mg/kg or less in the RacFor2002 soil but was lethal at concentrations of 90.7 mg/kg or greater in the SSL soil. Effects on the reproduction parameters such as a decrease in the number of juveniles after 56 d of exposure were observed at the initial CL-20 concentration of 1.6 mg/kg or greater in the RacFor2002 soil, compared to 0.2 mg/kg or greater in the SSL soil. Moreover, low concentrations of CL-20 in SSL soil (approximately 0.1 mg/kg; nominal concentration) were found to reduce the fertility of earthworms. Taken together, the present results show that CL-20 is a reproductive toxicant to the earthworm, with lethal effects at higher concentrations. Its toxicity can be decreased in soils favoring CL-20 adsorption (high organic carbon content).
Traudt, Elizabeth M; Ranville, James F; Meyer, Joseph S
2017-04-18
Multiple metals are usually present in surface waters, sometimes leading to toxicity that currently is difficult to predict due to potentially non-additive mixture toxicity. Previous toxicity tests with Daphnia magna exposed to binary mixtures of Ni combined with Cd, Cu, or Zn demonstrated that Ni and Zn strongly protect against Cd toxicity, but Cu-Ni toxicity is more than additive, and Ni-Zn toxicity is slightly less than additive. To consider multiple metal-metal interactions, we exposed D. magna neonates to Cd, Cu, Ni, or Zn alone and in ternary Cd-Cu-Ni and Cd-Ni-Zn combinations in standard 48 h lethality tests. In these ternary mixtures, two metals were held constant, while the third metal was varied through a series that ranged from nonlethal to lethal concentrations. In Cd-Cu-Ni mixtures, the toxicity was less than additive, additive, or more than additive, depending on the concentration (or ion activity) of the varied metal and the additivity model (concentration-addition or independent-action) used to predict toxicity. In Cd-Ni-Zn mixtures, the toxicity was less than additive or approximately additive, depending on the concentration (or ion activity) of the varied metal but independent of the additivity model. These results demonstrate that complex interactions of potentially competing toxicity-controlling mechanisms can occur in ternary-metal mixtures but might be predicted by mechanistic bioavailability-based toxicity models.
Zhang, Xuesheng; Liu, Fu; Chen, Binyuan; Li, Ying; Wang, Zunyao
2012-07-01
Polychlorinated diphenyl sulfides (PCDPSs), a series of dioxin-like compounds, have been detected in various environmental samples. However, information on the toxicity of these compounds is limited. In the present study, the toxic effects of PCDPSs were assessed after acute and subacute exposure in mice. Relationships between acute toxicity, number, and position of substituted Cl atoms were assessed. In the acute study, 11 types of PCDPSs were administered to female Kunming mice by gavage, and median lethal doses (LD50s) were determined by the Karber method. Results indicated that the LD50s of lower substituted PCDPSs were smaller than higher substituted PCDPSs. Substituted positions also influenced the LD50 of PCDPSs. Terminal necropsy showed increased relative liver weights and decreased relative kidney weights. Histological examination of livers demonstrated swollen cells, inflammation, vacuolization, and necrosis. In the 28-d subacute exposure tests, 11 types of PCDPSs were dissolved in corn oil and administered to mice at doses of 1, 10, and 100 mg/kg. Superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels in mouse liver were determined after the exposure period. Results suggested that lower substituted PCDPSs decreased SOD activity in the high-dose groups compared with controls, and MDA level in the 100-mg/kg dose group was significantly increased. In addition, acute toxicity of PCDPSs partly corresponded to the hepatic oxidative damage observed. Copyright © 2012 SETAC.
Ducharme, Nicole A; Reif, David M; Gustafsson, Jan-Ake; Bondesson, Maria
2015-08-01
With the high cost and slow pace of toxicity testing in mammals, the vertebrate zebrafish has become a tractable model organism for high throughput toxicity testing. We present here a meta-analysis of 600 chemicals tested for toxicity in zebrafish embryos and larvae. Nineteen aggregated and 57 individual toxicity endpoints were recorded from published studies yielding 2695 unique data points. These data points were compared to lethality and reproductive toxicology endpoints analyzed in rodents and rabbits and to exposure values for humans. We show that although many zebrafish endpoints did not correlate to rodent or rabbit acute toxicity data, zebrafish could be used to accurately predict relative acute toxicity through the rat inhalation, rabbit dermal, and rat oral exposure routes. Ranking of the chemicals based on toxicity and teratogenicity in zebrafish, as well as human exposure levels, revealed that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), benzo(a)pyrene, and chlorpyrifos ranked in the top nine of all chemicals for these three categories, and as such should be considered high priority chemicals for testing in higher vertebrates. Copyright © 2014 Elsevier Inc. All rights reserved.
Acute and Cumulative Effects of Unmodified 50-nm Nano-ZnO on Mice.
Kong, Tao; Zhang, Shu-Hui; Zhang, Ji-Liang; Hao, Xue-Qin; Yang, Fan; Zhang, Cai; Yang, Zi-Jun; Zhang, Meng-Yu; Wang, Jie
2018-01-02
Nanometer zinc oxide (nano-ZnO) is widely used in diverse industrial and agricultural fields. Due to the extensive contact humans have with these particles, it is crucial to understand the potential effects that nano-ZnO have on human health. Currently, information related to the toxicity and mechanisms of nano-ZnO is limited. The aim of the present study was to investigate acute and cumulative toxic effects of 50-nm unmodified ZnO in mice. This investigation will seek to establish median lethal dose (LD50), a cumulative coefficient, and target organs. The acute and cumulative toxicity was investigated by Karber's method and via a dose-increasing method, respectively. During the experiment, clinical signs, mortality, body weights, hematology, serum biochemistry, gross pathology, organ weight, and histopathology were examined. The LD50 was 5177-mg/kg·bw; the 95% confidence limits for the LD50 were 5116-5238-mg/kg·bw. It could be concluded that the liver, kidney, lung, and gastrointestinal tract were target organs for the 50-nm nano-ZnO acute oral treatment. The cumulative coefficient (K) was 1.9 which indicated that the cumulative toxicity was apparent. The results also indicated that the liver, kidney, lung, and pancrea were target organs for 50-nm nano-ZnO cumulative oral exposure and might be target organs for subchronic and chronic toxicity of oral administered 50-nm ZnO.
Cambal, Leah K.; Swanson, Megan R.; Yuan, Quan; Weitz, Andrew C.; Li, Hui-Hua; Pitt, Bruce R.; Pearce, Linda L.; Peterson, Jim
2011-01-01
Sodium nitrite alone is shown to ameliorate sub-lethal cyanide toxicity in mice when given from ~1 hour before until 20 minutes after the toxic dose as demonstrated by the recovery of righting ability. An optimum dose (12 mg/kg) was determined to significantly relieve cyanide toxicity (5.0 mg/kg) when administered to mice intraperitoneally. Nitrite so administered was shown to rapidly produce NO in the bloodsteam as judged by the dose dependent appearance of EPR signals attributable to nitrosylhemoglobin and methemoglobin. It is argued that antagonism of cyanide inhibition of cytochrome c oxidase by NO is the crucial antidotal activity rather than the methemoglobin-forming action of nitrite. Concomitant addition of sodium thiosulfate to nitrite-treated blood resulted in the detection of sulfidomethemoblobin by EPR spectroscopy. Sulfide is a product of thiosulfate hydrolysis and, like cyanide, is known to be a potent inhibitor of cytochrome c oxidase; the effects of the two inhibitors being essentially additive under standard assay conditions, rather than dominated by either one. The findings afford a plausible explanation for an observed detrimental effect in mice associated with the use of the standard nitrite-thiosulfate combination therapy at sub-lethal levels of cyanide intoxication. PMID:21534623
[Comparative toxicity of triacetin and diethylene glycol diacetate].
Nosko, M
1977-01-01
The approximative lethal dose of triacetin and diethylene glycole acetate is determined after the method of Deihmann and Leblanc. Experiments are conducted on white rats to establish the acute and subacute oral, dermal and inhalatory toxicity of the two substances. Changes in weight, liver and kidneys weight coefficient, hematopoiesis and hepatic function (biochemical and pathomorphological), as well as the stimulating effect on mucosa and skin are studied. The results of the study show a weak stimulating action on mucosa and skin, and insignificant cumulation. Emphasis is laid on the functional character of changes in the values of some enzymes -- alkaline phosphatase, cytochrome oxidase, cholinesterase -- and of the pathomorphologically established parenchymatous dystrophy. Presumably, it is a matter of changes more strongly manifested in imported triacetin. The conclusion is reached that imported triacetin may be substituted for lokally produced diethylene glycoldiacetate which proves to be with a lower acute and subacute toxicity.
Risk assessment of ritual use of oral dimethyltryptamine (DMT) and harmala alkaloids.
Gable, Robert S
2007-01-01
To extend previous reviews by assessing the acute systemic toxicity and psychological hazards of a dimethyltryptamine and beta-carboline brew (ayahuasca/hoasca) used in religious ceremonies. A systematic literature search, supplemented by interviews with ceremony participants. No laboratory animal models were located that tested the acute toxicity or the abuse potential of ayahuasca. Separate animal studies of the median lethal dose of dimethyltryptamine (DMT) and of several harmala alkaloids indicated that a lethal dose of these substances in humans is probably greater than 20 times the typical ceremonial dose. Adverse health effects may occur from casual use of ayahuasca, particularly when serotonergic substances are used in conjunction. DMT is capable of inducing aversive psychological reactions or transient psychotic episodes that resolve spontaneously in a few hours. There was no evidence that ayahuasca has substantial or persistent abuse potential. Long-term psychological benefits have been documented when ayahuasca is used in a well-established social context. A decoction of DMT and harmala alkaloids used in religious ceremonies has a safety margin comparable to codeine, mescaline or methadone. The dependence potential of oral DMT and the risk of sustained psychological disturbance are minimal.
Acute Poisoning in Children in Bahia, Brazil
Rodrigues Mendonça, Dilton; Menezes, Marta Silva; Matos, Marcos Antônio Almeida; Rebouças, Daniel Santos; Filho, Jucelino Nery da Conceição; de Assis, Reginara Souza; Carneiro, Leila
2016-01-01
Acute poisoning is a frequent accident in childhood, particularly in children under 4 years of age. This was a descriptive study with data collected from standardized forms of the Poison Control Center and patient record charts. All the cases of acute poisoning in children aged 0 to 14 years during the period 2008 to 2012 were selected. The variables studied comprised characteristics of the events and toxic agents, clinical development, and outcome. A total of 657 cases of acute poisoning, with higher frequency in the age-group from 1 to 4 years (48.7%) and male sex (53.4%), were recorded. The occurrences were accidental in 92% of the cases, and 5.8% were due to suicide attempts. Among the toxic agents, medications (28.5%), venomous animals (19.3%), nonvenomous animals (10%), household cleaning products (9.0%), and raticide agents (8.7%) predominated. The majority of cases were characterized as light (73.5%) and around 18% required hospitalization, and there was low lethality (0.5%). PMID:27335994
NASA Astrophysics Data System (ADS)
Milgram, S.; Carrière, M.; Thiebault, C.; Berger, P.; Khodja, H.; Gouget, B.
2007-07-01
Uranium acute intoxication has been documented to induce nephrotoxicity. Kidneys are the main target organs after short term exposures to high concentrations of the toxic, while chronic exposures lead to its accumulation in the skeleton. In this paper, chemical toxicity of uranium is investigated for rat osteoblastic bone cells and compared to results previously obtained on renal cells. We show that bone cells are less sensitive to uranium than renal cells. The influence of the chemical form on U cytotoxicity is demonstrated. For both cell types, a comparison of uranium toxicity with other metals or metalloids toxicities (Mn, Ni, Co, Cu, Zn, Se and Cd) permits classification of Cd, Zn, Se IV and Cu as the most toxic and Ni, Se VI, Mn and U as the least toxic. Chemical toxicity of natural uranium proves to be far less than that of cadmium. To try to explain the differences in sensitivities observed between metals and different cell types, cellular accumulations in cell monolayers are quantified by inductively coupled plasma-mass spectroscopy (ICP-MS), function of time or function of dose: lethal doses which simulate acute intoxications and sub-lethal doses which are more realistic with regard to environmentally metals concentrations. In addition to being more resistant, bone cells accumulated much more uranium than did renal cells. Moreover, for both cell models, Mn, U-citrate and U-bicarbonate are strongly accumulated whereas Cu, Zn and Ni are weakly accumulated. On the other hand, a strong difference in Cd behaviour between the two cell types is shown: whereas Cd is very weakly accumulated in bone cells, it is very strongly accumulated in renal cells. Finally, elemental distribution of the toxics is determined on a cellular scale using nuclear microprobe analysis. For both renal and osteoblastic cells, uranium was accumulated in as intracellular precipitates similar to those observed previously by SEM/EDS.
Wang, Huali; Zhang, Jinsong; Yu, Hanqing
2007-05-15
Glutathione peroxidase and thioredoxin reductase are major selenoenzymes through which selenium exerts powerful antioxidant effects. Selenium also elicits pro-oxidant effects at toxic levels. The antioxidant and pro-oxidant effects, or bioavailability and toxicity, of selenium depend on its chemical form. Selenomethionine is considered to be the most appropriate supplemental form due to its excellent bioavailability and lower toxicity compared to various selenium compounds. The present studies reveal that, compared with selenomethionine, elemental selenium at nano size (Nano-Se) possesses equal efficacy in increasing the activities of glutathione peroxidase and thioredoxin reductase but has much lower toxicity as indicated by median lethal dose, acute liver injury, and short-term toxicity. Our results suggest that Nano-Se can serve as an antioxidant with reduced risk of selenium toxicity.
Zhou, Zhiping; Ho, Sharon L; Singh, Ranjodh; Pisapia, David J; Souweidane, Mark M
2015-04-01
Diffuse intrinsic pontine gliomas (DIPGs) are inoperable and lethal high-grade gliomas lacking definitive therapy. Platelet-derived growth factor receptor (PDGFR) and its downstream signaling molecules are the most commonly overexpressed oncogenes in DIPG. This study tested the effective concentration of PDGFR pathway inhibitors in cell culture and then toxicity of these small-molecule kinase inhibitors delivered to the mouse brainstem via convection-enhanced delivery (CED) for potential clinical application. Effective concentrations of small-molecule kinase inhibitors were first established in cell culture from a mouse brainstem glioma model. Sixteen mice underwent CED, a local drug delivery technique, of saline or of single and multidrug combinations of dasatinib (2 M), everolimus (20 M), and perifosine (0.63 mM) in the pons. Animals were kept alive for 3 days following the completion of infusion. No animals displayed any immediate or delayed neurological deficits postoperatively. Histological analysis revealed edema, microgliosis, acute inflammation, and/or axonal injury in the experimental animals consistent with mild acute drug toxicity. Brainstem CED of small-molecule kinase inhibitors in the mouse did not cause serious acute toxicities. Future studies will be necessary to evaluate longer-term safety to prepare for potential clinical application.
Maynard, Samuel K; Edwards, Peter; Wheeler, James R
2014-07-01
Environmental safety assessments for exposure of birds require the provision of acute avian toxicity data for both the pesticidal active substance and formulated products. As an example, testing on the formulated product is waived in Europe using an assessment of data for the constituent active substance(s). This is often not the case globally, because some countries require acute toxicity tests with every formulated product, thereby triggering animal welfare concerns through unnecessary testing. A database of 383 formulated products was compiled from acute toxicity studies conducted with northern bobwhite (Colinus virginianus) or Japanese quail (Coturnix japonica) (unpublished regulatory literature). Of the 383 formulated products studied, 159 contained only active substances considered functionally nontoxic (median lethal dose [LD50] > highest dose tested). Of these, 97% had formulated product LD50 values of >2000 mg formulated product/kg (limit dose), indicating that no new information was obtained in the formulated product study. Furthermore, defined (point estimated) LD50 values for formulated products were compared with LD50 values predicted from toxicity of the active substance(s). This demonstrated that predicted LD50 values were within 2-fold and 5-fold of the measured formulated product LD50 values in 90% and 98% of cases, respectively. This analysis demonstrates that avian acute toxicity testing of formulated products is largely unnecessary and should not be routinely required to assess avian acute toxicity. In particular, when active substances are known to be functionally nontoxic, further formulated product testing adds no further information and unnecessarily increases bird usage in testing. A further analysis highlights the fact that significant reductions (61% in this dataset) could be achieved by using a sequential testing design (Organisation for Economic Co-operation and Development test guideline 223), as opposed to established single-stage designs. © 2014 The Authors.
NASA Astrophysics Data System (ADS)
Kang, Kyoung Ho; Zhang, Litao; Zhang, Zhifeng; Sui, Zhenghong; Hur, Junwook
2013-01-01
The polychaete Perinereis aibuhitensis, a key species in estuarine ecosystems, can improve the culture condition of sediment. Endosulfan is an organochlorine pesticide used globally to control insects and mites; however, it is a source of pollution in aquaculture as a result of runoff or accidental release. In this study, we evaluated the toxicity of endosulfan to polychaeta and its ability to improve polluted sediment. Specifically, the effects of a series of endosulfan concentrations (0, 1.25, 2.5, 5, 10, 15, and 20 mg/L) were investigated, and the results indicated that the 24-h median lethal concentration (24-h LC50) was 55.57 mg/L, while the 48-h median lethal concentration (48-h LC50) was 15.56 mg/L, and the safe concentration was about 1.556 mg/L. In a 30-d exposure experiment, the animal specimen could decompose endosulfan effectively while improving endosulfan-polluted aquatic sediment.
Haegerbaeumer, Arne; Höss, Sebastian; Ristau, Kai; Claus, Evelyn; Möhlenkamp, Christel; Heininger, Peter; Traunspurger, Walter
2016-12-01
Soft sediments are often hotspots of chemical contamination, and a thorough ecotoxicological assessment of this habitat can help to identify the causes of stress and to improve the health of the respective ecosystems. As an important component of the ecologically relevant meiobenthic fauna, nematodes can be used for sediment assessments, with various assay tools ranging from single-species toxicity tests to field studies. In the present study, microcosms containing sediment were used to investigate direct and indirect effects of zinc on natural nematode assemblages, and acute community toxicity tests considering only direct toxicity were conducted. The responses of the various freshwater nematode species in both approaches were compared with those of Caenorhabditis elegans, determined in standardized tests (ISO 10872). At a median lethal concentration (LC50) of 20 mg Zn/L, C. elegans represented the median susceptibility of 15 examined nematode species examined in the acute community toxicity tests. In the microcosms, Zn affected the nematodes dose-dependently, with changes in species composition first detected at 13 mg Zn/kg to 19 mg Zn/kg sediment dry weight. The observed species sensitivities in the microcosms corresponded better to field observations than to the results of the acute community toxicity tests. Environ Toxicol Chem 2016;35:2987-2997. © 2016 SETAC. © 2016 SETAC.
NASA Astrophysics Data System (ADS)
Prihapsara, F.; Mufidah; Artanti, A. N.; Harini, M.
2018-03-01
The present study was aimed to study the acute and subchronic toxicity of Self Nanoemulsifying Drug Delivery Systems (SNEDDS) from chloroform bay leaf extract with Palm Kernel Oil as carrier. In acute toxicity test, five groups of rat (n=5/groups) were orally treated with Self Nanoemulsifying Drug Delivery Systems (SNEDDS) from chloroform bay leaf extract with doses at 48, 240, 1200 and 6000 mg/kg/day respectively, then the median lethal dose LD50, advers effect and mortality were recorded up to 14 days. Meanwhile, in subchronic toxicity study, 4 groups of rats (n=6/group) received by orally treatment of SNEDDS from chloroform bay leaf extract with doses at 91.75; 183.5; 367 mg/kg/day respectively for 28 days, and biochemical, hematological and histopatological change in tissue such as liver, kidney, and pancreatic were determined. The result show that LD50 is 1045.44 mg/kg. Although histopathological examination of most of the organs exhibited no structural changes, some moderate damage was observed in high‑ dose group animals (367 mg/kg/day). The high dose of SNEDDS extract has shown mild signs of toxicity on organ function test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philip, Binu K.; Anand, Sathanandam S.; Palkar, Prajakta S.
2006-10-01
Protection offered by pre-exposure priming with a small dose of a toxicant against the toxic and lethal effects of a subsequently administered high dose of the same toxicant is autoprotection. Although autoprotection has been extensively studied with diverse toxicants in acute exposure regimen, not much is known about autoprotection after priming with repeated exposure. The objective of this study was to investigate this concept following repeated exposure to a common water contaminant, chloroform. Swiss Webster (SW) mice, exposed continuously to either vehicle (5% Emulphor, unprimed) or chloroform (150 mg/kg/day po, primed) for 30 days, were challenged with a normally lethalmore » dose of chloroform (750 mg chloroform/kg po) 24 h after the last exposure. As expected, 90% of the unprimed mice died between 48 and 96 h after administration of the lethal dose in contrast to 100% survival of mice primed with chloroform. Time course studies indicated lower hepato- and nephrotoxicity in primed mice as compared to unprimed mice. Hepatic CYP2E1, glutathione levels (GSH), and covalent binding of {sup 14}C-chloroform-derived radiolabel did not differ between livers of unprimed and primed mice after lethal dose exposure, indicating that protection in liver is neither due to decreased bioactivation nor increased detoxification. Kidney GSH and glutathione reductase activity were upregulated, with a concomitant reduction in oxidized glutathione in the primed mice following lethal dose challenge, leading to decreased renal covalent binding of {sup 14}C-chloroform-derived radiolabel, in the absence of any change in CYP2E1 levels. Buthionine sulfoximine (BSO) intervention led to 70% mortality in primed mice challenged with lethal dose. These data suggest that higher detoxification may play a role in the lower initiation of kidney injury observed in primed mice. Exposure of primed mice to a lethal dose of chloroform led to 40% lower chloroform levels (AUC{sub 15-360min}) in the systemic circulation. Exhalation of {sup 14}C-chloroform was unchanged in primed as compared to unprimed mice (AUC{sub 1-6h}). Urinary excretion of {sup 14}C-chloroform was higher in primed mice after administration of the lethal dose. However, neither slightly higher urinary elimination nor unchanged expiration can account for the difference in systemic levels of chloroform. Liver and kidney regeneration was inhibited by the lethal dose in unprimed mice leading to progressive injury, organ failure, and 90% mortality. In contrast, sustained and highly stimulated compensatory hepato- and nephrogenic repair prevented the progression of injury resulting in 100% survival of primed mice challenged with the lethal dose. These findings affirm the critical role of tissue regeneration and favorable detoxification (only in kidney) of the lethal dose of chloroform in subchronic chloroform priming-induced autoprotection.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Tobias; Bertermann, Rüdiger; Rusch, George M.
2,3,3,3-Tetrafluoropropene (HFO-1234yf) is a novel refrigerant intended for use in mobile air conditioning. It showed a low potential for toxicity in rodents studies with most NOAELs well above 10,000 ppm in guideline compliant toxicity studies. However, a developmental toxicity study in rabbits showed mortality at exposure levels of 5,500 ppm and above. No lethality was observed at exposure levels of 2,500 and 4,000 ppm. Nevertheless, increased subacute inflammatory heart lesions were observed in rabbits at all exposure levels. Since the lethality in pregnant animals may be due to altered biotransformation of HFO-1234yf and to evaluate the potential risk to pregnantmore » women facing a car crash, this study compared the acute toxicity and biotransformation of HFO-1234yf in male, female and pregnant female rabbits. Animals were exposed to 50,000 ppm and 100,000 ppm for 1 h. For metabolite identification by {sup 19}F NMR and LC/MS-MS, urine was collected for 48 h after inhalation exposure. In all samples, the predominant metabolites were S-(3,3,3-trifluoro-2-hydroxypropanyl)-mercaptolactic acid and N-acetyl-S-(3,3,3-trifluoro-2-hydroxypropanyl)-L-cysteine. Since no major differences in urinary metabolite pattern were observed between the groups, only N-acetyl-S-(3,3,3-trifluoro-2-hydroxypropanyl)-L-cysteine excretion was quantified. No significant differences in recovery between non-pregnant (43.10 ± 22.35 μmol) and pregnant female (50.47 ± 19.72 μmol) rabbits were observed, male rabbits exposed to 100,000 ppm for one hour excreted 86.40 ± 38.87 μmol. Lethality and clinical signs of toxicity were not observed in any group. The results suggest that the lethality of HFO-1234yf in pregnant rabbits unlikely is due to changes in biotransformation patterns or capacity in pregnant rabbits. -- Highlights: ► No lethality and clinical signs were observed. ► No differences in metabolic pattern between pregnant and non-pregnant rabbits. ► Rapid and similar metabolite excretion in all groups. ► Very low amount of biotransformation in all groups (< 0.1%).« less
Knappe, Daniel; Fritsche, Stefanie; Alber, Gottfried; Köhler, Gabriele; Hoffmann, Ralf; Müller, Uwe
2012-10-01
The antimicrobial oncocin derivative Onc72 is highly active against a number of Gram-negative bacteria, including resistant strains. Here we study its toxicity and efficacy in a lethal mouse infection model. In an acute toxicity study, purified Onc72 was administered to NMRI mice in four consecutive injections within a period of 24 h as an intraperitoneal bolus. The animals' behaviour was monitored for 5 days, before several organs were examined by histopathology. A lethal Escherichia coli infection model was established and the efficacy of Onc72 was evaluated for different peptide doses considering the survival rates of each dose group and the bacterial counts in blood, lavage and organs. Intraperitoneal bolus injections with single doses of 20 or 40 mg of Onc72 per kg of body weight did not result in any abnormal animal behaviour. No mouse became moribund or died within the studied period. Histopathological examinations revealed no toxic effects. When infected with E. coli at a lethal dose, none of the untreated animals survived the next 24 h, whereas all animals treated three times with Onc72 at doses of ≥5 mg/kg survived the observation period of 5 days. No bacteria were detected in the blood of treated animals after day 5 post-infection. The effective dose (ED(50)) was ∼2 mg/kg. No toxic effects were observed for Onc72 within the studied dose range up to 40 mg/kg, indicating a safety margin of >20.
Anadón, Arturo; Martínez, Maria A; Ares, Irma; Castellano, Victor; Martínez-Larrañaga, Maria R; Corzo-Martínez, Marta; Moreno, F Javier; Villamiel, Mar
2014-03-01
In order to potentially use sodium caseinate (SC) glycated with galactose (Gal) in the food industry as a new functional ingredient with proved technological and biological properties, an evaluation of oral acute toxicity has been carried out. An acute safety study with SC-Gal glycoconjugates in the Wistar rat with a single oral gavage dose of 2,000 mg/kg of body weight was conducted. The SC-Gal glycoconjugates were well tolerated; no adverse effects or mortality was observed during the 2-week observation period. No abnormal signs, behavioral changes, body weight changes, or alterations in food and water consumption occurred. After this period, no changes in hematological and serum chemistry parameters, organ weights, or gross pathology or histopathology were detected. It was concluded that SC-Gal glycoconjugates obtained via the Maillard reaction were well tolerated in rats at an acute oral dose of 2,000 mg/kg of body weight. The SC-Gal glycoconjugates have a low order of acute toxicity, and the oral 50 % lethal dose for male and female rats is in excess of 2,000 mg/kg of body weight.
The acute lethal dose 50 (LD50) of caffeine in albino rats.
Adamson, Richard H
2016-10-01
An acute LD50 is a statistically derived amount of a substance that can be expected to cause death in 50% of the animals when given by a specified route as a single dose and the animals observed for a specified time period. Although conducting routine acute toxicity testing in rodents has been criticized, it can serve useful functions and also have practical implications. Material safety data sheets (MSDS) will reflect the acute toxicity of a substance and may require workers to wear protective gear, if appropriate, based on the LD50. There is no information in the scientific published literature which calculates a mean LD50 and standard deviation for caffeine administered orally to rats, using studies performed under good laboratory practice (GLP) or equivalent. This report does that and should be useful to manufacturers, packagers, transporters and regulators of this material. Using data from studies that are reproducible and reliable, the most accurate estimate of the acute LD50 of caffeine administered orally in male albino rats is hereby reported to be 367/mg/kg. Copyright © 2016 Elsevier Inc. All rights reserved.
Toxicity of parathion to captive European starlings (Sturnus vulgaris)-absence of seasonal effects
Rattner, B.A.; Grue, C.E.
1990-01-01
The effects of season on the toxicity of the prototypic organophosphorus insecticide parathion was evaluated using adult European starlings (Sturnus vulgaris) housed in outdoor pens. Groups of birds received oral doses of parathion in the fall, winter, spring and summer. Median lethal dosage, and brain and plasma cholinesterase inhibition, were found to be quite similar among seasons. Parathion may have been more toxic during hot weather (winter vs. summer LD50 estimate: 160 vs. 118 mg/kg; p < 0.1). In view of previous reports in which ambient temperature extremes and harsh weather have enhanced organophosphorus insecticide toxicity to birds, it is concluded that circannual toxicity studies should include measures of sensitivity (acute oral exposure) and vulnerability (dietary exposure) to better predict responses of free-ranging birds.
Buhl, Kevin J.; Hamilton, Steven J.
1998-01-01
Laboratorys studies were conducted to determine the acute toxicity of three fire retardants (Fire-Trol GTS-R, Fire-Trol LCG-R, and Phos-Chek D75-F), and two fire-suppressant foams (Phos-Chek WD-881 and Ansul Silv-Ex) to early life stages of chinook salmon, Oncorhynchus tshawytscha, in hard and soft water. Regardless of water type, swim-up fry and juveniles (60 and 90 d posthatch) exhibited similar sensitivities to each chemical and these life stages were more sensitive than eyed eggs. Foam suppressants were more toxic to each life stage than the fire retardants in both water types. The descending rank order of toxicity for these chemicals tested with swim-up fry and juveniles (range of 96-h median lethal concentrations [LC50s]) was Phos-Chek WD-881 (7–13 mg/L) > Ansul Silv-Ex (11–22 mg/L) > Phos-Chek D75-F (218–305 mg/L) > Fire-Trol GTS-R (218–412 mg/L) > Fire-Trol LCG-R (685–1,195 mg/L). Water type had a minor effect on the toxicity of these chemicals. Comparison of acute toxicity values with recommended application concentrations indicates that accidental inputs of these chemicals into stream environments would require substantial dilution (237- to 1,429-fold) to reach concentrations equivalent to their 96-h LC50s.
Praskova, E; Voslarova, E; Siroka, Z; Plhalova, L; Macova, S; Marsalek, P; Pistekova, V; Svobodova, Z
2011-01-01
The aim of the study was to compare the acute toxicity of diclofenac to juvenile and embryonic stages of the zebrafish (Danio rerio). Acute toxicity tests were performed on the aquarium fish Danio rerio, which is one of the model organisms most commonly used in toxicity testing. The tests were performed using a semi-static method according to OECD guideline No. 203 (Fish, acute toxicity test). Embryo toxicity tests were performed in zebrafish embryos (Danio rerio) in compliance with OECD No. 212 methodology (Fish, short-term toxicity test on embryo and sac-fry stages). The results were subjected to a probit analysis using the EKO-TOX 5.2 programme to determine 96hLC50 and 144hLC50 (median lethal concentration, 50% mortality after a 96 h or 144 h interval, respectively) values of diclofenac. The statistical significance of the difference between LC50 values in juvenile and embryonic stages of Danio rerio was tested using the Mann-Whitney non-parametric test implemented in the Unistat 5.1 programme. The LC50 mean value of diclofenac was 166.6 +/- 9.8 mg/L in juvenile Danio rerio, and 6.11 +/- 2.48 mg/L in embryonic stages of Danio rerio. The study demonstrated a statistically higher sensitivity to diclofenac (P < 0.05) in embryonic stages compared to the juvenile fish.
Acute toxicity of ibogaine and noribogaine.
Kubiliene, Asta; Marksiene, Rūta; Kazlauskas, Saulius; Sadauskiene, Ilona; Razukas, Almantas; Ivanov, Leonid
2008-01-01
To evaluate acute toxic effect of ibogaine and noribogaine on the survival of mice and determine median lethal doses of the substances mentioned. White laboratory mice were used for the experiments. Ibogaine and noribogaine were administered intragastrically to mice via a stomach tube. Control animals received the same volume of saline. The median lethal dose was calculated with the help of a standard formula. To determine the median lethal dose of ibogaine, the doses of 100, 300, 400, and 500 mg/kg were administered intragastrically to mice. The survival time of mice after the drug administration was recorded, as well as the number of survived mice in each group. Upon administration of ibogaine at a dose of 500 mg/kg, all mice in this dose group died. Three out of four mice died in the group, which received 300 mg/kg of ibogaine. No mouse deaths were observed in the group, which received 100 mg/kg of ibogaine. The determined LD(50) value of ibogaine equals to 263 mg/kg of body mass. In order to determine the median lethal dose of noribogaine, the doses of 300, 500, 700, and 900 mg/kg were administered to mice intragastrically. Noribogaine given at a dose of 500 mg/kg had no impact on the mouse survival. The increase of noribogaine dose to 700 mg/kg of mouse body mass led to the death of three out of four mice in the group. Upon administration of noribogaine at a dose of 900 mg/kg, all mice in this group died. The LD(50) value of noribogaine in mice determined on the basis of the number of dead mice and the size of the doses used equals to 630 mg/kg of mouse body mass. The behavior of mice was observed upon administration of ibogaine or noribogaine. Low doses of ibogaine and noribogaine had no impact on the mouse behavior. External effects (convulsions, nervous behaviour, limb paralysis) were observed only when substances were administrated at higher doses. It has been determined that the median lethal dose of ibogaine and noribogaine equals to 263 mg and 630 mg/kg of mouse body mass, respectively. The toxicity of ibogaine is 2.4 times higher than that of noribogaine.
Acute Oral Toxicity of DMSO (Dimethyl Sulfoxide) Process Stream Samples in Male and Female Mice.
1983-12-01
4 Lethal Dose Calculations ......... o............. o................. 6 Clinical Observations .................... o...8217 . -, . ,. - - . . . - . .. .. . . . . . ., . , . .. .. . . . . . . . . 1% L - u0 2 C 3 q m r " ,- White--7 Clinical Observations On the day of dosing, the animals were...kg, 2.8 ml/kg). The predominant clinical signs were depression, inactivity, excitation, and aggression, with mild to moderate loss of equilibrium. The
Hill, Jason M.; Egan, J. Franklin; Stauffer, Glenn E.; Diefenbach, Duane R.
2014-01-01
Grassland bird species have experienced substantial declines in North America. These declines have been largely attributed to habitat loss and degradation, especially from agricultural practices and intensification (the habitat-availability hypothesis). A recent analysis of North American Breeding Bird Survey (BBS) “grassland breeding” bird trends reported the surprising conclusion that insecticide acute toxicity was a better correlate of grassland bird declines in North America from 1980–2003 (the insecticide-acute-toxicity hypothesis) than was habitat loss through agricultural intensification. In this paper we reached the opposite conclusion. We used an alternative statistical approach with additional habitat covariates to analyze the same grassland bird trends over the same time frame. Grassland bird trends were positively associated with increases in area of Conservation Reserve Program (CRP) lands and cropland used as pasture, whereas the effect of insecticide acute toxicity on bird trends was uncertain. Our models suggested that acute insecticide risk potentially has a detrimental effect on grassland bird trends, but models representing the habitat-availability hypothesis were 1.3–21.0 times better supported than models representing the insecticide-acute-toxicity hypothesis. Based on point estimates of effect sizes, CRP area and agricultural intensification had approximately 3.6 and 1.6 times more effect on grassland bird trends than lethal insecticide risk, respectively. Our findings suggest that preserving remaining grasslands is crucial to conserving grassland bird populations. The amount of grassland that has been lost in North America since 1980 is well documented, continuing, and staggering whereas insecticide use greatly declined prior to the 1990s. Grassland birds will likely benefit from the de-intensification of agricultural practices and the interspersion of pastures, Conservation Reserve Program lands, rangelands and other grassland habitats into existing agricultural landscapes.
Hill, Jason M; Egan, J Franklin; Stauffer, Glenn E; Diefenbach, Duane R
2014-01-01
Grassland bird species have experienced substantial declines in North America. These declines have been largely attributed to habitat loss and degradation, especially from agricultural practices and intensification (the habitat-availability hypothesis). A recent analysis of North American Breeding Bird Survey (BBS) "grassland breeding" bird trends reported the surprising conclusion that insecticide acute toxicity was a better correlate of grassland bird declines in North America from 1980-2003 (the insecticide-acute-toxicity hypothesis) than was habitat loss through agricultural intensification. In this paper we reached the opposite conclusion. We used an alternative statistical approach with additional habitat covariates to analyze the same grassland bird trends over the same time frame. Grassland bird trends were positively associated with increases in area of Conservation Reserve Program (CRP) lands and cropland used as pasture, whereas the effect of insecticide acute toxicity on bird trends was uncertain. Our models suggested that acute insecticide risk potentially has a detrimental effect on grassland bird trends, but models representing the habitat-availability hypothesis were 1.3-21.0 times better supported than models representing the insecticide-acute-toxicity hypothesis. Based on point estimates of effect sizes, CRP area and agricultural intensification had approximately 3.6 and 1.6 times more effect on grassland bird trends than lethal insecticide risk, respectively. Our findings suggest that preserving remaining grasslands is crucial to conserving grassland bird populations. The amount of grassland that has been lost in North America since 1980 is well documented, continuing, and staggering whereas insecticide use greatly declined prior to the 1990s. Grassland birds will likely benefit from the de-intensification of agricultural practices and the interspersion of pastures, Conservation Reserve Program lands, rangelands and other grassland habitats into existing agricultural landscapes.
Hill, Jason M.; Egan, J. Franklin; Stauffer, Glenn E.; Diefenbach, Duane R.
2014-01-01
Grassland bird species have experienced substantial declines in North America. These declines have been largely attributed to habitat loss and degradation, especially from agricultural practices and intensification (the habitat-availability hypothesis). A recent analysis of North American Breeding Bird Survey (BBS) “grassland breeding” bird trends reported the surprising conclusion that insecticide acute toxicity was a better correlate of grassland bird declines in North America from 1980–2003 (the insecticide-acute-toxicity hypothesis) than was habitat loss through agricultural intensification. In this paper we reached the opposite conclusion. We used an alternative statistical approach with additional habitat covariates to analyze the same grassland bird trends over the same time frame. Grassland bird trends were positively associated with increases in area of Conservation Reserve Program (CRP) lands and cropland used as pasture, whereas the effect of insecticide acute toxicity on bird trends was uncertain. Our models suggested that acute insecticide risk potentially has a detrimental effect on grassland bird trends, but models representing the habitat-availability hypothesis were 1.3–21.0 times better supported than models representing the insecticide-acute-toxicity hypothesis. Based on point estimates of effect sizes, CRP area and agricultural intensification had approximately 3.6 and 1.6 times more effect on grassland bird trends than lethal insecticide risk, respectively. Our findings suggest that preserving remaining grasslands is crucial to conserving grassland bird populations. The amount of grassland that has been lost in North America since 1980 is well documented, continuing, and staggering whereas insecticide use greatly declined prior to the 1990s. Grassland birds will likely benefit from the de-intensification of agricultural practices and the interspersion of pastures, Conservation Reserve Program lands, rangelands and other grassland habitats into existing agricultural landscapes. PMID:24846309
Fawcett, William P; Aracava, Yasco; Adler, Michael; Pereira, Edna F R; Albuquerque, Edson X
2009-02-01
This study was designed to test the hypothesis that the acute toxicity of the nerve agents S-[2-(diisopropylamino)ethyl]-O-ethyl methylphosphonothioate (VX), O-pinacolyl methylphosphonofluoridate (soman), and O-isopropyl methylphosphonofluoridate (sarin) in guinea pigs is age- and sex-dependent and cannot be fully accounted for by the irreversible inhibition of acetylcholinesterase (AChE). The subcutaneous doses of nerve agents needed to decrease 24-h survival of guinea pigs by 50% (LD(50) values) were estimated by probit analysis. In all animal groups, the rank order of LD(50) values was sarin > soman > VX. The LD(50) value of soman was not influenced by sex or age of the animals. In contrast, the LD(50) values of VX and sarin were lower in adult male than in age-matched female or younger guinea pigs. A colorimetric assay was used to determine the concentrations of nerve agents that inhibit in vitro 50% of AChE activity (IC(50) values) in guinea pig brain extracts, plasma, red blood cells, and whole blood. A positive correlation between LD(50) values and IC(50) values for AChE inhibition would support the hypothesis that AChE inhibition is a major determinant of the acute toxicity of the nerve agents. However, such a positive correlation was found only between LD(50) values and IC(50) values for AChE inhibition in brain extracts from neonatal and prepubertal guinea pigs. These results demonstrate for the first time that the lethal potencies of some nerve agents in guinea pigs are age- and sex-dependent. They also support the contention that mechanisms other than AChE inhibition contribute to the lethality of nerve agents.
Abdu-Allah, Gamal A M; Pittendrigh, Barry R
2018-01-01
Selective insecticide application is one important strategy for more precisely targeting harmful insects while avoiding or mitigating collateral damage to beneficial insects like honey bees. Recently, macrocyclic lactone-class insecticides have been introduced into the market place as selective bio-insecticides for controlling many arthropod pests, but how to target this selectivity only to harmful insects has yet to be achieved. In this study, the authors investigated the acute toxicity of fourmacrocyclic lactone insecticides (commercialized as abamectin, emamectin benzoate, spinetoram, and spinosad) both topically and through feeding studies with adult forager honey bees. Results indicated emamectin benzoate as topically 133.3, 750.0, and 38.3-fold and orally 3.3, 7.6, and 31.7-fold more toxic, respectively than abamectin, spinetoram and spinosad. Using Hazard Quotients for estimates of field toxicity, abamectin was measured as the safest insecticide both topically and orally for honey bees. Moreover, a significant reduction of sugar solution consumption by treatment group honey bees for orally applied emamectin benzoate and spinetoram suggests that these insecticides may have repellent properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fonsart, Julien; Menet, Marie-Claude; Decleves, Xavier
The use of the amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) has been associated with unexplained deaths. Male humans and rodents are more sensitive to acute toxicity than are females, including a potentially lethal hyperthermia. MDMA is highly metabolized to five main metabolites, by the enzymes CYP1A2 and CYP2D. The major metabolite in rats, 3,4-methylenedioxyamphetamine (MDA), also causes hyperthermia. We postulated that the reported sex difference in rats is due to a sexual dimorphism(s). We therefore determined (1) the LD50 of MDMA and MDA, (2) their hyperthermic effects, (3) the activities of liver CYP1A2 and CYP2D, (4) the liver microsomal metabolism ofmore » MDMA and MDA, (5) and the plasma concentrations of MDMA and its metabolites 3 h after giving male and female Sprague-Dawley (SD) rats MDMA (5 mg.kg{sup -1} sc). The LD50 of MDMA was 2.4-times lower in males than in females. MDMA induced greater hyperthermia (0.9 deg. C) in males. The plasma MDA concentration was 1.3-fold higher in males, as were CYP1A2 activity (twice) and N-demethylation to MDA (3.3-fold), but the plasma MDMA concentration (1.4-fold) and CYP2D activity (1.3-fold) were higher in females. These results suggest that male SD rats are more sensitive to MDMA acute toxicity than are females, probably because their CYP1A2 is more active, leading to higher N-demethylation and plasma MDA concentration. This metabolic pathway could be responsible for the lethality of MDMA, as the LD50 of MDA is the same in both sexes. These data strongly suggest that the toxicity of amphetamine-related drugs largely depends on metabolic differences.« less
Lu, Cailing; Svoboda, Kurt R; Lenz, Kade A; Pattison, Claire; Ma, Hongbo
2018-06-01
Manganese (Mn) is considered as an emerging metal contaminant in the environment. However, its potential interactions with companying toxic metals and the associated mixture effects are largely unknown. Here, we investigated the toxicity interactions between Mn and two commonly seen co-occurring toxic metals, Pb and Cd, in a model organism the nematode Caenorhabditis elegans. The acute lethal toxicity of mixtures of Mn+Pb and Mn+Cd were first assessed using a toxic unit model. Multiple toxicity endpoints including reproduction, lifespan, stress response, and neurotoxicity were then examined to evaluate the mixture effects at sublethal concentrations. Stress response was assessed using a daf-16::GFP transgenic strain that expresses GFP under the control of DAF-16 promotor. Neurotoxicity was assessed using a dat-1::GFP transgenic strain that expresses GFP in dopaminergic neurons. The mixture of Mn+Pb induced a more-than-additive (synergistic) lethal toxicity in the worm whereas the mixture of Mn+Cd induced a less-than-additive (antagonistic) toxicity. Mixture effects on sublethal toxicity showed more complex patterns and were dependent on the toxicity endpoints as well as the modes of toxic action of the metals. The mixture of Mn+Pb induced additive effects on both reproduction and lifespan, whereas the mixture of Mn+Cd induced additive effects on lifespan but not reproduction. Both mixtures seemed to induce additive effects on stress response and neurotoxicity, although a quantitative assessment was not possible due to the single concentrations used in mixture tests. Our findings demonstrate the complexity of metal interactions and the associated mixture effects. Assessment of metal mixture toxicity should take into consideration the unique property of individual metals, their potential toxicity mechanisms, and the toxicity endpoints examined.
Price, Charlotte; Stallard, Nigel; Creton, Stuart; Indans, Ian; Guest, Robert; Griffiths, David; Edwards, Philippa
2010-01-01
Acute inhalation toxicity of chemicals has conventionally been assessed by the median lethal concentration (LC50) test (organisation for economic co-operation and development (OECD) TG 403). Two new methods, the recently adopted acute toxic class method (ATC; OECD TG 436) and a proposed fixed concentration procedure (FCP), have recently been considered, but statistical evaluations of these methods did not investigate the influence of differential sensitivity between male and female rats on the outcomes. This paper presents an analysis of data from the assessment of acute inhalation toxicity for 56 substances. Statistically significant differences between the LC50 for males and females were found for 16 substances, with greater than 10-fold differences in the LC50 for two substances. The paper also reports a statistical evaluation of the three test methods in the presence of unanticipated gender differences. With TG 403, a gender difference leads to a slightly greater chance of under-classification. This is also the case for the ATC method, but more pronounced than for TG 403, with misclassification of nearly all substances from Globally Harmonised System (GHS) class 3 into class 4. As the FCP uses females only, if females are more sensitive, the classification is unchanged. If males are more sensitive, the procedure may lead to under-classification. Additional research on modification of the FCP is thus proposed. PMID:20488841
Li, Shih-Wei; Wang, Yu-Hsiang; Lin, Angela Yu-Chen
2017-09-01
Ketamine has been increasingly used in medicine and has the potential for abuse or illicit use around the world. Ketamine cannot be removed by conventional wastewater treatment plants. Although ketamine and its metabolite norketamine have been detected to a significant degree in effluents and aquatic environments, their ecotoxicity effects in aquatic organisms remain undefined. In this study, we investigated the acute toxicity of ketamine and its metabolite, along with the chronic reproductive toxicity of ketamine (5-100μg/L) to Daphnia magna. Multiple environmental scenarios were also evaluated, including drug mixtures and sunlight irradiation toxicity. Ketamine and norketamine caused acute toxicity to D. magna, with half lethal concentration (LC 50 ) values of 30.93 and 25.35mg/L, respectively, after 48h of exposure. Irradiated solutions of ketamine (20mg/L) significantly increased the mortality of D. magna; pre-irradiation durations up to 2h rapidly increased the death rate to 100%. A new photolysis byproduct (M.W. 241) of norketamine that accumulates during irradiation was identified for the first time. The relevant environmental concentration of ketamine produced significant reproductive toxicity effects in D. magna, as revealed by the reduction of the number of total live offspring by 33.6-49.8% (p < 0.05). The toxicity results indicate that the environmental hazardous risks of the relevant ketamine concentration cannot be ignored and warrant further examination. Copyright © 2017 Elsevier Inc. All rights reserved.
Todd, A.S.; Brinkman, S.; Wolf, R.E.; Lamothe, P.J.; Smith, K.S.; Ranville, J.F.
2009-01-01
The objective of the present study was to employ an enriched stable-isotope approach to characterize Zn uptake in the gills of rainbow trout (Oncorhynchus mykiss) during acute Zn exposures in hard water (???140 mg/L as CaCO 3) and soft water (???30 mg/L as CaCO3). Juvenile rainbow trout were acclimated to the test hardnesses and then exposed for up to 72 h in static exposures to a range of Zn concentrations in hard water (0-1,000 ??g/L) and soft water (0-250 ??g/L). To facilitate detection of new gill Zn from endogenous gill Zn, the exposure media was significantly enriched with 67Zn stable isotope (89.60% vs 4.1% natural abundance). Additionally, acute Zn toxicity thresholds (96-h median lethal concentration [LC50]) were determined experimentally through traditional, flow-through toxicity tests in hard water (580 ??g/L) and soft water (110 ??g/L). Following short-term (???3 h) exposures, significant differences in gill accumulation of Zn between hard and soft water treatments were observed at the three common concentrations (75, 150, and 250 ??g/L), with soft water gills accumulating more Zn than hard water gills. Short-term gill Zn accumulation at hard and soft water LC50s (45-min median lethal accumulation) was similar (0.27 and 0.20 ??g/g wet wt, respectively). Finally, comparison of experimental gill Zn accumulation, with accumulation predicted by the biotic ligand model, demonstrated that model output reflected short-term (<1 h) experimental gill Zn accumulation and predicted observed differences in accumulation between hard and soft water rainbow trout gills. Our results indicate that measurable differences exist in short-term gill Zn accumulation following acclimation and exposure in different water hardnesses and that short-term Zn accumulation appears to be predictive of Zn acute toxicity thresholds (96-h LC50s). ?? 2009 SETAC.
Ozolua, Raymond I; Anaka, Ogochukwu N; Okpo, Stephen O; Idogun, Sylvester E
2009-07-03
The aqueous seed extract of Persea americana Mill (Lauraceae) is used by herbalists in Nigeria for the management of hypertension. As part of our on-going scientific evaluation of the extract, we designed the present study to assess its acute and sub-acute toxicity profiles in rats. Experiments were conducted to determine the oral median lethal dose (LD(50)) and other gross toxicological manifestations on acute basis. In the sub-acute experiments, the animals were administered 2.5 g/kg (p.o) per day of the extract for 28 consecutive days. Animal weight and fluid intake were recorded during the 28 days period. Terminally, kidneys, hearts, blood/sera were obtained for weight, haematological and biochemical markers of toxicity. Results show that the LD(50) could not be determined after a maximum dose of 10 g/kg. Sub-acute treatment with the extract neither affected whole body weight nor organ-to-body weight ratios but significantly increased the fluid intake (P < 0.0001). Haematological parameters and the levels of ALT, AST, albumin and creatinine were not significantly altered. However, the concentration of total proteins was significantly increased in the treated group. In conclusion, the aqueous seed extract of P. americana is safe on sub-acute basis but extremely high doses may not be advisable.
Mariel, Aronzon Carolina; Alejandra, Babay Paola; Silvia, Pérez Coll Cristina
2014-09-01
The toxicity of Nonylphenol, an emerging pollutant, on the common South American toad Rhinella arenarum was stage and time dependent, thus Median Lethal Concentrations (LC50) for acute (96h), short-term chronic (168h) and chronic exposure (336h) were 1.06; 0.96 and 0.17mgNP/L from embryonic period (S.4), whereas for exposure from larvae (S.25), LC50 remained constant at 0.37mgNP/L from 96h to 168h, decreasing to 0.11mgNP/L at 336h. NOEC-168h for exposure from embryos was 0.025mgNP/L. The Teratogenic Potential (NOEC-lethality/NOEC-sublethal effects) was 23 times higher than the threshold value, indicating a high risk for embryos to be malformed in absence of significant lethality and representing a threat for the species conservation. By comparing with other amphibians, the early development of R. arenarum was very sensitive to NP. The results highlight the relevance of extending the exposure time and look for the most sensitive stage in order to perform the bioassays for conservation purposes. Copyright © 2014 Elsevier B.V. All rights reserved.
Kim, Jungkon; Park, Jeongim; Kim, Pan-Gyi; Lee, Chulwoo; Choi, Kyunghee; Choi, Kyungho
2010-04-01
Global environmental change poses emerging environmental health challenges throughout the world. One of such threats could be found in chemical safety in aquatic ecosystem. In the present study, we evaluated the effect of several environmental factors, such as water pH, temperature and ultraviolet light on the toxicity of pharmaceutical compounds in water, using freshwater invertebrate Daphnia magna. Seven pharmaceuticals including ibuprofen, acetaminophen, lincomycin, ciprofloxacin, enrofloxacin, chlortetracycline and sulfathiazole were chosen as test compounds based on their frequent detection in water. The experimental conditions of environmental parameters were selected within the ranges that could be encountered in temperate environment, i.e., water temperature (15, 21, and 25 degrees C), pH (7.4, 8.3, and 9.2), and UV-B light intensity (continuous irradiation of 15.0 microW/cm(2)). For acetaminophen, enrofloxacin and sulfathiazole, decrease in water pH generally led to increase of acute lethal toxicity, which could be explained by the unionized fraction of pharmaceuticals. Increase of water temperature enhanced the acute toxicity of the acetaminophen, enrofloxacin and chlortetracycline, potentially due to alteration in toxicokinetics of chemicals as well as impact on physiological mechanisms of the test organism. The presence of UV-B light significantly increased the toxicity of sulfathiazole, which could be explained by photo-modification of this chemical that lead to oxidative stress. Under the UV light, however, acute toxicity of enrofloxacin decreased, which might be due to photo-degradation. Since changing environmental conditions could affect exposure and concentration-response profile of environmental contaminants, such conditions should be identified and evaluated in order to better manage ecosystem health under changing global environment.
Immuno-therapy of Acute Radiation Syndromes : Extracorporeal Immuno-Lympho-Plasmo-Sorption.
NASA Astrophysics Data System (ADS)
Popov, Dmitri; Maliev, Slava
Methods Results Summary and conclusions Introduction: Existing Medical Management of the Acute Radiation Syndromes (ARS) does not include methods of specific immunotherapy and active detoxication. Though the Acute Radiation Syndromes were defined as an acute toxic poisonous with development of pathological processes: Systemic Inflammatory Response Syndrome (SIRS), Toxic Multiple Organ Injury (TMOI), Toxic Multiple Organ Dysfunction Syndrome(TMODS), Toxic Multiple Organ Failure (TMOF). Radiation Toxins of SRD Group play an important role as the trigger mechanisms in development of the ARS clinical symptoms. Methods: Immuno-Lympho-Plasmo-Sorption is a type of Immuno-therapy which includes prin-ciples of immunochromato-graphy, plasmopheresis, and hemodialysis. Specific Antiradiation Antitoxic Antibodies are the active pharmacological agents of immunotherapy . Antiradia-tion Antitoxic Antibodies bind selectively to Radiation Neurotoxins, Cytotoxins, Hematotox-ins and neutralize their toxic activity. We have developed the highly sensitive method and system for extracorporeal-immune-lypmh-plasmo-sorption with antigen-specific IgG which is clinically important for treatment of the toxic and immunologic phases of the ARS. The method of extracorporeal-immune-lypmh-plasmo-sorption includes Antiradiation Antitoxic Antibodies (AAA) immobilized on microporous polymeric membranes with a pore size that is capable to provide diffusion of blood-lymph plasma. Plasma of blood or lymph of irradiated mammals contains Radiation Toxins (RT) that have toxic and antigenic properties. Radiation Toxins are Antigen-specific to Antitoxic blocking antibodies (Immunoglobulin G). Plasma diffuses through membranes with immobilized AAA and AA-antibodies bind to the polysaccharide chain of tox-ins molecules and complexes of AAA-RT that are captured on membrane surfaces. RT were removed from plasma. Re-transfusion of plasma of blood and lymph had been provided. We show a statistical significant reduction in postradiation lethality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Z.T.; Wang, L.S.; Chen, S.P.
1996-12-31
The fundamental differentiation of toxicity is between reactive and nonreactive toxicity. Reactive toxicity is associated with a specific mechanism for the reaction with an enzyme or inhibition of a metabolic pathway, and nonreactive toxicity is related directly to the quantity of toxicant acting upon the cell. The quantitative structure-activity relationships (QSARs) have been successfully used in the nonreactive toxicity, such as prediction of the toxicity of nonreactive compounds based on their solubility in the lipids of organisms. The elements of molecular structure that are most closely related to nonreactive toxicity are those that describe the partitioning of the toxicant intomore » the organism, while QSARs for the reactive toxicity are less common in the environmental toxicology literature. With the recent increase in the use of synthetic substituted benzenes as industrial chemicals, the accurate analysis of the effect of reactive toxic chemicals has become recognized with QSAR. For this purpose, we selected the fish (Carassias auratus) as the test organism, measured the acute toxicity of 50% lethal concentration (LC{sub 50}) of the chemicals and the adenosine triphosphate (ATP) content of the liver cells for the organism. These determined the relationships of the acute toxicity of some substituted benzenes with their physicochemical structural parameters. The effects on the ATP content was also compared to predict biological reactivities of the chemicals, so as to find some clues to explain the mode of mechanism of the toxicity. 17 refs., 1 tab.« less
Khan, Muhammad Ashraf; Ruberson, John R
2017-12-01
Trichogramma pretiosum Riley is an important egg parasitoid and biological control agent of caterpillar pests. We studied the acute toxicity of 20 pesticides (14 insecticides/miticides, three fungicides and three herbicides) exposed to recommended field rates. Egg, larval, and pupal stages of the parasitoid in their hosts were dipped in formulated solutions of the pesticides and evaluated 10 days later for percentage of host eggs with holes, number of parasitoids emerged per egg with holes, and stage-specific mortality of immature as well as adult wasps within the host eggs. Seven insecticides (buprofezin, chlorantraniliprole, spirotetramat, flonicamid, flubendiamide) and miticides (spiromesifen, cyflumetofen), one herbicide (nicosulfuron), and three fungicides (myclobutanil, pyraclostrobin, trifloxystrobin + tebuconazole) caused no significant mortality to immature stages or pre-emergent adult parasitoids relative to controls. By contrast, seven insecticides/miticides (abamectin, acetamiprid, dinotefuran, fipronil, novaluron, spinetoram, tolfenpyrad) adversely affected immature and pre-emergent adult T. pretiosum, with tolfenpyrad being particularly lethal. Two herbicides had moderate (glufosinate ammonium) to severe (s-metolachlor) acute lethal effects on the immature parasitoids. This study corroborates earlier findings with adult T. pretiosum. Over half of the pesticides - and all the fungicides - tested in the current study would appear to be compatible with the use of T. pretiosum in integrated pest management programs, with respect to acute parasitoid mortality. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Promoting the 3Rs to enhance the OECD fish toxicity testing framework.
Hutchinson, Thomas H; Wheeler, James R; Gourmelon, Anne; Burden, Natalie
2016-04-01
Fish toxicity testing has been conducted since the 1860's in order to help define safe levels of chemical contaminants in lakes, rivers and coastal waters. The historical emphasis on acute lethality testing of chemicals has more recently focussed on long term sublethal effects of chemicals on fish and their prey species. Fish toxicity testing is now embedded in much environment legislation on chemical safety while it is recognized that animal use should be Replaced, Reduced and Refined (the 3Rs) where possible. The OECD Fish Toxicity Testing Framework provides a useful structure with which to address the needs of environmental safety assessment whilst implementing the 3Rs. This commentary aims to promote the implementation of the recommendations of the OECD Fish Toxicity Testing Framework. Copyright © 2016 Elsevier Inc. All rights reserved.
In vitro cytotoxicity testing of 30 reference chemicals to predict acute human and animal toxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barile, F.A.; Arjun, S.; Borges, L.
1991-03-11
This study was conducted in cooperation with the Scandinavian Society of Cell Toxicology, as part of the Multicenter Evaluation for In Vitro Cytotoxicity (MEIC), and was designed to develop an in vitro model for predicting acute human and animal toxicity. The technique relies on the ability of cultured transformed rat lung epithelial cells (L2) to incorporate radiolabled amino acids into newly synthesized proteins in the absence or presence of increasing doses of the test chemical, during a 24-hr incubation. IC50 values were extrapolated from the dose-response curves after linear regression analysis. Human toxic blood concentrations estimated from rodent LD50 valuesmore » suggest that our experimental IC50's are in close correlation with the former. Validation of the data by the MEIC committee shows that our IC50 values predicted human lethal dosage as efficient as rodent LD50's. It is anticipated that this and related procedures may supplement or replace currently used animal protocols for predicting human toxicity.« less
Acute toxic tests of rainwater samples using Daphnia magna.
Sakai, Manabu
2006-06-01
Rainwater samples were collected at Isogo Ward of Yokohama City, Japan, from 23 June to 31 July 2003. The toxic potency of pollutants present in 13 rainwater samples was tested using Daphnia magna. Most test animals died within 48 h in five test solutions that were prepared from rainwater samples. On the other hand, when nonpolar compounds such as pesticides were removed from rainwater samples before the toxic tests, mortalities in all test solutions were less than 10%. Eight kinds of pesticides were detected in rainwater samples. The highest concentration was of dichlorvos, at 0.74 microg/L. Results indicated that insecticides in rainwater sometimes lethally affected D. magna and that toxic potency of insecticides that are present in rainwater constitutes an important problem for environmental protection.
Toxicity assessment of chlorpyrifos-degrading fungal bio-composites and their environmental risks.
Liu, Jie; Zhang, Xiaoying; Yang, Mengran; Hu, Meiying; Zhong, Guohua
2018-02-01
Bioremediation techniques coupling with functional microorganisms have emerged as the most promising approaches for in-situ elimination of pesticide residue. However, the environmental safety of bio-products based on microorganisms or engineered enzymes was rarely known. Here, we described the toxicity assessment of two previously fabricated fungal bio-composites which were used for the biodegradation of chlorpyrifos, to clarify their potential risks on the environment and non-target organisms. Firstly, the acute and chronic toxicity of prepared bio-composites were evaluated using mice and rabbits, indicating neither acute nor chronic effect was induced via short-term or continuous exposure. Then, the acute mortality on zebrafish was investigated, which implied the application of fungal bio-composites had no lethal risk on aquatic organisms. Meanwhile, the assessment on soil organic matters suggested that no threat was posed to soil quality. Finally, by monitoring, the germination of cabbage was not affected by the exposure to two bio-products. Therefore, the application of fungal bio-composites for chlorpyrifos elimination cannot induce toxic risk to the environment and non-target organisms, which insured the safety of these engineered bio-products for realistic management of pesticide residue, and provided new insights for further development of bioremediation techniques based on functional microorganisms.
Heard, Kennon; Cleveland, Nathan R; Krier, Shay
2011-11-01
There are no controlled human studies to determine the efficacy of benzodiazepines or antipsychotic medications for prevention or treatment of acute cocaine toxicity. The only available controlled data are from animal models and these studies have reported inconsistent benefits. The objective of this study was to quantify the reported efficacy of benzodiazepines and antipsychotic medication for the prevention of mortality due to cocaine poisoning. We conducted a systematic review to identify English language articles describing experiments that compared a benzodiazepine or antipsychotic medication to placebo for the prevention of acute cocaine toxicity in an animal model. We then used these articles in a meta-analysis with a random-effects model to quantify the absolute risk reduction observed in these experiments. We found 10 articles evaluating antipsychotic medications and 15 articles evaluating benzodiazepines. Antipsychotic medications reduced the risk of death by 27% (95% CI, 15.2%-38.7%) compared to placebo and benzodiazepines reduced the risk of death by 52% (42.8%-60.7%) compared to placebo. Both treatments showed evidence of a dose-response effect, and no experiment found a statistically significant increase in risk of death. We conclude that both benzodiazepines and antipsychotic medications are effective for the prevention of lethality from cocaine toxicity in animal models.
Hutler Wolkowicz, Ianina; Svartz, Gabriela V; Aronzon, Carolina M; Pérez Coll, Christina
2016-12-01
Bisphenol A diglycidyl ether (BADGE) is used in packaging materials, in epoxy adhesives, and as an additive for plastics, but it is also a potential industrial wastewater contaminant. The aim of the present study was to evaluate the adverse effects of BADGE on Rhinella arenarum by means of standardized bioassays at embryo-larval development. The results showed that BADGE was more toxic to embryos than to larvae at all exposure times. At acute exposure, lethality rates of embryos exposed to concentrations of 0.0005 mg/L BADGE and greater were significantly higher than rates in the vehicle control, whereas lethality rates of larvae were significantly higher in concentrations of 10 mg/L BADGE and greater. The toxicity then increased significantly, with 96-h median lethal concentrations (LC50s) of 0.13 mg/L and 6.9 mg/L BADGE for embryos and larvae, respectively. By the end of the chronic period, the 336-h LC50s were 0.04 mg/L and 2.2 mg/L BADGE for embryos and larvae, respectively. This differential sensitivity was also ascertained by the 24-h pulse exposure experiments, in which embryos showed a stage-dependent toxicity, with blastula being the most sensitive stage and S.23 the most resistant. The most important sublethal effects in embryos were cell dissociation and delayed development, whereas the main abnormalities observed in larvae related to neurotoxicity, as scare response to stimuli and narcotic effect. Environ Toxicol Chem 2016;35:3031-3038. © 2016 SETAC. © 2016 SETAC.
Depalo, Laura; Lanzoni, Alberto; Masetti, Antonio; Pasqualini, Edison; Burgio, Giovanni
2017-12-05
Conventional insecticide assays, which measure the effects of insecticide exposure on short-term mortality, overlook important traits, including persistence of toxicity or sub-lethal effects. Therefore, such approaches are especially inadequate for prediction of the overall impact of insecticides on beneficial arthropods. In this study, the side effects of four modern insecticides (chlorantraniliprole, emamectin benzoate, spinosad, and spirotetramat) on Adalia bipunctata (L.) (Coleoptera: Coccinellidae) were evaluated under laboratory conditions by exposition on treated potted plants. In addition to investigation of acute toxicity and persistence of harmful activity in both larvae and adults of A. bipunctata, demographic parameters were evaluated, to provide a comprehensive picture of the nontarget effects of these products. Field doses of the four insecticides caused detrimental effects to A. bipunctata; but in different ways. Overall, spinosad showed the best toxicological profile among the products tested. Emamectin benzoate could be considered a low-risk insecticide, but had high persistence. Chlorantraniliprole exhibited lethal effects on early instar larvae and adults, along with a long-lasting activity, instead spirotetramat showed a low impact on larval and adult mortality and can be considered a short-lived insecticide. However, demographic analysis demonstrated that chlorantraniliprole and spirotetramat caused sub-lethal effects. Our findings highlight that sole assessment of mortality can lead to underestimation of the full impact of pesticides on nontarget insects. Demographic analysis was demonstrated to be a sensitive method for detection of the sub-lethal effects of insecticides on A. bipunctata, and this approach should be considered for evaluation of insecticide selectivity. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Almeda, Rodrigo; Harvey, Tracy E; Connelly, Tara L; Baca, Sarah; Buskey, Edward J
2016-06-01
Toxic effects of petroleum to marine zooplankton have been generally investigated using dissolved petroleum hydrocarbons and in the absence of sunlight. In this study, we determined the influence of natural ultraviolet B (UVB) radiation on the lethal and sublethal toxicity of dispersed crude oil to naupliar stages of the planktonic copepods Acartia tonsa, Temora turbinata and Pseudodiaptomus pelagicus. Low concentrations of dispersed crude oil (1 μL L(-1)) caused a significant reduction in survival, growth and swimming activity of copepod nauplii after 48 h of exposure. UVB radiation increased toxicity of dispersed crude oil by 1.3-3.8 times, depending on the experiment and measured variables. Ingestion of crude oil droplets may increase photoenhanced toxicity of crude oil to copepod nauplii by enhancing photosensitization. Photoenhanced sublethal toxicity was significantly higher when T. turbinata nauplii were exposed to dispersant-treated oil than crude oil alone, suggesting that chemical dispersion of crude oil may promote photoenhanced toxicity to marine zooplankton. Our results demonstrate that acute exposure to concentrations of dispersed crude oil and dispersant (Corexit 9500) commonly found in the sea after oil spills are highly toxic to copepod nauplii and that natural levels of UVB radiation substantially increase the toxicity of crude oil to these planktonic organisms. Overall, this study emphasizes the importance of considering sunlight in petroleum toxicological studies and models to better estimate the impact of crude oil spills on marine zooplankton. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Mice Lacking RIP3 Kinase are not Protected from Acute Radiation Syndrome.
Castle, Katherine D; Daniel, Andrea R; Moding, Everett J; Luo, Lixia; Lee, Chang-Lung; Kirsch, David G
2018-06-01
Exposure to high doses of ionizing radiation can cause lethal injury to normal tissue, thus inducing acute radiation syndrome. Acute radiation syndrome is caused by depletion of bone marrow cells (hematopoietic syndrome) and irreparable damage to the epithelial cells in the gastrointestinal tract (gastrointestinal syndrome). Although radiation initiates apoptosis in the hematopoietic and gastrointestinal compartments within the first few hours after exposure, alternative mechanisms of cell death may contribute to injury in these radiosensitive tissues. In this study, we utilized mice lacking a critical regulator of necroptosis, receptor interacting protein 3 (RIP3) kinase, to characterize the role of RIP3 in normal tissue toxicity after irradiation. Our results suggest that RIP3-mediated signaling is not a critical driver of acute radiation syndrome.
Ingersoll, Christopher G.; Contributions by Wang, Ning; Calfee, Robin D.; Beahan, Erinn; Brumbaugh, William G.; Dorman, Rebecca A.; Hardesty, Doug K.; Kunz, James L.; Little, Edward E.; Mebane, Christopher A.; Puglis, Holly J.
2014-01-01
White sturgeon (Acipenser transmontanus) are experiencing poor recruitment in the trans boundary reach of the upper Columbia River in eastern Washington State. Limited toxicity data indicated that early life stages of white sturgeon are sensitive to metals. In acute 4-day (d) exposures with larval white sturgeon, previous studies have reported that the 4-day median lethal concentrations (LC50) based on biotic ligand model (BLM) normalization for copper were below the U.S. Environmental Protection Agency national recommended acute water-quality criterion. In previously published chronic 66-d exposures starting with newly fertilized eggs of white sturgeon, 20-percent lethal effect concentrations (LC20s) for copper, cadmium, or zinc generally were within a factor of two of the chronic values of the most sensitive fish species in the databases of the U.S. Environmental Protection Agency water-quality criteria (WQC) for the three metals. However, there were some uncertainties in the chronic exposures previously performed with white sturgeon, including (1) low control survival (37 percent), (2) more control fish tested in each replicate compared to other treatments, (3) limited replication of treatments (n=2), (4) lack of reported growth data (such as dry weight), and (5) wide dilution factors for exposure concentrations (6- to 8-fold dilutions). The U.S. Environmental Protection Agency concluded that additional studies are needed to generate more toxicity data to better define lethal and sublethal toxicity thresholds for metals for white sturgeon. The objective of the study was to further evaluate the acute and chronic toxicity of cadmium, copper, lead, or zinc to early life stages of white sturgeon in water-only exposures. Toxicity tests also were performed with commonly tested rainbow trout (Oncorhynchus mykiss) under similar test conditions to determine the relative sensitivity between white sturgeon and rainbow trout to these metals. Toxicity data generated from this study were used to evaluate the sensitivity of early life stages of white sturgeon and rainbow trout relative to data published for other test organisms. Toxicity data generated from this study also were used to evaluate the level of protection of U.S. Environmental Protection Agency WQC or Washington State water-quality standards (WQS) for copper, zinc, cadmium, or lead to white sturgeon inhabiting the upper Columbia River. Chapter A of this report summarizes the results of acute toxicity tests performed for 4 d with white sturgeon and rainbow trout exposed to copper, cadmium, or zinc. Chapter B of this report summarizes the results of chronic toxicity tests performed for as many as 53 days with white sturgeon or rainbow trout exposed to copper, cadmium, zinc, or lead. Appendixes to the report are available at http://pubs.usgs.gov/sir/2013/5204. Supporting documentation for chapter A toxicity testing is provided in appendix 1. Supporting documentation for chapter B toxicity testing is provided in Appendix 2. Supporting documentation on analysis of water chemistry for chapter A and chapter B is provided in appendix 3 and 4. The rationale for applying corrections to measured copper and zinc values in water samples from some of the toxicity tests performed in chapter A is provided in appendix 5. A summary of dissolved organic carbon measurement variability and implications for biotic ligand model normalization for toxicity data summarized in chapter A and chapter B are provided in appendix 6. An evaluation of an interlaboratory comparison of analyses for dissolved organic carbon in water from the U.S. Geological Survey Columbia Environmental Research Center and University of Saskatchewan is provided in appendix 7. Finally, appendix 8 provides a summary of retesting of white sturgeon in 2012 to determine if improved survival of sturgeon would affect copper effect concentrations in 24-d copper exposures started with newly hatched larvae, and to evaluate the effect of light intensity or temperature on the response of newly hatched larvae during a 25-d study.
Effects of turbidity, sediment, and polyacrylamide on native freshwater mussels
Buczek, Sean B.; Cope, W. Gregory; McLaughlin, Richard A.; Kwak, Thomas J.
2018-01-01
Turbidity is a ubiquitous pollutant adversely affecting water quality and aquatic life in waterways globally. Anionic polyacrylamide (PAM) is widely used as an effective chemical flocculent to reduce suspended sediment (SS) and turbidity. However, no information exists on the toxicity of PAM‐flocculated sediments to imperiled, but ecologically important, freshwater mussels (Unionidae). Thus, we conducted acute (96 h) and chronic (24 day) laboratory tests with juvenile fatmucket (Lampsilis siliquoidea) and three exposure conditions (nonflocculated settled sediment, SS, and PAM‐flocculated settled sediment) over a range of turbidity levels (50, 250, 1,250, and 3,500 nephelometric turbidity units). Survival and sublethal endpoints of protein oxidation, adenosine triphosphate (ATP) production, and protein concentration were used as measures of toxicity. We found no effect of turbidity levels or exposure condition on mussel survival in acute or chronic tests. However, we found significant reductions in protein concentration, ATP production, and oxidized proteins in mussels acutely exposed to the SS condition, which required water movement to maintain sediment in suspension, indicating responses that are symptoms of physiological stress. Our results suggest anionic PAM applied to reduce SS may minimize adverse effects of short‐term turbidity exposure on juvenile freshwater mussels without eliciting additional lethal or sublethal toxicity.
Effects of nitrogenous wastes on survival of the Barton Springs salamander (Eurycea sosorum).
Crow, Justin C; Ostrand, Kenneth G; Forstner, Michael R J; Catalano, Matthew; Tomasso, Joseph R
2017-11-01
The objective of our study was to determine the acute toxicity of 3 common aquatic nitrogenous toxicants to the federally endangered Barton Springs salamander (Eurycea sosorum). Based on our findings, the 96-h median lethal concentrations (96-h LC50) for un-ionized ammonia-N, nitrite-N, and nitrate-N to E. sosorum are 2.0 ± 0.32, 31.7 ± 4.02, and 968.5 ± 150.6 mg/L, respectively. These results establish a benchmark for the tolerance of plethodontid salamanders to these toxicants and indicate that current water quality criteria are adequate for their protection. Environ Toxicol Chem 2017;36:3003-3007. © 2017 SETAC. © 2017 SETAC.
Ge, Yue-Bin; Jiang, Yi; Zhou, Huan; Zheng, Mi; Li, Jun; Huang, Xian-Ju; Gao, Yue
2016-02-17
Aconitum brachypodum Diels (Family Ranunculaceae) is well known for both its good therapy and high toxicity in Yunnan and Sichuan provinces in China. Noticeably, Veratrilla baillonii Franch (Family Gentianaceae), an ethnodrug used by Naxi and Lisu nationalities in Yunnan Province, has been widely considered to possess antitoxic effects on Aconitum plants in herbal therapy and folklore medicines. The present study was conducted to determine the detoxic activities of the water decoction of Veratrilla baillonii Franch (WVBF) on the the chloroform fraction of Aconitum brachypodum Diels (CFA) induced acute toxicity in mice. The physiological (symptoms, body weight, etc.) as well as pathological and clinical biochemistry parameters were assessed and used as the markers for the toxicity. (1)H nuclear magnetic resonance (NMR) based metabolic approach was adopted to further discuss the mechanism. The acute poisoning effects of CFA on mice were observed at doses of 20-62.5mgkg(-1), resulting in an oral median lethal dose (LD50) of 41.3mgkg(-1). Histologically, distinct degenerative changes of the heart, liver and kidney were observed. The biochemistry parameters in the serum as well as metabolites in heart and brain were also altered. However, WVBF (25-200mg/kg) attenuated all the acute toxicity and pathological changes, properly regulated the biochemistry parameters, and reversed the concentration alterations for some metabolites in the heart and brain of mice induced by 40mg/kg of CFA to a certain extent. WVBF significantly reduced the onset of the CFA toxicity. This study may contribute to further understanding of the toxicological and pharmacological profiles of Aconitum brachypodum and the detoxic property of Veratrilla baillonii. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Evaluation of acute and sub-acute toxicity of Pinus eldarica bark extract in Wistar rats
Ghadirkhomi, Akram; Safaeian, Leila; Zolfaghari, Behzad; Agha Ghazvini, Mohammad Reza; Rezaei, Parisa
2016-01-01
Objective: Pinus eldarica (P. eldarica) is one of the most common pines in Iran which has various bioactive constituents and different uses in traditional medicine. Since there is no documented evidence for P. eldarica safety, the acute and sub-acute oral toxicities of hydroalcoholic extract of P. eldarica bark were investigated in male and female Wistar rats in this study. Materials and Methods: In the acute study, a single dose of extract (2000 mg/kg) was orally administered and animals were monitored for 7 days. In the sub-acute study, repeated doses (125, 250 and 500 mg/kg/day) of the extract were administered for 28 days and biochemical, hematological and histopathological parameters were evaluated. Results: Our results showed no sign of toxicity and no mortality after single or repeated administration of P. eldarica. The median lethal dose (LD50) of P. eldarica was determined to be higher than 2000 mg/kg. The mean body weight and most of the biochemical and hematological parameters showed normal levels. There were only significant decreases in serum triglyceride levels at the doses of 250 and 500 mg/kg of the extract in male rats (p<0.05 and p<0.01, respectively) and in monocyte counts at the highest dose of the extract in both male and female rats (p<0.05). Mild inflammation was also found in histological examination of kidney and liver tissues at the highest dose of extract. Conclusion: Oral administration of the hydroalcoholic extract of P. eldarica bark may be considered as relatively non-toxic particularly at the doses of 125 and 250 mg/kg. PMID:27761426
Acute and early life stage toxicity of industrial effluent on Japanese medaka (Oryzias latipes).
Zha, Jinmiao; Wang, Zijian
2006-03-15
To develop the whole effluent toxicity testing methods (WET), embryo larval stage toxicity test using Japanese medaka (Oryzias latipes) was conducted to evaluate an effluent from a banknote printing plant (BPP). The method is based on acute toxicity using endpoint of 96-h larval morality and on chronic toxicity using endpoints such as the time to hatch, hatching success, deformity, growth rate, swim-up failure, accumulative mortality and sexual ratio. In test for 96-h larval mortality, LC50 (the concentration was lethal to 50% of newly hatching medaka larvae) was 72.9%. In chronic toxicity test, newly fertilized embryos (<5-h old) were exposed to 1%, 6.25%, 12.5%, 25%, 50% effluent concentrations and to 200 mug/l BPA in a 24-h static renewal system at 25+/-1 degrees C until 15 day post-hatch. The results showed that all chronic endpoints were significantly different from the control at 50% dilution (p < 0.01). Embryos began to show lesions on 4th day at higher concentrations (12.5%, 25%, 50% BPP effluent concentrations). Treatment group of 25% dilution showed delayed time to hatch. A reduction in body weight was observed at 25% dilutions for males and females, respectively. Deformities were observed in newly hatched larvae at 25% and 50% BPP effluent concentrations. At 25% dilution, sex ratio of larvae was alternated and there was feminization phenomenon. We conclude that embryo larval stage test using medaka is feasible to evaluate both acute and chronic toxicities and potential endocrine disrupting activity of industrial effluents.
2010-09-01
or VX. Guinea pigs chronically instrumented for concurrent recordings of EEG, cardiorespiratory activities , diaphragm and skeletal muscle EMG were... activities , or any debilitating effects. The animals were asymptomatic within 30 min following therapy and survived the agent challenge 24 hr later. In...For a thorough efficacy evaluation, the animals were chronically instrumented to permit concurrent recordings of central nervous system activity
Isanhart, J.P.; Wu, H.; Pandher, K.; MacRae, R.K.; Cox, S.B.; Hooper, M.J.
2011-01-01
From September to November 2000, United States Fish and Wildlife Service biologists investigated incidents involving 221 bird deaths at 3 mine sites located in New Mexico and Arizona. These bird deaths primarily involved passerine and waterfowl species and were assumed to be linked to consumption of acid metalliferous water (AMW). Because all of the carcasses were found in or near pregnant leach solution ponds, tailings ponds, and associated lakes or storm water retention basins, an acute-toxicity study was undertaken using a synthetic AMW (SAMW) formulation based on the contaminant profile of a representative pond believed to be responsible for avian mortalities. An acute oral-toxicity trial was performed with a mixed-sex group of mallards (Anas platyrhynchos). After a 24-h pretreatment food and water fast, gorge drinking was evident in both SAMW treatment and control groups, with water consumption rates greatest during the initial drinking periods. Seven of nine treated mallards were killed in extremis within 12 h after the initiation of dose. Total lethal doses of SAMW ranged from 69.8 to 270.1 mL/kg (mean ?? SE 127.9 ?? 27.1). Lethal doses of SAMW were consumed in as few as 20 to 40 min after first exposure. Clinical signs of SAMW toxicity included increased serum uric acid, aspartate aminotransferase, creatine kinase, potassium, and P levels. PCV values of SAMW-treated birds were also increased compared with control mallards. Histopathological lesions were observed in the esophagus, proventriculus, ventriculus, and duodenum of SAMW-treated mallards, with the most distinctive being erosion and ulceration of the kaolin of the ventriculus, ventricular hemorrhage and/or congestion, and duodenal hemorrhage. Clinical, pathological, and tissue-residue results from this study are consistent with literature documenting acute metal toxicosis, especially copper (Cu), in avian species and provide useful diagnostic profiles for AMW toxicity or mortality events. Blood and kidney Cu concentrations were 23- and 6-fold greater, respectively, in SAMW mortalities compared with controls, whereas Cu concentrations in liver were not nearly as increased, suggesting that blood and kidney concentrations may be more useful than liver concentrations for diagnosing Cu toxicosis in wild birds. Based on these findings and other reports of AMW toxicity events in wild birds, we conclude that AMW bodies pose a significant hazard to wildlife that come in contact with them. ?? 2011 Springer Science+Business Media, LLC (outside the USA).
Isanhart, John P.; Wu, Hongmei; Pandher, Karamjeet; MacRae, Russell K.; Cox, Stephen B.; Hooper, Michael J.
2011-01-01
From September to November 2000, United States Fish and Wildlife Service biologists investigated incidents involving 221 bird deaths at 3 mine sites located in New Mexico and Arizona. These bird deaths primarily involved passerine and waterfowl species and were assumed to be linked to consumption of acid metalliferous water (AMW). Because all of the carcasses were found in or near pregnant leach solution ponds, tailings ponds, and associated lakes or storm water retention basins, an acute-toxicity study was undertaken using a synthetic AMW (SAMW) formulation based on the contaminant profile of a representative pond believed to be responsible for avian mortalities. An acute oral-toxicity trial was performed with a mixed-sex group of mallards (Anas platyrhynchos). After a 24-h pretreatment food and water fast, gorge drinking was evident in both SAMW treatment and control groups, with water consumption rates greatest during the initial drinking periods. Seven of nine treated mallards were killed in extremis within 12 h after the initiation of dose. Total lethal doses of SAMW ranged from 69.8 to 270.1 mL/kg (mean ± SE 127.9 ± 27.1). Lethal doses of SAMW were consumed in as few as 20 to 40 min after first exposure. Clinical signs of SAMW toxicity included increased serum uric acid, aspartate aminotransferase, creatine kinase, potassium, and P levels. PCV values of SAMW-treated birds were also increased compared with control mallards. Histopathological lesions were observed in the esophagus, proventriculus, ventriculus, and duodenum of SAMW-treated mallards, with the most distinctive being erosion and ulceration of the kaolin of the ventriculus, ventricular hemorrhage and/or congestion, and duodenal hemorrhage. Clinical, pathological, and tissue-residue results from this study are consistent with literature documenting acute metal toxicosis, especially copper (Cu), in avian species and provide useful diagnostic profiles for AMW toxicity or mortality events. Blood and kidney Cu concentrations were 23- and 6-fold greater, respectively, in SAMW mortalities compared with controls, whereas Cu concentrations in liver were not nearly as increased, suggesting that blood and kidney concentrations may be more useful than liver concentrations for diagnosing Cu toxicosis in wild birds. Based on these findings and other reports of AMW toxicity events in wild birds, we conclude that AMW bodies pose a significant hazard to wildlife that come in contact with them.
Isanhart, John P; Wu, Hongmei; Pandher, Karamjeet; MacRae, Russell K; Cox, Stephen B; Hooper, Michael J
2011-11-01
From September to November 2000, United States Fish and Wildlife Service biologists investigated incidents involving 221 bird deaths at 3 mine sites located in New Mexico and Arizona. These bird deaths primarily involved passerine and waterfowl species and were assumed to be linked to consumption of acid metalliferous water (AMW). Because all of the carcasses were found in or near pregnant leach solution ponds, tailings ponds, and associated lakes or storm water retention basins, an acute-toxicity study was undertaken using a synthetic AMW (SAMW) formulation based on the contaminant profile of a representative pond believed to be responsible for avian mortalities. An acute oral-toxicity trial was performed with a mixed-sex group of mallards (Anas platyrhynchos). After a 24-h pretreatment food and water fast, gorge drinking was evident in both SAMW treatment and control groups, with water consumption rates greatest during the initial drinking periods. Seven of nine treated mallards were killed in extremis within 12 h after the initiation of dose. Total lethal doses of SAMW ranged from 69.8 to 270.1 mL/kg (mean ± SE 127.9 ± 27.1). Lethal doses of SAMW were consumed in as few as 20 to 40 min after first exposure. Clinical signs of SAMW toxicity included increased serum uric acid, aspartate aminotransferase, creatine kinase, potassium, and P levels. PCV values of SAMW-treated birds were also increased compared with control mallards. Histopathological lesions were observed in the esophagus, proventriculus, ventriculus, and duodenum of SAMW-treated mallards, with the most distinctive being erosion and ulceration of the kaolin of the ventriculus, ventricular hemorrhage and/or congestion, and duodenal hemorrhage. Clinical, pathological, and tissue-residue results from this study are consistent with literature documenting acute metal toxicosis, especially copper (Cu), in avian species and provide useful diagnostic profiles for AMW toxicity or mortality events. Blood and kidney Cu concentrations were 23- and 6-fold greater, respectively, in SAMW mortalities compared with controls, whereas Cu concentrations in liver were not nearly as increased, suggesting that blood and kidney concentrations may be more useful than liver concentrations for diagnosing Cu toxicosis in wild birds. Based on these findings and other reports of AMW toxicity events in wild birds, we conclude that AMW bodies pose a significant hazard to wildlife that come in contact with them.
Rozman, K
1989-01-01
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has been an important issue in occupational and environmental health for nearly two decades. During this period scientists have studied its possible impacts on exposed human populations. At the same time enormous efforts were made to elucidate the mechanism of TCDD action in various biological models. This paper provides a critical view of the advances made towards understanding the mechanism of TCDD action. Major topics discussed include the Ah-receptor hypothesis, TCDD as a thyroid hormone agonist, TCDD and vitamin A deficiency, TCDD's effect on receptor regulation, and its effect on intermediary metabolism including related hormonal responses. Although the exact mechanism of TCDD action is not yet known, more information is available on the toxicity of this compound than perhaps on that of any other substance. This wealth of information allows important conclusions regarding the assessment of acute, as well as of chronic, toxicities of TCDD for humans. There is no documented case of human death as a result of exposure to TCDD. It appears that humans are acutely less sensitive to TCDD than some animal species. The cause of TCDD-induced lethality in rats is a progressive lethal hypoglycemia due to inhibition of gluconeogenesis. Regulation of this metabolic pathway is quite different amongst species, although primates share great similarities. The assumption that the cause of TCDD-induced death in primates, in analogy to rats, is inhibition of gluconeogenesis would suggest that the acute toxicity of TCDD in humans would be in the range seen in rhesus monkeys (70-300 micrograms/kg). These values are about midway between the most (guinea pig) and least (hamster) sensitive species. TCDD is not a genotoxic agent and not an initiator, but promoter of tumor formation. There is considerable evidence that promotion of cancer, like any other chronic end point of toxicity, is a threshold-type biological process. Therefore, a linear extrapolation of the dose-response is an unnecessarily conservative approach in the safety assessment of TCDD. This paper, based on several studies with different end points of toxicity, supports the notion that 10 pg/kg/day of TCDD represent a safe lifetime exposure level for humans with regard to promotion of cancer, porphyria and chloracne.
Toxicity and repellency to rats of actidione
Traub, R.; DeWitt, J.B.; Welch, J.F.; Newman, D.
1950-01-01
The antibiotic actidione was found to be highly repellent to laboratory rats and to significantly reduce gnawing attacks upon treated paperboards. Rats refused to accept food or water containing this material even under conditions of acute starvation and died of starvation and thirst,rather than accept water containing l.0 mg. of actidione per liter. The compound is highly toxic to .rats with the minimum .lethal dose by oral administration being approximately l.0 mg./Kg body weight. Paperboard treated with the compound resisted gnawing attacks by specially trained and motivated rats for periods of two hundred hours, although similar .untreated boards were pierced within thirty-to sixty minutes.
Brunfelsia australis (Yesterday, Today, and Tomorrow tree) and Solanum poisoning in a dog.
Clipsham, Robert
2012-01-01
A 2.5 yr old female beagle presented for acute abdominal pain and vomiting after consuming limited offerings of green potato skins. Progressive complications associated with suspected ingestion of a higher potency toxin followed within 5 hr. Subsequent investigations revealed a significant ingestion of an Australian shrub commonly called a "Yesterday, Today, and Tomorrow" tree (Brunfelsia australis). The toxic principle for this emerging toxicity is referred to as "strychnine-like" and is potentially lethal with gastrointestinal, central nervous system, and cardiac pathology. This plant is currently being aggressively promoted by United States nurserymen for its dramatic tri-colored blooms and drought resistance.
Acute toxicity of potassium permanganate to milkfish fingerlings, Chanos chanos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cruz, E.R.; Tamse, C.T.
Potassium permanganate (KMnO{sub 4}) is a strong oxidizing agent and is commonly used in aquatic systems to improve available oxygen, treat infectious diseases and parasites, detoxify fish poisons, and control algae. There have been some studies on the toxicity of KMnO{sub 4} to freshwater fishes, but none on brackish or marine water species. The following study was undertaken to determine the 24- and 96-h median lethal concentration (LC50) of milkfish fingerlings to KMnO{sub 4}. The study was also designed to evaluate the histopathological response of fish tissues to KMnO{sub 4} but was reported in another paper.
Johnson, W. Waynon; Finley, Mack T.
1980-01-01
Acute toxicity is a major subject of research at Columbia National Fisheries Research Laboratory for evaluating the impact of toxic chemicals on fishery resources. The Laboratory has played a leading role in developing research technology for toxicity testing and data interpretation. In 1965-78, more than 400 chemicals were tested against a variety of invertebrates and fish species representative of both cold- and warm-water climates.The use of acute toxicity tests for assessing the potential hazard of chemical contaminants to aquatic organisms is well documented (Boyd 1957; Henderson et al. 1960; Sanders and Cope 1966; Macek and McAllister 1970). Static acute toxicity tests provide rapid and (within limits) reproducible concentration-response curves for estimating toxic effects of chemicals on aquatic organisms. These tests provide a database for determining relative toxicity of a large number of chemicals to a variety of species and for estimating acute effects of chemical spills on natural aquatic systems; they also assist in determining priority and design of additional toxicity studies.Acute toxicity tests usually provide estimates of the exposure concentration causing 50% mortality (LC50) to test organisms during a specified period of time. For certain invertebrates, the effective concentration is based on immobilization, or some other identifiable endpoint, rather than on lethality. The application of the LC50 has gained acceptance among toxicologists and is generally the most highly rated test for assessing potential adverse effects of chemical contaminants to aquatic life (Brungs and Mount 1978; American Institute for Biological Sciences 1978a).The literature contains numerous papers dealing with the acute toxicity of chemicals to freshwater organisms. However, there is a tremendous need for a concise compendium of toxicity data covering a large variety of chemicals and test species. This Handbook is a compilation of a large volume of acute toxicity data from the Columbia Laboratory and its field laboratories. It presents definitive acute toxicity data on 271 chemicals tested against a variety of freshwater invertebrates and fishes. The chemicals represent all major groups of pesticides, as well as numerous industrial chemicals. This compilation should serve as a useful database for the many agencies and organizations dealing with research and management programs concerned with the impact of chemicals on aquatic resources.The Columbia Laboratory has played a major role in developing currently used standard methodology for static acute toxicity testing. The use of standardized methodology greatly reduces variation in results. The data presented here have been carefully scrutinized to eliminate tests that failed to follow acceptable procedures. Handling of test organisms and procedures for static toxicity tests followed those described by Lennon and Walker (1964) and Macek and McAllister (1970), and conform well with those recommended by Brauhn and Schoettger (1975) and the Committee on Methods for Toxicity Tests with Aquatic Organisms (1975).The species of fish and invertebrates that were tested are listed in phylogenetic order in Tables 1 and 2. Fish were obtained from Federal and State hatcheries as either eggs or fry. Original stocks of invertebrates were collected and cultured from wild populations with no known source of contamination; these populations were replenished regularly. The invertebrates were cultured in the Laboratory by methods similar to those described by Sanders and Cope (1966).Test chemicals usually consisted of technical or analytical grade samples of known purity. Formulations of the chemicals were also tested when available. When purity of test chemicals was known, all calculated concentrations were based on percent active ingredients. Stock solutions were prepared immediately before each test, with commercial grade acetone as the carrier solvent. Occasionally, ethanol or dimethyl-formamide was substituted. Solvent concentrations did not exceed 0.5 mL/L in final dilution water.Test water (dilution water) was reconstituted from deionized water of at least 106 ohms resistivity by the addition of appropriate reagent grade chemicals (Marking 1969). Water was buffered to maintain a pH of 7.2 to 7.5, an alkalinity of 30 to 35 mg/L, and a hardness of 40 to 50 mg/L as CaCO3. Test water was mixed thoroughly and aerated before transfer into test chambers. Fish were acclimated to dilution water by gradually changing the water in acclimated tanks from 100% well water to 100% reconstituted water over a 1- to 3-day period at the desired testing temperature. Invertebrates were acclimated from well water to dilution water over a 4- to 6-h period. Toxicity tests were conducted under static conditions without aeration, and the organisms were not fed during acclimation or testing. Temperature of test solutions was maintained within ± 1°C of that required for a given test.Toxicity tests with fish were conducted in 18.9-liter (5-gal) wide-mouthed jars containing 15 liters of test solution. Fingerling fish weighing 0.2 to 1.5 g were tested at each concentration. Caution was taken not to exceed 0.8 g of test organisms per liter of solution. Duplicate test chambers were used to accommodate larger fish. Test chambers varied in size for invertebrates, depending on the species used; volume of test solution ranged from 0.25 to 4 liters. At least 10 organisms were exposed to each concentration for all definitive tests. At least six concentrations were used per toxicity test.The tests began upon initial exposure to the toxicant and continued for 96 h. Immobilization tests with invertebrates were conducted for only 48 h. The number of dead or affected organisms in each test chamber were recorded and the dead organisms were removed every 24 h; general observations on the condition of test organisms were also recorded at these times.Toxicity data were analyzed by a statistical method described by Litchfield and Wilcoxon (1949) to determine LC50 (theoretical estimate of the concentration lethal to 50% of the test animals) and 95% confidence intervals. This method is recommended by the American Public Health Association (1971) and by Sprague (1969) for determining median lethal concentrations. The procedure is easily modified for computing a single LC50 when replicate tests are performed.
Acute and repeated dose inhalation toxicity of para-nitrophenol sodium salt in rats.
Smith, L W; Hall, G T; Kennedy, G L
1988-01-01
Para-Nitrophenol Sodium Salt (PNSP) has relatively low acute inhalation toxicity; the 4-hr Approximate Lethal Concentration in rats is greater than 4.7 mg/l. One subacute study was conducted at 0, 0.34 and 2.47 mg PNSP/l for ten 6-hr exposures. Darker urine, proteinuria and elevated creatinine and SGOT were seen after exposure and were still evident after 14 days recovery. Methemoglobinemia also was seen and was reversible at 0.34 mg/l after 14 days. In addition, exposure to 2.47 mg/l caused elevated erythrocytes, hemoglobin and hematocrit. A second subacute study at 0.03 and 0.13 mg PNSP/l showed reversible methemoglobinemia only at 0.13 mg/l. The repeated dose no-observable effect level was 0.03 mg/l. No compound-related pathologic changes were noted in any of the studies.
Akıncı, Burcu; Siviş, Zuhal Ö; Şahin, Akkız; Karapınar, Deniz Y; Balkan, Can; Kavaklı, Kaan; Aydınok, Yeşim
2018-06-01
Toxic epidermal necrolysis and Stevens-Johnson syndrome are rare mucocutaneous diseases which are associated with a prolonged course and potentially lethal outcome. They are mostly drug induced and mortality rates are very high. Although mostly skin is involved, multiple organ systems such as cardiovascular, pulmonary, gastrointestinal, and urinary systems may be affected. Here, we report a case of Stevens- Johnson Syndrome associated with methotrexate treatment who developed acute cardiac failure and gastrointestinal hemorrhage beside skin findings. He had been treated with intravenous immunglobulin and methylprednisolone succesfully and continued chemotherapy with methotrexate treatment again. Sociedad Argentina de Pediatría.
Pérez-Iglesias, J M; Soloneski, S; Nikoloff, N; Natale, G S; Larramendy, M L
2015-09-01
Acute lethal and sublethal toxicity of the imidazolinone imazethapyr (IMZT)-based commercial formulation herbicide Pivot H® (10.59% IMZT) was evaluated on Hypsiboas pulchellus tadpoles. Whereas mortality was used as the end point for lethality, frequency of micronuclei (MNs) and other nuclear abnormalities as well as DNA single-strand breaks evaluated by the single cell gel electrophoresis assay were employed to test genotoxicity. Behavioral, growth, developmental, and morphological abnormalities were also employed as sublethal end points. Mortality studies revealed equivalent LC50 (96h) values of 1.49mg/L (confidence limit, 1.09-1.63) and 1.55mg/L (confidence limit, 1.51-1.60) IMZT for Gosner stage (GS) 25 and GS36, respectively. Behavioral changes, i.e., irregular swimming and immobility, as well as a decreased frequency of keratodonts were observed. The herbicide increased the frequency of MNs in circulating erythrocytes of tadpoles exposed for 48h to the highest concentration assayed (1.17mg/L). However, regardless of the concentration of the herbicide assayed, an enhanced frequency of MNs was observed in tadpoles exposed for 96h. The herbicide was able to induce other nuclear abnormalities, i.e., blebbed and notched nuclei, only when tadpoles were exposed for 96h. In addition, we observed that exposure to IMZT within the 0.39-1.17mg/L range increased the genetic damage index in treatments lasting for both 48 and 96h. This study represents the first evidence of acute lethal and sublethal effects exerted by IMZT on amphibians. Finally, our findings highlight the properties of this herbicide that jeopardize nontarget living species exposed to IMZT. Copyright © 2015 Elsevier Inc. All rights reserved.
The relative toxicities of several pesticides to naiads of three species of stoneflies
Sanders, Herman O.; Cope, Oliver B.
1968-01-01
Static bioassays were conducted to determine the relative acute toxicities of some insecticides, herbicides, fungicides, a defoliant, and a molluscicide to the naiads of three species of stonef!y, Pteronarcys califomica, Pteronarcella badia, and Claassenia sabulosa. Toxic effects were measured by determination of median lethal concn (Lcoo) for 24-, 48-, and 96-hr exposures, at 15.5C. Endrin and dieldrin were the most and DDT the least toxic of the chlorinated hydrocarbon insecticides tested. Parathion was the most toxic organophosphate insecticide to P. califomica naiads, but dursban was the most toxic to P. badia and C. sabulosa naiads. Trichlorofon ( Dipterex) was the least toxic to all three species. P. badia, the species of smallest size, was the species most susceptible to most pesticides, followed in descending order of sensitivity by C. sabulosa and P. califomica. Smaller specimens of P. californica naiads were consistently more susceptible to some insecticides than larger specimens of the same species.
Maloney, Erin M; Morrissey, Christy A; Headley, John V; Peru, Kerry M; Liber, Karsten
2017-11-01
Extensive agricultural use of neonicotinoid insecticide products has resulted in the presence of neonicotinoid mixtures in surface waters worldwide. Although many aquatic insect species are known to be sensitive to neonicotinoids, the impact of neonicotinoid mixtures is poorly understood. In the present study, the cumulative toxicities of binary and ternary mixtures of select neonicotinoids (imidacloprid, clothianidin, and thiamethoxam) were characterized under acute (96-h) exposure scenarios using the larval midge Chironomus dilutus as a representative aquatic insect species. Using the MIXTOX approach, predictive parametric models were fitted and statistically compared with observed toxicity in subsequent mixture tests. Single-compound toxicity tests yielded median lethal concentration (LC50) values of 4.63, 5.93, and 55.34 μg/L for imidacloprid, clothianidin, and thiamethoxam, respectively. Because of the similar modes of action of neonicotinoids, concentration-additive cumulative mixture toxicity was the predicted model. However, we found that imidacloprid-clothianidin mixtures demonstrated response-additive dose-level-dependent synergism, clothianidin-thiamethoxam mixtures demonstrated concentration-additive synergism, and imidacloprid-thiamethoxam mixtures demonstrated response-additive dose-ratio-dependent synergism, with toxicity shifting from antagonism to synergism as the relative concentration of thiamethoxam increased. Imidacloprid-clothianidin-thiamethoxam ternary mixtures demonstrated response-additive synergism. These results indicate that, under acute exposure scenarios, the toxicity of neonicotinoid mixtures to C. dilutus cannot be predicted using the common assumption of additive joint activity. Indeed, the overarching trend of synergistic deviation emphasizes the need for further research into the ecotoxicological effects of neonicotinoid insecticide mixtures in field settings, the development of better toxicity models for neonicotinoid mixture exposures, and the consideration of mixture effects when setting water quality guidelines for this class of pesticides. Environ Toxicol Chem 2017;36:3091-3101. © 2017 SETAC. © 2017 SETAC.
Evaluating the zebrafish embryo toxicity test for pesticide hazard screening.
Glaberman, Scott; Padilla, Stephanie; Barron, Mace G
2017-05-01
Given the numerous chemicals used in society, it is critical to develop tools for accurate and efficient evaluation of potential risks to human and ecological receptors. Fish embryo acute toxicity tests are 1 tool that has been shown to be highly predictive of standard, more resource-intensive, juvenile fish acute toxicity tests. However, there is also evidence that fish embryos are less sensitive than juvenile fish for certain types of chemicals, including neurotoxicants. The utility of fish embryos for pesticide hazard assessment was investigated by comparing published zebrafish embryo toxicity data from pesticides with median lethal concentration 50% (LC50) data for juveniles of 3 commonly tested fish species: rainbow trout, bluegill sunfish, and sheepshead minnow. A poor, albeit significant, relationship (r 2 = 0.28; p < 0.05) was found between zebrafish embryo and juvenile fish toxicity when pesticides were considered as a single group, but a much better relationship (r 2 = 0.64; p < 0.05) when pesticide mode of action was factored into an analysis of covariance. This discrepancy is partly explained by the large number of neurotoxic pesticides in the dataset, supporting previous findings that commonly used fish embryo toxicity test endpoints are particularly insensitive to neurotoxicants. These results indicate that it is still premature to replace juvenile fish toxicity tests with embryo-based tests such as the Organisation for Economic Co-operation and Development Fish Embryo Acute Toxicity Test for routine pesticide hazard assessment, although embryo testing could be used with other screening tools for testing prioritization. Environ Toxicol Chem 2017;36:1221-1226. © 2016 SETAC. © 2016 SETAC.
Podder, Sayanti
2014-01-01
The starting point of toxicity testing of any chemical in an organism is the determination of its Lethal Concentration 50 (LC50). In the present study, LC50 of a fluorinated insecticide cryolite is determined in a non-target insect model, Drosophila melanogaster. Interestingly, the result shows that acute LC50 of cryolite was much greater in comparison to the chronic one in case of Drosophila larvae. Larvae which were exposed to 65,000 to 70,000 µg/ml cryolite through food showed 50% mortality after 18 hours of acute exposure, whereas only 150 to 160 µg/ml cryolite was sufficient to cause 50% mortality in case of chronic exposure. Thus cryolite in a small amount when applied once cannot produce noticeable changes in Drosophila, whereas the same amount when used continuously can be fatal. The non-feeding pupal stage was also seen to be affected by chemical treatment. This suggests that the test chemical affects the developmental fate and results in failure of adult emergence. Absence of chemical-induced mortality in adults assumes that the toxicity of cryolite might be restricted to the preimaginal stages of the organism. Reduction in body size of larvae after ingestion of cryolite (with food) in acute treatment schedule is another interesting finding of this study. Some individuals consuming cryolite containing food cannot survive whereas the few survivors manifest a significant growth retardation which might be due to a tendency of refusal in feeding. Hence the present findings provide a scope of assessment of risk of other similar non-target groups. PMID:26038671
Toluene inducing acute respiratory failure in a spray paint sniffer.
Peralta, Diego P; Chang, Aymara Y
2012-01-01
Toluene, formerly known as toluol, is an aromatic hydrocarbon that is widely used as an industrial feedstock and as a solvent. Like other solvents, toluene is sometimes also used as an inhalant drug for its intoxicating properties. It has potential to cause multiple effects in the body including death. I report a case of a 27-year-old male, chronic spray paint sniffer, who presented with severe generalized muscle weakness and developed acute respiratory failure requiring ventilatory support. Toluene toxicity was confirmed with measurement of hippuric acid of 8.0 g/L (normal <5.0 g/L). Acute respiratory failure is a rare complication of chronic toluene exposure that may be lethal if it is not recognized immediately. To our knowledge, this is the second case of acute respiratory failure due to toluene exposure.
Toluene inducing acute respiratory failure in a spray paint sniffer
Peralta, Diego P.; Chang, Aymara Y.
2012-01-01
Summary Background: Toluene, formerly known as toluol, is an aromatic hydrocarbon that is widely used as an industrial feedstock and as a solvent. Like other solvents, toluene is sometimes also used as an inhalant drug for its intoxicating properties. It has potential to cause multiple effects in the body including death. Case Report: I report a case of a 27-year-old male, chronic spray paint sniffer, who presented with severe generalized muscle weakness and developed acute respiratory failure requiring ventilatory support. Toluene toxicity was confirmed with measurement of hippuric acid of 8.0 g/L (normal <5.0 g/L). Conclusions: Acute respiratory failure is a rare complication of chronic toluene exposure that may be lethal if it is not recognized immediately. To our knowledge, this is the second case of acute respiratory failure due to toluene exposure. PMID:23569498
Abal, Paula; Louzao, M Carmen; Cifuentes, José Manuel; Vilariño, Natalia; Rodriguez, Ines; Alfonso, Amparo; Vieytes, Mercedes R; Botana, Luis M
2017-04-01
Ingestion of shellfish with dinophysistoxin-2 (DTX2) can lead to diarrheic shellfish poisoning (DSP). The official control method of DSP toxins in seafood is the liquid chromatography-mass spectrometry analysis (LC-MS). However in order to calculate the total toxicity of shellfish, the concentration of each compound must be multiplied by individual Toxicity Equivalency Factor (TEF). Considering that TEFs caused some controversy and the scarce information about DTX2 toxicity, the aim of this study was to characterize the oral toxicity of DTX2 in mice. A 4-Level Up and Down Procedure allowed the characterization of DTX2 effects and the estimation of DTX2 oral TEF based on determination of the lethal dose 50 (LD50). DTX2 passed the gastrointestinal barrier and was detected in urine and feces. Acute toxicity symptoms include diarrhea and motionless, however anatomopathology study and ultrastructural images restricted the toxin effects to the gastrointestinal tract. Nevertheless enterocytes microvilli and tight junctions were not altered, disconnecting DTX2 diarrheic effects from paracellular epithelial permeability. This is the first report of DTX2 oral LD 50 (2262 μg/kg BW) indicating that its TEF is about 0.4. This result suggests reevaluation of the present TEFs for the DSP toxins to better determine the actual risk to seafood consumers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Acute toxicity of fire-retardant and foam-suppressant chemicals to yalella azteca (Saussure)
McDonald, Susan F.; Hamilton, Steven J.; Buhl, Kevin J.; Heisinger, James F.
1997-01-01
Acute toxicity tests were conducted with Hyalella azteca Saussure (an amphipod) exposed in soft and hard waters to three fire retardants (Fire-Trol GTS-R, Fire-Trol LCG-R, and Phos-Chek D75-F) and two foam suppressants (Phos-Chek WD-881 and Silv-Ex). The chemicals were slightly to moderately toxic to amphipods. The most toxic chemical to amphipods in soft and hard water was Phos-Chek WD-881 (96-h mean lethal concentration [LC50] equal to 10 mg/L and 22 mg/L, respectively), and the least toxic chemical to amphipods in soft water was Fire-Trol GTS-R (96-h LC50 equal to 127 mg/L) and in hard water was Fire-Trol LCG-R (96-h LC50 equal to 535 mg/L). Concentrations of ammonia in tests with the three fire retardants and both water types were greater than reported LC50 values and probably were the major toxic component. Estimated un-ionized ammonia concentrations near the LC50 were frequently less than the reported LC50 ammonia concentrations for amphipods. The three fire retardants were more toxic in soft water than in hard water even though ammonia and un-ionized ammonia concentrations were higher in hard water tests than in soft water tests. The accidental entry of fire-fighting chemicals into aquatic environments could adversely affect aquatic invertebrates, thereby disrupting ecosystem function.
Evaluating the Zebrafish Embryo Toxicity Test for Pesticide ...
Given the numerous chemicals used in society, it is critical to develop tools for accurate and efficient evaluation of potential risks to human and ecological receptors. Fish embryo acute toxicity tests are 1 tool that has been shown to be highly predictive of standard, more resource-intensive, juvenile fish acute toxicity tests. However, there is also evidence that fish embryos are less sensitive than juvenile fish for certain types of chemicals, including neurotoxicants. The utility of fish embryos for pesticide hazard assessment was investigated by comparing published zebrafish embryo toxicity data from pesticides with median lethal concentration 50% (LC50) data for juveniles of 3 commonly tested fish species: rainbow trout, bluegill sunfish, and sheepshead minnow. A poor, albeit significant, relationship (r2 = 0.28; p < 0.05) was found between zebrafish embryo and juvenile fish toxicity when pesticides were considered as a single group, but a much better relationship (r2 = 0.64; p < 0.05) when pesticide mode of action was factored into an analysis of covariance. This discrepancy is partly explained by the large number of neurotoxic pesticides in the dataset, supporting previous findings that commonly used fish embryo toxicity test endpoints are particularly insensitive to neurotoxicants. These results indicate that it is still premature to replace juvenile fish toxicity tests with embryo-based tests such as the Organisation for Economic Co-op
Liu, Yongqiang; Gao, Yu; Liang, Gemei; Lu, Yanhui
2017-01-01
Methomyl is currently used as a toxicant for the attracticide BioAttract in cotton and vegetables in China. However, methomyl is highly toxic to non-target organisms and a more environmental friendly acceptable alternative is required. Larvae of three lepidopteran insects Helicoverpa armigera, Agrotis ipsilon and Spodoptera litura are important pests of these crops in China. In the present study, the toxicity of 23 commonly used insecticides were tested on H. armigera, then tested the susceptibility of A. ipsilon and S. litura moths to the insecticides which were the most toxic to H. armigera, and the acute toxicity of the most efficacious insecticides were further investigated under laboratory conditions. Chlorantraniliprole, emamectin benzoate, spinetoram, spinosad and methomyl exhibited high levels of toxicity to H. armigera moths with a mortality of 86.67%, 91.11%, 73.33%, 57.78% and 80.00%, respectively, during 24 h period at the concentration of 1 mg a.i. L-1. Among these five insecticides, A. ipsilon and S. litura moths were more sensitive to chlorantraniliprole, emamectin benzoate and methomyl. The lethal time (LT50) values of chlorantraniliprole and methomyl were shorter than emamectin benzoate for all three lepidopteran moth species at 1000 mg a.i. L-1 compared to concentrations of 500, 100 and 1 mg a.i L-1. Chlorantraniliprole was found to have similar levels of toxicity and lethal time on the three lepidopteran moths tested to the standard methomyl, and therefore, can be used as an alternative insecticide to methomyl in the attracticide for controlling these pest species.
Liu, Yongqiang; Gao, Yu; Liang, Gemei
2017-01-01
Methomyl is currently used as a toxicant for the attracticide BioAttract in cotton and vegetables in China. However, methomyl is highly toxic to non-target organisms and a more environmental friendly acceptable alternative is required. Larvae of three lepidopteran insects Helicoverpa armigera, Agrotis ipsilon and Spodoptera litura are important pests of these crops in China. In the present study, the toxicity of 23 commonly used insecticides were tested on H. armigera, then tested the susceptibility of A. ipsilon and S. litura moths to the insecticides which were the most toxic to H. armigera, and the acute toxicity of the most efficacious insecticides were further investigated under laboratory conditions. Chlorantraniliprole, emamectin benzoate, spinetoram, spinosad and methomyl exhibited high levels of toxicity to H. armigera moths with a mortality of 86.67%, 91.11%, 73.33%, 57.78% and 80.00%, respectively, during 24 h period at the concentration of 1 mg a.i. L-1. Among these five insecticides, A. ipsilon and S. litura moths were more sensitive to chlorantraniliprole, emamectin benzoate and methomyl. The lethal time (LT50) values of chlorantraniliprole and methomyl were shorter than emamectin benzoate for all three lepidopteran moth species at 1000 mg a.i. L-1 compared to concentrations of 500, 100 and 1 mg a.i L-1. Chlorantraniliprole was found to have similar levels of toxicity and lethal time on the three lepidopteran moths tested to the standard methomyl, and therefore, can be used as an alternative insecticide to methomyl in the attracticide for controlling these pest species. PMID:28658277
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerrato, Laura; Valeri, Antonio; Bueren, Juan A.
The ACuteTox Project (part of the EU 6th Framework Programme) was started up in January 2005. The aim of this project is to develop a simple and robust in vitro strategy for prediction of human acute systemic toxicity, which could replace animal tests used for regulatory purposes. Our group is responsible for the characterization of the effect of the reference chemicals on the hematopoietic tissue. CFU-GM assay based on the culture of human mononuclear cord blood cells has been used to characterize the effects of the selected compounds on the myeloid progenitors. Previous results have shown the relevance of themore » CFU-GM assay for the prediction of human acute neutropenia after treatment of antitumoral compounds, and this assay has been recently approved by the ECVAM's Scientific Advisory Committee. Among the compounds included in the study there were pharmaceuticals, environmental pollutants and industrial chemicals. Eleven out of 55 chemicals did not show any cytotoxic effect at the maximum concentration tested. The correlation coefficients of CFU-GM IC50, IC70 and IC90 values with human LC50 values (50% lethal concentration calculated from time-related sublethal and lethal human blood concentrations) were 0.4965, 0.5106 and 0.5142 respectively. Although this correlation is not improve respect to classical in vitro basal cytotoxicity tests such as 3T3 Neutral Red Uptake, chemicals which deviate substantially in the correlation with these assays (colchicine, digoxin, 5-Fluorouracil and thallium sulfate) fitted very well in the linear regression analysis of the CFU-GM progenitors. The results shown in the present study indicate that the sensitivity of CFU-GM progenitors correlates better than the sensitivity of HL-60 cells with human LC50 values and could help to refine the predictability for human acute systemic toxicity when a given chemical may affect to the hematopoietic myeloid system.« less
Large Dataset of Acute Oral Toxicity Data Created for Testing ...
Acute toxicity data is a common requirement for substance registration in the US. Currently only data derived from animal tests are accepted by regulatory agencies, and the standard in vivo tests use lethality as the endpoint. Non-animal alternatives such as in silico models are being developed due to animal welfare and resource considerations. We compiled a large dataset of oral rat LD50 values to assess the predictive performance currently available in silico models. Our dataset combines LD50 values from five different sources: literature data provided by The Dow Chemical Company, REACH data from eChemportal, HSDB (Hazardous Substances Data Bank), RTECS data from Leadscope, and the training set underpinning TEST (Toxicity Estimation Software Tool). Combined these data sources yield 33848 chemical-LD50 pairs (data points), with 23475 unique data points covering 16439 compounds. The entire dataset was loaded into a chemical properties database. All of the compounds were registered in DSSTox and 59.5% have publically available structures. Compounds without a structure in DSSTox are currently having their structures registered. The structural data will be used to evaluate the predictive performance and applicable chemical domains of three QSAR models (TIMES, PROTOX, and TEST). Future work will combine the dataset with information from ToxCast assays, and using random forest modeling, assess whether ToxCast assays are useful in predicting acute oral toxicity. Pre
Rao, Pooja; Singh, Poonam; Yadav, Shiv Kumar; Gujar, Niranjan L; Bhattacharya, Rahul
2013-09-01
Cyanogens include complex nitrile-containing compounds that can generate free cyanide of toxicological significance. Acute toxicity, time-dependent cyanide generation and cytochrome oxidase (CYTOX) inhibition in soft tissues, and urinary thiocyanate levels were measured after acute cyanogen intoxication in rats. Order of cyanogens in terms of LD₅₀ was: malononitrile (MCN)>propionitrile (PCN)≈sodium nitroprusside (SNP)>acrylonitrile (ACN)>succinonitrile (SCN)>acetonitrile (ATCN) for oral, and SNP>MCN>ACN>PCN>SCN>ATCN for intraperitoneal and subcutaneous routes. MCN was most toxic by oral (LD₅₀=66.4 mg/kg) and SNP by intraperitoneal (LD₅₀=16.7 mg/kg) and subcutaneous (LD₅₀=11.9 mg/kg) routes. Minimum survival time (25 min) was recorded after 4.0 LD₅₀ ATCN. Order of cyanogens (0.75 LD₅₀; oral) on the basis of maximum blood cyanide and time of peak cyanide generation were: ATCN>SNP>SCN>PCN>MCN>ACN, and MCN (30 min)
Ganesan, Santhanamari; Anaimalai Thirumurthi, Naveenkumar; Raghunath, Azhwar; Vijayakumar, Savitha; Perumal, Ekambaram
2016-04-01
Nano-copper oxides are a versatile inorganic material. As a result of their versatility, the immense applications and usage end up in the environment causing a concern for the lifespan of various beings. The ambiguities surround globally on the toxic effects of copper oxide nanoparticles (CuO-NPs). Hence, the present study endeavored to study the sub-lethal acute exposure effects on the developing zebrafish embryos. The 48 hpf LC50 value was about 64 ppm. Therefore, we have chosen the sub-lethal dose of 40 and 60 ppm for the study. Accumulation of CuO-NPs was evidenced from the SEM-EDS and AAS analyzes. The alterations in the AChE and Na(+)/K(+)-ATPase activities disrupted the development process. An increment in the levels of oxidants with a concomitant decrease in the antioxidant enzymes confirmed the induction of oxidative stress. Oxidative stress triggered apoptosis in the exposed embryos. Developmental anomalies were observed with CuO-NPs exposure in addition to oxidative stress in the developing embryos. Decreased heart rate and hatching delay hindered the normal developmental processes. Our work has offered valuable data on the connection between oxidative stress and teratogenicity leading to lethality caused by CuO-NPs. A further molecular mechanism unraveling the uncharted connection between oxidative stress and teratogenicity will aid in the safe use of CuO-NPs. Copyright © 2015 John Wiley & Sons, Ltd.
Ecotoxicologic impacts of agricultural drain water in the Salinas River, California, USA.
Anderson, Brian S; Hunt, John W; Phillips, Bryn M; Nicely, Patricia A; Gilbert, Kristine D; de Vlaming, Victor; Connor, Valerie; Richard, Nancy; Tjeerdema, Ronald S
2003-10-01
The Salinas River is the largest of the three rivers that drain into the Monterey Bay National Marine Sanctuary in central California (USA). Large areas of this watershed are cultivated year-round in row crops, and previous laboratory studies have demonstrated that acute toxicity of agricultural drain water to Ceriodaphnia dubia is caused by the organophosphate (OP) pesticides chlorpyrifos and diazinon. We investigated chemical contamination and toxicity in waters and sediments in the river downstream of an agricultural drain water input. Ecological impacts of drain water were investigated by using bioassessments of macroinvertebrate community structure. Toxicity identification evaluations were used to characterize chemicals responsible for toxicity. Salinas River water downstream of the agricultural drain was acutely toxic to the cladoceran Ceriodaphnia dubia, and toxicity to C. dubia was highly correlated with combined toxic units (TUs) of chlorpyrifos and diazinon. Laboratory tests were used to demonstrate that sediments in this system were acutely toxic to the amphipod Hyalella azteca, a resident invertebrate. Toxicity identification evaluations (TIEs) conducted on sediment pore water suggested that toxicity to amphipods was due in part to OP pesticides; concentrations of chlorpyrifos in pore water sometimes exceeded the 10-d mean lethal concentration (LC50) for H. azteca. Potentiation of toxicity with addition of the metabolic inhibitor piperonyl butoxide suggested that sediment toxicity also was due to other non-metabolically activated compounds. Macroinvertebrate community structure was highly impacted downstream of the agricultural drain input, and a number of macroinvertebrate community metrics were negatively correlated with combined TUs of chlorpyrifos and diazinon, as well as turbidity associated with the drain water. Some macroinvertebrate metrics were also correlated with bank vegetation cover. This study suggests that pesticide pollution is the likely cause of ecological damage in the Salinas River, and this factor may interact with other stressors associated with agricultural drain water to impact the macroinvertebrate community in the system.
An Antidote for Acute Cocaine Toxicity
Treweek, Jennifer B.; Janda, Kim D.
2012-01-01
Not only has immunopharmacotherapy grown into a field that addresses the abuse of numerous illicit substances, but also the treatment methodologies within immunopharmacotherapy have expanded from traditional active vaccination to passive immunization with anti-drug monoclonal antibodies, optimized mAb formats, and catalytic drug-degrading antibodies. Many laboratories have focused on transitioning distinct immunopharmacotherapeutics to clinical evaluation, but with respect to the indication of cocaine abuse, only the active vaccine TA-CD, which is modeled after our original cocaine hapten GNC1, has been carried through to human clinical trials.2 The successful application of murine mAb GNC92H2 to the reversal of cocaine overdose in a mouse model prompted investigations of human immunoglobulins with the clinical potential to serve as cocaine antidotes. We now report the therapeutic utility of a superior clone, human mAb GNCgzk (Kd = 0.18 nM), which offers a 10-fold improvement in cocaine binding affinity. The GNCgzk manifold was engineered for rapid cocaine clearance, and administration of the F(ab′)2 and Fab formats even after the appearance of acute behavioral signs of cocaine toxicity granted nearly complete prevention of lethality. Thus, contrary to the immunopharmacotherapeutic treatment of drug self-administration, minimal antibody doses were shown to counteract the lethality of a molar excess of circulating cocaine. Passive vaccination with drug-specific antibodies represents a viable treatment strategy for the human condition of cocaine overdose. PMID:22380623
NASA Astrophysics Data System (ADS)
Popov, Dmitri; Maliev, Slava
Introduction: Current medical management of the Acute Radiation Syndromes (ARS) does not include immune prophylaxis based on the Antiradiation Vaccine. Existing principles for the treatment of acute radiation syndromes are based on the replacement and supportive therapy. Haemotopoietic cell transplantation is recomended as an important method of treatment of a Haemopoietic form of the ARS. Though in the different hospitals and institutions, 31 pa-tients with a haemopoietic form have previously undergone transplantation with stem cells, in all cases(100%) the transplantants were rejected. Lethality rate was 87%.(N.Daniak et al. 2005). A large amount of biological substances or antigens isolated from bacterias (flagellin and derivates), plants, different types of venom (honeybees, scorpions, snakes) have been studied. This biological active substances can produce a nonspecific stimulation of immune system of mammals and protect against of mild doses of irradiation. But their radioprotection efficacy against high doses of radiation were not sufficient. Relative radioprotection characteristics or adaptive properties of antioxidants were expressed only at mild doses of radiation. However antioxidants demonstrated a very low protective efficacy at high doses of radiation. Some ex-periments demonstrated even a harmful effect of antioxidants administered to animals that had severe forms of the ARS. Only Specific Radiation Toxins roused a specific antigenic stim-ulation of antibody synthesis. An active immunization by non-toxic doses of radiation toxins includes a complex of radiation toxins that we call the Specific Radiation Determinant (SRD). Immunization must be provided not less than 24 days before irradiation and it is effective up to three years and more. Active immunization by radiation toxins significantly reduces the mortality rate (100%) and improves survival rate up to 60% compare with the 0% sur-vival rate among the irradiated animals in control groups. Material and Methods: The SRD molecules were isolated from Lymphatic Systems of animals that were irradiated with high doses of irradiation and had a clinical and laboratory picture of the Cerebral Acute Radia-tion Syndrome, Cardiovascular Acute Radiation Syndrome, Gastrointestinal Acute Radiation Syndrome, and Hematological Acute Radiation Syndrome. Our classification of radiation tox-ins includes 4 major groups: 1.SRD-1, Cerebrovascular neurotoxic Radiation Toxins (CvARS); 2.SRD-2, Cardiovascular Radiation Toxins(CrARS); 3.SRD-3,Gastrointestinal neurotoxic Ra-diation Toxins (GiARS); 4.SRD-4, Hematopietic Radiation Toxins (HpARS). Radiation tox-ins possess both toxic and immunological properties. But mechanisms of immune-toxicity by which radiation toxins stimulate development of the ARS are poorly understood. We have studied lethal toxicity of radiation toxins and an ability of specific antibodies to neutralize toxic activity of radiation toxins by specific antibodies. Results: The Blocking Antiradiation Antibodies induce an immunologically specific effect and inhibiting effects on radiation induced neuro-toxicity, vascular-toxicity, gastrointestinal toxcity, hematopoietic toxicity. Antiradiation Antibodies prevent the radiation induced cytolysis of selected groups of cells that are sensitive to radiation. The Blocking Antiradiation Antibodies are immunologically specific and can be produced by immunization with the different radiation toxins isolated from irradiated mam-mals. We propose that Specific Antiradiation Antibodies targeted against the radiation induced Toxins. Specific Antiradiation Antibodies neutralize toxic properties of radiation toxins. Anti-radiation Antibodies in different phases of the Acute Radiation Syndromes can compete with cytotoxic lymphocytes and prevent cytolysis mediated by cytotoxic lymphocytes. Conclusions: Immunological inhibition of cytotoxic and neurotoxic properties of Specific Radiation Toxins are significant factors for improving results of Medical Management of severe forms of the ARS and will optimize results of traditional methods of therapy of the ARS. Immunological inhi-bition of Radiation Toxins must be a part of technical procedure before haemotopoietic stem cells transplantation. Positive therapeutic results of neutralization of SRD RT could make a procedure of haemopoietic stem cell transplantation unnecessary.
Dolui, A K; Debnath, Manabendra; De, B; Kumar, Atul
2012-05-01
A new compound E was isolated from the methanolic extract of the leaves of Heliotropium indicum by chromatographic fractionation. In the present study, the effect of the compound E on reproduction of Helopeltis theivora has been evaluated. The acute toxicity study (LD50) and sub-acute toxicity studies (haematological, biochemical and histopathological parameters) in albino Swiss mice were carried out to evaluate the safety aspect of the compound E. The compound showed significant inhibitory effect on the reproductive life of H. theivora. The oviposition period, fecundity and hatching percentage of H. theivora were found to be 15.67 days, 39.33 and 28.00% respectively after treatment with 2% compound E, whereas the control value were found to be 20.33 days, 77.67 and 77.33% respectively. The LD50 of the compound was found to be 780 mg kg(-1) in Swiss albino female mice. The compound did not show any toxicity in mice at sub-lethal dose treatment (78 mg kg(-1) b. wt., once daily) for 21 days as evident from different haematological, biochemical and histopathological parameters in compound E treated group when compared with control.
NASA Technical Reports Server (NTRS)
Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.
2006-01-01
Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then collected and circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naive animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. We partially analyzed the biochemical characteristics of the SRDs. The SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which the mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.
NASA Astrophysics Data System (ADS)
Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.
Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after high-dose gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naïve animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. Initial analysis of the biochemical characteristics indicated that the SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which they mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.
NASA Technical Reports Server (NTRS)
Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.
2007-01-01
Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then collected and circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naive animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. Initial analysis of the biochemical characteristics indicated that the SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which the mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.
Watson, Rebecca E; Hafez, Ahmed M; Kremsky, Jonathan N; Bizzigotti, George O
2007-01-01
This paper reports the toxicity and environmental impact of neutralents produced from the hydrolysis of binary chemical agent precursor chemicals DF (methylphosphonic difluoride) and QL (2-[bis(1-methylethyl)amino]ethyl ethyl methylphosphonite). Following a literature review of the neutralent mixtures and constituents, basic toxicity tests were conducted to fill data gaps, including acute oral and dermal median lethal dose assays, the Ames mutagenicity test, and ecotoxicity tests. For methylphosphonic acid (MPA), a major constituent of DF neutralent, the acute oral LD(50) in the Sprague-Dawley rat was measured at 1888 mg/kg, and the Ames test using typical tester strains of Salmonella typhimurium and Escherichia coli was negative. The 48-h LC(50) values for pH-adjusted DF neutralent with Daphnia magna and Cyprinodon variegatus were > 2500 mg/L and 1593 mg/L, respectively. The acute oral LD(50) values in the rat for QL neutralent constituents methylphosphinic acid (MP) and 2-diisopropylaminoethanol (KB) were both determined to be 940 mg/kg, and the Ames test was negative for both. Good Laboratory Practice (GLP)-compliant ecotoxicity tests for MP and KB gave 48-h D. magna EC(50) values of 6.8 mg/L and 83 mg/L, respectively. GLP-compliant 96-h C. variegatus assays on MP and KB gave LC(50) values of 73 and 252 mg/L, respectively, and NOEC values of 22 and 108 mg/L. QL neutralent LD(50) values for acute oral and dermal toxicity tests were both > 5000 mg/kg, and the 48-h LD(50) values for D. magna and C. variegatus were 249 and 2500 mg/L, respectively. Using these data, the overall toxicity of the neutralents was assessed.
The acute toxicity of the metaldehyde on the climbing perch
NASA Astrophysics Data System (ADS)
Wahida Mohamad Ismail, Syamimi; Aini Dahalan, Farrah; Zakaria, Ammar; Mad Shakaff, Ali Yeon; Aqlima Ahmad, Siti; Shukor, Mohd Yunus Abd; Khalizan Sabullah, Mohd; Khalil, Khalilah Abdul; Jalil, Mohd Faizal Ab
2018-03-01
In Asia, Climbing perch (Anabas testudineus) is commonly found in paddy fields and irrigation systems. Due to its habitat, Climbing perch is exposed to toxic pesticides used in paddy fields such as metaldehyde which is one of the most widely used molluscicide. This study aims to determine the acute toxicity Lethal Concentration50 (LC50) of metaldehyde and its effect on the behaviour and physical changes of the Climbing perch. The fish mortality responses to six different metaldehyde concentrations ranging from 180 to 330 mg/L were investigated. The 96-h LC50 values were determined and analysed using three different analysis methods which is arithmetic, logarithmic and probit graphic. The LC50 values obtained in this study were 239, 234 and 232 mg/L, respectively. After 96-h of exposure to metaldehyde, the fish showed a series of abnormal behavioural response in all cases: imbalance position, and restlessness of movement. The LC50 values show that metaldehyde is moderately toxic to the Climbing perch indicating that metaldehyde is not destructive to Climbing perch. However, long term exposure of aquatic organisms to the metaldehyde means a continuous health risk for the fish population as they are more vulnerable and it is on high risk for human to consume this toxicated fishes.
Butler, Josh D; Parkerton, Thomas F; Redman, Aaron D; Letinski, Daniel J; Cooper, Keith R
2016-08-02
Aromatic hydrocarbons (AH) are known to impair fish early life stages (ELS). However, poorly defined exposures often confound ELS-test interpretation. Passive dosing (PD) overcomes these challenges by delivering consistent, controlled exposures. The objectives of this study were to apply PD to obtain 5 d acute embryo lethality and developmental data and 30 d chronic embryo-larval survival and growth-effects data using zebrafish with different AHs; to analyze study and literature toxicity data using target-lipid (TLM) and chemical-activity (CA) models; and to extend PD to a mixture and test the assumption of AH additivity. PD maintained targeted exposures over a concentration range of 6 orders of magnitude. AH toxicity increased with log Kow up to pyrene (5.2). Pericardial edema was the most sensitive sublethal effect that often preceded embryo mortality, although some AHs did not produce developmental effects at concentrations causing mortality. Cumulative embryo-larval mortality was more sensitive than larval growth, with acute-to-chronic ratios of <10. More-hydrophobic AHs did not exhibit toxicity at aqueous saturation. The relationship and utility of the TLM-CA models for characterizing fish ELS toxicity is discussed. Application of these models indicated that concentration addition provided a conservative basis for predicting ELS effects for the mixture investigated.
Carrasco-Letelier, Leonidas; Mendoza-Spina, Yamandú; Branchiccela, María Belén
2012-07-01
Glyphosate-resistant soybean cultivation is expanding rapidly in Uruguay, with its land area having increased by 95 times during the past 10 years. Because of the region's Neotropical conditions, insecticide use is required to ensure adequate soybean productivity. However, in areas shared by soybean crops and beekeepers - such as the southwestern zone of Uruguay (SWZU) - the use of insecticides can increase the risks of honeybee death and honey contamination. Uruguayan commercial and legal guidelines set out practices and field doses designed to prevent acute intoxication with insecticides. However, honeybees in the SWZU are predominantly a polyhybrid subspecies different from that used to set international reference values, and hence they may have a different acute toxicity response, thus rendering such precautions ineffective. The aim of this work was to assess the acute toxicity response of polyhybrid honeybees in the SWZU to cypermethrin (commercial formulation: Cipermetrina 25 Agrin®), chlorpyrifos (commercial formulation: Lorsban 48E®), and endosulfan (commercial formulation: Thionex 35®). Acute toxicity bioassays were conducted to determine the median lethal dose (LD(50)) of each insecticide for the honeybees. The results indicate that, compared with EU reference values, SWZU honeybees have a higher toxicological sensitivity to chlorpyrifos and endosulfan, and a lower toxicological sensitivity to cypermethrin, based on the commercial formulations tested. However, when these results were adjusted according to their field dose equivalents, only chlorpyrifos emerged as a potential problem for beekeeping, as the maximum recommended field dose of Lorsban 48E® for soybean crops in Uruguay is 23 times the corresponding LD(50) for honeybees in the SWZU. Copyright © 2012 Elsevier Ltd. All rights reserved.
Absence of circannual toxicity of parathion to starlings
Rattner, B.A.; Grue, C.E.
1990-01-01
Ambient temperature and season have been observed to influence the toxicity of several environmental pollutants in homeotherms. The circannual toxicity of ethyl parathion (EP) was examined in adult European starlings (Sturnus vulgaris). Groups of birds housed in outdoor pens received oral doses of EP (20-150 mg/kg body weight) in fall, winter, spring and summer (temperature range -3.3 to 36.7?C). The median lethal dosage (LD50), and brain and plasma cholinesterase inhibition, were found to be quite similar among seasons. There was some suggestion that EP may have been more toxic during hot weather (winter versus summer LD50 estimate [95% confidence interval]:160 [114-225] vs. 118 [102-136] mg/kg; P<0.10). In view of previous reports in which ambient temperature extremes and harsh weather have enhanced organophosphorus insecticide toxicity to birds, it is concluded that circannual toxicity studies should include measures of sensitivity (acute oral exposure) and vulnerability (dietary exposure) to better predict responses of free-ranging birds
Li, Qian; Wang, Peipei; Chen, Ling; Gao, Hongwen; Wu, Lingling
2016-09-01
Zebrafish (Danio rerio) embryos and larvae were selected to investigate the potential risk and aquatic toxicity of a widely used pharmaceutical, naproxen. The acute toxicity of naproxen to embryos and larvae was measured, respectively. The histopathology was investigated in the liver of zebrafish larvae after 8-day embryo-larvae exposure to naproxen. The values of 96-h LC50 were 115.2 mg/L for embryos and 147.6 mg/L for larvae, indicating that zebrafish embryos were more sensitive than larvae to naproxen exposure. Large suites of symptoms were induced in zebrafish (D. rerio) early life stages by different dosages of naproxen, including hatching inhibition, lower heart rate, and morphological abnormalities. The most sensitive sub-lethal effect caused by naproxen was pericardial edema, the 72-h EC50 values of which for embryos and larvae were 98.3 and 149.0 mg/L, respectively. In addition, naproxen-treated zebrafish larvae exhibited histopathological liver damage, including swollen hepatocytes, vacuolar degeneration, and nuclei pycnosis. The results indicated that naproxen is a potential threat to aquatic organisms.
Toxicity of manganese to Ceriodaphnia dubia and Hyalella azteca
Lasier, P.J.; Winger, P.V.; Bogenrieder, K.J.
2000-01-01
Manganese is a toxic element frequently overlooked when assessing toxicity of effluents, sediments and pore waters. Manganese can be present at toxic levels in anoxic solutions due to its increased solubility under chemically-reducing conditions, and it can remain at those levels for days in aerated test waters due to slow precipitation kinetics. Ceriodaphnia dubia and Hyalella azteca are freshwater organisms often used for toxicity testing and recommended for assessments of effluents and pore waters. Lethal and reproductive-inhibition concentrations of Mn were determined for C. dubia in acute 48h tests and chronic 3-brood tests using animals <24 h old and between 24 and 48 h old. Sensitivity of H. azteca was determined with 7d old animals in acute 96h tests. Tests were run at three levels of water hardness to assess the amelioratory effect, which was often significant. Manganese concentrations were measured analytically at test initiation and after 96 h for calculations of toxicity endpoints and determinations of Mn precipitation during the tests. Minimal amounts of Mn (below 3%) precipitated within 96 h. LC50s determined for H. azteca progressively increased from 3.0 to 8.6 to 13.7 mg Mn/L in soft, moderately-hard and hard waters, respectively. The tolerance of C. dubia to Mn was not significantly different between moderately-hard and hard waters, but was significantly lower in soft water. There was no significant difference in Mn sensitivity between the ages of C. dubia tested. Acute LC50 values for C. dubia averaged 6.2, 14.5 and 15.2 mg Mn/L and chronic IC50 values averaged 3.9, 8.5 and 11.5 mg Mn/L for soft, moderately-hard and hard waters, respectively. Manganese toxicity should be considered when assessing solutions with concentrations near these levels.
Kassa, Jiri; Karasova, Jana Zdarova; Sepsova, Vendula; Caisberger, Filip; Bajgar, Jiri
2011-10-01
The ability of 2 combinations of oximes (HI-6 + trimedoxime and HI-6 + K203) to reactivate VX-inhibited acetylcholinesterase and reduce acute toxicity of VX was compared with the reactivating and therapeutic efficacy of antidotal treatment involving a single oxime (HI-6, trimedoxime, K203) in rats and mice. Our results showed that the reactivating efficacy of both combinations of oximes studied in rats is significantly higher than the reactivating efficacy of all individual oximes in diaphragm and roughly corresponds to the most effective individual oxime in blood and brain. Both combinations of oximes were found to be more effective in the reduction of acute lethal toxicity of VX in mice than the antidotal treatment involving the most efficacious individual oxime although the difference is not significant. Based on the obtained data, we can conclude that the antidotal treatment involving the chosen combinations of oximes brings benefit for the reactivation of VX-inhibited acetylcholinesterase in rats and for the antidotal treatment of VX-induced acute poisoning in mice.
Acute toxicity of ochratoxin-A in marine water-reared sea bass (Dicentrarchus labrax L.).
El-Sayed, Yasser Said; Khalil, Riad Hassan; Saad, Talaat Talaat
2009-05-01
The toxic effects of ochratoxin-A (OTA) on sea bass, Dicentrarchus labrax L., have not been previously documented. A flow-through bioassay test system was conducted in two series and a total 180 of adult marine-reared sea bass was used to estimate the acute oral 96 h median lethal concentration (LC(50)) value and behavioral changes of OTA. The data obtained were statistically evaluated using Finney's Probit Analysis Method developed by EPA. The 96 h LC(50) value for adult D. labrax was found to be 277 microg kg(-1)bwt with 95% confidence limits of 244-311 microg kg(-1)bwt. This value was calculated to be 285 microg kg(-1) bwt with Behrens-Karber's method. The two methods were relatively comparable. The acute dietary 96 h LC(50) of OTA is 9.23 mg kg(-1) diet. Additionally, the behavioral changes of sea bass were primarily observed as nervous and respiratory manifestations. We concluded that sea bass is a species highly sensitive to OTA making them a useful experimental model for aquatic mycotoxigenic problems.
Hamadache, Mabrouk; Benkortbi, Othmane; Hanini, Salah; Amrane, Abdeltif; Khaouane, Latifa; Si Moussa, Cherif
2016-02-13
Quantitative Structure Activity Relationship (QSAR) models are expected to play an important role in the risk assessment of chemicals on humans and the environment. In this study, we developed a validated QSAR model to predict acute oral toxicity of 329 pesticides to rats because a few QSAR models have been devoted to predict the Lethal Dose 50 (LD50) of pesticides on rats. This QSAR model is based on 17 molecular descriptors, and is robust, externally predictive and characterized by a good applicability domain. The best results were obtained with a 17/9/1 Artificial Neural Network model trained with the Quasi Newton back propagation (BFGS) algorithm. The prediction accuracy for the external validation set was estimated by the Q(2)ext and the root mean square error (RMS) which are equal to 0.948 and 0.201, respectively. 98.6% of external validation set is correctly predicted and the present model proved to be superior to models previously published. Accordingly, the model developed in this study provides excellent predictions and can be used to predict the acute oral toxicity of pesticides, particularly for those that have not been tested as well as new pesticides. Copyright © 2015 Elsevier B.V. All rights reserved.
Acute Toxicity of Amorphous Silica Nanoparticles in Intravenously Exposed ICR Mice
Wang, Wen; Jin, Minghua; Du, Zhongjun; Li, Yanbo; Duan, Junchao; Yu, Yongbo; Sun, Zhiwei
2013-01-01
This study aimed to evaluate the acute toxicity of intravenously administrated amorphous silica nanoparticles (SNPs) in mice. The lethal dose, 50 (LD50), of intravenously administrated SNPs was calculated in mice using Dixon's up-and-down method (262.45±33.78 mg/kg). The acute toxicity was evaluated at 14 d after intravenous injection of SNPs at 29.5, 103.5 and 177.5 mg/kg in mice. A silicon content analysis using ICP-OES found that SNPs mainly distributed in the resident macrophages of the liver (10.24%ID/g), spleen (34.78%ID/g) and lung (1.96%ID/g). TEM imaging showed only a small amount in the hepatocytes of the liver and in the capillary endothelial cells of the lung and kidney. The levels of serum LDH, AST and ALT were all elevated in the SNP treated groups. A histological examination showed lymphocytic infiltration, granuloma formation, and hydropic degeneration in liver hepatocytes; megakaryocyte hyperplasia in the spleen; and pneumonemia and pulmonary interstitial thickening in the lung of the SNP treated groups. A CD68 immunohistochemistry stain indicated SNPs induced macrophage proliferation in the liver and spleen. The results suggest injuries induced by the SNPs in the liver, spleen and lungs. Mononuclear phagocytic cells played an important role in the injury process. PMID:23593469
Hartzell, Sharon E; Unger, Michael A; McGee, Beth L; Wilson, Sacoby M; Yonkos, Lance T
2017-10-01
Estuarine sediments in regions with prolonged histories of industrial activity are often laden to significant depths with complex contaminant mixtures, including trace metals and persistent organic pollutants. Given the complexity of assessing risks from multi-contaminant exposures, the direct measurement of impacts to biological receptors is central to characterizing contaminated sediment sites. Though biological consequences are less commonly assessed at depth, laboratory-based toxicity testing of subsurface sediments can be used to delineate the scope of contamination at impacted sites. The extent and depth of sediment toxicity in Bear Creek, near Baltimore, Maryland, USA, was delineated using 10-day acute toxicity tests with the estuarine amphipod Leptocheirus plumulosus, and chemical analysis of trace metals and persistent organic pollutants. A gradient of toxicity was demonstrated in surface sediments with 21 of 22 tested sites differing significantly from controls. Effects were most pronounced (100% lethality) at sites proximate to a historic industrial complex. Sediments from eight of nine core samples to depths of 80 cm were particularly impacted (i.e., caused significant lethality to L. plumulosus) even in locations overlain with relatively non-toxic surface sediments, supporting a conclusion that toxicity observed at the surface (top 2 cm) does not adequately predict toxicity at depth. In seven of nine sites, toxicity of surface sediments differed from toxicity at levels beneath by 28 to 69%, in five instances underestimating toxicity (28 to 69%), and in two instances overestimating toxicity (44 to 56%). Multiple contaminants exceeded sediment quality guidelines and correlated positively with toxic responses within surface sediments (e.g., chromium, nickel, polycyclic aromatic hydrocarbon (PAH), total petroleum hydrocarbon). Use of an antibody-based PAH biosensor revealed that porewater PAH concentrations also increased with depth at most sites. This study informs future management decisions concerning the extent of impact to Bear Creek sediments, and demonstrates the benefits of a spatial approach, relying primarily on toxicity testing to assess sediment quality in a system with complex contaminant mixtures.
Rattner, Barnett A.; Horak, Katherine E.; Warner, Sarah E.; Day, Daniel D.; Johnston, John J.
2010-01-01
The acute oral toxicity of the anticoagulant rodenticide diphacinone was found to be about 20 times greater to American kestrels (LD50=97 mg/kg) than to northern bobwhite (LD50=2,014 mg/kg). Several precise and sensitive clotting assays (prothrombin time, Russell's Viper venom time, thrombin clotting time) were adapted for use in these species, and this combination of assays is recommended to detect effects of diphacinone and other rodenticides on coagulation. Oral administration of diphacinone over a range of doses (sublethal to the extrapolated LD15) prolonged prothrombin time and Russell's Viper venom time within 24 to 48 hrs post-exposure. Prolongation of in vitro clotting time reflects impaired coagulation complex activity and was detected before or at the onset of overt signs of toxicity and lethality. These data will assist in the development of a pharmacodynamic model to assess and predict rodenticide toxicity to non-target avian species.
The role of oxidative stress in organophosphate and nerve agent toxicity
Pearson, Jennifer N.; Patel, Manisha
2016-01-01
Organophosphate nerve agents exert their toxicity through inhibition of acetylcholinesterase. The excessive stimulation of cholinergic receptors rapidly causes neuronal damage, seizures, death, and long-term neurological impairment in those that survive. Owing to the lethality of organophosphorus agents and the growing risk they pose, medical interventions that prevent organophosphate toxicity and the delayed injury response are much needed. Studies have shown that oxidative stress occurs in models of subacute, acute, and chronic exposure to organophosphate agents. Key findings of these studies include alterations in mitochondrial function and increased free radical–mediated injury, such as lipid peroxidation. This review focuses on the role of reactive oxygen species in organophosphate neurotoxicity and its dependence on seizure activity. Understanding the sources, mechanisms, and pathological consequences of organophosphate-induced oxidative stress can lead to the development of rational therapies for treating toxic exposures. PMID:27371936
Accurate prediction of acute fish toxicity of fragrance chemicals with the RTgill-W1 cell assay.
Natsch, Andreas; Laue, Heike; Haupt, Tina; von Niederhäusern, Valentin; Sanders, Gordon
2018-03-01
Testing for acute fish toxicity is an integral part of the environmental safety assessment of chemicals. A true replacement of primary fish tissue was recently proposed using cell viability in a fish gill cell line (RTgill-W1) as a means of predicting acute toxicity, showing good predictivity on 35 chemicals. To promote regulatory acceptance, the predictivity and applicability domain of novel tests need to be carefully evaluated on chemicals with existing high-quality in vivo data. We applied the RTgill-W1 cell assay to 38 fragrance chemicals with a wide range of both physicochemical properties and median lethal concentration (LC50) values and representing a diverse range of chemistries. A strong correlation (R 2 = 0.90-0.94) between the logarithmic in vivo LC50 values, based on fish mortality, and the logarithmic in vitro median effect concentration (EC50) values based on cell viability was observed. A leave-one-out analysis illustrates a median under-/overprediction from in vitro EC50 values to in vivo LC50 values by a factor of 1.5. This assay offers a simple, accurate, and reliable alternative to in vivo acute fish toxicity testing for chemicals, presumably acting mainly by a narcotic mode of action. Furthermore, the present study provides validation of the predictivity of the RTgill-W1 assay on a completely independent set of chemicals that had not been previously tested and indicates that fragrance chemicals are clearly within the applicability domain. Environ Toxicol Chem 2018;37:931-941. © 2017 SETAC. © 2017 SETAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafsson, Helena; Runesson, Johan; Lundqvist, Jessica
The objective of the EU-funded integrated project ACuteTox is to develop a strategy in which general cytotoxicity, together with organ-specific toxicity and biokinetic features, are used for the estimation of human acute systemic toxicity. Our role in the project is to characterise the effect of reference chemicals with regard to neurotoxicity. We studied cell membrane potential (CMP), noradrenalin (NA) uptake, acetylcholine esterase (AChE) activity, acetylcholine receptor (AChR) signalling and voltage-operated calcium channel (VOCC) function in human neuroblastoma SH-SY5Y cells after exposure to 23 pharmaceuticals, pesticides or industrial chemicals. Neurotoxic alert chemicals were identified by comparing the obtained data with cytotoxicitymore » data from the neutral red uptake assay in 3T3 mouse fibroblasts. Furthermore, neurotoxic concentrations were correlated with estimated human lethal blood concentrations (LC50). The CMP assay was the most sensitive assay, identifying eight chemicals as neurotoxic alerts and improving the LC50 correlation for nicotine, lindane, atropine and methadone. The NA uptake assay identified five neurotoxic alert chemicals and improved the LC50 correlation for atropine, diazepam, verapamil and methadone. The AChE, AChR and VOCC assays showed limited potential for detection of acute toxicity. The CMP assay was further evaluated by testing 36 additional reference chemicals. Five neurotoxic alert chemicals were generated and orphendrine and amitriptyline showed improved LC50 correlation. Due to the high sensitivity and the simplicity of the test protocol, the CMP assay constitutes a good candidate assay to be included in an in vitro test strategy for prediction of acute systemic toxicity.« less
Biandolino, Francesca; Parlapiano, Isabella; Faraponova, Olga; Prato, Ermelinda
2018-01-01
The long-term exposure provides a realistic measurement of the effects of toxicants on aquatic organisms. The harpacticoid copepod Tigriopus fulvus has a wide geographical distribution and is considered as an ideal model organism for ecotoxicological studies for its good sensitivity to different toxicants. In this study, acute, sub-chronic and chronic toxicity tests based on lethal and reproductive responses of Tigriopus fulvus to copper were performed. The number of moults during larval development was chosen as an endpoint for sub-chronic test. Sex ratio, inhibitory effect on larval development, hatching time, fecundity, brood number, nauplii/brood, total newborn production, etc, were calculated in the chronic test (28d). Lethal effect of copper to nauplii showed the LC50-48h of 310 ± 72µgCu/L (mean ± sd). It was observed a significant inhibition of larval development at sublethal copper concentrations, after 4 and 7 d. After 4d, the EC50 value obtained for the endpoint in "moult naupliar reduction" was of 55.8 ± 2.5µgCu/L (mean ± sd). The EC50 for the inhibition of naupliar development into copepodite stage, was of 21.7 ± 4.4µgCu/L (mean ± sd), after 7 days. Among the different traits tested, copper did not affect sex ratio and growth, while fecundity and total nauplii production were the most sensitive endpoints. The reproductive endpoints offer the advantage of being detectable at very low pollutant concentrations. Copyright © 2017 Elsevier Inc. All rights reserved.
Study on acute toxicity of amoxicillin wastewater to Zebrafish
NASA Astrophysics Data System (ADS)
Xie, Weifang; Shen, Hongyan
2017-12-01
The main research in this paper is to obtain the effect of pharmaceutical wastewater on the acute toxicity of Zebrafish. The experimental method of exposure is used in this research. Experiments were carried out with different groups of pharmaceutical wastewater. Zebrafish was cultivated in a five liter fish tank. In the experiment, according to mortality, initially a 96h preliminary test was carried out at exposure concentrations to determine if the amoxicillin wastewater was toxic and to define the concentration range (24h LC100, 96h LC0) to be employed in the definitive tests. Based on the half lethal concentration of Zebrafish, the acute toxicity of amoxicillin wastewater to Zebrafish was calculated and the toxicity grade of wastewater was determined. In the experiment, the Zebrafish was exposed with amoxicillin wastewater during 96h. The 24h, 48h, 72h and 96h LC50 of amoxicillin wastewater on the Zebrafish were 63.10%, 53.70%, 41.69% and 40.74%, respectively. At 96h, the test time is the longest, and the value of LC50 is the smallest. In the observation period of 96 hours, the LC50 of amoxicillin wastewater were in the range of 40% ~ 60% and the value of Tua is 1 ~ 2. It indicates amoxicillin wastewater is low toxic wastewater when the experimental time is shorter than 48h, amoxicillin wastewater is moderate toxicity wastewater when the experimental time is higher than 48h. According to the experimental data, with the exposure time and the volume percentage of amoxicillin wastewater increases, the mortality rate of Zebrafish is gradually increased and the toxicity of amoxicillin wastewater increases. It indicates that the toxicity of amoxicillin wastewater is the biggest and the effect of wastewater on Zebrafish is greatest. In some ways, the toxicity of amoxicillin wastewater can be affected by the test time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grandic, Marjana; Sepcic, Kristina; Turk, Tom
2011-08-15
APS12-2 is one in a series of synthetic analogs of the polymeric alkylpyridinium salts isolated from the marine sponge Reniera sarai. As it is a potential candidate for treating non small cell lung cancer (NSCLC), we have studied its possible toxic and lethal effects in vivo. The median lethal dose (LD{sub 50}) of APS12-2 in mice was determined to be 11.5 mg/kg. Electrocardiograms, arterial blood pressure and respiratory activity were recorded under general anesthesia in untreated, pharmacologically vagotomized and artificially ventilated rats injected with APS12-2. In one group, the in vivo effects of APS12-2 were studied on nerve-evoked muscle contraction.more » Administration of APS12-2 at a dose of 8 mg/kg caused a progressive reduction of arterial blood pressure to a mid-circulatory value, accompanied by bradycardia, myocardial ischemia, ventricular extrasystoles, and second degree atrio-ventricular block. Similar electrocardiogram and arterial blood pressure changes caused by APS12-2 (8 mg/kg) were observed in animals pretreated with atropine and in artificially ventilated animals, indicating that hypoxia and cholinergic effects do not play a crucial role in the toxicity of APS12-2. Application of APS12-2 at sublethal doses (4 and 5.5 mg/kg) caused a decrease of arterial blood pressure, followed by an increase slightly above control values. We found that APS12-2 causes lysis of rat erythrocytes in vitro, therefore it is reasonable to expect the same effect in vivo. Indeed, hyperkalemia was observed in the blood of experimental animals. Hyperkalemia probably plays an important role in APS12-2 cardiotoxicity since no evident changes in histopathology of the heart were found. However, acute lesions were observed in the pulmonary vessels of rats after application of 8 mg/kg APS12-2. Predominant effects were dilation of interalveolar blood vessels and lysis of aggregated erythrocytes within their lumina. - Highlights: > LD{sub 50} estimated in mice (11.5 mg/kg) revealed that toxicity of APS12-2 is low. > APS12-2 causes dose dependent hemolysis of rat erythrocytes in vivo and in vitro. > Cardiac arrest by APS12-2 is caused by the high blood potassium concentration. > APS12-2 causes mild acute pulmonary edema.« less
Use of fish embryo toxicity tests for the prediction of acute fish toxicity to chemicals.
Belanger, Scott E; Rawlings, Jane M; Carr, Gregory J
2013-08-01
The fish embryo test (FET) is a potential animal alternative for the acute fish toxicity (AFT) test. A comprehensive validation program assessed 20 different chemicals to understand intra- and interlaboratory variability for the FET. The FET had sufficient reproducibility across a range of potencies and modes of action. In the present study, the suitability of the FET as an alternative model is reviewed by relating FET and AFT. In total, 985 FET studies and 1531 AFT studies were summarized. The authors performed FET-AFT regressions to understand potential relationships based on physical-chemical properties, species choices, duration of exposure, chemical classes, chemical functional uses, and modes of action. The FET-AFT relationships are very robust (slopes near 1.0, intercepts near 0) across 9 orders of magnitude in potency. A recommendation for the predictive regression relationship is based on 96-h FET and AFT data: log FET median lethal concentration (LC50) = (0.989 × log fish LC50) - 0.195; n = 72 chemicals, r = 0.95, p < 0.001, LC50 in mg/L. A similar, not statistically different regression was developed for the entire data set (n = 144 chemicals, unreliable studies deleted). The FET-AFT regressions were robust for major chemical classes with suitably large data sets. Furthermore, regressions were similar to those for large groups of functional chemical categories such as pesticides, surfactants, and industrial organics. Pharmaceutical regressions (n = 8 studies only) were directionally correct. The FET-AFT relationships were not quantitatively different from acute fish-acute fish toxicity relationships with the following species: fathead minnow, rainbow trout, bluegill sunfish, Japanese medaka, and zebrafish. The FET is scientifically supportable as a rational animal alternative model for ecotoxicological testing of acute toxicity of chemicals to fish. Copyright © 2013 SETAC.
MacInnis, Ceara Y; Brunswick, Pamela; Park, Grace H; Buday, Craig; Schroeder, Grant; Fieldhouse, Ben; Brown, Carl E; van Aggelen, Graham; Shang, Dayue
2018-05-01
The present study investigated oil dispersant toxicity to fish species typical of the cooler regions of Canada, together with less well-documented issues pertaining to oil dispersant monitoring. The oil dispersant toxicity of Corexit EC9500A was assessed for the freshwater fish species rainbow trout and the seawater species coho, chinook, and chum, with a final median lethal concentration (LC50) acute lethality range between 35.3 and 59.8 mg/L. The LC50 range was calculated using confirmed 0-h dispersant concentrations that were justified by fish mortality within the first 24 h of exposure and by variability of the dispersant indicator dioctyl sulfosuccinate (DOSS) used to monitor concentrations at later time points. To investigate DOSS as an oil dispersant indicator in the environment, microcosm systems were prepared containing Corexit EC9500A, Finasol OSR52, Slickgone NS, and Slickgone EW dispersants together with diluted bitumen. The DOSS indicator recovery was found to be stable for up to 13 d at 5 °C, 8 d at 10 °C, but significantly less than 8 d at ≥15 °C. After 3 d at temperatures ≥15 °C, the DOSS indicator recovery became less accurate and was dependent on multiple environmental factors including temperature, microbial activity, and aeration, with potential for loss of solvents and stabilizers. A final assessment determined DOSS to be a discrepant indicator for long-term monitoring of oil dispersant in seawater. Environ Toxicol Chem 2018;37:1309-1319. © 2018 SETAC. © 2018 SETAC.
A preliminary safety evaluation of polyhexamethylene guanidine hydrochloride.
Asiedu-Gyekye, Isaac Julius; Mahmood, Seidu Abdulai; Awortwe, Charles; Nyarko, Alexander Kwadwo
2014-01-01
Polyhexamethylene guanidine hydrochloride (PHMGH) is used worldwide as an antimicrobial agent with broad spectra of activity and also for treating pool water. This non-GLP preliminary study aims at investigating in a subchronic toxicity study possible effects at supra-optimal doses of this biocide. Both acute and subchronic toxicity studies were conducted. LD(50) for PHMGH was estimated to be 600 mg/kg (ie LC(50) 2 ml of 7.5% solution) when administered as a single dose by gavage via a stomach tube in accordance with the expected route of administration. The acute studies showed that the median lethal dose (LD(50)) of 600 mg/kg was accompanied by signs of neurotoxicity. Haematological and biochemical parameters of subchronic toxicity studies were non-significant. Subchronic doses of 0.006 mg/kg, 0.012 mg/kg and 0.036 mg/kg were administered. 20% of the animals at a dose of 0.006 mg/kg and 0.036 mg/kg showed mild degrees of hydropic changes in proximal tubules while 10% of animals at all the doses had their liver tissues showing local areas of mild pericentral hepatocytes degeneration. PHMGH did not produce any major organ defect with regard to the kidney, heart, and liver. The LD(50) was much higher than the recommended dosage by a factor of about 50,000. The recommended residual concentration is far less than the median lethal dose using rats as test subjects. These results could serve as a basis for investigating the full toxicological profile if it is to be used for the treatment of raw water to make it potable. © The Author(s) 2014.
Gouda, Ahmed S; El-Nabarawy, Nagla A; Ibrahim, Samah F
2018-01-01
Moringa oleifera extract (Lam) has many antioxidant and protective properties. Objective: to investigate the antioxidant activities of Lam in counteracting the high oxidative stress caused by acute sub-lethal aluminium phosphide (AlP) intoxication in rat heart. These activities will be detected by histopathological examination and some oxidative stress biomarkers. a single sub-lethal dose of Alp (2 mg/kg body weight) was administered orally, and Lam was given orally at a dose (100 mg/kg body weight) one hour after receiving AlP to rats. aluminium phosphide caused significant cardiac histopathological changes with a significant increase in malondialdehyde (MDA); lipid peroxidation marker; and a significant depletion of antioxidant enzymes (catalase and glutathione reductase). However, treatment with Lam protected efficiently the cardiac tissue of intoxicated rats by increasing antioxidants levels with slight decreasing in MDA production compared to untreated group. This study suggested that Moringa oleifera extract could possibly restore the altered cardiac histopathology and some antioxidant power in AlP intoxicated rats, and it could even be used as adjuvant therapy against AlP-induced cardiotoxicity.
Biondi, Antonio; Desneux, Nicolas; Siscaro, Gaetano; Zappalà, Lucia
2012-05-01
The generalist predator Orius laevigatus (Fieber) (Hemiptera: Anthocoridae) is a key natural enemy of various arthropods in agricultural and natural ecosystems. Releases of this predator are frequently carried out, and it is included in the Integrated Pest Management (IPM) programs of several crops. The accurate assessment of the compatibility of various pesticides with predator activity is key for the success of this strategy. We assessed acute and sublethal toxicity of 14 pesticides on O. laevigatus adults under laboratory conditions. Pesticides commonly used in either conventional or organic farming were selected for the study, including six biopesticides, three synthetic insecticides, two sulfur compounds and three adjuvants. To assess the pesticides' residual persistence, the predator was exposed for 3d to pesticide residues on tomato sprouts that had been treated 1 h, 7 d or 14 d prior to the assay. The percentage of mortality and the sublethal effects on predator reproductive capacity were summarized in a reduction coefficient (E(x)) and the pesticides were classified according to the IOBC (International Organization for Biological Control) toxicity categories. The results showed that the pesticides greatly differed in their toxicity, both in terms of lethal and sub lethal effects, as well as in their persistence. In particular, abamectin was the most noxious and persistent, and was classified as harmful up to 14 d after the treatment, causing almost 100% mortality. Spinosad, emamectin, metaflumizone were moderately harmful until 7 d after the treatment, while the other pesticides were slightly harmful or harmless. The results, based on the combination of assessment of acute mortality, predator reproductive capacity pesticides residual and pesticides residual persistence, stress the need of using complementary bioassays (e.g. assessment of lethal and sublethal effects) to carefully select the pesticides to be used in IPM programs and appropriately time the pesticides application (as function of natural enemies present in crops) and potential releases of natural enemies like O. laevigatus. Copyright © 2012 Elsevier Ltd. All rights reserved.
Páleníček, Tomáš; Lhotková, Eva; Žídková, Monika; Balíková, Marie; Kuchař, Martin; Himl, Michal; Mikšátková, Petra; Čegan, Martin; Valeš, Karel; Tylš, Filip; Horsley, Rachel R
2016-08-01
MDAI (5,6-Methylenedioxy-2-aminoindane) has a reputation as a non-neurotoxic ecstasy replacement amongst recreational users, however the drug has been implicated in some severe and lethal intoxications. Due to this, and the fact that the drug is almost unexplored scientifically we investigated a broad range of effects of acute MDAI administration: pharmacokinetics (in sera, brain, liver and lung); behaviour (open field; prepulse inhibition, PPI); acute effects on thermoregulation (in group-/individually-housed rats); and systemic toxicity (median lethal dose, LD50) in Wistar rats. Pharmacokinetics of MDAI was rapid, maximum median concentration in serum and brain was attained 30min and almost returned to zero 6h after subcutaneous (sc.) administration of 10mg/kg MDAI; brain/serum ratio was ~4. MDAI particularly accumulated in lung tissue. In the open field, MDAI (5, 10, 20 and 40mg/kg sc.) increased exploratory activity, induced signs of behavioural serotonin syndrome and reduced locomotor habituation, although by 60min some effects had diminished. All doses of MDAI significantly disrupted PPI and the effect was present during the onset of its action as well as 60min after treatment. Unexpectedly, 40mg/kg MDAI killed 90% of animals in the first behavioural test, hence LD50 tests were conducted which yielded 28.33mg/kg sc. and 35mg/kg intravenous but was not established up to 40mg/kg after gastric administration. Disseminated intravascular coagulopathy (DIC) with brain oedema was concluded as a direct cause of death in sc. treated animals. Finally, MDAI (10, 20mg/kg sc.) caused hyperthermia and perspiration in group-housed rats. In conclusion, the drug had fast pharmacokinetics and accumulated in lipohilic tissues. Behavioural findings were consistent with mild, transient stimulation with anxiolysis and disruption of sensorimotor processing. Together with hyperthermia, the drug had a similar profile to related entactogens, especially 3,4-metyhlenedioxymethamphetamine (MDMA, ecstasy) and paramethoxymethamphetamine (PMMA). Surprisingly subcutaneous MDAI appears to be more lethal than previously thought and its serotonergic toxicity is likely exacerbated by group housing conditions. MDAI therefore poses greater risks to physical and mental health than recognised hitherto. Copyright © 2016 Elsevier Inc. All rights reserved.
Effect of fibrin glue occlusion of the hepatobiliary tract on thioacetamide-induced liver failure.
Schmandra, T C; Bauer, H; Petrowsky, H; Herrmann, G; Encke, A; Hanisch, E
2001-07-01
Expression and activation of hepatocyte growth factor (HGF) is stimulated by a complex system of interacting proteins, with thrombin playing an initial role in this process. The impact of temporary occlusion of the hepatobiliary tract with fibrin glue (major component thrombin) on the HGF system in acute and chronic liver damage in a rat model was investigated. Chronic liver damage was induced in 40 rats by daily intraperitoneal application of thioacetamide (100 mg/kg) for 14 days. After 7 days half of them received an injection of 0.2 mL fibrin glue into the hepatobiliary system. Daily intraperitoneal administration of thioacetamide continued for 7 consecutive days. The rats were then sacrificed for blood and tissue analysis. Acute liver failure was induced in 12 rats by intraperitoneal administration of a lethal dose of thioacetamide (500 mg/kg per day for 3 days) after an injection with 0.2 mL fibrin glue into their hepatobiliary tract. Survival rates and histological outcome were investigated and compared with control animals. Fibrin glue occluded rats showed significantly lower liver enzyme activities and serum levels of bilirubin, creatinine and urea nitrogen. Immunohistochemistry revealed a significant increase in c-met-, HGFalpha- and especially HGFbeta-positive cells. Rats subjected to a lethal dose of thioacetamide survived when fibrin glue was applied 24 hours prior to the toxic challenge. These animals showed normal liver structure and no clinical abnormalities. Fibrin glue occlusion of the hepatobiliary tract induces therapeutic and prophylactic effects on chronic and acute liver failure by stimulating the HGF system. Therefore, fibrin glue occlusion might be useful in treating toxic liver failure.
Raimondo, Sandy; Vivian, Deborah N; Delos, Charles; Barron, Mace G
2008-12-01
A primary objective of threatened and endangered species conservation is to ensure that chemical contaminants and other stressors do not adversely affect listed species. Assessments of the ecological risks of chemical exposures to listed species often rely on the use of surrogate species, safety factors, and species sensitivity distributions (SSDs) of chemical toxicity; however, the protectiveness of these approaches can be uncertain. We comprehensively evaluated the protectiveness of SSD first and fifth percentile hazard concentrations (HC1, HC5) relative to the application of safety factors using 68 SSDs generated from 1,482 acute (lethal concentration of 50%, or LC50) toxicity records for 291 species, including 24 endangered species (20 fish, four mussels). The SSD HC5s and HCls were lower than 97 and 99.5% of all endangered species mean acute LC50s, respectively. The HC5s were significantly less than the concentrations derived from applying safety factors of 5 and 10 to rainbow trout (Oncorhynchus mykiss) toxicity data, and the HCls were generally lower than the concentrations derived from a safety factor of 100 applied to rainbow trout toxicity values. Comparison of relative sensitivity (SSD percentiles) of broad taxonomic groups showed that crustaceans were generally the most sensitive taxa and taxa sensitivity was related to chemical mechanism of action. Comparison of relative sensitivity of narrow fish taxonomic groups showed that standard test fish species were generally less sensitive than salmonids and listed fish. We recommend the use of SSDs as a distribution-based risk assessment approach that is generally protective of listed species.
Toxicological Evaluation of Lactase Derived from Recombinant Pichia pastoris
Liu, Yifei; Chen, Delong; Luo, Yunbo; Huang, Kunlun; Zhang, Wei; Xu, Wentao
2014-01-01
A recombinant lactase was expressed in Pichia pastoris, resulting in enzymatic activity of 3600 U/mL in a 5 L fermenter. The lactase product was subjected to a series of toxicological tests to determine its safety for use as an enzyme preparation in the dairy industry. This recombinant lactase had the highest activity of all recombinant strains reported thus far. Acute oral toxicity, mutagenicity, genotoxic, and subchronic toxicity tests performed in rats and mice showed no death in any groups. The lethal dose 50% (LD50) based on the acute oral toxicity study is greater than 30 mL/kg body weight, which is in accordance with the 1500 L milk consumption of a 50 kg human daily. The lactase showed no mutagenic activity in the Ames test or a mouse sperm abnormality test at levels of up to 5 mg/plate and 1250 mg/kg body weight, respectively. It also showed no genetic toxicology in a bone marrow cell micronucleus test at levels of up to 1250 mg/kg body weight. A 90-day subchronic repeated toxicity study via the diet with lactase levels up to 1646 mg/kg (1000-fold greater than the mean human exposure) did not show any treatment-related significant toxicological effects on body weight, food consumption, organ weights, hematological and clinical chemistry, or histopathology compared to the control groups. This toxicological evaluation system is comprehensive and can be used in the safety evaluation of other enzyme preparations. The lactase showed no acute, mutagenic, genetic, or subchronic toxicity under our evaluation system. PMID:25184300
Acute Human Lethal Toxicity of Agricultural Pesticides: A Prospective Cohort Study
Senarathna, Lalith; Mohamed, Fahim; Gawarammana, Indika; Bowe, Steven J.; Manuweera, Gamini; Buckley, Nicholas A.
2010-01-01
Background Agricultural pesticide poisoning is a major public health problem in the developing world, killing at least 250,000–370,000 people each year. Targeted pesticide restrictions in Sri Lanka over the last 20 years have reduced pesticide deaths by 50% without decreasing agricultural output. However, regulatory decisions have thus far not been based on the human toxicity of formulated agricultural pesticides but on the surrogate of rat toxicity using pure unformulated pesticides. We aimed to determine the relative human toxicity of formulated agricultural pesticides to improve the effectiveness of regulatory policy. Methods and Findings We examined the case fatality of different agricultural pesticides in a prospective cohort of patients presenting with pesticide self-poisoning to two clinical trial centers from April 2002 to November 2008. Identification of the pesticide ingested was based on history or positive identification of the container. A single pesticide was ingested by 9,302 patients. A specific pesticide was identified in 7,461 patients; 1,841 ingested an unknown pesticide. In a subset of 808 patients, the history of ingestion was confirmed by laboratory analysis in 95% of patients. There was a large variation in case fatality between pesticides—from 0% to 42%. This marked variation in lethality was observed for compounds within the same chemical and/or WHO toxicity classification of pesticides and for those used for similar agricultural indications. Conclusion The human data provided toxicity rankings for some pesticides that contrasted strongly with the WHO toxicity classification based on rat toxicity. Basing regulation on human toxicity will make pesticide poisoning less hazardous, preventing hundreds of thousands of deaths globally without compromising agricultural needs. Ongoing monitoring of patterns of use and clinical toxicity for new pesticides is needed to identify highly toxic pesticides in a timely manner. Please see later in the article for the Editors' Summary PMID:21048990
Toxic effects of combined effects of anthracene and UV radiation on Brachionus plicatilis
NASA Astrophysics Data System (ADS)
Gao, Ceng; Zhang, Xinxin; Xu, Ningning; Tang, Xuexi
2017-05-01
Anthracene is a typical polycyclic aromatic hydrocarbon, with photo activity, can absorb ultraviolet light a series of chemical reactions, aquatic organisms in the ecosystem has a potential light induced toxicity. In this paper, the effects of anthracene and UV radiation on the light-induced toxicity of Brachionus plicatilis were studied. The main methods and experimental results were as follows: (1) The semi-lethal concentration of anthracene in UV light was much lower than that in normal light, The rotifers have significant light-induced acute toxicity. (2) Under UV irradiation, anthracene could induce the increase of ROS and MDA content in B. plicatilis, and the activity of antioxidant enzymes in B. plicatilis significantly changed, Where SOD, GPx activity was induced within 24 hours of the beginning of the experiment. And the content of GPX and CAT was inhibited after 48 hours. Therefore, the anthracite stress induced by UV radiation could more strongly interfere with the ant oxidative metabolism of B. plicatilis, and more seriously cause oxidative damage, significant light-induced toxicity.
Formulated Beta-Cyfluthrin Shows Wide Divergence in Toxicity among Bird Species
Addy-Orduna, Laura M.; Zaccagnini, María-Elena; Canavelli, Sonia B.; Mineau, Pierre
2011-01-01
It is generally assumed that the toxicity of pyrethroid insecticides to birds is negligible, though few species have been tested. The oral acute toxicity of formulated beta-cyfluthrin was determined for canaries (Serinus sp.), shiny cowbirds (Molothrus bonariensis), and eared doves (Zenaida auriculata). Single doses were administered to adults by gavage. Approximate lethal doses 50 (LD50) and their confidence intervals were determined by approximate D-optimal design. Canaries were found to be substantially more sensitive to formulated beta-cyfluthrin (LD50 = (170 ± 41) mg/kg) than the other two species tested (LD50 = (2234 ± 544) mg/kg and LD50 = (2271 ± 433) mg/kg, resp.). The LD50 obtained for canaries was also considerably lower than typical toxicity values available in the literature for pyrethroids. This study emphasizes the need for testing a broader range of species with potentially toxic insecticides, using modern up and down test designs with minimal numbers of birds. PMID:21584255
Formulated Beta-Cyfluthrin Shows Wide Divergence in Toxicity among Bird Species.
Addy-Orduna, Laura M; Zaccagnini, María-Elena; Canavelli, Sonia B; Mineau, Pierre
2011-01-01
It is generally assumed that the toxicity of pyrethroid insecticides to birds is negligible, though few species have been tested. The oral acute toxicity of formulated beta-cyfluthrin was determined for canaries (Serinus sp.), shiny cowbirds (Molothrus bonariensis), and eared doves (Zenaida auriculata). Single doses were administered to adults by gavage. Approximate lethal doses 50 (LD(50)) and their confidence intervals were determined by approximate D-optimal design. Canaries were found to be substantially more sensitive to formulated beta-cyfluthrin (LD(50) = (170 ± 41) mg/kg) than the other two species tested (LD(50) = (2234 ± 544) mg/kg and LD(50) = (2271 ± 433) mg/kg, resp.). The LD(50) obtained for canaries was also considerably lower than typical toxicity values available in the literature for pyrethroids. This study emphasizes the need for testing a broader range of species with potentially toxic insecticides, using modern up and down test designs with minimal numbers of birds.
QSAR Modeling of Rat Acute Toxicity by Oral Exposure
Zhu, Hao; Martin, Todd M.; Ye, Lin; Sedykh, Alexander; Young, Douglas M.; Tropsha, Alexander
2009-01-01
Few Quantitative Structure-Activity Relationship (QSAR) studies have successfully modeled large, diverse rodent toxicity endpoints. In this study, a comprehensive dataset of 7,385 compounds with their most conservative lethal dose (LD50) values has been compiled. A combinatorial QSAR approach has been employed to develop robust and predictive models of acute toxicity in rats caused by oral exposure to chemicals. To enable fair comparison between the predictive power of models generated in this study versus a commercial toxicity predictor, TOPKAT (Toxicity Prediction by Komputer Assisted Technology), a modeling subset of the entire dataset was selected that included all 3,472 compounds used in the TOPKAT’s training set. The remaining 3,913 compounds, which were not present in the TOPKAT training set, were used as the external validation set. QSAR models of five different types were developed for the modeling set. The prediction accuracy for the external validation set was estimated by determination coefficient R2 of linear regression between actual and predicted LD50 values. The use of the applicability domain threshold implemented in most models generally improved the external prediction accuracy but expectedly led to the decrease in chemical space coverage; depending on the applicability domain threshold, R2 ranged from 0.24 to 0.70. Ultimately, several consensus models were developed by averaging the predicted LD50 for every compound using all 5 models. The consensus models afforded higher prediction accuracy for the external validation dataset with the higher coverage as compared to individual constituent models. The validated consensus LD50 models developed in this study can be used as reliable computational predictors of in vivo acute toxicity. PMID:19845371
Guo, Dongmei; Wang, Yanhua; Qian, Yongzhong; Chen, Chen; Jiao, Bining; Cai, Leiming; Wang, Qiang
2017-01-01
It remains a daunting challenge to determine ecotoxicological risks of exposure to mixtures of endocrine disrupting chemicals (EDCs) in environmental toxicology. In the present study, we investigated acute and endocrine disruptive toxicities of cypermethrin (CPM), malathion (MAL), prochloraz (PRO) and their binary mixtures of MAL + CPM and MAL + PRO to the early life stages of zebrafish. In the acute lethal toxicity test, three pesticides exhibited different levels of toxicity to zebrafish larvae, and the order of toxicity was as follows: CPM > PRO > MAL. The binary mixture of MAL + CPM displayed a synergistic effect on zebrafish larvae after exposure for 24, 48, 72 and 96 h. However, binary mixture of MAL + PRO showed an antagonistic effect. To evaluate the estrogenic effect, the expression of genes in the hypothalamic-pituitary-gonadal axis was assessed after zebrafish embryos were exposed to CPM, MAL, PRO and their binary mixtures from blastula stage (1 h post-fertilization, 1 hpf) to 14 dpf (14 d post-fertilization). Our data indicated that the transcription patterns of many key genes (vtg1, vtg2, era, erβ1, erβ2, cyp19a1a and cyp19a1b) were affected in hatched zebrafish after exposure to CPM, MAL and PRO. Moreover, following exposure to binary mixtures of 1000 μg/L MAL +4 μg/L CPM and 1000 μg/L MAL +900 μg/L PRO, the gene expressions were significantly changed compared with the individual pesticides. Our data provided a better understanding of bidirectional interactions of toxic response induced by these pesticides. Copyright © 2016 Elsevier Ltd. All rights reserved.
Quantitative structure-activity relationship modeling of rat acute toxicity by oral exposure.
Zhu, Hao; Martin, Todd M; Ye, Lin; Sedykh, Alexander; Young, Douglas M; Tropsha, Alexander
2009-12-01
Few quantitative structure-activity relationship (QSAR) studies have successfully modeled large, diverse rodent toxicity end points. In this study, a comprehensive data set of 7385 compounds with their most conservative lethal dose (LD(50)) values has been compiled. A combinatorial QSAR approach has been employed to develop robust and predictive models of acute toxicity in rats caused by oral exposure to chemicals. To enable fair comparison between the predictive power of models generated in this study versus a commercial toxicity predictor, TOPKAT (Toxicity Prediction by Komputer Assisted Technology), a modeling subset of the entire data set was selected that included all 3472 compounds used in TOPKAT's training set. The remaining 3913 compounds, which were not present in the TOPKAT training set, were used as the external validation set. QSAR models of five different types were developed for the modeling set. The prediction accuracy for the external validation set was estimated by determination coefficient R(2) of linear regression between actual and predicted LD(50) values. The use of the applicability domain threshold implemented in most models generally improved the external prediction accuracy but expectedly led to the decrease in chemical space coverage; depending on the applicability domain threshold, R(2) ranged from 0.24 to 0.70. Ultimately, several consensus models were developed by averaging the predicted LD(50) for every compound using all five models. The consensus models afforded higher prediction accuracy for the external validation data set with the higher coverage as compared to individual constituent models. The validated consensus LD(50) models developed in this study can be used as reliable computational predictors of in vivo acute toxicity.
Fort, Douglas J; Mathis, Michael B; Kee, Faith; Whatling, Paul; Clerkin, David; Staveley, Jane; Habig, Clifford
2018-02-01
Development of an acute oral toxicity test with a terrestrial-phase amphibian was considered necessary to remove the uncertainty within the field of agrochemical risk assessments. The bullfrog (Lithobates catesbeianus) was selected for use as it is a representative of the family Ranidae and historically this species has been used as an amphibian test model species. Prior to definitive study, oral gavage methods were developed with fenthion and tetraethyl pyrophosphate. Dimethoate and malathion were subsequently tested with both male and female juvenile bullfrogs in comprehensive acute oral median lethal dose (LD50) studies. Juvenile bullfrogs were administered a single dose of the test article via oral gavage of a single gelatin capsule of dimethoate technical (dimethoate) or neat liquid Fyfanon ® Technical (synonym malathion), returned to their respective aquaria, and monitored for survival for 14 d. The primary endpoint was mortality, whereas behavioral responses, food consumption, body weight, and snout-vent length (SVL) were used to evaluate indications of sublethal toxicity (secondary endpoints). Acute oral LD50 values (95% fiducial interval) for dimethoate were 1459 (1176-1810, males) and 1528 (1275-1831, females), and for malathion they were 1829 (1480-2259, males) and 1672 (1280-2183, females) mg active substance/kg body weight, respectively. Based on the results of these studies, the methodology for the acute oral gavage administration of test items to terrestrial-phase amphibians was demonstrated as being a practical method of providing data for risk assessments. Environ Toxicol Chem 2018;37:436-450. © 2017 SETAC. © 2017 SETAC.
Neves, Raquel A. F.; Fernandes, Tainá; dos Santos, Luciano Neves; Nascimento, Silvia M.
2017-01-01
Harmful algae may differently affect their primary grazers, causing sub-lethal effects and/or leading to their death. The present study aim to compare the effects of three toxic benthic dinoflagellates on clearance and grazing rates, behavioral changes, and survival of Artemia salina. Feeding assays consisted in 1-h incubations of brine shrimps with the toxic Prorocentrum lima, Gambierdiscus excentricus and Ostreopsis cf. ovata and the non-toxic Tetraselmis sp. Brine shrimps fed unselectively on all toxic and non-toxic algal preys, without significant differences in clearance and ingestion rates. Acute toxicity assays were performed with dinoflagellate cells in two growth phases during 7-h to assess differences in cell toxicity to A. salina. Additionally, exposure to cell-free medium was performed to evaluate its effects on A. salina survival. The behavior of brine shrimps significantly changed during exposure to the toxic dinoflagellates, becoming immobile at the bottom by the end of the trials. Dinoflagellates significantly affected A. salina survival with 100% mortality after 7-h exposure to cells in exponential phase (all treatments) and to P. lima in stationary phase. Mortality rates of brine shrimps exposed to O. cf. ovata and G. excentricus in stationary phase were 91% and 75%, respectively. However, incubations of the brine shrimps with cell-free medium did not affect A. salina survivorship. Significant differences in toxic effects between cell growth phases were only found in the survival rates of A. salina exposed to G. excentricus. Acute exposure to benthic toxic dinoflagellates induced harmful effects on behavior and survival of A. salina. Negative effects related to the toxicity of benthic dinoflagellates are thus expected on their primary grazers making them more vulnerable to predation and vectors of toxins through the marine food webs. PMID:28388672
Neves, Raquel A F; Fernandes, Tainá; Santos, Luciano Neves Dos; Nascimento, Silvia M
2017-01-01
Harmful algae may differently affect their primary grazers, causing sub-lethal effects and/or leading to their death. The present study aim to compare the effects of three toxic benthic dinoflagellates on clearance and grazing rates, behavioral changes, and survival of Artemia salina. Feeding assays consisted in 1-h incubations of brine shrimps with the toxic Prorocentrum lima, Gambierdiscus excentricus and Ostreopsis cf. ovata and the non-toxic Tetraselmis sp. Brine shrimps fed unselectively on all toxic and non-toxic algal preys, without significant differences in clearance and ingestion rates. Acute toxicity assays were performed with dinoflagellate cells in two growth phases during 7-h to assess differences in cell toxicity to A. salina. Additionally, exposure to cell-free medium was performed to evaluate its effects on A. salina survival. The behavior of brine shrimps significantly changed during exposure to the toxic dinoflagellates, becoming immobile at the bottom by the end of the trials. Dinoflagellates significantly affected A. salina survival with 100% mortality after 7-h exposure to cells in exponential phase (all treatments) and to P. lima in stationary phase. Mortality rates of brine shrimps exposed to O. cf. ovata and G. excentricus in stationary phase were 91% and 75%, respectively. However, incubations of the brine shrimps with cell-free medium did not affect A. salina survivorship. Significant differences in toxic effects between cell growth phases were only found in the survival rates of A. salina exposed to G. excentricus. Acute exposure to benthic toxic dinoflagellates induced harmful effects on behavior and survival of A. salina. Negative effects related to the toxicity of benthic dinoflagellates are thus expected on their primary grazers making them more vulnerable to predation and vectors of toxins through the marine food webs.
Searching for a Toxic Key to Unlock the Mystery of Anemonefish and Anemone Symbiosis
Nedosyko, Anita M.; Young, Jeanne E.; Edwards, John W.; Burke da Silva, Karen
2014-01-01
Twenty-six species of anemonefish of the genera Amphiprion and monospecific Premnas, use only 10 species of anemones as hosts in the wild (Families: Actiniidae, Stichodactylidae and Thalassianthidae). Of these 10 anemone species some are used by multiple species of anemonefish while others have only a single anemonefish symbiont. Past studies have explored the different patterns of usage between anemonefish species and anemone species; however the evolution of this relationship remains unknown and has been little studied over the past decade. Here we reopen the case, comparing the toxicity of crude venoms obtained from anemones that host anemonefish as a way to investigate why some anemone species are used as a host more than others. Specifically, for each anemone species we investigated acute toxicity using Artemia francisca (LC50), haemolytic toxicity using ovine erythrocytes (EC50) and neurotoxicity using shore crabs (Ozius truncatus). We found that haemolytic and neurotoxic activity varied among host anemone species. Generally anemone species that displayed greater haemolytic activity also displayed high neurotoxic activity and tend to be more toxic on average as indicated by acute lethality analysis. An overall venom toxicity ranking for each anemone species was compared with the number of anemonefish species that are known to associate with each anemone species in the wild. Interestingly, anemones with intermediate toxicity had the highest number of anemonefish associates, whereas anemones with either very low or very high toxicity had the fewest anemonefish associates. These data demonstrate that variation in toxicity among host anemone species may be important in the establishment and maintenance of anemonefish anemone symbiosis. PMID:24878777
Searching for a toxic key to unlock the mystery of anemonefish and anemone symbiosis.
Nedosyko, Anita M; Young, Jeanne E; Edwards, John W; Burke da Silva, Karen
2014-01-01
Twenty-six species of anemonefish of the genera Amphiprion and monospecific Premnas, use only 10 species of anemones as hosts in the wild (Families: Actiniidae, Stichodactylidae and Thalassianthidae). Of these 10 anemone species some are used by multiple species of anemonefish while others have only a single anemonefish symbiont. Past studies have explored the different patterns of usage between anemonefish species and anemone species; however the evolution of this relationship remains unknown and has been little studied over the past decade. Here we reopen the case, comparing the toxicity of crude venoms obtained from anemones that host anemonefish as a way to investigate why some anemone species are used as a host more than others. Specifically, for each anemone species we investigated acute toxicity using Artemia francisca (LC50), haemolytic toxicity using ovine erythrocytes (EC50) and neurotoxicity using shore crabs (Ozius truncatus). We found that haemolytic and neurotoxic activity varied among host anemone species. Generally anemone species that displayed greater haemolytic activity also displayed high neurotoxic activity and tend to be more toxic on average as indicated by acute lethality analysis. An overall venom toxicity ranking for each anemone species was compared with the number of anemonefish species that are known to associate with each anemone species in the wild. Interestingly, anemones with intermediate toxicity had the highest number of anemonefish associates, whereas anemones with either very low or very high toxicity had the fewest anemonefish associates. These data demonstrate that variation in toxicity among host anemone species may be important in the establishment and maintenance of anemonefish anemone symbiosis.
Pérez-Iglesias, J M; Ruiz de Arcaute, C; Nikoloff, N; Dury, L; Soloneski, S; Natale, G S; Larramendy, M L
2014-06-01
The neonicotinoid insecticide imidacloprid (IMI) affects the insect central nervous system and is successfully applied to control pests for a variety of agricultural crops. In the current study, acute toxicity and genotoxicity of the IMI-containing commercial formulation insecticide Glacoxan Imida (35 percent IMI) was evaluated on Hypsiboas pulchellus (Anura: Hylidae) tadpoles exposed under laboratory conditions. A lethal effect was evaluated as the end point for lethality, whereas micronucleus (MN) frequency and DNA single-strand breaks evaluated by the single cell gel electrophoresis (SCGE) assay were employed as end points for genotoxicity. Sublethal end points were assayed within the 12.5-37.5mg/L IMI concentration range. Experiments were performed on tadpoles at stage 36 (range, 35-37) according to the classification proposed by Gosner. Lethality studies revealed an LC50 96h value of 52.622mg/L IMI. Increased frequency of MNs was only observed when 25.0mg/L was assayed for 96h, whereas no other nuclear abnormalities were induced. Increase of the genetic damage index was observed at 48h of treatment within the 12.5-37.5mg/L concentration range, whereas an increased frequency of DNA damage was observed only in tadpoles treated with 37.5mg/L IMI for 96h. This study represents the first evidence of the acute lethal and genotoxic effects exerted by IMI on tadpoles of an amphibian species native to Argentina under laboratory conditions. Copyright © 2014 Elsevier Inc. All rights reserved.
Deshpande, Laxmikant S.; Carter, Dawn S.; Phillips, Kristin F.; Blair, Robert E.; DeLorenzo, Robert J.
2014-01-01
Paraoxon (POX) is an active metabolite of organophosphate (OP) pesticide parathion that has been weaponized and used against civilian populations. Exposure to POX produces high mortality. OP poisoning is often associated with chronic neurological disorders. In this study, we optimize a rat survival model of lethal POX exposures in order to mimic both acute and long-term effects of POX intoxication. Male Sprague-Dawley rats injected with POX (4 mg/kg, ice-cold PBS, s.c.) produced a rapid cholinergic crisis that evolved into status epilepticus (SE) and death within 6–8 min. The EEG profile for POX induced SE was characterized and showed clinical and electrographic seizures with 7–10 Hz spike activity. Treatment of 100% lethal POX intoxication with an optimized three drug regimen (atropine, 2 mg/kg, i.p., 2-PAM, 25 mg/kg, i.m. and diazepam, 5 mg/kg, i.p.) promptly stopped SE and reduced acute mortality to 12% and chronic mortality to 18%. This model is ideally suited to test effective countermeasures against lethal POX exposure. Animals that survived the POX SE manifested prolonged elevations in hippocampal [Ca2+]i (Ca2+ plateau) and significant multifocal neuronal injury. POX SE induced Ca2+ plateau had its origin in Ca2+ release from intracellular Ca2+ stores since inhibition of ryanodine/ IP3 receptor lowered elevated Ca2+ levels post SE. POX SE induced neuronal injury and alterations in Ca2+ dynamics may underlie some of the long term morbidity associated with OP toxicity. PMID:24785379
NASA Astrophysics Data System (ADS)
Guo, Huarong; Yin, Licheng; Zhang, Shicui; Feng, Wenrong
2010-09-01
The toxic mechanism of herbicide butachlor to induce extremely high lethality in marine flatfish flounder, Paralichthys Olivaceus, was analyzed by histopathological examination, antioxidant enzymes activities and ATP content assay. Histopathological examination of gill, liver and kidney of exposed fishes showed that gill was a target organ of butachlor. The butachlor seriously impaired the respiration of gills by a series of lesions such as edema, lifting and detachment of lamellar epithelium, breakdown of pillar cells, and blood congestion. The dysfunction of gill respiration caused suffocation to the exposed flounder with extremely high acute lethality. Antioxidant enzyme activity assay of the in vitro cultured flounder gill (FG) cells exposed to butachlor indicated that butachlor markedly inhibited the antioxidant enzyme activities of Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX). Furthermore, along with the decline of antioxidant enzyme activities, ATP content in the exposed FG cells decreased, too. This infers that the oxidative stress induced by butachlor can inhibit the production of cellular ATP. Similar decrease of ATP content was also observed in the exposed flounder gill tissues. Taken together, as in FG cells, butachlor possibly induced a short supply of ATP in pillar cells by inhibiting the antioxidant enzyme activities and then affecting the contractibility of the pillar cells, which in turn resulted in the blood congestion and suffocation of exposed flounder.
Fairchild, J.F.; Allert, A.L.; Feltz, K.P.; Nelson, K.J.; Valle, J.A.
2009-01-01
Clopyralid (3,6-dichloro-2-pyridinecarboxylic acid) is a pyridine herbicide frequently used to control invasive, noxious weeds in the northwestern United States. Clopyralid exhibits low acute toxicity to fish, including the rainbow trout (Oncorhynchus mykiss) and the threatened bull trout (Salvelinus confluentus). However, there are no published chronic toxicity data for clopyralid and fish that can be used in ecological risk assessments. We conducted 30-day chronic toxicity studies with juvenile rainbow trout exposed to the acid form of clopyralid. The 30-day maximum acceptable toxicant concentration (MATC) for growth, calculated as the geometric mean of the no observable effect concentration (68 mg/L) and the lowest observable effect concentration (136 mg/L), was 96 mg/L. No mortality was measured at the highest chronic concentration tested (273 mg/L). The acute:chronic ratio, calculated by dividing the previously published 96-h acutely lethal concentration (96-h ALC50; 700 mg/L) by the MATC was 7.3. Toxicity values were compared to a four-tiered exposure assessment profile assuming an application rate of 1.12 kg/ha. The Tier 1 exposure estimation, based on direct overspray of a 2-m deep pond, was 0.055 mg/L. The Tier 2 maximum exposure estimate, based on the Generic Exposure Estimate Concentration model (GEENEC), was 0.057 mg/L. The Tier 3 maximum exposure estimate, based on previously published results of the Groundwater Loading Effects of Agricultural Management Systems model (GLEAMS), was 0.073 mg/L. The Tier 4 exposure estimate, based on published edge-of-field monitoring data, was estimated at 0.008 mg/L. Comparison of toxicity data to estimated environmental concentrations of clopyralid indicates that the safety factor for rainbow trout exposed to clopyralid at labeled use rates exceeds 1000. Therefore, the herbicide presents little to no risk to rainbow trout or other salmonids such as the threatened bull trout. ?? 2009 US Government.
Toxicity of thermal degradation products of spacecraft materials
NASA Technical Reports Server (NTRS)
Lawrence, W. H.; Turner, J. E.; Sanford, C.; Foster, S.; Baldwin, E.; Oconnor, J.
1982-01-01
Three polymeric materials were evaluated for relative toxicity of their pyrolysis products to rats by inhalation: Y-7683 (LS 200), Y-7684 (Vonar 3 on Fiberglass), and Y-7685 (Vonar 3 on N W Polyester). Criteria employed for assessing relative toxicity were (1) lethality from in-chamber pyrolysis, (2) lethality from an outside-of-chamber pyrolysis MSTL Procedure, and (3) disruption of trained rats' shock-avoidance performance during sub-lethal exposures to in-chamber pyrolysis of the materials.
Schmidt, Stine N; Holmstrup, Martin; Smith, Kilian E C; Mayer, Philipp
2013-07-02
A 7-day mixture toxicity experiment with the terrestrial springtail Folsomia candida was conducted, and the effects were linked to three different mixture exposure parameters. Passive dosing from silicone was applied to tightly control exposure levels and compositions of 12 mixture treatments, containing the polycyclic aromatic hydrocarbons (PAHs) naphthalene, phenanthrene, and pyrene. Springtail lethality was then linked to sum chemical activities (∑a), sum equilibrium lipid concentrations (∑C(lipid eq.)), and sum toxic units (∑TU). In each case, the effects of all 12 mixture treatments could be fitted to one sigmoidal exposure-response relationship. The effective lethal chemical activity (La50) of 0.027 was well within the expected range for baseline toxicity of 0.01-0.1. Linking the effects to the lipid-based exposure parameter yielded an effective lethal concentration (LC(lipid eq 50)) of 133 mmol kg(-1) lipid in good correspondence with the lethal membrane burden for baseline toxicity (40-160 mmol kg(-1) lipid). Finally, the effective lethal toxic unit (LTU50) of 1.20 was rather close to the expected value of 1. Altogether, passive dosing provided tightly controlled mixture exposure in terms of both level and composition, while ∑a, ∑C(lipid eq.), and ∑TU allowed baseline toxicity to be linked to mixture exposure.
McNulty, E.W.; Dwyer, F.J.; Ellersieck, Mark R.; Greer, E.I.; Ingersoll, C.G.; Rabeni, C.F.
1999-01-01
Standard methods for conducting toxicity tests imply that the condition of test organisms can be established using reference toxicity tests. However, only a limited number of studies have evaluated whether reference toxicity tests can actually be used to determine if organisms are in good condition at the start of a test. We evaluated the ability of reference toxicants to identify stress associated with starvation in laboratory populations of the amphipod Hyalella azteca using acute toxicity tests and four reference toxicants: KCl, CdCl2, sodium pentachlorophenate (NaPCP), and carbaryl. Stress associated with severe starvation was observed with exposure of amphipods to carbaryl or NaPCP but not with exposure to KCl or CdCl2 (i.e., lower LC50 with severe starvation). Although the LC50s for NaPCP and carbaryl were statistically different between starved and fed amphipods, this difference may not be biologically significant given the variability expected in acute lethality tests. Stress associated with sieving, heat shock, or cold shock of amphipods before the start of a test was not evident with exposure to carbaryl or KCl as reference toxicants. The chemicals evaluated in this study provided minimal information about the condition of the organisms used to start a toxicity test. Laboratories should periodically perform reference toxicity tests to assess the sensitivity of life stages or strains of test organisms. However, use of other test acceptability criteria required in standard methods such as minimum survival, growth, or reproduction of organisms in the control treatment at the end of a test, provides more useful information about the condition of organisms used to start a test compared to data generated from reference toxicity tests.
Kuca, Kamil; Karasova, Jana Zdarova; Soukup, Ondrej; Kassa, Jiri; Novotna, Eva; Sepsova, Vendula; Horova, Anna; Pejchal, Jaroslav; Hrabinova, Martina; Vodakova, Eva; Jun, Daniel; Nepovimova, Eugenie; Valis, Martin; Musilek, Kamil
2018-01-01
Background Intoxication by nerve agents could be prevented by using small acetylcholinesterase inhibitors (eg, pyridostigmine) for potentially exposed personnel. However, the serious side effects of currently used drugs led to research of novel potent molecules for prophylaxis of organophosphorus intoxication. Methods The molecular design, molecular docking, chemical synthesis, in vitro methods (enzyme inhibition, cytotoxicity, and nicotinic receptors modulation), and in vivo methods (acute toxicity and prophylactic effect) were used to study bispyridinium, bisquinolinium, bisisoquinolinium, and pyridinium-quinolinium/isoquinolinium molecules presented in this study. Results The studied molecules showed non-competitive inhibitory ability towards human acetylcholinesterase in vitro that was further confirmed by molecular modelling studies. Several compounds were selected for further studies. First, their cytotoxicity, nicotinic receptors modulation, and acute toxicity (lethal dose for 50% of laboratory animals [LD50]; mice and rats) were tested to evaluate their safety with promising results. Furthermore, their blood levels were measured to select the appropriate time for prophylactic administration. Finally, the protective ratio of selected compounds against soman-induced toxicity was determined when selected compounds were found similarly potent or only slightly better to standard pyridostigmine. Conclusion The presented small bisquaternary molecules did not show overall benefit in prophylaxis of soman-induced in vivo toxicity. PMID:29563775
Acute toxicity of zinc to several aquatic species native to the Rocky Mountains.
Brinkman, Stephen F; Johnston, Walter D
2012-02-01
National water-quality criteria for the protection of aquatic life are based on toxicity tests, often using organisms that are easy to culture in the laboratory. Species native to the Rocky Mountains are poorly represented in data sets used to derive national water-quality criteria. To provide additional data on the toxicity of zinc, several laboratory acute-toxicity tests were conducted with a diverse assortment of fish, benthic invertebrates, and an amphibian native to the Rocky Mountains. Tests with fish were conducted using three subspecies of cutthroat trout (Colorado River cutthroat trout Oncorhynchus clarkii pleuriticus, greenback cutthroat trout O. clarkii stomias, and Rio Grande cutthroat trout O. clarkii virginalis), mountain whitefish (Prosopium williamsoni), mottled sculpin (Cottus bairdi), longnose dace (Rhinichthys cataractae), and flathead chub (Platygobio gracilis). Aquatic invertebrate tests were conducted with mayflies (Baetis tricaudatus, Drunella doddsi, Cinygmula sp. and Ephemerella sp.), a stonefly (Chloroperlidae), and a caddis fly (Lepidostoma sp.). The amphibian test was conducted with tadpoles of the boreal toad (Bufo boreas). Median lethal concentrations (LC(50)s) ranged more than three orders of magnitude from 166 μg/L for Rio Grande cutthroat trout to >67,000 μg/L for several benthic invertebrates. Of the organisms tested, vertebrates were the most sensitive, and benthic invertebrates were the most tolerant.
Acute toxicity and inactivation tests of CO2 on invertebrates in drinking water treatment systems.
Yin, Wen-Chao; Zhang, Jin-Song; Liu, Li-Jun; Zhao, Jian-Shu; Li, Tuo
2011-01-01
In addition to the esthetic problem caused by invertebrates, researchers are recently starting to be more aware of their potential importance in terms of public health. However, the inactivation methods of invertebrates which could proliferate in drinking water treatment systems are not well developed. The objective of this study is to assess the acute toxicity and inactivation effects of CO2 on familiar invertebrates in water treatment processes. The results of this study revealed that CO2 has a definite toxicity to familiar invertebrates. The values of 24-h LC50 (median lethal concentration) were calculated for each test with six groups of invertebrates. The toxicity of CO2 was higher with increasing concentrations in solution but was lower with the increase in size of the invertebrates. Above the concentration of 1,000 mg/L for the CO2 solution, the 100% inactivation time of all the invertebrates was less than 5 s, and in 15 min, the inactivation ratio showed a gradient descent with a decline in concentration. As seen for Mesocyclops thermocyclopoides, by dosing with a sodium bicarbonate solution first and adding a dilute hydrochloric acid solution 5 min later, it is possible to obtain a satisfactory inactivation effect in the GAC (granular activated carbon) filters.
Alternatives to animal testing: research, trends, validation, regulatory acceptance.
Huggins, Jane
2003-01-01
Current trends and issues in the development of alternatives to the use of animals in biomedical experimentation are discussed in this position paper. Eight topics are considered and include refinement of acute toxicity assays; eye corrosion/irritation alternatives; skin corrosion/irritation alternatives; contact sensitization alternatives; developmental/reproductive testing alternatives; genetic engineering (transgenic) assays; toxicogenomics; and validation of alternative methods. The discussion of refinement of acute toxicity assays is focused primarily on developments with regard to reduction of the number of animals used in the LD(50) assay. However, the substitution of humane endpoints such as clinical signs of toxicity for lethality in these assays is also evaluated. Alternative assays for eye corrosion/irritation as well as those for skin corrosion/irritation are described with particular attention paid to the outcomes, both successful and unsuccessful, of several validation efforts. Alternative assays for contact sensitization and developmental/reproductive toxicity are presented as examples of methods designed for the examination of interactions between toxins and somewhat more complex physiological systems. Moreover, genetic engineering and toxicogenomics are discussed with an eye toward the future of biological experimentation in general. The implications of gene manipulation for research animals, specifically, are also examined. Finally, validation methods are investigated as to their effectiveness, or lack thereof, and suggestions for their standardization and improvement, as well as implementation are reviewed.
Acute toxicity study of tilmicosin-loaded hydrogenated castor oil-solid lipid nanoparticles.
Xie, Shuyu; Wang, Fenghua; Wang, Yan; Zhu, Luyan; Dong, Zhao; Wang, Xiaofang; Li, Xihe; Zhou, Wenzhong
2011-11-20
Our previous studies demonstrated that tilmicosin-loaded hydrogenated castor oil solid lipid nanoparticles (Til-HCO-SLN) are a promising formulation for enhanced pharmacological activity and therapeutic efficacy in veterinary use. The purpose of this work was to evaluate the acute toxicity of Til-HCO-SLN. Two nanoparticle doses were used for the study in ICR mice. The low dose (766 mg/kg.bw) with tilmicosin 7.5 times of the clinic dosage and below the median lethal dose (LD(50)) was subcutaneously administered twice on the first and 7th day. The single high dose (5 g/kg.bw) was the practical upper limit in an acute toxicity study and was administered subcutaneously on the first day. Blank HCO-SLN, native tilmicosin, and saline solution were included as controls. After medication, animals were monitored over 14 days, and then necropsied. Signs of toxicity were evaluated via mortality, symptoms of treatment effect, gross and microscopic pathology, and hematologic and biochemical parameters. After administration of native tilmicosin, all mice died within 2 h in the high dose group, in the low dose group 3 died after the first and 2 died after the second injections. The surviving mice in the tilmicosin low dose group showed hypoactivity, accelerated breath, gloomy spirit and lethargy. In contrast, all mice in Til-HCO-SLN and blank HCO-SLN groups survived at both low and high doses. The high nanoparticle dose induced transient clinical symptoms of treatment effect such as transient reversible action retardation, anorexy and gloomy spirit, increased spleen and liver coefficients and decreased heart coefficients, microscopic pathological changes of liver, spleen and heart, and minor changes in hematologic and biochemical parameters, but no adverse effects were observed in the nanoparticle low dose group. The results revealed that the LD50 of Til-HCO-SLN and blank HCO-SLN exceeded 5 g/kg.bw and thus the nanoparticles are considered low toxic according to the toxicity categories of chemicals. Moreover, HCO-SLN significantly decreased the toxicity of tilmicosin. Normal clinic dosage of Til-HCO-SLN is safe as evaluated by acute toxicity.
Acute toxicity study of tilmicosin-loaded hydrogenated castor oil-solid lipid nanoparticles
2011-01-01
Background Our previous studies demonstrated that tilmicosin-loaded hydrogenated castor oil solid lipid nanoparticles (Til-HCO-SLN) are a promising formulation for enhanced pharmacological activity and therapeutic efficacy in veterinary use. The purpose of this work was to evaluate the acute toxicity of Til-HCO-SLN. Methods Two nanoparticle doses were used for the study in ICR mice. The low dose (766 mg/kg.bw) with tilmicosin 7.5 times of the clinic dosage and below the median lethal dose (LD50) was subcutaneously administered twice on the first and 7th day. The single high dose (5 g/kg.bw) was the practical upper limit in an acute toxicity study and was administered subcutaneously on the first day. Blank HCO-SLN, native tilmicosin, and saline solution were included as controls. After medication, animals were monitored over 14 days, and then necropsied. Signs of toxicity were evaluated via mortality, symptoms of treatment effect, gross and microscopic pathology, and hematologic and biochemical parameters. Results After administration of native tilmicosin, all mice died within 2 h in the high dose group, in the low dose group 3 died after the first and 2 died after the second injections. The surviving mice in the tilmicosin low dose group showed hypoactivity, accelerated breath, gloomy spirit and lethargy. In contrast, all mice in Til-HCO-SLN and blank HCO-SLN groups survived at both low and high doses. The high nanoparticle dose induced transient clinical symptoms of treatment effect such as transient reversible action retardation, anorexy and gloomy spirit, increased spleen and liver coefficients and decreased heart coefficients, microscopic pathological changes of liver, spleen and heart, and minor changes in hematologic and biochemical parameters, but no adverse effects were observed in the nanoparticle low dose group. Conclusions The results revealed that the LD50 of Til-HCO-SLN and blank HCO-SLN exceeded 5 g/kg.bw and thus the nanoparticles are considered low toxic according to the toxicity categories of chemicals. Moreover, HCO-SLN significantly decreased the toxicity of tilmicosin. Normal clinic dosage of Til-HCO-SLN is safe as evaluated by acute toxicity. PMID:22098626
Pollino, Carmel A; Holdway, Douglas A
2002-07-01
The toxicity of petroleum hydrocarbons to marine aquatic organisms has been widely investigated; however, the effects on freshwater environments have largely been ignored. In the Australian freshwater environment, the potential impacts of petroleum hydrocarbons are virtually unknown. The toxicity of crude oil and related compounds were measured in the sensitive early life stages of the crimson-spotted rainbowfish (Melanotaenia fluviatilis). Waterborne petroleum hydrocarbons crossed the chorion of embryonic rainbowfish, reducing survival and hatchability. Acute exposures resulted in developmental abnormalities at and above 0.5 mg/L total petroleum hydrocarbons (TPH). Deformities included pericardial edema, disturbed axis formation, and abnormal jaw development. When assessing the acute toxicities of the water-accommodated fraction (WAF) of crude oil, dispersants, dispersant-oil mixtures, and naphthalene to larval rainbowfish, the lowest to highest 96-h median lethal concentrations for day of hatch larvae were naphthalene (0.51 mg/L), dispersed crude oil WAF (DCWAF)-9527 (0.74 mg/L TPH), WAF (1.28 mg/L TPH), DCWAF-9500 (1.37 mg/L TPH), Corexit 9500 (14.5 mg/L TPH), and Corexit 9527 (20.1 mg/L). Using naphthalene as a reference toxicant, no differences were found between the sensitivities of larval rainbowfish collected from adults exposed to petroleum hydrocarbons during embryonic development and those collected from unexposed adults.
Toxicity Profile of a Nutraceutical Formulation Derived from Green Mussel Perna viridis
Joseph, Deepu; Chakkalakal, Selsa J.
2014-01-01
The short-term (acute) and long-term (subchronic) toxicity profile, mean lethal dose 50 (LD50), and no-observed-adverse-effect level (NOAEL) of a nutraceutical formulation developed from green mussel Perna viridis, which showed in vitro and in vivo anti-inflammatory properties, were evaluated in the present study. The formulation was administered to the male and female Wistar rats at graded doses (0.5, 1.0, and 2.5 g/kg body weight) for two weeks of acute toxicity study and 0.5, 1.0, and 2.0 g/kg body weight for 90 days in subchronic toxicity study. The LD50, variations in clinical signs, changes in body weight, body weight, food/water consumption, organ weight (liver, kidney, spleen, and brain), hematology, serum chemistry, and histopathological changes were evaluated. The LD50 of the formulation was 5,000 mg/kg BW. No test article related mortalities as well as change in body weight, and food and water consumption were observed. No toxicity related significant changes were noted in renal/hepatic function, hematological indices, and serum biochemical parameters between the control and treated groups. Histopathological alterations were not observed in the vital organs of rats. The subchronic NOAEL for the formulation in rats is greater than 2000 mg/kg. This study demonstrated that the green mussel formulation is safe to consume without any adverse effects in the body. PMID:24995298
Acute and chronic effects of Cr(VI) on Hypsiboas pulchellus embryos and tadpoles.
Natale, G S; Ammassari, L L; Basso, N G; Ronco, A E
2006-10-27
In the last few years there has been great concern about declines in the abundance of several species of amphibians around the world. Among amphibians, anurans have a biphasic life cycle, with aquatic tadpoles and generally terrestrial adults, and they have an extremely permeable skin, making them excellent indicators of the health of the environment. A number of different causes have been suggested for the global decline of anurans, the pollution of their habitat by chemical stressors being considered one of the major factors. Among chemical stressors, heavy metals are known for their high toxicity at very low concentrations. This study assessed short- (96 h, 'acute') and long-term (1272 h, 'chronic') exposure to Cr(VI) at lethal (3 to 90 mg 1(-1)) and sublethal concentrations (0.001 to 12 mg 1(-1)) on Hypsiboaspulchellus (previously called Hyla pulchella; see Faivovich et al. 2005) tadpoles (Fam. Hylidae) from central eastern Argentina. Fertilized eggs collected from a clean pond near La Plata (Buenos Aires Province) were used for acute and chronic toxicity testing. Assays were done under controlled laboratory conditions. Results of chronic exposure were used to assess the effect of factors such as toxicant concentration and age of organisms at the beginning of exposure on the response variables (growth, development and survival until metamorphosis). Results indicated a higher sensitivity to Cr(VI) of individuals first exposed as tadpoles than those first exposed as embryos during acute and chronic exposure. Exposure to the highest sublethal concentrations (6 to 12 mg 1(-1)) of the toxicant showed early inhibitory effects on growth of all treated organisms compensated at longer exposure periods with an increase in the growth rate compared to the control groups.
Lyoussi, Badiaa; Cherkaoui Tangi, Khadija; Morel, Nicole; Haddad, Mohamed; Quetin-Leclercq, Joelle
2018-01-01
The present investigation was carried out to evaluate the safety of an aqueous extract of the seeds of Calycotome villosa (Poiret) Link (subsp. intermedia) by determining its cytotoxicity and potential toxicity after acute and sub-chronic administration in rodents. Cytotoxic activity was tested in cancer and non-cancer cell lines HeLa, Mel-5, HL-60 and 3T3. Acute toxicity tests were carried out in mice by a single oral administration of Calycotome seed-extract (0 - 12 g/kg) as well as intraperitoneal doses of 0 - 5 g/kg. Sub-chronic studies were conducted in Wistar rats by administration of oral daily doses for up to 90 days. Changes in body and vital organ weights, mortality, haematology, clinical biochemistry and histologic morphology were evaluated. The lyophilized aqueous extract of C. villosa exhibited a low cytotoxicity in all cell lines tested with an IC 50 > 100 µg/ml. In the acute study in mice, intra-peritoneal administration caused dose-dependent adverse effects and mortality with an LD 50 of 4.06 ± 0.01 g/kg. In the chronic tests, neither mortality nor visible signs of lethality was seen in rats. Even AST and ALT were not affected while a significant decrease in serum glucose levels, at 300 and 600 mg/kg was detected. Histopathological examination of the kidney and liver did not show any alteration or inflammation at the end of treatment. In conclusion, the aqueous extract of C. villosa seed appeared to be non-toxic and did not produce mortality or clinically significant changes in the haematological and biochemical parameters in rats.
DOT National Transportation Integrated Search
1991-12-01
Polymeric aircraft cabin materials have the potential to produce toxic gases in fires. Lethality (LC50) in animal models is a standard index to rank polymers on the basis of their combustion product toxicity. However, the use of times-toincapacitatio...
NASA Astrophysics Data System (ADS)
Walpitagama, Milanga; Kaslin, Jan; Nugegoda, Dayanthi; Wlodkowic, Donald
2016-12-01
The fish embryo toxicity (FET) biotest performed on embryos of zebrafish (Danio rerio) has gained significant popularity as a rapid and inexpensive alternative approach in chemical hazard and risk assessment. The FET was designed to evaluate acute toxicity on embryonic stages of fish exposed to the test chemical. The current standard, similar to most traditional methods for evaluating aquatic toxicity provides, however, little understanding of effects of environmentally relevant concentrations of chemical stressors. We postulate that significant environmental effects such as altered motor functions, physiological alterations reflected in heart rate, effects on development and reproduction can occur at sub-lethal concentrations well below than LC10. Behavioral studies can, therefore, provide a valuable integrative link between physiological and ecological effects. Despite the advantages of behavioral analysis development of behavioral toxicity, biotests is greatly hampered by the lack of dedicated laboratory automation, in particular, user-friendly and automated video microscopy systems. In this work we present a proof-of-concept development of an optical system capable of tracking embryonic vertebrates behavioral responses using automated and vastly miniaturized time-resolved video-microscopy. We have employed miniaturized CMOS cameras to perform high definition video recording and analysis of earliest vertebrate behavioral responses. The main objective was to develop a biocompatible embryo positioning structures that were suitable for high-throughput imaging as well as video capture and video analysis algorithms. This system should support the development of sub-lethal and behavioral markers for accelerated environmental monitoring.
Radioprotection by metals: Selenium
NASA Astrophysics Data System (ADS)
Weiss, J. F.; Srinivasan, V.; Kumar, K. S.; Landauer, M. R.
The need exists for compounds that will protect individuals from high-dose acute radiation exposure in space and for agents that might be less protective but less toxic and longer acting. Metals and metal derivatives provide a small degree of radioprotection (dose reduction factor <= 1.2 for animal survival after whole-body irradiation). Emphasis is placed here on the radioprotective potential of selenium (Se). Both the inorganic salt, sodium selenite, and the organic Se compound, selenomethionine, enhance the survival of irradiated mice (60Co, 0.2 Gy/min) when injected IP either before (-24 hr and -1 hr) or shortly after (+15 min) radiation exposure. When administered at equitoxic doses (one-fourth LD10; selenomethionine = 4.0 mg/kg Se, sodium selenite = 0.8 mg/kg Se), both drugs enhanced the 30-day survival of mice irradiated at 9 Gy. Survival after 10-Gy exposure was significantly increased only after selenomethionine treatment. An advantage of selenomethionine is lower lethal and behavioral toxicity (locomotor activity depression) compared to sodium selenite, when they are administered at equivalent doses of Se. Sodium selenite administered in combination with WR-2721, S-2-(3-aminopropylamino)ethylphosphorothioic acid, enhances the radioprotective effect and reduces the lethal toxicity, but not the behavioral toxicity, of WR-2721. Other studies on radioprotection and protection against chemical carcinogens by different forms of Se are reviewed. As additional animal data and results from human chemoprevention trials become available, consideration also can be given to prolonged administration of Se compounds for protection against long-term radiation effects in space.
Jia, Zhong-Qiang; Liu, Di; Sheng, Cheng-Wang; Casida, John E; Wang, Chen; Song, Ping-Ping; Chen, Yu-Ming; Han, Zhao-Jun; Zhao, Chun-Qing
2018-01-01
Fluralaner is a novel isoxazoline insecticide which shows high insecticidal activity against parasitic, sanitary and agricultural pests, but there is little information about the effect of fluralaner on non-target organisms. This study reports the acute toxicity, bioconcentration, elimination and antioxidant response of fluralaner in zebrafish. All LC 50 values of fluralaner to zebrafish were higher than 10 mg L -1 at 24, 48, 72 and 96 h. To study the bioconcentration and elimination, the zebrafish were exposed to sub-lethal concentrations of fluralaner (2.00 and 0.20 mg L -1 ) for 15 d and then held 6 d in clean water. The results showed medium BCF of fluralaner with values of 12.06 (48 h) and 21.34 (144 h) after exposure to 2.00 and 0.20 mg L -1 fluralaner, respectively. In the elimination process, a concentration of only 0.113 mg kg -1 was found in zebrafish on the 6th day after removal to clean water. After exposure in 2.00 mg L -1 fluralaner, the enzyme activities of SOD, CAT, and GST, GSH-PX, CarE and content of MDA were measured. Only CAT and CarE activities were significantly regulated and the others stayed at a stable level compared to the control group. Meanwhile, transcriptional expression of CYP1C2, CYP1D1, CYP11A were significantly down-regulated at 12 h exposed to 2.00 mg L -1 of fluralaner. Except CYP1D1, others CYPs were up-regulated at different time during exposure periods. Fluralaner and its formulated product (BRAVECTO ® ) are of low toxicity to zebrafish and are rapidly concentrated in zebrafish and eliminated after exposure in clean water. Antioxidant defense and metabolic systems were involved in the fluralaner-induced toxicity. Among them, the activities of CAT and CarE, and most mRNA expression level of CYPs showed fast response to the sub-lethal concentration of fluralaner, which could be used as a biomarker relevant to the toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cartlidge, Rhys; Campana, Olivia; Nugegoda, Dayanthi; Wlodkowic, Donald
2016-12-01
Behavioural alterations can occur as a result of a toxicant exposure at concentrations significantly lower than lethal effects that are commonly measured in acute toxicity testing. The use of alternating light and dark photoperiods to test phototactic responses of aquatic invertebrates in the presence of environmental contaminants provides an attractive analytical avenue. Quantification of phototactic responses represents a sublethal endpoint that can be employed as an early warning signal. Despite the benefits associated with the assessment of these endpoints, there is currently a lack of automated and miniaturized bioanalytical technologies to implement the development of toxicity testing with small aquatic species. In this study we present a proof-of-concept microfluidic Lab-on-a-Chip (LOC) platform for the assessment of rotifer swimming behavior in the presence of the toxicant copper sulfate. The device was designed to assess impact of toxicants at sub-lethal concentrations on freshwater crustacean Brachionus calyciflorus, testing behavioral endpoints such as animal swimming distance, speed and acceleration. The LOC device presented in this work enabled straightforward caging of microscopic crustaceans as well as non-invasive analysis of rapidly swimming animals in a focal plane of a video-microscopy system. The chip-based technology was fabricated using a new photolithography method that enabled formation of thick photoresist layers with minimal distortion. Photoresist molds were then employed for replica molding of LOC devices with poly(dimethylsiloxane) (PDMS) elastomer. The complete bioanalytical system consisted of: (i) microfluidic PDMS chip-based device; (ii) peristaltic microperfusion pumping manifold; (iii) miniaturized CMOS camera for video data acquisition; and (iv) video analysis software algorithms for quantification of changes in swimming behaviour of B. calyciflorus in response to reference toxicants.
Pesticides: an update of human exposure and toxicity.
Mostafalou, Sara; Abdollahi, Mohammad
2017-02-01
Pesticides are a family of compounds which have brought many benefits to mankind in the agricultural, industrial, and health areas, but their toxicities in both humans and animals have always been a concern. Regardless of acute poisonings which are common for some classes of pesticides like organophosphoruses, the association of chronic and sub-lethal exposure to pesticides with a prevalence of some persistent diseases is going to be a phenomenon to which global attention has been attracted. In this review, incidence of various malignant, neurodegenerative, respiratory, reproductive, developmental, and metabolic diseases in relation to different routes of human exposure to pesticides such as occupational, environmental, residential, parental, maternal, and paternal has been systematically criticized in different categories of pesticide toxicities like carcinogenicity, neurotoxicity, pulmonotoxicity, reproductive toxicity, developmental toxicity, and metabolic toxicity. A huge body of evidence exists on the possible role of pesticide exposures in the elevated incidence of human diseases such as cancers, Alzheimer, Parkinson, amyotrophic lateral sclerosis, asthma, bronchitis, infertility, birth defects, attention deficit hyperactivity disorder, autism, diabetes, and obesity. Most of the disorders are induced by insecticides and herbicides most notably organophosphorus, organochlorines, phenoxyacetic acids, and triazine compounds.
In Vitro Evaluations and In Vivo Toxicity and Efficacy Studies of MFM501 against MRSA.
Johari, Saiful Azmi; Mohtar, Mastura; Syed Mohamad, Sharifah Aminah; Mohammat, Mohd Fazli; Sahdan, Rohana; Mohamed, Azman; Mohamad Ridhwan, Mohamad Jemain
2017-01-01
Previously we have discovered a synthetically derived pyrrolidone alkaloid, MFM501, exhibiting good inhibitory activity against 53 MRSA and MSSA isolates with low cytotoxicity against three normal cell-lines with IC 50 values at >625 µ g/ml. Time-kill assay, scanning electron microscopy (SEM) analysis, in vivo oral acute toxicity test, and mice peritonitis model were carried out in this study. In the time-kill study, MFM501 showed a less than 3 log 10 decrease in bacterial colony concentration value (CFU/ml) which represented a bacteriostatic action while displaying a time-dependent inhibitory mechanism. Following that, SEM analysis suggested that MFM501 may exert its inhibitory activity via cytoplasmic membrane disruption. Moreover, MFM501 showed no toxicity effect on treated mice at an estimated median acute lethal dose (LD 50 ) value of more than 300 mg/kg and less than 2000 mg/kg. For the efficacy test, a mean effective dose (ED 50 ) of 87.16 mg/kg was obtained via a single dose oral administration. Our data demonstrated that MFM501 has the potential to be developed further as a new, safe, and effective oral-delivered antibacterial agent against MRSA isolates.
In Vitro Evaluations and In Vivo Toxicity and Efficacy Studies of MFM501 against MRSA
Mohtar, Mastura; Syed Mohamad, Sharifah Aminah; Mohammat, Mohd Fazli; Sahdan, Rohana; Mohamed, Azman; Mohamad Ridhwan, Mohamad Jemain
2017-01-01
Previously we have discovered a synthetically derived pyrrolidone alkaloid, MFM501, exhibiting good inhibitory activity against 53 MRSA and MSSA isolates with low cytotoxicity against three normal cell-lines with IC50 values at >625 µg/ml. Time-kill assay, scanning electron microscopy (SEM) analysis, in vivo oral acute toxicity test, and mice peritonitis model were carried out in this study. In the time-kill study, MFM501 showed a less than 3 log10 decrease in bacterial colony concentration value (CFU/ml) which represented a bacteriostatic action while displaying a time-dependent inhibitory mechanism. Following that, SEM analysis suggested that MFM501 may exert its inhibitory activity via cytoplasmic membrane disruption. Moreover, MFM501 showed no toxicity effect on treated mice at an estimated median acute lethal dose (LD50) value of more than 300 mg/kg and less than 2000 mg/kg. For the efficacy test, a mean effective dose (ED50) of 87.16 mg/kg was obtained via a single dose oral administration. Our data demonstrated that MFM501 has the potential to be developed further as a new, safe, and effective oral-delivered antibacterial agent against MRSA isolates. PMID:28536702
Hemlock alkaloids from Socrates to poison aloes.
Reynolds, Tom
2005-06-01
Hemlock (Conium maculatum L. Umbelliferae) has long been known as a poisonous plant. Toxicity is due to a group of piperidine alkaloids of which the representative members are coniine and gamma-coniceine. The latter is the more toxic and is the first formed biosynthetically. Its levels in relation to coniine vary widely according to environmental conditions and to provenance of the plants. Surprisingly, these piperidine alkaloids have turned up in quite unrelated species in the monocotyledons as well as the dicotyledons. Aloes, for instance, important medicinal plants, are not regarded as poisonous although some species are very bitter. Nevertheless a small number of mostly local species contain the alkaloids, especially gamma-coniceine and there have been records of human poisoning. The compounds are recognized by their characteristic mousy smell. Both acute and chronic symptoms have been described. The compounds are neurotoxins and death results from respiratory failure, recalling the effects of curare. Chronic non-lethal ingestion by pregnant livestock leads to foetal malformation. Both acute and chronic toxicity are seen with stock in damp meadows and have been recorded as problems especially in North America. The alkaloids derive biosynthetically from acetate units via the polyketide pathway in contrast to other piperidine alkaloids which derive from lysine.
Sun, Hong-Qin; Du, Yang; Zhang, Zi-Yang; Jiang, Wen-Jing; Guo, Yan-Min; Lu, Xi-Wu; Zhang, Yi-Min; Sun, Li-Wei
2016-09-19
Benzophenone (BP) and N,N -diethyl-3-methylbenzamide (DEET) are two chemicals often used in personal care products (PCPs). There is a lack of systematic ecotoxicological evaluations about the two chemicals to aquatic organisms. In the present study, the acute toxic effects on Chlorella vulgaris , Daphnia Magana , and Brachydanio rerio were tested and the ecotoxicological risks were evaluated. For BP, the 96-h half-maximal effective concentration (EC 50 ) on C. vulgaris was 6.86 mg/L; the 24-h median lethal concentration (LC 50 ) on D. magana was 7.63 mg/L; the 96-h LC 50 on B. rerio was 14.73 mg/L. For DEET, those were 270.72 mg/L, 40.74 mg/L, and 109.67 mg/L, respectively. The mixture toxicity of BP and DEET, on C. vulgaris , D. magana , and B. rerio all showed an additive effect. The induced predicted no-effect concentrations (PNECs) for BP and DEET by assessment factor (AF) method are 0.003 mg/L and 0.407 mg/L, respectively. Both are lower than the concentrations detected from environment at present, verifying that BP and DEET are low-risk chemicals to the environment.
Sun, Hong-Qin; Du, Yang; Zhang, Zi-Yang; Jiang, Wen-Jing; Guo, Yan-Min; Lu, Xi-Wu; Zhang, Yi-Min; Sun, Li-Wei
2016-01-01
Benzophenone (BP) and N,N-diethyl-3-methylbenzamide (DEET) are two chemicals often used in personal care products (PCPs). There is a lack of systematic ecotoxicological evaluations about the two chemicals to aquatic organisms. In the present study, the acute toxic effects on Chlorella vulgaris, Daphnia Magana, and Brachydanio rerio were tested and the ecotoxicological risks were evaluated. For BP, the 96-h half-maximal effective concentration (EC50) on C. vulgaris was 6.86 mg/L; the 24-h median lethal concentration (LC50) on D. magana was 7.63 mg/L; the 96-h LC50 on B. rerio was 14.73 mg/L. For DEET, those were 270.72 mg/L, 40.74 mg/L, and 109.67 mg/L, respectively. The mixture toxicity of BP and DEET, on C. vulgaris, D. magana, and B. rerio all showed an additive effect. The induced predicted no-effect concentrations (PNECs) for BP and DEET by assessment factor (AF) method are 0.003 mg/L and 0.407 mg/L, respectively. Both are lower than the concentrations detected from environment at present, verifying that BP and DEET are low-risk chemicals to the environment. PMID:27657095
Low, Bin-Seng; Das, Prashanta Kumar; Chan, Kit-Lam
2014-07-01
The roots of Eurycoma longifolia Jack are popularly sought as herbal medicinal supplements to improve libido and general health amongst the local ethnic population. The major quassinoids of E. longifolia improved spermatogenesis and fertility but toxicity studies have not been well documented. The reproductive toxicity, two generation of foetus teratology and the up-and-down acute toxicity were investigated in Sprague-Dawley rats orally treated with quassinoid-rich E. longifolia extract (TAF273). The results showed that the median lethal dose (LD50 ) of TAF273 for female and male rats was 1293 and >2000 mg/kg, respectively. Fertility index and litter size of the TAF273 treated were significantly increased when compared with those of the non-treated animals. The TAF273-treated dams decreased in percentage of pre-implantation loss, post-implantation loss and late resorption. No toxic symptoms were observed on the TAF273-treated pregnant female rats and their foetuses were normal. The no-observed adverse effect level (NOAEL) obtained from reproductive toxicity and teratology studies of TAF273 in rats was 100 mg/kg body weight/day, being more than 10-fold lower than the LD50 value. Thus, any human dose derived from converting the rat doses of 100 mg/kg and below may be considered as safe for further clinical studies. Copyright © 2013 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herkovits, J.; Herkovits, F.D.; Fernandez, A.
The identification of mercurium hazard for Cnesterodon decemmaculatus and Bufo arenarum (embryos) was evaluated in a renewal toxicity test system at 20 C and informed as LC100, LC50 and NOEC for 24 and up till 96 hours of exposure (acute Toxicity Profile -- TPa -- for mercurium). On addition the beneficial effect of zinc against the lethal effect of mercurium is reported. The test with fish were conducted maintaining 10 individuals in 1 L of EPA water (by quadruplicate) in six concentrations of Hg plus controls, while for amphibian, batches of 10 Bufo arenarum embryos at stage 25 (by quadruplicate)more » were maintained in 40 ml of Holtfreter`s solution in six concentration of Hg + (HgCl) plus controls. The LC100, LC50 and NOEC for fishes expressed in Hg (+) mg/L were: 0.60, 0.25 and 0.10 for 24 hours of exposure. These values increased very slightly at least up till 96 hours of exposure. Therefore, Bufo arenarum seems to be about three times more sensitive than Cnesterodon decemmaculatus to mercurium. By means of simultaneous mercurium-zinc treatment (ZnSO4) the lethal effect of mercurium could be reduced in amphibians up till 100% with 18 mg Zn2+/L, while for the fish the best result obtained was a reduction of about 50% of lethality within the first 96 hours of treatment with 20 mg Zn2+/L. As a whole the results point out the high susceptibility of amphibian embryos to xenobiotics, the beneficial effect of zinc against embryos to xenobiotics, the beneficial effect of zinc against toxicity exerted by Hg and the need of biological test systems for recording the combined effects of substances released to the environment.« less
Acute Toxicity of Sodium Fluorescein to Ashy Pebblesnails Fluminicola fuscus
Stockton, Kelly A.; Moffitt, Christine M.; Blew, David L.; Farmer, C. Neil
2011-01-01
Water resource agencies and groundwater scientists use fluorescein dyes to trace ground water flows that supply surface waters that may contain threatened or endangered mollusk species. Since little is known of the toxicity of sodium fluorescein to mollusks, we tested the toxicity of sodium fluorescein to the ashy pebblesnail Fluminicola fuscus. The pebblesnail was selected as a surrogate test species for the threatened Bliss Rapid snail Taylorcocha serpenticola that is endemic to the Snake River and its tributaries in the Hagerman Valley, Idaho. In laboratory tests, we expose replicated groups of snails to a series of concentrations of fluorescein in a static 24 h exposure at 15 degrees C. Following the exposure, we removed snails, rinsed them, and allowed a 48 h recovery in clean water before recording mortality. We estimated 377 mg/L as the median lethal dose. Mortality to snails occurred at concentrations well above those expected in test wells during the monitoring efforts.
Soloneski, Sonia; Ruiz de Arcaute, Celeste; Larramendy, Marcelo L
2016-09-01
The acute toxicity of two herbicide formulations, namely, the 57.71 % dicamba (DIC)-based Banvel(®) and the 48 % glyphosate (GLY)-based Credit(®), alone as well as the binary mixture of these herbicides was evaluated on late-stage Rhinella arenarum larvae (stage 36) exposed under laboratory conditions. Mortality was used as an endpoint for determining acute lethal effects, whereas the single-cell gel electrophoresis (SCGE) assay was employed as genotoxic endpoint to study sublethal effects. Lethality studies revealed LC5096 h values of 358.44 and 78.18 mg L(-1) DIC and GLY for Banvel(®) and Credit(®), respectively. SCGE assay revealed, after exposure for 96 h to either 5 and 10 % of the Banvel(®) LC5096 h concentration or 5 and 10 % of the Credit(®) LC5096 h concentration, an equal significant increase of the genetic damage index (GDI) regardless of the concentration of the herbicide assayed. The binary mixtures of 5 % Banvel(®) plus 5 % Credit(®) LC5096 h concentrations and 10 % Banvel(®) plus 10 % Credit(®) LC5096 h concentrations induced equivalent significant increases in the GDI in regard to GDI values from late-stage larvae exposed only to Banvel(®) or Credit(®). This study represents the first experimental evidence of acute lethal and sublethal effects exerted by DIC on the species, as well as the induction of primary DNA breaks by this herbicide in amphibians. Finally, a synergistic effect of the mixture of GLY and DIC on the induction of primary DNA breaks on circulating blood cells of R. arenarum late-stage larvae could be demonstrated.
Li, Yue; Chen, Hung-lin; Bannick, Nadine; Henry, Michael; Holm, Adrian N.; Metwali, Ahmed; Urban, Joseph F.; Rothman, Paul B.; Weiner, George J.; Blazar, Bruce R.; Elliott, David E.; Ince, M. Nedim
2014-01-01
Donor T lymphocyte transfer with hematopoietic stem cells suppresses residual tumor growth (graft-versus-tumor; GVT) in cancer patients undergoing bone marrow transplantation (BMT). However, donor T cell reactivity to host organs causes severe and potentially lethal inflammation, called graft-versus-host disease (GVHD). High dose steroids or other immune suppressives are used to treat GVHD that have limited ability to control the inflammation while incurring long-term toxicity. Novel strategies are needed to modulate GVHD, preserve GVT and improve the outcome of BMT. Regulatory T cells (Tregs) control alloantigen-sensitized inflammation of GVHD, sustain GVT and prevent mortality in bone marrow transplantation. Helminths colonizing the alimentary tract dramatically increase the Treg activity, thereby modulating intestinal or systemic inflammatory responses. These observations led us to hypothesize that helminths can regulate GVHD and maintain GVT in mice. Acute GVHD was induced in helminth (Heligmosomoides polygyrus)-infected or uninfected Balb/C recipients of C57BL/6 donor grafts. Helminth infection suppressed donor T cell inflammatory cytokine generation along with reduction in GVHD lethality and maintenance of GVT. H. polygyrus colonization promoted the survival of TGFβ generating recipient Tregs after a conditioning regimen with total body irradiation and led to a TGFβ-dependent in vivo expansion/maturation of donor Tregs after BMT. Helminths did not control GVHD, when T cells unresponsive to TGFβ-mediated immune regulation were used as donor T lymphocytes. These results suggest that helminths suppress acute GVHD, employing regulatory T cells and TGFβ-dependent pathways in mice. Helminthic regulation of GVHD and GVT through intestinal immune conditioning may improve the outcome of BMT. PMID:25527786
Milam, C.D.; Farris, J.L.; Dwyer, F.J.; Hardesty, D.K.
2005-01-01
Acute (24-h) toxicity tests were used in this study to compare lethality responses in early life stages (glochidia) of six freshwater mussel species, Leptodea fragilis, U. imbecillis, Lampsilis cardium, Lampsilis siliquoidea, Megalonaias nervosa, and Ligumia subrostrata, and two standard test organisms, Ceriodaphnia dubia and Daphnia magna. Concentrations of carbaryl, copper, 4-nonylphenol, pentachlorophenol, permethrin, and 2,4-D were used in acute exposures to represent different chemical classes and modes of action. The relative sensitivities of species were evaluated by ranking their LC 50 values for each chemical. We used these ranks to determine the extent to which U. imbecillis (one of the most commonly used unionids in toxicity tests) was representative of the tolerances of other mussels. We also calculated geometric mean LC50s for the families Unionidae and Daphnidae. Rankings of these data were used to assess the extent to which Daphnidae can be used as surrogates for freshwater mussels relative to chemical sensitivity. While no single chemical elicited consistently high or low toxicity estimates, carbaryl and 2,4-D were generally the least toxic to all species tested. No species was always the most sensitive, and Daphnidae were generally protective of Unionidae. Utterbackia imbecillis, while often proposed as a standard unionid mussel test species, did not always qualify as a sufficient surrogate (i.e., a substitute organism that often elicits similar sensitivity responses to the same contaminant exposure) for other species of mussels, since it was usually one of the more tolerant species in our rankings. U. imbecillis should be used as a surrogate species only with this caution on its relative insensitivity. ?? 2005 Springer Science+Business Media, Inc.
Babak, Khoshideh; Mohammad, Arefi; Mazaher, Ghorbani; Fatemeh, Taghizadeh
2017-01-01
OBJECTIVES The aim of this study was to investigate the clinical and demographic characteristics and some laboratory findings of hospitalized patients with acute opioid toxicity and rhabdomyolysis. METHODS This cross-sectional study investigated 354 patients hospitalized at Baharloo Hospital in Tehran in 2014 with acute illicit drug toxicity. Data were collected using an investigator-made checklist. The collected data (such as mortality rate, demographic data, and renal function tests, as well as serum biochemical findings) were analyzed by descriptive statistics and the chi-square test. RESULTS A total of 354 patients were admitted to the hospital in 2014 with acute illicit drug toxicity, including 291 males and 63 females. The total number of patients with rhabdomyolysis was 76 (21.5% of the total), of whom 69 (90.8%) were male and 7 (9.2%) were female. Most cases of rhabdomyolysis were associated with methadone abuse, followed by opium abuse. Rhabdomyolysis was most common in those 20-29 and 30-39 years old, with methadone and opium the most commonly abused illicit drugs. The mean blood urea level was 3.8±1.0 mg/dL, and the mean serum potassium and sodium levels were 3.8±0.3 mg/dL and 140.4±4.0 mg/dL, respectively. Five patients, all of whom were male, passed away due to severe renal failure (6.5%). CONCLUSIONS Toxicity caused by opioids is associated with clinical complications and laboratory disorders, such as electrolyte disorders, which can lead to lethal or life-threatening results in some cases. Abnormal laboratory test findings should be identified in patients with opioid toxicity in order to initiate efficient treatment. PMID:29121712
Babak, Khoshideh; Mohammad, Arefi; Mazaher, Ghorbani; Samaneh, Akbarpour; Fatemeh, Taghizadeh
2017-01-01
The aim of this study was to investigate the clinical and demographic characteristics and some laboratory findings of hospitalized patients with acute opioid toxicity and rhabdomyolysis. This cross-sectional study investigated 354 patients hospitalized at Baharloo Hospital in Tehran in 2014 with acute illicit drug toxicity. Data were collected using an investigator-made checklist. The collected data (such as mortality rate, demographic data, and renal function tests, as well as serum biochemical findings) were analyzed by descriptive statistics and the chi-square test. A total of 354 patients were admitted to the hospital in 2014 with acute illicit drug toxicity, including 291 males and 63 females. The total number of patients with rhabdomyolysis was 76 (21.5% of the total), of whom 69 (90.8%) were male and 7 (9.2%) were female. Most cases of rhabdomyolysis were associated with methadone abuse, followed by opium abuse. Rhabdomyolysis was most common in those 20-29 and 30-39 years old, with methadone and opium the most commonly abused illicit drugs. The mean blood urea level was 3.8±1.0 mg/dL, and the mean serum potassium and sodium levels were 3.8±0.3 mg/dL and 140.4±4.0 mg/dL, respectively. Five patients, all of whom were male, passed away due to severe renal failure (6.5%). Toxicity caused by opioids is associated with clinical complications and laboratory disorders, such as electrolyte disorders, which can lead to lethal or life-threatening results in some cases. Abnormal laboratory test findings should be identified in patients with opioid toxicity in order to initiate efficient treatment.
Hormetic effect of methylmercury on Caenorhabditis elegans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helmcke, Kirsten J., E-mail: Kirsten.J.Helmcke@gmail.com; Aschner, Michael, E-mail: Michael.Aschner@vanderbilt.ed
2010-10-15
Research has demonstrated the toxic effects of methylmercury (MeHg), yet molecular mechanisms underlying its toxicity are not completely understood. Caenorhabditis elegans (C. elegans) offers a unique biological model to explore mechanisms of MeHg toxicity given many advantages associated with its ease of use and genetic power. Since our previous work indicated neurotoxic resistance of C. elegans to MeHg, the present study was designed to examine molecular mechanisms associated with this resistance. We hypothesized MeHg would induce expression of gst, hsp or mtl in vivo since glutathione (GSH), heat shock proteins (HSPs), and metallothioneins (MTs) have shown involvement in MeHg toxicity.more » Our studies demonstrated a modest, but significant increase in fluorescence in gst-4::GFP and mtl-1::GFP strains at an acute, low L1 MeHg exposure, whereas chronic L4 MeHg exposure induced expression of gst-4::GFP and hsp-4::GFP. Knockout gst-4 animals showed no alterations in lethality sensitivity compared to wildtype animals whereas mtl knockouts displayed increased sensitivity to MeHg exposure. GSH levels were increased by acute MeHg treatment and depleted with chronic exposure. We also demonstrate that MeHg induces hormesis, a phenotype whereby a sublethal exposure to MeHg rendered C. elegans resistant to subsequent exposure to the organometal. The involvement of gst-4, hsp-4, mtl-1, and mtl-2 in hormesis was examined. An increase in gst-4::GFP expression after a low-dose acute exposure to MeHg indicated that gst-4 may be involved in this response. Our results implicate GSH, HSPs, and MTs in protecting C. elegans from MeHg toxicity and show a potential role of gst-4 in MeHg-induced hormesis.« less
Emergency planning and the acute toxic potency of inhaled ammonia.
Michaels, R A
1999-01-01
Ammonia is present in agriculture and commerce in many if not most communities. This report evaluates the toxic potency of ammonia, based on three types of data: anecdotal data, in some cases predating World War 1, reconstructions of contemporary industrial accidents, and animal bioassays. Standards and guidelines for human exposure have been driven largely by the anecdotal data, suggesting that ammonia at 5,000-10,000 parts per million, volume/volume (ppm-v), might be lethal within 5-10 min. However, contemporary accident reconstructions suggest that ammonia lethality requires higher concentrations. For example, 33,737 ppm-v was a 5-min zero-mortality value in a major ammonia release in 1973 in South Africa. Comparisons of secondary reports of ammonia lethality with original sources revealed discrepancies in contemporary sources, apparently resulting from failure to examine old documents or accurately translate foreign documents. The present investigation revealed that contemporary accident reconstructions yield ammonia lethality levels comparable to those in dozens of reports of animal bioassays, after adjustment of concentrations to human equivalent concentrations via U.S. Environmental Protection Agency (EPA) procedures. Ammonia levels potentially causing irreversible injury or impairing the ability of exposed people to escape from further exposure or from coincident perils similarly have been biased downwardly in contemporary sources. The EPA has identified ammonia as one of 366 extremely hazardous substances subject to community right-to-know provisions of the Superfund Act and emergency planning provisions of the Clean Air Act. The Clean Air Act defines emergency planning zones (EPZs) around industrial facilities exceeding a threshold quantity of ammonia on-site. This study suggests that EPZ areas around ammonia facilities can be reduced, thereby also reducing emergency planning costs, which will vary roughly with the EPZ radius squared. Images Figure 1 Figure 2 PMID:10417358
Bovi, Thaís S; Zaluski, Rodrigo; Orsi, Ricardo O
2018-01-01
This study evaluated the in vitro toxicity and motor activity changes in African-derived adult honey bees (Apis mellifera L.) exposed to lethal or sublethal doses of the insecticides fipronil and imidacloprid. Mortality of bees was assessed to determine the ingestion and contact lethal dose for 24 h using probit analysis. Motor activities in bees exposed to lethal (LD50) and sublethal doses (1/500th of the lethal dose) of both insecticides were evaluated in a behavioral observation box at 1 and 4 h. Ingestion and contact lethal doses of fipronil were 0.2316 ? 0.0626 and 0.0080 ? 0.0021 μg/bee, respectively. Ingestion and contact lethal doses of imidacloprid were 0.1079 ? 0.0375 and 0.0308 ? 0.0218 μg/bee, respectively. Motor function of bees exposed to lethal doses of fipronil and imidacloprid was impaired; exposure to sublethal doses of fipronil but not imidacloprid impaired motor function. The insecticides evaluated in this study were highly toxic to African-derived A. mellifera and caused impaired motor function in these pollinators.
Meyer, Joseph S; Traudt, Elizabeth M; Ranville, James F
2018-01-01
In aquatic toxicology, a toxicity-prediction model is generally deemed acceptable if its predicted median lethal concentrations (LC50 values) or median effect concentrations (EC50 values) are within a factor of 2 of their paired, observed LC50 or EC50 values. However, that rule of thumb is based on results from only two studies: multiple LC50 values for the fathead minnow (Pimephales promelas) exposed to Cu in one type of exposure water, and multiple EC50 values for Daphnia magna exposed to Zn in another type of exposure water. We tested whether the factor-of-2 rule of thumb also is supported in a different dataset in which D. magna were exposed separately to Cd, Cu, Ni, or Zn. Overall, the factor-of-2 rule of thumb appeared to be a good guide to evaluating the acceptability of a toxicity model's underprediction or overprediction of observed LC50 or EC50 values in these acute toxicity tests.
Dorca-Arévalo, Jonatan; Pauillac, Serge; Díaz-Hidalgo, Laura; Martín-Satué, Mireia; Popoff, Michel R.; Blasi, Juan
2014-01-01
Epsilon toxin (Etx) from Clostridium perfringens is a pore-forming protein with a lethal effect on livestock, producing severe enterotoxemia characterized by general edema and neurological alterations. Site-specific mutations of the toxin are valuable tools to study the cellular and molecular mechanism of the toxin activity. In particular, mutants with paired cysteine substitutions that affect the membrane insertion domain behaved as dominant-negative inhibitors of toxin activity in MDCK cells. We produced similar mutants, together with a well-known non-toxic mutant (Etx-H106P), as green fluorescent protein (GFP) fusion proteins to perform in vivo studies in an acutely intoxicated mouse model. The mutant (GFP-Etx-I51C/A114C) had a lethal effect with generalized edema, and accumulated in the brain parenchyma due to its ability to cross the blood-brain barrier (BBB). In the renal system, this mutant had a cytotoxic effect on distal tubule epithelial cells. The other mutants studied (GFP-Etx-V56C/F118C and GFP-Etx-H106P) did not have a lethal effect or cross the BBB, and failed to induce a cytotoxic effect on renal epithelial cells. These data suggest a direct correlation between the lethal effect of the toxin, with its cytotoxic effect on the kidney distal tubule cells, and the ability to cross the BBB. PMID:25013927
Dorca-Arévalo, Jonatan; Pauillac, Serge; Díaz-Hidalgo, Laura; Martín-Satué, Mireia; Popoff, Michel R; Blasi, Juan
2014-01-01
Epsilon toxin (Etx) from Clostridium perfringens is a pore-forming protein with a lethal effect on livestock, producing severe enterotoxemia characterized by general edema and neurological alterations. Site-specific mutations of the toxin are valuable tools to study the cellular and molecular mechanism of the toxin activity. In particular, mutants with paired cysteine substitutions that affect the membrane insertion domain behaved as dominant-negative inhibitors of toxin activity in MDCK cells. We produced similar mutants, together with a well-known non-toxic mutant (Etx-H106P), as green fluorescent protein (GFP) fusion proteins to perform in vivo studies in an acutely intoxicated mouse model. The mutant (GFP-Etx-I51C/A114C) had a lethal effect with generalized edema, and accumulated in the brain parenchyma due to its ability to cross the blood-brain barrier (BBB). In the renal system, this mutant had a cytotoxic effect on distal tubule epithelial cells. The other mutants studied (GFP-Etx-V56C/F118C and GFP-Etx-H106P) did not have a lethal effect or cross the BBB, and failed to induce a cytotoxic effect on renal epithelial cells. These data suggest a direct correlation between the lethal effect of the toxin, with its cytotoxic effect on the kidney distal tubule cells, and the ability to cross the BBB.
Variations in toxicity of semi-coking wastewater treatment processes and their toxicity prediction.
Ma, Xiaoyan; Wang, Xiaochang; Liu, Yongjun; Gao, Jian; Wang, Yongkun
2017-04-01
Chemical analyses and bioassays using Vibrio fischeri and Daphnia magna were conducted to evaluate comprehensively the variation of biotoxicity caused by contaminants in wastewater from a semi-coking wastewater treatment plant (WWTP). Pretreatment units (including an oil-water separator, a phenols extraction tower, an ammonia stripping tower, and a regulation tank) followed by treatment units (including anaerobic-oxic treatment units, coagulation-sedimentation treatment units, and an active carbon adsorption column) were employed in the semi-coking WWTP. Five benzenes, 11 phenols, and five polycyclic aromatic hydrocarbons (PAHs) were investigated as the dominant contaminants in semi-coking wastewater. Because of residual extractant, the phenols extraction process increased acute toxicity to V. fischeri and immobilization and lethal toxicity to D. magna. The acute toxicity of pretreated wastewater to V. fischeri was still higher than that of raw semi-coking wastewater, even though 90.0% of benzenes, 94.8% of phenols, and 81.0% of PAHs were removed. After wastewater pretreatment, phenols and PAHs were mainly removed by anaerobic-oxic and coagulation-sedimentation treatment processes respectively, and a subsequent active carbon adsorption process further reduced the concentrations of all target chemicals to below detection limits. An effective biotoxicity reduction was found during the coagulation-sedimentation and active carbon adsorption treatment processes. The concentration addition model can be applied for toxicity prediction of wastewater from the semi-coking WWTP. The deviation between the measured and predicted toxicity results may result from the effects of compounds not detectable by instrumental analyses, the synergistic effect of detected contaminants, or possible transformation products. Copyright © 2016. Published by Elsevier Inc.
Gaikowski, Mark P.; Hamilton, Steven J.; Buhl, Kevin J.; McDonald, Susan F.; Summers, Cliff H.; Linder, G.; Krest, S.; Sparling, D.; Little, E.
1996-01-01
Laboratory studies were conducted with five early life stages of rainbow trout, Oncorhynchus mykiss, to determine the acute toxicities of five fire-fighting chemical formulations in standardized soft and hard water. Eyed egg, embryo–larvae, swim-up fry, and 60- and 90-d posthatch juveniles were exposed to three fire retardants (Fire-Trol LCG-R, Fire-Trol GTS-R, and Phos-Chek D75-F) and two fire-suppressant foams (Phos-Chek WD-881 and Silv-Ex). Swim-up fry were generally the most sensitive life stage, whereas the eyed-egg was the least sensitive. Toxicity of fire-fighting formulations was greater in hard water than in soft water for all life stages tested with Fire-Trol GTS-R and Silv-Ex and for 90-d-old juveniles tested with Fire-Trol LCG-R. The fire-suppressant foams were more toxic than the fire retardants. The 96-h median lethal concentrations (LC50s) were ranked from the most toxic to the least toxic formulation as follows (ranges are the lowest and highest 96-h LC50 calculated for each formulation): Phos-Chek WD-881 (11–44 mg/L), Silv-Ex (11–78 mg/L), Phos-Chek D75-F (218–>3,600 mg/L), Fire-Trol GTS-R (207–>6,000 mg/L), and Fire-Trol LCG-R (872–>10,000 mg/L). Toxicity values suggest that accidental entry of fire-fighting chemicals into aquatic environments could adversely affect fish populations.
Liu, Man; Liu, Jie; Wu, Yizhen; Gao, Boyan; Wu, Pingping; Shi, Haiming; Sun, Xiangjun; Huang, Haiqiu; Wang, Thomas Ty; Yu, Liangli Lucy
2017-02-01
3-monochloro-1, 2-propanediol fatty acid esters (3-MCPDEs) comprise a group of food toxicants formed during food processing. 3-MCPDEs have received increasing attention concerning their potential negative effects on human health. However, reports on the toxicity of 3-MCPD esters are still limited. To determine the effects of fatty acid substitutions on the toxicity of their esters, 1-stearic, 1-oleic, 1-linoleic, 1-linoleic-2-palmitic and 1-palmitic-2-linoleic acid esters of 3-MCPD were synthesized and evaluated with respect to their acute oral toxicities in Swiss mice. 3-MCPDEs were obtained through the reaction of 3-MCPD and fatty acid chlorides, and their purities and structures were characterized by ultraperformance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS), infrared, 1 H and 13 C spectroscopic analyses. Medial lethal doses of 1-stearic, 1-oleic, 1-linoleic, 1-linoleic-2-palmitic and 1-palmitic-2-linoleic acid esters were 2973.8, 2081.4, 2016.3, 5000 and > 5000 mg kg -1 body weight. For the first time, 3-MCPDEs were observed for their toxic effects in the thymus and lung. In addition, major histopathological changes, as well as blood urea nitrogen and creatinine, were examined for mice fed the five 3-MCPDEs. The results from the present study suggest that the degree of unsaturation, chain length, number of substitution and relative substitution locations of fatty acids might alter the toxicity of 3-MCPDEs. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Miao, J.; Barnhart, M.C.; Brunson, E.L.; Hardesty, D.K.; Ingersoll, C.G.; Wang, N.
2010-01-01
Acute 96-h ammonia toxicity to three-month-old juvenile mussels (Lampsilis siliquoidea) was evaluated in four treatments (water-only, water-only with feeding, water and soil, and water and sand) using an exposure unit designed to maintain consistent pH and ammonia concentrations in overlying water and in pore water surrounding the substrates. Median effect concentrations (EC50s) for total ammonia nitrogen in the four treatments ranged from 5.6 to 7.7mg/L and median lethal concentrations (LC50s) ranged from 7.0 to 11mg/L at a mean pH of 8.4. Similar EC50s or LC50s with overlapping 95% confidence intervals among treatments indicated no influence of substrate on the response of mussels in acute exposures to ammonia. ?? 2010 SETAC.
Ebert, Timothy; Derksen, Richard
2004-04-01
Current theory governing the biological effectiveness of toxicants stresses the dose-response relationship and focuses on uniform toxicant distributions in the insect's environment. However, toxicants are seldom uniformly dispersed under field conditions. Toxicant distribution affects bioavailability, but the mechanics of such interactions is not well documented. We present a geometric model of the interactions between insects and heterogeneously distributed toxicants. From the model, we conclude the following: 1) There is an optimal droplet size, and droplets both smaller and larger than this optimum will decrease efficacy. 2) There is an ideal droplet distribution. Droplets should be spaced based on two criteria: calculate the allowable damage, double this quantity, and one lethal deposit should be placed in this area; and define the quantity of leaf the larva could eat before the toxicant decays below the lethal level and place one lethal deposit within this area. 3) Distributions of toxicant where deposits are sublethal will often be ineffective, but the application is wasteful if deposits contain more than a lethal dose. 4) Insect behavior both as individuals and collectively influences the level of crop production provided by an application. This conclusion has implications for both crop protection and natural plant-insect interactions. The effective utilization of new more environmentally sensitive toxicants may depend on how well we understand how heterogeneous toxicant distributions interact with insect behavior to determine the biological outcome.
Croton grewioides Baill. (Euphorbiaceae) Shows Antidiarrheal Activity in Mice
da Silva, Anne Dayse Soares; de Melo e Silva, Karoline; Neto, José Clementino; Costa, Vicente Carlos de Oliveira; Pessôa, Hilzeth de Luna F.; Tavares, Josean Fechine; da Silva, Marcelo Sobral; Cavalcante, Fabiana de Andrade
2016-01-01
Based on chemotaxonomy, we decided to investigate the possible antidiarrheal activity in mice of a crude ethanolic extract obtained from aerial parts of Croton grewioides (CG-EtOH). We tested for any possible toxicity in rat erythrocytes and acute toxicity in mice. Antidiarrheal activity was assessed by determining the effect of CG-EtOH on defecation frequency, liquid stool, intestinal motility and intestinal fluid accumulation. CG-EtOH showed no in vitro cytotoxicity and was not orally lethal. In contrast, the extract given intraperitoneally (at 2000 mg/kg) was lethal, but only in females. CG-EtOH produced a significant and equipotent antidiarrheal activity, both in defecation frequency (ED50 = 106.0 ± 8.1 mg/kg) and liquid stools (ED50 = 105.0 ± 9.2 mg/kg). However, CG-EtOH (125 mg/kg) decreased intestinal motility by only 22.7% ± 4.4%. Moreover, extract markedly inhibited the castor oil-induced intestinal contents (ED50 = 34.6 ± 5.4 mg/kg). We thus conclude that CG-EtOH is not orally lethal and contains active principles with antidiarrheal activity, and this effect seems to involve mostly changes in intestinal secretion. SUMMARY CG-EtOH showed no in vitro cytotoxicity and was not orally lethal. In contrast, the extract given intraperitoneally (at 2000 mg/kg) was lethal, but only in females.CG-EtOH probably contains active metabolites with antidiarrheal activity.CG-EtOH reduced the frequency and number of liquid stools.Metabolites presents in the CG-EtOH act mainly by reducing intestinal fluid and, to a lesser extent, reducing intestinal motility. Abbreviations Used: CG-EtOH: crude ethanolic extract obtained from the aerial parts of C. grewioides; WHO: World Health Organization; ED50: dose of a drug that produces 50% of its maximum effect; Emax: maximum effect PMID:27365990
Han, Chung-Tack; Kim, Myoung-Jun; Moon, Seol-Hee; Jeon, Yu-Rim; Hwang, Jae-Sik; Nam, Chunja; Park, Chong-Woo; Lee, Sun-Ho; Na, Jae-Bum; Park, Chan-Sung; Park, Hee-Won; Lee, Jung-Min; Jang, Ho-Song; Park, Sun-Hee; Han, Kyoung-Goo; Choi, Young Whan
2015-01-01
Lithospermum erythrorhizon has long been used as a traditional oriental medicine. In this study, the acute and 28-day subacute oral dose toxicity studies of hexane extracts of the roots of L. erythrorhizon (LEH) were performed in Sprague-Dawley rats. In the acute toxicity study, LEH was administered once orally to 5 male and 5 female rats at dose levels of 500, 1,000, and 2,000 mg/kg. Mortality, clinical signs, and body weight changes were monitored for 14 days. Salivation, soft stool, soiled perineal region, compound-colored stool, chromaturia and a decrease in body weight were observed in the extract-treated groups, and no deaths occurred during the study. Therefore, the approximate lethal dose (ALD) of LEH in male and female rats was higher than 2,000 mg/kg. In the subacute toxicity study, LEH was administered orally to male and female rats for 28 days at dose levels of 25, 100, and 400 mg/kg/day. There was no LEH-related toxic effect in the body weight, food consumption, ophthalmology, hematology, clinical chemistry and organ weights. Compound-colored (black) stool, chromaturia and increased protein, ketone bodies, bilirubin and occult blood in urine were observed in the male and female rats treated with the test substance. In addition, the necropsy revealed dark red discoloration of the kidneys, and the histopathological examination showed presence of red brown pigment or increased hyaline droplets in the renal tubules of the renal cortex. However, there were no test substance-related toxic effects in the hematology and clinical chemistry, and no morphological changes were observed in the histopathological examination of the kidneys. Therefore, it was determined that there was no significant toxicity because the changes observed were caused by the intrinsic color of the test substance. These results suggest that the no-observed-adverse-effect Level (NOAEL) of LEH is greater than 400 mg/kg/day in both sexes. PMID:26877842
Han, Chung-Tack; Kim, Myoung-Jun; Moon, Seol-Hee; Jeon, Yu-Rim; Hwang, Jae-Sik; Nam, Chunja; Park, Chong-Woo; Lee, Sun-Ho; Na, Jae-Bum; Park, Chan-Sung; Park, Hee-Won; Lee, Jung-Min; Jang, Ho-Song; Park, Sun-Hee; Han, Kyoung-Goo; Choi, Young Whan; Lee, Hye-Yeong; Kang, Jong-Koo
2015-12-01
Lithospermum erythrorhizon has long been used as a traditional oriental medicine. In this study, the acute and 28-day subacute oral dose toxicity studies of hexane extracts of the roots of L. erythrorhizon (LEH) were performed in Sprague-Dawley rats. In the acute toxicity study, LEH was administered once orally to 5 male and 5 female rats at dose levels of 500, 1,000, and 2,000 mg/kg. Mortality, clinical signs, and body weight changes were monitored for 14 days. Salivation, soft stool, soiled perineal region, compound-colored stool, chromaturia and a decrease in body weight were observed in the extract-treated groups, and no deaths occurred during the study. Therefore, the approximate lethal dose (ALD) of LEH in male and female rats was higher than 2,000 mg/kg. In the subacute toxicity study, LEH was administered orally to male and female rats for 28 days at dose levels of 25, 100, and 400 mg/kg/day. There was no LEH-related toxic effect in the body weight, food consumption, ophthalmology, hematology, clinical chemistry and organ weights. Compound-colored (black) stool, chromaturia and increased protein, ketone bodies, bilirubin and occult blood in urine were observed in the male and female rats treated with the test substance. In addition, the necropsy revealed dark red discoloration of the kidneys, and the histopathological examination showed presence of red brown pigment or increased hyaline droplets in the renal tubules of the renal cortex. However, there were no test substance-related toxic effects in the hematology and clinical chemistry, and no morphological changes were observed in the histopathological examination of the kidneys. Therefore, it was determined that there was no significant toxicity because the changes observed were caused by the intrinsic color of the test substance. These results suggest that the no-observed-adverse-effect Level (NOAEL) of LEH is greater than 400 mg/kg/day in both sexes.
Flynn, R Wesley; Scott, David E; Kuhne, Wendy; Soteropoulos, Diana; Lance, Stacey L
2015-03-01
Many metals are acutely toxic to aquatic organisms at high concentrations and for some metals, such as copper (Cu), even low-level chronic contamination may be cause for conservation concern. Amphibian susceptibility to Cu has been examined in only a few species, and susceptibility is highly variable. The lethal and sublethal effects were examined of chronic aqueous Cu exposure on embryonic and larval eastern narrowmouth toads, Gastrophryne carolinensis. Copper levels as low as 10 μg Cu/L reduced embryonic and larval survival. Embryonic survivorship varied within- and between-source populations, with embryos derived from uncontaminated-wetland parents having greater survival at lower Cu levels than embryos from parents from a metal-contaminated constructed wetland. At 30 μg/L, embryos from the contaminated site had greater survival. Overall survival from oviposition to metamorphosis was 68.9% at 0 μg/L and 5.4% at 10 μg/L. Similarly, embryos exposed to ≥50 μg/L demonstrated developmental delays in transition from embryo to free-swimming larva. These results demonstrate a negative population-specific response to environmentally relevant levels of Cu. © 2014 SETAC.
Patiño, Arley Camilo; López, Jéssica; Aristizábal, Mónica; Quintana, Juan Carlos; Benjumea, Dora
2012-09-01
Traditional medicine is an invaluable source of research into new medicines as a supplement for the treatment of snakebite, considered as a serious public health problem worldwide. The extracts of the medicinal plant, Renealmia alpina, have been used traditionally by indigenous people of Chocó (Colombia) against Bothrops asper snakebite, a snake responsible for the majority of snakebite accidents in Colombia. The ability of extracts of R. alpinia leaves was tested for its ability to neutralize the hemorrhagic, coagulant and proteolytic effects of the snakebite venom of B. asper. The acute toxicity tests and analgesic activity of R. alpina were evaluated in vivo. In addition, tests were undertaken in in vitro conditions to demonstrate inhibition of coagulant, haemolytic and proteolytic activity of the B. asper venom. Results. Renealmia alpinia extracts had no toxic effects in experimental animals and also provided analgesic and antiophidian effects and protection against the lethal effects of the venom of B. asper. Renealmia. alpinia was an effective therapeutic alternative in association with antivenom treatment in the event of a B. asper snakebite accident. It was demonstrated to protect against the lethal effects and provided analgesic properties as well.
Lira, A C S; Zanardi, O Z; Beloti, V H; Bordini, G P; Yamamoto, P T; Parra, J R P; Carvalho, G A
2015-10-01
The use of synthetic acaricides for management of pest mites may alter the efficacy of the ectoparasitoid Tamarixia radiata (Waterston) in biological control of Diaphorina citri Kuwayama, the vector of the bacteria associated with huanglongbing (HLB) in citrus orchards. We evaluated the toxicity of 16 acaricides that are recommended for the control of citrus-pest mites to T. radiata. Acrinathrin, bifenthrin, carbosulfan, and fenpropathrin caused high acute toxicity and were considered harmful (mortality >77%) to T. radiata. Abamectin, diflubenzuron, etoxazole, fenbutatin oxide, fenpyroximate, flufenoxuron, hexythiazox, propargite, spirodiclofen, and sulfur caused low acute toxicity and affected the parasitism rate and emergence rate of adults (F1 generation), and were considered slightly harmful to T. radiata. Dicofol and pyridaben did not affect the survival and action of the ectoparasitoid, and were considered harmless. In addition to its acute toxicity, carbosulfan caused mortality higher than 25% for >30 d after application, and was considered persistent. Acrinathrin, bifenthrin, fenpropathrin, fenpyroximate, propargite, and sulfur caused mortalities over 25% until 24 d after application and were considered moderately persistent; abamectin was slightly persistent, and fenbutatin oxide was short lived. Our results suggest that most acaricides used to control pest mites in citrus affect the density and efficacy of T. radiata in the biological control of D. citri. However, further evaluations are needed in order to determine the effect of these products on this ectoparasitoid under field conditions. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Acute toxicity and mutagenesis of three metabolites mixture of nitrobenzene in mice.
Wang, Guixia; Zhang, Xiuying; Yao, Chunzhu; Tian, Meizhan
2011-03-01
Nitrobenzene is a synthetic compound, more than 95% of which is used in the production of aniline. Nitrobenzene has been demonstrated to be substantially metabolized to p-Nitrophenol, p-Aminophenol and p-Nitroaniline in food animals (e.g., bovines, fowls). There have been no studies on the acute toxicity and the mutagenesis of the mixture of the three metabolites mentioned above. The aim of the present study is to testify the acute toxicity and the mutagenesis of the three metabolites mixture. Seventy Kunming mice (half male, half female) received an intragastric administration exposure to metabolites-containing suspension of 750, 638, 542, 461, 392, 333 mg kg(-1) body weight and 0.5% sodium carboxymethyl cellulose (control), followed by a 14-day observation. The medial lethal dose (LD(50)) concentration for nitrobenzene metabolites mixture in this study was 499.92 mg/kg. Their mutagenic toxicology was studied through micronucleus and sperm abnormality test. Kunming mice were twice intragastrically exposed to 1/5 LD(50), 1/10 LD(50), 1/20 LD(50) mg kg(-1) nitrobenzene metabolites-containing suspension spaced 24-h apart. Cyclophosphamide, pure water and sodium carboxymethyl cellulose served as doses of the positive group, the negative group and the solvent control group, respectively. The incidence of micronucleus and sperm abnormality increased significantly in the 1/5 LD(50) and 1/10 LD(50) group compared with the negative and solvent control group. A dose-related increase in the incidence of micronucleus and sperm abnormality was noted. In conclusion, the three metabolites mixture of nitrobenzene was secondary toxicity and mutagenic substances in mice.
Toxic properties of specific radiation determinant molecules, derived from radiated species
NASA Astrophysics Data System (ADS)
Popov, Dmitri; Maliev, Vecheslav; Kedar, Prasad; Casey, Rachael; Jones, Jeffrey
Introduction: High doses of radiation induce the formation of radiation toxins in the organs of irradiated mammals. After whole body irradiation, cellular macromolecules and cell walls are damaged as a result of long-lived radiation-induced free radicals, reactive oxygen species, and fast, charged particles of radiation. High doses of radiation induce breaks in the chemical bonds of macromolecules and cross-linking reactions via chemically active processes. These processes result in the creation of novel modified macromolecules that possess specific toxic and antigenic properties defined by the type and dose of irradiation by which they are generated. Radiation toxins isolated from the lymph of irradiated animals are classified as hematotoxic, neurotoxic, and enteric non-bacterial (GI) radiation toxins, and they play an important role in the development of hematopoietic, cerebrovascular, and gastrointestinal acute radiation syndromes (ARS). Seven distinct toxins derived from post-irradiated animals have been designated as Specific Radiation Determinants (SRD): SRD-1 (neurotoxic radiation toxin generated by the cerebrovascular form of ARS), SRD-3 (enteric non-bacterial radiation toxins generated by the gastrointestinal form of ARS), and SRD-4 (hematotoxic radiation toxins generated by the hematological, bone marrow form of ARS). SRD-4 is further subdivided into four groups depending on the severity of the ARS induced: SRD-4/1, mild ARS; SRD-4/2, moderate ARS; SRD-4/3, severe ARS; and SRD-4/4, extremely severe ARS. The seventh SRD, SRD-2 is a toxic extract derived from animals suffering from a fourth form of ARS, as described in European literature and produces toxicity primarily in the autonimic nervous system. These radiation toxins have been shown to be responsible for the induction of important pathophysiological, immunological, and biochemical reactions in ARS. Materials and Methods: These studies incorporated the use of statistically significant numbers of a variety of animals. Lymphatic fluid was collected from the thoracic ducts of bovine species exposed to lethal doses of gamma radiation, and the SRDs were separated by size exclusion gel filtration and high-performance liquid chromatography. We compared the toxicity of isolated radiation toxins in a variety of animals. The clinical characteristics of ARS induced by intravenous or intra-muscular injections of radiation toxins were observed. Results: In radiation-na¨ animals (rats, rabbits, and sheep), toxicity was defined ıve by observing the timing and rate of lethality following injections with extracted radiation toxins (SRDs). Preparations of SRD-1 were injected intra-muscularly in doses of 5 or 10 mg/kg body weight. We observed the development of cerebrovascular ARS with 100% lethality at 10-30 minutes after injection. Analysis of the toxicity of different forms of radiation toxins showed that cerebrovascular neurotoxins possess the highest toxicity compared with other forms of radiation toxins. The other SRD's were also injected into radiation-naive animals and observed for subsequent toxicity/lethality, with the other SRDs producing less virulent forms of ARS. However, both the SRD-2- and SRD-3-injected animals also suffered lethality between 2 and 30 days post-injection. Conclusions: We have observed that radiation toxins are transported from the cells and tissues of irradiated organisms to the interstitial blood and lymphatic fluids, and that this migration of radiation toxins occurs hours after irradiation. Upon analysis of the results of our research and literature sources, we postulate that radiation toxins arise from the radiation-induced chemical modification of macromolecules resident in cell membranes and other cellular structures. Furthermore, we postulate that these altered macromolecules are not processed by antigen processing cells, but instead bind to class II MHC molecules and TCR-beta chains. This causes nonspecific activation of T cells, pro-inflammatory agents such as cytokines and isozymes of phospholipase A2 and phospholipase C, and platelet-activating factor. Longer-term effects induced by the altered macromolecules include the activation of cytotoxic T cells, which induces cytolysis in radiation-damaged cells. Activated CD8+ T cells produce tumor necrosis factor-B and additional cytokines. By these mechanisms, we postulate that radiation toxins generate the pathophysiological reactions associated with acute radiation syndromes.
Lee, Changkeun; Hong, Seongjin; Kwon, Bong-Oh; Lee, Jung-Ho; Ryu, Jongseong; Park, Young-Gyu; Kang, Seong-Gil; Khim, Jong Seong
2016-08-01
Concern about leakage of carbon dioxide (CO2) from deep-sea storage in geological reservoirs is increasing because of its possible adverse effects on marine organisms locally or at nearby coastal areas both in sediment and water column. In the present study, we examined how elevated CO2 affects various intertidal epibenthic (benthic copepod), intertidal endobenthic (Manila clam and Venus clam), sub-tidal benthic (brittle starfish), and free-living (marine medaka) organisms in areas expected to be impacted by leakage. Acute lethal and sub-lethal effects were detected in the adult stage of all test organisms exposed to varying concentrations of CO2, due to the associated decline in pH (8.3 to 5.2) during 96-h exposure. However, intertidal organisms (such as benthic copepods and clams) showed remarkable resistance to elevated CO2, with the Venus clam being the most tolerant (LpH50 = 5.45). Sub-tidal species (such as brittle starfish [LpH50 = 6.16] and marine medaka [LpH50 = 5.91]) were more sensitive to elevated CO2 compared to intertidal species, possibly because they have fewer defensive capabilities. Of note, the exposure duration might regulate the degree of acute sub-lethal effects, as evidenced by the Venus clam, which showed a time-dependent effect to elevated CO2. Finally, copper was chosen as a model toxic element to find out the synergistic or antagonistic effects between ocean acidification and metal pollution. Combination of CO2 and Cu exposure enhances the adverse effects to organisms, generally supporting a synergistic effect scenario. Overall, the significant variation in the degree to which CO2 adversely affected organisms (viz., working range and strength) was clearly observed, supporting the general concept of species-dependent effects of elevated CO2.
The joint toxic effects of known binary and multiple organic chemical mixtures to the fathead minnow (Pimephales promelas) were defined at both the 96-h 50% lethal effect concentration (LC50) and sublethal (32-d growth) response levels for toxicants with a narcosis I, narcosis II...
Toxic responses of bivalves to metal mixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathew, P.; Menon, N.R.
Although there is a growing body of information on the toxicity of individual heavy metals to economically important on the toxicity of individual heavy metals to economically important species of bivalves, literature on the lethal toxicity of metal mixtures to bivalves under controlled conditions is rather limited. In the present investigation the toxic effects of combinations of copper - mercury and copper - mercury and copper - cadmium at lethal levels of two marine bivalve species, Perna indica and Donax incarnatus, have been delineated.
Oleoresin Capsicum toxicology evaluation and hazard review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archuleta, M.M.
Oleoresin Capsicum (OC) is an extract of the pepper plant used for centuries as a culinary spice (hot peppers). This material has been identified as a safe and effective Less-Than- Lethal weapon for use by Law enforcement and security professionals against assault. The National Institute of Justice (NIJ) is currently also evaluating its use in conjunction with other Less-Than-Lethal agents such as aqueous foam for use in corrections applications. Therefore, a comprehensive toxicological review of the literature was performed for the National Institute of Justice Less-Than-Lethal Force program to review and update the information available on the toxicity and adversemore » health effects associated with OC exposure. The results of this evaluation indicate that exposure to OC can result in dermatitis, as well as adverse nasal, pulmonary, and gastrointestinal effects in humans. The primary effects of OC exposure include pain and irritation of the mucous membranes of the eyes, nose, and lining of the mouth. Blistering and rash have been shown to occur after chronic or prolonged dermal exposure. Ingestion of capsicum may cause acute stinging of the lips, tongue, and oral mucosa and may lead to vomiting and diarrhea with large doses. OC vapors may also cause significant pulmonary irritation and prolonged cough. There is no evidence of long term effects associated with an acute exposure to OC, and extensive use as a culinary additive and medicinal ointment has further provided no evidence of long term adverse effects following repeated or prolonged exposure.« less
Bruno, Stefania; Grange, Cristina; Collino, Federica; Deregibus, Maria Chiara; Cantaluppi, Vincenzo; Biancone, Luigi; Tetta, Ciro; Camussi, Giovanni
2012-01-01
Several studies demonstrated that treatment with mesenchymal stem cells (MSCs) reduces cisplatin mortality in mice. Microvesicles (MVs) released from MSCs were previously shown to favor renal repair in non lethal toxic and ischemic acute renal injury (AKI). In the present study we investigated the effects of MSC-derived MVs in SCID mice survival in lethal cisplatin-induced AKI. Moreover, we evaluated in vitro the effect of MVs on cisplatin-induced apoptosis of human renal tubular epithelial cells and the molecular mechanisms involved. Two different regimens of MV injection were used. The single administration of MVs ameliorated renal function and morphology, and improved survival but did not prevent chronic tubular injury and persistent increase in BUN and creatinine. Multiple injections of MVs further decreased mortality and at day 21 surviving mice showed normal histology and renal function. The mechanism of protection was mainly ascribed to an anti-apoptotic effect of MVs. In vitro studies demonstrated that MVs up-regulated in cisplatin-treated human tubular epithelial cells anti-apoptotic genes, such as Bcl-xL, Bcl2 and BIRC8 and down-regulated genes that have a central role in the execution-phase of cell apoptosis such as Casp1, Casp8 and LTA. In conclusion, MVs released from MSCs were found to exert a pro-survival effect on renal cells in vitro and in vivo, suggesting that MVs may contribute to renal protection conferred by MSCs. PMID:22431999
Pérez Coll, Cristina S; Pabón-Reyes, Carolina; Meichtry, Jorge M; Litter, Marta I
2018-06-01
Changes in toxicity of As(V) solutions from acute to chronic exposure have been evaluated by the AMPHITOX test. This test employs Rhinella arenarum, a widely distributed toad in Argentine areas. LOEC values were 6.37 and 1.88 mg L -1 for embryos and larvae, respectively, and serious sublethal effects have been observed. Toxicity of As(V) solutions has been also evaluated after treatment with zerovalent iron nanoparticles (nZVI). After 60 min of treatment with nZVI, As(V) removal was 77%, and neither lethal nor sublethal effects were observed. However, nZVI had to be eliminated before the bioassay because they caused adverse effects in both embryos and larvae. This work highlights the high sensitivity of R. arenarum to As(V), the relevance to assess toxicity on different periods of the lifecycle, and the need to expand exposure to As(V) to chronic times. The utility of the test for monitoring toxicity changes in As(V) solutions after nZVI treatment has been also shown. Copyright © 2018 Elsevier B.V. All rights reserved.
Assessing toxic effects of [Omim]Cl and [Omim]BF4 in zebrafish adults using a biomarker approach.
Liu, Tong; Guo, Yingying; Wang, Jinhua; Wang, Jun; Zhu, Lusheng; Zhang, Jun; Zhang, Cheng
2016-04-01
In the present study, the toxic effects of 1-octyl-3-methylimidazolium chloride ([Omim]Cl) and 1-octyl-3-methylimidazolium tetrafluoroborate ([Omim]BF4) on the zebrafish livers were studied at 0, 5, 10, 20, and 40 mg L(-1) on the 7th and 14th days. In addition, the concentrations of [Omim]Cl and [Omim]BF4 in the test water, the acute toxicity of the two ionic liquids (ILs), and the influence of anions on the toxicity of the ILs were evaluated. The acute toxicity test results showed 50 % lethal concentration (LC50) values of 152.3 ± 12.1 mg L(-1) for [Omim]Cl and 144.0 ± 11.4 mg L(-1) for [Omim]BF4. At the lowest concentration investigated (5 mg L(-1)), [Omim]Cl and [Omim]BF4 did not significantly affect zebrafish during the exposure period. However, the toxic effects of these substances were enhanced as dosing concentrations and exposure times were increased. Levels of reactive oxygen species (ROS) were significantly enhanced on the 7th day after 20 mg L(-1) and on the 14th day after 10 mg L(-1) of either substance was applied, resulting in oxidative damage, such as lipid peroxidation and DNA damage. The experimental results also indicated little effect of the anions on the toxicity of ILs and consistent toxic effects of [Omim]Cl and [Omim]BF4. Graphical Abstract The graphical abstract for the present study after exposure to [Omim]Cl and [Omim]BF4. The letter R represents the anions Cl(-) and BF4 (.)
Murine Toxicity of Cochliobolus carbonum1
Hamilton, Pat B.; Nelson, R. R.; Harris, B. S. H.
1968-01-01
Seventeen wild-type strains of the phytopathogenic fungus Cochliobolus carbonum, tested by intraperitoneal injection into mice, were lethal within 48 hr. The lethal effect appeared to be a toxic rather than an infectious process, because death occurred within 3 hr after injection of two of the isolates and heat-killed cultures were lethal. Assays of ascospore progeny from two crosses involving three isolates indicated that the toxic metabolites were under genetic control and quantitative regulation. Studies of the toxicological, cultural, and chemical characteristics of these three strains indicated that more than one murine toxin was present. PMID:16349821
Acute toxicity of emamectin benzoate and its desmethyl metabolite to Eohaustorius estuarius.
Kuo, Jen-Ni; Buday, Craig; van Aggelen, Graham; Ikonomou, Michael George; Pasternak, John
2010-08-01
Emamectin benzoate is one of the active ingredients of the anti-sealice drug SLICE. Ten-day acute sediment lethal tests (10-d LC50) of emamectin benzoate and its desmethyl metabolite (AB1) were conducted to determine LC50 values using a sensitive representative West Coast amphipod crustacean, Eohaustorius estuarius. The 10-d LC50s of emamectin benzoate and AB1 to E. estuarius were 0.185 and 0.019 mg/kg wet weight sediment (0.146 and 0.015 mg/kg dry wt), respectively. The degradation properties of emamectin benzoate and AB1 during the 10-d period were also measured and described. No obvious decay patterns were observed for either emamectin benzoate and AB1 over the 10-d period. Copyright 2010 SETAC
Faria, Melissa; Prats, Eva; Padrós, Francesc; Soares, Amadeu M V M; Raldúa, Demetrio
2017-04-01
Acute organophosphorus (OP) intoxication is a worldwide clinical and public health problem. In addition to cholinergic crisis, neurodegeneration and brain damage are hallmarks of the severe form of this toxidrome. Recently, we generated a chemical model of severe acute OP intoxication in zebrafish that is characterized by altered head morphology and brain degeneration. The pathophysiological pathways resulting in brain toxicity in this model are similar to those described in humans. The aim of this study was to assess the predictive power of this zebrafish model by testing the effect of a panel of drugs that provide protection in mammalian models. The selected drugs included "standard therapy" drugs (atropine and pralidoxime), reversible acetylcholinesterase inhibitors (huperzine A, galantamine, physostigmine and pyridostigmine), N-methyl-D-aspartate (NMDA) receptor antagonists (MK-801 and memantine), dual-function NMDA receptor and acetylcholine receptor antagonists (caramiphen and benactyzine) and anti-inflammatory drugs (dexamethasone and ibuprofen). The effects of these drugs on zebrafish survival and the prevalence of abnormal head morphology in the larvae exposed to 4 µM chlorpyrifos oxon [1 × median lethal concentration (LC 50 )] were determined. Moreover, the neuroprotective effects of pralidoxime, memantine, caramiphen and dexamethasone at the gross morphological level were confirmed by histopathological and transcriptional analyses. Our results demonstrated that the zebrafish model for severe acute OP intoxication has a high predictive value and can be used to identify new compounds that provide neuroprotection against severe acute OP intoxication.
Brown, Alastair; Thatje, Sven; Hauton, Chris
2017-09-05
Mineral prospecting in the deep sea is increasing, promoting concern regarding potential ecotoxicological impacts on deep-sea fauna. Technological difficulties in assessing toxicity in deep-sea species has promoted interest in developing shallow-water ecotoxicological proxy species. However, it is unclear how the low temperature and high hydrostatic pressure prevalent in the deep sea affect toxicity, and whether adaptation to deep-sea environmental conditions moderates any effects of these factors. To address these uncertainties we assessed the effects of temperature and hydrostatic pressure on lethal and sublethal (respiration rate, antioxidant enzyme activity) toxicity in acute (96 h) copper and cadmium exposures, using the shallow-water ecophysiological model organism Palaemon varians. Low temperature reduced toxicity in both metals, but reduced cadmium toxicity significantly more. In contrast, elevated hydrostatic pressure increased copper toxicity, but did not affect cadmium toxicity. The synergistic interaction between copper and cadmium was not affected by low temperature, but high hydrostatic pressure significantly enhanced the synergism. Differential environmental effects on toxicity suggest different mechanisms of action for copper and cadmium, and highlight that mechanistic understanding of toxicity is fundamental to predicting environmental effects on toxicity. Although results infer that sensitivity to toxicants differs across biogeographic ranges, shallow-water species may be suitable ecotoxicological proxies for deep-sea species, dependent on adaptation to habitats with similar environmental variability.
Epigenetic perturbations in the pathogenesis of mustard toxicity; hypothesis and preliminary results
Korkmaz, Ahmet; Yaren, Hakan; Kunak, Z. Ilker; Uysal, Bulent; Kurt, Bulent; Topal, Turgut; Kenar, Levent; Ucar, Ergun; Oter, Sukru
2008-01-01
Among the most readily available chemical warfare agents, sulfur mustard (SM), also known as mustard gas, has been the most widely used chemical weapon. SM causes debilitating effects that can leave an exposed individual incapacitated for days to months; therefore delayed SM toxicity is of much greater importance than its ability to cause lethality. Although not fully understood, acute toxicity of SM is related to reactive oxygen and nitrogen species, oxidative stress, DNA damage, poly(ADP-ribose) polymerase (PARP) activation and energy depletion within the affected cell. Therefore several antioxidants and PARP inhibitors show beneficial effects against acute SM toxicity. The delayed toxicity of SM however, currently has no clear mechanistic explanation. One third of the 100,000 Iranian casualties are still suffering from the detrimental effects of SM in spite of the extensive treatment. We, therefore, made an attempt whether epigenetic aberrations may contribute to pathogenesis of mustard poisoning. Preliminary evidence reveals that mechlorethamine (a nitrogen mustard derivative) exposure may not only cause oxidative stress, DNA damage, but epigenetic perturbations as well. Epigenetic refers to the study of changes that influence the phenotype without causing alteration of the genotype. It involves changes in the properties of a cell that are inherited but do not involve a change in DNA sequence. It is now known that in addition to mutations, epimutations contribute to a variety of human diseases. Under light of preliminary results, the current hypothesis will focus on epigenetic regulations to clarify mustard toxicity and the use of drugs to correct possible epigenetic defects. PMID:21218122
A high throughput passive dosing format for the Fish Embryo Acute Toxicity test.
Vergauwen, Lucia; Schmidt, Stine N; Stinckens, Evelyn; Maho, Walid; Blust, Ronny; Mayer, Philipp; Covaci, Adrian; Knapen, Dries
2015-11-01
High throughput testing according to the Fish Embryo Acute Toxicity (FET) test (OECD Testing Guideline 236) is usually conducted in well plates. In the case of hydrophobic test substances, sorptive and evaporative losses often result in declining and poorly controlled exposure conditions. Therefore, our objective was to improve exposure conditions in FET tests by evaluating a passive dosing format using silicone O-rings in standard 24-well polystyrene plates. We exposed zebrafish embryos to a series of phenanthrene concentrations until 120h post fertilization (hpf), and obtained a linear dilution series. We report effect values for both mortality and sublethal morphological effects based on (1) measured exposure concentrations, (2) (lipid normalized) body residues and (3) chemical activity. The LC50 for 120hpf was 310μg/L, CBR50 (critical body residue) was 2.72mmol/kg fresh wt and La50 (lethal chemical activity) was 0.047. All values were within ranges expected for baseline toxicity. Impaired swim bladder inflation was the most pronounced morphological effect and swimming activity was reduced in all exposure concentrations. Further analysis showed that the effect on swimming activity was not attributed to impaired swim bladder inflation, but rather to baseline toxicity. We conclude that silicone O-rings (1) produce a linear dilution series of phenanthrene in the 120hpf FET test, (2) generate and maintain aqueous concentrations for reliable determination of effect concentrations, and allow for obtaining mechanistic toxicity information, and (3) cause no toxicity, demonstrating its potential as an extension of the FET test when testing hydrophobic chemicals. Copyright © 2015 Elsevier Ltd. All rights reserved.
Toxicity of methanol to fish, crustacean, oligochaete worm, and aquatic ecosystem.
Kaviraj, A; Bhunia, F; Saha, N C
2004-01-01
Static renewal bioassays were conducted in the laboratory and in outdoor artificial enclosures to evaluate toxic effects of methanol to one teleost fish and two aquatic invertebrates and to limnological variables of aquatic ecosystem. Ninety-six-hour acute toxicity tests revealed cladoceran crustacea Moina micrura as the most sensitive to methanol (LC50, 4.82 g/L), followed by freshwater teleost Oreochromis mossambicus (LC50, 15.32 g/L) and oligochaete worm Branchiura sowerbyi (LC50, 54.89 g/L). The fish, when exposed to lethal concentrations of methanol, showed difficulties in respiration and swimming. The oligochaete body wrinkled and fragmented under lethal exposure of methanol. Effects of five sublethal concentrations of methanol (0, 23.75, 47.49, 736.10, and 1527.60 mg/L) on the feeding rate of the fish and on its growth and reproduction were evaluated by separate bioassays. Ninety-six-hour bioassays in the laboratory showed significant reduction in the appetite of fish when exposed to 736.10 mg/L or higher concentrations of methanol. Chronic toxicity bioassays (90 days) in outdoor enclosures showed a reduction in growth, maturity index and fecundity of fish at 47.49 mg/L or higher concentrations of methanol. Primary productivity, phytoplankton population, and alkalinity of water were also reduced at these concentrations. Chronic exposure to 1527.60 mg/L methanol resulted in damages of the epithelium of primary and secondary gill lamellae of the fish. The results revealed 23.75 mg/L as the no-observed-effect concentration (NOEC) of methanol to freshwater aquatic ecosystem.
In vitro and in vivo safety evaluation of Acer tegmentosum.
Hwang, Youn-Hwan; Park, Hwayong; Ma, Jin Yeul
2013-06-21
Acer tegmentosum, which contains salidroside and tyrosol, has been used for the treatment of hepatic disorders in eastern Asia. However, little is known about its safety. To determine the safety of Acer tegmentosum, we evaluated its acute oral toxicity and genotoxicity profiles. Salidroside and tyrosol present in Acer tegmentosum were quantified using high-performance liquid chromatography. Acute oral toxicity testing of Acer tegmentosum was performed in rats. Genotoxicity of Acer tegmentosum was assessed by bacterial reverse mutation, chromosomal aberration, and bone marrow micronucleus tests. All the tests were conducted in accordance with the good laboratory practices. The amounts of salidroside and tyrosol in Acer tegmentosum were found to be 85.01±1.21mg/g and 3.12±0.04mg/g, respectively. In the bacterial reverse mutation test, Acer tegmentosum increased the number of revertant Salmonella typhimurium TA98 colonies, regardless of metabolic activation by S9 mixture. In contrast, Acer tegmentosum application did not significantly increase the number of chromosomal aberrations in Chinese hamster ovary (CHO)-K1 cells and micronucleated polychromatic erythrocytes in mice. In the acute oral toxicity test, the median lethal dose (LD50) of Acer tegmentosum was found to be >2000mg/kg in rats. Take together, Acer tegmentosum exhibits mutagenicity, which was evident from the bacterial reverse mutation test. Further studies are needed to identify the components responsible for such an effect and the underlying mechanisms. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Chlorosilane acute inhalation toxicity and development of an LC50 prediction model.
Jean, Paul A; Gallavan, Robert H; Kolesar, Gary B; Siddiqui, Waheed H; Oxley, Jon A; Meeks, Robert G
2006-07-01
The acute inhalation toxicity of 10 chlorosilanes was investigated in Fischer 344 rats using a 1-h whole-body vapor inhalation exposure and a 14-day recovery period. The median lethal concentration (LC50(1)) for each material was calculated from the nominal exposure concentrations and mortality. Experimentally derived LC50(1) values for monochlorosilanes (4257-4478 ppm) were greater than those for dichlorosilanes (1785-2092 ppm), which were greater than those for trichlorosilanes (1257-1611 ppm). Apparent was a strong structure-activity relationship (r2 = .97) between chlorine content and LC50(1) value. Estimated LC50(1) values for mono-, di-, and trichlorosilanes were determined to be 3262, 1639, and 1066 ppm, respectively, utilizing this relationship and the lower limit of the 95% prediction interval. The LC50(1) values determined in this series of studies were greater than that reported for hydrogen chloride (3124 ppm), when expressed on a chlorine equivalence basis (3570-5248 ppm), demonstrating that the acute toxicity of these chlorosilanes is similar to or less than that for hydrogen chloride. The good correlation between chlorine content and LC50(1) provides a sound basis for estimation of LC50(1) for chlorosilanes not already evaluated. The use of structure-activity relationships is consistent with the chemical industry and federal agency initiatives to reduce, refine, and/or replace the use of animals in testing without compromising the quality of health and safety assessments.
Assessing Toxicity of Obscurant Grade Pan-Based Carbon Fiber Aquatic Species Chronic Tests
2004-12-01
ASSESSING TOXICITY OF OBSCURANT GRADE PAN-BASED CARBON FIBER: AQUATIC SPECIES CHRONIC TESTS N. A. Chester, M. V. Haley, C. W. Kurnas and R. T...with minimal restrictions. To this end we are investigating the toxicity of PAN-based carbon fibers to the aquatic species Ceriodaphnia dubia (water... toxicity methods to provide ecotoxicological results for both lethal and sub-lethal parameters, including LC50 (24-, 48- and 96-h), IC50, EC20, and
Fila, Grzegorz; Kawiak, Anna; Grinholc, Mariusz Stanislaw
2017-08-18
Pseudomonas aeruginosa is among the most common pathogens responsible for both acute and chronic infections of high incidence and severity. Additionally, P. aeruginosa resistance to conventional antimicrobials has increased rapidly over the past decade. Therefore, it is crucial to explore new therapeutic options, particularly options that specifically target the pathogenic mechanisms of this microbe. The ability of a pathogenic bacterium to cause disease is dependent upon the production of agents termed 'virulence factors', and approaches to mitigate these agents have gained increasing attention as new antibacterial strategies. Although blue light irradiation is a promising alternative approach, only limited and preliminary studies have described its effect on virulence factors. The current study aimed to investigate the effects of lethal and sub-lethal doses of blue light treatment (BLT) on P. aeruginosa virulence factors. We analyzed the inhibitory effects of blue light irradiation on the production/activity of several virulence factors. Lethal BLT inhibited the activity of pyocyanin, staphylolysin, pseudolysin and other proteases, but sub-lethal BLT did not affect the production/expression of proteases, phospholipases, and flagella- or type IV pili-associated motility. Moreover, a eukaryotic cytotoxicity test confirmed the decreased toxicity of blue light-treated extracellular P. aeruginosa fractions. Finally, the increased antimicrobial susceptibility of P. aeruginosa treated with sequential doses of sub-lethal BLT was demonstrated with a checkerboard test. Thus, this work provides evidence-based proof of the susceptibility of drug-resistant P. aeruginosa to BLT-mediated killing, accompanied by virulence factor reduction, and describes the synergy between antibiotics and sub-lethal BLT.
Ruiz, Patricia; Begluitti, Gino; Tincher, Terry; Wheeler, John; Mumtaz, Moiz
2012-07-27
Predicting toxicity quantitatively, using Quantitative Structure Activity Relationships (QSAR), has matured over recent years to the point that the predictions can be used to help identify missing comparison values in a substance's database. In this manuscript we investigate using the lethal dose that kills fifty percent of a test population (LD₅₀) for determining relative toxicity of a number of substances. In general, the smaller the LD₅₀ value, the more toxic the chemical, and the larger the LD₅₀ value, the lower the toxicity. When systemic toxicity and other specific toxicity data are unavailable for the chemical(s) of interest, during emergency responses, LD₅₀ values may be employed to determine the relative toxicity of a series of chemicals. In the present study, a group of chemical warfare agents and their breakdown products have been evaluated using four available rat oral QSAR LD₅₀ models. The QSAR analysis shows that the breakdown products of Sulfur Mustard (HD) are predicted to be less toxic than the parent compound as well as other known breakdown products that have known toxicities. The QSAR estimated break down products LD₅₀ values ranged from 299 mg/kg to 5,764 mg/kg. This evaluation allows for the ranking and toxicity estimation of compounds for which little toxicity information existed; thus leading to better risk decision making in the field.
Finnegan, Meaghean C; Baxter, Leilan R; Maul, Jonathan D; Hanson, Mark L; Hoekstra, Paul F
2017-10-01
Thiamethoxam is a neonicotinoid insecticide used widely in agriculture to control a broad spectrum of chewing and sucking insect pests. Recent detection of thiamethoxam in surface waters has raised interest in characterizing the potential impacts of this insecticide to aquatic organisms. We report the results of toxicity testing (acute and chronic) conducted under good laboratory practices for more than 30 freshwater species (insects, molluscs, crustaceans, algae, macrophytes, and fish) and 4 marine species (an alga, a mollusc, a crustacean, and a fish). As would be anticipated for a neonicotinoid, aquatic primary producers and fish were the least sensitive organisms tested, with acute median lethal and effect concentrations (LC50/EC50) observed to be ≥80 mg/L in all cases, which far exceeds surface water exposure concentrations. Tested molluscs, worms, and rotifers were similarly insensitive (EC50 ≥ 100 mg/L), except for Lumbriculus sp., with an EC50 of 7.7 mg/L. In general, insects were the most sensitive group in the study, with most acute EC50 values < 1 mg/L. However, the crustaceans Asellus aquaticus and Ostracoda exhibited a sensitivity similar to that of insects (acute EC50 < 1 mg/L), and the midge larvae Chaoborus sp. were relatively insensitive compared with other insects (EC50 > 5.5 mg/L). The most sensitive chronic response was for Chironomus riparius, with a 30-d no-observed-effect concentration (NOEC; emergence) of 0.01 mg/L. Observed toxicity to the tested marine organisms was comparable to that of freshwater species. We used the reported data to construct species sensitivity distributions for thiamethoxam, to calculate 5% hazard concentrations (HC5s) for acute data (freshwater invertebrates), and compared these with measured concentrations from relevant North American surface waters. Overall, based on acute toxicity endpoints, the potential acute risk to freshwater organisms was found to be minimal (likelihood of exceeding HC5s < 1%). Environ Toxicol Chem 2017;36:2838-2848. © 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. © 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc.
Zhang, Jinsong; Wang, Xufang; Xu, Tongwen
2008-01-01
Selenium (Se) is an essential trace element with a narrow margin between beneficial and toxic effects. As a promising chemopreventive agent, its use requires consumption over the long term, so the toxicity of Se is always a crucial concern. Based on clinical findings and recent studies in selenoprotein gene-modified mice, it is likely that the antioxidant function of one or more selenoproteins is responsible for the chemopreventive effect of Se. Furthermore, upregulation of phase 2 enzymes by Se has been implicated as a possible chemopreventive mechanism at supranutritional dietary levels. Se-methylselenocysteine (SeMSC), a naturally occurring organic Se product, is considered as one of the most effective chemopreventive selenocompounds. The present study revealed that, as compared with SeMSC, elemental Se at nano size (Nano-Se) possessed equal efficacy in increasing the activities of glutathione peroxidase, thioredoxin reductase, and glutathione S-transferase, but had much lower toxicity as indicated by median lethal dose, acute liver injury, survival rate, and short-term toxicity. Our results suggest that Nano-Se can serve as a potential chemopreventive agent with reduced risk of Se toxicity.
Kim, Jun Y; Kim, Ki-Tae; Lee, Byeong G; Lim, Byung J; Kim, Sang D
2013-06-01
The final destination point of nanoparticles is the environment, where they remain a long period; therefore, a deep understanding of the relationship between nanoparticles and the environmental factors is required. Japanese medaka embryos were exposed to two differently prepared AgNPs: freshly prepared AgNPs and aged AgNPs. With these two AgNP preparations, we studied the impacts of humic acid in terms of embryonic toxicity, as well as the behavior of AgNPs. Aged AgNPs exhibited a lower lethal concentration (LC50) value (1.44mg/L) compared to fresh AgNPs (3.53mg/L) through 96h acute toxicity tests, due to the release of silver ions, as confirmed by kinetic analysis. The presence of humic acids considerably reduced the toxicity of aged AgNPs due to complexation with silver ions. Agglomeration, induced by interactions with humic acid, might reduce the bioavailability of AgNPs to Japanese medaka embryos. This study demonstrates that aged AgNPs releasing more silver ions are more toxic than fresh AgNPs, and humic acids play a role in reducing the toxicity of aged AgNPs. Copyright © 2013 Elsevier Inc. All rights reserved.
Lee, Changkeun; Kwon, Bong-Oh; Hong, Seongjin; Noh, Junsung; Lee, Junghyun; Ryu, Jongseong; Kang, Seong-Gil; Khim, Jong Seong
2018-06-06
The potential leakage from marine CO 2 storage sites is of increasing concern, but few studies have evaluated the probable adverse effects on marine organisms. Fish, one of the top predators in marine environments, should be an essential representative species used for water column toxicity testing in response to waterborne CO 2 exposure. In the present study, we conducted fish life cycle toxicity tests to fully elucidate CO 2 toxicity mechanism effects. We tested sub-lethal and lethal toxicities of elevated CO 2 concentrations on marine medaka (Oryzias melastigma) at different developmental stages. At each developmental stage, the test species was exposed to varying concentrations of gaseous CO 2 (control air, 5%, 10%, 20%, and 30%), with 96 h of exposure at 0-4 d (early stage), 4-8 d (middle stage), and 8-12 d (late stage). Sub-lethal and lethal effects, including early developmental delays, cardiac edema, tail abnormalities, abnormal pigmentation, and mortality were monitored daily during the 14 d exposure period. At the embryonic stage, significant sub-lethal and lethal effects were observed at pH < 6.30. Hypercapnia can cause long-term and/or delayed developmental embryonic problems, even after transfer back to clean seawater. At fish juvenile and adult stages, significant mortality was observed at pH < 5.70, indicating elevated CO 2 exposure might cause various adverse effects, even during short-term exposure periods. It should be noted the early embryonic stage was found more sensitive to CO 2 exposure than other developmental stages of the fish life cycle. Overall, the present study provided baseline information for potential adverse effects of high CO 2 concentration exposure on fish developmental processes at different life cycle stages in marine ecosystems. Copyright © 2018 Elsevier Ltd. All rights reserved.
Acute Toxicity Study of Zerumbone-Loaded Nanostructured Lipid Carrier on BALB/c Mice Model
Rahman, Heshu Sulaiman; Rasedee, Abdullah; Othman, Hemn Hassan; Chartrand, Max Stanley; Namvar, Farideh; Abdul Samad, Nozlena; Andas, Reena Joys; Ng, Kuan Beng; How, Chee Wun
2014-01-01
Zerumbone- (ZER-) loaded nanostructure lipid carrier (NLC) (ZER-NLC) prepared for its antileukemia effect in vitro was evaluated for its toxicological effects by observing changes in the liver, kidney, spleen, lung, heart, and brain tissues, serum biochemical parameters, total haemogram, and bone marrow stem cells. The acute toxicity study for ZER-NLC was conducted by orally treating BALB/c mice with a single dose with either water, olive oil, ZER, NLC, or ZER-NLC for 14 days. The animals were observed for clinical and behavioral abnormalities, toxicological symptoms, feed consumption, and gross appearance. The liver, kidney, heart, lung, spleen, and brain tissues were assessed histologically. Total haemogram was counted by hemocytometry and microhematocrit reader. Bone marrow examination in terms of cellular morphology was done by Wright staining with bone marrow smear. Furthermore, serum biochemical parameters were determined spectrophotometrically. Grossly all treated mice, their investigated tissues, serum biochemical parameters, total haemogram, and bone marrow were normal. At oral doses of 100 and 200 mg/kg ZER-NLC there was no sign of toxicity or mortality in BALB/c mice. This study suggests that the 50% lethal dose (LD50) of ZER-NLC is higher than 200 mg/kg, thus, safe by oral administration. PMID:25276798
Santos, Rudã F B; Dias, Henrique M; Fujimoto, Rodrigo Y
2012-12-01
The objective of this work was to evaluate the acute toxicity of formalin and histopathological effects on the Amazon ornamental fish, bluespotted coridora (Corydoras melanistius). A randomized design was used, with ten concentrations of formalin (40%) (0, 3, 6, 12, 25, 50, 100, 150, 200 and 250 mg.L(-1)) with four replicates and five fish per container (3L) in static system for 96 hours. The moribund fish were killed and fixed in 10% formalin to proceed the histopathological analysis of gill, liver and kidney. At the end of this experiment the following mortality rates (%) were obtained in increasing order of exposure: 0, 0, 0, 0, 0, 65, 85, 100, 100 and 100%. The lethal concentration 50% (LC(50-96h (I))) estimated was 50.76 mg.L(-1) with regression of y = 0.51x, and r(2) = 0.80. Further, in higher concentrations morphological changes as gill hyperplasia, with filling of interlamellar spaces, disorganization of liver arrangement, and necrosis in kidney were observed. In this study, the formalin can be considered slightly toxic to bluespotted corydora, and cause morphological changes when exposed to high concentrations. The use of formalin to treat of ornamental fish in the inner river of capture with wrong concentration can provoke negative environmental and biological effects.
Acute toxicity study of zerumbone-loaded nanostructured lipid carrier on BALB/c mice model.
Rahman, Heshu Sulaiman; Rasedee, Abdullah; Othman, Hemn Hassan; Chartrand, Max Stanley; Namvar, Farideh; Yeap, Swee Keong; Abdul Samad, Nozlena; Andas, Reena Joys; Muhammad Nadzri, Nabilah; Anasamy, Theebaa; Ng, Kuan Beng; How, Chee Wun
2014-01-01
Zerumbone- (ZER-) loaded nanostructure lipid carrier (NLC) (ZER-NLC) prepared for its antileukemia effect in vitro was evaluated for its toxicological effects by observing changes in the liver, kidney, spleen, lung, heart, and brain tissues, serum biochemical parameters, total haemogram, and bone marrow stem cells. The acute toxicity study for ZER-NLC was conducted by orally treating BALB/c mice with a single dose with either water, olive oil, ZER, NLC, or ZER-NLC for 14 days. The animals were observed for clinical and behavioral abnormalities, toxicological symptoms, feed consumption, and gross appearance. The liver, kidney, heart, lung, spleen, and brain tissues were assessed histologically. Total haemogram was counted by hemocytometry and microhematocrit reader. Bone marrow examination in terms of cellular morphology was done by Wright staining with bone marrow smear. Furthermore, serum biochemical parameters were determined spectrophotometrically. Grossly all treated mice, their investigated tissues, serum biochemical parameters, total haemogram, and bone marrow were normal. At oral doses of 100 and 200 mg/kg ZER-NLC there was no sign of toxicity or mortality in BALB/c mice. This study suggests that the 50% lethal dose (LD50) of ZER-NLC is higher than 200 mg/kg, thus, safe by oral administration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dekundy, Andrzej; Kaminski, Rafal M.; Zielinska, Elzbieta
2007-03-15
Organophosphate (OP) and carbamate acetylcholinesterase (AChE) inhibitors produce seizures and lethality in mammals. Anticonvulsant and neuroprotective properties of N-methyl-D-aspartate (NMDA) antagonists encourage the investigation of their effects in AChE inhibitor-induced poisonings. In the present study, the effects of dizocilpine (MK-801, 1 mg/kg) or 3-((RS)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP, 10 mg/kg), alone or combined with muscarinic antagonist atropine (1.8 mg/kg), on convulsant and lethal properties of an OP pesticide dichlorvos or a carbamate drug physostigmine, were studied in mice. Both dichlorvos and physostigmine induced dose-dependent seizure activity and lethality. Atropine did not prevent the occurrence of convulsions but decreased the lethal effects ofmore » both dichlorvos and physostigmine. MK-801 or CPP blocked or attenuated, respectively, dichlorvos-induced convulsions. Contrariwise, NMDA antagonists had no effect in physostigmine-induced seizures or lethality produced by dichlorvos or physostigmine. Concurrent pretreatment with atropine and either MK-801 or CPP blocked or alleviated seizures produced by dichlorvos, but not by physostigmine. Both MK-801 and CPP co-administered with atropine enhanced its antilethal effects in both dichlorvos and physostigmine poisoning. In both saline- and AChE inhibitor-treated mice, no interaction of the investigated antidotes with brain cholinesterase was found. The data indicate that both muscarinic ACh and NMDA receptor-mediated mechanisms contribute to the acute toxicity of AChE inhibitors, and NMDA receptors seem critical to OP-induced seizures.« less
Toxic Effect of Staphylococcal Lysins for Goldfish1
Kaplan, Milton T.; Appleman, Milo D.
1963-01-01
Goldfish died within 24 hr after intraperitoneal injections of 0.2 ml of Seitz filtrates of hemolytic Staphylococcus aureus cultures grown on Dolman and Wilson medium under increased CO2 pressure for 72 to 96 hr. Two lethal toxins differing in heat sensitivity, antigenicity, and degree of toxicity were demonstrated. Studies of the relationship between the lethal factors and the hemolysins in the filtrates suggested that α- and β-lysin were responsible for the lethal effects. Filtrates of nonhemolytic staphylococcal cultures were innocuous. Goldfish were suitable animals for detecting toxicity in staphylococcal culture filtrates and for quantitative studies of the toxins. The results were highly reproducible. PMID:14030754
Acute and chronic toxicity of copper to the euryhaline rotifer, Brachionus plicatilis ("L" strain).
Arnold, W R; Diamond, R L; Smith, D S
2011-02-01
This article presents data from original research, intended for the use in the development of copper (Cu) criteria for the protection of estuarine and marine organisms and their uses in the United States. Two 48-h static-acute toxicity tests-one with and one without added food-and a 96-h static multigeneration life-cycle test (P1-F2 generations) were performed concurrently using the euryhaline rotifer Brachionus plicatilis ("L" strain) to develop a Cu acute-to-chronic ratio (ACR) for this species. Tests were performed at 15 g/L salinity, at 25°C, and the exposure concentrations of dissolved Cu were verified. Supplemental chemical analyses were performed and reported for the development of a Cu-saltwater biotic ligand model (BLM). Supplemental analyses included alkalinity, calcium, chloride, dissolved organic carbon (DOC), hardness, magnesium, potassium, sodium, and temperature. The acute toxicity test measurement end points were the dissolved Cu median lethal concentration (LC₅₀) values based on rotifer survival. The chronic measurement end points were the dissolved Cu no-observed-effect concentration (NOEC), lowest-observed-effect concentration (LOEC), EC₂₅, EC₂₀, and EC₁₀ based on the intrinsic rate of rotifer population increase (r). The 48-h LC₅₀(Fed), 48-h LC₅₀(Unfed), 96-h NOEC, 96-h LOEC, EC₂₅, EC₂₀, and EC₁₀ were 20.8, 13.4, 6.1, 10.3, 11.7, 10.9, and 8.8 μg Cu/L, respectively. The ACRs were calculated as ratios of each 48-h LC₅₀ value [fed and unfed) and each of the 96-h chronic values (ChV; geometric mean of NOEC and LOEC)], EC₁₀, EC₂₀, and EC₂₅. The ACRs ranged from 1.15 to 2.63.
A bacterial cocaine esterase protects against cocaine-induced epileptogenic activity and lethality.
Jutkiewicz, Emily M; Baladi, Michelle G; Cooper, Ziva D; Narasimhan, Diwahar; Sunahara, Roger K; Woods, James H
2009-09-01
Cocaine toxicity results in cardiovascular complications, seizures, and death and accounts for approximately 20% of drug-related emergency department visits every year. Presently, there are no treatments to eliminate the toxic effects of cocaine. The present study hypothesizes that a bacterial cocaine esterase with high catalytic efficiency would provide rapid and robust protection from cocaine-induced convulsions, epileptogenic activity, and lethality. Cocaine-induced paroxysmal activity and convulsions were evaluated in rats surgically implanted with radiotelemetry devices (N=6 per treatment group). Cocaine esterase was administered 1 minute after a lethal dose of cocaine or after cocaine-induced convulsions to determine the ability of the enzyme to prevent or reverse, respectively, the effects of cocaine. The cocaine esterase prevented all cocaine-induced electroencephalographic changes and lethality. This effect was specific for cocaine because the esterase did not prevent convulsions and death induced by a cocaine analog, (-)-2beta-carbomethoxy-3beta-phenyltropane. The esterase prevented lethality even after cocaine-induced convulsions occurred. In contrast, the short-acting benzodiazepine, midazolam, prevented cocaine-induced convulsions but not the lethal effects of cocaine. The data showed that cocaine esterase successfully degraded circulating cocaine to prevent lethality and that cocaine-induced convulsions alone are not responsible for the lethal effects of cocaine in this model. Therefore, further investigation into the use of cocaine esterase for treating cocaine overdose and its toxic effects is warranted.
The use of kestrels in toxicology
Wiemeyer, Stanley N.; Lincer, J.L.; Bird, David M.; Bowen, Reed
1987-01-01
Various species of kestrels have become important bioindicators of environmental quality and test species for comparative toxicology in captivity. At least 7 species of kestrels have been used to document the presence of environmental contamination primarily organochlorines and metals, in at least 15 countries. Captive kestrels have been used in studies involving a wide variety of environmental contaminants and toxicants examining: bioaccumulation; lethal toxicity using acute, chronic, and secondary exposures; effects on reproduction, eggshell thickness, and related enzyme systems; and effects on a wide variety of physiological and biochemical parameters. Field studies have examined the response of kestrels to exposure to insecticides. Kestrels should continue to play a vital role as a bioindicator and raptorial 'white mouse', especially because of their relationship to other falconiformes, several of which have been shown to be extremely sensitive to environmental changes.
Three homicides with darts tainted with succinylcholine: autopsy and toxicology.
Xing, Jingjun; Li, Wenhe; Tong, Fang; Liang, Yue; He, Guanglong; Zhou, Yiwu
2016-11-01
In emergency departments, intoxication with the muscle relaxant succinylcholine (SUX) often leads to a potentially lethal respiratory paralysis or other deleterious side effects. However, homicide cases with SUX poisoning are very rare because the toxic or lethal concentration ranges of SUX have not yet been determined. We described three uncommon homicide cases due to acute poisoning by darts contaminated with SUX. All the victims died quickly (less than 30 min) after being shot by an especially designed dart gun. Succinylmonocholine (SMC), a metabolite of SUX, was used as a marker to detect the latter. HPLC-MS/MS analysis demonstrated the presence of SUX in the droplet residues of the darts and SMC in the blood and urine in all cases. SMC concentrations of 0.45, 14.0, and 17.9 ng/ml were detected in the victims' blood and 259.0 ng/ml in the urine from the third case. The main pathological changes consisted of hemorrhage of the injured soft tissues, visceral congestion, severe pulmonary edema, and multifocal petechial hemorrhage of the heart and lungs. Taken together, the findings supported a diagnosis of fatal SUX poisoning. Futhermore, our study provided a reference for the lethal concentrations of SUX poisoning.
The Toxicity of Depleted Uranium
Briner, Wayne
2010-01-01
Depleted uranium (DU) is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a clear and defined set of symptoms. Chronic low-dose, or subacute, exposure to depleted uranium alters the appearance of milestones in developing organisms. Adult animals that were exposed to depleted uranium during development display persistent alterations in behavior, even after cessation of depleted uranium exposure. Adult animals exposed to depleted uranium demonstrate altered behaviors and a variety of alterations to brain chemistry. Despite its reduced level of radioactivity evidence continues to accumulate that depleted uranium, if ingested, may pose a radiologic hazard. The current state of knowledge concerning DU is discussed. PMID:20195447
Surface interactions affect the toxicity of engineered metal oxide nanoparticles toward Paramecium.
Li, Kungang; Chen, Ying; Zhang, Wen; Pu, Zhichao; Jiang, Lin; Chen, Yongsheng
2012-08-20
To better understand the potential impacts of engineered metal oxide nanoparticles (NPs) in the ecosystem, we investigated the acute toxicity of seven different types of engineered metal oxide NPs against Paramecium multimicronucleatum, a ciliated protozoan, using the 48 h LC(50) (lethal concentration, 50%) test. Our results showed that the 48 h LC(50) values of these NPs to Paramecium ranged from 0.81 (Fe(2)O(3) NPs) to 9269 mg/L (Al(2)O(3) NPs); their toxicity to Paramecium increased as follows: Al(2)O(3) < TiO(2) < CeO(2) < ZnO < SiO(2) < CuO < Fe(2)O(3) NPs. On the basis of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, interfacial interactions between NPs and cell membrane were evaluated, and the magnitude of interaction energy barrier correlated well with the 48 h LC(50) data of NPs to Paramecium; this implies that metal oxide NPs with strong association with the cell surface might induce more severe cytotoxicity in unicellular organisms.
Rattner, B.A.; Franson, J.C.
1984-01-01
Physiological and toxicological effects of p.o. methyl parathion (0.375-3.0 mg/kg) or fenvalerate (1000-4000 mg/kg) were examined over a 10-h period in American kestrels (Falco sparverius) maintained in thermoneutral (22?C) and cold (-5?C) environments. Methyl parathion was highly toxic (estimated median lethal dose of 3.08 mg/kg, 95% confidence limits of 2.29 -4.14 mg/kg), producing dose-dependent inhibition of brain and plasma cholinesterase activity, hyperglycemia, and elevated plasma corticosterone concentration. Brain and plasma cholinesterase inhibition in excess of 50% was associated with transient but pronounced hypothermia 2 h after intubation, although the magnitude of this response was yariable. Fenvalerate, at doses far exceeding those encountered in the environment, caused mild intoxication and elevated plasma alanine aminotransferase activity. Cold intensified methyl parathion toxicity, but did not affect that of fenvalerate. Thus, it would appear that organophosphorus insecticides pose far greater hazard than pyrethroids to raptorial birds.
Pothier, J; Cheav, S L; Galand, N; Dormeau, C; Viel, C
1998-08-01
Lupin is toxic because of its alkaloid content, sparteine and lupanine in particular. Although the pharmacological properties of sparteine are well known those of lupanine have not been much studied. This paper reports procedures for extraction, purification and crystallization of lupanine, and methods for the preparation of an extract for injection of Lupinus mutabilis Sweet, and for the determination of the acute toxicity and maximum non-lethal dose (DL0) of lupanine, sparteine and lupin extract in the mouse. The three substances were tested on the central nervous system (CNS) for locomotor activity, for interaction with specific drugs used for treatment of the CNS (the stimulant drugs amphetamine and pentetrazol and the depressant drugs pentobarbital and chlorpromazine) and for analgesic activity. The results indicate that lupanine and lupin extract are less toxic than sparteine and that at the doses studied the three products have a weak sedative effect on the CNS.
Application of biomonitoring and support vector machine in water quality assessment*
Liao, Yue; Xu, Jian-yu; Wang, Zhu-wei
2012-01-01
The behavior of schools of zebrafish (Danio rerio) was studied in acute toxicity environments. Behavioral features were extracted and a method for water quality assessment using support vector machine (SVM) was developed. The behavioral parameters of fish were recorded and analyzed during one hour in an environment of a 24-h half-lethal concentration (LC50) of a pollutant. The data were used to develop a method to evaluate water quality, so as to give an early indication of toxicity. Four kinds of metal ions (Cu2+, Hg2+, Cr6+, and Cd2+) were used for toxicity testing. To enhance the efficiency and accuracy of assessment, a method combining SVM and a genetic algorithm (GA) was used. The results showed that the average prediction accuracy of the method was over 80% and the time cost was acceptable. The method gave satisfactory results for a variety of metal pollutants, demonstrating that this is an effective approach to the classification of water quality. PMID:22467374
Nguta, J M; Mbaria, J M
2013-07-30
In Kenya, most people especially in rural areas use traditional medicine and medicinal plants to treat many diseases including malaria. Malaria is of national concern in Kenya, in view of development of resistant strains of Plasmodium falciparum to drugs especially chloroquine, which had been effective and affordable. There is need for alternative and affordable therapy. Many antimalarial drugs have been derived from medicinal plants and this is evident from the reported antiplasmodial activity. The present study reports on the in vivo antimalarial activity and brine shrimp lethality of five medicinal plants traditionally used to treat malaria in Msambweni district, Kenya. A total of five aqueous crude extracts from different plant parts used in traditional medicine for the treatment of malaria were evaluated for their in vivo antimalarial activity using Plasmodium berghei infected Swiss mice and for their acute toxicity using Brine shrimp lethality test. The screened crude plant extracts suppressed parasitaemia as follows: Azadirachta indica (L) Burm. (Meliaceae), 3.1%; Dichrostachys cinerea (L) Wight et Arn (Mimosaceae), 6.3%; Tamarindus indica L. (Caesalpiniaceae), 25.1%; Acacia seyal Del. (Mimosaceae) 27.8% and Grewia trichocarpa Hochst ex A.Rich (Tiliaceae) 35.8%. In terms of toxicity, A.indica root bark extract had an LC50 of 285.8 µg/ml and was considered moderately toxic. T.indica stem bark extract and G.trichocarpa root extract had an LC50 of 516.4 and 545.8 µg/ml respectively and were considered to be weakly toxic while A.seyal and D.cinerea root extracts had a LC50>1000 µg/ml and were therefore considered to be non toxic. The results indicate that the aqueous extracts of the tested plants when used alone as monotherapy had antimalarial activity which was significantly different from that of chloroquine (P≤0.05). The results also suggest that the anecdotal efficacy of the above plants reported by the study community is related to synergism of phytoconstituents since the assayed plant parts are used in combination with others to treat malaria. It is also evident that none of the screened plant extracts is toxic to the arthropod invertebrate, Artemia salina L. (Artemiidae) larvae, justifying the continued use of the plant parts to treat malaria. A.seyal, G.trichocarpa and T.indica have not been reported before for in vivo antimalarial activity and brine shrimp lethality. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Riaño Jiménez, Diego; Cure, José Ricardo
2016-12-01
The effect of insecticides on bees has gained great attention, however, there are few studies that explore this issue on Neotropical bees. Bombus atratus is a neotropical species broadly distributed in Colombia and is considered an important pollinator of both Andean ecosystems and agroecosystems. However, as for many wild bees species, the effect of insecticides on B. atratus is unknow. In this study we determined the acute median lethal dose (LD50) of commercial formulations of insecticides Imidacloprid, Spinosad and Thiocyclam hydrogen oxalate, widely used in Colombia to control several pests of important crops. The LD50 was carried out by oral and contact routes, following and modifying the EPPO and OECD guidelines to perform LD50 on A. mellifera. We evaluated five doses for each route and insecticide, in a total of 25 medium-size workers for each dose by duplicate. Mortality was registered at 24, 48 and 72 hours after the experiment; and data were analyzed with the Probit regression model. For Imidacloprid, contacts and oral LD50 were 0.048 µg/bee and 0.010 µg/bee, respectively. For Thiocyclam hydrogen oxalate, topical and oral LD50 were 0.244 µg/bee and 0.056 µg/bee, respectively. For Spinosad, the oral LD50 corresponded to 0.28 µg/bee; it was not possible to establish the LD50 for the contact route. The Hazard Quotient (HQ) and Index of Relative Toxicity indicated that all three active ingredients are highly toxic. We discussed the risk of the insecticides use on B. atratus, considering their chemical nature.
Lethal effects of short-wavelength visible light on insects.
Hori, Masatoshi; Shibuya, Kazuki; Sato, Mitsunari; Saito, Yoshino
2014-12-09
We investigated the lethal effects of visible light on insects by using light-emitting diodes (LEDs). The toxic effects of ultraviolet (UV) light, particularly shortwave (i.e., UVB and UVC) light, on organisms are well known. However, the effects of irradiation with visible light remain unclear, although shorter wavelengths are known to be more lethal. Irradiation with visible light is not thought to cause mortality in complex animals including insects. Here, however, we found that irradiation with short-wavelength visible (blue) light killed eggs, larvae, pupae, and adults of Drosophila melanogaster. Blue light was also lethal to mosquitoes and flour beetles, but the effective wavelength at which mortality occurred differed among the insect species. Our findings suggest that highly toxic wavelengths of visible light are species-specific in insects, and that shorter wavelengths are not always more toxic. For some animals, such as insects, blue light is more harmful than UV light.
Lethal effects of short-wavelength visible light on insects
NASA Astrophysics Data System (ADS)
Hori, Masatoshi; Shibuya, Kazuki; Sato, Mitsunari; Saito, Yoshino
2014-12-01
We investigated the lethal effects of visible light on insects by using light-emitting diodes (LEDs). The toxic effects of ultraviolet (UV) light, particularly shortwave (i.e., UVB and UVC) light, on organisms are well known. However, the effects of irradiation with visible light remain unclear, although shorter wavelengths are known to be more lethal. Irradiation with visible light is not thought to cause mortality in complex animals including insects. Here, however, we found that irradiation with short-wavelength visible (blue) light killed eggs, larvae, pupae, and adults of Drosophila melanogaster. Blue light was also lethal to mosquitoes and flour beetles, but the effective wavelength at which mortality occurred differed among the insect species. Our findings suggest that highly toxic wavelengths of visible light are species-specific in insects, and that shorter wavelengths are not always more toxic. For some animals, such as insects, blue light is more harmful than UV light.
Delov, Vera; Muth-Köhne, Elke; Schäfers, Christoph; Fenske, Martina
2014-05-01
The fish embryo toxicity test (FET) is currently one of the most advocated animal alternative tests in ecotoxicology. To date, the application of the FET with zebrafish (zFET) has focused on acute toxicity assessment, where only lethal morphological effects are accounted for. An application of the zFET beyond acute toxicity, however, necessitates the establishment of more refined and quantifiable toxicological endpoints. A valuable tool in this context is the use of gene expression-dependent fluorescent markers that can even be measured in vivo. We investigated the application of embryos of Tg(fli1:EGFP)(y1) for the identification of vasotoxic substances within the zFET. Tg(fli1:EGFP)(y1) fish express enhanced GFP in the entire vasculature under the control of the fli1 promoter, and thus enable the visualization of vascular defects in live zebrafish embryos. We assessed the fli1 driven EGFP-expression in the intersegmental blood vessels (ISVs) qualitatively and quantitatively, and found an exposure concentration related increase in vascular damage for chemicals like triclosan, cartap and genistein. The fluorescence endpoint ISV-length allowed an earlier and more sensitive detection of vasotoxins than the bright field assessment method. In combination with the standard bright field morphological effect assessment, an increase in significance and value of the zFET for a mechanism-specific toxicity evaluation was achieved. This study highlights the benefits of using transgenic zebrafish as convenient tools for identifying toxicity in vivo and to increase sensitivity and specificity of the zFET. Copyright © 2014 Elsevier B.V. All rights reserved.
O'Donnell, John C; Acon-Chen, Cindy; McDonough, John H; Shih, Tsung-Ming
2010-11-01
Organophosphorus nerve agents like cyclosarin and tabun are potent cholinesterase inhibitors. The inhibition of acetylcholinesterase, which is responsible for breaking down acetylcholine (ACh) at the synapse and neuromuscular junction, leads to a build-up of extracellular ACh and a series of toxic consequences including hypersecretion, tremor, convulsion/seizure, respiratory distress, coma, and death. This study employed simultaneous and continuous electroencephalographic recording and striatal microdialysis collection for quantification of ACh changes (via subsequent HPLC analysis) during acute exposure to a 1.0 × LD(50) subcutaneous dose of either cyclosarin or tabun to investigate differences in cholinergic and behavioral effects. Information about the unique mechanisms and consequences of different nerve agents is intended to aid in the development of broad-spectrum medical countermeasures for nerve agents. At the dose administered, non-seizure and sustained seizure responses were observed in both agent groups and in the tabun-exposed group some subjects experienced an unsustained seizure response. Significant extracellular ACh increases were only observed in seizure groups. Cyclosarin and tabun were found to exhibit some unique cholinergic and ictogenic characteristics. Lethality only occurred in subjects experiencing sustained seizure, and there was no difference in lethality between agent groups that progressed to sustained seizure.
McIntyre, J K; Davis, J W; Incardona, J P; Stark, J D; Anulacion, B F; Scholz, N L
2014-12-01
Urban stormwater contains a complex mixture of contaminants that can be acutely toxic to aquatic biota. Green stormwater infrastructure (GSI) is a set of evolving technologies intended to reduce impacts on natural systems by slowing and filtering runoff. The extent to which GSI methods work as intended is usually assessed in terms of water quantity (hydrology) and quality (chemistry). Biological indicators of GSI effectiveness have received less attention, despite an overarching goal of protecting the health of aquatic species. Here we use the zebrafish (Danio rerio) experimental model to evaluate bioinfiltration as a relatively inexpensive technology for treating runoff from an urban highway with dense motor vehicle traffic. Zebrafish embryos exposed to untreated runoff (48-96h; six storm events) displayed an array of developmental abnormalities, including delayed hatching, reduced growth, pericardial edema, microphthalmia (small eyes), and reduced swim bladder inflation. Three of the six storms were acutely lethal, and sublethal toxicity was evident across all storms, even when stormwater was diluted by as much as 95% in clean water. As anticipated from exposure to cardiotoxic polycyclic aromatic hydrocarbons (PAHs), untreated runoff also caused heart failure, as indicated by circulatory stasis, pericardial edema, and looping defects. Bioretention treatment dramatically improved stormwater quality and reversed nearly all forms of developmental toxicity. The zebrafish model therefore provides a versatile experimental platform for rapidly assessing GSI effectiveness. Copyright © 2014 Elsevier B.V. All rights reserved.
Toxicity associated with ingestion of a polyacrylic acid hydrogel dog pad.
Dorman, David C; Foster, Melanie L; Olesnevich, Brooke; Bolon, Brad; Castel, Aude; Sokolsky-Papkov, Marina; Mariani, Christopher L
2018-06-01
Superabsorbent sodium polyacrylate polymeric hydrogels that retain large amounts of liquids are used in disposable diapers, sanitary napkins, and other applications. These polymers are generally considered "nontoxic" with acute oral median lethal doses (LD 50 ) >5 g/kg. Despite this favorable toxicity profile, we identified a novel toxic syndrome in dogs and rats following the ingestion of a commercial dog pad composed primarily of a polyacrylic acid hydrogel. Inappropriate mentation, cerebellar ataxia, vomiting, and intention tremors were observed within 24 h after the ingestion of up to 15.7 g/kg of the hydrogel by an adult, castrated male Australian Shepherd mix. These observations prompted an experimental study in rats to further characterize the toxicity of the hydrogel. Adult, female Sprague Dawley rats ( n = 9) were assessed before and after hydrogel ingestion (2.6-19.2 g/kg over 4 h) using a functional observation battery and spontaneous motor activity. Clinical signs consistent with neurotoxicity emerged in rats as early as 2 h after the end of hydrogel exposure, including decreased activity in an open field, hunched posture, gait changes, reduced reaction to handling, decreased muscle tone, and abnormal surface righting. Hydrogel-exposed rats also had reduced motor activity when compared with pre-exposure baseline data. Rats that ingested the hydrogel did not develop nervous system lesions. These findings support the conclusion that some pet pad hydrogel products can induce acute neurotoxicity in animals under high-dose exposure conditions.
Phytochemical Screening and Acute Oral Toxicity Study of Java Tea Leaf Extracts
Safinar Ismail, Intan; Azam, Amalina Ahmad; Abas, Faridah; Shaari, Khozirah; Sulaiman, Mohd Roslan
2015-01-01
The term Java tea refers to the decoction of Orthosiphon stamineus (OS) Benth (Lamiaceae) leaves, which are widely consumed by the people in Europe and South East Asian countries. The OS leaves are known for their use in traditional medicinal systems as a prophylactic and curative agent for urinary stone, diabetes, and hypertension and also as a diuretic agent. The present study was aimed at evaluating its possible toxicity. Herein, the major phytochemical constituents of microwave dried OS leaf, which is the common drying process for tea sachets in the market, were also identified. The acute oral toxicity test of aqueous, 50% aqueous ethanolic, and ethanolic extracts of OS was performed at a dose of 5000 mg/Kg body weight of Sprague-Dawley rats. During the 14-day study, the animals were observed for any mortality, behavioral, motor-neuronal abnormalities, body weight, and feed-water consumption pattern. The hematological and serum biochemical parameters to assess the kidney and liver functions were carried out, along with the histological analysis of these organs. It was found that all microwave dried OS leaf extracts did not cause any toxic effects or mortality at the administered dose. No abnormality was noticed in all selected parameters in rats of both sexes as compared with their respective control groups. Thus, the possible oral lethal dose for microwave dried Java tea leaves is more than 5000 mg/Kg body weight. PMID:26819955
Effects of triclosan on marine benthic and epibenthic organisms.
Perron, Monique M; Ho, Kay T; Cantwell, Mark G; Burgess, Robert M; Pelletier, Marguerite C
2012-08-01
Triclosan is an antimicrobial compound that has been widely used in consumer products such as toothpaste, deodorant, and shampoo. Because of its widespread use, triclosan has been detected in various environmental media, including wastewater, sewage sludge, surface waters, and sediments. Triclosan is acutely toxic to numerous aquatic organisms, but very few studies have been performed on estuarine and marine benthic organisms. For whole sediment toxicity tests, the sediment-dwelling estuarine amphipod, Ampelisca abdita, and the epibenthic mysid shrimp, Americamysis bahia, are commonly used organisms. In the present study, median lethal concentration values (LC50) were obtained for both of these organisms using water-only and whole sediment exposures. Acute 96-h water-only toxicity tests resulted in LC50 values of 73.4 and 74.3 µg/L for the amphipod and mysid, respectively. For the 7-d whole sediment toxicity test, LC50 values were 303 and 257 mg/kg (dry wt) for the amphipod and mysid, respectively. Using equilibrium partitioning theory, these whole sediment values are equivalent to interstitial water LC50 values of 230 and 190 µg/L for the amphipod and mysid, respectively, which are within a threefold difference of the observed 96-h LC50 water-only values. Triclosan was found to accumulate in polychaete tissue in a 28-d bioaccumulation study with a biota-sediment accumulation factor of 0.23 kg organic carbon/kg lipid. These data provide some of the first toxicity data for triclosan with marine benthic and epibenthic species while also indicating a need to better understand the effects of other forms of sediment carbon, triclosan ionization, and organism metabolism of triclosan on the chemical's behavior and toxicity in the aquatic environment. Copyright © 2012 SETAC.
Soriano-Ursúa, Marvin A; Farfán-García, Eunice D; López-Cabrera, Yessica; Querejeta, Enrique; Trujillo-Ferrara, José G
2014-01-01
Boron-containing compounds (BCCs), particularly boron containing acids (BCAs), have become attractive moieties or molecules in drug development. It has been suggested that when functional groups with boron atoms are added to well-known drugs, the latter are conferred with greater potency and efficacy in relation to their target receptors. However, the use of BCAs in drug development is limited due to the lack of a toxicological profile. Consequently, the aim of the present study was to evaluate the acute toxicity of boric and boronic acids. Thus, a determination was made of the lethal dose (LD50) of test compounds in male CD1 mice, as well as the effective dose required to negatively affect spontaneous motor activity and to produce notable behavioral abnormalities. After treatment of animals at different doses, macroscopic observations were made from a necropsy, and Raman scattering spectroscopic studies were carried out on brain tissue samples. In general, the results show that most of the tested BCAs have very low toxicity, evidenced by the high doses required to induce notable toxic effects (greater than 100 mg/kg of body weight for all compounds, except for 3-thyenilboronic acid). Such toxic effects, presumably mediated by action on the CNS, include eye damage, gastrointestinal effects (e.g., gastric-gut dilatation and fecal retention), sedation, hypnosis and/or trembling. This preliminary toxicological profile suggests that BCAs can be considered potential therapeutic agents or moieties to be added to other compounds in the development of new drugs. Future studies are required to explore possible chronic toxicity of BCCs. Copyright © 2013 Elsevier Inc. All rights reserved.
Armstrong, Sarah A; Headley, John V; Peru, Kerry M; Germida, James J
2009-10-01
Naphthenic acids (NAs) are composed of alkyl-substituted acyclic and cycloaliphatic carboxylic acids and, because they are acutely toxic to fish, are of toxicological concern. During the caustic hot-water extraction of oil from the bitumen in oil sands deposits, NAs become concentrated in the resulting tailings pond water. The present study investigated if dissipation of NAs occurs in the presence of hydroponically grown emergent macrophytes (Typha latifolia, Phragmites australis, and Scirpus acutus) to determine the potential for phytoremediation of these compounds. Plants were grown with oil sands NAs (pKa approximately 5-6) in medium at pH 7.8 (predominantly ionized NAs) and pH 5.0 (predominantly nonionized NAs) to determine if, by altering their chemical form, NAs may be more accessible to plants and, thus, undergo increased dissipation. Whereas the oil sands NA mixture in its nonionized form was more toxic to wetland plants than its ionized form, neither form appeared to be sequestered by wetland plants. The present study demonstrated that plants may selectively enhance the dissipation of individual nonionized NA compounds, which contributes to toxicity reduction but does not translate into detectable total NA dissipation within experimental error and natural variation. Plants were able to reduce the toxicity of a NA system over 30 d, increasing the median lethal concentration (LC50; % of hydroponic solution) of the medium for Daphnia magna by 23.3% +/- 8.1% (mean +/- standard error; nonionized NAs) and 37.0% +/- 2.7% (ionized NAs) as determined by acute toxicity bioassays. This reduction in toxicity was 7.3% +/- 2.6% (nonionized NAs) and 45.0% +/- 6.8% (ionized NAs) greater than that in unplanted systems.
Soucek, David J; Dickinson, Amy
2015-09-01
Although insects occur in nearly all freshwater ecosystems, few sensitive insect models exist for use in determining the toxicity of contaminants. The objectives of the present study were to adapt previously developed culturing and toxicity testing methods for the mayfly Neocloeon triangulifer (Ephemeroptera: Baetidae), and to further develop a method for chronic toxicity tests spanning organism ages of less than 24 h post hatch to adult emergence, using a laboratory cultured diatom diet. The authors conducted 96-h fed acute tests and full-life chronic toxicity tests with sodium chloride, sodium nitrate, and sodium sulfate. The authors generated 96-h median lethal concentrations (LC50s) of 1062 mg Cl/L (mean of 3 tests), 179 mg N-NO3 /L, and 1227 mg SO4 /L. Acute to chronic ratios ranged from 2.1 to 6.4 for chloride, 2.5 to 5.1 for nitrate, and 2.3 to 8.5 for sulfate. The endpoints related to survival and development time were consistently the most sensitive in the tests. The chronic values generated for chloride were in the same range as those generated by others using natural foods. Furthermore, our weight-versus-fecundity plots were similar to those previously published using the food culturing method on which the present authors' method was based, indicating good potential for standardization. The authors believe that the continued use of this sensitive mayfly species in laboratory studies will help to close the gap in understanding between standard laboratory toxicity test results and field-based observations of community impairment. © 2015 SETAC.
Carvalho, Ana Laura Nicoletti; Annoni, Raquel; Silva, Paula Regina Pereira; Borelli, Primavera; Fock, Ricardo Ambrósio; Trevisan, Maria Teresa Salles; Mauad, Thais
2011-06-01
Anacardium occidentale Linn. (cashew) is a Brazilian plant that is usually consumed in natura and is used in folk medicine. Anacardic acids (AAs) in the cashew nut shell liquid are biologically active as gastroprotectors, inhibitors of the activity of various deleterious enzymes, antitumor agents and antioxidants. Yet, there are no reports of toxicity testing to guarantee their use in vivo models. We evaluated AAs biosafety by measuring the acute, subacute and mutagenic effects of AAs administration in BALB/c mice. In acute tests, BALB/c mice received a single oral dose of 2000 mg/kg, whereas animals in subacute tests received 300, 600 and 1000 mg/kg for 30 days. Hematological, biochemical and histological analyses were performed in all animals. Mutagenicity was measured with the acute micronucleus test 24h after oral administration of 250 mg/kg AAs. Our results showed that the AAs acute minimum lethal dose in BALB/c mice is higher than 2000 mg/kg since this concentration did not produce any symptoms. In subacute tests, females which received the highest doses (600 or 1000 mg/kg) were more susceptible, which was seen by slightly decreased hematocrit and hemoglobin levels coupled with a moderate increase in urea. Anacardic acids did not produce any mutagenic effects. The data indicate that doses less than 300 mg/kg did not produce biochemical and hematological alterations in BALB/c mice. Additional studies must be conducted to investigate the pharmacological potential of this natural substance in order to ensure their safe use in vivo. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
A Bacterial Cocaine Esterase Protects Against Cocaine-Induced Epileptogenic Activity and Lethality
Jutkiewicz, Emily M.; Baladi, Michelle G.; Cooper, Ziva D.; Narasimhan, Diwahar; Sunahara, Roger K.; Woods, James H.
2012-01-01
Study objective Cocaine toxicity results in cardiovascular complications, seizures, and death and accounts for approximately 20% of drug-related emergency department visits every year. Presently, there are no treatments to eliminate the toxic effects of cocaine. The present study hypothesizes that a bacterial cocaine esterase with high catalytic efficiency would provide rapid and robust protection from cocaine-induced convulsions, epileptogenic activity, and lethality. Methods Cocaine-induced paroxysmal activity and convulsions were evaluated in rats surgically implanted with radiotelemetry devices (N=6 per treatment group). Cocaine esterase was administered 1 minute after a lethal dose of cocaine or after cocaine-induced convulsions to determine the ability of the enzyme to prevent or reverse, respectively, the effects of cocaine. Results The cocaine esterase prevented all cocaine-induced electroencephalographic changes and lethality. This effect was specific for cocaine because the esterase did not prevent convulsions and death induced by a cocaine analog, (−)-2β-carbomethoxy-3β-phenyltropane. The esterase prevented lethality even after cocaine-induced convulsions occurred. In contrast, the short-acting benzodiazepine, midazolam, prevented cocaine-induced convulsions but not the lethal effects of cocaine. Conclusion The data showed that cocaine esterase successfully degraded circulating cocaine to prevent lethality and that cocaine-induced convulsions alone are not responsible for the lethal effects of cocaine in this model. Therefore, further investigation into the use of cocaine esterase for treating cocaine overdose and its toxic effects is warranted. PMID:19013687
Hassani, Shokoufeh; Maqbool, Faheem; Salek-Maghsoudi, Armin; Rahmani, Soheila; Shadboorestan, Amir; Nili-Ahmadabadi, Amir; Amini, Mohsen; Norouzi, Parviz; Abdollahi, Mohammad
2018-01-01
In the present survey, the plasma level of diazinon after acute exposure was measured by HPLC method at a time-course manner. In addition, the impact of diazinon on the expression of the key genes responsible for hepatocellular antioxidative defense, including PON1, GPx and CAT were investigated. The increase in oxidative damages in treated rats was determined by measuring LPO, protein carbonyl content and total antioxidant power in plasma. After administration of 85 mg/kg diazinon in ten groups of male Wistar rats at different time points between 0-24 hours, the activity of AChE enzyme was inhibited to about 77.94 %. Significant increases in carbonyl groups and LPO after 0.75 and 1 hours were also observed while the plasma antioxidant power was significantly decreased. Despite the dramatic reduction of GP X and PON1 gene expression, CAT gene was significantly upregulated in mRNA level by 1.1 fold after 4 hours and 1.5-fold after 24 hours due to diazinon exposure, compared to control group. Furthermore, no significant changes in diazinon plasma levels were found after 4 hours in the treated rats. The limits of detection and quantification were 137.42 and 416.52 ng/mL, respectively. The average percentage recoveries from plasma were between 90.62 % and 95.72 %. In conclusion, acute exposure to diazinon increased oxidative stress markers in a time-dependent manner and the changes were consistent with effects on hepatic antioxidant gene expression pattern. The effect of diazinon even as a non-lethal dose was induced on the gene expression of antioxidant enzymes. The change in antioxidant defense system occurs prior to diazinon plasma peak time. These results provide biochemical and molecular evidence supporting potential acute toxicity of diazinon and is beneficial in the evaluation of acute toxicity of other organophosphorus pesticides as well.
Horie, Yoshifumi; Yamagishi, Takahiro; Takahashi, Hiroko; Shintaku, Youko; Iguchi, Taisen; Tatarazako, Norihisa
2017-10-01
Fish embryo toxicity tests are used to assess the lethal and sublethal effects of environmental chemicals in aquatic organisms. Previously, we used a short-term toxicity test published by the Organization for Economic Co-operation and Development (test no. 212: Fish, Short-term Toxicity Test on Embryo and Sac-Fry Stages [OECD TG 212]) to assess the lethal and sublethal effects of aniline and several chlorinated anilines in zebrafish embryos and larvae. To expand upon this previous study, we used OECD TG 212 in zebrafish embryos and larvae to assess the lethal and sublethal effects of 20 additional environmental chemicals that included active pharmaceutical ingredients, pesticides, metals, aromatic compounds or chlorinated anilines. Zebrafish embryos (Danio rerio) were exposed to the test chemicals until 8 days post-fertilization. A delayed lethal effect was induced by 16 of the 20 test chemicals, and a positive correlation was found between heart rate turbulence and mortality. We also found that exposure to the test chemicals at concentrations lower than the lethal concentration induced the sublethal effects of edema, body curvature and absence of swim-bladder inflation. In conclusion, the environmental chemicals assessed in the present study induced both lethal and sublethal effects in zebrafish embryos and larvae, as assessed by using OECD TG 212. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Salgado-Pabón, Wilmara; Breshears, Laura; Spaulding, Adam R.; Merriman, Joseph A.; Stach, Christopher S.; Horswill, Alexander R.; Peterson, Marnie L.; Schlievert, Patrick M.
2013-01-01
ABSTRACT Infective endocarditis and kidney infections are serious complications of Staphylococcus aureus sepsis. We investigated the role of superantigens (SAgs) in the development of lethal sepsis, infective endocarditis, and kidney infections. SAgs cause toxic shock syndrome, but it is unclear if SAgs contribute to infective endocarditis and kidney infections secondary to sepsis. We show in the methicillin-resistant S. aureus strain MW2 that lethal sepsis, infective endocarditis, and kidney infections in rabbits are critically dependent on high-level SAgs. In contrast, the isogenic strain lacking staphylococcal enterotoxin C (SEC), the major SAg in this strain, is attenuated in virulence, while complementation restores disease production. SAgs’ role in infective endocarditis appears to be both superantigenicity and direct endothelial cell stimulation. Maintenance of elevated blood pressure by fluid therapy significantly protects from infective endocarditis, possibly through preventing bacterial accumulation on valves and increased SAg elimination. These data should facilitate better methods to manage these serious illnesses. PMID:23963178
Effectiveness and Mechanisms of Antagonism of Toxic Effects of Cyanide by Alpha-Keto Acids.
1986-12-31
until the miss-w near death. Lethal blood levels of cyanide in alpha-KG treated animl. as levels of 5-7 mcg cyani0e, which so 5-7 times the expected...lethal levels . rwm these studies, alpha-KC is effettive in antagonising administered dos of CH of five time the lethal dose before the toxic effects are...parameters in the dog .................. 26 Table 6 The effects of cyanide on 2,3 diphosphoglyceric acid .......... 28 Table 7 Stability of solution of ci
9 CFR 113.33 - Mouse safety tests.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Mouse safety tests. 113.33 Section 113... Procedures § 113.33 Mouse safety tests. One of the mouse safety tests provided in this section shall be... or more ingredients makes the biological product lethal or toxic for mice but not lethal or toxic for...
9 CFR 113.33 - Mouse safety tests.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Mouse safety tests. 113.33 Section 113... Procedures § 113.33 Mouse safety tests. One of the mouse safety tests provided in this section shall be... or more ingredients makes the biological product lethal or toxic for mice but not lethal or toxic for...
9 CFR 113.33 - Mouse safety tests.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Mouse safety tests. 113.33 Section 113... Procedures § 113.33 Mouse safety tests. One of the mouse safety tests provided in this section shall be... or more ingredients makes the biological product lethal or toxic for mice but not lethal or toxic for...
9 CFR 113.33 - Mouse safety tests.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Mouse safety tests. 113.33 Section 113... Procedures § 113.33 Mouse safety tests. One of the mouse safety tests provided in this section shall be... or more ingredients makes the biological product lethal or toxic for mice but not lethal or toxic for...
9 CFR 113.33 - Mouse safety tests.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Mouse safety tests. 113.33 Section 113... Procedures § 113.33 Mouse safety tests. One of the mouse safety tests provided in this section shall be... or more ingredients makes the biological product lethal or toxic for mice but not lethal or toxic for...
Peck, Mika R; Klessa, David A; Baird, Donald J
2002-04-01
The wetlands of the Magela floodplain of northern Australia, which is the major sink for dissolved metals transported in the Magela Creek system, contain acid-sulfate sediments. The rewetting of oxidized acid-sulfate soil each wet season produces acidic pulses that have the potential to alter the bioavailability of sediment-associated metal contaminants. Acute toxicity tests (72-h mean lethal concentration [LC50]) using the tropical chironomid Chironomus crassiforceps Kieffer showed that copper toxicity decreased from 0.64 mg/L at pH 6 to 2.30 mg/L at pH 4. Uranium toxicity showed a similar trend (36 mg/L at pH 6 and 58 mg/L at pH 4). Sediment toxicity tests developed using C. crassiforceps also showed that both metals were less toxic at the lower sediment pH with pore-water copper toxicity having a lowest-observed-effect concentration of 4.73 mg/L at pH 4 compared to 1.72 mg/L at pH 6. However, a lower pH increased pore-water metal concentrations and overlying water concentrations in bioassays. Hydrogen ion competition on metal receptor sites in C. crassiforceps was proposed to explain the decrease in toxicity in response to increased H+ activity. This study highlights the need to consider site-specific physicochemical conditions before applying generic risk assessment methods.
López, T A; Cid, M S; Bianchini, M L
1999-06-01
The literature on Conium maculatum biochemistry and toxicology, dispersed in a large number of scientific publications, has been put together in this review. C. maculatum is a weed known almost worldwide by its toxicity to many domestic animals and to human beings. It is an Umbelliferae, characterized by long, hollow stems, reaching up to 2 m height at maturity, producing a large amount of lush foliage during its vegetative growth. Its flowers are white, grouped in umbels formed by numerous umbellules. It produces a large number of seeds that allow the plant to form thick stands in modified soils, sometimes encroaching on cultivated fields, to the extent of impeding the growth of any other vegetation inside the C. maculatum area of growth. Eight piperidinic alkaloids have been identified in this species. Two of them, gamma-coniceine and coniine are generally the most abundant and they account for most of the plant acute and chronic toxicity. These alkaloids are synthesized by the plant from eight acetate units from the metabolic pool, forming a polyketoacid which cyclises through an aminotransferase and forms gamma-coniceine as the parent alkaloid via reduction by a NADPH-dependent reductase. The acute toxicity is observed when animals ingest C. maculatum vegetative and flowering plants and seeds. In a short time the alkaloids produce a neuromuscular blockage conducive to death when the respiratory muscles are affected. The chronic toxicity affects only pregnant animals. When they are poisoned by C. maculatum during the fetuses organ formation period, the offspring is born with malformations, mainly palatoschisis and multiple congenital contractures (MCC; frequently described as arthrogryposis). Acute toxicity, if not lethal, may resolve in the spontaneous recovery of the affected animals provided further exposure to C. maculatum is avoided. It has been observed that poisoned animals tend to return to feed on this plant. Chronic toxicity is irreversible and although MCC can be surgically corrected in some cases, most of the malformed animals are lost. Since no specific antidote is available, prevention is the only way to deal with the production loses caused by this weed. Control with herbicides and grazing with less susceptible animals (such as sheep) have been suggested. C. maculatum alkaloids can be transferred to milk and to fowl muscle tissue through which the former can reach the human food chain. The losses produced by C. maculatum chronic toxicity may be largely underestimated, at least in some regions, because of the difficulty in associate malformations in offspring with the much earlier maternal poisoning.
Arnold, W R; Diamond, R L; Smith, D S
2010-08-01
This paper presents data from original research for use in the development of a marine biotic ligand model and, ultimately, copper criteria for the protection of estuarine and marine organisms and their uses. Ten 48-h static acute (unfed) copper toxicity tests using the euryhaline rotifer Brachionus plicatilis ("L" strain) were performed to assess the effects of salinity, pH, and dissolved organic matter (measured as dissolved organic carbon; DOC) on median lethal dissolved copper concentrations (LC50). Reconstituted and natural saltwater samples were tested at seven salinities (6, 11, 13, 15, 20, 24, and 29 g/L), over a pH range of 6.8-8.6 and a range of dissolved organic carbon of <0.5-4.1 mg C/L. Water chemistry analyses (alkalinity, calcium, chloride, DOC, hardness, magnesium, potassium, sodium, salinity, and temperature) are presented for input parameters to the biotic ligand model. In stepwise multiple regression analysis of experimental results where salinity, pH, and DOC concentrations varied, copper toxicity was significantly related only to the dissolved organic matter content (pH and salinity not statistically retained; alpha=0.05). The relationship of the 48-h dissolved copper LC50 values and dissolved organic carbon concentrations was LC50 (microg Cu/L)=27.1xDOC (mg C/L)1.25; r2=0.94.
Mizuno, Masashi; Ito, Yasuhiko; Morgan, B. Paul
2012-01-01
In the natural world, there are many creatures with venoms that have interesting and varied activities. Although the sea anemone, a member of the phylum Coelenterata, has venom that it uses to capture and immobilise small fishes and shrimp and for protection from predators, most sea anemones are harmless to man. However, a few species are highly toxic; some have venoms containing neurotoxins, recently suggested as potential immune-modulators for therapeutic application in immune diseases. Phyllodiscus semoni is a highly toxic sea anemone; the venom has multiple effects, including lethality, hemolysis and renal injuries. We previously reported that venom extracted from Phyllodiscus semoni induced acute glomerular endothelial injuries in rats resembling hemolytic uremic syndrome (HUS), accompanied with complement dysregulation in glomeruli and suggested that the model might be useful for analyses of pathology and development of therapeutic approaches in HUS. In this mini-review, we describe in detail the venom-induced acute renal injuries in rat and summarize how the venom of Phyllodiscus semoni could have potential as a tool for analyses of complement activation and therapeutic interventions in HUS. PMID:22851928
Kwak, Jieun; Kim, Mi-Jeong; Choi, Kyung-Chul; Choi, Hyo-Kyung; Jun, Woojin; Park, Hyun-Jin; Lee, Yoo-Hyun; Yoon, Ho-Geun
2012-07-01
Alzheimer's disease (AD) is the most common neurodegenerative disease to cause dementia in the elderly. Amyloid β (Aβ)-peptide induced oxidative stress causes the initiation and progression of AD. Recently, new chalcone derivatives termed the Chana series were synthesized. Among them, Chana 1 showed high free radical scavenging activity (72.5%), as measured by a DPPH (1,1-diphenyl-2-picrylhydrazyl) assay. In this study, we investigated the effect of Chana 1 against Aβ-induced cytotoxicity and cognitive deficits. Additionally, we sought to estimate the lethal dose, 50% (LD50) of Chana 1 in mice using an acute oral toxicity test. We found that Chana 1 significantly protected against Aβ-induced neuronal cell death in PC12 cells. Oral administration of Chana 1 at a dose of 50 mg/kg body weight/day significantly improved Aβ-induced learning and memory impairment in mice, as measured in Y-maze and passive avoidance tests. In acute toxicity tests, the LD50 in mice was determined to be 520.44 mg/kg body weight. The data are valuable for future studies and suggest that Chana 1 has therapeutic potential for the management of neurodegenerative disease.
Eizadi-Mood, Nastaran; Naeini, Seyed Amir Hossein Madani; Hedaiaty, Mahrang; Sabzghabaee, Ali Mohammad; Moudi, Maryam
2016-01-01
Methadone poisoning is common in our society, mainly in drug addicts. One of its lethal complications is pulmonary edema. Therefore, we evaluated the prevalence of pulmonary edema in the deceased cases with methadone poisoning and its possible relationship with some medical variables. In this cross-sectional study which was done in 2014, we have investigated the deceased patients with methadone toxicity who underwent autopsy at Isfahan Forensic Medicine Department (Iran). All variables including age, gender, and autopsy findings were recorded and analyzed. Demographic characteristics and medical complications of the patients were compared between the patients with or without pulmonary edema in the autopsy findings. There were 64 cases who died with methadone poisoning during the 1-year study period. The average age of cases (±standard deviation) was 32.1 ± 10.29 years, among which 92.2% were male. Based on the autopsy findings, 64.1% were diagnosed with pulmonary edema. There was no statistically significant relationship between pulmonary edema and age, gender, history of addiction, and hepatic or cardiovascular complications. Pulmonary edema is a common finding in deceased methadone poisoning cases and must be considered and ruled out in patients with acute methadone toxicity.
Stanley, Daphne A; Honko, Anna N; Asiedu, Clement; Trefry, John C; Lau-Kilby, Annie W; Johnson, Joshua C; Hensley, Lisa; Ammendola, Virginia; Abbate, Adele; Grazioli, Fabiana; Foulds, Kathryn E; Cheng, Cheng; Wang, Lingshu; Donaldson, Mitzi M; Colloca, Stefano; Folgori, Antonella; Roederer, Mario; Nabel, Gary J; Mascola, John; Nicosia, Alfredo; Cortese, Riccardo; Koup, Richard A; Sullivan, Nancy J
2014-10-01
Ebolavirus disease causes high mortality, and the current outbreak has spread unabated through West Africa. Human adenovirus type 5 vectors (rAd5) encoding ebolavirus glycoprotein (GP) generate protective immunity against acute lethal Zaire ebolavirus (EBOV) challenge in macaques, but fail to protect animals immune to Ad5, suggesting natural Ad5 exposure may limit vaccine efficacy in humans. Here we show that a chimpanzee-derived replication-defective adenovirus (ChAd) vaccine also rapidly induced uniform protection against acute lethal EBOV challenge in macaques. Because protection waned over several months, we boosted ChAd3 with modified vaccinia Ankara (MVA) and generated, for the first time, durable protection against lethal EBOV challenge.
Acute toxicity of methanol in the folate-deficient acatalasemic mouse.
Smith, E N; Taylor, R T
1982-01-01
Formate acidosis is the chief measurable biochemical characteristic of acute methanol toxicity in man. Its marked elevation in the blood stream of primates has been proposed to account for their much greater susceptibility versus rodents to methanol poisoning. Therefore, a study was undertaken to assess whether folic acid deficient (FAD) mice which accumulate formate are much more sensitive to the lethal effects of this alcohol than folic acid sufficient (FAS) mice. Moreover, because some formate is oxidized by catalase-H2O2 in rodents, but not in primates, we also compared the urinary excretion and blood plasma accumulation of formate and the methanol sensitivity of acatalasemic mice. Methanol-dosed C57BL/6Csb (acatalasemic) mice exhibit slightly lower LD50S than CSa (normal catalase) mice, irrespective of their folate state. CSb-FAD mice excreted much more formate and developed higher plasma formate concentrations (11-17 mM) than identically dosed CSa-FAD animals (6 mM). However, in no instance did a folate deficiency produce a large reciprocal decrease in the oral or i.p. LD50 that would be expected from a huge increase (greater than 10-fold) in the 24-h blood plasma formate level. A low methionine (0.2%) intake did not decrease the oral methanol LD50 of CSb-FAD mice, although excess dietary methionine (1.8%) did lower it from 7.1 to 6.4 g/kg. Methanol treated (4 g/kg) Csb-FAD mice excreted 30.8-48.2% of the oral dose as urinary formate, depending on the level of dietary methionine. Csb-FAS and -FAD mice which were given 2 g/kg sodium formate orally (LD50 = 4.7 and 3.7 g/kg) cleared this dose from the blood within 24 h and excreted 58% and 76% of it, respectively, in the urine. Our results indicate that the plasma formate concentration does not correlate well with methanol lethality in Csb-FAS vs. -FAD mice. In addition, urinary excretion, not oxidation, is the primary means by which mice, and probably rats, eliminate high levels of blood formate. Since the Csb-FAD mouse attains high plasma formate levels and low blood pH-values similar to those which have been reported for methanol poisoned monkeys, it appears to be of value as an inexpensive small animal model for further studies of lethal methanol toxicity and the contribution of formate to this process.
Canut, Lourdes; Zapatero, Jorge; López, Sílvia; Torrent, Anna; Ruhí, Ramon; Vicente, Laura
2012-04-01
The toxicity of a rooster comb extract (IB0004) that contains mainly sodium hyaluronate was assessed in acute and subchronic studies and in a bacterial reverse mutation assay. In a single dose acute study, male and female rats were administered 2000 mg/kg body weight (bw) of the product and observed for 14 days. No mortality was recorded, thus it was considered that the minimum lethal dose for rats by oral route was greater than 2000 mg/kg bw. A 90-day subchronic study (5, 55 and 600 mg/kg bw/day, oral gavage) with 50 male and 50 female Wistar-Hannover rats produced no significant adverse effects on food consumption, body weight, mortality, clinical biochemistry, hematology, gross pathology, and histopathology. Although some differences were observed between the treated and control animals in body weight gain (%) and some hematological parameters, these changes were generally minor in nature and, are considered to be of no toxicological significance. The no-observable-adverse-effects level was established at 600 mg/kg bw/day. There was no evidence of mutagenic activity in Salmonella typhimurium TA98, TA100, TA1535 and TA1537 or in Escherichia coli WP2 uvra pkM101. In conclusion, the results from these safety studies support the safety of rooster comb extract IB0004 in food. Copyright © 2011 Elsevier Inc. All rights reserved.
Crescioli, Giada; Lombardi, Niccolò; Bettiol, Alessandra; Marconi, Ettore; Risaliti, Filippo; Bertoni, Michele; Menniti Ippolito, Francesca; Maggini, Valentina; Gallo, Eugenia; Firenzuoli, Fabio; Vannacci, Alfredo
2018-05-25
Herbal weight-loss supplements are sold as self-medication products, and are often used under the misconception that their natural origin guarantees their safety. Food supplements are not required to provide any benefit/risk profile evaluation before marketing; however, possible risks associated with use of herbal extracts in food supplements are becoming more and more documented in the literature. Some herbs are listed as the leading cause of herb-induced liver injury, with a severe or potentially lethal clinical course, and unpredictable herb-drug interactions. Garcinia cambogia (GC) extract and GC-containing products are some of the most popular dietary supplements currently marketed for weight loss. Here, we present four cases of acute liver failure in women taking GC extract for weight loss, and a literature review of clinical evidences about hepatic toxicity in patients taking dietary supplements containing GC extract.
Bucher, J R; Gupta, B N; Adkins, B; Thompson, M; Jameson, C W; Thigpen, J E; Schwetz, B A
1987-01-01
Male and female F344/N rats and B6C3F1 mice were exposed to lethal and sublethal concentrations of methyl isocyanate by inhalation. Mortality, clinical signs, body and organ weights, and changes in clinical pathology and hematology were monitored immediately after 2-hr exposures and during the ensuing 3 months. Additional studies investigated the possible involvement of cyanide in the toxicity of methyl isocyanate. During exposures, signs of restlessness, lacrimation, and a reddish discharge from the nose and mouth were evident in rats and mice. Following exposures, rats and mice were dyspneic and weak. Deaths of rats and mice exposed to lethal concentrations (20 to 30 ppm) began within 15-18 hr, with males more prone to early death than females. A second wave of deaths occurred after 8 to 10 days, affecting primarily female rats and mice exposed to 20 to 30 ppm of methyl isocyanate, and male and female rats exposed to 10 ppm. Most deaths occurred during the first month following the exposures and were preceded by periods of severe respiratory distress. Body weights decreased in proportion to dose early, but then weight gain resumed in survivors at control rates. The only organ with a consistent, dose-related weight change was the lung, which was heavier throughout the studies in animals exposed to high concentrations of methyl isocyanate. No significant clinical pathology, or hematologic changes were observed in exposed rats. Blood and brain cholinesterase were not inhibited. Studies attempting to measure cyanide in the blood of methyl isocyanate-exposed rats, and attempting to affect lethality with a cyanide antidote (sodium nitrite and sodium thiosulfate) gave negative results.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3622444
Toxic wavelength of blue light changes as insects grow.
Shibuya, Kazuki; Onodera, Shun; Hori, Masatoshi
2018-01-01
Short-wavelength visible light (blue light: 400-500 nm) has lethal effects on various insects, such as fruit flies, mosquitoes, and flour beetles. However, the most toxic wavelengths of blue light might differ across developmental stages. Here, we investigate how the toxicity of blue light changes with the developmental stages of an insect by irradiating Drosophila melanogaster with different wavelengths of blue light. Specifically, the lethal effect on eggs increased at shorter light wavelengths (i.e., toward 405 nm). In contrast, wavelengths from 405 to 466 nm had similar lethal effects on larvae. A wavelength of 466 nm had the strongest lethal effect on pupae; however, mortality declined as pupae grew. A wavelength of 417 nm was the most harmful to adults at low photon flux density, while 466 nm was the most harmful to adults at high photon flux density. These findings suggest that, as the morphology of D. melanogaster changes with growth, the most harmful wavelength also changes. In addition, our results indicated that reactive oxygen species influence the lethal effect of blue light. Our findings show that blue light irradiation could be used as an effective pest control method by adjusting the wavelength to target specific developmental stages.
Folkerts, Erik J; Blewett, Tamzin A; He, Yuhe; Goss, Greg G
2017-12-01
Hydraulic fracturing flowback and produced water (FPW) is a wastewater produced during fracturing activities in an operating well which is hyper saline and chemically heterogeneous in nature, containing both anthropogenic and petrogenic chemicals. Determination of FPW associated toxicity to embryonic fish is limited, while investigation into how embryonic exposures may affect later life stages is not yet studied. Zebrafish embryos (24hrs post fertilization) were acutely exposed to 2.5% and 5% FPW fractions for either 24 or 48hrs and returned to freshwater. After either 24 or 48h exposures, embryos were examined for expression of 3 hypoxia related genes. Erythropoietin (epoa) but not hypoxia inducible factor (hif1aa) nor hemoglobin -ß chain (hbbe1.1) was up-regulated after either 24 or 48h FPW exposure. Surviving embryos were placed in freshwater and grown to a juvenile stage (60days post fertilization). Previously exposed zebrafish were analyzed for both swim performance (U crit and U max ) and aerobic capacity. Fish exposed to both sediment containing (FPW-S) or sediment free (FPW-SF) FPW displayed significantly reduced aerobic scope and U crit /U max values compared to control conditions. Our results collectively suggest that organics present in our FPW sample may be responsible for sub-lethal fitness and metabolic responses. We provide evidence supporting the theory that the cardio-respiratory system is impacted by FPW exposure. This is the first known research associating embryonic FPW exposures to sub-lethal performance related responses in later life fish stages. Copyright © 2017 Elsevier B.V. All rights reserved.
Morsy, Gamal M; El-Ala, Kawther S Abou; Ali, Atef A
2016-02-01
The purpose of this study is to follow-up the distribution, lethality percentile doses (LDs) and bioaccumulation of aluminium oxide nanoparticles (Al2O3-NPs, average diameter 9.83 ± 1.61 nm) in some tissues of male albino rats, and to evaluate its genotoxicity to the brain tissues, during acute and sublethal experiments. The LDs of Al2O3-NPs, including median lethal dose (LD50), were estimated after intraperitoneal injection. The computed LD50 at 24 and 48 h were 15.10 and 12.88 g/kg body weight (b.w.), respectively. For acute experiments, the bioaccumulation of aluminium (Al) in the brain, liver, kidneys, intestine and spleen was estimated after 48 h of injection with a single acute dose (3.9, 6.4 and 8.5 g/kg b.w.), while for sublethal experiments it was after 1, 3, 7, 14 and 28 days of injection with 1.3 g/kg b.w. once in 2 days. Multi-way analysis of variance affirmed that Al uptake, in acute experiments, was significantly affected by the injected doses, organs (brain, liver, kidneys, intestine and spleen) and their interactions, while for sublethal experiments an altogether effect based on time (1, 3, 7, 14, 28 days), doses (0 and 1.3 g), organs and their interactions was reported. In addition, Al accumulated in the brain, liver, kidney, intestine and spleen of rats administered with Al2O3-NPs were significantly higher than the corresponding controls, during acute and sublethal experiments. The uptake of Al by the spleen of rats injected with acute doses was greater than that accumulated by kidney>brain>intestine>liver, whereas the brain of rats injected with sublethal dose accumulated lesser amount of Al followed by the kidney
Papanastasiou, Stella A.; Bali, Eleftheria-Maria D.; Ioannou, Charalampos S.; Papachristos, Dimitrios P.; Zarpas, Kostas D.
2017-01-01
Plant essential oils (EOs) and a wide range of their individual components are involved in a variety of biological interactions with insect pests including stimulatory, deterrent, toxic and even hormetic effects. Both the beneficial and toxic properties of citrus EOs on the Mediterranean fruit fly (medfly) have been experimentally evidenced over the last years. However, no information is available regarding the toxic or beneficial effects of the major components of citrus EOs via contact with the adults of the Mediterranean fruit fly. In the present study, we explored the toxicity of limonene, linalool and α-pinene (3 of the main compounds of citrus EOs) against adult medflies and identified the effects of sub-lethal doses of limonene on fitness traits in a relaxed [full diet (yeast and sugar)] and in a stressful (sugar only) feeding environment. Our results demonstrate that all three compounds inferred high toxicity to adult medflies regardless of the diet, with males being more sensitive than females. Sub-lethal doses of limonene (LD20) enhanced the lifespan of adult medflies when they were deprived of protein. Fecundity was positively affected when females were exposed to limonene sub-lethal doses. Therefore, limonene, a major constituent of citrus EOs, induces high mortality at increased doses and positive effects on life history traits of medfly adults through contact at low sub-lethal doses. A hormetic-like effect of limonene to adult medflies and its possible underlying mechanisms are discussed. PMID:28520791
Green tea extract-induced lethal toxicity in fasted but not in nonfasted dogs.
Wu, Kuei-Meng; Yao, Jiaqin; Boring, Daniel
2011-02-01
Recent chronic toxicity studies performed on green tea extracts in fasted dogs have revealed some unique dose-limiting lethal liver, gastrointestinal, and renal toxicities. Key findings included necrosis of hepatic cells, gastrointestinal epithelia and renal tubules, atrophy of reproductive organs, atrophy and necrosis of hematopoietic tissues, and associated hematological changes. The polyphenol cachetins (a mixture of primarily epigallocatechin gallate [≥55%]; plus up to 10% each of epigallocatechin, epicatechin, and epigallocatechin gallate) appeared to be the causative agents for the observed toxicities because they are the active ingredients of green tea extract studied. Conduct of the study in nonfasted dogs under the same testing conditions and dose levels showed unremarkable results. Assuming both studies were valid, at the identified no observed adverse effect levels (NOAEL) of each study, systemic exposures (based on area under the curve [AUC]) were actually lower in fasted than nonfasted dogs, suggesting that fasting may have rendered the target organ systems potentially more vulnerable to the effects of green tea extract. The toxicity mechanisms that produced lethality are not known, but the results are scientifically intriguing. Because tea drinking has become more popular in the United States and abroad, the mode of action and site of action of green tea extract-induced lethal toxicities during fasting and the role of other phytochemical components of Folia Camellia sinensis (including nonpolyphenol fractions, which are often consumed when whole-leaf products are presented) warrant further investigation.
Harper, David D.; Farag, Aïda M.; Skaar, Don
2014-01-01
Water produced during coal bed natural gas (CBNG) extraction in the Powder River Structural Basin of Wyoming and Montana (USA) may contain concentrations of sodium bicarbonate (NaHCO3) of more than 3000 mg/L. The authors evaluated the acute toxicity of NaHCO3, also expressed as bicarbonate (HCO3−), to 13 aquatic organisms. Of the 13 species tested, 7 had a median lethal concentration (LC50) less than 2000 mg/L NaHCO3, or 1300 mg/L HCO3−. The most sensitive species were Ceriodaphnia dubia, freshwater mussels (Lampsilis siliquoidea), pallid sturgeon (Scaphirhynchus albus), and shovelnose sturgeon (Scaphirhynchus platorynchus). The respective LC50s were 989 mg/L, 1120 mg/L, 1249 mg/L, and 1430 mg/L NaHCO3, or 699 mg/L, 844 mg/L, 831 mg/L, and 1038 mg/L HCO3−. Age affected the sensitivity of fathead minnows, even within life stage. Two days posthatch, fathead minnows were more sensitive to NaHCO3 and HCO3− compared with 4-d-old fish, even though fish up to 14 d old are commonly used for toxicity evaluations. The authors recommend that ion toxicity exposures be conducted with organisms less than 24 h posthatch to ensure that experiments document the most sensitive stage of development. The results of the present study, along with historical and current research regarding the toxicity of bicarbonate, may be useful to establish regulatory standards for HCO3−.
Acute toxicity of fire-control chemicals, nitrogenous chemicals, and surfactants to rainbow trout
Buhl, Kevin J.; Hamilton, Steven J.
2000-01-01
Laboratory studies were conducted to determine the acute toxicity of three ammonia-based fire retardants (Fire-Trol LCA-F, Fire-Trol LCM-R, and Phos-Chek 259F), five surfactant-based fire-suppressant foams (FireFoam 103B, FireFoam 104, Fire Quench, ForExpan S, and Pyrocap B-136), three nitrogenous chemicals (ammonia, nitrate, and nitrite), and two anionic surfactants (linear alkylbenzene sulfonate [LAS] and sodium dodecyl sulfate [SDS]) to juvenile rainbow trout Oncorhynchus mykiss in soft water. The descending rank order of toxicity (96-h concentration lethal to 50% of test organisms [96-h LC50]) for the fire retardants was as follows: Phos-Chek 259F (168 mg/L) > Fire-Trol LCA-F (942 mg/L) = Fire-Trol LCM-R (1,141 mg/L). The descending rank order of toxicity for the foams was as follows: FireFoam 103B (12.2 mg/L) = FireFoam 104 (13.0 mg/L) > ForExpan S (21.8 mg/L) > Fire Quench (39.0 mg/L) > Pyrocap B-136 [156 mg/L). Except for Pyrocap B-136, the foams were more toxic than the fire retardants. Un-ionized ammonia (NH3; 0.125 mg/L as N) was about six times more toxic than nitrite (0.79 mg/L NO2-N) and about 13,300 times more toxic than nitrate (1,658 mg/L NO3-N). Linear alkylbenzene sulfonate (5.0 mg/L) was about five times more toxic than SDS (24.9 mg/L). Estimated total ammonia and NH3 concentrations at the 96-h LC50s of the fire retardants indicated that ammonia was the primary toxic component in these formulations. Based on estimated anionic surfactant concentrations at the 96-h LC50s of the foams and reference surfactants, LAS was intermediate in toxicity and SDS was less toxic to rainbow trout when compared with the foams. Comparisons of recommended application concentrations to the test results indicate that accidental inputs of these chemicals into streams require substantial dilutions (100-1,750-fold to reach concentrations nonlethal to rainbow trout.
Comparative toxicity of two azadirachtin-based neem pesticides to Daphnia pulex.
Goktepe, Ipek; Plhak, Leslie C
2002-01-01
Azadirachtin (AZA)-based pesticides (Neemix and Bioneem) demonstrated toxicity in 48-h nonrenewal toxicity assays using Daphnia pulex at levels that were comparable with several organophosphate pesticides. The median lethal concentration (LC50) values for the two neem pesticides were found to be 0.028 and 0.033 microl/ml, respectively. The LC50 value for nonformulated (95% pure) AZA was determined to be 0.382 microg AZA/ml. Neemix and Bioneem were exposed to air and northern sky daylight in a light box at 24 and 37 degrees C for 1, 3, 6, and 9 d. Standard 48-h acute toxicity tests were used to determine the effect of aging in these dry environmental conditions. Neemix and Bioneem were also fractionated into volatile and nonvolatile fractions, and the toxicity of each was tested. Compared with Neemix, Bioneem remained toxic longer when exposed to light and air at 37 degrees C, indicating that this pesticide may be less prone to environmental degradation. When fractionated, the nonvolatile fractions for both pesticides exhibited significantly lower LC50 values than the full formulations. These results suggest that, depending on the application rate and environmental fate, AZA-based pesticides may have direct adverse effects on aquatic organisms and that the toxicity and stability of formulated pesticides depend on factors other than only the AZA concentration.
Pre-clinical toxicity of a combination of berberine and 5-aminosalicylic acid in mice.
Li, Yan-Hong; Zhang, Man; Fu, Hai-Bo; Xiao, Hai-Tao; Bian, Zhao-Xiang
2016-11-01
Our previous study demonstrated that a combination of alternative medicine berberine and conventional 5-aminosalicylic acid (5-ASA) showed promise to be a novel therapeutic strategy for ulcerative colitis (UC). This present study aims to sketch the pre-clinical toxicity profile of this combination (1:10 dose ratio) on mice. In acute toxicity test, the determined median lethal dose (LD 50 ) was 278.7 mg/kg berberine plus 2787 mg/kg 5-ASA. The results from subacute toxicity test demonstrated that no toxic signs of clinical symptoms, no significant changes in hematological or biochemical parameters were detected in mice treated with 14 + 140, 28 + 280 or 56 + 560 mg/kg of berberine plus 5-ASA treatment. Histological examinations revealed that accompanied with an increase in spleen weight, frequently recorded enlargement and white pulp hyperplasia of spleen were detected in mice when exposed to three doses of combination treatments. Further in vitro assessment suggested that the spleen toxicity was originated from berberine by its inhibition in cell viability and cell proliferation of lymphocytes. The results of this study indicate that the combination of berberine and 5-ASA shows a slight toxic effect on spleen, suggesting that this combination should be used with caution for patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Acute and subchronic toxicities of QX100626, a 5-HT4 receptor agonist, in rodents and Beagle dogs.
Zhang, Xiaofang; Yuan, Bojun; Mao, Yu; Dai, Xiaoyu; Zhang, Xiaodong; Lu, Guocai
2014-10-01
Serotonin 5-hydroxytryptamine 4(5-HT4) receptor agonists have been widely prescribed as a prokinetics drug for patients with gastro-esophageal reflux disease and functional dyspepsia. QX100626, one of the 5-HT4 receptor agonists, has been studied as a promising agent for this clinical use. The objective of the present study was to identify possible target organs of toxicity and propose a non-toxic dose of QX100626 for clinical usage. After single lethal dose oral and intravenous testing in rodents, some signs indicative of adverse CNS effects were observed. The minimum toxic dose of QX100626 for a single oral administration for dogs was 90.0mg/kgb.w., and the severe toxic dose was more than 300mg/kgb.w. The No Observed Adverse Effect Level (NOAEL) of QX100626 by daily oral administration for rats and dogs was 20mg/kg and 10mg/kg, respectively, whereas the minimum toxic dosages were 67 and 30mg/kg, respectively. All of the adverse effects suggested that kidney, digestive tract, as well as nervous, hematological, and respiratory systems might be the target organs of toxicity for humans induced by QX100626. The compound could be a safe alternative to other existing prokinetic agents for the treatment of functional bowel disorders. Copyright © 2014 Elsevier Inc. All rights reserved.
Shah, Sneha; Quek, Samuel; Ruck, Bruce
2016-02-01
The American Association of Poison Control Center's annual reports demonstrate that acute fluoride exposure is not an uncommon occurrence. Despite its prevalence, there has been little published research on the topic in the last 10 years. The purpose of this study was to calculate the incidence of acute fluoride toxicity and lethality as it occurs in New Jersey and provide a descriptive epidemiology of acute fluoride exposures. The study design was retrospective in nature. Records of phone calls made by individuals reporting excessive fluoride exposure (in an amount greater than directed/prescribed) to New Jersey's poison control center, known as Poison Information and Education System from the years 2010 through 2012, were extracted from Toxicall® (Computer Automatic Systems, Inc.) database. A total of 2,476 human-only exposure records met the inclusion criteria and were analyzed. Incidence rates were calculated, and population characteristics, circumstances and medical outcomes of acute fluoride exposure cases were assessed and categorized. A total of 2,476 phone call records met the inclusion criteria. The fluoride exposures reported were from toothpaste with fluoride (49%, n=1,214), mouth rinse with fluoride (21.6%, n=536), multivitamin with fluoride (21.4%, n=530) and pure fluoride (0.08%, n=199). Medically speaking, 94.75% of calls were asymptomatic cases (n=2,346), 4.24% were symptomatic (n=105) and 1.01% were informational inquiries (n=25). Adverse symptoms reported were mostly minor (83.9% of symptomatic cases, n=88) and moderate (16.1% of symptomatic cases, n=17). The age group 18 months to 3 years of age showed the highest incidence of acute fluoride exposure (53.2%, n=1,317). There was a slightly higher incidence of acute fluoride exposures among males (n=1,317) vs. females (n=1,159). Most incidences occurred in the home (93.1% of records, n=2,305) and occurred unintentionally (96.7%, n=2,394). Calls were mainly made by the subject's mother (67.5%, n=1,671). Based on the data, there were no reports of lethality or toxicity due to acute fluoride exposure in New Jersey from 2010 through 2012. Symptomatic reports and informational inquiries were few. All adverse outcomes due to excessive fluoride intake were remedied with calcium as the antidote. Dental hygienists should educate patients on safety measures of fluoride-containing products and evaluate overall fluoride exposure prior to making recommendations. However, findings in this study suggest that levels of fluoride in available commercial products will not produce life-threatening events, even if taken in doses higher than recommended. Copyright © 2016 The American Dental Hygienists’ Association.
Li, Mei-Hui
2012-04-01
Surfactants are a major class of emerging pollutants widely used in large quantities in everyday life and commonly found in surface waters worldwide. Freshwater planarian was selected to examine the effects of different surfactants by measuring mortality, mobility, and membrane-bound enzyme activities. Among the 10 surfactants tested, the acute toxicities of betaine and polyethylene glycol (PEG-200) to planarians were relatively low, with a median lethal concentration (LC50) greater than 10,000 mg/L. The toxicity to planarians of the other eight surfactants based on 48-h LC50 could be arranged in the descending order of cetylpyridinum chloride (CPC) > 4-tert-octylphenol (4-tert-OP) > ammonium lauryl sulfate > benzalkonium chloride > saponin > sodium lauroylsarcosinate > dioctyl sulfosuccinate > dodecyl trimethyl ammonium bromide (DTAB). Both CPC and 4-tert-OP were very toxic to planarians, with 48-h LC50 values <1 mg/L. The median effective concentrations (EC50s) of planarian mobility were in the 0.1 to 50 mg/L range and were in the same range as the 24-h LC50 of planarians exposed to different surfactants, except for DTAB. In addition, significant inhibition of cholinesterase activity activities was found in planarians exposed to 4-tert-OP at 2.5 and 5 mg/L and to saponin at 10 mg/L after 2-h treatments. This result suggests that planarian mobility responses can be used as an alternative indicator for acute toxicity of surfactants after a very short exposure period. Copyright © 2012 SETAC.
Ma, Junguo; Liu, Yang; Niu, Daichun; Li, Xiaoyu
2015-04-01
Chlorpyrifos (CPF) is the widely used organophosphate pesticide in agriculture throughout the world. It has been found that CPF is relatively safe to human but highly toxic to fish. In this study, acute toxicity of CPF on goldfish was determined and then the transcription of goldfish cytochrome P450 (CYP) 3A was evaluated after 96 h of CPF exposure at concentrations of 15.3 [1/10 50% lethal concentration (LC50 )] or 51 μg L(-1) (1/3 LC50 ) of CPF. Meanwhile, the enzymatic activities of acetylcholinesterase (AChE), superoxide dismutase (SOD), and catalase (CAT), total antioxidant activity (T-AOC), and the contents of malondialdehyde (MDA) in the liver or brain of goldfish were also determined. The results of acute toxicity testing showed that the 96-h LC50 of CPF to the goldfish was 153 μg L(-1) . Moreover, a length sequence of 1243 bp CYP3A cDNA encoding for 413 amino acids from goldfish liver was cloned. Polymerase chain reaction results reveal that CPF exposure downregulates CYP 3A transcription in goldfish liver, suggesting that goldfish CYP 3A may be not involved in CPF bioactivation. Finally, the results of biochemical assays indicate that 96 h of CPF exposure remarkably inhibits AChE activity in fish liver or brain, alters hepatic antioxidant enzyme activities, decreases brain T-AOC, and causes lipid peroxidation in fish liver. These results suggest that oxidative stress might be involved in CPF toxicity on goldfish. Copyright © 2013 Wiley Periodicals, Inc.
Davies, Trevor D; Hall, Ken J
2007-06-01
Modification of the acute toxicity of sodium sulphate to Hyalella azteca and Daphnia magna was investigated using exposure water with different levels of water hardness (expressed as CaCO3 equivalents) and calcium-magnesium molar (Ca:Mg) ratios. The influence of Ca:Mg ratios on the toxicity of sodium and potassium chloride to D. magna also was investigated. For both species, the mean lethal concentrations that resulted in mortality of 50% of the sample population (LC50s), expressed as mg SO4(2-)/L, were increased significantly in harder water and in water with higher Ca:Mg ratios. The LC50s for H. azteca increased from 569 to 5259 mg/L with a change in water hardness from 25 to 250 mg/L. Furthermore, modifying the Ca:Mg ratio from 0.7 to 7.0 at a constant hardness of 100 mg/L significantly increased LC50s from 2101 to 2725 mg/L. The LC50s for D. magna were also significantly higher in harder water with LC50s increasing from 1194 to 3203 mg/L with a change in water hardness from 25 to 100 mg/L. In addition, modifying the Ca:Mg ratio from 0.7 to 7.0 significantly increased LC50s from 1194 to 1985 at a constant hardness of 25 mg/L, and from 3203 to 4395 mg/L at a constant hardness of 100 mg/L. No significant change in the toxicity of potassium or sodium chloride to D. magna was observed in waters with higher Ca:Mg ratios.
Cavallaro, Michael C; Morrissey, Christy A; Headley, John V; Peru, Kerry M; Liber, Karsten
2017-02-01
Nontarget aquatic insects are susceptible to chronic neonicotinoid insecticide exposure during the early stages of development from repeated runoff events and prolonged persistence of these chemicals. Investigations on the chronic toxicity of neonicotinoids to aquatic invertebrates have been limited to a few species and under different laboratory conditions that often preclude direct comparisons of the relative toxicity of different compounds. In the present study, full life-cycle toxicity tests using Chironomus dilutus were performed to compare the toxicity of 3 commonly used neonicotinoids: imidacloprid, clothianidin, and thiamethoxam. Test conditions followed a static-renewal exposure protocol in which lethal and sublethal endpoints were assessed on days 14 and 40. Reduced emergence success, advanced emergence timing, and male-biased sex ratios were sensitive responses to low-level neonicotinoid exposure. The 14-d median lethal concentrations for imidacloprid, clothianidin, and thiamethoxam were 1.52 μg/L, 2.41 μg/L, and 23.60 μg/L, respectively. The 40-d median effect concentrations (emergence) for imidacloprid, clothianidin, and thiamethoxam were 0.39 μg/L, 0.28 μg/L, and 4.13 μg/L, respectively. Toxic equivalence relative to imidacloprid was estimated through a 3-point response average of equivalencies calculated at 20%, 50%, and 90% lethal and effect concentrations. Relative to imidacloprid (toxic equivalency factor [TEF] = 1.0), chronic (lethality) 14-d TEFs for clothianidin and thiamethoxam were 1.05 and 0.14, respectively, and chronic (emergence inhibition) 40-d TEFs were 1.62 and 0.11, respectively. These population-relevant endpoints and TEFs suggest that imidacloprid and clothianidin exert comparable chronic toxicity to C. dilutus, whereas thiamethoxam induced comparable effects only at concentrations an order of magnitude higher. However, the authors caution that under field conditions, thiamethoxam readily degrades to clothianidin, thereby likely enhancing toxicity. Environ Toxicol Chem 2017;36:372-382. © 2016 SETAC. © 2016 SETAC.
Peters, Diane E; Hoover, Benjamin; Cloud, Loretta Grey; Liu, Shihui; Molinolo, Alfredo A; Leppla, Stephen H; Bugge, Thomas H
2014-09-01
We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6 syngraft model of melanoma; mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA-activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32% to 87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5-3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. Published by Elsevier Inc.
Peters, Diane E.; Hoover, Benjamin; Cloud, Loretta Grey; Liu, Shihui; Molinolo, Alfredo A.; Leppla, Stephen H.; Bugge, Thomas H.
2014-01-01
We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6 syngraft model of melanoma; Mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA- activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32%–87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5–3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. PMID:24971906
1991-12-01
DOT/FAA/AM-91/17 Inhalation Toxicology : XII. Comparison of Toxicity Office of Aviation Medicine Rankings of Six Polymers by \\Vashington, D.C. 20591...Subtitil $I Report Oat. INHALATION TOXICOLOGY : XII. COMPARISON OF TOXICITY. December 1991 RANKINGS OF SIX POLYMERS BY LETHALITY AND BY 6. Performing...the ts (min) at LC50s, the polymers were grouped into III & V (10.5, 11.0); I, II & V1 (14.1-15.0); and IV (19.5). The two toxicological end points
Are insect repellents toxic to freshwater insects? A case study using caddisflies exposed to DEET.
Campos, Diana; Gravato, Carlos; Quintaneiro, Carla; Koba, Olga; Randak, Tomas; Soares, Amadeu M V M; Pestana, João L T
2016-04-01
Stream ecosystems face ever-increasing pressures by the presence of emergent contaminants, such as, personal care products. N, N-diethyl-3-methylbenzamide (DEET) is a synthetic insect repellent that is being found in surface waters environments in concentrations up to 33.4 μg/L. Information concerning DEET's toxicity in the aquatic environment is still limited and focused only on its acute effects on model species. Our main objective was to assess the effects of DEET exposure to a caddisfly non-target species using sub-lethal endpoints. For that, we chose Sericostoma vittatum, an important shredder in Portuguese freshwaters that has been already used in different ecotoxicological assays. Besides acute tests, S. vittatum were exposed during 6 days to a gradient of DEET concentrations (8, 18 and 40.5 mg/L) to assess effects on feeding behaviour and biochemical responses, such as, lipid peroxidation levels (LPO), catalase and acetylcholinesterase (AChE) activities, and also assess effects on energy reserves and consumption. Acute tests revealed a 48 h-LC50 of 80.12 mg/L and DEET exposure caused feeding inhibition with a LOEC of 36.80 mg/L. Concerning the biochemical responses, DEET caused no effects in LPO nor on catalase activity. A non-significant decrease in AChE activity was observed. Regarding energetic reserves, exposure to DEET caused a significant reduction in S. vittatum carbohydrates levels. These results add important information for the risk assessment of insect repellents in the aquatic environment and suggest that reported environmental concentrations of DEET are not toxic to non-target freshwater insects. Copyright © 2016 Elsevier Ltd. All rights reserved.
Simplício, Nathan de Castro Soares; Muniz, Daphne Heloísa de Freitas; Rocha, Fernanda Regina Moreira; Martins, Denis Cavalcanti; Dias, Zélia Malena Barreira; Farias, Bruno Pereira da Costa; Oliveira-Filho, Eduardo Cyrino
2016-01-01
This study aimed to analyze the ecotoxicity of nitrogen-, phosphorus-, and potassium-based compounds to organisms of two different trophic levels in order to compare the toxic effect between high-purity substances and these substances as components of fertilizers. Dilutions were made with the fertilizers’ potassium chloride, potassium nitrate, superphosphate, urea, and their equivalent reagents, to conduct assays to establish the acute lethal concentration for half of the population (LC50). Ten individuals of the benthic snail Biomphalaria glabrata and the fish Danio rerio were exposed to each concentration of tested compounds. As a result, the toxicity levels of potassium chloride, potassium nitrate, and urea were obtained for B. glabrata and D. rerio, with the fish being more susceptible to potassium chloride in the fertilizer and the snail to potassium nitrate and urea, in both commercial and reagent forms. Regarding superphosphate, no significant toxicity was found. This study concluded that among the tested substances, KNO3 and KCl were the most toxic substances and urea the least toxic. It was not possible to establish the most sensitive species since, for KCl, the fish were more susceptible to the fertilizer and the snail to the reagent, while for KNO3 the opposite was observed. PMID:29051434
Gamma Radiation Reduced Toxicity of Azoxystrobin Tested on Artemia franciscana.
Dvorak, P; Zdarsky, M; Benova, K; Falis, M; Tomko, M
2016-06-01
Fungicide azoxystrobin toxicity was monitored by means of a 96-h biotest with Artemia franciscana nauplius stages after exposure to solutions with concentrations of 0.2, 0.4, 0.6 and 0.8 mg L(-1) irradiated with (60)Co gamma radiation with doses of 1, 2.5, 5 and 10 kGy. The effects of ionization radiation on azoxystrobin toxicity were mainly manifested by a statistically significant reduction of lethality after 72- and 96-h exposure. A maximum reduction of lethality of 72 % was achieved using doses of 1-5 kGy for an azoxystrobin initial concentration of 0.4 mg L(-1) and after 72 h of exposure. At a 96-h exposure, a difference of lethal effects reached up to 70 % for a dose of 10 kGy. The observed effect of gamma ionizing radiation on azoxystrobin toxicity suggest that this approach can be applied as an alternative for a reduction of azoxystrobin residua in food.
Boogaard, Michael A.; Rivera, Jane E.
2011-01-01
We conducted a series of toxicological treatments with 3-trifluoromethyl-4-nitrophenol (TFM) and a TFM:1% 2′,5-dichloro-4′-nitrosalicylanilide (niclosamide) mixture, two compounds used to control larval sea lamprey (Petromyzon marinus) in Great Lakes tributaries, to evaluate the acute toxicity of the lampricides to a number of nontarget species of concern. Treatments were conducted with yellow stage American eel (Anguilla rostrata), adult and larval haliplid water beetles (Haliplus spp.), a surrogate for the endangered Hungerford’s crawling water beetle (Brychius hungerfordi), and adults of three unionid species—giant floater (Pyganadon grandis), fragile papershell (Leptodea fragilis), and pink heelsplitter (Potamilus alatus). Treatments were conducted using a serial dilution system consisting of nine test concentrations and an untreated control with 20% dilution between concentrations. Narcosis was evident among giant floaters exposed to the TFM and the TFM:1% niclosamide mixture and among pink heelsplitters exposed to the TFM:1% niclosamide mixture only but mostly at concentrations greater than 2-fold that required to kill 100% of larval sea lamprey (minimum lethal concentration (MLC)). Tests with the haliplid beetle suggest the risks to the Hungerford’s crawling water beetle associated with TFM applications are minimal. Concentrations over 2-fold the sea lamprey MLC did not kill adult or larval water beetles. Preliminary behavioral observations suggest water beetles may avoid treatment by crawling out of the water. Adult water beetles exposed to TFM at 3-fold the sea lamprey MLC were observed above the water line more often than controls. The lampricide TFM was not acutely toxic to American eel. Mortalities were rare among American eel exposed to TFM concentrations up to 7-fold the observed sea lamprey MLC. Similarly, for the TFM:1% niclosamide mixture, mortalities were rare among American eel exposed to nearly 5-fold the observed sea lamprey MLC. Overall, acute TFM toxicity was not evident among any of the species examined in this study at concentrations targeted to control larval sea lamprey. Results for the adult unionids should be viewed with caution due to the lack of replication in the treatments.
Lanctôt, C; Wilson, S P; Fabbro, L; Leusch, F D L; Melvin, S D
2016-07-01
Coal excavation and refinement processes generate substantial volumes of contaminated effluent that may be detrimental to aquatic ecosystems. As such, understanding the impacts of coal mine water releases on aquatic animals and ecosystems is essential for effectively managing and protecting neighboring environments. Such information will ultimately be applied towards developing ongoing monitoring strategies that are protective of native wildlife. Despite intensive mining operations in Australia, few studies have documented toxicity associated with coal mine wastewater (CMW) on native species. To address existing knowledge gaps, we investigated acute toxicity (48-96h) using eight native invertebrate species and sub-chronic effects (2 week) using three vertebrate species following exposure to wastewater from two dams (CMW1 and CMW2) located at an open-cut coal mine licensed to discharge into the Fitzroy catchment (Queensland, Australia). Wastewater from these sites is characterized by elevated conductivity, pH, sulfates as well as relatively high total and dissolved metal(loid)s (including As, Al, B, Cu, Mn, Ni, Se and Zn). Acute exposures revealed cladocerans (Daphnia carinata) and planarians (Dugesia sp.) to be the most sensitive species, exhibiting significant mortality after 48 and 96h exposure to CMW2, respectively. Neither wastewater was found to elicit acute toxicity in vertebrates, but a range of sub-lethal morphological effects were observed following the sub-chronic exposures. The overall response pattern was characterized by decreased condition factor and hepatosomatic index in the fish Hypseleotris compressa and Pseudomugil signifier, and in Limnodynastes peronii tadpoles. Tadpoles were generally more sensitive compared to the two fish species. Differences in responses were observed amongst CMW1 and CMW2, which likely relates to differences in physico-chemical properties between sites. Our results have identified several candidate vertebrate and invertebrate species that show promise for ongoing monitoring of water quality and toxicity risk in Central Queensland, Australia. Copyright © 2016 Elsevier Inc. All rights reserved.
Wang, Zhen; Scott, W Casan; Williams, E Spencer; Ciarlo, Michael; DeLeo, Paul C; Brooks, Bryan W
2018-04-01
Uncertainty factors (UFs) are commonly used during hazard and risk assessments to address uncertainties, including extrapolations among mammals and experimental durations. In risk assessment, default values are routinely used for interspecies extrapolation and interindividual variability. Whether default UFs are sufficient for various chemical uses or specific chemical classes remains understudied, particularly for ingredients in cleaning products. Therefore, we examined publicly available acute median lethal dose (LD50), and reproductive and developmental no-observed-adverse-effect level (NOAEL) and lowest-observed-adverse-effect level (LOAEL) values for the rat model (oral). We employed probabilistic chemical toxicity distributions to identify likelihoods of encountering acute, subacute, subchronic and chronic toxicity thresholds for specific chemical categories and ingredients in cleaning products. We subsequently identified thresholds of toxicological concern (TTC) and then various UFs for: 1) acute (LD50s)-to-chronic (reproductive/developmental NOAELs) ratios (ACRs), 2) exposure duration extrapolations (e.g., subchronic-to-chronic; reproductive/developmental), and 3) LOAEL-to-NOAEL ratios considering subacute/acute developmental responses. These ratios (95% CIs) were calculated from pairwise threshold levels using Monte Carlo simulations to identify UFs for all ingredients in cleaning products. Based on data availability, chemical category-specific UFs were also identified for aliphatic acids and salts, aliphatic alcohols, inorganic acids and salts, and alkyl sulfates. In a number of cases, derived UFs were smaller than default values (e.g., 10) employed by regulatory agencies; however, larger UFs were occasionally identified. Such UFs could be used by assessors instead of relying on default values. These approaches for identifying mammalian TTCs and diverse UFs represent robust alternatives to application of default values for ingredients in cleaning products and other chemical classes. Findings can also support chemical substitutions during alternatives assessment, and data dossier development (e.g., read across), identification of TTCs, and screening-level hazard and risk assessment when toxicity data is unavailable for specific chemicals. Copyright © 2018 Elsevier Ltd. All rights reserved.
Biondi, Antonio; Zappalà, Lucia; Stark, John D.; Desneux, Nicolas
2013-01-01
Pesticide risk assessments are usually based on short-term acute toxicity tests, while longer-term population dynamic related traits, critical to the success of biological control and Integrated Pest Management (IPM) programs, are often overlooked. This is increasingly important with respect to new biopesticides that frequently cause no short-term acute effects, but that can induce multiple physiological and behavioral sublethal effects, leading to a decrease in population growth and ecosystem services. In this study we assessed the lethal and sublethal effects of six biopesticides [abamectin, azadirachtin, Bacillus thuringiensis, borax plus citrus oil (Prev-Am®), emamectin benzoate, and spinosad], used in tomato crops to control the invasive pest Tuta absoluta (Lepidoptera: Gelechiidae), on adults and pupae of the parasitoid Bracon nigricans (Hymenoptera: Braconidae). Data on female survival and production of female offspring were used to calculate population growth indexes as a measure of population recovery after pesticide exposure. Spinosad caused 100% and 80% mortality in exposed adults (even 10 d after the treatment) and pupae, respectively. Although most of the biopesticides had low levels of acute toxicity, multiple sublethal effects were observed. The biocontrol activity of both females that survived 1-h and 10-d old residues, and females that emerged from topically treated pupae was significantly affected by the application of the neurotoxic insecticides emamectin benzoate and abamectin. Furthermore, very low B. nigricans demographic growth indices were estimated for these two insecticides, indicating potential local extinction of the wasp populations. Among the tested products, Bt proved to be the safest for B. nigricans adults and pupae. Our findings emphasize that acute toxicity assessment alone cannot fully predict the actual impact of pesticides on non-target parasitoids. Thus, sublethal effects related to the species specific life-history variables must be carefully considered in order to assess pesticide risks and to incorporate new pesticides, including biopesticides, into IPM programmes. PMID:24098793
Gauthier, Patrick T; Norwood, Warren P; Prepas, Ellie E; Pyle, Greg G
2015-10-06
Mixtures of metals and polycyclic aromatic hydrocarbons (PAHs) occur ubiquitously in aquatic environments, yet relatively little is known regarding their potential to produce non-additive toxicity (i.e., antagonism or potentiation). A review of the lethality of metal-PAH mixtures in aquatic biota revealed that more-than-additive lethality is as common as strictly additive effects. Approaches to ecological risk assessment do not consider non-additive toxicity of metal-PAH mixtures. Forty-eight-hour water-only binary mixture toxicity experiments were conducted to determine the additive toxic nature of mixtures of Cu, Cd, V, or Ni with phenanthrene (PHE) or phenanthrenequinone (PHQ) using the aquatic amphipod Hyalella azteca. In cases where more-than-additive toxicity was observed, we calculated the possible mortality rates at Canada's environmental water quality guideline concentrations. We used a three-dimensional response surface isobole model-based approach to compare the observed co-toxicity in juvenile amphipods to predicted outcomes based on concentration addition or effects addition mixtures models. More-than-additive lethality was observed for all Cu-PHE, Cu-PHQ, and several Cd-PHE, Cd-PHQ, and Ni-PHE mixtures. Our analysis predicts Cu-PHE, Cu-PHQ, Cd-PHE, and Cd-PHQ mixtures at the Canadian Water Quality Guideline concentrations would produce 7.5%, 3.7%, 4.4% and 1.4% mortality, respectively.
Vincent, Kim; Davidson, Carlos
2015-12-01
Pesticide choice based on toxicity to nontarget wildlife is reliant on available toxicity data. Despite a number of recent studies examining the effects of glyphosate on amphibians, very few have aimed to understand the toxicological effects of glyphosate in combination with surfactants as it is commonly applied in the field. Land managers interested in making pesticide choices based on minimizing impacts to nontarget wildlife are hindered by a lack of published toxicity data. Short-term acute toxicity trials were conducted for glyphosate in the form of isopropylamine salt (IPA) alone and mixed with 2 surfactants: Agri-dex and Competitor with western toad (Anaxyrus [Bufo] boreas) tadpoles. Glyphosate IPA mixed with Competitor was 6 times more toxic than glyphosate IPA mixed with Agri-dex, and both mixtures were more toxic than glyphosate IPA alone. The median lethal concentrations reported for 24-h and 48-h exposures were 8279 mg/L (24 h) and 6392 mg/L (48 h) for glyphosate IPA alone; 5092 mg/L (24 h) and 4254 mg/L (48 h) for glyphosate IPA mixed with Agri-dex; and 853 mg/L (24 h) and 711 mg/L (48 h) for glyphosate IPA mixed with Competitor. The present study indicates that the toxicity of a tank mix may be greatly increased by the addition of surfactants and may vary widely depending on the specific surfactant. © 2015 SETAC.
Geny, Blandine; Khun, Huot; Fitting, Catherine; Zarantonelli, Leticia; Mazuet, Christelle; Cayet, Nadège; Szatanik, Marek; Prevost, Marie-Christine; Cavaillon, Jean-Marc; Huerre, Michel; Popoff, Michel R
2007-03-01
When intraperitoneally injected into Swiss mice, Clostridium sordellii lethal toxin reproduces the fatal toxic shock syndrome observed in humans and animals after natural infection. This animal model was used to study the mechanism of lethal toxin-induced death. Histopathological and biochemical analyses identified lung and heart as preferential organs targeted by lethal toxin. Massive extravasation of blood fluid in the thoracic cage, resulting from an increase in lung vascular permeability, generated profound modifications such as animal dehydration, increase in hematocrit, hypoxia, and finally, cardiorespiratory failure. Vascular permeability increase induced by lethal toxin resulted from modifications of lung endothelial cells as evidenced by electron microscopy. Immunohistochemical analysis demonstrated that VE-cadherin, a protein participating in intercellular adherens junctions, was redistributed from membrane to cytosol in lung endothelial cells. No major sign of lethal toxin-induced inflammation was observed that could participate in the toxic shock syndrome. The main effect of the lethal toxin is the glucosylation-dependent inactivation of small GTPases, in particular Rac, which is involved in actin polymerization occurring in vivo in lungs leading to E-cadherin junction destabilization. We conclude that the cells most susceptible to lethal toxin are lung vascular endothelial cells, the adherens junctions of which were altered after intoxication.
Geny, Blandine; Khun, Huot; Fitting, Catherine; Zarantonelli, Leticia; Mazuet, Christelle; Cayet, Nadège; Szatanik, Marek; Prevost, Marie-Christine; Cavaillon, Jean-Marc; Huerre, Michel; Popoff, Michel R.
2007-01-01
When intraperitoneally injected into Swiss mice, Clostridium sordellii lethal toxin reproduces the fatal toxic shock syndrome observed in humans and animals after natural infection. This animal model was used to study the mechanism of lethal toxin-induced death. Histopathological and biochemical analyses identified lung and heart as preferential organs targeted by lethal toxin. Massive extravasation of blood fluid in the thoracic cage, resulting from an increase in lung vascular permeability, generated profound modifications such as animal dehydration, increase in hematocrit, hypoxia, and finally, cardiorespiratory failure. Vascular permeability increase induced by lethal toxin resulted from modifications of lung endothelial cells as evidenced by electron microscopy. Immunohistochemical analysis demonstrated that VE-cadherin, a protein participating in intercellular adherens junctions, was redistributed from membrane to cytosol in lung endothelial cells. No major sign of lethal toxin-induced inflammation was observed that could participate in the toxic shock syndrome. The main effect of the lethal toxin is the glucosylation-dependent inactivation of small GTPases, in particular Rac, which is involved in actin polymerization occurring in vivo in lungs leading to E-cadherin junction destabilization. We conclude that the cells most susceptible to lethal toxin are lung vascular endothelial cells, the adherens junctions of which were altered after intoxication. PMID:17322384
Ahmed, Shaimaa; Bott, Debbie; Gomez, Alvin; Tamblyn, Laura; Rasheed, Adil; Cho, Tiffany; MacPherson, Laura; Sugamori, Kim S.; Yang, Yang; Grant, Denis M.; Cummins, Carolyn L.; Matthews, Jason
2015-01-01
The aryl hydrocarbon receptor (AHR) mediates the toxic effects of the environmental contaminant dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin; TCDD). Dioxin causes a range of toxic responses, including hepatic damage, steatohepatitis, and a lethal wasting syndrome; however, the mechanisms are still unknown. Here, we show that the loss of TCDD-inducible poly(ADP-ribose) polymerase (Tiparp), an ADP-ribosyltransferase and AHR repressor, increases sensitivity to dioxin-induced toxicity, steatohepatitis, and lethality. Tiparp−/− mice given a single injection of 100 μg/kg dioxin did not survive beyond day 5; all Tiparp+/+ mice survived the 30-day treatment. Dioxin-treated Tiparp−/− mice exhibited increased liver steatosis and hepatotoxicity. Tiparp ADP-ribosylated AHR but not its dimerization partner, the AHR nuclear translocator, and the repressive effects of TIPARP on AHR were reversed by the macrodomain containing mono-ADP-ribosylase MACROD1 but not MACROD2. These results reveal previously unidentified roles for Tiparp, MacroD1, and ADP-ribosylation in AHR-mediated steatohepatitis and lethality in response to dioxin. PMID:25975270
Whole Effluent Toxicity (WET) describes the aggregate toxic effect of an aqueous sample (e.g., whole effluent wastewater discharge) as measured by an organism's response upon exposure to the sample (e.g., lethality, impaired growth, or reproduction).
Polychlorinated biphenyl toxicity to Japanese quail as related to degree of chlorination
Hill, E.F.; Heath, R.G.; Spann, J.W.; Williams, J.D.
1974-01-01
To learn if the percentage of chlorine in a mixture of polychlorinated biphenyls (PCB's) alone determines toxicity, Japanese quail were fed diets containing Aroelor 1248, 1254, or 1260 at levels that added equal amounts of chlorine to the feed. The experiment comprised two consecutive 5-day periods; three sublethal concentrations of chlorine were evaluated during the first period and three lethal concentrations during the second period. Evaluations utilized comparisons of mortality, time to death, weight change, and food consumption. Sublethal concentrations produced no detectable effects. Lethal concentrations with equal Chlorine showed Aroelor 1248 to be less toxic at the highest chlorine concentrations, but at lower concentrations Aroelor 1254 was more toxic than Aroclor 1260. Although chlorine percentage of a PCB is positively correlated with its avian toxicity, PCB toxicity is apparently not simply a function of chlorination.
Effects of terbutryn on aufwuchs and Lumbriculus variegatus in artificial indoor streams.
Brust, K; Licht, O; Hultsch, V; Jungmann, D; Nagel, R
2001-09-01
The effects of the herbicide terbutryn on a simple lotic food web were investigated during a 72-d exposure period in five artificial indoor streams in a greenhouse. The model compound terbutryn, an s-triazine and an inhibitor of photosynthesis, was applied once in each stream at nominal concentrations of 0.6, 6, 60, or 600 microg/L. Terbutryn concentrations in the water were analyzed by gas chromatography/mass spectrometry, and an overall time to 50% dissipation (DT50) of 28 d was calculated. The development of aufwuchs and the population growth and development of the oligochaete Lumbriculus variegatus were investigated. We determined that terbutryn was toxic to L. variegatus at 23.7 mg/L (96-h median lethal concentration [LC50]) and 16.5 mg/L (96-h median effective concentration [EC50]) in static acute toxicity tests. Terbutryn decreased aufwuchs production at 0.6 microg/L in the experimental streams. Population growth of L. variegatus was decreased by 50% at 6 microg/L. The effect of terbutryn on the aufwuchs was a direct effect of decreases in the periphyton. However, the effects on L. variegatus were an indirect effect of terbutryn as a consequence of decrease in the aufwuchs food source and occurred at three-orders-of-magnitude-lower concentrations of terbutryn than the acute toxicity effects. Our study demonstrates the utility of indoor lotic microcosm studies for evaluating both direct and indirect effects of contaminants on aquatic ecosystems.
Residual Acute Toxicity of Some Modern Insecticides Toward Two Mirid Predators of Tomato Pests.
Wanumen, Andrea C; Carvalho, Geraldo A; Medina, Pilar; Viñuela, Elisa; Adán, Ángeles
2016-03-31
The successful integration of chemical and biological control strategies for crop pests depends on a thorough evaluation of the effects of pesticides on the natural enemies of pests. A case-by-case review is difficult to achieve because of the many combinations of pests, natural enemies, and crops that need to be tested. Within this framework, we tested and compared seven insecticides representative of four different modes of action (MoAs) groups on closely related predators (Miridae): flubendiamide, spirotetramat, metaflumizone, and sulfoxaflor onNesidiocoris tenuisReuter and flubendiamide, spiromesifen, indoxacarb, and imidacloprid onMacrolophus basicornis(Stal). We follow the standardized methodology of the International Organization for Biological Control, a sequential testing exposure scheme. The lethal effect of each insecticide was evaluated in adults after three days of contact with treated surfaces in the laboratory, extended laboratory, and semifield tests (inert substrate, tomato leaves, and tomato plant as the treated surface, respectively). Flubendiamide, spiromesifen, and spirotetramat were classified as harmless (class 1), metaflumizone was slightly harmful (class 2) but persistent, indoxacarb was harmless (class 1), and sulfoxaflor and imidacloprid were toxic (class 4) and exhibited a long residual activity. Our results suggest similarities in the acute toxicities of insecticides from the same MoA group on related species of natural enemies. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Liu, Man; Gao, Bo-Yan; Qin, Fang; Wu, Ping-Ping; Shi, Hai-Ming; Luo, Wei; Ma, Ai-Niu; Jiang, Yuan-Rong; Xu, Xue-Bing; Yu, Liang-Li Lucy
2012-10-01
The acute oral toxicity of 1-palmitoyl-3-chloropropanediol (3-MCPD 1-monopalmitate) and 1,2-bis-palmitoyl-3-chloropropanediol (3-MCPD dipalmitate) in Swiss mice were examined, along with their cytotoxicity in NRK-52E rat kidney cells. LD50 (median lethal dose) value of 3-MCPD 1-monopalmitate was determined 2676.81 mg/kg body weight (BW). The results showed that 3-MCPD 1-monopalmitate dose-dependently decreased the mean body weight, and caused significant increase of serum urea nitrogen and creatinine in dead mice compared to the control and survived mice. Major histopathological changes in mice fed 3-MCPD 1-monopalmitate were renal tubular necrosis, protein casts and spermatids decrease in the seminiferous tubules. According to the limit test for 3-MCPD dipalmitate, LD50 value of 3-MCPD dipalmitate was presumed to be greater than 5000 mg/kg BW. Obvious changes were not observed on mean body weight, absolute and relative organ weight or serum urea nitrogen and creatinine levels in mice fed 3-MCPD dipalmitate. However, renal tubular necrosis, protein casts and spermatids decrease were also observed in the dead mice. In addition, MTT and LDH assay results only showed the cytotoxicity of 3-MCPD 1-monopalmitate in NRK-52E rat kidney cells in a dose-dependent manner. Together, the results indicated a greater toxicity of 3-MCPD 1-monopalmitate compared to 3-MCPD dipalmitate. Copyright © 2012 Elsevier Ltd. All rights reserved.
Developing a list of reference chemicals for testing alternatives to whole fish toxicity tests.
Schirmer, Kristin; Tanneberger, Katrin; Kramer, Nynke I; Völker, Doris; Scholz, Stefan; Hafner, Christoph; Lee, Lucy E J; Bols, Niels C; Hermens, Joop L M
2008-11-11
This paper details the derivation of a list of 60 reference chemicals for the development of alternatives to animal testing in ecotoxicology with a particular focus on fish. The chemicals were selected as a prerequisite to gather mechanistic information on the performance of alternative testing systems, namely vertebrate cell lines and fish embryos, in comparison to the fish acute lethality test. To avoid the need for additional experiments with fish, the U.S. EPA fathead minnow database was consulted as reference for whole organism responses. This database was compared to the Halle Registry of Cytotoxicity and a collation of data by the German EPA (UBA) on acute toxicity data derived from zebrafish embryos. Chemicals that were present in the fathead minnow database and in at least one of the other two databases were subject to selection. Criteria included the coverage of a wide range of toxicity and physico-chemical parameters as well as the determination of outliers of the in vivo/in vitro correlations. While the reference list of chemicals now guides our research for improving cell line and fish embryo assays to make them widely applicable, the list could be of benefit to search for alternatives in ecotoxicology in general. One example would be the use of this list to validate structure-activity prediction models, which in turn would benefit from a continuous extension of this list with regard to physico-chemical and toxicological data.
Multi-Toxic Endpoints of the Foodborne Mycotoxins in Nematode Caenorhabditis elegans
Yang, Zhendong; Xue, Kathy S.; Sun, Xiulan; Tang, Lili; Wang, Jia-Sheng
2015-01-01
Aflatoxins B1 (AFB1), deoxynivalenol (DON), fumonisin B1 (FB1), T-2 toxin (T-2), and zearalenone (ZEA) are the major foodborne mycotoxins of public health concerns. In the present study, the multiple toxic endpoints of these naturally-occurring mycotoxins were evaluated in Caenorhabditis elegans model for their lethality, toxic effects on growth and reproduction, as well as influence on lifespan. We found that the lethality endpoint was more sensitive for T-2 toxicity with the EC50 at 1.38 mg/L, the growth endpoint was relatively sensitive for AFB1 toxic effects, and the reproduction endpoint was more sensitive for toxicities of AFB1, FB1, and ZEA. Moreover, the lifespan endpoint was sensitive to toxic effects of all five tested mycotoxins. Data obtained from this study may serve as an important contribution to knowledge on assessment of mycotoxin toxic effects, especially for assessing developmental and reproductive toxic effects, using the C. elegans model. PMID:26633509
GUCY2C Signaling Opposes the Acute Radiation-Induced GI Syndrome.
Li, Peng; Wuthrick, Evan; Rappaport, Jeff A; Kraft, Crystal; Lin, Jieru E; Marszalowicz, Glen; Snook, Adam E; Zhan, Tingting; Hyslop, Terry M; Waldman, Scott A
2017-09-15
High doses of ionizing radiation induce acute damage to epithelial cells of the gastrointestinal (GI) tract, mediating toxicities restricting the therapeutic efficacy of radiation in cancer and morbidity and mortality in nuclear disasters. No approved prophylaxis or therapy exists for these toxicities, in part reflecting an incomplete understanding of mechanisms contributing to the acute radiation-induced GI syndrome (RIGS). Guanylate cyclase C (GUCY2C) and its hormones guanylin and uroguanylin have recently emerged as one paracrine axis defending intestinal mucosal integrity against mutational, chemical, and inflammatory injury. Here, we reveal a role for the GUCY2C paracrine axis in compensatory mechanisms opposing RIGS. Eliminating GUCY2C signaling exacerbated RIGS, amplifying radiation-induced mortality, weight loss, mucosal bleeding, debilitation, and intestinal dysfunction. Durable expression of GUCY2C, guanylin, and uroguanylin mRNA and protein by intestinal epithelial cells was preserved following lethal irradiation inducing RIGS. Oral delivery of the heat-stable enterotoxin (ST), an exogenous GUCY2C ligand, opposed RIGS, a process requiring p53 activation mediated by dissociation from MDM2. In turn, p53 activation prevented cell death by selectively limiting mitotic catastrophe, but not apoptosis. These studies reveal a role for the GUCY2C paracrine hormone axis as a novel compensatory mechanism opposing RIGS, and they highlight the potential of oral GUCY2C agonists (Linzess; Trulance) to prevent and treat RIGS in cancer therapy and nuclear disasters. Cancer Res; 77(18); 5095-106. ©2017 AACR . ©2017 American Association for Cancer Research.
Responses of Hyalella azteca to acute and chronic microplastic exposures.
Au, Sarah Y; Bruce, Terri F; Bridges, William C; Klaine, Stephen J
2015-11-01
Limited information is available on the presence of microplastics in freshwater systems, and even less is known about the toxicological implications of the exposure of aquatic organisms to plastic particles. The present study was conducted to evaluate the effects of microplastic ingestion on the freshwater amphipod, Hyalella azteca. Hyalella azteca was exposed to fluorescent polyethylene microplastic particles and polypropylene microplastic fibers in individual 250-mL chambers to determine 10-d mortality. In acute bioassays, polypropylene microplastic fibers were significantly more toxic than polyethylene microplastic particles; 10-d lethal concentration 50% values for polyethylene microplastic particles and polypropylene microplastic fibers were 4.64 × 10(4) microplastics/mL and 71.43 microplastics/mL, respectively. A 42-d chronic bioassay using polyethylene microplastic particles was conducted to quantify effects on reproduction, growth, and egestion. Chronic exposure to polyethylene microplastic particles significantly decreased growth and reproduction at the low and intermediate exposure concentrations. During acute exposures to polyethylene microplastic particles, the egestion times did not significantly differ from the egestion of normal food materials in the control; egestion times for polypropylene microplastic fibers were significantly slower than the egestion of food materials in the control. Amphipods exposed to polypropylene microplastic fibers also had significantly less growth. The greater toxicity of microplastic fibers than microplastic particles corresponded with longer residence times for the fibers in the gut. The difference in residence time might have affected the ability to process food, resulting in an energetic effect reflected in sublethal endpoints. © 2015 SETAC.
Toxicity of sediments from a mangrove forest patch in an urban area in Pernambuco (Brazil).
Oliveira, D D; Souza-Santos, L P; Silva, H K P; Macedo, S J
2014-06-01
Industrial and urban residues are discharged every day to the rivers and may arrive at the mangrove forest and prejudice the quality of the environment and the organisms present there. The mangrove forest patch studied is encircled by an urban area of the city of Recife (Brazil) that has approximate 1.5 million inhabitants and is one of the most industrialized centers in Northeast Brazil. The aim of this study was to assess the quality of the sediments of this mangrove patch in terms of metal contamination and ecotoxicology. Samples of surface sediment were collected in six stations for toxicological tests and trace metal determination (Cr, Zn, Mn, Fe, Cu, Pb, Co and Ni), in July and August, 2006 (rainy season); and in January and February 2007 (dry season). Toxicity tests with solid-phase sediments were carried out with the copepod Tisbe biminiensis in order to observe lethal and sub-lethal endpoints and correlate them with chemical data. In June, there were no observed lethal effect, but two stations presented sub-lethal effects. In January, lethal effect occurred in three stations and sub-lethal in one station. The levels for Zn and Cr were at higher levels than international proposed guidelines (NOAA). There was a negative significant correlation between the copepods׳ fecundity, and Zn and Cr concentrations. Therefore, the studied sediments can be considered to have potential toxic to benthos due to the high content of Zn and Cr. Copyright © 2014 Elsevier Inc. All rights reserved.
More human, more humane: a new approach for testing airborne pollutants.
Potera, Carol
2007-03-01
People not only inhale airborne contaminants but also absorb them through the skin. Both routes can set off localized toxic reactions or damage internal organs such as the liver, kidney, and brain. Conventional tests of the toxicity of gases and vapors, in which laboratory animals are exposed to lethal or sub-lethal doses of chemicals, have been criticized as expensive, unethical, inhumane, and time-consuming. Now researchers at the University of New South Wales (UNSW) in Sydney, Australia, have developed an animal-free alternative that uses human cells to test the effects of exposure to airborne toxicants.
Vignier, J; Soudant, P; Chu, F L E; Morris, J M; Carney, M W; Lay, C R; Krasnec, M O; Robert, R; Volety, A K
2016-09-01
In April 2010, crude oil was spilled from the Deepwater Horizon (DWH) oil platform for 87 days, coincident with the spawning season and recruitment of the oyster, Crassostrea virginica, in the Gulf of Mexico. Impacts of acute exposures to surface-collected DWH oil (HEWAF), dispersed oil (CEWAF) and dispersant alone (Corexit 9500A(®)) on planktonic larval stages of C. virginica (veliger, umbo and pediveliger) were tested in the laboratory. Exposures to HEWAF, CEWAF and dispersant were toxic to larvae impairing growth, settlement success and ultimately survival. Larval growth and settlement were reduced at concentrations of tPAH50 ranging from 1.7 to 106 μg L(-1) for HEWAF and 1.1-35 μg L(-1) for CEWAF, concentrations well within the range of water sampled during the DWH oil spill. Sublethal effects induced by oil and dispersant could have significant ecological implications on oyster populations and on the whole estuarine ecosystem. Copyright © 2016 Elsevier Ltd. All rights reserved.
Anti-giardia activity and acute toxicity of a methanol extract of Senna racemosa bark.
Caamal-Fuentes, Edgar E; Graniel-Sabido, Manlio; Mena-Rejón, Gonzalo J; Moo-Puc, Rosa E
2016-12-04
Senna racemosa (Mill.) H.S. Irwin & Barneby (syn. Cassia racemosa Mill.) is a plant used in traditional Mayamedicinal practices to treat diarrhea. A methanol extract of S. racemosa bark has been shown to have in vitro activity against Giardia intestinalis. No studies of its efficacy and toxicity in in vivo models have been done. The present study objective was to analyze the activity of this methanol extract of S. racemosa bark against Giardia intestinalis trophozoites in experimentally infected mice, and evaluate its toxicological effects in rats. S. racemosa was collected in Merida, Yucatan, Mexico (21°58'N, 89°36'W) in June 2005. The bark methanol extract was obtained and high performance liquid chromatography (HPLC-DAD) was used to generate a constituent profile. In vivo anti-giardia activity was assayed with an experimental model of G. intestinalis infection in neonatal CD-1 mice. Nine doses ranging from 0.25-15mg extract/kg body weight were tested to determine the dose required to kill 50% of the trophozoites (ED 50 ). An acute toxicity assay was run in which one of four single doses (200, 1000, 2000 and3000mg/kg body weight) was orally administered to adult Wistar rats. Animal weight, death rates, toxic effects and behavioral parameters were observed over a 14-d period. They were then euthanized and a necropsy performed. The S. racemosa bark extract inhibited growth of G. intestinalis (ED 50 =1.14mg/Kg) in neonatal CD-1 mice. No toxic or lethal effects were observed even at the highest dosage (3000mg/Kg), and neither were signs of toxicity observed in internal organs. The active compounds chrysophanol and physcion were present in the extract at a 1.76 ratio. The results strongly support traditional use of S. racemosa bark for treatment of diarrhea caused by Giardia intestinalis infection. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Soucek, David J; Mount, David R; Dickinson, Amy; Hockett, J Russell
2018-05-01
Field and laboratory studies have shown that mayflies (Ephemeroptera) tend to be relatively sensitive to elevated major ion concentrations, but little is known about how ionic composition influences these responses. The present study evaluated the acute toxicity of major ion salts to the mayfly Neocloeon triangulifer over a range of background water quality conditions. The mayfly was particularly sensitive to Na 2 SO 4 , with the median lethal concentration (LC50) of 1338 mg SO 4 /L being lower than LC50s reported for 7 other species at that hardness. Increasing hardness of the dilution water from 30 to 150 mg/L (as CaCO 3 ) resulted in doubling of LC50s for sodium salts, and an approximately 1.5-fold increase in LC50 for MgSO 4 . Potassium salt toxicity was not strongly influenced by hardness, consistent with findings for other species. When hardness was held constant but the Ca to Mg ratio was manipulated, the ameliorative effect on Na 2 SO 4 and NaCl did not appear as strong as when hardness was varied; but for MgSO 4 the amelioration relative to Ca activity was similar between the 2 experiments. The toxicity of K salts to N. triangulifer was similar to Na salts on a millimolar basis, which contrasts with several other species for which K salts have been much more toxic. In addition, the toxicity of KCl to N. triangulifer was not notably affected by Na concentration, as has been shown for Ceriodaphnia dubia. Finally, plotting LC50s in terms of ion activity (Cl, SO 4 , Na, Mg, or K) over the range of Ca activities in dilution water resulted in significant positive relationships, with comparable slopes to those previously observed for C. dubia over the same range of Ca activities. Environ Toxicol Chem 2018;37:1330-1339. © 2018 SETAC. © 2018 SETAC.
Furlan, Fernando Henrique; Zanata, Carina; Damasceno, Everson Dos Santos; de Oliveira, Leonardo Pintar; da Silva, Leilane Aparecida; Colodel, Edson Moleta; Riet-Correa, Franklin
2014-12-15
The epidemiological, clinical and pathological findings of field and experimental Senna obtusifolia (sicklepod; coffee senna) poisoning in cattle are described. The low availability of good quality forage and high rate of infestation of pastures by S. obtusifolia were the factors that led to poisonous plant ingestion. In this study, the morbidity ranged between 2% and 27.9%, and the lethality was 100%. For the experimental study, six cattle were fed with the aerial parts of S. obtusifolia collected in three different seasons at 9%-38% of the animal's body weight. The experimental and field diseases were similar. The main clinical signs were diarrhea, reluctance to move, muscular weakness and recumbency. The gross findings included pale discoloration of the skeletal muscle. Microscopically, the affected cattle showed degeneration and necrosis of the skeletal muscles and occasionally of the cardiac muscles. Additionally, two cattle showed centrilobular hepatic necrosis. In this study, S. obtusifolia collected from the same farm showed seasonal variation in toxicity. Poisoning by S. obtusifolia is an important cause of death of cattle in the Central Western region of Brazil. The toxicosis caused by this plant is similar to S. occidentalis poisoning; however, in S. obtusifolia poisoning, acute hepatic necrosis is sometimes present. Copyright © 2014 Elsevier Ltd. All rights reserved.
Blewett, Tamzin A; Delompré, Perrine L M; He, Yuhe; Folkerts, Erik J; Flynn, Shannon L; Alessi, Daniel S; Goss, Greg G
2017-03-07
Hydraulic fracturing is an industrial process allowing for the extraction of gas or oil. To fracture the rocks, a proprietary mix of chemicals is injected under high pressure, which later returns to the surface as flowback and produced water (FPW). FPW is a complex chemical mixture consisting of trace metals, organic compounds, and often, high levels of salts. FPW toxicity to the model freshwater crustacean Daphnia magna was characterized utilizing acute (48 h median lethal concentrations; LC 50 ) and chronic (21 day) exposures. A decrease in reproduction was observed, with a mean value of 18.5 neonates produced per replicate over a 21 day chronic exposure to 0.04% FPW, which was a significant decrease from the average of 64 neonates produced in the controls. The time to first brood was delayed in the highest FPW (0.04%) treatment. Neonates exhibited an LC 50 of 0.19% of full-strength FPW, making them more sensitive than adults, which displayed an LC 50 value of 0.75%. Quantitative PCR highlighted significant changes in expression of genes encoding xenobiotic metabolism (cyp4) and moulting (cut). This study is the first to characterize chronic FPW toxicity and will help with the development of environmental monitoring and risk assessment of FPW spills.
Osaki, Kae; Kashiwada, Shosaku; Tatarazako, Norihisa; Ono, Yoshiro
2006-06-01
To investigate the environmental safety of waste disposal landfill sites and of land reclaimed from such sites, we evaluated the toxicity of leachate from these sites by a combination of bioassays in the Japanese killifish medaka Oryzias latipes. We tested for lethal toxicity in adult and larval medaka and for hatching inhibition of embryos from eggs. As biochemical evidence of the effects of leachate exposure, CYP1A (EROD activity) and vitellogenin (Vtg) were induced. We also bioassayed water-treated leachate and downstream river water. Leachate solution was lethal to larval and adult medaka. Embryo hatchability was inhibited, and abnormal hatching, spinal deformity and anisophthalmia occurred in embryos exposed to leachate solution. CYP1A was induced by exposure to leachate solution diluted to 1.0%, and EROD activity was significantly higher than in control. Vtg and unknown proteins were induced in the sera of male medaka exposed to the diluted leachate solution. Conventional water treatments worked effectively to remove toxic compounds but did not work well to remove element ions, including heavy metals. Treated leachate produced neither lethal toxicity nor hatching abnormalities during the exposure period. Fish toxicity tests for leachate would be useful for monitoring the environmental safety of landfill sites.
Rattner, Barnett A; Horak, Katherine E; Lazarus, Rebecca S; Eisenreich, Karen M; Meteyer, Carol U; Volker, Steven F; Campton, Christopher M; Eisemann, John D; Johnston, John J
2012-04-01
In the United States, new regulatory restrictions have been placed on the use of some second-generation anticoagulant rodenticides. This action may be offset by expanded use of first-generation compounds (e.g., diphacinone; DPN). Single-day acute oral exposure of adult Eastern screech-owls (Megascops asio) to DPN evoked overt signs of intoxication, coagulopathy, histopathological lesions (e.g., hemorrhage, hepatocellular vacuolation), and/or lethality at doses as low as 130 mg/kg body weight, although there was no dose-response relation. However, this single-day exposure protocol does not mimic the multiple-day field exposures required to cause mortality in rodent pest species and non-target birds and mammals. In 7-day feeding trials, similar toxic effects were observed in owls fed diets containing 2.15, 9.55 or 22.6 ppm DPN, but at a small fraction (<5%) of the acute oral dose. In the dietary trial, the average lowest-observed-adverse-effect-level for prolonged clotting time was 1.68 mg DPN/kg owl/week (0.24 mg/kg owl/day; 0.049 mg/owl/day) and the lowest lethal dose was 5.75 mg DPN/kg owl/week (0.82 mg/kg owl/day). In this feeding trial, DPN concentration in liver ranged from 0.473 to 2.21 μg/g wet weight, and was directly related to the daily and cumulative dose consumed by each owl. A probabilistic risk assessment indicated that daily exposure to as little as 3-5 g of liver from DPN-poisoned rodents for 7 days could result in prolonged clotting time in the endangered Hawaiian short-eared owl (Asio flammeus sandwichensis) and Hawaiian hawk (Buteo solitarius), and daily exposure to greater quantities (9-13 g of liver) could result in low-level mortality. These findings can assist natural resource managers in weighing the costs and benefits of anticoagulant rodenticide use in pest control and eradication programs.
Rattner, Barnett A.; Horak, Katherine E.; Lazarus, Rebecca S.; Eisenreich, Karen M.; Meteyer, Carol U.; Volker, Steven F.; Campton, Christopher M.; Eisemann, John D.; Johnston, John J.
2012-01-01
In the United States, new regulatory restrictions have been placed on the use of some second-generation anticoagulant rodenticides. This action may be offset by expanded use of first-generation compounds (e.g., diphacinone; DPN). Single-day acute oral exposure of adult Eastern screech-owls (Megascops asio) to DPN evoked overt signs of intoxication, coagulopathy, histopathological lesions (e.g., hemorrhage, hepatocellular vacuolation), and/ or lethality at doses as low as 130 mg/kg body weight, although there was no dose-response relation. However, this single-day exposure protocol does not mimic the multiple-day field exposures required to cause mortality in rodent pest species and non-target birds and mammals. In 7-day feeding trials, similar toxic effects were observed in owls fed diets containing 2.15, 9.55 or 22.6 ppm DPN, but at a small fraction (<5%) of the acute oral dose. In the dietary trial, the average lowest-observed-adverse-effect-level for prolonged clotting time was 1.68 mg DPN/kg owl/week (0.24 mg/kg owl/day; 0.049 mg/owl/day) and the lowest lethal dose was 5.75 mg DPN/kg owl/week (0.82 mg/kg owl/day). In this feeding trial, DPN concentration in liver ranged from 0.473 to 2.21 μg/g wet weight, and was directly related to the daily and cumulative dose consumed by each owl. A probabilistic risk assessment indicated that daily exposure to as little as 3-5 g of liver from DPN-poisoned rodents for 7 days could result in prolonged clotting time in the endangered Hawaiian shorteared owl (Asio flammeus sandwichensis) and Hawaiian hawk (Buteo solitarius), and daily exposure to greater quantities (9-13 g of liver) could result in low-level mortality. These findings can assist natural resource managers in weighing the costs and benefits of anticoagulant rodenticide use in pest control and eradication programs.
H2S induced coma and cardiogenic shock in the rat: Effects of phenothiazinium chromophores
SONOBE, TAKASHI; HAOUZI, PHILIPPE
2015-01-01
Context Hydrogen sulfide (H2S) intoxication produces an acute depression in cardiac contractility-induced circulatory failure, which has been shown to be one of the major contributors to the lethality of H2S intoxication or to the neurological sequelae in surviving animals. Methylene blue (MB), a phenothiazinium dye, can antagonize the effects of the inhibition of mitochondrial electron transport chain, a major effect of H2S toxicity. Objectives We investigated whether MB could affect the immediate outcome of H2S-induced coma in unanesthetized animals. Second, we sought to characterize the acute cardiovascular effects of MB and two of its demethylated metabolites—azure B and thionine—in anesthetized rats during lethal infusion of H2S. Materials and methods First, MB (4 mg/kg, intravenous [IV]) was administered in non-sedated rats during the phase of agonal breathing, following NaHS (20 mg/kg, IP)-induced coma. Second, in 4 groups of urethane-anesthetized rats, NaHS was infused at a rate lethal within 10 min (0.8 mg/min, IV). Whenever cardiac output (CO) reached 40% of its baseline volume, MB, azure B, thionine, or saline were injected, while sulfide infusion was maintained until cardiac arrest occurred. Results Seventy-five percent of the comatose rats that received saline (n = 8) died within 7 min, while all the 7 rats that were given MB survived (p = 0.007). In the anesthetized rats, arterial, left ventricular pressures and CO decreased during NaHS infusion, leading to a pulseless electrical activity within 530 s. MB produced a significant increase in CO and dP/dtmax for about 2 min. A similar effect was produced when MB was also injected in the pre-mortem phase of sulfide exposure, significantly increasing survival time. Azure B produced an even larger increase in blood pressure than MB, while thionine had no effect. Conclusion MB can counteract NaHS-induced acute cardiogenic shock; this effect is also produced by azure B, but not by thionine, suggesting that the presence of methyl groups is a prerequisite for producing this protective effect. PMID:25965774
Zhou, Yan; Wang, Fenghe; Wan, Jinzhong; He, Jian; Li, Qun; Qiang Chen; Gao, Jay; Lin, Yusuo; Zhang, Shengtian
2017-03-01
Traditionally, the toxicity of river contaminants is analyzed chemically or physically through river bed sediments. The biotoxicity of polluted sediment leachates has not caught our attention. This study aims to overcome this deficiency through a battery of biotests which were conducted to monitor comprehensive toxicity of sediment leachates for the Yaogang River in East Jiangsu Province of China, which is in close proximity to former pesticide plants. The general physical and chemical parameters of major pollutants were analyzed from river bed sediments collected at five strategic locations. The ecotoxicity analyses undertaken include overall fish (adult zebrafish) acute toxicity, luminescent bacteria (Vibrio fischeri) bioassay, and zebrafish embryo toxicity assay. Compared with the control group, sediment leachates increased the lethality, inhibited the embryos hatching and induced development abnormalities of zebrafish embryos, and inhibited the luminescence of V. fischeri. The results show that sediment leachates may assume various toxic effects, depending on the test organism. This diverse toxicity to aquatic organisms reflects their different sensitivity to sediment leachates. It is found clearly that V. fischeri was the organism which was characterized by the highest sensitivity to the sediment leachates. The complicated toxicity of leachates was not caused by one single factor but by multiple pollutants together. This indicates the need of estimations of sediment leachate not only taking into account chemical detection but also of applying the biotests to the problem. Thus, multigroup bioassays are necessary to realistically evaluate river ecological risks imposed by leachates.
Densmore, Christine L.; Iwanowicz, Luke R.; Henderson, Anne P.; Blazer, Vicki S.; Reed-Grimmett, Baileigh M.; Sanders, Lakyn R.
2018-06-29
Potash, with the active ingredient potassium chloride (KCl) is a chemical that is currently being evaluated for potential use as a molluscicide to combat invasive zebra mussels and quagga mussels in Western United States waters. Although data available for other freshwater fishes indicate that recommended treatment levels of potash as a molluscicide are sublethal, this has not been demonstrated for all salmonid species. The objectives of this study were to perform toxicity testing to determine the lethality of potassium chloride against selected species of salmonid fish (brook trout and Chinook salmon) and selected invertebrate forage, and to identify any potential adverse physiological impacts of KCl to these salmonids in water at treatment levels used for mollusk eradication. Minimal mortality (n=1 fish) was observed during 96-hour toxicity testing at KCl concentrations of 0 to 800 milligrams per liter (mg/L), indicating that the lethal concentration (LC50) values in these salmonid species were considerably higher than realistic molluscicide treatment concentrations. Sublethal effects were examined through evaluation of behavioral and morphological (histological) observation as well as specific blood chemistry parameters (electrolytes, osmolality, glucose, and cortisol). There was no strong evidence of significant physiological impairment among the two salmonid species due to KCl exposure. Whereas statistically significant differences in some parameters were observed in association with KCl treatments, it is unlikely that these differences indicate adverse biological impacts. Acute toxicity tests were conducted with invertebrate species at KCl exposure concentrations of 0–3,200 mg/L. Daphniid exposure trials resulted in differences in mortality among the test groups with higher mortality evident among the higher KCl exposure concentrations with a calculated LC50 value of 196 mg/L KCl for a 48-hour exposure. Crayfish exposed to higher concentrations of KCl at or above 800 mg/L as specimens exhibited death or reversible paralysis. Chironomid larvae exposures were largely inconclusive because of cannibalistic behavior among the various test groups.
Carmichael, W W; Evans, W R; Yin, Q Q; Bell, P; Moczydlowski, E
1997-08-01
Lyngbya wollei (Farlow ex Gomont) comb. nov., a perennial mat-forming filamentous cyanobacterium prevalent in lakes and reservoirs of the southeastern United States, was found to produce a potent, acutely lethal neurotoxin when tested in the mouse bioassay. Signs of poisoning were similar to those of paralytic shellfish poisoning. As part of the Tennessee Valley Authority master plan for Guntersville Reservoir, the mat-forming filamentous cyanobacterium L. wollei, a species that had recently invaded from other areas of the southern United States, was studied to determine if it could produce any of the known cyanotoxins. Of the 91 field samples collected at 10 locations at Guntersville Reservoir, Ala., on the Tennessee River, over a 3-year period, 72.5% were toxic. The minimum 100% lethal doses of the toxic samples ranged from 150 to 1,500 mg kg of lyophilized L. wollei cells-1, with the majority of samples being toxic at 500 mg kg-1. Samples bioassayed for paralytic shellfish toxins by the Association of Official Analytical Chemists method exhibited saxitoxin equivalents ranging from 0 to 58 micrograms g (dry weight)-1. Characteristics of the neurotoxic compound(s), such as the lack of adsorption by C18 solid-phase extraction columns, the short retention times on C18 high-performance liquid chromatography (HPLC) columns, the interaction of the neurotoxins with saxiphilin (a soluble saxitoxin-binding protein), and external blockage of voltage-sensitive sodium channels, led to our discovery that this neurotoxin(s) is related to the saxitoxins, the compounds responsible for paralytic shellfish poisonings. The major saxitoxin compounds thus far identified by comparison of HPLC fluorescence retention times are decarbamoyl gonyautoxins 2 and 3. There was no evidence of paralytic shellfish poison C toxins being produced by L. wollei. Fifty field samples were placed in unialgal culture and grown under defined culture conditions. Toxicity and signs of poisoning for these laboratory-grown strains of L. wollei were similar to those of the field collection samples.
Li, Yue; Chen, Hung-Lin; Bannick, Nadine; Henry, Michael; Holm, Adrian N; Metwali, Ahmed; Urban, Joseph F; Rothman, Paul B; Weiner, George J; Blazar, Bruce R; Elliott, David E; Ince, M Nedim
2015-02-01
Donor T lymphocyte transfer with hematopoietic stem cells suppresses residual tumor growth (graft-versus-tumor [GVT]) in cancer patients undergoing bone marrow transplantation (BMT). However, donor T cell reactivity to host organs causes severe and potentially lethal inflammation called graft-versus-host disease (GVHD). High-dose steroids or other immunosuppressive drugs are used to treat GVHD that have limited ability to control the inflammation while incurring long-term toxicity. Novel strategies are needed to modulate GVHD, preserve GVT, and improve the outcome of BMT. Regulatory T cells (Tregs) control alloantigen-sensitized inflammation of GVHD, sustain GVT, and prevent mortality in BMT. Helminths colonizing the alimentary tract dramatically increase the Treg activity, thereby modulating intestinal or systemic inflammatory responses. These observations led us to hypothesize that helminths can regulate GVHD and maintain GVT in mice. Acute GVHD was induced in helminth (Heligmosomoides polygyrus)-infected or uninfected BALB/c recipients of C57BL/6 donor grafts. Helminth infection suppressed donor T cell inflammatory cytokine generation and reduced GVHD-related mortality, but maintained GVT. H. polygyrus colonization promoted the survival of TGF-β-generating recipient Tregs after a conditioning regimen with total body irradiation and led to a TGF-β-dependent in vivo expansion/maturation of donor Tregs after BMT. Helminths did not control GVHD when T cells unresponsive to TGF-β-mediated immune regulation were used as donor T lymphocytes. These results suggest that helminths suppress acute GVHD using Tregs and TGF-β-dependent pathways in mice. Helminthic regulation of GVHD and GVT through intestinal immune conditioning may improve the outcome of BMT. Copyright © 2015 by The American Association of Immunologists, Inc.
Mori, Tomohisa; Sawaguchi, Toshiko
2018-01-01
Relatively high doses of psychostimulants induce neurotoxicity on the dopaminergic system and self-injurious behavior (SIB) in rodents. However the underlying neuronal mechanisms of SIB remains unclear. Dopamine receptor antagonists, N-methyl-D-aspartic acid (NMDA) receptor antagonists, Nitric Oxide Synthase (NOS) inhibitors and free radical scavengers significantly attenuate methamphetamine-induced SIB. These findings indicate that activation of dopamine as well as NMDA receptors followed by radical formation and oxidative stress, especially when mediated by NOS activation, is associated with methamphetamine-induced SIB. On the other hand, an increase in the incidence of polydrug abuse is a major problem worldwide. Coadministered methamphetamine and morphine induced lethality in more than 80% in mice, accompanied by an increase in the number of poly (ADP-ribose) polymerase (PARP)-immunoreactive cells in the heart, kidney and liver. The lethal effect and the increase in the incidence of rupture or PARP-immunoreactive cells induced by the coadministration of methamphetamine and morphine were significantly attenuated by pretreatment with a phospholipase A2 inhibitor or a radical scavenger, or by cooling of body from 30 to 90 min after drug administration. These results suggest that free radicals play an important role in the increased lethality induced by the coadministration of methamphetamine and morphine. Therefore, free radical scavengers and cooling are beneficial for preventing death that is induced by the coadministration of methamphetamine and morphine. These findings may help us better understand for masochistic behavior, which is a clinical phenomenon on SIB, as well as polydrug-abuse-induced acute toxicity.
TOXICITY OF AHR AGONISTS TO FISH EARLY LIFE STAGES
Fish early life stages are exceptionally sensitive to the lethal toxicity of chemicals that act as arylhydrocarbon receptor (AhR) agonists. Toxicity characterizations based on 2,3,7,8-tetrachlorodibenzo-p-dioxin, generally the most potent AhR agonist, support the toxicity equiva...
NASA Technical Reports Server (NTRS)
Lawrence, W. H.
1980-01-01
In chamber thermodegradation procedures were used to access the lethality to rats of the pyrolysis/combustion products of three foams, an adhesive backed metallic tape and RTV silicone rubber adhesive sealant used in spacecraft construction. The role of carbon monoxide in the overall pyrolysate toxicity was also investigated. Post exposure observation of the rats, histological evaluation of selected organs, carbon monoxide concentration in the chamber atmosphere during exposure and the percent carboxyhemoglobin in the animals expiring in the chamber are discussed. Thermogravimetric analysis and dosage response results are given. The lethal effect of the RTV silicon appears to be due to physical obstruction of the respiratory system by particulate matter from pyrolysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, Diane E.; Program of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA; Hoover, Benjamin
2014-09-01
We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6more » syngraft model of melanoma; mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA-activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32% to 87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5–3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. - Highlights: • Toxicity and anti-tumor activity of protease-activated anthrax toxins were evaluated. • All anthrax toxin variants exhibited potent systemic anti-tumor activity in mice. • A dual MMP/uPA-activated anthrax toxin displayed a superior safety profile. • Clinical development of a dual MMP/uPA-activated anthrax toxin is feasible.« less
Acute toxicity and sublethal effects of gallic and pelargonic acids on the zebrafish Danio rerio.
Techer, Didier; Milla, Sylvain; Fontaine, Pascal; Viot, Sandrine; Thomas, Marielle
2015-04-01
Gallic and pelargonic acids are naturally found in a variety of plants and food products. Despite their extensive use in man-made applications, little is known regarding their potential risks to aquatic vertebrates. The aim of this work was to assess the acute toxicity of these polyphenolic and fatty acid compounds to the zebrafish. In order to get insights into sublethal effects, the enzyme activity of usual biomarkers related to oxidative stress and biotransformation were also assessed in fish. These latter included total superoxide dismutase, catalase as well as total glutathione peroxidase for antioxidant defence mechanisms and glutathione S-transferase for biotransformation related enzyme. Gallic acid was practically non-toxic (96-h lethal concentration (LC50) > 100 mg/L) whereas pelargonic acid was slightly toxic (96-h LC50 of 81.2 mg/L). Moreover, biomarker analyses indicated enhanced superoxide dismutase activity in fish exposed to 20, 40 and 100 mg/L of gallic acid compared to control. A dose-dependent induction of glutathione peroxidase and glutathione S-transferase was reported following gallic acid exposure at the tested concentrations of 10, 20 and 40 mg/L, with the exception of 100 mg/L of substance where basal activity levels were reported. In the case of pelargonic acid, there was no change in antioxidant enzyme activity while an inhibition of glutathione S-transferase was observed from organisms exposed to 45, 58 and 76 mg/L of test solution. The results concerning sublethal effects on biological parameters of zebrafish highlighted thereby the need for further investigations following chronic exposure to both organic acids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calm, James M.
This report reviews toxicity data, identifies sources for them, and presents resulting exposure limits for refrigerants for consideration by qualified parties in developing safety guides, standards, codes, and regulations. It outlines a method to calculate an acute toxicity exposure limit (ATEL) and from it a recommended refrigerant concentration limit (RCL) for emergency exposures. The report focuses on acute toxicity with particular attention to lethality, cardiac sensitization, anesthetic and central nervous system effects, and other escape-impairing effects. It addresses R-11, R-12, R-22, R-23, R-113, R-114, R-116, R-123, R-124, R-125, R-134, R-134a, R-E134, R-141b, R-142b, R-143a, R-152a, R-218, R-227ea, R-236fa, R-245ca, R-245fa,more » R-290, R-500, R-502, R-600a, R-717, and R-744. It summarizes additional data for R-14, R-115, R-170 (ethane), R-C318, R-600 (n-butane), and R-1270 (propylene) to enable calculation of limits for blends incorporating them. The report summarizes the data a nd related safety information, including classifications and flammability data. It also presents a series of tables with proposed ATEL and RCL concentrations-in dimensionless form and the latter also in both metric (SI) and inch-pound (IP) units of measure-for both the cited refrigerants and 66 zerotropic and azeotropic blends. They include common refrigerants, such as R-404A, R-407C, R-410A, and R-507A, as well as others in commercial or developmental status. Appendices provide profiles for the cited single-compound refrigerants and for R-500 and R-502 as well as narrative toxicity summaries for common refrigerants. The report includes an extensive set of references.« less
Comparative toxicology for risk assessment of marine fishes and crustaceans. [Cyprinodon variegatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suter, G.W. II; Rosen, A.E.
1988-05-01
The goal of this study was to collect data on the effects of chemicals on marine fishes and crustaceans and to evaluate the predictive power of the data for assessing risks to marine resources. The data sets consisted of acute median lethal concentrations (LC{sub 50s}) and chronic maximum acceptable toxicant concentrations (MATCs). They were analyzed with regression models and simple comparisons. The conclusions include the following: (1) the variability found in the marine data was comparable to that found in freshwater data; (2) the standard marine test fish Cyprinodon variegatus appears to be representative of marine fishes; (3) the responsesmore » of marine crustaceans are so highly diverse that the concept of a representative crustacean is questionable; (4) mysid and penaeid shrimp appear to be particularly sensitive to toxic chemicals. These conclusions are subject to the constraints of the existing limited data base and should be confirmed by a systematic study of the relative sensitivity of marine organisms to chemicals with diverse modes of action.« less
Mize, S.V.; Porter, S.D.; Demcheck, D.K.
2008-01-01
Laboratory tests of fipronil and its degradation products have revealed acute lethal toxicity at very low concentrations (LC50) of <0.5 ??g/L to selected aquatic macroinvertebrates. In streams draining basins with intensive rice cultivation in southwestern Louisiana, USA, concentrations of fipronil compounds were an order of magnitude larger than the LC50. The abundance (?? = -0.64; p = 0.015) and taxa richness (r2 = 0.515, p < 0.005) of macroinvertebrate communities declined significantly with increases in concentrations of fipronil compounds and rice-cultivation land-use intensity. Macroinvertebrate community tolerance scores increased linearly (r2 = 0.442, p < 0.005) with increases in the percentage of rice cultivation in the basins, indicating increasingly degraded stream conditions. Similarly, macroinvertebrate community-tolerance scores increased rapidly as fipronil concentrations approached about 1 ??g/L. Pesticide toxicity index determinations indicated that aquatic macroinvertebrates respond to a gradient of fipronil compounds in water although stream size and habitat cannot be ruled out as contributing influences.
Bolevenine, a toxic protein from the Japanese toadstool Boletus venenatus.
Matsuura, Masanori; Yamada, Mina; Saikawa, Yoko; Miyairi, Kazuo; Okuno, Toshikatsu; Konno, Katsuhiro; Uenishi, Jun'ichi; Hashimoto, Kimiko; Nakata, Masaya
2007-03-01
A toxic protein, called bolevenine, was isolated from the toxic mushroom Boletus venenatus based on its lethal effects on mice. On SDS-PAGE, in either the presence or absence of 2-mercaptoethanol, this protein showed a single band of approximately 12 kDa. In contrast, based on gel filtration and MALDI-TOFMS, its relative molecular mass was estimated to be approximately 30 kDa and approximately 33 kDa, respectively, indicating that the protein consists of three identical subunits. This toxin exhibited its lethal activity following injection at 10mg/kg into mice. The N-terminal amino acid sequence was determined up to 18, and found to be similar to the previously reported bolesatine, a toxic compound isolated from Boletus satanas.
Stage-dependent toxicity of bisphenol a on Rhinella arenarum (anura, bufonidae) embryos and larvae.
Wolkowicz, Ianina R Hutler; Herkovits, Jorge; Pérez Coll, Cristina S
2014-02-01
The acute and chronic toxicity of bisphenol A (BPA) was evaluated on the common South American toad Rhinella arenarum embryos and larvae by means of continuous and pulse exposure treatments. Embryos were treated continuously from early blastula (S.4) up to complete operculum (S.25), during early larval stages and by means of 24 h pulse exposures of BPA in concentrations ranging between 1.25 and 40 mg L(-1) , in order to evaluate the susceptibility to this compound in different developmental stages. For lethal effects, S.25 was the most sensitive and gastrula was the most resistant to BPA. The Teratogenic Index for neurula, the most sensitive embryonic stage for sublethal effects was 4.7. The main morphological alterations during early stages were: delayed or arrested development, reduced body size, persistent yolk plug, microcephaly, axial/tail flexures, edemas, blisters, waving fin, underdeveloped gills, mouth malformations, and cellular dissociation. BPA caused a remarkable narcotic effect from gill circulation stage (S.20) onwards in all the organisms exposed after 3 h of treatment with 10 mg L(-1) BPA. After recovering, the embryos exhibited scarce response to stimuli, erratic or circular swimming, and spasmodic contractions from 5 mg L(-1) onwards. Our results highlight the lethal and sublethal effectsof BPA on R. arenarum embryos and larvae, in the last case both at structural and functional levels. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.
Full recovery from a potentially lethal dose of mercuric chloride.
Beasley, D Michael G; Schep, Leo J; Slaughter, Robin J; Temple, Wayne A; Michel, Jonathan M
2014-03-01
Mercuric chloride poisoning is rare yet potentially life-threatening. We report a case of poisoning with a potentially significant amount of mercuric chloride which responded to aggressive management. A 19-year-old female presented to the Emergency Department with nausea, abdominal discomfort, vomiting of blood-stained fluid, and diarrhea following suicidal ingestion of 2-4 g of mercuric chloride powder. An abdominal radiograph showed radio-opaque material within the gastric antrum and the patient's initial blood mercury concentration was 17.9 μmol/L (or 3.58 mg/L) at 3 h post-ingestion. Given the potential toxicity of inorganic mercury, the patient was admitted to the intensive care unit and chelation with dimercaprol was undertaken. Further clinical effects included mild hemodynamic instability, acidosis, hypokalemia, leukocytosis, and fever. The patient's symptoms began to improve 48 h after admission and resolved fully within a week. Mercuric chloride has an estimated human fatal dose of between 1 and 4 g. Despite a reported ingestion of a potentially lethal dose and a high blood concentration, this patient experienced mild to moderate poisoning only and she responded to early and appropriate intervention. Mercuric chloride can produce a range of toxic effects including corrosive injury, severe gastrointestinal disturbances, acute renal failure, circulatory collapse, and eventual death. Treatment includes close observation and aggressive supportive care along with chelation, preferably with 2,3-dimercapto-1-propane sulfonate or 2,3-meso-dimercaptosuccinic acid.
Wu, Si; Lu, Jianhong; Rui, Qi; Yu, Shunhui; Cai, Ting; Wang, Dayong
2011-01-01
Toxicity of Al(2)O(3)-NPs, as compared to that of Al(2)O(3), to L1-larval, L4-larval or young adult nematodes was evaluated. When exposure was performed at L1-larval stage, the significant increases of lethality, stress response, and intestinal lipofuscin autofluorescence were observed in 6.3-203.9 mg/L of Al(2)O(3)-NPs exposed nematodes. In contrast, when exposure was performed at L4-larval or young adult stage, the significant increases of lethality and intestinal lipofuscin autofluorescence were observed in 12.7-203.9 mg/L of Al(2)O(3)-NPs exposed nematodes, and the significant inductions of stress response were detected in 25.5-203.9 mg/L of Al(2)O(3)-NPs exposed nematodes. Moreover, the lethality was significantly correlated with the stress response and the intestinal lipofuscin autofluorescence in Al(2)O(3)-NPs exposed nematodes. These data imply that Al(2)O(3)-NPs exposure in L1 larvae causes more severe lethality toxicity than in L4 larvae or young adults by strengthening the formation of stress response and intestinal lipofuscin accumulation in nematodes. Copyright © 2010 Elsevier B.V. All rights reserved.
In vivo acute toxicological studies of an antioxidant extract from Mangifera indica L. (Vimang).
Garrido, Gabino; Rodeiro, Idania; Hernández, Ivones; García, Gastón; Pérez, Gema; Merino, Nelson; Núñez-Sellés, Alberto; Delgado, René
2009-01-01
Mango (Mangifera indica L.) stem bark aqueous extract (MSBE) is a natural product with antioxidant, anti-inflammatory, analgesic, and immunomodulatory effects. Its formulations (e.g., tablets, capsules, syrup, vaginal oval, and suppositories) are known by the brand name of Vimang. In view of the ethnomedical, preclinical, and clinical uses of this extract and the necessity to assess its possible toxicological effect on man, a toxicological analysis of a standard extract is reported in this paper. Acute toxicity was evaluated in mice and rats by oral, dermal, and intraperitoneal (i.p.) administration. The extract, by oral or dermal administration, showed no lethality at the limit doses of 2,000 mg/kg body weight and no adverse effects were found. Deaths occurred with the i.p. administration at 200, but not 20 mg/kg in mice. MSBE was also studied on irritant tests in rabbits, and the results showed that it was nonirritating on skin, ocular, or rectal mucosa. The extract had minimal irritancy following vaginal application.
Integrative Chemical-Biological Read-Across Approach for Chemical Hazard Classification
Low, Yen; Sedykh, Alexander; Fourches, Denis; Golbraikh, Alexander; Whelan, Maurice; Rusyn, Ivan; Tropsha, Alexander
2013-01-01
Traditional read-across approaches typically rely on the chemical similarity principle to predict chemical toxicity; however, the accuracy of such predictions is often inadequate due to the underlying complex mechanisms of toxicity. Here we report on the development of a hazard classification and visualization method that draws upon both chemical structural similarity and comparisons of biological responses to chemicals measured in multiple short-term assays (”biological” similarity). The Chemical-Biological Read-Across (CBRA) approach infers each compound's toxicity from those of both chemical and biological analogs whose similarities are determined by the Tanimoto coefficient. Classification accuracy of CBRA was compared to that of classical RA and other methods using chemical descriptors alone, or in combination with biological data. Different types of adverse effects (hepatotoxicity, hepatocarcinogenicity, mutagenicity, and acute lethality) were classified using several biological data types (gene expression profiling and cytotoxicity screening). CBRA-based hazard classification exhibited consistently high external classification accuracy and applicability to diverse chemicals. Transparency of the CBRA approach is aided by the use of radial plots that show the relative contribution of analogous chemical and biological neighbors. Identification of both chemical and biological features that give rise to the high accuracy of CBRA-based toxicity prediction facilitates mechanistic interpretation of the models. PMID:23848138
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, A.S.; Bartos, J.M.
1984-11-01
Laboratory bioassays to determine the acute toxicity of monochloramine, dichloramine, hypochlorous acid, and hypochlorite ion to emerald shiners Notropis atherinoides, channel catfish Ictalurus punctatus, and rainbow trout Salmo gairdneri were conducted. Four exposure regimes typical of chlorination schedules at operating steam electric power plants were used. Fish were exposed for single 15-minute, 30-minute, 120-minute, and 4 x 30-minute periods. Based on median lethal concentrations (LC50s), the nominal solution of hypochlorous acid was the most toxic, followed closely by the solution dominated by dichloramine; nominal monochloramine and hypochlorite ion solutions had a third to a quarter the toxicity of the othermore » two. On the average, emerald shiners were 1.8 times more sensitive than channel catfish and 3.3 times more sensitive than rainbow trout to the four forms of chlorine. The fish were most tolerant of chlorine during short-duration exposures and least tolerant during the continuous 120-minute exposures. The differences in toxicity noted among the chlorine forms suggest that, when chlorination regimes and regulations are established, careful attention should be paid not only to total residual chlorine but to both the chlorine forms and fish species present and the duration of exposure. 24 references, 1 figure, 1 table.« less
Enhancement of parathion toxicity to quail by heat and cold exposure
Rattner, B.A.; Becker, J.M.; Nakatsugawa, T.
1987-01-01
Effects of ambient temperature on the acute oral toxicity of parathion were investigated in Japanese quail (Coturnix japonica) maintained at thermoneutral temperature (26.degree. C) or exposed to elevated (37.degree. C) or reduced (4.degree. C) temperatures commonly encountered by free-ranging wild birds. Based upon estimates of the median lethal dosage, there was up to a two-fold enhancement of parathion toxicity in birds chronically exposed to heat or cold. Twenty-four hours after administration of a low dosage (4 mg/kg body wt, po), there was markedly greater cholinesterase inhibition in surviving heat-exposed quail compared with those reared at 26.degree. C (e.g., brain acetylcholinesterase depression of 42% versus 12%). There were no differences in hepatic activities of parathion oxidase, paraoxonase, or paraoxon deethylase which could account for greater toxicity to chronically heat-exposed birds. In contrast, 4 mg parathion/kg wt elicited less plasma cholinesterase inhibition in cold-exposed quail compared to thermoneutral controls (e.g., < 10% versus 48% depression after 24 hr). Increased liver weight and a doubling of paraoxonase activity may have been associated with greater tolerance to sublethal doses of parathion in chronically cold-exposed quail. These findings, together with limited field observations, indicate that the hazard associated with anticholinesterase exposure of wild birds is substantially influenced by environmental temperature.
Agrahari, P; Singh, D K
2013-11-01
Laboratory evaluation was made to access the seasonal variations in abiotic environmental factors temperature, pH, dissolved oxygen, carbon dioxide, electrical conductivity and ferulic acid toxicity in snail-attractant pellets (SAP) against the intermediate host snail Lymnaea acuminata in each month of the years 2010 and 2011. On the basis of a 24-h toxicity assay, it was noted that lethal concentration values of 4.03, 3.73% and 4.45% in SAP containing starch and 4.16, 4.23% and 4.29% in SAP containing proline during the months of May, June and September, respectively, were most effective in killing the snails, while SAP containing starch/proline + ferulic acid was least effective in the month of January/February (24-h lethal concentration value was 7.67%/7.63% in SAP). There was a significant positive correlation between lethal concentration value of ferulic acid containing SAP and levels of dissolved O2 /pH of water in corresponding months. On the contrary, a negative correlation was observed between lethal concentration value and dissolved CO2 /temperature of test water in the same months. To ascertain that such a relationship between toxicity and abiotic factors is not co-incidental, the nervous tissue of treated (40% and 80% of 24-h lethal concentration value) and control group of snails was assayed for the activity of acetylcholinesterase (AChE) in each of the 12 months of the same year. There was a maximum inhibition of 58.43% of AChE, in snails exposed to 80% of the 24-h lethal concentration value of ferulic acid + starch in the month of May. This work shows conclusively that the best time to control snail population with SAP containing ferulic acid is during the months of May, June and September. © 2012 Blackwell Verlag GmbH.
Dinges, Martin M; Gregerson, Dale S; Tripp, Timothy J; McCormick, John K; Schlievert, Patrick M
2003-10-15
Toxic shock syndrome (TSS) may be mediated by superantigen-activated T cells, a theory we tested in rabbits, which are more susceptible to the lethal effects of superantigens, such as TSS toxin-1 (TSST-1), than are mice. Rabbits exposed to 10 cGy of total body irradiation exhibited T cell deficiency, with profound depletion of splenic lymphocytes and circulating CD4(+) lymphocytes, as well as an inability to manifest delayed-type hypersensitivity. Nevertheless, these rabbits remained completely susceptible to TSST-1, indicating that TSS can occur in the setting of marked immunosuppression.
Redman, Aaron D; Parkerton, Thomas F; Butler, Josh David; Letinski, Daniel J; Frank, Richard A; Hewitt, L Mark; Bartlett, Adrienne J; Gillis, Patricia Leigh; Marentette, Julie R; Parrott, Joanne L; Hughes, Sarah A; Guest, Rodney; Bekele, Asfaw; Zhang, Kun; Morandi, Garrett; Wiseman, Steve B; Giesy, John P
2018-06-14
Oil sand operations in Alberta, Canada will eventually include returning treated process-affected waters to the environment. Organic constituents in oil sand process-affected water (OSPW) represent complex mixtures of nonionic and ionic (e.g. naphthenic acids) compounds, and compositions can vary spatially and temporally, which has impeded development of water quality benchmarks. To address this challenge, it was hypothesized that solid phase microextraction fibers coated with polydimethylsiloxane (PDMS) could be used as a biomimetic extraction (BE) to measure bioavailable organics in OSPW. Organic constituents of OSPW were assumed to contribute additively to toxicity, and partitioning to PDMS was assumed to be predictive of accumulation in target lipids, which were the presumed site of action. This method was tested using toxicity data for individual model compounds, defined mixtures, and organic mixtures extracted from OSPW. Toxicity was correlated with BE data, which supports the use of this method in hazard assessments of acute lethality to aquatic organisms. A species sensitivity distribution (SSD), based on target lipid model and BE values, was similar to SSDs based on residues in tissues for both nonionic and ionic organics. BE was shown to be an analytical tool that accounts for bioaccumulation of organic compound mixtures from which toxicity can be predicted, with the potential to aid in the development of water quality guidelines.
Rutkoski, Camila F; Macagnan, Natani; Kolcenti, Cassiane; Vanzetto, Guilherme V; Sturza, Paola F; Hartmann, Paulo A; Hartmann, Marilia T
2018-05-01
Water sources used as reproductive sites by crying frog, Physalaemus gracilis, are extensively associated with agroecosystems in which the herbicide atrazine is employed. To evaluate the lethal and sublethal effects of atrazine commercial formulation, acute and chronic toxicity tests were performed in the embryonic phase and the beginning of the larval phase of P. gracilis. Tests were started on stage 19 of Gosner (Herpetologica 16:183-190, 1960) and performed in 24-well cell culture plates. Acute tests had a duration of 96 h with embryo mortality monitoring every 24 h. Chronic assays contemplated the transition from the embryonic to larval stages and lasted 168 h. Every 24 h the embryos/larvae were observed for mortality, mobility, and malformations. The LC50 of atrazine determined for P. gracilis embryos was 229.34 mg L -1 . The sublethal concentrations did not affect the development of the larvae but were observed effects on mobility and malformations, such as spasmodic contractions, reduced mobility, malformations in mouth and intestine, and edema arising. From 1 mg L -1 atrazine, the exposed larvae began to have changes in mobility and malformations. The atrazine commercial formulation has caused early life effects of P. gracilis that may compromise the survival of this species but at higher concentrations than recorded in the environment, so P. gracilis can be considered tolerant to this herbicide at environmentally relevant concentrations.
Evaluation of effects of long term exposure on lethal toxicity with mammals.
Verma, Vibha; Yu, Qiming J; Connell, Des W
2014-02-01
The relationship between exposure time (LT50) and lethal exposure concentration (LC50) has been evaluated over relatively long exposure times using a novel parameter, Normal Life Expectancy (NLT), as a long term toxicity point. The model equation, ln(LT50) = aLC50(ν) + b, where a, b and ν are constants, was evaluated by plotting lnLT50 against LC50 using available toxicity data based on inhalation exposure from 7 species of mammals. With each specific toxicant a single consistent relationship was observed for all mammals with ν always <1. Use of NLT as a long term toxicity point provided a valuable limiting point for long exposure times. With organic compounds, the Kow can be used to calculate the model constants a and v where these are unknown. The model can be used to characterise toxicity to specific mammals and then be extended to estimate toxicity at any exposure time with other mammals. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Delayed and time-cumulative toxicity of imidacloprid in bees, ants and termites
Rondeau, Gary; Sánchez-Bayo, Francisco; Tennekes, Henk A.; Decourtye, Axel; Ramírez-Romero, Ricardo; Desneux, Nicolas
2014-01-01
Imidacloprid, one of the most commonly used insecticides, is highly toxic to bees and other beneficial insects. The regulatory challenge to determine safe levels of residual pesticides can benefit from information about the time-dependent toxicity of this chemical. Using published toxicity data for imidacloprid for several insect species, we construct time-to-lethal-effect toxicity plots and fit temporal power-law scaling curves to the data. The level of toxic exposure that results in 50% mortality after time t is found to scale as t1.7 for ants, from t1.6 to t5 for honeybees, and from t1.46 to t2.9 for termites. We present a simple toxicological model that can explain t2 scaling. Extrapolating the toxicity scaling for honeybees to the lifespan of winter bees suggests that imidacloprid in honey at 0.25 μg/kg would be lethal to a large proportion of bees nearing the end of their life. PMID:24993452
Handy, R D; Al-Bairuty, G; Al-Jubory, A; Ramsden, C S; Boyle, D; Shaw, B J; Henry, T B
2011-10-01
Manufactured nanomaterials (NM) are already used in consumer products and exposure modelling predicts releases of ng to low µg l(-1) levels of NMs into surface waters. The exposure of aquatic ecosystems, and therefore fishes, to manufactured NMs is inevitable. This review uses a physiological approach to describe the known effects of NMs on the body systems of fishes and to identify the internal target organs, as well as outline aspects of colloid chemistry relevant to fish biology. The acute toxicity data, suggest that the lethal concentration for many NMs is in the mg l(-1) range, and a number of sublethal effects have been reported at concentrations from c. 100 µg to 1 mg l(-1). Exposure to NMs in the water column can cause respiratory toxicity involving altered ventilation, mucus secretion and gill pathology. This may not lead, however, to overt haematological disturbances in the short term. The internal target organs include the liver, spleen and haematopoietic system, kidney, gut and brain; with toxic effects involving oxidative stress, ionoregulatory disturbances and organ pathologies. Some pathology appears to be novel for NMs, such as vascular injury in the brain of rainbow trout Oncorhynchus mykiss with carbon nanotubes. A lack of analytical methods, however, has prevented the reporting of NM concentrations in fish tissues, and the precise uptake mechanisms across the gill or gut are yet to be elucidated. The few dietary exposure studies conducted show no effects on growth or food intake at 10-100 mg kg(-1) inclusions of NMs in the diet of O. mykiss, but there are biochemical disturbances. Early life stages are sensitive to NMs with reports of lethal toxicity and developmental defects. There are many data gaps, however, including how water quality alters physiological responses, effects on immunity and chronic exposure data at environmentally relevant concentrations. Overall, the data so far suggest that the manufactured NMs are not as toxic as some traditional chemicals (e.g. some dissolved metals) and the innovative, responsible, development of nanotechnology should continue, with potential benefits for aquaculture, fisheries and fish health diagnostics. © 2011 The Authors. Journal of Fish Biology © 2011 The Fisheries Society of the British Isles.
Doi, Kent; Hu, Xuzhen; Yuen, Peter S.T.; Leelahavanichkul, Asada; Yasuda, Hideo; Kim, Soo Mi; Schnermann, Jürgen; Jonassen, Thomas E.N.; Frøkiær, Jørgen; Nielsen, Søren; Star, Robert A.
2008-01-01
Sepsis remains a serious problem in critically ill patients with the mortality increasing to over half when there is attendant acute kidney injury. α-Melanocyte-stimulating hormone is a potent anti-inflammatory cytokine that inhibits many forms of inflammation including that with acute kidney injury. We tested whether a new α-melanocyte-stimulating hormone analogue (AP214), which has increased binding affinity to melanocortin receptors, improves sepsis-induced kidney injury and mortality using a cecal ligation and puncture mouse model. In the lethal cecal ligation-puncture model of sepsis, severe hypotension and bradycardia resulted and AP214 attenuated acute kidney injury of the lethal model with a bell-shaped dose-response curve. An optimum AP214 dose reduced acute kidney injury even when it was administered 6 hr after surgery and it significantly improved blood pressure and heart rate. AP214 reduced serum TNF-α and IL-10 levels with a bell-shaped dose-response curve. Additionally; NF-κB activation in the kidney and spleen, and splenocyte apoptosis were decreased by the treatment. AP214 significantly improved survival in both lethal and sublethal models. We have shown that AP214 improves hemodynamic failure, acute kidney injury, mortality and splenocyte apoptosis attenuating pro- and anti-inflammatory actions due to sepsis. PMID:18354376
Diminished but Not Abolished Effect of Two His351 Mutants of Anthrax Edema Factor in a Murine Model
Zhao, Taoran; Zhao, Xinghui; Liu, Ju; Meng, Yingying; Feng, Yingying; Fang, Ting; Zhang, Jinlong; Yang, Xiuxu; Li, Jianmin; Xu, Junjie; Chen, Wei
2016-01-01
Edema toxin (ET), which is composed of a potent adenylate cyclase (AC), edema factor (EF), and protective antigen (PA), is one of the major toxicity factors of Bacillus anthracis. In this study, we introduced mutations in full-length EF to generate alanine EF(H351A) and arginine EF(H351R) variants. In vitro activity analysis displayed that the adenylyl cyclase activity of both the mutants was significantly diminished compared with the wild-type EF. When the native and mutant toxins were administered subcutaneously in a mouse footpad edema model, severe acute swelling was evoked by wild-type ET, while the symptoms induced by mutant toxins were very minor. Systemic administration of these EF variants caused non-lethal hepatotoxicity. In addition, EF(H351R) exhibited slightly higher activity in causing more severe edema than EF(H351A). Our findings demonstrate that the toxicity of ET is not abolished by substitution of EF residue His351 by alanine or arginine. These results also indicate the potential of the mouse footpad edema model as a sensitive method for evaluating both ET toxicity and the efficacy of candidate therapeutic agents. PMID:26848687
Navas, José M; Babín, Mar; Casado, Susana; Fernández, Carlos; Tarazona, José V
2006-07-01
The Prestige oil spill caused severe effects on the coastal fauna and flora due to direct contact of organisms with the fuel oil. However, the water soluble fraction (WSF) of the fuel oil can also provoke deleterious effects in the long term and even in regions not directly affected by the spill. Our objective was to determine the toxicity of the WSF using a battery of laboratory toxicity tests. To obtain a WSF in the laboratory, a sample of the spilled fuel was mixed with adequate medium, sonicated, agitated and filtered. No cytotoxic effects were detected in RTG-2 cells exposed to the WSF. In an algae growth inhibition test (OECD test guideline 201) the WSF did not affect the growth of Chlorella vulgaris. Furthermore, acute and reproductive toxicity tests (OECD test guideline 202) carried out using Daphnia magna did not indicate any deleterious effect of the WSF. In a bioassay designed in our laboratory, D. magna were fed with algae previously exposed to the fuel, but no toxic effects were detected. However, the WSF was able to induce a dose-dependent increase of ethoxyresorufin-O-deethylase activity in RTG-2 cells, indicating the presence of chemicals that could cause sub-lethal effects to organisms. After chemical analyses it was established that the final total quantity of polyaromatic hydrocarbons dissolved in medium was approximately 70 ng/ml. These low concentrations explain the observed lack of toxicity.
He, Yuxian; Zhao, Jianwei; Zheng, Yu; Weng, Qiyong; Biondi, Antonio; Desneux, Nicolas; Wu, Kongming
2013-01-01
The tobacco whitefly Bemisia tabaci is one of the most devastating pests worldwide. Current management of B. tabaci relies upon the frequent applications of insecticides. In addition to direct mortality by typical acute toxicity (lethal effect), insecticides may also impair various key biological traits of the exposed insects through physiological and behavioral sublethal effects. Identifying and characterizing such effects could be crucial for understanding the global effects of insecticides on the pest and therefore for optimizing its management in the crops. We assessed the effects of sublethal and low-lethal concentrations of four widely used insecticides on the fecundity, honeydew excretion and feeding behavior of B. tabaci adults. The probing activity of the whiteflies feeding on treated cotton seedlings was recorded by an Electrical Penetration Graph (EPG). The results showed that imidacloprid and bifenthrin caused a reduction in phloem feeding even at sublethal concentrations. In addition, the honeydew excretions and fecundity levels of adults feeding on leaf discs treated with these concentrations were significantly lower than the untreated ones. While, sublethal concentrations of chlorpyrifos and carbosulfan did not affect feeding behavior, honeydew excretion and fecundity of the whitefly. We demonstrated an antifeedant effect of the imidacloprid and bifenthrin on B. tabaci, whereas behavioral changes in adults feeding on leaves treated with chlorpyrifos and carbosulfan were more likely caused by the direct effects of the insecticides on the insects' nervous system itself. Our results show that aside from the lethal effect, the sublethal concentration of imidacloprid and bifenthrin impairs the phloem feeding, i.e. the most important feeding trait in a plant protection perspective. Indeed, this antifeedant property would give these insecticides potential to control insect pests indirectly. Therefore, the behavioral effects of sublethal concentrations of imidacloprid and bifenthrin may play an important role in the control of whitefly pests by increasing the toxicity persistence in treated crops. PMID:23494876
Liver Necrosis and Lipid Peroxidation in the Rat as the Result of Paraquat and Diquat Administration
Burk, Raymond F.; Lawrence, Richard A.; Lane, James M.
1980-01-01
Paraquat and diquat facilitate formation of superoxide anion in biological systems, and lipid peroxidation has been postulated to be their mechanism of toxicity. Paraquat has been shown to be more toxic to selenium-deficient mice than to controls, presumably as the result of decreased activity of the selenoenzyme glutathione peroxidase. The present study was designed to measure lipid peroxidation and to assess toxicity in control and selenium-deficient rats given paraquat and diquat. Lipid peroxidation was measured by determining ethane production rates of intact animals; toxicity was assessed by survival and by histological and serum enzyme evidence of liver and kidney necrosis. Paraquat and diquat were both much more toxic to selenium-deficient rats than to control rats. Diquat (19.5 μmol/kg) caused rapid and massive liver and kidney necrosis and very high ethane production rates in selenium-deficient rats. The effect of paraquat (78 μmol/kg) was similar to that of diquat but was not as severe. Acutely lethal doses of paraquat (390 μmol/kg) and diquat (230 μmol/kg) in control rats caused very little ethane production and no evidence of liver necrosis. These findings suggest that paraquat and diquat exert their acute toxicity largely through lipid peroxidation in selenium-deficient rats. Selenium deficiency had no effect on superoxide dismutase activity in erythrocytes or in 105,000 g supernate of liver or kidney. Glutathione peroxidase, which represents the only well-characterized biochemical function of selenium in animals, was dissociated from the protective effect of selenium against diquat-induced lipid peroxidation and toxicity by a time-course study in which selenium-deficient rats were injected with 50 μg of selenium and later given diquat (19.5 μmol/kg). Within 10 h, the selenium injection provided significant protection against diquat-induced lipid peroxidation and mortality even though this treatment resulted in no rise in glutathione peroxidase activity of liver, kidney, lung, or plasma at 10 h. This suggests that a selenium-dependent factor in addition to glutathione peroxidase exists that protects against lipid peroxidation. Images PMID:7364936
A review of environmental impacts of salts from produced waters on aquatic resources
Farag, Aïda M.; Harper, David D.
2014-01-01
Salts are frequently a major constituent of waste waters produced during oil and gas production. These produced waters or brines must be treated and/or disposed and provide a daily challenge for operators and resource managers. Some elements of salts are regulated with water quality criteria established for the protection of aquatic wildlife, e.g. chloride (Cl−), which has an acute standard of 860 mg/L and a chronic standard of 230 mg/L. However, data for establishing such standards has only recently been studied for other components of produced water, such as bicarbonate (HCO3−), which has acute median lethal concentrations (LC50s) ranging from 699 to > 8000 mg/L and effects on chronic toxicity from 430 to 657 mg/L. While Cl− is an ion of considerable importance in multiple geographical regions, knowledge about the effects of hardness (calcium and magnesium) on its toxicity and about mechanisms of toxicity is not well understood. A multiple-approach design that combines studies of both individuals and populations, conducted both in the laboratory and the field, was used to study toxic effects of bicarbonate (as NaHCO3). This approach allowed interpretations about mechanisms related to growth effects at the individual level that could affect populations in the wild. However, additional mechanistic data for HCO3−, related to the interactions of calcium (Ca2 +) precipitation at the microenvironment of the gill would dramatically increase the scientific knowledge base about how NaHCO3 might affect aquatic life. Studies of the effects of mixtures of multiple salts present in produced waters and more chronic effect studies would give a better picture of the overall potential toxicity of these ions. Organic constituents in hydraulic fracturing fluids, flowback waters, etc. are a concern because of their carcinogenic properties and this paper is not meant to minimize the importance of maintaining vigilance with respect to potential organic contamination.
Al-Rofaai, A; Rahman, W A; Sulaiman, S F; Yahaya, Z S
2012-11-23
This study aimed to represent the first report of the ovicidal and larvicidal activity of the methanolic leaf extract of Manihot esculenta (cassava) against eggs and larvae of susceptible and resistant strains of Trichostrongylus colubriformis. As well as, to determine the total tannin compounds, antioxidant activity and toxicity of the extract. The egg hatch test was used to evaluate ovicidal activity against unembryonated eggs, whereas larval feeding inhibition assay and MTT-formazan assay were used to evaluate larvicidal activity against first (L(1)) and infective (L(3)) larvae, respectively. The results showed no significant differences were detected between the sensitivities of susceptible and resistant strains of T. colubriformis to the extract. Eggs, L(1) and L(3) were significantly affected (P<0.001) compared with negative control, and L(1) were more sensitive than the eggs and L(3). The total tannin compounds were investigated using tannin quantification assay and determined by 254.44 TAE/mg. The antioxidant activity was evaluated using the DPPH radical scavenging assay and the median inhibition concentration (IC(50)) was determined by 2.638 mg/ml. Acute oral toxicity at dose of 5,000 mg/kg, and sub-chronic oral toxicity at 500 and 1,000 mg/kg of the extract were observed in male and female Sprague-Dawley (SD) rats. The acute oral toxicity revealed that the median lethal dose (LD(50)) of methanolic extract of cassava leaves on SD rats was greater than 5,000 mg/kg, whereas the sub-chronic oral toxicity did not show observed adverse effects at 500 and 1,000 mg/kg per day for 28 days. In conclusion, the methanolic extract of cassava leaves has direct ovicidal and larvicidal activity against T. colubriformis strains with a safety margin for animals, and it may be potentially utilized as a source of natural antioxidants. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rajkumar, K. S.; Kanipandian, N.; Thirumurugan, R.
2016-01-01
The increasing use of nano based-products induces the potential hazards from their manufacture, transportation, waste disposal and management processes. In this report, we emphasized the acute toxicity of silver nanoparticles (AgNPs) using freshwater fish Labeo rohita as an aquatic animal model. The AgNPs were synthesized using chemical reduction method and the formation of AgNPs was monitored by UV-Visible spectroscopy analysis. The functional groups, crystaline nature and morphological characterizations were carried out by fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) analysis. UV-Vis range was observed at 420 nm and XRD pattern showed that the particles are crystalline nature. HRTEM analysis revealed that the morphology of particles was spherical and size ranges between 50 and 100 nm. This investigation was extended to determine the potential acute toxicity, L. rohita was treated orally with the lethal concentration (LC50) of AgNPs. The antioxidative responses were studied in the three major tissues such as gill, liver and muscle of L. rohita. The results of this investigation showed that increasing the concentration of AgNPs led to bioaccumulation of AgNPs in the major tissues. The haematological parameters showed significant alterations in the treated fish. The histological changes caused by chemically synthesized AgNPs demonstrated the damages in the tissues, primary lamella and blood vessels of L. rohita. The histological study also displayed the formation of vacuolation in liver and muscle when compared with untreated tissues (control) of L. rohita.
Lee, Mu-Jin; Jung, Ho-Kyung; Kim, Min-Suk; Jang, Ji-Hun; Sim, Mi-Ok; Kim, Tea-Mook; Park, Ho; Ahn, Byung-Kwan; Cho, Hyun-Woo; Cho, Jung-Hee
2016-01-01
Dendrobium moniliforme (L.) Sw., an herb of the Orchidaceae family, has long been used in traditional medicine to strengthen bones, nourish the stomach, and promote the production of bodily fluid. Recently, polysaccharides isolated from Dendrobium have been used in functional foods and nutraceutical products. A traditional method to process Dendrobium is to soak fresh stems in an ethanol solution, which is the most important factor to ensure high yields of aqueous-extractable polysaccharides. The present study was carried out to investigate the potential acute toxicity of D. moniliforme aqueous extract (DMAE), by a single oral dose in Sprague-Dawley rats. The test article was orally administered once by gavage to male and female rats at doses of 0, 2,500, and 5,000 mg/kg body weight (n=5 male and female rats for each dose). Throughout the study period, no treatment-related deaths were observed and no adverse effects were noted in clinical signs, body weight, food consumption, serum biochemistry, organ weight, or gross findings at any dose tested. The results show that a single oral administration of DMAE did not induce any toxic effects at a dose below 5,000 mg/kg in rats, and the minimal lethal dose was considered to be over 5,000 mg/kg body weight for both sexes. With respect to cytotoxicity, the cell viability of human embryonic kidney (HEK293) cells was less than 50% when the cells were treated with 10 mg/mL aqueous extract for 24 h. PMID:27729930
Foudoulakis, Manousos; Balaskas, Christos; Csato, Attila; Szentes, Csaba; Arapis, Gerassimos
2013-04-15
We exposed the Japanese quail (Coturnix coturnix japonica) to the organophosphate methamidophos using acute oral test. Mortality and sub-lethal effects were recorded in accordance to internationally accepted protocols. In addition cholinesterases were biochemically estimated in tissues of the quail: brain, liver and plasma. Furthermore, brain, liver and duodenum cryostat sections were processed for cholinesterase histochemistry using various substrates and inhibitors. Mortalities occurred mainly in the first 1-2h following application. Sub-lethal effects, such as ataxia, ruffled feathers, tremor, salivation and reduced or no reaction to external stimuli were observed. Biochemical analysis in the brain, liver and plasma indicates a strong cholinesterase dependent inhibition with respect to mortality and sub-lethal effects of the quail. The histochemical staining also indicated a strong cholinesterase inhibition in the organs examined and the analysis of the stained sections allowed for an estimation and interpretation of the intoxication effects of methamidophos, in combination with tissue morphology visible by Haematoxylin and Eosin staining. We conclude that the use of biochemistry and histochemistry for the biomarker cholinesterase, may constitute a significantly novel approach for understanding the results obtained by the acute oral test employed in order to assess the effects of methamidophos and other chemicals known to inhibit this very important nervous system enzyme. Copyright © 2012 Elsevier B.V. All rights reserved.
Pérez-González, Mariana Z; Gutiérrez-Rebolledo, Gabriel A; Yépez-Mulia, Lilián; Rojas-Tomé, Irma S; Luna-Herrera, Julieta; Jiménez-Arellanes, María A
2017-05-01
Cnidoscolus chayamansa is a medicinal and edible plant known as Chaya, is commonly used as an anti-inflammatory, antiprotozoal, antibacterial agent and as a remedy for respiratory illness, gastrointestinal disorders, and vaginal infections related with the inflammation process. In this paper, we describe the plant's phytochemical analysis and biological activities (antimycobacterial, antibacterial, antiprotozoal, and anti-inflammatory properties) of the CHCl 3 :MeOH (1:1) leaves extract and isolated compounds, as well as the acute and sub-acute toxic effects. Chemical identification of isolated compounds was performed by 1 H- and 13 C NMR spectra data. In vitro antibacterial and antimycobacterial activities were determined by disc diffusion and MABA assays, respectively; antiprotozoal test by means of the sub-culture test. Topical and systemic anti-inflammatory effects were tested by TPA and carrageenan assay on BALB/c mice. Moretenol, moretenyl acetate, kaempferol-3,7-dimethyl ether, and 5-hydroxy-7-3',4'-trimethoxyflavanone were the main compounds isolated. The CHCl 3 :MeOH extract showed antiprotozoal (IC 50 ≤65.29μg/mL), antimycobacterial (MIC≤50μg/mL), and anti-inflammatory activities (ED 50 =1.66mg/ear and 467.73mg/kg), but was inactive against the bacterial strains tested. The LD 50 for extract was >2g/kg. In the sub-acute toxicity test, the extract was administered at 1g/kg for 28days and did not cause lethality or any alteration in hematological and biochemical parameters; in addition, liver, kidney, and spleen histological analysis exhibited no structural changes. Moretenol and moretenyl acetate showed MIC=25μg/mL against Mycobacterium tuberculosis H37Rv and against four monoresistant strains of M. tuberculosis H37Rv. Both compounds exhibited moderate activity against Entamoeba histolytica and Giardia lamblia (IC 50 ≤71.70μg/mL). Kaempferol-3,7-dimethyl ether and 5-hydroxy-7-3',4'-trimethoxy-flavanone were more active than the extract against E. histolytica and G. lamblia, showing IC 50 ≤27.43μg/mL. As topical anti-inflammatory agents, moretenol and kaempferol-3,7-dimethyl ether were the most active compounds inhibiting the edema in 30.52 and 26.67%, respectively. Moretenol and moretenyl acetate showed significant antimycobacterial and antiprotozoal activities; in addition, important antiprotozoal effect was detected with kaempferol-3,7-dimethyl ether and 5-hydroxy-7-3',4'-trimethoxyflavanone. The extract and the terpenoids possess good anti-inflammatory activity. The extract did not produce lethality or adverse effects in acute and sub-acute tests. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Lethal Dietary Toxicities of Environmental Contaminants and Pesticides to Coturnix
Hill, E.F.; Camardese, M.B.
1986-01-01
Five-day subacute dietary toxicity tests of 193 potential environmental contaminants, pesticides, organic solvents, and various adjuvants are presented for young coturnix (Japanese quail, Coturnix japonica Temminck and Schlegel). The report provides the most comprehensive data base available for avian subacute dietary toxicity tests and is primarily intended for use in ranking toxicities by a standard method that has a reasonable degree of environmental relevance. Findings are presented in two parts: Part I is a critique of selected drugs that includes discussion of subacute toxicity in relation to chemical class and structure, pesticide formulation, and age of animals; Part II is a summary of toxicologic findings for each test substance and provides a statistically basis for comparing toxicities. Data presented include the median lethal concentration (LC50), slope of the probit regression curve (dose-response curve), response chronology, and food consumption. We observed that: 1) fewer than 15% of the compounds were classed 'very' or 'highly' toxic (i.e, LC50 < 200 ppm) and all of these were either chlorinated hydrocarbons, organophosphates, or organometallics; 2) subacute toxicity may vary widely among structurally similar chemicals and between different formulations of the same chemical; therefore, conclusions about lethal hazard must be made cautiously until the actual formulation of inset has been tested: 3) inclusion of a general standard in each battery of tests is useful for detection of atypical trials and monitoring population changes but should not be used indiscriminantly for adjusting LC50's for intertest differences unless the chemicals of concern and the standard elicit their toxicities through the same action; 4) although other species have been tested effectively under the subacute protocol, coturnix were ideal for the stated purpose of this research because they are inexpensive, well-adapted to the laboratory environment, and yield good intertest reproducibility of response.
Van Cott, Andrew; Hastings, Charles E; Landsiedel, Robert; Kolle, Susanne; Stinchcombe, Stefan
2018-02-01
In vivo acute systemic testing is a regulatory requirement for agrochemical formulations. GHS specifies an alternative computational approach (GHS additivity formula) for calculating the acute toxicity of mixtures. We collected acute systemic toxicity data from formulations that contained one of several acutely-toxic active ingredients. The resulting acute data set includes 210 formulations tested for oral toxicity, 128 formulations tested for inhalation toxicity and 31 formulations tested for dermal toxicity. The GHS additivity formula was applied to each of these formulations and compared with the experimental in vivo result. In the acute oral assay, the GHS additivity formula misclassified 110 formulations using the GHS classification criteria (48% accuracy) and 119 formulations using the USEPA classification criteria (43% accuracy). With acute inhalation, the GHS additivity formula misclassified 50 formulations using the GHS classification criteria (61% accuracy) and 34 formulations using the USEPA classification criteria (73% accuracy). For acute dermal toxicity, the GHS additivity formula misclassified 16 formulations using the GHS classification criteria (48% accuracy) and 20 formulations using the USEPA classification criteria (36% accuracy). This data indicates the acute systemic toxicity of many formulations is not the sum of the ingredients' toxicity (additivity); but rather, ingredients in a formulation can interact to result in lower or higher toxicity than predicted by the GHS additivity formula. Copyright © 2018 Elsevier Inc. All rights reserved.
Ecotoxicological assessment of glyphosate-based herbicides: Effects on different organisms.
de Brito Rodrigues, Laís; de Oliveira, Rhaul; Abe, Flávia Renata; Brito, Lara Barroso; Moura, Diego Sousa; Valadares, Marize Campos; Grisolia, Cesar Koppe; de Oliveira, Danielle Palma; de Oliveira, Gisele Augusto Rodrigues
2017-07-01
Glyphosate-based herbicides are the most commonly used worldwide because they are effective and relatively nontoxic to nontarget species. Unlimited and uncontrolled use of such pesticides can have serious consequences for human health and ecological balance. The present study evaluated the acute toxicity and genotoxicity of 2 glyphosate-based formulations, Roundup Original (Roundup) and Glyphosate AKB 480 (AKB), on different organisms: cucumber (Cucumis sativus), lettuce (Lactuca sativa), and tomato (Lycopersicon esculentum) seeds, and microcrustacean Artemia salina and zebrafish (Danio rerio) early life stages. For the germination endpoint, only L. esculentum presented significant sensitivity to AKB and L. sativa to Roundup, whereas both formulations significantly inhibited the root growth of all species tested. Both AKB and Roundup induced significant toxicity to A. salina; both are classified as category 3, which indicates a hazard for the aquatic environment, according to criteria of the Globally Harmonized Classification System. However, Roundup was more toxic than AKB, with 48-h median lethal concentration (LC50) values of 14.19 mg/L and 37.53 mg/L, respectively. For the embryo-larval toxicity test, Roundup proved more toxic than AKB for the mortality endpoint (96-h LC50 values of 10.17 mg/L and 27.13 mg/L, respectively), whereas for the hatching parameter, AKB was more toxic than Roundup. No significant genotoxicity to zebrafish larvae was found. We concluded that AKB and Roundup glyphosate-based formulations are phytotoxic and induce toxic effects in nontarget organisms such as A. salina and zebrafish early life stages. Environ Toxicol Chem 2017;36:1755-1763. © 2016 SETAC. © 2016 SETAC.
Schiffer, Stephanie; Liber, Karsten
2017-11-01
Elevated vanadium (V) concentrations in oil sands coke, which is produced and stored on site of some major Athabasca Oil Sands companies, could pose a risk to aquatic ecosystems in northern Alberta, Canada, depending on its future storage and utilization. In the present study, V toxicity was determined in reconstituted Athabasca River water to various freshwater organisms, including 2 midge species (Chironomus dilutus and Chironomus riparius; 4-d and 30-d to 40-d exposures) and 2 freshwater fish species (Oncorhynchus mykiss and Pimephales promelas; 4-d and 28-d exposures) to facilitate estimation of water quality benchmarks. The acute toxicity of V was 52.0 and 63.2 mg/L for C. dilutus and C. riparius, respectively, and 4.0 and 14.8 mg V/L for P. promelas and O. mykiss, respectively. Vanadium exposure significantly impaired adult emergence of C. dilutus and C. riparius at concentrations ≥16.7 (31.6% reduction) and 8.3 (18.0% reduction) mg/L, respectively. Chronic toxicity in fish presented as lethality, with chronic 28-d LC50s of 0.5 and 4.3 mg/L for P. promelas and O. mykiss, respectively. These data were combined with data from the peer-reviewed literature, and separate acute and chronic species sensitivity distributions (SSDs) were constructed. The acute and chronic hazardous concentrations endangering only 5% of species (HC5) were estimated as 0.64 and 0.05 mg V/L, respectively. These new data for V toxicity to aquatic organisms ensure that there are now adequate data available for regulatory agencies to develop appropriate water quality guidelines for use in the Athabasca Oil Sands region and elsewhere. Until then, the HC5 values presented in the present study could serve as interim benchmarks for the protection of aquatic life from exposure to hazardous levels of V in local aquatic environments. Environ Toxicol Chem 2017;36:3034-3044. © 2017 SETAC. © 2017 SETAC.
NASA Astrophysics Data System (ADS)
Dehui, XU; Qingjie, CUI; Yujing, XU; Bingchuan, WANG; Miao, TIAN; Qiaosong, LI; Zhijie, LIU; Dingxin, LIU; Hailan, CHEN; Michael, G. KONG
2018-04-01
Cold atmospheric-pressure plasma is a new technology, widely used in many fields of biomedicine, especially in cancer treatment. Cold plasma can selectively kill a variety of tumor cells, and its biological safety in clinical trials is also very important. In many cases, the patient’s immune level is relatively low, so we first studied the safety assessment of plasma treatment in an immuno-compromised animal model. In this study, we examined the safety of immuno-deficient nude mice by oral lavage treatment of plasma-activated water, and studied the growth status, main organs and blood biochemical indexes. Acute toxicity test results showed that the maximum dose of plasma treatment for 15 min had no lethal effect and other acute toxicity. There were no significant changes in body weight and survival status of mice after 2 min and 4 min of plasma-activated water (PAW) treatment for 2 weeks. After treatment, the major organs, including heart, liver, spleen, lung and kidney, were not significantly changed in organ coefficient and tissue structure. Blood biochemical markers showed that blood neutrophils and mononuclear cells were slightly increased, and the others remained unchanged. Liver function, renal function, electrolytes, glucose metabolism and lipid metabolism were not affected by different doses of PAW treatment. The above results indicate that PAW treatment can be used to treat immuno-deficient nude mice without significant safety problems.
Can we reduce the number of fish in the OECD acute toxicity test?
Rufli, Hans; Springer, Timothy A
2011-04-01
OECD (Organisation for Economic Co-operation and Development) Guideline 203, Fish Acute Toxicity Test, states that the test should be performed using at least five concentrations in a geometric series with a separation factor not exceeding 2.2, with at least seven fish per concentration. However, the efficiency of this design can be questioned, because it often results in only one concentration that causes partial mortality (mortality >0% and <100%). We performed Monte Carlo computer simulations to assess whether more efficient designs could allow reductions in fish use. Simulations indicated that testing with six fish per concentration could yield 50% lethal concentration (LC50) estimates of quality similar to those obtained using seven fish. Experts attending a workshop organized to consider this finding and to identify the best methods for reducing fish use concluded that significant reductions could best be achieved by modifying the test paradigm. They suggested initiating testing using a 96-h fish embryo test instead of juvenile fish to cover the range from the upper threshold concentration (the lowest 50% effective concentration [EC50] in existing algae and daphnia studies) to the highest concentration with no mortality. This would be followed by a confirmatory limit test with juvenile fish at the highest concentration with no mortality or by a full test with juvenile fish, if a point estimate of the LC50 is required. Copyright © 2011 SETAC.
Toxicity Studies on Antiradiation Agents.
1979-03-01
Mice 193-403 WI 2823 Acute Oral and IP Toxicity in Guinea Pigs 193-404 WR 2823 14-Day IV Toxicity in Rats 193-405 WI 2823 Acute IV Toxicity in Dogs ...193-406 W 2823 14-Day Subacute IV Toxicity in Dogs 193-407 WI 2721 28-Day Oral Toxicity in Monkeys 193-408 WI 2529 Acute Oral Toxicity in Mice 193-409... Dogs 193-415 WI 149, 024 Acute IV Toxicity in Monkeys 193-416 WI 149, 024 2-Week IV Toxicity in Dogs 193-417 WI 149, 024 2-Week Toxicity in Monkeys 193
Lidocaine Metabolism and Toxicity: A Laboratory Experiment for Dental Students.
ERIC Educational Resources Information Center
Kusek, J. C.
1980-01-01
A laboratory exercise for dental students is presented using a toxic dose of lidocaine in place of an anesthetic dose of pentobarbital. The use of lidocaine demonstrates its toxic and lethal actions and increases the relevance of the experience for dental students. (Author/MLW)
Gafarov, V V; Gafarova, A V
2011-01-01
To reveal 30 year (1977-2006) trends of myocardial infarction (MI) morbidity, lethality and mortality in population of the West Siberia megapolis (Novosibirsk). WHO programs "Acute Myocardial Infarction Register (AMIR) and MONICA covered 3 districts of Novosibirsk. MI morbidity in 25-64 year old population of Novosibirsk (high-risk population) in Russia is one of the highest in the world. MI morbidity was stable for 30 years excluding in 1988, 1994 and 1998 when it rose and in 2002-2004, 2006 when it lowered. Changes in mortality and lethality resemble changes in morbidity trend excluding 1977-1978 (fall) and 2002-2005 (rise). Prehospital mortality and lethality were much higher than those in hospital. Mortality and lethality in 1988, 1994, 1998 and 2002-2005 increased due to prehospital lethality and mortality, while it decreased in 1977-1978 due to hospital one. Reduction of mortality and lethality in stable MI morbidity shows improvement of medical care for MI patients, increased lethality and mortality in MI morbidity decline reflect deterioration of such care. Changes in behavioral and somatic factors of cardiovascular risk in population of Novosibirsk for 30 years were not observed while psychosocial risk factors gain a significant importance. By indirect indications, MI morbidity, mortality and lethality mark growing social stress in the population. MI mortality is 2-3 times higher than that of alcohol and is a basic factor of mortality increase in the population of Russia. MI morbidity, mortality and lethality are markers of social stress in population.
Blewett, Tamzin A; Wood, Chris M
2015-12-01
Nickel (Ni) is a metal of environmental concern, known to cause toxicity to freshwater organisms by impairing ionoregulation and/or respiratory gas exchange, and by inducing oxidative stress. However, little is known regarding how nickel toxicity is influenced by salinity. In the current study we investigated the salinity-dependence and mechanisms of sub-lethal Ni toxicity in a euryhaline crab (Carcinus maenas). Crabs were acclimated to three experimental salinities--20, 60 and 100% seawater (SW)--and exposed to 3mg/L Ni for 24h or 96 h. Tissues were dissected for analysis of Ni accumulation, gills were taken for oxidative stress analysis (catalase activity and protein carbonyl content), haemolymph ions were analysed for ionoregulatory disturbance, and oxygen consumption was determined in exercised crabs after 96 h of Ni exposure. Total Ni accumulation was strongly dependant on salinity, with crabs from 20% SW displaying the highest tissue Ni burdens after both 24 and 96-h exposures. After 96 h of exposure, the highest accumulation of Ni occurred in the posterior (ionoregulatory) gills at the lowest salinity, 20% SW. Posterior gill 8 exhibited elevated protein carbonyl levels and decreased catalase activity after Ni exposure, but only in 20% SW. Similarly, decreased levels of haemolymph Mg and K and an increased level of Ca were recorded but only in crabs exposed to Ni for 96 h in 20% SW. Oxygen consumption after exercise was also inhibited in crabs exposed to Ni in 20% SW. These data show for the first time the simultaneous presence of all three modes of sub-lethal Ni toxicity in exposed animals, and indicate a strong salinity dependence of sub-lethal Ni toxicity to the euryhaline crab, C. maenas, a pattern that corresponded to tissue Ni accumulation. Copyright © 2015 Elsevier Inc. All rights reserved.
Howard, Marcia D.; Mirajkar, Nikita; Karanth, Subramanya; Pope, Carey N.
2010-01-01
Organophosphorus (OP) pesticides elicit acute toxicity by inhibiting acetylcholinesterase (AChE), the enzyme responsible for inactivating acetylcholine (ACh) at cholinergic synapses. A number of OP toxicants have also been reported to interact directly with muscarinic receptors, in particular the M2 muscarinic subtype. Parasympathetic innervation to the heart primarily regulates cardiac function by activating M2 receptors in the sinus node, atrial-ventricular node and conducting tissues. Thus, OP insecticides can potentially influence cardiac function in a receptor–mediated manner indirectly by inhibiting acetylcholinesterase and directly by binding to muscarinic M2 receptors. Young animals are generally more sensitive than adults to the acute toxicity of OP insecticides and age related differences in potency of direct binding to muscarinic receptors by some OP toxicants have been reported. We thus compared the effects of the common OP insecticide chlorpyrifos (CPF) on functional signs of toxicity and cardiac ChE activity and muscarinic receptor binding in neonatal and adult rats. Dosages were based on acute lethality (i.e., 0.5 and 1 × LD10: neonates, 7.5 and 15 mg/kg; adults, 68 and 136 mg/kg). Dose- and time-related changes in body weight and cholinergic signs of toxicity (involuntary movements) were noted in both age groups. With 1 × LD10, relatively similar maximal reductions in ChE activity (95%) and muscarinic receptor binding (≈ 30%) were noted, but receptor binding reductions appeared earlier in adults and were more prolonged in neonates. In vitro inhibition studies indicated that ChE in neonatal tissues was markedly more sensitive to inhibition by the active metabolite of chlorpyrifos (i.e., chlorpyrifos oxon, CPO) than enzyme in adult tissues (IC50 values: neonates, 17 nM; adults, 200 nM). Chelation of free calcium with EDTA had relatively little effect on in vitro cholinesterase inhibition, suggesting that differential A-esterase activity was not responsible for the age-related difference in cholinesterase sensitivity between age groups. Pre-incubation of neonatal and adult tissues with selective inhibitors of AChE and butyrylcholinesterase (BChE) indicated that a majority (82–90%) of ChE activity in the heart of both neonates and adults was BChE. The rapid onset (by 4 hours after dosing) of changes in muscarinic receptor binding in adult heart may be a reflection of the more potent direct binding to muscarinic receptors by chlorpyrifos oxon previously reported in adult tissues. The results suggest that ChE activity (primarily BChE) in neonatal heart may be inherently more sensitive to inhibition by some anticholinesterases and that toxicologically significant binding to muscarinic receptors may be possible with acute chlorpyrifos intoxication, potentially contributing to age-related differences in sensitivity. PMID:17644233
An index of fatal toxicity for drugs of misuse.
King, Leslie A; Corkery, John M
2010-03-01
To determine the lethal toxicity of five commonly-used illicit substances by relating the number of associated deaths to their availability. An index of toxicity was calculated for each of five drugs [heroin, cocaine/crack, ecstasy (MDMA), amphetamine and cannabis] as the ratio of the number of deaths associated with that substance to its availability in the period 2003-2007. Three separate proxy measures of availability were used (number of users as determined by household surveys, number of seizures by law enforcement agencies and estimates of the market size). All data are related to England and Wales only. There was a broad correlation between all three denominators of availability. Not unexpectedly, heroin and cannabis showed, respectively, the highest and lowest toxicities. The index of fatal toxicity of MDMA was close to that of amphetamine and cocaine/crack. There was a rank correlation between this index and other measures of lethal toxicity based on safety ratios. These results are contrary to widely-held public views of the relative fatal toxicity of MDMA. Copyright 2010 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pixberg, Caroline; Koch, Raphael; Eich, Hans Theodor, E-mail: Hans.Eich@ukmuenster.de
Purpose: In the context of oncologic therapy for children, radiation therapy is frequently indicated. This study identified the frequency of and reasons for the development of high-grade acute toxicity and possible sequelae. Materials and Methods: Irradiated children have been prospectively documented since 2001 in the Registry for the Evaluation of Side Effects After Radiation in Childhood and Adolescence (RiSK) database in Germany and since 2008 in the registry for radiation therapy toxicity (RADTOX) in Sweden. Data were collected using standardized, published forms. Toxicity classification was based on Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer criteria. Results: Asmore » of June 2013, 1500 children have been recruited into the RiSK database and 485 into the RADTOX registry leading to an analysis population of 1359 patients (age range 0-18). A total of 18.9% (n=257) of all investigated patients developed high-grade acute toxicity (grades 3/4). High-grade toxicity of the bone marrow was documented for 63.8% (n=201) of those patients, oral mucositis for 7.6% (n=24), and dermatitis for 7.6% (n=24). Patients with high-grade acute toxicity received concomitant chemotherapy more frequently (56%) than patients with no or lower acute toxicity (31.5%). In multivariate analyses, concomitant chemotherapy, diagnosis of Ewing sarcoma, and total radiation dose showed a statistically noticeable effect (P≤.05) on acute toxicity, whereas age, concomitant chemotherapy, Hodgkin lymphoma, Ewing sarcoma, total radiation dose, and acute toxicity influenced the time until maximal late toxicity. Conclusions: Generally, high-grade acute toxicity after irradiation in children and adolescence occurs in a moderate proportion of patients (18.9%). As anticipated, the probability of acute toxicity appeared to depend on the prescribed dose as well as concomitant chemotherapy. The occurrence of chronic toxicity correlates with the prior acute toxicity grade. Age seems to influence the time until maximal late toxicity but not the development of acute toxicity.« less
O'Donnell, John C; McDonough, John H; Shih, Tsung-Ming
2011-12-01
Organophosphorus nerve agents such as sarin (GB) and VX irreversibly inhibit acetylcholinesterase, causing a buildup of acetylcholine (ACh) in synapses and neuromuscular junctions, which leads to excess bronchial secretions, convulsions, seizures, coma, and death. Understanding the unique toxic characteristics of different nerve agents is vital in the effort to develop broad spectrum medical countermeasures. To this end, we employed a repeated measure multivariate design with striatal microdialysis collection and high-performance liquid chromatography analysis to measure changes in concentrations of several neurotransmitters (ACh, glutamate, aspartate, GABA) in the same samples during acute exposure to GB or VX in freely moving guinea pigs. Concurrent with microdialysis collection, we used cortical electrodes to monitor brain seizure activity. This robust double multivariate design provides greater fidelity when comparing data while also reducing the required number of subjects. No correlation between nerve agents' propensity for causing seizure and seizure-related lethality was observed. The GB seizure group experienced more rapid and severe cholinergic toxicity and lethality than that of the VX seizure group. Seizures generated from GB and VX exposure resulted in further elevation of ACh level and then a gradual return to baseline. Glutamate levels increased in the GB, but not in the VX, seizure group. There were no consistent changes in either aspartate or GABA as a result of either nerve agent. These observations reinforce findings with other nerve agents that seizure activity per se contributes to the elevated levels of brain ACh observed after nerve agent exposure.
Tan, Christina Jiun-Yu; Sklar, Grant E
2017-12-01
Paracetamol is the most common pharmaceutical agent implicated in toxic exposure in Singapore. This study aimed to describe the characteristics of paracetamol overdose in the adult population managed at a tertiary healthcare facility in Singapore. Medical records of adult patients hospitalised with a diagnosis of paracetamol overdose at National University Hospital, Singapore, over a three-year period from January 2011 to December 2013 were retrospectively reviewed. A total of 177 patients had paracetamol overdose. The median age was 25 years, with a significant female predominance (71.2%). Intentional ingestion accounted for the majority (76.8%) of cases. The median dose of paracetamol ingested was 10 (interquartile range 8-15) g. Among patients who reported ingesting more than 10 g, 46.5% perceived the overdose as non-lethal. N-acetylcysteine was administered in 76.3% of patients, among whom 24.4% experienced an anaphylactoid reaction. Of the 10 (5.6%) patients who had severe hepatotoxicity, 2 (1.1%) developed acute liver failure. Most patients had resolving transaminases at discharge and none required liver transplantation. The median length of hospitalisation was three days. There were no fatalities. Paracetamol overdose occurred predominantly in young adults with intentional ingestion, suggesting that preventive measures targeted at promoting public awareness may not suffice. However, the perceived lack of lethality by many patients who ingested potentially toxic amounts of paracetamol reflects a certain knowledge gap. Healthcare providers should proactively educate consumers on the proper use of paracetamol and the consequences of its overdose. Copyright: © Singapore Medical Association
Ruiz de Arcaute, C; Soloneski, S; Larramendy, M L
2016-06-01
Acute toxicity and genotoxicity of the 54.8% 2,4-D-based commercial herbicide DMA® were assayed on Cnesterodon decemmaculatus (Pisces, Poeciliidae). Whereas lethal effect was used as the end point for mortality, frequency of micronuclei (MNs), other nuclear abnormalities and primary DNA damage evaluated by the single cell gel electrophoresis (SCGE) assay were employed as end points for genotoxicity. Mortality studies demonstrated an LC50 96 h value of 1008 mg/L (range, 929-1070) of 2,4-D. Behavioral changes, e.g., gathering at the bottom of the aquarium, slowness in motion, slow reaction and abnormal swimming were observed. Exposure to 2,4-D within the 252-756 mg/L range increased the frequency of MNs in fish exposed for both 48 and 96 h. Whereas blebbed nuclei were induced in treatments lasting for 48 and 96 h, notched nuclei were only induced in fish exposed for 96 h. Regardless of both concentration and exposure time, 2,4-D did not induce lobed nuclei and binucleated erythrocytes. In addition, we found that exposure to 2,4-D within the 252-756 mg/L range increased the genetic damage index in treatments lasting for either 48 and 96 h. The results represent the first experimental evidence of the lethal and several sublethal effects, including behavioral alterations and two genotoxic properties namely the induction of MNs and primary DNA strand breaks, exerted by 2,4-D on an endemic organism as C. decemmaculatus. Copyright © 2016 Elsevier Inc. All rights reserved.
Zheng, Jian; Lin, Tao; Chen, Wei
2018-01-01
N-nitrosodiethylamine (NDEA) is one of the emerging nitrogenous disinfection byproducts with probable cytotoxicity, genotoxicity, and carcinogenesis. Its potential toxicological effects have received extensive attention but remain to be poorly understood. In this study, changes in NDEA precursors in drinking water treatment process were studied using the trial of its formation potential (FP), and the toxicity induced by NDEA to adult zebrafish was investigated. NDEA FP in the raw water of Taihu Lake ranged from 46.9 to 68.3 ng/L. The NDEA precursors were removed effectively by O 3 /BAC process. Hydrophilic fraction and low-molecular-weight fraction (<1 kDa) had the highest NDEA FP. The toxicity results demonstrated that the acute lethal concentration of NDEA causing 50% mortality in 96 h (96-h LC50) was 210.4 mg/L, and NDEA was more likely to be accumulated in kidney, followed by liver and gill. NDEA induced oxidative stress and antioxidant defense to zebrafish metabolism system at concentrations over 5 μg/L. After a 42-day exposure, a significant DNA damage was observed in zebrafish liver cells at NDEA concentrations beyond 500 μg/L. This study investigated NDEA properties in both engineering prospective and toxicity evaluation, thus providing comprehensive information on its control in drinking water treatment process and its toxicity effect on zebrafish as a model animal. Copyright © 2017 Elsevier Ltd. All rights reserved.
Saha, Partha Pratim; Bhowmik, Tanmoy; Dasgupta, Anjan Kumar; Gomes, Antony
2014-08-01
Nanoscience and Nanotechnology have found their way in the fields of pharmacology and medicine. The conjugation of drug to nanoparticles combines the properties of both. In this study, gold nanoparticle (GNP) was conjugated with NKCT1, a cytotoxic protein toxin from Indian cobra venom for evaluation of anti-arthritic activity and toxicity in experimental animal models. GNP conjugated NKCT1 (GNP-NKCT1) synthesized by NaBH4 reduction method was stable at room temperature (25 +/- 2 degrees C), pH 7.2. Hydrodynamic size of GNP-NKCT1 was 68-122 nm. Arthritis was developed by Freund's complete adjuvant induction in male albino rats and treatment was done with NKCT1/GNP-NKCT1/standard drug. The paw/ankle swelling, urinary markers, serum markers and cytokines were changed significantly in arthritic control rats which were restored after GNP-NKCT1 treatment. Acute toxicity study revealed that GNP conjugation increased the minimum lethal dose value of NKCT1 and partially reduced the NKCT1 induced increase of the serum biochemical tissue injury markers. Histopathological study showed partial restoration of toxic effect in kidney tissue after GNP conjugation. Normal lymphocyte count in culture was in the order of GNP-NKCT1 > NKCT1 > Indomethacine treatment. The present study confirmed that GNP conjugation increased the antiarthritic activity and decreased toxicity profile of NKCT1.
Yahyapour, Rasoul; Shabeeb, Dheyauldeen; Cheki, Mohsen; Musa, Ahmed Eleojo; Farhood, Bagher; Rezaeyan, Abolhasan; Amini, Peyman; Fallah, Hengameh; Najafi, Masoud
2018-06-19
Nowadays, ionizing radiations are used for various medical and terroristic aims. These purposes involve exposure to ionizing radiations. Hence, people are at risk for acute or late effects. Annually, millions of cancer patients undergo radiotherapy during their course of treatment. Also, some radiological or nuclear events in recent years pose a threat to people, hence the need for radiation mitigation strategies. Amifostine, the first FDA approved radioprotector, has shown some toxicities that limit its usage and efficiency. Due to these side effects, scientists have researched for other agents with less toxicity for better radioprotection and possible mitigation of the lethal effects of ionizing radiations after an accidental exposure. Flavonoids have shown promising results for radioprotection and can be administered in higher doses with less toxicity. Studies for mitigation of ionizing radiation-induced toxicities has concentrated on natural antioxidants. Detoxification of free radicals, management of inflammatory responses and attenuation of apoptosis signaling pathways in radiosensitive organs are the main mechanisms for radiation protection and mitigation with flavonoids and natural antioxidants. However, several studies have proposed that a combination in the form of some antioxidants may alleviate radiation toxicities more effectively in comparison to a single form of antioxidants. In this review, we focus on recent findings about natural radioprotectors and mitigators which are clinically applicable for radiotherapy patients, as well as injured people in possible radiation accidents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Handa, Takayuki; Hirai, Toshiro; Izumi, Natsumi; Eto, Shun-ichi; Tsunoda, Shin-ichi; Nagano, Kazuya; Higashisaka, Kazuma; Yoshioka, Yasuo; Tsutsumi, Yasuo
2017-03-01
Many of the beneficial and toxic biological effects of nanoparticles have been shown to have a negative correlation with particle size. However, few studies have demonstrated biological effects that only occur at specific nanoparticle sizes. Further elucidation of the size-specific biological effects of nanoparticles may reveal not only unknown toxicities, but also novel benefits of nanoparticles. We used surface-unmodified silica particles with a wide range of diameters and narrow size intervals between the diameters (10, 30, 50, 70, 100, 300, and 1000 nm) to investigate the relationship between particle size and acute toxicity after intravenous administration in mice. Negative correlations between particle size and thrombocytopenia, liver damage, and lethal toxicity were observed. However, a specific size-effect was observed for the severity of hypothermia, where silica nanoparticles with a diameter of 50 nm induced the most severe hypothermia. Further investigation revealed that this hypothermia was mediated not by histamine, but by platelet-activating factor, and it was independent of the thrombocytopenia and the liver damage. In addition, macrophages/Kupffer cells and platelets, but not neutrophils, play a critical role in the hypothermia. The present results reveal that silica nanoparticles have particle size-specific toxicity in mice, suggesting that other types of nanoparticles may also have biological effects that only manifest at specific particle sizes. Further study of the size-specific effects of nanoparticles is essential for safer and more effective nanomedicines.
Zhang, Zhenqin; Zhu, Zhenzhu; Luo, Cheng; Zhu, Chengcheng; Zhang, Changli; Guo, Zijian; Wang, Xiaoyong
2018-03-19
Osteosarcoma (OS) is the most common primary pediatric bone tumor lethal to children and adolescents. Chemotherapeutic agents such as cisplatin are not effective for OS because of their poor accessibility to this cancer and severe systemic toxicity. In this study, a lipophilic platinum(II) complex bearing a bisphosphonate bone-targeting moiety, cis-[PtL(NH 3 ) 2 Cl]NO 3 {BPP; L = tetraethyl [2-(pyridin-2-yl)ethane-1,1-diyl]bisphosphonate}, was prepared and characterized by NMR, electrospray ionization mass spectrometry, and single-crystal X-ray crystallography. The cytotoxicity of BPP toward OS cell lines U2OS and MG-63 was tested by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. BPP exhibits moderate inhibition against U2OS cells through a mechanism involving both DNA binding and a mevalonate pathway. The acute toxicity of BPP to mice is 7-fold lower than that of cisplatin. The relative low systemic toxicity may result from the steric hindrance of the ligand, which blocks BPP approaching the bases of DNA. The results suggest that incorporating bisphosphonates into a platinum complex not only enhances its bone-targeting property but also minimizes its reactivity toward DNA and thereby lowers the systematic toxicity of the complex. The diminished cytotoxicity of BPP could be compensated for by increasing the therapeutic dose with marginal harm. This strategy provides a new possibility for overcoming the ineffectiveness and systemic toxicity of platinum drugs in the treatment of OS.
Comparative analysis of water quality and toxicity assessment methods for urban highway runoff.
Chen, Rui-Hong; Li, Fei-Peng; Zhang, Hai-Ping; Jiang, Yue; Mao, Ling-Chen; Wu, Ling-Ling; Chen, Ling
2016-05-15
In this study, comparative analyses of highway runoff samples obtained from seventeen storm events have been conducted between the traditional water quality assessment method and biotoxicity tests, using zebrafish (Danio rerio) embryos and luminous bacteria (Vibrio qinghaiensis. Q67) to provide useful information for ecotoxicity assessment of urban highway runoff. The study results showed that the Nemerow pollution index based on US EPA recommended Criteria Maximum Concentrations (CMC) (as traditional water quality assessment method) had no significant correlation with luminous bacteria acute toxicity test results, while significant correlation has been observed with two indicators of 72 hpf (hours post fertilization) hour hatching rate and 96 hpf abnormality rate from the toxicity test with zebrafish embryos. It is therefore concluded that the level of mixture toxicity of highway runoff could not be adequately measured by the Nemerow assessment method. Moreover, the key pollutants identified from the water quality assessment and from the biotoxicity evaluation were not consistent. For biotoxic effect evaluation of highway runoff, three indexes were found to be sensitive, i.e. 24 hpf lethality and 96 hpf abnormality of zebrafish embryos, as well as the inhibition rate for luminous bacteria Q67. It is therefore recommended that these indexes could be incorporated into the traditional Nemerow method to provide a more reasonable evaluation of the highway runoff quality and ecotoxicity. Copyright © 2016 Elsevier B.V. All rights reserved.
Victor, Kouamé Kouamé; Séka, Yapoga; Norbert, Kouadio Kouakou; Sanogo, Tidou Abiba; Celestin, Atsé Boua
2016-10-02
This paper elucidates the phytoremediation potential of water hyacinth and water lettuce on the reduction of wastewater toxicity. Acute toxicity tests were performed in an aquarium with a population of Sarotherodon melanotheron, contaminated by different concentrations of wastewaters before and after phytoremediation with Eichhornia crassipes and Pistia stratiotes. Lethal concentrations (LC50) of the fish's population obtained during 24 hours of exposures were determined. COD, BOD, ammonium, TKN and PO4(3-) concentrations in wastewaters were of 1850.29, 973.33, 38.34, 61.49 and 39.23 mg L(-1), respectively, for each plant. Phytoremediation reduced 58.87% of ammonium content, 50.04% of PO4(3-), 82.45% of COD and 84.91% of BOD. After 15 days of the experiment, metal contents in treated wastewaters decreased from 6.65 to 97.56% for water hyacinth and 3.51 to 93.51% for water lettuce tanks. Toxicity tests showed that the mortality of fish exposed increased with increase in concentration of pollutants in wastewaters and the time of exposure. Therefore, the highest value of LC50 was recorded for fish subjected to 3 hours of exposure (16.37%). The lowest rate was obtained after an exposure of 20 to 24 hours (5.85%). After phytoremediation, the effluents purified by Eichhornia crassipes can maintain the fish life beyond 24 hours of exposure.