Science.gov

Sample records for acute leukemia chronic

  1. Nilotinib and Imatinib Mesylate After Donor Stem Cell Transplant in Treating Patients With Acute Lymphoblastic Leukemia or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2014-12-09

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Chronic Phase Chronic Myelogenous Leukemia; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Childhood Precursor Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Relapsing Chronic Myelogenous Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  2. Flavopiridol in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2013-06-03

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia

  3. BMS-214662 in Treating Patients With Acute Leukemia, Myelodysplastic Syndrome, or Chronic Myeloid Leukemia

    ClinicalTrials.gov

    2013-01-22

    Adult Acute Promyelocytic Leukemia (M3); Blastic Phase Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia

  4. Flavopiridol and Vorinostat in Treating Patients With Relapsed or Refractory Acute Leukemia or Chronic Myelogenous Leukemia or Refractory Anemia

    ClinicalTrials.gov

    2013-04-01

    Blastic Phase Chronic Myelogenous Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Relapsing Chronic Myelogenous Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  5. Tanespimycin and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Chronic Myelogenous Leukemia, Chronic Myelomonocytic Leukemia, or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2013-09-27

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  6. SB-715992 in Treating Patients With Acute Leukemia, Chronic Myelogenous Leukemia, or Advanced Myelodysplastic Syndromes

    ClinicalTrials.gov

    2013-01-10

    Acute Undifferentiated Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  7. MS-275 and Azacitidine in Treating Patients With Myelodysplastic Syndromes, Chronic Myelomonocytic Leukemia, or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-20

    Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndrome; Leukemia; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  8. Rebeccamycin Analog in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Myelodysplastic Syndrome, Acute Lymphoblastic Leukemia, or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2013-01-22

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  9. Vaccine Therapy Plus Immune Adjuvant in Treating Patients With Chronic Myeloid Leukemia, Acute Myeloid Leukemia, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2013-01-04

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Myeloid Leukemia in Remission; Chronic Phase Chronic Myelogenous Leukemia; Previously Treated Myelodysplastic Syndromes; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia

  10. CCI-779 in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Myelodysplastic Syndromes, or Chronic Myelogenous Leukemia in Blastic Phase

    ClinicalTrials.gov

    2013-01-22

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Myelodysplastic Syndromes

  11. PS-341 in Treating Patients With Refractory or Relapsed Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Chronic Myeloid Leukemia in Blast Phase, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2013-01-22

    Adult Acute Promyelocytic Leukemia (M3); Blastic Phase Chronic Myelogenous Leukemia; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia

  12. Biological Therapy in Treating Patients With Advanced Myelodysplastic Syndrome, Acute or Chronic Myeloid Leukemia, or Acute Lymphoblastic Leukemia Who Are Undergoing Stem Cell Transplantation

    ClinicalTrials.gov

    2013-07-03

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; Essential Thrombocythemia; Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  13. Nilotinib and Combination Chemotherapy in Treating Patients With Newly Diagnosed Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia or Blastic Phase Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2015-10-29

    B-cell Adult Acute Lymphoblastic Leukemia; Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia

  14. Fludarabine Phosphate and Total-Body Irradiation Followed by Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Acute Lymphoblastic Leukemia or Chronic Myelogenous Leukemia That Has Responded to Treatment With Imatinib Mesylate, Dasatinib, or Nilotinib

    ClinicalTrials.gov

    2016-07-18

    Adult Acute Lymphoblastic Leukemia in Remission; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Chronic Phase Chronic Myelogenous Leukemia; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Childhood Precursor Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Relapsing Chronic Myelogenous Leukemia

  15. Monoclonal Antibody Therapy in Treating Patients With Chronic Lymphocytic Leukemia, Lymphocytic Lymphoma, Acute Lymphoblastic Leukemia, or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-06-03

    Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Splenic Marginal Zone Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma

  16. Sorafenib in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2013-01-08

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia

  17. GTI-2040 in Treating Patients With Relapsed, Refractory, or High-Risk Acute Leukemia, High-Grade Myelodysplastic Syndromes, or Refractory or Blastic Phase Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2015-12-03

    Acute Undifferentiated Leukemia; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  18. Donor Umbilical Cord Blood Transplant With or Without Ex-vivo Expanded Cord Blood Progenitor Cells in Treating Patients With Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Chronic Myelogenous Leukemia, or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2016-09-09

    Acute Biphenotypic Leukemia; Acute Lymphoblastic Leukemia in Remission; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia in Remission; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Mixed Phenotype Acute Leukemia; Myelodysplastic Syndrome; Pancytopenia; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Secondary Acute Myeloid Leukemia

  19. Azacitidine With or Without Entinostat in Treating Patients With Myelodysplastic Syndromes, Chronic Myelomonocytic Leukemia, or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-03-16

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  20. Tipifarnib and Bortezomib in Treating Patients With Acute Leukemia or Chronic Myelogenous Leukemia in Blast Phase

    ClinicalTrials.gov

    2015-04-14

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Blastic Phase; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Disease; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  1. Clofarabine and Melphalan Before Donor Stem Cell Transplant in Treating Patients With Myelodysplasia, Acute Leukemia in Remission, or Chronic Myelomonocytic Leukemia

    ClinicalTrials.gov

    2016-09-16

    Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Previously Treated Myelodysplastic Syndromes; Secondary Acute Myeloid Leukemia in Remission; Chronic Myelomonocytic Leukemia

  2. 7-Hydroxystaurosporine and Perifosine in Treating Patients With Relapsed or Refractory Acute Leukemia, Chronic Myelogenous Leukemia or High Risk Myelodysplastic Syndromes

    ClinicalTrials.gov

    2013-09-27

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; Myelodysplastic/Myeloproliferative Neoplasms; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  3. Acute pediatric leg compartment syndrome in chronic myeloid leukemia.

    PubMed

    Cohen, Eric; Truntzer, Jeremy; Trunzter, Jeremy; Klinge, Steve; Schwartz, Kevin; Schiller, Jonathan

    2014-11-01

    Acute compartment syndrome is an orthopedic surgical emergency and may result in devastating complications in the setting of delayed or missed diagnosis. Compartment syndrome has a variety of causes, including posttraumatic or postoperative swelling, external compression, burns, bleeding disorders, and ischemia-reperfusion injury. Rare cases of pediatric acute compartment syndrome in the setting of acute myeloid leukemia and, even less commonly, chronic myeloid leukemia have been reported. The authors report the first known case of pediatric acute compartment syndrome in a patient without a previously known diagnosis of chronic myeloid leukemia. On initial examination, an 11-year-old boy presented with a 2-week history of progressive left calf pain and swelling after playing soccer. Magnetic resonance imaging scan showed a hematoma in the left superficial posterior compartment. The patient had unrelenting pain, intermittent lateral foot parethesias, and inability to bear weight. Subsequently, he was diagnosed with acute compartment syndrome and underwent fasciotomy and evacuation of a hematoma. Laboratory results showed an abnormal white blood cell count of 440×10(9)/L (normal, 4.4-11×10(9)) and international normalized ratio of 1.3 (normal, 0.8-1.2). Further testing included the BCR-ABL1 fusion gene located on the Philadelphia chromosome, leading to a diagnosis of chronic myeloid leukemia. Monotherapy with imatinib mesylate (Gleevec) was initiated. This report adds another unique case to the growing literature on compartment syndrome in the pediatric population and reinforces the need to consider compartment syndrome, even in unlikely clinical scenarios. PMID:25361367

  4. Acute pediatric leg compartment syndrome in chronic myeloid leukemia.

    PubMed

    Cohen, Eric; Truntzer, Jeremy; Trunzter, Jeremy; Klinge, Steve; Schwartz, Kevin; Schiller, Jonathan

    2014-11-01

    Acute compartment syndrome is an orthopedic surgical emergency and may result in devastating complications in the setting of delayed or missed diagnosis. Compartment syndrome has a variety of causes, including posttraumatic or postoperative swelling, external compression, burns, bleeding disorders, and ischemia-reperfusion injury. Rare cases of pediatric acute compartment syndrome in the setting of acute myeloid leukemia and, even less commonly, chronic myeloid leukemia have been reported. The authors report the first known case of pediatric acute compartment syndrome in a patient without a previously known diagnosis of chronic myeloid leukemia. On initial examination, an 11-year-old boy presented with a 2-week history of progressive left calf pain and swelling after playing soccer. Magnetic resonance imaging scan showed a hematoma in the left superficial posterior compartment. The patient had unrelenting pain, intermittent lateral foot parethesias, and inability to bear weight. Subsequently, he was diagnosed with acute compartment syndrome and underwent fasciotomy and evacuation of a hematoma. Laboratory results showed an abnormal white blood cell count of 440×10(9)/L (normal, 4.4-11×10(9)) and international normalized ratio of 1.3 (normal, 0.8-1.2). Further testing included the BCR-ABL1 fusion gene located on the Philadelphia chromosome, leading to a diagnosis of chronic myeloid leukemia. Monotherapy with imatinib mesylate (Gleevec) was initiated. This report adds another unique case to the growing literature on compartment syndrome in the pediatric population and reinforces the need to consider compartment syndrome, even in unlikely clinical scenarios.

  5. Decitabine and Valproic Acid in Treating Patients With Refractory or Relapsed Acute Myeloid Leukemia or Previously Treated Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2013-09-27

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Untreated Adult Acute Myeloid Leukemia

  6. Phase I Dose-Escalation Trial of Clofarabine Followed by Escalating Doses of Fractionated Cyclophosphamide in Children With Relapsed or Refractory Acute Leukemias

    ClinicalTrials.gov

    2010-09-21

    Myelodysplastic Syndrome; Acute Myeloid Leukemia; Myeloproliferative Disorders; Acute Lymphocytic Leukemia; Acute Promyelocytic Leukemia; Acute Leukemia; Chronic Myelogenous Leukemia; Myelofibrosis; Chronic Myelomonocytic Leukemia; Juvenile Myelomonocytic Leukemia

  7. Targeted Therapy in Treating Patients With Relapsed or Refractory Acute Lymphoblastic Leukemia or Acute Myelogenous Leukemia

    ClinicalTrials.gov

    2016-07-28

    Chronic Myelomonocytic Leukemia; Myelodysplastic Syndrome; Recurrent Acute Myeloid Leukemia With Myelodysplasia-Related Changes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Adult Acute Lymphoblastic Leukemia

  8. Dasatinib in Treating Young Patients With Recurrent or Refractory Solid Tumors or Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia or Chronic Myelogenous Leukemia That Did Not Respond to Imatinib Mesylate

    ClinicalTrials.gov

    2013-02-04

    Accelerated Phase Chronic Myelogenous Leukemia; Blastic Phase Chronic Myelogenous Leukemia; Childhood Chronic Myelogenous Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Meningeal Chronic Myelogenous Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Relapsing Chronic Myelogenous Leukemia; Unspecified Childhood Solid Tumor, Protocol Specific

  9. Vorinostat and Decitabine in Treating Patients With Advanced Solid Tumors or Relapsed or Refractory Non-Hodgkin's Lymphoma, Acute Myeloid Leukemia, Acute Lymphocytic Leukemia, or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2014-08-26

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Secondary Acute Myeloid Leukemia; Splenic Marginal Zone Lymphoma; Stage III Adult Burkitt Lymphoma; Stage III Adult Diffuse Large Cell Lymphoma; Stage III Adult Diffuse Mixed Cell Lymphoma; Stage III Adult Diffuse Small Cleaved Cell Lymphoma; Stage III Adult Immunoblastic Large Cell Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Grade 1 Follicular Lymphoma; Stage III Grade 2 Follicular Lymphoma; Stage III Grade 3 Follicular Lymphoma; Stage III Mantle Cell Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Adult Burkitt Lymphoma; Stage IV Adult Diffuse Large Cell Lymphoma; Stage IV Adult Diffuse Mixed Cell Lymphoma; Stage IV Adult Diffuse Small Cleaved Cell Lymphoma; Stage IV Adult Immunoblastic Large Cell Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Grade 1 Follicular Lymphoma; Stage IV Grade 2 Follicular Lymphoma; Stage IV Grade 3 Follicular Lymphoma; Stage IV Mantle Cell Lymphoma; Stage IV Marginal Zone Lymphoma

  10. Outcomes for patients with chronic lymphocytic leukemia and acute leukemia or myelodysplastic syndrome.

    PubMed

    Tambaro, F P; Garcia-Manero, G; O'Brien, S M; Faderl, S H; Ferrajoli, A; Burger, J A; Pierce, S; Wang, X; Do, K-A; Kantarjian, H M; Keating, M J; Wierda, W G

    2016-02-01

    Acute leukemia (AL) and myelodysplastic syndrome (MDS) are uncommon in chronic lymphocytic leukemia (CLL). We retrospectively identified 95 patients with CLL, also diagnosed with AL (n=38) or MDS (n=57), either concurrently (n=5) or subsequent (n=90) to CLL diagnosis and report their outcomes. Median number of CLL treatments prior to AL and MDS was 2 (0-9) and 1 (0-8), respectively; the most common regimen was purine analog combined with alkylating agent±CD20 monoclonal antibody. Twelve cases had no prior CLL treatment. Among 38 cases with AL, 33 had acute myelogenous leukemia (AML), 3 had acute lymphoid leukemia (ALL; 1 Philadelphia chromosome positive), 1 had biphenotypic and 1 had extramedullary (bladder) AML. Unfavorable AML karyotype was noted in 26, and intermediate risk in 7 patients. There was no association between survival from AL and number of prior CLL regimens or karyotype. Expression of CD7 on blasts was associated with shorter survival. Among MDS cases, all International Prognostic Scoring System (IPSS) were represented; karyotype was unfavorable in 36, intermediate in 6 and favorable in 12 patients; 10 experienced transformation to AML. Shorter survival from MDS correlated with higher risk IPSS, poor-risk karyotype and increased number of prior CLL treatments. Overall, outcomes for patients with CLL subsequently diagnosed with AL or MDS were very poor; AL/MDS occurred without prior CLL treatment. Effective therapies for these patients are desperately needed.

  11. Laboratory-Treated T Cells in Treating Patients With High-Risk Relapsed Acute Myeloid Leukemia, Myelodysplastic Syndrome, or Chronic Myelogenous Leukemia Previously Treated With Donor Stem Cell Transplant

    ClinicalTrials.gov

    2016-08-08

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Myelodysplastic Syndrome; Childhood Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Secondary Acute Myeloid Leukemia; Therapy-Related Acute Myeloid Leukemia

  12. Sorafenib in Treating Patients With Refractory or Relapsed Acute Leukemia, Myelodysplastic Syndromes, or Blastic Phase Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2015-04-27

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Blastic Phase; de Novo Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome

  13. Laboratory Treated T Cells in Treating Patients With Relapsed or Refractory Chronic Lymphocytic Leukemia, Non-Hodgkin Lymphoma, or Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-08-16

    Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Chronic Lymphocytic Leukemia; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Non-Hodgkin Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Diffuse Large B-Cell Lymphoma; Refractory Mantle Cell Lymphoma; Refractory Non-Hodgkin Lymphoma; Refractory Small Lymphocytic Lymphoma

  14. Drugs under preclinical and clinical study for treatment of acute and chronic lymphoblastic leukemia

    PubMed Central

    Jacob, Joe Antony; Salmani, Jumah Masoud Mohammad; Chen, Baoan

    2016-01-01

    Targeted therapy has modernized the treatment of both chronic and acute lymphoblastic leukemia. The introduction of monoclonal antibodies and combinational drugs has increased the survival rate of patients. Preclinical studies with various agents have resulted in positive outputs with Phase III trial drugs and monoclonal antibodies entering clinical trials. Most of the monoclonal antibodies target the CD20 and CD22 receptors. This has led to the approval of a few of these drugs by the US Food and Drug Administration. This review focuses on the drugs under preclinical and clinical study in the ongoing efforts for treatment of acute and chronic lymphoblastic leukemia. PMID:27382259

  15. Diagnosis of chronic myeloid and acute lymphocytic leukemias by detection of leukemia-specific mRNA sequences amplified in vitro.

    PubMed Central

    Kawasaki, E S; Clark, S S; Coyne, M Y; Smith, S D; Champlin, R; Witte, O N; McCormick, F P

    1988-01-01

    The Philadelphia chromosome is present in more than 95% of chronic myeloid leukemia patients and 13% of acute lymphocytic leukemia patients. The Philadelphia translocation, t(9;22), fuses the BCR and ABL genes resulting in the expression of leukemia-specific, chimeric BCR-ABL messenger RNAs. To facilitate diagnosis of these leukemias, we have developed a method of amplifying and detecting only the unique mRNA sequences, using an extension of the polymerase chain reaction technique. Diagnosis of chronic myeloid and acute lymphocytic leukemias by this procedure is rapid, much more sensitive than existing protocols, and independent of the presence or absence of an identifiable Philadelphia chromosome. Images PMID:3165197

  16. [Transformation of secondary myelodysplastic syndrome to atypical chronic myeloid leukemia in a female patient with acute myeloid leukemia].

    PubMed

    Gritsaev, S V; Kostroma, I I; Zapreeva, I M; Shmidt, A V; Tiranova, S A; Balashova, V A; Martynkevich, I S; Chubukina, Zh V; Semenova, N Yu; Chechetkin, A V

    2016-01-01

    Secondary myeloid neoplasia may be a complication of intensive cytostatic therapy. The most common types of secondary neoplasias are acute myeloid leukemia and myelodysplastic syndrome. The development of secondary atypical chronic myeloid leukemia (aCML) is an extremely rare phenomenon. The paper describes transformation of secondary myelodysplastic syndrome to aCML 6 months after its diagnosis. The development of aCML was accompanied by additional chromosomal aberration as monosomy of chromosome 17. No mutations in the JAK2, MPL, and CalR genes were detected. It is concluded that the clinical course of secondary myeloid neoplasias is variable.

  17. Treosulfan, Fludarabine Phosphate, and Total-Body Irradiation Before Donor Stem Cell Transplant in Treating Patients With High-Risk Acute Myeloid Leukemia, Myelodysplastic Syndrome, Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2013-10-29

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  18. Antileukemic Effect of Tualang Honey on Acute and Chronic Leukemia Cell Lines.

    PubMed

    Nik Man, Nik Muhd Khuzaimi; Hassan, Rosline; Ang, Cheng Yong; Abdullah, Abu Dzarr; Mohd Radzi, Muhammad Amiro Rasheeq; Sulaiman, Siti Amrah

    2015-01-01

    Complementary medicine using natural product as antitumor is on the rise. Much research has been performed on Tualang Honey and it was shown to have therapeutic potential in wound healing, and antimicrobial activity and be antiproliferative against several cancer models such as human osteosarcoma (HOS), human breast (MCF-7 and MDA-MB-231), and cervical (HeLa) cancer cell lines. To date, there was limited study on antileukemic properties of Tualang (Koompassia excelsa) Honey. The aim of this study was to evaluate the antileukemic effect of Tualang Honey on acute and chronic leukemia cell lines. Leukemia cell lines (K562 and MV4-11) and human mononuclear cell isolated from peripheral blood were grown in RPM1 1640 culture medium. The cells were incubated with increasing concentrations of Tualang Honey. After incubation, the evaluation of viability and apoptosis was performed. The morphological changes of leukemia cells were the presence of cytoplasmic blebs followed by apoptotic bodies and round shape of cells. IC50 against K562 and MV4-11 was determined. Tualang Honey gave 53.9% and 50.6% apoptosis activity on K562 and MV4-11, respectively, while on human mononuclear cell it was 37.4%. Tualang Honey has the apoptosis-inducing ability for acute and chronic myeloid leukemia (K562 and MV4-11) cell lines.

  19. Antileukemic Effect of Tualang Honey on Acute and Chronic Leukemia Cell Lines

    PubMed Central

    Nik Man, Nik Muhd Khuzaimi; Hassan, Rosline; Ang, Cheng Yong; Abdullah, Abu Dzarr; Mohd Radzi, Muhammad Amiro Rasheeq; Sulaiman, Siti Amrah

    2015-01-01

    Complementary medicine using natural product as antitumor is on the rise. Much research has been performed on Tualang Honey and it was shown to have therapeutic potential in wound healing, and antimicrobial activity and be antiproliferative against several cancer models such as human osteosarcoma (HOS), human breast (MCF-7 and MDA-MB-231), and cervical (HeLa) cancer cell lines. To date, there was limited study on antileukemic properties of Tualang (Koompassia excelsa) Honey. The aim of this study was to evaluate the antileukemic effect of Tualang Honey on acute and chronic leukemia cell lines. Leukemia cell lines (K562 and MV4-11) and human mononuclear cell isolated from peripheral blood were grown in RPM1 1640 culture medium. The cells were incubated with increasing concentrations of Tualang Honey. After incubation, the evaluation of viability and apoptosis was performed. The morphological changes of leukemia cells were the presence of cytoplasmic blebs followed by apoptotic bodies and round shape of cells. IC50 against K562 and MV4-11 was determined. Tualang Honey gave 53.9% and 50.6% apoptosis activity on K562 and MV4-11, respectively, while on human mononuclear cell it was 37.4%. Tualang Honey has the apoptosis-inducing ability for acute and chronic myeloid leukemia (K562 and MV4-11) cell lines. PMID:26613081

  20. Antileukemic Effect of Tualang Honey on Acute and Chronic Leukemia Cell Lines.

    PubMed

    Nik Man, Nik Muhd Khuzaimi; Hassan, Rosline; Ang, Cheng Yong; Abdullah, Abu Dzarr; Mohd Radzi, Muhammad Amiro Rasheeq; Sulaiman, Siti Amrah

    2015-01-01

    Complementary medicine using natural product as antitumor is on the rise. Much research has been performed on Tualang Honey and it was shown to have therapeutic potential in wound healing, and antimicrobial activity and be antiproliferative against several cancer models such as human osteosarcoma (HOS), human breast (MCF-7 and MDA-MB-231), and cervical (HeLa) cancer cell lines. To date, there was limited study on antileukemic properties of Tualang (Koompassia excelsa) Honey. The aim of this study was to evaluate the antileukemic effect of Tualang Honey on acute and chronic leukemia cell lines. Leukemia cell lines (K562 and MV4-11) and human mononuclear cell isolated from peripheral blood were grown in RPM1 1640 culture medium. The cells were incubated with increasing concentrations of Tualang Honey. After incubation, the evaluation of viability and apoptosis was performed. The morphological changes of leukemia cells were the presence of cytoplasmic blebs followed by apoptotic bodies and round shape of cells. IC50 against K562 and MV4-11 was determined. Tualang Honey gave 53.9% and 50.6% apoptosis activity on K562 and MV4-11, respectively, while on human mononuclear cell it was 37.4%. Tualang Honey has the apoptosis-inducing ability for acute and chronic myeloid leukemia (K562 and MV4-11) cell lines. PMID:26613081

  1. Targeted Therapies in Hematology and Their Impact on Patient Care: Chronic and Acute Myeloid Leukemia

    PubMed Central

    Cortes, Elias Jabbour Jorge; Ravandi, Farhad; O’Brien, Susan; Kantarjian, Hagop

    2014-01-01

    Advances in the genetic and molecular characterizations of leukemias have enhanced our capabilities to develop targeted therapies. The most dramatic examples of targeted therapy in cancer to date are the use of targeted BCR-ABL protein tyrosine kinase inhibitors (TKI) which has revolutionized the treatment of chronic myeloid leukemia (CML). Inhibition of the signaling activity of this kinase has proved to be a highly successful treatment target, transforming the prognosis of patients with CML. In contrast, acute myeloid leukemia (AML) is an extremely heterogeneous disease with outcomes that vary widely according to subtype of the disease. Targeted therapy with monoclonal antibodies and small molecule kinase inhibitors are promising strategies to help improve the cure rates in AML. In this review, we will highlight the results of recent clinical trials in which outcomes of CML and AML have been influenced significantly. Also, novel approaches to sequencing and combining available therapies will be covered. PMID:24246694

  2. Chronic Disseminated Candidiasis Complicated by Immune Reconstitution Inflammatory Syndrome in Child with Acute Lymphoblastic Leukemia

    PubMed Central

    Ukielska, Bogna; Jończyk-Potoczna, Katarzyna; Konatkowska, Benigna; Wachowiak, Jacek

    2016-01-01

    Hepatosplenic candidiasis also known as chronic disseminated candidiasis is a rare manifestation of invasive fungal infection typically observed in patients with acute leukemia in prolonged, deep neutropenia. Immune reconstitution inflammatory syndrome (IRIS) is an inflammatory disorder triggered by rapid resolution of neutropenia. Diagnosis and treatment of IRIS are still challenging due to a variety of clinical symptoms, lack of certain diagnostic criteria, and no standards of treatment. The diagnosis of IRIS is even more difficult in patients with hematological malignancies complicated by “probable” invasive fungal infection, when fungal pathogen is still uncertain. We report a case of probable hepatic candidiasis in 4-year-old boy with acute lymphoblastic leukemia. Despite proper antifungal therapy, there was no clinical and radiological improvement, so diagnosis of Candida-related IRIS was made and corticosteroid therapy was added to antifungal treatment achieving prompt resolution of infection symptoms. PMID:27800196

  3. Characterization of miRNomes in Acute and Chronic Myeloid Leukemia Cell Lines

    PubMed Central

    Xiong, Qian; Yang, Yadong; Wang, Hai; Li, Jie; Wang, Shaobin; Li, Yanming; Yang, Yaran; Cai, Kan; Ruan, Xiuyan; Yan, Jiangwei; Hu, Songnian; Fang, Xiangdong

    2014-01-01

    Myeloid leukemias are highly diverse diseases and have been shown to be associated with microRNA (miRNA) expression aberrations. The present study involved an in-depth miRNome analysis of two human acute myeloid leukemia (AML) cell lines, HL-60 and THP-1, and one human chronic myeloid leukemia (CML) cell line, K562, via massively parallel signature sequencing. mRNA expression profiles of these cell lines that were established previously in our lab facilitated an integrative analysis of miRNA and mRNA expression patterns. miRNA expression profiling followed by differential expression analysis and target prediction suggested numerous miRNA signatures in AML and CML cell lines. Some miRNAs may act as either tumor suppressors or oncomiRs in AML and CML by targeting key genes in AML and CML pathways. Expression patterns of cell type-specific miRNAs could partially reflect the characteristics of K562, HL-60 and THP-1 cell lines, such as actin filament-based processes, responsiveness to stimulus and phagocytic activity. miRNAs may also regulate myeloid differentiation, since they usually suppress differentiation regulators. Our study provides a resource to further investigate the employment of miRNAs in human leukemia subtyping, leukemogenesis and myeloid development. In addition, the distinctive miRNA signatures may be potential candidates for the clinical diagnosis, prognosis and treatment of myeloid leukemias. PMID:24755403

  4. Acute Lymphocytic Leukemia

    MedlinePlus

    ... hard for blood to do its work. In acute lymphocytic leukemia (ALL), also called acute lymphoblastic leukemia, there are too ... of white blood cells called lymphocytes or lymphoblasts. ALL is the most common type of cancer in ...

  5. Advances in the diagnosis and treatment of acute and chronic leukemia in Mexico.

    PubMed

    Ruiz-Argüelles, Guillermo José

    2016-04-01

    In the last 60 years, there have been substantial advances regarding the diagnosis and treatment of patients with acute and chronic leukemia in Mexico. Immunologic and molecular classifications of these diseases have improved both diagnosis and therapeutic capabilities. Although the pace of diagnostic and therapeutic advances has been slower compared with developed countries, Mexico is at the forefront among developing countries. Supporting research in these fields is expected to enhance the generation of new knowledge and improve the care of patients suffering from these diseases. PMID:27557388

  6. Yttrium Y 90 Anti-CD45 Monoclonal Antibody BC8 Followed by Donor Stem Cell Transplant in Treating Patients With High-Risk Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2016-09-29

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Chronic Myelomonocytic Leukemia; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Secondary Acute Myeloid Leukemia

  7. Increased risk of acute myelogenous leukemia (AML) and chronic myelogenous leukemia (CML) in a county of Hesse, Germany.

    PubMed

    Kolb, G; Becker, N; Scheller, S; Zugmaier, G; Pralle, H; Wahrendorf, J; Havemann, K

    1993-01-01

    The incidence of acute and chronic myelogenous leukemia has been compared for the two neighbouring regions of Marburg and Giessen in Hesse (Germany). The investigation was based on the incident cases of the years 1983-1989 which have been diagnosed in the hematological departments of the universities of the two regions. The epidemiological evaluation of the data has been carried out in terms of a historical follow-up study, and shows an increased relative risk for the region around Marburg with a particular elevation for one community within this region. Potential determinants are discussed and focus on trinitrotoluene (TNT) and decomposition products which are known to contaminate the soil of this community, in some places severely, due to insufficient removal of remnants of the TNT production in large underground plants during World War II.

  8. What Is Acute Myeloid Leukemia?

    MedlinePlus

    ... about acute myeloid leukemia? What is acute myeloid leukemia? Cancer starts when cells in a part of ... the body from doing their jobs. Types of leukemia Not all leukemias are the same. There are ...

  9. A comprehensive review of occupational and general population cancer risk: 1,3-Butadiene exposure-response modeling for all leukemia, acute myelogenous leukemia, chronic lymphocytic leukemia, chronic myelogenous leukemia, myeloid neoplasm and lymphoid neoplasm.

    PubMed

    Sielken, Robert L; Valdez-Flores, Ciriaco

    2015-11-01

    Excess cancer risks associated with 1,3-butadiene (BD) inhalation exposures are calculated using an extensive data set developed by the University of Alabama at Birmingham (UAB) from an epidemiology study of North American workers in the styrene butadiene rubber (SBR) industry. While the UAB study followed SBR workers, risk calculations can be adapted to estimate both occupational and general population risks. The data from the UAB SBR study offer an opportunity to quantitatively evaluate the association between cumulative exposure to BD and different types of cancer, accounting for the number of tasks involving high-intensity exposures to BD as well as confounding associated with the exposures to the multiple other chemicals in the SBR industry. Quantitative associations of BD exposure and cancer, specifically leukemia, can be further characterized by leukemia type, including potential associations with acute myelogenous leukemia (AML), chronic lymphocytic leukemia (CLL), and chronic myelogenous leukemia (CML), and the groups of lymphoid and myeloid neoplasms. Collectively, these multiple evaluations lead to a comprehensive analysis that makes use of all of the available information and is consistent with the risk assessment goals of the USEPA and other regulatory agencies, and in line with the recommendations of the USEPA Science Advisory Board. While a range of cancer risk values can result from these multiple factors, a preferred case for occupational and general population risk is highlighted. Cox proportional hazards models are used to fit exposure-response models to the most recent UAB data. The slope of the model with cumulative BD ppm-years as the predictor variable is not statistically significantly greater than zero for CML, AML, or, when any one of eight exposure covariates is added to the model, for all leukemias combined. The slope for CLL is statistically significantly different from zero. The slope for myeloid neoplasms is not statistically

  10. Idarubicin, Cytarabine, and Tipifarnib in Treating Patients With Newly Diagnosed Myelodysplastic Syndromes or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-05-09

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  11. Dicer Gene Expression as a Prognostic Factor in Acute Lymphoblastic Leukemia and Chronic Lymphocytic Leukemia in Fars Province

    PubMed Central

    Farzaneh, Mohamad Reza; Shahryari, Jahanbanoo; Safaei, Akbar; Valibeigi, Behnaz; Davani, Shahrbanou Karimi; Tabibi, Narjes

    2016-01-01

    Alterations in the expression of microRNAs (miRNAs) have been proposed to play a role in the pathogenesis of acute lymphoblastic leukemia (ALL) and chronic lymphocytic leukemia (CLL). Dicer is one of the main regulators of miRNA biogenesis, and deregulation of its expression has been indicated as a possible cause of miRNA alterations observed in various cancers. Our aim was to analyze the expression of the Dicer protein and its relationship with ALL and CLL. This cross-sectional study was performed from 2010 to 2012 in Shahid Faghihi Hospital, Shiraz, Iran. In this study, 30 patients with CLL, 21 patients with ALL, 10 child healthy donors, and 19 adult healthy donors were recruited. The patients’ samples were checked via flow cytometry, immunohistochemistry, and immunocytochemistry. The controls’ samples were also examined in the hematology ward. Total RNA was extracted from the bone marrow and peripheral blood samples of the patients and controls. Then, reverse-transcription polymerase chain reaction was used to estimate the level of Dicer miRNA. The outcomes of the expression analysis of Dicer revealed statistically significant differences between the ALL patients/child healthy controls (mean±SD, 0.19±0.28 vs. 0.73±0.12; P<0.001) and the CLL patients/adult healthy controls (mean±SD, 0.24±0.25 vs. 0.41±0.28; P=0.033). This is the first piece of evidence showing that the expression of the Dicer gene greatly decreased in the patients with ALL in comparison to the child controls. The expression of the Dicer gene was also downregulated in the patients with CLL compared to the adult controls. Given the above findings, the expression of Dicer may play an important role in the progression and prognosis of these diseases. PMID:27217607

  12. Dicer Gene Expression as a Prognostic Factor in Acute Lymphoblastic Leukemia and Chronic Lymphocytic Leukemia in Fars Province.

    PubMed

    Farzaneh, Mohamad Reza; Shahryari, Jahanbanoo; Safaei, Akbar; Valibeigi, Behnaz; Davani, Shahrbanou Karimi; Tabibi, Narjes

    2016-05-01

    Alterations in the expression of microRNAs (miRNAs) have been proposed to play a role in the pathogenesis of acute lymphoblastic leukemia (ALL) and chronic lymphocytic leukemia (CLL). Dicer is one of the main regulators of miRNA biogenesis, and deregulation of its expression has been indicated as a possible cause of miRNA alterations observed in various cancers. Our aim was to analyze the expression of the Dicer protein and its relationship with ALL and CLL. This cross-sectional study was performed from 2010 to 2012 in Shahid Faghihi Hospital, Shiraz, Iran. In this study, 30 patients with CLL, 21 patients with ALL, 10 child healthy donors, and 19 adult healthy donors were recruited. The patients' samples were checked via flow cytometry, immunohistochemistry, and immunocytochemistry. The controls' samples were also examined in the hematology ward. Total RNA was extracted from the bone marrow and peripheral blood samples of the patients and controls. Then, reverse-transcription polymerase chain reaction was used to estimate the level of Dicer miRNA. The outcomes of the expression analysis of Dicer revealed statistically significant differences between the ALL patients/child healthy controls (mean±SD, 0.19±0.28 vs. 0.73±0.12; P<0.001) and the CLL patients/adult healthy controls (mean±SD, 0.24±0.25 vs. 0.41±0.28; P=0.033). This is the first piece of evidence showing that the expression of the Dicer gene greatly decreased in the patients with ALL in comparison to the child controls. The expression of the Dicer gene was also downregulated in the patients with CLL compared to the adult controls. Given the above findings, the expression of Dicer may play an important role in the progression and prognosis of these diseases. PMID:27217607

  13. Ipilimumab in Treating Patients With Relapsed or Refractory High-Risk Myelodysplastic Syndrome or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-09-16

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Chronic Myelomonocytic Leukemia; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome

  14. WEE1 Inhibitor AZD1775 With or Without Cytarabine in Treating Patients With Advanced Acute Myeloid Leukemia or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2016-09-12

    Chronic Myelomonocytic Leukemia; Myelodysplastic Syndrome With Isolated Del(5q); Myelodysplastic/Myeloproliferative Neoplasm; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  15. Flavopiridol, Cytarabine, and Mitoxantrone in Treating Patients With Acute Leukemia

    ClinicalTrials.gov

    2013-10-07

    Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  16. What Is Chronic Myeloid Leukemia?

    MedlinePlus

    ... leukemia? Next Topic Normal bone marrow and blood What is chronic myeloid leukemia? Cancer starts when cells ... their treatment is the same as for adults. What is leukemia? Leukemia is a cancer that starts ...

  17. Veliparib and Temozolomide in Treating Patients With Acute Leukemia

    ClinicalTrials.gov

    2016-07-20

    Accelerated Phase of Disease; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Adult B Acute Lymphoblastic Leukemia; Adult B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Adult T Acute Lymphoblastic Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Blastic Phase; Chronic Myelomonocytic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Disease; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  18. Chronic Myeloid Leukemia

    MedlinePlus

    ... some patients with acute lymphoblastic leukemia (ALL). One theory that scientists propose about why this switch occurs ... a result called “graft-versus-tumor effect”). The theory being tested with a reduced-intensity transplant is ...

  19. Chronic FLT3-ITD Signaling in Acute Myeloid Leukemia Is Connected to a Specific Chromatin Signature

    PubMed Central

    Cauchy, Pierre; James, Sally R.; Zacarias-Cabeza, Joaquin; Ptasinska, Anetta; Imperato, Maria Rosaria; Assi, Salam A.; Piper, Jason; Canestraro, Martina; Hoogenkamp, Maarten; Raghavan, Manoj; Loke, Justin; Akiki, Susanna; Clokie, Samuel J.; Richards, Stephen J.; Westhead, David R.; Griffiths, Michael J.; Ott, Sascha; Bonifer, Constanze; Cockerill, Peter N.

    2015-01-01

    Summary Acute myeloid leukemia (AML) is characterized by recurrent mutations that affect the epigenetic regulatory machinery and signaling molecules, leading to a block in hematopoietic differentiation. Constitutive signaling from mutated growth factor receptors is a major driver of leukemic growth, but how aberrant signaling affects the epigenome in AML is less understood. Furthermore, AML cells undergo extensive clonal evolution, and the mutations in signaling genes are often secondary events. To elucidate how chronic growth factor signaling alters the transcriptional network in AML, we performed a system-wide multi-omics study of primary cells from patients suffering from AML with internal tandem duplications in the FLT3 transmembrane domain (FLT3-ITD). This strategy revealed cooperation between the MAP kinase (MAPK) inducible transcription factor AP-1 and RUNX1 as a major driver of a common, FLT3-ITD-specific gene expression and chromatin signature, demonstrating a major impact of MAPK signaling pathways in shaping the epigenome of FLT3-ITD AML. PMID:26212328

  20. Idarubicin, Cytarabine, and Pravastatin Sodium in Treating Patients With Acute Myeloid Leukemia or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2015-03-03

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Refractory Anemia With Excess Blasts; Untreated Adult Acute Myeloid Leukemia

  1. Acute blast crisis in a patient with chronic lymphocytic leukemia. Immunoperoxidase study.

    PubMed

    Laurent, G; Gourdin, M F; Flandrin, G; Kuhlein, E; Pris, J; Reyes, F

    1981-01-01

    Using a case study of a blastic crisis supervening on chronic lymphocytic leukemia, we were able to determine that the cells in question were B cells derived from the same clone by using immunofluorescence and immunoperoxidase techniques. The immunoperoxidase technique provided excellent morphological details and enhanced the phenotype study. PMID:6791439

  2. Thrombosis and acute leukemia.

    PubMed

    Crespo-Solís, Erick

    2012-04-01

    Thrombosis is a common complication in patients with acute leukemia. While the presence of central venous lines, concomitant steroids, the use of Escherichia coli asparaginase and hereditary thrombophilic abnormalities are known risk factors for thrombosis in children, information on the pathogenesis, risk factors, and clinical outcome of thrombosis in adult patients with acute lymphoid leukemia (ALL) or acute myeloid leukemia (AML) is still scarce. Expert consensus and guidelines regarding leukemia-specific risk factors, thrombosis prevention, and treatment strategies, as well as optimal type of central venous catheter in acute leukemia patients are required. It is likely that each subtype of acute leukemia represents a different setting for the development of thrombosis and the risk of bleeding. This is perhaps due to a combination of different disease-specific pathogenic mechanisms of thrombosis, including the type of chemotherapy protocol chosen, the underlying patients health, associated risk factors, as well as the biology of the disease itself. The risk of thrombosis may also vary according to ethnicity and prevalence of hereditary risk factors for thrombosis; thus, it is advisable for Latin American, Asian, and African countries to report on their specific patient population. PMID:22507812

  3. What Is Chronic Lymphocytic Leukemia?

    MedlinePlus

    ... blood, and lymphoid tissue What is chronic lymphocytic leukemia? Cancer starts when cells in the body begin ... the lymph nodes, liver, and spleen. What is leukemia? Leukemia is a cancer that starts in the ...

  4. Entinostat and Sorafenib Tosylate in Treating Patients With Advanced or Metastatic Solid Tumors or Refractory or Relapsed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-09-18

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; Recurrent Adult Acute Myeloid Leukemia; Unspecified Adult Solid Tumor, Protocol Specific

  5. Identification of de Novo Fanconi Anemia in Younger Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-05-13

    Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Fanconi Anemia; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Refractory Anemia With Ringed Sideroblasts; Secondary Myelodysplastic Syndromes; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  6. Vorinostat and Azacitidine in Treating Patients With Myelodysplastic Syndromes or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-06-27

    Acute Erythroid Leukemia; Acute Megakaryoblastic Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Chronic Myelomonocytic Leukemia; Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Refractory Anemia With Ring Sideroblasts

  7. What Is Acute Lymphocytic Leukemia (ALL)?

    MedlinePlus

    ... key statistics about acute lymphocytic leukemia? What is acute lymphocytic leukemia? Cancer starts when cells in the body begin ... leukemias). The rest of this document focuses on acute lymphocytic leukemia (ALL) in adults. For information on ALL in ...

  8. Decitabine in Treating Patients With Myelodysplastic Syndromes or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-09-27

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; de Novo Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  9. [Bone marrow transplantation in acute leukemia, chronic myeloid leukemia, severe aplastic anemia and stage IV neuroblastoma. Effect of antiviral prevention with anti-CMV-hyperimmunoglobulin and acyclovir].

    PubMed

    Ostendorf, P; Ehninger, G; Dopfer, R; Schmidt, H; Haen, M; Link, H; Schüch, K; Müller, C A; Wernet, P; Klingebiel, T

    1986-05-15

    Bone marrow transplantation was performed between IV/82 and X/85 in 64 patients with acute leukemia (n = 36), chronic myelogenous leukemia (CML; n = 13), severe aplastic anemia (n = 12), and neuroblastoma stage IV (n = 3). Of these patients 57 received allogeneic marrow from HLA-ABCDR identical, MLC-negative sibling donors. Six transplants were performed with syngenic marrow and one with autologous marrow. Of the 64 patients 48 survived 40-1,250 days after transplantation, resulting in a survival rate (SR) of 75% and a survival probability (SP) of 71%. Of the 36 patients suffering from acute leukemia (SR = 64%, SP = 51%), patients with acute myelogenous leukemia (AML) in first complete remission (n = 11; SR = 81%, SP = 76%), as well as patients with acute lymphatic leukemia (ALL) in 1st to 4th complete remission at the time of transplantation (n = 14; SR = 81%, SP = 76%) show a favorable prognosis. A poor survival rate was seen for patients with AML when transplanted in second or partial remission (1/5; SR = 20%), as well as for patients suffering from ALL and transplanted during relapse or partial remission (1/6; SR = 16%). Of 13 patients suffering from CML 12 survived the transplantation free of relapse (SR = 93%, SP = 92%), and one patient died from varicella zoster pneumonia. Of the transplanted patients with severe aplastic anemia, 12 of 13 are surviving with complete hematologic reconstitution; one patient, however, died on day 10 from a sepsis. In our patient group, the SR as well as the SP has been improved through changes in the irradiation protocol concomitant with prophylactic application of anti-CMV hypergammaglobulin, as well as through additional oral medication of Azyklovir. The 41 patients (BMT No. 7-47) with total body irradiation at one time show an SR of 44% and an SP of 41%. The following 46 patients (BMT No. 48-93) have reached an SR of 83% and an SP of 74% under the regimen of fractionated total body irradiation, plus prophylaxis with anti

  10. Vorinostat, Cytarabine, and Etoposide in Treating Patients With Relapsed and/or Refractory Acute Leukemia or Myelodysplastic Syndromes or Myeloproliferative Disorders

    ClinicalTrials.gov

    2013-05-01

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  11. Frequent epigenetic inactivation of the SLIT2 gene in chronic and acute lymphocytic leukemia.

    PubMed

    Dunwell, Thomas L; Dickinson, Rachel E; Stankovic, Tatjana; Dallol, Ashraf; Weston, Victoria; Austen, Belinda; Catchpoole, Daniel; Maher, Eamonn R; Latif, Farida

    2009-05-16

    Recently a mouse model of T/natural killer acute lymphoblastic leukemia was used to assess global promoter methylation across the mouse genome using the restriction landmark genomic scanning technique. One of the methylated mouse genes identified in this way was Slit2. There are three mammalian SLIT genes (SLIT1, SLIT2, SLIT3), that belong to a highly conserved family of axon guidance molecules. We have previously demonstrated that SLIT2 is frequently inactivated in lung, breast, colorectal and glioma tumors by hypermethylation of a CpG island in its promoter region, whilst inactivating somatic mutations are rare. Furthermore, we demonstrated that SLIT2 acts as a tumor suppressor gene in breast and colorectal cancer cells. In this report we determined the methylation status of the SLIT2 gene in leukemias (CLL and ALL). SLIT2 was methylated in all ten leukemia cell lines analyzed (eight completely and two partially methylated). SLIT2 expression was restored after treating ALL lines with 5-aza-2dC. In primary ALL and CLL samples, SLIT2 was also frequently methylated, 58% (30/52) B-ALL; 83% (10/12) T-ALL and in 80% (24/30) CLL. Whilst DNA from peripheral blood and bone marrow from healthy control samples showed no SLIT2 methylation. Methylation results in leukemia cell lines and ALL and CLL primary samples were confirmed by direct sequencing of bisulfite modified DNA. Our results demonstrate that methylation of the SLIT2 5' CpG island is conserved between mice and humans, and therefore is likely to be of functional importance.

  12. A phase I trial of the aurora kinase inhibitor, ENMD-2076, in patients with relapsed or refractory acute myeloid leukemia or chronic myelomonocytic leukemia.

    PubMed

    Yee, Karen W L; Chen, Hsiao-Wei T; Hedley, David W; Chow, Sue; Brandwein, Joseph; Schuh, Andre C; Schimmer, Aaron D; Gupta, Vikas; Sanfelice, Deborah; Johnson, Tara; Le, Lisa W; Arnott, Jamie; Bray, Mark R; Sidor, Carolyn; Minden, Mark D

    2016-10-01

    ENMD-2076 is a novel, orally-active molecule that inhibits Aurora A kinase, as well as c-Kit, FLT3 and VEGFR2. A phase I study was conducted to determine the maximum tolerated dose (MTD), recommended phase 2 dose (RP2D) and toxicities of ENMD-2076 in patients with acute myeloid leukemia (AML) and chronic myelomonocytic leukemia (CMML). Patients received escalating doses of ENMD-2076 administered orally daily [225 mg (n = 7), 375 mg (n = 6), 325 mg (n = 9), or 275 mg (n = 5)]. Twenty-seven patients were treated (26 AML; 1 CMML-2). The most common non-hematological toxicities of any grade, regardless of association with drug, were fatigue, diarrhea, dysphonia, dyspnea, hypertension, constipation, and abdominal pain. Dose-limiting toxicities (DLTs) consisted of grade 3 fatigue, grade 3 typhilitis, grade 3 syncope and grade 3 QTc prolongation). Of the 16 evaluable patients, one patient achieved a complete remission with incomplete count recovery (CRi), three experienced a morphologic leukemia-free state (MLFS) with a major hematologic improvement in platelets (HI-P), and 5 other patients had a reduction in marrow blast percentage (i.e. 11-65 %). The RP2D in this patient population is 225 mg orally once daily. PMID:27406088

  13. A phase 2 study of MK-0457 in patients with BCR-ABL T315I mutant chronic myelogenous leukemia and philadelphia chromosome-positive acute lymphoblastic leukemia

    PubMed Central

    Seymour, J F; Kim, D W; Rubin, E; Haregewoin, A; Clark, J; Watson, P; Hughes, T; Dufva, I; Jimenez, J L; Mahon, F-X; Rousselot, P; Cortes, J; Martinelli, G; Papayannidis, C; Nagler, A; Giles, F J

    2014-01-01

    Aurora kinase overexpression has been observed in patients with hematologic malignancies. MK-0457, a pan-aurora kinase inhibitor that also inhibits the ABL T315I mutant, was evaluated to treat patients with chronic myelogenous leukemia (CML) or Philadelphia chromosome (Ph+) acute lymphoblastic leukemia (ALL) with the T315I mutation. Adults with Ph+ chronic phase (CP)-, accelerated phase (AP)- or blast phase (BP)-CML, or ALL and documented BCR-ABL T315I mutation were treated with a 5-day continuous infusion of MK-0457 administered every 14 days at 40 mg/m2/h, 32 mg/m2/h or 24 mg/m2/h. Fifty-two patients (CP, n=15; AP, n=14; BP, n=11; Ph+ ALL, n=12) were treated. Overall, 8% of patients achieved major cytogenetic response; 6% achieved unconfirmed complete or partial response; 39% had no response. Two patients (CP CML) achieved complete hematologic response. No patients with advanced CML or Ph+ ALL achieved major hematologic response. The most common adverse event (AE) was neutropenia (50%). The most common grade 3/4 AEs were neutropenia (46%) and febrile neutropenia (35%). MK-0457 demonstrated minimal efficacy and only at higher, intolerable doses; lower doses were tolerated and no unexpected toxicities were observed. These data will assist in the development of future aurora kinase inhibitors and in the selection of appropriate target patient populations. PMID:25127392

  14. Donor Peripheral Blood Stem Cell Transplant and Pretargeted Radioimmunotherapy in Treating Patients With High-Risk Advanced Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2016-03-01

    Chronic Myelomonocytic Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Cytopenia With Multilineage Dysplasia; Refractory Cytopenia With Multilineage Dysplasia and Ringed Sideroblasts; Secondary Acute Myeloid Leukemia

  15. IMMUNOTHERAPY IN ACUTE LEUKEMIA

    PubMed Central

    Leung, Wing

    2010-01-01

    Recent advances in immunotherapy of cancer may represent a successful example in translational research, in which progress in knowledge and technology in immunology has lead to new strategies of immunotherapy, and even past failure in many clinical trials have led to a better understanding of basic cancer immunobiology. This article reviews the latest concepts in antitumor immunology and its application in the treatment of cancer, with particular focus on acute leukemia. PMID:19100371

  16. Phase I Trial of AZD1775 and Belinostat in Treating Patients With Relapsed or Refractory Myeloid Malignancies or Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-20

    Blast Phase Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Refractory Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Secondary Acute Myeloid Leukemia; Therapy-Related Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  17. [Infant acute leukemia].

    PubMed

    Brethon, Benoît; Cavé, Hélène; Fahd, Mony; Baruchel, André

    2016-03-01

    If acute leukemia is the most frequent cancer in childhood (33%), it remains a very rare diagnosis in infants less than one year old, e.g. less than 5% of cases. At this age, the frequency of acute lymphoblastic leukemia (ALL) (almost all of B-lineage) is quite similar to the one of myeloblastic forms (AML). Infant leukemia frequently presents with high hyperleucocytosis, major tumoral burden and numerous extra-hematological features, especially in central nervous system and skin. Whatever the lineage, the leukemic cell is often very immature cytologically and immunologically. Rearrangements of the Mixed Lineage Leukemia (MLL) gene, located on band 11q23, are the hallmark of these immature leukemias and confer a particular resistance to conventional approaches, corticosteroids and chemotherapy. The immaturity of infants less than 1-year-old is associated to a decrease of the tolerable dose-intensity of some drugs (anthracyclines, alkylating agents) or asks questions about some procedures like radiotherapy or high dose conditioning regimen, responsible of inacceptable acute and late toxicities. The high level of severe infectious diseases and other high-grade side effects limits also the capacity to cure these infants. The survival of infants less than 1-year-old with AML is only 50% but similar to older children. On the other hand, survival of those with ALL is the same, then quite limited comparing the 80% survival in children over one year. Allogeneic stem cell transplantations are indicated in high-risk subgroups of infant ALL (age below 6 months, high hyperleucocytosis >300.10(9)/L, MLL-rearrangement, initial poor prednisone response). However, morbidity and mortality remain very important and these approaches cannot be extended to all cases. During the neonatal period, the dismal prognosis linked to the high number of primary failures or very early relapses and uncertainties about the late toxicities question physicians about ethics. It is an emergency to

  18. Gemtuzumab Ozogamicin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia or Acute Promyelocytic Leukemia

    ClinicalTrials.gov

    2016-07-26

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Childhood Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia

  19. Acute Promyelocytic Leukemia

    PubMed Central

    Kingsley, Edwin C.; Durie, Brian G. M.; Garewal, Harinder S.

    1987-01-01

    Acute promyelocytic leukemia (APL) is a subtype of acute myelogenous leukemia frequently associated with disseminated intravascular coagulation (DIC). Data on 11 patients with APL treated at our institution were analyzed and compared with those of 147 published cases. Most had a bleeding diathesis at presentation and evidence of DIC eventually developed in all. Seven patients (64%) showed the t(15;17)(q22;q21) karyotype or a similar translocation. Using a chemotherapy induction regimen containing an anthracycline, complete remission, requiring a total of 14 courses of treatment, was achieved in six patients (55%). The median duration of response and median survival for complete responders were 10 and 15 months, respectively. Three patients (27%) died of bleeding complications during induction therapy. The tritiated-thymidine labeling index of leukemia cells predicted which patients would achieve a complete remission. Review of six studies of 147 patients with APL from the past 12 years supports the use of a chemotherapy induction regimen containing anthracycline or amsacrine and heparin for the treatment of DIC. PMID:3472414

  20. Acute Leukemias in Children

    PubMed Central

    Pai, Mohan K. R.

    1979-01-01

    With combination chemotherapy approximately 50% of children with lymphoblastic leukemia survive for five or more years and it is now realistic to hope for a cure. Development of sophisticated cytochemical and immunological techniques have enabled us to recognize the factors that predispose to treatment failures. The survival in acute non-lymphocytic leukemia continues to be poor despite the introduction of several innovative treatment regimens. Current research is focused on the manipulation of the host-tumor immune response to eradicate the disease by treatment modalities such as immunotherapy and bone marrow transplantation. Since the treatment regimens are becoming more complex, the initial diagnosis and treatment is best carried out at centres specialized in the management of childhood malignancies. ImagesFig. 1Fig. 2Fig. 3 PMID:21297755

  1. Veliparib and Topotecan With or Without Carboplatin in Treating Patients With Relapsed or Refractory Acute Leukemia, High-Risk Myelodysplasia, or Aggressive Myeloproliferative Disorders

    ClinicalTrials.gov

    2016-08-23

    Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndrome; Essential Thrombocythemia; Hematopoietic and Lymphoid Cell Neoplasm; Philadelphia Chromosome Negative, BCR-ABL1 Positive Chronic Myelogenous Leukemia; Polycythemia Vera; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Disease; Secondary Myelodysplastic Syndrome

  2. Phase 1 Study of Terameprocol (EM-1421) in Patients With Leukemia

    ClinicalTrials.gov

    2016-02-20

    Leukemias; Acute Myeloid Leukemia (AML); Acute Lymphocytic Leukemia (ALL); Adult T Cell Leukemia (ATL); Chronic Myeloid Leukemia (CML-BP); Chronic Lymphocytic Leukemia (CLL); Myelodysplastic Syndrome (MDS); Chronic Myelomonocytic Leukemia (CMML)

  3. Leukemia.

    PubMed

    Juliusson, Gunnar; Hough, Rachael

    2016-01-01

    Leukemias are a group of life threatening malignant disorders of the blood and bone marrow. In the adolescent and young adult (AYA) population, the acute leukemias are most prevalent, with chronic myeloid leukemia being infrequently seen. Factors associated with more aggressive disease biology tend to increase in frequency with increasing age, whilst tolerability of treatment strategies decreases. There are also challenges regarding the effective delivery of therapy specific to the AYA group, consequences on the unique psychosocial needs of this age group, including compliance. This chapter reviews the current status of epidemiology, pathophysiology, treatment strategies and outcomes of AYA leukemia, with a focus on acute lymphoblastic leukemia and acute myeloid leukemia. PMID:27595359

  4. Temsirolimus and Imatinib Mesylate in Treating Patients With Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2013-01-11

    Accelerated Phase Chronic Myelogenous Leukemia; Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Chronic Phase Chronic Myelogenous Leukemia; Relapsing Chronic Myelogenous Leukemia

  5. Phase I/II Study of Nilotinib/Ruxolitinb Therapy for TKI Resistant Ph-Leukemia

    ClinicalTrials.gov

    2016-03-04

    Chronic Phase Chronic Myeloid Leukemia; Accelerated Phase Chronic Myeloid Leukemia; Blastic Phase Chronic Myeloid Leukemia; Philadelphia Positive Acute Lymphoblastic Leukemia; Resistant to Tyrosine Kinase Inhibitor Therapy

  6. Genetically Modified T-cell Immunotherapy in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-08-10

    Adult Acute Myeloid Leukemia in Remission; Donor; Early Relapse of Acute Myeloid Leukemia; Late Relapse of Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  7. Decitabine, Cytarabine, and Daunorubicin Hydrochloride in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-20

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  8. Tipifarnib in Treating Patients With Chronic Myeloid Leukemia, Chronic Myelomonocytic Leukemia, or Undifferentiated Myeloproliferative Disorders

    ClinicalTrials.gov

    2016-07-20

    Accelerated Phase of Disease; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Chronic Myelomonocytic Leukemia; Chronic Phase of Disease; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Recurrent Disease

  9. Obatoclax, Fludarabine, and Rituximab in Treating Patients With Previously Treated Chronic Lymphocytic Leukemia

    ClinicalTrials.gov

    2013-09-27

    B-cell Chronic Lymphocytic Leukemia; Leukemia; Prolymphocytic Leukemia; Refractory Chronic Lymphocytic Leukemia; Stage I Chronic Lymphocytic Leukemia; Stage II Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage IV Chronic Lymphocytic Leukemia

  10. Leukemia -- Chronic T-Cell Lymphocytic

    MedlinePlus

    ... Chronic T-Cell Lymphocytic: Overview Print to PDF Leukemia - Chronic T-Cell Lymphocytic: Overview Approved by the ... Platelets that help the blood to clot About leukemia Types of leukemia are named after the specific ...

  11. Phase II trial of hyper CVAD and dasatinib in patients with relapsed Philadelphia chromosome positive acute lymphoblastic leukemia or blast phase chronic myeloid leukemia.

    PubMed

    Benjamini, Ohad; Dumlao, Theresa Liu; Kantarjian, Hagop; O'Brien, Susan; Garcia-Manero, Guillermo; Faderl, Stefan; Jorgensen, Jeffrey; Luthra, Rajyalakshmi; Garris, Rebecca; Thomas, Deborah; Kebriaei, Partow; Champlin, Richard; Jabbour, Elias; Burger, Jan; Cortes, Jorge; Ravandi, Farhad

    2014-03-01

    Dasatinib is a second generation tyrosine kinase inhibitor, with activity in imatinib resistant Ph-positive ALL.We have treated 34 patients with relapsed Philadelphia chromosome positive acute lymphoblastic leukemia(ALL) (n519) or lymphoid blast phase of chronic myelogenous leukemia (CML-LB) (n515) with the combination of dasatinib and the hyper CVAD regimen. Prior regimens included hyper CVAD plus imatinib(n511, 4 had transplant in first CR), other combination chemotherapy (n512), monotherapy with kinase inhibitors other than dasatinib (n59), and investigational agents (n52). Pretreatment ABL mutations were noted in 10 patients. The overall response rate was 91%, with 24 patients (71%) achieving complete response(CR), and 7(21%) CR with incomplete platelet recovery (CRp). Two patients died during induction and one had progressive disease. Twenty-six patients (84%) achieved complete cytogenetic remission after one cycle of therapy. Overall, 13 patients (42%) achieved complete molecular response, and 11 patients (35%) had major molecular response (BCR-ABL/ABL<0.1%). Nine patients proceeded to allogeneic transplantation.Grades 3 and 4 toxicities included hemorrhage, pleural and pericardial effusions and infections. The median follow-up for patients with CML-LB is 37.5 months (range, 7–70 months) with a 3-year overall survival of 70%;68% remained in CR at 3 years. For ALL patients, the median follow-up is 52 months (range, 45–59 months)with a 3-year survival of 26%; 30% remain in CR at 3 years. The combination of Hyper CVAD regimen with dasatinib is effective in patients with relapsed Ph-positive ALL and CML-LB. PMID:24779033

  12. Cytogenetic risk stratification in chronic myelomonocytic leukemia

    PubMed Central

    Such, Esperanza; Cervera, José; Costa, Dolors; Solé, Francesc; Vallespí, Teresa; Luño, Elisa; Collado, Rosa; Calasanz, María J.; Hernández-Rivas, Jesús M.; Cigudosa, Juan C.; Nomdedeu, Benet; Mallo, Mar; Carbonell, Felix; Bueno, Javier; Ardanaz, María T.; Ramos, Fernando; Tormo, Mar; Sancho-Tello, Reyes; del Cañizo, Consuelo; Gómez, Valle; Marco, Victor; Xicoy, Blanca; Bonanad, Santiago; Pedro, Carmen; Bernal, Teresa; Sanz, Guillermo F.

    2011-01-01

    Background The prognostic value of cytogenetic findings in chronic myelomonocytic leukemia is unclear. Our purpose was to evaluate the independent prognostic impact of cytogenetic abnormalities in a large series of patients with chronic myelomonocytic leukemia included in the database of the Spanish Registry of Myelodysplastic Syndromes. Design and Methods We studied 414 patients with chronic myelomonocytic leukemia according to WHO criteria and with a successful conventional cytogenetic analysis at diagnosis. Different patient and disease characteristics were examined by univariate and multivariate methods to establish their relationship with overall survival and evolution to acute myeloid leukemia. Results Patients with abnormal karyotype (110 patients, 27%) had poorer overall survival (P=0.001) and higher risk of acute myeloid leukemia evolution (P=0.010). Based on outcome analysis, three cytogenetic risk categories were identified: low risk (normal karyotype or loss of Y chromosome as a single anomaly), high risk (presence of trisomy 8 or abnormalities of chromosome 7, or complex karyotype), and intermediate risk (all other abnormalities). Overall survival at five years for patients in the low, intermediate, and high risk cytogenetic categories was 35%, 26%, and 4%, respectively (P<0.001). Multivariate analysis confirmed that this new CMML-specific cytogenetic risk stratification was an independent prognostic variable for overall survival (P=0.001). Additionally, patients belonging to the high-risk cytogenetic category also had a higher risk of acute myeloid leukemia evolution on univariate (P=0.001) but not multivariate analysis. Conclusions Cytogenetic findings have a strong prognostic impact in patients with chronic myelomonocytic leukemia. PMID:21109693

  13. Combination Chemotherapy With or Without Bone Marrow Transplantation in Treating Children With Acute Myelogenous Leukemia or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2013-01-15

    Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Refractory Anemia With Ringed Sideroblasts; Secondary Myelodysplastic Syndromes; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  14. Successful Bosutinib Experience in an Elderly Acute Lymphoblastic Leukemia Patient with Suspected Central Nervous System Involvement Transformed from Chronic Myeloid Leukemia

    PubMed Central

    Atilla, Erden; Ataca, Pinar; Ozyurek, Elif; Erden, Ilhan; Gurman, Gunhan

    2015-01-01

    Managing the blast phase in chronic myeloid leukemia (CML) is challenging because limited data are available for elderly patients. The involvement of the central nervous system (CNS) increases the risk of a poor prognosis. Here, we present an elderly blast phase CML patient with suspected CNS involvement who was successfully treated with bosutinib. PMID:26697241

  15. Acute Myeloid Leukemia

    MedlinePlus

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, however, the bone marrow produces abnormal white blood ...

  16. Bendamustine Plus Alemtuzumab for Refractory Chronic Lymphocytic Leukemia (CLL)

    ClinicalTrials.gov

    2013-08-20

    Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Small Lymphocytic Lymphoma

  17. Chronic Myeloid Leukemia

    MedlinePlus

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, the bone marrow produces abnormal white blood cells. ...

  18. Chronic Lymphocytic Leukemia

    MedlinePlus

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, the bone marrow produces abnormal white blood cells. ...

  19. What Is Chronic Myelomonocytic Leukemia?

    MedlinePlus

    ... In this way CMML is more like a myeloproliferative disease ( myelo -- bone marrow, proliferative -- excessive growth). Chronic myeloid leukemia is an example of a myeloproliferative disease where there is an overproduction of white ...

  20. High Disease-Free Survival with Enhanced Protection against Relapse after Double-Unit Cord Blood Transplantation When Compared with T Cell-Depleted Unrelated Donor Transplantation in Patients with Acute Leukemia and Chronic Myelogenous Leukemia.

    PubMed

    Ponce, Doris M; Hilden, Patrick; Devlin, Sean M; Maloy, Molly; Lubin, Marissa; Castro-Malaspina, Hugo; Dahi, Parastoo; Hsu, Katharine; Jakubowski, Ann A; Kernan, Nancy A; Koehne, Guenther; O'Reilly, Richard J; Papadopoulos, Esperanza B; Perales, Miguel-Angel; Sauter, Craig; Scaradavou, Andromachi; Tamari, Roni; van den Brink, Marcel R M; Young, James W; Giralt, Sergio; Barker, Juliet N

    2015-11-01

    Double-unit cord blood (DCB) grafts are a rapidly available stem cell source for adults with high-risk leukemias. However, how disease-free survival (DFS) after DCB transplantation (DCBT) compares to that of unrelated donor transplantation (URDT) is not fully established. We analyzed 166 allograft recipients (66 8/8 HLA-matched URDT, 45 7/8 HLA-matched URDT, and 55 DCBT) ages 16 to 60 years with high-risk acute leukemia or chronic myelogenous leukemia (CML). URDT and DCBT recipients were similar except DCBT recipients were more likely to have lower weight and non-European ancestry and to receive intermediate-intensity conditioning. All URDT recipients received a CD34(+) cell-selected (T cell-depleted) graft. Overall, differences between the 3-year transplantation-related mortality were not significant (8/8 URDT, 18%; 7/8 URDT, 39%; and DCBT, 24%; P = .108), whereas the 3-year relapse risk was decreased after DCBT (8/8 URDT, 23%; 7/8 URDT, 20%; and DCBT 9%, P = .037). Three-year DFS was 57% in 8/8 URDT, 41% in 7/8 URDT, and 68% in DCBT recipients (P = .068), and the 3-year DFS in DCBT recipients was higher than that of 7/8 URDT recipients (P = .021). In multivariate analysis in acute leukemia patients, factors adversely associated with DFS were female gender (hazard ratio [HR], 1.68; P = .031), diagnosis of acute lymphoblastic leukemia (HR, 2.09; P = .004), and 7/8 T cell-depleted URDT (HR, 1.91; P = .037). High DFS can be achieved in adults with acute leukemia and CML with low relapse rates after DCBT. Our findings support performing DCBT in adults in preference to HLA-mismatched T cell-depleted URDT and suggest DCBT is a readily available alternative to T cell-depleted 8/8 URDT, especially in patients requiring urgent transplantation.

  1. Decitabine and Bortezomib in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-11-06

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  2. Decitabine in Treating Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-05-18

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  3. Gemtuzumab Ozogamicin in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-09-23

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia

  4. Management of chronic lymphocytic leukemia

    PubMed Central

    Ghia, Paolo; Hallek, Michael

    2014-01-01

    In the last decade, the management of chronic lymphocytic leukemia has undergone profound changes that have been driven by an improved understanding of the biology of the disease and the approval of several new drugs. Moreover, many novel drugs are currently under evaluation for rapid approval or have been approved by regulatory agencies, further broadening the available therapeutic armamentarium for patients with chronic lymphocytic leukemia. The use of novel biological and genetic parameters combined with a careful clinical evaluation allows us to dissect some of the heterogeneity of the disease and to distinguish patients with a very mild onset and course, who often will not need any treatment, from those with an intermediate prognosis and a third group with a very aggressive course (high-risk leukemia). On this background, it becomes increasingly challenging to select the right treatment strategy. In this paper, we describe our own approach to the management of different patients with chronic lymphocytic leukemia. PMID:24881042

  5. Lenalidomide in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-07-25

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  6. General Information about Adult Acute Lymphoblastic Leukemia

    MedlinePlus

    ... Acute Lymphoblastic Leukemia Treatment (PDQ®)–Patient Version General Information About Adult Acute Lymphoblastic Leukemia Go to Health ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  7. General Information about Adult Acute Myeloid Leukemia

    MedlinePlus

    ... Acute Myeloid Leukemia Treatment (PDQ®)–Patient Version General Information About Adult Acute Myeloid Leukemia Go to Health ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  8. General Information about Childhood Acute Lymphoblastic Leukemia

    MedlinePlus

    ... Acute Lymphoblastic Leukemia Treatment (PDQ®)–Patient Version General Information About Childhood Acute Lymphoblastic Leukemia Go to Health ... the PDQ Pediatric Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  9. Targeted Therapy for Acute Lymphocytic Leukemia

    MedlinePlus

    ... Monoclonal antibodies to treat acute lymphocytic leukemia Targeted therapy for acute lymphocytic leukemia In recent years, new ... These drugs are often referred to as targeted therapy. Some of these drugs can be useful in ...

  10. Treatment Options for Adult Acute Myeloid Leukemia

    MedlinePlus

    ... Treatment Childhood AML Treatment Research Adult Acute Myeloid Leukemia Treatment (PDQ®)–Patient Version General Information About Adult Acute Myeloid Leukemia Go to Health Professional Version Key Points Adult ...

  11. Stages of Adult Acute Myeloid Leukemia

    MedlinePlus

    ... Treatment Childhood AML Treatment Research Adult Acute Myeloid Leukemia Treatment (PDQ®)–Patient Version General Information About Adult Acute Myeloid Leukemia Go to Health Professional Version Key Points Adult ...

  12. Treatment Option Overview (Adult Acute Myeloid Leukemia)

    MedlinePlus

    ... Treatment Childhood AML Treatment Research Adult Acute Myeloid Leukemia Treatment (PDQ®)–Patient Version General Information About Adult Acute Myeloid Leukemia Go to Health Professional Version Key Points Adult ...

  13. How Is Acute Lymphocytic Leukemia Classified?

    MedlinePlus

    ... How is acute lymphocytic leukemia treated? How is acute lymphocytic leukemia classified? Most types of cancers are assigned numbered ... ALL are now named as follows: B-cell ALL Early pre-B ALL (also called pro-B ...

  14. Progress in acute myeloid leukemia.

    PubMed

    Kadia, Tapan M; Ravandi, Farhad; O'Brien, Susan; Cortes, Jorge; Kantarjian, Hagop M

    2015-03-01

    Significant progress has been made in the treatment of acute myeloid leukemia (AML). Steady gains in clinical research and a renaissance of genomics in leukemia have led to improved outcomes. The recognition of tremendous heterogeneity in AML has allowed individualized treatments of specific disease entities within the context of patient age, cytogenetics, and mutational analysis. The following is a comprehensive review of the current state of AML therapy and a roadmap of our approach to these distinct disease entities. PMID:25441110

  15. Fludarabine Phosphate and Total-Body Irradiation Before Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Chronic Lymphocytic Leukemia or Small Lymphocytic Leukemia

    ClinicalTrials.gov

    2016-07-18

    B-Cell Prolymphocytic Leukemia; Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Chronic Lymphocytic Leukemia; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; T-Cell Prolymphocytic Leukemia

  16. Risk-Based Classification System of Patients With Newly Diagnosed Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-10-24

    Adult B Acute Lymphoblastic Leukemia; Adult T Acute Lymphoblastic Leukemia; Childhood B Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  17. Iodine I 131 Monoclonal Antibody BC8, Fludarabine Phosphate, Cyclophosphamide, Total-Body Irradiation and Donor Bone Marrow Transplant in Treating Patients With Advanced Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or High-Risk Myelodysplastic Syndrome

    ClinicalTrials.gov

    2016-07-18

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Chronic Myelomonocytic Leukemia; Previously Treated Myelodysplastic Syndrome; Refractory Anemia With Excess Blasts; Refractory Anemia With Ring Sideroblasts; Refractory Cytopenia With Multilineage Dysplasia; Refractory Cytopenia With Multilineage Dysplasia and Ring Sideroblasts

  18. Tipifarnib in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-03-19

    Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  19. General Information about Chronic Myelogenous Leukemia

    MedlinePlus

    ... Chronic Myelogenous Leukemia Treatment (PDQ®)–Patient Version General Information About Chronic Myelogenous Leukemia Go to Health Professional ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  20. Acute myeloid leukemia

    MedlinePlus

    ... a low number of platelets. A white blood cell count ( WBC ) can be high, low, or normal. Bone ... and overall health How high your white blood cell count was Certain genetic changes in the leukemia cells ...

  1. Acute lymphoblastic leukemia (ALL)

    MedlinePlus

    ... be found for ALL. The following factors may play a role in the development of all types of leukemia: Certain chromosome problems Exposure to radiation, including x-rays before birth Past treatment with chemotherapy drugs ...

  2. Tumor lysis syndrome and acute anemia in an African-American man with chronic lymphocytic leukemia.

    PubMed

    Zhang, Bingnan; Lee, Alfred Ian; Podoltsev, Nikolai

    2014-11-01

    Tumor lysis syndrome (TLS) is a life-threating hematologic emergency caused by massive lysis of tumor cells into the blood stream. TLS can be prevented and treated with rasburicase. Rasburicase-induced hemolysis and methemoglobinemia is a rare but serious complication. Screening for G6PD should be considered for patients at higher risk for G6PD deficiency who may be also at high risk for TLS on the basis of clinical parameters. G6PD level in G6PD-deficient patients may be normal during an acute hemolytic episode and may not help to clarify the diagnosis at the time of presentation. The characteristic peripheral blood smear findings of 'bite' and 'blister' cells representing oxidative damage to red blood cells can help to quickly establish the diagnosis of G6PD deficiency-related hemolysis. The treatment of an acute hemolytic episode in a patient with G6PD deficiency requires avoiding the source of oxidative stress and using transfusion support as needed. PMID:25988058

  3. High Throughput Drug Sensitivity Assay and Genomics- Guided Treatment of Patients With Relapsed or Refractory Acute Leukemia

    ClinicalTrials.gov

    2016-05-19

    Acute Leukemia of Ambiguous Lineage; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Adult Acute Lymphoblastic Leukemia; Refractory Childhood Acute Lymphoblastic Leukemia

  4. Biomarkers in Bone Marrow Samples From Pediatric Patients With High-Risk Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-05-17

    Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Recurrent Childhood Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  5. Chronic myelogenous leukemia (CML)

    MedlinePlus

    ... Sometimes, chemotherapy is used first to reduce the white blood cell count if it is very high at diagnosis. The ... This is because there is a very high count of immature white blood cells (leukemia cells). The only known cure for CML ...

  6. Treosulfan, Fludarabine Phosphate, and Total Body Irradiation Before Donor Stem Cell Transplant in Treating Patients With Myelodysplastic Syndrome or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-08-30

    Acute Myeloid Leukemia in Remission; Chronic Myelomonocytic Leukemia; Minimal Residual Disease; Myelodysplastic Syndrome; Myelodysplastic/Myeloproliferative Neoplasm; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable

  7. Traumatic stress in acute leukemia

    PubMed Central

    Rodin, Gary; Yuen, Dora; Mischitelle, Ashley; Minden, Mark D; Brandwein, Joseph; Schimmer, Aaron; Marmar, Charles; Gagliese, Lucia; Lo, Christopher; Rydall, Anne; Zimmermann, Camilla

    2013-01-01

    Objective Acute leukemia is a condition with an acute onset that is associated with considerable morbidity and mortality. However, the psychological impact of this life-threatening condition and its intensive treatment has not been systematically examined. In the present study, we investigate the prevalence and correlates of post-traumatic stress symptoms in this population. Methods Patients with acute myeloid, lymphocytic, and promyelocytic leukemia who were newly diagnosed, recently relapsed, or treatment failures were recruited at a comprehensive cancer center in Toronto, Canada. Participants completed the Stanford Acute Stress Reaction Questionnaire, Memorial Symptom Assessment Scale, CARES Medical Interaction Subscale, and other psychosocial measures. A multivariate regression analysis was used to assess independent predictors of post-traumatic stress symptoms. Results Of the 205 participants, 58% were male, mean age was 50.1 ± 15.4 years, 86% were recently diagnosed, and 94% were receiving active treatment. The mean Stanford Acute Stress Reaction Questionnaire score was 30.2 ± 22.5, with 27 of 200 (14%) patients meeting criteria for acute stress disorder and 36 (18%) for subsyndromal acute stress disorder. Post-traumatic stress symptoms were associated with more physical symptoms, physical symptom distress, attachment anxiety, and perceived difficulty communicating with health-care providers, and poorer spiritual well-being (all p <0.05). Conclusions The present study demonstrates that clinically significant symptoms of traumatic stress are common in acute leukemia and are linked to the degree of physical suffering, to satisfaction with relationships with health-care providers, and with individual psychological characteristics. Longitudinal study is needed to determine the natural history, but these findings suggest that intervention may be indicated to alleviate or prevent traumatic stress in this population. PMID:22081505

  8. Bortezomib and Combination Chemotherapy in Treating Younger Patients With Recurrent, Refractory, or Secondary Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-05-13

    Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myelomonocytic Leukemia (M4); Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  9. Decitabine With or Without Bortezomib in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-03-14

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  10. Genomic characterization of acute leukemias.

    PubMed

    Chiaretti, Sabina; Gianfelici, Valentina; Ceglie, Giulia; Foà, Robin

    2014-01-01

    Over the past two decades, hematologic malignancies have been extensively evaluated due to the introduction of powerful technologies, such as conventional karyotyping, FISH analysis, gene and microRNA expression profiling, array comparative genomic hybridization and SNP arrays, and next-generation sequencing (including whole-exome sequencing and RNA-seq). These analyses have allowed for the refinement of the mechanisms underlying the leukemic transformation in several oncohematologic disorders and, more importantly, they have permitted the definition of novel prognostic algorithms aimed at stratifying patients at the onset of disease and, consequently, treating them in the most appropriate manner. Furthermore, the identification of specific molecular markers is opening the door to targeted and personalized medicine. The most important findings on novel acquisitions in the context of acute lymphoblastic leukemia of both B and T lineage and de novo acute myeloid leukemia are described in this review.

  11. Tipifarnib in Treating Older Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-03-22

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Erythroid Leukemia (M6); Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monoblastic Leukemia and Acute Monocytic Leukemia (M5); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Cellular Diagnosis, Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  12. Entinostat and Clofarabine in Treating Patients With Newly Diagnosed, Relapsed, or Refractory Poor-Risk Acute Lymphoblastic Leukemia or Bilineage/Biphenotypic Leukemia

    ClinicalTrials.gov

    2014-07-16

    Acute Leukemias of Ambiguous Lineage; Philadelphia Chromosome Negative Adult Precursor Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia

  13. Combination Chemotherapy With or Without Donor Stem Cell Transplant in Treating Patients With Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-09-09

    Adult Acute Lymphoblastic Leukemia in Remission; Adult B Acute Lymphoblastic Leukemia; Adult B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Adult L1 Acute Lymphoblastic Leukemia; Adult L2 Acute Lymphoblastic Leukemia; Adult T Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia

  14. Clofarabine, Cytarabine, and Filgrastim in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia, Advanced Myelodysplastic Syndrome, and/or Advanced Myeloproliferative Neoplasm

    ClinicalTrials.gov

    2015-12-28

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Refractory Anemia With Excess Blasts; Untreated Adult Acute Myeloid Leukemia; Myeloproliferative Neoplasm With 10% Blasts or Higher

  15. Genetics Home Reference: core binding factor acute myeloid leukemia

    MedlinePlus

    ... acute myeloid leukemia core binding factor acute myeloid leukemia Enable Javascript to view the expand/collapse boxes. ... Close All Description Core binding factor acute myeloid leukemia (CBF-AML) is one form of a cancer ...

  16. Alemtuzumab and Combination Chemotherapy in Treating Patients With Untreated Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2014-03-20

    Acute Undifferentiated Leukemia; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; L1 Adult Acute Lymphoblastic Leukemia; L1 Childhood Acute Lymphoblastic Leukemia; L2 Adult Acute Lymphoblastic Leukemia; L2 Childhood Acute Lymphoblastic Leukemia; Philadelphia Chromosome Negative Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Childhood Precursor Acute Lymphoblastic Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  17. Vosaroxin and Infusional Cytarabine in Treating Patients With Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-03-10

    Acute Myeloid Leukemia; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia With Multilineage Dysplasia; Myeloid Sarcoma; Secondary Acute Myeloid Leukemia; Therapy-Related Acute Myeloid Leukemia; Therapy-Related Myelodysplastic Syndrome

  18. Combination Chemotherapy and Imatinib Mesylate in Treating Children With Relapsed Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2013-10-07

    L1 Childhood Acute Lymphoblastic Leukemia; L2 Childhood Acute Lymphoblastic Leukemia; Non-T, Non-B Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  19. Studying Biomarkers in Samples From Younger Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-05-17

    Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myeloid Leukemia/Other Myeloid Malignancies; Childhood Acute Myelomonocytic Leukemia (M4)

  20. Nivolumab and Dasatinib in Treating Patients With Relapsed or Refractory Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-08-25

    B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Refractory Adult Acute Lymphoblastic Leukemia; Refractory Childhood Acute Lymphoblastic Leukemia

  1. Novel and Emerging Drugs for Acute Myeloid Leukemia

    PubMed Central

    Stein, E.M.; Tallman, M.S.

    2014-01-01

    Acute myeloid leukemia (AML) is a challenging disease to treat with the majority of patients dying from their illness. While overall survival has been markedly prolonged in acute promyelocytic leukemia (APL), survival in younger adults with other subtypes of AML has only modestly improved over the last twenty years. Physicians who treat AML eagerly await drugs like Imatinib for chronic myeloid leukemia, Cladribine for hairy cell leukemia, and Rituximab for non-Hodgkin Lymphoma which have had an important impact on improving outcome. Recent research efforts have focused on refining traditional chemotherapeutic agents to make them more active in AML, targeting specific genetic mutations in myeloid leukemia cells, and utilizing novel agents such as Lenalidomide that have shown activity in other hematologic malignancies. Here, we focus on reviewing the recent literature on agents that may assume a role in clinical practice for patients with AML over the next five years. PMID:22483153

  2. Azacitidine, Mitoxantrone Hydrochloride, and Etoposide in Treating Older Patients With Poor-Prognosis Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-08-18

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  3. What's New in Chronic Lymphocytic Leukemia Research and Treatment?

    MedlinePlus

    ... Topic Additional resources for chronic lymphocytic leukemia What`s new in chronic lymphocytic leukemia research and treatment? Many ... person's outlook and whether they will need treatment. New drugs for chronic lymphocytic leukemia Dozens of new ...

  4. Genetics Home Reference: PDGFRB-associated chronic eosinophilic leukemia

    MedlinePlus

    ... associated chronic eosinophilic leukemia PDGFRB-associated chronic eosinophilic leukemia Enable Javascript to view the expand/collapse boxes. ... All Close All Description PDGFRB -associated chronic eosinophilic leukemia is a type of cancer of blood-forming ...

  5. 3-AP and Fludarabine in Treating Patients With Myeloproliferative Disorders, Chronic Myelomonocytic Leukemia, or Accelerated Phase or Blastic Phase Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2014-12-16

    Accelerated Phase Chronic Myelogenous Leukemia; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blastic Phase Chronic Myelogenous Leukemia; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Essential Thrombocythemia; Philadelphia Chromosome Negative Chronic Myelogenous Leukemia; Polycythemia Vera; Primary Myelofibrosis; Relapsing Chronic Myelogenous Leukemia

  6. Genetics Home Reference: acute promyelocytic leukemia

    MedlinePlus

    ... acute myeloid leukemia, a cancer of the blood-forming tissue ( bone marrow ). In normal bone marrow, hematopoietic ... 7186-203. Review. Citation on PubMed de Thé H, Chen Z. Acute promyelocytic leukaemia: novel insights into ...

  7. Therapeutic Autologous Lymphocytes and Aldesleukin in Treating Patients With High-Risk or Recurrent Myeloid Leukemia After Undergoing Donor Stem Cell Transplant

    ClinicalTrials.gov

    2011-07-12

    Accelerated Phase Chronic Myelogenous Leukemia; Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia

  8. What Should You Ask Your Doctor about Acute Lymphocytic Leukemia?

    MedlinePlus

    ... leukemia? What should you ask your doctor about acute lymphocytic leukemia? It is important to have frank, honest discussions ... answer many of your questions. What kind of acute lymphocytic leukemia (ALL) do I have? Do I have any ...

  9. What Are the Key Statistics about Acute Lymphocytic Leukemia?

    MedlinePlus

    ... lymphocytic leukemia? What are the key statistics about acute lymphocytic leukemia? The American Cancer Society’s estimates for acute lymphocytic leukemia (ALL) in the United States for 2016 (including ...

  10. Immunotherapy for acute myeloid leukemia.

    PubMed

    Jurcic, Joseph G

    2005-09-01

    Immunotherapeutic strategies have become part of standard cancer treatment. Chimeric and humanized antibodies have demonstrated activity against a variety of tumors. Although the humanized anti-CD33 antibody HuM195 has only modest activity against overt acute myeloid leukemia (AML), it can eliminate minimal residual disease in acute promyelocytic leukemia. High-dose radioimmunotherapy with b-particle-emitting isotopes targeting CD33, CD45, and CD66 can potentially allow intensification of antileukemic therapy before hematopoietic stem cell transplantation. Conversely, a-particle immunotherapy with isotopes such as bismuth-213 or actinium-225 offers the possibility of selective tumor cell kill while sparing surrounding normal tissues. Targeted chemotherapy with the anti-CD33- calicheamicin construct gemtuzumab ozogamicin has produced remissions in relapsed AML and appears promising when used in combination with standard chemotherapy for newly diagnosed AML. T-cell recognition of peptide antigens presented on the cell surface in combination with major histocompatibility complex antigen provides another potentially promising approach for the treatment of AML. PMID:16091194

  11. Eltrombopag Olamine in Improving Platelet Recovery in Older Patients With Acute Myeloid Leukemia Undergoing Chemotherapy

    ClinicalTrials.gov

    2016-02-17

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia

  12. Dasatinib, Cytarabine, and Idarubicin in Treating Patients With High-Risk Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-04-08

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  13. Characterization of the CDR3 structure of the Vβ21 T cell clone in patients with P210(BCR-ABL)-positive chronic myeloid leukemia and B-cell acute lymphoblastic leukemia.

    PubMed

    Zha, Xianfeng; Chen, Shaohua; Yang, Lijian; Li, Bo; Chen, Yu; Yan, Xiaojuan; Li, Yangqiu

    2011-10-01

    The clonally expanded T cells identified in most cancer patients that respond to tumor-associated antigen such as P210(BCR-ABL) protein have definite, specific antitumor cytotoxicity. T cell receptor (TCR) Vβ CDR3 repertoire diversity was analyzed in patients with chronic myeloid leukemia (CML) and BCR-ABL(+) B-cell acute lymphoblastic leukemia (B-ALL) by GeneScan. A high frequency of oligoclonal expansion of the TCR Vβ21 subfamily was observed in the peripheral blood of CML and B-ALL patients. These clonally expanded Vβ21 T cells were correlated with the pathophysiologic process of CML. A conserved amino acid motif (SLxxV) was observed within the CDR3 region in only 3 patients with CML. Preferential usage of the Jβ segments was also observed in a minority of patients. The 3-dimensional structures of the CDR3 region containing the same motif or using the same Jβ segment displayed low similarity; on the contrary, the conformation of the CDR3 region containing no conserved motif in some T cell clones was highly similar. In conclusion, our findings indicate a high frequency of TCR Vβ21 subfamily expansion in p210(BCR-ABL)-positive CML and B-ALL patients. The characterization of the CDR3 structure was complex. Regrettably, at this time it was not possible to confirm that the Vβ21 T cell clones were derived from the stimulation of p210(BCR-ABL) protein.

  14. Monoclonal Antibody Therapy in Treating Patients With Ovarian Epithelial Cancer, Melanoma, Acute Myeloid Leukemia, Myelodysplastic Syndrome, or Non-Small Cell Lung Cancer

    ClinicalTrials.gov

    2013-01-09

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Melanoma; Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Stage IV Melanoma; Stage IV Non-small Cell Lung Cancer

  15. Lenalidomide and Vaccine Therapy in Treating Patients With Early-Stage Asymptomatic Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2016-10-07

    Chronic Lymphocytic Leukemia; Stage 0 Chronic Lymphocytic Leukemia; Stage I Chronic Lymphocytic Leukemia; Stage I Small Lymphocytic Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Small Lymphocytic Lymphoma

  16. Ipilimumab and Decitabine in Treating Patients With Relapsed or Refractory Myelodysplastic Syndrome or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-09-12

    Chimerism; Hematopoietic Cell Transplantation Recipient; Previously Treated Myelodysplastic Syndrome; RAEB-1; RAEB-2; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  17. Acute myeloid leukemia presenting as galactorrhea

    PubMed Central

    Nambiar, K. Rakul; Devi, R. Nandini

    2016-01-01

    Acute myeloid leukemia (AML) presents with symptoms related to pancytopenia (weakness, infections, bleeding diathesis) and organ infiltration with leukemic cells. Galactorrhea is an uncommon manifestation of AML. We report a case of AML presenting with galactorrhea. PMID:27695173

  18. Acute myeloid leukemia presenting as galactorrhea

    PubMed Central

    Nambiar, K. Rakul; Devi, R. Nandini

    2016-01-01

    Acute myeloid leukemia (AML) presents with symptoms related to pancytopenia (weakness, infections, bleeding diathesis) and organ infiltration with leukemic cells. Galactorrhea is an uncommon manifestation of AML. We report a case of AML presenting with galactorrhea.

  19. Treatment Option Overview (Childhood Acute Lymphoblastic Leukemia)

    MedlinePlus

    ... recovery) and treatment options. Childhood acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... genetic conditions affect the risk of having childhood ALL. Anything that increases your risk of getting a ...

  20. Stages of Adult Acute Lymphoblastic Leukemia

    MedlinePlus

    ... recovery) and treatment options. Adult acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... to radiation may increase the risk of developing ALL. Anything that increases your risk of getting a ...

  1. Risk Groups for Childhood Acute Lymphoblastic Leukemia

    MedlinePlus

    ... recovery) and treatment options. Childhood acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... genetic conditions affect the risk of having childhood ALL. Anything that increases your risk of getting a ...

  2. Treatment Options for Adult Acute Lymphoblastic Leukemia

    MedlinePlus

    ... recovery) and treatment options. Adult acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... to radiation may increase the risk of developing ALL. Anything that increases your risk of getting a ...

  3. Treatment Options for Childhood Acute Lymphoblastic Leukemia

    MedlinePlus

    ... recovery) and treatment options. Childhood acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... genetic conditions affect the risk of having childhood ALL. Anything that increases your risk of getting a ...

  4. Treatment Option Overview (Adult Acute Lymphoblastic Leukemia)

    MedlinePlus

    ... recovery) and treatment options. Adult acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... to radiation may increase the risk of developing ALL. Anything that increases your risk of getting a ...

  5. Combination Chemotherapy in Treating Young Patients With Down Syndrome and Acute Myeloid Leukemia or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2016-03-16

    Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Childhood Myelodysplastic Syndromes; de Novo Myelodysplastic Syndromes; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  6. Acute Appendicitis Secondary to Acute Promyelocytic Leukemia

    PubMed Central

    Rodriguez, Eduardo A.; Lopez, Marvin A.; Valluri, Kartik; Wang, Danlu; Fischer, Andrew; Perdomo, Tatiana

    2015-01-01

    Patient: Female, 43 Final Diagnosis: Myeloid sarcoma appendicitis Symptoms: Abdominal pain • chills • fever Medication: — Clinical Procedure: Laparoscopic appendectomy, bone marrow biopsy Specialty: Gastroenterology and Hepatology Objective: Rare disease Background: The gastrointestinal tract is a rare site for extramedullary involvement in acute promyelocytic leukemia (APL). Case Report: A 43-year-old female with no past medical history presented complaining of mild abdominal pain, fever, and chills for the past day. On examination, she was tachycardic and febrile, with mild tenderness of her right lower quadrant and without signs of peritoneal irritation. Laboratory examination revealed pancytopenia and DIC, with a fibrinogen level of 290 mg/dL. CT of the abdomen showed a thickened and hyperemic appendix without perforation or abscess, compatible with acute appendicitis. The patient was given IV broad-spectrum antibiotics and was transfused with packed red blood cells and platelets. She underwent uncomplicated laparoscopic appendectomy and bone marrow biopsy, which revealed neo-plastic cells of 90% of the total bone marrow cellularity. Flow cytometry indicated presence of 92.4% of immature myeloid cells with t (15: 17) and q (22: 12) mutations, and FISH analysis for PML-RARA demonstrated a long-form fusion transcript, positive for APL. Appendix pathology described leukemic infiltration with co-expression of myeloperoxidase and CD68, consistent with myeloid sarcoma of the appendix. The patient completed a course of daunorubicin, cytarabine, and all trans-retinoic acid. Repeat bone marrow biopsy demonstrated complete remission. She will follow up with her primary care physician and hematologist/oncologist. Conclusions: Myeloid sarcoma of the appendix in the setting of APL is very rare and it might play a role in the development of acute appendicitis. Urgent management, including bone marrow biopsy for definitive diagnosis and urgent surgical intervention

  7. S1312, Inotuzumab Ozogamicin and Combination Chemotherapy in Treating Patients With Relapsed or Refractory Acute Leukemia

    ClinicalTrials.gov

    2016-04-14

    Acute Leukemias of Ambiguous Lineage; B-cell Adult Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma

  8. Clofarabine, Cytarabine, and G-CSF in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-05-05

    Acute Myeloid Leukemia; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia

  9. Romidepsin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-12-03

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Recurrent Adult Acute Myeloid Leukemia

  10. Selinexor and Chemotherapy in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-09-29

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  11. Lenalidomide in Treating Older Patients With Acute Myeloid Leukemia Who Have Undergone Stem Cell Transplant

    ClinicalTrials.gov

    2015-03-02

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia

  12. Choline Magnesium Trisalicylate and Combination Chemotherapy in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-08

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  13. Tipifarnib and Etoposide in Treating Older Patients With Newly Diagnosed, Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-10-01

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  14. Alvocidib, Cytarabine, and Mitoxantrone in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-07-14

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  15. Alvocidib, Cytarabine, and Mitoxantrone in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-06-03

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  16. Omacetaxine Mepesuccinate, Cytarabine, and Decitabine in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-04-05

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  17. Eltrombopag Olamine in Treating Patients With Relapsed/Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-04-04

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  18. Vorinostat and Idarubicin in Treating Patients With Relapsed or Refractory Leukemia or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2013-09-27

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Promyelocytic Leukemia (M3); Blastic Phase Chronic Myelogenous Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  19. Blinatumomab and Combination Chemotherapy or Dasatinib, Prednisone, and Blinatumomab in Treating Older Patients With Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-10-19

    B Acute Lymphoblastic Leukemia; B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Recurrent Adult Acute Lymphoblastic Leukemia; Refractory Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia

  20. Levofloxacin in Preventing Infection in Young Patients With Acute Leukemia Receiving Chemotherapy or Undergoing Stem Cell Transplantation

    ClinicalTrials.gov

    2016-10-14

    Acute Leukemias of Ambiguous Lineage; Bacterial Infection; Diarrhea; Fungal Infection; Musculoskeletal Complications; Neutropenia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  1. Bortezomib and Combination Chemotherapy in Treating Young Patients With Relapsed Acute Lymphoblastic Leukemia or Lymphoblastic Lymphoma

    ClinicalTrials.gov

    2014-09-30

    B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Lymphoblastic Lymphoma; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  2. Bortezomib in Treating Patients With High-Risk Acute Myeloid Leukemia in Remission

    ClinicalTrials.gov

    2014-10-30

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia

  3. Bioelectrical Impedance Measurement for Predicting Treatment Outcome in Patients With Newly Diagnosed Acute Leukemia

    ClinicalTrials.gov

    2016-07-26

    Acute Undifferentiated Leukemia; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Mast Cell Leukemia; Myeloid/NK-cell Acute Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  4. What's New in Adult Acute Myeloid Leukemia Research and Treatment?

    MedlinePlus

    ... Topic Additional resources for acute myeloid leukemia What’s new in acute myeloid leukemia research and treatment? Researchers ... benefit from current treatments. Researchers are studying many new chemo drugs for use in AML, including: Sapacitabine, ...

  5. Ofatumumab, Pentostatin, and Cyclophosphamide in Treating Patients With Untreated Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2014-10-30

    Hematopoietic/Lymphoid Cancer; B-cell Chronic Lymphocytic Leukemia; Contiguous Stage II Small Lymphocytic Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Stage 0 Chronic Lymphocytic Leukemia; Stage I Chronic Lymphocytic Leukemia; Stage I Small Lymphocytic Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Small Lymphocytic Lymphoma

  6. Trebananib With or Without Low-Dose Cytarabine in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-25

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  7. Actual biological diagnosis of acute myeloblastic leukemia in children

    PubMed Central

    Buga Corbu, V; Glűck, A; Arion, C

    2014-01-01

    Abstract Acute myeloblastic leukemia accounts for approximately 20% of acute leukemias in children. The days the microscope represented the main tool in the diagnosis and classification of Acute Myeloblastic Leukemia seem to be very far. This review summarizes the current diagnosis of this malignancy, where the morphological, cytochemical, immunophenotyping, cytogenetic and molecular characterization represents the basement of a risk group related therapy. PMID:25408742

  8. Actual biological diagnosis of acute myeloblastic leukemia in children.

    PubMed

    Buga Corbu, V; Glűck, A; Arion, C

    2014-06-15

    Acute myeloblastic leukemia accounts for approximately 20% of acute leukemias in children. The days the microscope represented the main tool in the diagnosis and classification of Acute Myeloblastic Leukemia seem to be very far. This review summarizes the current diagnosis of this malignancy, where the morphological, cytochemical, immunophenotyping, cytogenetic and molecular characterization represents the basement of a risk group related therapy.

  9. What's New in Chronic Myeloid Leukemia Research and Treatment?

    MedlinePlus

    ... Topic Additional resources for chronic myeloid leukemia What`s new in chronic myeloid leukemia research and treatment? Studies ... such as cyclosporine or hydroxychloroquine, with a TKI. New drugs for CML Because researchers now know the ...

  10. [Chronic myeloid leukemia: "archetype" of the impact of targeted therapies].

    PubMed

    Nasr, R; Bazarbachi, A

    2012-08-01

    Chronic myeloid leukemia (CML) is a chronic blood disorder characterized by a reciprocal translocation between chromosomes 9 and 22, leading to the creation of a chimeric gene encoding the BCR-ABL fusion protein with a constitutive tyrosine kinase activity. Although long known as a disease with an inexorable progression to acute leukemia, CML history has been significantly improved by the use of imatinib, a tyrosine kinase inhibitor. Imatinib has revolutionized the treatment of CML by transforming it from an invariably fatal disease to a chronic but manageable condition. In fact, the discovery of this class of targeted therapy had an impact not only on the survival of CML patients but also on other scientific and medical fields. This review illustrates the impact of imatinib, the first example of tyrosine kinase inhibitors on the treatment of CML, on the treatment of other cancers, the impact on health systems and on the scientific research in general.

  11. Childhood acute leukemias are frequent in Mexico City: descriptive epidemiology

    PubMed Central

    2011-01-01

    Background Worldwide, acute leukemia is the most common type of childhood cancer. It is particularly common in the Hispanic populations residing in the United States, Costa Rica, and Mexico City. The objective of this study was to determine the incidence of acute leukemia in children who were diagnosed and treated in public hospitals in Mexico City. Methods Included in this study were those children, under 15 years of age and residents of Mexico City, who were diagnosed in 2006 and 2007 with leukemia, as determined by using the International Classification of Childhood Cancer. The average annual incidence rates (AAIR), and the standardized average annual incidence rates (SAAIR) per million children were calculated. We calculated crude, age- and sex-specific incidence rates and adjusted for age by the direct method with the world population as standard. We determined if there were a correlation between the incidence of acute leukemias in the various boroughs of Mexico City and either the number of agricultural hectares, the average number of persons per household, or the municipal human development index for Mexico (used as a reference of socio-economic level). Results Although a total of 610 new cases of leukemia were registered during 2006-2007, only 228 fit the criteria for inclusion in this study. The overall SAAIR was 57.6 per million children (95% CI, 46.9-68.3); acute lymphoblastic leukemia (ALL) was the most frequent type of leukemia, constituting 85.1% of the cases (SAAIR: 49.5 per million), followed by acute myeloblastic leukemia at 12.3% (SAAIR: 6.9 per million), and chronic myeloid leukemia at 1.7% (SAAIR: 0.9 per million). The 1-4 years age group had the highest SAAIR for ALL (77.7 per million). For cases of ALL, 73.2% had precursor B-cell immunophenotype (SAAIR: 35.8 per million) and 12.4% had T-cell immunophenotype (SAAIR 6.3 per million). The peak ages for ALL were 2-6 years and 8-10 years. More than half the children (58.8%) were classified as high

  12. Phase I Combination of Midostaurin, Bortezomib, and Chemo in Relapsed/Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-04

    Acute Myeloid Leukemia; Acute Myeloid Leukemia With Multilineage Dysplasia Following; Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  13. AR-42 and Decitabine in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-04-21

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  14. The biology of pediatric acute megakaryoblastic leukemia

    PubMed Central

    Downing, James R.

    2015-01-01

    Acute megakaryoblastic leukemia (AMKL) comprises between 4% and 15% of newly diagnosed pediatric acute myeloid leukemia patients. AMKL in children with Down syndrome (DS) is characterized by a founding GATA1 mutation that cooperates with trisomy 21, followed by the acquisition of additional somatic mutations. In contrast, non–DS-AMKL is characterized by chimeric oncogenes consisting of genes known to play a role in normal hematopoiesis. CBFA2T3-GLIS2 is the most frequent chimeric oncogene identified to date in this subset of patients and confers a poor prognosis. PMID:26186939

  15. Targeting of leukemia-initiating cells in acute promyelocytic leukemia

    PubMed Central

    Lo-Coco, Francesco

    2015-01-01

    Acute promyelocytic leukemia (APL) is a subtype of acute myeloid leukemia (AML) with peculiar molecular, phenotypic and clinical features and unique therapeutic response to specific treatments. The disease is characterized by a single, pathognomonic molecular event, consisting of the translocation t(15;17) which gives rise to the PML/retinoic acid receptor α (RARα) hybrid protein. The development of this leukemia is mainly related to the fusion oncoprotein PML/RARα, acting as an altered RAR mediating abnormal signalling and repression of myeloid differentiation, with consequent accumulation of undifferentiated promyelocytes. The prognosis of APL has dramatically been improved with the introduction in therapy of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). The main effect of these two drugs is linked to the targeting of either RAR moiety of the PML/RARα molecule and induction of cell differentiation (ATRA) or of the PML moiety of the fusion protein and induction of leukemic cell apoptosis, including leukemic progenitors (mostly induced by ATO). These two drugs exhibited excellent synergism and determine a very high rate of durable remissions in low/intermediate-risk APLs, when administered in the absence of any chemotherapeutic drug. The strong synergism and the marked clinical efficacy of these two agents when administered together seem to be related to their capacity to induce PML/RARα degradation and complete eradication of leukemia stem cells. PMID:27358876

  16. Chronic myeloid leukemia: reminiscences and dreams

    PubMed Central

    Mughal, Tariq I.; Radich, Jerald P.; Deininger, Michael W.; Apperley, Jane F.; Hughes, Timothy P.; Harrison, Christine J.; Gambacorti-Passerini, Carlo; Saglio, Giuseppe; Cortes, Jorge; Daley, George Q.

    2016-01-01

    With the deaths of Janet Rowley and John Goldman in December 2013, the world lost two pioneers in the field of chronic myeloid leukemia. In 1973, Janet Rowley, unraveled the cytogenetic anatomy of the Philadelphia chromosome, which subsequently led to the identification of the BCR-ABL1 fusion gene and its principal pathogenetic role in the development of chronic myeloid leukemia. This work was also of major importance to support the idea that cytogenetic changes were drivers of leukemogenesis. John Goldman originally made seminal contributions to the use of autologous and allogeneic stem cell transplantation from the late 1970s onwards. Then, in collaboration with Brian Druker, he led efforts to develop ABL1 tyrosine kinase inhibitors for the treatment of patients with chronic myeloid leukemia in the late 1990s. He also led the global efforts to develop and harmonize methodology for molecular monitoring, and was an indefatigable organizer of international conferences. These conferences brought together clinicians and scientists, and accelerated the adoption of new therapies. The abundance of praise, tributes and testimonies expressed by many serve to illustrate the indelible impressions these two passionate and affable scholars made on so many people’s lives. This tribute provides an outline of the remarkable story of chronic myeloid leukemia, and in writing it, it is clear that the historical triumph of biomedical science over this leukemia cannot be considered without appreciating the work of both Janet Rowley and John Goldman. PMID:27132280

  17. Chronic myeloid leukemia: reminiscences and dreams.

    PubMed

    Mughal, Tariq I; Radich, Jerald P; Deininger, Michael W; Apperley, Jane F; Hughes, Timothy P; Harrison, Christine J; Gambacorti-Passerini, Carlo; Saglio, Giuseppe; Cortes, Jorge; Daley, George Q

    2016-05-01

    With the deaths of Janet Rowley and John Goldman in December 2013, the world lost two pioneers in the field of chronic myeloid leukemia. In 1973, Janet Rowley, unraveled the cytogenetic anatomy of the Philadelphia chromosome, which subsequently led to the identification of the BCR-ABL1 fusion gene and its principal pathogenetic role in the development of chronic myeloid leukemia. This work was also of major importance to support the idea that cytogenetic changes were drivers of leukemogenesis. John Goldman originally made seminal contributions to the use of autologous and allogeneic stem cell transplantation from the late 1970s onwards. Then, in collaboration with Brian Druker, he led efforts to develop ABL1 tyrosine kinase inhibitors for the treatment of patients with chronic myeloid leukemia in the late 1990s. He also led the global efforts to develop and harmonize methodology for molecular monitoring, and was an indefatigable organizer of international conferences. These conferences brought together clinicians and scientists, and accelerated the adoption of new therapies. The abundance of praise, tributes and testimonies expressed by many serve to illustrate the indelible impressions these two passionate and affable scholars made on so many people's lives. This tribute provides an outline of the remarkable story of chronic myeloid leukemia, and in writing it, it is clear that the historical triumph of biomedical science over this leukemia cannot be considered without appreciating the work of both Janet Rowley and John Goldman.

  18. Chronic myeloid leukemia: reminiscences and dreams.

    PubMed

    Mughal, Tariq I; Radich, Jerald P; Deininger, Michael W; Apperley, Jane F; Hughes, Timothy P; Harrison, Christine J; Gambacorti-Passerini, Carlo; Saglio, Giuseppe; Cortes, Jorge; Daley, George Q

    2016-05-01

    With the deaths of Janet Rowley and John Goldman in December 2013, the world lost two pioneers in the field of chronic myeloid leukemia. In 1973, Janet Rowley, unraveled the cytogenetic anatomy of the Philadelphia chromosome, which subsequently led to the identification of the BCR-ABL1 fusion gene and its principal pathogenetic role in the development of chronic myeloid leukemia. This work was also of major importance to support the idea that cytogenetic changes were drivers of leukemogenesis. John Goldman originally made seminal contributions to the use of autologous and allogeneic stem cell transplantation from the late 1970s onwards. Then, in collaboration with Brian Druker, he led efforts to develop ABL1 tyrosine kinase inhibitors for the treatment of patients with chronic myeloid leukemia in the late 1990s. He also led the global efforts to develop and harmonize methodology for molecular monitoring, and was an indefatigable organizer of international conferences. These conferences brought together clinicians and scientists, and accelerated the adoption of new therapies. The abundance of praise, tributes and testimonies expressed by many serve to illustrate the indelible impressions these two passionate and affable scholars made on so many people's lives. This tribute provides an outline of the remarkable story of chronic myeloid leukemia, and in writing it, it is clear that the historical triumph of biomedical science over this leukemia cannot be considered without appreciating the work of both Janet Rowley and John Goldman. PMID:27132280

  19. Filgrastim, Cladribine, Cytarabine, and Mitoxantrone Hydrochloride in Treating Patients With Newly Diagnosed or Relapsed/Refractory Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndromes

    ClinicalTrials.gov

    2016-09-26

    Acute Biphenotypic Leukemia; de Novo Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  20. Specificity of Heteroantisera to Human Acute Leukemia-Associated Antigens

    PubMed Central

    Baker, Michael A.; Ramachandar, K.; Taub, Robert N.

    1974-01-01

    Antisera have been raised to human leukemic blast cells from individual patients in mice rendered tolerant with cyclophosphamide to remission leukocytes from the same individual. 10 antisera were raised against acute myelogenous leukemia (AML) cells and 5 antisera were raised against acute lymphoblastic leukemia (ALL) cells. Antisera to AML cells were absorbed with ALL cells, and antisera to ALL cells were absorbed with AML cells. Unabsorbed and absorbed antisera as well as antisera raised in nontolerant mice were tested for cytotoxicity against various cells of a panel containing myeloblasts from 35 patients with AML, lymphoblasts from 7 patients with ALL, myeloblasts from 7 patients with chronic myelogenous leukemia (CML) in blast crisis, peripheral blood leukocytes from 12 patients with acute leukemia in remission and 30 nonleukemic patients, and nucleated bone marrow cells from 10 nonleukemic patients. Unabsorbed antisera to AML or ALL cells raised in tolerant mice were highly cytotoxic to leukemic blasts cells but significantly less cytotoxic to remission and control cells. Antisera to AML cells absorbed with ALL cells retained measurable cytotoxicity against AML cells but were not cytotoxic to ALL cells or control cells. Similarly, antisera to ALL cells absorbed with AML cells retained significant cytotoxicity only to ALL cells. Control antisera raised in nontolerant mice were cytotoxic to all cells tested. Although species specific, histocompatibility, differentiation, maturation, and cell cycle-associated antigens may be responsible in part for the cytotoxic activity of the unabsorbed antisera, the absorbed antisera are probably detecting antigens specific for their leukemic cell type. PMID:4140196

  1. Total Marrow and Lymphoid Irradiation and Chemotherapy Before Donor Transplant in Treating Patients With Myelodysplastic Syndrome or Acute Leukemia

    ClinicalTrials.gov

    2016-08-10

    Adult Acute Lymphoblastic Leukemia in Complete Remission; Acute Myeloid Leukemia in Remission; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Childhood Acute Lymphoblastic Leukemia in Complete Remission

  2. Vaccine Therapy and Basiliximab in Treating Patients With Acute Myeloid Leukemia in Complete Remission

    ClinicalTrials.gov

    2016-06-27

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22)

  3. CPI-613, Cytarabine, and Mitoxantrone Hydrochloride in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-26

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia

  4. Clofarabine and Cytarabine in Treating Patients With Acute Myeloid Leukemia With Minimal Residual Disease

    ClinicalTrials.gov

    2013-05-07

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia

  5. Cancer Statistics: Acute Lymphocytic Leukemia (ALL)

    MedlinePlus

    ... at a Glance Show More At a Glance Estimated New Cases in 2016 6,590 % of All New Cancer Cases 0.4% Estimated Deaths in 2016 1,430 % of All Cancer ... of This Cancer : In 2013, there were an estimated 77,855 people living with acute lymphocytic leukemia ...

  6. Ixazomib in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-10-18

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  7. Vorinostat and Gemtuzumab Ozogamicin in Treating Older Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2011-11-03

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Untreated Adult Acute Myeloid Leukemia

  8. Cytarabine With or Without SCH 900776 in Treating Adult Patients With Relapsed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-20

    Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia

  9. Arsenic Trioxide in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-10-04

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  10. Flavopiridol, Cytarabine, and Mitoxantrone in Treating Patients With Relapsed or Refractory Acute Leukemia

    ClinicalTrials.gov

    2013-09-27

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Malignant Neoplasm; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia

  11. Tipifarnib and Etoposide in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-01-08

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  12. Bortezomib, Daunorubicin, and Cytarabine in Treating Older Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-09-04

    Acute Myeloid Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Untreated Adult Acute Myeloid Leukemia

  13. Tositumomab and Iodine I 131 Tositumomab in Treating Patients With Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma in First Remission

    ClinicalTrials.gov

    2015-08-04

    Lymphoid Leukemia in Remission; Stage I Chronic Lymphocytic Leukemia; Stage II Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Small Lymphocytic Lymphoma

  14. Dasatinib for the treatment of chronic myeloid leukemia: patient selection and special considerations

    PubMed Central

    Keskin, Dilek; Sadri, Sevil; Eskazan, Ahmet Emre

    2016-01-01

    Dasatinib is one of the second-generation tyrosine kinase inhibitors used in imatinib resistance and/or intolerance, as well as in the frontline setting in patients with chronic myeloid leukemia-chronic phase, and also in patients with advanced disease. It is also utilized in Philadelphia chromosome-positive acute lymphocytic leukemia. While choosing the appropriate tyrosine kinase inhibitor (ie, dasatinib) for each individual patient, comorbidities and BCR-ABL1 kinase domain mutations should always be taken into consideration, among other things. This review mainly focuses on patient selection prior to dasatinib administration in the treatment of chronic myeloid leukemia. PMID:27784993

  15. Granulocytic sarcoma with compressive myelopathy: a rare presentation of chronic myelogenous leukemia.

    PubMed

    Ganapule, Abhijeet P; Viswabandya, Auro; Jasper, Anita; Patel, Palak; Kokil, Gautami

    2014-07-01

    Granulocytic sarcoma occurs most commonly in acute myelogenous leukemia. The appearance of granulocytic sarcoma in chronic myelogenous leukemia signals accelerated phase/ blast transformation. This is a rare case of undiagnosed chronic myelogenous leukemia with granulocytic sarcoma causing cord compression, which went into tumour lysis syndrome requiring dialysis after starting of steroids and radiotherapy. A 43-year-old male presented in emergency department with acute onset of flaccid paralysis. On clinical examination, there was hepatosplenomegaly and lower motor neuron paralysis in the lower limbs. The peripheral smear was consistent with chronic myelogenous leukemia in chronic phase. The MRI spine revealed para-spinal and epidural masses causing cord compression and the biopsy from the paraspinal mass was consistent with granulocytic sarcoma. PMID:25177619

  16. Caspofungin Acetate or Fluconazole in Preventing Invasive Fungal Infections in Patients With Acute Myeloid Leukemia Who Are Undergoing Chemotherapy

    ClinicalTrials.gov

    2016-08-23

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myeloid Leukemia in Remission; Childhood Acute Myelomonocytic Leukemia (M4); Fungal Infection; Neutropenia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  17. What Are the Risk Factors for Acute Lymphocytic Leukemia?

    MedlinePlus

    ... lymphocytic leukemia? What are the risk factors for acute lymphocytic leukemia? A risk factor is something that affects your ... this is unknown. Having an identical twin with ALL Someone who has an identical twin who develops ...

  18. Iodine I 131 Monoclonal Antibody BC8, Fludarabine Phosphate, Total Body Irradiation, and Donor Stem Cell Transplant Followed by Cyclosporine and Mycophenolate Mofetil in Treating Patients With Advanced Acute Myeloid Leukemia or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2015-11-16

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Refractory Anemia With Ringed Sideroblasts; Refractory Cytopenia With Multilineage Dysplasia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  19. Radiolabeled Monoclonal Antibody Therapy, Fludarabine Phosphate, and Low-Dose Total-Body Irradiation Followed by Donor Stem Cell Transplant and Immunosuppression Therapy in Treating Older Patients With Advanced Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndromes

    ClinicalTrials.gov

    2015-11-16

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Refractory Anemia With Ringed Sideroblasts; Refractory Cytopenia With Multilineage Dysplasia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  20. Targeting MTHFD2 in acute myeloid leukemia.

    PubMed

    Pikman, Yana; Puissant, Alexandre; Alexe, Gabriela; Furman, Andrew; Chen, Liying M; Frumm, Stacey M; Ross, Linda; Fenouille, Nina; Bassil, Christopher F; Lewis, Caroline A; Ramos, Azucena; Gould, Joshua; Stone, Richard M; DeAngelo, Daniel J; Galinsky, Ilene; Clish, Clary B; Kung, Andrew L; Hemann, Michael T; Vander Heiden, Matthew G; Banerji, Versha; Stegmaier, Kimberly

    2016-06-27

    Drugs targeting metabolism have formed the backbone of therapy for some cancers. We sought to identify new such targets in acute myeloid leukemia (AML). The one-carbon folate pathway, specifically methylenetetrahydrofolate dehydrogenase-cyclohydrolase 2 (MTHFD2), emerged as a top candidate in our analyses. MTHFD2 is the most differentially expressed metabolic enzyme in cancer versus normal cells. Knockdown of MTHFD2 in AML cells decreased growth, induced differentiation, and impaired colony formation in primary AML blasts. In human xenograft and MLL-AF9 mouse leukemia models, MTHFD2 suppression decreased leukemia burden and prolonged survival. Based upon primary patient AML data and functional genomic screening, we determined that FLT3-ITD is a biomarker of response to MTHFD2 suppression. Mechanistically, MYC regulates the expression of MTHFD2, and MTHFD2 knockdown suppresses the TCA cycle. This study supports the therapeutic targeting of MTHFD2 in AML. PMID:27325891

  1. Sirolimus, Idarubicin, and Cytarabine in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-06-03

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Untreated Adult Acute Myeloid Leukemia

  2. Cholecalciferol in Treating Patients With Acute Myeloid Leukemia Undergoing Intensive Induction Chemotherapy

    ClinicalTrials.gov

    2015-06-18

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Untreated Adult Acute Myeloid Leukemia

  3. Lithium Carbonate and Tretinoin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-10-19

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  4. Azacitidine and Gemtuzumab Ozogamicin in Treating Older Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-09-20

    Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  5. Comparing Three Different Combination Chemotherapy Regimens in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-07-02

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  6. Risk of chronic myeloid and acute leukemia mortality after exposure to ionizing radiation among workers at four U.S. nuclear weapons facilities and a nuclear naval shipyard.

    PubMed

    Schubauer-Berigan, Mary K; Daniels, Robert D; Fleming, Donald A; Markey, Andrea M; Couch, James R; Ahrenholz, Steven H; Burphy, Jenneh S; Anderson, Jeri L; Tseng, Chih-Yu

    2007-02-01

    A nested case-control study was conducted among workers at five U.S. nuclear facilities to evaluate leukemia mortality risk (excluding chronic lymphocytic) from ionizing radiation using worksite doses and adjusting for potential confounding. Conditional logistic regression was used to estimate the relative risk (RR) of exposed workers and the excess relative risk (ERR) per unit of radiation among 206 cases and 823 age-matched controls. Adjusting for sex and benzene, the RR of leukemia for workers receiving more than 10 mSv was higher compared to those receiving lower or no dose; however, the risk increase was attenuated in the highest dose group. The ERR per 10 mSv was 1.44% (95% CI: < -1.03%, 7.59%) but was higher for workers born after 1921 compared to workers born earlier or when excluding leukemias of uncertain type. Excluding the 7% who were high-dose workers (> 100 mSv), the sex- and benzene-adjusted ERR per 10 mSv was 6.82% (95% CI: -2.87%, 24.1%). The results suggest that risks among these nuclear workers are comparable to those observed in high-dose populations, although no evidence was observed of a positive quadratic dose-response term in this study. This large study is among the first to jointly evaluate benzene and ionizing radiation risk.

  7. Chronic B-Cell Leukemias and Agent Orange

    MedlinePlus

    ... survivors' benefits . Research on B-cell leukemias and herbicides The Health and Medicine Division (HMD) (formally known ... sufficient evidence of an association between exposure to herbicides and chronic lymphocytic leukemia. In 2003, VA recognized ...

  8. Azacitidine With or Without Lenalidomide or Vorinostat in Treating Patients With Higher-Risk Myelodysplastic Syndromes or Chronic Myelomonocytic Leukemia

    ClinicalTrials.gov

    2016-08-29

    Adult Myelodysplastic Syndrome; Chronic Myelomonocytic Leukemia; Chronic Myelomonocytic Leukemia-1; Chronic Myelomonocytic Leukemia-2; Previously Treated Myelodysplastic Syndrome; Refractory Anemia With Excess Blasts

  9. Diagnosis of acute leukemia in cerebrospinal fluid (CSF-acute leukemia).

    PubMed

    Crespo-Solis, Erick; López-Karpovitch, Xavier; Higuera, Jesús; Vega-Ramos, Beatriz

    2012-10-01

    Cerebrospinal fluid-acute leukemia (CSF-acute leukemia) is a frequent and serious complication in patients with acute leukemia. One of the major problems of this complication is the diagnosis process itself. CSF cytology is currently considered the gold standard for establishing the diagnosis, a technique which presents various processing limitations, seriously impacting the predictive values. In the last 11 years, studies of CSF flow cytometry analysis done in patients with acute leukemia have demonstrated superiority in comparison with CSF cytology. Although comparative studies between these two techniques have been reported since 2001, no new consensus or formal changes to the gold standard have been established for the CSF acute leukemia diagnosis. The evidence suggests that positive flow cytometry cases, considered as indeterminate cases, will behave like disease in the central nervous system (CNS). Nevertheless, we think there are some variables and considerations that must be first evaluated under research protocols before CNS relapse can be established with only one positive flow cytometry analysis in the setting of indeterminate CSF samples. This paper proposes a diagnostic algorithm and complementary strategies. PMID:22639108

  10. Global Characteristics of Childhood Acute Promyelocytic Leukemia

    PubMed Central

    Zhang, L; Samad, A; Pombo-de-Oliveira, MS; Scelo, G; Smith, MT; Feusner, J; Wiemels, JL; Metayer, C

    2014-01-01

    Acute promyelocytic leukemia (APL) comprises approximately 5–10% of childhood acute myeloid leukemia (AML) cases in the US. While variation in this percentage among other populations was noted previously, global patterns of childhood APL have not been thoroughly characterized. In this comprehensive review of childhood APL, we examined its geographic pattern and the potential contribution of environmental factors to observed variation. In 142 studies (spanning >60 countries) identified, variation was apparent—de novo APL represented from 2% (Switzerland) to >50% (Nicaragua) of childhood AML in different geographic regions. Because a limited number of previous studies addressed specific environmental exposures that potentially underlie childhood APL development, we gathered 28 childhood cases of therapy-related APL, which exemplified associations between prior exposures to chemotherapeutic drugs/radiation and APL diagnosis. Future population-based studies examining childhood APL patterns and the potential association with specific environmental exposures and other risk factors are needed. PMID:25445717

  11. Cyclophosphamide, Alvocidib, and Rituximab in Treating Patients With High Risk B-Cell Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2015-11-10

    Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage I Chronic Lymphocytic Leukemia; Stage I Small Lymphocytic Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Small Lymphocytic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Small Lymphocytic Lymphoma

  12. Midostaurin and Decitabine in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia and FLT3 Mutation

    ClinicalTrials.gov

    2016-10-10

    Acute Myeloid Leukemia With FLT3/ITD Mutation; Acute Myeloid Leukemia With Gene Mutations; FLT3 Tyrosine Kinase Domain Point Mutation; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  13. [Chronic myelogenous leukemia: diagnosis and treatment].

    PubMed

    Demeter, Judit; Poros, Anna; Bödör, Csaba; Horváth, Laura; Masszi, Tamás

    2016-09-01

    Chronic myelogenous leukemia is a clonal myeloproliferative neoplasm caused by reciprocal translocation involving chromosomes 9 and 22 resulting in the expression of a constitutively activated BCR-ABL1 tyrosine kinase that leads to the malignant transformation of the hematopoietic stem cells. The condition was previously known as a relentlessly progressive disease, but the treatment was revolutionalized by the efficacy of tyrosine kinase inhibitors. Therapeutic success is thus currently determined by the depth of molecular response achieved on therapy. Multiple tyrosine kinase agents are available even for the first line treatment. This guideline summarizes current focal points of the treatment of chronic myelogenous leukemia specific to Hungary and provides definitions for optimal molecular responses in this condition. Orv. Hetil., 2016, 157(37), 1459-1468. PMID:27615196

  14. Brain Function in Young Patients Receiving Methotrexate for Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-04-08

    Childhood B Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Cognitive Side Effects of Cancer Therapy; Long-Term Effects Secondary to Cancer Therapy in Children; Neurotoxicity Syndrome; Psychological Impact of Cancer; Untreated Childhood Acute Lymphoblastic Leukemia

  15. Novel agents for chronic lymphocytic leukemia

    PubMed Central

    2013-01-01

    Chronic lymphocytic leukemia (CLL) is a heterogeneous group of B-cell neoplasm. CLL is typically sensitive to a variety of cytotoxic agents, but relapse frequently occurs with conventional approaches. The treatment of CLL is evolving rapidly with the introduction of novel drugs, such as bendamustine, ofatumumab, lenalidomide, ibrutinib, idelalisib, veltuzumab, XmAb5574, navitoclax, dasatinib, alvespimycin, and TRU-016. This review summarizes the most current clinical experiences with these agents in the treatment of CLL. PMID:23680477

  16. Therapy Related Acute Myeloid Leukemia with t(8;16) Mimicking Acute Promyelocytic Leukemia.

    PubMed

    Chharchhodawala, Taher; Gajendra, Smeeta; Tiwari, Priya; Gogia, Ajay; Gupta, Ritu

    2016-06-01

    Acute myeloid leukemia (AML) with t(8;16)(p11;q13) is a distinct clinical and morphological entity with poor prognosis, which is characterized by a high frequency of extramedullary involvement, most commonly leukemia cutis; association with therapy related AML; frequent coagulopathy and morphologic features overlapping acute promyelocytic leukemia(APL). Herein, we present a case of 47 year-old post-menopausal woman developing secondary AML with t(8;16)(p11;q13) after 1 year of completion of therapy for breast carcinoma. Blasts were granulated with few showing clefted nucleus resembling promyelocytes and immnuophenotyping showed high side scatter with MPO positivity and CD 34 and HLA-DR negativity. In view of promyelocyte like morphology and immunophenotyping of blasts, possibility of APL was considered but, reverse transcription polymerase chain reaction (RT-PCR) for PML-RARα fusion transcript came out to be negative. Conventional cytogenetics showed t(8;16)(p11;q13). So, we should keep possibility of t(8;16) (p11;q13) in therapy related acute myeloid leukemia in patient showing clinical and morphological features of acute promyelocytic leukemia. PMID:27408347

  17. Decitabine, Donor Natural Killer Cells, and Aldesleukin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-01-07

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  18. Combination Chemotherapy and Dasatinib in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-19

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  19. Tretinoin, Cytarabine, and Daunorubicin Hydrochloride With or Without Arsenic Trioxide Followed by Tretinoin With or Without Mercaptopurine and Methotrexate in Treating Patients With Acute Promyelocytic Leukemia

    ClinicalTrials.gov

    2013-06-04

    Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Promyelocytic Leukemia (M3); Childhood Acute Promyelocytic Leukemia (M3); Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  20. Combination Chemotherapy With or Without PSC 833, Peripheral Stem Cell Transplantation, and/or Interleukin-2 in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-06-03

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Erythroid Leukemia (M6); Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monoblastic Leukemia and Acute Monocytic Leukemia (M5); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Childhood Acute Basophilic Leukemia; Childhood Acute Eosinophilic Leukemia; Childhood Acute Erythroleukemia (M6); Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Minimally Differentiated Myeloid Leukemia (M0); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monoblastic Leukemia and Acute Monocytic Leukemia (M5); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myelomonocytic Leukemia (M4); Childhood Myelodysplastic Syndromes; de Novo Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  1. Leukemia

    MedlinePlus

    ... Acute leukemia in adults. In: Niederhuber JE, Armitage JO, Doroshow JH, Kastan MB, Tepper JE, eds. Abeloff's ... Pui CH. Childhood leukemia. In: Niederhuber JE, Armitage JO, Doroshow JH, Kastan MB, Tepper JE, eds. Abeloff's ...

  2. Decitabine, Vorinostat, and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-12-19

    Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  3. Sex differences in the incidence of chronic myeloid leukemia

    PubMed Central

    Jankovic, Gradimir M.; Tiu, Ramon V.; Saunthararajah, Yogen; Jackson, Robert C.; Hlatky, Lynn R.; Gale, Robert Peter; Sachs, Rainer K.

    2014-01-01

    The incidence of chronic myeloid leukemia (CML), which is caused by BCR/ABL chimeric oncogene formation in a pluripotent hematopoietic stem cell (HSC), increases with age and exposure to ionizing radiation. CML is a comparatively well-characterized neoplasm, important for its own sake and useful for insights into other neoplasms. Here, Surveillance, Epidemiology and End Results (SEER) CML data are analyzed after considering possible misclassification of chronic myelo-monocytic leukemia as CML. For people older than 25 years, plots of male and female CML log incidences versus age at diagnosis are approximately parallel straight lines with males either above or to the left of females. This is consistent with males having a higher risk of developing CML or a shorter latency from initiation to diagnosis of CML. These distinct mechanisms cannot be distinguished using SEER data alone. Therefore, CML risks among male and female Japanese A-bomb survivors are also analyzed. The present analyses suggest that sex differences in CML incidence more likely result from differences in risk than in latency. The simplest but not the sole interpretation of this is that males have more target cells at risk to develop CML. Comprehensive mathematical models of CML could lead to a better understanding of the role of HSCs in CML and other preleukemias that can progress to acute leukemia. PMID:24337217

  4. Genetics Home Reference: cytogenetically normal acute myeloid leukemia

    MedlinePlus

    ... one form of a cancer of the blood-forming tissue (bone marrow) called acute myeloid leukemia. In ... 1 link) PubMed Sources for This Page Döhner H. Implication of the molecular characterization of acute myeloid ...

  5. [Treatment of patients with chronic lymphocytic leukemia].

    PubMed

    Mucsi, Orsolya

    2016-06-01

    Chronic lymphocytic leukemia (CLL) is the most common leukemia in the Western countries. The abnormal B lymphocytes progress into the blood and infiltrate the bone marrow, liver, spleen and lymph nodes. CLL is a disease of the adults and older individuals who often have coexisting conditions. It usually progresses slowly, but in patients who need treatment, CLL eventually returns. For relapsed, refractory patients treatment options are limited. The only curative treatment is bone marrow transplantation. However, the new, alternative therapeutics show superior efficacy in CLL than standard regimens. The aim of this review is to summarize the most important therapeutic aspects of CLL and to give an insight into the novel treatment options. PMID:27275639

  6. [Acute monoblastic leukemia with tetrasomy 8].

    PubMed

    Kameoka, Junichi; Horiuchi, Takahiro; Miyamura, Koichi; Miura, Ikuo; Okuda, Mitsutaka; Nomura, Jun; Hirokawa, Makoto; Sawada, Kenichi; Sasaki, Takeshi

    2006-08-01

    Tetrasomy 8 is a rare chromosomal abnormality in acute leukemia, and it has recently been considered as a poor prognostic factor. A 20-year-old woman was admitted because of purpura on the upper and lower limbs in February 2002. On admission, her leukocyte count was 6.5 x 10(9)/l with 66% of blasts, the hemoglobin level was 11.2 g/dl, and the platelet count was 101 x 10(9)/l. The bone marrow aspirate contained 85.6% of peroxidase-negative, alpha-naphthyl-butyrate esterase-positive, and CD4+ CD56+ blast cells. Karyotypic analysis of the bone marrow cells showed 48, XY, + 8, + 8[17]/47, XY, +8[3]. The patient was diagnosed as having AML (M5a), and treatment with daunorubicin (70 mg x 5 days) and cytosine arabinoside (150 mg x 7 days) resulted in a complete remission. She relapsed four months later, however, with an extramedullary tumor in T12. Remission could not be achieved, and the patient underwent allogeneic peripheral blood stem cell transplantation from her HLA-identical mother. Her clinical course was almost uneventful except for a phlegmon in the right leg, but on day 49 a relapse occurred, and she died of acute renal failure on day 73. This case strongly illustrates the characteristic of tetrasomy 8 as a poor prognostic factor in acute leukemia. PMID:16986717

  7. Does hematopoietic stem cell transplantation benefit infants with acute leukemia?

    PubMed Central

    Sison, Edward Allan R.; Brown, Patrick

    2015-01-01

    A 6-month-old girl was diagnosed with acute lymphoblastic leukemia (ALL). She has completed induction therapy and is currently in first complete remission (CR1). You are asked by your resident if hematopoietic stem cell transplantation (HSCT) would benefit infants with acute leukemia. PMID:24319238

  8. Alvocidib, Cytarabine, and Mitoxantrone Hydrochloride or Cytarabine and Daunorubicin Hydrochloride in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-10-10

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  9. Early Discharge and Outpatients Care in Patients With Myelodysplastic Syndrome or Acute Myeloid Leukemia Previously Treated With Intensive Chemotherapy

    ClinicalTrials.gov

    2015-02-05

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia

  10. Signal Transduction in the Chronic Leukemias: Implications for Targeted Therapies

    PubMed Central

    Ahmed, Wesam; Van Etten, Richard A.

    2013-01-01

    The chronic leukemias, including chronic myeloid leukemia (CML), the Philadelphia-negative myeloproliferative neoplasms (MPNs), and chronic lymphocytic leukemia (CLL), have been characterized extensively for abnormalities of cellular signaling pathways. This effort has led to the elucidation of the central role of dysregulated tyrosine kinase signaling in the chronic myeloid neoplasms and of constitutive B-cell receptor signaling in CLL. This, in turn, has stimulated the development of small molecule inhibitors of these signaling pathways for therapy of chronic leukemia. Although the field is still in its infancy, the clinical results with these agents have ranged from encouraging (CLL) to spectacular (CML). In this review, we summarize recent studies that have helped to define the signaling pathways critical to the pathogenesis of the chronic leukemias. We also discuss correlative studies emerging from clinical trials of drugs targeting these pathways. PMID:23307472

  11. Etoposide, Prednisone, Vincristine Sulfate, Cyclophosphamide, and Doxorubicin Hydrochloride With Asparaginase in Treating Patients With Acute Lymphoblastic Leukemia or Lymphoblastic Lymphoma

    ClinicalTrials.gov

    2016-10-24

    B Acute Lymphoblastic Leukemia; B Lymphoblastic Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent B Lymphoblastic Lymphoma; Recurrent T Lymphoblastic Leukemia/Lymphoma; Refractory B Lymphoblastic Lymphoma; Refractory T Lymphoblastic Lymphoma; T Acute Lymphoblastic Leukemia; T Lymphoblastic Lymphoma

  12. Systematic review of dasatinib in chronic myeloid leukemia.

    PubMed

    Breccia, Massimo; Salaroli, Adriano; Molica, Matteo; Alimena, Giuliana

    2013-01-01

    Dasatinib is a dual tyrosine kinase inhibitor active against ABL and Src family kinases, and is approved for the treatment of chronic myeloid leukemia (CML) patients in chronic, accelerated, or blast phase with resistance or intolerance to imatinib therapy, for newly diagnosed chronic phase patients, and for adults with Philadelphia chromosome-positive acute lymphoblastic leukemia who have become resistant to or intolerant of other treatments. This review presents clinical data regarding different trials involving CML patients in different phases of the disease. Six-year follow-up of the Phase III dose-optimization study are described, showing overall survival of 71% with the current approved dose of 100 mg once daily. Three-year results of the randomized Phase III DASISION (DASatinib vs Imatinib Study In Treatment-Naïve CML patients) trial confirmed that dasatinib 100 mg once daily was superior to standard-dose imatinib in terms of achieving a faster and deeper molecular response, with similar activity regardless of baseline prognostic score.

  13. Morphologic, immunologic, and cytogenetic characteristics of secondary acute unclassifiable leukemia in Hodgkin's disease.

    PubMed

    Orazi, A; Cattoretti, G; Sozzi, G; Miozzo, M; Polli, N; Delia, D; Viviani, S; Negretti, E; Della Porta, G; Rilke, F

    1988-08-31

    Blast cells from five cases of secondary unclassifiable leukemia following therapy for Hodgkin's disease were studied by cytochemical, immunological and cytogenetic analyses. Cytochemical and immunological reactivity were in accordance with poorly differentiated, myeloid blasts. The four cases in which karyotype analysis was performed showed specific chromosomal abnormalities. No evidence of multiple lineage involvement was found. Problems in classifying these cases of secondary ANLL were due to the high grade of undifferentiation of the blast cells. Their low cytochemical reactivity with markers of myeloid differentiation was similar to what may be observed in patients with acute undifferentiated leukemia or with chronic myeloid leukemia in blast crisis.

  14. High-Risk Childhood Acute Lymphoblastic Leukemia

    PubMed Central

    Bhojwani, Deepa; Howard, Scott C.; Pui, Ching-Hon

    2009-01-01

    Although most children with acute lymphoblastic leukemia (ALL) are cured, certain subsets have a high risk of relapse. Relapse risk can be predicted by early response to therapy, clinical and pharmacogenetic features of the host, and genetic characteristics of leukemic cells. Though early treatment response can be assessed by the peripheral blast cell count after 1 week of single-agent glucocorticoid treatment or percent of bone marrow blasts by morphology after 1 or 2 weeks of multiagent induction treatment, determination of minimal residual disease by polymerase chain reaction (PCR) or flow cytometry after 2 to 6 weeks of induction is the most precise and useful measure. Augmented therapy has improved outcome for the poor responders to initial treatment. Infants with mixed-lineage leukemia (MLL)–rearranged ALL comprise a very poor-risk group wherein further intensification of chemotherapy causes significant toxicity. Hybrid protocols incorporating drugs effective for acute myeloid leukemia could improve survival, a strategy being tested in international trials. Studies on the biology of MLL-induced leukemogenesis have prompted the development of novel targeted agents, currently under evaluation in clinical trials. Short-term outcomes of patients with Philadelphia chromosome (Ph)–positive ALL have improved significantly by adding tyrosine kinase inhibitors to standard chemotherapy regimens. New agents and methods to overcome resistance are under investigation, and allogeneic stem cell transplantation is recommended for certain subsets of patients, for example those with Ph+ and T-cell ALL with poor early response. Genome-wide interrogation of leukemic cell genetic abnormalities and germline genetic variations promise to identify new molecular targets for therapy. PMID:19778845

  15. MK2206 in Treating Younger Patients With Recurrent or Refractory Solid Tumors or Leukemia

    ClinicalTrials.gov

    2014-04-28

    Accelerated Phase Chronic Myelogenous Leukemia; Acute Leukemias of Ambiguous Lineage; Acute Myeloid Leukemia/Transient Myeloproliferative Disorder; Acute Undifferentiated Leukemia; Aggressive NK-cell Leukemia; Atypical Chronic Myeloid Leukemia, BCR-ABL1 Negative; Blastic Phase Chronic Myelogenous Leukemia; Blastic Plasmacytoid Dendritic Cell Neoplasm; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Grade III Lymphomatoid Granulomatosis; Childhood Immunoblastic Large Cell Lymphoma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Eosinophilic Leukemia; Chronic Myelomonocytic Leukemia; Chronic Neutrophilic Leukemia; Chronic Phase Chronic Myelogenous Leukemia; Intraocular Lymphoma; Juvenile Myelomonocytic Leukemia; Mast Cell Leukemia; Myeloid/NK-cell Acute Leukemia; Noncutaneous Extranodal Lymphoma; Post-transplant Lymphoproliferative Disorder; Primary Central Nervous System Hodgkin Lymphoma; Primary Central Nervous System Non-Hodgkin Lymphoma; Progressive Hairy Cell Leukemia, Initial Treatment; Prolymphocytic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Small Intestine Lymphoma; Splenic Marginal Zone Lymphoma; Unspecified Childhood

  16. Molecular Genetic Markers in Acute Myeloid Leukemia

    PubMed Central

    Yohe, Sophia

    2015-01-01

    Genetics play an increasingly important role in the risk stratification and management of acute myeloid leukemia (AML) patients. Traditionally, AML classification and risk stratification relied on cytogenetic studies; however, molecular detection of gene mutations is playing an increasingly important role in classification, risk stratification, and management of AML. Molecular testing does not take the place of cytogenetic testing results, but plays a complementary role to help refine prognosis, especially within specific AML subgroups. With the exception of acute promyelocytic leukemia, AML therapy is not targeted but the intensity of therapy is driven by the prognostic subgroup. Many prognostic scoring systems classify patients into favorable, poor, or intermediate prognostic subgroups based on clinical and genetic features. Current standard of care combines cytogenetic results with targeted testing for mutations in FLT3, NPM1, CEBPA, and KIT to determine the prognostic subgroup. Other gene mutations have also been demonstrated to predict prognosis and may play a role in future risk stratification, although some of these have not been confirmed in multiple studies or established as standard of care. This paper will review the contribution of cytogenetic results to prognosis in AML and then will focus on molecular mutations that have a prognostic or possible therapeutic impact. PMID:26239249

  17. Nanomedicine approaches in acute lymphoblastic leukemia.

    PubMed

    Tatar, Andra-Sorina; Nagy-Simon, Timea; Tomuleasa, Ciprian; Boca, Sanda; Astilean, Simion

    2016-09-28

    Acute lymphoblastic leukemia (ALL) is the malignancy with the highest incidence amongst children (26% of all cancer cases), being surpassed only by the cancers of the brain and of the nervous system. The most recent research on ALL is focusing on new molecular therapies, like targeting specific biological structures in key points in the cell cycle, or using selective inhibitors for transmembranary proteins involved in cell signalling, and even aiming cell surface receptors with specifically designed antibodies for active targeting. Nanomedicine approaches, especially by the use of nanoparticle-based compounds for the delivery of drugs, cancer diagnosis or therapeutics may represent new and modern ways in the near future anti-cancer therapies. This review offers an overview on the recent role of nanomedicine in the detection and treatment of acute lymphoblastic leukemia as resulting from a thorough literature survey. A short introduction on the basics of ALL is presented followed by the description of the conventional methods used in the ALL detection and treatment. We follow our discussion by introducing some of the general nano-strategies used for cancer detection and treatment. The detailed role of organic and inorganic nanoparticles in ALL applications is further presented, with a special focus on gold nanoparticle-based nanocarriers of antileukemic drugs. PMID:27460684

  18. Nanomedicine approaches in acute lymphoblastic leukemia.

    PubMed

    Tatar, Andra-Sorina; Nagy-Simon, Timea; Tomuleasa, Ciprian; Boca, Sanda; Astilean, Simion

    2016-09-28

    Acute lymphoblastic leukemia (ALL) is the malignancy with the highest incidence amongst children (26% of all cancer cases), being surpassed only by the cancers of the brain and of the nervous system. The most recent research on ALL is focusing on new molecular therapies, like targeting specific biological structures in key points in the cell cycle, or using selective inhibitors for transmembranary proteins involved in cell signalling, and even aiming cell surface receptors with specifically designed antibodies for active targeting. Nanomedicine approaches, especially by the use of nanoparticle-based compounds for the delivery of drugs, cancer diagnosis or therapeutics may represent new and modern ways in the near future anti-cancer therapies. This review offers an overview on the recent role of nanomedicine in the detection and treatment of acute lymphoblastic leukemia as resulting from a thorough literature survey. A short introduction on the basics of ALL is presented followed by the description of the conventional methods used in the ALL detection and treatment. We follow our discussion by introducing some of the general nano-strategies used for cancer detection and treatment. The detailed role of organic and inorganic nanoparticles in ALL applications is further presented, with a special focus on gold nanoparticle-based nanocarriers of antileukemic drugs.

  19. Cancer procoagulant in acute lymphoblastic leukemia.

    PubMed

    Alessio, M G; Falanga, A; Consonni, R; Bassan, R; Minetti, B; Donati, M B; Barbui, T

    1990-08-01

    In a previous study we characterized cancer procoagulant (CP), a 68 kd cysteine proteinase which directly activates coagulation factor X in various subtypes (from M1 to M5) of acute non-lymphoblastic leukemia (ANLL). The aim of this study was to determine whether CP is also expressed by acute lymphoblastic leukemia (ALL) cells. Blasts from 25 ALL patients were extracted and tested for their procoagulant properties. 16 samples (64%) shortened the recalcification time of normal human plasma, and 9 (36%) did not. 8 of the 16 active samples showed properties compatible with CP, i.e. independence from factor VII in triggering blood coagulation and sensitivity to cysteine proteinase inhibitors. Selected samples also cross-reacted with a polyclonal antibody raised against purified CP. The specific activity of CP in ALL extracts was significantly lower than in most ANLL types previously studied (all but M4). These finding indicate that CP can be a property of the lymphoid phenotype although its expression may be lower than in the myeloid phenotype.

  20. Dasatinib and Combination Chemotherapy in Treating Young Patients With Newly Diagnosed Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-09-08

    Adult B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Childhood B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  1. Secondary autoimmune cytopenias in chronic lymphocytic leukemia.

    PubMed

    Rogers, Kerry A; Woyach, Jennifer A

    2016-04-01

    Secondary autoimmune cytopenias in chronic lymphocytic leukemia are distinct clinical entities that require specific management. These autoimmune disorders have a complex pathogenesis that involves both the leukemic cells and the immune environment in which they exist. The mechanism is not the same in all cases, and to varying degrees involves the chronic lymphocytic leukemia (CLL) cells in antibody production, antigen presentation, and stimulation of T cells and bystander polyclonal B cells. Diagnosis of autoimmune cytopenias can be challenging as it is difficult to differentiate between autoimmunity and bone marrow failure due to disease progression. There is a need to distinguish these causes, as prognosis and treatment are not the same. Evidence regarding treatment of secondary autoimmune cytopenias is limited, but many effective options exist and treatment can be selected with severity of disease and patient factors in mind. With new agents to treat CLL coming into widespread clinical use, it will be important to understand how these will change the natural history and treatment of autoimmune cytopenias.

  2. Childhood Leukemia--A Look at the Past, the Present and the Future.

    ERIC Educational Resources Information Center

    Findeisen, Regina; Barber, William H.

    1997-01-01

    Provides an overview of childhood leukemia. The causes, the survival period, different types (acute lymphocytic leukemia, acute myeloid leukemia, chronic lymphocytic leukemia, chronic myeloid leukemia, and hairy cell leukemia), symptoms, treatment, side effects of treatment (including learning problems), and the expected future direction of…

  3. Sorafenib Tosylate and Chemotherapy in Treating Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-05

    Acute Myeloid Leukemia (Megakaryoblastic) With t(1;22)(p13;q13); RBM15-MKL1; Acute Myeloid Leukemia With a Variant RARA Translocation; Acute Myeloid Leukemia With Inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN1-EVI1; Acute Myeloid Leukemia With t(6;9)(p23;q34); DEK-NUP214; Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Acute Myeloid Leukemia With Variant MLL Translocations; Untreated Adult Acute Myeloid Leukemia

  4. Acute megakaryoblastic leukemia, unlike acute erythroid leukemia, predicts an unfavorable outcome after allogeneic HSCT.

    PubMed

    Ishiyama, Ken; Yamaguchi, Takuhiro; Eto, Tetsuya; Ohashi, Kazuteru; Uchida, Naoyuki; Kanamori, Heiwa; Fukuda, Takahiro; Miyamura, Koichi; Inoue, Yoshiko; Taguchi, Jun; Mori, Takehiko; Iwato, Koji; Morishima, Yasuo; Nagamura-Inoue, Tokiko; Atsuta, Yoshiko; Sakamaki, Hisashi; Takami, Akiyoshi

    2016-08-01

    Acute erythroid leukemia (FAB-M6) and acute megakaryoblastic leukemia (FAB-M7) exhibit closely related properties in cells regarding morphology and the gene expression profile. Although allogeneic hematopoietic stem cell transplantation (allo-HSCT) is considered the mainstay of the treatment for both subtypes of leukemia due to their refractoriness to chemotherapy and high rates of relapse, it remains unclear whether allo-HSCT is curative in such cases due to their scarcity. We retrospectively examined the impact of allo-HSCT in 382 patients with M6 and 108 patients with M7 using nationwide HSCT data and found the overall survival (OS) and relapse rates of the M6 patients to be significantly better than those of the M7 patients after adjusting for confounding factors and statistically comparable with those of the patients with M0/M1/M2/M4/M5 disease. Consequently, the factors of age, gender, performance status, karyotype, disease status at HSCT and development of graft-vs.-host disease predicted the OS for the M6 patients, while the performance status and disease status at HSCT were predictive of the OS for the M7 patients. These findings substantiate the importance of distinguishing between M6 and M7 in the HSCT setting and suggest that unknown mechanisms influence the HSCT outcomes of these closely related subtypes of leukemia. PMID:27244257

  5. Cyclosporine, Pravastatin Sodium, Etoposide, and Mitoxantrone Hydrochloride in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2012-06-18

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia

  6. Lenalidomide, Cytarabine, and Idarubicin in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-12-22

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; de Novo Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  7. Suppression of chronic lymphocytic leukemia progression by CXCR4 inhibitor WZ811

    PubMed Central

    Li, Shi Hui; Dong, Wen Chuan; Fan, Li; Wang, Guang Sheng

    2016-01-01

    CXCR4 is a chemokine and chemokine receptor pair playing critical roles in tumorigenesis. Overexpression of C-X-C chemokine receptor type 4 (CXCR4) is a hallmark of many hematological malignancies including acute myeloid leukemia, chronic lymphocytic leukemia and non-Hodgkin’s lymphoma, and generally correlates with a poor prognosis. A highly potent competitive antagonist of CXCR4, WZ811, recently has been identified with suppression of cancer cells aggressive in a variety of cancers. However, the effects of WZ811 on chronic lymphocytic leukemia cells have not yet been defined. The effect of WZ811 on chronic lymphocytic leukemia cells TF-1 and UT-7 cells in proliferation, colony formation, and cell migration in vitro were measured respectively. Decreased in cell viability, colony formation, migration, and survival with cell cycle arrest and higher sensitivity to docetaxel in vitro was observed upon WZ811 treatment. In mouse xenograft models developed with human leukemia cells, WZ811 exhibited tumor growth inhibition. Collectively, we have demonstrated that CXCR4 inhibition by WZ811 has the potential for the treatment of human hematological malignancies. This study demonstrated that WZ811 may be a novel approach in the treatment of chronic lymphocytic leukemia. PMID:27725861

  8. New Strategies in Acute Myelogenous Leukemia: Leukemogenesis and Personalized Medicine

    PubMed Central

    Gojo, Ivana; Karp, Judith E.

    2014-01-01

    Recent advances in molecular technology have unraveled the complexity of leukemogenesis and provided the opportunity to design more personalized and pathophysiology-targeted therapeutic strategies. Despite the use of intensive chemotherapy, relapse remains the most common cause for therapeutic failure in acute myelogenous leukemia (AML). The interactions between leukemia stem cells (LSC) and marrow microenvironment appear to be critical in promoting therapeutic resistance through progressive acquisition of genetic and epigenetic changes within leukemia cells and immune evasion, resulting in leukemia cell survival. With advances in genomic sequencing efforts, epigenetic and phenotypic characterization, personalized therapeutic strategies aimed at critical leukemia survival mechanisms may be feasible in the near future. Here, we review select novel approaches to therapy of AML such as targeting LSC, altering leukemia/marrow microenvironment interactions, inhibiting DNA repair or cell cycle checkpoints, and augmenting immune-based anti-leukemia activity. PMID:25324141

  9. Is Acute Myeloid Leukemia a Liquid Tumor?

    PubMed Central

    Ohanian, Maro; Faderl, Stefan; Ravandi, Farhad; Pemmaraju, Naveen; Garcia-Manero, Guillermo; Cortes, Jorge; Estrov, Zeev

    2014-01-01

    Extramedullary manifestations of acute myeloid leukemia (AML) were described as early as the 19th century. However, the incidence, clinical significance, and pathobiology of extramedullary AML remain ill defined. We reviewed case reports, retrospective case series, pilot studies, and imaging studies of extramedullary leukemia (EML) to determine its frequency, characteristics, clinical presentation, and significance. EML precedes or accompanies development of AML and occurs during or following treatment, even during remission. Although imaging studies are rarely conducted and the true incidence of EML has yet to be verified, authors have reported several estimates based on retrospective and autopsy studies. The incidence of EML in patients with AML of all ages is estimated to be about 9% and EML in children with AML was detected in 40% of patients at diagnosis. The combination of positron emission tomography and computed tomography were the most sensitive and reliable techniques of detecting and monitoring EML. Based on our literature review, the frequency of EML is likely underreported. The well-documented nature of EML in AML patients suggests that AML can manifest as a solid tumor. The extent to which EML accompanies AML and whether EML is derived from bone marrow are unknown. Furthermore, questions remain regarding the role of the microenvironment, which may or may not facilitate the survival and proliferation of EML, and the implications of these interactions with regard to minimal residual disease, tumor cell quiescence, and relapse. Therefore, prospective studies of detection and characterization of EML in AML patients are warranted. PMID:23280377

  10. MINIMAL RESIDUAL DISEASE IN ACUTE LYMPHOBLASTIC LEUKEMIA

    PubMed Central

    Campana, Dario

    2009-01-01

    In patients with acute lymphoblastic leukemia (ALL), monitoring of minimal residual disease (MRD) offers a way to precisely assess early treatment response and detect relapse. Established methods to study MRD are flow cytometric detection of abnormal immunophenotypes, polymerase chain reaction (PCR) amplification of antigen-receptor genes, and PCR amplification of fusion transcripts. The strong correlation between MRD levels and risk of relapse in childhood ALL is well established; studies in adult patients also support its prognostic value. Hence, results of MRD studies can be used to select treatment intensity and duration, and estimate the optimal timing for hematopoietic stem cell transplantation. Practical issues in the implementation of MRD assays in clinical studies include determining the most informative time point to study MRD, the levels of MRD that will trigger changes in treatment intensity, as well as the relative cost and informative power of different methodologies. The identification of new markers of leukemia and the use of increasingly refined assays should further facilitate routine monitoring of MRD and help clarifying the cellular and biologic features of leukemic cells that resist chemotherapy in vivo. PMID:19100372

  11. Acute lymphoblastic leukemia and developmental biology

    PubMed Central

    Campos-Sanchez, Elena; Toboso-Navasa, Amparo; Romero-Camarero, Isabel; Barajas-Diego, Marcos

    2011-01-01

    The latest scientific findings in the field of cancer research are redefining our understanding of the molecular and cellular basis of the disease, moving the emphasis toward the study of the mechanisms underlying the alteration of the normal processes of cellular differentiation. The concepts best exemplifying this new vision are those of cancer stem cells and tumoral reprogramming. The study of the biology of acute lymphoblastic leukemias (ALLs) has provided seminal experimental evidence supporting these new points of view. Furthermore, in the case of B cells, it has been shown that all the stages of their normal development show a tremendous degree of plasticity, allowing them to be reprogrammed to other cellular types, either normal or leukemic. Here we revise the most recent discoveries in the fields of B-cell developmental plasticity and B-ALL research and discuss their interrelationships and their implications for our understanding of the biology of the disease. PMID:22031225

  12. Minimal residual disease in acute promyelocytic leukemia.

    PubMed

    Weil, S C

    2000-03-01

    In the last decade our understanding of acute promyelocytic leukemia (APL) has advanced tremendously. The recognition of all-trans retinoic acid (ATRA) as a powerful therapeutic agent paralleled the cloning of the t(15;17) breakpoint. RtPCR for the PML-RARA hybrid mRNA has become the hallmark of molecular diagnosis and molecular monitoring in APL. Current techniques are useful in predicting complete remission and a possible cure in many patients who repeatedly test negative by PCR. Standardizing techniques and improving the sensitivity of the assay are important. Doing this in a way so that clinically relevant minimal residual disease can be distinguished from "indolent disease" remains among the future challenges in APL. PMID:10702899

  13. Pharmacogenetics of childhood acute lymphoblastic leukemia.

    PubMed

    Lopez-Lopez, Elixabet; Gutierrez-Camino, Angela; Bilbao-Aldaiturriaga, Nerea; Pombar-Gomez, Maria; Martin-Guerrero, Idoia; Garcia-Orad, Africa

    2014-07-01

    Acute lymphoblastic leukemia (ALL) is the major pediatric cancer in developed countries. Although treatment outcome has improved owing to advances in chemotherapy, there is still a group of patients for which therapy fails while some patients experience severe toxicity. In the last few years, several pharmacogenetic studies have been performed to search for markers of outcome and toxicity in pediatric ALL. However, to date, TPMT is the only pharmacogenetic marker in ALL with clinical guidelines for drug dosing. In this article, we will provide an overview of the most important findings carried out in pharmacogenetics for pediatric ALL, such as the interest drawn by methotrexate transporters in the context of methotrexate treatment. Even if most of the studies are centered on coding genes, we will also point to new approaches focusing on noncoding regions and epigenetic variation that could be interesting for consideration in the near future.

  14. Perinatal risk factors for acute myeloid leukemia.

    PubMed

    Crump, Casey; Sundquist, Jan; Sieh, Weiva; Winkleby, Marilyn A; Sundquist, Kristina

    2015-12-01

    Infectious etiologies have been hypothesized for acute leukemias because of their high incidence in early childhood, but have seldom been examined for acute myeloid leukemia (AML). We conducted the first large cohort study to examine perinatal factors including season of birth, a proxy for perinatal infectious exposures, and risk of AML in childhood through young adulthood. A national cohort of 3,569,333 persons without Down syndrome who were born in Sweden in 1973-2008 were followed up for AML incidence through 2010 (maximum age 38 years). There were 315 AML cases in 69.7 million person-years of follow-up. We found a sinusoidal pattern in AML risk by season of birth (P < 0.001), with peak risk among persons born in winter. Relative to persons born in summer (June-August), incidence rate ratios for AML were 1.72 (95 % CI 1.25-2.38; P = 0.001) for winter (December-February), 1.37 (95 % CI 0.99-1.90; P = 0.06) for spring (March-May), and 1.27 (95 % CI 0.90-1.80; P = 0.17) for fall (September-November). Other risk factors for AML included high fetal growth, high gestational age at birth, and low maternal education level. These findings did not vary by sex or age at diagnosis. Sex, birth order, parental age, and parental country of birth were not associated with AML. In this large cohort study, birth in winter was associated with increased risk of AML in childhood through young adulthood, possibly related to immunologic effects of early infectious exposures compared with summer birth. These findings warrant further investigation of the role of seasonally varying perinatal exposures in the etiology of AML.

  15. Cyclophosphamide and Busulfan Followed by Donor Stem Cell Transplant in Treating Patients With Myelofibrosis, Acute Myeloid Leukemia, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2014-04-03

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Childhood Acute Myeloid Leukemia in Remission; Childhood Myelodysplastic Syndromes; de Novo Myelodysplastic Syndromes; Essential Thrombocythemia; Myelodysplastic Syndrome With Isolated Del(5q); Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Primary Myelofibrosis; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Secondary Myelofibrosis; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Acute Myeloid Leukemia and Other Myeloid Malignancies

  16. Adult Acute Myeloid Leukemia Long-term Survivors

    PubMed Central

    Cheng, M. Jennifer; Hourigan, Christopher S.; Smith, Thomas J.

    2014-01-01

    The number of leukemia patients and survivors is growing. This review summarizes what is known regarding the health related quality of life (HRQOL) and medical complications associated with acute myeloid leukemia (AML) disease and treatment and highlights understudied aspects of adult AML survivorship care, and potential novel areas for intervention. PMID:25243197

  17. Symptom-Adapted Physical Activity Intervention in Minimizing Physical Function Decline in Older Patients With Acute Myeloid Leukemia Undergoing Chemotherapy

    ClinicalTrials.gov

    2016-07-26

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  18. Combination Chemotherapy in Treating Young Patients With Newly Diagnosed High-Risk B Acute Lymphoblastic Leukemia and Ph-Like TKI Sensitive Mutations

    ClinicalTrials.gov

    2016-11-02

    B Acute Lymphoblastic Leukemia; Bone Necrosis; Central Nervous System Leukemia; Cognitive Side Effects of Cancer Therapy; Neurotoxicity Syndrome; Pain; Testicular Leukemia; Therapy-Related Toxicity; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  19. Management of chronic myelogenous leukemia in pregnancy.

    PubMed

    Bhandari, Amit; Rolen, Katrina; Shah, Binay Kumar

    2015-01-01

    Discovery of tyrosine kinase inhibitors has led to improvement in survival of chronic myelogenous leukemia (CML) patients. Many young CML patients encounter pregnancy during their lifetime. Tyrosine kinase inhibitors inhibit several proteins that are known to have important functions in gonadal development, implantation and fetal development, thus increasing the risk of embryo toxicities. Studies have shown imatinib to be embryotoxic in animals with varying effects in fertility. Since pregnancy is rare in CML, there are no randomized controlled trials to address the optimal management of this condition. However, there are several case reports and case series on CML in pregnancy. At the present time, there is no consensus on how to manage different pregnancy situations in CML. In this article, we review current literature on CML in pregnancy, discuss the effects of several tyrosine kinase inhibitors on fertility and pregnancy and suggest an evidence-based treatment of CML in pregnancy.

  20. The Pathogenesis of Chronic Lymphocytic Leukemia

    PubMed Central

    Galton, D. A. G.

    1966-01-01

    The pathogenesis of chronic lymphocytic leukemia was examined in a series of 88 cases observed during a 15-year period. In untreated cases the trend of the absolute lymphocyte counts followed two main patterns. In the type I trend, the counts rose throughout the observation period; in the type II trend, the tendency to rise ceased and the counts stabilized above and below a mean value, the stationary trend being maintained for months or years. The type II trend was associated with relatively benign disease. The development of lymphocytosis was correlated with the progression of lymphadenopathy. It is suggested that lymphocytosis may result from the physiological process of recirculation and that the accumulation of lymphocytes may result from the proliferation of a single slightly abnormal cell-line. The abnormal cells might survive an unusually long time because they are unable to respond to stimuli which cause normal lymphocytes to transform. PMID:4952384

  1. Predicting survival in chronic lymphocytic leukemia.

    PubMed

    Bazargan, Ali; Tam, Constantine S; Keating, Michael J

    2012-03-01

    There is increasing interest in the use of prognostic markers that may predict survival and guide management in patients diagnosed with the early stages of chronic lymphocytic leukemia (CLL). Currently, the most important traditional prognostic factors include clinical staging, lymphocyte doubling time and β2-microglobulin/thymidine kinase; and the most important novel markers include karyotypic aberrations (typically assessed by FISH probes or CpG oligonucleotide karyotyping) and IgVH mutation status. Although each of these factors have individually shown significant correlations with survival, there is increasing appreciation that the most complete information may be obtained by using a combination of several factors in prognostic normograms or models. In this article, we review the current state-of-the-art with regards to CLL prognostic factors and discuss how they can be applied in the clinic. PMID:22369330

  2. Targeted treatment for chronic lymphocytic leukemia

    PubMed Central

    Masood, Aisha; Sher, Taimur; Paulus, Aneel; Miller, Kena C; Chitta, Kasyapa S; Chanan-Khan, Asher

    2011-01-01

    The treatment of chronic lymphocytic leukemia (CLL) has evolved over the last few decades. Recognition has increased of several key components of CLL biology currently manipulated for therapeutics. A milestone in the treatment of CLL was reached with the incorporation of immunotherapy with conventional chemotherapy. The fludarabine/cyclophosphamide/rituximab combination has demonstrated survival advantage for the first time in the treatment of CLL. Several other biological compounds are being explored with the hope of improving responses, impacting survival, and ultimately curing CLL. Important agents being tested are targeted on CLL surface molecules and their ligands, signal transduction protein and oncogenes. This review provides a brief summary of the recent advances made in preclinical and clinical investigation of selected promising therapeutic agents, which lead the target-directed therapeutic approach. PMID:22162923

  3. Evolution of Therapies for Chronic Myelogenous Leukemia

    PubMed Central

    Santos, Fabio P S; Kantarjian, Hagop; Quintás-Cardama, Alfonso; Cortes, Jorge

    2011-01-01

    The clinical outcome for patients with chronic myeloid leukemia (CML) has changed dramatically in the past 15 years. This has been due to the development of tyrosine kinase inhibitors (TKI), compounds which inhibit the activity of the oncogenic BCR-ABL1 protein. Imatinib was the first TKI developed for CML, and it led to high rates of complete cytogenetic responses and improved survival for patients with this disease. However, about 35% of patients in chronic phase treated with imatinib will develop resistance or intolerance to this drug. The recognition of the problem of imatinib failure led to the design of 2nd-generation TKI (dasatinib, nilotinib and bosutinib). These drugs are highly active in the scenario of imatinib resistance or intolerance. More recently, both nilotinib and dasatinib were approved for frontline use in patients with chronic phase CML. Ponatinib represents the last generation of TKI, and this drug has been developed with the aim of targeting a specific BCR-ABL1 mutation (T315I) which arises in the setting of prolonged TKI therapy and leads to resistance to all commercially available TKI. Parallel to the development of specific drugs for treating CML, major advances were made in the field of disease monitoring and standardization of response criteria. In this review we summarize how therapy with TKI for CML has evolved over the last decade. PMID:22157290

  4. Clonal architecture of chronic myelomonocytic leukemias.

    PubMed

    Itzykson, Raphaël; Kosmider, Olivier; Renneville, Aline; Morabito, Margot; Preudhomme, Claude; Berthon, Céline; Adès, Lionel; Fenaux, Pierre; Platzbecker, Uwe; Gagey, Olivier; Rameau, Philippe; Meurice, Guillaume; Oréar, Cédric; Delhommeau, François; Bernard, Olivier A; Fontenay, Michaela; Vainchenker, William; Droin, Nathalie; Solary, Eric

    2013-03-21

    Genomic studies in chronic myeloid malignancies, including myeloproliferative neoplasms (MPN), myelodysplastic syndromes (MDS), and MPN/MDS, have identified common mutations in genes encoding signaling, epigenetic, transcription, and splicing factors. In the present study, we interrogated the clonal architecture by mutation-specific discrimination analysis of single-cell-derived colonies in 28 patients with chronic myelomonocytic leukemias (CMML), the most frequent MPN/MDS. This analysis reveals a linear acquisition of the studied mutations with limited branching through loss of heterozygosity. Serial analysis of untreated and treated samples demonstrates a dynamic architecture on which most current therapeutic approaches have limited effects. The main disease characteristics are early clonal dominance, arising at the CD34(+)/CD38(-) stage of hematopoiesis, and granulomonocytic differentiation skewing of multipotent and common myeloid progenitors. Comparison of clonal expansions of TET2 mutations in MDS, MPN, and CMML, together with functional invalidation of TET2 in sorted progenitors, suggests a causative link between early clonal dominance and skewed granulomonocytic differentiation. Altogether, early clonal dominance may distinguish CMML from other chronic myeloid neoplasms with similar gene mutations.

  5. Chronic myeloid leukemia data from India

    PubMed Central

    Bansal, Shweta; Prabhash, Kumar; Parikh, Purvish

    2013-01-01

    In an effort to collaborate the data of chronic myeloid leukemia (CML) patient from all over India,meeting was conceived by ICON (Indian Cooperative Oncology Network) in 2010. This article presents the summarized picture of the data presented in the meeting. In the meeting 8115 patients data was presented and 18 centres submitted their manuscripts comprising of 6677 patients. This data represents large series of patients from all over the country treated on day to day clinical practice and presents the actual outcomes of CML patients in India. The compilation of data confirms the younger age at presentation, increased incidence of resistance and poor outcomes in patients with late chronic phase. It also addresses the issues like Glivec versus Generic drug outcomes, safety of Imatinib during pregnancy and mutational analysis among resistant patients. It concludes that survival and quality of life of CML patients in India has improved over the years especially when treated in early chronic phase. The generic drug is a good option where original is unable to reach the patient due to various reasons. Hopefully, this effort will provide a platform to conduct systematic studies in learning the best treatment options among CML patients in Indian settings. PMID:24516297

  6. Serum metabonomics of acute leukemia using nuclear magnetic resonance spectroscopy

    PubMed Central

    Musharraf, Syed Ghulam; Siddiqui, Amna Jabbar; Shamsi, Tahir; Choudhary, M. Iqbal; Rahman, Atta-ur

    2016-01-01

    Acute leukemia is a critical neoplasm of white blood cells. In order to differentiate between the metabolic alterations associated with two subtypes of acute leukemia, acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), we investigated the serum of ALL and AML patients and compared with two controls (healthy and aplastic anemia) using 1H NMR (nuclear magnetic resonance) spectroscopy. Thirty-seven putative metabolites were identified using Carr-Purcell-Meiboom-Gill (CPMG) sequence. The use of PLS-DA and OPLS-DA models gave results with 84.38% and 90.63% classification rate, respectively. The metabolites responsible for classification are mainly lipids, lactate and glucose. Compared with controls, ALL and AML patients showed serum metabonomic differences involving aberrant metabolism pathways including glycolysis, TCA cycle, lipoprotein changes, choline and fatty acid metabolisms. PMID:27480133

  7. Endometrial and acute myeloid leukemia cancer genomes characterized

    Cancer.gov

    Two studies from The Cancer Genome Atlas (TCGA) program reveal details about the genomic landscapes of acute myeloid leukemia (AML) and endometrial cancer. Both provide new insights into the molecular underpinnings of these cancers with the potential to i

  8. Agents for refractory/relapsed acute lymphocytic leukemia in adults.

    PubMed

    Qian, L-R; Fu, W; Shen, J-L

    2014-01-01

    Although treatment results for adult acute lymphoblastic leukemia (ALL) have improved considerably in the past decades, treating adult patients with relapsed/refractory acute lymphocytic leukemia (ALL) is still difficult. Adults with refractory/relapsed acute lymphocytic leukemia (ALL) processed to death rapidly associated with chemotherapy resistance, high mortality by reinduction, etc. Only 20% to 30% of those patients acquired complete remission (CR). Those patients are always of short duration unless an allogeneic stem cell transplant is feasible. Median survival is only ranging from 2 to 12 months. Therapeutic strategy on relapsed/refractory acute lymphocytic leukemia (ALL) is always a major therapeutic challenge bothering hematological researchers. Novel agents and unique therapeutic strategies have been developed in recent years. This review focuses on major clinical advances in the agents for refractory/relapsed ALL.

  9. Genetics Home Reference: familial acute myeloid leukemia with mutated CEBPA

    MedlinePlus

    ... N. A family harboring a germ-line N-terminal C/EBPalpha mutation and development of acute myeloid leukemia with an additional somatic C-terminal C/EBPalpha mutation. Genes Chromosomes Cancer. 2010 Mar; ...

  10. Clofarabine, Cytarabine, and Filgrastim Followed by Infusion of Non-HLA Matched Ex Vivo Expanded Cord Blood Progenitors in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-08-13

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  11. Decitabine Followed by Idarubicin and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2013-10-09

    Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts

  12. What Are the Risk Factors for Chronic Myeloid Leukemia?

    MedlinePlus

    ... of an atomic bomb blast or nuclear reactor accident) increases the risk of getting CML Age : The ... Myeloid (CML)? Causes, Risk Factors, and Prevention Early Detection, Diagnosis, and Staging Treating Leukemia - Chronic Myeloid (CML) ...

  13. Unplugging JAK/STAT in Chronic Myelomonocytic Leukemia.

    PubMed

    Solary, Eric

    2016-08-01

    The proliferative component of chronic myelomonocytic leukemia, related to an increased sensitivity of myeloid progenitors to granulocyte macrophage-colony stimulating factor, suggests dedicated therapeutic approaches. In this issue, ruxolitinib, a JAK1 and -2 inhibitory drug, is shown to induce objective responses in chronic myelomonocytic leukemia patients. Clin Cancer Res; 22(15); 3707-9. ©2016 AACRSee related article by Padron et al., p. 3746. PMID:26979390

  14. Vorinostat, Fludarabine Phosphate, Cyclophosphamide, and Rituximab in Treating Patients With Previously Untreated Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2016-05-04

    Chronic Lymphocytic Leukemia; Stage I Chronic Lymphocytic Leukemia; Stage I Small Lymphocytic Lymphoma; Stage II Chronic Lymphocytic Leukemia; Stage II Small Lymphocytic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Small Lymphocytic Lymphoma

  15. Chronic Lymphocytic Leukemia in Chornobyl Cleanup Workers.

    PubMed

    Bazyka, Dimitry; Gudzenko, Natalya; Dyagil, Iryna; Goroh, Eugeny; Polyschuk, Oksana; Trotsuk, Natalya; Babkina, Nataly; Romanenko, Anatoly

    2016-08-01

    This paper describes the chronic lymphocytic leukemia (CLL) incidence in a cohort of 110,645 (enlarged later to 152,520) male Ukrainian cleanup workers of the Chornobyl (Chernobyl) accident who were exposed to a range of radiation doses over the 1986-1990 time period. The standardized incidence rates are presented for a 27-y period after the exposure. For 2007-2012 period, the authors have identified the incident CLL cases in an enlarged cohort of 152,520 persons by linkage of the cohort file with the Ukrainian National Cancer Registry (NCRU). CLL data for the previous period (1987-2006) were identified in a frame of the Ukrainian-American leukemia study in the original cohort of 110,645 male clean-up workers. A significant CLL incidence excess was shown for the entire study period 1987-2012, with more prominent levels for the earliest years (1987-1996) when the standardized incidence rate (SIR) value was estimated to be 3.61 with 95% confidence interval from 2.32 to 4.91. In 2007-2012, the CLL incidence decreased substantially but still exceeded the national level although not significantly. In parallel, the several studies were performed at the National Research Center for Radiation Medicine (NRCRM) to explore if any clinical and cytogenetic features of CLL existed in the clean-up workers. The clinical study included 80 exposed and 70 unexposed CLL cases. Among the major clinical differences of the CLL course in the clean-up workers were a shorter period of white blood cells (WBC) doubling (10.7 vs. 18.0; p<0.001), frequent infectious episodes, lymphoadenopathy and hepatosplenomegaly (37 vs. 16), higher expression for CD38, and lower expression for ZAP-70 antigen. PMID:27356063

  16. Cytogenetic and molecular abnormalities in chronic myelomonocytic leukemia

    PubMed Central

    Patnaik, M M; Tefferi, A

    2016-01-01

    Chronic myelomonocytic leukemia (CMML) is a clonal stem cell disorder associated with peripheral blood monocytosis and an inherent tendency to transform to acute myeloid leukemia. CMML has overlapping features of myelodysplastic syndromes and myeloproliferative neoplasms. Clonal cytogenetic changes are seen in ~30%, whereas gene mutations are seen in >90% of patients. Common cytogenetic abnormalities include; trisomy 8, -Y, -7/del(7q), trisomy 21 and del(20q), with the Mayo–French risk stratification effectively risk stratifying patients based on cytogenetic abnormalities. Gene mutations frequently involve epigenetic regulators (TET2 ~60%), modulators of chromatin (ASXL1 ~40%), spliceosome components (SRSF2 ~50%), transcription factors (RUNX1 ~15%) and signal pathways (RAS ~30%, CBL ~15%). Of these, thus far, only nonsense and frameshift ASXL1 mutations have been shown to negatively impact overall survival. This has resulted in the development of contemporary, molecularly integrated (inclusive of ASXL1 mutations) CMML prognostic models, including Molecular Mayo Model and the Groupe Français des Myélodysplasies model. Better understanding of the prevalent genetic and epigenetic dysregulation has resulted in emerging targeted treatment options for some patients. The development of an integrated (cytogenetic and molecular) prognostic model along with CMML-specific response assessment criteria are much needed future goals. PMID:26849014

  17. Decitabine as Maintenance Therapy After Standard Therapy in Treating Patients With Previously Untreated Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-19

    Acute Myeloid Leukemia With Myelodysplasia-Related Changes; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Untreated Adult Acute Myeloid Leukemia

  18. Fludarabine Phosphate, Radiation Therapy, and Rituximab in Treating Patients Who Are Undergoing Donor Stem Cell Transplant Followed by Rituximab for High-Risk Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2016-03-28

    Chronic Lymphocytic Leukemia; Prolymphocytic Leukemia; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Small Lymphocytic Lymphoma; T-Cell Large Granular Lymphocyte Leukemia

  19. Busulfan and Etoposide Followed by Peripheral Blood Stem Cell Transplant and Low-Dose Aldesleukin in Treating Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2015-08-04

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Childhood Acute Myeloid Leukemia in Remission; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia

  20. Total Marrow and Lymphoid Irradiation and Chemotherapy Before Donor Stem Cell Transplant in Treating Patients With High-Risk Acute Lymphocytic or Myelogenous Leukemia

    ClinicalTrials.gov

    2016-09-07

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia

  1. Reduced Intensity Donor Peripheral Blood Stem Cell Transplant in Treating Patients With De Novo or Secondary Acute Myeloid Leukemia in Remission

    ClinicalTrials.gov

    2016-01-19

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia

  2. Clofarabine or Daunorubicin Hydrochloride and Cytarabine Followed By Decitabine or Observation in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia

    ClinicalTrials.gov

    2014-09-16

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Secondary Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  3. Tacrolimus and Methotrexate With or Without Sirolimus in Preventing Graft-Versus-Host Disease in Young Patients Undergoing Donor Stem Cell Transplant for Acute Lymphoblastic Leukemia in Complete Remission

    ClinicalTrials.gov

    2014-01-23

    B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Graft Versus Host Disease; L1 Childhood Acute Lymphoblastic Leukemia; L2 Childhood Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  4. A phase I study of danusertib (PHA-739358) in adult patients with accelerated or blastic phase chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia resistant or intolerant to imatinib and/or other second generation c-ABL therapy.

    PubMed

    Borthakur, Gautam; Dombret, Herve; Schafhausen, Philippe; Brummendorf, Tim Henrik; Boissel, Nicolas; Jabbour, Elias; Mariani, Mariangela; Capolongo, Laura; Carpinelli, Patrizia; Davite, Cristina; Kantarjian, Hagop; Cortes, Jorge E

    2015-07-01

    Danusertib is a pan-aurora kinase inhibitor with potent activity against Abl kinase including the gatekeeper T315I mutant. A phase 1 dose escalation study of danusertib was conducted in patients with accelerated or blastic phase chronic myeloid leukemia or Philadelphia chromosome-positive acute lymphoblastic leukemia. Two dosing schedules were studied: schedule A, in which danusertib was given by 3-hour intravenous infusion daily for 7 consecutive days (days 1-7) in a 14-day cycle, and schedule B, in which the danusertib was given by 3-hour intravenous infusion daily for 14 consecutive days (days 1-14) in a 21-day cycle. A total of 37 patients were treated, 29 with schedule A and eight with schedule B. The recommended phase 2 dose for schedule A was 180 mg/m(2). Enrollment to schedule B was stopped early because of logistical problems with the frequency of infusions. Febrile neutropenia and mucositis were dose-limiting toxicities in schedule A. Four patients with T315I ABL kinase mutation, all treated with schedule A, responded. Danusertib has an acceptable toxicity profile and is active in patients with Bcr-Abl-associated advanced hematologic malignancies. This study was registered with the European Clinical Trails Data Base (EudraCT number 2007-004070-18). PMID:25887498

  5. A phase I study of danusertib (PHA-739358) in adult patients with accelerated or blastic phase chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia resistant or intolerant to imatinib and/or other second generation c-ABL therapy

    PubMed Central

    Borthakur, Gautam; Dombret, Herve; Schafhausen, Philippe; Brummendorf, Tim Henrik; Boissel, Nicolas; Jabbour, Elias; Mariani, Mariangela; Capolongo, Laura; Carpinelli, Patrizia; Davite, Cristina; Kantarjian, Hagop; Cortes, Jorge E.

    2015-01-01

    Danusertib is a pan-aurora kinase inhibitor with potent activity against Abl kinase including the gatekeeper T315I mutant. A phase 1 dose escalation study of danusertib was conducted in patients with accelerated or blastic phase chronic myeloid leukemia or Philadelphia chromosome-positive acute lymphoblastic leukemia. Two dosing schedules were studied: schedule A, in which danusertib was given by 3-hour intravenous infusion daily for 7 consecutive days (days 1–7) in a 14-day cycle, and schedule B, in which the danusertib was given by 3-hour intravenous infusion daily for 14 consecutive days (days 1–14) in a 21-day cycle. A total of 37 patients were treated, 29 with schedule A and eight with schedule B. The recommended phase 2 dose for schedule A was 180 mg/m2. Enrollment to schedule B was stopped early because of logistical problems with the frequency of infusions. Febrile neutropenia and mucositis were dose-limiting toxicities in schedule A. Four patients with T315I ABL kinase mutation, all treated with schedule A, responded. Danusertib has an acceptable toxicity profile and is active in patients with Bcr-Abl-associated advanced hematologic malignancies. This study was registered with the European Clinical Trails Data Base (EudraCT number 2007-004070-18). PMID:25887498

  6. Childhood Acute Lymphoblastic Leukemia: Progress Through Collaboration

    PubMed Central

    Yang, Jun J.; Hunger, Stephen P.; Pieters, Rob; Schrappe, Martin; Biondi, Andrea; Vora, Ajay; Baruchel, André; Silverman, Lewis B.; Schmiegelow, Kjeld; Escherich, Gabriele; Horibe, Keizo; Benoit, Yves C.M.; Izraeli, Shai; Yeoh, Allen Eng Juh; Liang, Der-Cherng; Downing, James R.; Evans, William E.; Relling, Mary V.; Mullighan, Charles G.

    2015-01-01

    Purpose To review the impact of collaborative studies on advances in the biology and treatment of acute lymphoblastic leukemia (ALL) in children and adolescents. Methods A review of English literature on childhood ALL focusing on collaborative studies was performed. The resulting article was reviewed and revised by the committee chairs of the major ALL study groups. Results With long-term survival rates for ALL approaching 90% and the advent of high-resolution genome-wide analyses, several international study groups or consortia were established to conduct collaborative research to further improve outcome. As a result, treatment strategies have been improved for several subtypes of ALL, such as infant, MLL-rearranged, Philadelphia chromosome–positive, and Philadelphia chromosome–like ALL. Many recurrent genetic abnormalities that respond to tyrosine kinase inhibitors and multiple genetic determinants of drug resistance and toxicities have been identified to help develop targeted therapy. Several genetic polymorphisms have been recognized that show susceptibility to developing ALL and that help explain the racial/ethnic differences in the incidence of ALL. Conclusion The information gained from collaborative studies has helped decipher the heterogeneity of ALL to help improve personalized treatment, which will further advance the current high cure rate and the quality of life for children and adolescents with ALL. PMID:26304874

  7. The Epigenetic Landscape of Acute Myeloid Leukemia

    PubMed Central

    Conway O'Brien, Emma

    2014-01-01

    Acute myeloid leukemia (AML) is a genetically heterogeneous disease. Certain cytogenetic and molecular genetic mutations are recognized to have an impact on prognosis, leading to their inclusion in some prognostic stratification systems. Recently, the advent of high-throughput whole genome or exome sequencing has led to the identification of several novel recurrent mutations in AML, a number of which have been found to involve genes concerned with epigenetic regulation. These genes include in particular DNMT3A, TET2, and IDH1/2, involved with regulation of DNA methylation, and EZH2 and ASXL-1, which are implicated in regulation of histones. However, the precise mechanisms linking these genes to AML pathogenesis have yet to be fully elucidated as has their respective prognostic relevance. As massively parallel DNA sequencing becomes increasingly accessible for patients, there is a need for clarification of the clinical implications of these mutations. This review examines the literature surrounding the biology of these epigenetic modifying genes with regard to leukemogenesis and their clinical and prognostic relevance in AML when mutated. PMID:24778653

  8. Acute myeloid leukemia masquerading as hepatocellular carcinoma

    PubMed Central

    Abu-Zeinah, Ghaith F.; Weisman, Paul; Ganesh, Karuna; Katz, Seth S.; Dogan, Ahmet; Abou-Alfa, Ghassan K.; Stein, Eytan M.; Jarnagin, William; Mauro, Michael J.

    2016-01-01

    Hepatocellular carcinoma (HCC) is often diagnosed on the basis of high quality imaging without a biopsy in the cirrhotic liver. This is a case of a 64-year-old Caucasian man with no history of liver disease or cirrhosis that presented with fatigue, weight loss, and abdominal distension and was found to have a large, isolated liver mass with arterial enhancement and portal venous washout on triple-phase computed tomography (CT) suspicious for HCC. The patient was initially referred for a surgical evaluation. Meanwhile, he developed fevers, pancytopenia, and worsening back pain, and a subsequent spinal MRI revealed a heterogeneous bone marrow signal suspicious for metastatic disease. A bone marrow biopsy that followed was diffusely necrotic. A core biopsy of the patient’s liver mass was then performed and was diagnostic of acute monocytic-monoblastic leukemia. Findings from peripheral flow cytometry and a repeat bone marrow biopsy were also consistent with this diagnosis, and induction chemotherapy with cytarabine and idarubicin was initiated. This case describes a rare presentation of myeloid sarcoma (MS) as an isolated, hypervascular liver mass that mimics HCC in its radiographic appearance. Due to the broad differential for a liver mass, a confirmatory biopsy should routinely be considered prior to surgical intervention. PMID:27284485

  9. Epigenetic deregulation in pediatric acute lymphoblastic leukemia

    PubMed Central

    Chatterton, Zac; Morenos, Leah; Mechinaud, Francoise; Ashley, David M; Craig, Jeffrey M; Sexton-Oates, Alexandra; Halemba, Minhee S; Parkinson-Bates, Mandy; Ng, Jane; Morrison, Debra; Carroll, William L; Saffery, Richard; Wong, Nicholas C

    2014-01-01

    Similar to most cancers, genome-wide DNA methylation profiles are commonly altered in pediatric acute lymphoblastic leukemia (ALL); however, recent observations highlight that a large portion of malignancy-associated DNA methylation alterations are not accompanied by related gene expression changes. By analyzing and integrating the methylome and transcriptome profiles of pediatric B-cell ALL cases and primary tissue controls, we report 325 genes hypermethylated and downregulated and 45 genes hypomethylated and upregulated in pediatric B-cell ALL, irrespective of subtype. Repressed cation channel subunits and cAMP signaling activators and transducers are overrepresented, potentially indicating a reduced cellular potential to receive and propagate apoptotic signals. Furthermore, we report specific DNA methylation alterations with concurrent gene expression changes within individual ALL subtypes. The ETV6-RUNX1 translocation was associated with downregulation of ASNS and upregulation of the EPO-receptor, while Hyperdiploid patients (>50 chr) displayed upregulation of B-cell lymphoma (BCL) members and repression of PTPRG and FHIT. In combination, these data indicate genetically distinct B-cell ALL subtypes contain cooperative epimutations and genome-wide epigenetic deregulation is common across all B-cell ALL subtypes. PMID:24394348

  10. Acute lymphoblastic leukemia: age and biology.

    PubMed

    Foà, Robin

    2011-06-22

    Acute lymphoblastic leukemia (ALL) is the most frequent neoplasm in children, while being relatively rare in adults. The outcome of children with ALL is far superior than that observed in adults, whose survival rates generally do not exceed 40%. A retrospective analysis recently carried out on a large series of cases enrolled in the AIEOP and GIMEMA protocols for the treatment of pediatric and adult ALL has documented specific differences among the various age cohorts examined, particularly in terms of incidence of molecular rearrangements, with the BCR/ABL rearrangement being detected in more than half of patients in the 6(th) decade of life. These findings highlight the importance of a precise diagnostic screening at all ages, since elderly patients might benefit more from targeted approaches, that are associated with less toxic effects. Furthermore, extended biologic approaches aimed at identifying novel therapeutic targets should be regarded as a main goal to refine our therapeutic armamentarium.Finally, the introduction of pediatric-like protocols is progressively changing the outcome of young adult patients, although an important caveat is represented by the comorbidities and toxic effects associated with more aggressive chemotherapy; therefore, patients' fitness should always be carefully considered.

  11. Diffuse Alveolar Hemorrhage in Acute Myeloid Leukemia.

    PubMed

    Nanjappa, Sowmya; Jeong, Daniel K; Muddaraju, Manjunath; Jeong, Katherine; Hill, Ebone D; Greene, John N

    2016-07-01

    Diffuse alveolar hemorrhage is a potentially fatal pulmonary disease syndrome that affects individuals with hematological and nonhematological malignancies. The range of inciting factors is wide for this syndrome and includes thrombocytopenia, underlying infection, coagulopathy, and the frequent use of anticoagulants, given the high incidence of venous thrombosis in this population. Dyspnea, fever, and cough are commonly presenting symptoms. However, clinical manifestations can be variable. Obvious bleeding (hemoptysis) is not always present and can pose a potential diagnostic challenge. Without prompt treatment, hypoxia that rapidly progresses to respiratory failure can occur. Diagnosis is primarily based on radiological and bronchoscopic findings. This syndrome is especially common in patients with hematological malignancies, given an even greater propensity for thrombocytopenia as a result of bone marrow suppression as well as the often prolonged immunosuppression in this patient population. The syndrome also has an increased incidence in individuals with hematological malignancies who have received a bone marrow transplant. We present a case series of 5 patients with acute myeloid leukemia presenting with diffuse alveolar hemorrhage at our institution. A comparison of clinical manifestations, radiographic findings, treatment course, and outcomes are described. A review of the literature and general overview of the diagnostic evaluation, differential diagnoses, pathophysiology, and treatment of this syndrome are discussed. PMID:27556667

  12. Acute Myeloid Leukemia Presenting as Intracerebral Granulocytic Sarcoma.

    PubMed

    Dhandapani, E; Thirumavalavan; Sowrirajan

    2015-10-01

    The CNS involvement of acute myeloid leukemia (AML) is more commonly manifest as meningeal involvement. Rarely it may present as intravascular tumor aggregates called granulocytic sarcoma which presents as intracranial hemorrhage. We are presenting a case of intracranial, intra-parenchymal granulocytic sarcoma (other names: chloroma, extramedullary myeloblastoma), presenting as acute hemiplegia without cerebral hemorrhage. PMID:27608697

  13. Bacillus cereus bacteremia in an adult with acute leukemia.

    PubMed

    Funada, H; Uotani, C; Machi, T; Matsuda, T; Nonomura, A

    1988-03-01

    Bacillus cereus, which used to be considered non-pathogenic, was isolated from the blood of a patient with acute leukemia who was receiving intensive chemotherapy. Fatal bacteremia developed with a clinical syndrome of acute gastroenteritis, followed by both meningoencephalitis with subarachnoid hemorrhage and multiple liver abscesses probably caused by infective vasculitis. Surveillance stool cultures revealed colonization with the organism prior to the onset of diarrhea, and repetitive blood cultures were found to be positive. Thus, this case suggested some new important clinicopathologic features of true B. cereus bacteremia complicating acute leukemia.

  14. Small Molecule Inhibitors in Acute Myeloid Leukemia: From the Bench to the Clinic

    PubMed Central

    Al-Hussaini, Muneera; DiPersio, John F.

    2014-01-01

    Many patients with acute myeloid leukemia (AML) will eventually develop refractory or relapsed disease. In the absence of standard therapy for this population, there is currently an urgent unmet need for novel therapeutic agents. Targeted therapy with small molecule inhibitors (SMIs) represents a new therapeutic intervention that has been successful for the treatment of multiple tumors (e.g., gastrointestinal stromal tumors, chronic myelogenous leukemia). Hence, there has been great interest in generating selective small molecule inhibitors targeting critical pathways of proliferation and survival in AML. This review highlights a selective group of intriguing therapeutic agents and their presumed targets in both preclinical models and in early human clinical trials. PMID:25025370

  15. Chronic Myelogenous Leukemia, Version 1.2014

    PubMed Central

    O’Brien, Susan; Radich, Jerald P.; Abboud, Camille N.; Akhtari, Mojtaba; Altman, Jessica K.; Berman, Ellin; DeAngelo, Daniel J.; Deininger, Michael; Devine, Steven; Fathi, Amir T.; Gotlib, Jason; Jagasia, Madan; Kropf, Patricia; Moore, Joseph O.; Pallera, Arnel; Pinilla-Ibarz, Javier; Reddy, Vishnu VB.; Shah, Neil P.; Smith, B. Douglas; Snyder, David S.; Wetzler, Meir; Gregory, Kristina; Sundar, Hema

    2014-01-01

    The 2014 NCCN Clinical Practice Guidelines in Oncology for Chronic Myelogenous Leukemia recommend quantitative reverse-transcription polymerase chain reaction (QPCR) standardized to International Scale (IS) as the preferred method for monitoring molecular response to tyrosine kinase inhibitor (TKI) therapy. A BCR-ABL1 transcript level of 10% or less (IS) is now included as the response milestone at 3 and 6 months. Change of therapy to an alternate TKI is recommended for patients with BCR-ABL1 transcript levels greater than 10% (IS) at 3 months after primary treatment with imatinib. Continuing the same dose of TKI or switching to an alternate TKI are options for patients with BCR-ABL1 transcript levels greater than 10% (IS) at 3 months after primary treatment with dasatinib or nilotinib. The guidelines recommend 6-month evaluation with QPCR (IS) for patients with BCR-ABL1 transcript levels greater than 10% at 3 months. Monitoring with QPCR (IS) every 3 months is recommended for all patients, including those who meet response milestones at 3, 6, 12, and 18 months (BCR-ABL1 transcript level ≤10% [IS] at 3 and 6 months, complete cytogenetic response at 12 and 18 months). PMID:24225967

  16. Richter Syndrome in Chronic Lymphocytic Leukemia.

    PubMed

    Vitale, Candida; Ferrajoli, Alessandra

    2016-02-01

    The term Richter syndrome (RS) indicates the transformation of chronic lymphocytic leukemia (CLL) into an aggressive lymphoma. RS is a rare complication with an aggressive clinical course, bearing an unfavorable prognosis. In the majority of cases, CLL transforms into RS as diffuse large B cell lymphoma (DLBCL), and a clonal relation between the two processes can be found. However, clonally unrelated RS can occur and transformations to other histologies beside DLBCL have been described. Recent data have shed some light on genetic characteristics that can influence and drive the transformation from CLL to RS. This molecular information has not been translated yet into significant treatment advances, and currently the therapy regimens for RS continue to rely on intensive chemotherapy combinations followed by stem cell transplant in suitable candidates. Based on the rapid pace of discoveries in the field of hematological malignancies and on the recent revolution in the therapeutic landscape for CLL and B cell lymphomas, new therapeutic options for RS might be available in the upcoming years. PMID:26830086

  17. Gene mutations in chronic lymphocytic leukemia.

    PubMed

    Amin, Nisar A; Malek, Sami N

    2016-04-01

    The recent discovery of genes mutated in chronic lymphocytic leukemia (CLL) has stimulated new research into the role of these genes in CLL pathogenesis. CLL cases carry approximately 5-20 mutated genes per exome, a lower number than detected in many human tumors. Of the recurrently mutated genes in CLL, all are mutated in 10% or less of patients when assayed in unselected CLL cohorts at diagnosis. Mutations in TP53 are of major clinical relevance, are often associated with del17p and gain in frequency over time. TP53 mutated and associated del17p states substantially lower response rates, remission duration, and survival in CLL. Mutations in NOTCH1 and SF3B1 are recurrent, often associated with progressive CLL that is also IgVH unmutated and ZAP70-positive and are under investigation as targets for novel therapies and as factors influencing CLL outcome. There are an estimated 20-50 additional mutated genes with frequencies of 1%-5% in CLL; more work is needed to identify these and to study their significance. Finally, of the major biological aberration categories influencing CLL as a disease, gene mutations will need to be placed into context with regard to their ultimate role and importance. Such calibrated appreciation necessitates studies incorporating multiple CLL driver aberrations into biological and clinical analyses. PMID:27040699

  18. Optimized Treatment Schedules for Chronic Myeloid Leukemia

    PubMed Central

    He, Qie; Dingli, David; Foo, Jasmine; Leder, Kevin Zox

    2016-01-01

    Over the past decade, several targeted therapies (e.g. imatinib, dasatinib, nilotinib) have been developed to treat Chronic Myeloid Leukemia (CML). Despite an initial response to therapy, drug resistance remains a problem for some CML patients. Recent studies have shown that resistance mutations that preexist treatment can be detected in a substantial number of patients, and that this may be associated with eventual treatment failure. One proposed method to extend treatment efficacy is to use a combination of multiple targeted therapies. However, the design of such combination therapies (timing, sequence, etc.) remains an open challenge. In this work we mathematically model the dynamics of CML response to combination therapy and analyze the impact of combination treatment schedules on treatment efficacy in patients with preexisting resistance. We then propose an optimization problem to find the best schedule of multiple therapies based on the evolution of CML according to our ordinary differential equation model. This resulting optimization problem is nontrivial due to the presence of ordinary different equation constraints and integer variables. Our model also incorporates drug toxicity constraints by tracking the dynamics of patient neutrophil counts in response to therapy. We determine optimal combination strategies that maximize time until treatment failure on hypothetical patients, using parameters estimated from clinical data in the literature. PMID:27764087

  19. Ibrutinib (PCI-32765) in Chronic Lymphocytic Leukemia

    PubMed Central

    Jain, Nitin; O’Brien, Susan

    2015-01-01

    SYNOPSIS B-cell receptor (BCR) signaling is essential for chronic lymphocytic leukemia (CLL) cell survival. Many kinases in the BCR signaling pathway are currently being studied as potential therapeutic targets. These include Lyn, Syk, PI3 and Bruton tyrosine (BTK). Ibrutinib (PCI-32765) is a novel first-in-class selective inhibitor of BTK. Preclinical evidence suggests that ibrutinib inhibits CLL cell survival and proliferation. In addition, it also affects CLL cell migration and homing. Early clinical data in CLL and non-Hodgkin’s lymphoma patients is very encouraging. In relapsed-refractory patients with CLL, a 67% response rate was observed (420mg dose cohort) with single-agent ibrutinib. Long-term follow-up of these studies and other ongoing/planned studies of ibrutinib either as single-agent or in combination with monoclonal antibodies and chemoimmunotherapy is eagerly awaited. It is likely that ibrutinib and other drugs targeting the BCR pathway will become an integral component of CLL therapy. PMID:23915749

  20. The lymph node in chronic lymphocytic leukemia.

    PubMed

    Dick, F R; Maca, R D

    1978-01-01

    Lymph nodes were examined from 41 cases of typical chronic lymphocytic leukemia (CLL). Degree of immaturity was graded as absent to minimal (Grade I), moderate (Grade II) and marked (Grade III). A moderate degree of immaturity was found in the lymph node in 14 of 41 cases even though the cells seen on the initial bone marrow and peripheral blood smears obtained from these patients were essentially all mature. The morphology of these nodes could be confused with poorly differentiated lymphocytic or mixed lymphocytic-histiocytic lymphoma in terms of the degree of immaturity present. A marked degree of immaturity present. A marked degree of immaturity was found in 5 cases; the morphology of these cases resembled histiocytic lymphoma. In the remaining 22 cases immaturity was essentially absent. The morphology of these cases was similar to that of diffuse well differentiated lymphocytic lymphoma. Our studies suggest that a moderate degree of immaturity in the lymph node of patients with CLL does not indicate that these patients will have a marked shortening of their survival. PMID:580071

  1. Acute lymphoblastic leukemia in a pygmy hippopotamus (Hexaprotodon liberiensis).

    PubMed

    McCurdy, Paul; Sangster, Cheryl; Lindsay, Scott; Vogelnest, Larry

    2014-12-01

    A captive, 31-yr-old, intact male pygmy hippopotamus presented with nonspecific signs of weight loss, inappetence, diarrhea, and lethargy. After 5 wk of diagnostic investigation and symptomatic treatment, an acute leukemic process with concurrent polycystic kidney disease was suspected. The animal's condition continued to deteriorate prompting euthanasia. Necropsy, histopathologic, and immunohistochemical examination confirmed acute T-cell lymphoblastic leukemia and polycystic kidneys. Acute T-cell lymphoblastic leukemia has not previously been documented in this species; however, polycystic kidney disease has been reported. This case report adds to the increasing number of pygmy hippopotamuses diagnosed with polycystic kidney disease and describes acute T-cell lymphoblastic leukemia, a previously unreported disease of this species.

  2. Acute lymphoblastic leukemia in a pygmy hippopotamus (Hexaprotodon liberiensis).

    PubMed

    McCurdy, Paul; Sangster, Cheryl; Lindsay, Scott; Vogelnest, Larry

    2014-12-01

    A captive, 31-yr-old, intact male pygmy hippopotamus presented with nonspecific signs of weight loss, inappetence, diarrhea, and lethargy. After 5 wk of diagnostic investigation and symptomatic treatment, an acute leukemic process with concurrent polycystic kidney disease was suspected. The animal's condition continued to deteriorate prompting euthanasia. Necropsy, histopathologic, and immunohistochemical examination confirmed acute T-cell lymphoblastic leukemia and polycystic kidneys. Acute T-cell lymphoblastic leukemia has not previously been documented in this species; however, polycystic kidney disease has been reported. This case report adds to the increasing number of pygmy hippopotamuses diagnosed with polycystic kidney disease and describes acute T-cell lymphoblastic leukemia, a previously unreported disease of this species. PMID:25632680

  3. Treatment Recommendations for Chronic Myeloid Leukemia

    PubMed Central

    Baccarani, Michele; Castagnetti, Fausto; Gugliotta, Gabriele; Palandri, Francesca; Rosti, Gianantonio

    2014-01-01

    The first treatment of chronic myeloid leukemia (CML) included spleen x-radiation and conventional drugs, mainly Busulfan and Hydroxyurea. This therapy improved the quality of life during the chronic phase of the disease, without preventing nor significantly delaying the progression towards advanced phases. The introduction of allogeneic stem cell transplantation (alloSCT) marked the first important breakthrough in the evolution of CML treatment, because about 50% of the eligible patients were cured. The second breakthrough was the introduction of human recombinant interferon-alfa, able to achieve a complete cytogenetic remission in 15% to 30% of patients, with a significant survival advantage over conventional chemotherapy. At the end of the last century, about 15 years ago, all these treatments were quickly replaced by a class of small molecules targeting the tyrosine kinases (TK), which were able to induce a major molecular remission in most of the patients, without remarkable side effects, and a very prolonged life-span. The first approved TK inhibitor (TKI) was Imatinib Mesylate (Glivec or Gleevec, Novartis). Rapidly, other TKIs were developed tested and commercialized, namely Dasatinib (Sprycel, Bristol-Myers Squibb), Nilotinib (Tasigna, Novartis), Bosutinib (Busulif, Pfizer) and Ponatinib (Iclusig, Ariad). Not all these compounds are available worldwide; some of them are approved only for second line treatment, and the high prices are a problem that can limit their use. A frequent update of treatment recommendations is necessary. The current treatment goals include not only the prevention of the transformation to the advanced phases and the prolongation of survival, but also a length of survival and of a quality of life comparable to that of non-leukemic individuals. In some patient the next ambitious step is to move towards a treatment-free remission. The CML therapy, the role of alloSCT and the promising experimental strategies are reviewed in the context

  4. Diagnosing and managing advanced chronic myeloid leukemia.

    PubMed

    Deininger, Michael W

    2015-01-01

    Clinical staging of chronic myeloid leukemia (CML) distinguishes between chronic phase (CP-CML), accelerated phase (AP-CML), and blastic phase (BP-CML), reflecting its natural history in the absence of effective therapy. Morphologically, transformation from CP-CML to AP/BP-CML is characterized by a progressive or sudden loss of differentiation. Multiple different somatic mutations have been implicated in transformation from CP-CML to AP/BC-CML, but no characteristic mutation or combination of mutations have emerged. Gene expression profiles of AP-CML and BP-CML are similar, consistent with biphasic evolution at the molecular level. Gene expression of tyrosine kinase inhibitor (TKI)-resistant CP-CML and second CP-CML resemble AP/BP-CML, suggesting that morphology alone is a poor predictor of biologic behavior. At the clinical level, progression to AP/BP-CML or resistance to first-line TKI therapy distinguishes a good risk condition with survival close to the general population from a disease likely to reduce survival. Progression while receiving TKI therapy is frequently caused by mutations in the target kinase BCR-ABL1, but progression may occur in the absence of explanatory BCR-ABL1 mutations, suggesting involvement of alternative pathways. Identifying patients in whom milestones of TKI response fail to occur or whose disease progress while receiving therapy requires appropriate molecular monitoring. Selection of salvage TKI depends on prior TKI history, comorbidities, and BCR-ABL1 mutation status. Despite the introduction of novel TKIs, therapy of AP/BP-CML remains challenging and requires accepting modalities with substantial toxicity, such as hematopoietic stem cell transplantation (HSCT). PMID:25993200

  5. Tosedostat in Combination With Cytarabine or Decitabine in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndrome

    ClinicalTrials.gov

    2014-06-09

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  6. Cediranib Maleate in Treating Patients With Relapsed, Refractory, or Untreated Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndrome

    ClinicalTrials.gov

    2014-09-18

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Myeloid Leukemia

  7. Curcumin and Cholecalciferol in Treating Patients With Previously Untreated Stage 0-II Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2016-10-04

    Contiguous Stage II Small Lymphocytic Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Stage 0 Chronic Lymphocytic Leukemia; Stage I Chronic Lymphocytic Leukemia; Stage I Small Lymphocytic Lymphoma; Stage II Chronic Lymphocytic Leukemia

  8. Lenalidomide, Ibrutinib, and Rituximab in Treating Patients With Relapsed or Refractory Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma That Is Metastatic or Cannot Be Removed by Surgery

    ClinicalTrials.gov

    2016-10-10

    Recurrent Chronic Lymphocytic Leukemia; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Small Lymphocytic Lymphoma; Stage III Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Chronic Lymphocytic Leukemia; Stage IV Small Lymphocytic Lymphoma

  9. The role of natural killer cells in chronic myeloid leukemia

    PubMed Central

    Danier, Anna Carolyna Araújo; de Melo, Ricardo Pereira; Napimoga, Marcelo Henrique; Laguna-Abreu, Maria Theresa Cerávolo

    2011-01-01

    Chronic myeloid leukemia is a neoplasia resulting from a translocation between chromosomes 9 and 22 producing the BCR-ABL hybrid known as the Philadelphia chromosome (Ph). In chronic myeloid leukemia a proliferation of malignant myeloid cells occurs in the bone marrow due to excessive tyrosine kinase activity. In order to maintain homeostasis, natural killer cells, by means of receptors, identify the major histocompatibility complex on the surface of tumor cells and subsequently induce apoptosis. The NKG2D receptor in the natural killer cells recognizes the transmembrane proteins related to major histocompatibility complex class I chain-related genes A and B (MICA and MICB), and it is by the interaction between NKG2D and MICA that natural killer cells exert cytotoxic activity against chronic myeloid leukemia tumor cells. However, in the case of chronic exposure of the NKG2D receptor, the MICA ligand releases soluble proteins called sMICA from the tumor cell surface, which negatively modulate NKG2D and enable the tumor cells to avoid lysis mediated by the natural killer cells. Blocking the formation of sMICA may be an important antitumor strategy. Treatment using tyrosine kinase inhibitors induces modulation of NKG2DL expression, which could favor the activity of the natural killer cells. However this mechanism has not been fully described in chronic myeloid leukemia. In the present study, we analyze the role of natural killer cells to reduce proliferation and in the cellular death of tumor cells in chronic myeloid leukemia. PMID:23049299

  10. ADCY7 supports development of acute myeloid leukemia

    PubMed Central

    Li, Chunling; Xie, Jingjing; Lu, Zhigang; Chen, Chen; Li, Yancun; Zhan, Renhui; Fang, Yi; Hu, Xuemei; Zhang, Cheng Cheng

    2015-01-01

    Acute myeloid leukemia (AML) is the most common adult acute leukemia. Despite treatment, the majority of the AML patients relapse within 5 years. In silico analysis of several available databases of AML patients showed that the expression of adenylate cyclase 7 (ADCY7) significantly inversely correlates with the overall survival of AML patients. To determine whether ADCY7 supports AML development, we employed an shRNA-encoding lentivirus system to inhibit adcy7 expression in human AML cells including U937, MV4-11, and THP-1 cells. The ADCY7 deficiency resulted in decreased cell growth, elvated apoptosis, and lower c-Myc expression of these leukemia cells. This indicates that G protein-coupled receptor signaling contributes to AML pathogenesis. Our study suggests that inhibition of ADCY7 may be novel strategy for treating leukemia. PMID:26220344

  11. Leukomogenic factors downregulate heparanase expression in acute myeloid leukemia cells

    SciTech Connect

    Eshel, Rinat; Ben-Zaken, Olga; Vainas, Oded; Nadir, Yona; Minucci, Saverio; Polliack, Aaron; Naparstek, Ella; Vlodavsky, Israel; Katz, Ben-Zion; E-mail: bkatz@tasmc.healt.gov.il

    2005-10-07

    Heparanase is a heparan sulfate-degrading endoglycosidase expressed by mature monocytes and myeloid cells, but not by immature hematopoietic progenitors. Heparanase gene expression is upregulated during differentiation of immature myeloid cells. PML-RAR{alpha} and PLZF-RAR{alpha} fusion gene products associated with acute promyelocytic leukemia abrogate myeloid differentiation and heparanase expression. AML-Eto, a translocation product associated with AML FAB M2, also downregulates heparanase gene expression. The common mechanism that underlines the activity of these three fusion gene products involves the recruitment of histone deacetylase complexes to specific locations within the DNA. We found that retinoic acid that dissociates PML-RAR{alpha} from the DNA, and which is used to treat acute promyelocytic leukemia patients, restores heparanase expression to normal levels in an acute promyelocytic leukemia cell line. The retinoic acid effects were also observed in primary acute promyelocytic leukemia cells and in a retinoic acid-treated acute promyelocytic leukemia patient. Histone deacetylase inhibitor reverses the downregulation of heparanase expression induced by the AML-Eto fusion gene product in M2 type AML. In summary, we have characterized a link between leukomogenic factors and the downregulation of heparanase in myeloid leukemic cells.

  12. What's New in Adult Acute Lymphocytic Leukemia (ALL) in Adults Research?

    MedlinePlus

    ... Topic Additional resources for acute lymphocytic leukemia What’s new in acute lymphocytic leukemia research and treatment? Researchers ... have the Philadelphia chromosome. Gene expression profiling This new lab technique is being studied to help identify ...

  13. Acute promyelocytic leukemia: a curable disease.

    PubMed

    Lo Coco, F; Nervi, C; Avvisati, G; Mandelli, F

    1998-12-01

    The Second International Symposium on Acute Promyelocytic Leukemia (APL) was held in Rome in 12-14 November 1997. Clinical and basic investigators had the opportunity to discuss in this meeting the important advances in the biology and treatment of this disease achieved in the last 4 years, since the First Roman Symposium was held in 1993. The first part of the meeting was dedicated to relevant aspects of laboratory research, and included the following topics: molecular mechanisms of leukemogenesis and of response/resistance to retinoids, biologic and therapeutic effects of new agents such as arsenicals and novel synthetic retinoids; characterization of APL heterogeneity at the morphological, cytogenetic and immunophenotypic level. The updated results of large cooperative clinical trials using variable combinations of all-trans retinoic acid (ATRA) and chemotherapy were presented by the respective group chairmen, and formed the 'core' part of the meeting. These studies, which in most cases integrated the molecular assessment of response to treatment, provided a stimulating framework for an intense debate on the most appropriate frontline treatment options to be adopted in the future. The last day was dedicated to special entities such as APL in the elderly and in the child, as well as the role of bone marrow transplantation. The prognostic value of molecular monitoring studies was also discussed in the final session of the meeting. In this article, we review the major advances and controversial issues in APL biology and treatment discussed in this symposium and emerging from very recent publications. We would like to credit the successful outcome of this meeting to the active and generous input of all invited speakers and to participants from all over the world who provided constructive and fruitful discussions.

  14. Survival after intestinal mucormycosis in acute myelogenous leukemia.

    PubMed

    Parra, R; Arnau, E; Julia, A; Lopez, A; Nadal, A; Allende, E

    1986-12-15

    A young woman with acute myelocytic leukemia developed acute lower gastrointestinal bleeding immediately after a first remission induction of her leukemia. After the site of bleeding was located in the descending colon, a necrotic bleeding ulcer was resected. Histologic examination of the ulcer established the diagnosis of gastrointestinal mucormycosis. Treatment with amphotericin B was administered because of the high risk of dissemination. The patient has been followed for 9 months with no evidence of relapse of infection. Survival after gastrointestinal mucormycosis in acute leukemia has not previously been reported in the English language literature. Success in managing mucormycosis depends on the adherence to the recommended principles of early aggressive diagnostic measures, excisional surgery, amphotericin B therapy, and control of the underlying predisposing condition.

  15. Chronic lymphocytic leukemia: case-based session.

    PubMed

    Rai, K R; Döhner, H; Keating, M J; Montserrat, E

    2001-01-01

    Drs. Hartmut Döhner, Michael J. Keating, Kanti R. Rai and Emili Montserrat form the panel to review chronic lymphocytic leukemia (CLL) while focusing on the clinical features of a particular patient. The pace of progress in CLL has accelerated in the past decade. The pathophysiological nature of this disease, as had been known in the past, was based largely on the intuitive and empiric notions of two leaders in hematology, William Dameshek and David Galton. Now the works of a new generation of leaders are providing us with the scientific explanations of why CLL is a heterogeneous disease, perhaps consisting of at least two separate entities. In one form of CLL, the leukemic lymphocytes have a surface immunoglobulin (Ig) variable region gene that has undergone somatic mutations, with tell-tale markers suggesting that these cells had previously traversed the germinal centers. Such patients have a distinctly superior prognosis than their counterparts whose leukemic lymphocytes IgV genes have no mutations (these are indeed immunologically naive cells), who have a worse prognosis. The introduction of fluorescence in situ hybridization (FISH) technique has provided us with new insights into the diverse chromosomal abnormalities that can occur in CLL, and which have significant impact on the clinical behavior and prognosis of patients with this disease. Major advances in therapeutics of CLL also have occurred during the past decade. Two monoclonal antibodies, Campath-1H (anti-CD52) and rituximab (anti-CD20), and one nucleoside analogue, fludarabine, have emerged as three agents of most promise in the front-line treatment of this disease. Studies currently in progress reflect our attempts to find the most effective manner of combining these agents to improve the overall survival statistics for CLL patients. As in many other hematological malignancies, high dose chemotherapy followed by autologous or HLA-compatible allogeneic stem cells rescue strategies are under study as

  16. Imatinib in Chronic Myeloid Leukemia: an Overview

    PubMed Central

    Sacha, Tomasz

    2014-01-01

    Imatinib was the first signal transduction inhibitor (STI), used in a clinical setting. It prevents a BCR-ABL protein from exerting its role in the oncogenic pathway in chronic myeloid leukemia (CML). Imatinib directly inhibits the constitutive tyrosine kinase activity. Imatinib binds to BCR-ABL kinase domain by preventing the transfer of a phosphate group to tyrosine on the protein substrate and the subsequent activation of phosphorylated protein. As the result, the transmission of proliferative signals to the nucleus is blocked and leukemic cell apoptosis is induced. The FDA has approved imatinib as first-line treatment for newly diagnosed CML in December 2002 following an International Randomized Study (IRIS), initiated in June 2000, comparing imatinib at a single daily dose 400 mg to IFN alpha plus cytarabine in newly diagnosed patients with CML in CP. Results from this study show the outstanding effectiveness of imatinib and its superiority with respect to the rates of complete hematological response (CHR), major and complete cytogenetic response (MCyR, CCyR). Patients randomized to imatinib arm at 8 – year data cut off continue to have a durable hematologic and cytogenetic responses, low progression rates to AP or BC, and remarkable survival outcomes. An overall survival (OS) rate is 85% for patients receiving imatinib (93% when only CML-related deaths and those prior to stem cell transplantation are considered). The results have been confirmed in the last years by several groups. According these cumulative results the rates of CCyR achieved after one year of therapy with imatinib at standard dose ranged from 49% to 77%, and the proportion of patients who achieved major molecular response (MMR) after one year ranged between 18% and 58%. Discontinuation of imatinib has been also tried in patients in MMR, a molecular relapse occurs in about one third of patients, generally within 6 months from imatinib cessation. PMID:24455116

  17. Tretinoin and Arsenic Trioxide in Treating Patients With Untreated Acute Promyelocytic Leukemia

    ClinicalTrials.gov

    2016-07-08

    Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Childhood Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Untreated Adult Acute Myeloid Leukemia; Untreated Childhood Myeloid Neoplasm

  18. Decitabine and Total-Body Irradiation Followed By Donor Bone Marrow Transplant and Cyclophosphamide in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-07-08

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  19. Medullary allotransplant in acute myeloblastic leukemia in a child.

    PubMed

    Buga Corbu, V; Glűck, A; Arion, C

    2014-09-15

    Although acute myeloblastic leukemia (AML) is more resistant to chemotherapy than acute lymphoblastic leukemia (ALL), significant progresses have been achieved over the last 20 years with an improvement in the long-term survival up to 50-60%. This may be attributed to the intensification of chemotherapy, including the increased use of stem-cell transplantation (HSCT) in well-defined subgroups. Allo-HSCT represents an extremely effective alternative in pediatric AML treatment panel, but its efficiency is limited both by the toxic effects and by the difficulty of finding a matched HLA donor.

  20. Medullary allotransplant in acute myeloblastic leukemia in a child

    PubMed Central

    Buga Corbu, V; Glűck, R; Arion, C

    2014-01-01

    Abstract Although acute myeloblastic leukemia (AML) is more resistant to chemotherapy than acute lymphoblastic leukemia (ALL), significant progresses have been achieved over the last 20 years with an improvement in the long-term survival up to 50-60%. This may be attributed to the intensification of chemotherapy, including the increased use of stem-cell transplantation (HSCT) in well-defined subgroups. Allo-HSCT represents an extremely effective alternative in pediatric AML treatment panel, but its efficiency is limited both by the toxic effects and by the difficulty of finding a matched HLA donor. PMID:25408774

  1. Neutropenic enterocolitis: a rare presenting complication of acute leukemia.

    PubMed

    Quigley, M M; Bethel, K; Nowacki, M; Millard, F; Sharpe, R

    2001-03-01

    Neutropenic enterocolitis is a necrotizing inflammatory process with intramural infection that occurs predominantly in neutropenic patients. This syndrome is most frequently observed after chemotherapy for hematologic and solid tissue malignancies, but it can also be observed in a number of other clinical settings as well. Neutropenic enterocolitis can be a rare presenting complication of acute leukemia. We report a case of acute lymphoblastic leukemia that presented with abdominal pain due to neutropenic enterocolitis. The diagnostic and treatment challenges associated with this manner of presentation are discussed.

  2. [Significance of Minimal Residual Disease in Chronic Lymphocytic Leukemia].

    PubMed

    Doubek, M

    2015-01-01

    Newly introduced highly effective treatment options increase the importance of minimal residual disease measurement in chronic lymphocytic leukemia. Minimal residual disease is gaining interest mainly as a predictive marker; however, clinical significance of minimal residual dis-ease in chronic lymphocytic leukemia in many different situations remains unresolved. Factors with a possible impact on the clinical significance of minimal residual disease are as follows: technique for minimal residual disease quantification, treatment regimen, peripheral blood vs. bone marrow analysis or time -point for sampling. Highly sensitive methods now available to evaluate minimal residual disease can detect a single chronic lymphocytic leukemia cell in 10(-4)- 10(-5) leukocytes using either allele -specific oligonucleotide polymerase chain reaction or multicolor flow cytometry. Minimal residual disease quantification as a surrogate marker to assess treatment efficacy in routine hematological practice has to be further evaluated.

  3. Acute and chronic pancreatitis.

    PubMed

    Vlodov, J; Tenner, S M

    2001-09-01

    Acute pancreatitis has multiple causes, an unpredictable course, and myriad complications. The diagnosis relies on a combination of history, physical examination, serologic markers, and radiologic findings. The mainstay of therapy includes aggressive hydration, maintenance of NPO, and adequate analgesia with narcotics. Antibiotic and nutritional support with total parenteral nutrition should be used when appropriate.

  4. Formaldehyde Exposure and Mortality Risks From Acute Myeloid Leukemia and Other Lymphohematopoietic Malignancies in the US National Cancer Institute Cohort Study of Workers in Formaldehyde Industries

    PubMed Central

    Dell, Linda D.; Boffetta, Paolo; Gallagher, Alexa E.; Crawford, Lori; Lees, Peter SJ.; Mundt, Kenneth A.

    2015-01-01

    Objectives: To evaluate associations between cumulative and peak formaldehyde exposure and mortality from acute myeloid leukemia (AML) and other lymphohematopoietic malignancies. Methods: Cox proportional hazards analyses. Results: Acute myeloid leukemia was unrelated to cumulative exposure. Hodgkin lymphoma relative risk estimates in the highest exposure categories of cumulative and peak exposures were, respectively, 3.76 (Ptrend = 0.05) and 5.13 (Ptrend = 0.003). There were suggestive associations with peak exposure observed for chronic myeloid leukemia, albeit based on very small numbers. No other lymphohematopoietic malignancy was associated with either chronic or peak exposure. Conclusions: Insofar as there is no prior epidemiologic evidence supporting associations between formaldehyde and either Hodgkin leukemia or chronic myeloid leukemia, any causal interpretations of the observed risk patterns are at most tentative. Findings from this re-analysis do not support the hypothesis that formaldehyde is a cause of AML. PMID:26147546

  5. High frequency of acute promyelocytic leukemia among Latinos with acute myeloid leukemia.

    PubMed

    Douer, D; Preston-Martin, S; Chang, E; Nichols, P W; Watkins, K J; Levine, A M

    1996-01-01

    A high frequency (24%) of acute promyelocytic leukemia (APL) was noted among acute myelocytic leukemia (AML) cases at the Los Angeles County-University of Southern California (LAC-USC) Medical Center, in comparison with the expected frequency of 5% to 15%. Because of the high proportion of Latinos in this center, we questioned if APL is more common in this ethnic group. The proportion of APL among the 80 AML patients of Latino origin was significantly higher (30; 37.5%) when compared with the 62 non-Latinos (4; 6.5%) (P = .00001). In an attempt to verify this finding on a larger group of patients, we analyzed 276 pathologically verified cases of AML in patients aged 30 to 69 years from the entire County of Los Angeles, registered on an ongoing population-based epidemiologic study of AML. APL was more frequent among the 47 Latinos (24.3%) than in the 229 non-Latinos (8.3%) (P = .0075). APL is seen in younger patients with AML, but Latino AML patients also had a higher frequency of APL after accounting for their younger age (age-adjusted odds ratio for APL among Latinos in LAC-USC Medical Center, 9.4 [95% confidence interval (CI) 2.9, 30] P = .0002; among Latinos in the population-based study, 3.0 [95% CI 1.3 to 6.9] P = .01). The different ethnic distribution of AML was found to be due to a higher proportion of APL cases per se, and not to a lower proportion of any other French-American-British subtype (P = .0004). These results, from two different populations of AML patients, indicate that Latinos with AML have a higher likelihood of the APL subtype of disease, which may suggest a genetic predisposition to APL and/or exposure to distinct environmental factor(s).

  6. Numbers and cytotoxicities of CD3+CD56+ T lymphocytes in peripheral blood of patients with acute myeloid leukemia and acute lymphocytic leukemia.

    PubMed

    Guo, Wenjian; Xing, Chao; Dong, Aishu; Lin, Xiaoji; Lin, Ying; Zhu, Baoling; He, Muqing; Yao, Rongxing

    2013-10-01

    Recent reports have highlighted the role of cellular immunity in anti-tumor defenses. T lymphocytes are known to play important part in anti-cancer immunity. The number and function of T lymphocytes are altered in chronic leukemia patients. CD3(+)CD56(+) T lymphocytes have also been found to be abnormal in cancer patients. We therefore investigated changes in the number and cytotoxicity of CD3(+)CD56(+) T lymphocytes in the peripheral blood of acute leukemia (AL) patients (excluding acute promyelocytic leukemia), to improve our understanding of the role of this T lymphocyte subset. We analyzed CD3(+)CD56(+) T lymphocyte numbers and cytotoxicities in healthy controls, AL patients, and AL patients with complete remission. Lymphocyte counts were performed in peripheral blood and flow cytometry was used to determine cell numbers and cytotoxicities. The absolute number of CD3(+)CD56(+) T lymphocytes was increased in AL patients (including acute myeloid [AML] and acute lymphocytic leukemia [ALL]) compared with healthy controls (P<0.05), but their functioning was significantly reduced (P<0.05). The number of CD3(+)CD56(+) T lymphocytes in AML and ALL patients who achieved remission following chemotherapy was close to healthy controls (P>0.05), but their functioning was still significantly reduced (P<0.05). In addition, the number of CD3(+)CD56(+) T lymphocytes increased significantly in AML patients with increased peripheral blood white blood cell (WBC) counts, and in ALL patients without increased WBCs. These results suggest that cellular immunity may respond to AML and ALL, but that lymphocyte cytotoxicity remains impaired. Dysfunction of CD3(+)CD56(+) T lymphocytes in AML and ALL patients may contribute to the failure of the host immune response against leukemic blasts.

  7. Optimizing asparaginase therapy for acute lymphoblastic leukemia.

    PubMed

    Rizzari, Carmelo; Conter, Valentino; Starý, Jan; Colombini, Antonella; Moericke, Anja; Schrappe, Martin

    2013-03-01

    Asparaginases are important agents used in the treatment of children with acute lymphoblastic leukemia (ALL). Three types of asparaginase are currently available: two are derived from Escherichia coli [native asparaginase and pegylated asparaginase (PEG-asparaginase)] and one from Erwinia chrysanthemi (crisantaspase). All three products share the same mechanism of action but have different pharmacokinetic properties, which do not make them easily interchangeable. Among the known toxicities and side-effects, allergic reactions and silent inactivation represent the most important limitations to the prolonged use of any asparaginase product, with associated reduced therapeutic effects and poorer outcomes. Routine real time monitoring can help to identify patients with silent inactivation and facilitate a switch to a different product to ensure continued depletion of asparagine, completion of the treatment schedule and maintenance of outcomes. However, the most appropriate second-line treatment is still a matter of debate. PEG-asparaginase has lower immunogenicity and a longer half-life than native Escherichia coli (E. coli) asparaginase, which makes it useful for both first-line and second-line use with a reduced number of doses. However, PEG-asparaginase displays cross-reactivity with native E. coli asparaginase that may harm its therapeutic effects. Crisantaspase does not display cross-reactivity to either of the E. coli-derived products, which has made crisantaspase the second-line treatment option in a number of recent protocols. As crisantaspase has a much shorter biological half-life than the E. coli-derived products, the appropriate dosage and administration schedule are of paramount importance in delivering treatment with this product. In the ongoing trial AIEOP-BFM ALL 2009 (Associazione Italiana Ematologia Oncologia Pediatrica - Berlin-Franklin-Munster), in which PEG-asparaginase is used first-line, one dose of PEG-asparaginase is substituted by seven doses

  8. The MLL recombinome of acute leukemias in 2013

    PubMed Central

    Meyer, C; Hofmann, J; Burmeister, T; Gröger, D; Park, T S; Emerenciano, M; Pombo de Oliveira, M; Renneville, A; Villarese, P; Macintyre, E; Cavé, H; Clappier, E; Mass-Malo, K; Zuna, J; Trka, J; De Braekeleer, E; De Braekeleer, M; Oh, S H; Tsaur, G; Fechina, L; van der Velden, V H J; van Dongen, J J M; Delabesse, E; Binato, R; Silva, M L M; Kustanovich, A; Aleinikova, O; Harris, M H; Lund-Aho, T; Juvonen, V; Heidenreich, O; Vormoor, J; Choi, W W L; Jarosova, M; Kolenova, A; Bueno, C; Menendez, P; Wehner, S; Eckert, C; Talmant, P; Tondeur, S; Lippert, E; Launay, E; Henry, C; Ballerini, P; Lapillone, H; Callanan, M B; Cayuela, J M; Herbaux, C; Cazzaniga, G; Kakadiya, P M; Bohlander, S; Ahlmann, M; Choi, J R; Gameiro, P; Lee, D S; Krauter, J; Cornillet-Lefebvre, P; Te Kronnie, G; Schäfer, B W; Kubetzko, S; Alonso, C N; zur Stadt, U; Sutton, R; Venn, N C; Izraeli, S; Trakhtenbrot, L; Madsen, H O; Archer, P; Hancock, J; Cerveira, N; Teixeira, M R; Lo Nigro, L; Möricke, A; Stanulla, M; Schrappe, M; Sedék, L; Szczepański, T; Zwaan, C M; Coenen, E A; van den Heuvel-Eibrink, M M; Strehl, S; Dworzak, M; Panzer-Grümayer, R; Dingermann, T; Klingebiel, T; Marschalek, R

    2013-01-01

    Chromosomal rearrangements of the human MLL (mixed lineage leukemia) gene are associated with high-risk infant, pediatric, adult and therapy-induced acute leukemias. We used long-distance inverse-polymerase chain reaction to characterize the chromosomal rearrangement of individual acute leukemia patients. We present data of the molecular characterization of 1590 MLL-rearranged biopsy samples obtained from acute leukemia patients. The precise localization of genomic breakpoints within the MLL gene and the involved translocation partner genes (TPGs) were determined and novel TPGs identified. All patients were classified according to their gender (852 females and 745 males), age at diagnosis (558 infant, 416 pediatric and 616 adult leukemia patients) and other clinical criteria. Combined data of our study and recently published data revealed a total of 121 different MLL rearrangements, of which 79 TPGs are now characterized at the molecular level. However, only seven rearrangements seem to be predominantly associated with illegitimate recombinations of the MLL gene (∼90%): AFF1/AF4, MLLT3/AF9, MLLT1/ENL, MLLT10/AF10, ELL, partial tandem duplications (MLL PTDs) and MLLT4/AF6, respectively. The MLL breakpoint distributions for all clinical relevant subtypes (gender, disease type, age at diagnosis, reciprocal, complex and therapy-induced translocations) are presented. Finally, we present the extending network of reciprocal MLL fusions deriving from complex rearrangements. PMID:23628958

  9. Allogeneic Hematopoietic Cell Transplantation for Patients with Mixed Phenotype Acute Leukemia.

    PubMed

    Munker, Reinhold; Brazauskas, Ruta; Wang, Hai Lin; de Lima, Marcos; Khoury, Hanna J; Gale, Robert Peter; Maziarz, Richard T; Sandmaier, Brenda M; Weisdorf, Daniel; Saber, Wael

    2016-06-01

    Acute biphenotypic leukemias or mixed phenotype acute leukemias (MPAL) are rare and considered high risk. The optimal treatment and the role of allogeneic hematopoietic stem cell transplantation (alloHCT) are unclear. Most prior case series include only modest numbers of patients who underwent transplantation. We analyzed the outcome of 95 carefully characterized alloHCT patients with MPAL reported to the Center for International Blood and Marrow Transplant Research between 1996 and 2012. The median age was 20 years (range, 1 to 68). Among the 95 patients, 78 were in first complete remission (CR1) and 17 were in second complete remission (CR2). Three-year overall survival (OS) of 67% (95% confidence interval [CI], 57 to 76), leukemia-free survival of 56% (95% CI, 46 to 66), relapse incidence of 29% (95% CI, 20 to 38), and nonrelapse mortality of 15% (95% CI, 9 to 23) were encouraging. OS was best in younger patients (<20 years), but no significant differences were observed between those 20 to 40 years of age and those who were 40 years or older. A matched-pair analysis showed similar outcomes comparing MPAL cases to 375 acute myelogenous leukemia or 359 acute lymphoblastic leukemia cases. MPAL patients had more acute and a trend for more chronic graft-versus-host disease. No difference was observed between patients who underwent transplantation in CR1 versus those who underwent transplantation in CR2. AlloHCT is a promising treatment option for pediatric and adult patients with MPAL with encouraging long-term survival. PMID:26903380

  10. [Tumor lysis syndrome in a pregnancy complicated with acute lymphoblastic leukemia].

    PubMed

    Álvarez-Goris, M P; Sánchez-Zamora, R; Torres-Aguilar, A A; Briones Garduño, J C

    2016-04-01

    Acute leukemia is rare during pregnancy, affects about 1 in 75,000 pregnancies, of all leukemias diagnosed only 28% are acute lymphoblastic leukemia, this is a risk factor to develop spontaneous tumor lysis syndrome, it's a oncologic complication potentially deadly if the prophylactic treatment its avoided. Cases of acute lymphoblastic leukemia associated with pregnancy has been poorly documented in the literature the association of these two entities to pregnancy is the first report published worldwide, so the information is limited. PMID:27443101

  11. Radiolabeled BC8 Antibody, Busulfan, Cyclophosphamide Followed by Donor Stem Cell Transplant in Treating Patients With Acute Myelogenous Leukemia in First Remission

    ClinicalTrials.gov

    2015-11-16

    Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22)

  12. Hypocellular acute myeloid leukemia in adults: analysis of the clinical outcome of 123 patients

    PubMed Central

    Al-Kali, Aref; Konoplev, Sergej; Lin, Erpei; Kadia, Tapan; Faderl, Stefan; Ravandi, Farhad; Ayoubi, Mohamad; Brandt, Mark; Cortes, Jorge E.; Kantarjian, Hagop; Borthakur, Gautam

    2012-01-01

    Background The hypocellular variant of acute myeloid leukemia accounts for less than 10% of all cases of adult acute myeloid leukemia. It is defined by having less than 20 percent of cellular bone marrow in a biopsy at presentation. It is unclear in the literature whether the outcome of hypocellular acute myeloid leukemia differs from that of non-hypocellular acute myeloid leukemia. Design and Methods We retrospectively analyzed all the cases reported to be hypocellular acute myeloid leukemia between 2000 and 2009. A second pathology review was conducted and the diagnosis was confirmed in all cases. Results One hundred twenty-three (9%) patients were identified: patients with hypocellular acute myeloid leukemia were older than those with non-hypocellular acute myeloid leukemia (P=0.009) and more frequently presented with cytopenias (P<0.001). Forty-one patients with hypocellular acute myeloid leukemia had an antecedent hematologic disorder and 11 patients had received prior chemo-radiotherapy for non-hematopoietic neoplasms. On multivariate analysis, overall survival, remission duration and event-free survival were comparable to those of other patients with acute myeloid leukemia. Conclusions The outcome of hypocellular acute myeloid leukemia does not differ from that of non-hypocellular acute myeloid leukemia. PMID:22058194

  13. Upregulation of Leukocytic Syncytin-1 in Acute Myeloid Leukemia Patients

    PubMed Central

    Sun, Yi; Zhu, Hongyan; Song, Jianxin; Jiang, Yaxian; Ouyang, Hongmei; Huang, Rongzhong; Zhang, Guiqian; Fan, Xin; Tao, Rui; Jiang, Jie; Niu, Hua

    2016-01-01

    Background Syncytin-1, a cell membrane-localizing fusogen, is abnormally expressed in several cancers, including endometrial cancer, breast cancer, and leukemia. Although abnormal syncytin-1 expression has been detected in two-thirds of leukemia blood samples, its expression profile in acute leukemia patients has not yet been analyzed. Material/Methods Bone marrow samples from 50 acute myelogenous leukemia (AML) cases and 14 B-cell acute lymphocytic leukemia (B-cell ALL) patients were subjected to flow cytometry to assess leukocyte type distributions and leukocytic syncytin-1 surface expression. RT-PCR was applied to assess leukocytic syncytin-1 mRNA expression. Statistical analysis was applied to compare syncytin-1 expression between AML and B-cell ALL patients across blasts, granulocytes, lymphocytes, and monocytes as well as to determine clinical factors statistically associated with changes in syncytin-1 expression. Results The leukocyte type distributions of the AML and B-cell ALL cohorts highly overlapped, with an observable difference in blast distribution between the 2 cohorts. The AML cohort displayed significantly greater syncytin-1 surface and mRNA expression (p<0.05). Syncytin-1 surface and mRNA expression was significantly increased across all 4 leukocyte types (p<0.05). The percentage of syncytin-1-expressing blasts was significantly greater in AML patients (p<0.05), with blasts showing the largest fold-change in syncytin-1 expression (p<0.05). M5, M5a, and M5b AML patients displayed significantly higher syncytin-1 surface expression relative to all other AML French-American-British (FAB) classifications (p<0.05). Conclusions These findings suggest leukocytic syncytin-1 expression may play a role in the development and/or maintenance of the AML phenotype and the acute monocytic leukemia phenotype in particular. PMID:27393911

  14. Bendamustine Hydrochloride and Idarubicin in Treating Older Patients With Previously Untreated Acute Myeloid Leukemia or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2012-12-07

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); de Novo Myelodysplastic Syndromes; Myelodysplastic Syndrome With Isolated Del(5q); Untreated Adult Acute Myeloid Leukemia

  15. Azacitidine in Combination With Mitoxantrone, Etoposide Phosphate, and Cytarabine in Treating Patients With Relapsed and Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-08-23

    Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia

  16. Neurodevelopmental Sequelae of Pediatric Acute Lymphoblastic Leukemia and Its Treatment

    ERIC Educational Resources Information Center

    Janzen, Laura A.; Spiegler, Brenda J.

    2008-01-01

    This review will describe the neurocognitive outcomes associated with pediatric acute lymphoblastic leukemia (ALL) and its treatment. The literature is reviewed with the aim of addressing methodological issues, treatment factors, risks and moderators, special populations, relationship to neuroimaging findings, and directions for future research.…

  17. [Acute leukemia in Jehovah's Witnesses: difficulties in its management].

    PubMed

    Gómez-Almaguer, D; Ruiz-Argüelles, G; Lozano de la Vega, A; García-Guajardo, B M

    1990-01-01

    The Witnesses of Jehovah is a religious community posing special problems because of their religions conviction which objects to transfusions of blood or blood products. Six patients with acute lymphoblastic leukemia (one adult and 5 children) are presented. We obtained permission for blood transfusion in four children without resorting to legal pressures which, on the hand, are non-existent in Mexico. PMID:2091183

  18. Acute non-lymphocytic leukemia following multimodality therapy for retinoblastoma

    SciTech Connect

    White, L.; Ortega, J.A.; Ying, K.L.

    1985-02-01

    The genetic form of retinoblastoma carries a high risk of secondary malignant neoplasm, apparently not related to the use of chemotherapy. A child with unilateral non-genetic retinoblastoma who had received chemotherapy and radiation therapy and developed acute non-lymphocytic leukemia (ANLL) is reported. The occurrence of ANLL and retinoblastoma has not been previously reported.

  19. Acute myelogenous leukemia treated with daunomycin associated with nephrotic syndrome.

    PubMed

    Thomson, M; de Arriba, G; Ordi, J; Oliva, H; Hernando, L

    1989-01-01

    We report a 33-year-old patient with a diagnosis of acute myelogenous leukemia that developed a nephrotic syndrome 9 days after starting treatment with daunomycin. Pathological studies of the kidneys revealed minimal change disease with IgM deposits. Possible pathogenetic mechanisms are discussed.

  20. Epidemiology and Treatment of Acute Promyelocytic Leukemia in Latin America

    PubMed Central

    Rego, E.M.; Jácomo, R.H.

    2011-01-01

    Distinct epidemiological characteristics have been described in Acute Promielocytic Leukemia (APL). Populations from Latin America have a higher incidence of APL and in some geographic areas a distinct distribution of the PML-RARA isoforms is present. Here, we review the main differences in APL epidemilogy in Latin America as well as treatment outcomes. PMID:22110899

  1. BCL6 modulation of acute lymphoblastic leukemia response to chemotherapy

    PubMed Central

    Slone, William L.; Moses, Blake S.; Hare, Ian; Evans, Rebecca; Piktel, Debbie; Gibson, Laura F.

    2016-01-01

    The bone marrow niche has a significant impact on acute lymphoblastic leukemia (ALL) cell phenotype. Of clinical relevance is the frequency with which quiescent leukemic cells, in this niche, survive treatment and contribute to relapse. This study suggests that marrow microenvironment regulation of BCL6 in ALL is one factor that may be involved in the transition between proliferative and quiescent states of ALL cells. Utilizing ALL cell lines, and primary patient tumor cells we observed that tumor cell BCL6 protein abundance is decreased in the presence of primary human bone marrow stromal cells (BMSC) and osteoblasts (HOB). Chemical inhibition, or shRNA knockdown, of BCL6 in ALL cells resulted in diminished ALL proliferation. As many chemotherapy regimens require tumor cell proliferation for optimal efficacy, we investigated the consequences of constitutive BCL6 expression in leukemic cells during co-culture with BMSC or HOB. Forced chronic expression of BCL6 during co-culture with BMSC or HOB sensitized the tumor to chemotherapy induced cell death. Combination treatment of caffeine, which increases BCL6 expression in ALL cells, with chemotherapy extended the event free survival of mice. These data suggest that BCL6 is one factor, modulated by microenvironment derived cues that may contribute to regulation of ALL therapeutic response. PMID:27015556

  2. [One of the Mechanisms in Blastic Transformation of Chronic Myeloid Leukemia: Epigenetics Abnormality--Review].

    PubMed

    Meng, Zhen; Li, Ying-Hua

    2016-02-01

    Chronic myeloid leukemia is a myeloproliferative disorder characterized by excessive cloning of bone marrow multipotent stem cells. According to the disease course, the CML may be divided into chronic phase (CP), accelerated phase (AP) and blastic phase (BP). At present, the molecular mechanisms of acute transformation of CML has not been fully understood. The recent studies have shown that the epigenetics is one of mechanisms in blastic transformation of CML, including three molecular mechanisms such as DNA modification, histone modifications and RNA-related dysregulation. The molecular mechanisms for epigenetics leading to the transformation of CML are discussed in this review. PMID:26913431

  3. Severe Acute Axonal Neuropathy following Treatment with Arsenic Trioxide for Acute Promyelocytic Leukemia: a Case Report

    PubMed Central

    Kühn, Marcus; Sammartin, Kety; Nabergoj, Mitja; Vianello, Fabrizio

    2016-01-01

    Peripheral neuropathy is a common complication of arsenic toxicity. Symptoms are usually mild and reversible following discontinuation of treatment. A more severe chronic sensorimotor polyneuropathy characterized by distal axonal-loss neuropathy can be seen in chronic arsenic exposure. The clinical course of arsenic neurotoxicity in patients with coexistence of thiamine deficiency is only anecdotally known but this association may potentially lead to severe consequences. We describe a case of acute irreversible axonal neuropathy in a patient with hidden thiamine deficiency who was treated with a short course of arsenic trioxide for acute promyelocytic leukemia. Thiamine replacement therapy and arsenic trioxide discontinuation were not followed by neurological recovery and severe polyneuropathy persisted at 12-month follow-up. Thiamine plasma levels should be measured in patients who are candidate to arsenic trioxide therapy. Prophylactic administration of vitamin B1 may be advisable. The appearance of polyneuropathy signs early during the administration of arsenic trioxide should prompt electrodiagnostic testing to rule out a pattern of axonal neuropathy which would need immediate discontinuation of arsenic trioxide. PMID:27158436

  4. Family history of autoimmune thyroid disease and childhood acute leukemia.

    PubMed

    Perillat-Menegaux, Florence; Clavel, Jacqueline; Auclerc, Marie-Françoise; Baruchel, André; Leverger, Guy; Nelken, Brigitte; Philippe, Noël; Sommelet, Danièle; Vilmer, Etienne; Hémon, Denis

    2003-01-01

    The association between a familial history of autoimmune disease and childhood acute leukemia was investigated in a French case-control study that, overall, was designed to assess the role of perinatal, infectious, environmental, and genetic factors in the etiology of childhood acute leukemia. Familial histories of autoimmune disease in first- and second-degree relatives were compared in 279 incident cases, 240 cases of acute lymphocytic leukemia (ALL) and 39 cases of acute non-lymphoblastic leukemia (ANLL), and 285 controls. Recruitment was frequency matched by age, gender, hospital, and ethnic origin. Odds ratios (OR) were estimated using an unconditional regression model taking into account the stratification variables, socioeconomic status, and familial structure. A statistically significant association between a history of autoimmune disease in first- or second-degree relatives and ALL (OR, 1.7; 95% confidence interval (CI), 1.0-2.8) was found. A relationship between thyroid diseases overall and ALL (OR, 2.0; 95% CI, 1.0-3.9) was observed. This association was more pronounced for potentially autoimmune thyroid diseases (Grave's disease and/or hyperthyroidism and Hashimoto's disease and/or hypothyroidism) (OR, 3.5; 95% CI, 1.1-10.7 and OR, 5.6; 95% CI, 1.0-31.1, respectively for ALL and ANLL), whereas it was not statistically significant for the other thyroid diseases (thyroid goiter, thyroid nodule, and unspecified thyroid disorders) (OR, 1.6; 95% CI, 0.7-3.5 and OR, 1.3; 95% CI, 0.2-7.0, respectively, for ALL and ANLL). The results suggest that a familial history of autoimmune thyroid disease may be associated with childhood acute leukemia.

  5. Survival of patients with mixed phenotype acute leukemias: A large population-based study.

    PubMed

    Shi, Runhua; Munker, Reinhold

    2015-06-01

    Little is known about the incidence and treatment outcome of patients with acute biphenotypic leukemias. The World Health Organization (WHO) established the term of acute leukemia of ambiguous phenotype in 2001 (revised in 2008) introducing the term of mixed phenotype acute leukemias. Using the database of the Surveillance, Epidemiology, and End Results registry (SEER), we identified 313 patients with mixed phenotype acute leukemias and compared them with 14,739 patients with acute lymphoblastic leukemia and 34,326 patients with acute myelogenous leukemias diagnosed between 2001 and 2011. As a further control group, 1777 patients were included who were not classified as myeloid, lymphoid or biphenotypic (other acute leukemias). The incidence of mixed phenotype acute leukemias is 0.35 cases/1,000,000 person-years. In a multivariate analysis, the prognosis depends strongly on age (as with other leukemias) and it has the worst outcome of all four types of leukemia. However, the prognosis has improved, comparing 2001-2005 with 2006-2011. We present the first comprehensive, population-based study of acute biphenotypic or mixed phenotype acute leukemias according to the WHO classification. Especially in older patients, the prognosis is unfavorable and new treatments should be investigated.

  6. Bacillary angiomatosis in a patient with chronic lymphocytic leukemia.

    PubMed

    Petersen, K; Earhart, K C; Wallace, M R

    2008-10-01

    Bacillary angiomatosis is a cutaneous or visceral infection with Bartonella henselae or Bartonella quintana. Cases usually occur in HIV infected individuals. We present a 60-year-old man with chronic lymphocytic leukemia and neutropenic fever caused by bacillary angiomatosis. The nine BA cases in oncology patients are reviewed.

  7. Acute myeloid leukemia cells polarize macrophages towards a leukemia supporting state in a Growth factor independence 1 dependent manner

    PubMed Central

    Al-Matary, Yahya S.; Botezatu, Lacramioara; Opalka, Bertram; Hönes, Judith M.; Lams, Robert F.; Thivakaran, Aniththa; Schütte, Judith; Köster, Renata; Lennartz, Klaus; Schroeder, Thomas; Haas, Rainer; Dührsen, Ulrich; Khandanpour, Cyrus

    2016-01-01

    The growth of malignant cells is not only driven by cell-intrinsic factors, but also by the surrounding stroma. Monocytes/Macrophages play an important role in the onset and progression of solid cancers. However, little is known about their role in the development of acute myeloid leukemia, a malignant disease characterized by an aberrant development of the myeloid compartment of the hematopoietic system. It is also unclear which factors are responsible for changing the status of macrophage polarization, thus supporting the growth of malignant cells instead of inhibiting it. We report herein that acute myeloid leukemia leads to the invasion of acute myeloid leukemia-associated macrophages into the bone marrow and spleen of leukemic patients and mice. In different leukemic mouse models, these macrophages support the in vitro expansion of acute myeloid leukemia cell lines better than macrophages from non-leukemic mice. The grade of macrophage infiltration correlates in vivo with the survival of the mice. We found that the transcriptional repressor Growth factor independence 1 is crucial in the process of macrophage polarization, since its absence impedes macrophage polarization towards a leukemia supporting state and favors an anti-tumor state both in vitro and in vivo. These results not only suggest that acute myeloid leukemia-associated macrophages play an important role in the progression of acute myeloid leukemia, but also implicate Growth factor independence 1 as a pivotal factor in macrophage polarization. These data may provide new insights and opportunities for novel therapies for acute myeloid leukemia. PMID:27390361

  8. Evolutionary Dynamics of Chronic Myeloid Leukemia Progression: the Progression-Inhibitory Effect of Imatinib.

    PubMed

    Jackson, Robert C; Radivoyevitch, Tomas

    2016-07-01

    The t(9;22) translocation that causes chronic myeloid leukemia (CML) drives both transformation and the progression process that eventually results in the disease changing to acute leukemia. Constitutively activated Bcr-Abl signaling in CML creates high levels of reactive oxygen species (ROS) that produce 8-oxo-guanine in DNA; this is mutagenic and causes chronic phase (CP) progression to blast phase (BP). We modeled three types of mutations involved in this progression: mutations that result in myeloid progenitor cells proliferating independently of external growth factors; mutations causing failure of myeloid progenitor cells to differentiate; and mutations that enable these cells to survive independently of attachment to marrow stroma. We further modeled tyrosine kinase inhibitors (TKI) as restoring myeloid cell apoptosis and preventing ROS-driven mutagenesis, and mutations that cause TKI resistance. We suggest that the unusually low rate of resistance to TKI arises because these drugs deplete ROS, which in turn decrease mutation rates. PMID:27007600

  9. Acute Lymphocytic Leukemia with Bilateral Renal Masses Masquerading as Nephroblastomatosis.

    PubMed

    Thakore, Poonam; Aljabari, Salim; Turner, Curtis; Vasylyeva, Tetyana L

    2015-01-01

    Acute lymphoblastic leukemia (ALL) is the most common malignancy in the pediatric patient population. However, renal involvement as the primary manifestation of ALL is rare. We report a case of a 4-year-old boy with bilateral renal lesions resembling nephroblastic rests as the first finding of early stage ALL preceding hematological changes and subsequent classic clinical findings by two weeks. These renal hypodensities completely resolved after one week of induction chemotherapy. This case demonstrates that renal involvement can be the only initial presenting finding of leukemia. Children with lesions resembling nephroblastic rests need appropriate surveillance due to the risk of malignant disease.

  10. Acute Lymphocytic Leukemia with Bilateral Renal Masses Masquerading as Nephroblastomatosis

    PubMed Central

    Thakore, Poonam; Aljabari, Salim; Turner, Curtis; Vasylyeva, Tetyana L.

    2015-01-01

    Acute lymphoblastic leukemia (ALL) is the most common malignancy in the pediatric patient population. However, renal involvement as the primary manifestation of ALL is rare. We report a case of a 4-year-old boy with bilateral renal lesions resembling nephroblastic rests as the first finding of early stage ALL preceding hematological changes and subsequent classic clinical findings by two weeks. These renal hypodensities completely resolved after one week of induction chemotherapy. This case demonstrates that renal involvement can be the only initial presenting finding of leukemia. Children with lesions resembling nephroblastic rests need appropriate surveillance due to the risk of malignant disease. PMID:26613060

  11. Low-Dose or High-Dose Conditioning Followed by Peripheral Blood Stem Cell Transplant in Treating Patients With Myelodysplastic Syndrome or Acute Myelogenous Leukemia

    ClinicalTrials.gov

    2014-10-23

    Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic Syndrome; Acute Myeloid Leukemia/Transient Myeloproliferative Disorder; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Childhood Acute Myeloid Leukemia in Remission; Childhood Myelodysplastic Syndromes; de Novo Myelodysplastic Syndromes; Myelodysplastic Syndrome With Isolated Del(5q); Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  12. Ovarian reserve in women treated for acute lymphocytic leukemia or acute myeloid leukemia with chemotherapy, but not stem cell transplantation.

    PubMed

    Rossi, Brooke V; Missmer, Stacey; Correia, Katharine F; Wadleigh, Martha; Ginsburg, Elizabeth S

    2012-01-01

    Purpose. It is well known that chemotherapy regimens may have a negative effect on ovarian reserve, leading to amenorrhea or premature ovarian failure. There are little data regarding the effects of leukemia chemotherapy on ovarian reserve, specifically in women who received the chemotherapy as adults and are having regular menstrual periods. Our primary objective was to determine if premenopausal women with a history of chemotherapy for leukemia, without subsequent stem cell transplantation, have decreased ovarian reserve. Materials and Methods. We measured ovarian reserve in five women who had been treated for acute lymphocytic leukemia (ALL) or acute myeloid leukemia (AML) and compared them to age-matched control women without a history of chemotherapy. Results. There appeared to be a trend towards lower antimullerian hormone and antral follicle counts and higher follicle-stimulating hormone levels in the leukemia group. Conclusion. Our results indicate that chemotherapy for AML or ALL without stem cell transplantation may compromise ovarian reserve. Although our results should be confirmed by a larger study, oncologists, infertility specialists, and patients should be aware of the potential risks to ovarian function and should be counseled on options for fertility preservation.

  13. Ovarian Reserve in Women Treated for Acute Lymphocytic Leukemia or Acute Myeloid Leukemia with Chemotherapy, but Not Stem Cell Transplantation

    PubMed Central

    Rossi, Brooke V.; Missmer, Stacey; Correia, Katharine F.; Wadleigh, Martha; Ginsburg, Elizabeth S.

    2012-01-01

    Purpose. It is well known that chemotherapy regimens may have a negative effect on ovarian reserve, leading to amenorrhea or premature ovarian failure. There are little data regarding the effects of leukemia chemotherapy on ovarian reserve, specifically in women who received the chemotherapy as adults and are having regular menstrual periods. Our primary objective was to determine if premenopausal women with a history of chemotherapy for leukemia, without subsequent stem cell transplantation, have decreased ovarian reserve. Materials and Methods. We measured ovarian reserve in five women who had been treated for acute lymphocytic leukemia (ALL) or acute myeloid leukemia (AML) and compared them to age-matched control women without a history of chemotherapy. Results. There appeared to be a trend towards lower antimullerian hormone and antral follicle counts and higher follicle-stimulating hormone levels in the leukemia group. Conclusion. Our results indicate that chemotherapy for AML or ALL without stem cell transplantation may compromise ovarian reserve. Although our results should be confirmed by a larger study, oncologists, infertility specialists, and patients should be aware of the potential risks to ovarian function and should be counseled on options for fertility preservation. PMID:23050166

  14. Chronic Eosinophilic Leukemia Presenting Predominantly with Cutaneous Manifestations.

    PubMed

    Vidyadharan, Suja; Joseph, Bebisha; Nair, Sukumaran Pradeep

    2016-01-01

    A 37-year-old male presented with severe oral and genital mucosal ulcers, lichenoid eruption and twenty-nail dystrophy. Systemic examination was normal, except for anemia. On investigations, he was found to have persistently elevated peripheral eosinophilia, absolute eosinophil count >5000/mm(3), bone marrow showing increased eosinophilic precursors, and infiltration by atypical cells. The serum vitamin B12 levels were grossly elevated, and Philadelphia chromosome study was negative. Thus, a diagnosis of chronic eosinophilic leukemia was made. The patient showed excellent response to imatinib mesylate. We are reporting a rare type of leukemia presenting with predominantly cutaneous manifestations. PMID:27512192

  15. Chronic Eosinophilic Leukemia Presenting Predominantly with Cutaneous Manifestations

    PubMed Central

    Vidyadharan, Suja; Joseph, Bebisha; Nair, Sukumaran Pradeep

    2016-01-01

    A 37-year-old male presented with severe oral and genital mucosal ulcers, lichenoid eruption and twenty-nail dystrophy. Systemic examination was normal, except for anemia. On investigations, he was found to have persistently elevated peripheral eosinophilia, absolute eosinophil count >5000/mm3, bone marrow showing increased eosinophilic precursors, and infiltration by atypical cells. The serum vitamin B12 levels were grossly elevated, and Philadelphia chromosome study was negative. Thus, a diagnosis of chronic eosinophilic leukemia was made. The patient showed excellent response to imatinib mesylate. We are reporting a rare type of leukemia presenting with predominantly cutaneous manifestations. PMID:27512192

  16. Lapatinib induces autophagic cell death and differentiation in acute myeloblastic leukemia

    PubMed Central

    Chen, Yu-Jen; Fang, Li-Wen; Su, Wen-Chi; Hsu, Wen-Yi; Yang, Kai-Chien; Huang, Huey-Lan

    2016-01-01

    Lapatinib is an oral-form dual tyrosine kinase inhibitor of epidermal growth factor receptor (EGFR or ErbB/Her) superfamily members with anticancer activity. In this study, we examined the effects and mechanism of action of lapatinib on several human leukemia cells lines, including acute myeloid leukemia (AML), chronic myeloid leukemia (CML), and acute lymphoblastic leukemia (ALL) cells. We found that lapatinib inhibited the growth of human AML U937, HL-60, NB4, CML KU812, MEG-01, and ALL Jurkat T cells. Among these leukemia cell lines, lapatinib induced apoptosis in HL-60, NB4, and Jurkat cells, but induced nonapoptotic cell death in U937, K562, and MEG-01 cells. Moreover, lapatinib treatment caused autophagic cell death as shown by positive acridine orange staining, the massive formation of vacuoles as seen by electronic microscopy, and the upregulation of LC3-II, ATG5, and ATG7 in AML U937 cells. Furthermore, autophagy inhibitor 3-methyladenine and knockdown of ATG5, ATG7, and Beclin-1 using short hairpin RNA (shRNA) partially rescued lapatinib-induced cell death. In addition, the induction of phagocytosis and ROS production as well as the upregulation of surface markers CD14 and CD68 was detected in lapatinib-treated U937 cells, suggesting the induction of macrophagic differentiation in AML U937 cells by lapatinib. We also noted the synergistic effects of the use of lapatinib and cytotoxic drugs in U937 leukemia cells. These results indicate that lapatinib may have potential for development as a novel antileukemia agent. PMID:27499639

  17. Overexpression of SET is a recurrent event associated with poor outcome and contributes to protein phosphatase 2A inhibition in acute myeloid leukemia

    PubMed Central

    Cristóbal, Ion; Garcia-Orti, Laura; Cirauqui, Cristina; Cortes-Lavaud, Xabier; García-Sánchez, María A.; Calasanz, María J.; Odero, María D.

    2012-01-01

    Background Protein phosphatase 2A is a novel potential therapeutic target in several types of chronic and acute leukemia, and its inhibition is a common event in acute myeloid leukemia. Upregulation of SET is essential to inhibit protein phosphatase 2A in chronic myeloid leukemia, but its importance in acute myeloid leukemia has not yet been explored. Design and Methods We quantified SET expression by real time reverse transcriptase polymerase chain reaction in 214 acute myeloid leukemia patients at diagnosis. Western blot was performed in acute myeloid leukemia cell lines and in 16 patients’ samples. We studied the effect of SET using cell viability assays. Bioinformatics analysis of the SET promoter, chromatin immunoprecipitation, and luciferase assays were performed to evaluate the transcriptional regulation of SET. Results SET overexpression was found in 60/214 patients, for a prevalence of 28%. Patients with SET overexpression had worse overall survival (P<0.01) and event-free survival (P<0.01). Deregulation of SET was confirmed by western blot in both cell lines and patients’ samples. Functional analysis showed that SET promotes proliferation, and restores cell viability after protein phosphatase 2A overexpression. We identified EVI1 overexpression as a mechanism involved in SET deregulation in acute myeloid leukemia cells. Conclusions These findings suggest that SET overexpression is a key mechanism in the inhibition of PP2A in acute myeloid leukemia, and that EVI1 overexpression contributes to the deregulation of SET. Furthermore, SET overexpression is associated with a poor outcome in acute myeloid leukemia, and it can be used to identify a subgroup of patients who could benefit from future treatments based on PP2A activators. PMID:22133779

  18. Nivolumab in Treating Patients With HTLV-Associated T-Cell Leukemia/Lymphoma

    ClinicalTrials.gov

    2016-10-17

    Acute Adult T-Cell Leukemia/Lymphoma; Adult T-Cell Leukemia/Lymphoma; Chronic Adult T-Cell Leukemia/Lymphoma; HTLV-1 Infection; Lymphomatous Adult T-Cell Leukemia/Lymphoma; Recurrent Adult T-Cell Leukemia/Lymphoma; Smoldering Adult T-Cell Leukemia/Lymphoma

  19. The Sequence of Cyclophosphamide and Myeloablative Total Body Irradiation in Hematopoietic Cell Transplantation for Patients with Acute Leukemia.

    PubMed

    Holter-Chakrabarty, Jennifer L; Pierson, Namali; Zhang, Mei-Jie; Zhu, Xiaochun; Akpek, Görgün; Aljurf, Mahmoud D; Artz, Andrew S; Baron, Frédéric; Bredeson, Christopher N; Dvorak, Christopher C; Epstein, Robert B; Lazarus, Hillard M; Olsson, Richard F; Selby, George B; Williams, Kirsten M; Cooke, Kenneth R; Pasquini, Marcelo C; McCarthy, Philip L

    2015-07-01

    Limited clinical data are available to assess whether the sequencing of cyclophosphamide (Cy) and total body irradiation (TBI) changes outcomes. We evaluated the sequence in 1769 (CyTBI, n = 948; TBICy, n = 821) recipients of related or unrelated hematopoietic cell transplantation who received TBI (1200 to 1500 cGY) for acute leukemia from 2003 to 2010. The 2 cohorts were comparable for median age, performance score, type of leukemia, first complete remission, Philadelphia chromosome-positive acute lymphoblastic leukemia, HLA-matched siblings, stem cell source, antithymocyte globulin use, TBI dose, and type of graft-versus-host disease (GVHD) prophylaxis. The sequence of TBI did not significantly affect transplantation-related mortality (24% versus 23% at 3 years, P = .67; relative risk, 1.01; P = .91), leukemia relapse (27% versus 29% at 3 years, P = .34; relative risk, .89, P = .18), leukemia-free survival (49% versus 48% at 3 years, P = .27; relative risk, .93; P = .29), chronic GVHD (45% versus 47% at 1 year, P = .39; relative risk, .9; P = .11), or overall survival (53% versus 52% at 3 years, P = .62; relative risk, .96; P = .57) for CyTBI and TBICy, respectively. Corresponding cumulative incidences of sinusoidal obstruction syndrome were 4% and 6% at 100 days (P = .08), respectively. This study demonstrates that the sequence of Cy and TBI does not impact transplantation outcomes and complications in patients with acute leukemia undergoing hematopoietic cell transplantation with myeloablative conditioning.

  20. The Sequence of Cyclophosphamide and Myeloablative Total Body Irradiation in Hematopoietic Cell Transplantation for Patients with Acute Leukemia.

    PubMed

    Holter-Chakrabarty, Jennifer L; Pierson, Namali; Zhang, Mei-Jie; Zhu, Xiaochun; Akpek, Görgün; Aljurf, Mahmoud D; Artz, Andrew S; Baron, Frédéric; Bredeson, Christopher N; Dvorak, Christopher C; Epstein, Robert B; Lazarus, Hillard M; Olsson, Richard F; Selby, George B; Williams, Kirsten M; Cooke, Kenneth R; Pasquini, Marcelo C; McCarthy, Philip L

    2015-07-01

    Limited clinical data are available to assess whether the sequencing of cyclophosphamide (Cy) and total body irradiation (TBI) changes outcomes. We evaluated the sequence in 1769 (CyTBI, n = 948; TBICy, n = 821) recipients of related or unrelated hematopoietic cell transplantation who received TBI (1200 to 1500 cGY) for acute leukemia from 2003 to 2010. The 2 cohorts were comparable for median age, performance score, type of leukemia, first complete remission, Philadelphia chromosome-positive acute lymphoblastic leukemia, HLA-matched siblings, stem cell source, antithymocyte globulin use, TBI dose, and type of graft-versus-host disease (GVHD) prophylaxis. The sequence of TBI did not significantly affect transplantation-related mortality (24% versus 23% at 3 years, P = .67; relative risk, 1.01; P = .91), leukemia relapse (27% versus 29% at 3 years, P = .34; relative risk, .89, P = .18), leukemia-free survival (49% versus 48% at 3 years, P = .27; relative risk, .93; P = .29), chronic GVHD (45% versus 47% at 1 year, P = .39; relative risk, .9; P = .11), or overall survival (53% versus 52% at 3 years, P = .62; relative risk, .96; P = .57) for CyTBI and TBICy, respectively. Corresponding cumulative incidences of sinusoidal obstruction syndrome were 4% and 6% at 100 days (P = .08), respectively. This study demonstrates that the sequence of Cy and TBI does not impact transplantation outcomes and complications in patients with acute leukemia undergoing hematopoietic cell transplantation with myeloablative conditioning. PMID:25840335

  1. Open Label, Phase II Study to Evaluate Efficacy and Safety of Oral Nilotinib in Philadelphia Positive (Ph+) Chronic Myelogenous Leukemia (CML) Pediatric Patients.

    ClinicalTrials.gov

    2016-10-07

    Leukemia; Leukemia,Pediatric; Leukemia, Myleiod; Leukemia, Mylegenous, Chronic; Leukemia, Mylegenous, Accelerated; BCR-ABL Positive; Myeloproliferative Disorder; Bone Marrow Disease; Hematologic Diseases; Neoplastic Processes; Imatinib; Dasatinib; Enzyme Inhibitor; Protein Kinase Inhibitor

  2. Donor Atorvastatin Treatment in Preventing Severe Acute GVHD After Nonmyeloablative Peripheral Blood Stem Cell Transplant in Patients With Hematological Malignancies

    ClinicalTrials.gov

    2016-04-28

    Aggressive Non-Hodgkin Lymphoma; Myelodysplastic/Myeloproliferative Neoplasm; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Aggressive Adult Non-Hodgkin Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Chronic Lymphocytic Leukemia; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Hodgkin Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Plasma Cell Myeloma; Waldenstrom Macroglobulinemia

  3. Acute myeloid leukemia in children: Current status and future directions.

    PubMed

    Taga, Takashi; Tomizawa, Daisuke; Takahashi, Hiroyuki; Adachi, Souichi

    2016-02-01

    Acute myeloid leukemia (AML) accounts for 25% of pediatric leukemia and affects approximately 180 patients annually in Japan. The treatment outcome for pediatric AML has improved through advances in chemotherapy, hematopoietic stem cell transplantation (HSCT), supportive care, and optimal risk stratification. Currently, clinical pediatric AML studies are conducted separately according to the AML subtypes: de novo AML, acute promyelocytic leukemia (APL), and myeloid leukemia with Down syndrome (ML-DS). Children with de novo AML are treated mainly with anthracyclines and cytarabine, in some cases with HSCT, and the overall survival (OS) rate now approaches 70%. Children with APL are treated with an all-trans retinoic acid (ATRA)-combined regimen with an 80-90% OS. Children with ML-DS are treated with a less intensive regimen compared with non-DS patients, and the OS is approximately 80%. HSCT in first remission is restricted to children with high-risk de novo AML only. To further improve outcomes, it will be necessary to combine more accurate risk stratification strategies using molecular genetic analysis with assessment of minimum residual disease, and the introduction of new drugs in international collaborative clinical trials. PMID:26645706

  4. Firstline treatment for chronic phase chronic myeloid leukemia patients should be based on a holistic approach.

    PubMed

    Breccia, Massimo; Alimena, Giuliana

    2015-02-01

    New selective and more potent drugs for the cure of chronic phase chronic myeloid leukemia patients are now available: physicians in some countries must decide the best option, selecting one of the drugs available. What the main prognostic factors are in order to make this selection remains a matter of discussion. Introducing a 'holistic approach' for the first time in chronic myeloid leukemia, as practiced in other diseases, and looking at the patient in a complete picture, considering several variables, such as comorbidities, age, concomitant drugs, lifestyle and patient expectations, may be of help to understand, patient by patient, the best therapeutic strategy.

  5. Firstline treatment for chronic phase chronic myeloid leukemia patients should be based on a holistic approach.

    PubMed

    Breccia, Massimo; Alimena, Giuliana

    2015-02-01

    New selective and more potent drugs for the cure of chronic phase chronic myeloid leukemia patients are now available: physicians in some countries must decide the best option, selecting one of the drugs available. What the main prognostic factors are in order to make this selection remains a matter of discussion. Introducing a 'holistic approach' for the first time in chronic myeloid leukemia, as practiced in other diseases, and looking at the patient in a complete picture, considering several variables, such as comorbidities, age, concomitant drugs, lifestyle and patient expectations, may be of help to understand, patient by patient, the best therapeutic strategy. PMID:25431965

  6. PHF6 mutations in adult acute myeloid leukemia.

    PubMed

    Van Vlierberghe, P; Patel, J; Abdel-Wahab, O; Lobry, C; Hedvat, C V; Balbin, M; Nicolas, C; Payer, A R; Fernandez, H F; Tallman, M S; Paietta, E; Melnick, A; Vandenberghe, P; Speleman, F; Aifantis, I; Cools, J; Levine, R; Ferrando, A

    2011-01-01

    Loss of function mutations and deletions encompassing the plant homeodomain finger 6 (PHF6) gene are present in about 20% of T-cell acute lymphoblastic leukemias (ALLs). Here, we report the identification of recurrent mutations in PHF6 in 10/353 adult acute myeloid leukemias (AMLs). Genetic lesions in PHF6 found in AMLs are frameshift and nonsense mutations distributed through the gene or point mutations involving the second plant homeodomain (PHD)-like domain of the protein. As in the case of T-ALL, where PHF6 alterations are found almost exclusively in males, mutations in PHF6 were seven times more prevalent in males than in females with AML. Overall, these results identify PHF6 as a tumor suppressor gene mutated in AML and extend the role of this X-linked tumor suppressor gene in the pathogenesis of hematologic tumors.

  7. Inotuzumab ozogamicin in the treatment of acute lymphoblastic leukemia.

    PubMed

    Dahl, Jenny; Marx, Kayleigh; Jabbour, Elias

    2016-01-01

    Over 90% of leukemic blasts in patients with acute lymphoblastic leukemia express the marker CD22. Inotuzumab ozogamicin (INO) is a CD22-directed humanized monoclonal antibody conjugated to the potent cytotoxin, calicheamicin, via an acid labile linker. INO has shown high rates of response in the treatment of relapsed and refractory (R/R) ALL in single-agent studies, with fewer adverse effects than traditional cytotoxic chemotherapy. Given this experience, studies are now being done to evaluate INO in combination with low-intensity chemotherapy as frontline treatment for older adults with ALL and patients with R/R disease. Herein we will discuss the use of INO in the treatment of acute lymphoblastic leukemia.

  8. Thrombo-hemorrhagic deaths in acute promyelocytic leukemia.

    PubMed

    Breccia, Massimo; Lo Coco, Francesco

    2014-05-01

    Acute promyelocytic leukemia (APL) has become the most curable form of acute myeloid leukemia after the advent of all-trans retinoic acid (ATRA). However, early deaths (ED) mostly due to the disease-associated coagulopathy remain the major cause of treatment failure. In particular, hemorrhagic events account for 40-65% of ED and several prognostic factors have been identified for such hemorrhagic deaths, including poor performance status, high white blood cell (WBC) count and coagulopathy. Occurrence of thrombosis during treatment with ATRA may be associated with differentiation syndrome (DS) or represent an isolated event. Some prognostic factors have been reported to be associated with thrombosis, including increased WBC or aberrant immunophenotype of leukemic promyelocytes. Aim of this review is to report the incidence, severity, possible pathogenesis and clinical manifestations of thrombo-haemorrhagic deaths in APL.

  9. Thrombo-hemorrhagic deaths in acute promyelocytic leukemia.

    PubMed

    Breccia, Massimo; Lo Coco, Francesco

    2014-05-01

    Acute promyelocytic leukemia (APL) has become the most curable form of acute myeloid leukemia after the advent of all-trans retinoic acid (ATRA). However, early deaths (ED) mostly due to the disease-associated coagulopathy remain the major cause of treatment failure. In particular, hemorrhagic events account for 40-65% of ED and several prognostic factors have been identified for such hemorrhagic deaths, including poor performance status, high white blood cell (WBC) count and coagulopathy. Occurrence of thrombosis during treatment with ATRA may be associated with differentiation syndrome (DS) or represent an isolated event. Some prognostic factors have been reported to be associated with thrombosis, including increased WBC or aberrant immunophenotype of leukemic promyelocytes. Aim of this review is to report the incidence, severity, possible pathogenesis and clinical manifestations of thrombo-haemorrhagic deaths in APL. PMID:24862130

  10. Successful outcome of Langerhans cell histiocytosis complicated by therapy-related myelodysplasia and acute myeloid leukemia: a case report

    PubMed Central

    Al-Anazi, Khalid A; Alshehri, Abdulrahman; Al-Zahrani, Hazza A; Al-Mohareb, Fahad I; Maghfoor, Irfan; Ajarim, Dahish

    2008-01-01

    Background Various therapeutic options are available for the management of Langerhans cell histiocytosis. However, treatment administered to control this disease may be complicated by acute leukemia. Case presentation A 34 years old male was diagnosed to have Langerhans cell histiocytosis in March 1999. Unfortunately, the cytotoxic chemotherapy and radiotherapy given to control the repeated relapses and exacerbations of the primary disease predisposed him to therapy-induced myelodysplastic syndrome which transformed into acute myeloid leukemia. After achieving complete remission of his leukemia, the patient received an allogeneic hematopoietic stem cell transplant. The allograft was complicated by chronic graft versus host disease that was controlled by various immunosuppressive agents and extracorporal photophoresis. Conclusion Management of complicated cases of histiocytosis requires various therapeutic modalities and a multidisciplinary approach. Having complications of therapy eg myelodysplasia or acute leukemia make the outcome more dismal and the management options limited to aggressive forms of treatment. High dose chemotherapy followed by an allograft may be a curative option not only for therapy-related myelodysplasia/acute leukemia, but also for frequently relapsing and poorly controlled Langerhans cell histiocytosis. PMID:18710527

  11. Elbow septic arthritis associated with pediatric acute leukemia: a case report and literature review.

    PubMed

    Uemura, Takuya; Yagi, Hirohisa; Okada, Mitsuhiro; Yokoi, Takuya; Shintani, Kosuke; Nakamura, Hiroaki

    2015-01-01

    Acute leukemia in children presents with various clinical manifestations that mimic orthopaedic conditions. The association of septic arthritis of the elbow with acute leukemia is very rare, and the correct diagnosis of acute leukemia is often established only after treatment of the septic arthritis. In this article, we present a three-year-old child patient with elbow septic arthritis related to acute leukemia, diagnosed promptly by bone marrow aspiration on the same day as emergency surgical debridement of the septic elbow joint due to the maintenance of a high index of suspicion, and treated with chemotherapy as soon as possible. The emergency physician and orthopaedist must recognize unusual patterns of presentation like this. Since delay in initiating treatment of septic arthritis may result in growth disturbance, elbow septic arthritis associated with pediatric acute leukemia must be treated promptly and appropriately. Early diagnosis is a good prognostic feature of childhood acute leukemia.

  12. Bone marrow necrosis in acute leukemia: Clinical characteristic and outcome.

    PubMed

    Badar, Talha; Shetty, Aditya; Bueso-Ramos, Carlos; Cortes, Jorge; Konopleva, Marina; Borthakur, Gautam; Pierce, Sherry; Huang, Xuelin; Chen, Hsiang-Chun; Kadia, Tapan; Daver, Naval; Dinardo, Courtney; O'Brien, Susan; Garcia-Manero, Guillermo; Kantarjian, Hagop; Ravandi, Farhad

    2015-09-01

    Bone marrow necrosis (BMN) is characterized by infarction of the medullary stroma, leading to marrow necrosis with preserved cortical bone. In reported small series, BMN in hematological malignancies is associated with poor prognosis. We sought to find the impact of BMN on clinical outcome in a relatively larger cohort of patients with acute leukemias. Overall we evaluated 1,691 patients; 1,051 with acute myeloid leukemia (AML) and 640 with acute lymphocytic leukemia referred to our institution between 2002 and 2013. Patients with AML and acute lymphoblastic leukemia (ALL) were evaluated separately to determine the incidence of BMN, associated clinical features and its prognostic significance. At initial diagnosis, BMN was observed in 25 (2.4%) patients with AML and 20 (3.2%) patients with ALL. In AML, BMN was significantly associated with French-American-British AML M5 morphology (32% vs. 10%, P = 0.002). The complete remission (CR) rate in AML with and without BMN was 32% and 59% respectively (P = 0.008). Likewise, CR rate in ALL with BMN was also inferior, 70% vs. 92% (P = 0.005). The median overall survival (OS) in AML with BMN was significantly poorer, 3.7 months compared to 14 months without BMN (P = 0.003). Similarly, the median OS in ALL with and without BMN was 61.7 and 72 months respectively (P = 0.33). BMN is not a rare entity in AML and ALL, but is infrequent. BMN in AML and in ALL is suggestive of inferior response and poor prognosis.

  13. Acute myeloid leukemia with non-specific cutaneous manifestation.

    PubMed

    Kotokey, R K; Potsangham, T; Das, R

    2008-09-01

    Acute myeloid leukemia is not uncommon in upper Assam. Primary skin manifestation in AML though very rare, may be found. The skin manifestation may be the first presentation in AML. Here such a case has been discussed which presented with primarily skin manifestation, subsequently diagnosed as AML. Therefore routine investigations are mandatory in all patients before going for a sophisticated investigation so that the diagnosis is not missed. PMID:19086364

  14. Massive Pulmonary Embolism at the Onset of Acute Promyelocytic Leukemia

    PubMed Central

    Sorà, Federica; Chiusolo, Patrizia; Laurenti, Luca; Autore, Francesco; Giammarco, Sabrina; Sica, Simona

    2016-01-01

    Life-threatening bleeding is a major and early complication of acute promyelocytic leukemia (APL), but in the last years there is a growing evidence of thromboses in APL. We report the first case of a young woman with dyspnea as the first symptom of APL due to massive pulmonary embolism (PE) successfully treated with thrombolysis for PE and heparin. APL has been processed with a combination of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO) obtaining complete remission. PMID:27413520

  15. Effect of Taurine on Febrile Episodes in Acute Lymphoblastic Leukemia

    PubMed Central

    Islambulchilar, Mina; Asvadi, Iraj; Sanaat, Zohreh; Esfahani, Ali; Sattari, Mohammadreza

    2015-01-01

    Purpose: The purpose of our study was to evaluate the effect of oral taurine on the incidence of febrile episodes during chemotherapy in young adults with acute lymphoblastic leukemia. Methods: Forty young adults with acute lymphoblastic leukemia, at the beginning of maintenance course of their chemotherapy, were eligible for this study. The study population was randomized in a double blind manner to receive either taurine or placebo (2 gram per day orally). Life quality and side effects including febrile episodes were assessed using questionnaire. Data were analyzed using Pearson’s Chi square test. Results: Of total forty participants, 43.8% were female and 56.3 % were male. The mean age was 19.16±1.95 years (ranges: 16-23 years). The results indicated that the levels of white blood cells are significantly (P<0.05) increased in taurine treated group. There was no elevation in blasts count. A total of 70 febrile episodes were observed during study, febrile episodes were significantly (P<0.05) lower in taurine patients in comparison to the control ones. Conclusion: The overall incidence of febrile episodes and infectious complications in acute lymphoblastic leukemia patients receiving taurine was lower than placebo group. Taurine’s ability to increase leukocyte count may result in lower febrile episodes. PMID:25789226

  16. Monitoring imatinib plasma concentrations in chronic myeloid leukemia

    PubMed Central

    Martins, Darlize Hübner; Wagner, Sandrine Comparsi; dos Santos, Tamyris Vianna; Lizot, Lilian de Lima Feltraco; Antunes, Marina Venzon; Capra, Marcelo; Linden, Rafael

    2011-01-01

    Imatinib has proved to be effective in the treatment of chronic myeloid leukemia, but plasma levels above 1,000 ng/mL must be achieved to optimize activity. Therapeutic drug monitoring of imatinib is useful for patients that do not present clinical response. There are several analytical methods to measure imatinib in biosamples, which are mainly based on liquid chromatography with mass spectrometric or diode array spectrophotometric detection. The former is preferred due to its lower cost and wider availability. The present manuscript presents a review of the clinical and analytical aspects of the therapeutic drug monitoring of imatinib in the treatment of chronic myeloid leukemia. The review includes references published over the last 10 years. There is evidence that the monitoring of plasmatic levels of imatinib is an useful alternative, especially considering the wide pharmacokinetic variability of this drug. PMID:23049322

  17. Laboratory-Treated Donor Cord Blood Cell Infusion Following Combination Chemotherapy in Treating Younger Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-09-26

    Acute Leukemia of Ambiguous Lineage; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARA; Alkylating Agent-Related Acute Myeloid Leukemia; Childhood Acute Myeloid Leukemia in Remission; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Untreated Adult Acute Myeloid Leukemia

  18. Temsirolimus, Dexamethasone, Mitoxantrone Hydrochloride, Vincristine Sulfate, and Pegaspargase in Treating Young Patients With Relapsed Acute Lymphoblastic Leukemia or Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2015-07-09

    Childhood B Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Lymphoblastic Lymphoma

  19. Giant Pyogenic Granuloma in a Patient with Chronic Lymphocytic Leukemia

    PubMed Central

    Plovanich, Molly; Tsibris, Hillary C.; Lian, Christine G.; Mostaghimi, Arash

    2014-01-01

    Pyogenic granuloma, also known as lobular capillary hemangioma, is a common benign vascular proliferative lesion that can present at any age on the skin or mucous membranes. Most lesions do not exceed 2 cm, but there are a handful of giant cutaneous pyogenic granulomas that have been reported, often in individuals with underlying immune dysfunction. Here, we report the first giant pyogenic granuloma in a patient with a hematological malignancy, chronic lymphocytic leukemia. PMID:25408651

  20. Mutational landscape and underlying mutational processes in chronic lymphocytic leukemia.

    PubMed

    Kasar, S; Brown, J R

    2016-07-01

    Sequencing studies have been instrumental in understanding the genetic basis of chronic lymphocytic leukemia (CLL). Our recent whole-genome sequencing study focusing on lower cytogenetic risk CLL demonstrated that CLL mutations can be attributed to 3 key mutational processes-2 types of activation induced-cytidine deaminase (AID) signatures and an aging signature-that operate at different times throughout CLL evolution. PMID:27652313

  1. Radiation-Induced Tumor Lysis Syndrome in Chronic Lymphocytic Leukemia.

    PubMed

    Alkan, Ali; Kütük, Tuğçe; Karcı, Ebru; Yaşar, Arzu; Hiçsönmez, Ayşe; Utkan, Güngör

    2016-09-01

    Tumor lysis syndrome (TLS) is an important oncological emergency that is usually observed with hematological malignancies and rarely with solid tumors. It can be induced either by therapy or spontaneously. Radiotherapy-induced TLS has been rarely reported in the literature. Here we present a patient with a diagnosis of metastatic prostate cancer and chronic lymphocytic leukemia complicated with TLS during palliative radiotherapy. PMID:27093891

  2. Deletion of chromosomal region 13q14.3 in childhood acute lymphoblastic leukemia.

    PubMed

    Cavé, H; Avet-Loiseau, H; Devaux, I; Rondeau, G; Boutard, P; Lebrun, E; Méchinaud, F; Vilmer, E; Grandchamp, B

    2001-03-01

    Deletion of the 13q14 chromosomal region is frequent in B cell chronic lymphocytic leukemia (B-CLL) and is believed to inactivate a tumor supressor gene (TSG) next to RB1. We studied microsatellite markers spanning the 13q14 chromosomal region in 138 children with acute lymphoblastic leukemia (ALL). Allelic loss was demonstrated in six cases (4.3%). Deletion did not include RB1 in two cases. In five patients, the deleted region overlapped that described in B-CLL. A sixth patient harbored a smaller deletion, slightly more telomeric than minimal deleted regions reported in B-CLL. Apparent differences in the delineation of the minimal deleted region could be due to the fact that the putative TSG is a very large gene, with some deletions affecting only a part of it. Our present findings suggest that at least some of its exons lie within a region of less than 100 kb more telomeric that previously thought.

  3. Acute and chronic arsenic toxicity.

    PubMed

    Ratnaike, R N

    2003-07-01

    Arsenic toxicity is a global health problem affecting many millions of people. Contamination is caused by arsenic from natural geological sources leaching into aquifers, contaminating drinking water and may also occur from mining and other industrial processes. Arsenic is present as a contaminant in many traditional remedies. Arsenic trioxide is now used to treat acute promyelocytic leukaemia. Absorption occurs predominantly from ingestion from the small intestine, though minimal absorption occurs from skin contact and inhalation. Arsenic exerts its toxicity by inactivating up to 200 enzymes, especially those involved in cellular energy pathways and DNA synthesis and repair. Acute arsenic poisoning is associated initially with nausea, vomiting, abdominal pain, and severe diarrhoea. Encephalopathy and peripheral neuropathy are reported. Chronic arsenic toxicity results in multisystem disease. Arsenic is a well documented human carcinogen affecting numerous organs. There are no evidence based treatment regimens to treat chronic arsenic poisoning but antioxidants have been advocated, though benefit is not proven. The focus of management is to reduce arsenic ingestion from drinking water and there is increasing emphasis on using alternative supplies of water.

  4. Acute and chronic arsenic toxicity

    PubMed Central

    Ratnaike, R

    2003-01-01

    Arsenic toxicity is a global health problem affecting many millions of people. Contamination is caused by arsenic from natural geological sources leaching into aquifers, contaminating drinking water and may also occur from mining and other industrial processes. Arsenic is present as a contaminant in many traditional remedies. Arsenic trioxide is now used to treat acute promyelocytic leukaemia. Absorption occurs predominantly from ingestion from the small intestine, though minimal absorption occurs from skin contact and inhalation. Arsenic exerts its toxicity by inactivating up to 200 enzymes, especially those involved in cellular energy pathways and DNA synthesis and repair. Acute arsenic poisoning is associated initially with nausea, vomiting, abdominal pain, and severe diarrhoea. Encephalopathy and peripheral neuropathy are reported. Chronic arsenic toxicity results in multisystem disease. Arsenic is a well documented human carcinogen affecting numerous organs. There are no evidence based treatment regimens to treat chronic arsenic poisoning but antioxidants have been advocated, though benefit is not proven. The focus of management is to reduce arsenic ingestion from drinking water and there is increasing emphasis on using alternative supplies of water. PMID:12897217

  5. Optic neuropathy secondary to dasatinib in the treatment of a chronic myeloid leukemia case

    PubMed Central

    Monge, Katia Sotelo; Gálvez-Ruiz, Alberto; Alvárez-Carrón, Alberto; Quijada, César; Matheu, Anna

    2015-01-01

    The drug dasatinib is a new therapeutic option for patients with chronic myeloid leukemia (CML) as well as acute lymphocytic lymphoblastic leukemia (ALL). However, the scientific literature has not reached a consensus regarding the types of secondary ophthalmologic effects that this drug may have. In this study, we present the case of a 36-year-old male patient who was treated with dasatinib. Two and a half months later, this patient began to experience progressive visual loss in the superior visual field of both eyes. After ruling out various diagnostic options and performing extensive complementary tests, the suspected diagnosis was compatible with optic neuropathy secondary to dasatinib. The patient partially improved after stopping this medication and receiving oral corticosteroid treatment. Although secondary ophthalmological effects related to dasatinib are practically non-existent, our case is the first to report optic neuropathy secondary to this drug. PMID:26155085

  6. Progress in BCL2 inhibition for patients with chronic lymphocytic leukemia.

    PubMed

    Tam, Constantine S; Seymour, John F; Roberts, Andrew W

    2016-04-01

    The prosurvival protein BCL2 is uniformly expressed in chronic lymphocytic leukemia (CLL), and enables leukemia cell survival in the face of cytotoxic treatment and increasing genomic, metabolic, and oxidative stresses. The therapeutic potential of BCL2 inhibition was first observed in the clinic following BCL2 antisense therapy. Subsequently, a number of small molecule inhibitors were developed to mimic the function of the pro-apoptotic BH3-only proteins (BH3-mimetics). These molecules are now in late-phase clinical trials and demonstrate potent activity, including the occurrence of acute tumor lysis syndrome in subjects with multiply relapsed, chemorefractory CLL. In this review, we discuss the history and summarize current knowledge regarding BCL2 inhibition as therapy of CLL. PMID:27040706

  7. Erythropoietin-induced acute erythroid leukemia-like picture: a potential pitfall.

    PubMed

    Moharram, Laila; Kamal, Nazmi; Al Sukhun, Sana; Sughayer, Maher A

    2014-03-01

    A 31-year-old male patient presented with fever and pancytopenia. He was diagnosed as a case of chronic anemia since early childhood. The etiology of the anemia was not known. The patient was transfusion dependent, and he had been maintained on erythropoietin for three years prior to admission. A bone marrow examination revealed prominent proliferation of immature and dysplastic erythroid precursors. Acute erythroid leukemia of the pure erythroid subtype was suspected. However, because of the history of erythropoietin therapy a definite diagnosis was not made. On follow-up one month later, the marrow changes had reversed to normal.

  8. Cytomegalovirus-induced Hemorrhagic Colitis in a Patient with Chronic Myeloid Leukemia (Chronic Phase) on Dasatinib as an Upfront Therapy

    PubMed Central

    Yassin, Mohamed A; Nashwan, Abdulqadir J; Soliman, Ashraf T; Yousif, Anil; Moustafa, Afra; AlBattah, Afaf; Mohamed, Shehab F; Mudawi, Deena S; Elkourashy, Sarah; Asaari, Deena-Raiza; Gutierrez, Hope-Love G; Almusharaf, Mohamed; Hussein, Radwa M; Moustafa, Abbas H; Derhoubi, Hatim El; Boukhris, Sarra; Kohla, Samah; AlDewik, Nader

    2015-01-01

    Dasatinib is a kinase inhibitor indicated for the treatment of newly diagnosed adults with Philadelphia chromosome–positive (Ph+) chronic myeloid leukemia (CML) in chronic phase and accelerated (myeloid or lymphoid blast) phase, and CML with resistance or intolerance to prior therapy including imatinib and in adults with Ph+ acute lymphoblastic leukemia1 The most common adverse reactions (≥15%) in patients with newly diagnosed chronic-phase (CP) CML include myelosuppression, fluid retention, and diarrhea, whereas in patients with resistance or intolerance to prior imatinib therapy, side effects include myelosuppression, fluid retention, diarrhea, headache, dyspnea, skin rash, fatigue, nausea, and hemorrhage. We report a 39-year-old Ethiopian female patient who received dasatinib as upfront therapy for the treatment of CP-CML who experienced chronic diarrhea for two months, which progressed to hemorrhagic colitis due to cytomegalovirus (CMV) infection of the colon. To our knowledge, this is the first case of CMV colitis in a patient receiving dasatinib as upfront therapy. PMID:26379451

  9. Busulfan, Fludarabine Phosphate, and Anti-Thymocyte Globulin Followed By Donor Stem Cell Transplant and Azacitidine in Treating Patients With High-Risk Myelodysplastic Syndrome and Older Patients With Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-09-26

    Adult Acute Megakaryoblastic Leukemia; Adult Acute Monoblastic Leukemia; Adult Acute Monocytic Leukemia; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With Maturation; Adult Acute Myeloid Leukemia With Minimal Differentiation; Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11; Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1; Adult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLL; Adult Acute Myeloid Leukemia Without Maturation; Adult Acute Myelomonocytic Leukemia; Adult Erythroleukemia; Adult Pure Erythroid Leukemia; Alkylating Agent-Related Acute Myeloid Leukemia; de Novo Myelodysplastic Syndrome; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Secondary Myelodysplastic Syndrome; Untreated Adult Acute Myeloid Leukemia

  10. Delirium in acute promyelocytic leukemia patients: two case reports

    PubMed Central

    2013-01-01

    Background Delirium is a frequently misdiagnosed and inadequately treated neuropsychiatric complication most commonly observed in terminally ill cancer patients. To our knowledge this is the first report describing delirium in two patients aged less than 60 years and enrolled in an intensive chemotherapeutic protocol for acute promyelocytic leukemia. Case presentation Two female Caucasian acute promyelocytic leukemia patients aged 46 and 56 years developed delirium during their induction treatment with all-trans retinoic acid and idarubicin. In both cases symptoms were initially attributed to all-trans retinoic acid that was therefore immediately suspended. In these two patients several situations may have contribute to the delirium: in patient 1 a previous psychiatric disorder, concomitant treatments with steroids and benzodiazepines, a severe infection and central nervous system bleeding while in patient 2 steroid treatment and isolation. In patient 1 delirium was treated with short-term low-doses of haloperidol while in patient 2 non-pharmacologic interventions had a beneficial role. When the diagnosis of delirium was clear, induction treatment was resumed and both patients completed their therapeutic program without any relapse of the psychiatric symptoms. Both patients are alive and in complete remission as far as their leukemia is concerned. Conclusions We suggest that patients with acute promyelocytic leukemia eligible to intensive chemotherapy should be carefully evaluated by a multisciplinary team including psychiatrists in order to early recognize symptoms of delirium and avoid inadequate treatments. In case of delirium, both pharmacologic and non-pharmacologic interventions may be considered. PMID:24237998

  11. Clofarabine and Cytarabine in Treating Older Patients With Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndromes That Have Relapsed or Not Responded to Treatment

    ClinicalTrials.gov

    2013-08-06

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Myelodysplastic Syndrome With Isolated Del(5q); Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia

  12. High-Dose Busulfan and High-Dose Cyclophosphamide Followed By Donor Bone Marrow Transplant in Treating Patients With Leukemia, Myelodysplastic Syndrome, Multiple Myeloma, or Recurrent Hodgkin or Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2010-08-05

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With T(15;17)(q22;q12); Adult Acute Myeloid Leukemia With T(16;16)(p13;q22); Adult Acute Myeloid Leukemia With T(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Acute Promyelocytic Leukemia (M3); Adult Erythroleukemia (M6a); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Adult Pure Erythroid Leukemia (M6b); Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Burkitt Lymphoma; Childhood Acute Erythroleukemia (M6); Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Megakaryocytic Leukemia (M7); Childhood Acute Monoblastic Leukemia (M5a); Childhood Acute Monocytic Leukemia (M5b); Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Myeloblastic Leukemia Without Maturation (M1); Childhood Acute Myeloid Leukemia in Remission; Childhood Acute Myelomonocytic Leukemia (M4); Childhood Acute Promyelocytic Leukemia (M3); Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Phase Chronic Myelogenous Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; De Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Peripheral T-Cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent

  13. Comprehensive mutational analysis of primary and relapse acute promyelocytic leukemia.

    PubMed

    Madan, V; Shyamsunder, P; Han, L; Mayakonda, A; Nagata, Y; Sundaresan, J; Kanojia, D; Yoshida, K; Ganesan, S; Hattori, N; Fulton, N; Tan, K-T; Alpermann, T; Kuo, M-C; Rostami, S; Matthews, J; Sanada, M; Liu, L-Z; Shiraishi, Y; Miyano, S; Chendamarai, E; Hou, H-A; Malnassy, G; Ma, T; Garg, M; Ding, L-W; Sun, Q-Y; Chien, W; Ikezoe, T; Lill, M; Biondi, A; Larson, R A; Powell, B L; Lübbert, M; Chng, W J; Tien, H-F; Heuser, M; Ganser, A; Koren-Michowitz, M; Kornblau, S M; Kantarjian, H M; Nowak, D; Hofmann, W-K; Yang, H; Stock, W; Ghavamzadeh, A; Alimoghaddam, K; Haferlach, T; Ogawa, S; Shih, L-Y; Mathews, V; Koeffler, H P

    2016-08-01

    Acute promyelocytic leukemia (APL) is a subtype of myeloid leukemia characterized by differentiation block at the promyelocyte stage. Besides the presence of chromosomal rearrangement t(15;17), leading to the formation of PML-RARA (promyelocytic leukemia-retinoic acid receptor alpha) fusion, other genetic alterations have also been implicated in APL. Here, we performed comprehensive mutational analysis of primary and relapse APL to identify somatic alterations, which cooperate with PML-RARA in the pathogenesis of APL. We explored the mutational landscape using whole-exome (n=12) and subsequent targeted sequencing of 398 genes in 153 primary and 69 relapse APL. Both primary and relapse APL harbored an average of eight non-silent somatic mutations per exome. We observed recurrent alterations of FLT3, WT1, NRAS and KRAS in the newly diagnosed APL, whereas mutations in other genes commonly mutated in myeloid leukemia were rarely detected. The molecular signature of APL relapse was characterized by emergence of frequent mutations in PML and RARA genes. Our sequencing data also demonstrates incidence of loss-of-function mutations in previously unidentified genes, ARID1B and ARID1A, both of which encode for key components of the SWI/SNF complex. We show that knockdown of ARID1B in APL cell line, NB4, results in large-scale activation of gene expression and reduced in vitro differentiation potential. PMID:27063598

  14. Comprehensive mutational analysis of primary and relapse acute promyelocytic leukemia

    PubMed Central

    Madan, V; Shyamsunder, P; Han, L; Mayakonda, A; Nagata, Y; Sundaresan, J; Kanojia, D; Yoshida, K; Ganesan, S; Hattori, N; Fulton, N; Tan, K-T; Alpermann, T; Kuo, M-C; Rostami, S; Matthews, J; Sanada, M; Liu, L-Z; Shiraishi, Y; Miyano, S; Chendamarai, E; Hou, H-A; Malnassy, G; Ma, T; Garg, M; Ding, L-W; Sun, Q-Y; Chien, W; Ikezoe, T; Lill, M; Biondi, A; Larson, R A; Powell, B L; Lübbert, M; Chng, W J; Tien, H-F; Heuser, M; Ganser, A; Koren-Michowitz, M; Kornblau, S M; Kantarjian, H M; Nowak, D; Hofmann, W-K; Yang, H; Stock, W; Ghavamzadeh, A; Alimoghaddam, K; Haferlach, T; Ogawa, S; Shih, L-Y; Mathews, V; Koeffler, H P

    2016-01-01

    Acute promyelocytic leukemia (APL) is a subtype of myeloid leukemia characterized by differentiation block at the promyelocyte stage. Besides the presence of chromosomal rearrangement t(15;17), leading to the formation of PML-RARA (promyelocytic leukemia-retinoic acid receptor alpha) fusion, other genetic alterations have also been implicated in APL. Here, we performed comprehensive mutational analysis of primary and relapse APL to identify somatic alterations, which cooperate with PML-RARA in the pathogenesis of APL. We explored the mutational landscape using whole-exome (n=12) and subsequent targeted sequencing of 398 genes in 153 primary and 69 relapse APL. Both primary and relapse APL harbored an average of eight non-silent somatic mutations per exome. We observed recurrent alterations of FLT3, WT1, NRAS and KRAS in the newly diagnosed APL, whereas mutations in other genes commonly mutated in myeloid leukemia were rarely detected. The molecular signature of APL relapse was characterized by emergence of frequent mutations in PML and RARA genes. Our sequencing data also demonstrates incidence of loss-of-function mutations in previously unidentified genes, ARID1B and ARID1A, both of which encode for key components of the SWI/SNF complex. We show that knockdown of ARID1B in APL cell line, NB4, results in large-scale activation of gene expression and reduced in vitro differentiation potential. PMID:27063598

  15. Activation of a promyelocytic leukemia-tumor protein 53 axis underlies acute promyelocytic leukemia cure.

    PubMed

    Ablain, Julien; Rice, Kim; Soilihi, Hassane; de Reynies, Aurélien; Minucci, Saverio; de Thé, Hugues

    2014-02-01

    Acute promyelocytic leukemia (APL) is driven by the promyelocytic leukemia (PML)-retinoic acid receptor-α (PML-RARA) fusion protein, which interferes with nuclear receptor signaling and PML nuclear body (NB) assembly. APL is the only malignancy definitively cured by targeted therapies: retinoic acid (RA) and/or arsenic trioxide, which both trigger PML-RARA degradation through nonoverlapping pathways. Yet, the cellular and molecular determinants of treatment efficacy remain disputed. We demonstrate that a functional Pml-transformation-related protein 53 (Trp53) axis is required to eradicate leukemia-initiating cells in a mouse model of APL. Upon RA-induced PML-RARA degradation, normal Pml elicits NB reformation and induces a Trp53 response exhibiting features of senescence but not apoptosis, ultimately abrogating APL-initiating activity. Apart from triggering PML-RARA degradation, arsenic trioxide also targets normal PML to enhance NB reformation, which may explain its clinical potency, alone or with RA. This Pml-Trp53 checkpoint initiated by therapy-triggered NB restoration is specific for PML-RARA-driven APL, but not the RA-resistant promyelocytic leukemia zinc finger (PLZF)-RARA variant. Yet, as NB biogenesis is druggable, it could be therapeutically exploited in non-APL malignancies.

  16. Outcomes after Induction Failure in Childhood Acute Lymphoblastic Leukemia

    PubMed Central

    Schrappe, Martin; Hunger, Stephen P.; Pui, Ching-Hon; Saha, Vaskar; Gaynon, Paul S.; Baruchel, André; Conter, Valentino; Otten, Jacques; Ohara, Akira; Versluys, Anne Birgitta; Escherich, Gabriele; Heyman, Mats; Silverman, Lewis B.; Horibe, Keizo; Mann, Georg; Camitta, Bruce M.; Harbott, Jochen; Riehm, Hansjörg; Richards, Sue; Devidas, Meenakshi; Zimmermann, Martin

    2012-01-01

    BACKGROUND Failure of remission-induction therapy is a rare but highly adverse event in children and adolescents with acute lymphoblastic leukemia (ALL). METHODS We identified induction failure, defined by the persistence of leukemic blasts in blood, bone marrow, or any extramedullary site after 4 to 6 weeks of remission-induction therapy, in 1041 of 44,017 patients (2.4%) 0 to 18 years of age with newly diagnosed ALL who were treated by a total of 14 cooperative study groups between 1985 and 2000. We analyzed the relationships among disease characteristics, treatments administered, and outcomes in these patients. RESULTS Patients with induction failure frequently presented with high-risk features, including older age, high leukocyte count, leukemia with a T-cell phenotype, the Philadelphia chromosome, and 11q23 rearrangement. With a median follow-up period of 8.3 years (range, 1.5 to 22.1), the 10-year survival rate (±SE) was estimated at only 32±1%. An age of 10 years or older, T-cell leukemia, the presence of an 11q23 rearrangement, and 25% or more blasts in the bone marrow at the end of induction therapy were associated with a particularly poor outcome. High hyperdiploidy (a modal chromosome number >50) and an age of 1 to 5 years were associated with a favorable outcome in patients with precursor B-cell leukemia. Allogeneic stem-cell transplantation from matched, related donors was associated with improved outcomes in T-cell leukemia. Children younger than 6 years of age with precursor B-cell leukemia and no adverse genetic features had a 10-year survival rate of 72±5% when treated with chemotherapy only. CONCLUSIONS Pediatric ALL with induction failure is highly heterogeneous. Patients who have T-cell leukemia appear to have a better outcome with allogeneic stem-cell transplantation than with chemotherapy, whereas patients who have precursor B-cell leukemia without other adverse features appear to have a better outcome with chemotherapy. (Funded by Deutsche

  17. Antileukemic Efficacy of Continuous vs Discontinuous Dexamethasone in Murine Models of Acute Lymphoblastic Leukemia

    PubMed Central

    Ramsey, Laura B.; Janke, Laura J.; Payton, Monique A.; Cai, Xiangjun; Paugh, Steven W.; Karol, Seth E.; Kamdem, Landry Kamdem; Cheng, Cheng; Williams, Richard T.; Jeha, Sima; Pui, Ching-Hon; Evans, William E.; Relling, Mary V.

    2015-01-01

    Osteonecrosis is one of the most common, serious, toxicities resulting from the treatment of acute lymphoblastic leukemia. In recent years, pediatric acute lymphoblastic leukemia clinical trials have used discontinuous rather than continuous dosing of dexamethasone in an effort to reduce the incidence of osteonecrosis. However, it is not known whether discontinuous dosing would compromise antileukemic efficacy of glucocorticoids. Therefore, we tested the efficacy of discontinuous dexamethasone against continuous dexamethasone in murine models bearing human acute lymphoblastic leukemia xenografts (n = 8 patient samples) or murine BCR-ABL+ acute lymphoblastic leukemia. Plasma dexamethasone concentrations (7.9 to 212 nM) were similar to those achieved in children with acute lymphoblastic leukemia using conventional dosages. The median leukemia-free survival ranged from 16 to 59 days; dexamethasone prolonged survival from a median of 4 to 129 days in all seven dexamethasone-sensitive acute lymphoblastic leukemias. In the majority of cases (7 of 8 xenografts and the murine BCR-ABL model) we demonstrated equal efficacy of the two dexamethasone dosing regimens; whereas for one acute lymphoblastic leukemia sample, the discontinuous regimen yielded inferior antileukemic efficacy (log-rank p = 0.002). Our results support the clinical practice of using discontinuous rather than continuous dexamethasone dosing in patients with acute lymphoblastic leukemia. PMID:26252865

  18. Subdural Hematoma Associated with Dasatinib and Intrathecal Methotrexate Treatment in Philadelphia Chromosome-positive Acute Lymphoblastic Leukemia.

    PubMed

    Ureshino, Hiroshi; Nishioka, Atsujiro; Kojima, Kensuke; Kizuka, Haruna; Sano, Haruhiko; Shindo, Takero; Kubota, Yasushi; Ando, Toshihiko; Kimura, Shinya

    2016-01-01

    Dasatinib has been associated with an increased risk of bleeding, with the most prominent risk noted in patients with advanced-stage chronic myeloid leukemia and thrombocytopenia. We herein report two cases of Philadelphia chromosome-positive acute lymphoblastic leukemia in which a subdural hematoma developed in association with low-dose (40-50 mg/day) dasatinib treatment and lumbar puncture for intrathecal methotrexate injection. Both patients were in complete remission, with normal platelet counts and coagulation status. We suggest that dasatinib, even at a low dose, may impair platelet aggregation and that lumbar puncture may increase the risk of a subdural hematoma (occasionally bilateral) in patients receiving dasatinib. PMID:27629971

  19. Nurture versus nature: the microenvironment in chronic lymphocytic leukemia.

    PubMed

    Burger, Jan A

    2011-01-01

    Intrinsic factors such as genetic lesions, anti-apoptotic proteins, and aberrant signaling networks within leukemia cells have long been the main focus of chronic lymphocytic leukemia (CLL) research. However, over the past decade, it became increasingly clear that external signals from the leukemia microenvironment make pivotal contributions to disease progression in CLL and other B-cell malignancies. Consequently, increasing emphasis is now placed on exploring and targeting the CLL microenvironment. This review highlights critical cellular and molecular pathways of CLL-microenvironment cross-talk. In vitro and in vivo models for studying the CLL microenvironment are discussed, along with their use in searching for therapeutic targets and in drug testing. Clinically, CXCR4 antagonists and small-molecule antagonists of B cell receptor (BCR)-associated kinases (spleen tyrosine kinase [Syk], Bruton's tyrosine kinase [Btk], and PI3Kδ) are the most advanced drugs for targeting specific interactions between CLL cells and the miocroenvironment. Preclinical and first clinical evidence suggests that high-risk CLL patients can particularly benefit from these alternative agents. These findings indicate that interplay between leukemia-inherent and environmental factors, nature and nurture determines disease progression in CLL. PMID:22160019

  20. Functional Integration of Acute Myeloid Leukemia into the Vascular Niche

    PubMed Central

    Leon, Ronald P.; Masri, Azzah Al; Clark, Hilary A.; Asbaghi, Steven A.; Tyner, Jeffrey W.; Dunlap, Jennifer; Fan, Guang; Kovacsovics, Tibor; Liu, Qiuying; Meacham, Amy; Hamlin, Kimberly L.; Hromas, Robert A.; Scott, Edward W.; Fleming, William H.

    2014-01-01

    Vascular endothelial cells are a critical component of the hematopoietic microenvironment that regulates blood cell production. Recent studies suggest the existence of functional cross-talk between hematologic malignancies and vascular endothelium. Here, we show that human acute myeloid leukemia (AML) localizes to the vasculature in both patients and in a xenograft model. A significant number of vascular tissue-associated AML cells (V-AML) integrate into vasculature in vivo and can fuse with endothelial cells. V-AML cells acquire several endothelial cell-like characteristics, including the up-regulation of CD105, a receptor associated with activated endothelium. Remarkably, endothelial-integrated V-AML shows an almost 4-fold reduction in proliferative activity compared to non-vascular associated AML. Primary AML cells can be induced to down regulate the expression of their hematopoietic markers in vitro and differentiate into phenotypically and functionally-defined endothelial-like cells. After transplantation, these leukemia-derived endothelial cells are capable of giving rise to AML. Taken together, these novel functional interactions between AML cells and normal endothelium along with the reversible endothelial cell potential of AML suggest that vascular endothelium may serve as a previously unrecognized reservoir for acute myeloid leukemia. PMID:24637335

  1. Collaborative Efforts Driving Progress in Pediatric Acute Myeloid Leukemia

    PubMed Central

    Zwaan, C. Michel; Kolb, Edward A.; Reinhardt, Dirk; Abrahamsson, Jonas; Adachi, Souichi; Aplenc, Richard; De Bont, Eveline S.J.M.; De Moerloose, Barbara; Dworzak, Michael; Gibson, Brenda E.S.; Hasle, Henrik; Leverger, Guy; Locatelli, Franco; Ragu, Christine; Ribeiro, Raul C.; Rizzari, Carmelo; Rubnitz, Jeffrey E.; Smith, Owen P.; Sung, Lillian; Tomizawa, Daisuke; van den Heuvel-Eibrink, Marry M.; Creutzig, Ursula; Kaspers, Gertjan J.L.

    2015-01-01

    Diagnosis, treatment, response monitoring, and outcome of pediatric acute myeloid leukemia (AML) have made enormous progress during the past decades. Because AML is a rare type of childhood cancer, with an incidence of approximately seven occurrences per 1 million children annually, national and international collaborative efforts have evolved. This overview describes these efforts and includes a summary of the history and contributions of each of the main collaborative pediatric AML groups worldwide. The focus is on translational and clinical research, which includes past, current, and future clinical trials. Separate sections concern acute promyelocytic leukemia, myeloid leukemia of Down syndrome, and relapsed AML. A plethora of novel antileukemic agents that have emerged, including new classes of drugs, are summarized as well. Finally, an important aspect of the treatment of pediatric AML—supportive care—and late effects are discussed. The future is bright, with a wide range of emerging innovative therapies and with more and more international collaboration that ultimately aim to cure all children with AML, with fewer adverse effects and without late effects. PMID:26304895

  2. Haploidentical Transplantation in Children with Acute Leukemia: The Unresolved Issues

    PubMed Central

    Jaiswal, Sarita Rani; Chakrabarti, Suparno

    2016-01-01

    Allogeneic hematopoietic stem cell transplantation (HSCT) remains a curative option for children with high risk and advanced acute leukemia. Yet availability of matched family donor limits its use and although matched unrelated donor or mismatched umbilical cord blood (UCB) are viable options, they fail to meet the global need. Haploidentical family donor is almost universally available and is emerging as the alternate donor of choice in adult patients. However, the same is not true in the case of children. The studies of haploidentical HSCT in children are largely limited to T cell depleted grafts with not so encouraging results in advanced leukemia. At the same time, emerging data from UCBT are challenging the existing paradigm of less stringent HLA match requirements as perceived in the past. The use of posttransplantation cyclophosphamide (PTCY) has yielded encouraging results in adults, but data in children is sorely lacking. Our experience of using PTCY based haploidentical HSCT in children shows inadequacy of this approach in younger children compared to excellent outcome in older children. In this context, we discuss the current status of haploidentical HSCT in children with acute leukemia in a global perspective and dwell on its future prospects. PMID:27110243

  3. Collaborative Efforts Driving Progress in Pediatric Acute Myeloid Leukemia.

    PubMed

    Zwaan, C Michel; Kolb, Edward A; Reinhardt, Dirk; Abrahamsson, Jonas; Adachi, Souichi; Aplenc, Richard; De Bont, Eveline S J M; De Moerloose, Barbara; Dworzak, Michael; Gibson, Brenda E S; Hasle, Henrik; Leverger, Guy; Locatelli, Franco; Ragu, Christine; Ribeiro, Raul C; Rizzari, Carmelo; Rubnitz, Jeffrey E; Smith, Owen P; Sung, Lillian; Tomizawa, Daisuke; van den Heuvel-Eibrink, Marry M; Creutzig, Ursula; Kaspers, Gertjan J L

    2015-09-20

    Diagnosis, treatment, response monitoring, and outcome of pediatric acute myeloid leukemia (AML) have made enormous progress during the past decades. Because AML is a rare type of childhood cancer, with an incidence of approximately seven occurrences per 1 million children annually, national and international collaborative efforts have evolved. This overview describes these efforts and includes a summary of the history and contributions of each of the main collaborative pediatric AML groups worldwide. The focus is on translational and clinical research, which includes past, current, and future clinical trials. Separate sections concern acute promyelocytic leukemia, myeloid leukemia of Down syndrome, and relapsed AML. A plethora of novel antileukemic agents that have emerged, including new classes of drugs, are summarized as well. Finally, an important aspect of the treatment of pediatric AML--supportive care--and late effects are discussed. The future is bright, with a wide range of emerging innovative therapies and with more and more international collaboration that ultimately aim to cure all children with AML, with fewer adverse effects and without late effects.

  4. Apolizumab in Treating Patients With Relapsed or Refractory Chronic Lymphocytic Leukemia or Small Lymphocytic Lymphoma

    ClinicalTrials.gov

    2013-07-15

    Noncontiguous Stage II Small Lymphocytic Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Stage III Small Lymphocytic Lymphoma; Stage IV Small Lymphocytic Lymphoma

  5. Targeted treatment of imatinib-resistant chronic myeloid leukemia: Focus on dasatinib

    PubMed Central

    Chuah, Charles; Melo, Junia V

    2009-01-01

    The efficacy of imatinib in chronic myeloid leukemia has been remarkable, but the development of resistance and the persistence of minimal residual disease have dampened the initial enthusiasm for this much heralded ‘magic bullet’. Much progress has been made in elucidating the mechanisms which underlie imatinib resistance. The most common cause of such drug resistance is the selection of leukemic clones with point mutations in the Abl kinase domain leading to amino acid substitutions which prevent the appropriate binding of the drug. Other mechanisms include genomic amplification of BCR-ABL and modulation of drug efflux or influx transporters. Dasatinib is a multi-target kinase inhibitor which has increased potency and is able to inhibit most Bcr-Abl mutant cell lines. Clinical trials of dasatinib in imatinib-resistant and -intolerant chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoid leukemia have shown that it is effective and well tolerated. In this review, we will discuss the pre-clinical development of dasatinib, the clinical trial data demonstrating its efficacy and tolerability and highlight certain aspects of its toxicity profile and mechanisms of resistance. PMID:20616897

  6. Update on developmental therapeutics for acute lymphoblastic leukemia.

    PubMed

    Smith, Malcolm A

    2009-07-01

    This is an exciting time in drug development for acute lymphoblastic leukemia (ALL). A confluence of trends makes it likely that highly effective new agents for ALL will be identified in the coming decade. One contributory factor is the development of more representative preclinical models of ALL for testing and prioritizing novel agents. Another important trend in ALL drug development is the increasing understanding at the molecular level of the genomic changes that occur in B-precursor and T-cell ALL. A final important trend is the increasing availability of new agents against relevant molecular targets. Molecularly targeted agents of interest discussed in this review include novel antibody-based drugs targeted against leukemia surface antigens, proteasome inhibitors, mTOR inhibitors, JAK inhibitors, Aurora A kinase inhibitors, and inhibitors of Bcl-2 family proteins. PMID:20425431

  7. PHF6 mutations in T-cell acute lymphoblastic leukemia.

    PubMed

    Van Vlierberghe, Pieter; Palomero, Teresa; Khiabanian, Hossein; Van der Meulen, Joni; Castillo, Mireia; Van Roy, Nadine; De Moerloose, Barbara; Philippé, Jan; González-García, Sara; Toribio, María L; Taghon, Tom; Zuurbier, Linda; Cauwelier, Barbara; Harrison, Christine J; Schwab, Claire; Pisecker, Markus; Strehl, Sabine; Langerak, Anton W; Gecz, Jozef; Sonneveld, Edwin; Pieters, Rob; Paietta, Elisabeth; Rowe, Jacob M; Wiernik, Peter H; Benoit, Yves; Soulier, Jean; Poppe, Bruce; Yao, Xiaopan; Cordon-Cardo, Carlos; Meijerink, Jules; Rabadan, Raul; Speleman, Frank; Ferrando, Adolfo

    2010-04-01

    Tumor suppressor genes on the X chromosome may skew the gender distribution of specific types of cancer. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with an increased incidence in males. In this study, we report the identification of inactivating mutations and deletions in the X-linked plant homeodomain finger 6 (PHF6) gene in 16% of pediatric and 38% of adult primary T-ALL samples. Notably, PHF6 mutations are almost exclusively found in T-ALL samples from male subjects. Mutational loss of PHF6 is importantly associated with leukemias driven by aberrant expression of the homeobox transcription factor oncogenes TLX1 and TLX3. Overall, these results identify PHF6 as a new X-linked tumor suppressor in T-ALL and point to a strong genetic interaction between PHF6 loss and aberrant expression of TLX transcription factors in the pathogenesis of this disease.

  8. [Bleeding complications in acute myeloblastic leukemia (author's transl)].

    PubMed

    Sutor, A H

    1979-03-01

    Bleeding is common in acute myeloblastic leukemia (AML). At the time of diagnosis, the danger of bleeding cannot be predicted by laboratory means. However, the following factors represent increased risks: Promyeloblastic leukemia, high blast count, low fibrinogen, low plasminogen. From coagulation studies performed at the time of bleeding complications, the pathomechanism leading to bleeding complications usually cannot be detected. The question whether impairment of production, consumption coagulopathy, or primary fibrinolysis causes the bleeding complications can only be answered by controlling frequently clinical and hemostatic criteria, which include the thrombocytic stystem as well as plasmatic coagulation and fibrinolysis. At the present time, the therapy of bleeding complications in AML is symptomatic. It consists of transfusion with thrombocytes or fresh whole blood, respectively. Coagulation factor concentrates should only be given in combination with Heparin to prevent the deterioration of consumption coagulopathy.

  9. THE GENOMIC LANDSCAPE OF HYPODIPLOID ACUTE LYMPHOBLASTIC LEUKEMIA

    PubMed Central

    Holmfeldt, Linda; Wei, Lei; Diaz-Flores, Ernesto; Walsh, Michael; Zhang, Jinghui; Ding, Li; Payne-Turner, Debbie; Churchman, Michelle; Andersson, Anna; Chen, Shann-Ching; McCastlain, Kelly; Becksfort, Jared; Ma, Jing; Wu, Gang; Patel, Samir N.; Heatley, Susan L.; Phillips, Letha A.; Song, Guangchun; Easton, John; Parker, Matthew; Chen, Xiang; Rusch, Michael; Boggs, Kristy; Vadodaria, Bhavin; Hedlund, Erin; Drenberg, Christina; Baker, Sharyn; Pei, Deqing; Cheng, Cheng; Huether, Robert; Lu, Charles; Fulton, Robert S.; Fulton, Lucinda L.; Tabib, Yashodhan; Dooling, David J.; Ochoa, Kerri; Minden, Mark; Lewis, Ian D.; To, L. Bik; Marlton, Paula; Roberts, Andrew W.; Raca, Gordana; Stock, Wendy; Neale, Geoffrey; Drexler, Hans G.; Dickins, Ross A.; Ellison, David W.; Shurtleff, Sheila A.; Pui, Ching-Hon; Ribeiro, Raul C.; Devidas, Meenakshi; Carroll, Andrew J.; Heerema, Nyla A.; Wood, Brent; Borowitz, Michael J.; Gastier-Foster, Julie M.; Raimondi, Susana C.; Mardis, Elaine R.; Wilson, Richard K.; Downing, James R.; Hunger, Stephen P.; Loh, Mignon L.; Mullighan, Charles G.

    2013-01-01

    The genetic basis of hypodiploid acute lymphoblastic leukemia (ALL), a subtype of ALL characterized by aneuploidy and poor outcome, is unknown. Genomic profiling of 124 hypodiploid ALL cases, including whole genome and exome sequencing of 40 cases, identified two subtypes that differ in severity of aneuploidy, transcriptional profile and submicroscopic genetic alterations. Near haploid cases with 24–31 chromosomes harbor alterations targeting receptor tyrosine kinase- and Ras signaling (71%) and the lymphoid transcription factor IKZF3 (AIOLOS; 13%). In contrast, low hypodiploid ALL with 32–39 chromosomes are characterized by TP53 alterations (91.2%) which are commonly present in non-tumor cells, and alterations of IKZF2 (HELIOS; 53%) and RB1 (41%). Both near haploid and low hypodiploid tumors exhibit activation of Ras- and PI3K signaling pathways, and are sensitive to PI3K inhibitors, indicating that these drugs should be explored as a new therapeutic strategy for this aggressive form of leukemia. PMID:23334668

  10. Pharmacogenetics of alkylator-associated acute myeloid leukemia.

    PubMed

    Knoche, Eric; McLeod, Howard L; Graubert, Timothy A

    2006-07-01

    Therapy-related acute myeloid leukemia (t-AML) is a lethal late complication of alkylator chemotherapy. The genetic basis of susceptibility to t-AML is poorly understood. Both t-AML and de novo AML are complex genetic diseases, requiring cooperating mutations in interacting pathways for disease initiation and progression. Germline variants of these 'leukemia pathway' genes may cooperate with somatic mutations to induce both de novo and therapy-related AML. Several cancer susceptibility syndromes have been identified that cause an inherited predisposition to de novo and t-AML. The genes responsible for these syndromes are also somatically mutated in sporadic AML. We reason that germline polymorphism in any gene somatically mutated in AML could contribute to t-AML risk in the general population. Identification of these susceptibility alleles should help clinicians develop tailored therapies that reduce the relative risk of t-AML. PMID:16886897

  11. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia

    PubMed Central

    Klco, Jeffery M.; Spencer, David H.; Miller, Christopher A.; Griffith, Malachi; Lamprecht, Tamara L.; O’Laughlin, Michelle; Fronick, Catrina; Magrini, Vincent; Demeter, Ryan T.; Fulton, Robert S.; Eades, William C.; Link, Daniel C.; Graubert, Timothy A.; Walter, Matthew J.; Mardis, Elaine R.; Dipersio, John F.; Wilson, Richard K.; Ley, Timothy J.

    2014-01-01

    Summary The relationships between clonal architecture and functional heterogeneity in acute myeloid leukemia (AML) samples are not yet clear. We used targeted sequencing to track AML subclones identified by whole genome sequencing using a variety of experimental approaches. We found that virtually all AML subclones trafficked from the marrow to the peripheral blood, but some were enriched in specific cell populations. Subclones showed variable engraftment potential in immunodeficient mice. Xenografts were predominantly comprised of a single genetically-defined subclone, but there was no predictable relationship between the engrafting subclone and the evolutionary hierarchy of the leukemia. These data demonstrate the importance of integrating genetic and functional data in studies of primary cancer samples, both in xenograft models and in patients. PMID:24613412

  12. Leukemia

    MedlinePlus

    ... version of this page please turn Javascript on. Leukemia What Is Leukemia? Leukemia is a cancer of the blood cells. ... diagnosed with leukemia are over 50 years old. Leukemia Starts in Bone Marrow Click for more information ...

  13. Bone Marrow and Kidney Transplant for Patients With Chronic Kidney Disease and Blood Disorders

    ClinicalTrials.gov

    2016-10-03

    Chronic Kidney Disease; Acute Myeloid Leukemia (AML); Acute Lymphoblastic Leukemia (ALL); Chronic Myelogenous Leukemia (CML); Chronic Lymphocytic Leukemia (CLL); Non-Hodgkin's Lymphoma (NHL); Hodgkin Disease; Multiple Myeloma; Myelodysplastic Syndrome (MDS); Aplastic Anemia; AL Amyloidosis; Diamond Blackfan Anemia; Myelofibrosis; Myeloproliferative Disease; Sickle Cell Anemia; Autoimmune Diseases; Thalassemia

  14. Acute Pancreatitis and Diabetic Ketoacidosis following L-Asparaginase/Prednisone Therapy in Acute Lymphoblastic Leukemia.

    PubMed

    Quintanilla-Flores, Dania Lizet; Flores-Caballero, Miguel Ángel; Rodríguez-Gutiérrez, René; Tamez-Pérez, Héctor Eloy; González-González, José Gerardo

    2014-01-01

    Acute pancreatitis and diabetic ketoacidosis are unusual adverse events following chemotherapy based on L-asparaginase and prednisone as support treatment for acute lymphoblastic leukemia. We present the case of a 16-year-old Hispanic male patient, in remission induction therapy for acute lymphoblastic leukemia on treatment with mitoxantrone, vincristine, prednisone, and L-asparaginase. He was hospitalized complaining of abdominal pain, nausea, and vomiting. Hyperglycemia, acidosis, ketonuria, low bicarbonate levels, hyperamylasemia, and hyperlipasemia were documented, and the diagnosis of diabetic ketoacidosis was made. Because of uncertainty of the additional diagnosis of acute pancreatitis as the cause of abdominal pain, a contrast-enhanced computed tomography was performed resulting in a Balthazar C pancreatitis classification.

  15. Acute Pancreatitis and Diabetic Ketoacidosis following L-Asparaginase/Prednisone Therapy in Acute Lymphoblastic Leukemia

    PubMed Central

    Quintanilla-Flores, Dania Lizet; Flores-Caballero, Miguel Ángel; Rodríguez-Gutiérrez, René; Tamez-Pérez, Héctor Eloy; González-González, José Gerardo

    2014-01-01

    Acute pancreatitis and diabetic ketoacidosis are unusual adverse events following chemotherapy based on L-asparaginase and prednisone as support treatment for acute lymphoblastic leukemia. We present the case of a 16-year-old Hispanic male patient, in remission induction therapy for acute lymphoblastic leukemia on treatment with mitoxantrone, vincristine, prednisone, and L-asparaginase. He was hospitalized complaining of abdominal pain, nausea, and vomiting. Hyperglycemia, acidosis, ketonuria, low bicarbonate levels, hyperamylasemia, and hyperlipasemia were documented, and the diagnosis of diabetic ketoacidosis was made. Because of uncertainty of the additional diagnosis of acute pancreatitis as the cause of abdominal pain, a contrast-enhanced computed tomography was performed resulting in a Balthazar C pancreatitis classification. PMID:24716037

  16. Investigating CD99 Expression in Leukemia Propagating Cells in Childhood T Cell Acute Lymphoblastic Leukemia

    PubMed Central

    Cox, Charlotte V.; Diamanti, Paraskevi; Moppett, John P.; Blair, Allison

    2016-01-01

    A significant number of children with T-lineage acute lymphoblastic leukemia (T-ALL) fail to respond to therapy and experience early relapse. CD99 has been shown to be overexpressed on T-ALL cells and is considered to be a reliable detector of the disease. However, the relevance of CD99 overexpression in ALL has not been investigated in a functional context. The aim of this study was to investigate the functional capacity of CD99+ cells in childhood ALL and determine the suitability of CD99 as a therapeutic target. Flow cytometric analyses confirmed higher expression of CD99 in ALL blasts (81.5±22.7%) compared to normal hemopoietic stem cells (27.5±21.9%) and T cells (3.1±5.2%, P≤0.004). When ALL cells were sorted and assessed in functional assays, all 4 subpopulations (CD34+/CD99+, CD34+/CD99-, CD34-/CD99+ and CD34-/CD99-) could proliferate in vitro and establish leukemia in NSG mice. Leukemia propagating cell frequencies ranged from 1 in 300 to 1 in 7.4x104 but were highest in the CD34+/CD99- subpopulation. In addition, all four subpopulations had self-renewal ability in secondary NSG mice. Cells in each subpopulation contained patient specific TCR rearrangements and karyotypic changes that were preserved with passage through serial NSG transplants. Despite high levels of CD99 antigen on the majority of blast cells, leukemia initiating capacity in vivo was not restricted to cells that express this protein. Consequently, targeting CD99 alone would not eliminate all T-ALL cells with the ability to maintain the disease. The challenge remains to develop therapeutic strategies that can eliminate all leukemia cells with self-renewal capacity in vivo. PMID:27764235

  17. Leukemia cutis in B-cell chronic lymphocytic leukemia presenting as an episodic papulovesicular eruption.

    PubMed

    Rosman, Ilana S; Nunley, Kara S; Lu, Dongsi

    2011-01-01

    A 53-year-old man presented with a recurrent pruritic eruption accompanied by oral sores. His past medical history was significant for subclinical B-cell chronic lymphocytic leukemia (CLL), which had never been treated. On exam, there were erythematous papules and plaques studded with vesicles on the neck, trunk, and upper extremities. Two skin biopsies showed common features of a perivascular and periadnexal lymphocytic infiltrate in the superficial to mid-dermis. Immunohistochemical staining of the lymphocytes showed co-expression of CD20, CD23, CD5, and CD43, consistent with a diagnosis of cutaneous involvement by the patient's CLL. This case highlights the importance of considering leukemia cutis in patients with underlying CLL presenting with unusual clinical features. PMID:21971272

  18. The potential of venetoclax (ABT-199) in chronic lymphocytic leukemia

    PubMed Central

    Itchaki, Gilad; Brown, Jennifer R.

    2016-01-01

    Venetoclax (VEN, ABT-199/GDC-0199) is an orally bioavailable BH3-mimetic that specifically inhibits the anti-apoptotic B-cell lymphoma/leukemia 2 (BCL2) protein. Although BCL2 overexpression is not genetically driven in chronic lymphocytic leukemia (CLL), it is nearly universal and represents a highly important and prevalent mechanism of apoptosis evasion, making it an attractive therapeutic target. This review summarizes the role of BCL2 in CLL pathogenesis, the development path targeting its inhibition prior to VEN, and the preclinical and clinical data regarding the effectiveness and safety of VEN. We further strive to contextualize VEN in the current CLL treatment landscape and discuss potential mechanisms of resistance. PMID:27695617

  19. Antigen stimulation in the development of chronic lymphocytic leukemia.

    PubMed

    Karp, Marta; Giannopoulos, Krzysztof

    2013-12-05

    Chronic lymphocytic leukemia (CLL) is the most common leukemia in the western world. The mechanism the mechanism of the disease development still remains unrevealed. In recent years new unique molecular and clinical features of CLL have emerged leading to a unified hypothesis of CLL origin. Major progress in understanding CLL biology was made after identification of mutational status of immunoglobulin variable heavy chain (IGHV) genes, which also improved prediction of patients' clinical outcome. Preferential usage of IGHV genes has led to recognition of CLL-specific B cell receptors (BCRs), called stereotyped BCRs. Taken together, these data point to antigen stimulation of CLL progenitor cells. Studies on CLL antibody reactivity have shown affinity to molecular motifs on apoptotic cells and bacterial cell structures, supporting the current hypothesis of the CLL pathomechanism. In this paper we have summarized information available to date regarding current theory of cellular origin and pathology of CLL.

  20. New insights into antigen specific immunotherapy for chronic myeloid leukemia

    PubMed Central

    2012-01-01

    Chronic myeloid leukemia (CML) is a stem cell disease in which BCR/ABL plays an important role as an oncoprotein and a molecular and immunogenic target. Despite the success of targeted therapy using tyrosine kinase inhibitors (TKIs), CML remains largely incurable, most likely due to the treatment resistance of leukemic stem cells. Several immunotherapies have been developed for CML in different stages and relapse after allogeneic stem cell transplantation. In the this review, several specific immunotherapeutic approaches for CML, including vaccination and adoptive cellular immunotherapy, are discussed along with results from clinical trials, and the value of such immunotherapies in the era of imatinib and leukemia-associated antigens (LAAs), which are capable of inducing specific T cell responses and are appropriate target structures for the immunological targeting of CML cells, are also summarized. PMID:23241263

  1. Genomic and epigenomic heterogeneity in chronic lymphocytic leukemia

    PubMed Central

    Guièze, Romain

    2015-01-01

    Defining features of chronic lymphocytic leukemia (CLL) are not only its immunophenotype of CD19+CD5+CD23+sIgdim expressing clonal mature B cells but also its highly variable clinical course. In recent years, advances in massively parallel sequencing technologies have led to rapid progress in our understanding of the CLL genome and epigenome. Overall, these studies have clearly demarcated not only the vast degree of genetic and epigenetic heterogeneity among individuals with CLL but also even within individual patient leukemias. We herein review the rapidly growing series of studies assessing the genetic and epigenetic features of CLL within clinically defined periods of its growth. These studies strongly suggest an evolving spectrum of lesions over time and that these features may have clinical impact. PMID:26065654

  2. Allogeneic stem-cell transplantation in patients with refractory acute leukemia: a long-term follow-up.

    PubMed

    Oyekunle, A A; Kröger, N; Zabelina, T; Ayuk, F; Schieder, H; Renges, H; Fehse, N; Waschke, O; Fehse, B; Kabisch, H; Zander, A R

    2006-01-01

    We examined retrospectively 44 patients with refractory acute leukemia (acute myeloid leukemia (AML)/acute lymphoblastic leukemia=25/19) who underwent allogeneic transplantation at our center between 11/1990 and 04/2004. The median leukemic blasts was 25% and age 28 years (range, 3-56). Twenty-one patients had untreated relapse, 13 failed reinduction, eight in partial remission and two aplastic. Conditioning was myeloablative using cyclophosphamide, busulfan, total-body irradiation and etoposide (Bu/Cy/VP, n=22; TBI/Cy/VP, n=17; others, n=5) followed by marrow or peripheral blood transplant (n=23/21) from unrelated or related donors (n=28/16). All patients had graft-versus-host disease (GVHD) prophylaxis with cyclosporin and methotrexate. One patient experienced late graft failure. Severe acute-GVHD and chronic-GVHD appeared in eight and 14 patients, respectively. Thirteen patients (30%) remain alive after a median of 25.3 months (range, 2.4-134.1); with 31 deaths, mostly from relapse (n=15) and infections (n=12). Overall survival (OS) and progression-free survival (PFS) at 5 years was 28 and 26%, respectively. OS and PFS were significantly better with blasts < or =20% and time to transplant < or =1 year while transplant-related mortality was less with the use of TBI. We conclude that patients with refractory leukemia can benefit from allogeneic BMT, especially with < or =20% marrow blast.

  3. Targeted positron emission tomography imaging of CXCR4 expression in patients with acute myeloid leukemia

    PubMed Central

    Herhaus, Peter; Habringer, Stefan; Philipp-Abbrederis, Kathrin; Vag, Tibor; Gerngross, Carlos; Schottelius, Margret; Slotta-Huspenina, Julia; Steiger, Katja; Altmann, Torben; Weißer, Tanja; Steidle, Sabine; Schick, Markus; Jacobs, Laura; Slawska, Jolanta; Müller-Thomas, Catharina; Verbeek, Mareike; Subklewe, Marion; Peschel, Christian; Wester, Hans-Jürgen; Schwaiger, Markus; Götze, Katharina; Keller, Ulrich

    2016-01-01

    Acute myeloid leukemia originates from leukemia-initiating cells that reside in the protective bone marrow niche. CXCR4/CXCL12 interaction is crucially involved in recruitment and retention of leukemia-initiating cells within this niche. Various drugs targeting this pathway have entered clinical trials. To evaluate CXCR4 imaging in acute myeloid leukemia, we first tested CXCR4 expression in patient-derived primary blasts. Flow cytometry revealed that high blast counts in patients with acute myeloid leukemia correlate with high CXCR4 expression. The wide range of CXCR4 surface expression in patients was reflected in cell lines of acute myeloid leukemia. Next, we evaluated the CXCR4-specific peptide Pentixafor by positron emission tomography imaging in mice harboring CXCR4 positive and CXCR4 negative leukemia xenografts, and in 10 patients with active disease. [68Ga]Pentixafor-positron emission tomography showed specific measurable disease in murine CXCR4 positive xenografts, but not when CXCR4 was knocked out with CRISPR/Cas9 gene editing. Five of 10 patients showed tracer uptake correlating well with leukemia infiltration assessed by magnetic resonance imaging. The mean maximal standard uptake value was significantly higher in visually CXCR4 positive patients compared to CXCR4 negative patients. In summary, in vivo molecular CXCR4 imaging by means of positron emission tomography is feasible in acute myeloid leukemia. These data provide a framework for future diagnostic and theranostic approaches targeting the CXCR4/CXCL12-defined leukemia-initiating cell niche. PMID:27175029

  4. Ras/Raf/MEK/ERK Pathway Activation in Childhood Acute Lymphoblastic Leukemia and Its Therapeutic Targeting

    PubMed Central

    Knight, Thomas; Irving, Julie Anne Elizabeth

    2014-01-01

    Deregulation of the Ras/Raf/MEK/extracellular signal-regulated kinase pathway is a common event in childhood acute lymphoblastic leukemia and is caused by point mutation, gene deletion, and chromosomal translocation of a vast array of gene types, highlighting its importance in leukemia biology. Pathway activation can be therapeutically exploited and may guide new therapies needed for relapsed acute lymphoblastic leukemia and other high risk subgroups. PMID:25009801

  5. Novel biological insights in T-cell acute lymphoblastic leukemia.

    PubMed

    Durinck, Kaat; Goossens, Steven; Peirs, Sofie; Wallaert, Annelynn; Van Loocke, Wouter; Matthijssens, Filip; Pieters, Tim; Milani, Gloria; Lammens, Tim; Rondou, Pieter; Van Roy, Nadine; De Moerloose, Barbara; Benoit, Yves; Haigh, Jody; Speleman, Frank; Poppe, Bruce; Van Vlierberghe, Pieter

    2015-08-01

    T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive type of blood cancer that accounts for about 15% of pediatric and 25% of adult acute lymphoblastic leukemia (ALL) cases. It is considered as a paradigm for the multistep nature of cancer initiation and progression. Genetic and epigenetic reprogramming events, which transform T-cell precursors into malignant T-ALL lymphoblasts, have been extensively characterized over the past decade. Despite our comprehensive understanding of the genomic landscape of human T-ALL, leukemia patients are still treated by high-dose multiagent chemotherapy, potentially followed by hematopoietic stem cell transplantation. Even with such aggressive treatment regimens, which are often associated with considerable acute and long-term side effects, about 15% of pediatric and 40% of adult T-ALL patients still relapse, owing to acquired therapy resistance, and present with very dismal survival perspectives. Unfortunately, the molecular mechanisms by which residual T-ALL tumor cells survive chemotherapy and act as a reservoir for leukemic progression and hematologic relapse remain poorly understood. Nevertheless, it is expected that enhanced molecular understanding of T-ALL disease biology will ultimately facilitate a targeted therapy driven approach that can reduce chemotherapy-associated toxicities and improve survival of refractory T-ALL patients through personalized salvage therapy. In this review, we summarize recent biological insights into the molecular pathogenesis of T-ALL and speculate how the genetic landscape of T-ALL could trigger the development of novel therapeutic strategies for the treatment of human T-ALL. PMID:26123366

  6. The European LeukemiaNet: achievements and perspectives

    PubMed Central

    Hehlmann, Rüdiger; Grimwade, David; Simonsson, Bengt; Apperley, Jane; Baccarani, Michele; Barbui, Tiziano; Barosi, Giovanni; Bassan, Renato; Béné, Marie C.; Berger, Ute; Büchner, Thomas; Burnett, Alan; Cross, Nicolas C.P.; de Witte, Theo J.M.; Döhner, Hartmut; Dombret, Hervé; Einsele, Hermann; Engelich, Georg; Foà, Robin; Fonatsch, Christa; Gökbuget, Nicola; Gluckman, Elaine; Gratwohl, Alois; Guilhot, Francois; Haferlach, Claudia; Haferlach, Thorsten; Hallek, Michael; Hasford, Jörg; Hochhaus, Andreas; Hoelzer, Dieter; Kiladjian, Jean-Jaques; Labar, Boris; Ljungman, Per; Mansmann, Ulrich; Niederwieser, Dietger; Ossenkoppele, Gert; Ribera, José M.; Rieder, Harald; Serve, Hubert; Schrotz-King, Petra; Sanz, Miguel A.; Saußele, Susanne

    2011-01-01

    The only way to cure leukemia is by cooperative research. To optimize research, the European LeukemiaNet integrates 105 national leukemia trial groups and networks, 105 interdisciplinary partner groups and about 1,000 leukemia specialists from 175 institutions. They care for tens of thousands of leukemia patients in 33 countries across Europe. Their ultimate goal is to cure leukemia. Since its inception in 2002, the European LeukemiaNet has steadily expanded and has unified leukemia research across Europe. The European LeukemiaNet grew from two major roots: 1) the German Competence Network on Acute and Chronic Leukemias; and 2) the collaboration of European Investigators on Chronic Myeloid Leukemia. The European LeukemiaNet has improved leukemia research and management across Europe. Its concept has led to funding by the European Commission as a network of excellence. Other sources (European Science Foundation; European LeukemiaNet-Foundation) will take over when the support of the European Commission ends. PMID:21048032

  7. Testis Scintigraphy in a Patient with Acute Lymphoblastic Leukemia

    PubMed Central

    Şencan Eren, Mine; Koç, Murat; Ören, Hale; Özkal, Şermin; Durak, Hatice

    2014-01-01

    Acute lymphoblastic leukemia (ALL) is a pediatric malignancy associated with remissions and relapses. Common relapsing sitesare meninges, testis and ovary. Testicular scintigraphy is a highly specific modality used mainly in the differential diagnosis of testicular torsion and epidydimitis/epidydimo-orchitis. There is only one interesting image on leukemic infiltration with scrotal scintigraphy in the literature. The aim of this case presentation is to report that although the scintigraphic appearance of testicular torsion was observed in a patient with the diagnosis of ALL, testicular ALL infiltration was revealed in pathologic examination. Conflict of interest:None declared. PMID:24653935

  8. Building better therapy for children with acute lymphoblastic leukemia.

    PubMed

    Carroll, William L; Raetz, Elizabeth A

    2005-04-01

    Childhood acute lymphoblastic leukemia is one of the most curable of all human cancers, but new approaches are urgently needed for children who relapse and to avoid severe side effects of curative therapy. Work from the laboratories of Rob Pieters and William Evans, including a paper in this issue of Cancer Cell, has led to the identification of genes whose expression correlates with drug crossresistance and long term outcome. The goal is now to integrate these and other findings using gene expression technology into the care of children with the most common pediatric malignancy. PMID:15837616

  9. Ecthyma gangrenosum in a patient with acute leukemia.

    PubMed

    Kryeziu, Emrush; Kryeziu, K; Bajraktari, Gjani; Abazi, M; Zylfiu, B; Rudhani, I; Sadiku, Sh; Ukimeri, A; Brovina, A; Dreshaj, Sh; Telaku, S

    2010-01-01

    Ecthymagangrenosum (EG)is a rare condition with characteristic clinical appearance of red maculae that progresses to a central area of necrosis surrounded by an erythematous halo. The most frequently it is caused by Pseudomonas bacteriaemia in neutropenic patient. The authors presents a patient with acute myloblastic leukemia M4 type in whom in relapse EG caused by Pseudomonas aeruginosa was found. The patient was treated with antibiotics and surgical debridement. The author wants to point out on clinical significance this condition with high mortality rate.

  10. [Disseminated papules in a patient with acute myeloid leukemia].

    PubMed

    Ceric-Dehdari, P; Houcinat, Y; Berger, T G

    2010-11-01

    Cryptococcosis most commonly occurs in immunosuppressed patients. The pathogen is the yeast Cryptococcus neoformans. This article reports on the case of a 20-year-old female patient with acute myeloid leukemia who suddenly developed disseminated livid red papules and papulovesicles. The clinical picture and in particular the histopathology findings led to the diagnosis of cutaneous cryptococcosis, which was successfully treated with amphotericin B. For the differential diagnosis generalized herpes zoster, erythema exudativum multiforme and disseminated molluscum contagiosum must be considered. To confirm the diagnosis attempts can also be made to culture the pathogen from skin biopsy preparations. Furthermore, fungal spores can be rapidly and simply detected with the Tzanck test. PMID:20927503

  11. Myelodysplastic Syndromes and Acute Myeloid Leukemia in the Elderly.

    PubMed

    Klepin, Heidi D

    2016-02-01

    Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are hematologic diseases that frequently affect older adults. Treatment is challenging. Management of older adults with MDS and AML needs to be individualized, accounting for both the heterogeneity of disease biology and patient characteristics, which can influence life expectancy and treatment tolerance. Clinical trials accounting for the heterogeneity of tumor biology and physiologic changes of aging are needed to define optimal standards of care. This article highlights key evidence related to the management of older adults with MDS and AML and highlights future directions for research.

  12. [Nursing diagnosis in adult patients with acute myeloid leukemia].

    PubMed

    de Souza, Luccas Melo; Gorini, Maria Isabel Pinto Coelho

    2006-09-01

    This case study aimed at identifying Nursing Diagnosis (ND) in adult patients with Acute Myeloid Leukemia, with the purpose of contributing to the Systematization of Nurse Care. Interviews and observation were used for data collection, in addition to Nursing Process application. During the three months of data collection, other NDs were obtained by searching the files of the 6 patients. The 32 ND found in this study were grouped according to Maslow's hierarchy of needs. Out of these 32 ND, 15 corresponded to changes in Physiological Needs, and 10 to changes in Protection and Safety Needs.

  13. Esophageal Candidiasis as the Initial Manifestation of Acute Myeloid Leukemia.

    PubMed

    Komeno, Yukiko; Uryu, Hideki; Iwata, Yuko; Hatada, Yasumasa; Sakamoto, Jumpei; Iihara, Kuniko; Ryu, Tomiko

    2015-01-01

    A 47-year-old woman presented with persistent dysphagia. A gastroendoscopy revealed massive esophageal candidiasis, and oral miconazole was prescribed. Three weeks later, she returned to our hospital without symptomatic improvement. She was febrile, and blood tests showed leukocytosis (137,150 /μL, blast 85%), anemia and thrombocytopenia. She was diagnosed with acute myeloid leukemia (AML). She received chemotherapy and antimicrobial agents. During the recovery from the nadir, bilateral ocular candidiasis was detected, suggesting the presence of preceding candidemia. Thus, esophageal candidiasis can be an initial manifestation of AML. Thorough examination to detect systemic candidiasis is strongly recommended when neutropenic patients exhibit local candidiasis prior to chemotherapy.

  14. Acute Myeloid Leukemia Complicated by Giant Cell Arteritis.

    PubMed

    Tsunemine, Hiroko; Umeda, Ryosuke; Nohda, Yasuhiro; Sakane, Emiko; Akasaka, Hiroshi; Itoh, Kiminari; Izumi, Mayuko; Tsuji, Goh; Kodaka, Taiichi; Itoh, Tomoo; Takahashi, Takayuki

    2016-01-01

    Giant cell arteritis (GCA), a type of systemic arteritis, is rare in Japan. We herein report a case of acute myeloid leukemia (AML) complicated by GCA that manifested during chemotherapy for AML. A 77-year-old woman with severe back pain was diagnosed with AML. She achieved complete remission with the resolution of her back pain following induction chemotherapy. However, she developed a headache and fever after consolidation chemotherapy. A diagnosis of GCA was made based on a biopsy of the temporal artery and arterial imaging. GCA should therefore be included in the differential diagnosis in AML patients complicated with a headache and fever of unknown origin. PMID:26831026

  15. Combination Chemotherapy and Rituximab in Treating Young Patients With Recurrent or Refractory Non-Hodgkin's Lymphoma or Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2013-10-07

    B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; L3 Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma

  16. Co-operative leukemogenesis in acute myeloid leukemia and acute promyelocytic leukemia reveals C/EBPα as a common target of TRIB1 and PML/RARA

    PubMed Central

    Keeshan, Karen; Vieugué, Pauline; Chaudhury, Shahzya; Rishi, Loveena; Gaillard, Coline; Liang, Lu; Garcia, Elaine; Nakamura, Takuro; Omidvar, Nader; Kogan, Scott C.

    2016-01-01

    The PML/RARA fusion protein occurs as a result of the t(15;17) translocation in the acute promyelocytic leukemia subtype of human acute myeloid leukemia. Gain of chromosome 8 is the most common chromosomal gain in human acute myeloid leukemia, including acute promyelocytic leukemia. We previously demonstrated that gain of chromosome 8-containing MYC is of central importance in trisomy 8, but the role of the nearby TRIB1 gene has not been experimentally addressed in this context. We have now tested the hypothesis that both MYC and TRIB1 have functional roles underlying leukemogenesis of trisomy 8 by using retroviral vectors to express MYC and TRIB1 in wild-type bone marrow and in marrow that expressed a PML/RARA transgene. Interestingly, although MYC and TRIB1 readily co-operated in leukemogenesis for wild-type bone marrow, TRIB1 provided no selective advantage to cells expressing PML/RARA. We hypothesized that this lack of co-operation between PML/RARA and TRIB1 reflected a common pathway for their effect: both proteins targeting the myeloid transcription factor C/EBPα. In support of this idea, TRIB1 expression abrogated the all-trans retinoic acid response of acute promyelocytic leukemia cells in vitro and in vivo. Our data delineate the common and redundant inhibitory effects of TRIB1 and PML/RARA on C/EBPα providing a potential explanation for the lack of selection of TRIB1 in human acute promyelocytic leukemia, and highlighting the key role of C/EBPs in acute promyelocytic leukemia pathogenesis and therapeutic response. In addition, the co-operativity we observed between MYC and TRIB1 in the absence of PML/RARA show that, outside of acute promyelocytic leukemia, gain of both genes may drive selection for trisomy 8. PMID:27390356

  17. Effects of lentivirus mediated STAT3 silencing on human chronic myeloid leukemia cells and leukemia mice

    PubMed Central

    Jia, Xinyan; Yang, Wenzhong; Han, Jia; Xiong, Hong

    2014-01-01

    Objective: To investigate the effects of lentivirus mediated STAT3 silencing on human chronic myeloid leukemia cells (K562) and the growth of chronic myeloid leukemia mice as well as to explore the potential mechanisms. Methods: Unbtreated K562 cells (CON), blank lentivirus transfected K562 cells (NC) and K562 cells expressing STAT3 siRNA (STAT3 siRNA) were injected into SCID mice to establish the chronic myeloid leukemia model in mice. The growth, peripheral white blood cell count and spleen index in these mice were determined. Results: In vitro experiment showed, when compared with control group, the interference efficiency of STAT3 expression was as high as 97.5% in K562 cells. Western blot assay revealed that the expression of c-Myc, Bcl-xL and Cyclin D1 reduced by 17.01%, 7.3% and 6.82%, respectively, showing significant difference when compared with control group (P < 0.01). These findings were consistent with those from fluorescence quantitative PCR. In vivo experiment showed the body weight of mice reduced progressively and the peripheral white blood cell count increased gradually in control group, accompanied by dragging hind limbs and progressive enlargement of the spleen. The body weight remained unchanged, peripheral white blood cell count reduced gradually and the spleen did not enlarge in mice treated with STAT3 siRNA expressing cells. Conclusion: Lentivirus mediated STAT3 silencing may inhibit the expression of its downstream genes (c-Myc, Bcl-xL and Cyclin D1) related to cell proliferation, apoptosis and cycle to suppress the malignant biological behaviors, and STAT3 silencing also inhibit the leukemogenic potency of K562 cells in mice. PMID:25550912

  18. Lysosomal disruption preferentially targets acute myeloid leukemia cells and progenitors

    PubMed Central

    Sukhai, Mahadeo A.; Prabha, Swayam; Hurren, Rose; Rutledge, Angela C.; Lee, Anna Y.; Sriskanthadevan, Shrivani; Sun, Hong; Wang, Xiaoming; Skrtic, Marko; Seneviratne, Ayesh; Cusimano, Maria; Jhas, Bozhena; Gronda, Marcela; MacLean, Neil; Cho, Eunice E.; Spagnuolo, Paul A.; Sharmeen, Sumaiya; Gebbia, Marinella; Urbanus, Malene; Eppert, Kolja; Dissanayake, Dilan; Jonet, Alexia; Dassonville-Klimpt, Alexandra; Li, Xiaoming; Datti, Alessandro; Ohashi, Pamela S.; Wrana, Jeff; Rogers, Ian; Sonnet, Pascal; Ellis, William Y.; Corey, Seth J.; Eaves, Connie; Minden, Mark D.; Wang, Jean C.Y.; Dick, John E.; Nislow, Corey; Giaever, Guri; Schimmer, Aaron D.

    2012-01-01

    Despite efforts to understand and treat acute myeloid leukemia (AML), there remains a need for more comprehensive therapies to prevent AML-associated relapses. To identify new therapeutic strategies for AML, we screened a library of on- and off-patent drugs and identified the antimalarial agent mefloquine as a compound that selectively kills AML cells and AML stem cells in a panel of leukemia cell lines and in mice. Using a yeast genome-wide functional screen for mefloquine sensitizers, we identified genes associated with the yeast vacuole, the homolog of the mammalian lysosome. Consistent with this, we determined that mefloquine disrupts lysosomes, directly permeabilizes the lysosome membrane, and releases cathepsins into the cytosol. Knockdown of the lysosomal membrane proteins LAMP1 and LAMP2 resulted in decreased cell viability, as did treatment of AML cells with known lysosome disrupters. Highlighting a potential therapeutic rationale for this strategy, leukemic cells had significantly larger lysosomes compared with normal cells, and leukemia-initiating cells overexpressed lysosomal biogenesis genes. These results demonstrate that lysosomal disruption preferentially targets AML cells and AML progenitor cells, providing a rationale for testing lysosomal disruption as a novel therapeutic strategy for AML. PMID:23202731

  19. Acute myeloid leukemia with multilineage dysplasia in children.

    PubMed

    Adachi, Souichi; Manabe, Atsushi; Imaizumi, Masue; Taga, Takashi; Tawa, Akio; Tsurusawa, Masahito; Kikuchi, Akira; Masunaga, Atsuko; Tsuchida, Masahiro; Nakahata, Tatsutoshi

    2007-11-01

    We retrospectively surveyed pediatric acute myeloid leukemia (AML) patients with multilineage dysplasia treated with the AML 99 and the Children's Cancer and Leukemia Study Group (CCLSG) AML 9805 protocols. We found only 9 AML patients (2.6%) with multilineage dysplasia among the 341 patients with newly diagnosed de novo AML. Eight of the 9 patients obtained complete remission (CR) following the intensive AML-oriented treatments. Three of 7 patients who underwent stem cell transplantation were alive in CR for more than 4 years, and the 2 patients treated only with chemotherapy were alive in CR for more than 30 months. We did not identify any particular chromosomal abnormalities or differentiation according to the French-American-British classification in these 9 patients. No reports have described AML with multilineage dysplasia in children, and the incidence of the disease is expected to be very low. We plan to conduct a prospective pathologic review to select cases with this disease entity in the next Japanese Pediatric Leukemia/Lymphoma Study Group (JPLSG) AML-05 protocol.

  20. Myeloprolipherative disorder type chronic myeloid leukemia--eosinophilic form.

    PubMed

    Arnautovic-Custovic, Aida; Hasic, Samira; Kopic, Emina; Jahic, Azra; Jovic, Svetlana

    2011-01-01

    Chronic eosinophilic leukemia (CEL) is a very rare form of leucemia in the western world. Adequate response is seldomly achieved after treatment with corticosteroids, interferon-alfa (INF-alfa) and medications containing hydroxi-urea (Litalir). The study presents a patient with CEL with no initial therapeutic response to the use of corticosteroids, INF-alfa and hydroxy-urea, and with neither clinical nor hematological response. After setting a diagnosis of CEL, patient was ordinated Imatinib (Glivec tabbletes) in a daily dose of 200 mg. Two days afterwards there was an evident withdrawal of subjective and clinical symptoms of disease, and the complete blood count showed significant amendment.

  1. Summary of the published Indian data on chronic myeloid leukemia

    PubMed Central

    Singhal, Manish K.; Sengar, Manju; Nair, Reena

    2016-01-01

    Chronic myelogenous leukemia (LML) was recognized as a distinct entity in the mid-1800s. Since Nowell and Hunagerford initiated their research on CML in1960 our understanding in CML has been increasing. Imatinib became the preferred treatment from 2000 onwards as a result of its unprecedented success. The lack of structured Indian data on CML led to the formation of a CML data cansortuim which invited CML data albiet retro spartive form around the country including major cancer service providers both government and private. We provide a summary of published Indian data on CML here. PMID:27606306

  2. Summary of the published Indian data on chronic myeloid leukemia

    PubMed Central

    Singhal, Manish K.; Sengar, Manju; Nair, Reena

    2016-01-01

    Chronic myelogenous leukemia (LML) was recognized as a distinct entity in the mid-1800s. Since Nowell and Hunagerford initiated their research on CML in1960 our understanding in CML has been increasing. Imatinib became the preferred treatment from 2000 onwards as a result of its unprecedented success. The lack of structured Indian data on CML led to the formation of a CML data cansortuim which invited CML data albiet retro spartive form around the country including major cancer service providers both government and private. We provide a summary of published Indian data on CML here.

  3. Chronic myelomonocytic leukemia: Forefront of the field in 2015

    PubMed Central

    Benton, Christopher B; Nazha, Aziz; Pemmaraju, Naveen; Garcia-Manero, Guillermo

    2016-01-01

    Chronic myelomonocytic leukemia (CMML) includes components of both myelodysplastic syndrome and myeloproliferative neoplasms and is associated with a characteristic peripheral monocytosis. CMML is caused by the proliferation of an abnormal hematopoietic stem cell clone and may be influenced by microenvironmental changes. The disease is rare and has undergone revisions in its classification. We review the recent classification strategies as well as diagnostic criteria, focusing on CMML’s genetic alterations and unique pathophysiology. We also discuss the latest molecular characterization of the disease, including how molecular factors affect current prognostic models. Finally, we focus on available treatment strategies, with a special emphasis on experimental and forthcoming therapies. PMID:25869097

  4. Summary of the published Indian data on chronic myeloid leukemia.

    PubMed

    Singhal, Manish K; Sengar, Manju; Nair, Reena

    2016-01-01

    Chronic myelogenous leukemia (LML) was recognized as a distinct entity in the mid-1800s. Since Nowell and Hunagerford initiated their research on CML in1960 our understanding in CML has been increasing. Imatinib became the preferred treatment from 2000 onwards as a result of its unprecedented success. The lack of structured Indian data on CML led to the formation of a CML data cansortuim which invited CML data albiet retro spartive form around the country including major cancer service providers both government and private. We provide a summary of published Indian data on CML here. PMID:27606306

  5. Myeloprolipherative disorder type chronic myeloid leukemia--eosinophilic form.

    PubMed

    Arnautovic-Custovic, Aida; Hasic, Samira; Kopic, Emina; Jahic, Azra; Jovic, Svetlana

    2011-01-01

    Chronic eosinophilic leukemia (CEL) is a very rare form of leucemia in the western world. Adequate response is seldomly achieved after treatment with corticosteroids, interferon-alfa (INF-alfa) and medications containing hydroxi-urea (Litalir). The study presents a patient with CEL with no initial therapeutic response to the use of corticosteroids, INF-alfa and hydroxy-urea, and with neither clinical nor hematological response. After setting a diagnosis of CEL, patient was ordinated Imatinib (Glivec tabbletes) in a daily dose of 200 mg. Two days afterwards there was an evident withdrawal of subjective and clinical symptoms of disease, and the complete blood count showed significant amendment. PMID:21776882

  6. Nanoparticle targeted therapy against childhood acute lymphoblastic leukemia

    NASA Astrophysics Data System (ADS)

    Satake, Noriko; Lee, Joyce; Xiao, Kai; Luo, Juntao; Sarangi, Susmita; Chang, Astra; McLaughlin, Bridget; Zhou, Ping; Kenney, Elaina; Kraynov, Liliya; Arnott, Sarah; McGee, Jeannine; Nolta, Jan; Lam, Kit

    2011-06-01

    The goal of our project is to develop a unique ligand-conjugated nanoparticle (NP) therapy against childhood acute lymphoblastic leukemia (ALL). LLP2A, discovered by Dr. Kit Lam, is a high-affinity and high-specificity peptidomimetic ligand against an activated α4β1 integrin. Our study using 11 fresh primary ALL samples (10 precursor B ALL and 1 T ALL) showed that childhood ALL cells expressed activated α4β1 integrin and bound to LLP2A. Normal hematopoietic cells such as activated lymphocytes and monocytes expressed activated α4β1 integrin; however, normal hematopoietic stem cells showed low expression of α4β1 integrin. Therefore, we believe that LLP2A can be used as a targeted therapy for childhood ALL. The Lam lab has developed novel telodendrimer-based nanoparticles (NPs) which can carry drugs efficiently. We have also developed a human leukemia mouse model using immunodeficient NOD/SCID/IL2Rγ null mice engrafted with primary childhood ALL cells from our patients. LLP2A-conjugated NPs will be evaluated both in vitro and in vivo using primary leukemia cells and this mouse model. NPs will be loaded first with DiD near infra-red dye, and then with the chemotherapeutic agents daunorubicin or vincristine. Both drugs are mainstays of current chemotherapy for childhood ALL. Targeting properties of LLP2A-conjugated NPs will be evaluated by fluorescent microscopy, flow cytometry, MTS assay, and mouse survival after treatment. We expect that LLP2A-conjugated NPs will be preferentially delivered and endocytosed to leukemia cells as an effective targeted therapy.

  7. [Endoscopic therapy of acute and chronic pancreatitis].

    PubMed

    Veltzke-Schlieker, W; Adler, A; Abou-Rebyeh, H; Wiedenmann, B; Rösch, T

    2005-02-01

    Endoscopic therapy is valuable for both acute and chronic pancreatitis. Early endoscopic papillotomy appears, in the case of a severe course of acute biliary pancreatitis, to be advantageous. Endoscopic drainage can be considered in cases of acute fluid retention and necrosis as well as subacute, non-healing pancreatitis or cyst development. By acute chronic pancreatitis with strictures or bile duct stones, papillotomy, dilation and stent insertion can lead to an improvement in pain symptoms. An improvement in endo- or exocrine function, however, is not expected. Studies on the endoscopic therapy of pancreatitis are still very limited, and recommendations can usually only be made based on retrospective case series. PMID:15657718

  8. Aleukemic Leukemia Cutis Manifesting with Disseminated Nodular Eruptions and a Plaque Preceding Acute Monocytic Leukemia: A Case Report

    PubMed Central

    Yonal, Ipek; Hindilerden, Fehmi; Coskun, Raif; Dogan, Oner Ibrahim; Nalcaci, Meliha

    2011-01-01

    Aleukemic leukemia cutis (ALC), a discrete tumor of leukemic cells involving the skin, may be the first manifestation of acute myeloid leukemia, preceding the onset in marrow and blood by months and years. ALC is often difficult to diagnose and is associated with a dismal prognosis. A 63-year-old male presented with nodular swellings on the face, a plaque extending over the right shoulder and multiple enlarged cervical lymph nodes. The skin biopsy of the plaque lesion showed a diffuse neoplastic infiltration extending from the dermis to subcutaneous tissue with diffuse positivity for myeloperoxidase and focal positivity for CD34 on immunohistochemical staining. The diagnosis was leukemia cutis. One month later, acute monocytic leukemia (FAB AML-M5b) was diagnosed. The patient died on the seventh month of diagnosis. PMID:22187541

  9. Treatment of Childhood Acute Lymphoblastic Leukemia Without Prophylactic Cranial Irradiation

    PubMed Central

    Pui, Ching-Hon; Campana, Dario; Pei, Deqing; Bowman, W. Paul; Sandlund, John T.; Kaste, Sue C.; Ribeiro, Raul C.; Rubnitz, Jeffrey E.; Raimondi, Susana C.; Onciu, Mihaela; Coustan-Smith, Elaine; Kun, Larry E.; Jeha, Sima; Cheng, Cheng; Howard, Scott C.; Simmons, Vickey; Bayles, Amy; Metzger, Monika L.; Boyett, James M.; Leung, Wing; Handgretinger, Rupert; Downing, James R.; Evans, William E.; Relling, Mary V.

    2009-01-01

    Background We conducted a clinical trial to test whether prophylactic cranial irradiation could be omitted in all children with newly diagnosed acute lymphoblastic leukemia. Methods A total of 498 evaluable patients were enrolled. Treatment intensity was based on presenting features and the level of minimal residual disease after remission induction treatment. Continuous complete remission was compared between the 71 patients who previously would have received prophylactic cranial irradiation and the 56 historical controls who received it. Results The 5-year event-free and overall survival probabilities (95% confidence interval) for all 498 patients were 85.6% (79.9% to 91.3%) and 93.5% (89.8% to 97.2%), respectively. The 5-year cumulative risk of isolated central-nervous-system (CNS) relapse was 2.7% (1.1% to 4.2%), and that of any CNS relapse (isolated plus combined) was 3.9% (1.9% to 5.9%). The 71 patients had significantly better continuous complete remission than the 56 historical controls (P=0.04). All 11 patients with isolated CNS relapse remain in second remission for 0.4 to 5.5 years. CNS leukemia (CNS-3 status) or a traumatic lumbar puncture with blasts at diagnosis and a high level of minimal residual disease (≥ 1%) after 6 weeks of remission induction were significantly associated with poorer event-free survival. Risk factors for CNS relapse included the presence of the t(1;19)[TCF3-PBX1], any CNS involvement at diagnosis, and T-cell immunophenotype. Common adverse effects included allergic reactions to L-asparaginase, osteonecrosis, thrombosis, and disseminated fungal infection. Conclusions With effective risk-adjusted chemotherapy, prophylactic cranial irradiation can be safely omitted in the treatment of childhood acute lymphoblastic leukemia. PMID:19553647

  10. Early Complications of Hyperleukocytosis and Leukapheresis in Childhood Acute Leukemias.

    PubMed

    Abla, Oussama; Angelini, Paola; Di Giuseppe, Giancarlo; Kanani, Mohamed F; Lau, Wendy; Hitzler, Johann; Sung, Lillian; Naqvi, Ahmed

    2016-03-01

    Hyperleukocytosis in children with acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) is associated with early morbidity and mortality. The benefit from leukapheresis is controversial, and its complications are not well defined. We analyzed the frequency of early complications in children with ALL and AML presenting with white blood cell (WBC) count >100 × 10(9)/L, and the type and frequency of complications related to leukapheresis. During a 12-year period, 84 of 634 (13%) ALL and 18 of 143 (12.5%) AML patients presented with hyperleukocytosis. Leukapheresis was performed in 18 ALL and 12 AML patients. The median initial WBC was 474 × 10(9)/L in the leukapheresis group compared with 175 × 10(9)/L in the nonleukapheresis group. Neurological leukostasis occurred in 6 ALL (7.1%) and 4 AML (22.2%) patients. Pulmonary leukostasis occurred in 16 ALL (19%) and 4 AML patients (22.2%). Neurological symptoms improved in few patients after leukapheresis, except in patients with very high WBC (>650 × 10(9)/L in ALL and >400 × 10(9)/L in AML). Leukapheresis improved respiratory symptoms in some patients but caused worsening symptoms in others. Early death was associated with neurological complications, AML diagnosis, and coagulopathy. Leukapheresis did not delay initiation of chemotherapy, nor did it impact early response to chemotherapy or long-term survival. Complications included femoral vein thrombosis, electrolyte imbalances, and hemodynamic instability, which were all reversible. The role of leukapheresis as a cytoreductive procedure in childhood hyperleukocytic leukemia remains to be well defined.

  11. Evolving Therapies in Acute Myeloid Leukemia: Progress at Last?

    PubMed

    DeAngelo, Daniel J; Stein, Eytan M; Ravandi, Farhad

    2016-01-01

    Acute myeloid leukemia (AML) is an acquired disease characterized by chromosomal translocations and somatic mutations that lead to leukemogenesis. Systemic combination chemotherapy with an anthracycline and cytarabine remains the standard induction regimen for "fit" adults. Patients who achieve complete remission generally receive postinduction therapy with cytarabine-based chemotherapy or an allogeneic bone marrow transplant. Those unfit for induction chemotherapy are treated with hypomethylating agents (HMAs), low-dose cytarabine, or they are offered supportive care alone with transfusions and prophylactic antimicrobials. The revolution in understanding the genetics of AML, facilitated by next-generation sequencing, has led to many new drugs against driver mutations. Better methods of identification of leukemic blasts have provided us with better means to detect the disease left behind after cytotoxic chemotherapy regimens. This measurable residual disease has been correlated with poorer relapse-free survival, demonstrating the need for novel strategies to eradicate it to improve the outcome of patients with acute leukemias. In this article, we discuss adapting and improving AML therapy by age and comorbidities, emerging targeted therapies in AML, and minimal residual disease (MRD) assessment in AML. PMID:27249736

  12. Lymphocyte aromatic hydrocarbon responsiveness in acute leukemia of childhood

    SciTech Connect

    Blumer, J.L.; Dunn, R.; Esterhay, M.D.; Yamashita, T.S.; Gross, S.

    1981-12-01

    Aryl hydrocarbon hydroxylase (AHH) activity and inducibility were examined in mitogen-stimulated cultured lymphocytes from children with acute leukemia in remission, with nonleukemic malignancies, and with no family or personal history of malignant disease. Neither morphological differences nor differences in mitogen responsivelness were observed among the three sources of cells studied. Levels of constitutive and dibenzanthracene-induced AHH activity were found to be similar among the three groups by analysis of variance. However, when results were analyzed in terms of inducibility ratios, it was found that cells from leukemic children were significantly less inducible (p < 0.005) than cells from unaffected children or children with nonleukemic malignancies. The reason for this difference became apparent when statistical criteria were employed for the phenotypic separation of individuals who were highly aromatic hydrocarbon responsive and minimally responsive. A significantly larger proportion (p < 0.001) of leukemic children than unaffected children or children with nonleukemic malignancy were found to be minimally aromatic hydrocarbon responsive. Moreover, in patients with acute lymphoblastic leukemia relapsing while on therapy, longer durations of the first remission were correlated (r = 0.63, p < 0.05) with the highly inducible AHH phenotype.

  13. Fanconi Syndrome: A Rare Initial Presentation of Acute Lymphoblastic Leukemia.

    PubMed

    Sahu, Kamal Kant; Law, Arjun Datt; Jain, Nidhi; Khadwal, Alka; Suri, Vikas; Malhotra, Pankaj; Varma, Subhash Chander

    2016-06-01

    A-14-year old boy, presented with a short history of excessive thirst and increased urine output. Clinical examination showed pallor, generalized lymphadenopathy and hepatosplenomegaly. For evaluation of his polyuric state he underwent routine laboratory investigations, including renal function test, acid-base studies, urine analysis. Blood tests suggested hypokalemia, hypouricemia, hypocalcemia and hyperchloremia with normal liver and kidney function tests. The arterial blood gas analysis was suggestive of normal anion gap metabolic acidosis. Urine analysis was suggestive of hyperuricosuria, hypercalciuria and glycosuria with a positive urine anion gap. His hemogram showed pancytopenia with differential count showing 88% blasts. Bone marrow examination and flowcytometry confirmed the diagnosis of B cell acute lymphoblastic leukemia. Hence this case was atypical and very interesting in the sense that the Fanconi syndrome is very rare to be an initial presenting feature of acute lymphoblastic leukemia. The patient was started on oral as well intravenous supplementation with potassium, bicarbonate, calcium and phosphorus. Simultaneously, as per the modified BFM -90 protocol (four drug based regimen-Prednisolone, vincristine, daunorubicin, cyclophosphamide along with l-asparaginase), he was started on induction protocol. By the end of 3rd week of induction therapy, his urine output started normalizing and finally settled at the end of induction therapy. At present he is in the maintenance phase of chemotherapy. PMID:27408343

  14. Targeting signaling pathways in acute lymphoblastic leukemia: new insights.

    PubMed

    Harrison, Christine J

    2013-01-01

    The genetics of acute lymphoblastic leukemia are becoming well understood and the incidence of individual chromosomal abnormalities varies considerably with age. Cytogenetics provide reliable risk stratification for treatment: high hyperdiploidy and ETV6-RUNX1 are good risk, whereas BCR-ABL1, MLL rearrangements, and hypodiploidy are poor risk. Nevertheless, some patients within the good- and intermediate-risk groups will unpredictably relapse. With advancing technologies in array-based approaches (single nucleotide polymorphism arrays) and next-generation sequencing to study the genome, increasing numbers of new genetic changes are being discovered. These include deletions of B-cell differentiation and cell cycle control genes, as well as mutations of genes in key signaling pathways. Their associations and interactions with established cytogenetic subgroups and with each other are becoming elucidated. Whether they have a link to outcome is the most important factor for refinement of risk factors in relation to clinical trials. For several newly identified abnormalities, including intrachromosomal amplification of chromosome 21 (iAMP21), that are associated with a poor prognosis with standard therapy, appropriately modified treatment has significantly improved outcome. After the successful use of tyrosine kinase inhibitors in the treatment of BCR-ABL1-positive acute lymphoblastic leukemia, patients with alternative ABL1 translocations and rearrangements involving PDGFRB may benefit from treatment with tyrosine kinase inhibitors. Other aberrations, for example, CRLF2 overexpression and JAK2 mutations, are also providing potential novel therapeutic targets with the prospect of reduced toxicity.

  15. Advancing the Minimal Residual Disease Concept in Acute Myeloid Leukemia.

    PubMed

    Hokland, Peter; Ommen, Hans B; Mulé, Matthew P; Hourigan, Christopher S

    2015-07-01

    The criteria to evaluate response to treatment in acute myeloid leukemia (AML) have changed little in the past 60 years. It is now possible to use higher sensitivity tools to measure residual disease burden in AML. Such minimal or measurable residual disease (MRD) measurements provide a deeper understanding of current patient status and allow stratification for risk of subsequent clinical relapse. Despite these obvious advantages, and after over a decade of laboratory investigation and preclinical validation, MRD measurements are not currently routinely used for clinical decision-making or drug development in non-acute promyelocytic leukemia (non-APL) AML. We review here some potential constraints that may have delayed adoption, including a natural hesitancy of end users, economic impact concerns, misperceptions regarding the meaning of and need for assay sensitivity, the lack of one single MRD solution for all AML patients, and finally the need to involve patients in decision-making based on such correlates. It is our opinion that none of these issues represent insurmountable barriers and our hope is that by providing potential solutions we can help map a path forward to a future where our patients will be offered personalized treatment plans based on the amount of AML they have left remaining to treat. PMID:26111465

  16. [Acute myeloid leukemia. Genetic diagnostics and molecular therapy].

    PubMed

    Schlenk, R F; Döhner, K; Döhner, H

    2013-02-01

    Acute myeloid leukemia (AML) is a genetically heterogeneous disease. The genetic diagnostics have become an essential component in the initial work-up for disease classification, prognostication and prediction. More and more promising molecular targeted therapeutics are becoming available. A prerequisite for individualized treatment strategies is a fast pretherapeutic molecular screening including the fusion genes PML-RARA, RUNX1-RUNX1T1 and CBFB-MYH11 as well as mutations in the genes NPM1, FLT3 and CEBPA. Promising new therapeutic approaches include the combination of all- trans retinoic acid and arsentrioxid in acute promyelocytic leukemia, the combination of intensive chemotherapy with KIT inhibitors in core-binding factor AML and FLT3 inhibitors in AML with FLT3 mutation, as well as gemtuzumab ozogamicin therapy in patients with low and intermediate cytogenetic risk profiles. With the advent of the next generation sequencing technologies it is expected that new therapeutic targets will be identified. These insights will lead to a further individualization of AML therapy.

  17. Selective BCL-2 Inhibition by ABT-199 Causes On Target Cell Death in Acute Myeloid Leukemia

    PubMed Central

    Pan, Rongqing; Hogdal, Leah J.; Benito, Juliana M; Bucci, Donna; Han, Lina; Borthakur, Gautam; Cortes, Jorge; DeAngelo, Daniel J.; Debose, LaKeisha; Mu, Hong; Döhner, Hartmut; Gaidzik, Verena I.; Galinsky, Ilene; Golfman, Leonard S.; Haferlach, Torsten; Harutyunyan, Karine G.; Hu, Jianhua; Leverson, Joel D; Marcucci, Guido; Müschen, Markus; Newman, Rachel; Park, Eugene; Ruvolo, Peter P.; Ruvolo, Vivian; Ryan, Jeremy; Schindela, Sonja; Zweidler-McKay, Patrick; Stone, Richard M.; Kantarjian, Hagop; Andreeff, Michael; Konopleva, Marina; Letai, Anthony G.

    2014-01-01

    B-cell leukemia/lymphoma 2 (BCL-2) prevents commitment to programmed cell death at the mitochondrion. It remains a challenge to identify those tumors that are best treated by inhibition of BCL-2. Here we demonstrate that acute myeloid leukemia (AML) cell lines, primary patient samples, and murine primary xenografts are very sensitive to treatment with the selective BCL-2 antagonist ABT-199. In primary patient cells, the median IC50 was approximately 10 nM, and cell death occurred within 2 h. Our ex vivo sensitivity results compare favorably with those observed for chronic lymphocytic leukemia (CLL), a disease for which ABT-199 has demonstrated consistent activity in clinical trials. Moreover, mitochondrial studies using BH3 profiling demonstrate activity at the mitochondrion that correlates well with cytotoxicity, supporting an on target mitochondrial mechanism of action. Our protein and BH3 profiling studies provide promising tools that can be tested as predictive biomarkers in any clinical trial of ABT-199 in AML. PMID:24346116

  18. Asparaginase induces apoptosis and cytoprotective autophagy in chronic myeloid leukemia cells

    PubMed Central

    Fan, Jiajun; Li, Yubin; Zeng, Xian; Wang, Ziyu; Wang, Shaofei; Zhang, Guoping; Yang, Ping; Cao, Zhonglian; Ju, Dianwen

    2015-01-01

    The antitumor enzyme asparaginase, which targets essential amino acid L-asparagine and catalyzes it to L-aspartic acid and ammonia, has been used for years in the treatment of acute lymphoblastic leukemia (ALL), subtypes of myeloid leukemia and T-cell lymphomas, whereas the anti-chronic myeloid leukemia (CML) effect of asparaginase and its underlying mechanism has not been completely elucidated. We have shown here that asparaginase induced significant growth inhibition and apoptosis in K562 and KU812 cells. Apart from induction of apoptosis, we reported for the first time that asparaginase induced autophagic response in K562 and KU812 cells as evidenced by the formation of autophagosome, microtubule-associated protein light chain 3 (LC3)-positive autophagy-like vacuoles, and the upregulation of LC3-II. Further study suggested that the Akt/mTOR (mammalian target of rapamycin) and Erk (extracellular signal-regulated kinase) signaling pathway were involved in asparaginase-induced autophagy in K562 cells. Moreover, blocking autophagy using pharmacological inhibitors LY294002, chloroquine (CQ) and quinacrine (QN) enhanced asparaginase-induced cell death and apoptosis, indicating the cytoprotective role of autophagy in asparaginase-treated K562 and KU812 cells. Together, these findings provide a rationale that combination of asparaginase anticancer activity and autophagic inhibition might be a promising new therapeutic strategy for CML. PMID:25738356

  19. Prevalence and characteristics of central nervous system involvement by chronic lymphocytic leukemia.

    PubMed

    Strati, Paolo; Uhm, Joon H; Kaufmann, Timothy J; Nabhan, Chadi; Parikh, Sameer A; Hanson, Curtis A; Chaffee, Kari G; Call, Timothy G; Shanafelt, Tait D

    2016-04-01

    Abroad array of conditions can lead to neurological symptoms in chronic lymphocytic leukemia patients and distinguishing between clinically significant involvement of the central nervous system by chronic lymphocytic leukemia and symptoms due to other etiologies can be challenging. Between January 1999 and November 2014, 172 (4%) of the 4174 patients with chronic lymphocytic leukemia followed at our center had a magnetic resonance imaging of the central nervous system and/or a lumbar puncture to evaluate neurological symptoms. After comprehensive evaluation, the etiology of neurological symptoms was: central nervous system chronic lymphocytic leukemia in 18 patients (10% evaluated by imaging and/or lumbar puncture, 0.4% overall cohort); central nervous system Richter Syndrome in 15 (9% evaluated, 0.3% overall); infection in 40 (23% evaluated, 1% overall); autoimmune/inflammatory conditions in 28 (16% evaluated, 0.7% overall); other cancer in 8 (5% evaluated, 0.2% overall); and another etiology in 63 (37% evaluated, 1.5% overall). Although the sensitivity of cerebrospinal fluid analysis to detect central nervous system disease was 89%, the specificity was only 42% due to the frequent presence of leukemic cells in the cerebrospinal fluid in other conditions. No parameter on cerebrospinal fluid analysis (e.g. total nucleated cells, total lymphocyte count, chronic lymphocytic leukemia cell percentage) were able to offer a reliable discrimination between patients whose neurological symptoms were due to clinically significant central nervous system involvement by chronic lymphocytic leukemia and another etiology. Median overall survival among patients with clinically significant central nervous system chronic lymphocytic leukemia and Richter syndrome was 12 and 11 months, respectively. In conclusion, clinically significant central nervous system involvement by chronic lymphocytic leukemia is a rare condition, and neurological symptoms in patients with chronic lymphocytic

  20. Biomarkers for determining the prognosis in chronic myelogenous leukemia

    PubMed Central

    2013-01-01

    The introduction of BCR-ABL1 tyrosine kinase inhibitors (TKIs) for treatment of chronic myelogenous leukemia in chronic phase (CML-CP) has revolutionized therapy, altering the outcome from one of shortened life expectancy to long-term survival. With over 10 years of long-term treatment with imatinib and several years of experience with the next generation of TKIs, including nilotinib, dasatinib, bosutinib, and ponatinib, it is becoming clear that many clinical parameters have great impact on the prognosis of patients with CML. Emerging novel gene expression profiling and molecular techniques also provide new insights into CML pathogenesis and have identified potential prognostic markers and therapeutic targets. This review presents the supporting data and discusses how certain clinical characteristics at diagnosis, the depth of early response, the presence of certain kinase domain mutations, and additional molecular changes serve as prognostic factors that may guide individualized treatment decisions for patients with CML-CP. PMID:23870290

  1. Management of chronic myeloid leukemia in blast crisis.

    PubMed

    Saußele, S; Silver, Richard T

    2015-04-01

    Due to the high efficacy of BCR-ABL tyrosine kinase inhibition (TKI) in chronic phase (CP) chronic myeloid leukemia (CML), the frequency of blast crisis (BC) is greatly reduced compared to the pre-TKI era. However, TKI treatment of BC has only marginally improved the number of favorable responses, including remissions, which for the most part have only been transitory. Occasionally, they provide a therapeutic window to perform an allogeneic stem cell transplantation (allo-SCT). The challenge remains to improve management of BC with the limited options available. We review and summarize articles pertaining to the treatment of BC CML published after 2002. Additionally, we will discuss whether there is a need for a new definition of BC and/or treatment failure. PMID:25814082

  2. Chronic Myeloid Leukemia – Mechanisms of Resistance and Treatment

    PubMed Central

    Jabbour, Elias; Parikh, Sameer A.; Kantarjian, Hagop; Cortes, Jorge

    2015-01-01

    Imatinib mesylate has revolutionized the treatment landscape for patients with newly diagnosed chronic myeloid leukemia (CML). Imatinib at a dose of 400 mg/day is considered the standard treatment for all newly diagnosed chronic phase CML. Follow-up on the pivotal International Randomized Study of Interfreron versus STI571 (IRIS) study has shown excellent response rates, progression-free survival and overall survival after 8 years of follow-up. However, some patients will develop resistance to imatinib treatment due to a multitude of reasons. Numerous strategies to overcome resistance are available including dose escalation of imatinib, switching to a second generation tyrosine kinase inhibitor or to one of the newer non-tyrosine kinase inhibitors. This review guides the treating physician with a rational approach in the management of CML patients who fail initial treatment with imatinib or lose response while on therapy with imatinib. PMID:22054730

  3. Management of Advanced-Phase Chronic Myelogenous Leukemia.

    PubMed

    Radich, Jerald P

    2016-05-01

    Chronic myelogenous leukemia represents the poster child of successful precision medicine in cancer, with amazing survival results achieved with targeted tyrosine kinase inhibitors (TKIs) in many patients with chronic-phase disease. Unfortunately, however, this good news has not extended to patients in blast crisis, for whom survival has not clearly been improved with TKIs. During his presentation at the NCCN 21st Annual Conference, Jerald P. Radich, MD, briefly explored the biology behind advanced-stage disease and several of the molecular findings in disease progression. He also reviewed some of the therapeutic options in advanced disease, emphasizing that transplantation, although fraught with some difficulties, offers the best long-term prognosis for patients in blast crisis. PMID:27226510

  4. Chronic eosinophilic leukemia in a cat: cytochemical and immunophenotypical features.

    PubMed

    Gelain, Maria Elena; Antoniazzi, Elisa; Bertazzolo, Walter; Zaccolo, Maurizia; Comazzi, Stefano

    2006-12-01

    A 3-year-old, male, domestic shorthaired cat was presented with a 3-day history of anorexia and depression. The cat was moderately dehydrated, had pale, slightly icteric, mucous membranes, oral ulcerations, and mild hepatosplenomegaly. A feline leukemia virus (FeLV) antigen test was positive. CBC results obtained at initial presentation included severe normocytic, normochromic, nonregenerative anemia, severe thrombocytopenia, and marked leukocytosis (>100,000/microL) with 77% eosinophils. After 15 days of treatment with prednisone and doxycycline, the cat had persistent severe nonregenerative anemia (HCT 3.4%), thrombocytopenia (28,000/microL), and extreme eosinophilia (total eosinophils, 123.1 x 10(3)/microL; segmented 103.0 x 10(3)/microL; immature 20.1 X 10(3)/microL). Cytologic examination of aspirates from bone marrow, liver, lymph nodes, and spleen revealed a predominance of mature and immature eosinophils, many with dysplastic changes. The M:E ratio was 96.4. On histopathologic examination, multiple organs were infiltrated by eosinophilic granulocytes. Neoplastic cells in blood and bone marrow stained positive for alkaline phosphatase and were negative for myeloperoxidase, chloroacetate esterase, and alpha-naphthyl acetate esterase. On flow cytometric analysis of peripheral blood, the neoplastic cells were positive for CD11b and CD14. These findings were consistent with chronic eosinophilic leukemia. To our knowledge, this is the first report of chronic eosinophilic leukemia in a cat associated with naturally acquired FeLV infection, in which flow cytometry was used to characterize the neoplastic cells. PMID:17123254

  5. Minimally differentiated acute myelogenous leukemia (AML-M0) granulocytic sarcoma presenting in the oral cavity.

    PubMed

    Amin, Kay S; Ehsan, Aamir; McGuff, H Stan; Albright, Steven C

    2002-07-01

    Acute myelogenous leukemia with minimal differentiation (AML-M0) is a rare subtype of acute leukemia in which blasts fail to show morphologic differentiation and conventional cytochemical stains and myeloid markers are negative. Acute myelogenous leukemia (AML) presents primarily with peripheral blood and/or bone marrow involvement. Presentation in extramedullary sites, including the head and neck region, is not uncommon. Acute myelomonocytic leukemia (AML-M4) and acute monocytic leukemia (AML-M5) have had the highest incidence of associated oral infiltrates. We report a case of a 58-year-old gentleman, with no prior history of acute leukemia, presenting with a solitary palatal swelling. Initial morphologic examination favored high-grade non-Hodgkin's lymphoma (NHL). Conventional cytochemical and immunohistochemical stains were negative for lymphoid and myeloid markers. Subsequent immunophenotyping via flow cytometry performed on peripheral blood and bone marrow aspirate demonstrated myeloid lineage without lymphoid differentiation, confirming the diagnosis of AML-M0.To our knowledge, this subtype of AML-M0 has not been previously reported involving the oral cavity. With absence of morphologic differentiation, and negative findings on conventional cytochemical and immunohistochemical stains, this subtype of leukemia may be misdiagnosed as non-Hodgkin's lymphoma (NHL). Flow cytometry is useful in detecting the myeloid lineage of this leukemia. PMID:12110349

  6. Inflammation in Acute and Chronic Pancreatitis

    PubMed Central

    Habtezion, Aida

    2015-01-01

    Summary Immune cell contribution to the pathogenesis of acute and chronic pancreatitis is gaining more appreciation and further understanding in immune signaling presents potential therapeutic targets that can alter disease progression. PMID:26107390

  7. MLL-MLLT10 fusion gene in pediatric acute megakaryoblastic leukemia.

    PubMed

    Morerio, Cristina; Rapella, Annamaria; Tassano, Elisa; Rosanda, Cristina; Panarello, Claudio

    2005-10-01

    The occurrence of MLL gene rearrangement in acute megakaryoblastic leukemia (AML-M7, acute myeloid leukemia, French-American-British type M7) is very rare and limited to pediatric age: in particular, MLL-MLLT10 fusion, previously reported as characteristic of monocytic leukemia, has been reported in only one case of pediatric megakaryoblastic leukemia. We describe the second case with this association in light of the few reported cases of AML-M7 with MLL and/or 11q23 involvement.

  8. Risk-Adapted Chemotherapy in Treating Younger Patients With Newly Diagnosed Standard-Risk Acute Lymphoblastic Leukemia or Localized B-Lineage Lymphoblastic Lymphoma

    ClinicalTrials.gov

    2016-09-23

    Adult B Lymphoblastic Lymphoma; Childhood B Acute Lymphoblastic Leukemia; Childhood B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Childhood B Lymphoblastic Lymphoma; Down Syndrome; Stage I B Lymphoblastic Lymphoma; Stage II B Lymphoblastic Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  9. Targeted treatment of chronic myeloid leukemia: role of imatinib

    PubMed Central

    Tamascar, Ila; Ramanarayanan, Jeyanthi

    2009-01-01

    Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterized by clonal expansion of pleuripotent hematopoetic stem cells. The incidence of CML is 1 to 2 cases per 100,000 people per year; in the Western Hemisphere, CML accounts for 15% of leukemias in adults. Discovery of the specific karyotypic abnormality of the Philadelphia (Ph) chromosome in the pathogenesis of CML has led to a better understanding of the disease and hence to an advancement of targeted therapeutics. Availability of imatinib as an accepted targeted therapy in newly diagnosed patients has changed the treatment paradigm in CML. The majority of CML patients in chronic phase achieve excellent and durable responses with standard-dose imatinib. Mechanisms of primary and secondary resistance to imatinib in CML have been extensively studied and newer tyrosine kinase inhibitors are now being evaluated for clinical use. It is important that at any time the CML treatment and response remain optimal and thus patients on imatinib require continuous monitoring for early detection of resistance. This review will discuss the treatment and guidelines for monitoring CML patients in the imatinib era. PMID:20616895

  10. Enteral feeding in acute and chronic pancreatitis.

    PubMed

    Makola, Diklar; Krenitsky, Joe; Parrish, Carol Rees

    2007-10-01

    Nutrition support is an essential part of the management of acute and chronic pancreatitis. In the past, parenteral nutrition has been used to allow pancreatic rest while providing nutrition support to patients who have acute pancreatitis. Evidence from randomized, controlled trials, however, suggests that enteral nutrition is as effective as and is safer and cheaper than parenteral nutrition. Observational studies also have demonstrated a benefit in patients who have chronic pancreatitis.

  11. Progression of alcoholic acute to chronic pancreatitis.

    PubMed Central

    Ammann, R W; Muellhaupt, B

    1994-01-01

    Alcoholic chronic pancreatitis usually progresses from acute attacks to chronic pancreatitis within one to 19 years. The factors responsible for the appreciable variability in progression are unclear. In this study the relation between progression and the incidence and severity of acute episodes in a large cohort of patients with alcoholic chronic pancreatitis was analysed. All patients with at least one documented episode of acute pancreatitis have been studied prospectively over the past 30 years according to our protocol. Patients were classified according to their long term course into (a) calcific (n = 185), (b) non-calcific (n = 30), and (c) non-progressive (n = 39) chronic pancreatitis groups. The yearly incidence of acute attacks of pancreatitis was significantly higher in groups (a) and (b) than in group (c). Furthermore, the progression rate to advanced chronic pancreatitis (groups (a) and (b)) correlated with the incidence of severe pancreatitis (associated with pseudocysts in more than 55%). Pseudocysts were located primarily in the cephalic pancreas in groups (a) and (b) (58-71%) and in the pancreatic tail in group (c) (61%). In conclusion, these data suggest that the progression of acute to chronic pancreatitis is closely related to the incidence and severity of acute attacks. This finding and the primary location of pseudocysts in the cephalic pancreas (groups (a) plus (b)) are compatible with the 'necrosis-fibrosis' pathogenetic hypothesis. PMID:8174996

  12. Sirolimus and Azacitidine in Treating Patients With High Risk Myelodysplastic Syndrome or Acute Myeloid Leukemia That is Recurrent or Not Eligible for Intensive Chemotherapy

    ClinicalTrials.gov

    2016-10-18

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); de Novo Myelodysplastic Syndromes; Myelodysplastic Syndrome With Isolated Del(5q); Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Myeloid Leukemia

  13. ST-Elevation Myocardial Infarction and Myelodysplastic Syndrome with Acute Myeloid Leukemia Transformation

    PubMed Central

    Jao, Geoffrey T.; Knovich, Mary Ann; Savage, Rodney W.; Sane, David C.

    2014-01-01

    Acute myocardial infarction and acute myeloid leukemia are rarely reported as concomitant conditions. The management of ST-elevation myocardial infarction (STEMI) in patients who have acute myeloid leukemia is challenging: the leukemia-related thrombocytopenia, platelet dysfunction, and systemic coagulopathy increase the risk of bleeding, and the administration of thrombolytic agents can be fatal. We report the case of a 76-year-old man who presented emergently with STEMI, myelodysplastic syndrome, and newly recognized acute myeloid leukemia transformation. Standard antiplatelet and anticoagulation therapy were contraindicated by the patient's thrombocytopenia and by his reported ecchymosis and gingival bleeding upon admission. He declined cardiac catheterization, was provided palliative care, and died 2 hours after hospital admission. We searched the English-language medical literature, found 8 relevant reports, and determined that the prognosis for patients with concomitant STEMI and acute myeloid leukemia is clearly worse than that for either individual condition. No guidelines exist to direct the management of STEMI and concomitant acute myeloid leukemia. In 2 reports, dual antiplatelet therapy, anticoagulation, and drug-eluting stent implantation were used without an increased risk of bleeding in the short term, even in the presence of thrombocytopenia. However, we think that a more conservative approach—balloon angioplasty with the provisional use of bare-metal stents—might be safer. Simultaneous chemotherapy for the acute myeloid leukemia is crucial. Older age seems to be a major risk factor: patients too frail for emergent treatment can die within hours or days. PMID:24808792

  14. USER GUIDE: ACUTE TO CHRONIC ESTIMATION

    EPA Science Inventory

    Acute and chronic toxicity testing plays a major role in ecological risk assessment requirements involved in several environmental laws. Chronic toxicity tests commonly include the measurement of long-term effects of a contaminant on the survival, growth, and reproduction of test...

  15. Comparison of outcomes after unrelated cord blood and unmanipulated haploidentical stem cell transplantation in adults with acute leukemia.

    PubMed

    Ruggeri, A; Labopin, M; Sanz, G; Piemontese, S; Arcese, W; Bacigalupo, A; Blaise, D; Bosi, A; Huang, H; Karakasis, D; Koc, Y; Michallet, M; Picardi, A; Sanz, J; Santarone, S; Sengelov, H; Sierra, J; Vincent, L; Volt, F; Nagler, A; Gluckman, E; Ciceri, F; Rocha, V; Mohty, M

    2015-09-01

    Outcomes after unmanipulated haploidentical stem cell transplantation (Haplo) and after unrelated cord blood transplantation (UCBT) are encouraging and have become alternative options to treat patients with high-risk acute leukemia without human leukocyte antigen (HLA) matched donor. We compared outcomes after UCBT and Haplo in adults with de novo acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Median follow-up was 24 months. Analysis was performed separately for patients with AML, n=918 (Haplo=360, UCBT=558) and ALL, n=528 (Haplo=158 and UCBT=370). UCBT was associated with delayed engraftment and higher graft failure in both AML and ALL recipients. In multivariate analysis, UCBT was associated with lower incidence of chronic graft-vs-host disease both in the AML group (hazard ratio (HR)=0.63, P=0.008) and in the ALL group (HR=0.58, P=0.01). Not statistically significant differences were observed between Haplo and UCBT for relapse incidence (HR=0.95, P=0.76 for AML and HR=0.82, P=0.31 for ALL), non-relapse mortality (HR=1.16, P=0.47 for AML and HR=1.23, P=0.23 for ALL) and leukemia-free survival (HR 0.78, P=0.78 for AML and HR=1.00, P=0.84 for ALL). There were no statistically differences on main outcomes after unmanipulated Haplo and UCBT, and both approaches are valid for acute leukemia patients lacking a HLA matched donor. Both strategies expand the donor pool for patients in need.

  16. Treatment Outcome in Older Patients with Childhood Acute Myeloid Leukemia

    PubMed Central

    Rubnitz, Jeffrey E.; Pounds, Stanley; Cao, Xueyuan; Jenkins, Laura; Dahl, Gary; Bowman, W. Paul; Taub, Jeffrey W; Pui, Ching-Hon; Ribeiro, Raul C.; Campana, Dario; Inaba, Hiroto

    2013-01-01

    Background Older age has historically been an adverse prognostic factor in pediatric acute myeloid leukemia (AML). The impact of age relative to that of other prognostic factors on the outcome of patients treated in recent trials is unknown. Methods Clinical outcome and causes of treatment failure of 351 patients enrolled on three consecutive protocols for childhood AML between 1991 and 2008 were analyzed according to age and protocol. Results The more recent protocol (AML02) produced improved outcomes for 10- to 21-year-old patients compared to 2 earlier studies (AML91 and 97), with 3-year rates of event-free survival (EFS), overall survival (OS) and cumulative incidence of refractory leukemia or relapse (CIR) for this group similar to those of 0- to 9-year old patients: EFS, 58.3% ± 5.4% vs. 66.6% ± 4.9%, P=.20; OS, 68.9% ± 5.1% vs. 75.1% ± 4.5%, P=.36; cumulative incidence of refractory leukemia or relapse, 21.9% ± 4.4%; vs. 25.3% ± 4.1%, P=.59. EFS and OS estimates for 10–15-year-old patients overlapped those for 16–21-year-old patients. However, the cumulative incidence of toxic death was significantly higher for 10- to 21-year-old patients compared to younger patients (13.2% ± 3.6 vs. 4.5% ± 2.0%, P=.028). Conclusion The survival rate for older children with AML has improved on our recent trial and is now similar to that of younger patients. However, deaths from toxicity remain a significant problem in the older age group. Future trials should focus on improving supportive care while striving to develop more effective antileukemic therapy. PMID:22674050

  17. Recurrent Arterial Thrombosis as a Presenting Feature of a Variant M3-Acute Promyelocytic Leukemia

    PubMed Central

    Chotai, Pranit N.; Kasangana, Kalenda; Chandra, Abhinav B.; Rao, Atul S.

    2016-01-01

    Acute limb ischemia (ALI) is a common vascular emergency. Hematologic malignancies are commonly associated with derangement of normal hemostasis and thrombo-hemorrhagic symptoms during the course of the disease are common. However, ALI as an initial presenting feature of acute leukemia is rare. Due to the rarity of this presentation, there is a scarcity of prospective randomized data to optimally guide the management of these patients. Current knowledge is mainly based on isolated cases. We report our experience managing a patient who presented with ALI and was found to have occult leukemia. A review of all cases with ALI as a presenting feature of acute leukemia is also presented. PMID:27386455

  18. Hemophagocytosis by Leukemic Blasts in T Cell Acute Lymphoblastic Leukemia: An Unusual Finding.

    PubMed

    Harrison, Aradhana; Chandra, Dinesh; Kakkar, Naveen; Das, Sheila; John, M Joseph

    2016-06-01

    Hemophagocytosis shows engulfment of hematopoietic cells by histiocytes and is a property generally associated with cells of the histiocytic lineage. It can be familial or is seen in a wide spectrum of acquired disorders. Hemophagocytosis by leukemic blasts is an uncommon phenomenon and has been reported mainly in acute myeloid leukemia. Its association with acute lymphoblastic leukemia is rare. We present a case of hemophagocytosis by blasts in the bone marrow in a 11 year old boy with T cell-acute lymphoblastic leukemia. PMID:27408348

  19. Recurrent Arterial Thrombosis as a Presenting Feature of a Variant M3-Acute Promyelocytic Leukemia.

    PubMed

    Chotai, Pranit N; Kasangana, Kalenda; Chandra, Abhinav B; Rao, Atul S

    2016-06-01

    Acute limb ischemia (ALI) is a common vascular emergency. Hematologic malignancies are commonly associated with derangement of normal hemostasis and thrombo-hemorrhagic symptoms during the course of the disease are common. However, ALI as an initial presenting feature of acute leukemia is rare. Due to the rarity of this presentation, there is a scarcity of prospective randomized data to optimally guide the management of these patients. Current knowledge is mainly based on isolated cases. We report our experience managing a patient who presented with ALI and was found to have occult leukemia. A review of all cases with ALI as a presenting feature of acute leukemia is also presented. PMID:27386455

  20. Hemophagocytosis by Leukemic Blasts in T Cell Acute Lymphoblastic Leukemia: An Unusual Finding.

    PubMed

    Harrison, Aradhana; Chandra, Dinesh; Kakkar, Naveen; Das, Sheila; John, M Joseph

    2016-06-01

    Hemophagocytosis shows engulfment of hematopoietic cells by histiocytes and is a property generally associated with cells of the histiocytic lineage. It can be familial or is seen in a wide spectrum of acquired disorders. Hemophagocytosis by leukemic blasts is an uncommon phenomenon and has been reported mainly in acute myeloid leukemia. Its association with acute lymphoblastic leukemia is rare. We present a case of hemophagocytosis by blasts in the bone marrow in a 11 year old boy with T cell-acute lymphoblastic leukemia.