Science.gov

Sample records for acute leukemia chronic

  1. Allogeneic Transplantation for Patients With Acute Leukemia or Chronic Myelogenous Leukemia (CML)

    ClinicalTrials.gov

    2016-06-14

    Leukemia, Lymphocytic, Acute; Leukemia; Leukemia Acute Promyelocytic Leukemia (APL); Leukemia Acute Lymphoid Leukemia (ALL); Leukemia Chronic Myelogenous Leukemia (CML); Leukemia Acute Myeloid Leukemia (AML); Leukemia Chronic Lymphocytic Leukemia (CLL)

  2. Nilotinib and Imatinib Mesylate After Donor Stem Cell Transplant in Treating Patients With Acute Lymphoblastic Leukemia or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2014-12-09

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Chronic Phase Chronic Myelogenous Leukemia; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Childhood Precursor Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Relapsing Chronic Myelogenous Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  3. BMS-214662 in Treating Patients With Acute Leukemia, Myelodysplastic Syndrome, or Chronic Myeloid Leukemia

    ClinicalTrials.gov

    2013-01-22

    Adult Acute Promyelocytic Leukemia (M3); Blastic Phase Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia

  4. Flavopiridol and Vorinostat in Treating Patients With Relapsed or Refractory Acute Leukemia or Chronic Myelogenous Leukemia or Refractory Anemia

    ClinicalTrials.gov

    2013-04-01

    Blastic Phase Chronic Myelogenous Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Relapsing Chronic Myelogenous Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  5. Tanespimycin and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Chronic Myelogenous Leukemia, Chronic Myelomonocytic Leukemia, or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2013-09-27

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  6. SB-715992 in Treating Patients With Acute Leukemia, Chronic Myelogenous Leukemia, or Advanced Myelodysplastic Syndromes

    ClinicalTrials.gov

    2013-01-10

    Acute Undifferentiated Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  7. MS-275 and Azacitidine in Treating Patients With Myelodysplastic Syndromes, Chronic Myelomonocytic Leukemia, or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-20

    Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndrome; Leukemia; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  8. Rebeccamycin Analog in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Myelodysplastic Syndrome, Acute Lymphoblastic Leukemia, or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2013-01-22

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  9. Vaccine Therapy Plus Immune Adjuvant in Treating Patients With Chronic Myeloid Leukemia, Acute Myeloid Leukemia, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2013-01-04

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Myeloid Leukemia in Remission; Chronic Phase Chronic Myelogenous Leukemia; Previously Treated Myelodysplastic Syndromes; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia

  10. CCI-779 in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Myelodysplastic Syndromes, or Chronic Myelogenous Leukemia in Blastic Phase

    ClinicalTrials.gov

    2013-01-22

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Myelodysplastic Syndromes

  11. Biological Therapy in Treating Patients With Advanced Myelodysplastic Syndrome, Acute or Chronic Myeloid Leukemia, or Acute Lymphoblastic Leukemia Who Are Undergoing Stem Cell Transplantation

    ClinicalTrials.gov

    2013-07-03

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; Essential Thrombocythemia; Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  12. Nilotinib and Combination Chemotherapy in Treating Patients With Newly Diagnosed Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia or Blastic Phase Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2015-10-29

    B-cell Adult Acute Lymphoblastic Leukemia; Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia

  13. Fludarabine Phosphate and Total-Body Irradiation Followed by Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Acute Lymphoblastic Leukemia or Chronic Myelogenous Leukemia That Has Responded to Treatment With Imatinib Mesylate, Dasatinib, or Nilotinib

    ClinicalTrials.gov

    2016-07-18

    Adult Acute Lymphoblastic Leukemia in Remission; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Chronic Phase Chronic Myelogenous Leukemia; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Childhood Precursor Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Relapsing Chronic Myelogenous Leukemia

  14. Monoclonal Antibody Therapy in Treating Patients With Chronic Lymphocytic Leukemia, Lymphocytic Lymphoma, Acute Lymphoblastic Leukemia, or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-06-03

    Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Splenic Marginal Zone Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma

  15. Sorafenib in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2013-01-08

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia

  16. GTI-2040 in Treating Patients With Relapsed, Refractory, or High-Risk Acute Leukemia, High-Grade Myelodysplastic Syndromes, or Refractory or Blastic Phase Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2015-12-03

    Acute Undifferentiated Leukemia; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  17. Donor Umbilical Cord Blood Transplant With or Without Ex-vivo Expanded Cord Blood Progenitor Cells in Treating Patients With Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Chronic Myelogenous Leukemia, or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2016-08-10

    Acute Biphenotypic Leukemia; Acute Lymphoblastic Leukemia in Remission; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia in Remission; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Mixed Phenotype Acute Leukemia; Myelodysplastic Syndrome; Pancytopenia; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Secondary Acute Myeloid Leukemia

  18. Azacitidine With or Without Entinostat in Treating Patients With Myelodysplastic Syndromes, Chronic Myelomonocytic Leukemia, or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-03-16

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  19. Tipifarnib and Bortezomib in Treating Patients With Acute Leukemia or Chronic Myelogenous Leukemia in Blast Phase

    ClinicalTrials.gov

    2015-04-14

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Blastic Phase; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Disease; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  20. BCL11A expression in acute phase chronic myeloid leukemia.

    PubMed

    Yin, Jiawei; Zhang, Fan; Tao, Huiquan; Ma, Xiao; Su, Guangsong; Xie, Xiaoli; Xu, Zhongjuan; Zheng, Yanwen; Liu, Hong; He, Chao; Mao, Zhengwei Jenny; Wang, Zhiwei; Chang, Weirong; Gale, Robert Peter; Wu, Depei; Yin, Bin

    2016-08-01

    Chronic myeloid leukemia (CML) has chronic and acute phases. In chronic phase myeloid differentiation is preserved whereas in acute phase myeloid differentiation is blocked. Acute phase CML resembles acute myeloid leukemia (AML). Chronic phase CML is caused by BCR-ABL1. What additional mutation(s) cause transition to acute phase is unknown and may differ in different persons with CML. BCL11A encodes a transcription factor and is aberrantly-expressed in several haematological and solid neoplasms. We analyzed BCL11A mRNA levels in subjects with chronic and acute phase CML. BCL11A transcript levels were increased in subjects with CML in acute phase compared with those in normals and in subjects in chronic phase including some subjects studied in both phases. BCL11A mRNA levels were correlated with percent bone marrow blasts and significantly higher in lymphoid versus myeloid blast crisis. Differentiation of K562 with butyric acid, a CML cell line, decreased BCL11A mRNA levels. Cytology and flow cytometry analyses showed that ectopic expression of BCL11A in K562 cells blocked differentiation. These data suggest BCL11A may operate in transformation of CML from chronic to acute phase in some persons. PMID:27285855

  1. [Leukemia research in Germany: the Competence Network Acute and Chronic Leukemias].

    PubMed

    Kossak-Roth, Ute; Saußele, Susanne; Aul, Carlo; Büchner, Thomas; Döhner, Hartmut; Dugas, Martin; Ehninger, Gerhard; Ganser, Arnold; Giagounidis, Aristoteles; Gökbuget, Nicola; Griesshammer, Martin; Hasford, Jörg; Heuser, Michael; Hiddemann, Wolfgang; Hochhaus, Andreas; Hoelzer, Dieter; Niederwieser, Dietger; Reiter, Andreas; Röllig, Christoph; Hehlmann, Rüdiger

    2016-04-01

    The Competence Network "Acute and Chronic Leukemias" was founded in 1997 by the consolidation of the leading leukemia study groups in Germany. Key results are the development of new trials and cooperative studies, the setup of patient registries and biobanking facilities, as well as the improvement of study infrastructure. In 2003, the concept of the competence network contributed to the foundation of the European LeukemiaNet (ELN). Synergy with the ELN resulted in cooperation on a European and international level, standardization of diagnostics and treatment, and recommendations for each leukemia and interdisciplinary specialty. The ultimate goal of the network is the cure of leukemia through cooperative research. PMID:26979719

  2. 7-Hydroxystaurosporine and Perifosine in Treating Patients With Relapsed or Refractory Acute Leukemia, Chronic Myelogenous Leukemia or High Risk Myelodysplastic Syndromes

    ClinicalTrials.gov

    2013-09-27

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; Myelodysplastic/Myeloproliferative Neoplasms; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  3. Acute pediatric leg compartment syndrome in chronic myeloid leukemia.

    PubMed

    Cohen, Eric; Truntzer, Jeremy; Trunzter, Jeremy; Klinge, Steve; Schwartz, Kevin; Schiller, Jonathan

    2014-11-01

    Acute compartment syndrome is an orthopedic surgical emergency and may result in devastating complications in the setting of delayed or missed diagnosis. Compartment syndrome has a variety of causes, including posttraumatic or postoperative swelling, external compression, burns, bleeding disorders, and ischemia-reperfusion injury. Rare cases of pediatric acute compartment syndrome in the setting of acute myeloid leukemia and, even less commonly, chronic myeloid leukemia have been reported. The authors report the first known case of pediatric acute compartment syndrome in a patient without a previously known diagnosis of chronic myeloid leukemia. On initial examination, an 11-year-old boy presented with a 2-week history of progressive left calf pain and swelling after playing soccer. Magnetic resonance imaging scan showed a hematoma in the left superficial posterior compartment. The patient had unrelenting pain, intermittent lateral foot parethesias, and inability to bear weight. Subsequently, he was diagnosed with acute compartment syndrome and underwent fasciotomy and evacuation of a hematoma. Laboratory results showed an abnormal white blood cell count of 440×10(9)/L (normal, 4.4-11×10(9)) and international normalized ratio of 1.3 (normal, 0.8-1.2). Further testing included the BCR-ABL1 fusion gene located on the Philadelphia chromosome, leading to a diagnosis of chronic myeloid leukemia. Monotherapy with imatinib mesylate (Gleevec) was initiated. This report adds another unique case to the growing literature on compartment syndrome in the pediatric population and reinforces the need to consider compartment syndrome, even in unlikely clinical scenarios. PMID:25361367

  4. Decitabine and Valproic Acid in Treating Patients With Refractory or Relapsed Acute Myeloid Leukemia or Previously Treated Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2013-09-27

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Untreated Adult Acute Myeloid Leukemia

  5. Philadelphia Chromosome-positive Acute Lymphoblastic Leukemia or Chronic Myeloid Leukemia in Lymphoid Blast Crisis.

    PubMed

    Kolenova, Alexandra; Maloney, Kelly W; Hunger, Stephen P

    2016-08-01

    The clinical characteristics of chronic myeloid leukemia (CML) in lymphoid blast crisis (BC) can resemble those of Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph ALL). Because of this, there can be concern as to whether a patient with newly diagnosed Ph leukemia has Ph ALL or CML in lymphoid BC. This distinction has significant potential therapeutic implications because most children with Ph ALL are now treated with chemotherapy plus a tyrosine kinase inhibitor, whereas allogeneic stem cell transplant is usually recommended for any patient with CML that presents in or later develops BC. PMID:27164534

  6. Phase I Dose-Escalation Trial of Clofarabine Followed by Escalating Doses of Fractionated Cyclophosphamide in Children With Relapsed or Refractory Acute Leukemias

    ClinicalTrials.gov

    2010-09-21

    Myelodysplastic Syndrome; Acute Myeloid Leukemia; Myeloproliferative Disorders; Acute Lymphocytic Leukemia; Acute Promyelocytic Leukemia; Acute Leukemia; Chronic Myelogenous Leukemia; Myelofibrosis; Chronic Myelomonocytic Leukemia; Juvenile Myelomonocytic Leukemia

  7. Dasatinib in Treating Young Patients With Recurrent or Refractory Solid Tumors or Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia or Chronic Myelogenous Leukemia That Did Not Respond to Imatinib Mesylate

    ClinicalTrials.gov

    2013-02-04

    Accelerated Phase Chronic Myelogenous Leukemia; Blastic Phase Chronic Myelogenous Leukemia; Childhood Chronic Myelogenous Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Meningeal Chronic Myelogenous Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Relapsing Chronic Myelogenous Leukemia; Unspecified Childhood Solid Tumor, Protocol Specific

  8. Targeted Therapy in Treating Patients With Relapsed or Refractory Acute Lymphoblastic Leukemia or Acute Myelogenous Leukemia

    ClinicalTrials.gov

    2016-07-28

    Chronic Myelomonocytic Leukemia; Myelodysplastic Syndrome; Recurrent Acute Myeloid Leukemia With Myelodysplasia-Related Changes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Adult Acute Lymphoblastic Leukemia

  9. Vorinostat and Decitabine in Treating Patients With Advanced Solid Tumors or Relapsed or Refractory Non-Hodgkin's Lymphoma, Acute Myeloid Leukemia, Acute Lymphocytic Leukemia, or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2014-08-26

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Secondary Acute Myeloid Leukemia; Splenic Marginal Zone Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma

  10. Laboratory-Treated T Cells in Treating Patients With High-Risk Relapsed Acute Myeloid Leukemia, Myelodysplastic Syndrome, or Chronic Myelogenous Leukemia Previously Treated With Donor Stem Cell Transplant

    ClinicalTrials.gov

    2016-08-08

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Myelodysplastic Syndrome; Childhood Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Secondary Acute Myeloid Leukemia; Therapy-Related Acute Myeloid Leukemia

  11. Chronic myelogenous leukemia (CML)

    MedlinePlus

    CML; Chronic myeloid leukemia; Chronic granulocytic leukemia; Leukemia - chronic granulocytic ... nuclear disaster. It takes many years to develop leukemia from radiation exposure. Most people treated for cancer ...

  12. Acute myelogenous leukemia (AML) - children

    MedlinePlus

    Acute myelogenous leukemia - children; AML; Acute myeloid leukemia - children; Acute granulocytic leukemia - children; Acute myeloblastic leukemia - children; Acute non-lymphocytic leukemia (ANLL) - children

  13. Sorafenib in Treating Patients With Refractory or Relapsed Acute Leukemia, Myelodysplastic Syndromes, or Blastic Phase Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2015-04-27

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Blastic Phase; de Novo Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome

  14. Laboratory Treated T Cells in Treating Patients With Relapsed or Refractory Chronic Lymphocytic Leukemia, Non-Hodgkin Lymphoma, or Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-08-16

    Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Chronic Lymphocytic Leukemia; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Non-Hodgkin Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Diffuse Large B-Cell Lymphoma; Refractory Mantle Cell Lymphoma; Refractory Non-Hodgkin Lymphoma; Refractory Small Lymphocytic Lymphoma

  15. Drugs under preclinical and clinical study for treatment of acute and chronic lymphoblastic leukemia

    PubMed Central

    Jacob, Joe Antony; Salmani, Jumah Masoud Mohammad; Chen, Baoan

    2016-01-01

    Targeted therapy has modernized the treatment of both chronic and acute lymphoblastic leukemia. The introduction of monoclonal antibodies and combinational drugs has increased the survival rate of patients. Preclinical studies with various agents have resulted in positive outputs with Phase III trial drugs and monoclonal antibodies entering clinical trials. Most of the monoclonal antibodies target the CD20 and CD22 receptors. This has led to the approval of a few of these drugs by the US Food and Drug Administration. This review focuses on the drugs under preclinical and clinical study in the ongoing efforts for treatment of acute and chronic lymphoblastic leukemia. PMID:27382259

  16. Diagnosis of chronic myeloid and acute lymphocytic leukemias by detection of leukemia-specific mRNA sequences amplified in vitro

    SciTech Connect

    Kawasaki, E.S.; Clark, S.S.; Coyne, M.Y.; Smith, S.D.; Champlin, R.; Witte, O.N.; McCormick, F.P. )

    1988-08-01

    The Philadelphia chromosome is present in more than 95% of chronic myeloid leukemia patients and 13% of acute lymphocytic leukemia patients. The Philadelphia translocation, t(9;22), fuses the BCR and ABL genes resulting in the expression of leukemia-specific, chimeric BCR-ABL messenger RNAs. To facilitate diagnosis of these leukemias, the authors have developed a method of amplifying and detecting only the unique mRNA sequences, using an extension of the polymerase chain reaction technique. Diagnosis of chronic myeloid and acute lymphocytic leukemias by this procedure is rapid, much more sensitive than existing protocols, and independent of the presence or absence of an identifiable Philadelphia chromosome.

  17. Phase I Study of Oral Azacitidine in Myelodysplastic Syndromes, Chronic Myelomonocytic Leukemia, and Acute Myeloid Leukemia

    PubMed Central

    Garcia-Manero, Guillermo; Gore, Steven D.; Cogle, Christopher; Ward, Renee; Shi, Tao; MacBeth, Kyle J.; Laille, Eric; Giordano, Heidi; Sakoian, Sarah; Jabbour, Elias; Kantarjian, Hagop; Skikne, Barry

    2011-01-01

    Purpose To determine the maximum-tolerated dose (MTD), safety, pharmacokinetic and pharmacodynamic profiles, and clinical activity of an oral formulation of azacitidine in patients with myelodysplastic syndromes (MDSs), chronic myelomonocytic leukemia (CMML), or acute myeloid leukemia (AML). Patients and Methods Patients received 1 cycle of subcutaneous (SC) azacitidine (75 mg/m2) on the first 7 days of cycle 1, followed by oral azacitidine daily (120 to 600 mg) on the first 7 days of each additional 28-day cycle. Pharmacokinetic and pharmacodynamic profiles were evaluated during cycles 1 and 2. Adverse events and hematologic responses were recorded. Cross-over to SC azacitidine was permitted for nonresponders who received ≥ 6 cycles of oral azacitidine. Results Overall, 41 patients received SC and oral azacitidine (MDSs, n = 29; CMML, n = 4; AML, n = 8). Dose-limiting toxicity (grade 3/4 diarrhea) occurred at the 600-mg dose and MTD was 480 mg. Most common grade 3/4 adverse events were diarrhea (12.2%), nausea (7.3%), vomiting (7.3%), febrile neutropenia (19.5%), and fatigue (9.8%). Azacitidine exposure increased with escalating oral doses. Mean relative oral bioavailability ranged from 6.3% to 20%. Oral and SC azacitidine decreased DNA methylation in blood, with maximum effect at day 15 of each cycle. Hematologic responses occurred in patients with MDSs and CMML. Overall response rate (ie, complete remission, hematologic improvement, or RBC or platelet transfusion independence) was 35% in previously treated patients and 73% in previously untreated patients. Conclusion Oral azacitidine was bioavailable and demonstrated biologic and clinical activity in patients with MDSs and CMML. PMID:21576646

  18. Philadelphia chromosome-negative acute myeloid leukemia with 11q23/MLL translocation in a patient with chronic myelogenous leukemia

    PubMed Central

    Jaitly, Vanya; Wang, Wei

    2015-01-01

    Although defined by the presence of t(9;22), chronic myelogenous leukemia (CML) can have other concurrent additional cytogenetic changes, especially during disease progression. Additional chromosomal changes (ACAs) in CML often occur in Philadelphia chromosome (Ph)-positive cells and are associated with disease acceleration and treatment resistance. Occasionally chromosomal changes occur in Ph-negative cells and this phenomenon is often transient and does not correlate with disease progression. Very rarely myelodysplastic syndrome or acute leukemia can develop in Ph-negative cells. In this study, we report an unusual case of acute myeloid leukemia (AML) with 11q23/MLL translocation emerging from Ph-negative cells in a patient with CML. PMID:27358881

  19. Ophthalmic manifestations of acute and chronic leukemias presenting to a tertiary care center in India

    PubMed Central

    Koshy, Jacob; John, M Joseph; Thomas, Satish; Kaur, Gurvinder; Batra, Nitin; Xavier, Wilson J

    2015-01-01

    Context: Screening for ocular manifestations of leukemia, although not a routine practice, is important as they may antedate systemic disease or form an isolated focus of its relapse. Aims: This study evaluates the spectrum of ocular manifestations in acute and chronic leukemias presenting to a tertiary care center in India. Settings and Design: Subjects of leukemia presenting to a tertiary care center in India. Subjects and Methods: A prospective, cross-sectional study looking at the spectrum of ocular manifestations in all inpatients of acute or chronic leukemia. Statistical Analysis Used: The collected data were analyzed using the Statistical Package for Social Sciences for Windows software, version 16 (SPSS Inc., Chicago, Illinois, USA). Results: The study subjects (n = 96) comprised 61 males and 35 females whose age ranged from 18 months to 91 years (mean = 39.73, ±22.1). There were 79 adults and 17 children, 53 new and 43 existing patients, 68 acute and 28 chronic, 61 myeloid and 35 lymphoid patients. Ocular lesions were found in 42 patients (43.8%). The ocular manifestations of leukemia were significantly (P = 0.01467) more frequent in acute 35/68 (51.9%) than chronic 7/28 (25%) leukemias. Primary or direct leukemic infiltration was seen in 8 (8.3%) subjects while secondary or indirect involvement due to anemia, thrombocytopenia, hyperviscosity, total body irradiation, and immunosuppression were seen in 42 (43.8%) subjects. Ocular changes were present in 37/79 (46.8%) adults and 5/17 (29.4%) children (P = 0.09460). Twenty-eight males (28/61) 45.9% and 14/35 (40%) females had ocular manifestations (P = 0.2874). The ocular manifestations were significantly (P = 0.01158) more frequent in myeloid leukemias 32/61 (52.9%) than lymphoid leukemias 10/35 (28.6%). Conclusions: Leukemic ophthalmic lesions were found in 42/96 (43.8%) patients. Ocular involvement is more often seen in adults, acute and myeloid leukemias. All the primary leukemic manifestations were seen

  20. Treosulfan, Fludarabine Phosphate, and Total-Body Irradiation Before Donor Stem Cell Transplant in Treating Patients With High-Risk Acute Myeloid Leukemia, Myelodysplastic Syndrome, Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2013-10-29

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  1. Clinical significance of microRNAs in chronic and acute human leukemia.

    PubMed

    Yeh, Chien-Hung; Moles, Ramona; Nicot, Christophe

    2016-01-01

    Small non-coding microRNAs (miRNAs) are epigenetic regulators that target specific cellular mRNA to modulate gene expression patterns and cellular signaling pathways. miRNAs are involved in a wide range of biological processes and are frequently deregulated in human cancers. Numerous miRNAs promote tumorigenesis and cancer progression by enhancing tumor growth, angiogenesis, invasion and immune evasion, while others have tumor suppressive effects (Hayes, et al., Trends Mol Med 20(8): 460-9, 2014; Stahlhut and Slack, Genome Med 5 (12): 111, 2013). The expression profile of cancer miRNAs can be used to predict patient prognosis and clinical response to treatment (Bouchie, Nat Biotechnol 31(7): 577, 2013). The majority of miRNAs are intracellular localized, however circulating miRNAs have been detected in various body fluids and represent new biomarkers of solid and hematologic cancers (Fabris and Calin, Mol Oncol 10(3):503-8, 2016; Allegra, et al., Int J Oncol 41(6): 1897-912, 2012). This review describes the clinical relevance of miRNAs, lncRNAs and snoRNAs in the diagnosis, prognosis and treatment response in patients with chronic lymphocytic leukemia (CLL), chronic myeloid leukemia (CML), acute lymphocytic leukemia (ALL), acute myeloid leukemia (AML) and acute adult T-cell leukemia (ATL). PMID:27179712

  2. Refractory chronic immune thrombocytopenic purpura in a child with acute lymphoblastic leukemia.

    PubMed

    Horino, Satoshi; Rikiishi, Takeshi; Niizuma, Hidetaka; Abe, Hiroshi; Watanabe, Yuko; Onuma, Masaei; Hoshi, Yoshiyuki; Sasahara, Yoji; Yoshinari, Miyako; Kazama, Takuro; Hayashi, Yutaka; Kumaki, Satoru; Tsuchiya, Shigeru

    2009-11-01

    Immune thrombocytopenic purpura (ITP) has been associated with several hematologic malignancies such as Hodgkin and non-Hodgkin lymphomas and chronic lymphocytic leukemia, but it is rare in children with acute lymphoblastic leukemia (ALL). Here, we report a 7-year-old girl with chronic ITP during early intensive phase of chemotherapy for ALL. She underwent splenectomy because thrombocytopenia had persisted even after treatment with intravenous immunoglobulin (IVIG), steroids, vincristine, rituximab, and anti-D antibody. After splenectomy, her platelet count had recovered, and maintenance therapy could be resumed with a support of IVIG. To our knowledge, this is the first child case of chronic ITP during chemotherapy for ALL and splenectomy was effective in this patient. PMID:19816666

  3. Antileukemic Effect of Tualang Honey on Acute and Chronic Leukemia Cell Lines

    PubMed Central

    Nik Man, Nik Muhd Khuzaimi; Hassan, Rosline; Ang, Cheng Yong; Abdullah, Abu Dzarr; Mohd Radzi, Muhammad Amiro Rasheeq; Sulaiman, Siti Amrah

    2015-01-01

    Complementary medicine using natural product as antitumor is on the rise. Much research has been performed on Tualang Honey and it was shown to have therapeutic potential in wound healing, and antimicrobial activity and be antiproliferative against several cancer models such as human osteosarcoma (HOS), human breast (MCF-7 and MDA-MB-231), and cervical (HeLa) cancer cell lines. To date, there was limited study on antileukemic properties of Tualang (Koompassia excelsa) Honey. The aim of this study was to evaluate the antileukemic effect of Tualang Honey on acute and chronic leukemia cell lines. Leukemia cell lines (K562 and MV4-11) and human mononuclear cell isolated from peripheral blood were grown in RPM1 1640 culture medium. The cells were incubated with increasing concentrations of Tualang Honey. After incubation, the evaluation of viability and apoptosis was performed. The morphological changes of leukemia cells were the presence of cytoplasmic blebs followed by apoptotic bodies and round shape of cells. IC50 against K562 and MV4-11 was determined. Tualang Honey gave 53.9% and 50.6% apoptosis activity on K562 and MV4-11, respectively, while on human mononuclear cell it was 37.4%. Tualang Honey has the apoptosis-inducing ability for acute and chronic myeloid leukemia (K562 and MV4-11) cell lines. PMID:26613081

  4. Antileukemic Effect of Tualang Honey on Acute and Chronic Leukemia Cell Lines.

    PubMed

    Nik Man, Nik Muhd Khuzaimi; Hassan, Rosline; Ang, Cheng Yong; Abdullah, Abu Dzarr; Mohd Radzi, Muhammad Amiro Rasheeq; Sulaiman, Siti Amrah

    2015-01-01

    Complementary medicine using natural product as antitumor is on the rise. Much research has been performed on Tualang Honey and it was shown to have therapeutic potential in wound healing, and antimicrobial activity and be antiproliferative against several cancer models such as human osteosarcoma (HOS), human breast (MCF-7 and MDA-MB-231), and cervical (HeLa) cancer cell lines. To date, there was limited study on antileukemic properties of Tualang (Koompassia excelsa) Honey. The aim of this study was to evaluate the antileukemic effect of Tualang Honey on acute and chronic leukemia cell lines. Leukemia cell lines (K562 and MV4-11) and human mononuclear cell isolated from peripheral blood were grown in RPM1 1640 culture medium. The cells were incubated with increasing concentrations of Tualang Honey. After incubation, the evaluation of viability and apoptosis was performed. The morphological changes of leukemia cells were the presence of cytoplasmic blebs followed by apoptotic bodies and round shape of cells. IC50 against K562 and MV4-11 was determined. Tualang Honey gave 53.9% and 50.6% apoptosis activity on K562 and MV4-11, respectively, while on human mononuclear cell it was 37.4%. Tualang Honey has the apoptosis-inducing ability for acute and chronic myeloid leukemia (K562 and MV4-11) cell lines. PMID:26613081

  5. [Clinical research in the "acute and chronic leukemias"competence network ].

    PubMed

    Hehlmann, R; Berger, U; Aul, C; Büchner, T; Döhner, H; Ehninger, G; Ganser, A; Hoelzer, D; Gökbuget, N; Uberla, K

    2004-04-01

    Goal of the network is the construction of an exemplary cooperative leukemia network for the improvement of medical care and of health related research in acute and chronic leukemias. This is achieved by improved mechanisms of cooperation among all major groups in Germany that deal with the leukemias in research and in patient care. In practice, cooperation between clinical groups and scientists in research institutes is mediated by various instruments that improve communication, flow of information and interdisciplinary cooperation and also increase information transfer from top research institutions to clinical translation. The network comprises more than 1400 participants in about 400 university centers, large community hospitals and specialty practices with functional communication structures, interdisciplinary cooperation and nation-wide logistics. The improved cooperation and the accelerated information transfer from the bench to the "bedside" results in an added value that ultimately results in improved survival results of patients and in superior competitiveness of involved research workers and clinicians. Sustainability is addressed by establishing a leukemia foundation to support long term financial coverage of the network and by negotiating a proposal for a European Network of Excellence against leukemia within the Sixth Framework Programme of the European Union. PMID:15004683

  6. Characterization of miRNomes in Acute and Chronic Myeloid Leukemia Cell Lines

    PubMed Central

    Xiong, Qian; Yang, Yadong; Wang, Hai; Li, Jie; Wang, Shaobin; Li, Yanming; Yang, Yaran; Cai, Kan; Ruan, Xiuyan; Yan, Jiangwei; Hu, Songnian; Fang, Xiangdong

    2014-01-01

    Myeloid leukemias are highly diverse diseases and have been shown to be associated with microRNA (miRNA) expression aberrations. The present study involved an in-depth miRNome analysis of two human acute myeloid leukemia (AML) cell lines, HL-60 and THP-1, and one human chronic myeloid leukemia (CML) cell line, K562, via massively parallel signature sequencing. mRNA expression profiles of these cell lines that were established previously in our lab facilitated an integrative analysis of miRNA and mRNA expression patterns. miRNA expression profiling followed by differential expression analysis and target prediction suggested numerous miRNA signatures in AML and CML cell lines. Some miRNAs may act as either tumor suppressors or oncomiRs in AML and CML by targeting key genes in AML and CML pathways. Expression patterns of cell type-specific miRNAs could partially reflect the characteristics of K562, HL-60 and THP-1 cell lines, such as actin filament-based processes, responsiveness to stimulus and phagocytic activity. miRNAs may also regulate myeloid differentiation, since they usually suppress differentiation regulators. Our study provides a resource to further investigate the employment of miRNAs in human leukemia subtyping, leukemogenesis and myeloid development. In addition, the distinctive miRNA signatures may be potential candidates for the clinical diagnosis, prognosis and treatment of myeloid leukemias. PMID:24755403

  7. Decitabine in Treating Children With Relapsed or Refractory Acute Myeloid Leukemia or Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2013-01-22

    Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Promyelocytic Leukemia (M3); Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  8. Advances in the diagnosis and treatment of acute and chronic leukemia in Mexico.

    PubMed

    Ruiz-Argüelles, Guillermo José

    2016-04-01

    In the last 60 years, there have been substantial advances regarding the diagnosis and treatment of patients with acute and chronic leukemia in Mexico. Immunologic and molecular classifications of these diseases have improved both diagnosis and therapeutic capabilities. Although the pace of diagnostic and therapeutic advances has been slower compared with developed countries, Mexico is at the forefront among developing countries. Supporting research in these fields is expected to enhance the generation of new knowledge and improve the care of patients suffering from these diseases. PMID:27557388

  9. Acute Lymphocytic Leukemia

    MedlinePlus

    ... hard for blood to do its work. In acute lymphocytic leukemia (ALL), also called acute lymphoblastic leukemia, there are too ... of white blood cells called lymphocytes or lymphoblasts. ALL is the most common type of cancer in ...

  10. Chronic lymphocytic leukemia (CLL)

    MedlinePlus

    CLL; Leukemia - chronic lymphocytic (CLL) ... Byrd JC, Flynn JM. Chronic lymphocytic leukemia. In: Niederhuber JE, Armitage JO, Doroshow JH, Kastan MB, Tepper JE, eds. Abeloff's Clinical Oncology. 5th ed. Philadelphia, PA: Elsevier ...

  11. Yttrium Y 90 Anti-CD45 Monoclonal Antibody BC8 Followed by Donor Stem Cell Transplant in Treating Patients With High-Risk Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2016-08-08

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Chronic Myelomonocytic Leukemia; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Secondary Acute Myeloid Leukemia

  12. Chronic myelogenous leukemia in chronic phase transforming into acute leukemia under treatment with dasatinib 4 months after diagnosis.

    PubMed

    Nakamura, Yukitsugu; Tokita, Katsuya; Nagasawa, Fusako; Takahashi, Wataru; Nakamura, Yuko; Sasaki, Ko; Ichikawa, Motoshi; Mitani, Kinuko

    2016-03-01

    We report a 64-year-old woman morphologically diagnosed with chronic myelogenous leukemia in the chronic phase. Despite having achieved a complete hematological response following treatment with dasatinib, she developed lymphoblastic crisis 4 months later. Blastic cells were in a CD45-negative and SSC-low fraction, and positive for CD10, CD19, CD34, and HLA-DR expression and rearrangement in the immunoglobulin heavy chain gene. Chemotherapy using the HyperCVAD/MA regimen led to a complete cytogenetic response, and after cord blood transplantation, she obtained a complete molecular remission. However, the crisis recurred 6 months later. Another salvage therapy using L-AdVP regimen followed by nilotinib led to a complete molecular remission. Retrospective analyses using flow cytometry and polymerase chain reaction revealed a minimal blastic crisis clone present in the initial marrow in chronic phase. This case is informative as it suggests that sudden blastic crisis may occur from an undetectable blastic clone present at initial diagnosis and that leukemic stem cells may survive cytotoxic chemotherapy that eliminates most of the blastic cells. PMID:26662559

  13. A comprehensive review of occupational and general population cancer risk: 1,3-Butadiene exposure-response modeling for all leukemia, acute myelogenous leukemia, chronic lymphocytic leukemia, chronic myelogenous leukemia, myeloid neoplasm and lymphoid neoplasm.

    PubMed

    Sielken, Robert L; Valdez-Flores, Ciriaco

    2015-11-01

    Excess cancer risks associated with 1,3-butadiene (BD) inhalation exposures are calculated using an extensive data set developed by the University of Alabama at Birmingham (UAB) from an epidemiology study of North American workers in the styrene butadiene rubber (SBR) industry. While the UAB study followed SBR workers, risk calculations can be adapted to estimate both occupational and general population risks. The data from the UAB SBR study offer an opportunity to quantitatively evaluate the association between cumulative exposure to BD and different types of cancer, accounting for the number of tasks involving high-intensity exposures to BD as well as confounding associated with the exposures to the multiple other chemicals in the SBR industry. Quantitative associations of BD exposure and cancer, specifically leukemia, can be further characterized by leukemia type, including potential associations with acute myelogenous leukemia (AML), chronic lymphocytic leukemia (CLL), and chronic myelogenous leukemia (CML), and the groups of lymphoid and myeloid neoplasms. Collectively, these multiple evaluations lead to a comprehensive analysis that makes use of all of the available information and is consistent with the risk assessment goals of the USEPA and other regulatory agencies, and in line with the recommendations of the USEPA Science Advisory Board. While a range of cancer risk values can result from these multiple factors, a preferred case for occupational and general population risk is highlighted. Cox proportional hazards models are used to fit exposure-response models to the most recent UAB data. The slope of the model with cumulative BD ppm-years as the predictor variable is not statistically significantly greater than zero for CML, AML, or, when any one of eight exposure covariates is added to the model, for all leukemias combined. The slope for CLL is statistically significantly different from zero. The slope for myeloid neoplasms is not statistically

  14. What Is Acute Myeloid Leukemia?

    MedlinePlus

    ... about acute myeloid leukemia? What is acute myeloid leukemia? Cancer starts when cells in a part of ... the body from doing their jobs. Types of leukemia Not all leukemias are the same. There are ...

  15. Cytosine arabinoside and daunorubicin induction therapy in a patient with acute myeloid leukemia on chronic hemodialysis.

    PubMed

    Krashin, Eilon; Dolberg, Osnat J; Hellmann, Ilana; Huitema, Alwin D R; Rosing, Hilde; Ellis, Martin

    2016-09-01

    The combination of daunorubicin and cytarabine is the cornerstone of induction therapy for acute myeloid leukemia (AML). Little data are available on the optimal chemotherapy regimen for patients with AML and advanced renal failure, with some authors recommending administration of reduced daunorubicin doses. We report the case of a 54-year-old AML patient on chronic hemodialysis who was treated with a modified induction regimen with reduced-dose daunorubin. Daunorubicin levels were measured during the treatment schedule. Although daunorubicin terminal t1/2 appears to be unaffected in hemodialysis patients, the estimated 0-23 h area under the curve was comparable with that of patients receiving full-dose daunorubicin. Therefore, dose adjustment in this patient group may be prudent. PMID:27254285

  16. Dicer Gene Expression as a Prognostic Factor in Acute Lymphoblastic Leukemia and Chronic Lymphocytic Leukemia in Fars Province

    PubMed Central

    Farzaneh, Mohamad Reza; Shahryari, Jahanbanoo; Safaei, Akbar; Valibeigi, Behnaz; Davani, Shahrbanou Karimi; Tabibi, Narjes

    2016-01-01

    Alterations in the expression of microRNAs (miRNAs) have been proposed to play a role in the pathogenesis of acute lymphoblastic leukemia (ALL) and chronic lymphocytic leukemia (CLL). Dicer is one of the main regulators of miRNA biogenesis, and deregulation of its expression has been indicated as a possible cause of miRNA alterations observed in various cancers. Our aim was to analyze the expression of the Dicer protein and its relationship with ALL and CLL. This cross-sectional study was performed from 2010 to 2012 in Shahid Faghihi Hospital, Shiraz, Iran. In this study, 30 patients with CLL, 21 patients with ALL, 10 child healthy donors, and 19 adult healthy donors were recruited. The patients’ samples were checked via flow cytometry, immunohistochemistry, and immunocytochemistry. The controls’ samples were also examined in the hematology ward. Total RNA was extracted from the bone marrow and peripheral blood samples of the patients and controls. Then, reverse-transcription polymerase chain reaction was used to estimate the level of Dicer miRNA. The outcomes of the expression analysis of Dicer revealed statistically significant differences between the ALL patients/child healthy controls (mean±SD, 0.19±0.28 vs. 0.73±0.12; P<0.001) and the CLL patients/adult healthy controls (mean±SD, 0.24±0.25 vs. 0.41±0.28; P=0.033). This is the first piece of evidence showing that the expression of the Dicer gene greatly decreased in the patients with ALL in comparison to the child controls. The expression of the Dicer gene was also downregulated in the patients with CLL compared to the adult controls. Given the above findings, the expression of Dicer may play an important role in the progression and prognosis of these diseases. PMID:27217607

  17. Discovery of imatinib-responsive FIP1L1-PDGFRA mutation during refractory acute myeloid leukemia transformation of chronic myelomonocytic leukemia

    PubMed Central

    2014-01-01

    The FIP1L1-PDGFRA rearrangement results in constitutive activation of the tyrosine kinase PDGFRA. Neoplasms harboring this rearrangement are responsive to imatinib mesylate at doses much lower than those recommended for the treatment of chronic myelogenous leukemia. Only a single report has described the identification of FIP1L1-PDGFRA in chronic myelomonocytic leukemia (CMML). Herein, we present a case report of a patient in whom the FIP1L1-PDGFRA was discovered as he evolved from CMML to acute myeloid leukemia (AML). The presence of a dominant neoplastic clone with FIP1L1-PDGFRA rearrangement was suspected on the basis of sudden onset of peripheral and bone marrow eosinophilia and confirmed by fluorescence in situ hybridization and molecular diagnostic tests. Whereas the patient was initially refractory to chemotherapy before the rearrangement was detected, subsequent therapy with imatinib led to complete remission. PMID:24669761

  18. Ipilimumab in Treating Patients With Relapsed or Refractory High-Risk Myelodysplastic Syndrome or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-06-27

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Chronic Myelomonocytic Leukemia; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome

  19. WEE1 Inhibitor AZD1775 With or Without Cytarabine in Treating Patients With Advanced Acute Myeloid Leukemia or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2016-01-25

    Chronic Myelomonocytic Leukemia; Myelodysplastic Syndrome With Isolated Del(5q); Myelodysplastic/Myeloproliferative Neoplasm; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  20. Bortezomib has little ex vivo activity in chronic myeloid leukemia: individual tumor response testing comparative study in acute and chronic myeloid leukemia

    PubMed Central

    Gil, Lidia; Czyżewski, Krzysztof; Kołodziej, Beata; Kuryło-Rafińska, Beata; Lewandowski, Krzysztof; Gniot, Michał; Lewandowska, Maria; Komarnicki, Mieczysław; Wysocki, Mariusz

    2012-01-01

    Aim of the study Resistance to imatinib is one of the most important issues in treatment of chronic myeloid leukemia (CML) patients. The objective of the study was to analyze the ex vivo drug resistance profile to bortezomib and 22 other antileukemic drugs, including three tyrosine kinase inhibitors (TKIs), in CML in comparison to acute myeloid leukemia (AML). Material and methods A total of 82 patients entered the study, including 36 CML and 46 AML adults. Among CML patients, 19 had advanced disease, 16 were resistant to imatinib, and 6 had ABL-kinase domain mutations. The ex vivo drug resistance profile was studied by the MTT assay. Results CML cells were more resistant than AML blasts to the following drugs: prednisolone, vincristine, doxorubicin, etoposide, melphalan, cytarabine, fludarabine, thiotepa, 4-HOO-cyclophosphamide, thioguanine, bortezomib, topotecan, and clofarabine. CML cells were 2-fold more sensitive to busulfan than AML cells. CML patients with clinical imatinib resistance had higher ex vivo resistance to vincristine, daunorubicin, etoposide, and busulfan. No significant differences to all tested drugs, including TKIs, were observed between CML patients with non-advanced and advanced disease. CML patients with mutation had higher ex vivo resistance to vincristine, idarubicin, thiotepa, and busulfan. Conclusions CML cells are ex vivo more resistant to most drugs than acute myeloid leukemia blasts. Busulfan is more active in CML than AML cells. In comparison to AML cells, bortezomib has little ex vivo activity in CML cells. No differences between CML subgroups in sensitivity to 3 tested TKIs were detected. PMID:23788881

  1. Flavopiridol, Cytarabine, and Mitoxantrone in Treating Patients With Acute Leukemia

    ClinicalTrials.gov

    2013-10-07

    Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  2. What Is Chronic Myeloid Leukemia?

    MedlinePlus

    ... leukemia? Next Topic Normal bone marrow and blood What is chronic myeloid leukemia? Cancer starts when cells ... their treatment is the same as for adults. What is leukemia? Leukemia is a cancer that starts ...

  3. Chronic FLT3-ITD Signaling in Acute Myeloid Leukemia Is Connected to a Specific Chromatin Signature

    PubMed Central

    Cauchy, Pierre; James, Sally R.; Zacarias-Cabeza, Joaquin; Ptasinska, Anetta; Imperato, Maria Rosaria; Assi, Salam A.; Piper, Jason; Canestraro, Martina; Hoogenkamp, Maarten; Raghavan, Manoj; Loke, Justin; Akiki, Susanna; Clokie, Samuel J.; Richards, Stephen J.; Westhead, David R.; Griffiths, Michael J.; Ott, Sascha; Bonifer, Constanze; Cockerill, Peter N.

    2015-01-01

    Summary Acute myeloid leukemia (AML) is characterized by recurrent mutations that affect the epigenetic regulatory machinery and signaling molecules, leading to a block in hematopoietic differentiation. Constitutive signaling from mutated growth factor receptors is a major driver of leukemic growth, but how aberrant signaling affects the epigenome in AML is less understood. Furthermore, AML cells undergo extensive clonal evolution, and the mutations in signaling genes are often secondary events. To elucidate how chronic growth factor signaling alters the transcriptional network in AML, we performed a system-wide multi-omics study of primary cells from patients suffering from AML with internal tandem duplications in the FLT3 transmembrane domain (FLT3-ITD). This strategy revealed cooperation between the MAP kinase (MAPK) inducible transcription factor AP-1 and RUNX1 as a major driver of a common, FLT3-ITD-specific gene expression and chromatin signature, demonstrating a major impact of MAPK signaling pathways in shaping the epigenome of FLT3-ITD AML. PMID:26212328

  4. Chronic Myeloid Leukemia

    MedlinePlus

    ... some patients with acute lymphoblastic leukemia (ALL). One theory that scientists propose about why this switch occurs ... a result called “graft-versus-tumor effect”). The theory being tested with a reduced-intensity transplant is ...

  5. Veliparib and Temozolomide in Treating Patients With Acute Leukemia

    ClinicalTrials.gov

    2016-07-20

    Accelerated Phase of Disease; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Adult B Acute Lymphoblastic Leukemia; Adult B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Adult T Acute Lymphoblastic Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Blastic Phase; Chronic Myelomonocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Disease; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  6. BIRC3 alterations in chronic and B-cell acute lymphocytic leukemia patients

    PubMed Central

    ALHOURANI, EYAD; OTHMAN, MONEEB A.K.; MELO, JOANA B.; CARREIRA, ISABEL M.; GRYGALEWICZ, BEATA; VUJIĆ, DRAGANA; ZECEVIĆ, ZELJKO; JOKSIĆ, GORDANA; GLASER, ANITA; POHLE, BEATE; SCHLIE, CORDULA; HAUKE, SVEN; LIEHR, THOMAS

    2016-01-01

    Deletions within chromosome 11q22-23, are considered among the most common chromosomal aberrations in chronic lymphocytic leukemia (CLL), and are associated with a poor outcome. In addition to the ataxia telangiectasia mutated (ATM) gene, the baculoviral IAP repeat-containing 3 (BIRC3) gene is also located in the region. BIRC3 encodes a negative regulator of the non-canonical nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) protein. Disruption of BIRC3 is known to be restricted to CLL fludarabine-refractory patients. The aim of the present study was to determine the frequency of copy number changes of BIRC3 and to assess its association with two known predictors of negative CLL outcome, ATM and tumor protein 53 (TP53) gene deletions. To evaluate the specificity of BIRC3 alterations to CLL, BIRC3 copy numbers were assessed in 117 CLL patients in addition to 45 B-cell acute lymphocytic leukemia (B-ALL) patients. A commercially available multiplex ligation dependent probe amplification kit, which includes four probes for the detection of TP53 and four probes for ATM gene region, was applied. Interphase-directed fluorescence in situ hybridization was used to apply commercially available probes for BIRC3, ATM and TP53. High resolution array-comparative genomic hybridization was conducted in selected cases. Genetic abnormalities of BIRC3 were detected in 23/117 (~20%) of CLL and 2/45 (~4%) of B-ALL cases. Overall, 20 patients with CLL and 1 with B-ALL possessed a BIRC3 deletion, whilst 3 patients with CLL and 1 with B-ALL harbored a BIRC3 duplication. All patients with an ATM deletion also carried a BIRC3 deletion. Only 2 CLL cases possessed deletions in BIRC3, ATM and TP53 simultaneously. Evidently, the deletion or duplication of BIRC3 may be observed rarely in B-ALL patients. BIRC3 duplication may occur in CLL patients, for which the prognosis requires additional studies in the future. The likelihood that TP53 deletions occur simultaneously with

  7. What Is Chronic Lymphocytic Leukemia?

    MedlinePlus

    ... blood, and lymphoid tissue What is chronic lymphocytic leukemia? Cancer starts when cells in the body begin ... the lymph nodes, liver, and spleen. What is leukemia? Leukemia is a cancer that starts in the ...

  8. Identification of de Novo Fanconi Anemia in Younger Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-05-13

    Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Fanconi Anemia; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Refractory Anemia With Ringed Sideroblasts; Secondary Myelodysplastic Syndromes; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  9. Vorinostat and Azacitidine in Treating Patients With Myelodysplastic Syndromes or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-06-27

    Acute Erythroid Leukemia; Acute Megakaryoblastic Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Chronic Myelomonocytic Leukemia; Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Refractory Anemia With Ring Sideroblasts

  10. What Is Acute Lymphocytic Leukemia (ALL)?

    MedlinePlus

    ... key statistics about acute lymphocytic leukemia? What is acute lymphocytic leukemia? Cancer starts when cells in the body begin ... leukemias). The rest of this document focuses on acute lymphocytic leukemia (ALL) in adults. For information on ALL in ...

  11. Decitabine in Treating Patients With Myelodysplastic Syndromes or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-09-27

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; de Novo Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  12. Flavopiridol in Treating Patients With Chronic Lymphocytic Leukemia

    ClinicalTrials.gov

    2013-01-16

    B-cell Chronic Lymphocytic Leukemia; Refractory Chronic Lymphocytic Leukemia; Stage I Chronic Lymphocytic Leukemia; Stage II Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage IV Chronic Lymphocytic Leukemia

  13. MS-275 and GM-CSF in Treating Patients With Myelodysplastic Syndrome and/or Relapsed or Refractory Acute Myeloid Leukemia or Acute Lymphocytic Leukemia

    ClinicalTrials.gov

    2013-01-08

    Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Ringed Sideroblasts; Refractory Cytopenia With Multilineage Dysplasia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  14. A phase I trial of the aurora kinase inhibitor, ENMD-2076, in patients with relapsed or refractory acute myeloid leukemia or chronic myelomonocytic leukemia.

    PubMed

    Yee, Karen W L; Chen, Hsiao-Wei T; Hedley, David W; Chow, Sue; Brandwein, Joseph; Schuh, Andre C; Schimmer, Aaron D; Gupta, Vikas; Sanfelice, Deborah; Johnson, Tara; Le, Lisa W; Arnott, Jamie; Bray, Mark R; Sidor, Carolyn; Minden, Mark D

    2016-10-01

    ENMD-2076 is a novel, orally-active molecule that inhibits Aurora A kinase, as well as c-Kit, FLT3 and VEGFR2. A phase I study was conducted to determine the maximum tolerated dose (MTD), recommended phase 2 dose (RP2D) and toxicities of ENMD-2076 in patients with acute myeloid leukemia (AML) and chronic myelomonocytic leukemia (CMML). Patients received escalating doses of ENMD-2076 administered orally daily [225 mg (n = 7), 375 mg (n = 6), 325 mg (n = 9), or 275 mg (n = 5)]. Twenty-seven patients were treated (26 AML; 1 CMML-2). The most common non-hematological toxicities of any grade, regardless of association with drug, were fatigue, diarrhea, dysphonia, dyspnea, hypertension, constipation, and abdominal pain. Dose-limiting toxicities (DLTs) consisted of grade 3 fatigue, grade 3 typhilitis, grade 3 syncope and grade 3 QTc prolongation). Of the 16 evaluable patients, one patient achieved a complete remission with incomplete count recovery (CRi), three experienced a morphologic leukemia-free state (MLFS) with a major hematologic improvement in platelets (HI-P), and 5 other patients had a reduction in marrow blast percentage (i.e. 11-65 %). The RP2D in this patient population is 225 mg orally once daily. PMID:27406088

  15. Vorinostat, Cytarabine, and Etoposide in Treating Patients With Relapsed and/or Refractory Acute Leukemia or Myelodysplastic Syndromes or Myeloproliferative Disorders

    ClinicalTrials.gov

    2013-05-01

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  16. A phase 2 study of MK-0457 in patients with BCR-ABL T315I mutant chronic myelogenous leukemia and philadelphia chromosome-positive acute lymphoblastic leukemia.

    PubMed

    Seymour, J F; Kim, D W; Rubin, E; Haregewoin, A; Clark, J; Watson, P; Hughes, T; Dufva, I; Jimenez, J L; Mahon, F-X; Rousselot, P; Cortes, J; Martinelli, G; Papayannidis, C; Nagler, A; Giles, F J

    2014-01-01

    Aurora kinase overexpression has been observed in patients with hematologic malignancies. MK-0457, a pan-aurora kinase inhibitor that also inhibits the ABL T315I mutant, was evaluated to treat patients with chronic myelogenous leukemia (CML) or Philadelphia chromosome (Ph+) acute lymphoblastic leukemia (ALL) with the T315I mutation. Adults with Ph+ chronic phase (CP)-, accelerated phase (AP)- or blast phase (BP)-CML, or ALL and documented BCR-ABL T315I mutation were treated with a 5-day continuous infusion of MK-0457 administered every 14 days at 40 mg/m(2)/h, 32 mg/m(2)/h or 24 mg/m(2)/h. Fifty-two patients (CP, n=15; AP, n=14; BP, n=11; Ph+ ALL, n=12) were treated. Overall, 8% of patients achieved major cytogenetic response; 6% achieved unconfirmed complete or partial response; 39% had no response. Two patients (CP CML) achieved complete hematologic response. No patients with advanced CML or Ph+ ALL achieved major hematologic response. The most common adverse event (AE) was neutropenia (50%). The most common grade 3/4 AEs were neutropenia (46%) and febrile neutropenia (35%). MK-0457 demonstrated minimal efficacy and only at higher, intolerable doses; lower doses were tolerated and no unexpected toxicities were observed. These data will assist in the development of future aurora kinase inhibitors and in the selection of appropriate target patient populations. PMID:25127392

  17. Donor Peripheral Blood Stem Cell Transplant and Pretargeted Radioimmunotherapy in Treating Patients With High-Risk Advanced Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2016-03-01

    Chronic Myelomonocytic Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Cytopenia With Multilineage Dysplasia; Refractory Cytopenia With Multilineage Dysplasia and Ringed Sideroblasts; Secondary Acute Myeloid Leukemia

  18. IMMUNOTHERAPY IN ACUTE LEUKEMIA

    PubMed Central

    Leung, Wing

    2010-01-01

    Recent advances in immunotherapy of cancer may represent a successful example in translational research, in which progress in knowledge and technology in immunology has lead to new strategies of immunotherapy, and even past failure in many clinical trials have led to a better understanding of basic cancer immunobiology. This article reviews the latest concepts in antitumor immunology and its application in the treatment of cancer, with particular focus on acute leukemia. PMID:19100371

  19. Phase I Trial of AZD1775 and Belinostat in Treating Patients With Relapsed or Refractory Myeloid Malignancies or Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-20

    Blast Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Refractory Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Secondary Acute Myeloid Leukemia; Therapy-Related Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  20. Different immune reconstitution in multiple myeloma, chronic myeloid leukemia and acute myeloid leukemia patients after allogeneic transplantation of peripheral blood stem cells.

    PubMed

    Rondelli, D; Re, F; Bandini, G; Raspadori, D; Arpinati, M; Senese, B; Stanzani, M; Bonifazi, F; Falcioni, S; Chirumbolo, G; Tura, S

    2000-12-01

    In this study we compared the lymphocyte reconstitution in 13 multiple myeloma (MM), nine acute myeloid leukemia (AML) and 10 chronic myeloid leukemia (CML) patients after allogeneic G-CSF-mobilized PBSC transplantation from HLA-identical siblings. Conditioning regimens included standard total body irradiation + cyclophosphamide (CY), or busulphan + CY, whereas VP-16 was added in patients with advanced disease. Overall comparable numbers of mononuclear cells, CD34+ cells and CD3+ T cells were infused in each group. A significantly higher CD3+ T cell number was observed in MM and AML than in CML patients 1 month after transplant. However, MM patients showed a faster and better recovery of CD4+ T cells than both AML and CML patients at 3 months (P = 0.01 and P = 0.01, respectively) and 12 months (P = 0.01 vs AML, while P = NS vs CML) after transplant, and had a CD4:CD8 ratio > 1 with a median CD4+ T cell value > 400/microl 1 year after transplant. Development of acute graft-versus-host disease (GVHD) did not affect CD4:CD8 ratios but patients who experienced acute GVHD > grade I had lower CD4+ and CD8+ T cell numbers at all time points. However, after excluding patients with GVHD > grade I, MM patients still showed a significantly higher CD4+ T cell value than patients with myeloproliferative diseases 1 year after transplant. These findings suggest that although allogeneic PBSC transplantation induces rapid immune reconstitution, different kinetics may occur among patients with hematological malignancies. In particular, the rapid reconstitution of CD4+ T cells in MM patients may contribute to the low transplant-related mortality achieved in this disease. PMID:11223973

  1. Vinblastine rapidly induces NOXA and acutely sensitizes primary chronic lymphocytic leukemia cells to ABT-737

    PubMed Central

    Bates, Darcy J. P.; Danilov, Alexey V.; Lowrey, Christopher H.; Eastman, Alan

    2013-01-01

    Proteins of the BCL2 family provide a survival mechanism in many human malignancies including chronic lymphocytic leukemia (CLL). The BCL2 inhibitor ABT-263 (navitoclax) is active in clinical trials for lymphoid malignancies, yet resistance is expected based on preclinical models. We recently demonstrated that vinblastine can dramatically sensitize several leukemia cell lines to ABT-737 (the experimental congener of ABT-263). The goal of these experiments was to determine the impact of vinblastine on ABT-737 sensitivity in CLL cells isolated from peripheral blood and to define the underlying mechanism. Freshly isolated CLL cells from 35 patients, as well as normal lymphocytes and platelets, were incubated with various microtubule disrupting agents plus ABT-737 to assess sensitivity to the single agents and the combination. ABT-737 and vinblastine displayed a range of sensitivity as single agents, and vinblastine markedly sensitized all CLL samples to ABT-737 within 6 h. Vinblastine potently induced the pro-apoptotic protein PMAIP1 (NOXA) in both a time- and dose-dependent manner and this was required for the observed apoptosis. Combretastatin A4, which dissociates microtubules by binding a different site, had the same effect confirming that interaction of these agents with microtubules is the initial target. Similarly, vincristine and vinorelbine induced NOXA and enhanced CLL sensitivity to ABT-737. Furthermore, vinblastine plus ABT-737 overcame stroma-mediated resistance to ABT-737 alone. Apoptosis was induced with clinically achievable concentrations, with no additional toxicity to normal lymphocytes or platelets. These results suggest that vinca alkaloids may improve the clinical efficacy of ABT-263 in patients with CLL. PMID:23723123

  2. Gemtuzumab Ozogamicin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia or Acute Promyelocytic Leukemia

    ClinicalTrials.gov

    2015-07-27

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Childhood Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia

  3. Acute Promyelocytic Leukemia

    PubMed Central

    Kingsley, Edwin C.; Durie, Brian G. M.; Garewal, Harinder S.

    1987-01-01

    Acute promyelocytic leukemia (APL) is a subtype of acute myelogenous leukemia frequently associated with disseminated intravascular coagulation (DIC). Data on 11 patients with APL treated at our institution were analyzed and compared with those of 147 published cases. Most had a bleeding diathesis at presentation and evidence of DIC eventually developed in all. Seven patients (64%) showed the t(15;17)(q22;q21) karyotype or a similar translocation. Using a chemotherapy induction regimen containing an anthracycline, complete remission, requiring a total of 14 courses of treatment, was achieved in six patients (55%). The median duration of response and median survival for complete responders were 10 and 15 months, respectively. Three patients (27%) died of bleeding complications during induction therapy. The tritiated-thymidine labeling index of leukemia cells predicted which patients would achieve a complete remission. Review of six studies of 147 patients with APL from the past 12 years supports the use of a chemotherapy induction regimen containing anthracycline or amsacrine and heparin for the treatment of DIC. PMID:3472414

  4. Veliparib and Topotecan With or Without Carboplatin in Treating Patients With Relapsed or Refractory Acute Leukemia, High-Risk Myelodysplasia, or Aggressive Myeloproliferative Disorders

    ClinicalTrials.gov

    2016-04-05

    Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndrome; Essential Thrombocythemia; Hematopoietic and Lymphoid Cell Neoplasm; Philadelphia Chromosome Negative, BCR-ABL1 Positive Chronic Myelogenous Leukemia; Polycythemia Vera; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Disease; Secondary Myelodysplastic Syndrome

  5. Epidemiologic study on survival of chronic myeloid leukemia and Ph+ acute lymphoblastic leukemia patients with BCR-ABL T315I mutation

    PubMed Central

    Mauro, Michael J.; Martinelli, Giovanni; Kim, Dong-Wook; Soverini, Simona; Müller, Martin C.; Hochhaus, Andreas; Cortes, Jorge; Chuah, Charles; Dufva, Inge H.; Apperley, Jane F.; Yagasaki, Fumiharu; Pearson, Jay D.; Peter, Senaka; Sanz Rodriguez, Cesar; Preudhomme, Claude; Giles, Francis; Goldman, John M.; Zhou, Wei

    2009-01-01

    The BCR–ABL T315I mutation represents a major mechanism of resistance to tyrosine kinase inhibitors (TKIs). The objectives of this retrospective observational study were to estimate overall and progression-free survival for chronic myeloid leukemia in chronic-phase (CP), accelerated-phase (AP), or blastic-phase (BP) and Philadelphia chromosome—positive (Ph)+ acute lymphoblastic leukemia (ALL) patients with T315I mutation. Medical records of 222 patients from 9 countries were reviewed; data were analyzed using log-rank tests and Cox proportional hazard models. Median age at T315I mutation detection was 54 years; 57% cases were men. Median time between TKI treatment initiation and T315I mutation detection was 29.2, 15.4, 5.8, and 9.1 months, respectively, for CP, AP, BP, and Ph+ ALL patients. After T315I mutation detection, second-generation TKIs were used in 56% of cases, hydroxyurea in 39%, imatinib in 35%, cytarabine in 26%, MK-0457 in 11%, stem cell transplantation in 17%, and interferon-α in 6% of cases. Median overall survival from T315I mutation detection was 22.4, 28.4, 4.0, and 4.9 months, and median progression-free survival was 11.5, 22.2, 1.8, and 2.5 months, respectively, for CP, AP, BP, and Ph+ ALL patients. These results confirm that survival of patients harboring a T315I mutation is dependent on disease phase at the time of mutation detection. PMID:19843886

  6. Temsirolimus and Imatinib Mesylate in Treating Patients With Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2013-01-11

    Accelerated Phase Chronic Myelogenous Leukemia; Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Chronic Phase Chronic Myelogenous Leukemia; Relapsing Chronic Myelogenous Leukemia

  7. Phase 1 Study of Terameprocol (EM-1421) in Patients With Leukemia

    ClinicalTrials.gov

    2016-02-20

    Leukemias; Acute Myeloid Leukemia (AML); Acute Lymphocytic Leukemia (ALL); Adult T Cell Leukemia (ATL); Chronic Myeloid Leukemia (CML-BP); Chronic Lymphocytic Leukemia (CLL); Myelodysplastic Syndrome (MDS); Chronic Myelomonocytic Leukemia (CMML)

  8. Phase I/II Study of Nilotinib/Ruxolitinb Therapy for TKI Resistant Ph-Leukemia

    ClinicalTrials.gov

    2016-03-04

    Chronic Phase Chronic Myeloid Leukemia; Accelerated Phase Chronic Myeloid Leukemia; Blastic Phase Chronic Myeloid Leukemia; Philadelphia Positive Acute Lymphoblastic Leukemia; Resistant to Tyrosine Kinase Inhibitor Therapy

  9. Genetically Modified T-cell Immunotherapy in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-08-10

    Adult Acute Myeloid Leukemia in Remission; Donor; Early Relapse of Acute Myeloid Leukemia; Late Relapse of Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  10. Leukemia.

    PubMed

    Juliusson, Gunnar; Hough, Rachael

    2016-01-01

    Leukemias are a group of life threatening malignant disorders of the blood and bone marrow. In the adolescent and young adult (AYA) population, the acute leukemias are most prevalent, with chronic myeloid leukemia being infrequently seen. Factors associated with more aggressive disease biology tend to increase in frequency with increasing age, whilst tolerability of treatment strategies decreases. There are also challenges regarding the effective delivery of therapy specific to the AYA group, consequences on the unique psychosocial needs of this age group, including compliance. This chapter reviews the current status of epidemiology, pathophysiology, treatment strategies and outcomes of AYA leukemia, with a focus on acute lymphoblastic leukemia and acute myeloid leukemia. PMID:27595359

  11. Tipifarnib in Treating Patients With Chronic Myeloid Leukemia, Chronic Myelomonocytic Leukemia, or Undifferentiated Myeloproliferative Disorders

    ClinicalTrials.gov

    2016-07-20

    Accelerated Phase of Disease; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Chronic Myelomonocytic Leukemia; Chronic Phase of Disease; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Recurrent Disease

  12. Decitabine, Cytarabine, and Daunorubicin Hydrochloride in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-20

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  13. Obatoclax, Fludarabine, and Rituximab in Treating Patients With Previously Treated Chronic Lymphocytic Leukemia

    ClinicalTrials.gov

    2013-09-27

    B-cell Chronic Lymphocytic Leukemia; Leukemia; Prolymphocytic Leukemia; Refractory Chronic Lymphocytic Leukemia; Stage I Chronic Lymphocytic Leukemia; Stage II Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage IV Chronic Lymphocytic Leukemia

  14. Double minute chromosomes in acute myeloid leukemia, myelodysplastic syndromes, and chronic myelomonocytic leukemia are associated with micronuclei, MYC or MLL amplification, and complex karyotype.

    PubMed

    Huh, Yang O; Tang, Guilin; Talwalkar, Sameer S; Khoury, Joseph D; Ohanian, Maro; Bueso-Ramos, Carlos E; Abruzzo, Lynne V

    2016-01-01

    Double minute chromosomes (dmin) are small, paired chromatin bodies that lack a centromere and represent a form of extrachromosomal gene amplification. Dmin are rare in myeloid neoplasms and are generally associated with a poor prognosis. Most studies of dmin in myeloid neoplasms are case reports or small series. In the current study, we present the clinicopathologic and cytogenetic features of 22 patients with myeloid neoplasms harboring dmin. These neoplasms included acute myeloid leukemia (AML) (n = 18), myelodysplastic syndrome (MDS) (n = 3), and chronic myelomonocytic leukemia (CMML) (n = 1). The AML cases consisted of AML with myelodysplasia-related changes (n = 13) and therapy-related AML (n = 5). Dmin were detected in initial pre-therapy samples in 14 patients with AML or CMML; they were acquired during the disease course in 8 patients who had AML or MDS. The presence of dmin was associated with micronuclei (18/18; 100%), complex karyotype (17/22; 77.3%), and amplification of MYC (12/16; 75%) or MLL (4/16; 25%). Immunohistochemical staining for MYC performed on bone marrow core biopsy or clot sections revealed increased MYC protein in all 19 cases tested. Except for one patient, most patients failed to respond to risk-adapted chemotherapies. At last follow up, all patients had died of disease after a median of 5 months following dmin detection. In conclusion, dmin in myeloid neoplasms commonly harbor MYC or MLL gene amplification and manifest as micronuclei within leukemic blasts. Dmin are often associated with myelodysplasia or therapy-related disease, and complex karyotypes. PMID:27318442

  15. Leukemia -- Chronic T-Cell Lymphocytic

    MedlinePlus

    ... Chronic T-Cell Lymphocytic: Overview Print to PDF Leukemia - Chronic T-Cell Lymphocytic: Overview Approved by the ... Platelets that help the blood to clot About leukemia Types of leukemia are named after the specific ...

  16. Cytogenetic risk stratification in chronic myelomonocytic leukemia

    PubMed Central

    Such, Esperanza; Cervera, José; Costa, Dolors; Solé, Francesc; Vallespí, Teresa; Luño, Elisa; Collado, Rosa; Calasanz, María J.; Hernández-Rivas, Jesús M.; Cigudosa, Juan C.; Nomdedeu, Benet; Mallo, Mar; Carbonell, Felix; Bueno, Javier; Ardanaz, María T.; Ramos, Fernando; Tormo, Mar; Sancho-Tello, Reyes; del Cañizo, Consuelo; Gómez, Valle; Marco, Victor; Xicoy, Blanca; Bonanad, Santiago; Pedro, Carmen; Bernal, Teresa; Sanz, Guillermo F.

    2011-01-01

    Background The prognostic value of cytogenetic findings in chronic myelomonocytic leukemia is unclear. Our purpose was to evaluate the independent prognostic impact of cytogenetic abnormalities in a large series of patients with chronic myelomonocytic leukemia included in the database of the Spanish Registry of Myelodysplastic Syndromes. Design and Methods We studied 414 patients with chronic myelomonocytic leukemia according to WHO criteria and with a successful conventional cytogenetic analysis at diagnosis. Different patient and disease characteristics were examined by univariate and multivariate methods to establish their relationship with overall survival and evolution to acute myeloid leukemia. Results Patients with abnormal karyotype (110 patients, 27%) had poorer overall survival (P=0.001) and higher risk of acute myeloid leukemia evolution (P=0.010). Based on outcome analysis, three cytogenetic risk categories were identified: low risk (normal karyotype or loss of Y chromosome as a single anomaly), high risk (presence of trisomy 8 or abnormalities of chromosome 7, or complex karyotype), and intermediate risk (all other abnormalities). Overall survival at five years for patients in the low, intermediate, and high risk cytogenetic categories was 35%, 26%, and 4%, respectively (P<0.001). Multivariate analysis confirmed that this new CMML-specific cytogenetic risk stratification was an independent prognostic variable for overall survival (P=0.001). Additionally, patients belonging to the high-risk cytogenetic category also had a higher risk of acute myeloid leukemia evolution on univariate (P=0.001) but not multivariate analysis. Conclusions Cytogenetic findings have a strong prognostic impact in patients with chronic myelomonocytic leukemia. PMID:21109693

  17. Successful Bosutinib Experience in an Elderly Acute Lymphoblastic Leukemia Patient with Suspected Central Nervous System Involvement Transformed from Chronic Myeloid Leukemia

    PubMed Central

    Atilla, Erden; Ataca, Pinar; Ozyurek, Elif; Erden, Ilhan; Gurman, Gunhan

    2015-01-01

    Managing the blast phase in chronic myeloid leukemia (CML) is challenging because limited data are available for elderly patients. The involvement of the central nervous system (CNS) increases the risk of a poor prognosis. Here, we present an elderly blast phase CML patient with suspected CNS involvement who was successfully treated with bosutinib. PMID:26697241

  18. Combination Chemotherapy With or Without Bone Marrow Transplantation in Treating Children With Acute Myelogenous Leukemia or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2013-01-15

    Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Refractory Anemia With Ringed Sideroblasts; Secondary Myelodysplastic Syndromes; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  19. Vorinostat in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-04-30

    Adult Acute Erythroid Leukemia (M6); Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia; Refractory Cytopenia With Multilineage Dysplasia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  20. Acute myelogenous leukemia (AML) -- children

    MedlinePlus

    ... Leung WH, Pounds S, Cao X, e t al. Definition of cure in childhood acute myeloid leukemia. Cancer . 2014 Aug ... MD, Medical Oncologist, Fresno, CA. Review provided by VeriMed Healthcare Network. Also reviewed by ...

  1. Bendamustine Plus Alemtuzumab for Refractory Chronic Lymphocytic Leukemia (CLL)

    ClinicalTrials.gov

    2013-08-20

    Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Small Lymphocytic Lymphoma

  2. What Is Chronic Myelomonocytic Leukemia?

    MedlinePlus

    ... In this way CMML is more like a myeloproliferative disease ( myelo -- bone marrow, proliferative -- excessive growth). Chronic myeloid leukemia is an example of a myeloproliferative disease where there is an overproduction of white ...

  3. Chronic Myeloid Leukemia

    MedlinePlus

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, the bone marrow produces abnormal white blood cells. ...

  4. Chronic Lymphocytic Leukemia

    MedlinePlus

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, the bone marrow produces abnormal white blood cells. ...

  5. Acute Myeloid Leukemia

    MedlinePlus

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, however, the bone marrow produces abnormal white blood ...

  6. Acute Lymphocytic Leukemia

    MedlinePlus

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, however, the bone marrow produces abnormal white blood ...

  7. Management of chronic lymphocytic leukemia

    PubMed Central

    Ghia, Paolo; Hallek, Michael

    2014-01-01

    In the last decade, the management of chronic lymphocytic leukemia has undergone profound changes that have been driven by an improved understanding of the biology of the disease and the approval of several new drugs. Moreover, many novel drugs are currently under evaluation for rapid approval or have been approved by regulatory agencies, further broadening the available therapeutic armamentarium for patients with chronic lymphocytic leukemia. The use of novel biological and genetic parameters combined with a careful clinical evaluation allows us to dissect some of the heterogeneity of the disease and to distinguish patients with a very mild onset and course, who often will not need any treatment, from those with an intermediate prognosis and a third group with a very aggressive course (high-risk leukemia). On this background, it becomes increasingly challenging to select the right treatment strategy. In this paper, we describe our own approach to the management of different patients with chronic lymphocytic leukemia. PMID:24881042

  8. Gemtuzumab Ozogamicin in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-09-23

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia

  9. Decitabine in Treating Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-05-18

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  10. [Chronic lymphocytic leukemia].

    PubMed

    Aoki, Sadao

    2016-03-01

    Currently, several novel drugs are available for chronic lymphocytic leukemia (CLL) in Western countries. Of these drugs, those that inhibit the B-cell receptor (BCR) signaling pathway are the most promising. Ibrutinib inhibits BTK in the BCR pathway and can be administered orally. The results of several clinical trials suggest that ibrutinib is highly effective against relapsed/resistant (RR) and treatment-naïve CLL. Furthermore, ibrutinib shows equivalent efficacy on CLL with the 17p deletion. Idelalisib, which also blocks the BCR pathway, inhibits PIK3delta and induces CLL cell death. Clinical trials have shown outstanding efficacy of idelalisib against RR-CLL, especially when administered with antiCD20 antibodies. This drug is also effective against CLL with the 17p deletion. ABT-199 is another novel drug; it inhibits BCL2 signaling, not the BCR pathway, and can be administered orally. The efficacy of ABT-199 against RR-CLL has been demonstrated in a number of clinical trials. These drugs have only mild toxicity and can be used for patients in poor general condition. Unfortunately, none of these drugs have yet been approved in Japan. Rapid resolution of the 'drug lag' problem is necessary. PMID:27076234

  11. Lenalidomide in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-07-25

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  12. How Is Acute Lymphocytic Leukemia Classified?

    MedlinePlus

    ... How is acute lymphocytic leukemia treated? How is acute lymphocytic leukemia classified? Most types of cancers are assigned numbered ... ALL are now named as follows: B-cell ALL Early pre-B ALL (also called pro-B ...

  13. General Information about Adult Acute Lymphoblastic Leukemia

    MedlinePlus

    ... Acute Lymphoblastic Leukemia Treatment (PDQ®)–Patient Version General Information About Adult Acute Lymphoblastic Leukemia Go to Health ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  14. General Information about Adult Acute Myeloid Leukemia

    MedlinePlus

    ... Acute Myeloid Leukemia Treatment (PDQ®)–Patient Version General Information About Adult Acute Myeloid Leukemia Go to Health ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  15. General Information about Childhood Acute Lymphoblastic Leukemia

    MedlinePlus

    ... Acute Lymphoblastic Leukemia Treatment (PDQ®)–Patient Version General Information About Childhood Acute Lymphoblastic Leukemia Go to Health ... the PDQ Pediatric Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  16. Targeted Therapy for Acute Lymphocytic Leukemia

    MedlinePlus

    ... Monoclonal antibodies to treat acute lymphocytic leukemia Targeted therapy for acute lymphocytic leukemia In recent years, new ... These drugs are often referred to as targeted therapy. Some of these drugs can be useful in ...

  17. Treatment Options for Adult Acute Myeloid Leukemia

    MedlinePlus

    ... Treatment Childhood AML Treatment Research Adult Acute Myeloid Leukemia Treatment (PDQ®)–Patient Version General Information About Adult Acute Myeloid Leukemia Go to Health Professional Version Key Points Adult ...

  18. Stages of Adult Acute Myeloid Leukemia

    MedlinePlus

    ... Treatment Childhood AML Treatment Research Adult Acute Myeloid Leukemia Treatment (PDQ®)–Patient Version General Information About Adult Acute Myeloid Leukemia Go to Health Professional Version Key Points Adult ...

  19. Treatment Option Overview (Adult Acute Myeloid Leukemia)

    MedlinePlus

    ... Treatment Childhood AML Treatment Research Adult Acute Myeloid Leukemia Treatment (PDQ®)–Patient Version General Information About Adult Acute Myeloid Leukemia Go to Health Professional Version Key Points Adult ...

  20. Fludarabine Phosphate and Total-Body Irradiation Before Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Chronic Lymphocytic Leukemia or Small Lymphocytic Leukemia

    ClinicalTrials.gov

    2016-07-18

    B-Cell Prolymphocytic Leukemia; Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Chronic Lymphocytic Leukemia; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; T-Cell Prolymphocytic Leukemia

  1. Acute myeloid leukemia.

    PubMed

    Appelbaum, F R; Rowe, J M; Radich, J; Dick, J E

    2001-01-01

    Through the hard work of a large number of investigators, the biology of acute myeloid leukemia (AML) is becoming increasingly well understood, and as a consequence, new therapeutic targets have been identified and new model systems have been developed for testing novel therapies. How these new therapies can be most effectively studied in the clinic and whether they will ultimately improve cure rates are questions of enormous importance. In this article, Dr. Jacob Rowe presents a summary of the current state-of-the-art therapy for adult AML. His contribution emphasizes the fact that AML is not a single disease, but a number of related diseases each distinguished by unique cytogenetic markers which in turn help determine the most appropriate treatment. Dr. Jerald Radich continues on this theme, emphasizing how these cytogenetic abnormalities, as well as other mutations, give rise to abnormal signal transduction and how these abnormal pathways may represent ideal targets for the development of new therapeutics. A third contribution by Dr. Frederick Appelbaum describes how AML might be made the target of immunologic attack. Specifically, strategies using antibody-based or cell-based immunotherapies are described including the use of unmodified antibodies, drug conjugates, radioimmunoconjugates, non-ablative allogeneic transplantation, T cell adoptive immunotherapy and AML vaccines. Finally, Dr. John Dick provides a review of the development of the NOD/SCID mouse model of human AML emphasizing both what it has taught us about the biology of the disease as well as how it can be used to test new therapies. Taken together, these reviews are meant to help us understand more about where we are in the treatment of AML, where we can go and how we might get there. PMID:11722979

  2. Risk-Based Classification System of Patients With Newly Diagnosed Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-04-07

    Adult B Acute Lymphoblastic Leukemia; Adult T Acute Lymphoblastic Leukemia; Childhood B Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  3. Iodine I 131 Monoclonal Antibody BC8, Fludarabine Phosphate, Cyclophosphamide, Total-Body Irradiation and Donor Bone Marrow Transplant in Treating Patients With Advanced Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or High-Risk Myelodysplastic Syndrome

    ClinicalTrials.gov

    2016-07-18

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Chronic Myelomonocytic Leukemia; Previously Treated Myelodysplastic Syndrome; Refractory Anemia With Excess Blasts; Refractory Anemia With Ring Sideroblasts; Refractory Cytopenia With Multilineage Dysplasia; Refractory Cytopenia With Multilineage Dysplasia and Ring Sideroblasts

  4. General Information about Chronic Myelogenous Leukemia

    MedlinePlus

    ... Chronic Myelogenous Leukemia Treatment (PDQ®)–Patient Version General Information About Chronic Myelogenous Leukemia Go to Health Professional ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  5. Tipifarnib in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-03-19

    Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  6. Acute lymphoblastic leukemia (ALL)

    MedlinePlus

    ... WBC) count Platelet count Bone marrow biopsy Lumbar puncture (spinal tap) to check for leukemia cells in ... home Managing your pets during chemotherapy Bleeding problems Dry mouth Eating enough calories Safe eating during cancer ...

  7. Acute myeloid leukemia

    MedlinePlus

    ... a low number of platelets. A white blood cell count ( WBC ) can be high, low, or normal. Bone ... and overall health How high your white blood cell count was Certain genetic changes in the leukemia cells ...

  8. 8-Chloro-Adenosine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-05-11

    Recurrent Adult Acute Myeloid Leukemia; Relapsed Adult Acute Myeloid Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia Arising From Previous Myeloproliferative Disorder

  9. High Throughput Drug Sensitivity Assay and Genomics- Guided Treatment of Patients With Relapsed or Refractory Acute Leukemia

    ClinicalTrials.gov

    2016-05-19

    Acute Leukemia of Ambiguous Lineage; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Adult Acute Lymphoblastic Leukemia; Refractory Childhood Acute Lymphoblastic Leukemia

  10. Targeting chronic myeloid leukemia stem cells.

    PubMed

    Kinstrie, Ross; Copland, Mhairi

    2013-03-01

    Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder that is characterized by the presence of the fusion oncogene BCR-ABL that encodes the tyrosine kinase BCR-ABL. Constitutive expression of BCR-ABL leads to the unregulated production of mature myeloid cells in the bone marrow and their subsequent release into the blood. Untreated, CML will progress from a chronic to accelerated phase over a number of years before quickly proceeding to a terminal blast crisis phase, reminiscent of acute leukemia. The advent of tyrosine kinase inhibitors has led to much improved management of the disease, but these drugs do not provide a cure as they are unable to eradicate the most primitive, quiescent fraction of CML stem cells. This review looks at recent research into targeting CML stem cells and focuses on major signalling pathways of interest. PMID:23264204

  11. Treosulfan, Fludarabine Phosphate, and Total Body Irradiation Before Donor Stem Cell Transplant in Treating Patients With Myelodysplastic Syndrome or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-06-20

    Acute Myeloid Leukemia in Remission; Chronic Myelomonocytic Leukemia; Minimal Residual Disease; Myelodysplastic Syndrome; Myelodysplastic/Myeloproliferative Neoplasm; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable

  12. Biomarkers in Bone Marrow Samples From Pediatric Patients With High-Risk Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-05-17

    Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Recurrent Childhood Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  13. Idarubicin and Cytarabine With or Without Bevacizumab in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-01-23

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  14. Bortezomib and Combination Chemotherapy in Treating Younger Patients With Recurrent, Refractory, or Secondary Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-05-13

    Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myelomonocytic Leukemia (M4); Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  15. Decitabine With or Without Bortezomib in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-03-14

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  16. Clofarabine, Cytarabine, and Filgrastim in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia, Advanced Myelodysplastic Syndrome, and/or Advanced Myeloproliferative Neoplasm

    ClinicalTrials.gov

    2015-12-28

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Refractory Anemia With Excess Blasts; Untreated Adult Acute Myeloid Leukemia; Myeloproliferative Neoplasm With 10% Blasts or Higher

  17. Entinostat and Clofarabine in Treating Patients With Newly Diagnosed, Relapsed, or Refractory Poor-Risk Acute Lymphoblastic Leukemia or Bilineage/Biphenotypic Leukemia

    ClinicalTrials.gov

    2014-07-16

    Acute Leukemias of Ambiguous Lineage; Philadelphia Chromosome Negative Adult Precursor Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia

  18. Combination Chemotherapy With or Without Donor Stem Cell Transplant in Treating Patients With Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-09-09

    Adult Acute Lymphoblastic Leukemia in Remission; Adult B Acute Lymphoblastic Leukemia; Adult B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Adult L1 Acute Lymphoblastic Leukemia; Adult L2 Acute Lymphoblastic Leukemia; Adult T Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia

  19. Genetics Home Reference: core binding factor acute myeloid leukemia

    MedlinePlus

    ... acute myeloid leukemia core binding factor acute myeloid leukemia Enable Javascript to view the expand/collapse boxes. ... Close All Description Core binding factor acute myeloid leukemia (CBF-AML) is one form of a cancer ...

  20. Alemtuzumab and Combination Chemotherapy in Treating Patients With Untreated Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2014-03-20

    Acute Undifferentiated Leukemia; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; L1 Adult Acute Lymphoblastic Leukemia; L1 Childhood Acute Lymphoblastic Leukemia; L2 Adult Acute Lymphoblastic Leukemia; L2 Childhood Acute Lymphoblastic Leukemia; Philadelphia Chromosome Negative Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Childhood Precursor Acute Lymphoblastic Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  1. Combination Chemotherapy and Imatinib Mesylate in Treating Children With Relapsed Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2013-10-07

    L1 Childhood Acute Lymphoblastic Leukemia; L2 Childhood Acute Lymphoblastic Leukemia; Non-T, Non-B Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  2. Nivolumab and Dasatinib in Treating Patients With Relapsed or Refractory Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-06-28

    B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Refractory Adult Acute Lymphoblastic Leukemia; Refractory Childhood Acute Lymphoblastic Leukemia

  3. Studying Biomarkers in Samples From Younger Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-05-17

    Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myeloid Leukemia/Other Myeloid Malignancies; Childhood Acute Myelomonocytic Leukemia (M4)

  4. Vosaroxin and Infusional Cytarabine in Treating Patients With Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-03-10

    Acute Myeloid Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia With Multilineage Dysplasia; Myeloid Sarcoma; Secondary Acute Myeloid Leukemia; Therapy-Related Acute Myeloid Leukemia; Therapy-Related Myelodysplastic Syndrome

  5. Novel and Emerging Drugs for Acute Myeloid Leukemia

    PubMed Central

    Stein, E.M.; Tallman, M.S.

    2014-01-01

    Acute myeloid leukemia (AML) is a challenging disease to treat with the majority of patients dying from their illness. While overall survival has been markedly prolonged in acute promyelocytic leukemia (APL), survival in younger adults with other subtypes of AML has only modestly improved over the last twenty years. Physicians who treat AML eagerly await drugs like Imatinib for chronic myeloid leukemia, Cladribine for hairy cell leukemia, and Rituximab for non-Hodgkin Lymphoma which have had an important impact on improving outcome. Recent research efforts have focused on refining traditional chemotherapeutic agents to make them more active in AML, targeting specific genetic mutations in myeloid leukemia cells, and utilizing novel agents such as Lenalidomide that have shown activity in other hematologic malignancies. Here, we focus on reviewing the recent literature on agents that may assume a role in clinical practice for patients with AML over the next five years. PMID:22483153

  6. High frequency of GATA2 mutations in patients with mild chronic neutropenia evolving to MonoMac syndrome, myelodysplasia, and acute myeloid leukemia

    PubMed Central

    Pasquet, Marlène; Bellanné-Chantelot, Christine; Tavitian, Suzanne; Prade, Naïs; Beaupain, Blandine; LaRochelle, Olivier; Petit, Arnaud; Rohrlich, Pierre; Ferrand, Christophe; Van Den Neste, Eric; Poirel, Hélène A.; Lamy, Thierry; Ouachée-Chardin, Marie; Mansat-De Mas, Véronique; Corre, Jill; Récher, Christian; Plat, Geneviève; Bachelerie, Françoise; Donadieu, Jean

    2013-01-01

    Congenital neutropenia is a group of genetic disorders that involve chronic neutropenia and susceptibility to infections. These neutropenias may be isolated or associated with immunologic defects or extra-hematopoietic manifestations. Complications may occur as infectious diseases, but also less frequently as myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). Recently, the transcription factor GATA2 has been identified as a new predisposing gene for familial AML/MDS. In the present study, we describe the initial identification by exome sequencing of a GATA2 R396Q mutation in a family with a history of chronic mild neutropenia evolving to AML and/or MDS. The subsequent analysis of the French Severe Chronic Neutropenia Registry allowed the identification of 6 additional pedigrees and 10 patients with 6 different and not previously reported GATA2 mutations (R204X, E224X, R330X, A372T, M388V, and a complete deletion of the GATA2 locus). The frequent evolution to MDS and AML in these patients reveals the importance of screening GATA2 in chronic neutropenia associated with monocytopenia because of the frequent hematopoietic transformation, variable clinical expression at onset, and the need for aggressive therapy in patients with poor clinical outcome. PMID:23223431

  7. What's New in Chronic Lymphocytic Leukemia Research and Treatment?

    MedlinePlus

    ... Topic Additional resources for chronic lymphocytic leukemia What`s new in chronic lymphocytic leukemia research and treatment? Many ... person's outlook and whether they will need treatment. New drugs for chronic lymphocytic leukemia Dozens of new ...

  8. Genetics Home Reference: PDGFRB-associated chronic eosinophilic leukemia

    MedlinePlus

    ... associated chronic eosinophilic leukemia PDGFRB-associated chronic eosinophilic leukemia Enable Javascript to view the expand/collapse boxes. ... All Close All Description PDGFRB -associated chronic eosinophilic leukemia is a type of cancer of blood-forming ...

  9. Chronic Myelomonocytic Leukemia: Focus on Clinical Practice.

    PubMed

    Patnaik, Mrinal M; Tefferi, Ayalew

    2016-02-01

    Chronic myelomonocytic leukemia (CMML) is a clonal stem cell disorder with features that overlap those of myelodysplastic syndromes (MDSs) and myeloproliferative neoplasms (MPNs). Chronic myelomonocytic leukemia often results in peripheral blood monocytosis and has an inherent tendency to transform to acute myeloid leukemia. Clonal cytogenetic changes are seen in approximately 30% of patients, and molecular abnormalities are seen in more than 90%. Gene mutations involving TET2 (∼60%), SRSF2 (∼50%), ASXL1 (∼40%), and RAS (∼30%) are frequent, with nonsense and frameshift ASXL1 mutations being the only mutations identified thus far to have an independent negative prognostic effect on overall survival. Contemporary molecularly integrated prognostic models (inclusive of ASXL1 mutations) include the Molecular Mayo Model and the Groupe Français des Myélodysplasies model. Given the lack of formal treatment and response criteria, management of CMML is often extrapolated from MDS and MPN, with allogeneic stem cell transplant being the only curative option. Hydroxyurea and other cytoreductive agents have been used to control MPN-like features, while epigenetic modifiers such as hypomethylating agents have been used for MDS-like features. Given the relatively poor response to these agents and the inherent risks associated with hematopoietic stem cell transplant, newer drugs exploiting molecular and epigenetic abnormalities in CMML are being developed. The creation of CMML-specific response criteria is a much needed step in order to improve clinical outcomes. PMID:26848006

  10. Epidemiology of acute lymphoblastic leukemia

    SciTech Connect

    Pendergrass, T.W.

    1985-06-01

    Although the etiology of acute leukemia is largely unknown, some facets of the puzzle are becoming clarified. Recognition of important patterns in age-specific mortality rates has suggested that events early in life, perhaps even prenatally, may have an influence on developing leukemia in childhood. The racial differences evident in mortality, incidence, and immunologic subtype of ALL suggest either differences in exposures to certain factors or differences in responses to those factors by white children. Hereditary factors appear to play a role. Familial and hereditary conditions exist that have high incidences of acute leukemia. Chromosomal anomalies are common in these conditions. Viral infections may play a role by contributing to alteration in genetic material through incorporation of the viral genome. How that virus is dealt with after primary infection seems important. The presence of immunodeficiency may allow wider dissemination or enhanced replication of such viruses, thereby increasing the likelihood of cellular transformation to an abnormal cell. Proliferation of that malignant cell to a clone may depend on other cofactors. Perhaps prolonged exposure to substances like benzene or alkylating agents may enhance these interactions between virus and genetic material. Does this change DNA repair mechanisms. Are viral infections handled differently. Is viral genomic information more easily integrated into host cells. Ionizing radiation has multiple effects. Alteration in genetic material occurs both at the molecular and chromosomal levels. DNA may be altered, lost, or added in the cell's attempt to recover from the injury.

  11. Azacitidine, Mitoxantrone Hydrochloride, and Etoposide in Treating Older Patients With Poor-Prognosis Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-08-18

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  12. 3-AP and Fludarabine in Treating Patients With Myeloproliferative Disorders, Chronic Myelomonocytic Leukemia, or Accelerated Phase or Blastic Phase Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2014-12-16

    Accelerated Phase Chronic Myelogenous Leukemia; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Essential Thrombocythemia; Philadelphia Chromosome Negative Chronic Myelogenous Leukemia; Polycythemia Vera; Primary Myelofibrosis; Relapsing Chronic Myelogenous Leukemia

  13. Chronic Lymphocytic Leukemia: Current Concepts.

    PubMed

    Yu, Eun-Mi; Kittai, Adam; Tabbara, Imad A

    2015-10-01

    Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in adults, and while in early, asymptomatic stages treatment is not indicated, the threat to the quality of life and increased mortality of patients posed by more advanced-stage disease necessitate therapeutic intervention. Guidelines of when and how to treat are not well-established because CLL is a disease of the elderly and it is important to balance preservation of functional status and control of the disease. Advances in molecular and genetic profiling has led to the ability to identify sub-groups of patients with CLL whose disease may respond to selected therapy. This review discusses current standard therapies in the major sub-groups of CLL based on age and functional status, in both the front-line and relapsed/refractory settings. It also provides a concise review of novel agents that have shown considerable efficacy in CLL. PMID:26408673

  14. Genetics Home Reference: acute promyelocytic leukemia

    MedlinePlus

    ... acute myeloid leukemia, a cancer of the blood-forming tissue ( bone marrow ). In normal bone marrow, hematopoietic ... 7186-203. Review. Citation on PubMed de Thé H, Chen Z. Acute promyelocytic leukaemia: novel insights into ...

  15. Omacetaxine Mepesuccinate for Chronic Myeloid Leukemia.

    PubMed

    Rosshandler, Yasmin; Shen, Ann Q; Cortes, Jorge; Khoury, Hanna Jean

    2016-05-01

    Omacetaxine mepesuccinate is approved by the Food and Drug Administration in the United States for the treatment of chronic myeloid leukemia in chronic or accelerated phase resistant to two or more tyrosine kinase inhibitors. This review summarizes the mode of action, pharmacokinetics, efficacy and safety of omacetaxine mepesuccinate. Omacetaxine mepesuccinate has activity in chronic myeloid leukemia, especially in the chronic phase, regardless of the presence of ABL1 kinase domain mutations. Omacetaxine mepesuccinate has distinct but manageable adverse events profile. Omacetaxine mepesuccinate is a treatment option for a subset of patients with refractory chronic myeloid leukemia. PMID:26853281

  16. Chronic neutrophilic leukemia associated with chronic lymphocytic leukemia.

    PubMed

    Ito, K; Usuki, K; Iki, S; Urabe, A

    1998-07-01

    We report on an 83-year-old male with chronic neutrophilic leukemia (CNL) associated initially with IgM monoclonal gammopathy and later with B cell chronic lymphocytic leukemia (CLL), in which the clone differed from that of the preceding monoclonal gammopathy. At initial presentation, the patient had hepatosplenomegaly, leukocytosis (29100 x 10(6)/l) with an increase of mature neutrophils (83%), 20q- chromosomal abnormality, an increased leukocyte alkaline phosphatase score, elevated serum levels of vitamin B12 and uric acid, a low serum level of granulocyte colony-stimulating factor, and high serum IgM (1015 mg/dl: lambda type M protein). Thereafter, lymphocytosis developed gradually. Three years after the initial presentation, the patient had no serum M protein, but showed evidence of leukocytosis (36600 x 10(6)/l) with 20q- chromosomal abnormality and an increase of mature neutrophils (51%) and small lymphocytes (43.5%), CD5+/19+/20+/HLA-DR+ and surface membrane IgM+/D+/kappa+. Gene rearrangements of the immunoglobulin heavy and kappa light chains were also present. To our knowledge, this is the first reported case of CNL associated with CLL. PMID:9713172

  17. Therapeutic Autologous Lymphocytes and Aldesleukin in Treating Patients With High-Risk or Recurrent Myeloid Leukemia After Undergoing Donor Stem Cell Transplant

    ClinicalTrials.gov

    2011-07-12

    Accelerated Phase Chronic Myelogenous Leukemia; Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia

  18. Tailoring of chronic lymphatic leukemia therapy

    PubMed Central

    Elhefni, Ashraf M

    2013-01-01

    Chronic lymphocytic leukemia (CLL) remains an incurable disease, with all patients who require therapy destined to relapse and understanding of the pathophysiology of chronic lymphocytic leukemia has advanced significantly. It is now clear that chronic lymphocytic leukemia is a relatively proliferative disorder that requires the help of its microenvironment to be maintained and to progress. The stimulation of the chronic lymphatic leukemia cell occurs in most, if not all, patients through antigen stimulation via the B cell receptors. In addition, there is now a appreciation of the role of the p53 pathway leading to chemoresistance and the elucidation of the molecular and intracellular signaling mechanisms of disease is just beginning to facilitate the development of several targeted small molecules that promise to revolutionize the treatment of Chronic lymphocytic leukemia. PMID:23997983

  19. Clinical and Pathologic Features of Secondary Acute Promyelocytic Leukemia

    PubMed Central

    Duffield, Amy S.; Aoki, Joseph; Levis, Mark; Cowan, Kathleen; Gocke, Christopher D.; Burns, Kathleen H.; Borowitz, Michael J.; Vuica-Ross, Milena

    2013-01-01

    Acute promyelocytic leukemia (APL) is a relatively common form of acute myeloid leukemia (AML) that has an excellent prognosis. In contrast, secondary acute myeloid leukemias, including therapy-related AML and AML with myelodysplasia-related changes, have a relatively poor prognosis. We identified 9 cases of APL at our institution in which there was a history of chemotherapy, radiotherapy, chronic immunosuppression, or antecedent myelodysplastic syndrome. The clinical and pathologic findings in these cases of secondary APL were compared with the clinical and pathologic findings in cases of de novo APL. We found that secondary and de novo APL had abnormal promyelocytes with similar morphologic and immunophenotypic features, comparable cytogenetic findings, comparable rates of FMS-like tyrosine kinase mutations, and similar rates of recurrent disease and death. These data suggest that secondary APL is similar to de novo APL and, thus, should be considered distinct from other secondary acute myeloid neoplasms. PMID:22338051

  20. What Are the Key Statistics about Acute Myeloid Leukemia?

    MedlinePlus

    ... for acute myeloid leukemia? What are the key statistics about acute myeloid leukemia? The American Cancer Society’s ... myeloid leukemia .” Visit the American Cancer Society’s Cancer Statistics Center for more key statistics. Last Medical Review: ...

  1. What Should You Ask Your Doctor about Acute Lymphocytic Leukemia?

    MedlinePlus

    ... leukemia? What should you ask your doctor about acute lymphocytic leukemia? It is important to have frank, honest discussions ... answer many of your questions. What kind of acute lymphocytic leukemia (ALL) do I have? Do I have any ...

  2. What Are the Key Statistics about Acute Lymphocytic Leukemia?

    MedlinePlus

    ... lymphocytic leukemia? What are the key statistics about acute lymphocytic leukemia? The American Cancer Society’s estimates for acute lymphocytic leukemia (ALL) in the United States for 2016 (including ...

  3. Immunotherapy for acute myeloid leukemia.

    PubMed

    Jurcic, Joseph G

    2005-09-01

    Immunotherapeutic strategies have become part of standard cancer treatment. Chimeric and humanized antibodies have demonstrated activity against a variety of tumors. Although the humanized anti-CD33 antibody HuM195 has only modest activity against overt acute myeloid leukemia (AML), it can eliminate minimal residual disease in acute promyelocytic leukemia. High-dose radioimmunotherapy with b-particle-emitting isotopes targeting CD33, CD45, and CD66 can potentially allow intensification of antileukemic therapy before hematopoietic stem cell transplantation. Conversely, a-particle immunotherapy with isotopes such as bismuth-213 or actinium-225 offers the possibility of selective tumor cell kill while sparing surrounding normal tissues. Targeted chemotherapy with the anti-CD33- calicheamicin construct gemtuzumab ozogamicin has produced remissions in relapsed AML and appears promising when used in combination with standard chemotherapy for newly diagnosed AML. T-cell recognition of peptide antigens presented on the cell surface in combination with major histocompatibility complex antigen provides another potentially promising approach for the treatment of AML. PMID:16091194

  4. Acute leukemias in children with Down syndrome.

    PubMed

    Seewald, Laura; Taub, Jeffrey W; Maloney, Kelly W; McCabe, Edward R B

    2012-09-01

    Children with Down syndrome (DS) often present with hematopoietic abnormalities, and are at increased risk of developing leukemia. Specifically, 3-10% of newborns with DS are diagnosed with transient myeloproliferative disease, and children with DS are 500 times more likely to develop acute megakaryoblastic leukemia (AMKL) and 20 times more likely to develop acute lymphoblastic leukemia (ALL) than typical children. This review examines the characteristics of these leukemias and their development in the unique genetic background of trisomy 21. A discussion is also provided for areas of future research and potential therapeutic development. PMID:22867885

  5. Eltrombopag Olamine in Improving Platelet Recovery in Older Patients With Acute Myeloid Leukemia Undergoing Chemotherapy

    ClinicalTrials.gov

    2016-02-17

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia

  6. Monoclonal Antibody Therapy in Treating Patients With Ovarian Epithelial Cancer, Melanoma, Acute Myeloid Leukemia, Myelodysplastic Syndrome, or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-01-09

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Melanoma; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Stage IV Melanoma; Stage IV Non-small Cell Lung Cancer

  7. Lenalidomide and Vaccine Therapy in Treating Patients With Early-Stage Asymptomatic Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2016-06-10

    Chronic Lymphocytic Leukemia; Stage 0 Chronic Lymphocytic Leukemia; Stage I Chronic Lymphocytic Leukemia; Stage I Small Lymphocytic Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Small Lymphocytic Lymphoma

  8. Combination Chemotherapy in Treating Young Patients With Newly Diagnosed High-Risk Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-08-23

    B Acute Lymphoblastic Leukemia; Bone Necrosis; Central Nervous System Leukemia; Cognitive Side Effects of Cancer Therapy; Neurotoxicity Syndrome; Pain; Testicular Leukemia; Therapy-Related Toxicity; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  9. Treatment Option Overview (Childhood Acute Lymphoblastic Leukemia)

    MedlinePlus

    ... recovery) and treatment options. Childhood acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... genetic conditions affect the risk of having childhood ALL. Anything that increases your risk of getting a ...

  10. Stages of Adult Acute Lymphoblastic Leukemia

    MedlinePlus

    ... recovery) and treatment options. Adult acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... to radiation may increase the risk of developing ALL. Anything that increases your risk of getting a ...

  11. Risk Groups for Childhood Acute Lymphoblastic Leukemia

    MedlinePlus

    ... recovery) and treatment options. Childhood acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... genetic conditions affect the risk of having childhood ALL. Anything that increases your risk of getting a ...

  12. Treatment Options for Adult Acute Lymphoblastic Leukemia

    MedlinePlus

    ... recovery) and treatment options. Adult acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... to radiation may increase the risk of developing ALL. Anything that increases your risk of getting a ...

  13. Treatment Options for Childhood Acute Lymphoblastic Leukemia

    MedlinePlus

    ... recovery) and treatment options. Childhood acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... genetic conditions affect the risk of having childhood ALL. Anything that increases your risk of getting a ...

  14. Treatment Option Overview (Adult Acute Lymphoblastic Leukemia)

    MedlinePlus

    ... recovery) and treatment options. Adult acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... to radiation may increase the risk of developing ALL. Anything that increases your risk of getting a ...

  15. Combination Chemotherapy in Treating Young Patients With Down Syndrome and Acute Myeloid Leukemia or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2016-03-16

    Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Childhood Myelodysplastic Syndromes; de Novo Myelodysplastic Syndromes; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  16. Acute Appendicitis Secondary to Acute Promyelocytic Leukemia

    PubMed Central

    Rodriguez, Eduardo A.; Lopez, Marvin A.; Valluri, Kartik; Wang, Danlu; Fischer, Andrew; Perdomo, Tatiana

    2015-01-01

    Patient: Female, 43 Final Diagnosis: Myeloid sarcoma appendicitis Symptoms: Abdominal pain • chills • fever Medication: — Clinical Procedure: Laparoscopic appendectomy, bone marrow biopsy Specialty: Gastroenterology and Hepatology Objective: Rare disease Background: The gastrointestinal tract is a rare site for extramedullary involvement in acute promyelocytic leukemia (APL). Case Report: A 43-year-old female with no past medical history presented complaining of mild abdominal pain, fever, and chills for the past day. On examination, she was tachycardic and febrile, with mild tenderness of her right lower quadrant and without signs of peritoneal irritation. Laboratory examination revealed pancytopenia and DIC, with a fibrinogen level of 290 mg/dL. CT of the abdomen showed a thickened and hyperemic appendix without perforation or abscess, compatible with acute appendicitis. The patient was given IV broad-spectrum antibiotics and was transfused with packed red blood cells and platelets. She underwent uncomplicated laparoscopic appendectomy and bone marrow biopsy, which revealed neo-plastic cells of 90% of the total bone marrow cellularity. Flow cytometry indicated presence of 92.4% of immature myeloid cells with t (15: 17) and q (22: 12) mutations, and FISH analysis for PML-RARA demonstrated a long-form fusion transcript, positive for APL. Appendix pathology described leukemic infiltration with co-expression of myeloperoxidase and CD68, consistent with myeloid sarcoma of the appendix. The patient completed a course of daunorubicin, cytarabine, and all trans-retinoic acid. Repeat bone marrow biopsy demonstrated complete remission. She will follow up with her primary care physician and hematologist/oncologist. Conclusions: Myeloid sarcoma of the appendix in the setting of APL is very rare and it might play a role in the development of acute appendicitis. Urgent management, including bone marrow biopsy for definitive diagnosis and urgent surgical intervention

  17. Spliceosomal gene mutations are frequent events in the diverse mutational spectrum of chronic myelomonocytic leukemia but largely absent in juvenile myelomonocytic leukemia

    PubMed Central

    Kar, Sarah Abu; Jankowska, Anna; Makishima, Hideki; Visconte, Valeria; Jerez, Andres; Sugimoto, Yuka; Muramatsu, Hideki; Traina, Fabiola; Afable, Manuel; Guinta, Kathryn; Tiu, Ramon V.; Przychodzen, Bartlomiej; Sakaguchi, Hirotoshi; Kojima, Seiji; Sekeres, Mikkael A.; List, Alan F.; McDevitt, Michael A.; Maciejewski, Jaroslaw P.

    2013-01-01

    Chronic myelomonocytic leukemia is a heterogeneous disease with multifactorial molecular pathogenesis. Various recurrent somatic mutations have been detected alone or in combination in chronic myelomonocytic leukemia. Recently, recurrent mutations in spliceosomal genes have been discovered. We investigated the contribution of U2AF1, SRSF2 and SF3B1 mutations in the pathogenesis of chronic myelomonocytic leukemia and closely related diseases. We genotyped a cohort of patients with chronic myelomonocytic leukemia, secondary acute myeloid leukemia derived from chronic myelomonocytic leukemia and juvenile myelomonocytic leukemia for somatic mutations in U2AF1, SRSF2, SF3B1 and in the other 12 most frequently affected genes in these conditions. Chromosomal abnormalities were assessed by nucleotide polymorphism array-based karyotyping. The presence of molecular lesions was correlated with clinical endpoints. Mutations in SRSF2, U2AF1 and SF3B1 were found in 32%, 13% and 6% of cases of chronic myelomonocytic leukemia, secondary acute myeloid leukemia derived from chronic myelomonocytic leukemia and juvenile myelomonocytic leukemia, respectively. Spliceosomal genes were affected in various combinations with other mutations, including TET2, ASXL1, CBL, EZH2, RAS, IDH1/2, DNMT3A, TP53, UTX and RUNX1. Worse overall survival was associated with mutations in U2AF1 (P=0.047) and DNMT3A (P=0.015). RAS mutations had an impact on overall survival in secondary acute myeloid leukemia (P=0.0456). By comparison, our screening of juvenile myelomonocytic leukemia cases showed mutations in ASXL1 (4%), CBL (10%), and RAS (6%) but not in IDH1/2, TET2, EZH2, DNMT3A or the three spliceosomal genes. SRSF2 and U2AF1 along with TET2 (48%) and ASXL1 (38%) are frequently affected by somatic mutations in chronic myelomonocytic leukemia, quite distinctly from the profile seen in juvenile myelomonocytic leukemia. Our data also suggest that spliceosomal mutations are of ancestral origin. PMID:22773603

  18. Selumetinib in Treating Patients With Recurrent or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-07-06

    Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Promyelocytic Leukemia (M3); Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasms; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  19. S1312, Inotuzumab Ozogamicin and Combination Chemotherapy in Treating Patients With Relapsed or Refractory Acute Leukemia

    ClinicalTrials.gov

    2016-04-14

    Acute Leukemias of Ambiguous Lineage; B-cell Adult Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma

  20. Donor Stem Cell Transplant in Treating Patients With High Risk Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-08-29

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myeloid Leukemia in Remission; Childhood Acute Myelomonocytic Leukemia (M4); Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  1. Radioimmunotherapy for Treatment of Acute Leukemia.

    PubMed

    Bodet-Milin, Caroline; Kraeber-Bodéré, Françoise; Eugène, Thomas; Guérard, François; Gaschet, Joëlle; Bailly, Clément; Mougin, Marie; Bourgeois, Mickaël; Faivre-Chauvet, Alain; Chérel, Michel; Chevallier, Patrice

    2016-03-01

    Acute leukemias are characterized by accumulation of immature cells (blasts) and reduced production of healthy hematopoietic elements. According to the lineage origin, two major leukemias can be distinguished: acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL). Although the survival rate for pediatric ALL is close to 90%, half of the young adults with AML or ALL and approximately 90% of older patients with AML or ALL still die of their disease, raising the need for innovative therapeutic approaches. As almost all leukemic blasts express specific surface antigens, targeted immunotherapy appears to be particularly promising. However, published results of immunotherapy alone are generally modest. Radioimmunotherapy (RIT) brings additional therapeutic mechanisms using radiolabeled monoclonal antibodies (mAbs) directed to tumor antigens, thus adding radiobiological cytotoxicity to immunologic cytotoxicity. Because of the high radiosensitivity of tumor cells and the diffuse widespread nature of the disease, making it rapidly accessible to circulating radiolabeled mAbs, acute leukemias represent relevant indications for RIT. With the development of recombinant and humanized mAbs, innovative radionuclides, and more efficient radiolabeling and pretargeting techniques, RIT has significantly improved over the last 10 years. Different approaches of α and β RIT targeting CD22, CD33, CD45, or CD66 antigens have already been evaluated or are currently being developed in the treatment of acute leukemia. This review summarizes the preclinical and clinical studies demonstrating the potential of RIT in treatment of AML and ALL. PMID:26897718

  2. Selinexor and Chemotherapy in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-12-15

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  3. Clofarabine, Cytarabine, and G-CSF in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-05-05

    Acute Myeloid Leukemia; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia

  4. Vorinostat and Idarubicin in Treating Patients With Relapsed or Refractory Leukemia or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2013-09-27

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Blastic Phase Chronic Myelogenous Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  5. Lenalidomide in Treating Older Patients With Acute Myeloid Leukemia Who Have Undergone Stem Cell Transplant

    ClinicalTrials.gov

    2015-03-02

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia

  6. Alvocidib, Cytarabine, and Mitoxantrone in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-07-14

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  7. Alvocidib, Cytarabine, and Mitoxantrone in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-06-03

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  8. Azacitidine, Cytarabine, and Mitoxantrone Hydrochloride in Treating Patients With High-Risk Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-01-06

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  9. Choline Magnesium Trisalicylate and Combination Chemotherapy in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-08

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  10. Omacetaxine Mepesuccinate, Cytarabine, and Decitabine in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-04-05

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  11. Eltrombopag Olamine in Treating Patients With Relapsed/Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-04-04

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  12. Levofloxacin in Preventing Infection in Young Patients With Acute Leukemia Receiving Chemotherapy or Undergoing Stem Cell Transplantation

    ClinicalTrials.gov

    2016-04-08

    Acute Leukemias of Ambiguous Lineage; Bacterial Infection; Diarrhea; Fungal Infection; Musculoskeletal Complications; Neutropenia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  13. Management of acute myeloid leukemia during pregnancy.

    PubMed

    Avivi, Irit; Brenner, Benjamin

    2014-06-01

    Diagnosis of acute leukemia during pregnancy presents significant medical challenges. Pancytopenia, caused by bone marrow substitution with leukemic cells, impairs maternal and fetal health. Chemotherapeutic agents required to be immediately used to save the mother's life are likely to adversely affect fetal development and outcome, especially if administered at an early gestational stage. Patients diagnosed with acute leukemia during the first trimester are, therefore, recommended to undergo pregnancy termination. At later gestational stages, antileukemic therapy can be administered, although in this case, fetal outcome is still associated with increased incidence of growth restriction and loss. Special attention to the issue of future reproduction, adopting a personalized fertility preservation approach, is required. This article addresses these subjects, presenting women diagnosed with acute myeloid and acute promyelocytic leukemia in pregnancy. The rarity of this event, resulting in insufficient data, emphasizes the need for collaborative efforts to optimize management of this complicated clinical condition. PMID:25052751

  14. Bortezomib and Combination Chemotherapy in Treating Young Patients With Relapsed Acute Lymphoblastic Leukemia or Lymphoblastic Lymphoma

    ClinicalTrials.gov

    2014-09-30

    B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Lymphoblastic Lymphoma; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  15. Oblimersen, Cytarabine, and Daunorubicin in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-12-03

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  16. Bioelectrical Impedance Measurement for Predicting Treatment Outcome in Patients With Newly Diagnosed Acute Leukemia

    ClinicalTrials.gov

    2015-09-22

    Acute Undifferentiated Leukemia; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Mast Cell Leukemia; Myeloid/NK-cell Acute Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  17. What's New in Adult Acute Myeloid Leukemia Research and Treatment?

    MedlinePlus

    ... Topic Additional resources for acute myeloid leukemia What’s new in acute myeloid leukemia research and treatment? Researchers ... benefit from current treatments. Researchers are studying many new chemo drugs for use in AML, including: Sapacitabine, ...

  18. Ofatumumab, Pentostatin, and Cyclophosphamide in Treating Patients With Untreated Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2014-10-30

    Hematopoietic/Lymphoid Cancer; B-cell Chronic Lymphocytic Leukemia; Contiguous Stage II Small Lymphocytic Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Stage 0 Chronic Lymphocytic Leukemia; Stage I Chronic Lymphocytic Leukemia; Stage I Small Lymphocytic Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Small Lymphocytic Lymphoma

  19. Newly Diagnosed Acute Promyelocytic Leukemia

    PubMed Central

    Avvisati, Giuseppe

    2011-01-01

    Acute promyelocytic leukemia (APL) represents a medical emergency with a high rate of early mortality. As a consequence, as soon as the diagnosis is suspected based upon cytologic criteria, it is necessary to start all- trans retinoic acid (ATRA) treatment without delay. For patients with newly diagnosed APL, induction therapy with ATRA plus anthracycline based chemotherapy is recommended. At present the combination of arsenic trioxide plus ATRA should be considered for patients who are not candidates for anthracycline-based therapy. For pediatric and adult patients with APL aged < 60 years who achieve a CR with induction, I recommend 3 intensive courses of consolidation chemotherapy associated to ATRA, targeted on the basis of the risk group at diagnosis. In patients treated with a very intensive consolidation chemotherapy maintenance treatment can be omitted. However If a maintenance treatment has to be adopted I suggest the use of intermittent ATRA for 15 days every 3 months for a period of 2 years, rather than ATRA associated to chemotherapy. Moreover, taking into account the medical literature, a reduced dosage of ATRA ( 25 mg/m2) in pediatric patients and a consolidation chemotherapy of reduced intensity in elderly patients is recommended. Furthermore, in order to maximize survival, careful attention should be reserved to the coagulopathy and to the appearance of the differentiation syndrome. Finally, PCR for the PML/RARA fusion gene on a bone marrow specimen every three months for two years, and then every six months for additional three years are needed during the follow-up. PMID:22220261

  20. What Are the Key Statistics for Chronic Lymphocytic Leukemia?

    MedlinePlus

    ... for chronic lymphocytic leukemia? What are the key statistics for chronic lymphocytic leukemia? The American Cancer Society's ... in children. Visit the American Cancer Society’s Cancer Statistics Center for more key statistics. Last Medical Review: ...

  1. What Should You Ask Your Doctor about Chronic Lymphocytic Leukemia?

    MedlinePlus

    ... chronic lymphocytic leukemia? What should you ask your doctor about chronic lymphocytic leukemia? As you cope with ... need to have honest, open discussions with your doctor. You should feel comfortable asking any question, no ...

  2. What Should You Ask Your Doctor about Chronic Myeloid Leukemia?

    MedlinePlus

    ... chronic myeloid leukemia? What should you ask your doctor about chronic myeloid leukemia? As you cope with ... need to have honest, open discussions with your doctor. You should feel free to ask any question ...

  3. What's New in Chronic Myeloid Leukemia Research and Treatment?

    MedlinePlus

    ... Topic Additional resources for chronic myeloid leukemia What`s new in chronic myeloid leukemia research and treatment? Studies ... such as cyclosporine or hydroxychloroquine, with a TKI. New drugs for CML Because researchers now know the ...

  4. Trebananib With or Without Low-Dose Cytarabine in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-25

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  5. Actual biological diagnosis of acute myeloblastic leukemia in children

    PubMed Central

    Buga Corbu, V; Glűck, A; Arion, C

    2014-01-01

    Abstract Acute myeloblastic leukemia accounts for approximately 20% of acute leukemias in children. The days the microscope represented the main tool in the diagnosis and classification of Acute Myeloblastic Leukemia seem to be very far. This review summarizes the current diagnosis of this malignancy, where the morphological, cytochemical, immunophenotyping, cytogenetic and molecular characterization represents the basement of a risk group related therapy. PMID:25408742

  6. Renal Presentation in Pediatric Acute Leukemia

    PubMed Central

    Sherief, Laila M.; Azab, Seham F.; Zakaria, Marwa M.; Kamal, M.; Elbasset Aly, Maha Abd; Ali, Adel; Alhady, Mohamed Abd

    2015-01-01

    Abstract Renal enlargement at time of diagnosis of acute leukemia is very unusual. We here in report 2 pediatric cases of acute leukemia who had their renal affection as the first presenting symptom with no evidences of blast cells in blood smear and none of classical presentation of acute leukemia. The first case is a 4-year-old girl who presented with pallor and abdominal enlargement. Magnetic resonance imaging showed bilateral symmetrical homogenous enlarged kidneys suggestive of infiltration. Complete blood picture (CBC) revealed white blood count 11 × 109/L, hemoglobin 8.7 g/dL and platelet count 197 × 109/L. Bone marrow aspiration was performed, and diagnosed precursor B-cell ALL was made. The child had an excellent response to modified CCG 1991 standard risk protocol of chemotherapy with sustained remission, but unfortunately relapsed 11 month after the end of therapy. The second child was 13-month old, presented with pallor, vomiting, abdominal enlargement, and oliguria 2 days before admission. Initial CBC showed bicytopenia, elevated blood urea, creatinine, and serum uric acid, while abdominal ultrasonography revealed bilateral renal enlargement. Bone marrow examination was done and showed 92% blast of biphenotypic nature. So, biphynotypic leukemia with bilateral renal enlargement and acute renal failure was subsequently diagnosed. The patients admitted to ICU and received supportive care and prednisolone. Renal function normalized and chemotherapy was started. The child achieved complete remission with marked reduction of kidney size but, unfortunately she died from sepsis in consolidation phase of therapy. This case demonstrates an unusual early renal enlargement in childhood acute leukemia. Renal involvement of acute leukemia should be considered in child presenting with unexplained bilateral renal enlargement with or without renal function abnormalities and bone marrow examination should be included in the workup. PMID:26376384

  7. Childhood acute leukemias are frequent in Mexico City: descriptive epidemiology

    PubMed Central

    2011-01-01

    Background Worldwide, acute leukemia is the most common type of childhood cancer. It is particularly common in the Hispanic populations residing in the United States, Costa Rica, and Mexico City. The objective of this study was to determine the incidence of acute leukemia in children who were diagnosed and treated in public hospitals in Mexico City. Methods Included in this study were those children, under 15 years of age and residents of Mexico City, who were diagnosed in 2006 and 2007 with leukemia, as determined by using the International Classification of Childhood Cancer. The average annual incidence rates (AAIR), and the standardized average annual incidence rates (SAAIR) per million children were calculated. We calculated crude, age- and sex-specific incidence rates and adjusted for age by the direct method with the world population as standard. We determined if there were a correlation between the incidence of acute leukemias in the various boroughs of Mexico City and either the number of agricultural hectares, the average number of persons per household, or the municipal human development index for Mexico (used as a reference of socio-economic level). Results Although a total of 610 new cases of leukemia were registered during 2006-2007, only 228 fit the criteria for inclusion in this study. The overall SAAIR was 57.6 per million children (95% CI, 46.9-68.3); acute lymphoblastic leukemia (ALL) was the most frequent type of leukemia, constituting 85.1% of the cases (SAAIR: 49.5 per million), followed by acute myeloblastic leukemia at 12.3% (SAAIR: 6.9 per million), and chronic myeloid leukemia at 1.7% (SAAIR: 0.9 per million). The 1-4 years age group had the highest SAAIR for ALL (77.7 per million). For cases of ALL, 73.2% had precursor B-cell immunophenotype (SAAIR: 35.8 per million) and 12.4% had T-cell immunophenotype (SAAIR 6.3 per million). The peak ages for ALL were 2-6 years and 8-10 years. More than half the children (58.8%) were classified as high

  8. Chronic myeloid leukemia: reminiscences and dreams

    PubMed Central

    Mughal, Tariq I.; Radich, Jerald P.; Deininger, Michael W.; Apperley, Jane F.; Hughes, Timothy P.; Harrison, Christine J.; Gambacorti-Passerini, Carlo; Saglio, Giuseppe; Cortes, Jorge; Daley, George Q.

    2016-01-01

    With the deaths of Janet Rowley and John Goldman in December 2013, the world lost two pioneers in the field of chronic myeloid leukemia. In 1973, Janet Rowley, unraveled the cytogenetic anatomy of the Philadelphia chromosome, which subsequently led to the identification of the BCR-ABL1 fusion gene and its principal pathogenetic role in the development of chronic myeloid leukemia. This work was also of major importance to support the idea that cytogenetic changes were drivers of leukemogenesis. John Goldman originally made seminal contributions to the use of autologous and allogeneic stem cell transplantation from the late 1970s onwards. Then, in collaboration with Brian Druker, he led efforts to develop ABL1 tyrosine kinase inhibitors for the treatment of patients with chronic myeloid leukemia in the late 1990s. He also led the global efforts to develop and harmonize methodology for molecular monitoring, and was an indefatigable organizer of international conferences. These conferences brought together clinicians and scientists, and accelerated the adoption of new therapies. The abundance of praise, tributes and testimonies expressed by many serve to illustrate the indelible impressions these two passionate and affable scholars made on so many people’s lives. This tribute provides an outline of the remarkable story of chronic myeloid leukemia, and in writing it, it is clear that the historical triumph of biomedical science over this leukemia cannot be considered without appreciating the work of both Janet Rowley and John Goldman. PMID:27132280

  9. Chronic myeloid leukemia: reminiscences and dreams.

    PubMed

    Mughal, Tariq I; Radich, Jerald P; Deininger, Michael W; Apperley, Jane F; Hughes, Timothy P; Harrison, Christine J; Gambacorti-Passerini, Carlo; Saglio, Giuseppe; Cortes, Jorge; Daley, George Q

    2016-05-01

    With the deaths of Janet Rowley and John Goldman in December 2013, the world lost two pioneers in the field of chronic myeloid leukemia. In 1973, Janet Rowley, unraveled the cytogenetic anatomy of the Philadelphia chromosome, which subsequently led to the identification of the BCR-ABL1 fusion gene and its principal pathogenetic role in the development of chronic myeloid leukemia. This work was also of major importance to support the idea that cytogenetic changes were drivers of leukemogenesis. John Goldman originally made seminal contributions to the use of autologous and allogeneic stem cell transplantation from the late 1970s onwards. Then, in collaboration with Brian Druker, he led efforts to develop ABL1 tyrosine kinase inhibitors for the treatment of patients with chronic myeloid leukemia in the late 1990s. He also led the global efforts to develop and harmonize methodology for molecular monitoring, and was an indefatigable organizer of international conferences. These conferences brought together clinicians and scientists, and accelerated the adoption of new therapies. The abundance of praise, tributes and testimonies expressed by many serve to illustrate the indelible impressions these two passionate and affable scholars made on so many people's lives. This tribute provides an outline of the remarkable story of chronic myeloid leukemia, and in writing it, it is clear that the historical triumph of biomedical science over this leukemia cannot be considered without appreciating the work of both Janet Rowley and John Goldman. PMID:27132280

  10. Cardiac Manifestation of Acute Lymphoblastic Leukemia.

    PubMed

    Werner, Rudolf A; Rudelius, Martina; Thurner, Annette; Higuchi, Takahiro; Lapa, Constantin

    2016-07-01

    Here, we report on a 38-year-old man with unclear right heart failure. Imaging with cardiac MRI and combined PET/CT with F-FDG revealed a hypermetabolic mass extending from the right ventricle to the atrium. In addition, intense glucose utilization throughout the bone marrow was noted. Biopsies of both bone marrow and cardiac mass were performed and revealed precursor B-cell acute lymphoblastic leukemia with gross leukemic infiltration of the myopericardium, a rare manifestation of acute lymphoblastic leukemia at initial diagnosis. PMID:27088389

  11. The biology of pediatric acute megakaryoblastic leukemia

    PubMed Central

    Downing, James R.

    2015-01-01

    Acute megakaryoblastic leukemia (AMKL) comprises between 4% and 15% of newly diagnosed pediatric acute myeloid leukemia patients. AMKL in children with Down syndrome (DS) is characterized by a founding GATA1 mutation that cooperates with trisomy 21, followed by the acquisition of additional somatic mutations. In contrast, non–DS-AMKL is characterized by chimeric oncogenes consisting of genes known to play a role in normal hematopoiesis. CBFA2T3-GLIS2 is the most frequent chimeric oncogene identified to date in this subset of patients and confers a poor prognosis. PMID:26186939

  12. Phase I Combination of Midostaurin, Bortezomib, and Chemo in Relapsed/Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-04-05

    Acute Myeloid Leukemia; Acute Myeloid Leukemia With Multilineage Dysplasia Following; Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  13. Filgrastim, Cladribine, Cytarabine, and Mitoxantrone Hydrochloride in Treating Patients With Newly Diagnosed or Relapsed/Refractory Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndromes

    ClinicalTrials.gov

    2016-03-30

    Acute Biphenotypic Leukemia; de Novo Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  14. Eosinophilic presentation of acute lymphoblastic leukemia

    PubMed Central

    Rezamand, Azim; Ghorashi, Ziaaedin; Ghorashi, Sona; Nezami, Nariman

    2013-01-01

    Patient: Male, 5 Primary Diagnosis: Rule-out appendicitis Co-existing Diseases: Acute lymphoblastic leukemia (ALL) Medication: Chemiotherapy Clinical Procedure: Chest CT • flow cytometry Specialty: Pediatrics’ oncology • infection diseases Objective: Rare disease Background: Leukemias are among the most common childhood malignancies. Acute lymphoblastic leukemia (ALL) accounts for 77% of all leukemias. In rare cases, ALL patients may present with eosinophilia. Case Report: Here, a 5-year old boy was admitted to our hospital with a possible diagnosis of appendicitis. This patient’s complete blood cell count demonstrated leukocytosis with severe eosinophilia. Following a 1-month clinical investigation, 2 bone marrow aspirations, and flow cytometry analysis, a diagnosis of acute lymphoblastic leukemia was proposed. Finally, the patient was transferred to the oncology ward to receive standard therapeutic protocol, which resulted in disease remission. After chemotherapy for 2 years, patient is successfully treated. Conclusions: ALL is diagnosed by eosinophilia in rare cases. These patients need immediate diagnosis and intensive therapy due to worsened prognosis of ALL presenting as hypereosinophilia. PMID:23869247

  15. CPX-351 in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2016-04-25

    Adult Acute Erythroid Leukemia (M6); Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia and Acute Monocytic Leukemia (M5); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  16. Granulocytic sarcoma with compressive myelopathy: a rare presentation of chronic myelogenous leukemia.

    PubMed

    Ganapule, Abhijeet P; Viswabandya, Auro; Jasper, Anita; Patel, Palak; Kokil, Gautami

    2014-07-01

    Granulocytic sarcoma occurs most commonly in acute myelogenous leukemia. The appearance of granulocytic sarcoma in chronic myelogenous leukemia signals accelerated phase/ blast transformation. This is a rare case of undiagnosed chronic myelogenous leukemia with granulocytic sarcoma causing cord compression, which went into tumour lysis syndrome requiring dialysis after starting of steroids and radiotherapy. A 43-year-old male presented in emergency department with acute onset of flaccid paralysis. On clinical examination, there was hepatosplenomegaly and lower motor neuron paralysis in the lower limbs. The peripheral smear was consistent with chronic myelogenous leukemia in chronic phase. The MRI spine revealed para-spinal and epidural masses causing cord compression and the biopsy from the paraspinal mass was consistent with granulocytic sarcoma. PMID:25177619

  17. Tositumomab and Iodine I 131 Tositumomab in Treating Patients With Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma in First Remission

    ClinicalTrials.gov

    2015-08-04

    Lymphoid Leukemia in Remission; Stage I Chronic Lymphocytic Leukemia; Stage II Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Small Lymphocytic Lymphoma

  18. Total Marrow and Lymphoid Irradiation and Chemotherapy Before Donor Transplant in Treating Patients With Myelodysplastic Syndrome or Acute Leukemia

    ClinicalTrials.gov

    2016-08-10

    Adult Acute Lymphoblastic Leukemia in Complete Remission; Acute Myeloid Leukemia in Remission; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Childhood Acute Lymphoblastic Leukemia in Complete Remission

  19. Vaccine Therapy and Basiliximab in Treating Patients With Acute Myeloid Leukemia in Complete Remission

    ClinicalTrials.gov

    2016-06-27

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22)

  20. CPI-613, Cytarabine, and Mitoxantrone Hydrochloride in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-06-23

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia

  1. Lenalidomide and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-04-01

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia

  2. Daunorubicin Hydrochloride, Cytarabine and Oblimersen Sodium in Treating Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-06-04

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  3. Clofarabine and Cytarabine in Treating Patients With Acute Myeloid Leukemia With Minimal Residual Disease

    ClinicalTrials.gov

    2013-05-07

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia

  4. Cancer Statistics: Acute Lymphocytic Leukemia (ALL)

    MedlinePlus

    ... at a Glance Show More At a Glance Estimated New Cases in 2016 6,590 % of All New Cancer Cases 0.4% Estimated Deaths in 2016 1,430 % of All Cancer ... of This Cancer : In 2013, there were an estimated 77,855 people living with acute lymphocytic leukemia ...

  5. Flavopiridol, Cytarabine, and Mitoxantrone in Treating Patients With Relapsed or Refractory Acute Leukemia

    ClinicalTrials.gov

    2013-09-27

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Malignant Neoplasm; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia

  6. Ixazomib in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-06-24

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  7. AKT Inhibitor MK-2206 in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-12-23

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  8. Vorinostat and Gemtuzumab Ozogamicin in Treating Older Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2011-11-03

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Untreated Adult Acute Myeloid Leukemia

  9. Arsenic Trioxide in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-09-13

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  10. Combination Chemotherapy With or Without Valspodar in Treating Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-06-03

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Untreated Adult Acute Myeloid Leukemia

  11. Bortezomib, Daunorubicin, and Cytarabine in Treating Older Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-09-04

    Acute Myeloid Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Untreated Adult Acute Myeloid Leukemia

  12. Cytarabine With or Without SCH 900776 in Treating Adult Patients With Relapsed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-20

    Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia

  13. A Case of T-cell Acute Lymphoblastic Leukemia Relapsed As Myeloid Acute Leukemia.

    PubMed

    Paganin, Maddalena; Buldini, Barbara; Germano, Giuseppe; Seganfreddo, Elena; Meglio, Annamaria di; Magrin, Elisa; Grillo, Francesca; Pigazzi, Martina; Rizzari, Carmelo; Cazzaniga, Giovanni; Khiabanian, Hossein; Palomero, Teresa; Rabadan, Raul; Ferrando, Adolfo A; Basso, Giuseppe

    2016-09-01

    A 4-year-old male with the diagnosis of T-cell acute lymphoblastic leukemia (T-ALL) relapsed after 19 months with an acute myeloid leukemia (AML). Immunoglobulin and T-cell receptor gene rearrangements analyses reveal that both leukemias were rearranged with a clonal relationship between them. Comparative genomic hybridization (Array-CGH) and whole-exome sequencing analyses of both samples suggest that this leukemia may have originated from a common T/myeloid progenitor. The presence of homozygous deletion of p16/INK4A, p14/ARF, p15/INK4B, and heterozygous deletion of WT1 locus remained stable in the leukemia throughout phenotypic switch, revealing that this AML can be genetically associated to T-ALL. PMID:27149388

  14. Alemtuzumab in chronic lymphocytic leukemia

    PubMed Central

    Fraser, G.; Smith, C.A.; Imrie, K.; Meyer, R.

    2007-01-01

    Questions With respect to outcomes such as survival, response rate, response duration, time to progression, and quality of life, is alemtuzumab a beneficial treatment option for patients with B-cell chronic lymphocytic leukemia (cll)? What toxicities are associated with the use of alemtuzumab? Which patients are more likely—or less likely—to benefit from treatment with alemtuzumab? Perspectives Evidence was selected and reviewed by one member of the Hematology Disease Site Group (dsg) of Cancer Care Ontario’s Program in Evidence-Based Care (pebc) and by methodologists. The practice guideline report was reviewed and approved by the Hema-tology dsg, which comprises hematologists, medical and radiation oncologists, and a patient representative. As part of an external review process, the report was disseminated to obtain feedback from practitioners in Ontario. Outcomes Outcomes of interest were overall survival, quality of life, response rates and duration, and adverse event rates. Methodology A systematic review of the medline, embase, HealthStar, cinahl, and Cochrane Library databases was conducted to search for primary articles and practice guidelines. The evidence informed the development of clinical practice recommendations. The evidence review and recommendations were appraised by a sample of practitioners from Ontario, Canada, and were modified in response to the feedback received. The systematic review and modified recommendations were approved by a review body within the pebc. Results The literature review found no published randomized controlled trials (rcts) that evaluated alem-tuzumab alone or in combination with other chemotherapeutic agents for the treatment of relapsed or refractory cll. One rct evaluated alemtuzumab administered to consolidate a complete or partial response to first-line fludarabine-containing chemotherapy. That study was stopped early because of excessive grades 3 and 4 infection-related toxicity in the alemtuzumab arm. Patients

  15. Caspofungin Acetate or Fluconazole in Preventing Invasive Fungal Infections in Patients With Acute Myeloid Leukemia Who Are Undergoing Chemotherapy

    ClinicalTrials.gov

    2016-08-23

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myeloid Leukemia in Remission; Childhood Acute Myelomonocytic Leukemia (M4); Fungal Infection; Neutropenia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  16. Novel Therapies for Relapsed Acute Lymphoblastic Leukemia

    PubMed Central

    Fullmer, Amber; O’Brien, Susan; Kantarjian, Hagop; Jabbour, Elias

    2015-01-01

    The outcome of salvage therapy for relapsed acute lymphoblastic leukemia (ALL) remains poor. Salvage therapy mimics regimens with activity in newly diagnosed ALL. Novel strategies under investigation as monotherapy or in combination with chemotherapy improve the treatment of relapsed disease. For some ALL subsets, specific therapies are indicated. The addition of targeted therapy in Philadelphia chromosome–positive ALL has improved responses in relapsed patients without resistance to available tyrosine kinase inhibitors. Nelarabine demonstrates activity as monotherapy in T-cell ALL and is approved by the US Food and Drug Administration. Clofarabine, a second-generation purine analogue approved in pediatric leukemia, has shown activity in adult acute leukemias including ALL and acute myeloid leukemia. The role of pegaspargase in adult ALL requires further investigation. The benefit of matched related-donor allogeneic stem cell transplantation is significant for standard-risk ALL but not for high-risk ALL. Development of new drugs and agents tailored to subset-specific cytogenetic-molecular characteristics remains vital to success in treating adult ALL. PMID:20425428

  17. Differentiation Therapy of Acute Myeloid Leukemia

    PubMed Central

    Gocek, Elzbieta; Marcinkowska, Ewa

    2011-01-01

    Acute Myeloid Leukemia (AML) is a predominant acute leukemia among adults, characterized by accumulation of malignantly transformed immature myeloid precursors. A very attractive way to treat myeloid leukemia, which is now called ‘differentiation therapy’, was proposed as in vitro studies have shown that a variety of agents stimulate differentiation of the cell lines isolated from leukemic patients. One of the differentiation-inducing agents, all-trans retinoic acid (ATRA), which can induce granulocytic differentiation in myeloid leukemic cell lines, has been introduced into clinics to treat patients with acute promyelocytic leukemia (APL) in which a PML-RARA fusion protein is generated by a t(15;17)(q22;q12) chromosomal translocation. Because differentiation therapy using ATRA has significantly improved prognosis for patients with APL, many efforts have been made to find alternative differentiating agents. Since 1,25-dihydroxyvitamin D3 (1,25D) is capable of inducing in vitro monocyte/macrophage differentiation of myeloid leukemic cells, clinical trials have been performed to estimate its potential to treat patients with AML or myelodysplastic syndrome (MDS). Unfortunately therapeutic concentrations of 1,25D can induce potentially fatal systemic hypercalcemia, thus limiting clinical utility of that compound. Attempts to overcome this problem have focused on the synthesis of 1,25D analogs (VDAs) which retain differentiation inducing potential, but lack its hypercalcemic effects. This review aims to discuss current problems and potential solutions in differentiation therapy of AML. PMID:24212816

  18. Iodine I 131 Monoclonal Antibody BC8, Fludarabine Phosphate, Total Body Irradiation, and Donor Stem Cell Transplant Followed by Cyclosporine and Mycophenolate Mofetil in Treating Patients With Advanced Acute Myeloid Leukemia or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2015-11-16

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Refractory Anemia With Ringed Sideroblasts; Refractory Cytopenia With Multilineage Dysplasia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  19. Radiolabeled Monoclonal Antibody Therapy, Fludarabine Phosphate, and Low-Dose Total-Body Irradiation Followed by Donor Stem Cell Transplant and Immunosuppression Therapy in Treating Older Patients With Advanced Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndromes

    ClinicalTrials.gov

    2015-11-16

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Refractory Anemia With Ringed Sideroblasts; Refractory Cytopenia With Multilineage Dysplasia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  20. What Are the Risk Factors for Acute Lymphocytic Leukemia?

    MedlinePlus

    ... lymphocytic leukemia? What are the risk factors for acute lymphocytic leukemia? A risk factor is something that affects your ... this is unknown. Having an identical twin with ALL Someone who has an identical twin who develops ...

  1. Targeting MTHFD2 in acute myeloid leukemia.

    PubMed

    Pikman, Yana; Puissant, Alexandre; Alexe, Gabriela; Furman, Andrew; Chen, Liying M; Frumm, Stacey M; Ross, Linda; Fenouille, Nina; Bassil, Christopher F; Lewis, Caroline A; Ramos, Azucena; Gould, Joshua; Stone, Richard M; DeAngelo, Daniel J; Galinsky, Ilene; Clish, Clary B; Kung, Andrew L; Hemann, Michael T; Vander Heiden, Matthew G; Banerji, Versha; Stegmaier, Kimberly

    2016-06-27

    Drugs targeting metabolism have formed the backbone of therapy for some cancers. We sought to identify new such targets in acute myeloid leukemia (AML). The one-carbon folate pathway, specifically methylenetetrahydrofolate dehydrogenase-cyclohydrolase 2 (MTHFD2), emerged as a top candidate in our analyses. MTHFD2 is the most differentially expressed metabolic enzyme in cancer versus normal cells. Knockdown of MTHFD2 in AML cells decreased growth, induced differentiation, and impaired colony formation in primary AML blasts. In human xenograft and MLL-AF9 mouse leukemia models, MTHFD2 suppression decreased leukemia burden and prolonged survival. Based upon primary patient AML data and functional genomic screening, we determined that FLT3-ITD is a biomarker of response to MTHFD2 suppression. Mechanistically, MYC regulates the expression of MTHFD2, and MTHFD2 knockdown suppresses the TCA cycle. This study supports the therapeutic targeting of MTHFD2 in AML. PMID:27325891

  2. The Pathogenesis of Chronic Lymphocytic Leukemia

    PubMed Central

    Zhang, Suping; Kipps, Thomas J.

    2014-01-01

    Chronic lymphocytic leukemia (CLL) is characterized by the clonal expansion of CD5+CD23+ B cells in blood, marrow, and second lymphoid tissues. Gene-expression profiling and phenotypic studies suggest that CLL is probably derived from CD5+ B cells similar to those found in the blood of healthy adults. Next-generation sequencing has revealed recurrent genetic lesions that are implicated in CLL pathogenesis and/or disease progression. The biology of CLL is entwined with its microenvironment, in which accessory cells can promote leukemia cell growth and/or survival. Recently, much attention has been focused on the CLL B cell receptor (BCR) and on chemokine receptors that enable CLL cells to home to lymphoid tissues and to establish the leukemia microenvironment. Agents that can interfere with BCR signaling or chemokine– receptor signaling, or that target surface antigens selectively expressed on CLL cells, promise to have significant therapeutic benefit in patients with this disease. PMID:23987584

  3. Azacitidine With or Without Lenalidomide or Vorinostat in Treating Patients With Higher-Risk Myelodysplastic Syndromes or Chronic Myelomonocytic Leukemia

    ClinicalTrials.gov

    2016-07-26

    Adult Myelodysplastic Syndrome; Chronic Myelomonocytic Leukemia; Chronic Myelomonocytic Leukemia-1; Chronic Myelomonocytic Leukemia-2; Previously Treated Myelodysplastic Syndrome; Refractory Anemia With Excess Blasts

  4. Chronic B-Cell Leukemias and Agent Orange

    MedlinePlus

    ... survivors' benefits . Research on B-cell leukemias and herbicides The Health and Medicine Division (HMD) (formally known ... sufficient evidence of an association between exposure to herbicides and chronic lymphocytic leukemia. In 2003, VA recognized ...

  5. Azacitidine and Gemtuzumab Ozogamicin in Treating Older Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-12

    Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  6. Lithium Carbonate and Tretinoin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-10-19

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  7. Sirolimus, Idarubicin, and Cytarabine in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-06-03

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Untreated Adult Acute Myeloid Leukemia

  8. Cholecalciferol in Treating Patients With Acute Myeloid Leukemia Undergoing Intensive Induction Chemotherapy

    ClinicalTrials.gov

    2015-06-18

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Untreated Adult Acute Myeloid Leukemia

  9. Cyclophosphamide, Alvocidib, and Rituximab in Treating Patients With High Risk B-Cell Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2015-11-10

    Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage I Chronic Lymphocytic Leukemia; Stage I Small Lymphocytic Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Small Lymphocytic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Small Lymphocytic Lymphoma

  10. Alvocidib in Treating Patients With B-Cell Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2013-07-01

    B-cell Chronic Lymphocytic Leukemia; Contiguous Stage II Small Lymphocytic Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Stage I Chronic Lymphocytic Leukemia; Stage I Small Lymphocytic Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Small Lymphocytic Lymphoma

  11. Global Characteristics of Childhood Acute Promyelocytic Leukemia

    PubMed Central

    Zhang, L; Samad, A; Pombo-de-Oliveira, MS; Scelo, G; Smith, MT; Feusner, J; Wiemels, JL; Metayer, C

    2014-01-01

    Acute promyelocytic leukemia (APL) comprises approximately 5–10% of childhood acute myeloid leukemia (AML) cases in the US. While variation in this percentage among other populations was noted previously, global patterns of childhood APL have not been thoroughly characterized. In this comprehensive review of childhood APL, we examined its geographic pattern and the potential contribution of environmental factors to observed variation. In 142 studies (spanning >60 countries) identified, variation was apparent—de novo APL represented from 2% (Switzerland) to >50% (Nicaragua) of childhood AML in different geographic regions. Because a limited number of previous studies addressed specific environmental exposures that potentially underlie childhood APL development, we gathered 28 childhood cases of therapy-related APL, which exemplified associations between prior exposures to chemotherapeutic drugs/radiation and APL diagnosis. Future population-based studies examining childhood APL patterns and the potential association with specific environmental exposures and other risk factors are needed. PMID:25445717

  12. [Chronic myelogenous leukemia: diagnosis and treatment].

    PubMed

    Demeter, Judit; Poros, Anna; Bödör, Csaba; Horváth, Laura; Masszi, Tamás

    2016-09-01

    Chronic myelogenous leukemia is a clonal myeloproliferative neoplasm caused by reciprocal translocation involving chromosomes 9 and 22 resulting in the expression of a constitutively activated BCR-ABL1 tyrosine kinase that leads to the malignant transformation of the hematopoietic stem cells. The condition was previously known as a relentlessly progressive disease, but the treatment was revolutionalized by the efficacy of tyrosine kinase inhibitors. Therapeutic success is thus currently determined by the depth of molecular response achieved on therapy. Multiple tyrosine kinase agents are available even for the first line treatment. This guideline summarizes current focal points of the treatment of chronic myelogenous leukemia specific to Hungary and provides definitions for optimal molecular responses in this condition. Orv. Hetil., 2016, 157(37), 1459-1468. PMID:27615196

  13. Expression of CD133 in acute leukemia.

    PubMed

    Tolba, Fetnat M; Foda, Mona E; Kamal, Howyda M; Elshabrawy, Deena A

    2013-06-01

    There have been conflicting results regarding a correlation between CD133 expression and disease outcome. To assess CD133 expression in patients with acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) and to evaluate its correlation with the different clinical and laboratory data as well as its relation to disease outcome, the present study included 60 newly diagnosed acute leukemic patients; 30 ALL patients with a male to female ratio of 1.5:1 and their ages ranged from 9 months to 48 years, and 30 AML patients with a male to female ratio of 1:1 and their ages ranged from 17 to 66 years. Flow cytometric assessment of CD133 expression was performed on blast cells. In ALL, no correlations were elicited between CD133 expression and some monoclonal antibodies, but in AML group, there was a significant positive correlation between CD133 and HLA-DR, CD3, CD7 and TDT, CD13 and CD34. In ALL group, patients with negative CD133 expression achieved complete remission more than patients with positive CD133 expression. In AML group, there was no statistically significant association found between positive CD133 expression and treatment outcome. The Kaplan-Meier curve illustrated a high significant negative correlation between CD133 expression and the overall survival of the AML patients. CD133 expression is an independent prognostic factor in acute leukemia, especially ALL patients and its expression could characterize a group of acute leukemic patients with higher resistance to standard chemotherapy and relapse. CD133 expression was highly associated with poor prognosis in acute leukemic patients. PMID:23532815

  14. Chronic mast cell leukemia: a novel leukemia-variant with distinct morphological and clinical features

    PubMed Central

    Valent, Peter; Sotlar, Karl; Sperr, Wolfgang R.; Reiter, Andreas; Arock, Michel; Horny, Hans-Peter

    2016-01-01

    Summary Mast cell leukemia (MCL) is a rare form of systemic mastocytosis characterized by leukemic expansion of mostly immature mast cells, organ damage, drug-resistance, and a poor prognosis. Even when treated with chemotherapy, most patients have a life-expectancy of less than one year. However, there are rare patients with MCL in whom the condition is less aggressive and does not cause organ damage within a short time. In these patients, mast cells exhibit a more mature morphology when compared to acute MCL. A recently proposed classification suggests that these cases are referred to as chronic MCL. In the present article, we discuss clinical, histopathological and morphological aspects of acute and chronic MCL. PMID:25443885

  15. Novel agents for chronic lymphocytic leukemia

    PubMed Central

    2013-01-01

    Chronic lymphocytic leukemia (CLL) is a heterogeneous group of B-cell neoplasm. CLL is typically sensitive to a variety of cytotoxic agents, but relapse frequently occurs with conventional approaches. The treatment of CLL is evolving rapidly with the introduction of novel drugs, such as bendamustine, ofatumumab, lenalidomide, ibrutinib, idelalisib, veltuzumab, XmAb5574, navitoclax, dasatinib, alvespimycin, and TRU-016. This review summarizes the most current clinical experiences with these agents in the treatment of CLL. PMID:23680477

  16. Treatment of Chronic Myelomonocytic Leukemia with 5-Azacytidine: Case Reports

    PubMed Central

    Rohon, Peter; Vondrakova, Jana; Jonasova, Anna; Holzerova, Milena; Jarosova, Marie; Indrak, Karel

    2012-01-01

    Epigenetic therapy with hypomethylating agent (5-azacytidine; AZA) is common in the management of specific subtypes of myelodysplastic syndrome (MDS), but there are only few studies in chronic myelomonocytic leukemia (CMML) patients. In this paper our experience with 3 CMML patients treated with AZA is described. In one patient transfusion independency was observed after 4 treatment cycles; in one case a partial response was recorded, but a progression to acute myeloid leukemia (AML) after 13 AZA cycles has appeared. In one patient, AZA in reduced dosage was administered as a bridging treatment before allogeneic stem cell transplantation (ASCT), but in the control bone marrow aspirate (before ASCT) a progression to AML was recorded. Future studies are mandatory for evaluation of new molecular and clinical features which could predict the efficiency of hypomethylating agents in CMML therapy with respect to overall survival, event-free survival, quality-adjusted life year, and pharmacoeconomy. PMID:22937326

  17. Brain Function in Young Patients Receiving Methotrexate for Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-04-08

    Childhood B Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Cognitive Side Effects of Cancer Therapy; Long-Term Effects Secondary to Cancer Therapy in Children; Neurotoxicity Syndrome; Psychological Impact of Cancer; Untreated Childhood Acute Lymphoblastic Leukemia

  18. Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia

    PubMed Central

    Park, Eugene; Papaemmanuil, Elli; Ford, Anthony; Kweon, Soo-Mi; Trageser, Daniel; Hasselfeld, Brian; Henke, Nadine; Mooster, Jana; Geng, Huimin; Schwarz, Klaus; Kogan, Scott C.; Casellas, Rafael; Schatz, David G.; Lieber, Michael R; Greaves, Mel F.; Müschen, Markus

    2015-01-01

    Childhood acute lymphoblastic leukemia can often be retraced to a pre-leukemic clone carrying a prenatal genetic lesion. Postnatally acquired mutations then drive clonal evolution towards overt leukemia. RAG1-RAG2 and AID enzymes, the diversifiers of immunoglobulin genes, are strictly segregated to early and late stages of B-lymphopoiesis, respectively. Here, we identified small pre-BII cells as a natural subset of increased genetic vulnerability owing to concurrent activation of these enzymes. Consistent with epidemiological findings on childhood ALL etiology, susceptibility to genetic lesions during B-lymphopoiesis at the large to small pre-BII transition is exacerbated by abnormal cytokine signaling and repetitive inflammatory stimuli. We demonstrate that AID and RAG1-RAG2 drive leukemic clonal evolution with repeated exposure to inflammatory stimuli, paralleling chronic infections in childhood. PMID:25985233

  19. Total body irradiation in chronic myeloid leukemia

    SciTech Connect

    Advani, S.H.; Dinshaw, K.A.; Nair, C.N.; Ramakrishnan, G.

    1983-04-01

    Total body irradiation (TBI), given as 10 rad daily for five days a week for a total dose of 150 rad has been used in an attempt to control the chronic phase of chronic myeloid leukemia (CML). Thirteen patients with CML received fractionated TBI leading to rapid and good control of WBC count without any adverse reaction. The chronic phase of CML could also be controlled with TBI, even in three patients who were resistant to busulfan. Following TBI, WBC count remained under control for a period of 32 weeks as compared to 40 weeks following vusulfan alone. Repeat TBI was also well tolerated with good response. It appears that TBI is an effective and safe therapy for controlling the chronic phase of CML.

  20. Decitabine, Donor Natural Killer Cells, and Aldesleukin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-01-07

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  1. Combination Chemotherapy and Dasatinib in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-19

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  2. Clofarabine and Melphalan Before Donor Stem Cell Transplant in Treating Patients With Myelodysplasia or Acute Leukemia in Remission

    ClinicalTrials.gov

    2016-06-09

    Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Previously Treated Myelodysplastic Syndromes; Secondary Acute Myeloid Leukemia

  3. Tretinoin, Cytarabine, and Daunorubicin Hydrochloride With or Without Arsenic Trioxide Followed by Tretinoin With or Without Mercaptopurine and Methotrexate in Treating Patients With Acute Promyelocytic Leukemia

    ClinicalTrials.gov

    2013-06-04

    Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Promyelocytic Leukemia (M3); Childhood Acute Promyelocytic Leukemia (M3); Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  4. Sex differences in the incidence of chronic myeloid leukemia.

    PubMed

    Radivoyevitch, Tomas; Jankovic, Gradimir M; Tiu, Ramon V; Saunthararajah, Yogen; Jackson, Robert C; Hlatky, Lynn R; Gale, Robert Peter; Sachs, Rainer K

    2014-03-01

    The incidence of chronic myeloid leukemia (CML), which is caused by BCR/ABL chimeric oncogene formation in a pluripotent hematopoietic stem cell (HSC), increases with age and exposure to ionizing radiation. CML is a comparatively well-characterized neoplasm, important for its own sake and useful for insights into other neoplasms. Here, Surveillance, Epidemiology and End Results (SEER) CML data are analyzed after considering possible misclassification of chronic myelo-monocytic leukemia as CML. For people older than 25 years, plots of male and female CML log incidences versus age at diagnosis are approximately parallel straight lines with males either above or to the left of females. This is consistent with males having a higher risk of developing CML or a shorter latency from initiation to diagnosis of CML. These distinct mechanisms cannot be distinguished using SEER data alone. Therefore, CML risks among male and female Japanese A-bomb survivors are also analyzed. The present analyses suggest that sex differences in CML incidence more likely result from differences in risk than in latency. The simplest but not the sole interpretation of this is that males have more target cells at risk to develop CML. Comprehensive mathematical models of CML could lead to a better understanding of the role of HSCs in CML and other preleukemias that can progress to acute leukemia. PMID:24337217

  5. Sex differences in the incidence of chronic myeloid leukemia

    PubMed Central

    Jankovic, Gradimir M.; Tiu, Ramon V.; Saunthararajah, Yogen; Jackson, Robert C.; Hlatky, Lynn R.; Gale, Robert Peter; Sachs, Rainer K.

    2014-01-01

    The incidence of chronic myeloid leukemia (CML), which is caused by BCR/ABL chimeric oncogene formation in a pluripotent hematopoietic stem cell (HSC), increases with age and exposure to ionizing radiation. CML is a comparatively well-characterized neoplasm, important for its own sake and useful for insights into other neoplasms. Here, Surveillance, Epidemiology and End Results (SEER) CML data are analyzed after considering possible misclassification of chronic myelo-monocytic leukemia as CML. For people older than 25 years, plots of male and female CML log incidences versus age at diagnosis are approximately parallel straight lines with males either above or to the left of females. This is consistent with males having a higher risk of developing CML or a shorter latency from initiation to diagnosis of CML. These distinct mechanisms cannot be distinguished using SEER data alone. Therefore, CML risks among male and female Japanese A-bomb survivors are also analyzed. The present analyses suggest that sex differences in CML incidence more likely result from differences in risk than in latency. The simplest but not the sole interpretation of this is that males have more target cells at risk to develop CML. Comprehensive mathematical models of CML could lead to a better understanding of the role of HSCs in CML and other preleukemias that can progress to acute leukemia. PMID:24337217

  6. Combination Chemotherapy With or Without PSC 833, Peripheral Stem Cell Transplantation, and/or Interleukin-2 in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-06-03

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Erythroid Leukemia (M6); Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monoblastic Leukemia and Acute Monocytic Leukemia (M5); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monoblastic Leukemia and Acute Monocytic Leukemia (M5); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Childhood Myelodysplastic Syndromes; de Novo Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  7. Acute nonlymphocytic leukemia following bladder instillations with thiotepa.

    PubMed Central

    Easton, D. J.; Poon, M. A.

    1983-01-01

    A case of therapy-related leukemia is described. Other cases of acute nonlymphocytic leukemia have been associated with the intramuscular administration of thiotepa (an alkylating agent), but this patient received only intravesical instillations of the drug. The interval between the start of chemotherapy and the onset of leukemia was 56 months. PMID:6411320

  8. Decitabine, Vorinostat, and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-12-19

    Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  9. Genetics Home Reference: cytogenetically normal acute myeloid leukemia

    MedlinePlus

    ... one form of a cancer of the blood-forming tissue (bone marrow) called acute myeloid leukemia. In ... 1 link) PubMed Sources for This Page Döhner H. Implication of the molecular characterization of acute myeloid ...

  10. Signal Transduction in the Chronic Leukemias: Implications for Targeted Therapies

    PubMed Central

    Ahmed, Wesam; Van Etten, Richard A.

    2013-01-01

    The chronic leukemias, including chronic myeloid leukemia (CML), the Philadelphia-negative myeloproliferative neoplasms (MPNs), and chronic lymphocytic leukemia (CLL), have been characterized extensively for abnormalities of cellular signaling pathways. This effort has led to the elucidation of the central role of dysregulated tyrosine kinase signaling in the chronic myeloid neoplasms and of constitutive B-cell receptor signaling in CLL. This, in turn, has stimulated the development of small molecule inhibitors of these signaling pathways for therapy of chronic leukemia. Although the field is still in its infancy, the clinical results with these agents have ranged from encouraging (CLL) to spectacular (CML). In this review, we summarize recent studies that have helped to define the signaling pathways critical to the pathogenesis of the chronic leukemias. We also discuss correlative studies emerging from clinical trials of drugs targeting these pathways. PMID:23307472

  11. Early Discharge and Outpatients Care in Patients With Myelodysplastic Syndrome or Acute Myeloid Leukemia Previously Treated With Intensive Chemotherapy

    ClinicalTrials.gov

    2015-02-05

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia

  12. Alvocidib, Cytarabine, and Mitoxantrone Hydrochloride or Cytarabine and Daunorubicin Hydrochloride in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-10-10

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  13. Targeting the Microenvironment in Acute Myeloid Leukemia

    PubMed Central

    Rashidi, Armin; Uy, Geoffrey L.

    2015-01-01

    The bone marrow microenvironment plays a critical role in the development, progression, and relapse of acute myeloid leukemia (AML). Similar to normal hematopoietic stem cells, AML blasts express receptors on their surface, allowing them to interact with specific components of the marrow microenvironment. These interactions contribute to both chemotherapy resistance and disease relapse. Preclinical studies and early phase clinical trials have demonstrated the potential for targeting the tumor-microenvironment interactions in AML. Agents currently under investigation include hypoxia-inducible agents and inhibitors of CXCR4 and adhesion molecules such as VLA-4 and E-selectin. PMID:25921388

  14. Acute Myeloid Leukemia: A Concise Review

    PubMed Central

    Saultz, Jennifer N.; Garzon, Ramiro

    2016-01-01

    Acute myeloid leukemia (AML) is a heterogeneous clonal disorder characterized by immature myeloid cell proliferation and bone marrow failure. Cytogenetics and mutation testing remain a critical prognostic tool for post induction treatment. Despite rapid advances in the field including new drug targets and increased understanding of the biology, AML treatment remains unchanged for the past three decades with the majority of patients eventually relapsing and dying of the disease. Allogenic transplant remains the best chance for cure for patients with intermediate or high risk disease. In this review, we discuss the landmark genetic studies that have improved outcome prediction and novel therapies. PMID:26959069

  15. Acute myeloid leukemia: advances in diagnosis and classification.

    PubMed

    Hasserjian, R P

    2013-06-01

    Acute myeloid leukemia is an aggressive myeloid neoplasm characterized by ≥20% myeloblasts in the blood or bone marrow. Current treatment strategies for acute myeloid leukemia are based on both patient-related parameters such as age and performance status as well as the intrinsic characteristics of particular disease subtypes. Subtyping of acute myeloid leukemia requires an integration of information from the patient's clinical history (such as any prior preleukemic myeloid neoplasm or cytotoxic potentially leukemogenic therapy), the leukemia morphology, cytogenetic findings, and the mutation status of particular genes (NPM1, FLT3, and CEBPA). In recent years, a barrage of information has become available regarding gene mutations that occur in acute myeloid leukemia and their influence on prognosis. Future therapies for acute myeloid leukemia will increasingly rely on the genetic signatures of individual leukemias and will adjust therapy to the predicted disease aggressiveness as well as employ therapies targeted against particular deregulated genetic pathways. This article reviews current standards for diagnosing and classifying acute myeloid leukemia according to the 2008 WHO Classification. Data that have subsequently accumulated regarding newly characterized gene mutations are also presented. It is anticipated that future leukemia classifications will employ a combination of karyotypic features and the gene mutation pattern to stratify patients to increasingly tailored treatment plans. PMID:23590662

  16. p53 mutations in human lymphoid malignancies: Association with Burkitt lymphoma and chronic lymphocytic leukemia

    SciTech Connect

    Gaidano, G.; Ballerini, P.; Gong, J.Z.; Inghirami, G.; Knowles, D.M.; Dalla-Favera, R. ); Neri, A, Centro Malattie del Sangue G. Marcora, Milan ); Newcomb, E.W. ); Magrath, I.T. )

    1991-06-15

    The authors have investigated the frequency of p53 mutations in B- and T-cell human lymphoid malignancies, including acute lymphoblastic leukemia, the major subtypes of non-Hodgkin lymphoma, and chronic lymphocytic leukemia. p53 exons 5-9 were studied by using genomic DNA from 197 primary tumors and 27 cell lines by single-strand conformation polymorphism analysis and by direst sequencing of PCR-amplified fragments. Mutations were found associated with (i) Burkitt lymphoma (9/27 biopsoes; 17/27 cell lines) and its leukemic counterpart L{sub 3}-type B-cell acute lymphoblastic leukemia (5/9), both of which also carry activated c-myc oncogenes, and (ii) B-cell chronic lymphocytic leukemia (6/40) and, in particular, its stage of progression known as Richter's transformation (3/7). Mutations were not found at any significant frequency in other types of non-Hodgkin lymphoma or acute lymphoblastic leukemia. In many cases, only the mutated allele was detectable, implying loss of the normal allele. These results suggest that (1) significant differences in the frequency of p53 mutations are present among subtypes of neoplasms derived from the same tissue; (2) p53 may play a role in tumor progression in B-cell chronic lymphocytic leukemia; (3) the presence of both p53 loss/inactivation and c-myc oncogene activation may be important in the pathogenesis of Burkitt lymphoma and its leukemia form L{sub 3}-type B-cell acute lymphoblastic leukemia.

  17. Etoposide, Prednisone, Vincristine Sulfate, Cyclophosphamide, and Doxorubicin Hydrochloride With Asparaginase in Treating Patients With Acute Lymphoblastic Leukemia or Lymphoblastic Lymphoma

    ClinicalTrials.gov

    2016-04-26

    B Acute Lymphoblastic Leukemia; B Lymphoblastic Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent B Lymphoblastic Lymphoma; Recurrent T Lymphoblastic Leukemia/Lymphoma; Refractory B Lymphoblastic Lymphoma; Refractory T Lymphoblastic Lymphoma; T Acute Lymphoblastic Leukemia; T Lymphoblastic Lymphoma

  18. Induction of Chronic Myeloid Leukemia in Mice.

    PubMed

    Zhang, Haojian; Li, Shaoguang

    2016-01-01

    Chronic myeloid leukemia (CML) is a myeloproliferative disorder derived from a hematopoietic stem cell (HSC), harboring Philadelphia chromosome (Ph chromosome). Formation of the Ph chromosome is caused by a reciprocal translocation between the chromosomes 9 and 22 t(9;22)(q34;q11), resulting in a fusion protein known as BCR-ABL which has constitutive tyrosine kinase activity and promotes the proliferation of leukemia cells via multiple mechanisms. Studies on CML have led to the identification of the first cancer-associated chromosomal abnormality and the subsequent development of tyrosine kinase inhibitors (TKIs) that inhibit BCR-ABL kinase activity in CML. It has become clear that leukemia stem cells (LSCs) in CML are insensitive to inhibition by TKIs, and eradication of LSCs appears to be difficult. Therefore, some of the major issues in current CML therapy are to understand the biology of LSCs and to investigate why LSCs are insensitive to TKIs for developing curative therapeutic strategies. In this regard, application of mouse models recapitulating human CML disease will be critical. In this chapter, we describe methods for induction of CML in mice with BCR-ABL. PMID:27581135

  19. Epidemiology of childhood acute myelogenous leukemia.

    PubMed

    Bhatia, S; Neglia, J P

    1995-05-01

    Acute myelogenous leukemia (AML) is the second most common leukemia in children, with approximately 400 new cases occurring annually in the United States. Worldwide, the highest rates of childhood AML occur in Asia and the lowest rates are reported from India and South America. Numerous genetic risk factors for childhood AML have been defined, including Down syndrome, neurofibromatosis, and Fanconi anemia. Research into environmental risk factors has been limited by the rarity of this disease; however, studies of AML in adults have implicated ionizing radiation, solvents, and petroleum products as potential etiologic agents. The largest analytic study of childhood AML found that occupational exposures of either parent to pesticides, paternal exposure to petroleum products, and postnatal exposures to pesticides are increased in children with AML. In addition, maternal use of marijuana during pregnancy was associated with an increased risk of AML, especially the monocytic subtypes. Further study of childhood AML, including occurrence of the disease as a second malignancy, is needed in order to confirm these findings and to increase our understanding of this leukemia. PMID:7749772

  20. MK2206 in Treating Younger Patients With Recurrent or Refractory Solid Tumors or Leukemia

    ClinicalTrials.gov

    2014-04-28

    Accelerated Phase Chronic Myelogenous Leukemia; Acute Leukemias of Ambiguous Lineage; Acute Myeloid Leukemia/Transient Myeloproliferative Disorder; Acute Undifferentiated Leukemia; Aggressive NK-cell Leukemia; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blastic Phase Chronic Myelogenous Leukemia; Blastic Plasmacytoid Dendritic Cell Neoplasm; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Intraocular Lymphoma; Juvenile Myelomonocytic Leukemia; Mast Cell Leukemia; Myeloid/NK-cell Acute Leukemia; Noncutaneous Extranodal Lymphoma; Post-transplant Lymphoproliferative Disorder; Primary Central Nervous System Hodgkin Lymphoma; Primary Central Nervous System Non-Hodgkin Lymphoma; Progressive Hairy Cell Leukemia, Initial Treatment; Prolymphocytic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Unspecified Childhood

  1. Secondary autoimmune cytopenias in chronic lymphocytic leukemia.

    PubMed

    Rogers, Kerry A; Woyach, Jennifer A

    2016-04-01

    Secondary autoimmune cytopenias in chronic lymphocytic leukemia are distinct clinical entities that require specific management. These autoimmune disorders have a complex pathogenesis that involves both the leukemic cells and the immune environment in which they exist. The mechanism is not the same in all cases, and to varying degrees involves the chronic lymphocytic leukemia (CLL) cells in antibody production, antigen presentation, and stimulation of T cells and bystander polyclonal B cells. Diagnosis of autoimmune cytopenias can be challenging as it is difficult to differentiate between autoimmunity and bone marrow failure due to disease progression. There is a need to distinguish these causes, as prognosis and treatment are not the same. Evidence regarding treatment of secondary autoimmune cytopenias is limited, but many effective options exist and treatment can be selected with severity of disease and patient factors in mind. With new agents to treat CLL coming into widespread clinical use, it will be important to understand how these will change the natural history and treatment of autoimmune cytopenias. PMID:27040709

  2. Allogeneic Transplantation for Chronic Lymphocytic Leukemia

    PubMed Central

    Laurenti, Luca; Tarnani, Michela; Chiusolo, Patrizia; Sorà, Federica; Sica, Simona

    2010-01-01

    Even if Chronic lymphocytic leukemia (CLL) often has an indolent behavior with good responsiveness to cytoreductive treatment, about 20% of the patients, so called “poor-risk” patients, show an aggressive course and die within a few years despite early intensive therapies. Criteria for poor-risk disease according to the European Bone Marrow Transplantation (EBMT) CLL Transplant Consensus are: purine analogue refractoriness, early relapse after purine analogue combination therapy, CLL with p53 lesion requiring treatment. Allogeneic transplant has potential curative role in CLL, however burden with very high transplant related mortality (TRM) rates of 38–50%. A major advance in reducing the short-term morbidity and mortality of allogeneic stem cell transplantation (SCT) has been the introduction of non-myeloablative or reduced intensity conditioning (RIC) regimens to allow engraftment of allogeneic stem cells. There is no doubt that the crucial therapeutic principle of allo-SCT in CLL is graft versus leukemia (GVL) activity. The major complications of allogeneic SCT in CLL are: chronic graft-versus-host-disease (GVHD) affecting quality of life, high graft rejection and infection rates correlated with preexisting immunosuppression. Disease relapse remains the major cause of failure after RIC allo-HCT in CLL patients. Sensitive minimal residual disease (MRD) quantification has strong prognostic impact after transplant. PMID:21415973

  3. Dasatinib and Combination Chemotherapy in Treating Young Patients With Newly Diagnosed Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-03-25

    Adult B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Childhood B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  4. Childhood Leukemia--A Look at the Past, the Present and the Future.

    ERIC Educational Resources Information Center

    Findeisen, Regina; Barber, William H.

    1997-01-01

    Provides an overview of childhood leukemia. The causes, the survival period, different types (acute lymphocytic leukemia, acute myeloid leukemia, chronic lymphocytic leukemia, chronic myeloid leukemia, and hairy cell leukemia), symptoms, treatment, side effects of treatment (including learning problems), and the expected future direction of…

  5. Drug screen in patient cells suggests quinacrine to be repositioned for treatment of acute myeloid leukemia

    PubMed Central

    Eriksson, A; Österroos, A; Hassan, S; Gullbo, J; Rickardson, L; Jarvius, M; Nygren, P; Fryknäs, M; Höglund, M; Larsson, R

    2015-01-01

    To find drugs suitable for repositioning for use against leukemia, samples from patients with chronic lymphocytic, acute myeloid and lymphocytic leukemias as well as peripheral blood mononuclear cells (PBMC) were tested in response to 1266 compounds from the LOPAC1280 library (Sigma). Twenty-five compounds were defined as hits with activity in all leukemia subgroups (<50% cell survival compared with control) at 10 μM drug concentration. Only one of these compounds, quinacrine, showed low activity in normal PBMCs and was therefore selected for further preclinical evaluation. Mining the NCI-60 and the NextBio databases demonstrated leukemia sensitivity and the ability of quinacrine to reverse myeloid leukemia gene expression. Mechanistic exploration was performed using the NextBio bioinformatic software using gene expression analysis of drug exposed acute myeloid leukemia cultures (HL-60) in the database. Analysis of gene enrichment and drug correlations revealed strong connections to ribosomal biogenesis nucleoli and translation initiation. The highest drug–drug correlation was to ellipticine, a known RNA polymerase I inhibitor. These results were validated by additional gene expression analysis performed in-house. Quinacrine induced early inhibition of protein synthesis supporting these predictions. The results suggest that quinacrine have repositioning potential for treatment of acute myeloid leukemia by targeting of ribosomal biogenesis. PMID:25885427

  6. Omacetaxine mepesuccinate in the treatment of intractable chronic myeloid leukemia

    PubMed Central

    Chen, Yaoyu; Li, Shaoguang

    2014-01-01

    In a significant proportion of patients with chronic myeloid leukemia, resistance to BCR-ABL tyrosine kinase inhibitors develops due to acquisition of BCR-ABL kinase domain mutations and insensitivity of leukemia stem cells to tyrosine kinase inhibitors. Omacetaxine mepesuccinate (formerly called homoharringtonine) is a natural alkaloid that inhibits protein synthesis and induces cell death. Omacetaxine mepesuccinate has been recently approved by the US Food and Drug Administration to treat patients with chronic myeloid leukemia who failed to respond to multiple tyrosine kinase inhibitors and/or acquired the BCR-ABL-T315I mutation. In this review, we discuss the use and effectiveness of omacetaxine mepesuccinate in the treatment of chronic myeloid leukemia, with coverage of its pharmacology, mode of action, and pharmacokinetics. We believe that omacetaxine mepesuccinate will be beneficial to many patients with chronic myeloid leukemia who do not respond well to tyrosine kinase inhibitors. PMID:24516334

  7. Sorafenib Tosylate and Chemotherapy in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-05

    Acute Myeloid Leukemia (Megakaryoblastic) With t(1;22)(p13;q13); RBM15-MKL1; Acute Myeloid Leukemia With a Variant RARA Translocation; Acute Myeloid Leukemia With Inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN1-EVI1; Acute Myeloid Leukemia With t(6;9)(p23;q34); DEK-NUP214; Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Acute Myeloid Leukemia With Variant MLL Translocations; Untreated Adult Acute Myeloid Leukemia

  8. Acute megakaryoblastic leukemia, unlike acute erythroid leukemia, predicts an unfavorable outcome after allogeneic HSCT.

    PubMed

    Ishiyama, Ken; Yamaguchi, Takuhiro; Eto, Tetsuya; Ohashi, Kazuteru; Uchida, Naoyuki; Kanamori, Heiwa; Fukuda, Takahiro; Miyamura, Koichi; Inoue, Yoshiko; Taguchi, Jun; Mori, Takehiko; Iwato, Koji; Morishima, Yasuo; Nagamura-Inoue, Tokiko; Atsuta, Yoshiko; Sakamaki, Hisashi; Takami, Akiyoshi

    2016-08-01

    Acute erythroid leukemia (FAB-M6) and acute megakaryoblastic leukemia (FAB-M7) exhibit closely related properties in cells regarding morphology and the gene expression profile. Although allogeneic hematopoietic stem cell transplantation (allo-HSCT) is considered the mainstay of the treatment for both subtypes of leukemia due to their refractoriness to chemotherapy and high rates of relapse, it remains unclear whether allo-HSCT is curative in such cases due to their scarcity. We retrospectively examined the impact of allo-HSCT in 382 patients with M6 and 108 patients with M7 using nationwide HSCT data and found the overall survival (OS) and relapse rates of the M6 patients to be significantly better than those of the M7 patients after adjusting for confounding factors and statistically comparable with those of the patients with M0/M1/M2/M4/M5 disease. Consequently, the factors of age, gender, performance status, karyotype, disease status at HSCT and development of graft-vs.-host disease predicted the OS for the M6 patients, while the performance status and disease status at HSCT were predictive of the OS for the M7 patients. These findings substantiate the importance of distinguishing between M6 and M7 in the HSCT setting and suggest that unknown mechanisms influence the HSCT outcomes of these closely related subtypes of leukemia. PMID:27244257

  9. MEK Inhibitor MEK162, Idarubicin, and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-04-25

    Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  10. Cyclosporine, Pravastatin Sodium, Etoposide, and Mitoxantrone Hydrochloride in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2012-06-18

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  11. Lenalidomide, Cytarabine, and Idarubicin in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-12-22

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; de Novo Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  12. Varicella zoster immune status in children treated for acute leukemia.

    PubMed

    Patel, Soonie R; Bate, Jessica; Maple, Peter A C; Brown, Kevin; Breuer, Judith; Heath, Paul T

    2014-11-01

    Children treated for acute leukemia are at increased risk of severe infection with varicella zoster virus (VZV). We studied the VZV sero-status of children with acute leukemia prior to starting chemotherapy and after completion of chemotherapy. VZV sero-status was assessed using time resolved fluorescence immunoassay (TRFIA) before starting treatment and 6 months after completion of treatment. Prior to starting treatment for acute leukemia, a significant proportion of children (35%) are VZV seronegative. On completion of treatment most patients maintained protective VZV antibody levels; however, 35% had reduced/loss VZV antibody to a level considered non-protective and susceptible to VZV infection. PMID:24789692

  13. Prethymic Cytoplasmic CD3 Negative Acute Lymphoblastic Leukemia or Acute Undifferentiated Leukemia: A Case Report

    PubMed Central

    Cannizzo, Elisa; Carulli, Giovanni; Del Vecchio, Luigi; Azzarà, Antonio; Galimberti, Sara; Ottaviano, Virginia; Preffer, Frederic; Petrini, Mario

    2011-01-01

    Acute undiffentiated leukemia (AUL) is an acute leukemia with no more than one membrane marker of any given lineage. Blasts often express HLA-DR, CD34, and/or CD38 and may be positive for terminal deoxynucleotidyl transferase (TdT). The expression of CD34, HLA-DR, and CD38 has been shown in pro-T-ALL, although in this case, blasts should also express CD7 and cyCD3. However, some cases of T-ALL without CD3 in the cytoplasm and all TCR chain genes in germ line configuration are reported, features that fit well with a very early hematopoietic cell. We report a case of acute leukemia CD34+/−HLADR+CD7+CD38+cyCD3− in which a diagnosis of AUL was considered. However the blasts were also positive for CD99 and TCR delta gene rearrangement which was found on molecular studies. Therefore a differential diagnosis between AUL and an early cyCD3 negative T-ALL was debated. PMID:22937302

  14. [A case of chronic myeloid leukemia occurring during treatment for chronic lymphocytic leukemia].

    PubMed

    Hattori, Hideki; Kuwayama, Maki; Kotake, Takeshi; Karasuno, Takahiro

    2011-02-01

    Since the progression of chronic lymphocytic leukemia(CLL)is long and requires lengthy primary disease management, the risk of double primary cancers and secondary cancer due to treatment has become an issue in western countries with a high incidence of CLL. However, the coexistence with chronic myeloid leukemia(CML)is rare even in the West, and no cases have been reported in Japan. At this time, we would like to report a rare case of CML coexisting during the progression of CLL. The patient was a 68-year-old woman. As she had entered the advanced stage of B-cell chronic lymphocytic leukemia(B-CLL), fludarabine, a purine analog agent, was administered. Two years later, a high-granulocyte dominant white blood cell count began to appear. BCR/ABL analysis by FISH was 97. 6%positive, and the chromosomal test was t(9:22)(q34:q11), so CML was diagnosed. Coexistence of CML in CLL can mainly be classified into three types; CML preceding CLL, CLL preceding CML, and simultaneous occurrence, and the most common, as in this case, long progression CLL preceding CML. At this time, we performed a mainly bibliographical consideration according to the main occurrence type, including the possibility of secondary CML due to fludarabine. PMID:21368508

  15. Acute myeloid leukemia in the vascular niche.

    PubMed

    Cogle, Christopher R; Bosse, Raphael C; Brewer, Takae; Migdady, Yazan; Shirzad, Reza; Kampen, Kim Rosalie; Saki, Najmaldin

    2016-10-01

    The greatest challenge in treating acute myeloid leukemia (AML) is refractory disease. With approximately 60-80% of AML patients dying of relapsed disease, there is an urgent need to define and target mechanisms of drug resistance. Unfortunately, targeting cell-intrinsic resistance has failed to improve clinical outcomes in AML. Emerging data show that cell-extrinsic factors in the bone marrow microenvironment protect and support AML cells. The vascular niche, in particular, regulates AML cell survival and cell cycling by both paracrine secretion and adhesive contact with endothelial cells. Moreover, AML cells can functionally integrate within vascular endothelia, undergo quiescence, and resist cytotoxic chemotherapy. Together, these findings support the notion of blood vessels as sanctuary sites for AML. Therefore, vascular targeting agents may serve to remit AML. Several early phase clinical trials have tested anti-angiogenic agents, leukemia mobilizing agents, and vascular disrupting agents in AML patients. In general, these agents can be safely administered to AML patients and cardiovascular side effects were reported. Response rates to vascular targeting agents in AML have been modest; however, a majority of vascular targeting trials in AML are monotherapy in design and indiscriminate in patient recruitment. When considering the chemosensitizing effects of targeting the microenvironment, there is a strong rationale to build upon these early phase clinical trials and initiate phase IB/II trials of combination therapy where vascular targeting agents are positioned as priming agents for cytotoxic chemotherapy. PMID:25963886

  16. Monoclonal antibodies in acute lymphoblastic leukemia

    PubMed Central

    O’Brien, Susan; Ravandi, Farhad; Kantarjian, Hagop

    2015-01-01

    With modern intensive combination polychemotherapy, the complete response (CR) rate in adults with acute lymphoblastic leukemia (ALL) is 80% to 90%, and the cure rate is 40% to 50%. Hence, there is a need to develop effective salvage therapies and combine novel agents with standard effective chemotherapy. ALL leukemic cells express several surface antigens amenable to target therapies, including CD20, CD22, and CD19. Monoclonal antibodies target these leukemic surface antigens selectively and minimize off-target toxicity. When added to frontline chemotherapy, rituximab, an antibody directed against CD20, increases cure rates of adults with Burkitt leukemia from 40% to 80% and those with pre-B ALL from 35% to 50%. Inotuzumab ozogamicin, a CD22 monoclonal antibody bound to calicheamicin, has resulted in marrow CR rates of 55% and a median survival of 6 to 7 months when given to patients with refractory-relapsed ALL. Blinatumomab, a biallelic T cell engaging the CD3-CD19 monoclonal antibody, also resulted in overall response rates of 40% to 50% and a median survival of 6.5 months in a similar refractory-relapsed population. Other promising monoclonal antibodies targeting CD20 (ofatumumab and obinutuzumab) or CD19 or CD20 and bound to different cytotoxins or immunotoxins are under development. Combined modalities of chemotherapy and the novel monoclonal antibodies are under investigation. PMID:25999456

  17. Mixed Phenotypic Acute Leukemia Presenting as Mediastinal Mass-2 Cases.

    PubMed

    Vardhan, Rig; Kotwal, Jyoti; Ganguli, Prosenjit; Ahmed, Rehan; Sharma, Ajay; Singh, Jasjit

    2016-06-01

    Mixed phenotype acute leukemia symbolizes a very small subset of acute leukemia that simply cannot be allocated as lymphoid or myeloid lineage. The 2008 World Health Organisation classification established stringent standard for diagnosis of mixed phenotype acute leukemia, accentuating myeloperoxidase for myeloid lineage, cytoplasmic CD3 for T lineage and CD19 with other B markers for B lineage obligation. Mixed phenotype leukemia is rare and 3-5 % of acute leukmias of all age groups, is associated with poor outcome with overall survival of 18 months. We wish to present two cases of mixed phenotypic acute leukemia who presented with mediastinal masses, were suspected to be T cell lymphoma/leukemia clinically and radiologically. In one case, tissue diagnosis was given as lymphoma for which treatment was given. These cases show that patients diagnosed as lymphoma on histopathology can be cases of mixed phenotype acute leukemia and varying specific treatment protocols and follow up are required. Awareness of these entities will help in proper diagnosis and treatment. PMID:27408360

  18. New Strategies in Acute Myelogenous Leukemia: Leukemogenesis and Personalized Medicine

    PubMed Central

    Gojo, Ivana; Karp, Judith E.

    2014-01-01

    Recent advances in molecular technology have unraveled the complexity of leukemogenesis and provided the opportunity to design more personalized and pathophysiology-targeted therapeutic strategies. Despite the use of intensive chemotherapy, relapse remains the most common cause for therapeutic failure in acute myelogenous leukemia (AML). The interactions between leukemia stem cells (LSC) and marrow microenvironment appear to be critical in promoting therapeutic resistance through progressive acquisition of genetic and epigenetic changes within leukemia cells and immune evasion, resulting in leukemia cell survival. With advances in genomic sequencing efforts, epigenetic and phenotypic characterization, personalized therapeutic strategies aimed at critical leukemia survival mechanisms may be feasible in the near future. Here, we review select novel approaches to therapy of AML such as targeting LSC, altering leukemia/marrow microenvironment interactions, inhibiting DNA repair or cell cycle checkpoints, and augmenting immune-based anti-leukemia activity. PMID:25324141

  19. The allometry of chronic myeloid leukemia.

    PubMed

    Pacheco, Jorge M; Traulsen, Arne; Dingli, David

    2009-08-01

    Chronic myeloid leukemia (CML) is an acquired neoplastic hematopoietic stem cell (HSC) disorder characterized by the expression of the BCR-ABL oncoprotein. This gene product is necessary and sufficient to explain the chronic phase of CML. The only known cause of CML is radiation exposure leading to a mutation of at least one HSC, although the vast majority of patients with CML do not have a history of radiation exposure. Nonetheless, in humans, significant radiation exposure (after exposure to atomic bomb fallout) leads to disease diagnosis in 3-5 years. In murine models, disease dynamics are much faster and CML is fatal over the span of a few months. Our objective is to develop a model that accounts for CML across all mammals. In the following, we combine a model of CML dynamics in humans with allometric scaling of hematopoiesis across mammals to illustrate the natural history of chronic phase CML in various mammals. We show how a single cell can lead to a fatal illness in mice and humans but a higher burden of CML stem cells is necessary to induce disease in larger mammals such as elephants. The different dynamics of the disease is rationalized in terms of mammalian mass. Our work illustrates the relevance of animal models to understand human disease and highlights the importance of considering the re-scaling of the dynamics that accrues to the same biological process when planning experiments involving different species. PMID:19362566

  20. Acute lymphoblastic leukemia and developmental biology

    PubMed Central

    Campos-Sanchez, Elena; Toboso-Navasa, Amparo; Romero-Camarero, Isabel; Barajas-Diego, Marcos

    2011-01-01

    The latest scientific findings in the field of cancer research are redefining our understanding of the molecular and cellular basis of the disease, moving the emphasis toward the study of the mechanisms underlying the alteration of the normal processes of cellular differentiation. The concepts best exemplifying this new vision are those of cancer stem cells and tumoral reprogramming. The study of the biology of acute lymphoblastic leukemias (ALLs) has provided seminal experimental evidence supporting these new points of view. Furthermore, in the case of B cells, it has been shown that all the stages of their normal development show a tremendous degree of plasticity, allowing them to be reprogrammed to other cellular types, either normal or leukemic. Here we revise the most recent discoveries in the fields of B-cell developmental plasticity and B-ALL research and discuss their interrelationships and their implications for our understanding of the biology of the disease. PMID:22031225

  1. Comparative proteomics in acute myeloid leukemia

    PubMed Central

    Luczak, Magdalena; Kaźmierczak, Maciej; Hadschuh, Luiza; Lewandowski, Krzysztof; Komarnicki, Mieczysław

    2012-01-01

    The term proteomics was used for the first time in 1995 to describe large-scale protein analyses. At the same time proteomics was distinguished as a new domain of the life sciences. The major object of proteomic studies is the proteome, i.e. the set of all proteins accumulating in a given cell, tissue or organ. During the last years several new methods and techniques have been developed to increase the fidelity and efficacy of proteomic analyses. The most widely used are two-dimensional electrophoresis (2DE) and mass spectrometry (MS). In the past decade proteomic analyses have also been successfully applied in biomedical research. They allow one to determine how various diseases affect the pattern of protein accumulation. In this paper, we attempt to summarize the results of the proteomic analyses of acute myeloid leukemia (AML) cells. They have increased our knowledge on the mechanisms underlying AML development and contributed to progress in AML diagnostics and treatment. PMID:23788862

  2. Novel Therapeutic Strategies in Acute Lymphoblastic Leukemia.

    PubMed

    Dias, Ajoy; Kenderian, Saad J; Westin, Gustavo F; Litzow, Mark R

    2016-08-01

    Chemotherapy cures only a minority of adult patients with acute lymphoblastic leukemia (ALL). In addition, relapsed ALL has a poor outcome with 5-year survival as low as 7 %. Hence, there is a need to develop effective therapies to treat relapsed disease and to combine these agents with chemotherapy to improve outcomes in newly diagnosed patients. ALL cells express several antigens amenable to target therapies including CD19, CD20, CD22, and CD52. Over the last decade, there has been a surge in the development of immune therapies which target these receptors and that have induced robust responses. In this manuscript, we review these novel immune agents in the treatment of B-ALL. As these new therapies mature, the challenge going forward will be to find safe and effective combinations of these agents with chemotherapy and to determine their place in the current treatment schema. PMID:27101015

  3. Aspergillus osteoarthritis in acute lymphoblastic leukemia.

    PubMed

    Gunsilius, E; Lass-Flörl, C; Mur, E; Gabl, C; Gastl, G; Petzer, A L

    1999-11-01

    We report an unusual case of arthritis of the right wrist due to Aspergillus fumigatus without evidence for a generalized infection, following chemotherapy for acute lymphoblastic leukemia. The diagnosis was made by surgical biopsy. Amphotericin-B (Am-B) was not tolerated by the patient. Liposomal preparations of Am-B penetrate poorly into bone and cartilage. Therefore, oral itraconazole was given; the arthritis improved and chemotherapy was continued without infectious complications. Two weeks after complete hematopoietic recovery, an intracranial hemorrhage from a mycotic aneurysm of a brain vessel occurred, although the patient was still receiving itraconazole. We emphasize the importance of prompt and thorough efforts to identify the causative agent in immunocompromised patients with a joint infection. Itraconazole is effective in Aspergillus osteoarthritis but, due to its poor penetration into the brain, the combination with a liposomal formulation of Am-B is recommended. PMID:10602898

  4. Acute Myeloid Leukemia Presenting with Pulmonary Tuberculosis

    PubMed Central

    Thomas, Merlin; AlGherbawe, Mushtak

    2014-01-01

    We report the case of a 58-year-old immunocompetent man presenting with fever, cough, anorexia, weight loss, and cervical lymphadenopathy. Blood investigations revealed severe neutropenia with monocytosis. Chest imaging showed bilateral reticular infiltrates with mediastinal widening. Bronchoalveolar lavage culture and molecular test were positive for Mycobacterium tuberculosis and treatment with isoniazid, rifampicin, pyrazinamide, and ethambutol was started. Although pulmonary tuberculosis could explain this clinical presentation we suspected associated blood dyscrasias in view of significant monocytosis and mild splenomegaly. Bone marrow aspiration revealed acute myeloid leukemia. Thereafter the patient received induction chemotherapy and continued antituberculous treatment. After first induction of chemotherapy patient was in remission and successfully completed 6 months antituberculosis therapy without any complications. To our knowledge there has been no such case reported from the State of Qatar to date. PMID:24987539

  5. The Pathogenesis of Chronic Lymphocytic Leukemia

    PubMed Central

    Galton, D. A. G.

    1966-01-01

    The pathogenesis of chronic lymphocytic leukemia was examined in a series of 88 cases observed during a 15-year period. In untreated cases the trend of the absolute lymphocyte counts followed two main patterns. In the type I trend, the counts rose throughout the observation period; in the type II trend, the tendency to rise ceased and the counts stabilized above and below a mean value, the stationary trend being maintained for months or years. The type II trend was associated with relatively benign disease. The development of lymphocytosis was correlated with the progression of lymphadenopathy. It is suggested that lymphocytosis may result from the physiological process of recirculation and that the accumulation of lymphocytes may result from the proliferation of a single slightly abnormal cell-line. The abnormal cells might survive an unusually long time because they are unable to respond to stimuli which cause normal lymphocytes to transform. PMID:4952384

  6. Management of chronic myelogenous leukemia in pregnancy.

    PubMed

    Bhandari, Amit; Rolen, Katrina; Shah, Binay Kumar

    2015-01-01

    Discovery of tyrosine kinase inhibitors has led to improvement in survival of chronic myelogenous leukemia (CML) patients. Many young CML patients encounter pregnancy during their lifetime. Tyrosine kinase inhibitors inhibit several proteins that are known to have important functions in gonadal development, implantation and fetal development, thus increasing the risk of embryo toxicities. Studies have shown imatinib to be embryotoxic in animals with varying effects in fertility. Since pregnancy is rare in CML, there are no randomized controlled trials to address the optimal management of this condition. However, there are several case reports and case series on CML in pregnancy. At the present time, there is no consensus on how to manage different pregnancy situations in CML. In this article, we review current literature on CML in pregnancy, discuss the effects of several tyrosine kinase inhibitors on fertility and pregnancy and suggest an evidence-based treatment of CML in pregnancy. PMID:25550528

  7. [The genetic landscape of chronic lymphocytic leukemia].

    PubMed

    Marosvári, Dóra; Alpár, Donát; Király, Attila Péter; Rajnai, Hajnalka; Reiniger, Lilla; Bödör, Csaba

    2016-06-01

    Chronic lymphocytic leukemia (CLL) is the most frequent mature B-cell non-Hodgkin's lymphoma in the Western countries. The recent next-generation sequencing (NGS) studies lead to an exponential increase in our knowledge of the pathogenesis and progression of CLL. Whole genome and exome sequencing studies revealed a remarkable inter- and intra-patient genetic heterogeneity with a significant therapy-induced clonal evolution in the majority of the patients. Driver mutations were identified in components of various signalling pathways and cellular processes with notable prognostic and therapeutic relevance. Interestingly, these studies revealed only a few genes mutated in at least 15-20% of the patients with a larger number of genes mutated in a smaller proportion of patients. This improved understanding of the genomic landscape of CLL has opened new avenues for a more precise patient stratification and rational application of novel, more effective targeted therapies. PMID:27275638

  8. Apoptosis inducers in chronic lymphocytic leukemia

    PubMed Central

    Billard, Christian

    2014-01-01

    Chronic lymphocytic leukemia (CLL) is characterized by a typical defect in apoptosis and is still an incurable disease. Numerous apoptosis inducers have been described. These synthetic compounds and natural products (mainly derived from plants) display antileukemic properties in vitro and in vivo and some have even been tested in the clinic in CLL. They act through several different mechanisms. Most of them involve proteins of the Bcl-2 family, which are the key regulators in triggering the mitochondrial pathway of caspase-dependent apoptosis. Thus, the Mcl-1/Noxa axis appeared as a target. Here I overview natural and synthetic apoptosis inducers and their mechanisms of action in CLL cells. Opportunities for developing novel, apoptosis-based therapeutics are presented. PMID:24525395

  9. Monitoring Molecular Response in Chronic Myeloid Leukemia

    PubMed Central

    Cortes, Jorge; Quintás-Cardama, Alfonso; Kantarjian, Hagop M.

    2016-01-01

    Background Prior to the advent of tyrosine kinase inhibitor (TKI) therapy, the evaluation of hematologic and cytogenetic responses was sufficient to gauge treatment efficacy in patients with chronic myeloid leukemia. However, with more potent TKI therapies, the majority of patients achieve complete cytogenetic response (CCyR). Furthermore, deeper molecular responses are now commonly achieved, necessitating a reliance on molecular monitoring to assess residual leukemic disease. Methods/Results The prognostic significance between molecular responses and duration of CCyR, progression-free survival, and event-free survival is described herein. A discussion of the concept of complete molecular response is also provided and the potential for imatinib treatment discontinuation is evaluated. The implications of rising BCR-ABL1 transcript levels and caveats of molecular monitoring are also described. PMID:20960522

  10. Initial therapy of chronic lymphocytic leukemia.

    PubMed

    Eichhorst, Barbara; Cramer, Paula; Hallek, Michael

    2016-04-01

    Only chronic lymphocytic leukemia (CLL) patients with active or symptomatic disease or with advanced Binet or Rai stages require therapy. Prognostic risk factor profile and comorbidity burden are most relevant for the choice of treatment. For physically fit patients, chemoimmunotherapy with fludarabine, cyclophosphamide, and rituximab remains the current standard therapy. For unfit patients, treatment with an anti-CD20 antibody (obinutuzumab or rituximab or ofatumumab) plus milder chemotherapy (chlorambucil) may be applied. Patients with a del(17p) or TP53 mutation should be treated with the kinase inhibitors ibrutinib or a combination of idelalisib and rituximab. Clinical trials over the next several years will determine, whether kinase inhibitors, other small molecules, immunotherapeutics, or combinations thereof will further improve outcomes for patients with CLL. PMID:27040702

  11. Perinatal risk factors for acute myeloid leukemia.

    PubMed

    Crump, Casey; Sundquist, Jan; Sieh, Weiva; Winkleby, Marilyn A; Sundquist, Kristina

    2015-12-01

    Infectious etiologies have been hypothesized for acute leukemias because of their high incidence in early childhood, but have seldom been examined for acute myeloid leukemia (AML). We conducted the first large cohort study to examine perinatal factors including season of birth, a proxy for perinatal infectious exposures, and risk of AML in childhood through young adulthood. A national cohort of 3,569,333 persons without Down syndrome who were born in Sweden in 1973-2008 were followed up for AML incidence through 2010 (maximum age 38 years). There were 315 AML cases in 69.7 million person-years of follow-up. We found a sinusoidal pattern in AML risk by season of birth (P < 0.001), with peak risk among persons born in winter. Relative to persons born in summer (June-August), incidence rate ratios for AML were 1.72 (95 % CI 1.25-2.38; P = 0.001) for winter (December-February), 1.37 (95 % CI 0.99-1.90; P = 0.06) for spring (March-May), and 1.27 (95 % CI 0.90-1.80; P = 0.17) for fall (September-November). Other risk factors for AML included high fetal growth, high gestational age at birth, and low maternal education level. These findings did not vary by sex or age at diagnosis. Sex, birth order, parental age, and parental country of birth were not associated with AML. In this large cohort study, birth in winter was associated with increased risk of AML in childhood through young adulthood, possibly related to immunologic effects of early infectious exposures compared with summer birth. These findings warrant further investigation of the role of seasonally varying perinatal exposures in the etiology of AML. PMID:26113060

  12. Current concepts in diagnosis and treatment of chronic lymphocytic leukemia

    PubMed Central

    Roliński, Jacek

    2015-01-01

    Chronic lymphocytic leukemia (CLL) is the most commonly diagnosed type of leukemia in Western Europe and North America, and represents about 30% of all leukemias in adults. Chronic lymphocytic leukemia is a disease of the elderly, who are often in poorer general health and burdened with multiple comorbidities. These factors affect the decision making when choosing an appropriate method of treatment. In recent years there has been significant progress in the treatment of chronic lymphocytic leukemia, first due to the introduction of immunochemotherapy with monoclonal antibodies and latterly small molecules, like tyrosine kinase inhibitors targeting B-cell receptor signaling. This article discusses the current diagnostic principles, the most important prognostic factors and therapeutic options, available in first-line treatment and in refractory/resistant disease, including high-risk CLL, both for patients with good and those with poor performance status. It also presents important novel molecules which have been evaluated in clinical trials. PMID:26793019

  13. Cyclophosphamide and Busulfan Followed by Donor Stem Cell Transplant in Treating Patients With Myelofibrosis, Acute Myeloid Leukemia, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2014-04-03

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Childhood Acute Myeloid Leukemia in Remission; Childhood Myelodysplastic Syndromes; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Myelodysplastic Syndrome With Isolated Del(5q); Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Secondary Myelofibrosis; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  14. Adult Acute Myeloid Leukemia Long-term Survivors

    PubMed Central

    Cheng, M. Jennifer; Hourigan, Christopher S.; Smith, Thomas J.

    2014-01-01

    The number of leukemia patients and survivors is growing. This review summarizes what is known regarding the health related quality of life (HRQOL) and medical complications associated with acute myeloid leukemia (AML) disease and treatment and highlights understudied aspects of adult AML survivorship care, and potential novel areas for intervention. PMID:25243197

  15. Symptom-Adapted Physical Activity Intervention in Minimizing Physical Function Decline in Older Patients With Acute Myeloid Leukemia Undergoing Chemotherapy

    ClinicalTrials.gov

    2016-07-26

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  16. Combination Chemotherapy in Treating Young Patients With Newly Diagnosed High-Risk B Acute Lymphoblastic Leukemia and Ph-Like TKI Sensitive Mutations

    ClinicalTrials.gov

    2016-09-14

    B Acute Lymphoblastic Leukemia; Bone Necrosis; Central Nervous System Leukemia; Cognitive Side Effects of Cancer Therapy; Neurotoxicity Syndrome; Pain; Testicular Leukemia; Therapy-Related Toxicity; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  17. Genetics Home Reference: familial acute myeloid leukemia with mutated CEBPA

    MedlinePlus

    ... N. A family harboring a germ-line N-terminal C/EBPalpha mutation and development of acute myeloid leukemia with an additional somatic C-terminal C/EBPalpha mutation. Genes Chromosomes Cancer. 2010 Mar; ...

  18. Endometrial and acute myeloid leukemia cancer genomes characterized

    Cancer.gov

    Two studies from The Cancer Genome Atlas (TCGA) program reveal details about the genomic landscapes of acute myeloid leukemia (AML) and endometrial cancer. Both provide new insights into the molecular underpinnings of these cancers with the potential to i

  19. Serum metabonomics of acute leukemia using nuclear magnetic resonance spectroscopy

    PubMed Central

    Musharraf, Syed Ghulam; Siddiqui, Amna Jabbar; Shamsi, Tahir; Choudhary, M. Iqbal; Rahman, Atta-ur

    2016-01-01

    Acute leukemia is a critical neoplasm of white blood cells. In order to differentiate between the metabolic alterations associated with two subtypes of acute leukemia, acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), we investigated the serum of ALL and AML patients and compared with two controls (healthy and aplastic anemia) using 1H NMR (nuclear magnetic resonance) spectroscopy. Thirty-seven putative metabolites were identified using Carr-Purcell-Meiboom-Gill (CPMG) sequence. The use of PLS-DA and OPLS-DA models gave results with 84.38% and 90.63% classification rate, respectively. The metabolites responsible for classification are mainly lipids, lactate and glucose. Compared with controls, ALL and AML patients showed serum metabonomic differences involving aberrant metabolism pathways including glycolysis, TCA cycle, lipoprotein changes, choline and fatty acid metabolisms. PMID:27480133

  20. Acute Lymphoblastic Leukemia (ALL) Treatment in Adults (Beyond the Basics)

    MedlinePlus

    ... 2016 UpToDate, Inc. Patient information: Acute lymphoblastic leukemia (ALL) treatment in adults (Beyond the Basics) Author Richard ... the content. Appropriately referenced content is required of all authors and must conform to UpToDate standards of ...

  1. Serum metabonomics of acute leukemia using nuclear magnetic resonance spectroscopy.

    PubMed

    Musharraf, Syed Ghulam; Siddiqui, Amna Jabbar; Shamsi, Tahir; Choudhary, M Iqbal; Rahman, Atta-Ur

    2016-01-01

    Acute leukemia is a critical neoplasm of white blood cells. In order to differentiate between the metabolic alterations associated with two subtypes of acute leukemia, acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), we investigated the serum of ALL and AML patients and compared with two controls (healthy and aplastic anemia) using (1)H NMR (nuclear magnetic resonance) spectroscopy. Thirty-seven putative metabolites were identified using Carr-Purcell-Meiboom-Gill (CPMG) sequence. The use of PLS-DA and OPLS-DA models gave results with 84.38% and 90.63% classification rate, respectively. The metabolites responsible for classification are mainly lipids, lactate and glucose. Compared with controls, ALL and AML patients showed serum metabonomic differences involving aberrant metabolism pathways including glycolysis, TCA cycle, lipoprotein changes, choline and fatty acid metabolisms. PMID:27480133

  2. Splenic actinomycotic abscess in a patient with acute myeloid leukemia.

    PubMed

    Chen, C-Y; Chen, Y-C; Tang, J-L; Lin, W-C; Su, I-J; Tien, H-F

    2002-09-01

    Actinomycosis is a gram-positive anaerobic bacterium. Actinomyces organisms are important constituents of the normal flora of mucous membranes and are considered opportunistic pathogens. The three major clinical presentations of actinomycosis include the cervicofacial, thoracic, and abdominopelvic regions. Actinomycosis infection in patients with febrile neutropenia is uncommon and actinomycosis splenic involvement in acute leukemia patients is very rare. We describe a man with acute myeloid leukemia and splenic actinomycotic abscess that developed after chemotherapy following prolonged neutropenia. PMID:12373356

  3. Decitabine Followed by Idarubicin and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2013-10-09

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts

  4. Clofarabine, Cytarabine, and Filgrastim Followed by Infusion of Non-HLA Matched Ex Vivo Expanded Cord Blood Progenitors in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-08-13

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  5. What Are the Risk Factors for Chronic Myeloid Leukemia?

    MedlinePlus

    ... of an atomic bomb blast or nuclear reactor accident) increases the risk of getting CML Age : The ... Myeloid (CML)? Causes, Risk Factors, and Prevention Early Detection, Diagnosis, and Staging Treating Leukemia - Chronic Myeloid (CML) ...

  6. Unplugging JAK/STAT in Chronic Myelomonocytic Leukemia.

    PubMed

    Solary, Eric

    2016-08-01

    The proliferative component of chronic myelomonocytic leukemia, related to an increased sensitivity of myeloid progenitors to granulocyte macrophage-colony stimulating factor, suggests dedicated therapeutic approaches. In this issue, ruxolitinib, a JAK1 and -2 inhibitory drug, is shown to induce objective responses in chronic myelomonocytic leukemia patients. Clin Cancer Res; 22(15); 3707-9. ©2016 AACRSee related article by Padron et al., p. 3746. PMID:26979390

  7. Vorinostat, Fludarabine Phosphate, Cyclophosphamide, and Rituximab in Treating Patients With Previously Untreated Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2016-05-04

    Chronic Lymphocytic Leukemia; Stage I Chronic Lymphocytic Leukemia; Stage I Small Lymphocytic Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Small Lymphocytic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Small Lymphocytic Lymphoma

  8. Cytogenetic and molecular abnormalities in chronic myelomonocytic leukemia

    PubMed Central

    Patnaik, M M; Tefferi, A

    2016-01-01

    Chronic myelomonocytic leukemia (CMML) is a clonal stem cell disorder associated with peripheral blood monocytosis and an inherent tendency to transform to acute myeloid leukemia. CMML has overlapping features of myelodysplastic syndromes and myeloproliferative neoplasms. Clonal cytogenetic changes are seen in ~30%, whereas gene mutations are seen in >90% of patients. Common cytogenetic abnormalities include; trisomy 8, -Y, -7/del(7q), trisomy 21 and del(20q), with the Mayo–French risk stratification effectively risk stratifying patients based on cytogenetic abnormalities. Gene mutations frequently involve epigenetic regulators (TET2 ~60%), modulators of chromatin (ASXL1 ~40%), spliceosome components (SRSF2 ~50%), transcription factors (RUNX1 ~15%) and signal pathways (RAS ~30%, CBL ~15%). Of these, thus far, only nonsense and frameshift ASXL1 mutations have been shown to negatively impact overall survival. This has resulted in the development of contemporary, molecularly integrated (inclusive of ASXL1 mutations) CMML prognostic models, including Molecular Mayo Model and the Groupe Français des Myélodysplasies model. Better understanding of the prevalent genetic and epigenetic dysregulation has resulted in emerging targeted treatment options for some patients. The development of an integrated (cytogenetic and molecular) prognostic model along with CMML-specific response assessment criteria are much needed future goals. PMID:26849014

  9. Chronic Lymphocytic Leukemia in Chornobyl Cleanup Workers.

    PubMed

    Bazyka, Dimitry; Gudzenko, Natalya; Dyagil, Iryna; Goroh, Eugeny; Polyschuk, Oksana; Trotsuk, Natalya; Babkina, Nataly; Romanenko, Anatoly

    2016-08-01

    This paper describes the chronic lymphocytic leukemia (CLL) incidence in a cohort of 110,645 (enlarged later to 152,520) male Ukrainian cleanup workers of the Chornobyl (Chernobyl) accident who were exposed to a range of radiation doses over the 1986-1990 time period. The standardized incidence rates are presented for a 27-y period after the exposure. For 2007-2012 period, the authors have identified the incident CLL cases in an enlarged cohort of 152,520 persons by linkage of the cohort file with the Ukrainian National Cancer Registry (NCRU). CLL data for the previous period (1987-2006) were identified in a frame of the Ukrainian-American leukemia study in the original cohort of 110,645 male clean-up workers. A significant CLL incidence excess was shown for the entire study period 1987-2012, with more prominent levels for the earliest years (1987-1996) when the standardized incidence rate (SIR) value was estimated to be 3.61 with 95% confidence interval from 2.32 to 4.91. In 2007-2012, the CLL incidence decreased substantially but still exceeded the national level although not significantly. In parallel, the several studies were performed at the National Research Center for Radiation Medicine (NRCRM) to explore if any clinical and cytogenetic features of CLL existed in the clean-up workers. The clinical study included 80 exposed and 70 unexposed CLL cases. Among the major clinical differences of the CLL course in the clean-up workers were a shorter period of white blood cells (WBC) doubling (10.7 vs. 18.0; p<0.001), frequent infectious episodes, lymphoadenopathy and hepatosplenomegaly (37 vs. 16), higher expression for CD38, and lower expression for ZAP-70 antigen. PMID:27356063

  10. Methotrexate-Induced Acute Leukemia: Report of Three Cases and Review of the Literature

    PubMed Central

    Al-Anazi, Khalid A.; Eltayeb, Khalid I.; Bakr, Mohammed; Al-Mohareb, Fahad I.

    2009-01-01

    For many years, methotrexate has been used in the treatment of certain chronic medical disorders e.g. rheumatoid arthritis and psoriasis as well as a number of malignant disorders e.g. acute lymphoblastic leukemia, certain types of lymphoma and breast carcinoma. Its use has been associated with various systemic toxicities and complications. The association between methotrexate therapy and the development of lymphoma and pseudolymphoma is well established. In patients treated with methotrexate, the development of leukemia has been attributed to either the primary disorder e.g. rheumatoid arthritis or to other drugs used concomitantly e.g. cyclophosphamide. Reported here are two patients with rheumatoid arthritis and one patient with psoriasis treated with low dose methotrexate for variable periods of time. Two of these patients developed acute myeloid leukemia on myelodysplastic syndrome background, while the third patient developed pre-B acute lymphoblastic leukemia that expressed few myeloid markers and had a positive philadelphia chromosome. To our knowledge, these are the first reported cases of methotrexate-induced acute leukemia. PMID:24179373

  11. Leukemia-associated phenotypes: their characteristics and incidence in acute leukemia.

    PubMed

    Babusíková, O; Glasová, M; Koníková, E; Kusenda, J

    1996-01-01

    Leukemia-associated phenotypes have been suggested to be a valuable tool for the detection of minimal residual disease in acute leukemia patients, as they allow to distinguish leukemic blasts from normal hematopoietic progenitor cells. The aim of the present study was to analyze the proportion of acute leukemia patients (both with lymphoid and myeloid leukemias) in which the immunological detection of leukemia-associated phenotypes was convenient for the distinction of leukemic and normal cells. For this purpose we have studied the blast cells from 186 acute leukemia patients at diagnosis with a large panel of monoclonal antibodies by flow cytometry using double staining combinations. From aberrant phenotypes on blast cells we followed lineage infidelity (coexpression of myeloid markers in lymphoid leukemia cells and vice versa, as well as the simultaneous expression of both, T and B cell markers in one lymphoid blast cell) and asynchronous marker expression (simultaneous expression of early and late markers in one cell). One hundred and five of the 186 acute leukemia cases analyzed (56%) showed the presence of leukemia-associated phenotypes. In 41 of the 90 ALL cases followed (46%) and in 40 of the 96 AML cases studied (42%) lineage infidelity was observed. Asynchronous antigen expression was detected in 24 followed cases (13%). Evaluation of the cell marker density by means of calibration microbeads demonstrated abnormal mean channel immunofluorescence and molecules of equivalent soluble fluorescein for CD8 in two patients with T cell malignancies at diagnosis. Abnormal CD8 density might thus represent a characteristic feature of malignant CD8-positive T cell clone. Quantitative marker evaluation therefore seems to be another important mean for the detection of aberrant phenotypes on leukemia cells suitable for the detection of minimal residual disease. PMID:8996560

  12. Educational session: managing chronic myeloid leukemia as a chronic disease.

    PubMed

    Hochhaus, Andreas

    2011-01-01

    Elucidation of the pathogenesis of chronic myeloid leukemia (CML) and the introduction of tyrosine kinase inhibitors (TKIs) has transformed this disease from being invariably fatal to being the type of leukemia with the best prognosis. Median survival associated with CML is estimated at > 20 years. Nevertheless, blast crisis occurs at an incidence of 1%-2% per year, and once this has occurred, treatment options are limited and survival is short. Due to the overall therapeutic success, the prevalence of CML is gradually increasing. The optimal management of this disease includes access to modern therapies and standardized surveillance methods for all patients, which will certainly create challenges. Furthermore, all available TKIs show mild but frequent side effects that may require symptomatic therapy. Adherence to therapy is the key prerequisite for efficacy of the drugs and for long-term success. Comprehensive information on the nature of the disease and the need for the continuous treatment using the appropriate dosages and timely information on efficacy data are key factors for optimal compliance. Standardized laboratory methods are required to provide optimal surveillance according to current recommendations. CML occurs in all age groups. Despite a median age of 55-60 years, particular challenges are the management of the disease in children, young women with the wish to get pregnant, and older patients. The main challenges in the long-term management of CML patients are discussed in this review. PMID:22160024

  13. Decitabine as Maintenance Therapy After Standard Therapy in Treating Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-19

    Acute Myeloid Leukemia With Myelodysplasia-Related Changes; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Untreated Adult Acute Myeloid Leukemia

  14. A phase I study of danusertib (PHA-739358) in adult patients with accelerated or blastic phase chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia resistant or intolerant to imatinib and/or other second generation c-ABL therapy

    PubMed Central

    Borthakur, Gautam; Dombret, Herve; Schafhausen, Philippe; Brummendorf, Tim Henrik; Boissel, Nicolas; Jabbour, Elias; Mariani, Mariangela; Capolongo, Laura; Carpinelli, Patrizia; Davite, Cristina; Kantarjian, Hagop; Cortes, Jorge E.

    2015-01-01

    Danusertib is a pan-aurora kinase inhibitor with potent activity against Abl kinase including the gatekeeper T315I mutant. A phase 1 dose escalation study of danusertib was conducted in patients with accelerated or blastic phase chronic myeloid leukemia or Philadelphia chromosome-positive acute lymphoblastic leukemia. Two dosing schedules were studied: schedule A, in which danusertib was given by 3-hour intravenous infusion daily for 7 consecutive days (days 1–7) in a 14-day cycle, and schedule B, in which the danusertib was given by 3-hour intravenous infusion daily for 14 consecutive days (days 1–14) in a 21-day cycle. A total of 37 patients were treated, 29 with schedule A and eight with schedule B. The recommended phase 2 dose for schedule A was 180 mg/m2. Enrollment to schedule B was stopped early because of logistical problems with the frequency of infusions. Febrile neutropenia and mucositis were dose-limiting toxicities in schedule A. Four patients with T315I ABL kinase mutation, all treated with schedule A, responded. Danusertib has an acceptable toxicity profile and is active in patients with Bcr-Abl-associated advanced hematologic malignancies. This study was registered with the European Clinical Trails Data Base (EudraCT number 2007-004070-18). PMID:25887498

  15. Acute myeloid leukemia developing in patients with autoimmune diseases

    PubMed Central

    Ramadan, Safaa M.; Fouad, Tamer M; Summa, Valentina; Hasan, Syed KH; Lo-Coco, Francesco

    2012-01-01

    Therapy-related acute myeloid leukemia is an unfortunate complication of cancer treatment, particularly for patients with highly curable primary malignancies and favorable life expectancy. The risk of developing therapy-related acute myeloid leukemia also applies to patients with non-malignant conditions, such as autoimmune diseases treated with cytotoxic and/or immunosuppressive agents. There is considerable evidence to suggest that there is an increased occurrence of hematologic malignancies in patients with autoimmune diseases compared to the general population, with a further increase in risk after exposure to cytotoxic therapies. Unfortunately, studies have failed to reveal a clear correlation between leukemia development and exposure to individual agents used for the treatment of autoimmune diseases. Given the dismal outcome of secondary acute myeloid leukemia and the wide range of available agents for treatment of autoimmune diseases, an increased awareness of this risk and further investigation into the pathogenetic mechanisms of acute leukemia in autoimmune disease patients are warranted. This article will review the data available on the development of acute myeloid leukemia in patients with autoimmune diseases. Possible leukemogeneic mechanisms in these patients, as well as evidence supporting the association of their primary immunosuppressive status and their exposure to specific therapies, will also be reviewed. This review also supports the idea that it may be misleading to label leukemias that develop in patients with autoimmune diseases who are exposed to cytotoxic agents as ‘therapy-related leukemias’. A better understanding of the molecular defects in autoimmune disease patients who develop acute leukemia will lead to a better understanding of the association between these two diseases entities. PMID:22180424

  16. Fludarabine Phosphate, Radiation Therapy, and Rituximab in Treating Patients Who Are Undergoing Donor Stem Cell Transplant Followed by Rituximab for High-Risk Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2016-03-28

    Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Small Lymphocytic Lymphoma; T-Cell Large Granular Lymphocyte Leukemia

  17. Total Marrow and Lymphoid Irradiation and Chemotherapy Before Donor Stem Cell Transplant in Treating Patients With High-Risk Acute Lymphocytic or Myelogenous Leukemia

    ClinicalTrials.gov

    2016-09-07

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia

  18. Busulfan and Etoposide Followed by Peripheral Blood Stem Cell Transplant and Low-Dose Aldesleukin in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-08-04

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Childhood Acute Myeloid Leukemia in Remission; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia

  19. Reduced Intensity Donor Peripheral Blood Stem Cell Transplant in Treating Patients With De Novo or Secondary Acute Myeloid Leukemia in Remission

    ClinicalTrials.gov

    2016-01-19

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia

  20. Clofarabine or Daunorubicin Hydrochloride and Cytarabine Followed By Decitabine or Observation in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-09-16

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  1. Diagnosing and managing advanced chronic myeloid leukemia.

    PubMed

    Deininger, Michael W

    2015-01-01

    Clinical staging of chronic myeloid leukemia (CML) distinguishes between chronic phase (CP-CML), accelerated phase (AP-CML), and blastic phase (BP-CML), reflecting its natural history in the absence of effective therapy. Morphologically, transformation from CP-CML to AP/BP-CML is characterized by a progressive or sudden loss of differentiation. Multiple different somatic mutations have been implicated in transformation from CP-CML to AP/BC-CML, but no characteristic mutation or combination of mutations have emerged. Gene expression profiles of AP-CML and BP-CML are similar, consistent with biphasic evolution at the molecular level. Gene expression of tyrosine kinase inhibitor (TKI)-resistant CP-CML and second CP-CML resemble AP/BP-CML, suggesting that morphology alone is a poor predictor of biologic behavior. At the clinical level, progression to AP/BP-CML or resistance to first-line TKI therapy distinguishes a good risk condition with survival close to the general population from a disease likely to reduce survival. Progression while receiving TKI therapy is frequently caused by mutations in the target kinase BCR-ABL1, but progression may occur in the absence of explanatory BCR-ABL1 mutations, suggesting involvement of alternative pathways. Identifying patients in whom milestones of TKI response fail to occur or whose disease progress while receiving therapy requires appropriate molecular monitoring. Selection of salvage TKI depends on prior TKI history, comorbidities, and BCR-ABL1 mutation status. Despite the introduction of novel TKIs, therapy of AP/BP-CML remains challenging and requires accepting modalities with substantial toxicity, such as hematopoietic stem cell transplantation (HSCT). PMID:25993200

  2. Isochromosome 17q in Chronic Lymphocytic Leukemia.

    PubMed

    Alhourani, Eyad; Rincic, Martina; Melo, Joana B; Carreira, Isabel M; Glaser, Anita; Pohle, Beate; Schlie, Cordula; Liehr, Thomas

    2015-01-01

    In chronic lymphocytic leukemia (CLL), presence of acquired cytogenetic abnormalities may help to estimate prognosis. However, deletion of TP53 gene, which is associated with an aggressive course of the disease and poor prognosis along with a lack of response to treatment, is one of the alterations which may escape cytogenetic diagnoses in CLL. Thus, other techniques have emerged such as interphase fluorescence in situ hybridization (iFISH). Deletion of TP53 may but must not go together with the formation of an isochromosome i(17q); surprisingly this subgroup of patients was not in the focus of CLL studies yet. This study was about if presence of i(17q) could be indicative for a new subgroup in CLL with more adverse prognosis. As a result, TP53 deletion was detected in 18 out of 150 (12%) here studied CLL cases. Six of those cases (~33%) had the TP53 deletion accompanied by an i(17q). Interestingly, the cases with i(17q) showed a tendency towards more associated chromosomal aberrations. These findings may be the bases for follow-up studies in CLL patients with TP53 deletion with and without i(17q); it may be suggested that the i(17q) presents an even more adverse prognostic marker than TP53 deletion alone. PMID:26697230

  3. Isochromosome 17q in Chronic Lymphocytic Leukemia

    PubMed Central

    Alhourani, Eyad; Rincic, Martina; Melo, Joana B.; Carreira, Isabel M.; Glaser, Anita; Pohle, Beate; Schlie, Cordula; Liehr, Thomas

    2015-01-01

    In chronic lymphocytic leukemia (CLL), presence of acquired cytogenetic abnormalities may help to estimate prognosis. However, deletion of TP53 gene, which is associated with an aggressive course of the disease and poor prognosis along with a lack of response to treatment, is one of the alterations which may escape cytogenetic diagnoses in CLL. Thus, other techniques have emerged such as interphase fluorescence in situ hybridization (iFISH). Deletion of TP53 may but must not go together with the formation of an isochromosome i(17q); surprisingly this subgroup of patients was not in the focus of CLL studies yet. This study was about if presence of i(17q) could be indicative for a new subgroup in CLL with more adverse prognosis. As a result, TP53 deletion was detected in 18 out of 150 (12%) here studied CLL cases. Six of those cases (~33%) had the TP53 deletion accompanied by an i(17q). Interestingly, the cases with i(17q) showed a tendency towards more associated chromosomal aberrations. These findings may be the bases for follow-up studies in CLL patients with TP53 deletion with and without i(17q); it may be suggested that the i(17q) presents an even more adverse prognostic marker than TP53 deletion alone. PMID:26697230

  4. Chronic neutrophilic leukemia: a clinical perspective

    PubMed Central

    Menezes, Juliane; Cigudosa, Juan Cruz

    2015-01-01

    Chronic neutrophilic leukemia (CNL) is a rare myeloproliferative neoplasm (MPN) that includes only 150 patients described to date meeting the latest World Health Organization (WHO) criteria and the recently reported CSF3R mutations. The diagnosis is based on morphological criteria of granulocytic cells and the exclusion of genetic drivers that are known to occur in others MPNs, such as BCR-ABL1, PDGFRA/B, or FGFR1 rearrangements. However, this scenario changed with the identification of oncogenic mutations in the CSF3R gene in approximately 83% of WHO-defined and no monoclonal gammopathy-associated CNL patients. CSF3R T618I is a highly specific molecular marker for CNL that is sensitive to inhibition in vitro and in vivo by currently approved protein kinase inhibitors. In addition to CSF3R mutations, other genetic alterations have been found, notably mutations in SETBP1, which may be used as prognostic markers to guide therapeutic decisions. These findings will help to understand the pathogenesis of CNL and greatly impact the clinical management of this disease. In this review, we discuss the new genetic alterations recently found in CNL and the clinical perspectives in its diagnosis and treatment. Fortunately, since the diagnosis of CNL is not based on exclusion anymore, the molecular characterization of the CSF3R gene must be included in the WHO criteria for CNL diagnosis. PMID:26366092

  5. The lymph node in chronic lymphocytic leukemia.

    PubMed

    Dick, F R; Maca, R D

    1978-01-01

    Lymph nodes were examined from 41 cases of typical chronic lymphocytic leukemia (CLL). Degree of immaturity was graded as absent to minimal (Grade I), moderate (Grade II) and marked (Grade III). A moderate degree of immaturity was found in the lymph node in 14 of 41 cases even though the cells seen on the initial bone marrow and peripheral blood smears obtained from these patients were essentially all mature. The morphology of these nodes could be confused with poorly differentiated lymphocytic or mixed lymphocytic-histiocytic lymphoma in terms of the degree of immaturity present. A marked degree of immaturity present. A marked degree of immaturity was found in 5 cases; the morphology of these cases resembled histiocytic lymphoma. In the remaining 22 cases immaturity was essentially absent. The morphology of these cases was similar to that of diffuse well differentiated lymphocytic lymphoma. Our studies suggest that a moderate degree of immaturity in the lymph node of patients with CLL does not indicate that these patients will have a marked shortening of their survival. PMID:580071

  6. Diffuse Alveolar Hemorrhage in Acute Myeloid Leukemia.

    PubMed

    Nanjappa, Sowmya; Jeong, Daniel K; Muddaraju, Manjunath; Jeong, Katherine; Hill, Ebone D; Greene, John N

    2016-07-01

    Diffuse alveolar hemorrhage is a potentially fatal pulmonary disease syndrome that affects individuals with hematological and nonhematological malignancies. The range of inciting factors is wide for this syndrome and includes thrombocytopenia, underlying infection, coagulopathy, and the frequent use of anticoagulants, given the high incidence of venous thrombosis in this population. Dyspnea, fever, and cough are commonly presenting symptoms. However, clinical manifestations can be variable. Obvious bleeding (hemoptysis) is not always present and can pose a potential diagnostic challenge. Without prompt treatment, hypoxia that rapidly progresses to respiratory failure can occur. Diagnosis is primarily based on radiological and bronchoscopic findings. This syndrome is especially common in patients with hematological malignancies, given an even greater propensity for thrombocytopenia as a result of bone marrow suppression as well as the often prolonged immunosuppression in this patient population. The syndrome also has an increased incidence in individuals with hematological malignancies who have received a bone marrow transplant. We present a case series of 5 patients with acute myeloid leukemia presenting with diffuse alveolar hemorrhage at our institution. A comparison of clinical manifestations, radiographic findings, treatment course, and outcomes are described. A review of the literature and general overview of the diagnostic evaluation, differential diagnoses, pathophysiology, and treatment of this syndrome are discussed. PMID:27556667

  7. Epigenetic deregulation in pediatric acute lymphoblastic leukemia

    PubMed Central

    Chatterton, Zac; Morenos, Leah; Mechinaud, Francoise; Ashley, David M; Craig, Jeffrey M; Sexton-Oates, Alexandra; Halemba, Minhee S; Parkinson-Bates, Mandy; Ng, Jane; Morrison, Debra; Carroll, William L; Saffery, Richard; Wong, Nicholas C

    2014-01-01

    Similar to most cancers, genome-wide DNA methylation profiles are commonly altered in pediatric acute lymphoblastic leukemia (ALL); however, recent observations highlight that a large portion of malignancy-associated DNA methylation alterations are not accompanied by related gene expression changes. By analyzing and integrating the methylome and transcriptome profiles of pediatric B-cell ALL cases and primary tissue controls, we report 325 genes hypermethylated and downregulated and 45 genes hypomethylated and upregulated in pediatric B-cell ALL, irrespective of subtype. Repressed cation channel subunits and cAMP signaling activators and transducers are overrepresented, potentially indicating a reduced cellular potential to receive and propagate apoptotic signals. Furthermore, we report specific DNA methylation alterations with concurrent gene expression changes within individual ALL subtypes. The ETV6-RUNX1 translocation was associated with downregulation of ASNS and upregulation of the EPO-receptor, while Hyperdiploid patients (>50 chr) displayed upregulation of B-cell lymphoma (BCL) members and repression of PTPRG and FHIT. In combination, these data indicate genetically distinct B-cell ALL subtypes contain cooperative epimutations and genome-wide epigenetic deregulation is common across all B-cell ALL subtypes. PMID:24394348

  8. Acute myeloid leukemia masquerading as hepatocellular carcinoma

    PubMed Central

    Abu-Zeinah, Ghaith F.; Weisman, Paul; Ganesh, Karuna; Katz, Seth S.; Dogan, Ahmet; Abou-Alfa, Ghassan K.; Stein, Eytan M.; Jarnagin, William; Mauro, Michael J.

    2016-01-01

    Hepatocellular carcinoma (HCC) is often diagnosed on the basis of high quality imaging without a biopsy in the cirrhotic liver. This is a case of a 64-year-old Caucasian man with no history of liver disease or cirrhosis that presented with fatigue, weight loss, and abdominal distension and was found to have a large, isolated liver mass with arterial enhancement and portal venous washout on triple-phase computed tomography (CT) suspicious for HCC. The patient was initially referred for a surgical evaluation. Meanwhile, he developed fevers, pancytopenia, and worsening back pain, and a subsequent spinal MRI revealed a heterogeneous bone marrow signal suspicious for metastatic disease. A bone marrow biopsy that followed was diffusely necrotic. A core biopsy of the patient’s liver mass was then performed and was diagnostic of acute monocytic-monoblastic leukemia. Findings from peripheral flow cytometry and a repeat bone marrow biopsy were also consistent with this diagnosis, and induction chemotherapy with cytarabine and idarubicin was initiated. This case describes a rare presentation of myeloid sarcoma (MS) as an isolated, hypervascular liver mass that mimics HCC in its radiographic appearance. Due to the broad differential for a liver mass, a confirmatory biopsy should routinely be considered prior to surgical intervention. PMID:27284485

  9. Acute myeloid leukemia masquerading as hepatocellular carcinoma.

    PubMed

    Abu-Zeinah, Ghaith F; Weisman, Paul; Ganesh, Karuna; Katz, Seth S; Dogan, Ahmet; Abou-Alfa, Ghassan K; Stein, Eytan M; Jarnagin, William; Mauro, Michael J; Harding, James J

    2016-06-01

    Hepatocellular carcinoma (HCC) is often diagnosed on the basis of high quality imaging without a biopsy in the cirrhotic liver. This is a case of a 64-year-old Caucasian man with no history of liver disease or cirrhosis that presented with fatigue, weight loss, and abdominal distension and was found to have a large, isolated liver mass with arterial enhancement and portal venous washout on triple-phase computed tomography (CT) suspicious for HCC. The patient was initially referred for a surgical evaluation. Meanwhile, he developed fevers, pancytopenia, and worsening back pain, and a subsequent spinal MRI revealed a heterogeneous bone marrow signal suspicious for metastatic disease. A bone marrow biopsy that followed was diffusely necrotic. A core biopsy of the patient's liver mass was then performed and was diagnostic of acute monocytic-monoblastic leukemia. Findings from peripheral flow cytometry and a repeat bone marrow biopsy were also consistent with this diagnosis, and induction chemotherapy with cytarabine and idarubicin was initiated. This case describes a rare presentation of myeloid sarcoma (MS) as an isolated, hypervascular liver mass that mimics HCC in its radiographic appearance. Due to the broad differential for a liver mass, a confirmatory biopsy should routinely be considered prior to surgical intervention. PMID:27284485

  10. Genetic abnormalities associated with acute lymphoblastic leukemia.

    PubMed

    Yokota, Takafumi; Kanakura, Yuzuru

    2016-06-01

    Acute lymphoblastic leukemia (ALL) occurs with high frequency in childhood and is associated with high mortality in adults. Recent technical advances in next-generation sequencing have shed light on genetic abnormalities in hematopoietic stem/progenitor cells as the precursor to ALL pathogenesis. Based on these genetic abnormalities, ALL is now being reclassified into newly identified subtypes. Philadelphia chromosome-like B-lineage ALL is one of the new high-risk subtypes characterized by genetic alterations that activate various signaling pathways, including those involving cytokine receptors, tyrosine kinases, and epigenetic modifiers. Philadelphia chromosome-like ALL is essentially heterogeneous; however, deletion mutations in the IKZF1 gene encoding the transcription factor IKAROS underlie many cases as a key factor inducing aggressive phenotypes and poor treatment responses. Whole-genome sequencing studies of ALL patients and ethnically matched controls also identified inherited genetic variations in lymphoid neoplasm-related genes, which are likely to increase ALL susceptibility. These findings are directly relevant to clinical hematology, and further studies on this aspect could contribute to accurate diagnosis, effective monitoring of residual disease, and patient-oriented therapies. PMID:26991355

  11. Genomic characterization of childhood acute lymphoblastic leukemia

    PubMed Central

    Mullighan, Charles G.

    2013-01-01

    Acute lymphoblastic leukemia (ALL) is the most common childhood malignancy and a leading case of childhood cancer death. The last decade has witnessed a transformation in our understanding of the genetic basis of ALL due to detailed integrative genomic profiling of large cohorts of childhood ALL. Initially using microarray based approaches, and more recently with next-generation sequencing, these studies have enabled more precise sub-classification of ALL, and have shown that each ALL entity is characterized by constellations of structural and sequence mutations that typically perturb key cellular pathways including lymphoid development, cell cycle regulation, tumor suppression, Ras- and tyrosine kinase driven signaling, and epigenetic regulation. Importantly, several of the newly identified genetic alterations have entered the clinic to improve diagnosis and risk stratification, and are being pursued as new targets for therapeutic intervention. Studies of ALL have also led the way in dissecting the subclonal heterogeneity of cancer, and have shown that individual patients commonly harbor multiple related but genetically distinct subclones, and that this genetically determined clonal heterogeneity is an important determinant of relapse. In addition, genome-wide profiling has identified inherited genetic variants that influence ALL risk. Ongoing studies are deploying detailed integrative genetic transcriptomic and epigenetic sequencing to comprehensively define the genomic landscape of ALL. This review describes the recent advances in our understanding of the genetics of ALL, with an emphasis on those alterations of key pathogenic or therapeutic importance. PMID:24246699

  12. New developments in acute lymphoblastic leukemia.

    PubMed

    Douer, Dan; Thomas, Deborah A

    2014-06-01

    Acute lymphoblastic leukemia (ALL) occurs in both children and adults. Significant improvements in survival outcomes have been realized over the last decade for all age groups with de novo ALL. Frontline treatment incorporates a tailored approach, based on factors such as the patient’s age and the disease subtype. Children, adolescents, and young adults are likely to receive intensifying or deintensifying chemotherapy regimens using standard chemotherapeutics (eg, anthracyclines, vincristine, asparaginase) based on risk stratification. Older adults appear to benefit from reduced-intensity chemotherapy regimens, which incorporate targeted therapy (eg, monoclonal antibodies). New data suggest that a more intensive pediatric protocol might be feasible in adult patients. More than half of ALL patients relapse, and their limited survival has led to the development of novel approaches. Recently approved chemotherapeutic agents include clofarabine, nelarabine, asparaginase Erwinia chrysanthemi, and vincristine sulfate liposome injection, a novel formulation that permits administration of a higher dosage of vincristine than that used in standard regimens. Approaches under investigation include cell therapy using autologous T-cell technologies, antibody-drug conjugates, and agents targeting common gene mutations. Many novel agents are undergoing evaluation in both the frontline and relapsed settings. PMID:25768275

  13. Acute myeloid leukemia in the older patient.

    PubMed

    Godwin, John E; Smith, Scott E

    2003-10-15

    Acute myeloid leukemia (AML) is an extremely heterogeneous disorder. The biology of AML is incompletely understood, but much data indicates that older patients have a more biologically diverse and chemotherapy resistant form of AML that is quite different from that seen in the younger patients. Approximately 60% of AML cases are in patients greater than 60 years of age, so the predominant burden is in older patients. This problem will be magnified in the future, because the US population is both growing and aging. When one examines the treatment outcomes of older AML patients over the last three decades, there is little progress in long-term survival. Nine major published randomized placebo controlled trials of myeloid growth factors given during induction for AML have been conducted. All of these trials with one exception demonstrated no significant impact on the clinical outcomes of complete response (CR) rate, disease-free, and overall survival. However, the duration of neutropenia was consistently and uniformly reduced by the use of growth factor in all nine of these trials. Because of the favorable impact of the colony-stimulating factors (CSFs) on resource use, antibiotic days, hospital days, etc., it can be more economical and beneficial to use CSFs in AML than to withhold use. The overall dismal outlook for the older AML patient can only be altered by clinical trials with new therapeutic agents. New cellular and molecularly targeted agents are entering clinical trials and bring hope for progress to this area of cancer therapy. PMID:14563517

  14. Genomic characterization of childhood acute lymphoblastic leukemia.

    PubMed

    Mullighan, Charles G

    2013-10-01

    Acute lymphoblastic leukemia (ALL) is the most common childhood malignancy and a leading case of childhood cancer death. The last decade has witnessed a transformation in our understanding of the genetic basis of ALL due to detailed integrative genomic profiling of large cohorts of childhood ALL. Initially using microarray based approaches, and more recently with next-generation sequencing, these studies have enabled more precise subclassification of ALL, and have shown that each ALL entity is characterized by constellations of structural and sequence mutations that typically perturb key cellular pathways including lymphoid development, cell cycle regulation, tumor suppression, Ras- and tyrosine kinase-driven signaling, and epigenetic regulation. Importantly, several of the newly identified genetic alterations have entered the clinic to improve diagnosis and risk stratification, and are being pursued as new targets for therapeutic intervention. Studies of ALL have also led the way in dissecting the subclonal heterogeneity of cancer, and have shown that individual patients commonly harbor multiple related but genetically distinct subclones, and that this genetically determined clonal heterogeneity is an important determinant of relapse. In addition, genome-wide profiling has identified inherited genetic variants that influence ALL risk. Ongoing studies are deploying detailed integrative genetic transcriptomic and epigenetic sequencing to comprehensively define the genomic landscape of ALL. This review describes the recent advances in our understanding of the genetics of ALL, with an emphasis on those alterations of key pathogenic or therapeutic importance. PMID:24246699

  15. Tacrolimus and Methotrexate With or Without Sirolimus in Preventing Graft-Versus-Host Disease in Young Patients Undergoing Donor Stem Cell Transplant for Acute Lymphoblastic Leukemia in Complete Remission

    ClinicalTrials.gov

    2014-01-23

    B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Graft Versus Host Disease; L1 Childhood Acute Lymphoblastic Leukemia; L2 Childhood Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  16. Small Molecule Inhibitors in Acute Myeloid Leukemia: From the Bench to the Clinic

    PubMed Central

    Al-Hussaini, Muneera; DiPersio, John F.

    2014-01-01

    Many patients with acute myeloid leukemia (AML) will eventually develop refractory or relapsed disease. In the absence of standard therapy for this population, there is currently an urgent unmet need for novel therapeutic agents. Targeted therapy with small molecule inhibitors (SMIs) represents a new therapeutic intervention that has been successful for the treatment of multiple tumors (e.g., gastrointestinal stromal tumors, chronic myelogenous leukemia). Hence, there has been great interest in generating selective small molecule inhibitors targeting critical pathways of proliferation and survival in AML. This review highlights a selective group of intriguing therapeutic agents and their presumed targets in both preclinical models and in early human clinical trials. PMID:25025370

  17. Acute Myeloid Leukemia Presenting as Intracerebral Granulocytic Sarcoma.

    PubMed

    Dhandapani, E; Thirumavalavan; Sowrirajan

    2015-10-01

    The CNS involvement of acute myeloid leukemia (AML) is more commonly manifest as meningeal involvement. Rarely it may present as intravascular tumor aggregates called granulocytic sarcoma which presents as intracranial hemorrhage. We are presenting a case of intracranial, intra-parenchymal granulocytic sarcoma (other names: chloroma, extramedullary myeloblastoma), presenting as acute hemiplegia without cerebral hemorrhage. PMID:27608697

  18. Curcumin and Cholecalciferol in Treating Patients With Previously Untreated Stage 0-II Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2016-02-16

    Contiguous Stage II Small Lymphocytic Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Stage 0 Chronic Lymphocytic Leukemia; Stage I Chronic Lymphocytic Leukemia; Stage I Small Lymphocytic Lymphoma; Stage II Chronic Lymphocytic Leukemia

  19. Cediranib Maleate in Treating Patients With Relapsed, Refractory, or Untreated Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndrome

    ClinicalTrials.gov

    2014-09-18

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  20. [Therapy-related chronic myelogenous leukemia following RFM therapy in a patient with follicular lymphoma].

    PubMed

    Shibazaki, Mio; Sumi, Masahiko; Takeda, Wataru; Kirihara, Takehiko; Kurihara, Taro; Sato, Keijiro; Ueki, Toshimitsu; Hiroshima, Yuki; Ueno, Mayumi; Ichikawa, Naoaki; Mori, Yuichi; Kobayashi, Hikaru

    2014-08-01

    Therapy-related myelodysplastic syndrome and acute myelogenous leukemia are increasingly being recognized as treatment complications in patients receiving chemotherapy or radiotherapy for previous neoplasms. However, therapy-related chronic myelogenous leukemia is relatively rare. A 61-year-old woman with a history of radiation therapy for breast cancer had previously, in 2007, received 4 courses of chemotherapy (RFM: rituximab, fludarabine, and mitoxantrone) for follicular lymphoma. In 2010, she was diagnosed with chronic-phase chronic myelogenous leukemia (CML) with Philadelphia chromosome but no other cytogenetic anomalies. Although a complete cytogenetic response (CCyR) was achieved with imatinib therapy, she developed leukocytosis with lymphoblasts and lymphoid crisis was diagnosed in January 2013. G-banded karyotyping showed 45, XX, -7, t, (9;22)(q33;q11.2). Unrelated bone marrow stem cell transplantation was performed after she had achieved a CCyR with dasatinib therapy. Polymerase chain reaction detected no major bcr/abl transcript in her bone marrow 42 days after transplantation. The majority of secondary leukemias resulting from the use of cytotoxic drugs can be divided into two well-defined groups depending on whether the patient has received alkylating agents or topoisomerase II inhibitors. However, concerns regarding the leukemogenic potential of fludarabine-based chemotherapy are growing. The potential risk of therapy-related leukemias including CML needs to be considered following fludarabine-based chemotherapy. PMID:25186488

  1. Recurrent deletions of IKZF1 in pediatric acute myeloid leukemia

    PubMed Central

    de Rooij, Jasmijn D.E.; Beuling, Eva; van den Heuvel-Eibrink, Marry M.; Obulkasim, Askar; Baruchel, André; Trka, Jan; Reinhardt, Dirk; Sonneveld, Edwin; Gibson, Brenda E.S.; Pieters, Rob; Zimmermann, Martin; Zwaan, C. Michel; Fornerod, Maarten

    2015-01-01

    IKAROS family zinc finger 1/IKZF1 is a transcription factor important in lymphoid differentiation, and a known tumor suppressor in acute lymphoid leukemia. Recent studies suggest that IKZF1 is also involved in myeloid differentiation. To investigate whether IKZF1 deletions also play a role in pediatric acute myeloid leukemia, we screened a panel of pediatric acute myeloid leukemia samples for deletions of the IKZF1 locus using multiplex ligation-dependent probe amplification and for mutations using direct sequencing. Three patients were identified with a single amino acid variant without change of IKZF1 length. No frame-shift mutations were found. Out of 11 patients with an IKZF1 deletion, 8 samples revealed a complete loss of chromosome 7, and 3 cases a focal deletion of 0.1–0.9Mb. These deletions included the complete IKZF1 gene (n=2) or exons 1–4 (n=1), all leading to a loss of IKZF1 function. Interestingly, differentially expressed genes in monosomy 7 cases (n=8) when compared to non-deleted samples (n=247) significantly correlated with gene expression changes in focal IKZF1-deleted cases (n=3). Genes with increased expression included genes involved in myeloid cell self-renewal and cell cycle, and a significant portion of GATA target genes and GATA factors. Together, these results suggest that loss of IKZF1 is recurrent in pediatric acute myeloid leukemia and might be a determinant of oncogenesis in acute myeloid leukemia with monosomy 7 PMID:26069293

  2. Leukomogenic factors downregulate heparanase expression in acute myeloid leukemia cells

    SciTech Connect

    Eshel, Rinat; Ben-Zaken, Olga; Vainas, Oded; Nadir, Yona; Minucci, Saverio; Polliack, Aaron; Naparstek, Ella; Vlodavsky, Israel; Katz, Ben-Zion; E-mail: bkatz@tasmc.healt.gov.il

    2005-10-07

    Heparanase is a heparan sulfate-degrading endoglycosidase expressed by mature monocytes and myeloid cells, but not by immature hematopoietic progenitors. Heparanase gene expression is upregulated during differentiation of immature myeloid cells. PML-RAR{alpha} and PLZF-RAR{alpha} fusion gene products associated with acute promyelocytic leukemia abrogate myeloid differentiation and heparanase expression. AML-Eto, a translocation product associated with AML FAB M2, also downregulates heparanase gene expression. The common mechanism that underlines the activity of these three fusion gene products involves the recruitment of histone deacetylase complexes to specific locations within the DNA. We found that retinoic acid that dissociates PML-RAR{alpha} from the DNA, and which is used to treat acute promyelocytic leukemia patients, restores heparanase expression to normal levels in an acute promyelocytic leukemia cell line. The retinoic acid effects were also observed in primary acute promyelocytic leukemia cells and in a retinoic acid-treated acute promyelocytic leukemia patient. Histone deacetylase inhibitor reverses the downregulation of heparanase expression induced by the AML-Eto fusion gene product in M2 type AML. In summary, we have characterized a link between leukomogenic factors and the downregulation of heparanase in myeloid leukemic cells.

  3. What's New in Adult Acute Lymphocytic Leukemia (ALL) in Adults Research?

    MedlinePlus

    ... Topic Additional resources for acute lymphocytic leukemia What’s new in acute lymphocytic leukemia research and treatment? Researchers ... have the Philadelphia chromosome. Gene expression profiling This new lab technique is being studied to help identify ...

  4. How I treat acute myeloid leukemia presenting with preexisting comorbidities.

    PubMed

    Ofran, Yishai; Tallman, Martin S; Rowe, Jacob M

    2016-07-28

    Acute myeloid leukemia (AML) is a devastating disease with an incidence that progressively increases with advancing age. Currently, only ∼40% of younger and 10% of older adults are long-term survivors. If untreated, the overall prognosis of AML remains dismal. Initiation of therapy at diagnosis is usually urgent. Barriers to successful therapy for AML are the attendant toxicities directly related to chemotherapy or those associated with inevitable aplasia. Organ dysfunction often further complicates such toxicities and may even be prohibitive. There are few guidelines to manage such patients and the fear of crossing the medico-legal abyss may dominate. Such clinical scenarios provide particular challenges and require experience for optimal management. Herein, we discuss select examples of common pretreatment comorbidities, including cardiomyopathy, ischemic heart disease; chronic renal failure, with and without dialysis; hepatitis and cirrhosis; chronic pulmonary insufficiency; and cerebral vascular disease. These comorbidities usually render patients ineligible for clinical trials and enormous uncertainty regarding management reigns, often to the point of withholding definitive therapy. The scenarios described herein emphasize that with appropriate subspecialty support, many AML patients with comorbidities can undergo therapy with curative intent and achieve successful long-term outcome. PMID:27235136

  5. Ibrutinib or Idelalisib in Treating Patients With Persistent or Relapsed Chronic Lymphocytic Leukemia, Small Lymphocytic Lymphoma, or Non-Hodgkin Lymphoma After Donor Stem Cell Transplant

    ClinicalTrials.gov

    2016-04-08

    Chronic Lymphocytic Leukemia; Non-Hodgkin Lymphoma; Prolymphocytic Leukemia; Recurrent Chronic Lymphocytic Leukemia; Recurrent Non-Hodgkin Lymphoma; Recurrent Small Lymphocytic Lymphoma; Small Lymphocytic Lymphoma

  6. Tretinoin and Arsenic Trioxide in Treating Patients With Untreated Acute Promyelocytic Leukemia

    ClinicalTrials.gov

    2016-07-08

    Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Childhood Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Myeloid Neoplasm

  7. Medullary allotransplant in acute myeloblastic leukemia in a child

    PubMed Central

    Buga Corbu, V; Glűck, R; Arion, C

    2014-01-01

    Abstract Although acute myeloblastic leukemia (AML) is more resistant to chemotherapy than acute lymphoblastic leukemia (ALL), significant progresses have been achieved over the last 20 years with an improvement in the long-term survival up to 50-60%. This may be attributed to the intensification of chemotherapy, including the increased use of stem-cell transplantation (HSCT) in well-defined subgroups. Allo-HSCT represents an extremely effective alternative in pediatric AML treatment panel, but its efficiency is limited both by the toxic effects and by the difficulty of finding a matched HLA donor. PMID:25408774

  8. Decitabine and Total-Body Irradiation Followed By Donor Bone Marrow Transplant and Cyclophosphamide in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-08

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  9. Formaldehyde Exposure and Mortality Risks From Acute Myeloid Leukemia and Other Lymphohematopoietic Malignancies in the US National Cancer Institute Cohort Study of Workers in Formaldehyde Industries

    PubMed Central

    Dell, Linda D.; Boffetta, Paolo; Gallagher, Alexa E.; Crawford, Lori; Lees, Peter SJ.; Mundt, Kenneth A.

    2015-01-01

    Objectives: To evaluate associations between cumulative and peak formaldehyde exposure and mortality from acute myeloid leukemia (AML) and other lymphohematopoietic malignancies. Methods: Cox proportional hazards analyses. Results: Acute myeloid leukemia was unrelated to cumulative exposure. Hodgkin lymphoma relative risk estimates in the highest exposure categories of cumulative and peak exposures were, respectively, 3.76 (Ptrend = 0.05) and 5.13 (Ptrend = 0.003). There were suggestive associations with peak exposure observed for chronic myeloid leukemia, albeit based on very small numbers. No other lymphohematopoietic malignancy was associated with either chronic or peak exposure. Conclusions: Insofar as there is no prior epidemiologic evidence supporting associations between formaldehyde and either Hodgkin leukemia or chronic myeloid leukemia, any causal interpretations of the observed risk patterns are at most tentative. Findings from this re-analysis do not support the hypothesis that formaldehyde is a cause of AML. PMID:26147546

  10. Allogeneic Hematopoietic Cell Transplantation for Patients with Mixed Phenotype Acute Leukemia.

    PubMed

    Munker, Reinhold; Brazauskas, Ruta; Wang, Hai Lin; de Lima, Marcos; Khoury, Hanna J; Gale, Robert Peter; Maziarz, Richard T; Sandmaier, Brenda M; Weisdorf, Daniel; Saber, Wael

    2016-06-01

    Acute biphenotypic leukemias or mixed phenotype acute leukemias (MPAL) are rare and considered high risk. The optimal treatment and the role of allogeneic hematopoietic stem cell transplantation (alloHCT) are unclear. Most prior case series include only modest numbers of patients who underwent transplantation. We analyzed the outcome of 95 carefully characterized alloHCT patients with MPAL reported to the Center for International Blood and Marrow Transplant Research between 1996 and 2012. The median age was 20 years (range, 1 to 68). Among the 95 patients, 78 were in first complete remission (CR1) and 17 were in second complete remission (CR2). Three-year overall survival (OS) of 67% (95% confidence interval [CI], 57 to 76), leukemia-free survival of 56% (95% CI, 46 to 66), relapse incidence of 29% (95% CI, 20 to 38), and nonrelapse mortality of 15% (95% CI, 9 to 23) were encouraging. OS was best in younger patients (<20 years), but no significant differences were observed between those 20 to 40 years of age and those who were 40 years or older. A matched-pair analysis showed similar outcomes comparing MPAL cases to 375 acute myelogenous leukemia or 359 acute lymphoblastic leukemia cases. MPAL patients had more acute and a trend for more chronic graft-versus-host disease. No difference was observed between patients who underwent transplantation in CR1 versus those who underwent transplantation in CR2. AlloHCT is a promising treatment option for pediatric and adult patients with MPAL with encouraging long-term survival. PMID:26903380

  11. The MLL recombinome of acute leukemias in 2013

    PubMed Central

    Meyer, C; Hofmann, J; Burmeister, T; Gröger, D; Park, T S; Emerenciano, M; Pombo de Oliveira, M; Renneville, A; Villarese, P; Macintyre, E; Cavé, H; Clappier, E; Mass-Malo, K; Zuna, J; Trka, J; De Braekeleer, E; De Braekeleer, M; Oh, S H; Tsaur, G; Fechina, L; van der Velden, V H J; van Dongen, J J M; Delabesse, E; Binato, R; Silva, M L M; Kustanovich, A; Aleinikova, O; Harris, M H; Lund-Aho, T; Juvonen, V; Heidenreich, O; Vormoor, J; Choi, W W L; Jarosova, M; Kolenova, A; Bueno, C; Menendez, P; Wehner, S; Eckert, C; Talmant, P; Tondeur, S; Lippert, E; Launay, E; Henry, C; Ballerini, P; Lapillone, H; Callanan, M B; Cayuela, J M; Herbaux, C; Cazzaniga, G; Kakadiya, P M; Bohlander, S; Ahlmann, M; Choi, J R; Gameiro, P; Lee, D S; Krauter, J; Cornillet-Lefebvre, P; Te Kronnie, G; Schäfer, B W; Kubetzko, S; Alonso, C N; zur Stadt, U; Sutton, R; Venn, N C; Izraeli, S; Trakhtenbrot, L; Madsen, H O; Archer, P; Hancock, J; Cerveira, N; Teixeira, M R; Lo Nigro, L; Möricke, A; Stanulla, M; Schrappe, M; Sedék, L; Szczepański, T; Zwaan, C M; Coenen, E A; van den Heuvel-Eibrink, M M; Strehl, S; Dworzak, M; Panzer-Grümayer, R; Dingermann, T; Klingebiel, T; Marschalek, R

    2013-01-01

    Chromosomal rearrangements of the human MLL (mixed lineage leukemia) gene are associated with high-risk infant, pediatric, adult and therapy-induced acute leukemias. We used long-distance inverse-polymerase chain reaction to characterize the chromosomal rearrangement of individual acute leukemia patients. We present data of the molecular characterization of 1590 MLL-rearranged biopsy samples obtained from acute leukemia patients. The precise localization of genomic breakpoints within the MLL gene and the involved translocation partner genes (TPGs) were determined and novel TPGs identified. All patients were classified according to their gender (852 females and 745 males), age at diagnosis (558 infant, 416 pediatric and 616 adult leukemia patients) and other clinical criteria. Combined data of our study and recently published data revealed a total of 121 different MLL rearrangements, of which 79 TPGs are now characterized at the molecular level. However, only seven rearrangements seem to be predominantly associated with illegitimate recombinations of the MLL gene (∼90%): AFF1/AF4, MLLT3/AF9, MLLT1/ENL, MLLT10/AF10, ELL, partial tandem duplications (MLL PTDs) and MLLT4/AF6, respectively. The MLL breakpoint distributions for all clinical relevant subtypes (gender, disease type, age at diagnosis, reciprocal, complex and therapy-induced translocations) are presented. Finally, we present the extending network of reciprocal MLL fusions deriving from complex rearrangements. PMID:23628958

  12. Impact of prior imatinib mesylate on the outcome of hematopoietic cell transplantation for chronic myeloid leukemia

    PubMed Central

    Kukreja, Manisha; Wang, Tao; Giralt, Sergio A.; Szer, Jeffrey; Arora, Mukta; Woolfrey, Ann E.; Cervantes, Francisco; Champlin, Richard E.; Gale, Robert Peter; Halter, Joerg; Keating, Armand; Marks, David I.; McCarthy, Philip L.; Olavarria, Eduardo; Stadtmauer, Edward A.; Abecasis, Manuel; Gupta, Vikas; Khoury, H. Jean; George, Biju; Hale, Gregory A.; Liesveld, Jane L.; Rizzieri, David A.; Antin, Joseph H.; Bolwell, Brian J.; Carabasi, Matthew H.; Copelan, Edward; Ilhan, Osman; Litzow, Mark R.; Schouten, Harold C.; Zander, Axel R.; Horowitz, Mary M.; Maziarz, Richard T.

    2008-01-01

    Imatinib mesylate (IM, Gleevec) has largely supplanted allogeneic hematopoietic cell transplantation (HCT) as first line therapy for chronic myeloid leukemia (CML). Nevertheless, many people with CML eventually undergo HCT, raising the question of whether prior IM therapy impacts HCT success. Data from the Center for International Blood and Marrow Transplant Research on 409 subjects treated with IM before HCT (IM+) and 900 subjects who did not receive IM before HCT (IM−) were analyzed. Among patients in first chronic phase, IM therapy before HCT was associated with better survival but no statistically significant differences in treatment-related mortality, relapse, and leukemia-free survival. Better HLA-matched donors, use of bone marrow, and transplantation within one year of diagnosis were also associated with better survival. A matched-pairs analysis was performed and confirmed a higher survival rate among first chronic phase patients receiving IM. Among patients transplanted with advanced CML, use of IM before HCT was not associated with treatment-related mortality, relapse, leukemia-free survival, or survival. Acute graft-versus-host disease rates were similar between IM+ and IM− groups regardless of leukemia phase. These results should be reassuring to patients receiving IM before HCT. PMID:18664621

  13. No involvement of bovine leukemia virus in childhood acute lymphoblastic leukemia and non-Hodgkin's lymphoma

    SciTech Connect

    Bender, A.P.; Robison, L.L.; Kashmiri, S.V.; McClain, K.L.; Woods, W.G.; Smithson, W.A.; Heyn, R.; Finlay, J.; Schuman, L.M.; Renier, C.

    1988-05-15

    Bovine leukemia virus (BLV) is the causative agent of enzootic bovine lymphosarcoma. Much speculation continues to be directed at the role of BLV in human leukemia. To test this hypothesis rigorously, a case-control study of childhood acute lymphoblastic leukemia and non-Hodgkin's lymphoma was conducted between December 1983 and February 1986. Cases (less than or equal to 16 years at diagnosis) derived from patients diagnosed at the primary institutions and affiliated hospitals were matched (age, sex, and race) with regional population controls. DNA samples from bone marrow or peripheral blood from 157 cases (131 acute lymphoblastic leukemia, 26 non-Hodgkin's lymphoma) and peripheral blood from 136 controls were analyzed by Southern blot technique, under highly stringent conditions, using cloned BLV DNA as a probe. None of the 157 case or 136 control DNA samples hybridized with the probe. The high statistical power and specificity of this study provide the best evidence to date that genomic integration of BLV is not a factor in childhood acute lymphoblastic leukemia/non-Hodgkin's lymphoma.

  14. Unrelated Donor Bone Marrow Transplantation for Children With Acute Myeloid Leukemia Beyond First Remission or Refractory to Chemotherapy

    PubMed Central

    Bunin, Nancy J.; Davies, Stella M.; Aplenc, Richard; Camitta, Bruce M.; DeSantes, Kenneth B.; Goyal, Rakesh K.; Kapoor, Neena; Kernan, Nancy A.; Rosenthal, Joseph; Smith, Franklin O.; Eapen, Mary

    2008-01-01

    Purpose Identify prognostic factors that influence outcome after unrelated donor bone marrow transplantation in children with acute myeloid leukemia (AML). Patients and Methods Included are 268 patients (age ≤ 18 years) with AML in second complete remission (n = 142), relapse (n = 90), or primary induction failure (n = 36) at transplantation. All patients received bone marrow grafts from an unrelated donor and a myeloablative conditioning regimen. Cox regression models were constructed to identify risk factors that influence outcome after transplantation. Results In this analysis, the only risk factor that predicted leukemia recurrence and overall and leukemia-free survival was disease status at transplantation. The 5-year probabilities of leukemia-free survival were 45%, 20%, and 12% for patients who underwent transplantation at second complete remission, relapse, and primary induction failure, respectively. As expected, risk of acute but not chronic graft-versus-host disease (GVHD) was lower with T-cell–depleted bone marrow grafts; T-cell–depleted grafts were not associated with higher risks of leukemia recurrence. We observed similar risks of leukemia relapse in patients with and without acute and chronic GVHD. Conclusion Children who underwent transplantation in remission had a superior outcome compared with children who underwent transplantation during relapse or persistent disease. Nevertheless, 20% of children who underwent transplantation in relapse are long-term survivors, suggesting that unrelated donor bone marrow transplantation is an effective therapy in a significant proportion of children with recurrent or primary refractory AML. PMID:18779619

  15. [One of the Mechanisms in Blastic Transformation of Chronic Myeloid Leukemia: Epigenetics Abnormality--Review].

    PubMed

    Meng, Zhen; Li, Ying-Hua

    2016-02-01

    Chronic myeloid leukemia is a myeloproliferative disorder characterized by excessive cloning of bone marrow multipotent stem cells. According to the disease course, the CML may be divided into chronic phase (CP), accelerated phase (AP) and blastic phase (BP). At present, the molecular mechanisms of acute transformation of CML has not been fully understood. The recent studies have shown that the epigenetics is one of mechanisms in blastic transformation of CML, including three molecular mechanisms such as DNA modification, histone modifications and RNA-related dysregulation. The molecular mechanisms for epigenetics leading to the transformation of CML are discussed in this review. PMID:26913431

  16. Flavopiridol in chronic lymphocytic leukemia: a concise review.

    PubMed

    Christian, Beth A; Grever, Michael R; Byrd, John C; Lin, Thomas S

    2009-01-01

    Patients with chronic lymphocytic leukemia (CLL) with high-risk cytogenetic features such as del(17p13) have limited treatment options and decreased overall survival. Dysfunction of p53 leads to resistance to fludarabine-based therapies. Cyclin-dependent kinase inhibitors (CDKi) are a novel class of agents that induce apoptosis in CLL cells independent of p53 mutational status. The synthetic flavone flavopiridol demonstrated promising in vitro activity in CLL. In initial phase I studies using a continuous infusion dosing schedule in a variety of malignancies, no clinical activity was observed. Detailed pharmacokinetic modeling led to the development of a novel dosing schedule designed to achieve target drug concentrations in vivo. In phase I testing, this dosing schedule resulted in acute tumor lysis syndrome (TLS) as the dose-limiting toxicity. With the implementation of a standardized protocol to prevent severe TLS, flavopiridol was administered safely, and responses were observed in heavily pretreated, fludarabine-refractory patients, cytogenetically high-risk patients, and patients with bulky lymphadenopathy. In a pharmacokinetic analysis, flavopiridol area under the plasma concentration-time curve (AUC) correlated with clinical response and cytokine release syndrome. Phase II studies are under way with encouraging preliminary results. Flavopiridol is currently under active investigation in combination with other agents and as a means to eradicate minimal residual disease in patients following cytoreductive chemotherapy. Several other investigational CDKi in preclinical and early clinical development are briefly discussed in this review. PMID:19778838

  17. Acute promyelocytic leukemia presenting as a paraspinal mass.

    PubMed

    Shah, Nirav N; Stonecypher, Mark; Gopal, Pallavi; Luger, Selina; Bagg, Adam; Perl, Alexander

    2016-03-01

    Acute promyelocytic leukemia (APL) is a distinct subtype of acute myeloid leukemia (AML) that is characterized by a balanced translocation between chromosomes 15 and 17 [t(15;17)], which results in the fusion of the promyelocytic leukemia (PML) and retinoic acid receptor α (RARA) genes. Historically, APL was a fatal disease because of the high relapse rates with cytotoxic chemotherapy alone and a significant bleeding risk secondary to disseminated intravascular coagulation (DIC). However, APL is now one of the most curable hematological malignancies because of molecularly targeted therapies. With the advent of all-trans retinoic acid (ATRA) containing chemotherapy regimens, rates of complete remission and long-term, disease-free survival have improved dramatically. More recently, regimens incorporating both ATRA and arsenic trioxide (ATO) have allowed a substantial number of patients to be treated with little or no additional cytotoxic chemotherapy. PMID:27058871

  18. Acute Lymphoblastic Leukemia Arising in CALR Mutated Essential Thrombocythemia

    PubMed Central

    Langabeer, Stephen E.; Haslam, Karl; O'Brien, David; Kelly, Johanna; Andrews, Claire; Ryan, Ciara; Flavin, Richard; Hayden, Patrick J.; Bacon, Christopher L.

    2016-01-01

    The development of acute lymphoblastic leukemia in an existing myeloproliferative neoplasm is rare with historical cases unable to differentiate between concomitant malignancies or leukemic transformation. Molecular studies of coexisting JAK2 V617F-positive myeloproliferative neoplasms and mature B cell malignancies indicate distinct disease entities arising in myeloid and lymphoid committed hematopoietic progenitor cells, respectively. Mutations of CALR in essential thrombocythemia appear to be associated with a distinct phenotype and a lower risk of thrombosis yet their impact on disease progression is less well defined. The as yet undescribed scenario of pro-B cell acute lymphoblastic leukemia arising in CALR mutated essential thrombocythemia is presented. Intensive treatment for the leukemia allowed for expansion of the original CALR mutated clone. Whether CALR mutations in myeloproliferative neoplasms predispose to the acquisition of additional malignancies, particularly lymphoproliferative disorders, is not yet known. PMID:26904322

  19. BCL6 modulation of acute lymphoblastic leukemia response to chemotherapy.

    PubMed

    Slone, William L; Moses, Blake S; Hare, Ian; Evans, Rebecca; Piktel, Debbie; Gibson, Laura F

    2016-04-26

    The bone marrow niche has a significant impact on acute lymphoblastic leukemia (ALL) cell phenotype. Of clinical relevance is the frequency with which quiescent leukemic cells, in this niche, survive treatment and contribute to relapse. This study suggests that marrow microenvironment regulation of BCL6 in ALL is one factor that may be involved in the transition between proliferative and quiescent states of ALL cells. Utilizing ALL cell lines, and primary patient tumor cells we observed that tumor cell BCL6 protein abundance is decreased in the presence of primary human bone marrow stromal cells (BMSC) and osteoblasts (HOB). Chemical inhibition, or shRNA knockdown, of BCL6 in ALL cells resulted in diminished ALL proliferation. As many chemotherapy regimens require tumor cell proliferation for optimal efficacy, we investigated the consequences of constitutive BCL6 expression in leukemic cells during co-culture with BMSC or HOB. Forced chronic expression of BCL6 during co-culture with BMSC or HOB sensitized the tumor to chemotherapy induced cell death. Combination treatment of caffeine, which increases BCL6 expression in ALL cells, with chemotherapy extended the event free survival of mice. These data suggest that BCL6 is one factor, modulated by microenvironment derived cues that may contribute to regulation of ALL therapeutic response. PMID:27015556

  20. Severe Acute Axonal Neuropathy following Treatment with Arsenic Trioxide for Acute Promyelocytic Leukemia: a Case Report

    PubMed Central

    Kühn, Marcus; Sammartin, Kety; Nabergoj, Mitja; Vianello, Fabrizio

    2016-01-01

    Peripheral neuropathy is a common complication of arsenic toxicity. Symptoms are usually mild and reversible following discontinuation of treatment. A more severe chronic sensorimotor polyneuropathy characterized by distal axonal-loss neuropathy can be seen in chronic arsenic exposure. The clinical course of arsenic neurotoxicity in patients with coexistence of thiamine deficiency is only anecdotally known but this association may potentially lead to severe consequences. We describe a case of acute irreversible axonal neuropathy in a patient with hidden thiamine deficiency who was treated with a short course of arsenic trioxide for acute promyelocytic leukemia. Thiamine replacement therapy and arsenic trioxide discontinuation were not followed by neurological recovery and severe polyneuropathy persisted at 12-month follow-up. Thiamine plasma levels should be measured in patients who are candidate to arsenic trioxide therapy. Prophylactic administration of vitamin B1 may be advisable. The appearance of polyneuropathy signs early during the administration of arsenic trioxide should prompt electrodiagnostic testing to rule out a pattern of axonal neuropathy which would need immediate discontinuation of arsenic trioxide. PMID:27158436

  1. Radiolabeled BC8 Antibody, Busulfan, Cyclophosphamide Followed by Donor Stem Cell Transplant in Treating Patients With Acute Myelogenous Leukemia in First Remission

    ClinicalTrials.gov

    2015-11-16

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22)

  2. Upregulation of Leukocytic Syncytin-1 in Acute Myeloid Leukemia Patients.

    PubMed

    Sun, Yi; Zhu, Hongyan; Song, Jianxin; Jiang, Yaxian; Ouyang, Hongmei; Huang, Rongzhong; Zhang, Guiqian; Fan, Xin; Tao, Rui; Jiang, Jie; Niu, Hua

    2016-01-01

    BACKGROUND Syncytin-1, a cell membrane-localizing fusogen, is abnormally expressed in several cancers, including endometrial cancer, breast cancer, and leukemia. Although abnormal syncytin-1 expression has been detected in two-thirds of leukemia blood samples, its expression profile in acute leukemia patients has not yet been analyzed. MATERIAL AND METHODS Bone marrow samples from 50 acute myelogenous leukemia (AML) cases and 14 B-cell acute lymphocytic leukemia (B-cell ALL) patients were subjected to flow cytometry to assess leukocyte type distributions and leukocytic syncytin-1 surface expression. RT-PCR was applied to assess leukocytic syncytin-1 mRNA expression. Statistical analysis was applied to compare syncytin-1 expression between AML and B-cell ALL patients across blasts, granulocytes, lymphocytes, and monocytes as well as to determine clinical factors statistically associated with changes in syncytin-1 expression. RESULTS The leukocyte type distributions of the AML and B-cell ALL cohorts highly overlapped, with an observable difference in blast distribution between the 2 cohorts. The AML cohort displayed significantly greater syncytin-1 surface and mRNA expression (p<0.05). Syncytin-1 surface and mRNA expression was significantly increased across all 4 leukocyte types (p<0.05). The percentage of syncytin-1-expressing blasts was significantly greater in AML patients (p<0.05), with blasts showing the largest fold-change in syncytin-1 expression (p<0.05). M5, M5a, and M5b AML patients displayed significantly higher syncytin-1 surface expression relative to all other AML French-American-British (FAB) classifications (p<0.05). CONCLUSIONS These findings suggest leukocytic syncytin-1 expression may play a role in the development and/or maintenance of the AML phenotype and the acute monocytic leukemia phenotype in particular. PMID:27393911

  3. Upregulation of Leukocytic Syncytin-1 in Acute Myeloid Leukemia Patients

    PubMed Central

    Sun, Yi; Zhu, Hongyan; Song, Jianxin; Jiang, Yaxian; Ouyang, Hongmei; Huang, Rongzhong; Zhang, Guiqian; Fan, Xin; Tao, Rui; Jiang, Jie; Niu, Hua

    2016-01-01

    Background Syncytin-1, a cell membrane-localizing fusogen, is abnormally expressed in several cancers, including endometrial cancer, breast cancer, and leukemia. Although abnormal syncytin-1 expression has been detected in two-thirds of leukemia blood samples, its expression profile in acute leukemia patients has not yet been analyzed. Material/Methods Bone marrow samples from 50 acute myelogenous leukemia (AML) cases and 14 B-cell acute lymphocytic leukemia (B-cell ALL) patients were subjected to flow cytometry to assess leukocyte type distributions and leukocytic syncytin-1 surface expression. RT-PCR was applied to assess leukocytic syncytin-1 mRNA expression. Statistical analysis was applied to compare syncytin-1 expression between AML and B-cell ALL patients across blasts, granulocytes, lymphocytes, and monocytes as well as to determine clinical factors statistically associated with changes in syncytin-1 expression. Results The leukocyte type distributions of the AML and B-cell ALL cohorts highly overlapped, with an observable difference in blast distribution between the 2 cohorts. The AML cohort displayed significantly greater syncytin-1 surface and mRNA expression (p<0.05). Syncytin-1 surface and mRNA expression was significantly increased across all 4 leukocyte types (p<0.05). The percentage of syncytin-1-expressing blasts was significantly greater in AML patients (p<0.05), with blasts showing the largest fold-change in syncytin-1 expression (p<0.05). M5, M5a, and M5b AML patients displayed significantly higher syncytin-1 surface expression relative to all other AML French-American-British (FAB) classifications (p<0.05). Conclusions These findings suggest leukocytic syncytin-1 expression may play a role in the development and/or maintenance of the AML phenotype and the acute monocytic leukemia phenotype in particular. PMID:27393911

  4. Neurodevelopmental Sequelae of Pediatric Acute Lymphoblastic Leukemia and Its Treatment

    ERIC Educational Resources Information Center

    Janzen, Laura A.; Spiegler, Brenda J.

    2008-01-01

    This review will describe the neurocognitive outcomes associated with pediatric acute lymphoblastic leukemia (ALL) and its treatment. The literature is reviewed with the aim of addressing methodological issues, treatment factors, risks and moderators, special populations, relationship to neuroimaging findings, and directions for future research.…

  5. Epidemiology and Treatment of Acute Promyelocytic Leukemia in Latin America

    PubMed Central

    Rego, E.M.; Jácomo, R.H.

    2011-01-01

    Distinct epidemiological characteristics have been described in Acute Promielocytic Leukemia (APL). Populations from Latin America have a higher incidence of APL and in some geographic areas a distinct distribution of the PML-RARA isoforms is present. Here, we review the main differences in APL epidemilogy in Latin America as well as treatment outcomes. PMID:22110899

  6. Acute non-lymphocytic leukemia following multimodality therapy for retinoblastoma

    SciTech Connect

    White, L.; Ortega, J.A.; Ying, K.L.

    1985-02-01

    The genetic form of retinoblastoma carries a high risk of secondary malignant neoplasm, apparently not related to the use of chemotherapy. A child with unilateral non-genetic retinoblastoma who had received chemotherapy and radiation therapy and developed acute non-lymphocytic leukemia (ANLL) is reported. The occurrence of ANLL and retinoblastoma has not been previously reported.

  7. Azacitidine in Combination With Mitoxantrone, Etoposide Phosphate, and Cytarabine in Treating Patients With Relapsed and Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-08-23

    Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia

  8. Arresting the Inflammatory Drive of Chronic Lymphocytic Leukemia with Ibrutinib.

    PubMed

    Bachireddy, Pavan; Wu, Catherine J

    2016-04-01

    The clinical success of agents targeting the B-cell receptor signaling pathway in chronic lymphocytic leukemia (CLL) may also derive from disrupting the CLL microenvironment. Investigation of the immunomodulatory effects of these agents illuminates the unique immunobiology of CLL and highlights potential targets for dismantling the chronic inflammatory drive.Clin Cancer Res; 22(7); 1547-9. ©2016 AACRSee related article by Niemann et al., p. 1572. PMID:26847060

  9. Evolutionary Dynamics of Chronic Myeloid Leukemia Progression: the Progression-Inhibitory Effect of Imatinib.

    PubMed

    Jackson, Robert C; Radivoyevitch, Tomas

    2016-07-01

    The t(9;22) translocation that causes chronic myeloid leukemia (CML) drives both transformation and the progression process that eventually results in the disease changing to acute leukemia. Constitutively activated Bcr-Abl signaling in CML creates high levels of reactive oxygen species (ROS) that produce 8-oxo-guanine in DNA; this is mutagenic and causes chronic phase (CP) progression to blast phase (BP). We modeled three types of mutations involved in this progression: mutations that result in myeloid progenitor cells proliferating independently of external growth factors; mutations causing failure of myeloid progenitor cells to differentiate; and mutations that enable these cells to survive independently of attachment to marrow stroma. We further modeled tyrosine kinase inhibitors (TKI) as restoring myeloid cell apoptosis and preventing ROS-driven mutagenesis, and mutations that cause TKI resistance. We suggest that the unusually low rate of resistance to TKI arises because these drugs deplete ROS, which in turn decrease mutation rates. PMID:27007600

  10. Stem Cell Modeling of Core Binding Factor Acute Myeloid Leukemia

    PubMed Central

    Mosna, Federico

    2016-01-01

    Even though clonally originated from a single cell, acute leukemia loses its homogeneity soon and presents at clinical diagnosis as a hierarchy of cells endowed with different functions, of which only a minority possesses the ability to recapitulate the disease. Due to their analogy to hematopoietic stem cells, these cells have been named “leukemia stem cells,” and are thought to be chiefly responsible for disease relapse and ultimate survival after chemotherapy. Core Binding Factor (CBF) Acute Myeloid Leukemia (AML) is cytogenetically characterized by either the t(8;21) or the inv(16)/t(16;16) chromosomal abnormalities, which, although being pathognomonic, are not sufficient per se to induce overt leukemia but rather determine a preclinical phase of disease when preleukemic subclones compete until the acquisition of clonal dominance by one of them. In this review we summarize the concepts regarding the application of the “leukemia stem cell” theory to the development of CBF AML; we will analyze the studies investigating the leukemogenetic role of t(8;21) and inv(16)/t(16;16), the proposed theories of its clonal evolution, and the role played by the hematopoietic niches in preserving the disease. Finally, we will discuss the clinical implications of stem cell modeling of CBF AML for the therapy of the disease. PMID:26880987

  11. Leukemia-associated marker combinations in acute leukemia suitable for detection of minimal residual disease.

    PubMed

    Babusíková, O; Mesárosová, A; Koníková, M; Kusenda, J; Glasová, M; Klobusická, M

    1993-01-01

    In the absence of truly leukemia-specific antigen, antigen combinations were identified in leukemia cells that are absent or extremely rare among normal hemopoietic cells. Some of the studied combinations related to the simultaneous surface and cytoplasmic marker expression, others, expressed mainly on cell surface membrane, represented atypical or aberrant combinations. Comparing membrane (m) and cytoplasmic (c) antigen expression (followed in 23 acute leukemia cases), we observed that CD3 could be detected in cytoplasm in the majority of T-ALL cells, while was absent on cell surface membrane where simultaneous expression of more immature T cell markers, such as CD7 and CD5, could be detected. Combination of mCD7/cCD3 could be regarded as a suitable marker of individual T-ALL cells. In cases of B-precursors of acute leukemia cells, leukemia-related combination of mCD19/cCD22 was found, which could characterize a single leukemia cell. The cells in one of 11 AML followed cases were positive for CD13 in cytoplasm, but not on cell surface membrane, where CD33 and other myeloid antigens were expressed. The cells in another two AML cases were positive for CD11 in cytoplasm but not on cell surface membrane, where CD13 or CD33 were expressed. Again, marker combinations of mCD33/cCD13 and mCD13 or mCD33/cCD11, respectively, represent a leukemia-related feature, suitable for tracing single leukemia cells in double immunofluorescence. Acute leukemia defined by the coexpression on most blast cells of antigens classically attributed to different lineages (referred as atypical/aberrant marker combinations) remains a rare event. We isolated a series of 27 (12%) such cases of 225 acute leukemia patients whose cells were immunophenotyped at diagnosis. Myeloid markers were present in T-ALL of two cases, T and B markers were coexpressed in 13 cases, markers of B and myeloid lineage were associated in one case, and T cell and myeloid antigens were found in 10 AML cases; in one AML

  12. Growth factors in the management of adult acute leukemia.

    PubMed

    Bernstein, S H

    1993-02-01

    This review has explored the various ways that growth factors may be used in the management of adult acute leukemia. Growth factors have the potential to reduce the morbidity and mortality of both induction and postremission therapy by enhancing hematopoietic recovery or, when used as an adjunct to standard antimicrobial therapy, reducing the infectious complications of chemotherapy. In addition, they may have favorable effects on the biology of leukemia either by recruitment of leukemic progenitors into cycle, rendering them more sensitive to the cytotoxic effects of chemotherapy, or by inducing the terminal differentiation of the leukemic clone. Finally, disruption of aberrant growth factor networks, thought to play a role in the pathogenesis of leukemia, may be a therapeutic strategy now that soluble receptors and receptor antagonists to such growth factors as IL-1 are available. Whether growth factors used in such ways will have beneficial, or in fact adverse, effects on the treatment outcome for acute leukemia is not yet known. As such, the use of growth factors in the management of adults with acute leukemia is still experimental and needs to be studied in the context of clinical trials. Perhaps the ultimate benefit to be derived from the study of these growth factors will be a deeper understanding of the genetic perturbations that define the leukemic state. The development of molecular therapeutic techniques, such as gene transfer technology and the use of antisense oligonucleotides, has paralleled our increasing knowledge of cytokines. The hope is that as we come to understand leukemia at the molecular level, we will be able to develop the new therapeutic tools necessary to increase the numbers of patients cured. PMID:8449861

  13. Unilateral Eye Findings: A Rare Herald of Acute Leukemia

    PubMed Central

    Patel, Avni V.; Miller, John B.; Nath, Rajneesh; Shih, Helen A.; Yoon, Michael K.; Freitag, Suzanne K.; Papaliodis, George; Chen, Teresa C.; Eliott, Dean; Kim, Ivana K.

    2016-01-01

    Background/Aim Unilateral choroidal infiltration as the initial manifestation of leukemic relapse in adults is rare, particularly after an extended period of remission. This report describes this unique ophthalmic presentation, highlights the associated diagnostic challenges, and reviews the literature. Methods Two cases are described and an extensive literature review was conducted. Results A 59-year-old male with acute lymphoid leukemia, in remission for 18 months, presented with unilateral scleritis, exudative retinal detachment, and choroidal thickening. A 57-year-old male with a history of acute myeloid leukemia, in remission for 4 years, presented with unilateral choroidal thickening leading to secondary angle closure. In both cases, there was a significant lag from the onset of eye symptoms to establishing a systemic diagnosis of acute leukemia, leading to a delay in definitive systemic treatment, despite a high suspicion of disease based on ophthalmic findings. Conclusions These two cases illustrate the fundus findings consistent with leukemic choroidal infiltration that can represent the first sign of relapsed leukemia. The successful treatment of these patients hinges on collaboration between ophthalmologists and oncologists to optimize patient outcomes, highlighting the need for both groups to be aware of this rare ophthalmic presentation. PMID:27239459

  14. Leukostasis in adult acute hyperleukocytic leukemia: a clinician's digest.

    PubMed

    Ali, Alaa M; Mirrakhimov, Aibek E; Abboud, Camille N; Cashen, Amanda F

    2016-06-01

    Leukostasis is a poorly understood and life-threatening complication of acute hyperleukocytic leukemia. The incidence of hyperleukocytosis and leukostasis differs among various subtypes of leukemias. While the pathophysiology of leukostasis is not fully understood, recent research has elucidated many novel pathways that may have therapeutic implications in the future. Respiratory and neurological compromise represents the classical clinical manifestations of leukostasis. If it is not diagnosed and treated rapidly, the one-week mortality rate is approximately 40%. Targeted induction chemotherapy is an important component of the successful treatment of leukostasis, although other modalities of cytoreduction are being used and investigated. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27018197

  15. Bosutinib in the management of chronic myelogenous leukemia.

    PubMed

    Amsberg, Gunhild Keller-von; Schafhausen, Philippe

    2013-01-01

    Bosutinib (SKI-606) is an orally available, once-daily dual Src and Abl kinase inhibitor, approved by the US Food and Drug Administration for the treatment of adults with chronic, accelerated, or blast-phase Philadelphia chromosome-positive chronic myelogenous leukemia who are intolerant of or resistant to first- or second-generation tyrosine kinase inhibitors. Bosutinib effectively overcomes the majority of imatinib-resistance-conferring BCR-ABL mutations except V299L and T315I. In the Bosutinib Efficacy and Safety in chronic myeloid LeukemiA (BELA) trial, bosutinib attained a faster and deeper molecular response than imatinib in newly diagnosed chronic-phase chronic myelogenous leukemia patients. Treatment-emergent adverse events are usually very manageable. Low grade, mostly self-limiting diarrhea represents the most frequently observed toxicity of bosutinib. Anti-diarrheal drugs, antiemetic agents, and/or fluid replacement should be used to treat these patients. The improved hematological toxicity of bosutinib compared with other tyrosine kinase inhibitors has been ascribed to its minimal activity against platelet-derived growth factor receptor and KIT. In this review, we give an overview on the profile of bosutinib, the clinical potential and treatment-emergent adverse events. PMID:23674887

  16. Chronic Eosinophilic Leukemia Presenting Predominantly with Cutaneous Manifestations.

    PubMed

    Vidyadharan, Suja; Joseph, Bebisha; Nair, Sukumaran Pradeep

    2016-01-01

    A 37-year-old male presented with severe oral and genital mucosal ulcers, lichenoid eruption and twenty-nail dystrophy. Systemic examination was normal, except for anemia. On investigations, he was found to have persistently elevated peripheral eosinophilia, absolute eosinophil count >5000/mm(3), bone marrow showing increased eosinophilic precursors, and infiltration by atypical cells. The serum vitamin B12 levels were grossly elevated, and Philadelphia chromosome study was negative. Thus, a diagnosis of chronic eosinophilic leukemia was made. The patient showed excellent response to imatinib mesylate. We are reporting a rare type of leukemia presenting with predominantly cutaneous manifestations. PMID:27512192

  17. Chronic Eosinophilic Leukemia Presenting Predominantly with Cutaneous Manifestations

    PubMed Central

    Vidyadharan, Suja; Joseph, Bebisha; Nair, Sukumaran Pradeep

    2016-01-01

    A 37-year-old male presented with severe oral and genital mucosal ulcers, lichenoid eruption and twenty-nail dystrophy. Systemic examination was normal, except for anemia. On investigations, he was found to have persistently elevated peripheral eosinophilia, absolute eosinophil count >5000/mm3, bone marrow showing increased eosinophilic precursors, and infiltration by atypical cells. The serum vitamin B12 levels were grossly elevated, and Philadelphia chromosome study was negative. Thus, a diagnosis of chronic eosinophilic leukemia was made. The patient showed excellent response to imatinib mesylate. We are reporting a rare type of leukemia presenting with predominantly cutaneous manifestations. PMID:27512192

  18. Murine models of acute leukemia: important tools in current pediatric leukemia research.

    PubMed

    Jacoby, Elad; Chien, Christopher D; Fry, Terry J

    2014-01-01

    Leukemia remains the most common diagnosis in pediatric oncology and, despite dramatic progress in upfront therapy, is also the most common cause of cancer-related death in children. Much of the initial improvement in outcomes for acute lymphoblastic leukemia (ALL) was due to identification of cytotoxic agents that are active against leukemia followed by the recognition that combination of these cytotoxic agents and prolonged therapy are essential for cure. Recent data demonstrating lack of progress in patients for whom standard chemotherapy fails suggests that the ability to improve outcome for these children will not be dramatically impacted through more intensive or newer cytotoxic agents. Thus, much of the recent research focus has been in the area of improving our understanding of the genetics and the biology of leukemia. Although in vitro studies remain critical, given the complexity of a living system and the increasing recognition of the contribution of leukemia extrinsic factors such as the bone marrow microenvironment, in vivo models have provided important insights. The murine systems that are used can be broadly categorized into syngeneic models in which a murine leukemia can be studied in immunologically intact hosts and xenograft models where human leukemias are studied in highly immunocompromised murine hosts. Both of these systems have limitations such that neither can be used exclusively to study all aspects of leukemia biology and therapeutics for humans. This review will describe the various ALL model systems that have been developed as well as discuss the advantages and disadvantages inherent to these systems that make each particularly suitable for specific types of studies. PMID:24847444

  19. Murine Models of Acute Leukemia: Important Tools in Current Pediatric Leukemia Research

    PubMed Central

    Jacoby, Elad; Chien, Christopher D.; Fry, Terry J.

    2014-01-01

    Leukemia remains the most common diagnosis in pediatric oncology and, despite dramatic progress in upfront therapy, is also the most common cause of cancer-related death in children. Much of the initial improvement in outcomes for acute lymphoblastic leukemia (ALL) was due to identification of cytotoxic agents that are active against leukemia followed by the recognition that combination of these cytotoxic agents and prolonged therapy are essential for cure. Recent data demonstrating lack of progress in patients for whom standard chemotherapy fails suggests that the ability to improve outcome for these children will not be dramatically impacted through more intensive or newer cytotoxic agents. Thus, much of the recent research focus has been in the area of improving our understanding of the genetics and the biology of leukemia. Although in vitro studies remain critical, given the complexity of a living system and the increasing recognition of the contribution of leukemia extrinsic factors such as the bone marrow microenvironment, in vivo models have provided important insights. The murine systems that are used can be broadly categorized into syngeneic models in which a murine leukemia can be studied in immunologically intact hosts and xenograft models where human leukemias are studied in highly immunocompromised murine hosts. Both of these systems have limitations such that neither can be used exclusively to study all aspects of leukemia biology and therapeutics for humans. This review will describe the various ALL model systems that have been developed as well as discuss the advantages and disadvantages inherent to these systems that make each particularly suitable for specific types of studies. PMID:24847444

  20. Low-Dose or High-Dose Conditioning Followed by Peripheral Blood Stem Cell Transplant in Treating Patients With Myelodysplastic Syndrome or Acute Myelogenous Leukemia

    ClinicalTrials.gov

    2014-10-23

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Acute Myeloid Leukemia/Transient Myeloproliferative Disorder; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Childhood Acute Myeloid Leukemia in Remission; Childhood Myelodysplastic Syndromes; de Novo Myelodysplastic Syndromes; Myelodysplastic Syndrome With Isolated Del(5q); Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  1. Ovarian Reserve in Women Treated for Acute Lymphocytic Leukemia or Acute Myeloid Leukemia with Chemotherapy, but Not Stem Cell Transplantation

    PubMed Central

    Rossi, Brooke V.; Missmer, Stacey; Correia, Katharine F.; Wadleigh, Martha; Ginsburg, Elizabeth S.

    2012-01-01

    Purpose. It is well known that chemotherapy regimens may have a negative effect on ovarian reserve, leading to amenorrhea or premature ovarian failure. There are little data regarding the effects of leukemia chemotherapy on ovarian reserve, specifically in women who received the chemotherapy as adults and are having regular menstrual periods. Our primary objective was to determine if premenopausal women with a history of chemotherapy for leukemia, without subsequent stem cell transplantation, have decreased ovarian reserve. Materials and Methods. We measured ovarian reserve in five women who had been treated for acute lymphocytic leukemia (ALL) or acute myeloid leukemia (AML) and compared them to age-matched control women without a history of chemotherapy. Results. There appeared to be a trend towards lower antimullerian hormone and antral follicle counts and higher follicle-stimulating hormone levels in the leukemia group. Conclusion. Our results indicate that chemotherapy for AML or ALL without stem cell transplantation may compromise ovarian reserve. Although our results should be confirmed by a larger study, oncologists, infertility specialists, and patients should be aware of the potential risks to ovarian function and should be counseled on options for fertility preservation. PMID:23050166

  2. Lapatinib induces autophagic cell death and differentiation in acute myeloblastic leukemia.

    PubMed

    Chen, Yu-Jen; Fang, Li-Wen; Su, Wen-Chi; Hsu, Wen-Yi; Yang, Kai-Chien; Huang, Huey-Lan

    2016-01-01

    Lapatinib is an oral-form dual tyrosine kinase inhibitor of epidermal growth factor receptor (EGFR or ErbB/Her) superfamily members with anticancer activity. In this study, we examined the effects and mechanism of action of lapatinib on several human leukemia cells lines, including acute myeloid leukemia (AML), chronic myeloid leukemia (CML), and acute lymphoblastic leukemia (ALL) cells. We found that lapatinib inhibited the growth of human AML U937, HL-60, NB4, CML KU812, MEG-01, and ALL Jurkat T cells. Among these leukemia cell lines, lapatinib induced apoptosis in HL-60, NB4, and Jurkat cells, but induced nonapoptotic cell death in U937, K562, and MEG-01 cells. Moreover, lapatinib treatment caused autophagic cell death as shown by positive acridine orange staining, the massive formation of vacuoles as seen by electronic microscopy, and the upregulation of LC3-II, ATG5, and ATG7 in AML U937 cells. Furthermore, autophagy inhibitor 3-methyladenine and knockdown of ATG5, ATG7, and Beclin-1 using short hairpin RNA (shRNA) partially rescued lapatinib-induced cell death. In addition, the induction of phagocytosis and ROS production as well as the upregulation of surface markers CD14 and CD68 was detected in lapatinib-treated U937 cells, suggesting the induction of macrophagic differentiation in AML U937 cells by lapatinib. We also noted the synergistic effects of the use of lapatinib and cytotoxic drugs in U937 leukemia cells. These results indicate that lapatinib may have potential for development as a novel antileukemia agent. PMID:27499639

  3. Lapatinib induces autophagic cell death and differentiation in acute myeloblastic leukemia

    PubMed Central

    Chen, Yu-Jen; Fang, Li-Wen; Su, Wen-Chi; Hsu, Wen-Yi; Yang, Kai-Chien; Huang, Huey-Lan

    2016-01-01

    Lapatinib is an oral-form dual tyrosine kinase inhibitor of epidermal growth factor receptor (EGFR or ErbB/Her) superfamily members with anticancer activity. In this study, we examined the effects and mechanism of action of lapatinib on several human leukemia cells lines, including acute myeloid leukemia (AML), chronic myeloid leukemia (CML), and acute lymphoblastic leukemia (ALL) cells. We found that lapatinib inhibited the growth of human AML U937, HL-60, NB4, CML KU812, MEG-01, and ALL Jurkat T cells. Among these leukemia cell lines, lapatinib induced apoptosis in HL-60, NB4, and Jurkat cells, but induced nonapoptotic cell death in U937, K562, and MEG-01 cells. Moreover, lapatinib treatment caused autophagic cell death as shown by positive acridine orange staining, the massive formation of vacuoles as seen by electronic microscopy, and the upregulation of LC3-II, ATG5, and ATG7 in AML U937 cells. Furthermore, autophagy inhibitor 3-methyladenine and knockdown of ATG5, ATG7, and Beclin-1 using short hairpin RNA (shRNA) partially rescued lapatinib-induced cell death. In addition, the induction of phagocytosis and ROS production as well as the upregulation of surface markers CD14 and CD68 was detected in lapatinib-treated U937 cells, suggesting the induction of macrophagic differentiation in AML U937 cells by lapatinib. We also noted the synergistic effects of the use of lapatinib and cytotoxic drugs in U937 leukemia cells. These results indicate that lapatinib may have potential for development as a novel antileukemia agent. PMID:27499639

  4. RUNX1 amplification in lineage conversion of childhood B-cell acute lymphoblastic leukemia to acute myelogenous leukemia.

    PubMed

    Podgornik, Helena; Debeljak, Marusa; Zontar, Darja; Cernelc, Peter; Prestor, Veronika Velensek; Jazbec, Janez

    2007-10-01

    Amplification of RUNX1 (alias AML1) is a recurrent karyotypic abnormality in childhood acute lymphoblastic leukemia (ALL) that is generally associated with a poor outcome. It does not occur with other primary chromosomal abnormalities in acute ALL. AML1 amplification in acute myelogenous leukemia (AML) is a rare secondary event described mainly in therapy-related cases. AML1 amplification was found in a 13-year-old patient with AML M4/M5 leukemia that occurred 5 years after she had been diagnosed with common B-cell ALL. Conventional cytogenetic, fluorescent in situ hybridization (FISH), and polymerase chain reaction methods revealed no other chromosomal change expected to occur in a disease that we assumed to be a secondary leukemia. Due to the lack of cytogenetic data from the diagnostic sample, we developed a new approach to analyze the archived bone marrow smear, which had been stained previously with May-Grünwald-Geimsa by the FISH method. This analysis confirmed that in addition to t(12;21), AML1 amplification and overexpression existed already at the time the diagnosis was made. The chromosomal changes, however, were found in different clones of bone marrow cells. While the first course of chemotherapy successfully eradicated the cell line with the t(12;21), the second cell line with AML1 amplification remained latent during the time of complete remission and reappeared with a different immunophenotype. PMID:17889714

  5. STING Pathway Activation Stimulates Potent Immunity against Acute Myeloid Leukemia.

    PubMed

    Curran, Emily; Chen, Xiufen; Corrales, Leticia; Kline, Douglas E; Dubensky, Thomas W; Duttagupta, Priyanka; Kortylewski, Marcin; Kline, Justin

    2016-06-14

    Type I interferon (IFN), essential for spontaneous T cell priming against solid tumors, is generated through recognition of tumor DNA by STING. Interestingly, we observe that type I IFN is not elicited in animals with disseminated acute myeloid leukemia (AML). Further, survival of leukemia-bearing animals is not diminished in the absence of type I IFN signaling, suggesting that STING may not be triggered by AML. However, the STING agonist, DMXAA, induces expression of IFN-β and other inflammatory cytokines, promotes dendritic cell (DC) maturation, and results in the striking expansion of leukemia-specific T cells. Systemic DMXAA administration significantly extends survival in two AML models. The therapeutic effect of DMXAA is only partially dependent on host type I IFN signaling, suggesting that other cytokines are important. A synthetic cyclic dinucleotide that also activates human STING provided a similar anti-leukemic effect. These data demonstrate that STING is a promising immunotherapeutic target in AML. PMID:27264175

  6. The acute lymphoblastic leukemia of Down Syndrome - Genetics and pathogenesis.

    PubMed

    Izraeli, Shai

    2016-03-01

    Children with Down Syndrome (DS) are at markedly increased risk for acute lymphoblastic leukemia (ALL). The ALL is of B cell precursor (BCP) phenotype. T-ALL is only rarely diagnosed as well as infant leukemia. Gene expression profiling and cytogenetics suggest that DS-ALL is an heterogeneous disease. More than half of the leukemias are characterized by aberrant expression of the thymic stromal lymphopoietin (TSLP) receptor CRLF2 caused by genomic rearrangements. These rearrangements are often associated with somatic activating mutations in the receptors or in the downstream components of the JAK-STAT pathway. The activation of JAK-STAT pathway suggests that targeted therapy with JAK or downstream inhibitors may be effective for children with DS-ALL. The basis of the increased risk of BCP-ALL and in particular of the CRLF2 aberrations is presently unknown. Neither is it known which genes on the trisomic chromosome 21 are involved. PMID:26631987

  7. Donor Atorvastatin Treatment in Preventing Severe Acute GVHD After Nonmyeloablative Peripheral Blood Stem Cell Transplant in Patients With Hematological Malignancies

    ClinicalTrials.gov

    2016-04-28

    Aggressive Non-Hodgkin Lymphoma; Myelodysplastic/Myeloproliferative Neoplasm; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Aggressive Adult Non-Hodgkin Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Chronic Lymphocytic Leukemia; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Hodgkin Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Plasma Cell Myeloma; Waldenstrom Macroglobulinemia

  8. The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents.

    PubMed

    Yu, Yan; Xie, Yangchun; Cao, Lizhi; Yang, Liangchun; Yang, Minghua; Lotze, Michael T; Zeh, Herbert J; Kang, Rui; Tang, Daolin

    2015-01-01

    Acute myeloid leukemia (AML) is the most common type of leukemia in adults. Development of resistance to chemotherapeutic agents is a major hurdle in the effective treatment of patients with AML. The quinazolinone derivative erastin was originally identified in a screen for small molecules that exhibit synthetic lethality with expression of the RAS oncogene. This lethality was subsequently shown to occur by induction of a novel form of cell death termed ferroptosis. In this study we demonstrate that erastin enhances the sensitivity of AML cells to chemotherapeutic agents in an RAS-independent manner. Erastin dose-dependently induced mixed types of cell death associated with ferroptosis, apoptosis, necroptosis, and autophagy in HL-60 cells (AML, NRAS_Q61L), but not Jurkat (acute T-cell leukemia, RAS wild type), THP-1 (AML, NRAS_G12D), K562 (chronic myelogenous leukemia, RAS wild type), or NB-4 (acute promyelocytic leukemia M3, KRAS_A18D) cells. Treatment with ferrostatin-1 (a potent ferroptosis inhibitor) or necrostatin-1 (a potent necroptosis inhibitor), but not with Z-VAD-FMK (a general caspase inhibitor) or chloroquine (a potent autophagy inhibitor), prevented erastin-induced growth inhibition in HL-60 cells. Moreover, inhibition of c-JUN N-terminal kinase and p38, but not of extracellular signal-regulated kinase activation, induced resistance to erastin in HL-60 cells. Importantly, low-dose erastin significantly enhanced the anticancer activity of 2 first-line chemotherapeutic drugs (cytarabine/ara-C and doxorubicin/adriamycin) in HL-60 cells. Collectively, the induction of ferroptosis and necroptosis contributed to erastin-induced growth inhibition and overcame drug resistance in AML cells. PMID:27308510

  9. The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents

    PubMed Central

    Yu, Yan; Xie, Yangchun; Cao, Lizhi; Yang, Liangchun; Yang, Minghua; Lotze, Michael T.; Zeh, Herbert J.; Kang, Rui; Tang, Daolin

    2015-01-01

    Acute myeloid leukemia (AML) is the most common type of leukemia in adults. Development of resistance to chemotherapeutic agents is a major hurdle in the effective treatment of patients with AML. The quinazolinone derivative erastin was originally identified in a screen for small molecules that exhibit synthetic lethality with expression of the RAS oncogene. This lethality was subsequently shown to occur by induction of a novel form of cell death termed ferroptosis. In this study we demonstrate that erastin enhances the sensitivity of AML cells to chemotherapeutic agents in an RAS-independent manner. Erastin dose-dependently induced mixed types of cell death associated with ferroptosis, apoptosis, necroptosis, and autophagy in HL-60 cells (AML, NRAS_Q61L), but not Jurkat (acute T-cell leukemia, RAS wild type), THP-1 (AML, NRAS_G12D), K562 (chronic myelogenous leukemia, RAS wild type), or NB-4 (acute promyelocytic leukemia M3, KRAS_A18D) cells. Treatment with ferrostatin-1 (a potent ferroptosis inhibitor) or necrostatin-1 (a potent necroptosis inhibitor), but not with Z-VAD-FMK (a general caspase inhibitor) or chloroquine (a potent autophagy inhibitor), prevented erastin-induced growth inhibition in HL-60 cells. Moreover, inhibition of c-JUN N-terminal kinase and p38, but not of extracellular signal-regulated kinase activation, induced resistance to erastin in HL-60 cells. Importantly, low-dose erastin significantly enhanced the anticancer activity of 2 first-line chemotherapeutic drugs (cytarabine/ara-C and doxorubicin/adriamycin) in HL-60 cells. Collectively, the induction of ferroptosis and necroptosis contributed to erastin-induced growth inhibition and overcame drug resistance in AML cells. PMID:27308510

  10. Firstline treatment for chronic phase chronic myeloid leukemia patients should be based on a holistic approach.

    PubMed

    Breccia, Massimo; Alimena, Giuliana

    2015-02-01

    New selective and more potent drugs for the cure of chronic phase chronic myeloid leukemia patients are now available: physicians in some countries must decide the best option, selecting one of the drugs available. What the main prognostic factors are in order to make this selection remains a matter of discussion. Introducing a 'holistic approach' for the first time in chronic myeloid leukemia, as practiced in other diseases, and looking at the patient in a complete picture, considering several variables, such as comorbidities, age, concomitant drugs, lifestyle and patient expectations, may be of help to understand, patient by patient, the best therapeutic strategy. PMID:25431965

  11. The Sequence of Cyclophosphamide and Myeloablative Total Body Irradiation in Hematopoietic Cell Transplantation for Patients with Acute Leukemia.

    PubMed

    Holter-Chakrabarty, Jennifer L; Pierson, Namali; Zhang, Mei-Jie; Zhu, Xiaochun; Akpek, Görgün; Aljurf, Mahmoud D; Artz, Andrew S; Baron, Frédéric; Bredeson, Christopher N; Dvorak, Christopher C; Epstein, Robert B; Lazarus, Hillard M; Olsson, Richard F; Selby, George B; Williams, Kirsten M; Cooke, Kenneth R; Pasquini, Marcelo C; McCarthy, Philip L

    2015-07-01

    Limited clinical data are available to assess whether the sequencing of cyclophosphamide (Cy) and total body irradiation (TBI) changes outcomes. We evaluated the sequence in 1769 (CyTBI, n = 948; TBICy, n = 821) recipients of related or unrelated hematopoietic cell transplantation who received TBI (1200 to 1500 cGY) for acute leukemia from 2003 to 2010. The 2 cohorts were comparable for median age, performance score, type of leukemia, first complete remission, Philadelphia chromosome-positive acute lymphoblastic leukemia, HLA-matched siblings, stem cell source, antithymocyte globulin use, TBI dose, and type of graft-versus-host disease (GVHD) prophylaxis. The sequence of TBI did not significantly affect transplantation-related mortality (24% versus 23% at 3 years, P = .67; relative risk, 1.01; P = .91), leukemia relapse (27% versus 29% at 3 years, P = .34; relative risk, .89, P = .18), leukemia-free survival (49% versus 48% at 3 years, P = .27; relative risk, .93; P = .29), chronic GVHD (45% versus 47% at 1 year, P = .39; relative risk, .9; P = .11), or overall survival (53% versus 52% at 3 years, P = .62; relative risk, .96; P = .57) for CyTBI and TBICy, respectively. Corresponding cumulative incidences of sinusoidal obstruction syndrome were 4% and 6% at 100 days (P = .08), respectively. This study demonstrates that the sequence of Cy and TBI does not impact transplantation outcomes and complications in patients with acute leukemia undergoing hematopoietic cell transplantation with myeloablative conditioning. PMID:25840335

  12. Prophylaxis of invasive aspergillosis with voriconazole or caspofungin during building work in patients with acute leukemia

    PubMed Central

    Chabrol, Amélie; Cuzin, Lise; Huguet, Françoise; Alvarez, Muriel; Verdeil, Xavier; Linas, Marie Denise; Cassaing, Sophie; Giron, Jacques; Tetu, Laurent; Attal, Michel; Récher, Christian

    2010-01-01

    Background Invasive aspergillosis is a common life-threatening infection in patients with acute leukemia. The presence of building work near to hospital wards in which these patients are cared for is an important risk factor for the development of invasive aspergillosis. This study assessed the impact of voriconazole or caspofungin prophylaxis in patients undergoing induction chemotherapy for acute leukemia in a hematology unit exposed to building work. Design and Methods This retrospective cohort study was carried out between June 2003 and January 2006 during which building work exposed patients to a persistently increased risk of invasive aspergillosis. This study compared the cumulative incidence of invasive aspergillosis in patients who did or did not receive primary antifungal prophylaxis. The diagnosis of invasive aspergillosis was based on the European Organization for Research and Treatment of Cancer/Mycosis Study Group criteria. Results Two-hundred and fifty-seven patients (213 with acute myeloid leukemia, 44 with acute lymphocytic leukemia) were included. The mean age of the patients was 54 years and the mean duration of their neutropenia was 21 days. Eighty-eight received antifungal prophylaxis, most with voriconazole (n=74). The characteristics of the patients who did or did not receive prophylaxis were similar except that pulmonary antecedents (chronic bronchopulmonary disorders or active tobacco use) were more frequent in the prophylaxis group. Invasive aspergillosis was diagnosed in 21 patients (12%) in the non-prophylaxis group and four (4.5%) in the prophylaxis group (P=0.04). Pulmonary antecedents, neutropenia at diagnosis and acute myeloid leukemia with high-risk cytogenetics were positively correlated with invasive aspergillosis, whereas primary prophylaxis was negatively correlated. Survival was similar in both groups. No case of zygomycosis was observed. The 3-month mortality rate was 28% in patients with invasive aspergillosis. Conclusions

  13. Leukemia Cutis: An Unusual Presentation of Acute Lymphoblastic Leukemia in a Child

    PubMed Central

    Jiang, Xia; Wang, Weixia; Zhang, Min

    2015-01-01

    Leukemia cutis (LC) is a nonspecific word used for cutaneous infiltration of leukemia, which is a rare presentation of acute lymphoblastic leukemia (ALL), and always a harbinger of poor prognosis. We report a case of LC in a 5-year-old boy with a past medical history of ALL (L1) presented with multiple asymptomatic oval or annular red patches and plaques on his thighs, buttocks and back waist, and part of them were scaling lesions. A biopsy was performed and histopathological examination showed that medium-sized atypical cells with round to oval contours, scant cytoplasm, and finely dispersed chromatin infiltrated into the dermis and subcutis, and the perivascular and periadnexal areas were involved. Immunophenotyping showed that the atypical cells were positive for CD45, CD3ε, CD99, and Ki67 (about 70%). Considering the patient's medical history and the histopathology, the patient was diagnosed with LC. PMID:26677299

  14. Open Label, Phase II Study to Evaluate Efficacy and Safety of Oral Nilotinib in Philadelphia Positive (Ph+) Chronic Myelogenous Leukemia (CML) Pediatric Patients.

    ClinicalTrials.gov

    2016-08-05

    Leukemia; Leukemia,Pediatric; Leukemia, Myleiod; Leukemia, Mylegenous, Chronic; Leukemia, Mylegenous, Accelerated; BCR-ABL Positive; Myeloproliferative Disorder; Bone Marrow Disease; Hematologic Diseases; Neoplastic Processes; Imatinib; Dasatinib; Enzyme Inhibitor; Protein Kinase Inhibitor

  15. FDA Approves New Drug for Chronic Lymphocytic Leukemia in Patients with a Specific Chromosomal Abnormality

    MedlinePlus

    ... Newsroom Press Announcements FDA News Release FDA approves new drug for chronic lymphocytic leukemia in patients with ... of leukemia in adults, with approximately 15,000 new cases diagnosed each year. CLL is characterized by ...

  16. Nivolumab in Treating Patients With HTLV-Associated T-Cell Leukemia/Lymphoma

    ClinicalTrials.gov

    2016-06-07

    Acute Adult T-Cell Leukemia/Lymphoma; Adult T-Cell Leukemia/Lymphoma; Chronic Adult T-Cell Leukemia/Lymphoma; HTLV-1 Infection; Lymphomatous Adult T-Cell Leukemia/Lymphoma; Recurrent Adult T-Cell Leukemia/Lymphoma; Smoldering Adult T-Cell Leukemia/Lymphoma

  17. Rationale for an international consortium to study inherited genetic susceptibility to childhood acute lymphoblastic leukemia

    PubMed Central

    Sherborne, Amy L.; Hemminki, Kari; Kumar, Rajiv; Bartram, Claus R.; Stanulla, Martin; Schrappe, Martin; Petridou, Eleni; Semsei, Ágnes F.; Szalai, Csaba; Sinnett, Daniel; Krajinovic, Maja; Healy, Jasmine; Lanciotti, Marina; Dufour, Carlo; Indaco, Stefania; El-Ghouroury, Eman A; Sawangpanich, Ruchchadol; Hongeng, Suradej; Pakakasama, Samart; Gonzalez-Neira, Anna; Ugarte, Evelia L.; Leal, Valeria P.; Espinoza, Juan P.M.; Kamel, Azza M.; Ebid, Gamal T.A.; Radwan, Eman R.; Yalin, Serap; Yalin, Erdinc; Berkoz, Mehmet; Simpson, Jill; Roman, Eve; Lightfoot, Tracy; Hosking, Fay J.; Vijayakrishnan, Jayaram; Greaves, Mel; Houlston, Richard S.

    2011-01-01

    Acute lymphoblastic leukemia is the major pediatric cancer in developed countries. To date most association studies of acute lymphoblastic leukemia have been based on the candidate gene approach and have evaluated a restricted number of polymorphisms. Such studies have served to highlight difficulties in conducting statistically and methodologically rigorous investigations into acute lymphoblastic leukemia risk. Recent genome-wide association studies of childhood acute lymphoblastic leukemia have provided robust evidence that common variation at four genetic loci confers a modest increase in risk. The accumulated experience to date and relative lack of success of initial efforts to identify novel acute lymphoblastic leukemia predisposition loci emphasize the need for alternative study designs and methods. The International Childhood Acute Lymphoblastic Leukaemia Genetics Consortium includes 12 research groups in Europe, Asia, the Middle East and the Americas engaged in studying the genetics of acute lymphoblastic leukemia. The initial goal of this consortium is to identify and characterize low-penetrance susceptibility variants for acute lymphoblastic leukemia through association-based analyses. Efforts to develop genome-wide association studies of acute lymphoblastic leukemia, in terms of both sample size and single nucleotide polymorphism coverage, and to increase the number of single nucleotide polymorphisms taken forward to large-scale replication should lead to the identification of additional novel risk variants for acute lymphoblastic leukemia. Ethnic differences in the risk of acute lymphoblastic leukemia are well recognized and thus in assessing the interplay between inherited and non-genetic risk factors, analyses using different population cohorts with different incidence rates are likely to be highly informative. Given that the frequency of many acute lymphoblastic leukemia subgroups is small, identifying differential effects will realistically only be

  18. Advances in immunotherapy of chronic myeloid leukemia CML.

    PubMed

    Held, Stefanie Andrea Erika; Heine, Annkristin; Mayer, Karin Tina; Kapelle, Mario; Wolf, Dominik Georg Friedrich; Brossart, Peter

    2013-09-01

    Tyrosine kinase inhibitors induce sustained disease remissions in chronic myeloid leukemia by exploiting the addiction of this type of leukemia to the activity of the fusion oncogene BCR-ABL. However, these agents fail to eradicate CML stem cells which are ultimately responsible for disease relapses upon treatment discontinuation. Evidence that the immune system can effectively reject CML stem cells potentially leading to patient cure is provided by the experience with patients receiving allogeneic bone marrow transplantations. Compelling evidence indicates that more modern, antigen-specific immunotherapeutic approaches are also feasible and hold strong potential to be clinically effective. Amongst these, particularly promising is the use of autologous dendritic cells pulsed with antigens or direct application of in vitro transcribed RNA encoding for leukemia-associated antigens, since this approach allows to circumvent HLA-restriction of the leukemia-associated T cell epitopes that have been eventually identified. Combining these strategies with monoclonal antibodies, such as anti-CTLA-4 or anti-PD-1, may help to obtain even stronger immune responses and better clinical results. This narrative review addresses this topic by focusing in particular on the cell-based immunotherapeutic strategies for CML and on the issue of the leukemia-associated antigens to be selected for targeting. PMID:23906051

  19. Acute myeloid leukemia in children: Current status and future directions.

    PubMed

    Taga, Takashi; Tomizawa, Daisuke; Takahashi, Hiroyuki; Adachi, Souichi

    2016-02-01

    Acute myeloid leukemia (AML) accounts for 25% of pediatric leukemia and affects approximately 180 patients annually in Japan. The treatment outcome for pediatric AML has improved through advances in chemotherapy, hematopoietic stem cell transplantation (HSCT), supportive care, and optimal risk stratification. Currently, clinical pediatric AML studies are conducted separately according to the AML subtypes: de novo AML, acute promyelocytic leukemia (APL), and myeloid leukemia with Down syndrome (ML-DS). Children with de novo AML are treated mainly with anthracyclines and cytarabine, in some cases with HSCT, and the overall survival (OS) rate now approaches 70%. Children with APL are treated with an all-trans retinoic acid (ATRA)-combined regimen with an 80-90% OS. Children with ML-DS are treated with a less intensive regimen compared with non-DS patients, and the OS is approximately 80%. HSCT in first remission is restricted to children with high-risk de novo AML only. To further improve outcomes, it will be necessary to combine more accurate risk stratification strategies using molecular genetic analysis with assessment of minimum residual disease, and the introduction of new drugs in international collaborative clinical trials. PMID:26645706

  20. Acute parotitis during induction therapy including L-asparaginase in acute lymphoblastic leukemia.

    PubMed

    Sica, S; Pagano, L; Salutari, P; Di Mario, A; Rutella, S; Leone, G

    1994-02-01

    In a patient affected by acute lymphoblastic leukemia (ALL) and subjected to therapy with Erwinia L-asparaginase, acute parotitis was observed. Microbiological studies excluded any infectious etiology. Regression of parotitis was spontaneous. This complication has not been previously reported and could be due to the same mechanism of pancreatic injury. The occurrence of acute parotitis needs to be promptly recognized in order to avoid the continuation of L-asparaginase. PMID:8148421

  1. Treatment of Acute Promyelocytic Leukemia for Older Patients

    PubMed Central

    Prebet, Thomas; Gore, Steven D.

    2013-01-01

    Acute promyelocytic leukemia (APL) represents a remarkable disease in which leukemogenesis is driven by the PML-RARα oncogene and for which targeted treatment with all-trans retinoic acid (ATRA)–based therapy allows substantial chance of cure. APL is seen in a small subset of older patients, with age representing one of the most important prognostic factors for outcome of treatment. Unlike other acute leukemias, the inferior outcomes for APL in older patients relates less to changes in disease biology and more to increased toxicity of ATRA and chemotherapy combination regimens used to induce hematologic and molecular responses. Risk-adapted strategies that use less-toxic agents, such as arsenic trioxide, allow treatment of older patients, with greater efficiency and better chances of cure. PMID:21393443

  2. 'Acute myeloid leukemia: a comprehensive review and 2016 update'.

    PubMed

    De Kouchkovsky, I; Abdul-Hay, M

    2016-01-01

    Acute myeloid leukemia (AML) is the most common acute leukemia in adults, with an incidence of over 20 000 cases per year in the United States alone. Large chromosomal translocations as well as mutations in the genes involved in hematopoietic proliferation and differentiation result in the accumulation of poorly differentiated myeloid cells. AML is a highly heterogeneous disease; although cases can be stratified into favorable, intermediate and adverse-risk groups based on their cytogenetic profile, prognosis within these categories varies widely. The identification of recurrent genetic mutations, such as FLT3-ITD, NMP1 and CEBPA, has helped refine individual prognosis and guide management. Despite advances in supportive care, the backbone of therapy remains a combination of cytarabine- and anthracycline-based regimens with allogeneic stem cell transplantation for eligible candidates. Elderly patients are often unable to tolerate such regimens, and carry a particularly poor prognosis. Here, we review the major recent advances in the treatment of AML. PMID:27367478

  3. Thrombo-hemorrhagic deaths in acute promyelocytic leukemia.

    PubMed

    Breccia, Massimo; Lo Coco, Francesco

    2014-05-01

    Acute promyelocytic leukemia (APL) has become the most curable form of acute myeloid leukemia after the advent of all-trans retinoic acid (ATRA). However, early deaths (ED) mostly due to the disease-associated coagulopathy remain the major cause of treatment failure. In particular, hemorrhagic events account for 40-65% of ED and several prognostic factors have been identified for such hemorrhagic deaths, including poor performance status, high white blood cell (WBC) count and coagulopathy. Occurrence of thrombosis during treatment with ATRA may be associated with differentiation syndrome (DS) or represent an isolated event. Some prognostic factors have been reported to be associated with thrombosis, including increased WBC or aberrant immunophenotype of leukemic promyelocytes. Aim of this review is to report the incidence, severity, possible pathogenesis and clinical manifestations of thrombo-haemorrhagic deaths in APL. PMID:24862130

  4. Acute megakaryoblastic leukemia with increased hematogones in children.

    PubMed

    Anton-Harisi, Marieta; Douna, Varvara; Baka, Margarita; Servitzoglou, Marina; Kosmidis, Helen V; Georgouli, Helen; Anastasiou, Theodora

    2012-11-01

    We describe 2 patients, a 4-month-old male and a 17-month-old female, with de novo acute megakaryoblastic leukemia with increased number of hematogones at diagnosis. Both children were admitted in the hospital with thrombocytopenia. The bone marrow smears in the first child revealed the presence of 60% cells with morphologic features consistent with acute megakaryoblastic leukemia. In the other, the initial bone marrow aspirate was dry tap but on the following aspirate 10% cells with lymphoblastic morphology could be seen. The bone marrow flow cytometry showed the presence of hematogones-38% in the first case and 20% in the second-with absence of blasts. Repeated bone marrow aspirates, trephines, and immunophenotypic as well as molecular studies, confirmed the diagnosis of M7. Both children were treated according to the Berlin-Frankfurt-Munster 2004 protocol. PMID:22983420

  5. New decision support tool for acute lymphoblastic leukemia classification

    NASA Astrophysics Data System (ADS)

    Madhukar, Monica; Agaian, Sos; Chronopoulos, Anthony T.

    2012-03-01

    In this paper, we build up a new decision support tool to improve treatment intensity choice in childhood ALL. The developed system includes different methods to accurately measure furthermore cell properties in microscope blood film images. The blood images are exposed to series of pre-processing steps which include color correlation, and contrast enhancement. By performing K-means clustering on the resultant images, the nuclei of the cells under consideration are obtained. Shape features and texture features are then extracted for classification. The system is further tested on the classification of spectra measured from the cell nuclei in blood samples in order to distinguish normal cells from those affected by Acute Lymphoblastic Leukemia. The results show that the proposed system robustly segments and classifies acute lymphoblastic leukemia based on complete microscopic blood images.

  6. Monitoring imatinib plasma concentrations in chronic myeloid leukemia

    PubMed Central

    Martins, Darlize Hübner; Wagner, Sandrine Comparsi; dos Santos, Tamyris Vianna; Lizot, Lilian de Lima Feltraco; Antunes, Marina Venzon; Capra, Marcelo; Linden, Rafael

    2011-01-01

    Imatinib has proved to be effective in the treatment of chronic myeloid leukemia, but plasma levels above 1,000 ng/mL must be achieved to optimize activity. Therapeutic drug monitoring of imatinib is useful for patients that do not present clinical response. There are several analytical methods to measure imatinib in biosamples, which are mainly based on liquid chromatography with mass spectrometric or diode array spectrophotometric detection. The former is preferred due to its lower cost and wider availability. The present manuscript presents a review of the clinical and analytical aspects of the therapeutic drug monitoring of imatinib in the treatment of chronic myeloid leukemia. The review includes references published over the last 10 years. There is evidence that the monitoring of plasmatic levels of imatinib is an useful alternative, especially considering the wide pharmacokinetic variability of this drug. PMID:23049322

  7. Idiopathic thrombocytopenic purpura following successful treatment of acute lymphoblastic leukemia.

    PubMed

    Tannir, N M; Kantarjian, H

    2001-03-01

    Thrombocytopenia is common in patients with acute lymphocytic leukemia (ALL) at diagnosis. It is a universal side effect of dose-intensive regimens employed in the treatment of adult ALL. In patients with ALL who achieve remission, thrombocytopenia frequently indicates relapse. We report three adult patients successfully treated for ALL who developed thrombocytopenia and were found to have immune-mediated thrombocytopenia (ITP). Possible pathophysiologic mechanisms underlying the association of ALL and ITP are discussed. PMID:11342378

  8. [Massive bilateral subconjunctival hemorrhage revealing acute lymphoblastic leukemia].

    PubMed

    Taamallah-Malek, I; Chebbi, A; Bouladi, M; Nacef, L; Bouguila, H; Ayed, S

    2013-03-01

    We report the case of 20-year-old patient who presented in emergency with bilateral massive, spontaneous subconjunctival hemorrhage. Clinical findings suggested a blood dyscrasia, which was confirmed by blood cell count. The patient was urgently referred to hematology where the diagnosis of acute lymphoblastic leukemia was made. This case highlights the importance of working up any unusual subconjunctival hemorrhage, as it may reveal, in certain cases, a severe life-threatening disease. PMID:23122838

  9. Massive Pulmonary Embolism at the Onset of Acute Promyelocytic Leukemia

    PubMed Central

    Sorà, Federica; Chiusolo, Patrizia; Laurenti, Luca; Autore, Francesco; Giammarco, Sabrina; Sica, Simona

    2016-01-01

    Life-threatening bleeding is a major and early complication of acute promyelocytic leukemia (APL), but in the last years there is a growing evidence of thromboses in APL. We report the first case of a young woman with dyspnea as the first symptom of APL due to massive pulmonary embolism (PE) successfully treated with thrombolysis for PE and heparin. APL has been processed with a combination of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) obtaining complete remission. PMID:27413520

  10. Cytomegalovirus-induced Hemorrhagic Colitis in a Patient with Chronic Myeloid Leukemia (Chronic Phase) on Dasatinib as an Upfront Therapy.

    PubMed

    Yassin, Mohamed A; Nashwan, Abdulqadir J; Soliman, Ashraf T; Yousif, Anil; Moustafa, Afra; AlBattah, Afaf; Mohamed, Shehab F; Mudawi, Deena S; Elkourashy, Sarah; Asaari, Deena-Raiza; Gutierrez, Hope-Love G; Almusharaf, Mohamed; Hussein, Radwa M; Moustafa, Abbas H; Derhoubi, Hatim El; Boukhris, Sarra; Kohla, Samah; AlDewik, Nader

    2015-01-01

    Dasatinib is a kinase inhibitor indicated for the treatment of newly diagnosed adults with Philadelphia chromosome-positive (Ph+) chronic myeloid leukemia (CML) in chronic phase and accelerated (myeloid or lymphoid blast) phase, and CML with resistance or intolerance to prior therapy including imatinib and in adults with Ph+ acute lymphoblastic leukemia1 The most common adverse reactions (≥15%) in patients with newly diagnosed chronic-phase (CP) CML include myelosuppression, fluid retention, and diarrhea, whereas in patients with resistance or intolerance to prior imatinib therapy, side effects include myelosuppression, fluid retention, diarrhea, headache, dyspnea, skin rash, fatigue, nausea, and hemorrhage. We report a 39-year-old Ethiopian female patient who received dasatinib as upfront therapy for the treatment of CP-CML who experienced chronic diarrhea for two months, which progressed to hemorrhagic colitis due to cytomegalovirus (CMV) infection of the colon. To our knowledge, this is the first case of CMV colitis in a patient receiving dasatinib as upfront therapy. PMID:26379451

  11. Cytomegalovirus-induced Hemorrhagic Colitis in a Patient with Chronic Myeloid Leukemia (Chronic Phase) on Dasatinib as an Upfront Therapy

    PubMed Central

    Yassin, Mohamed A; Nashwan, Abdulqadir J; Soliman, Ashraf T; Yousif, Anil; Moustafa, Afra; AlBattah, Afaf; Mohamed, Shehab F; Mudawi, Deena S; Elkourashy, Sarah; Asaari, Deena-Raiza; Gutierrez, Hope-Love G; Almusharaf, Mohamed; Hussein, Radwa M; Moustafa, Abbas H; Derhoubi, Hatim El; Boukhris, Sarra; Kohla, Samah; AlDewik, Nader

    2015-01-01

    Dasatinib is a kinase inhibitor indicated for the treatment of newly diagnosed adults with Philadelphia chromosome–positive (Ph+) chronic myeloid leukemia (CML) in chronic phase and accelerated (myeloid or lymphoid blast) phase, and CML with resistance or intolerance to prior therapy including imatinib and in adults with Ph+ acute lymphoblastic leukemia1 The most common adverse reactions (≥15%) in patients with newly diagnosed chronic-phase (CP) CML include myelosuppression, fluid retention, and diarrhea, whereas in patients with resistance or intolerance to prior imatinib therapy, side effects include myelosuppression, fluid retention, diarrhea, headache, dyspnea, skin rash, fatigue, nausea, and hemorrhage. We report a 39-year-old Ethiopian female patient who received dasatinib as upfront therapy for the treatment of CP-CML who experienced chronic diarrhea for two months, which progressed to hemorrhagic colitis due to cytomegalovirus (CMV) infection of the colon. To our knowledge, this is the first case of CMV colitis in a patient receiving dasatinib as upfront therapy. PMID:26379451

  12. Intracellular markers in acute myeloid leukemia diagnosis.

    PubMed

    Koníková, E; Glasová, M; Kusenda, J; Babusíková, O

    1998-01-01

    In our study we used a new proposed system of CD45 monoclonal antibody in combination with the side scatter (SSC) parameter as a very useful gating method allowing myeloblast detection especially in cases with low blasts percentage in examined samples. Immunological demonstration of myeloperoxidase (MPO) in the cytoplasm of AML blasts is considered to be a reliable and highly sensitive marker. Using a direct single and double immunofluorescence staining method and flow cytometry we evaluated the intracellular expression of two granular constituents of myeloid cells--MPO and lactoferrin (LF) in leukemia cells from 18 patients at AML diagnosis, two patients in remission after allogenic bone marrow transplantation and in six controls. Two different fixation/permeabilization techniques were used: Fix&Perm, paraformaldehyde and saponin prior to monoclonal antibody staining in order to verify the sensitivity of two labeling methods for MPO. Although both reagents used in this study proved to be efficient tools for the fixation and permeabilization of leukemia cells, the second one was characterized by higher sensitivity in detection of MPO. By double staining of MPO and LF we were able to distinguish undifferentiated cells from the granulomonocytic maturation compartments in bone marrow, since LF is proposed to be selectively expressed from the myelocyte stage of differentiation onward. Cytoplasmic CD13 expression was detectable in AML blasts after their buffered-formaldehyde-acetone fixation/permeabilization. According to our results the detection of MPO and CD13 markers in the cytoplasm of leukemia cells is of great importance in the definition of FAB M0-M1 subtype of AML. Furthermore we described overexpression of CD34 antigen in AML and revealed the characteristic marker combination when CD34 was studied simultaneously with MPO. This finding also coincided with some atypical phenotypic features (CD15/MPO, CD7/cCD13, CD2/cCD13, CD33/cCD13, MPO/cCD13) contributing to

  13. The spectrum of use of rituximab in chronic lymphocytic leukemia

    PubMed Central

    Tedeschi, Alessandra; Vismara, Eleonora; Ricci, Francesca; Morra, Enrica; Montillo, Marco

    2010-01-01

    The monoclonal chimeric anti-CD20 antibody, rituximab, has considerably improved therapeutic outcome in B-cell chronic lymphocytic leukemia. Rituximab has limited clinical activity when used as a single agent. The combination of the monoclonal antibody with fludarabine-based regimens clearly demonstrated, in Phase II and randomized trials, an increase in clinical efficacy in previously untreated and pretreated patients. Furthermore the addition of rituximab enabled the eradication of minimal residual disease, which is correlated with the prognosis in a high proportion of patients. Although the combination of rituximab with fludarabine-based regimens increased myelosuppression and immunosuppression, incidence of infections did not increase. The benefit of adding rituximab to other purine analogs or other chemotherapeutic combination regimens has also been explored. Moreover there could be a role for achieving better quality of responses with the combination of different monoclonal antibodies, considering that they target different antigens and exert different mechanism of action. Although the role of rituximab as maintenance therapy in low grade non-Hodgkin’s lymphomas has been determined, the benefit and optimal schedule in chronic lymphocytic leukemia are still under investigation. This review brings together knowledge of the pharmacokinetics, mechanism of action and clinical use of rituximab in chronic lymphocytic leukemia. PMID:21289858

  14. Therapy-Related Myeloid Neoplasms in Chronic Lymphocytic Leukemia and Waldenstrom’s Macroglobulinemia

    PubMed Central

    Ricci, Francesca; Tedeschi, Alessandra; Montillo, Marco; Morra, Enrica

    2011-01-01

    Secondary myelodysplasia (MDS) and acute myeloid leukemia (AML) are frequent long term complications in Chronic Lymphocytic Leukemia (CLL) and Waldenström Macroglobulinemia (WM) patients. Although disease-related immune-suppression plays a crucial role in leukemogenesis there is great concern that therapy may further increase the risk of developing these devastating complications. Nucleoside analogs (NA) and alkylating agents are considered appropriate agents in the treatment of both CLL and WM patients. Prolonged immunosuppression related to NA therapy and the incorporation of these agents or their metabolites into DNA, with potentially mutagenic action, leads to speculation that their therapeutic use might be responsible for an increased incidence of second cancer especially when combined with other DNA damaging agents like alkylating agents. In this review the published studies considering the occurrence of secondary MDS and AML in CLL and WM patients are reported and the potential role of chemotherapeutic agents in leukemogenesis is discussed. PMID:21869917

  15. Optic neuropathy secondary to dasatinib in the treatment of a chronic myeloid leukemia case

    PubMed Central

    Monge, Katia Sotelo; Gálvez-Ruiz, Alberto; Alvárez-Carrón, Alberto; Quijada, César; Matheu, Anna

    2015-01-01

    The drug dasatinib is a new therapeutic option for patients with chronic myeloid leukemia (CML) as well as acute lymphocytic lymphoblastic leukemia (ALL). However, the scientific literature has not reached a consensus regarding the types of secondary ophthalmologic effects that this drug may have. In this study, we present the case of a 36-year-old male patient who was treated with dasatinib. Two and a half months later, this patient began to experience progressive visual loss in the superior visual field of both eyes. After ruling out various diagnostic options and performing extensive complementary tests, the suspected diagnosis was compatible with optic neuropathy secondary to dasatinib. The patient partially improved after stopping this medication and receiving oral corticosteroid treatment. Although secondary ophthalmological effects related to dasatinib are practically non-existent, our case is the first to report optic neuropathy secondary to this drug. PMID:26155085

  16. Temsirolimus, Dexamethasone, Mitoxantrone Hydrochloride, Vincristine Sulfate, and Pegaspargase in Treating Young Patients With Relapsed Acute Lymphoblastic Leukemia or Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2015-07-09

    Childhood B Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Lymphoblastic Lymphoma

  17. Laboratory-Treated Donor Cord Blood Cell Infusion Following Combination Chemotherapy in Treating Younger Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-03-30

    Acute Leukemia of Ambiguous Lineage; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; Childhood Acute Myeloid Leukemia in Remission; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  18. Acute promyelocytic leukemia transformation in a patient with aplastic anemia: a case report with literature review

    PubMed Central

    Wang, Xiaoning; Yuan, Tingting; Wang, Wenjuan; Chen, Limei; Wang, Huaiyu; Liu, Yalin

    2015-01-01

    Aplastic anemia (AA) is a hematological disorder presenting with pancytopenia in peripheral blood and hypocellularity in bone marrow. AA patients with immunosuppressive therapy and granulocyte colony-stimulating factor treatment have a risk of development of acute leukemia including acute myeloid leukemia (M0, M1, M2, M4, M5, M6) and acute lymphoblastic leukemia. However, AA with transformation to acute promyelocytic leukemia (APL) has never been reported. Here, we reported a patient initially diagnosed with AA. while 19 years later, PML/RAR αfusion gene were detected and the patient was eventually diagnosed as APL. The diagnosis and management of this interesting case are discussed. PMID:26884990

  19. Clofarabine for the treatment of adult acute lymphoid leukemia: the Group for Research on Adult Acute Lymphoblastic Leukemia intergroup.

    PubMed

    Huguet, Françoise; Leguay, Thibaut; Raffoux, Emmanuel; Rousselot, Philippe; Vey, Norbert; Pigneux, Arnaud; Ifrah, Norbert; Dombret, Hervé

    2015-04-01

    Clofarabine, a second-generation purine analog displaying potent inhibition of DNA synthesis and favorable pharmacologic profile, is approved for the treatment of acute lymphoblastic leukemia (ALL) after failure of at least two previous regimens in patients up to 21 years of age at diagnosis. Good neurologic tolerance, synergy with alkylating agents, management guidelines defined through pediatric ALL and adult acute myeloid leukemia, have also prompted its administration in more than 100 adults with Philadelphia chromosome-positive and negative B lineage and T lineage ALL, as single agent (40 mg/m(2)/ day for 5 days), or in combination. In a Group for Research on Adult Acute Lympho- blastic Leukemia (GRAALL) retrospective study of two regimens (clofarabine ± cyclophosphamide + / - etoposide (ENDEVOL) ± mitoxantrone ± asparaginase ± dexamethasone (VANDEVOL)), remission was achieved in 50% of 55 relapsed/refractory patients, and 17-35% could proceed to allogeneic stem cell. Clofarabine warrants further exploration in advanced ALL treatment and bridge-to-transplant. PMID:24996442

  20. Clofarabine and Cytarabine in Treating Older Patients With Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndromes That Have Relapsed or Not Responded to Treatment

    ClinicalTrials.gov

    2013-08-06

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Myelodysplastic Syndrome With Isolated Del(5q); Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia

  1. Busulfan, Fludarabine Phosphate, and Anti-Thymocyte Globulin Followed By Donor Stem Cell Transplant and Azacitidine in Treating Patients With High-Risk Myelodysplastic Syndrome and Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-20

    Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; de Novo Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  2. High-Dose Busulfan and High-Dose Cyclophosphamide Followed By Donor Bone Marrow Transplant in Treating Patients With Leukemia, Myelodysplastic Syndrome, Multiple Myeloma, or Recurrent Hodgkin or Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2010-08-05

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With T(15;17)(q22;q12); Adult Acute Myeloid Leukemia With T(16;16)(p13;q22); Adult Acute Myeloid Leukemia With T(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Adult Pure Erythroid Leukemia (M6b); Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Burkitt Lymphoma; Childhood Acute Erythroleukemia (M6); Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myeloid Leukemia in Remission; Childhood Acute Myelomonocytic Leukemia (M4); Childhood Acute Promyelocytic Leukemia (M3); Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Phase Chronic Myelogenous Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; De Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Peripheral T-Cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent

  3. Apolizumab in Treating Patients With Relapsed or Refractory Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2013-07-15

    Noncontiguous Stage II Small Lymphocytic Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Small Lymphocytic Lymphoma

  4. Comprehensive mutational analysis of primary and relapse acute promyelocytic leukemia

    PubMed Central

    Madan, V; Shyamsunder, P; Han, L; Mayakonda, A; Nagata, Y; Sundaresan, J; Kanojia, D; Yoshida, K; Ganesan, S; Hattori, N; Fulton, N; Tan, K-T; Alpermann, T; Kuo, M-C; Rostami, S; Matthews, J; Sanada, M; Liu, L-Z; Shiraishi, Y; Miyano, S; Chendamarai, E; Hou, H-A; Malnassy, G; Ma, T; Garg, M; Ding, L-W; Sun, Q-Y; Chien, W; Ikezoe, T; Lill, M; Biondi, A; Larson, R A; Powell, B L; Lübbert, M; Chng, W J; Tien, H-F; Heuser, M; Ganser, A; Koren-Michowitz, M; Kornblau, S M; Kantarjian, H M; Nowak, D; Hofmann, W-K; Yang, H; Stock, W; Ghavamzadeh, A; Alimoghaddam, K; Haferlach, T; Ogawa, S; Shih, L-Y; Mathews, V; Koeffler, H P

    2016-01-01

    Acute promyelocytic leukemia (APL) is a subtype of myeloid leukemia characterized by differentiation block at the promyelocyte stage. Besides the presence of chromosomal rearrangement t(15;17), leading to the formation of PML-RARA (promyelocytic leukemia-retinoic acid receptor alpha) fusion, other genetic alterations have also been implicated in APL. Here, we performed comprehensive mutational analysis of primary and relapse APL to identify somatic alterations, which cooperate with PML-RARA in the pathogenesis of APL. We explored the mutational landscape using whole-exome (n=12) and subsequent targeted sequencing of 398 genes in 153 primary and 69 relapse APL. Both primary and relapse APL harbored an average of eight non-silent somatic mutations per exome. We observed recurrent alterations of FLT3, WT1, NRAS and KRAS in the newly diagnosed APL, whereas mutations in other genes commonly mutated in myeloid leukemia were rarely detected. The molecular signature of APL relapse was characterized by emergence of frequent mutations in PML and RARA genes. Our sequencing data also demonstrates incidence of loss-of-function mutations in previously unidentified genes, ARID1B and ARID1A, both of which encode for key components of the SWI/SNF complex. We show that knockdown of ARID1B in APL cell line, NB4, results in large-scale activation of gene expression and reduced in vitro differentiation potential. PMID:27063598

  5. Comprehensive mutational analysis of primary and relapse acute promyelocytic leukemia.

    PubMed

    Madan, V; Shyamsunder, P; Han, L; Mayakonda, A; Nagata, Y; Sundaresan, J; Kanojia, D; Yoshida, K; Ganesan, S; Hattori, N; Fulton, N; Tan, K-T; Alpermann, T; Kuo, M-C; Rostami, S; Matthews, J; Sanada, M; Liu, L-Z; Shiraishi, Y; Miyano, S; Chendamarai, E; Hou, H-A; Malnassy, G; Ma, T; Garg, M; Ding, L-W; Sun, Q-Y; Chien, W; Ikezoe, T; Lill, M; Biondi, A; Larson, R A; Powell, B L; Lübbert, M; Chng, W J; Tien, H-F; Heuser, M; Ganser, A; Koren-Michowitz, M; Kornblau, S M; Kantarjian, H M; Nowak, D; Hofmann, W-K; Yang, H; Stock, W; Ghavamzadeh, A; Alimoghaddam, K; Haferlach, T; Ogawa, S; Shih, L-Y; Mathews, V; Koeffler, H P

    2016-08-01

    Acute promyelocytic leukemia (APL) is a subtype of myeloid leukemia characterized by differentiation block at the promyelocyte stage. Besides the presence of chromosomal rearrangement t(15;17), leading to the formation of PML-RARA (promyelocytic leukemia-retinoic acid receptor alpha) fusion, other genetic alterations have also been implicated in APL. Here, we performed comprehensive mutational analysis of primary and relapse APL to identify somatic alterations, which cooperate with PML-RARA in the pathogenesis of APL. We explored the mutational landscape using whole-exome (n=12) and subsequent targeted sequencing of 398 genes in 153 primary and 69 relapse APL. Both primary and relapse APL harbored an average of eight non-silent somatic mutations per exome. We observed recurrent alterations of FLT3, WT1, NRAS and KRAS in the newly diagnosed APL, whereas mutations in other genes commonly mutated in myeloid leukemia were rarely detected. The molecular signature of APL relapse was characterized by emergence of frequent mutations in PML and RARA genes. Our sequencing data also demonstrates incidence of loss-of-function mutations in previously unidentified genes, ARID1B and ARID1A, both of which encode for key components of the SWI/SNF complex. We show that knockdown of ARID1B in APL cell line, NB4, results in large-scale activation of gene expression and reduced in vitro differentiation potential. PMID:27063598

  6. Bone Marrow and Kidney Transplant for Patients With Chronic Kidney Disease and Blood Disorders

    ClinicalTrials.gov

    2016-01-28

    Chronic Kidney Disease; Acute Myeloid Leukemia (AML); Acute Lymphoblastic Leukemia (ALL); Chronic Myelogenous Leukemia (CML); Chronic Lymphocytic Leukemia (CLL); Non-Hodgkin's Lymphoma (NHL); Hodgkin Disease; Multiple Myeloma; Myelodysplastic Syndrome (MDS); Aplastic Anemia; AL Amyloidosis; Diamond Blackfan Anemia; Myelofibrosis; Myeloproliferative Disease; Sickle Cell Anemia; Autoimmune Diseases; Thalassemia

  7. Case of chronic eosinophilic leukemia with deletion of chromosome 16 and hepatitis C.

    PubMed

    Kamineni, Padma; Baptiste, Ayanna; Hassan, Mukhtar; Dawkins, Fitzroy W; Zaidi, Syed; Tefferi, Ayalew; Lindsey, Mercedes; Taddesse-Heath, Lekidelu

    2006-08-01

    Chronic eosinophilic leukemia is a rare entity, characterized by eosinophilia of >1.5 x 10(9)/L, persisting for >6 months after exclusion of other reactive and neoplastic causes of eosinophilia, and occurring in association with a clonal cytogenetic abnormality. Various chromosomal abnormalities have been associated with chronic eosinophilic leukemia. Partial deletion of the long arm of chromosome 16 is a cytogenetic abnormality first reported 20 years ago in patients with acute myeloid leukemia associated with bone marrow eosinophilia (AML-M4Eo). We report a case of a 45-year-old African-American male with hepatitis C and sustained peripheral blood eosinophilia who presented with gross hematuria, dyspnea on exertion, chills, decreased appetite and weight loss of 40 pounds associated with hepatosplenomegaly and lymphadenopathy. Bone marrow biopsy showed clonal cytogenetic abnormality consisting of deletion of the long arm of chromosome 16 (16q22). Philadelphia chromosome t (9;22) and polymerase chain reaction (PCR) analysis for C-kit and platelet-derived growth factor receptor-alpha (PDGFRA) mutations were negative. The patient was treated with imatinib at 400 mg/d with improvement of symptoms, reduction of lymphadenopathy and normalization of the eosinophil count. To our knowledge, this is the first case report of isolated del (16) (q22), a cytogenetic abnormality associated with AML-M4Eo, occurring in chronic eosinophilic leukemia. Whether this cytogenetic abnormality might represent a prodromal phase of AML-M4Eo is not known. In addition, the role of hepatitis C in inducing clonal proliferation of eosinophils is unclear. PMID:16916138

  8. Myeloid sarcoma presenting as a colon polyp and harbinger of chronic myelogenous leukemia

    PubMed Central

    Rogers, Robert; Ettel, Mark; Cho, Margaret; Chan, Alexander; Wu, Xiao-Jun; Neto, Antonio G

    2016-01-01

    Myeloid sarcoma, also known as granulocytic sarcoma or chloroma is an unusual accumulation of malignant myeloid precursor cells in an extramedullary site, which disrupts the normal architecture of the involved tissue. It is known to occur more commonly in patients with acute myelogenous leukemia and less commonly in those with myelodysplastic syndrome and myeloproliferative neoplasm, such as chronic myelogenous leukemia. The most common sites of involvement include bone, skin and lymph nodes. However, rare cases have been reported in the gastrointestinal tract, genitourinary tract, or breast. Most commonly, a neoplastic extramedullary proliferation of myeloid precursors in a patient would have systemic involvement of a myeloid neoplasm, including in the bone marrow and peripheral blood. Infrequently, extramedullary disease may be the only site of involvement. It may also occur as a localized antecedent to more generalized disease or as a site of recurrence. Herein, we present the first case in the English literature of a patient presenting with an isolated site of myeloid sarcoma arising in the form of a colonic polyp which, after subsequent bone marrow biopsy, was found to be a harbinger of chronic myelogenous leukemia. PMID:26989468

  9. Antileukemic Efficacy of Continuous vs Discontinuous Dexamethasone in Murine Models of Acute Lymphoblastic Leukemia

    PubMed Central

    Ramsey, Laura B.; Janke, Laura J.; Payton, Monique A.; Cai, Xiangjun; Paugh, Steven W.; Karol, Seth E.; Kamdem, Landry Kamdem; Cheng, Cheng; Williams, Richard T.; Jeha, Sima; Pui, Ching-Hon; Evans, William E.; Relling, Mary V.

    2015-01-01

    Osteonecrosis is one of the most common, serious, toxicities resulting from the treatment of acute lymphoblastic leukemia. In recent years, pediatric acute lymphoblastic leukemia clinical trials have used discontinuous rather than continuous dosing of dexamethasone in an effort to reduce the incidence of osteonecrosis. However, it is not known whether discontinuous dosing would compromise antileukemic efficacy of glucocorticoids. Therefore, we tested the efficacy of discontinuous dexamethasone against continuous dexamethasone in murine models bearing human acute lymphoblastic leukemia xenografts (n = 8 patient samples) or murine BCR-ABL+ acute lymphoblastic leukemia. Plasma dexamethasone concentrations (7.9 to 212 nM) were similar to those achieved in children with acute lymphoblastic leukemia using conventional dosages. The median leukemia-free survival ranged from 16 to 59 days; dexamethasone prolonged survival from a median of 4 to 129 days in all seven dexamethasone-sensitive acute lymphoblastic leukemias. In the majority of cases (7 of 8 xenografts and the murine BCR-ABL model) we demonstrated equal efficacy of the two dexamethasone dosing regimens; whereas for one acute lymphoblastic leukemia sample, the discontinuous regimen yielded inferior antileukemic efficacy (log-rank p = 0.002). Our results support the clinical practice of using discontinuous rather than continuous dexamethasone dosing in patients with acute lymphoblastic leukemia. PMID:26252865

  10. Inhibition of MerTK increases chemosensitivity and decreases oncogenic potential in T-cell acute lymphoblastic leukemia.

    PubMed

    Brandao, L N; Winges, A; Christoph, S; Sather, S; Migdall-Wilson, J; Schlegel, J; McGranahan, A; Gao, D; Liang, X; Deryckere, D; Graham, D K

    2013-01-01

    Pediatric leukemia survival rates have improved dramatically over the past decades. However, current treatment protocols are still largely ineffective in cases of relapsed leukemia and are associated with a significant rate of chronic health conditions. Thus, there is a continued need for new therapeutic options. Here, we show that mer receptor tyrosine kinase (MerTK) was abnormally expressed in approximately one half of pediatric T-cell leukemia patient samples and T-cell acute lymphoblastic leukemia (T-ALL) cell lines. Stimulation of MerTK by the ligand Gas6 led to activation of the prosurvival proteins Erk 1/2 and Stat5, and MerTK-dependent activation of the STAT pathway in leukemia represents a novel finding. Furthermore, inhibition of MerTK expression increased the sensitivity of T-ALL cells to treatment with chemotherapeutic agents and decreased the oncogenic potential of the Jurkat T-ALL cell line in a methylcellulose colony-forming assay. Lastly, inhibition of MerTK expression significantly increased median survival in a xenograft mouse model of leukemia (30.5 days vs 60 days, P<0.0001). These results suggest that inhibition of MerTK is a promising therapeutic strategy for the treatment of leukemia and may allow for dose reduction of currently used chemotherapeutics resulting in decreased rates of therapy-associated toxicities. PMID:23353780

  11. Inhibition of MerTK increases chemosensitivity and decreases oncogenic potential in T-cell acute lymphoblastic leukemia

    PubMed Central

    Brandao, L N; Winges, A; Christoph, S; Sather, S; Migdall-Wilson, J; Schlegel, J; McGranahan, A; Gao, D; Liang, X; DeRyckere, D; Graham, D K

    2013-01-01

    Pediatric leukemia survival rates have improved dramatically over the past decades. However, current treatment protocols are still largely ineffective in cases of relapsed leukemia and are associated with a significant rate of chronic health conditions. Thus, there is a continued need for new therapeutic options. Here, we show that mer receptor tyrosine kinase (MerTK) was abnormally expressed in approximately one half of pediatric T-cell leukemia patient samples and T-cell acute lymphoblastic leukemia (T-ALL) cell lines. Stimulation of MerTK by the ligand Gas6 led to activation of the prosurvival proteins Erk 1/2 and Stat5, and MerTK-dependent activation of the STAT pathway in leukemia represents a novel finding. Furthermore, inhibition of MerTK expression increased the sensitivity of T-ALL cells to treatment with chemotherapeutic agents and decreased the oncogenic potential of the Jurkat T-ALL cell line in a methylcellulose colony-forming assay. Lastly, inhibition of MerTK expression significantly increased median survival in a xenograft mouse model of leukemia (30.5 days vs 60 days, P<0.0001). These results suggest that inhibition of MerTK is a promising therapeutic strategy for the treatment of leukemia and may allow for dose reduction of currently used chemotherapeutics resulting in decreased rates of therapy-associated toxicities. PMID:23353780

  12. Collaborative Efforts Driving Progress in Pediatric Acute Myeloid Leukemia.

    PubMed

    Zwaan, C Michel; Kolb, Edward A; Reinhardt, Dirk; Abrahamsson, Jonas; Adachi, Souichi; Aplenc, Richard; De Bont, Eveline S J M; De Moerloose, Barbara; Dworzak, Michael; Gibson, Brenda E S; Hasle, Henrik; Leverger, Guy; Locatelli, Franco; Ragu, Christine; Ribeiro, Raul C; Rizzari, Carmelo; Rubnitz, Jeffrey E; Smith, Owen P; Sung, Lillian; Tomizawa, Daisuke; van den Heuvel-Eibrink, Marry M; Creutzig, Ursula; Kaspers, Gertjan J L

    2015-09-20

    Diagnosis, treatment, response monitoring, and outcome of pediatric acute myeloid leukemia (AML) have made enormous progress during the past decades. Because AML is a rare type of childhood cancer, with an incidence of approximately seven occurrences per 1 million children annually, national and international collaborative efforts have evolved. This overview describes these efforts and includes a summary of the history and contributions of each of the main collaborative pediatric AML groups worldwide. The focus is on translational and clinical research, which includes past, current, and future clinical trials. Separate sections concern acute promyelocytic leukemia, myeloid leukemia of Down syndrome, and relapsed AML. A plethora of novel antileukemic agents that have emerged, including new classes of drugs, are summarized as well. Finally, an important aspect of the treatment of pediatric AML--supportive care--and late effects are discussed. The future is bright, with a wide range of emerging innovative therapies and with more and more international collaboration that ultimately aim to cure all children with AML, with fewer adverse effects and without late effects. PMID:26304895

  13. Aggressive chemotherapy for acute leukemia relapsed after transplantation.

    PubMed

    Sica, S; Salutari, P; Di Mario, A; D'Onofrio, G; Etuk, B; Leone, G

    1994-09-01

    Bone marrow transplantation procedure has emerged as an effective treatment for hematological malignancies. However, recurrence of leukemia is still the major cause of treatment failure. Subsequent treatment in this category of patients, generally considered incurable, has not been yet standardized. At our institution, 13 patients, 7 with acute non lymphoid leukemia (ANLL) and 6 with acute lymphoid leukemia (ALL), were treated at relapse after bone marrow transplantation either autologous or allogeneic (AuBMT 8, ABMT 4) performed in complete remission (CR). The interval between BMT and relapse was less than 9 months in 6 patients (2 ABMT and 4 AuBMT) and more than 9 months in 7 patients. Early relapsed patients showed no response to treatment and died at a median of 5.5 months (range 1-13) after relapse. Late relapse after BMT was characterized by a high percentage of response (5 CR and 1 PR), particularly after intensive chemotherapy and by a longer survival (median 14 months; range 2-36). Chemotherapy after transplantation should be carefully evaluated in patients relapsed after BMT in order to select a population that can achieve long term disease free survival. PMID:7858490

  14. Haploidentical Transplantation in Children with Acute Leukemia: The Unresolved Issues

    PubMed Central

    Jaiswal, Sarita Rani; Chakrabarti, Suparno

    2016-01-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) remains a curative option for children with high risk and advanced acute leukemia. Yet availability of matched family donor limits its use and although matched unrelated donor or mismatched umbilical cord blood (UCB) are viable options, they fail to meet the global need. Haploidentical family donor is almost universally available and is emerging as the alternate donor of choice in adult patients. However, the same is not true in the case of children. The studies of haploidentical HSCT in children are largely limited to T cell depleted grafts with not so encouraging results in advanced leukemia. At the same time, emerging data from UCBT are challenging the existing paradigm of less stringent HLA match requirements as perceived in the past. The use of posttransplantation cyclophosphamide (PTCY) has yielded encouraging results in adults, but data in children is sorely lacking. Our experience of using PTCY based haploidentical HSCT in children shows inadequacy of this approach in younger children compared to excellent outcome in older children. In this context, we discuss the current status of haploidentical HSCT in children with acute leukemia in a global perspective and dwell on its future prospects. PMID:27110243

  15. Acute Pancreatitis and Diabetic Ketoacidosis following L-Asparaginase/Prednisone Therapy in Acute Lymphoblastic Leukemia

    PubMed Central

    Quintanilla-Flores, Dania Lizet; Flores-Caballero, Miguel Ángel; Rodríguez-Gutiérrez, René; Tamez-Pérez, Héctor Eloy; González-González, José Gerardo

    2014-01-01

    Acute pancreatitis and diabetic ketoacidosis are unusual adverse events following chemotherapy based on L-asparaginase and prednisone as support treatment for acute lymphoblastic leukemia. We present the case of a 16-year-old Hispanic male patient, in remission induction therapy for acute lymphoblastic leukemia on treatment with mitoxantrone, vincristine, prednisone, and L-asparaginase. He was hospitalized complaining of abdominal pain, nausea, and vomiting. Hyperglycemia, acidosis, ketonuria, low bicarbonate levels, hyperamylasemia, and hyperlipasemia were documented, and the diagnosis of diabetic ketoacidosis was made. Because of uncertainty of the additional diagnosis of acute pancreatitis as the cause of abdominal pain, a contrast-enhanced computed tomography was performed resulting in a Balthazar C pancreatitis classification. PMID:24716037

  16. PHF6 mutations in T-cell acute lymphoblastic leukemia

    PubMed Central

    Van Vlierberghe, Pieter; Palomero, Teresa; Khiabanian, Hossein; Van der Meulen, Joni; Castillo, Mireia; Van Roy, Nadine; De Moerloose, Barbara; Philippé, Jan; González-García, Sara; Toribio, María L; Taghon, Tom; Zuurbier, Linda; Cauwelier, Barbara; Harrison, Christine J; Schwab, Claire; Pisecker, Markus; Strehl, Sabine; Langerak, Anton W; Gecz, Jozef; Sonneveld, Edwin; Pieters, Rob; Paietta, Elisabeth; Rowe, Jacob M; Wiernik, Peter H; Benoit, Yves; Soulier, Jean; Poppe, Bruce; Yao, Xiaopan; Cordon-Cardo, Carlos; Meijerink, Jules; Rabadan, Raul; Speleman, Frank; Ferrando, Adolfo

    2010-01-01

    Tumor suppressor genes on the X chromosome may skew the gender distribution of specific types of cancer1,2. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with an increased incidence in males3. In this study, we report the identification of inactivating mutations and deletions in the X-linked plant homeodomain finger 6 (PHF6) gene in 16% of pediatric and 38% of adult primary T-ALL samples. Notably, PHF6 mutations are almost exclusively found in T-ALL samples from male subjects. Mutational loss of PHF6 is significantly associated with leukemias driven by aberrant expression of the homeobox transcription factor oncogenes TLX1 and TLX3. Overall, these results identify PHF6 as a new X-linked tumor suppressor in T-ALL and point to a strong genetic interaction between PHF6 loss and aberrant expression of TLX transcription factors in the pathogenesis of this disease. PMID:20228800

  17. ACER3 supports development of acute myeloid leukemia.

    PubMed

    Chen, Chen; Yin, Yancun; Li, Chunling; Chen, Jinliang; Xie, Jingjing; Lu, Zhigang; Li, Minjing; Wang, Yuesi; Zhang, Cheng Cheng

    2016-09-01

    No new therapy for acute myeloid leukemia (AML) has been approved for more than 30 years. To effectively treat AML, new molecular targets and therapeutic approaches must be identified. In silico analysis of several databases of AML patients demonstrated that the expression of alkaline ceramidase 3 (ACER3) significantly inversely correlates with the overall survival of AML patients. To determine whether ACER3 supports AML development, we employed an shRNA-encoding lentivirus system to inhibit acer3 expression in human AML cells including NB4, U937, and THP-1 cells. The ACER3 deficiency resulted in decreased cell growth and colony formation, elevated apoptosis, and lower AKT signaling of leukemia cells. Our study indicates that ACER3 contributes to AML pathogenesis, and suggests that alkaline ceramidase inhibition is an option to treat AML. PMID:27470583

  18. THE GENOMIC LANDSCAPE OF HYPODIPLOID ACUTE LYMPHOBLASTIC LEUKEMIA

    PubMed Central

    Holmfeldt, Linda; Wei, Lei; Diaz-Flores, Ernesto; Walsh, Michael; Zhang, Jinghui; Ding, Li; Payne-Turner, Debbie; Churchman, Michelle; Andersson, Anna; Chen, Shann-Ching; McCastlain, Kelly; Becksfort, Jared; Ma, Jing; Wu, Gang; Patel, Samir N.; Heatley, Susan L.; Phillips, Letha A.; Song, Guangchun; Easton, John; Parker, Matthew; Chen, Xiang; Rusch, Michael; Boggs, Kristy; Vadodaria, Bhavin; Hedlund, Erin; Drenberg, Christina; Baker, Sharyn; Pei, Deqing; Cheng, Cheng; Huether, Robert; Lu, Charles; Fulton, Robert S.; Fulton, Lucinda L.; Tabib, Yashodhan; Dooling, David J.; Ochoa, Kerri; Minden, Mark; Lewis, Ian D.; To, L. Bik; Marlton, Paula; Roberts, Andrew W.; Raca, Gordana; Stock, Wendy; Neale, Geoffrey; Drexler, Hans G.; Dickins, Ross A.; Ellison, David W.; Shurtleff, Sheila A.; Pui, Ching-Hon; Ribeiro, Raul C.; Devidas, Meenakshi; Carroll, Andrew J.; Heerema, Nyla A.; Wood, Brent; Borowitz, Michael J.; Gastier-Foster, Julie M.; Raimondi, Susana C.; Mardis, Elaine R.; Wilson, Richard K.; Downing, James R.; Hunger, Stephen P.; Loh, Mignon L.; Mullighan, Charles G.

    2013-01-01

    The genetic basis of hypodiploid acute lymphoblastic leukemia (ALL), a subtype of ALL characterized by aneuploidy and poor outcome, is unknown. Genomic profiling of 124 hypodiploid ALL cases, including whole genome and exome sequencing of 40 cases, identified two subtypes that differ in severity of aneuploidy, transcriptional profile and submicroscopic genetic alterations. Near haploid cases with 24–31 chromosomes harbor alterations targeting receptor tyrosine kinase- and Ras signaling (71%) and the lymphoid transcription factor IKZF3 (AIOLOS; 13%). In contrast, low hypodiploid ALL with 32–39 chromosomes are characterized by TP53 alterations (91.2%) which are commonly present in non-tumor cells, and alterations of IKZF2 (HELIOS; 53%) and RB1 (41%). Both near haploid and low hypodiploid tumors exhibit activation of Ras- and PI3K signaling pathways, and are sensitive to PI3K inhibitors, indicating that these drugs should be explored as a new therapeutic strategy for this aggressive form of leukemia. PMID:23334668

  19. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia

    PubMed Central

    Klco, Jeffery M.; Spencer, David H.; Miller, Christopher A.; Griffith, Malachi; Lamprecht, Tamara L.; O’Laughlin, Michelle; Fronick, Catrina; Magrini, Vincent; Demeter, Ryan T.; Fulton, Robert S.; Eades, William C.; Link, Daniel C.; Graubert, Timothy A.; Walter, Matthew J.; Mardis, Elaine R.; Dipersio, John F.; Wilson, Richard K.; Ley, Timothy J.

    2014-01-01

    Summary The relationships between clonal architecture and functional heterogeneity in acute myeloid leukemia (AML) samples are not yet clear. We used targeted sequencing to track AML subclones identified by whole genome sequencing using a variety of experimental approaches. We found that virtually all AML subclones trafficked from the marrow to the peripheral blood, but some were enriched in specific cell populations. Subclones showed variable engraftment potential in immunodeficient mice. Xenografts were predominantly comprised of a single genetically-defined subclone, but there was no predictable relationship between the engrafting subclone and the evolutionary hierarchy of the leukemia. These data demonstrate the importance of integrating genetic and functional data in studies of primary cancer samples, both in xenograft models and in patients. PMID:24613412

  20. Pharmacogenetics of alkylator-associated acute myeloid leukemia.

    PubMed

    Knoche, Eric; McLeod, Howard L; Graubert, Timothy A

    2006-07-01

    Therapy-related acute myeloid leukemia (t-AML) is a lethal late complication of alkylator chemotherapy. The genetic basis of susceptibility to t-AML is poorly understood. Both t-AML and de novo AML are complex genetic diseases, requiring cooperating mutations in interacting pathways for disease initiation and progression. Germline variants of these 'leukemia pathway' genes may cooperate with somatic mutations to induce both de novo and therapy-related AML. Several cancer susceptibility syndromes have been identified that cause an inherited predisposition to de novo and t-AML. The genes responsible for these syndromes are also somatically mutated in sporadic AML. We reason that germline polymorphism in any gene somatically mutated in AML could contribute to t-AML risk in the general population. Identification of these susceptibility alleles should help clinicians develop tailored therapies that reduce the relative risk of t-AML. PMID:16886897

  1. Update on developmental therapeutics for acute lymphoblastic leukemia.

    PubMed

    Smith, Malcolm A

    2009-07-01

    This is an exciting time in drug development for acute lymphoblastic leukemia (ALL). A confluence of trends makes it likely that highly effective new agents for ALL will be identified in the coming decade. One contributory factor is the development of more representative preclinical models of ALL for testing and prioritizing novel agents. Another important trend in ALL drug development is the increasing understanding at the molecular level of the genomic changes that occur in B-precursor and T-cell ALL. A final important trend is the increasing availability of new agents against relevant molecular targets. Molecularly targeted agents of interest discussed in this review include novel antibody-based drugs targeted against leukemia surface antigens, proteasome inhibitors, mTOR inhibitors, JAK inhibitors, Aurora A kinase inhibitors, and inhibitors of Bcl-2 family proteins. PMID:20425431

  2. Targeting survivin overcomes drug resistance in acute lymphoblastic leukemia

    PubMed Central

    Park, Eugene; Gang, Eun Ji; Hsieh, Yao-Te; Schaefer, Paul; Chae, Sanna; Klemm, Lars; Huantes, Sandra; Loh, Mignon; Conway, Edward M.; Kang, Eun-Suk; Hoe Koo, Hong; Hofmann, Wolf-Karsten; Heisterkamp, Nora; Pelus, Louis; Keerthivasan, Ganesan; Crispino, John; Kahn, Michael; Müschen, Markus

    2011-01-01

    Relapse of drug-resistant acute lymphoblastic leukemia (ALL) has been associated with increased expression of survivin/BIRC5, an inhibitor of apoptosis protein, suggesting a survival advantage for ALL cells. In the present study, we report that inhibition of survivin in patient-derived ALL can eradicate leukemia. Targeting survivin with shRNA in combination with chemotherapy resulted in no detectable minimal residual disease in a xenograft model of primary ALL. Similarly, pharmacologic knock-down of survivin using EZN-3042, a novel locked nucleic acid antisense oligonucleotide, in combination with chemotherapy eliminated drug-resistant ALL cells. These findings show the importance of survivin expression in drug resistance and demonstrate that survivin inhibition may represent a powerful approach to overcoming drug resistance and preventing relapse in patients with ALL. PMID:21715311

  3. An overview of chronic myeloid leukemia and its animal models.

    PubMed

    Ma, WeiXu; Ma, Ning; Chen, XiaoHui; Zhang, YiYue; Zhang, WenQing

    2015-12-01

    Chronic myeloid leukemia (CML) is a form of leukemia characterized by the presence of clonal bone marrow stem cells with the proliferation of mature granulocytes (neutrophils, eosinophils, and basophils) and their precursors. CML is a type of myeloproliferative disease associated with a characteristic chromosomal translocation called the Philadelphia (Ph) chromosome or t (9;22) translocation (BCR-ABL). CML is now usually treated with targeted drugs called tyrosine kinase inhibitors (TKIs). The mechanism and natural history of CML is still unclear. Here, we summarize the present CML animal disease models and compare them with each other. Meanwhile, we propose that it is a very wise choice to establish zebrafish (Danio rerio) CML model mimics clinical CML. This model could be used to learn more about the mechanism of CML, and to aid in the development of new drugs to treat CML. PMID:26582013

  4. Genomic and epigenomic heterogeneity in chronic lymphocytic leukemia

    PubMed Central

    Guièze, Romain

    2015-01-01

    Defining features of chronic lymphocytic leukemia (CLL) are not only its immunophenotype of CD19+CD5+CD23+sIgdim expressing clonal mature B cells but also its highly variable clinical course. In recent years, advances in massively parallel sequencing technologies have led to rapid progress in our understanding of the CLL genome and epigenome. Overall, these studies have clearly demarcated not only the vast degree of genetic and epigenetic heterogeneity among individuals with CLL but also even within individual patient leukemias. We herein review the rapidly growing series of studies assessing the genetic and epigenetic features of CLL within clinically defined periods of its growth. These studies strongly suggest an evolving spectrum of lesions over time and that these features may have clinical impact. PMID:26065654

  5. Microbiologic spectrum of acute and chronic dacryocystitis

    PubMed Central

    Eshraghi, Bahram; Abdi, Parisa; Akbari, Mohammadreza; Fard, Masoud Aghsaei

    2014-01-01

    AIM To report the microbiological spectrum of acute and chronic dacrocystitis. METHODS Retrospective study on 100 patients who presented to the ophthalmic plastic clinic of a tertiary eye care center from May 2011 and April 2013 with acute and chronic dacryocystitis was reviewed for demographic and microbiological profile. The culture results and organisms isolated were recorded. RESULTS Sixty patients had acute onset and the remaining 40 patients had chronic onset dacryocystitis. The female to male ratio was 1.78. The mean age of patients was 44y. Gram-positive organisms were the most commonly isolated accounting for 54%, and the commonest species isolated was S. aureus in 26%. Percentage of gram positive cultures was higher in chronic dacryocystitis than acute ones (82% vs 48% of positive cultures; P=0.003). Also in culture positive acute dacryocystitis, gram negative species were found in 52% of eyes but only in 18% of chronic dacryocystitis. CONCLUSION Gram negative bacteria, culture negative samples, unusual and more virulent organisms are more common in acute dacryocystitis than chronic ones. The results of this study have significant bearing on the treatment of patients with dacrocystitis. PMID:25349808

  6. Targeted positron emission tomography imaging of CXCR4 expression in patients with acute myeloid leukemia.

    PubMed

    Herhaus, Peter; Habringer, Stefan; Philipp-Abbrederis, Kathrin; Vag, Tibor; Gerngross, Carlos; Schottelius, Margret; Slotta-Huspenina, Julia; Steiger, Katja; Altmann, Torben; Weißer, Tanja; Steidle, Sabine; Schick, Markus; Jacobs, Laura; Slawska, Jolanta; Müller-Thomas, Catharina; Verbeek, Mareike; Subklewe, Marion; Peschel, Christian; Wester, Hans-Jürgen; Schwaiger, Markus; Götze, Katharina; Keller, Ulrich

    2016-08-01

    Acute myeloid leukemia originates from leukemia-initiating cells that reside in the protective bone marrow niche. CXCR4/CXCL12 interaction is crucially involved in recruitment and retention of leukemia-initiating cells within this niche. Various drugs targeting this pathway have entered clinical trials. To evaluate CXCR4 imaging in acute myeloid leukemia, we first tested CXCR4 expression in patient-derived primary blasts. Flow cytometry revealed that high blast counts in patients with acute myeloid leukemia correlate with high CXCR4 expression. The wide range of CXCR4 surface expression in patients was reflected in cell lines of acute myeloid leukemia. Next, we evaluated the CXCR4-specific peptide Pentixafor by positron emission tomography imaging in mice harboring CXCR4 positive and CXCR4 negative leukemia xenografts, and in 10 patients with active disease. [(68)Ga]Pentixafor-positron emission tomography showed specific measurable disease in murine CXCR4 positive xenografts, but not when CXCR4 was knocked out with CRISPR/Cas9 gene editing. Five of 10 patients showed tracer uptake correlating well with leukemia infiltration assessed by magnetic resonance imaging. The mean maximal standard uptake value was significantly higher in visually CXCR4 positive patients compared to CXCR4 negative patients. In summary, in vivo molecular CXCR4 imaging by means of positron emission tomography is feasible in acute myeloid leukemia. These data provide a framework for future diagnostic and theranostic approaches targeting the CXCR4/CXCL12-defined leukemia-initiating cell niche. PMID:27175029

  7. Targeted positron emission tomography imaging of CXCR4 expression in patients with acute myeloid leukemia

    PubMed Central

    Herhaus, Peter; Habringer, Stefan; Philipp-Abbrederis, Kathrin; Vag, Tibor; Gerngross, Carlos; Schottelius, Margret; Slotta-Huspenina, Julia; Steiger, Katja; Altmann, Torben; Weißer, Tanja; Steidle, Sabine; Schick, Markus; Jacobs, Laura; Slawska, Jolanta; Müller-Thomas, Catharina; Verbeek, Mareike; Subklewe, Marion; Peschel, Christian; Wester, Hans-Jürgen; Schwaiger, Markus; Götze, Katharina; Keller, Ulrich

    2016-01-01

    Acute myeloid leukemia originates from leukemia-initiating cells that reside in the protective bone marrow niche. CXCR4/CXCL12 interaction is crucially involved in recruitment and retention of leukemia-initiating cells within this niche. Various drugs targeting this pathway have entered clinical trials. To evaluate CXCR4 imaging in acute myeloid leukemia, we first tested CXCR4 expression in patient-derived primary blasts. Flow cytometry revealed that high blast counts in patients with acute myeloid leukemia correlate with high CXCR4 expression. The wide range of CXCR4 surface expression in patients was reflected in cell lines of acute myeloid leukemia. Next, we evaluated the CXCR4-specific peptide Pentixafor by positron emission tomography imaging in mice harboring CXCR4 positive and CXCR4 negative leukemia xenografts, and in 10 patients with active disease. [68Ga]Pentixafor-positron emission tomography showed specific measurable disease in murine CXCR4 positive xenografts, but not when CXCR4 was knocked out with CRISPR/Cas9 gene editing. Five of 10 patients showed tracer uptake correlating well with leukemia infiltration assessed by magnetic resonance imaging. The mean maximal standard uptake value was significantly higher in visually CXCR4 positive patients compared to CXCR4 negative patients. In summary, in vivo molecular CXCR4 imaging by means of positron emission tomography is feasible in acute myeloid leukemia. These data provide a framework for future diagnostic and theranostic approaches targeting the CXCR4/CXCL12-defined leukemia-initiating cell niche. PMID:27175029

  8. Comprehensive mutational profiling of core binding factor acute myeloid leukemia.

    PubMed

    Duployez, Nicolas; Marceau-Renaut, Alice; Boissel, Nicolas; Petit, Arnaud; Bucci, Maxime; Geffroy, Sandrine; Lapillonne, Hélène; Renneville, Aline; Ragu, Christine; Figeac, Martin; Celli-Lebras, Karine; Lacombe, Catherine; Micol, Jean-Baptiste; Abdel-Wahab, Omar; Cornillet, Pascale; Ifrah, Norbert; Dombret, Hervé; Leverger, Guy; Jourdan, Eric; Preudhomme, Claude

    2016-05-19

    Acute myeloid leukemia (AML) with t(8;21) or inv(16) have been recognized as unique entities within AML and are usually reported together as core binding factor AML (CBF-AML). However, there is considerable clinical and biological heterogeneity within this group of diseases, and relapse incidence reaches up to 40%. Moreover, translocations involving CBFs are not sufficient to induce AML on its own and the full spectrum of mutations coexisting with CBF translocations has not been elucidated. To address these issues, we performed extensive mutational analysis by high-throughput sequencing in 215 patients with CBF-AML enrolled in the Phase 3 Trial of Systematic Versus Response-adapted Timed-Sequential Induction in Patients With Core Binding Factor Acute Myeloid Leukemia and Treating Patients with Childhood Acute Myeloid Leukemia with Interleukin-2 trials (age, 1-60 years). Mutations in genes activating tyrosine kinase signaling (including KIT, N/KRAS, and FLT3) were frequent in both subtypes of CBF-AML. In contrast, mutations in genes that regulate chromatin conformation or encode members of the cohesin complex were observed with high frequencies in t(8;21) AML (42% and 18%, respectively), whereas they were nearly absent in inv(16) AML. High KIT mutant allele ratios defined a group of t(8;21) AML patients with poor prognosis, whereas high N/KRAS mutant allele ratios were associated with the lack of KIT or FLT3 mutations and a favorable outcome. In addition, mutations in epigenetic modifying or cohesin genes were associated with a poor prognosis in patients with tyrosine kinase pathway mutations, suggesting synergic cooperation between these events. These data suggest that diverse cooperating mutations may influence CBF-AML pathophysiology as well as clinical behavior and point to potential unique pathogenesis of t(8;21) vs inv(16) AML. PMID:26980726

  9. The clinical significance of patients’ sex in chronic lymphocytic leukemia

    PubMed Central

    Catovsky, Daniel; Wade, Rachel; Else, Monica

    2014-01-01

    We examined the prognostic influence of gender in chronic lymphocytic leukemia. Data from four randomized trials (involving 1821 patients) and three registration studies of stage-A disease (involving 1299 patients) were analyzed. Overall survival at 10 years was better for women than men in all trials (27% versus 15%; P=0.0001) and in the registration series (55% versus 43%; P<0.0001). More women than men in the trials were Binet stage A-progressive (26% versus 15%), but gender was an independent predictor of survival in multivariate analysis of clinical variables (P<0.0001). Women responded better to treatment (overall response 83%) than men (71%; P<0.0001), within each stage and age group, although fewer women than men received the full treatment dose (79% versus 85%; P=0.01). Women were more likely than men to experience toxicity (85% versus 78%, P=0.01), particularly gastro-intestinal toxicity (57% versus 42%, P<0.0001). Laboratory markers in the LRF CLL4 trial showed a significantly lower incidence in women than men of unmutated IGHV genes, raised beta-2 microglobulin, CD38 and Zap-70 positivity and TP53 deletions/mutations and/or 11q deletions. We also highlight the higher male:female ratios in randomized trials versus studies of early chronic lymphocytic leukemia and monoclonal B-cell lymphocytosis. Chronic lymphocytic leukemia in women runs a more benign clinical course than in men. Gender was also an independent predictor of response, suggesting that pharmacokinetic differences between the sexes and a possible effect of estrogens may contribute to the better outcome. Understanding the reasons for the different outcome by gender may improve patients’ management. (LRF CLL4 controlled-trials.com identifier: ISRCTN58585610). PMID:24658818

  10. Transplantations in adult acute lymphoblastic leukemia--grounds for optimism?

    PubMed

    Goldstone, Anthony H

    2009-01-01

    The large MRC/ECOG Adult Acute Lymphoblastic Leukemia Study establishes the value of sibling donor allogeneic transplantation in patients with standard risk, demonstrating superior outcome to conventional chemotherapy. The small but significant number of patients having matched unrelated donor transplantations on this study protocol appear to do well and might establish the value of such an approach for those without a sibling. Reduced-intensity conditioning might begin to address the transplantation-related mortality problems of the older patients. The youngest adults might not need to undergo transplantation at all. If they are now treated on pediatric chemotherapy protocols, their outcome appears to improve significantly. PMID:19778843

  11. [Progress in molecularly targeted therapies for acute myeloid leukemia].

    PubMed

    Tomita, Akihiro

    2015-02-01

    Genetic abnormalities including specific point mutations have recently been confirmed by applying comprehensive genome sequencing analyses. Molecular targeting therapies, which focus on the mutated proteins and over-expressed proteins in acute myeloid leukemia (AML) cells, are now being developed in clinical studies and/or based on in vitro analyses. This manuscript summarizes the genetic abnormalities in AML cells and some of the current molecular targeting therapies including FLT3 inhibitors (e.g. AC220; Quizartinib), Polo like kinase 1 (PLK1) inhibitors (e.g. BI-6727; Volasertib), IDH2 inhibitors (e.g. AG-221), and XPO1 inhibitors (e.g. KPT-330; Selinexor). PMID:25765792

  12. Management of Acute Myeloid Leukemia in the Intensive Care Setting.

    PubMed

    Cowan, Andrew J; Altemeier, William A; Johnston, Christine; Gernsheimer, Terry; Becker, Pamela S

    2015-10-01

    Patients with acute myeloid leukemia (AML) who are newly diagnosed or relapsed and those who are receiving cytotoxic chemotherapy are predisposed to conditions such as sepsis due to bacterial and fungal infections, coagulopathies, hemorrhage, metabolic abnormalities, and respiratory and renal failure. These conditions are common reasons for patients with AML to be managed in the intensive care unit (ICU). For patients with AML in the ICU, providers need to be aware of common problems and how to manage them. Understanding the pathophysiology of complications and the recent advances in risk stratification as well as newer therapy for AML are relevant to the critical care provider. PMID:24756309

  13. Acute Myeloid Leukemia Complicated by Giant Cell Arteritis.

    PubMed

    Tsunemine, Hiroko; Umeda, Ryosuke; Nohda, Yasuhiro; Sakane, Emiko; Akasaka, Hiroshi; Itoh, Kiminari; Izumi, Mayuko; Tsuji, Goh; Kodaka, Taiichi; Itoh, Tomoo; Takahashi, Takayuki

    2016-01-01

    Giant cell arteritis (GCA), a type of systemic arteritis, is rare in Japan. We herein report a case of acute myeloid leukemia (AML) complicated by GCA that manifested during chemotherapy for AML. A 77-year-old woman with severe back pain was diagnosed with AML. She achieved complete remission with the resolution of her back pain following induction chemotherapy. However, she developed a headache and fever after consolidation chemotherapy. A diagnosis of GCA was made based on a biopsy of the temporal artery and arterial imaging. GCA should therefore be included in the differential diagnosis in AML patients complicated with a headache and fever of unknown origin. PMID:26831026

  14. USER GUIDE: ACUTE TO CHRONIC ESTIMATION

    EPA Science Inventory

    Acute and chronic toxicity testing plays a major role in ecological risk assessment requirements involved in several environmental laws. Chronic toxicity tests commonly include the measurement of long-term effects of a contaminant on the survival, growth, and reproduction of test...

  15. Combination Chemotherapy and Rituximab in Treating Young Patients With Recurrent or Refractory Non-Hodgkin's Lymphoma or Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2013-10-07

    B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; L3 Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma

  16. In Vivo T Cell Depletion with Myeloablative Regimens on Outcomes after Cord Blood Transplantation for Acute Lymphoblastic Leukemia in Children.

    PubMed

    Ponce, Doris M; Eapen, Mary; Sparapani, Rodney; O'Brien, Tracey A; Chan, Ka Wah; Chen, Junfang; Craddock, John; Schultz, Kirk R; Wagner, John E; Perales, Miguel-Angel; Barker, Juliet N

    2015-12-01

    The inclusion of antithymocyte globulin (ATG) in cord blood transplantation is controversial. We evaluated outcomes according to ATG inclusion in 297 children and adolescents with acute lymphoblastic leukemia (ALL) who received myeloablative total body irradiation-based conditioning and either single-unit (74%) or double-unit (26%) grafts. Ninety-two patients (31%) received ATG and 205 (69%) did not. ATG recipients were more likely to be cytomegalovirus seronegative. The incidences of day 100 grades II to IV acute graft-versus-host disease (GVHD; 30% versus 54%, P = .0002) and chronic GVHD (22% versus 43%, P = .0008) were lower with ATG compared with non-ATG regimens. However, day 100 grades III to IV acute GVHD was comparable (11% versus 17%, P = .15). The 3-year incidences of transplant-related mortality (16% versus 17%, P = .98), relapse (17% versus 27%, P = .12), and leukemia-free survival (66% versus 55%, P = .23) in ATG and non-ATG recipients were similar. There were no differences in viral reactivation between treatment groups (60% versus 58%, P = .83). Therefore, the data suggest that incorporation of ATG with myeloablative conditioning regimens may be useful in reducing the risk of acute and chronic GVHD without any deleterious effect on transplant-related mortality, relapse, or leukemia-free survival in children and adolescents with ALL. PMID:26327630

  17. Summary of the published Indian data on chronic myeloid leukemia

    PubMed Central

    Singhal, Manish K.; Sengar, Manju; Nair, Reena

    2016-01-01

    Chronic myelogenous leukemia (LML) was recognized as a distinct entity in the mid-1800s. Since Nowell and Hunagerford initiated their research on CML in1960 our understanding in CML has been increasing. Imatinib became the preferred treatment from 2000 onwards as a result of its unprecedented success. The lack of structured Indian data on CML led to the formation of a CML data cansortuim which invited CML data albiet retro spartive form around the country including major cancer service providers both government and private. We provide a summary of published Indian data on CML here. PMID:27606306

  18. Chronic myelomonocytic leukemia: Forefront of the field in 2015

    PubMed Central

    Benton, Christopher B; Nazha, Aziz; Pemmaraju, Naveen; Garcia-Manero, Guillermo

    2016-01-01

    Chronic myelomonocytic leukemia (CMML) includes components of both myelodysplastic syndrome and myeloproliferative neoplasms and is associated with a characteristic peripheral monocytosis. CMML is caused by the proliferation of an abnormal hematopoietic stem cell clone and may be influenced by microenvironmental changes. The disease is rare and has undergone revisions in its classification. We review the recent classification strategies as well as diagnostic criteria, focusing on CMML’s genetic alterations and unique pathophysiology. We also discuss the latest molecular characterization of the disease, including how molecular factors affect current prognostic models. Finally, we focus on available treatment strategies, with a special emphasis on experimental and forthcoming therapies. PMID:25869097

  19. Management of imatinib-resistant patients with chronic myeloid leukemia

    PubMed Central

    Bhamidipati, Pavan Kumar; Kantarjian, Hagop; Cortes, Jorge; Cornelison, A. Megan

    2013-01-01

    Since its approval in 2001 for frontline management of chronic myelogenous leukemia (CML), imatinib has proven to be very effective in achieving high remission rates and improving prognosis. However, up to 33% of patients will not achieve optimal response. This has led researchers to develop new second- and third-generation tyrosine kinase inhibitors. In this article, we review the mechanisms of resistance, recommendations for monitoring, assessment of milestones, and management options for patients with CML who are resistant to imatinib therapy. We further explain the potential pitfalls that can lead to unnecessary discontinuation, the prognosis of patients whose condition fails to respond to treatment, and the upcoming therapies. PMID:23610618

  20. Management of imatinib-resistant patients with chronic myeloid leukemia.

    PubMed

    Bhamidipati, Pavan Kumar; Kantarjian, Hagop; Cortes, Jorge; Cornelison, A Megan; Jabbour, Elias

    2013-04-01

    Since its approval in 2001 for frontline management of chronic myelogenous leukemia (CML), imatinib has proven to be very effective in achieving high remission rates and improving prognosis. However, up to 33% of patients will not achieve optimal response. This has led researchers to develop new second- and third-generation tyrosine kinase inhibitors. In this article, we review the mechanisms of resistance, recommendations for monitoring, assessment of milestones, and management options for patients with CML who are resistant to imatinib therapy. We further explain the potential pitfalls that can lead to unnecessary discontinuation, the prognosis of patients whose condition fails to respond to treatment, and the upcoming therapies. PMID:23610618

  1. Prognosis of chronic lymphocytic leukemia from infrared spectra of lymphocytes

    NASA Astrophysics Data System (ADS)

    Schultz, Christian P.; Liu, Kan-Zhi; Johnston, James B.; Mantsch, Henry H.

    1997-06-01

    Peripheral mononuclear cells obtained from blood of normal individuals and from patients with chronic lymphocytic leukemia (CLL) were investigated by infrared spectroscopy and multivariate statistical analysis. Not only are the spectra of CLL cells different from those of normal cells, but hierarchical clustering also separated the CLL cells into a number of subclusters, based on their different DNA content, a fact which may provide a useful diagnostic tool for staging (progression of the disease) and multiple clone detection. Moreover, there is evidence for a correlation between the increased amount of DNA in the CLL cells and the in-vivo doubling time of the lymphocytes in a given patient.

  2. Summary of the published Indian data on chronic myeloid leukemia.

    PubMed

    Singhal, Manish K; Sengar, Manju; Nair, Reena

    2016-01-01

    Chronic myelogenous leukemia (LML) was recognized as a distinct entity in the mid-1800s. Since Nowell and Hunagerford initiated their research on CML in1960 our understanding in CML has been increasing. Imatinib became the preferred treatment from 2000 onwards as a result of its unprecedented success. The lack of structured Indian data on CML led to the formation of a CML data cansortuim which invited CML data albiet retro spartive form around the country including major cancer service providers both government and private. We provide a summary of published Indian data on CML here. PMID:27606306

  3. Leukemia

    MedlinePlus

    ... version of this page please turn Javascript on. Leukemia What Is Leukemia? Leukemia is a cancer of the blood cells. ... diagnosed with leukemia are over 50 years old. Leukemia Starts in Bone Marrow Click for more information ...

  4. MicroRNA-181a enhances the chemotherapeutic sensitivity of chronic myeloid leukemia to imatinib

    PubMed Central

    WANG, GUANGYU; ZHAO, RAN; ZHAO, XINGSHENG; CHEN, XI; WANG, DONG; JIN, YINJI; LIU, XI; ZHAO, CI; ZHU, YUANYUAN; REN, CHENGCHENG; LI, MINGHUI; JIN, XIAOMING; ZHANG, FENGMIN; ZHONG, ZHAOHUA; WANG, TIANZHEN; LI, XIAOBO

    2015-01-01

    MicroRNA-181 (miR-181) has been recently demonstrated to participate in the differentiation and development of immune cells, including natural killer cells and B and T lymphocytes, and myeloid linages, including erythroid and megakaryocytic cells. The aberrant expression of miR-181, particularly low expression levels, has been observed in a number of leukemia types, including B-cell chronic lymphocytic leukemia and cytogenetically abnormal acute myeloid leukemia. However, the expression and function of miR-181 in chronic myeloid leukemia (CML) remains unknown. In the present study, the aberrant expression of miR-181a was analyzed in a patient with CML and in the CML K562 cell line. In addition, the function and potential mechanisms of miR-181a in K562 cells with regard to their chemotherapeutic sensitivity to imatinib were investigated. The expression levels of miR-181a were significantly reduced in the patient with CML and in the CML K562 cell line. Furthermore, the overexpression of miR-181a in the K562 cells enhanced the chemotherapeutic sensitivity of these cells to imatinib. The potential mechanism mediating these effects may be associated with the capacity of miR-181a to inhibit cell growth and/or to induce cells apoptosis and differentiation in K562 cells. The results of the present study suggested that miR-181a may be a target for the treatment of CML and a useful indicator of the therapeutic sensitivity of CML to imatinib. PMID:26722250

  5. Effects of lentivirus mediated STAT3 silencing on human chronic myeloid leukemia cells and leukemia mice

    PubMed Central

    Jia, Xinyan; Yang, Wenzhong; Han, Jia; Xiong, Hong

    2014-01-01

    Objective: To investigate the effects of lentivirus mediated STAT3 silencing on human chronic myeloid leukemia cells (K562) and the growth of chronic myeloid leukemia mice as well as to explore the potential mechanisms. Methods: Unbtreated K562 cells (CON), blank lentivirus transfected K562 cells (NC) and K562 cells expressing STAT3 siRNA (STAT3 siRNA) were injected into SCID mice to establish the chronic myeloid leukemia model in mice. The growth, peripheral white blood cell count and spleen index in these mice were determined. Results: In vitro experiment showed, when compared with control group, the interference efficiency of STAT3 expression was as high as 97.5% in K562 cells. Western blot assay revealed that the expression of c-Myc, Bcl-xL and Cyclin D1 reduced by 17.01%, 7.3% and 6.82%, respectively, showing significant difference when compared with control group (P < 0.01). These findings were consistent with those from fluorescence quantitative PCR. In vivo experiment showed the body weight of mice reduced progressively and the peripheral white blood cell count increased gradually in control group, accompanied by dragging hind limbs and progressive enlargement of the spleen. The body weight remained unchanged, peripheral white blood cell count reduced gradually and the spleen did not enlarge in mice treated with STAT3 siRNA expressing cells. Conclusion: Lentivirus mediated STAT3 silencing may inhibit the expression of its downstream genes (c-Myc, Bcl-xL and Cyclin D1) related to cell proliferation, apoptosis and cycle to suppress the malignant biological behaviors, and STAT3 silencing also inhibit the leukemogenic potency of K562 cells in mice. PMID:25550912

  6. Neural cell adhesion molecule (CD56)-positive acute myelogenous leukemia and myelodysplastic and myeloproliferative syndromes.

    PubMed

    Mann, K P; DeCastro, C M; Liu, J; Moore, J O; Bigner, S H; Traweek, S T

    1997-06-01

    The CD56 antigen is normally expressed on natural-killer cells but has additionally been shown to be present on a variety of hematologic malignancies, including a subset of acute myelogenous leukemia (AML). There is disagreement, however, about its prognostic significance and its association with specific cytogenetic abnormalities. All clinical samples from June 1994, through September 1995, with increased myeloblasts were analyzed by multiparameter flow cytometry for anomalous expression of CD56. Patients with CD56+ blast cells were selected, and morphologic review was performed. Clinical information was obtained, and cytogenetic data were reviewed. Southern blot analysis to detect rearrangement of the mixed lineage leukemia (MLL) gene was performed when possible. The samples from 23 of 114 patients studied demonstrated anomalous expression of CD56 on myeloblasts, including patients with AML, myelodysplastic syndromes (MDS), and chronic myelogenous leukemia in blast crisis. The samples from 10 of 15 patients with CD56+ AML demonstrated at least partial monocytic differentiation. Dysplastic features were displayed in the samples of 12 patients. Correlation with specific cytogenetic abnormalities was not found. The MLL gene was rearranged in five of 18 patients. Seventeen patients have died, with a median survival of 4.6 months for patients with AML. Three have sustained a complete remission. One has findings of high-grade myelodysplastic syndrome. Two were unavailable for follow-up. Expression of CD56 was found in 20% of patients with increased myeloblasts, including patients with high-grade MDS, chronic myelogenous leukemia in blast crisis, and AML. This phenotype was associated with dysplasia, monocytic differentiation, and rearrangement of the MLL gene. PMID:9169661

  7. Granulocytic Sarcoma in MLL-Positive Infant Acute Myelogenous Leukemia

    PubMed Central

    Park, Kyoung Un; Lee, Dong Soon; Lee, Hye Seung; Kim, Chong Jai; Cho, Han Ik

    2001-01-01

    Granulocytic sarcoma is considered to be rare and its frequent occurrence is associated with specific genetic changes such as t(8;21). To investigate an association between MLL (mixed lineage leukemia or myeloid-lymphoid leukemia) rearrangement and granulocytic sarcoma, we applied fluorescence in situ hybridization for detection of the 11q23/MLL rearrangements on the bone marrow cells of 40 patients with childhood acute myelogenous leukemia (AML). Nine (22.5%) of 40 patients exhibited MLL rearrangements. Three (33.3%) of these nine patients had granulocytic sarcoma and were younger than 12 months of age. Of these three patients one presented as granulocytic sarcoma of both testes with cerebrospinal fluid involvement, the second case presented in the form of an abdominal mass, and the third as a periorbital granulocytic sarcoma. On the other hand, no granulocytic sarcomas were found among MLL-negative patients. It is likely that MLL-positive infant AML may predispose granulocytic sarcoma. Regarding the findings of our study and those of other reports, we would guess that the incidence of granulocytic sarcoma in pediatric MLL-positive AML may be equal to or greater than the 18 to 24% described in AML with t(8;21). Further investigations designed to identify 11q23/MLL abnormalities of leukemic cells or extramedullary tumor may be helpful for the precise diagnosis of granulocytic sarcoma. PMID:11733351

  8. Physiologically based toxicokinetic modeling of secondary acute myelolytic leukemia.

    PubMed

    Mukhopadhyay, Manas Kumar; Nath, Debjani

    2014-01-01

    Benzene, designated as environmental and occupational carcinogen and hematotoxin, has been associated with secondary leukemia. To develop a toxicokinetic model of AML, benzene can be used as leukemogenic agent. The aim of the present study was to optimize the dose, period and time of cumulative benzene exposure of Swiss Albino mice and to analyze survival rate; alteration in cell cycle regulation and other clinical manifestations in mice exposed to benzene vapour at a dose 300 ppm × 6 h/day × 5 days/week for 2 weeks, i.e., 9000(a)ppm cumulative dose. Analyzing physiological parameters like plasma enzyme profile, complete hematology (Hb %, RBC indices and WBC differentials), hematopoietic cells morphology, expression of cell cycle regulatory proteins, tissue histology and analysis of DNA fragmentation, optimum conditions were established. Down regulation of p53 and p21 and up regulation of CDK2, CDK4, CDK6, cyclin D1 and E in this exposed group were marked as the optimum conditions of cellular deregulation for the development of secondary AML. Elevated level of Plasma AST/ALT with corresponding changes in liver histology showing extended sinusoids within the hepatocytic cell cords in optimally exposed animals also confirmed the toxicokinetic relation of benzene with leukemia. It can be concluded from the above observations that the 9000(a)ppm exposed animals can serve as the induced laboratory model of secondary acute myeloid leukemia. PMID:24440606

  9. Novel drugs for older patients with acute myeloid leukemia.

    PubMed

    Montalban-Bravo, G; Garcia-Manero, G

    2015-04-01

    Acute myeloid leukemia (AML) is the second most common form of leukemia and the most frequent cause of leukemia-related deaths in the United States. The incidence of AML increases with advancing age and the prognosis for patients with AML worsens substantially with increasing age. Many older patients are ineligible for intensive treatment and require other therapeutic approaches to optimize clinical outcome. To address this treatment gap, novel agents with varying mechanisms of action targeting different cellular processes are currently in development. Hypomethylating agents (azacitidine, decitabine, SGI-110), histone deacetylase inhibitors (vorinostat, pracinostat, panobinostat), FMS-like tyrosine kinase receptor-3 inhibitors (quizartinib, sorafenib, midostaurin, crenolanib), cytotoxic agents (clofarabine, sapacitabine, vosaroxin), cell cycle inhibitors (barasertib, volasertib, rigosertib) and monoclonal antibodies (gentuzumab ozogamicin, lintuzumab-Ac225) represent some of these promising new treatments. This review provides an overview of novel agents that have either completed or are currently in ongoing phase III trials in patients with previously untreated AML for whom intensive treatment is not an option. Other potential drugs in earlier stages of development will also be addressed in this review. PMID:25142817

  10. The European LeukemiaNet: achievements and perspectives

    PubMed Central

    Hehlmann, Rüdiger; Grimwade, David; Simonsson, Bengt; Apperley, Jane; Baccarani, Michele; Barbui, Tiziano; Barosi, Giovanni; Bassan, Renato; Béné, Marie C.; Berger, Ute; Büchner, Thomas; Burnett, Alan; Cross, Nicolas C.P.; de Witte, Theo J.M.; Döhner, Hartmut; Dombret, Hervé; Einsele, Hermann; Engelich, Georg; Foà, Robin; Fonatsch, Christa; Gökbuget, Nicola; Gluckman, Elaine; Gratwohl, Alois; Guilhot, Francois; Haferlach, Claudia; Haferlach, Thorsten; Hallek, Michael; Hasford, Jörg; Hochhaus, Andreas; Hoelzer, Dieter; Kiladjian, Jean-Jaques; Labar, Boris; Ljungman, Per; Mansmann, Ulrich; Niederwieser, Dietger; Ossenkoppele, Gert; Ribera, José M.; Rieder, Harald; Serve, Hubert; Schrotz-King, Petra; Sanz, Miguel A.; Saußele, Susanne

    2011-01-01

    The only way to cure leukemia is by cooperative research. To optimize research, the European LeukemiaNet integrates 105 national leukemia trial groups and networks, 105 interdisciplinary partner groups and about 1,000 leukemia specialists from 175 institutions. They care for tens of thousands of leukemia patients in 33 countries across Europe. Their ultimate goal is to cure leukemia. Since its inception in 2002, the European LeukemiaNet has steadily expanded and has unified leukemia research across Europe. The European LeukemiaNet grew from two major roots: 1) the German Competence Network on Acute and Chronic Leukemias; and 2) the collaboration of European Investigators on Chronic Myeloid Leukemia. The European LeukemiaNet has improved leukemia research and management across Europe. Its concept has led to funding by the European Commission as a network of excellence. Other sources (European Science Foundation; European LeukemiaNet-Foundation) will take over when the support of the European Commission ends. PMID:21048032

  11. Identification and targeting leukemia stem cells: The path to the cure for acute myeloid leukemia.

    PubMed

    Zhou, Jianbiao; Chng, Wee-Joo

    2014-09-26

    Accumulating evidence support the notion that acute myeloid leukemia (AML) is organized in a hierarchical system, originating from a special proportion of leukemia stem cells (LSC). Similar to their normal counterpart, hematopoietic stem cells (HSC), LSC possess self-renewal capacity and are responsible for the continued growth and proliferation of the bulk of leukemia cells in the blood and bone marrow. It is believed that LSC are also the root cause for the treatment failure and relapse of AML because LSC are often resistant to chemotherapy. In the past decade, we have made significant advancement in identification and understanding the molecular biology of LSC, but it remains a daunting task to specifically targeting LSC, while sparing normal HSC. In this review, we will first provide a historical overview of the discovery of LSC, followed by a summary of identification and separation of LSC by either cell surface markers or functional assays. Next, the review will focus on the current, various strategies for eradicating LSC. Finally, we will highlight future directions and challenges ahead of our ultimate goal for the cure of AML by targeting LSC. PMID:25258669

  12. Cholescintigraphy in acute and chronic cholecystitis

    SciTech Connect

    Freitas, J.E.

    1982-01-01

    Since the introduction of /sup 99m/Tc-labeled cholescintigraphic agents in the mid-1970s, there has been extensive investigation of their role in the evaluation of biliary tract disorders. These agents accurately assess the patency of the cystic and common bile ducts, and to date, their greatest impact has been on the diagnostic evaluation of suspected acute cholecystitis. This article reviews the use of /sup 99m/Tc-iminodiacetic acid (IDA) derivatives in acute and chronic cholecystitis. Since acute cholecystitis is characterized by cystic duct obstruction, failure of the gallbladder to visualize following /sup 99m/Tc-IDA administration is indicative of cystic duct obstruction and acute cholecystitis. Using this approach, cholescintigraphy has been shown to be highly sensitive, specific, and efficacious in the diagnosis of acute cholecystitis. Cholescintigraphy is now the procedure of choice for the detection of acute cholecystitis. Unlike its successful applications in acute cholecystitis, cholescintigraphy appears of limited value in chronic cholecystitis. Certain circumstances where cholescintigraphy is of value in chronic cholecystitis are discussed. Whether or not cholescintigraphy may play a greater role in the future in elucidating the pathogenesis of chronic cholecystitis by assessment of biliary kinetics remains unanswered.

  13. Nanoparticle targeted therapy against childhood acute lymphoblastic leukemia

    NASA Astrophysics Data System (ADS)

    Satake, Noriko; Lee, Joyce; Xiao, Kai; Luo, Juntao; Sarangi, Susmita; Chang, Astra; McLaughlin, Bridget; Zhou, Ping; Kenney, Elaina; Kraynov, Liliya; Arnott, Sarah; McGee, Jeannine; Nolta, Jan; Lam, Kit

    2011-06-01

    The goal of our project is to develop a unique ligand-conjugated nanoparticle (NP) therapy against childhood acute lymphoblastic leukemia (ALL). LLP2A, discovered by Dr. Kit Lam, is a high-affinity and high-specificity peptidomimetic ligand against an activated α4β1 integrin. Our study using 11 fresh primary ALL samples (10 precursor B ALL and 1 T ALL) showed that childhood ALL cells expressed activated α4β1 integrin and bound to LLP2A. Normal hematopoietic cells such as activated lymphocytes and monocytes expressed activated α4β1 integrin; however, normal hematopoietic stem cells showed low expression of α4β1 integrin. Therefore, we believe that LLP2A can be used as a targeted therapy for childhood ALL. The Lam lab has developed novel telodendrimer-based nanoparticles (NPs) which can carry drugs efficiently. We have also developed a human leukemia mouse model using immunodeficient NOD/SCID/IL2Rγ null mice engrafted with primary childhood ALL cells from our patients. LLP2A-conjugated NPs will be evaluated both in vitro and in vivo using primary leukemia cells and this mouse model. NPs will be loaded first with DiD near infra-red dye, and then with the chemotherapeutic agents daunorubicin or vincristine. Both drugs are mainstays of current chemotherapy for childhood ALL. Targeting properties of LLP2A-conjugated NPs will be evaluated by fluorescent microscopy, flow cytometry, MTS assay, and mouse survival after treatment. We expect that LLP2A-conjugated NPs will be preferentially delivered and endocytosed to leukemia cells as an effective targeted therapy.

  14. Emerging role for microRNAs in acute promyelocytic leukemia.

    PubMed

    Nervi, C; Fazi, F; Rosa, A; Fatica, A; Bozzoni, I

    2007-01-01

    Hematopoiesis is highly controlled by lineage-specific transcription factors that, by interacting with specific DNA sequences, directly activate or repress specific gene expression. These transcription factors have been found mutated or altered by chromosomal translocations associated with leukemias, indicating their role in the pathogenesis of these malignancies. The post-genomic era, however, has shown that transcription factors are not the only key regulators of gene expression. Epigenetic mechanisms such as DNA methylation, posttranslational modifications of histones, remodeling of nucleosomes, and expression of small regulatory RNAs all contribute to the regulation of gene expression and determination of cell and tissue specificity. Deregulation ofthese epigenetic mechanisms cooperates with genetic alterations to the establishment and progression of tumors. MicroRNAs (miRNAs) are negative regulators of the expression of genes involved in development, differentiation, proliferation, and apoptosis. Their expression appears to be tissue-specific and highly regulated according to the cell's developmental lineage and stage. Interestingly, miRNAs expressed in hematopoietic cells have been found mutated or altered by chromosomal translocations associated with leukemias. The expression levels of a specific miR-223 correlate with the differentiation fate of myeloid precursors. The activation of both pathways of transcriptional regulation by the myeloid lineage-specific transcription factor C/EBPalpha (CCAAT/enhancer-binding protein-alpha), and posttranscriptional regulation by miR-223 appears essential for granulocytic differentiation and clinical response of acute promyelocytic leukemia (APL) blasts to all-trans retinoic acid (ATRA). Together, this evidence underlies transcription factors, chromatin remodeling, and miRNAs as ultimate determinants for the correct organization of cell type-specific gene arrays and hematopoietic differentiation, therefore providing new

  15. Philadelphia chromosome-positive leukemia stem cells in acute lymphoblastic leukemia and tyrosine kinase inhibitor therapy

    PubMed Central

    Thomas, Xavier

    2012-01-01

    Leukemia stem cells (LSCs), which constitute a minority of the tumor bulk, are functionally defined on the basis of their ability to transfer leukemia into an immunodeficient recipient animal. The presence of LSCs has been demonstrated in acute lymphoblastic leukemia (ALL), of which ALL with Philadelphia chromosome-positive (Ph+). The use of imatinib, a tyrosine kinase inhibitor (TKI), as part of front-line treatment and in combination with cytotoxic agents, has greatly improved the proportions of complete response and molecular remission and the overall outcome in adults with newly diagnosed Ph+ ALL. New challenges have emerged with respect to induction of resistance to imatinib via Abelson tyrosine kinase mutations. An important recent addition to the arsenal against Ph+ leukemias in general was the development of novel TKIs, such as nilotinib and dasatinib. However, in vitro experiments have suggested that TKIs have an antiproliferative but not an antiapoptotic or cytotoxic effect on the most primitive ALL stem cells. None of the TKIs in clinical use target the LSC. Second generation TKI dasatinib has been shown to have a more profound effect on the stem cell compartment but the drug was still unable to kill the most primitive LSCs. Allogeneic stem cell transplantation (SCT) remains the only curative treatment available for these patients. Several mechanisms were proposed to explain the resistance of LSCs to TKIs in addition to mutations. Hence, TKIs may be used as a bridge to SCT rather than monotherapy or combination with standard chemotherapy. Better understanding the biology of Ph+ ALL will open new avenues for effective management. In this review, we highlight recent findings relating to the question of LSCs in Ph+ ALL. PMID:22993661

  16. Whole Exome Sequencing of Chronic Myeloid Leukemia Patients

    PubMed Central

    SABRI, Shaghayegh; KEYHANI, Manouchehr; AKBARI, Mohammad Taghi

    2016-01-01

    Background: Previous studies have shown that leukemogenic chromosomal translocations, including fusions between Break point Cluster Region (BCR) and Abelson (ABL) are present in the peripheral blood of healthy individuals. The aim of this study was to gain insights into the genetic alterations other than BCR-Abl translocation in molecular level, which cause chronic myeloid leukemia (CML). Methods: We performed whole-exome sequencing on four cases representative of BCR-ABL positive CML in chronic phase of the disease. Results: We did not identify any pathogenic mutation in all known genes involved in CML or other cancers in our subjects. Nevertheless, we identified polymorphisms in related genes. Conclusion: It is the first report of exome sequencing in Philadelphia chromosome positive CML patients. We did not identify any pathogenic mutation in known cancer genes in our patients who can be due to CML pathogenesis or technical limitations. PMID:27141497

  17. Management of Advanced-Phase Chronic Myelogenous Leukemia.

    PubMed

    Radich, Jerald P

    2016-05-01

    Chronic myelogenous leukemia represents the poster child of successful precision medicine in cancer, with amazing survival results achieved with targeted tyrosine kinase inhibitors (TKIs) in many patients with chronic-phase disease. Unfortunately, however, this good news has not extended to patients in blast crisis, for whom survival has not clearly been improved with TKIs. During his presentation at the NCCN 21st Annual Conference, Jerald P. Radich, MD, briefly explored the biology behind advanced-stage disease and several of the molecular findings in disease progression. He also reviewed some of the therapeutic options in advanced disease, emphasizing that transplantation, although fraught with some difficulties, offers the best long-term prognosis for patients in blast crisis. PMID:27226510

  18. How I treat newly diagnosed chronic myeloid leukemia in 2015.

    PubMed

    Gambacorti-Passerini, Carlo; Piazza, Rocco

    2015-02-01

    The initial treatment for chronic myeloid leukemia in chronic phase (CP-CML) represents a complex process, which includes a prompt and precise diagnosis, the choice among three available tyrosine kinase inhibitors (TKIs), and the initial management of care for these patients, which will protract over a very long period of time. This manuscript summarizes different data on activity, side effects, and supportive measures available for each TKI, the need for particular care in the logistical organization of CML management, the scenario which will be opened by the future availability of generic imatinib. The opinion of the authors is that imatinib remains the first-line treatment for CP-CML; this strategy, accompanied by intensive monitoring and possible dose modification/drug switch after the initial 3-12 months of treatment presently assures a normal life expectancy to the population of newly diagnosed patients with CP-CML. PMID:25370814

  19. Leukemia-induced phenotypic and functional defects in natural killer cells predict failure to achieve remission in acute myeloid leukemia.

    PubMed

    Stringaris, Kate; Sekine, Takuya; Khoder, Ahmad; Alsuliman, Abdullah; Razzaghi, Bonnie; Sargeant, Ruhena; Pavlu, Jiri; Brisley, Gill; de Lavallade, Hugues; Sarvaria, Anushruthi; Marin, David; Mielke, Stephan; Apperley, Jane F; Shpall, Elizabeth J; Barrett, A John; Rezvani, Katayoun

    2014-05-01

    The majority of patients with acute myeloid leukemia will relapse, and older patients often fail to achieve remission with induction chemotherapy. We explored the possibility that leukemic suppression of innate immunity might contribute to treatment failure. Natural killer cell phenotype and function was measured in 32 consecutive acute myeloid leukemia patients at presentation, including 12 achieving complete remission. Compared to 15 healthy age-matched controls, natural killer cells from acute myeloid leukemia patients were abnormal at presentation, with downregulation of the activating receptor NKp46 (P=0.007) and upregulation of the inhibitory receptor NKG2A (P=0.04). Natural killer cells from acute myeloid leukemia patients had impaired effector function against autologous blasts and K562 targets, with significantly reduced CD107a degranulation, TNF-α and IFN-γ production. Failure to achieve remission was associated with NKG2A overexpression and reduced TNF-α production. These phenotypic and functional abnormalities were partially restored in the 12 patients achieving remission. In vitro co-incubation of acute myeloid leukemia blasts with natural killer cells from healthy donors induced significant impairment in natural killer cell TNF-α and IFN-γ production (P=0.02 and P=0.01, respectively) against K562 targets and a trend to reduced CD107a degranulation (P=0.07). Under transwell conditions, the inhibitory effect of AML blasts on NK cytotoxicity and effector function was still present, and this inhibitory effect was primarily mediated by IL-10. These results suggest that acute myeloid leukemia blasts induce long-lasting changes in natural killer cells, impairing their effector function and reducing the competence of the innate immune system, favoring leukemia survival. PMID:24488563

  20. Leukemia-induced phenotypic and functional defects in natural killer cells predict failure to achieve remission in acute myeloid leukemia

    PubMed Central

    Stringaris, Kate; Sekine, Takuya; Khoder, Ahmad; Alsuliman, Abdullah; Razzaghi, Bonnie; Sargeant, Ruhena; Pavlu, Jiri; Brisley, Gill; de Lavallade, Hugues; Sarvaria, Anushruthi; Marin, David; Mielke, Stephan; Apperley, Jane F.; Shpall, Elizabeth J.; Barrett, A. John; Rezvani, Katayoun

    2014-01-01

    The majority of patients with acute myeloid leukemia will relapse, and older patients often fail to achieve remission with induction chemotherapy. We explored the possibility that leukemic suppression of innate immunity might contribute to treatment failure. Natural killer cell phenotype and function was measured in 32 consecutive acute myeloid leukemia patients at presentation, including 12 achieving complete remission. Compared to 15 healthy age-matched controls, natural killer cells from acute myeloid leukemia patients were abnormal at presentation, with downregulation of the activating receptor NKp46 (P=0.007) and upregulation of the inhibitory receptor NKG2A (P=0.04). Natural killer cells from acute myeloid leukemia patients had impaired effector function against autologous blasts and K562 targets, with significantly reduced CD107a degranulation, TNF-α and IFN-γ production. Failure to achieve remission was associated with NKG2A overexpression and reduced TNF-α production. These phenotypic and functional abnormalities were partially restored in the 12 patients achieving remission. In vitro co-incubation of acute myeloid leukemia blasts with natural killer cells from healthy donors induced significant impairment in natural killer cell TNF-α and IFN-γ production (P=0.02 and P=0.01, respectively) against K562 targets and a trend to reduced CD107a degranulation (P=0.07). Under transwell conditions, the inhibitory effect of AML blasts on NK cytotoxicity and effector function was still present, and this inhibitory effect was primarily mediated by IL-10. These results suggest that acute myeloid leukemia blasts induce long-lasting changes in natural killer cells, impairing their effector function and reducing the competence of the innate immune system, favoring leukemia survival. PMID:24488563