Sample records for acute locomotor response

  1. Sex differences in the acute locomotor response to methamphetamine in BALB/c mice.

    PubMed

    Ohia-Nwoko, Odochi; Haile, Colin N; Kosten, Therese A

    2017-06-01

    Women use methamphetamine more frequently than men and are more vulnerable to its negative psychological effects. Rodent models have been an essential tool for evaluating the sex-dependent effects of psychostimulants; however, evidence of sex differences in the behavioral responses to methamphetamine in mice is lacking. In the present study, we investigated acute methamphetamine-induced (1mg/kg and 4mg/kg) locomotor activation in female and male BALB/c mice. We also evaluated whether basal locomotor activity was associated with the methamphetamine-induced locomotor response. The results indicated that female BALB/c mice displayed enhanced methamphetamine-induced locomotor activity compared to males, while basal locomotor activity was positively correlated with methamphetamine-induced activity in males, but not females. This study is the first to show sex-dependent locomotor effects of methamphetamine in BALB/c mice. Our observations emphasize the importance of considering sex when assessing behavioral responses to methamphetamine. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Altered locomotor and stereotyped responses to acute methamphetamine in adolescent, maternally separated rats

    PubMed Central

    Pritchard, Laurel M.; Hensleigh, Emily; Lynch, Sarah

    2012-01-01

    Rationale Neonatal maternal separation (MS) has been used to model the effects of early life stress in rodents. MS alters behavioral responses to a variety of abused drugs, but few studies have examined its effects on methamphetamine sensitivity. Objectives We sought to determine the effects of MS on locomotor and stereotyped responses to low-to-moderate doses of methamphetamine in male and female adolescent rats. Methods Male and female rat pups were subjected to three hours per day of MS on postnatal days (PN) 2–14, or a brief handling control procedure during the same period. During adolescence (approximately PN 40), all rats were tested for locomotor activity and stereotyped behavior in response to acute methamphetamine administration (0, 1.0 or 3.0 mg/kg, s.c.). Results MS rats of both sexes exhibited increased locomotor activity in a novel environment, relative to handled controls. MS increased the locomotor response to METH, and this effect occurred at different doses for male (3.0 mg/kg) and female (1.0 mg/kg) rats. MS also increased stereotyped behavior in response to METH (1.0 mg/kg) in both sexes. Conclusions MS enhances the locomotor response to METH in a dose- and sex-dependent manner. These results suggest that individuals with a history of early life stress may be particularly vulnerable to the psychostimulant effects of METH, even at relatively low doses. PMID:22414962

  3. Dissociating anxiolytic and sedative effects of GABAAergic drugs using temperature and locomotor responses to acute stress

    PubMed Central

    Klanker, Marianne; Groenink, Lucianne; Korte, S. Mechiel; Cook, James M.; Van Linn, Michael L.; Hopkins, Seth C.; Olivier, Berend

    2009-01-01

    Rationale The stress-induced hyperthermia (SIH) model is an anxiety model that uses the transient rise in body temperature in response to acute stress. Benzodiazepines produce anxiolytic as well as sedative side effects through nonselective binding to GABAA receptor subunits. The GABAA receptor α1 subunit is associated with sedation, whereas the GABAA receptor α2 and α3 subunits are involved in anxiolytic effects. Objectives We therefore examined the effects of (non) subunit-selective GABAA receptor agonists on temperature and locomotor responses to novel cage stress. Results Using telemetric monitoring of temperature and locomotor activity, we found that nonsubunit-selective GABAA receptor agonist diazepam as well as the α3 subunit-selective receptor agonist TP003 dose-dependently attenuated SIH and locomotor responses. Administration of GABAA receptor α1-selective agonist zolpidem resulted in profound hypothermia and locomotor sedation. The GABAA receptor α1-selective antagonist βCCt antagonized the hypothermia, but did not reverse the SIH response attenuation caused by diazepam and zolpidem. These results suggest an important regulating role for the α1 subunit in thermoregulation and sedation. Ligands of extrasynaptic GABAA receptors such as alcohol and nonbenzodiazepine THIP attenuated the SIH response only at high doses. Conclusions The present study confirms a putative role for the GABAA receptor α1 subunit in hypothermia and sedation and supports a role for α2/3 subunit GABAA receptor agonists in anxiety processes. In conclusion, we show that home cage temperature and locomotor responses to novel home cage stress provide an excellent tool to assess both anxiolytic and sedative effects of various (subunit-selective) GABAAergic compounds. PMID:19169673

  4. Effects of voluntary wheel running on heart rate, body temperature, and locomotor activity in response to acute and repeated stressor exposures in rats.

    PubMed

    Masini, Cher V; Nyhuis, Tara J; Sasse, Sarah K; Day, Heidi E W; Campeau, Serge

    2011-05-01

    Stress often negatively impacts physical and mental health but it has been suggested that voluntary physical activity may benefit health by reducing some of the effects of stress. The present experiments tested whether voluntary exercise can reduce heart rate, core body temperature and locomotor activity responses to acute (novelty or loud noise) or repeated stress (loud noise). After 6 weeks of running-wheel access, rats exposed to a novel environment had reduced heart rate, core body temperature, and locomotor activity responses compared to rats housed under sedentary conditions. In contrast, none of these measures were different between exercised and sedentary rats following acute 30-min noise exposures, at either 85 or 98 dB. Following 10 weeks of running-wheel access, both groups displayed significant habituation of all these responses to 10 consecutive daily 30-min presentations of 98 dB noise stress. However, the extent of habituation of all three responses was significantly enhanced in exercised compared to sedentary animals on the last exposure to noise. These results suggest that in physically active animals, under some conditions, acute responses to stress exposure may be reduced, and response habituation to repeated stress may be enhanced, which ultimately may reduce the negative and cumulative impact of stress.

  5. Effects of voluntary wheel running on heart rate, body temperature, and locomotor activity in response to acute and repeated stressor exposures in rats

    PubMed Central

    MASINI, CHER V.; NYHUIS, TARA J.; SASSE, SARAH K.; DAY, HEIDI E. W.; CAMPEAU, SERGE

    2015-01-01

    Stress often negatively impacts physical and mental health but it has been suggested that voluntary physical activity may benefit health by reducing some of the effects of stress. The present experiments tested whether voluntary exercise can reduce heart rate, core body temperature and locomotor activity responses to acute (novelty or loud noise) or repeated stress (loud noise). After 6 weeks of running-wheel access, rats exposed to a novel environment had reduced heart rate, core body temperature, and locomotor activity responses compared to rats housed under sedentary conditions. In contrast, none of these measures were different between exercised and sedentary rats following acute 30-min noise exposures, at either 85 or 98 dB. Following 10 weeks of running-wheel access, both groups displayed significant habituation of all these responses to 10 consecutive daily 30-min presentations of 98 dB noise stress. However, the extent of habituation of all three responses was significantly enhanced in exercised compared to sedentary animals on the last exposure to noise. These results suggest that in physically active animals, under some conditions, acute responses to stress exposure may be reduced, and response habituation to repeated stress may be enhanced, which ultimately may reduce the negative and cumulative impact of stress. PMID:21438772

  6. Food deprivation increases the low-dose locomotor stimulant response to ethanol in Drosophila melanogaster.

    PubMed

    Kliethermes, Christopher L

    2013-10-01

    Acute and chronic states of food deprivation result in increased sensitivity to a variety of natural reinforcers as well as to drugs of abuse. Food deprived animals show increased locomotor activity during periods of food deprivation, as well as increased locomotor stimulant responses to drugs of abuse, including cocaine, amphetamine, morphine, and ethanol, implying that drugs of abuse act in part on neural systems that underlie responses towards food. To determine whether this effect extends to an invertebrate, highly genetically tractable animal, the locomotor stimulant effects of low dose ethanol were assessed under a variety of feeding conditions in the fruit fly, Drosophila melanogaster. Food deprivation resulted in strain specific increases in ethanol-stimulated locomotor activity in most strains tested, although elevated baseline activity confounded interpretation in some strains. Experiments conducted with Canton S flies found that the effects of food deprivation on the locomotor stimulant response to ethanol increased with the duration of deprivation, and could be blocked by refeeding the flies with standard food or sucrose, but not yeast, immediately prior to the ethanol exposure. Life-span extending dietary depletion procedures or previous periods of food deprivation did not affect the response to ethanol, indicating that only animals in an acutely food deprived state are more sensitive to the stimulant effects of ethanol. These results suggest that increased sensitivity to the stimulant effects of some drugs of abuse might reflect an evolutionarily conserved neural mechanism that underlies behavioral responses to natural reinforcers and drugs of abuse. The identification of this mechanism, and the genes that underlie its development and function, will constitute a novel approach towards the study of alcohol abuse and dependence. © 2013.

  7. Neurochemical factors underlying individual differences in locomotor activity and anxiety-like behavioral responses in zebrafish.

    PubMed

    Tran, Steven; Nowicki, Magda; Muraleetharan, Arrujyan; Chatterjee, Diptendu; Gerlai, Robert

    2016-02-04

    Variation among individuals may arise for several reasons, and may have diverse underlying mechanisms. Individual differences have been studied in a variety of species, but recently a new model organism has emerged in this field that offers both sophistication in phenotypical characterization and powerful mechanistic analysis. Recently, zebrafish, one of the favorites of geneticists, have been shown to exhibit consistent individual differences in baseline locomotor activity. In the current study, we further explore this finding and examine whether individual differences in locomotor activity correlate with anxiety-like behavioral measures and with levels of dopamine, serotonin and the metabolites of these neurotransmitters. In addition, we examine whether individual differences in locomotor activity are also associated with reactivity to the locomotor stimulant effects of and neurochemical responses to acute ethanol exposure (30min long, 1% v/v ethanol bath application). Principal component analyses revealed a strong association among anxiety-like responses, locomotor activity, serotonin and dopamine levels. Furthermore, ethanol exposure was found to abolish the locomotion-dependent anxiety-like behavioral and serotonergic responses suggesting that this drug also engages a common underlying pathway. Overall, our results provide support for an important role of the serotonergic system in mediating individual differences in anxiety-like responses and locomotor activity in zebrafish and for a minor modulatory role of the dopaminergic system. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Role of Adrenal Glucocorticoid Signaling in Prefrontal Cortex Gene Expression and Acute Behavioral Responses to Ethanol

    PubMed Central

    Costin, Blair N.; Wolen, Aaron R.; Fitting, Sylvia; Shelton, Keith L.; Miles, Michael F.

    2012-01-01

    Background Glucocorticoid hormones modulate acute and chronic behavioral and molecular responses to drugs of abuse including psychostimulants and opioids. There is growing evidence that glucocorticoids might also modulate behavioral responses to ethanol. Acute ethanol activates the HPA axis, causing release of adrenal glucocorticoid hormones. Our prior genomic studies suggest glucocorticoids play a role in regulating gene expression in the prefrontal cortex (PFC) of DBA2/J (D2) mice following acute ethanol administration. However, few studies have analyzed the role of glucocorticoid signaling in behavioral responses to acute ethanol. Such work could be significant, given the predictive value for level of response to acute ethanol in the risk for alcoholism. Methods We studied whether the glucocorticoid receptor (GR) antagonist, RU-486, or adrenalectomy (ADX) altered male D2 mouse behavioral responses to acute (locomotor activation, anxiolysis or loss-of-righting reflex (LORR)) or repeated (sensitization) ethanol treatment. Whole genome microarray analysis and bioinformatics approaches were used to identify PFC candidate genes possibly responsible for altered behavioral responses to ethanol following ADX. Results ADX and RU-486 both impaired acute ethanol (2 g/kg) induced locomotor activation in D2 mice without affecting basal locomotor activity. However, neither ADX nor RU-486 altered initiation of ethanol sensitization (locomotor activation or jump counts), ethanol-induced anxiolysis or LORR. ADX mice showed microarray gene expression changes in PFC that significantly overlapped with acute ethanol-responsive gene sets derived by our prior microarray studies. Q-rtPCR analysis verified that ADX decreased PFC expression of Fkbp5 while significantly increasing Gpr6 expression. In addition, high dose RU-486 pre-treatment blunted ethanol-induced Fkbp5 expression. Conclusions Our studies suggest that ethanol’s activation of adrenal glucocorticoid release and subsequent

  9. Differential housing and novelty response: Protection and risk from locomotor sensitization.

    PubMed

    Garcia, Erik J; Haddon, Tara N; Saucier, Donald A; Cain, Mary E

    2017-03-01

    High novelty seeking increases the risk for drug experimentation and locomotor sensitization. Locomotor sensitization to psychostimulants is thought to reflect neurological adaptations that promote the transition to compulsive drug taking. Rats reared in enrichment (EC) show less locomotor sensitization when compared to rats reared in isolation (IC) or standard conditions (SC). The current research study was designed to test if novelty response contributed locomotor sensitization and more importantly, if the different housing environments could change the novelty response to protect against the development of locomotor sensitization in both adolescence and adulthood. Experiment 1: rats were tested for their response to novelty using the inescapable novelty test (IEN) and pseudorandomly assigned to enriched (EC), isolated (IC), or standard (SC) housing conditions for 30days. After housing, they were tested with IEN. Rats were then administered amphetamine (0.5mg/kg) or saline and locomotor activity was measured followed by a sensitization test 14days later. Experiment 2: rats were tested in the IEN test early adulthood and given five administrations of amphetamine (0.3mg/kg) or saline and then either stayed in or switched housing environments for 30days. Rats were then re-tested in the IEN test in late adulthood and administered five more injections of their respective treatments and tested for locomotor sensitization. Results indicate that IC and SC increased the response to novelty. EC housing decreased locomotor response to amphetamine and saline, and SC housing increased the locomotor response to amphetamine. Mediation results indicated that the late adult novelty response fully mediates the locomotor response to amphetamine and saline, while the early adulthood novelty response did not. Differential housing changes novelty and amphetamine locomotor response. Novelty response is altered into adulthood and provides evidence that enrichment can be used to reduce

  10. Differential housing and novelty response: Protection and risk from locomotor sensitization

    PubMed Central

    Garcia, Erik J.; Haddon, Tara N.; Saucier, Donald A.; Cain, Mary E.

    2017-01-01

    High novelty seeking increases the risk for drug experimentation and locomotor sensitization. Locomotor sensitization to psychostimulants is thought to reflect neurological adaptations that promote the transition to compulsive drug taking. Rats reared in enrichment (EC) show less locomotor sensitization when compared to rats reared in isolation (IC) or standard conditions (SC). The current research study was designed to test if novelty response contributed locomotor sensitization and more importantly, if the different housing environments could change the novelty response to protect against the development of locomotor sensitization in both adolescence and adulthood. Experiment 1: rats were tested for their response to novelty using the inescapable novelty test (IEN) and pseudorandomly assigned to enriched (EC), isolated (IC), or standard (SC) housing conditions for 30 days. After housing, they were tested with IEN. Rats were then administered amphetamine (0.5 mg/kg) or saline and locomotor activity was measured followed by a sensitization test 14 days later. Experiment 2: rats were tested in the IEN test early adulthood and given five administrations of amphetamine (0.3 mg/kg) or saline and then either stayed in or switched housing environments for 30 days. Rats were then re-tested in the IEN test in late adulthood and administered five more injections of their respective treatments and tested for locomotor sensitization. Results indicate that IC and SC increased the response to novelty. EC housing decreased locomotor response to amphetamine and saline, and SC housing increased the locomotor response to amphetamine. Mediation results indicated that the late adult novelty response fully mediates the locomotor response to amphetamine and saline, while the early adulthood novelty response did not. Conclusions Differential housing changes novelty and amphetamine locomotor response. Novelty response is altered into adulthood and provides evidence that enrichment can be

  11. Novelty response and 50 kHz ultrasonic vocalizations: Differential prediction of locomotor and affective response to amphetamine in Sprague-Dawley rats.

    PubMed

    Garcia, Erik J; Cain, Mary E

    2016-02-01

    Novelty and sensation seeking (NSS) predisposes humans and rats to experiment with psychostimulants. In animal models, different tests of NSS predict different phases of drug dependence. Ultrasonic vocalizations (USVs) are evoked by psychomotor stimulants and measure the affective/motivation response to stimuli, yet the role NSS has on USVs in response to amphetamine is not determined. The aim of the present study was to determine if individual differences in NSS and USVs can predict locomotor and USV response to amphetamine (0.0, 0.3, and 1.0 mg/kg) after acute and chronic exposure. Thirty male rats were tested for their response to novelty (IEN), choice to engage in novelty (NPP), and heterospecific play (H-USV). Rats were administered non-contingent amphetamine or saline for seven exposures, and USVs and locomotor activity were measured. After a 14-day rest, rats were administered a challenge dose of amphetamine. Regression analyses indicated that amphetamine dose-dependently increased locomotor activity and the NPP test negatively predicted treatment-induced locomotor activity. The H-USV test predicted treatment-induced frequency-modulated (FM) USVs, but the strength of prediction depended on IEN response. Results provide evidence that locomotor activity and FM USVs induced by amphetamine represent different behavioral responses. The prediction of amphetamine-induced FM USVs by the H-USV screen was changed by the novelty response, indicating that the affective value of amphetamine-measured by FM USVs-depends on novelty response. This provides evidence that higher novelty responders may develop a tolerance faster and may escalate intake faster.

  12. Acute Neuroactive Drug Exposures alter Locomotor Activity in Larval Zebrafish

    EPA Science Inventory

    As part of the development of a rapid in vivo screen for prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae by assessing the acute effects of prototypic drugs that act on the central nervous system. Initially,...

  13. Effects of Sodium Butyrate on Methamphetamine-Sensitized Locomotor Activity

    PubMed Central

    Harkness, John H.; Hitzemann, Robert J.; Edmunds, Stephanie; Phillips, Tamara J.

    2012-01-01

    Neuroadaptations associated with behavioral sensitization induced by repeated exposure to methamphetamine (MA) appear to be involved in compulsive drug pursuit and use. Increased histone acetylation, an epigenetic effect resulting in altered gene expression, may promote sensitized responses to psychostimulants. The role of histone acetylation in the expression and acquisition of MA-induced locomotor sensitization was examined by measuring the effect of histone deacetylase inhibition by sodium butyrate (NaB). For the effect on expression, vehicle or NaB (630 mg/kg, intraperitoneally) was administered 30 min prior to MA challenge in mice treated repeatedly with MA (10 days of 2 mg/kg MA) or saline (10 days), and then locomotor response to MA challenge was measured. NaB treatment increased the locomotor response to MA in both acutely MA treated and sensitized animals. For acquisition, NaB was administered 30 min prior to each MA exposure (10 days of 1 or 2 mg/kg), but not prior to the MA challenge test. Treatment with NaB during the sensitization acquisition period significantly increased locomotor activation by MA in sensitized mice only. NaB alone did not significantly alter locomotor activity. Acute NaB or MA, but not the combination, appeared to increase striatal acetylation at histone H4. Repeated treatment with MA, but not NaB or MA plus NaB, increased striatal acetylation at histone H3. Although increased histone acetylation may alter the expression of genes involved in acute locomotor response to MA and in the acquisition of MA-induced sensitization, results for acetylation at H3 and H4 showed little correspondence with behavior. PMID:23137698

  14. Locomotor activity and tissue levels following acute ...

    EPA Pesticide Factsheets

    Pyrethroids produce neurotoxicity that depends, in part, on the chemical structure. Common behavioral effects include locomotor activity changes and specific toxic syndromes (types I and II). In general these neurobehavioral effects correlate well with peak internal dose metrics. Products of cyhalothrin, a type II pyrethroid, include mixtures of isomers (e.g., λ-cyhalothrin) as well as enriched active isomers (e.g., γ-cyhalothrin). We measured acute changes in locomotor activity in adult male rats and directly correlated these changes to peak brain and plasma concentrations of λ- and γ-cyhalothrin using a within-subject design. One-hour locomotor activity studies were conducted 1.5 h after oral gavage dosing, and immediately thereafter plasma and brains were collected for analyzing tissue levels using LC/MS/MS methods. Both isomers produced dose-related decreases in activity counts, and the effective dose range for γ-cyhalothrin was lower than for λ-cyhalothrin. Doses calculated to decrease activity by 50% were 2-fold lower for the γ-isomer (1.29 mg/kg) compared to λ-cyhalothrin (2.65 mg/kg). Salivation, typical of type II pyrethroids, was also observed at lower doses of γ-cyhalothrin. Administered dose correlated well with brain and plasma concentrations, which furthermore showed good correlations with activity changes. Brain and plasma levels were tightly correlated across doses. While γ-cyhalothrin was 2-fold more potent based on administ

  15. Dissociation of corticotropin-releasing factor receptor subtype involvement in sensitivity to locomotor effects of methamphetamine and cocaine.

    PubMed

    Giardino, William J; Mark, Gregory P; Stenzel-Poore, Mary P; Ryabinin, Andrey E

    2012-02-01

    Enhanced sensitivity to the euphoric and locomotor-activating effects of psychostimulants may influence an individual's predisposition to drug abuse and addiction. While drug-induced behaviors are mediated by the actions of several neurotransmitter systems, past research revealed that the corticotropin-releasing factor (CRF) system is important in driving the acute locomotor response to psychostimulants. We previously reported that genetic deletion of the CRF type-2 receptor (CRF-R2), but not the CRF type-1 receptor (CRF-R1) dampened the acute locomotor stimulant response to methamphetamine (1 mg/kg). These results contrasted with previous studies implicating CRF-R1 in the locomotor effects of psychostimulants. Since the majority of previous studies focused on cocaine, rather than methamphetamine, we set out to test the hypothesis that these drugs differentially engage CRF-R1 and CRF-R2. We expanded our earlier findings by first replicating our previous experiments at a higher dose of methamphetamine (2 mg/kg), and by assessing the effects of the CRF-R1-selective antagonist CP-376,395 (10 mg/kg) on methamphetamine-induced locomotor activity. Next, we used both genetic and pharmacological tools to examine the specific components of the CRF system underlying the acute locomotor response to cocaine (5-10 mg/kg). While genetic deletion of CRF-R2 dampened the locomotor response to methamphetamine (but not cocaine), genetic deletion and pharmacological blockade of CRF-R1 dampened the locomotor response to cocaine (but not methamphetamine). These findings highlight the differential involvement of CRF receptors in acute sensitivity to two different stimulant drugs of abuse, providing an intriguing basis for the development of more targeted therapeutics for psychostimulant addiction.

  16. Arrestin-2 and arrestin-3 differentially modulate locomotor responses and sensitization to amphetamine.

    PubMed

    Zurkovsky, Lilia; Sedaghat, Katayoun; Ahmed, M Rafiuddin; Gurevich, Vsevolod V; Gurevich, Eugenia V

    2017-07-15

    Arrestins play a prominent role in shutting down signaling via G protein-coupled receptors. In recent years, a signaling role for arrestins independent of their function in receptor desensitization has been discovered. Two ubiquitously expressed arrestin isoforms, arrestin-2 and arrestin-3, perform similarly in the desensitization process and share many signaling functions, enabling them to substitute for one another. However, signaling roles specific to each isoform have also been described. Mice lacking arrestin-3 (ARR3KO) were reported to show blunted acute responsiveness to the locomotor stimulatory effect of amphetamine (AMPH). It has been suggested that mice with deletion of arrestin-2 display a similar phenotype. Here we demonstrate that the AMPH-induced locomotion of male ARR3KO mice is reduced over the 7-day treatment period and during AMPH challenge after a 7-day withdrawal. The data are consistent with impaired locomotor sensitization to AMPH and suggest a role for arrestin-3-mediated signaling in the sensitization process. In contrast, male ARR2KO mice showed enhanced early responsiveness to AMPH and the lack of further sensitization, suggesting a role for impaired receptor desensitization. The comparison of mice possessing one allele of arrestin-3 and no arrestin-2 with ARR2KO littermates revealed reduced activity of the former line, consistent with a contribution of arrestin-3-mediated signaling to AMPH responses. Surprisingly, ARR3KO mice with one arrestin-2 allele showed significantly reduced locomotor responses to AMPH combined with lower novelty-induced locomotion, as compared to the ARR3KO line. These data suggest that one allele of arrestin-2 is unable to support normal locomotor behavior due to signaling and/or developmental defects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Involvement of delta and mu opioid receptors in the acute and sensitized locomotor action of cocaine in mice.

    PubMed

    Kotlinska, J H; Gibula-Bruzda, E; Witkowska, E; Izdebski, J

    2013-10-01

    Analogs of deltorphins, such as cyclo(Nδ, Nδ-carbonyl-d-Orn2, Orn4)deltorphin (DEL-6) and deltorphin II N-(ureidoethyl)amide (DK-4) are functional agonists predominantly for the delta opioid receptors (DOR) in the guinea-pig ileum and mouse vas deferens bioassays. The purpose of this study was to examine an influence of these peptides (5, 10 or 20 nmol, i.c.v.) on the acute cocaine-induced (10mg/kg, i.p.) locomotor activity and the expression of sensitization to cocaine locomotor effect. Sensitization to locomotor effect of cocaine was developed by five injections of cocaine at the dose of 10mg/kg, i.p. every 3 days. Our results indicated that DK-4 and DEL-6 differently affected the acute and sensitized cocaine locomotion. Co-administration of DEL-6 with cocaine enhanced acute cocaine locomotion only at the dose of 10 nmol, with minimal effects at the doses 5 and 20 nmol, whereas co-administration of DK-4 with cocaine enhanced acute cocaine-induced locomotion in a dose-dependent manner. Similarly to the acute effects, DEL-6 only at the dose of 10 nmol but DK-4 dose-dependently enhanced the expression of cocaine sensitization. Pre-treatment with DOR antagonist - naltrindole (5 nmol, i.c.v.) and mu opioid receptor (MOR) antagonist, β-funaltrexamine abolished the ability of both peptides to potentiate the effects of cocaine. Our study suggests that MOR and DOR are involved in the interactions between cocaine and both deltorphins analogs. A distinct dose-response effects of these peptides on cocaine locomotion probably arise from differential functional activation (targeting) of the DOR and MOR by both deltorphins analogs. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Statistical Analysis of Zebrafish Locomotor Response.

    PubMed

    Liu, Yiwen; Carmer, Robert; Zhang, Gaonan; Venkatraman, Prahatha; Brown, Skye Ashton; Pang, Chi-Pui; Zhang, Mingzhi; Ma, Ping; Leung, Yuk Fai

    2015-01-01

    Zebrafish larvae display rich locomotor behaviour upon external stimulation. The movement can be simultaneously tracked from many larvae arranged in multi-well plates. The resulting time-series locomotor data have been used to reveal new insights into neurobiology and pharmacology. However, the data are of large scale, and the corresponding locomotor behavior is affected by multiple factors. These issues pose a statistical challenge for comparing larval activities. To address this gap, this study has analyzed a visually-driven locomotor behaviour named the visual motor response (VMR) by the Hotelling's T-squared test. This test is congruent with comparing locomotor profiles from a time period. Different wild-type (WT) strains were compared using the test, which shows that they responded differently to light change at different developmental stages. The performance of this test was evaluated by a power analysis, which shows that the test was sensitive for detecting differences between experimental groups with sample numbers that were commonly used in various studies. In addition, this study investigated the effects of various factors that might affect the VMR by multivariate analysis of variance (MANOVA). The results indicate that the larval activity was generally affected by stage, light stimulus, their interaction, and location in the plate. Nonetheless, different factors affected larval activity differently over time, as indicated by a dynamical analysis of the activity at each second. Intriguingly, this analysis also shows that biological and technical repeats had negligible effect on larval activity. This finding is consistent with that from the Hotelling's T-squared test, and suggests that experimental repeats can be combined to enhance statistical power. Together, these investigations have established a statistical framework for analyzing VMR data, a framework that should be generally applicable to other locomotor data with similar structure.

  19. Statistical Analysis of Zebrafish Locomotor Response

    PubMed Central

    Zhang, Gaonan; Venkatraman, Prahatha; Brown, Skye Ashton; Pang, Chi-Pui; Zhang, Mingzhi; Ma, Ping; Leung, Yuk Fai

    2015-01-01

    Zebrafish larvae display rich locomotor behaviour upon external stimulation. The movement can be simultaneously tracked from many larvae arranged in multi-well plates. The resulting time-series locomotor data have been used to reveal new insights into neurobiology and pharmacology. However, the data are of large scale, and the corresponding locomotor behavior is affected by multiple factors. These issues pose a statistical challenge for comparing larval activities. To address this gap, this study has analyzed a visually-driven locomotor behaviour named the visual motor response (VMR) by the Hotelling’s T-squared test. This test is congruent with comparing locomotor profiles from a time period. Different wild-type (WT) strains were compared using the test, which shows that they responded differently to light change at different developmental stages. The performance of this test was evaluated by a power analysis, which shows that the test was sensitive for detecting differences between experimental groups with sample numbers that were commonly used in various studies. In addition, this study investigated the effects of various factors that might affect the VMR by multivariate analysis of variance (MANOVA). The results indicate that the larval activity was generally affected by stage, light stimulus, their interaction, and location in the plate. Nonetheless, different factors affected larval activity differently over time, as indicated by a dynamical analysis of the activity at each second. Intriguingly, this analysis also shows that biological and technical repeats had negligible effect on larval activity. This finding is consistent with that from the Hotelling’s T-squared test, and suggests that experimental repeats can be combined to enhance statistical power. Together, these investigations have established a statistical framework for analyzing VMR data, a framework that should be generally applicable to other locomotor data with similar structure. PMID

  20. Dopamine modulates acute responses to cocaine, nicotine and ethanol in Drosophila.

    PubMed

    Bainton, R J; Tsai, L T; Singh, C M; Moore, M S; Neckameyer, W S; Heberlein, U

    2000-02-24

    Drugs of abuse have a common property in mammals, which is their ability to facilitate the release of the neurotransmitter and neuromodulator dopamine in specific brain regions involved in reward and motivation. This increase in synaptic dopamine levels is believed to act as a positive reinforcer and to mediate some of the acute responses to drugs. The mechanisms by which dopamine regulates acute drug responses and addiction remain unknown. We present evidence that dopamine plays a role in the responses of Drosophila to cocaine, nicotine or ethanol. We used a startle-induced negative geotaxis assay and a locomotor tracking system to measure the effect of psychostimulants on fly behavior. Using these assays, we show that acute responses to cocaine and nicotine are blunted by pharmacologically induced reductions in dopamine levels. Cocaine and nicotine showed a high degree of synergy in their effects, which is consistent with an action through convergent pathways. In addition, we found that dopamine is involved in the acute locomotor-activating effect, but not the sedating effect, of ethanol. We show that in Drosophila, as in mammals, dopaminergic pathways play a role in modulating specific behavioral responses to cocaine, nicotine or ethanol. We therefore suggest that Drosophila can be used as a genetically tractable model system in which to study the mechanisms underlying behavioral responses to multiple drugs of abuse.

  1. Dose-response characteristics of methylphenidate on locomotor behavior and on sensory evoked potentials recorded from the VTA, NAc, and PFC in freely behaving rats.

    PubMed

    Yang, Pamela B; Swann, Alan C; Dafny, Nachum

    2006-01-17

    Methylphenidate (MPD) is a psychostimulant commonly prescribed for attention deficit/hyperactivity disorder. The mode of action of the brain circuitry responsible for initiating the animals' behavior in response to psychostimulants is not well understood. There is some evidence that psychostimulants activate the ventral tegmental area (VTA), nucleus accumbens (NAc), and prefrontal cortex (PFC). The present study was designed to investigate the acute dose-response of MPD (0.6, 2.5, and 10.0 mg/kg) on locomotor behavior and sensory evoked potentials recorded from the VTA, NAc, and PFC in freely behaving rats previously implanted with permanent electrodes. For locomotor behavior, adult male Wistar-Kyoto (WKY; n = 39) rats were given saline on experimental day 1 and either saline or an acute injection of MPD (0.6, 2.5, or 10.0 mg/kg, i.p.) on experimental day 2. Locomotor activity was recorded for 2-h post injection on both days using an automated, computerized activity monitoring system. Electrophysiological recordings were also performed in the adult male WKY rats (n = 10). Five to seven days after the rats had recovered from the implantation of electrodes, each rat was placed in a sound-insulated, electrophysiological test chamber where its sensory evoked field potentials were recorded before and after saline and 0.6, 2.5, and 10.0 mg/kg MPD injection. Time interval between injections was 90 min. Results showed an increase in locomotion with dose-response characteristics, while a dose-response decrease in amplitude of the components of sensory evoked field responses of the VTA, NAc, and PFC neurons. For example, the P3 component of the sensory evoked field response of the VTA decreased by 19.8% +/- 7.4% from baseline after treatment of 0.6 mg/kg MPD, 37.8% +/- 5.9% after 2.5 mg/kg MPD, and 56.5% +/- 3.9% after 10 mg/kg MPD. Greater attenuation from baseline was observed in the NAc and PFC. Differences in the intensity of MPD-induced attenuation were also found among

  2. Locomotor activity and tissue levels following acute administration of lambda- and gamma-cyhalothrin in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moser, Virginia C., E-mail: Moser.ginger@epa.gov

    Pyrethroids produce neurotoxicity that depends, in part, on the chemical structure. Common behavioral effects include locomotor activity changes and specific toxic syndromes (types I and II). In general these neurobehavioral effects correlate well with peak internal dose metrics. Products of cyhalothrin, a type II pyrethroid, include mixtures of isomers (e.g., λ-cyhalothrin) as well as enriched active isomers (e.g., γ-cyhalothrin). We measured acute changes in locomotor activity in adult male rats and directly correlated these changes to peak brain and plasma concentrations of λ- and γ-cyhalothrin using a within-subject design. One-hour locomotor activity studies were conducted 1.5 h after oral gavagemore » dosing, and immediately thereafter plasma and brains were collected for analyzing tissue levels using LC/MS/MS methods. Both isomers produced dose-related decreases in activity counts, and the effective dose range for γ-cyhalothrin was lower than for λ-cyhalothrin. Doses calculated to decrease activity by 50% were 2-fold lower for the γ-isomer (1.29 mg/kg) compared to λ-cyhalothrin (2.65 mg/kg). Salivation, typical of type II pyrethroids, was also observed at lower doses of γ-cyhalothrin. Administered dose correlated well with brain and plasma concentrations, which furthermore showed good correlations with activity changes. Brain and plasma levels were tightly correlated across doses. While γ-cyhalothrin was 2-fold more potent based on administered dose, the differences based on internal concentrations were less, with γ-cyhalothrin being 1.3- to 1.6-fold more potent than λ-cyhalothrin. These potency differences are consistent with the purity of the λ-isomer (approximately 43%) compared to the enriched isomer γ-cyhalothrin (approximately 98%). Thus, administered dose as well as differences in cyhalothrin isomers is a good predictor of behavioral effects. - Highlights: • Acute changes in locomotor activity were produced by λ- and

  3. Early-life risperidone enhances locomotor responses to amphetamine during adulthood.

    PubMed

    Lee Stubbeman, Bobbie; Brown, Clifford J; Yates, Justin R; Bardgett, Mark E

    2017-10-05

    Antipsychotic drug prescriptions for pediatric populations have increased over the past 20 years, particularly the use of atypical antipsychotic drugs such as risperidone. Most antipsychotic drugs target forebrain dopamine systems, and early-life antipsychotic drug exposure could conceivably reset forebrain neurotransmitter function in a permanent manner that persists into adulthood. This study determined whether chronic risperidone administration during development modified locomotor responses to the dopamine/norepinephrine agonist, D-amphetamine, in adult rats. Thirty-five male Long-Evans rats received an injection of one of four doses of risperidone (vehicle, .3, 1.0, 3.0mg/kg) each day from postnatal day 14 through 42. Locomotor activity was measured for 1h on postnatal days 46 and 47, and then for 24h once a week over the next two weeks. Beginning on postnatal day 75, rats received one of four doses of amphetamine (saline, .3, 1.0, 3.0mg/kg) once a week for four weeks. Locomotor activity was measured for 27h after amphetamine injection. Rats administered risperidone early in life demonstrated increased activity during the 1 and 24h test sessions conducted prior to postnatal day 75. Taking into account baseline group differences, these same rats exhibited significantly more locomotor activity in response to the moderate dose of amphetamine relative to controls. These results suggest that early-life treatment with atypical antipsychotic drugs, like risperidone, permanently alters forebrain catecholamine function and increases sensitivity to drugs that target such function. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. An enriched environment reduces the stress level and locomotor activity induced by acute morphine treatment and by saline after chronic morphine treatment in mice.

    PubMed

    Xu, Jia; Sun, Jinling; Xue, Zhaoxia; Li, Xinwang

    2014-06-18

    This study investigated the relationships among an enriched environment, stress levels, and drug addiction. Mice were divided randomly into four treatment groups (n=12 each): enriched environment without restraint stress (EN), standard environment without restraint stress (SN), enriched environment with restraint stress (ES), and standard environment with restraint stress (SS). Mice were reared in the respective environment for 45 days. Then, the ES and SS groups were subjected to restraint stress daily (2 h/day) for 14 days, whereas the EN and SN groups were not subjected to restraint stress during this stage. The stress levels of all mice were tested in the elevated plus maze immediately after exposure to restraint stress. After the 2-week stress testing period, mice were administered acute or chronic morphine (5 mg/kg) treatment for 7 days. Then, after a 7-day withdrawal period, the mice were injected with saline (1 ml/kg) or morphine (5 mg/kg) daily for 2 days to observe locomotor activity. The results indicated that the enriched environment reduced the stress and locomotor activity induced by acute morphine administration or saline after chronic morphine treatment. However, the enriched environment did not significantly inhibit locomotor activity induced by morphine challenge. In addition, the stress level did not mediate the effect of the enriched environment on drug-induced locomotor activity after acute or chronic morphine treatment.

  5. Agmatine blocks ethanol-induced locomotor hyperactivity in male mice.

    PubMed

    Ozden, Onder; Kayir, Hakan; Ozturk, Yusuf; Uzbay, Tayfun

    2011-05-20

    Ethanol-induced locomotor activity is associated to rewarding effects of ethanol and ethanol dependence. Agmatine is a novel endogenous ligand at α2-adrenoceptors, imidazoline and N-methyl-d-aspartate (NMDA) receptors, as well as a nitric oxide synthase (NOS) inhibitor. There is no evidence presented for the relationship between the acute locomotor stimulating effect of ethanol and agmatine. Thus, the present study investigated the effects of agmatine on acute ethanol-induced locomotor hyperactivity in mice. Adult male Swiss-Webster mice (26-36g) were used as subjects. Locomotor activity of the mice was recorded for 30min immediately following intraperitoneal administration of ethanol (0.5, 1 and 2g/kg) or saline (n=8 for each group). Agmatine (5, 10 and 20mg/kg) or saline was administered intraperitoneally to another four individual groups (n=8 for each group) of the mice 20min before the ethanol injection. In these groups, locomotor activity was also recorded immediately following ethanol (0.5g/kg) injection for 30min. Ethanol (0.5g/kg) produced some significant increases in locomotor activity of the mice. Agmatine (5-20mg/kg) significantly blocked the ethanol (0.5g/kg)-induced locomotor hyperactivity. These doses of agmatine did not affect the locomotor activity in naive mice when they were administered alone. Our results suggest that agmatine has an important role in ethanol-induced locomotor hyperactivity in mice. There may be a relationship between the addictive psychostimulant effects of the ethanol and central agmatinergic system. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Acute ethanol responses in Drosophila are sexually dimorphic

    PubMed Central

    Devineni, Anita V.; Heberlein, Ulrike

    2012-01-01

    In mammalian and insect models of ethanol intoxication, low doses of ethanol stimulate locomotor activity whereas high doses induce sedation. Sex differences in acute ethanol responses, which occur in humans, have not been characterized in Drosophila. In this study, we find that male flies show increased ethanol hyperactivity and greater resistance to ethanol sedation compared with females. We show that the sex determination gene transformer (tra) acts in the developing nervous system, likely through regulation of fruitless (fru), to at least partially mediate the sexual dimorphism in ethanol sedation. Although pharmacokinetic differences may contribute to the increased sedation sensitivity of females, neuronal tra expression regulates ethanol sedation independently of ethanol pharmacokinetics. We also show that acute activation of fru-expressing neurons affects ethanol sedation, further supporting a role for fru in regulating this behavior. Thus, we have characterized previously undescribed sex differences in behavioral responses to ethanol, and implicated fru in mediating a subset of these differences. PMID:23213244

  7. Patterns of neural activity associated with differential acute locomotor stimulation to cocaine and methamphetamine in adolescent versus adult male C57BL/6J mice

    PubMed Central

    Zombeck, Jonathan A.; Lewicki, Aaron D.; Patel, Kevin; Gupta, Tripta; Rhodes, Justin S.

    2009-01-01

    Adolescence is a time period when major changes occur in the brain with long-term consequences for behavior. One ramification is altered responses to drugs of abuse, but the specific brain mechanisms and implications for mental health are poorly understood. Here, we used a mouse model in which adolescents display dramatically reduced sensitivity to the acute locomotor stimulating effects of cocaine and methamphetamine. The goal was to identify key brain regions or circuits involved in the differential behavior. Male adolescent (PN 30–35) and young adult (PN 69–74) C57BL/6J mice were administered an intraperitoneal injection of cocaine (0, 15, 30 mg/kg) or methamphetamine (0, 2, 4 mg/kg) and euthanized 90 minutes later. Locomotor activity was monitored continuously in the home cage by video tracking. Immunohistochemical detection of Fos protein was used to quantify neuronal activation in 16 different brain regions. As expected, adolescents were less sensitive to the locomotor stimulating effects of cocaine and methamphetamine as indicated by a rightward shift in the dose response relationship. After a saline injection, adolescents showed similar levels of Fos as adults in all regions except the dorsal and lateral caudate where levels were lower in adolescents. Cocaine and methamphetamine dose dependently increased Fos in all brain regions sampled in both adolescents and adults, but Fos levels were similar in both age groups for a majority of regions and doses. Locomotor activity was correlated with Fos in several brain areas within adolescent and adult groups, and adolescents had a significantly greater induction of Fos for a given amount of locomotor activity in key brain regions including the caudate where they showed reduced Fos under baseline conditions. Future research will identify the molecular and cellular events that are responsible for the differential psychostimulant-induced patterns of brain activation and behavior observed in adolescent versus adult

  8. Initial locomotor sensitivity to cocaine varies widely among inbred mouse strains.

    PubMed

    Wiltshire, T; Ervin, R B; Duan, H; Bogue, M A; Zamboni, W C; Cook, S; Chung, W; Zou, F; Tarantino, L M

    2015-03-01

    Initial sensitivity to psychostimulants can predict subsequent use and abuse in humans. Acute locomotor activation in response to psychostimulants is commonly used as an animal model of initial drug sensitivity and has been shown to have a substantial genetic component. Identifying the specific genetic differences that lead to phenotypic differences in initial drug sensitivity can advance our understanding of the processes that lead to addiction. Phenotyping inbred mouse strain panels are frequently used as a first step for studying the genetic architecture of complex traits. We assessed locomotor activation following a single, acute 20 mg/kg dose of cocaine (COC) in males from 45 inbred mouse strains and observed significant phenotypic variation across strains indicating a substantial genetic component. We also measured levels of COC, the active metabolite, norcocaine and the major inactive metabolite, benzoylecgonine, in plasma and brain in the same set of inbred strains. Pharmacokinetic (PK) and behavioral data were significantly correlated, but at a level that indicates that PK alone does not account for the behavioral differences observed across strains. Phenotypic data from this reference population of inbred strains can be utilized in studies aimed at examining the role of psychostimulant-induced locomotor activation on drug reward and reinforcement and to test theories about addiction processes. Moreover, these data serve as a starting point for identifying genes that alter sensitivity to the locomotor stimulatory effects of COC. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  9. Acute effects of ethanol or d-amphetamine on the locomotor activity of larval zebrafish in a microtiter plate format.

    EPA Science Inventory

    As part of an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae. We are assessing the acute effects of prototypic drugs that are known to act on the central ...

  10. Cocaine locomotor activation, sensitization and place preference in six inbred strains of mice

    PubMed Central

    2011-01-01

    Background The expanding set of genomics tools available for inbred mouse strains has renewed interest in phenotyping larger sets of strains. The present study aims to explore phenotypic variability among six commonly-used inbred mouse strains to both the rewarding and locomotor stimulating effects of cocaine in a place conditioning task, including several strains or substrains that have not yet been characterized for some or all of these behaviors. Methods C57BL/6J (B6), BALB/cJ (BALB), C3H/HeJ (C3H), DBA/2J (D2), FVB/NJ (FVB) and 129S1/SvImJ (129) mice were tested for conditioned place preference to 20 mg/kg cocaine. Results Place preference was observed in most strains with the exception of D2 and 129. All strains showed a marked increase in locomotor activity in response to cocaine. In BALB mice, however, locomotor activation was context-dependent. Locomotor sensitization to repeated exposure to cocaine was most significant in 129 and D2 mice but was absent in FVB mice. Conclusions Genetic correlations suggest that no significant correlation between conditioned place preference, acute locomotor activation, and locomotor sensitization exists among these strains indicating that separate mechanisms underlie the psychomotor and rewarding effects of cocaine. PMID:21806802

  11. Zebrafish Locomotor Responses Reveal Irritant Effects of Fine Particulate Matter Extracts and a Role for TRPA1.

    PubMed

    Stevens, Joey S; Padilla, Stephanie; DeMarini, David M; Hunter, Deborah L; Martin, W Kyle; Thompson, Leslie C; Gilmour, M Ian; Hazari, Mehdi S; Farraj, Aimen K

    2018-02-01

    Exposure to fine particulate matter (PM) air pollution causes adverse cardiopulmonary outcomes. Yet, the limited capacity to readily identify contributing PM sources and associated PM constituents in any given ambient air shed impedes risk assessment efforts. The health effects of PM have been attributed in part to its capacity to elicit irritant responses. A variety of chemicals trigger irritant behavior responses in zebrafish that can be easily measured. The purposes of this study were to examine the utility of zebrafish locomotor responses in the toxicity assessment of fine PM and its chemical fractions and uncover mechanisms of action. Locomotor responses were recorded in 6-day-old zebrafish exposed for 60 min in the dark at 26 °C to the extractable organic matter of a compressor-generated diesel exhaust PM (C-DEP) and 4 of its fractions (F1-F4) containing varying chemical classes of increasing polarity. The role of the transient receptor potential (TRP) cation channel TRPA1, a chemical sensor in mammals and zebrafish, in locomotor responses to C-DEP, was also examined. Acrolein, an environmental irritant and known activator of TRPA1, and all extracts induced concentration-dependent locomotor responses whose potencies ranked as follows: polar F3 > weakly polar F2 > C-DEP > highly polar F4 > nonpolar F1, indicating that polar and weakly polar fractions that included nitro- and oxy-polyaromatic hydrocarbons (PAHs), drove C-DEP responses. Irritant potencies in fish positively correlated with mutagenic potencies of the same extracts in strains of Salmonella sensitive to nitro- and oxy-PAHs, further implicating these chemical classes in the zebrafish responses to C-DEP. Pharmacologic inhibition of TRPA1 blocked locomotor responses to acrolein and the extracts. Taken together, these data indicate that the zebrafish locomotor assay may help expedite toxicity screening of fine PM sources, identify causal chemical classes, and uncover plausible

  12. Effects of Varenicline on Ethanol-Induced Conditioned Place Preference, Locomotor Stimulation, and Sensitization

    PubMed Central

    Gubner, Noah R.; McKinnon, Carrie S.; Phillips, Tamara J.

    2014-01-01

    did have effects on locomotor behavior and significantly attenuated acute ethanol-induced locomotor stimulation. In humans who drink while taking varenicline, it might similarly reduce stimulant responses and have an impact on continued drinking. General sedative effects in such individuals should be carefully considered. PMID:25581658

  13. Reduced synaptic density and deficient locomotor response in neuronal activity-regulated pentraxin 2a mutant zebrafish.

    PubMed

    Elbaz, Idan; Lerer-Goldshtein, Tali; Okamoto, Hitoshi; Appelbaum, Lior

    2015-04-01

    Neuronal-activity-regulated pentraxin (NARP/NPTX2/NP2) is a secreted synaptic protein that regulates the trafficking of glutamate receptors and mediates learning, memory, and drug addiction. The role of NPTX2 in regulating structural synaptic plasticity and behavior in a developing vertebrate is indefinite. We characterized the expression of nptx2a in larvae and adult zebrafish and established a transcription activator-like effector nuclease (TALEN)-mediated nptx2a mutant (nptx2a(-/-)) to study the role of Nptx2a in regulating structural synaptic plasticity and behavior. Similar to mammals, the zebrafish nptx2a was expressed in excitatory neurons in the brain and spinal cord. Its expression was induced in response to a mechanosensory stimulus but did not change during day and night. Behavioral assays showed that loss of Nptx2a results in reduced locomotor response to light-to-dark transition states and to a sound stimulus. Live imaging of synapses using the transgenic nptx2a:GAL4VP16 zebrafish and a fluorescent presynaptic synaptophysin (SYP) marker revealed reduced synaptic density in the axons of the spinal motor neurons and the anterodorsal lateral-line ganglion (gAD), which regulate locomotor activity and locomotor response to mechanosensory stimuli, respectively. These results suggest that Nptx2a affects locomotor response to external stimuli by mediating structural synaptic plasticity in excitatory neuronal circuits. © FASEB.

  14. Acute thermal stressor increases glucocorticoid response but minimizes testosterone and locomotor performance in the cane toad (Rhinella marina).

    PubMed

    Narayan, Edward J; Hero, Jean-Marc

    2014-01-01

    Climatic warming is a global problem and acute thermal stressor in particular could be considered as a major stressor for wildlife. Cane toads (Rhinella marina) have expanded their range into warmer regions of Australia and they provide a suitable model species to study the sub-lethal impacts of thermal stressor on the endocrine physiology of amphibians. Presently, there is no information to show that exposure to an acute thermal stressor could initiate a physiological stress (glucocorticoid) response and secondly, the possible effects on reproductive hormones and performance. Answering these questions is important for understanding the impacts of extreme temperature on amphibians. In this study, we experimented on cane toads from Queensland, Australia by acclimating them to mildly warm temperature (25°C) and then exposing to acute temperature treatments of 30°, 35° or 40°C (hypothetical acute thermal stressors). We measured acute changes in the stress hormone corticosterone and the reproductive hormone testosterone using standard capture and handling protocol and quantified the metabolites of both hormones non-invasively using urinary enzyme-immunoassays. Furthermore, we measured performance trait (i.e. righting response score) in the control acclimated and the three treatment groups. Corticosterone stress responses increased in all toads during exposure to an acute thermal stressor. Furthermore, exposure to a thermal stressor also decreased testosterone levels in all toads. The duration of the righting response (seconds) was longer for toads that were exposed to 40°C than to 30°, 35° or 25°C. The increased corticosterone stress response with increased intensity of the acute thermal stressor suggests that the toads perceived this treatment as a stressor. Furthermore, the results also highlight a potential trade-off with performance and reproductive hormones. Ultimately, exposure acute thermal stressors due to climatic variability could impact amphibians at

  15. Acute Thermal Stressor Increases Glucocorticoid Response but Minimizes Testosterone and Locomotor Performance in the Cane Toad (Rhinella marina)

    PubMed Central

    Narayan, Edward J.; Hero, Jean-Marc

    2014-01-01

    Climatic warming is a global problem and acute thermal stressor in particular could be considered as a major stressor for wildlife. Cane toads (Rhinella marina) have expanded their range into warmer regions of Australia and they provide a suitable model species to study the sub-lethal impacts of thermal stressor on the endocrine physiology of amphibians. Presently, there is no information to show that exposure to an acute thermal stressor could initiate a physiological stress (glucocorticoid) response and secondly, the possible effects on reproductive hormones and performance. Answering these questions is important for understanding the impacts of extreme temperature on amphibians. In this study, we experimented on cane toads from Queensland, Australia by acclimating them to mildly warm temperature (25°C) and then exposing to acute temperature treatments of 30°, 35° or 40°C (hypothetical acute thermal stressors). We measured acute changes in the stress hormone corticosterone and the reproductive hormone testosterone using standard capture and handling protocol and quantified the metabolites of both hormones non-invasively using urinary enzyme-immunoassays. Furthermore, we measured performance trait (i.e. righting response score) in the control acclimated and the three treatment groups. Corticosterone stress responses increased in all toads during exposure to an acute thermal stressor. Furthermore, exposure to a thermal stressor also decreased testosterone levels in all toads. The duration of the righting response (seconds) was longer for toads that were exposed to 40°C than to 30°, 35° or 25°C. The increased corticosterone stress response with increased intensity of the acute thermal stressor suggests that the toads perceived this treatment as a stressor. Furthermore, the results also highlight a potential trade-off with performance and reproductive hormones. Ultimately, exposure acute thermal stressors due to climatic variability could impact amphibians at

  16. Dopamine-Independent Locomotor Actions of Amphetamines in a Novel Acute Mouse Model of Parkinson Disease

    PubMed Central

    Sotnikova, Tatyana D; Beaulieu, Jean-Martin; Barak, Larry S; Wetsel, William C; Gainetdinov, Raul R

    2005-01-01

    Brain dopamine is critically involved in movement control, and its deficiency is the primary cause of motor symptoms in Parkinson disease. Here we report development of an animal model of acute severe dopamine deficiency by using mice lacking the dopamine transporter. In the absence of transporter-mediated recycling mechanisms, dopamine levels become entirely dependent on de novo synthesis. Acute pharmacological inhibition of dopamine synthesis in these mice induces transient elimination of striatal dopamine accompanied by the development of a striking behavioral phenotype manifested as severe akinesia, rigidity, tremor, and ptosis. This phenotype can be reversed by administration of the dopamine precursor, L-DOPA, or by nonselective dopamine agonists. Surprisingly, several amphetamine derivatives were also effective in reversing these behavioral abnormalities in a dopamine-independent manner. Identification of dopamine transporter- and dopamine-independent locomotor actions of amphetamines suggests a novel paradigm in the search for prospective anti-Parkinsonian drugs. PMID:16050778

  17. Motor unit recruitment patterns 1: responses to changes in locomotor velocity and incline.

    PubMed

    Hodson-Tole, Emma F; Wakeling, James M

    2008-06-01

    Mammalian skeletal muscles are composed of a mixture of motor unit types, which contribute a range of mechanical and physiological properties to the muscle. For a muscle to effectively contribute to smooth, co-ordinated movement it must activate an appropriate number and combination of motor units to generate the required force over a suitable time period. Much evidence exists indicating that motor units are activated in an orderly fashion, from the slowest through to the fastest. A growing body of evidence, however, indicates that such a recruitment strategy does not always hold true. Here we investigate how motor unit recruitment patterns were influenced by changes in locomotor velocity and incline. Kinematics data and myoelectric signals were collected from three rat ankle extensor muscles during running on a treadmill at nine velocity and incline combinations. Wavelet and principal component analysis were used to simultaneously decompose the signals into time and frequency space. The relative frequency components of the signals were quantified during 20 time windows of a stride from each locomotor condition. Differences in signal frequency components existed between muscles and locomotor conditions. Faster locomotor velocities led to a relative increase in high frequency components, whereas greater inclines led to a relative increase in the low frequency components. These data were interpreted as representing changes in motor unit recruitment patterns in response to changes in the locomotor demand. Motor units were not always recruited in an orderly manner, indicating that recruitment is a multi-factorial phenomenon that is not yet fully understood.

  18. Conditioned place preference and locomotor activity in response to methylphenidate, amphetamine and cocaine in mice lacking dopamine D4 receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thanos, P.K.; Thanos, P.K.; Bermeo, C.

    Methylphenidate (MP) and amphetamine (AMPH) are the most frequently prescribed medications for the treatment of attention-deficit/hyperactivity disorder (ADHD). Both drugs are believed to derive their therapeutic benefit by virtue of their dopamine (DA)-enhancing effects, yet an explanation for the observation that some patients with ADHD respond well to one medication but not to the other remains elusive. The dopaminergic effects of MP and AMPH are also thought to underlie their reinforcing properties and ultimately their abuse. Polymorphisms in the human gene that codes for the DA D4 receptor (D4R) have been repeatedly associated with ADHD and may correlate with themore » therapeutic as well as the reinforcing effects of responses to these psychostimulant medications. Conditioned place preference (CPP) for MP, AMPH and cocaine were evaluated in wild-type (WT) mice and their genetically engineered littermates, congenic on the C57Bl/6J background, that completely lack D4Rs (knockout or KO). In addition, the locomotor activity in these mice during the conditioning phase of CPP was tested in the CPP chambers. D4 receptor KO and WT mice showed CPP and increased locomotor activity in response to each of the three psychostimulants tested. D4R differentially modulates the CPP responses to MP, AMPH and cocaine. While the D4R genotype affected CPP responses to MP (high dose only) and AMPH (low dose only) it had no effects on cocaine. Inasmuch as CPP is considered an indicator of sensitivity to reinforcing responses to drugs these data suggest a significant but limited role of D4Rs in modulating conditioning responses to MP and AMPH. In the locomotor test, D4 receptor KO mice displayed attenuated increases in AMPH-induced locomotor activity whereas responses to cocaine and MP did not differ. These results suggest distinct mechanisms for D4 receptor modulation of the reinforcing (perhaps via attenuating dopaminergic signalling) and locomotor properties of these stimulant

  19. Effects of coal mine wastewater on locomotor and non-locomotor activities of empire gudgeons (Hypseleotris compressa).

    PubMed

    Lanctôt, C; Melvin, S D; Fabbro, L; Leusch, F D L; Wilson, S P

    2016-05-01

    Coal mining represents an important industry in many countries, but concerns exist about the possible adverse effects of minewater releases on aquatic animals and ecosystems. Coal mining generates large volumes of complex wastewater, which often contains high concentrations of dissolved solids, suspended solids, metals, hydrocarbons, salts and other compounds. Traditional toxicological testing has generally involved the assessment of acute toxicity or chronic toxicity with longer-term tests, and while such tests provide useful information, they are poorly suited to ongoing monitoring or rapid assessment following accidental discharge events. As such, there is considerable interest in developing rapid and sensitive approaches to environmental monitoring, and particularly involving the assessment of sub-lethal behavioural responses in locally relevant aquatic species. We therefore investigated behavioural responses of a native Australian fish to coal mine wastewater, to evaluate its potential use for evaluating sub-lethal effects associated with wastewater releases on freshwater ecosystems. Empire gudgeons (Hypseleotris compressa) were exposed to wastewater from two dams located at an open cut coal mine in Central Queensland, Australia and activity levels were monitored using the Multispecies Freshwater Biomonitor® (LimCo International GmbH). A general decrease in locomotor activity (i.e., low frequency movement) and increase in non-locomotor activity (i.e., high frequency movement including ventilation and small fin movement) was observed in exposed fish compared to those in control water. Altered activity levels were observable within the first hour of exposure and persisted throughout the 15-d experiment. Results demonstrate the potential for using behavioural endpoints as tools for monitoring wastewater discharges using native fish species, but more research is necessary to identify responsible compounds and response thresholds, and to understand the relevance

  20. High Throughput Measurement of Locomotor Sensitization to Volatilized Cocaine in Drosophila melanogaster.

    PubMed

    Filošević, Ana; Al-Samarai, Sabina; Andretić Waldowski, Rozi

    2018-01-01

    Drosophila melanogaster can be used to identify genes with novel functional roles in neuronal plasticity induced by repeated consumption of addictive drugs. Behavioral sensitization is a relatively simple behavioral output of plastic changes that occur in the brain after repeated exposures to drugs of abuse. The development of screening procedures for genes that control behavioral sensitization has stalled due to a lack of high-throughput behavioral tests that can be used in genetically tractable organism, such as Drosophila . We have developed a new behavioral test, FlyBong, which combines delivery of volatilized cocaine (vCOC) to individually housed flies with objective quantification of their locomotor activity. There are two main advantages of FlyBong: it is high-throughput and it allows for comparisons of locomotor activity of individual flies before and after single or multiple exposures. At the population level, exposure to vCOC leads to transient and concentration-dependent increase in locomotor activity, representing sensitivity to an acute dose. A second exposure leads to further increase in locomotion, representing locomotor sensitization. We validate FlyBong by showing that locomotor sensitization at either the population or individual level is absent in the mutants for circadian genes period (per) , Clock (Clk) , and cycle (cyc) . The locomotor sensitization that is present in timeless (tim) and pigment dispersing factor (pdf) mutant flies is in large part not cocaine specific, but derived from increased sensitivity to warm air. Circadian genes are not only integral part of the neural mechanism that is required for development of locomotor sensitization, but in addition, they modulate the intensity of locomotor sensitization as a function of the time of day. Motor-activating effects of cocaine are sexually dimorphic and require a functional dopaminergic transporter. FlyBong is a new and improved method for inducing and measuring locomotor sensitization

  1. High Throughput Measurement of Locomotor Sensitization to Volatilized Cocaine in Drosophila melanogaster

    PubMed Central

    Filošević, Ana; Al-samarai, Sabina; Andretić Waldowski, Rozi

    2018-01-01

    Drosophila melanogaster can be used to identify genes with novel functional roles in neuronal plasticity induced by repeated consumption of addictive drugs. Behavioral sensitization is a relatively simple behavioral output of plastic changes that occur in the brain after repeated exposures to drugs of abuse. The development of screening procedures for genes that control behavioral sensitization has stalled due to a lack of high-throughput behavioral tests that can be used in genetically tractable organism, such as Drosophila. We have developed a new behavioral test, FlyBong, which combines delivery of volatilized cocaine (vCOC) to individually housed flies with objective quantification of their locomotor activity. There are two main advantages of FlyBong: it is high-throughput and it allows for comparisons of locomotor activity of individual flies before and after single or multiple exposures. At the population level, exposure to vCOC leads to transient and concentration-dependent increase in locomotor activity, representing sensitivity to an acute dose. A second exposure leads to further increase in locomotion, representing locomotor sensitization. We validate FlyBong by showing that locomotor sensitization at either the population or individual level is absent in the mutants for circadian genes period (per), Clock (Clk), and cycle (cyc). The locomotor sensitization that is present in timeless (tim) and pigment dispersing factor (pdf) mutant flies is in large part not cocaine specific, but derived from increased sensitivity to warm air. Circadian genes are not only integral part of the neural mechanism that is required for development of locomotor sensitization, but in addition, they modulate the intensity of locomotor sensitization as a function of the time of day. Motor-activating effects of cocaine are sexually dimorphic and require a functional dopaminergic transporter. FlyBong is a new and improved method for inducing and measuring locomotor sensitization to

  2. Regulator of G protein signaling-12 modulates the dopamine transporter in ventral striatum and locomotor responses to psychostimulants.

    PubMed

    Gross, Joshua D; Kaski, Shane W; Schroer, Adam B; Wix, Kimberley A; Siderovski, David P; Setola, Vincent

    2018-02-01

    Regulators of G protein signaling are proteins that accelerate the termination of effector stimulation after G protein-coupled receptor activation. Many regulators of G protein signaling proteins are highly expressed in the brain and therefore considered potential drug discovery targets for central nervous system pathologies; for example, here we show that RGS12 is highly expressed in microdissected mouse ventral striatum. Given a role for the ventral striatum in psychostimulant-induced locomotor activity, we tested whether Rgs12 genetic ablation affected behavioral responses to amphetamine and cocaine. RGS12 loss significantly decreased hyperlocomotion to lower doses of both amphetamine and cocaine; however, other outcomes of administration (sensitization and conditioned place preference) were unaffected, suggesting that RGS12 does not function in support of the rewarding properties of these psychostimulants. To test whether observed response changes upon RGS12 loss were caused by changes to dopamine transporter expression and/or function, we prepared crude membranes from the brains of wild-type and RGS12-null mice and measured dopamine transporter-selective [ 3 H]WIN 35428 binding, revealing an increase in dopamine transporter levels in the ventral-but not dorsal-striatum of RGS12-null mice. To address dopamine transporter function, we prepared striatal synaptosomes and measured [ 3 H]dopamine uptake. Consistent with increased [ 3 H]WIN 35428 binding, dopamine transporter-specific [ 3 H]dopamine uptake in RGS12-null ventral striatal synaptosomes was found to be increased. Decreased amphetamine-induced locomotor activity and increased [ 3 H]WIN 35428 binding were recapitulated with an independent RGS12-null mouse strain. Thus, we propose that RGS12 regulates dopamine transporter expression and function in the ventral striatum, affecting amphetamine- and cocaine-induced increases in dopamine levels that specifically elicit acute hyperlocomotor responses.

  3. Disruption of Locomotion in Response to Hindlimb Muscle Stretch at Acute and Chronic Time Points after a Spinal Cord Injury in Rats.

    PubMed

    Keller, Anastasia V P; Wainwright, Grace; Shum-Siu, Alice; Prince, Daniella; Hoeper, Alyssa; Martin, Emily; Magnuson, David S K

    2017-02-01

    After spinal cord injury (SCI) muscle contractures develop in the plegic limbs of many patients. Physical therapists commonly use stretching as an approach to avoid contractures and to maintain the extensibility of soft tissues. We found previously that a daily stretching protocol has a negative effect on locomotor recovery in rats with mild thoracic SCI. The purpose of the current study was to determine the effects of stretching on locomotor function at acute and chronic time points after moderately severe contusive SCI. Female Sprague-Dawley rats with 25 g-cm T10 contusion injuries received our standard 24-min stretching protocol starting 4 days (acutely) or 10 weeks (chronically) post-injury (5 days/week for 5 or 4 weeks, respectively). Locomotor function was assessed using the BBB (Basso, Beattie, and Bresnahan) Open Field Locomotor Scale, video-based kinematics, and gait analysis. Locomotor deficits were evident in the acute animals after only 5 days of stretching and increasing the perceived intensity of stretching at week 4 resulted in greater impairment. Stretching initiated chronically resulted in dramatic decrements in locomotor function because most animals had BBB scores of 0-3 for weeks 2, 3, and 4 of stretching. Locomotor function recovered to control levels for both groups within 2 weeks once daily stretching ceased. Histological analysis revealed no apparent signs of overt and persistent damage to muscles undergoing stretching. The current study extends our observations of the stretching phenomenon to a more clinically relevant moderately severe SCI animal model. The results are in agreement with our previous findings and further demonstrate that spinal cord locomotor circuitry is especially vulnerable to the negative effects of stretching at chronic time points. While the clinical relevance of this phenomenon remains unknown, we speculate that stretching may contribute to the lack of locomotor recovery in some patients.

  4. Locomotor adaptability in persons with unilateral transtibial amputation.

    PubMed

    Darter, Benjamin J; Bastian, Amy J; Wolf, Erik J; Husson, Elizabeth M; Labrecque, Bethany A; Hendershot, Brad D

    2017-01-01

    Locomotor adaptation enables walkers to modify strategies when faced with challenging walking conditions. While a variety of neurological injuries can impair locomotor adaptability, the effect of a lower extremity amputation on adaptability is poorly understood. Determine if locomotor adaptability is impaired in persons with unilateral transtibial amputation (TTA). The locomotor adaptability of 10 persons with a TTA and 8 persons without an amputation was tested while walking on a split-belt treadmill with the parallel belts running at the same (tied) or different (split) speeds. In the split condition, participants walked for 15 minutes with the respective belts moving at 0.5 m/s and 1.5 m/s. Temporal spatial symmetry measures were used to evaluate reactive accommodations to the perturbation, and the adaptive/de-adaptive response. Persons with TTA and the reference group of persons without amputation both demonstrated highly symmetric walking at baseline. During the split adaptation and tied post-adaptation walking both groups responded with the expected reactive accommodations. Likewise, adaptive and de-adaptive responses were observed. The magnitude and rate of change in the adaptive and de-adaptive responses were similar for persons with TTA and those without an amputation. Furthermore, adaptability was no different based on belt assignment for the prosthetic limb during split adaptation walking. Reactive changes and locomotor adaptation in response to a challenging and novel walking condition were similar in persons with TTA to those without an amputation. Results suggest persons with TTA have the capacity to modify locomotor strategies to meet the demands of most walking conditions despite challenges imposed by an amputation and use of a prosthetic limb.

  5. Acute and chronic ethanol exposure differentially alters alcohol dehydrogenase and aldehyde dehydrogenase activity in the zebrafish liver.

    PubMed

    Tran, Steven; Nowicki, Magda; Chatterjee, Diptendu; Gerlai, Robert

    2015-01-02

    Chronic ethanol exposure paradigms have been successfully used in the past to induce behavioral and central nervous system related changes in zebrafish. However, it is currently unknown whether chronic ethanol exposure alters ethanol metabolism in adult zebrafish. In the current study we examine the effect of acute ethanol exposure on adult zebrafish behavioral responses, as well as alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activity in the liver. We then examine how two different chronic ethanol exposure paradigms (continuous and repeated ethanol exposure) alter behavioral responses and liver enzyme activity during a subsequent acute ethanol challenge. Acute ethanol exposure increased locomotor activity in a dose-dependent manner. ADH activity was shown to exhibit an inverted U-shaped curve and ALDH activity was decreased by ethanol exposure at all doses. During the acute ethanol challenge, animals that were continuously housed in ethanol exhibited a significantly reduced locomotor response and increased ADH activity, however, ALDH activity did not change. Zebrafish that were repeatedly exposed to ethanol demonstrated a small but significant attenuation of the locomotor response during the acute ethanol challenge but ADH and ALDH activity was similar to controls. Overall, we identified two different chronic ethanol exposure paradigms that differentially alter behavioral and physiological responses in zebrafish. We speculate that these two paradigms may allow dissociation of central nervous system-related and liver enzyme-dependent ethanol induced changes in zebrafish. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Hemodynamic Response of the Supplementary Motor Area during Locomotor Tasks with Upright versus Horizontal Postures in Humans

    PubMed Central

    Obayashi, Shigeru; Nakajima, Katsumi; Hara, Yukihiro

    2016-01-01

    To understand cortical mechanisms related to truncal posture control during human locomotion, we investigated hemodynamic responses in the supplementary motor area (SMA) with quadrupedal and bipedal gaits using functional near-infrared spectroscopy in 10 healthy adults. The subjects performed three locomotor tasks where the degree of postural instability varied biomechanically, namely, hand-knee quadrupedal crawling (HKQuad task), upright quadrupedalism using bilateral Lofstrand crutches (UpQuad task), and typical upright bipedalism (UpBi task), on a treadmill. We measured the concentration of oxygenated hemoglobin (oxy-Hb) during the tasks. The oxy-Hb significantly decreased in the SMA during the HKQuad task, whereas it increased during the UpQuad task. No significant responses were observed during the UpBi task. Based on the degree of oxy-Hb responses, we ranked these locomotor tasks as UpQuad > UpBi > HKQuad. The order of the different tasks did not correspond with postural instability of the tasks. However, qualitative inspection of oxy-Hb time courses showed that oxy-Hb waveform patterns differed between upright posture tasks (peak-plateau-trough pattern for the UpQuad and UpBi tasks) and horizontal posture task (downhill pattern for the HKQuad task). Thus, the SMA may contribute to the control of truncal posture accompanying locomotor movements in humans. PMID:27413555

  7. Cilnidipine, an L/N-type calcium channel blocker prevents acquisition and expression of ethanol-induced locomotor sensitization in mice.

    PubMed

    Bhutada, Pravinkumar; Mundhada, Yogita; Patil, Jayshree; Rahigude, Anand; Zambare, Krushna; Deshmukh, Prashant; Tanwar, Dhanshree; Jain, Kishor

    2012-04-11

    Several evidences indicated the involvement of L- and N-type calcium channels in behavioral effects of drugs of abuse, including ethanol. Calcium channels are implicated in ethanol-induced behaviors and neurochemical responses. Calcium channel antagonists block the psychostimulants induced behavioral sensitization. Recently, it is demonstrated that L-, N- and T-type calcium channel blockers attenuate the acute locomotor stimulant effects of ethanol. However, no evidence indicated the role of calcium channels in ethanol-induced psychomotor sensitization. Therefore, present study evaluated the influence of cilnidipine, an L/N-type calcium channel blocker on acquisition and expression of ethanol-induced locomotor sensitization. The results revealed that cilnidipine (0.1 and 1.0μg/mouse, i.c.v.) attenuates the expression of sensitization to locomotor stimulant effect of ethanol (2.0g/kg, i.p.), whereas pre- treatment of cilnidipine (0.1 and 1.0μg/mouse, i.c.v.) during development of sensitization blocks acquisition and attenuates expression of sensitization to locomotor stimulant effect of ethanol. Cilnidipine per se did not influence locomotor activity in tested doses. Further, cilnidipine had no influence on effect of ethanol on rotarod performance. These results support the hypothesis that neuroadaptive changes in calcium channels participate in the acquisition and the expression of ethanol-induced locomotor sensitization. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Virus-mediated shRNA knockdown of prodynorphin in the rat nucleus accumbens attenuates depression-like behavior and cocaine locomotor sensitization.

    PubMed

    Cohen, Ami; Whitfield, Timothy W; Kreifeldt, Max; Koebel, Pascale; Kieffer, Brigitte L; Contet, Candice; George, Olivier; Koob, George F

    2014-01-01

    Dynorphins, endogenous opioid peptides that arise from the precursor protein prodynorphin (Pdyn), are hypothesized to be involved in the regulation of mood states and the neuroplasticity associated with addiction. The current study tested the hypothesis that dynorphin in the nucleus accumbens (NAcc) mediates such effects. More specifically, we examined whether knockdown of Pdyn within the NAcc in rats would alter the expression of depressive-like and anxiety-like behavior, as well as cocaine locomotor sensitization. Wistar rats were injected with adeno-associated viral (AAV) vectors encoding either a Pdyn-specific short hairpin RNA (AAV-shPdyn) or a scrambled shRNA (AAV-shScr) as control. Four weeks later, rats were tested for anxiety-like behavior in the elevated plus maze test and depressive-like behavior in the forced swim test (FST). Finally, rats received one daily injection of saline or cocaine (20 mg/kg, i.p.), followed by assessment of locomotion for 4 consecutive days. Following 3 days of abstinence, the rats completed 2 additional daily cocaine/saline locomotor trials. Pdyn knockdown in the NAcc led to a significant reduction in depressive-like behavior in the FST, but had no effect on anxiety-like behavior in the elevated plus maze. Pdyn knockdown did not alter baseline locomotor behavior, the locomotor response to acute cocaine, or the initial sensitization of the locomotor response to cocaine over the first 4 cocaine treatment days. However, following 3 days abstinence the locomotor response to the cocaine challenge returned to their original levels in the AAV-shPdyn rats while remaining heightened in the AAV-shScr rats. These results suggest that dynorphin in a very specific area of the nucleus accumbens contributes to depressive-like states and may be involved in neuroadaptations in the NAcc that contribute to the development of cocaine addiction as a persistent and lasting condition.

  9. V3 spinal neurons establish a robust and balanced locomotor rhythm during walking.

    PubMed

    Zhang, Ying; Narayan, Sujatha; Geiman, Eric; Lanuza, Guillermo M; Velasquez, Tomoko; Shanks, Bayle; Akay, Turgay; Dyck, Jason; Pearson, Keir; Gosgnach, Simon; Fan, Chen-Ming; Goulding, Martyn

    2008-10-09

    A robust and well-organized rhythm is a key feature of many neuronal networks, including those that regulate essential behaviors such as circadian rhythmogenesis, breathing, and locomotion. Here we show that excitatory V3-derived neurons are necessary for a robust and organized locomotor rhythm during walking. When V3-mediated neurotransmission is selectively blocked by the expression of the tetanus toxin light chain subunit (TeNT), the regularity and robustness of the locomotor rhythm is severely perturbed. A similar degeneration in the locomotor rhythm occurs when the excitability of V3-derived neurons is reduced acutely by ligand-induced activation of the allatostatin receptor. The V3-derived neurons additionally function to balance the locomotor output between both halves of the spinal cord, thereby ensuring a symmetrical pattern of locomotor activity during walking. We propose that the V3 neurons establish a regular and balanced motor rhythm by distributing excitatory drive between both halves of the spinal cord.

  10. Influence of locomotor muscle afferent inhibition on the ventilatory response to exercise in heart failure.

    PubMed

    Olson, Thomas P; Joyner, Michael J; Eisenach, John H; Curry, Timothy B; Johnson, Bruce D

    2014-02-01

    What is the central question of this study? Patients with heart failure often develop ventilatory abnormalities at rest and during exercise, but the mechanisms underlying these abnormalities remain unclear. This study investigated the influence of inhibiting afferent neural feedback from locomotor muscles on the ventilatory response during exercise in heart failure patients. What is the main finding and its importance? Our results suggest that inhibiting afferent feedback from locomotor muscle via intrathecal opioid administration significantly reduces the ventilatory response to exercise in heart failure patients. Patients with heart failure (HF) develop ventilatory abnormalities at rest and during exercise, but the mechanism(s) underlying these abnormalities remain unclear. We examined whether the inhibition of afferent neural feedback from locomotor muscles during exercise reduces exercise ventilation in HF patients. In a randomized, placebo-controlled design, nine HF patients (age, 60 ± 2 years; ejection fraction, 27 ± 2%; New York Heart Association class 2 ± 1) and nine control subjects (age, 63 ± 2 years) underwent constant-work submaximal cycling (65% peak power) with intrathecal fentanyl (impairing the cephalad projection of opioid receptor-sensitive afferents) or sham injection. The hypercapnic ventilatory response was measured to determine whether cephalad migration of fentanyl occurred. There were no differences in hypercapnic ventilatory response within or between groups in either condition. Despite a lack of change in ventilation, tidal volume or respiratory rate, HF patients had a mild increase in arterial carbon dioxide (P(aCO(2)) and a decrease in oxygen (P(aO(2)); P < 0.05 for both) at rest. The control subjects demonstrated no change in P(aCO(2)), P(aO(2)), ventilation, tidal volume or respiratory rate at rest. In response to fentanyl during exercise, HF patients had a reduction in ventilation (63 ± 6 versus 44 ± 3 l min(-1), P < 0.05) due

  11. Adaptation of the Basso-Beattie-Bresnahan locomotor rating scale for use in a clinical model of spinal cord injury in dogs.

    PubMed

    Song, Rachel B; Basso, D Michele; da Costa, Ronaldo C; Fisher, Lesley C; Mo, Xiaokui; Moore, Sarah A

    2016-08-01

    Naturally occurring acute spinal cord injury (SCI) in pet dogs provides an important clinical animal model through which to confirm and extend findings from rodent studies; however, validated quantitative outcome measures for dogs are limited. We adapted the Basso Beattie Bresnahan (BBB) scale for use in a clinical dog model of acute thoracolumbar SCI. Based on observation of normal dogs, modifications were made to account for species differences in locomotion. Assessments of paw and tail position, and trunk stability were modified to produce a 19 point scale suitable for use in dogs, termed the canine BBB scale (cBBB). Pet dogs with naturally occurring acute SCI were assigned cBBB scores at 3, 10 and 30days after laminectomy. Scores assigned via the cBBB were stable across testing sessions in normal dogs but increased significantly between days 3 and 30 in SCI-affected dogs (p=0.0003). The scale was highly responsive to changes in locomotor recovery over a 30day period, with a standardized response mean of 1.34. Concurrent validity was good, with strong correlations observed between the cBBB and two other locomotor scales, the OSCIS (r=0.94; p<0.001) and the MFS (r=0.85; p<0.0001). cBBB scores inversely correlated with other assessments of recovery including mechanical sensory threshold (r=-0.68; p<0.0001) and coefficient of variation of stride length (r=-0.49; p<0.0001). These results support the use of the cBBB to assess locomotor recovery in canine clinical translational models of SCI. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Locomotor- and Reward-Enhancing Effects of Cocaine Are Differentially Regulated by Chemogenetic Stimulation of Gi-Signaling in Dopaminergic Neurons.

    PubMed

    Runegaard, Annika H; Sørensen, Andreas T; Fitzpatrick, Ciarán M; Jørgensen, Søren H; Petersen, Anders V; Hansen, Nikolaj W; Weikop, Pia; Andreasen, Jesper T; Mikkelsen, Jens D; Perrier, Jean-Francois; Woldbye, David; Rickhag, Mattias; Wortwein, Gitta; Gether, Ulrik

    2018-01-01

    Dopamine plays a key role in the cellular and behavioral responses to drugs of abuse, but the implication of metabotropic regulatory input to dopaminergic neurons on acute drug effects and subsequent drug-related behavior remains unclear. Here, we used chemogenetics [Designer Receptors Exclusively Activated by Designer Drugs (DREADDs)] to modulate dopamine signaling and activity before cocaine administration in mice. We show that chemogenetic inhibition of dopaminergic ventral tegmental area (VTA) neurons differentially affects locomotor and reward-related behavioral responses to cocaine. Stimulation of Gi-coupled DREADD (hM4Di) expressed in dopaminergic VTA neurons persistently reduced the locomotor response to repeated cocaine injections. An attenuated locomotor response was seen even when a dual-viral vector approach was used to restrict hM4Di expression to dopaminergic VTA neurons projecting to the nucleus accumbens. Surprisingly, despite the attenuated locomotor response, hM4Di-mediated inhibition of dopaminergic VTA neurons did not prevent cocaine sensitization, and the inhibitory effect of hM4Di-mediated inhibition was eliminated after withdrawal. In the conditioned place-preference paradigm, hM4Di-mediated inhibition did not affect cocaine-induced place preference; however, the extinction period was extended. Also, hM4Di-mediated inhibition had no effect on preference for a sugar-based reward over water but impaired motivation to work for the same reward in a touchscreen-based motivational assay. In addition, to support that VTA dopaminergic neurons operate as regulators of reward motivation toward both sugar and cocaine, our data suggest that repeated cocaine exposure leads to adaptations in the VTA that surmount the ability of Gi-signaling to suppress and regulate VTA dopaminergic neuronal activity.

  13. Acute neuroactive drug exposures alter locomotor activity in larval zebrafish

    EPA Science Inventory

    In an effort to develop a rapid in vivo screen for EPA's prioritization of toxic chemicals, we are characterizing the locomotor activity of zebrafish (Danio rerio) larvae after exposure to prototypic drugs that act on the central nervous system. MPTP (1-methyl-4phenyl- 1 ,2,3,6-...

  14. Evaluation of the clinical efficacy of meloxicam in cats with painful locomotor disorders.

    PubMed

    Lascelles, B D; Henderson, A J; Hackett, I J

    2001-12-01

    The ability of two non-steroidal anti-inflammatory drugs to modify the clinical manifestations of pain associated with locomotor disease was assessed. Sixty-nine cats with acute or chronic locomotor disorders were recruited from 14 first opinion UK veterinary practices and randomly allocated to one of two treatment groups. Group A received meloxicam drops (0.3 mg/kg orally on day 1 followed by 0.1 mg/kg daily for four more consecutive days) and group B received ketoprofen tablets (1.0 mg/kg orally once daily for five days). Each cat underwent a full clinical examination before treatment, 24 hours after initiation of treatment and 24 hours after completion of treatment. General clinical parameters (demeanour and feed intake) and specific locomotor parameters (weightbearing, lameness, local inflammation and pain on palpation) were scored using a discontinuous scale scoring system. The two groups did not differ in terms of age, weight, gender distribution or duration of clinical signs; nor did they differ in terms of general clinical or specific locomotor scores pretreatment. Both treatment regimens resulted in a significant improvement in demeanour, feed intake and weightbearing, and a significant reduction in lameness, pain on palpation and inflammation. No significant difference was observed between the two treatment groups with respect to any of the parameters measured and both treatments were associated with minimal observed side effects. Meloxicam and ketoprofen were found to be effective analgesics and well tolerated in cats with acute or chronic locomotor disorders when administered for short-term treatment (five days) in such cases. However, meloxicam was assessed to be significantly more palatable than ketoprofen.

  15. A Role for 2-Arachidonoylglycerol and Endocannabinoid Signaling in the Locomotor Response to Novelty Induced by Olfactory Bulbectomy

    PubMed Central

    Eisenstein, Sarah A.; Clapper, Joson R.; Holmes, Philip V.; Piomelli, Daniele; Hohmann, Andrea G.

    2010-01-01

    Bilateral olfactory bulbectomy (OBX) in rodents produces behavioral and neurochemical changes associated clinically with depression and schizophrenia. Most notably, OBX induces hyperlocomotion in response to the stress of exposure to a novel environment. We examined the role of the endocannabinoid system in regulating this locomotor response in OBX and sham-operated rats. In our study, OBX-induced hyperactivity was restricted to the first 3 min of the open field test, demonstrating the presence of novelty (0–3 min) and habituation (3–30 min) phases of the open field locomotor response. Levels of the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide were decreased in the ventral striatum, a brain region deafferented by OBX, whereas cannabinoid receptor densities were unaltered. In sham-operated rats, 2-AG levels in the ventral striatum were negatively correlated with distance traveled during the novelty phase. Thus, low levels of 2-AG are reflected in a hyperactive open field response. This correlation was not observed in OBX rats. Conversely, 2-AG levels in endocannabinoid-compromised OBX rats correlated with distance traveled during the habituation phase. In OBX rats, pharmacological blockade of cannabinoid CB1 receptors with either AM251 (1 mg kg−1 i.p.) or rimonabant (1 mg kg−1 i.p.) increased distance traveled during the habituation phase. Thus, blockade of endocannabinoid signaling impairs habituation of the hyperlocomotor response in OBX, but not sham-operated, rats. By contrast, in sham-operated rats, effects of CB1 antagonism were restricted to the novelty phase. These findings suggest that dysregulation in the endocannabinoid system, and 2-AG in particular, is implicated in the hyperactive locomotor response induced by OBX. Our studies suggest that drugs that enhance 2-AG signaling, such as 2-AG degradation inhibitors, might be useful in human brain disorders modeled by OBX. PMID:20044005

  16. Rapid Sensitization of Physiological, Neuronal, and Locomotor Effects of Nicotine: Critical Role of Peripheral Drug Actions

    PubMed Central

    Lenoir, Magalie; Tang, Jeremy S.; Woods, Amina S.

    2013-01-01

    Repeated exposure to nicotine and other psychostimulant drugs produces persistent increases in their psychomotor and physiological effects (sensitization), a phenomenon related to the drugs' reinforcing properties and abuse potential. Here we examined the role of peripheral actions of nicotine in nicotine-induced sensitization of centrally mediated physiological parameters (brain, muscle, and skin temperatures), cortical and VTA EEG, neck EMG activity, and locomotion in freely moving rats. Repeated injections of intravenous nicotine (30 μg/kg) induced sensitization of the drug's effects on all these measures. In contrast, repeated injections of the peripherally acting analog of nicotine, nicotine pyrrolidine methiodide (nicotinePM, 30 μg/kg, i.v.) resulted in habituation (tolerance) of the same physiological, neuronal, and behavioral measures. However, after repeated nicotine exposure, acute nicotinePM injections induced nicotine-like physiological responses: powerful cortical and VTA EEG desynchronization, EMG activation, a large brain temperature increase, but weaker hyperlocomotion. Additionally, both the acute locomotor response to nicotine and nicotine-induced locomotor sensitization were attenuated by blockade of peripheral nicotinic receptors by hexamethonium (3 mg/kg, i.v.). These data suggest that the peripheral actions of nicotine, which precede its direct central actions, serve as a conditioned interoceptive cue capable of eliciting nicotine-like physiological and neural responses after repeated nicotine exposure. Thus, by providing a neural signal to the CNS that is repeatedly paired with the direct central effects of nicotine, the drug's peripheral actions play a critical role in the development of nicotine-induced physiological, neural, and behavioral sensitization. PMID:23761889

  17. Rapid sensitization of physiological, neuronal, and locomotor effects of nicotine: critical role of peripheral drug actions.

    PubMed

    Lenoir, Magalie; Tang, Jeremy S; Woods, Amina S; Kiyatkin, Eugene A

    2013-06-12

    Repeated exposure to nicotine and other psychostimulant drugs produces persistent increases in their psychomotor and physiological effects (sensitization), a phenomenon related to the drugs' reinforcing properties and abuse potential. Here we examined the role of peripheral actions of nicotine in nicotine-induced sensitization of centrally mediated physiological parameters (brain, muscle, and skin temperatures), cortical and VTA EEG, neck EMG activity, and locomotion in freely moving rats. Repeated injections of intravenous nicotine (30 μg/kg) induced sensitization of the drug's effects on all these measures. In contrast, repeated injections of the peripherally acting analog of nicotine, nicotine pyrrolidine methiodide (nicotine(PM), 30 μg/kg, i.v.) resulted in habituation (tolerance) of the same physiological, neuronal, and behavioral measures. However, after repeated nicotine exposure, acute nicotine(PM) injections induced nicotine-like physiological responses: powerful cortical and VTA EEG desynchronization, EMG activation, a large brain temperature increase, but weaker hyperlocomotion. Additionally, both the acute locomotor response to nicotine and nicotine-induced locomotor sensitization were attenuated by blockade of peripheral nicotinic receptors by hexamethonium (3 mg/kg, i.v.). These data suggest that the peripheral actions of nicotine, which precede its direct central actions, serve as a conditioned interoceptive cue capable of eliciting nicotine-like physiological and neural responses after repeated nicotine exposure. Thus, by providing a neural signal to the CNS that is repeatedly paired with the direct central effects of nicotine, the drug's peripheral actions play a critical role in the development of nicotine-induced physiological, neural, and behavioral sensitization.

  18. The effects of rod and cone loss on the photic regulation of locomotor activity and heart rate.

    PubMed

    Thompson, Stewart; Lupi, Daniela; Hankins, Mark W; Peirson, Stuart N; Foster, Russell G

    2008-08-01

    Behavioral responses to light indirectly affect cardiovascular output, but in anesthetized rodents a direct effect of light on heart rate has also been described. Both the basis for this response and the contribution of rods, cones and melanopsin-based photosensitive retinal ganglion cells (pRGCs) remains unknown. To understand how light acutely regulates heart rate we studied responses to light in mice lacking all rod and cone photoreceptors (rd/rd cl ) along with wild-type controls. Our initial experiments delivered light to anesthetized mice at Zeitgeber time (ZT)16 (4 h after lights off, mid-activity phase) and produced an increase in heart rate in wild-type mice, but not in rd/rd cl animals. By contrast, parallel experiments in freely-moving mice demonstrated that light exposure at this time suppressed heart rate and activity in both genotypes. Because of the effects of anesthesia, all subsequent studies were conducted in freely-moving animals. The effects of light were also assessed at ZT6 (mid-rest phase). At this timepoint, wild-type mice showed an irradiance-dependent increase in heart rate and activity. By contrast, rd/rd cl mice failed to show any modulation of heart rate or activity, even at very high irradiances. Increases in heart rate preceded increases in locomotor activity and remained elevated when locomotor activity ceased, suggesting that these two responses are at least partially uncoupled. Collectively, our results show an acute and phase-dependent effect of light on cardiovascular output in mice. Surprisingly, this irradiance detection response is dependent upon rod and cone photoreceptors, with no apparent contribution from melanopsin pRGCs.

  19. Olfactory bulbectomy induces rapid and stable changes in basal and stress-induced locomotor activity, heart rate and body temperature responses in the home cage.

    PubMed

    Vinkers, C H; Breuer, M E; Westphal, K G C; Korte, S M; Oosting, R S; Olivier, B; Groenink, L

    2009-03-03

    Olfactory bulbectomy (OBX) in rats causes several behavioral and neurochemical changes. However, the extent and onset of physiological and behavioral changes induced after bulbectomy have been little examined. Male Sprague-Dawley rats received telemetric implants. Before and immediately after OBX surgery, basal and stress-induced heart rate, body temperature, and locomotor activity were measured in the home cage in sham (n=9) and OBX animals (n=11). Stress was induced using novel cage stress or witness stress. Bulbectomized animals differed physiologically and behaviorally from shams. Nocturnally, OBX animals were significantly more active compared with shams, had a higher core body temperature and displayed a decreased heart rate variability. During the light period, OBX animals had a significantly lower basal heart rate and a reduced heart rate variability. These effects became apparent 2-3 days after OBX surgery, and were stable over time. After witness stress, OBX animals showed smaller autonomic (body temperature and heart rate) responses compared with shams, but showed no difference in locomotor responses. In contrast, novel cage stress led to increased locomotor responses in OBX rats compared with sham rats, while no differences were found in autonomic responses. Removal of the olfactory bulbs results in rapid, stable and persistent changes in basal locomotor activity, body temperature, heart rate and heart rate variability. Although the sleep-wake cycle of these parameters is not altered, increases in circadian amplitude are apparent within 3 days after surgery. This indicates that physiological changes in the OBX rat are the immediate result of olfactory bulb removal. Further, stress responsivity in OBX rats depends on stressor intensity. Bulbectomized rats display smaller temperature and heart rate responses to less intense witness stress compared with sham rats. Increased locomotor responses to more intense novel cage stress are present in the home cage

  20. Electrolytic lesions of the nucleus accumbens enhance locomotor sensitization to nicotine in rats.

    PubMed

    Kelsey, John E; Willmore, Ellen J

    2006-06-01

    Electrolytic lesions of the medial core of the nucleus accumbens (NAc) in male Long-Evans rats increased spontaneous locomotion, enhanced the locomotor stimulating effect of acute 5.0 mg/kg cocaine, enhanced the development and subsequent expression of locomotor sensitization produced by repeated injections of 0.4 mg/kg nicotine but not 7.5 mg/kg cocaine, and enhanced the expression of conditioned locomotion. Given that 6-hydroxydopamine lesions of the NAc typically have effects on locomotor-related processes that are opposite of those produced by electrolytic and excitotoxic lesions, these data are consistent with a hypothesis that the NAc output, especially from the core, inhibits a variety of such processes and that the DA input to the NAc enhances these processes by inhibiting this inhibitory output. Copyright 2006 APA, all rights reserved.

  1. Drugs that Target Dopamine Receptors: Changes in Locomotor Activity in Larval Zebrafish

    EPA Science Inventory

    As part of an effort at the US Environmental Protection Agency to develop a rapid in vivo screen for prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae. This includes assessing the acute effects of drugs known...

  2. The anatomy and physiology of the locomotor system.

    PubMed

    Farley, Alistair; McLafferty, Ella; Hendry, Charles

    Mobilisation is one of the activities of living. The term locomotor system refers to those body tissues and organs responsible for movement. Nurses and healthcare workers should be familiar with the body structures that enable mobilisation to assist those in their care with this activity. This article outlines the structure and function of the locomotor system, including the skeleton, joints, muscles and muscle attachments. Two common bone disorders, osteoporosis and osteoarthritis, are also considered.

  3. Attenuated behavioural responses to acute and chronic cocaine in GASP-1-deficient mice.

    PubMed

    Boeuf, Julien; Trigo, José Manuel; Moreau, Pierre-Henri; Lecourtier, Lucas; Vogel, Elise; Cassel, Jean-Cristophe; Mathis, Chantal; Klosen, Paul; Maldonado, Rafael; Simonin, Frédéric

    2009-09-01

    G protein-coupled receptor (GPCR) associated sorting protein 1 (GASP-1) interacts with GPCRs and is implicated in their postendocytic sorting. Recently, GASP-1 has been shown to regulate dopamine (D(2)) and cannabinoid (CB1) receptor signalling, suggesting that preventing GASP-1 interaction with GPCRs might provide a means to limit the decrease in receptor signalling upon sustained agonist treatment. In order to test this hypothesis, we have generated and behaviourally characterized GASP-1 knockout (KO) mice and have examined the consequences of the absence of GASP-1 on chronic cocaine treatments. GASP-1 KO and wild-type (WT) mice were tested for sensitization to the locomotor effects of cocaine. Additional mice were trained to acquire intravenous self-administration of cocaine on a fixed ratio 1 schedule of reinforcement, and the motivational value of cocaine was then assessed using a progressive ratio schedule of reinforcement. The dopamine and muscarinic receptor densities were quantitatively evaluated in the striatum of WT and KO mice tested for sensitization and self-administration. Acute and sensitized cocaine-locomotor effects were attenuated in KO mice. A decrease in the percentage of animals that acquired cocaine self-administration was also observed in GASP-1-deficient mice, which was associated with pronounced down-regulation of dopamine and muscarinic receptors in the striatum. These data indicate that GASP-1 participates in acute and chronic behavioural responses induced by cocaine and are in agreement with a role of GASP-1 in postendocytic sorting of GPCRs. However, in contrast to previous studies, our data suggest that upon sustained receptor stimulation GASP-1 stimulates recycling rather than receptor degradation.

  4. Accentuating effects of nicotine on ethanol response in mice with high genetic predisposition to ethanol-induced locomotor stimulation.

    PubMed

    Gubner, N R; McKinnon, C S; Reed, C; Phillips, T J

    2013-01-01

    Co-morbid use of nicotine-containing tobacco products and alcohol is prevalent in alcohol dependent individuals. Common genetic factors could influence initial sensitivity to the independent or interactive effects of these drugs and play a role in their co-abuse. Locomotor sensitivity to nicotine and ethanol, alone and in combination, was assessed in mice bred for high (FAST) and low (SLOW) sensitivity to the locomotor stimulant effects of ethanol and in an inbred strain of mouse (DBA/2J) that has been shown to have extreme sensitivity to ethanol-induced stimulation in comparison to other strains. The effects of nicotine and ethanol, alone and in combination, were dependent on genotype. In FAST and DBA/2J mice that show high sensitivity to ethanol-induced stimulation, nicotine accentuated the locomotor stimulant response to ethanol. This effect was not found in SLOW mice that are not stimulated by ethanol alone. These data indicate that genes underlying differential sensitivity to the stimulant effects of ethanol alone also influence sensitivity to nicotine in combination with ethanol. Sensitivity to the stimulant effects of nicotine alone does not appear to predict the response to the drug combination, as FAST mice are sensitive to nicotine-induced stimulation, whereas SLOW and DBA/2J mice are not. The combination of nicotine and ethanol may have genotype-dependent effects that could impact co-abuse liability. Published by Elsevier Ireland Ltd.

  5. Effects of fentanyl administration on locomotor response in horses with the G57C μ-opioid receptor polymorphism.

    PubMed

    Wetmore, Lois A; Pascoe, Peter J; Shilo-Benjamini, Yael; Lindsey, Jane C

    2016-08-01

    OBJECTIVE To determine the locomotor response to the administration of fentanyl in horses with and without the G57C polymorphism of the μ-opioid receptor. ANIMALS 20 horses of various breeds and ages (10 horses heterozygous for the G57C polymorphism and 10 age-, breed-, and sex-matched horses that did not have the G57C polymorphism). PROCEDURES The number of steps each horse took was counted over consecutive 2-minute periods for 20 minutes to determine a baseline value. The horse then received a bolus of fentanyl (20 μg/kg, IV), and the number of steps was again counted during consecutive 2-minute periods for 60 minutes. The mean baseline value was subtracted from each 2-minute period after fentanyl administration; step counts with negative values were assigned a value of 0. Data were analyzed by use of a repeated-measures ANOVA. RESULTS Data for 19 of 20 horses (10 horses with the G57C polymorphism and 9 control horses without the G57C polymorphism) were included in the analysis. Horses with the G57C polymorphism had a significant increase in locomotor activity, compared with results for horses without the polymorphism. There was a significant group-by-time interaction. CONCLUSIONS AND CLINICAL RELEVANCE Horses heterozygous for the G57C polymorphism of the μ-opioid receptor had an increased locomotor response to fentanyl administration, compared with the response for horses without this polymorphism. The clinical impact of this finding should be investigated.

  6. Feedback and feedforward locomotor adaptations to ankle-foot load in people with incomplete spinal cord injury.

    PubMed

    Gordon, Keith E; Wu, Ming; Kahn, Jennifer H; Schmit, Brian D

    2010-09-01

    Humans with spinal cord injury (SCI) modulate locomotor output in response to limb load. Understanding the neural control mechanisms responsible for locomotor adaptation could provide a framework for selecting effective interventions. We quantified feedback and feedforward locomotor adaptations to limb load modulations in people with incomplete SCI. While subjects airstepped (stepping performed with kinematic assistance and 100% bodyweight support), a powered-orthosis created a dorisflexor torque during the "stance phase" of select steps producing highly controlled ankle-load perturbations. When given repetitive, stance phase ankle-load, the increase in hip extension work, 0.27 J/kg above baseline (no ankle-load airstepping), was greater than the response to ankle-load applied during a single step, 0.14 J/kg (P = 0.029). This finding suggests that, at the hip, subjects produced both feedforward and feedback locomotor modulations. We estimate that, at the hip, the locomotor response to repetitive ankle-load was modulated almost equally by ongoing feedback and feedforward adaptations. The majority of subjects also showed after-effects in hip kinetic patterns that lasted 3 min in response to repetitive loading, providing additional evidence of feedforward locomotor adaptations. The magnitude of the after-effect was proportional to the response to repetitive ankle-foot load (R(2) = 0.92). In contrast, increases in soleus EMG amplitude were not different during repetitive and single-step ankle-load exposure, suggesting that ankle locomotor modulations were predominately feedback-based. Although subjects made both feedback and feedforward locomotor adaptations to changes in ankle-load, between-subject variations suggest that walking function may be related to the ability to make feedforward adaptations.

  7. Rats classified as low or high cocaine locomotor responders: A unique model involving striatal dopamine transporters that predicts cocaine addiction-like behaviors

    PubMed Central

    Yamamoto, Dorothy J.; Nelson, Anna M.; Mandt, Bruce H.; Larson, Gaynor A.; Rorabaugh, Jacki M.; Ng, Christopher M.C.; Barcomb, Kelsey M.; Richards, Toni L.; Allen, Richard M.; Zahniser, Nancy R.

    2013-01-01

    Individual differences are a hallmark of drug addiction. Here, we describe a rat model based on differential initial responsiveness to low dose cocaine. Despite similar brain cocaine levels, individual outbred Sprague-Dawley rats exhibit markedly different magnitudes of acute cocaine-induced locomotor activity and, thereby, can be classified as low or high cocaine responders (LCRs or HCRs). LCRs and HCRs differ in drug-induced, but not novelty-associated, hyperactivity. LCRs have higher basal numbers of striatal dopamine transporters (DATs) than HCRs and exhibit marginal cocaine inhibition of in vivo DAT activity and cocaine-induced increases in extracellular DA. Importantly, lower initial cocaine response predicts greater locomotor sensitization, conditioned place preference and greater motivation to self-administer cocaine following low dose acquisition. Further, outbred Long-Evans rats classified as LCRs, versus HCRs, are more sensitive to cocaine’s discriminative stimulus effects. Overall, results to date with the LCR/HCR model underscore the contribution of striatal DATs to individual differences in initial cocaine responsiveness and the value of assessing the influence of initial drug response on subsequent expression of addiction-like behaviors. PMID:23850581

  8. Foraging enrichment modulates open field response to monosodium glutamate in mice.

    PubMed

    Onaolapo, Olakunle J; Onaolapo, Adejoke Y; Akanmu, Moses A; Olayiwola, Gbola

    2015-07-01

    Environmental enrichment can enhance expression of species-specific behaviour. While foraging enrichment is encouraged in laboratory animals, its impact on novelty induced behaviour remain largely unknown. Here, we studied behavioural response of mice to acute and subchronic oral monosodium glutamate (MSG) in an open field with /without foraging enrichment. Adult male mice, assigned to five groups were administered vehicle (distilled water), or one of four selected doses of MSG (10, 20, 40 and 80 mg/kg) for 21 days. Open field novelty induced behaviours i.e. horizontal locomotion, rearing and grooming were assessed after the first and last doses of MSG. Results were analysed using MANOVA followed by Tukey HSD multiple comparison test and expressed as mean ± S.E.M. Following acute MSG administration without enrichment, locomotor activity reduced, grooming increased, while rearing activity reduced at lower doses and increased at higher doses. Subchronic administration without enrichment was associated with increased locomotor activity and reduction in grooming, rearing activity however still showed a biphasic response. Addition of enrichment with acute administration resulted in sustained reduction in locomotor and rearing activities with a biphasic grooming response. Subchronically, there was reduction in horizontal locomotion, biphasic rearing response and sustained increase in grooming activity. Behavioural response to varying doses of MSG as observed in the open field is affected by modifications such as foraging enrichment, which can reverse or dampen the central effects seen irrespective of duration of administration.

  9. Effect of physical exercise prelabyrinthectomy on locomotor balance compensation in the squirrel monkey

    NASA Technical Reports Server (NTRS)

    Igarashi, M.; Ohashi, K.; Yoshihara, T.; MacDonald, S.

    1989-01-01

    This study examines the effectiveness of physical exercise, during a prepathology state, on locomotor balance compensation after subsequent unilateral labyrinthectomy in squirrel monkeys. An experimental group underwent 3 hr. of daily running exercise on a treadmill for 3 mo. prior to the surgery, whereas a control group was not exercised. Postoperatively, the locomotor balance function of both groups was tested for 3 mo. There was no significant difference in gait deviation counts in the acute phase of compensation. However, in the chronic compensation maintenance phase, the number of gait deviation counts was fewer in the exercise group, which showed significantly better performance stability.

  10. Kainate and metabolic perturbation mimicking spinal injury differentially contribute to early damage of locomotor networks in the in vitro neonatal rat spinal cord.

    PubMed

    Taccola, G; Margaryan, G; Mladinic, M; Nistri, A

    2008-08-13

    Acute spinal cord injury evolves rapidly to produce secondary damage even to initially spared areas. The result is loss of locomotion, rarely reversible in man. It is, therefore, important to understand the early pathophysiological processes which affect spinal locomotor networks. Regardless of their etiology, spinal lesions are believed to include combinatorial effects of excitotoxicity and severe stroke-like metabolic perturbations. To clarify the relative contribution by excitotoxicity and toxic metabolites to dysfunction of locomotor networks, spinal reflexes and intrinsic network rhythmicity, we used, as a model, the in vitro thoraco-lumbar spinal cord of the neonatal rat treated (1 h) with either kainate or a pathological medium (containing free radicals and hypoxic/aglycemic conditions), or their combination. After washout, electrophysiological responses were monitored for 24 h and cell damage analyzed histologically. Kainate suppressed fictive locomotion irreversibly, while it reversibly blocked neuronal excitability and intrinsic bursting induced by synaptic inhibition block. This result was associated with significant neuronal loss around the central canal. Combining kainate with the pathological medium evoked extensive, irreversible damage to the spinal cord. The pathological medium alone slowed down fictive locomotion and intrinsic bursting: these oscillatory patterns remained throughout without regaining their control properties. This phenomenon was associated with polysynaptic reflex depression and preferential damage to glial cells, while neurons were comparatively spared. Our model suggests distinct roles of excitotoxicity and metabolic dysfunction in the acute damage of locomotor networks, indicating that different strategies might be necessary to treat the various early components of acute spinal cord lesion.

  11. Dentate gyrus neurogenesis ablation via cranial irradiation enhances morphine self-administration and locomotor sensitization.

    PubMed

    Bulin, Sarah E; Mendoza, Matthew L; Richardson, Devon R; Song, Kwang H; Solberg, Timothy D; Yun, Sanghee; Eisch, Amelia J

    2018-03-01

    Adult dentate gyrus (DG) neurogenesis is important for hippocampal-dependent learning and memory, but the role of new neurons in addiction-relevant learning and memory is unclear. To test the hypothesis that neurogenesis is involved in the vulnerability to morphine addiction, we ablated adult DG neurogenesis and examined morphine self-administration (MSA) and locomotor sensitization. Male Sprague-Dawley rats underwent hippocampal-focused, image-guided X-ray irradiation (IRR) to eliminate new DG neurons or sham treatment (Sham). Six weeks later, rats underwent either MSA (Sham = 16, IRR = 15) or locomotor sensitization (Sham = 12, IRR = 12). Over 21 days of MSA, IRR rats self-administered ~70 percent more morphine than Sham rats. After 28 days of withdrawal, IRR rats pressed the active lever 40 percent more than Sham during extinction. This was not a general enhancement of learning or locomotion, as IRR and Sham groups had similar operant learning and inactive lever presses. For locomotor sensitization, both IRR and Sham rats sensitized, but IRR rats sensitized faster and to a greater extent. Furthermore, dose-response revealed that IRR rats were more sensitive at a lower dose. Importantly, these increases in locomotor activity were not apparent after acute morphine administration and were not a byproduct of irradiation or post-irradiation recovery time. Therefore, these data, along with other previously published data, indicate that reduced hippocampal neurogenesis confers vulnerability for multiple classes of drugs. Thus, therapeutics to specifically increase or stabilize hippocampal neurogenesis could aid in preventing initial addiction as well as future relapse. © 2017 Society for the Study of Addiction.

  12. Panic disorder and locomotor activity

    PubMed Central

    Sakamoto, Noriyuki; Yoshiuchi, Kazuhiro; Kikuchi, Hiroe; Takimoto, Yoshiyuki; Kaiya, Hisanobu; Kumano, Hiroaki; Yamamoto, Yoshiharu; Akabayashi, Akira

    2008-01-01

    Background Panic disorder is one of the anxiety disorders, and anxiety is associated with some locomotor activity changes such as "restlessness". However, there have been few studies on locomotor activity in panic disorder using actigraphy, although many studies on other psychiatric disorders have been reported using actigraphy. Therefore, the aim of the present study was to investigate the relationship between panic disorder and locomotor activity pattern using a wrist-worn activity monitor. In addition, an ecological momentary assessment technique was used to record panic attacks in natural settings. Methods Sixteen patients with panic disorder were asked to wear a watch-type computer as an electronic diary for recording panic attacks for two weeks. In addition, locomotor activity was measured and recorded continuously in an accelerometer equipped in the watch-type computer. Locomotor activity data were analyzed using double cosinor analysis to calculate mesor and the amplitude and acrophase of each of the circadian rhythm and 12-hour harmonic component. Correlations between panic disorder symptoms and locomotor activity were investigated. Results There were significant positive correlations between the frequency of panic attacks and mesor calculated from double cosinor analysis of locomotor activity (r = 0.55) and between HAM-A scores and mesor calculated from double cosinor analysis of locomotor activity (r = 0.62). Conclusion Panic disorder patients with more panic attacks and more anxiety have greater objectively assessed locomotor activity, which may reflect the "restlessness" of anxiety disorders. PMID:19017383

  13. Locomotor and Heart Rate Responses of Floaters During Small-Sided Games in Elite Soccer Players: Effect of Pitch Size and Inclusion of Goalkeepers.

    PubMed

    Lacome, Mathieu; Simpson, Ben M; Cholley, Yannick; Buchheit, Martin

    2018-05-01

    To (1) compare the locomotor and heart rate responses between floaters and regular players during both small and large small-sided games (SSGs) and (2) examine whether the type of game (ie, game simulation [GS] vs possession game [PO]) affects the magnitude of the difference between floaters and regular players. Data were collected in 41 players belonging to an elite French football team during 3 consecutive seasons (2014-2017). A 5-Hz global positionning system was used to collect all training data, with the Athletic Data Innovation analyzer (v5.4.1.514) used to derive total distance (m), high-speed distance (>14.4 km·h -1 , m), and external mechanical load (MechL, a.u.). All SSGs included exclusively 1 floater and were divided into 2 main categories, according to the participation of goalkeepers (GS) or not (PO) and then further divided into small and large (>100 m 2 per player) SSGs based on the area per player ratio. Locomotor activity and MechL performed were likely-to-most likely lower (moderate to large magnitude) in floaters compared with regular players, whereas differences in heart rate responses were unclear to possibly higher (small) in floaters. The magnitude of the difference in locomotor activity and MechL between floaters and regular players was substantially greater during GS compared with PO. Compared with regular players, floaters present decreased external load (both locomotor and MechL) despite unclear to possibly slightly higher heart rate responses during SSGs. Moreover, the responses of floaters compared with regular players are not consistent across different sizes of SSGs, with greater differences during GS than PO.

  14. Locomotor Training and Strength and Balance Exercises for Walking Recovery After Stroke: Response to Number of Training Sessions.

    PubMed

    Rose, Dorian K; Nadeau, Stephen E; Wu, Samuel S; Tilson, Julie K; Dobkin, Bruce H; Pei, Qinglin; Duncan, Pamela W

    2017-11-01

    Evidence-based guidelines are needed to inform rehabilitation practice, including the effect of number of exercise training sessions on recovery of walking ability after stroke. The objective of this study was to determine the response to increasing number of training sessions of 2 interventions-locomotor training and strength and balance exercises-on poststroke walking recovery. This is a secondary analysis of the Locomotor Experience Applied Post-Stroke (LEAPS) randomized controlled trial. Six rehabilitation sites in California and Florida and participants' homes were used. Participants were adults who dwelled in the community (N=347), had had a stroke, were able to walk at least 3 m (10 ft) with assistance, and had completed the required number of intervention sessions. Participants received 36 sessions (3 times per week for 12 weeks), 90 minutes in duration, of locomotor training (gait training on a treadmill with body-weight support and overground training) or strength and balance training. Talking speed, as measured by the 10-Meter Walk Test, and 6-minute walking distance were assessed before training and following 12, 24, and 36 intervention sessions. Participants at 2 and 6 months after stroke gained in gait speed and walking endurance after up to 36 sessions of treatment, but the rate of gain diminished steadily and, on average, was very low during the 25- to 36-session epoch, regardless of treatment type or severity of impairment. Results may not generalize to people who are unable to initiate a step at 2 months after stroke or people with severe cardiac disease. In general, people who dwelled in the community showed improvements in gait speed and walking distance with up to 36 sessions of locomotor training or strength and balance exercises at both 2 and 6 months after stroke. However, gains beyond 24 sessions tended to be very modest. The tracking of individual response trajectories is imperative in planning treatment. Published by Oxford University

  15. A simple behavioral test for locomotor function after brain injury in mice.

    PubMed

    Tabuse, Masanao; Yaguchi, Masae; Ohta, Shigeki; Kawase, Takeshi; Toda, Masahiro

    2010-11-01

    To establish a simple and reliable test for assessing locomotor function in mice with brain injury, we developed a new method, the rotarod slip test, in which the number of slips of the paralytic hind limb from a rotarod is counted. Brain injuries of different severity were created in adult C57BL/6 mice, by inflicting 1-point, 2-point and 4-point cryo-injuries. These mice were subjected to the rotarod slip test, the accelerating rotarod test and the elevated body swing test (EBST). Histological analyses were performed to assess the severity of the brain damage. Significant and consistent correlations between test scores and severity were observed for the rotarod slip test and the EBST. Only the rotarod slip test detected the mild hindlimb paresis in the acute and sub-acute phase after injury. Our results suggest that the rotarod slip test is the most sensitive and reliable method for assessing locomotor function after brain damage in mice. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Dynamic "Range of Motion" Hindlimb Stretching Disrupts Locomotor Function in Rats with Moderate Subacute Spinal Cord Injuries.

    PubMed

    Keller, Anastasia; Rees, Kathlene; Prince, Daniella; Morehouse, Johnny; Shum-Siu, Alice; Magnuson, David

    2017-06-15

    Joint contractures and spasticity are two common secondary complications of a severe spinal cord injury (SCI), which can significantly reduce quality of life, and stretching is one of the top strategies for rehabilitation of these complications. We have previously shown that a daily static stretching protocol administered to rats at either acute or chronic time points after a moderate or moderate-severe T10 SCI significantly disrupts their hindlimb locomotor function. The objective of the current study was to examine the effects of dynamic range of motion (ROM) stretching on the locomotor function of rats with SCI as an alternative to static stretching. Starting at 6 weeks post-injury (T10 moderate contusion) eight adult Sprague-Dawley rats were subjected to hindlimb stretching for 4 weeks. Our standard stretching protocol (six maneuvers to stretch the major hindlimb muscle groups) was modified from 1 min static stretch-and-hold at the end ROM of each stretch position to a dynamic 2 sec hold, 1 sec release rhythm repeated for a duration of 1 min. Four weeks of daily (5 days/week) dynamic stretching led to significant disruption of locomotor function as assessed by the Basso, Beattie, Bresnahan (BBB) Open Field Locomotor Scale and three-dimensional (3D) kinematic and gait analyses. In addition, we identified and analyzed an apparently novel hindlimb response to dynamic stretch that resembles human clonus. The results of the current study extend the observation of the stretching phenomenon to a new modality of stretching that is also commonly used in SCI rehabilitation. Although mechanisms and clinical relevance still need to be established, our findings continue to raise concerns that stretching as a therapy can potentially hinder aspects of locomotor recovery.

  17. A single exercise bout and locomotor learning after stroke: physiological, behavioural, and computational outcomes.

    PubMed

    Charalambous, Charalambos C; Alcantara, Carolina C; French, Margaret A; Li, Xin; Matt, Kathleen S; Kim, Hyosub E; Morton, Susanne M; Reisman, Darcy S

    2018-05-15

    Previous work demonstrated an effect of a single high-intensity exercise bout coupled with motor practice on the retention of a newly acquired skilled arm movement, in both neurologically intact and impaired adults. In the present study, using behavioural and computational analyses we demonstrated that a single exercise bout, regardless of its intensity and timing, did not increase the retention of a novel locomotor task after stroke. Considering both present and previous work, we postulate that the benefits of exercise effect may depend on the type of motor learning (e.g. skill learning, sensorimotor adaptation) and/or task (e.g. arm accuracy-tracking task, walking). Acute high-intensity exercise coupled with motor practice improves the retention of motor learning in neurologically intact adults. However, whether exercise could improve the retention of locomotor learning after stroke is still unknown. Here, we investigated the effect of exercise intensity and timing on the retention of a novel locomotor learning task (i.e. split-belt treadmill walking) after stroke. Thirty-seven people post stroke participated in two sessions, 24 h apart, and were allocated to active control (CON), treadmill walking (TMW), or total body exercise on a cycle ergometer (TBE). In session 1, all groups exercised for a short bout (∼5 min) at low (CON) or high (TMW and TBE) intensity and before (CON and TMW) or after (TBE) the locomotor learning task. In both sessions, the locomotor learning task was to walk on a split-belt treadmill in a 2:1 speed ratio (100% and 50% fast-comfortable walking speed) for 15 min. To test the effect of exercise on 24 h retention, we applied behavioural and computational analyses. Behavioural data showed that neither high-intensity group showed greater 24 h retention compared to CON, and computational data showed that 24 h retention was attributable to a slow learning process for sensorimotor adaptation. Our findings demonstrated that acute exercise

  18. Serum Response Factor (SRF) Ablation Interferes with Acute Stress-Associated Immediate and Long-Term Coping Mechanisms.

    PubMed

    Zimprich, Annemarie; Mroz, Gabi; Meyer Zu Reckendorf, Christopher; Anastasiadou, Sofia; Förstner, Philip; Garrett, Lillian; Hölter, Sabine M; Becker, Lore; Rozman, Jan; Prehn, Cornelia; Rathkolb, Birgit; Moreth, Kristin; Wurst, Wolfgang; Klopstock, Thomas; Klingenspor, Martin; Adamski, Jerzy; Wolf, Eckhard; Bekeredjian, Raffi; Fuchs, Helmut; Gailus-Durner, Valerie; de Angelis, Martin Hrabe; Knöll, Bernd

    2017-12-01

    Stress experience modulates behavior, metabolism, and energy expenditure of organisms. One molecular hallmark of an acute stress response is a rapid induction of immediate early genes (IEGs) such as c-Fos and Egr family members. IEG transcription in neurons is mediated by the neuronal activity-driven gene regulator serum response factor (SRF). We show a first role of SRF in immediate and long-lasting acute restraint stress (AS) responses. For this, we employed a standardized mouse phenotyping protocol at the German Mouse Clinic (GMC) including behavioral, metabolic, and cardiologic tests as well as gene expression profiling to analyze the consequences of forebrain-specific SRF deletion in mice exposed to AS. Adult mice with an SRF deletion in glutamatergic neurons (Srf; CaMKIIa-CreERT2 ) showed hyperactivity, decreased anxiety, and impaired working memory. In response to restraint AS, instant stress reactivity including locomotor behavior and corticosterone induction was impaired in Srf mutant mice. Interestingly, even several weeks after previous AS exposure, SRF-deficient mice showed long-lasting AS-associated changes including altered locomotion, metabolism, energy expenditure, and cardiovascular changes. This suggests a requirement of SRF for mediating long-term stress coping mechanisms in wild-type mice. SRF ablation decreased AS-mediated IEG induction and activity of the actin severing protein cofilin. In summary, our data suggest an SRF function in immediate AS reactions and long-term post-stress-associated coping mechanisms.

  19. Dose-Response Outcomes Associated with Different Forms of Locomotor Training in Persons with Chronic Motor-Incomplete Spinal Cord Injury.

    PubMed

    Sandler, Evan B; Roach, Kathryn E; Field-Fote, Edelle C

    2017-05-15

    Outcomes of training are thought to be related to the amount of training (training dose). Although various approaches to locomotor training have been used to improve walking function in persons with spinal cord injury (SCI), little is known about the relationship between dose of locomotor training and walking outcomes. This secondary analysis aimed to identify the relationship between training dose and improvement in walking distance and speed associated with locomotor training in participants with chronic motor-incomplete spinal cord injury (MISCI). We compared the dose-response relationships associated with each of four different locomotor training approaches. Participants were randomized to either: treadmill-based training with manual assistance (TM = 17), treadmill-based training with stimulation (TS = 18), overground training with stimulation (OG = 15), and treadmill-based training with locomotor robotic device assistance (LR = 14). Subjects trained 5 days/week for 12 weeks, with a target of 60 training sessions. The distance-dose and time-dose were calculated based on the total distance and total time, respectively, participants engaged in walking over all sessions combined. Primary outcome measures included walking distance (traversed in 2 min) and walking speed (over 10 m). Only OG training showed a good correlation between distance-dose and change in walking distance and speed walked over ground (r = 0.61, p = 0.02; r = 0.62, p = 0.01). None of the treadmill-based training approaches were associated with significant correlations between training dose and improvement of functional walking outcome. The findings suggest that greater distance achieved over the course of OG training is associated with better walking outcomes in the studied population. Further investigation to identify the essential elements that determine outcomes would be valuable for guiding rehabilitation.

  20. Dynamic “Range of Motion” Hindlimb Stretching Disrupts Locomotor Function in Rats with Moderate Subacute Spinal Cord Injuries

    PubMed Central

    Keller, Anastasia; Rees, Kathlene; Prince, Daniella; Morehouse, Johnny; Shum-Siu, Alice

    2017-01-01

    Abstract Joint contractures and spasticity are two common secondary complications of a severe spinal cord injury (SCI), which can significantly reduce quality of life, and stretching is one of the top strategies for rehabilitation of these complications. We have previously shown that a daily static stretching protocol administered to rats at either acute or chronic time points after a moderate or moderate-severe T10 SCI significantly disrupts their hindlimb locomotor function. The objective of the current study was to examine the effects of dynamic range of motion (ROM) stretching on the locomotor function of rats with SCI as an alternative to static stretching. Starting at 6 weeks post-injury (T10 moderate contusion) eight adult Sprague–Dawley rats were subjected to hindlimb stretching for 4 weeks. Our standard stretching protocol (six maneuvers to stretch the major hindlimb muscle groups) was modified from 1 min static stretch-and-hold at the end ROM of each stretch position to a dynamic 2 sec hold, 1 sec release rhythm repeated for a duration of 1 min. Four weeks of daily (5 days/week) dynamic stretching led to significant disruption of locomotor function as assessed by the Basso, Beattie, Bresnahan (BBB) Open Field Locomotor Scale and three-dimensional (3D) kinematic and gait analyses. In addition, we identified and analyzed an apparently novel hindlimb response to dynamic stretch that resembles human clonus. The results of the current study extend the observation of the stretching phenomenon to a new modality of stretching that is also commonly used in SCI rehabilitation. Although mechanisms and clinical relevance still need to be established, our findings continue to raise concerns that stretching as a therapy can potentially hinder aspects of locomotor recovery. PMID:28288544

  1. Locomotor adaptations of some gelatinous zooplankton.

    PubMed

    Bone, Q

    1985-01-01

    Swimming behaviour and locomotor adaptations are described in chaetognaths, larvacean tunicates, some cnidaria, and thaliacean tunicates. The first two groups swim by oscillating a flattened tail, the others by jet propulsion. In chaetognaths, the locomotor muscle fibres are extensively coupled and relatively sparsely innervated, they exhibit compound spike-like potentials. The motoneurons controlling the rhythmic activity of the locomotor muscle lie in a ventral ganglion whose organization is briefly described. Rhythmic swimming bursts in larvaceans are similarly driven by a caudal ganglion near the base of the tail, but each caudal muscle cell is separately innervated by two sets of motor nerves, as well as being coupled to its neighbours. The external epithelium is excitable, and linked to the caudal ganglion by the axons of central cells. Mechanical stimulation of the epithelium evokes receptor potentials followed by action potentials and by bursts of rapid swimming. The trachyline medusa Aglantha and the small siphonophore Chelophyes also show rapid escape responses; in Aglantha these are driven by a specialized giant axon system lacking in other hydromedusae, and in Chelophyes. Slow swimming in Aglantha apparently involves a second nerve supply to the same muscle sheets used in rapid swimming, whereas in Chelophyes slow swimming results from the activity of the smaller posterior nectophore. Slow swimming in siphonophores is more economical than the rapid responses. In the hydrozoan medusa Polyorchis (as in Chelophyes) action potentials in the locomotor muscle sheet change in shape during swimming bursts, and their duration is related to the size of the medusa; they are not simply triggers of muscular contraction. The two groups of thaliacean tunicates are specialized differently. Doliolum is adapted for single rapid jet pulses (during which it achieves instantaneous velocities of 50 body lengths s-l), whilst salps are adapted for slow continuous swimming. The

  2. Locomotor Muscle Fatigue Does Not Alter Oxygen Uptake Kinetics during High-Intensity Exercise.

    PubMed

    Hopker, James G; Caporaso, Giuseppe; Azzalin, Andrea; Carpenter, Roger; Marcora, Samuele M

    2016-01-01

    The [Formula: see text] slow component ([Formula: see text]) that develops during high-intensity aerobic exercise is thought to be strongly associated with locomotor muscle fatigue. We sought to experimentally test this hypothesis by pre-fatiguing the locomotor muscles used during subsequent high-intensity cycling exercise. Over two separate visits, eight healthy male participants were asked to either perform a non-metabolically stressful 100 intermittent drop-jumps protocol (pre-fatigue condition) or rest for 33 min (control condition) according to a random and counterbalanced order. Locomotor muscle fatigue was quantified with 6-s maximal sprints at a fixed pedaling cadence of 90 rev·min -1 . Oxygen kinetics and other responses (heart rate, capillary blood lactate concentration and rating of perceived exertion, RPE) were measured during two subsequent bouts of 6 min cycling exercise at 50% of the delta between the lactate threshold and [Formula: see text] determined during a preliminary incremental exercise test. All tests were performed on the same cycle ergometer. Despite significant locomotor muscle fatigue ( P = 0.03), the [Formula: see text] was not significantly different between the pre-fatigue (464 ± 301 mL·min -1 ) and the control (556 ± 223 mL·min -1 ) condition ( P = 0.50). Blood lactate response was not significantly different between conditions ( P = 0.48) but RPE was significantly higher following the pre-fatiguing exercise protocol compared with the control condition ( P < 0.01) suggesting higher muscle recruitment. These results demonstrate experimentally that locomotor muscle fatigue does not significantly alter the [Formula: see text] kinetic response to high intensity aerobic exercise, and challenge the hypothesis that the [Formula: see text] is strongly associated with locomotor muscle fatigue.

  3. Locomotor activity modulates associative learning in mouse cerebellum.

    PubMed

    Albergaria, Catarina; Silva, N Tatiana; Pritchett, Dominique L; Carey, Megan R

    2018-05-01

    Changes in behavioral state can profoundly influence brain function. Here we show that behavioral state modulates performance in delay eyeblink conditioning, a cerebellum-dependent form of associative learning. Increased locomotor speed in head-fixed mice drove earlier onset of learning and trial-by-trial enhancement of learned responses that were dissociable from changes in arousal and independent of sensory modality. Eyelid responses evoked by optogenetic stimulation of mossy fiber inputs to the cerebellum, but not at sites downstream, were positively modulated by ongoing locomotion. Substituting prolonged, low-intensity optogenetic mossy fiber stimulation for locomotion was sufficient to enhance conditioned responses. Our results suggest that locomotor activity modulates delay eyeblink conditioning through increased activation of the mossy fiber pathway within the cerebellum. Taken together, these results provide evidence for a novel role for behavioral state modulation in associative learning and suggest a potential mechanism through which engaging in movement can improve an individual's ability to learn.

  4. Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton.

    PubMed

    Gordon, Keith E; Kinnaird, Catherine R; Ferris, Daniel P

    2013-04-01

    Locomotor adaptation in humans is not well understood. To provide insight into the neural reorganization that occurs following a significant disruption to one's learned neuromuscular map relating a given motor command to its resulting muscular action, we tied the mechanical action of a robotic exoskeleton to the electromyography (EMG) profile of the soleus muscle during walking. The powered exoskeleton produced an ankle dorsiflexion torque proportional to soleus muscle recruitment thus limiting the soleus' plantar flexion torque capability. We hypothesized that neurologically intact subjects would alter muscle activation patterns in response to the antagonistic exoskeleton by decreasing soleus recruitment. Subjects practiced walking with the exoskeleton for two 30-min sessions. The initial response to the perturbation was to "fight" the resistive exoskeleton by increasing soleus activation. By the end of training, subjects had significantly reduced soleus recruitment resulting in a gait pattern with almost no ankle push-off. In addition, there was a trend for subjects to reduce gastrocnemius recruitment in proportion to the soleus even though only the soleus EMG was used to control the exoskeleton. The results from this study demonstrate the ability of the nervous system to recalibrate locomotor output in response to substantial changes in the mechanical output of the soleus muscle and associated sensory feedback. This study provides further evidence that the human locomotor system of intact individuals is highly flexible and able to adapt to achieve effective locomotion in response to a broad range of neuromuscular perturbations.

  5. Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton

    PubMed Central

    Kinnaird, Catherine R.; Ferris, Daniel P.

    2013-01-01

    Locomotor adaptation in humans is not well understood. To provide insight into the neural reorganization that occurs following a significant disruption to one's learned neuromuscular map relating a given motor command to its resulting muscular action, we tied the mechanical action of a robotic exoskeleton to the electromyography (EMG) profile of the soleus muscle during walking. The powered exoskeleton produced an ankle dorsiflexion torque proportional to soleus muscle recruitment thus limiting the soleus' plantar flexion torque capability. We hypothesized that neurologically intact subjects would alter muscle activation patterns in response to the antagonistic exoskeleton by decreasing soleus recruitment. Subjects practiced walking with the exoskeleton for two 30-min sessions. The initial response to the perturbation was to “fight” the resistive exoskeleton by increasing soleus activation. By the end of training, subjects had significantly reduced soleus recruitment resulting in a gait pattern with almost no ankle push-off. In addition, there was a trend for subjects to reduce gastrocnemius recruitment in proportion to the soleus even though only the soleus EMG was used to control the exoskeleton. The results from this study demonstrate the ability of the nervous system to recalibrate locomotor output in response to substantial changes in the mechanical output of the soleus muscle and associated sensory feedback. This study provides further evidence that the human locomotor system of intact individuals is highly flexible and able to adapt to achieve effective locomotion in response to a broad range of neuromuscular perturbations. PMID:23307949

  6. Neuroprotection of locomotor networks after experimental injury to the neonatal rat spinal cord in vitro.

    PubMed

    Margaryan, G; Mattioli, C; Mladinic, M; Nistri, A

    2010-02-03

    Treatment to block the pathophysiological processes triggered by acute spinal injury remains unsatisfactory as the underlying mechanisms are incompletely understood. Using as a model the in vitro spinal cord of the neonatal rat, we investigated the feasibility of neuroprotection of lumbar locomotor networks by the glutamate antagonists 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX) and aminophosphonovalerate (APV) against acute lesions induced by either a toxic solution (pathological medium (PM) to mimic the spinal injury hypoxic-dysmetabolic perturbation) or excitotoxicity with kainate. The study outcome was presence of fictive locomotion 24 h after the insult and its correlation with network histology. Inhibition of fictive locomotion by PM was contrasted by simultaneous and even delayed (1 h later) co-application of CNQX and APV with increased survival of ventral horn premotoneurons and lateral column white matter. Neither CNQX nor APV alone provided neuroprotection. Kainate-mediated excitotoxicity always led to loss of fictive locomotion and extensive neuronal damage. CNQX and APV co-applied with kainate protected one-third of preparations with improved motoneuron and dorsal horn neuronal counts, although they failed with delayed application. Our data suggest that locomotor network neuroprotection was possible when introduced very early during the pathological process of spinal injury, but also showed how the borderline between presence or loss of locomotor activity was a very narrow one that depended on the survival of a certain number of neurons or white matter elements. The present report provides a model not only for preclinical testing of novel neuroprotective agents, but also for estimating the minimal network membership compatible with functional locomotor output. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Locomotor training improves premotoneuronal control after chronic spinal cord injury.

    PubMed

    Knikou, Maria; Mummidisetty, Chaithanya K

    2014-06-01

    Spinal inhibition is significantly reduced after spinal cord injury (SCI) in humans. In this work, we examined if locomotor training can improve spinal inhibition exerted at a presynaptic level. Sixteen people with chronic SCI received an average of 45 training sessions, 5 days/wk, 1 h/day. The soleus H-reflex depression in response to low-frequency stimulation, presynaptic inhibition of soleus Ia afferent terminals following stimulation of the common peroneal nerve, and bilateral EMG recovery patterns were assessed before and after locomotor training. The soleus H reflexes evoked at 1.0, 0.33, 0.20, 0.14, and 0.11 Hz were normalized to the H reflex evoked at 0.09 Hz. Conditioned H reflexes were normalized to the associated unconditioned H reflex evoked with subjects seated, while during stepping both H reflexes were normalized to the maximal M wave evoked after the test H reflex at each bin of the step cycle. Locomotor training potentiated homosynaptic depression in all participants regardless the type of the SCI. Presynaptic facilitation of soleus Ia afferents remained unaltered in motor complete SCI patients. In motor incomplete SCIs, locomotor training either reduced presynaptic facilitation or replaced presynaptic facilitation with presynaptic inhibition at rest. During stepping, presynaptic inhibition was modulated in a phase-dependent manner. Locomotor training changed the amplitude of locomotor EMG excitability, promoted intralimb and interlimb coordination, and altered cocontraction between knee and ankle antagonistic muscles differently in the more impaired leg compared with the less impaired leg. The results provide strong evidence that locomotor training improves premotoneuronal control after SCI in humans at rest and during walking. Copyright © 2014 the American Physiological Society.

  8. Locomotor Muscle Fatigue Does Not Alter Oxygen Uptake Kinetics during High-Intensity Exercise

    PubMed Central

    Hopker, James G.; Caporaso, Giuseppe; Azzalin, Andrea; Carpenter, Roger; Marcora, Samuele M.

    2016-01-01

    The V˙O2 slow component (V˙O2sc) that develops during high-intensity aerobic exercise is thought to be strongly associated with locomotor muscle fatigue. We sought to experimentally test this hypothesis by pre-fatiguing the locomotor muscles used during subsequent high-intensity cycling exercise. Over two separate visits, eight healthy male participants were asked to either perform a non-metabolically stressful 100 intermittent drop-jumps protocol (pre-fatigue condition) or rest for 33 min (control condition) according to a random and counterbalanced order. Locomotor muscle fatigue was quantified with 6-s maximal sprints at a fixed pedaling cadence of 90 rev·min−1. Oxygen kinetics and other responses (heart rate, capillary blood lactate concentration and rating of perceived exertion, RPE) were measured during two subsequent bouts of 6 min cycling exercise at 50% of the delta between the lactate threshold and V˙O2max determined during a preliminary incremental exercise test. All tests were performed on the same cycle ergometer. Despite significant locomotor muscle fatigue (P = 0.03), the V˙O2sc was not significantly different between the pre-fatigue (464 ± 301 mL·min−1) and the control (556 ± 223 mL·min−1) condition (P = 0.50). Blood lactate response was not significantly different between conditions (P = 0.48) but RPE was significantly higher following the pre-fatiguing exercise protocol compared with the control condition (P < 0.01) suggesting higher muscle recruitment. These results demonstrate experimentally that locomotor muscle fatigue does not significantly alter the V˙O2 kinetic response to high intensity aerobic exercise, and challenge the hypothesis that the V˙O2sc is strongly associated with locomotor muscle fatigue. PMID:27790156

  9. Short-Term Genetic Selection for Adolescent Locomotor Sensitivity to Delta9-Tetrahydrocannabinol (THC).

    PubMed

    Kasten, Chelsea R; Zhang, Yanping; Mackie, Ken; Boehm, Stephen L

    2018-05-01

    Cannabis use is linked to positive and negative outcomes. Identifying genetic targets of susceptibility to the negative effects of cannabinoid use is of growing importance. The current study sought to complete short-term selective breeding for adolescent sensitivity and resistance to the locomotor effects of a single 10 mg/kg THC dose in the open field. Selection for THC-locomotor sensitivity was moderately heritable, with the greatest estimates of heritability seen in females from the F2 to S3 generations. Selection for locomotor sensitivity also resulted in increased anxiety-like activity in the open field. These results are the first to indicate that adolescent THC-locomotor sensitivity can be influenced via selective breeding. Development of lines with a genetic predisposition for THC-sensitivity or resistance to locomotor effects allow for investigation of risk factors, differences in consequences of THC use, identification of correlated behavioral responses, and detection of genetic targets that may contribute to heightened cannabinoid sensitivity.

  10. Locomotor exercise in weightlessness

    NASA Technical Reports Server (NTRS)

    Thornton, W.; Whitmore, H.

    1991-01-01

    The requirements for exercise in space by means of locomotion are established and addressed with prototype treadmills for use during long-duration spaceflight. The adaptation of the human body to microgravity is described in terms of 1-G locomotor biomechanics, the effects of reduced activity, and effective activity-replacement techniques. The treadmill is introduced as a complement to other techniques of force replacement with reference given to the angle required for exercise. A motor-driven unit is proposed that can operate at a variety of controlled speeds and equivalent grades. The treadmills permit locomotor exercise as required for long-duration space travel to sustain locomotor and cardiorespiratory capacity at a level consistent with postflight needs.

  11. Serotonin Reuptake Transporter Deficiency Modulates the Acute Thermoregulatory and Locomotor Activity Response to 3,4-(±)-Methylenedioxymethamphetamine, and Attenuates Depletions in Serotonin Levels in SERT-KO Rats

    PubMed Central

    Lizarraga, Lucina E.; Phan, Andy V.; Cholanians, Aram B.; Herndon, Joseph M.; Lau, Serrine S.; Monks, Terrence J.

    2014-01-01

    3,4-(±)-Methylenedioxymethamphetamine (MDMA) is a ring-substituted amphetamine derivative with potent psychostimulant properties. The neuropharmacological effects of MDMA are biphasic in nature, initially causing synaptic monoamine release, primarily of serotonin (5-HT), inducing thermogenesis and hyperactivity (5-HT syndrome). The long-term effects of MDMA manifest as a prolonged depletion in 5-HT, and structural damage to 5-HT nerve terminals. MDMA toxicity is in part mediated by an ability to inhibit the presynaptic 5-HT reuptake transporter (SERT). Using a SERT-knockout (SERT-KO) rat model, we determined the impact of SERT deficiency on thermoregulation, locomotor activity, and neurotoxicity in SERT-KO or Wistar-based wild-type (WT) rats exposed to MDMA. WT and SERT-KO animals exhibited the highest thermogenic responses to MDMA (four times 10 mg/kg, sc at 12 h intervals) during the diurnal (first and third) doses according to peak body temperature and area under the curve (∑°C × h) analysis. Although no differences in peak body temperature were observed between MDMA-treated WT and SERT-KO animals, ∑°C × h following the first MDMA dose was reduced in SERT-KO rats. Exposure to a single dose of MDMA stimulated horizontal velocity in both WT and SERT-KO rats, however, this effect was delayed and attenuated in the KO animals. Finally, SERT-KO rats were insensitive to MDMA-induced long-term (7 days) depletions in 5-HT and its metabolite, 5-hydroxyindole acetic acid, in both cortex and striatum. In conclusion, SERT deficiency modulated MDMA-mediated thermogenesis, hyperactivity and neurotoxicity in KO rats. The data confirm that the SERT is essential for the manifestation of the acute and long-term toxicities of MDMA. PMID:24595820

  12. Cocaine counteracts LPS-induced hypolocomotion and triggers locomotor sensitization expression.

    PubMed

    Tortorelli, Lucas Silva; Engelke, Douglas Senna; Lunardi, Paula; Mello E Souza, Tadeu; Santos-Junior, Jair Guilherme; Gonçalves, Carlos-Alberto

    2015-01-01

    Neuroimmune signalling underlies addiction and comorbid depression. Clinical observations indicate that infections and chronic lesions are more frequent in drug users and elevated inflammatory states are evident in cocaine dependents. Therefore, lipopolysaccharide (LPS) and inflammatory cytokines represent an important tool for the investigation of sickness, depressive illness and addiction behaviour. A major component of addiction is the progressive and persistent increase in locomotor activity after repeated drug administration and even prolonged periods of abstinence. The aim of this study was to investigate the response of locomotor sensitization when a non-sensitizing dose of cocaine is paired with a systemic inflammatory stimulus. LPS and cocaine were administered intraperitonealy in young-adult male C57bl/6 mice during a 5-day acquisition phase. After a 48-h withdrawal period all groups were challenged with cocaine to evaluate locomotor expression. During the acquisition phase, the LPS-treated groups displayed characteristic hypolocomotion related to sickness behaviour. The low dose of cocaine did not increase the distance travelled, characterizing a non-sensitization dose. Groups that received both LPS and cocaine did not display hypolocomotion, indicating that cocaine might counteract hypolocomotion sickness behaviour. Moreover, during challenge, only these animals expressed locomotor sensitization. Our results indicate that LPS could facilitate the expression of locomotor sensitization in mice and that the immune system may modulate cocaine-induced sensitization. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Changes in dopamine levels and locomotor activity in response to selection on virgin lifespan in Drosophila melanogaster.

    PubMed

    Vermeulen, C J; Cremers, T I F H; Westerink, B H C; Van De Zande, L; Bijlsma, R

    2006-07-01

    Among various other mechanisms, genetic differences in the production of reactive oxygen species are thought to underlie genetic variation for longevity. Here we report on possible changes in ROS production related processes in response to selection for divergent virgin lifespan in Drosophila. The selection lines were observed to differ significantly in dopamine levels and melanin pigmentation, which is associated with dopamine levels at eclosion. These findings confirm that variation in dopamine levels is associated with genetic variation for longevity. Dopamine has previously been implied in ROS production and in the occurrence of age-related neurodegenerative diseases. In addition, we propose a possible proximate mechanism by which dopamine levels affect longevity in Drosophila: We tested if increased dopamine levels were associated with a "rate-of-living" syndrome of increased activity and respiration levels, thus aggravating the level of oxidative stress. Findings on locomotor activity and oxygen consumption of short-lived flies were in line with expectations. However, the relation is not straightforward, as flies of the long-lived lines did not show any consistent differences in pigmentation or dopamine levels with respect to the control lines. Moreover, long-lived flies also had increased locomotor activity, but showed no consistent differences in respiration rate. This strongly suggests that the response for increased and decreased lifespan may be obtained by different mechanisms.

  14. Locomotor activity in males of Aedes aegypti can shift in response to females' presence.

    PubMed

    Araripe, Luciana Ordunha; Bezerra, Jéssica Rodrigues Assunção; Rivas, Gustavo Bueno da Silva; Bruno, Rafaela Vieira

    2018-04-18

    The study of physiological and behavioral traits of mosquito vectors has been of growing relevance for the proposition of alternative methods for controlling vector-borne diseases. Despite this, most studies focus on the female's traits, including the behavior of host seeking, the physiology of disease transmission and the site-choice for oviposition. However, understanding the factors that lead to males' reproductive success is of utmost importance, since it can help building new strategies for constraining population growth. Male behavior towards mating varies widely among species and the communication between males and females is the first aspect securing a successful encounter. Here we used an automated monitoring system to study the profile of locomotor activity of Aedes aegypti males in response to female's presence in an adapted confinement tube. We propose a new method to quantify male response to the presence of females, which can be potentially tested as an indicator of the success of one male in recognizing a female for mating. Locomotor activity varies in daily cycles regulated by an endogenous clock and synchronized by external factors, such as light and temperature. Our results show the previously described startle response to light, which is displayed as a steep morning activity peak immediately when lights are on. Activity drops during the day and begins to rise again right before evening, happening about 1.5 h earlier in males than in females. Most interestingly, males' activity shows a double peak, and the second peak is very subtle when males are alone and relatively more pronounced when females are present in the confinement tubes. The switch in the peak of activity, measured by the herein suggested Peak Matching Index (PMI), was significantly different between males with and without females. The adapted monitoring system used here allowed us to quantify the response of individual males to nearby females in terms of the extent of the activity

  15. Chronic treatment with Delta(9)-tetrahydrocannabinol enhances the locomotor response to amphetamine and heroin. Implications for vulnerability to drug addiction.

    PubMed

    Lamarque, S; Taghzouti, K; Simon, H

    2001-07-01

    Cannabis sativa preparations are some of the most widely used illicit recreational drugs. In addition to their direct addictive potential, cannabinoids may influence the sensitivity to other drugs. The aim of the present study was to determine if a cross-sensitization between Delta(9)-tetrahydrocannabinol (Delta(9)-THC) and other drugs (amphetamine and heroin) could be demonstrated. We examined the effects of a chronic treatment with Delta(9)-THC (0.6, 3 and 15mg/kg, ip) on the locomotor response to amphetamine (1mg/kg, ip) and heroin (1mg/kg, ip). Chronic treatment with Delta(9)-THC resulted in tolerance to the initial hypothermic and anorexic effects. Pre-treatment with Delta(9)-THC increased the locomotor responses to amphetamine and heroin. This cross-sensitization was time-dependent as it was observed three days after the last injection of Delta(9)-THC for amphetamine, and a relatively long time after the end of chronic treatment (41 days) for heroin. Moreover, the enhanced response to amphetamine or heroin was noted in some individuals only: the high-responder rats (HR). These animals have previously been shown to be vulnerable to drug taking behaviors. It is hypothesised that repeated use of Cannabis derivates may facilitate progression to the consumption of other illicit drugs in vulnerable individuals.

  16. Locomotor activity and tissue levels following acute administration of lambda- and gamma-cyhalothrin in rats

    EPA Science Inventory

    Pyrethroids produce neurotoxicity that depends, in part, on the chemical structure. Common behavioral effects include locomotor activity changes and specific toxic syndromes (types I and II). In general these neurobehavioral effects correlate well with peak internal dose metric...

  17. Locomotor adaptation is modulated by observing the actions of others

    PubMed Central

    Patel, Mitesh; Roberts, R. Edward; Riyaz, Mohammed U.; Ahmed, Maroof; Buckwell, David; Bunday, Karen; Ahmad, Hena; Kaski, Diego; Arshad, Qadeer

    2015-01-01

    Observing the motor actions of another person could facilitate compensatory motor behavior in the passive observer. Here we explored whether action observation alone can induce automatic locomotor adaptation in humans. To explore this possibility, we used the “broken escalator” paradigm. Conventionally this involves stepping upon a stationary sled after having previously experienced it actually moving (Moving trials). This history of motion produces a locomotor aftereffect when subsequently stepping onto a stationary sled. We found that viewing an actor perform the Moving trials was sufficient to generate a locomotor aftereffect in the observer, the size of which was significantly correlated with the size of the movement (postural sway) observed. Crucially, the effect is specific to watching the task being performed, as no motor adaptation occurs after simply viewing the sled move in isolation. These findings demonstrate that locomotor adaptation in humans can be driven purely by action observation, with the brain adapting motor plans in response to the size of the observed individual's motion. This mechanism may be mediated by a mirror neuron system that automatically adapts behavior to minimize movement errors and improve motor skills through social cues, although further neurophysiological studies are required to support this theory. These data suggest that merely observing the gait of another person in a challenging environment is sufficient to generate appropriate postural countermeasures, implying the existence of an automatic mechanism for adapting locomotor behavior. PMID:26156386

  18. A stochastic locomotor control model for the nurse shark, Ginglymostoma cirratum.

    PubMed

    Gerald, K B; Matis, J H; Kleerekoper, H

    1978-06-12

    The locomotor behavior of the nurse shark (Ginglymostoma cirratum) is characterized by 17 variables (frequency and ratios of left, right, and total turns; their radians; straight paths (steps); distance travelled; and velocity) Within each of these variables there is an internal time dependency the structure of which was elaborated together with an improved statistical model predicting their behavior within 90% confidence limits. The model allows for the sensitive detection of subtle locomotor response to sensory stimulation as values of variables may exceed the established confidence limits within minutes after onset of the stimulus. The locomotor activity is well described by an autoregression time series model and can be predicted by only seven variables. Six of these form two independently operating clusters. The first one consists of: the number of right turns, the distance travelled and the mean velocity; the second one of: the mean size of right turns, of left turns, and of all turns. The same clustering is obtained independently by a cluster analysis of cross-sections of the seven time series. It is apparent that, among a total of 17 locomotor variables, seven behave as individually independent agents, presumably controlled by seven separate and independent centers. The output of each center can only be predicted by its own behavior. In spite of the individual of the seven variables, their internal structure is similar in important aspects which may result from control by a common command center. The shark locomotor model differs in important aspects from the previously constructed for the goldfish. The interdependence of the locomotor variables in both species may be related to the control mechanisms postulated by von Holst for the coordination of rhythmic fin movements in fishes. A locomotor control model for the nurse shark is proposed.

  19. Neonatal (+)-methamphetamine exposure in rats alters adult locomotor responses to dopamine D1 and D2 agonists and to a glutamate NMDA receptor antagonist, but not to serotonin agonists

    PubMed Central

    Graham, Devon L.; Amos-Kroohs, Robyn M.; Braun, Amanda A.; Grace, Curtis E.; Schaefer, Tori L.; Skelton, Matthew R.; Williams, Michael T.; Vorhees, Charles V.

    2015-01-01

    Neonatal exposure to (+)-methamphetamine (Meth) results in long-term behavioural abnormalities but its developmental mechanisms are unknown. In a series of experiments, rats were treated from post-natal days (PD) 11–20 (stage that approximates human development from the second to third trimester) with Meth or saline and assessed using locomotor activity as the readout following pharmacological challenge doses with dopamine, serotonin and glutamate agonists or antagonists during adulthood. Exposure to Meth early in life resulted in an exaggerated adult locomotor hyperactivity response to the dopamine D1 agonist SKF-82958 at multiple doses, a high dose only under-response activating effect of the D2 agonist quinpirole, and an exaggerated under-response to the activating effect of the N-methyl-D-aspartic acid (NMDA) receptor antagonist, MK-801. No change in locomotor response was seen following challenge with the 5-HT releaser p-chloroamphetamine or the 5-HT2/3 receptor agonist, quipazine. These are the first data to show that PD 11-20 Meth exposure induces long-lasting alterations to dopamine D1, D2 and glutamate NMDA receptor function and may suggest how developmental Meth exposure leads to many of its long-term adverse effects. PMID:22391043

  20. The Effects of Acute Exposure to Neuroactive Drugs on the Locomotor Activity of Larval Zebrafish

    EPA Science Inventory

    In an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae using prototypic drugs that act on the central nervous system. Initially, we chose to define the beh...

  1. Locomotor Behaviour of Blattella germanica Modified by DEET

    PubMed Central

    Sfara, Valeria; Mougabure-Cueto, Gastón A.; Zerba, Eduardo N.; Alzogaray, Raúl A.

    2013-01-01

    N,N-diethyl-3-methylbenzamide (DEET) is the active principle of most insect repellents used worldwide. However, its toxicity on insects has not been widely studied. The aim of this work is to study the effects of DEET on the locomotor activity of Blattella germanica. DEET has a dose-dependent repellent activity on B. germanica. Locomotor activity was significantly lower when insects were pre-exposed to 700 µg/cm2 of DEET for 20 or 30 minutes, but it did not change when pre-exposure was shorter. Locomotor activity of insects that were pre-exposed to 2.000 µg/cm2 of DEET for 10 minutes was significantly lower than the movement registered in controls. No differences were observed when insects were pre-exposed to lower concentrations of DEET. A 30-minute pre-exposure to 700 µg/cm2 of DEET caused a significant decrease in locomotor activity. Movement was totally recovered 24 h later. The locomotor activity measured during the exposure to different concentrations of DEET remained unchanged. Insects with decreased locomotor activity were repelled to the same extent than control insects by the same concentration of DEET. We demonstrated that the repellency and modification of locomotor activity elicited by DEET are non-associated phenomena. We also suggested that the reduction in locomotor activity indicates toxicity of DEET, probably to insect nervous system. PMID:24376701

  2. Locomotor behaviour of Blattella germanica modified by DEET.

    PubMed

    Sfara, Valeria; Mougabure-Cueto, Gastón A; Zerba, Eduardo N; Alzogaray, Raúl A

    2013-01-01

    N,N-diethyl-3-methylbenzamide (DEET) is the active principle of most insect repellents used worldwide. However, its toxicity on insects has not been widely studied. The aim of this work is to study the effects of DEET on the locomotor activity of Blattella germanica. DEET has a dose-dependent repellent activity on B. germanica. Locomotor activity was significantly lower when insects were pre-exposed to 700 µg/cm(2) of DEET for 20 or 30 minutes, but it did not change when pre-exposure was shorter. Locomotor activity of insects that were pre-exposed to 2.000 µg/cm(2) of DEET for 10 minutes was significantly lower than the movement registered in controls. No differences were observed when insects were pre-exposed to lower concentrations of DEET. A 30-minute pre-exposure to 700 µg/cm(2) of DEET caused a significant decrease in locomotor activity. Movement was totally recovered 24 h later. The locomotor activity measured during the exposure to different concentrations of DEET remained unchanged. Insects with decreased locomotor activity were repelled to the same extent than control insects by the same concentration of DEET. We demonstrated that the repellency and modification of locomotor activity elicited by DEET are non-associated phenomena. We also suggested that the reduction in locomotor activity indicates toxicity of DEET, probably to insect nervous system.

  3. Injections of the selective adenosine A2A antagonist MSX-3 into the nucleus accumbens core attenuate the locomotor suppression induced by haloperidol in rats.

    PubMed

    Ishiwari, Keita; Madson, Lisa J; Farrar, Andrew M; Mingote, Susana M; Valenta, John P; DiGianvittorio, Michael D; Frank, Lauren E; Correa, Merce; Hockemeyer, Jörg; Müller, Christa; Salamone, John D

    2007-03-28

    There is considerable evidence of interactions between adenosine A2A receptors and dopamine D2 receptors in striatal areas, and antagonists of the A2A receptor have been shown to reverse the motor effects of DA antagonists in animal models. The D2 antagonist haloperidol produces parkinsonism in humans, and also induces motor effects in rats, such as suppression of locomotion. The present experiments were conducted to study the ability of the adenosine A2A antagonist MSX-3 to reverse the locomotor effects of acute or subchronic administration of haloperidol in rats. Systemic (i.p.) injections of MSX-3 (2.5-10.0 mg/kg) were capable of attenuating the suppression of locomotion induced by either acute or repeated (i.e., 14 day) administration of 0.5 mg/kg haloperidol. Bilateral infusions of MSX-3 directly into the nucleus accumbens core (2.5 microg or 5.0 microg in 0.5 microl per side) produced a dose-related increase in locomotor activity in rats treated with 0.5 mg/kg haloperidol either acutely or repeatedly. There were no overall significant effects of MSX-3 infused directly into the dorsomedial nucleus accumbens shell or the ventrolateral neostriatum. These results indicate that antagonism of adenosine A2A receptors can attenuate the locomotor suppression produced by DA antagonism, and that this effect may be at least partially mediated by A2A receptors in the nucleus accumbens core. These studies suggest that adenosine and dopamine systems interact to modulate the locomotor and behavioral activation functions of nucleus accumbens core.

  4. Injections of the selective adenosine A2A antagonist MSX-3 into the nucleus accumbens core attenuate the locomotor suppression induced by haloperidol in rats

    PubMed Central

    Ishiwari, Keita; Madson, Lisa J.; Farrar, Andrew M.; Mingote, Susana M.; Valenta, John P.; DiGianvittorio, Michael D.; Frank, Lauren E.; Correa, Merce; Hockemeyer, Jörg; Müller, Christa; Salamone, John D.

    2009-01-01

    There is considerable evidence of interactions between adenosine A2A receptors and dopamine D2 receptors in striatal areas, and antagonists of the A2A receptor have been shown to reverse the motor effects of DA antagonists in animal models. The D2 antagonist haloperidol produces parkinsonism in humans, and also induces motor effects in rats, such as suppression of locomotion. The present experiments were conducted to study the ability of the adenosine A2A antagonist MSX-3 to reverse the locomotor effects of acute or subchronic administration of haloperidol in rats. Systemic (i.p.) injections of MSX-3 (2.5–10.0 mg/kg) were capable of attenuating the suppression of locomotion induced by either acute or repeated (i.e., 14 day) administration of 0.5 mg/kg haloperidol. Bilateral infusions of MSX-3 directly into the nucleus accumbens core (2.5 µg or 5.0 µg in 0.5 µl per side) produced a dose-related increase in locomotor activity in rats treated with 0.5 mg/kg haloperidol either acutely or repeatedly. There were no overall significant effects of MSX-3 infused directly into the dorsomedial nucleus accumbens shell or the ventrolateral neostriatum. These results indicate that antagonism of adenosine A2A receptors can attenuate the locomotor suppression produced by DA antagonism, and that this effect may be at least partially mediated by A2A receptors in the nucleus accumbens core. These studies suggest that adenosine and dopamine systems interact to modulate the locomotor and behavioral activation functions of nucleus accumbens core. PMID:17223207

  5. Effects of serotonergic medications on locomotor performance in humans with incomplete spinal cord injury.

    PubMed

    Leech, Kristan A; Kinnaird, Catherine R; Hornby, T George

    2014-08-01

    Incomplete spinal cord injury (iSCI) often results in significant motor impairments that lead to decreased functional mobility. Loss of descending serotonergic (5HT) input to spinal circuits is thought to contribute to motor impairments, with enhanced motor function demonstrated through augmentation of 5HT signaling. However, the presence of spastic motor behaviors in SCI is attributed, in part, to changes in spinal 5HT receptors that augment their activity in the absence of 5HT, although data demonstrating motor effects of 5HT agents that deactivate these receptors are conflicting. The effects of enhancement or depression of 5HT signaling on locomotor function have not been thoroughly evaluated in human iSCI. Therefore, the aim of the current study was to investigate acute effects of 5HT medications on locomotion in 10 subjects with chronic (>1 year) iSCI. Peak overground and treadmill locomotor performance, including measures of gait kinematics, electromyographic (EMG) activity, and oxygen consumption, were assessed before and after single-dose administration of either a selective serotonin reuptake inhibitor (SSRI) or a 5HT antagonist using a double-blinded, randomized, cross-over design. Results indicate that neither medication led to improvements in locomotion, with a significant decrease in peak overground gait speed observed after 5HT antagonists (from 0.8±0.1 to 0.7±0.1 m/s; p=0.01). Additionally, 5-HT medications had differential effects on EMG activity, with 5HT antagonists decreasing extensor activity and SSRIs increasing flexor activity. Our data therefore suggest that acute manipulation of 5HT signaling, despite changes in muscle activity, does not improve locomotor performance after iSCI.

  6. Descending propriospinal neurons mediate restoration of locomotor function following spinal cord injury

    PubMed Central

    Benthall, Katelyn N.; Hough, Ryan A.

    2016-01-01

    Following spinal cord injury (SCI) in the lamprey, there is virtually complete recovery of locomotion within a few weeks, but interestingly, axonal regeneration of reticulospinal (RS) neurons is mostly limited to short distances caudal to the injury site. To explain this situation, we hypothesize that descending propriospinal (PS) neurons relay descending drive from RS neurons to indirectly activate spinal central pattern generators (CPGs). In the present study, the contributions of PS neurons to locomotor recovery were tested in the lamprey following SCI. First, long RS neuron projections were interrupted by staggered spinal hemitransections on the right side at 10% body length (BL; normalized from the tip of the oral hood) and on the left side at 30% BL. For acute recovery conditions (≤1 wk) and before axonal regeneration, swimming muscle burst activity was relatively normal, but with some deficits in coordination. Second, lampreys received two spaced complete spinal transections, one at 10% BL and one at 30% BL, to interrupt long-axon RS neuron projections. At short recovery times (3–5 wk), RS and PS neurons will have regenerated their axons for short distances and potentially established a polysynaptic descending command pathway. At these short recovery times, swimming muscle burst activity had only minor coordination deficits. A computer model that incorporated either of the two spinal lesions could mimic many aspects of the experimental data. In conclusion, descending PS neurons are a viable mechanism for indirect activation of spinal locomotor CPGs, although there can be coordination deficits of locomotor activity. NEW & NOTEWORTHY In the lamprey following spinal lesion-mediated interruption of long axonal projections of reticulospinal (RS) neurons, sensory stimulation still elicited relatively normal locomotor muscle burst activity, but with some coordination deficits. Computer models incorporating the spinal lesions could mimic many aspects of the

  7. Descending propriospinal neurons mediate restoration of locomotor function following spinal cord injury.

    PubMed

    Benthall, Katelyn N; Hough, Ryan A; McClellan, Andrew D

    2017-01-01

    Following spinal cord injury (SCI) in the lamprey, there is virtually complete recovery of locomotion within a few weeks, but interestingly, axonal regeneration of reticulospinal (RS) neurons is mostly limited to short distances caudal to the injury site. To explain this situation, we hypothesize that descending propriospinal (PS) neurons relay descending drive from RS neurons to indirectly activate spinal central pattern generators (CPGs). In the present study, the contributions of PS neurons to locomotor recovery were tested in the lamprey following SCI. First, long RS neuron projections were interrupted by staggered spinal hemitransections on the right side at 10% body length (BL; normalized from the tip of the oral hood) and on the left side at 30% BL. For acute recovery conditions (≤1 wk) and before axonal regeneration, swimming muscle burst activity was relatively normal, but with some deficits in coordination. Second, lampreys received two spaced complete spinal transections, one at 10% BL and one at 30% BL, to interrupt long-axon RS neuron projections. At short recovery times (3-5 wk), RS and PS neurons will have regenerated their axons for short distances and potentially established a polysynaptic descending command pathway. At these short recovery times, swimming muscle burst activity had only minor coordination deficits. A computer model that incorporated either of the two spinal lesions could mimic many aspects of the experimental data. In conclusion, descending PS neurons are a viable mechanism for indirect activation of spinal locomotor CPGs, although there can be coordination deficits of locomotor activity. In the lamprey following spinal lesion-mediated interruption of long axonal projections of reticulospinal (RS) neurons, sensory stimulation still elicited relatively normal locomotor muscle burst activity, but with some coordination deficits. Computer models incorporating the spinal lesions could mimic many aspects of the experimental results

  8. The Effects of 4-Methylethcathinone on Conditioned Place Preference, Locomotor Sensitization, and Anxiety-Like Behavior: A Comparison with Methamphetamine.

    PubMed

    Xu, Peng; Qiu, Yi; Zhang, Yizhi; Βai, Yanping; Xu, Pengfei; Liu, Yuan; Kim, Jee Hyun; Shen, Hao-wei

    2016-04-01

    4-Methylethcathinone is a drug that belongs to the second generation of synthetic cathinones, and recently it has been ranked among the most popular "legal highs". Although it has similar in vitro neurochemical actions to other drugs such as cocaine, the behavioral effects of 4-methylethcathinone remain to be determined. The addictive potential and locomotor potentiation by 4-methylethcathinone were investigated in rats using the conditioned place preference and sensitization paradigm. Methamphetamine was used as a positive control. Because synthetic cathinones can have psychological effects, we also examined anxiety-like behavior using the elevated plus maze. A conditioning dose of 10 mg/kg 4-methylethcathinone was able to induce conditioned place preference and reinstatement (following 2 weeks of withdrawal). Acute or repeated injections of 4-methylethcathinone at 3 or 10mg/kg failed to alter locomotor activity. At 30 mg/kg, however, acute 4-methylethcathinone increased locomotor activity compared with saline, while chronic 4-methylethcathinone induced a delayed and attenuated sensitization compared with methamphetamine. Additionally, repeated daily injections of 4-methylethcathinone (30 mg/kg) reduced, whereas methamphetamine increased time spent by rats in the open arm of an elevated plus maze compared with saline injections. Interestingly, a 2-week withdrawal period following chronic injections of 4-methylethcathinone or methamphetamine increased time spent in the open arm in all rats. The rewarding properties of 4-methylethcathinone were found to be dissociated from its effects on locomotor activity. Additionally, chronic 4-methylethcathinone use may trigger abnormal anxious behaviors. These behavioral effects caused by 4-methylethcathinone appear to last even after a withdrawal period. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  9. Using a Split-belt Treadmill to Evaluate Generalization of Human Locomotor Adaptation.

    PubMed

    Vasudevan, Erin V L; Hamzey, Rami J; Kirk, Eileen M

    2017-08-23

    Understanding the mechanisms underlying locomotor learning helps researchers and clinicians optimize gait retraining as part of motor rehabilitation. However, studying human locomotor learning can be challenging. During infancy and childhood, the neuromuscular system is quite immature, and it is unlikely that locomotor learning during early stages of development is governed by the same mechanisms as in adulthood. By the time humans reach maturity, they are so proficient at walking that it is difficult to come up with a sufficiently novel task to study de novo locomotor learning. The split-belt treadmill, which has two belts that can drive each leg at a different speed, enables the study of both short- (i.e., immediate) and long-term (i.e., over minutes-days; a form of motor learning) gait modifications in response to a novel change in the walking environment. Individuals can easily be screened for previous exposure to the split-belt treadmill, thus ensuring that all experimental participants have no (or equivalent) prior experience. This paper describes a typical split-belt treadmill adaptation protocol that incorporates testing methods to quantify locomotor learning and generalization of this learning to other walking contexts. A discussion of important considerations for designing split-belt treadmill experiments follows, including factors like treadmill belt speeds, rest breaks, and distractors. Additionally, potential but understudied confounding variables (e.g., arm movements, prior experience) are considered in the discussion.

  10. Eating High Fat Chow Decreases Dopamine Clearance in Adolescent and Adult Male Rats but Selectively Enhances the Locomotor Stimulating Effects of Cocaine in Adolescents

    PubMed Central

    Baladi, Michelle G.; Horton, Rebecca E.; Owens, William A.; Daws, Lynette C.

    2015-01-01

    Background: Feeding conditions can influence dopamine neurotransmission and impact behavioral and neurochemical effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters the locomotor effects of cocaine and dopamine transporter activity in adolescent (postnatal day 25) and adult (postnatal day 75) male Sprague-Dawley rats. Methods: Dose-response curves for cocaine-induced locomotor activity were generated in rats with free access to either standard or high fat chow or restricted access to high fat chow (body weight matched to rats eating standard chow). Results: Compared with eating standard chow, eating high fat chow increased the sensitivity of adolescent, but not adult, rats to the acute effects of cocaine. When tested once per week, sensitization to the locomotor effects of cocaine was enhanced in adolescent rats eating high fat chow compared with adolescent rats eating standard chow. Sensitization to cocaine was not different among feeding conditions in adults. When adolescent rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. As measured by chronoamperometry, dopamine clearance rate in striatum was decreased in both adolescent and adult rats eating high fat chow compared with age-matched rats eating standard chow. Conclusions: These results suggest that high fat diet-induced reductions in dopamine clearance rate do not always correspond to increased sensitivity to the locomotor effects of cocaine, suggesting that mechanisms other than dopamine transporter might play a role. Moreover, in adolescent but not adult rats, eating high fat chow increases sensitivity to cocaine and enhances the sensitization that develops to cocaine. PMID:25805560

  11. Enhanced cocaine-induced locomotor sensitization and intrinsic excitability of NAc medium spiny neurons in adult but not in adolescent rats susceptible to diet-induced obesity.

    PubMed

    Oginsky, Max F; Maust, Joel D; Corthell, John T; Ferrario, Carrie R

    2016-03-01

    Basal and diet-induced differences in mesolimbic function, particularly within the nucleus accumbens (NAc), may contribute to human obesity; these differences may be more pronounced in susceptible populations. We examined differences in cocaine-induced behavioral plasticity in rats that are susceptible vs. resistant to diet-induced obesity and basal differences in striatal neuron function in adult and in adolescent obesity-prone and obesity-resistant rats. Susceptible and resistant outbred rats were identified based on "junk-food" diet-induced obesity. Then, the induction and expression of cocaine-induced locomotor sensitization, which is mediated by enhanced striatal function and is associated with increased motivation for rewards and reward-paired cues, were evaluated. Basal differences in mesolimbic function were examined in selectively bred obesity-prone and obesity-resistant rats (P70-80 and P30-40) using both cocaine-induced locomotion and whole-cell patch clamping approaches in NAc core medium spiny neurons (MSNs). In rats that became obese after eating junk-food, the expression of locomotor sensitization was enhanced compared to non-obese rats, with similarly strong responses to 7.5 and 15 mg/kg cocaine. Without diet manipulation, obesity-prone rats were hyper-responsive to the acute locomotor-activating effects of cocaine, and the intrinsic excitability of NAc core MSNs was enhanced by ∼60 % at positive and negative potentials. These differences were present in adult, but not adolescent rats. Post-synaptic glutamatergic transmission was similar between groups. Mesolimbic systems, particularly NAc MSNs, are hyper-responsive in obesity-prone individuals, and interactions between predisposition and experience influence neurobehavioral plasticity in ways that may promote weight gain and hamper weight loss in susceptible rats.

  12. Effect of Environmental Conditions and Toxic Compounds on the Locomotor Activity of Pediculus humanus capitis (Phthiraptera: Pediculidae).

    PubMed

    Ortega-Insaurralde, I; Toloza, A C; Gonzalez-Audino, P; Mougabure-Cueto, G A; Alvarez-Costa, A; Roca-Acevedo, G; Picollo, M I

    2015-09-01

    In this work, we evaluated the effect of environmental variables such as temperature, humidity, and light on the locomotor activity of Pediculus humanus capitis. In addition, we used selected conditions of temperature, humidity, and light to study the effects of cypermethrin and N,N-diethyl-3-methylbenzamide (DEET) on the locomotor activity of head lice. Head lice increased their locomotor activity in an arena at 30°C compared with activity at 20°C. When we tested the influence of the humidity level, the locomotor activity of head lice showed no significant differences related to humidity level, both at 30°C and 20°C. Concerning light influence, we observed that the higher the intensity of light, the slower the movement of head lice. We also demonstrated that sublethal doses of toxics may alter locomotor activity in adults of head lice. Sublethal doses of cypermethrin induced hyperactivated responses in adult head lice. Sublethal doses of DEET evocated hypoactivated responses in head lice. The observation of stereotyped behavior in head lice elicited by toxic compounds proved that measuring locomotor activity in an experimental set-up where environmental conditions are controlled would be appropriate to evaluate compounds of biological importance, such as molecules involved in the host-parasite interaction and intraspecific relationships. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Elimination of Left-Right Reciprocal Coupling in the Adult Lamprey Spinal Cord Abolishes the Generation of Locomotor Activity

    PubMed Central

    Messina, J. A.; St. Paul, Alison; Hargis, Sarah; Thompson, Wengora E.; McClellan, Andrew D.

    2017-01-01

    The contribution of left-right reciprocal coupling between spinal locomotor networks to the generation of locomotor activity was tested in adult lampreys. Muscle recordings were made from normal animals as well as from experimental animals with rostral midline (ML) spinal lesions (~13%→35% body length, BL), before and after spinal transections (T) at 35% BL. Importantly, in the present study actual locomotor movements and muscle burst activity, as well as other motor activity, were initiated in whole animals by descending brain-spinal pathways in response to sensory stimulation of the anterior head. For experimental animals with ML spinal lesions, sensory stimulation could elicit well-coordinated locomotor muscle burst activity, but with some significant differences in the parameters of locomotor activity compared to those for normal animals. Computer models representing normal animals or experimental animals with ML spinal lesions could mimic many of the differences in locomotor activity. For experimental animals with ML and T spinal lesions, right and left rostral hemi-spinal cords, disconnected from intact caudal cord, usually produced tonic or unpatterned muscle activity. Hemi-spinal cords sometimes generated spontaneous or sensory-evoked relatively high frequency “burstlet” activity that probably is analogous to the previously described in vitro “fast rhythm”, which is thought to represent lamprey locomotor activity. However, “burstlet” activity in the present study had parameters and features that were very different than those for lamprey locomotor activity: average frequencies were ~25 Hz, but individual frequencies could be >50 Hz; burst proportions (BPs) often varied with cycled time; “burstlet” activity usually was not accompanied by a rostrocaudal phase lag; and following ML spinal lesions alone, “burstlet” activity could occur in the presence or absence of swimming burst activity, suggesting the two were generated by different

  14. Home tank water versus novel water differentially affect alcohol-induced locomotor activity and anxiety related behaviours in zebrafish.

    PubMed

    Tran, Steven; Facciol, Amanda; Gerlai, Robert

    2016-05-01

    The zebrafish may be uniquely well suited for studying alcohol's mechanisms of action in vivo, since alcohol can be administered via immersion in a non-invasive manner. Despite the robust behavioural effects of alcohol administration in mammals, studies reporting the locomotor stimulant and anxiolytic effects of alcohol in zebrafish have been inconsistent. In the current study, we examined whether differences in the type of water used for alcohol exposure and behavioural testing contribute to these inconsistencies. To answer this question, we exposed zebrafish to either home water from their housing tanks or novel water from an isolated reservoir (i.e. water lacking zebrafish chemosensory and olfactory cues) with 0% or 1% v/v alcohol for 30 min, a 2 × 2 between subject experimental designs. Behavioural responses were quantified throughout the 30-minute exposure session via a video tracking system. Although control zebrafish exposed to home water and novel water were virtually indistinguishable in their behavioural responses, alcohol's effect on locomotor activity and anxiety-like behavioural responses were dependent on the type of water used for testing. Alcohol exposure in home tank water produced a mild anxiolytic and locomotor stimulant effect, whereas alcohol exposure in novel water produced an anxiogenic effect without altering locomotor activity. These results represent a dissociation between alcohol's effects on locomotor and anxiety related responses, and also illustrate how environmental factors, in this case familiarity with the water, may interact with such effects. In light of these findings, we urge researchers to explicitly state the type of water used. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Development of a home cage locomotor tracking system capable of detecting the stimulant and sedative properties of drugs in rats.

    PubMed

    Dunne, Fergal; O'Halloran, Ambrose; Kelly, John P

    2007-10-01

    The advent of automated locomotor activity methodologies has been extremely useful in removing the subjectivity and bias out of measuring this parameter in rodents. However, many of these behavioural studies are still conducted in novel environments, rather than in ones that the animals are familiar with, such as their home cage. The purpose of the present series of experiments was to develop an automated home cage tracking (HCT) profile using EthoVision software and assessing the acute effects of stimulant (amphetamine and methamphetamine, 0-5 mg/kg, sc) and sedative (diazepam, 0-20 mg/kg, sc and chlordiazepoxide, 0-50 mg/kg sc) drugs in this apparatus. Young adult male Sprague-Dawley rats were used, and the home cage locomotor activity was recorded for 11-60 min following administration (n=4 per group). For amphetamine and methamphetamine, a dose-dependent increase in home cage activity was evident for both drugs, with a plateau, followed by reduction at higher doses. Methamphetamine was more potent, whereas amphetamine produced greater maximal responses. Both diazepam and chlordiazepoxide dose-dependently reduced locomotor activity, with diazepam exhibiting a greater potency and having stronger sedative effects than chlordiazepoxide. Three doses of each drug were selected at the 31-40 min time period following administration, and compared to open field responses. Diazepam, chlordiazepoxide and amphetamine did not produce significant changes in the open field, whilst methamphetamine produced a significant increase in the 2.5 mg/kg group. In conclusion, these studies have successfully developed a sensitive HCT methodology that has been validated using drugs with stimulant and sedative properties in the same test conditions, with relatively small numbers of animals required to produce statistically significant results. It has proven superior to the open field investigations in allowing dose-response effects to be observed over a relatively short observation period

  16. The development and expression of locomotor sensitization to nicotine in the presence of ibogaine.

    PubMed

    Zubaran, C; Shoaib, M; Stolerman, I P

    2000-08-01

    Ibogaine is a naturally occurring psychoactive alkaloid with claimed efficacy in the treatment of certain drug addictions, including nicotine. It has been reported to be a non-competitive blocker of nicotinic receptors, with a potent inhibitory action on nicotinic acetylcholine receptor-mediated catecholamine release. We have investigated the effect of different doses of ibogaine on the development and expression of sensitization to the locomotor stimulant effect of nicotine in rats, a facilitatory process in which a history of exposure to nicotine results in enhanced locomotor activity when the same dose of nicotine is administered repeatedly. The effects were determined of co-administering ibogaine (0.0, 5.0 or 10 mg/kg i.p.) with nicotine (0.0 or 0.4 mg/kg s.c.) daily for 21 days. Dose-response curves for nicotine (0.04-0.8 mg/kg s.c.) were then determined in groups of 10 rats. There was clear sensitization of the locomotor activity produced by nicotine in photocell activity cages but co-administration of ibogaine with nicotine had no effect on the degree of sensitization. Ibogaine (5-20 mg/kg) itself did not influence locomotor activity and was also without effect on the expression of the sensitized response to 0.4 mg/kg of nicotine (n = 10). Thus, there was no evidence that ibogaine may retard or suppress sensitization to nicotine.

  17. Locomotor Expertise Predicts Infants' Perseverative Errors

    ERIC Educational Resources Information Center

    Berger, Sarah E.

    2010-01-01

    This research examined the development of inhibition in a locomotor context. In a within-subjects design, infants received high- and low-demand locomotor A-not-B tasks. In Experiment 1, walking 13-month-old infants followed an indirect path to a goal. In a control condition, infants took a direct route. In Experiment 2, crawling and walking…

  18. Enhanced cocaine-induced locomotor sensitization and intrinsic excitability of NAc medium spiny neurons in adult but not adolescent rats susceptible to diet-induced obesity

    PubMed Central

    Oginsky, Max F.; Maust, Joel D.; Corthell, John T.; Ferrario, Carrie R.

    2015-01-01

    Rationale Basal and diet-induced differences in mesolimbic function, particularly within the nucleus accumbens (NAc), may contribute to human obesity; these differences may be more pronounced in susceptible populations. Objectives We determined whether there are differences in cocaine-induced behavioral plasticity in rats that are susceptible vs. resistant to diet-induced obesity, and basal differences in the striatal neuron function in adult and adolescent obesity-prone and obesity-resistant rats. Methods Susceptible and resistant outbred rats were identified based on “junk-food” diet-induced obesity. Then, the induction and expression of cocaine-induced locomotor sensitization, which is mediated by enhanced striatal function and is associated with increased motivation for rewards and reward-paired cues, were evaluated. Basal differences in mesolimbic function were examined in selectively bred obesity-prone and obesity-resistant rats (P70-80 and P30-40) using both cocaine induced locomotion and whole-cell patch clamping approaches in NAc core medium spiny neurons (MSNs). Results In rats that became obese after eating “junk-food”, the expression of locomotor sensitization was enhanced compared to non-obese rats, with similarly strong responses to 7.5 and 15 mg/kg cocaine. Without diet manipulation, obesity-prone rats were hyper-responsive to the acute locomotor-activating effects of cocaine, and the intrinsic excitability of NAc core MSNs was enhanced by ~60% at positive and negative potentials. These differences were present in adult, but not adolescent rats. Post-synaptic glutamatergic transmission was similar between groups. Conclusions Mesolimbic systems, particularly NAc MSNs, are hyper-responsive in obesity-prone individuals; and interactions between predisposition and experience influence neurobehavioral plasticity in ways that may promote weight gain and hamper weight loss in susceptible rats. PMID:26612617

  19. Different responses of Drosophila subobscura isofemale lines to extremely low frequency magnetic field (50 Hz, 0.5 mT): fitness components and locomotor activity.

    PubMed

    Zmejkoski, Danica; Petković, Branka; Pavković-Lučić, Sofija; Prolić, Zlatko; Anđelković, Marko; Savić, Tatjana

    2017-05-01

    Extremely low frequency (ELF) magnetic fields as essential ecological factors may induce specific responses in genetically different lines. The object of this study was to investigate the impact of the ELF magnetic field on fitness components and locomotor activity of five Drosophila subobscura isofemale (IF) lines. Each D. subobscura IF line, arbitrarily named: B16/1, B24/4, B39/1, B57/2 and B69/5, was maintained in five full-sib inbreeding generations. Their genetic structures were defined based on the mitochondrial DNA variability. Egg-first instar larvae and 1-day-old flies were exposed to an ELF magnetic field (50 Hz, 0.5 mT, 48 h) and thereafter, fitness components and locomotor activity of males and females in an open field test were observed for each selected IF line, respectively. Exposure of egg-first instar larvae to an ELF magnetic field shortened developmental time, and did not affect the viability and sex ratio of D. subobscura IF lines. Exposure of 1-day-old males and females IF lines B16/1 and B24/4 to an ELF magnetic field significantly decreased their locomotor activity and this effect lasted longer in females than males. These results indicate various responses of D. subobscura IF lines to the applied ELF magnetic field depending on their genetic background.

  20. Somatostatin-28 modulates prepulse inhibition of the acoustic startle response, reward processes and spontaneous locomotor activity in rats

    PubMed Central

    Semenova, Svetlana; Hoyer, Daniel; Geyer, Mark A.; Markou, Athina

    2011-01-01

    Somatostatins have been shown to be involved in the pathophysiology of motor and affective disorders, as well as psychiatry disorders, including schizophrenia. We hypothesized that in addition to motor function, somatostatin may be involved in somatosensory gating and reward processes that have been shown to be dysregulated in schizophrenia. Accordingly, we evaluated the effects of intracerebroventricular administration of somatostatin-28 on spontaneous locomotor and exploratory behavior measured in a behavioral pattern monitor, sensorimotor gating, prepulse inhibition (PPI) of the acoustic startle reflex, and brain reward function (measured in a discrete trial intracranial self-stimulation procedure) in rats. Somatostatin-28 decreased spontaneous locomotor activity during the first 10 min of a 60 min testing session with no apparent changes in the exploratory activity of rats. The highest somatostatin-28 dose (10 μg/5 μl/side) induced PPI deficits with no effect on the acoustic startle response or startle response habituation. The somatostatin-induced PPI deficit was partially reversed by administration of SRA-880, a selective somatostatin 1 (sst1) receptor antagonist. Somatostatin-28 also induced elevations in brain reward thresholds, reflecting an anhedonic-like state. SRA-880 had no effect on brain reward function under baseline conditions. Altogether these findings suggest that somatostatin-28 modulates PPI and brain reward function but does not have a robust effect on spontaneous exploratory activity. Thus, increases in somatostatin transmission may represent one of the neurochemical mechanisms underlying anhedonia, one of the negative symptoms of schizophrenia, and sensorimotor gating deficits associated with cognitive impairments in schizophrenia patients. PMID:20537385

  1. Down-regulation of Decapping Protein 2 mediates chronic nicotine exposure-induced locomotor hyperactivity in Drosophila.

    PubMed

    Ren, Jing; Sun, Jinghan; Zhang, Yunpeng; Liu, Tong; Ren, Qingzhong; Li, Yan; Guo, Aike

    2012-01-01

    Long-term tobacco use causes nicotine dependence via the regulation of a wide range of genes and is accompanied by various health problems. Studies in mammalian systems have revealed some key factors involved in the effects of nicotine, including nicotinic acetylcholine receptors (nAChRs), dopamine and other neurotransmitters. Nevertheless, the signaling pathways that link nicotine-induced molecular and behavioral modifications remain elusive. Utilizing a chronic nicotine administration paradigm, we found that adult male fruit flies exhibited locomotor hyperactivity after three consecutive days of nicotine exposure, while nicotine-naive flies did not. Strikingly, this chronic nicotine-induced locomotor hyperactivity (cNILH) was abolished in Decapping Protein 2 or 1 (Dcp2 or Dcp1) -deficient flies, while only Dcp2-deficient flies exhibited higher basal levels of locomotor activity than controls. These results indicate that Dcp2 plays a critical role in the response to chronic nicotine exposure. Moreover, the messenger RNA (mRNA) level of Dcp2 in the fly head was suppressed by chronic nicotine treatment, and up-regulation of Dcp2 expression in the nervous system blocked cNILH. These results indicate that down-regulation of Dcp2 mediates chronic nicotine-exposure-induced locomotor hyperactivity in Drosophila. The decapping proteins play a major role in mRNA degradation; however, their function in the nervous system has rarely been investigated. Our findings reveal a significant role for the mRNA decapping pathway in developing locomotor hyperactivity in response to chronic nicotine exposure and identify Dcp2 as a potential candidate for future research on nicotine dependence.

  2. Down-Regulation of Decapping Protein 2 Mediates Chronic Nicotine Exposure-Induced Locomotor Hyperactivity in Drosophila

    PubMed Central

    Ren, Jing; Sun, Jinghan; Zhang, Yunpeng; Liu, Tong; Ren, Qingzhong; Li, Yan; Guo, Aike

    2012-01-01

    Long-term tobacco use causes nicotine dependence via the regulation of a wide range of genes and is accompanied by various health problems. Studies in mammalian systems have revealed some key factors involved in the effects of nicotine, including nicotinic acetylcholine receptors (nAChRs), dopamine and other neurotransmitters. Nevertheless, the signaling pathways that link nicotine-induced molecular and behavioral modifications remain elusive. Utilizing a chronic nicotine administration paradigm, we found that adult male fruit flies exhibited locomotor hyperactivity after three consecutive days of nicotine exposure, while nicotine-naive flies did not. Strikingly, this chronic nicotine-induced locomotor hyperactivity (cNILH) was abolished in Decapping Protein 2 or 1 (Dcp2 or Dcp1) -deficient flies, while only Dcp2-deficient flies exhibited higher basal levels of locomotor activity than controls. These results indicate that Dcp2 plays a critical role in the response to chronic nicotine exposure. Moreover, the messenger RNA (mRNA) level of Dcp2 in the fly head was suppressed by chronic nicotine treatment, and up-regulation of Dcp2 expression in the nervous system blocked cNILH. These results indicate that down-regulation of Dcp2 mediates chronic nicotine-exposure-induced locomotor hyperactivity in Drosophila. The decapping proteins play a major role in mRNA degradation; however, their function in the nervous system has rarely been investigated. Our findings reveal a significant role for the mRNA decapping pathway in developing locomotor hyperactivity in response to chronic nicotine exposure and identify Dcp2 as a potential candidate for future research on nicotine dependence. PMID:23300696

  3. Divergent selection on home pen locomotor activity in a chicken model: Selection program, genetic parameters and direct response on activity and body weight

    PubMed Central

    2017-01-01

    General locomotor activity (GLA) in poultry has attracted attention, as it negatively influences production costs (energy expenditure and feed consumption) and welfare parameters (bone strength, litter quality, feather pecking and cannibalism). Laying hen lines diverging in the average level of spontaneous locomotor activity in the home pen were developed by genetic selection using the founder New Hampshire line. Activity was recorded using RFID technology at around five weeks of age during four to five days in the home pen. After initial phenotyping, the least active birds were selected for the low activity line and the most active for the high activity line, with no gene transfer between lines. In each of six generations, approximately ten sires were mated to twenty dams producing 158 to 334 offspring per line per generation. The response to selection was rapid and of a considerable magnitude. In sixth generation, the level of GLA was approximately halved in the low and doubled in the high line compared to the control (7.2, 14.9 and 28.7 recordings/h). Estimated heritability of locomotor activity in the low and high line was 0.38 and 0.33, respectively. Males, in general, were more active than females. High line birds were significantly heavier than low line birds. In fourth, fifth, and sixth generation, low as well as high line birds were lighter than control line birds. This selection experiment demonstrates variation in heritability for GLA and, as a result, genetically diverged lines have been developed. These lines can be used as models for further studies of underlying physiological, neural and molecular genetic mechanisms of spontaneous locomotor activity. PMID:28796792

  4. Divergent selection on home pen locomotor activity in a chicken model: Selection program, genetic parameters and direct response on activity and body weight.

    PubMed

    Kjaer, Joergen B

    2017-01-01

    General locomotor activity (GLA) in poultry has attracted attention, as it negatively influences production costs (energy expenditure and feed consumption) and welfare parameters (bone strength, litter quality, feather pecking and cannibalism). Laying hen lines diverging in the average level of spontaneous locomotor activity in the home pen were developed by genetic selection using the founder New Hampshire line. Activity was recorded using RFID technology at around five weeks of age during four to five days in the home pen. After initial phenotyping, the least active birds were selected for the low activity line and the most active for the high activity line, with no gene transfer between lines. In each of six generations, approximately ten sires were mated to twenty dams producing 158 to 334 offspring per line per generation. The response to selection was rapid and of a considerable magnitude. In sixth generation, the level of GLA was approximately halved in the low and doubled in the high line compared to the control (7.2, 14.9 and 28.7 recordings/h). Estimated heritability of locomotor activity in the low and high line was 0.38 and 0.33, respectively. Males, in general, were more active than females. High line birds were significantly heavier than low line birds. In fourth, fifth, and sixth generation, low as well as high line birds were lighter than control line birds. This selection experiment demonstrates variation in heritability for GLA and, as a result, genetically diverged lines have been developed. These lines can be used as models for further studies of underlying physiological, neural and molecular genetic mechanisms of spontaneous locomotor activity.

  5. Behavioral cross-sensitization between DOCA-induced sodium appetite and cocaine-induced locomotor behavior

    PubMed Central

    Acerbo, Martin J.; Johnson, Alan Kim

    2011-01-01

    Behavioral sensitization involves increases in the magnitude of a response to a stimulus after repeated exposures to the same response initiator. Administration of psychomotor stimulants and the induction of appetitive motivational states associated with natural reinforcers like sugar and salt are among experimental manipulations producing behavioral sensitization. In rats, repeated administration of the mineralocorticoid agonist deoxycorticosterone acetate (DOCA) initially induces incremental increases in daily hypertonic saline consumption (i.e., sensitization of sodium appetite) in spite of the retention of sodium. The present studies investigated whether sodium appetite sensitization induced by DOCA shares mechanisms similar to those of psychomotor stimulant-induced sensitization, and whether there is evidence for reciprocal cross-sensitization. In Experiments 1 and 3, rats received control or cocaine treatments to induce locomotor sensitization. A week later DOCA (or vehicle) was administered to generate a sodium appetite. Animals pretreated with cocaine showed a greater sodium appetite. In Experiment 2, the order of the putative sensitizing treatments was reversed. Rats first received either a series of DOCA or vehicle treatments either with or without access to saline and were later tested for sensitization of the locomotor response to cocaine. Animals pretreated with DOCA without access to saline showed greater locomotor responses to cocaine than animals receiving vehicle treatments. Together these experiments indicate that treatments generating a sustained salt appetite and producing cocaine-induced psychomotor responses show reciprocal behavioral cross-sensitization. The underlying mechanisms accounting for this relationship may be the fact that psychostimulants and an unresolved craving for sodium can act as potent stressors. PMID:21352848

  6. Eating high fat chow decreases dopamine clearance in adolescent and adult male rats but selectively enhances the locomotor stimulating effects of cocaine in adolescents.

    PubMed

    Baladi, Michelle G; Horton, Rebecca E; Owens, William A; Daws, Lynette C; France, Charles P

    2015-03-24

    Feeding conditions can influence dopamine neurotransmission and impact behavioral and neurochemical effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters the locomotor effects of cocaine and dopamine transporter activity in adolescent (postnatal day 25) and adult (postnatal day 75) male Sprague-Dawley rats. Dose-response curves for cocaine-induced locomotor activity were generated in rats with free access to either standard or high fat chow or restricted access to high fat chow (body weight matched to rats eating standard chow). Compared with eating standard chow, eating high fat chow increased the sensitivity of adolescent, but not adult, rats to the acute effects of cocaine. When tested once per week, sensitization to the locomotor effects of cocaine was enhanced in adolescent rats eating high fat chow compared with adolescent rats eating standard chow. Sensitization to cocaine was not different among feeding conditions in adults. When adolescent rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. As measured by chronoamperometry, dopamine clearance rate in striatum was decreased in both adolescent and adult rats eating high fat chow compared with age-matched rats eating standard chow. These results suggest that high fat diet-induced reductions in dopamine clearance rate do not always correspond to increased sensitivity to the locomotor effects of cocaine, suggesting that mechanisms other than dopamine transporter might play a role. Moreover, in adolescent but not adult rats, eating high fat chow increases sensitivity to cocaine and enhances the sensitization that develops to cocaine. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  7. Circadian Disruption Alters the Effects of Lipopolysaccharide Treatment on Circadian and Ultradian Locomotor Activity and Body Temperature Rhythms of Female Siberian Hamsters

    PubMed Central

    Prendergast, Brian J.; Cable, Erin J.; Stevenson, Tyler J.; Onishi, Kenneth G.; Zucker, Irving; Kay, Leslie M.

    2016-01-01

    The effect of circadian rhythm (CR) disruption on immune function depends on the method by which CRs are disrupted. Behavioral and thermoregulatory responses induced by lipopolysaccharide (LPS) treatment were assessed in female Siberian hamsters in which circadian locomotor activity (LMA) rhythms were eliminated by exposure to a disruptive phase-shifting protocol (DPS) that sustains arrhythmicity even when hamsters are housed in a light-dark cycle. This noninvasive treatment avoids genome manipulations and neurological damage associated with other models of CR disruption. Circadian rhythmic (RHYTH) and arrhythmic (ARR) hamsters housed in a 16L:8D photocycle were injected with bacterial LPS near the onset of the light (zeitgeber time 1; ZT1) or dark (ZT16) phase. LPS injections at ZT16 and ZT1 elicited febrile responses in both RHYTH and ARR hamsters, but the effect was attenuated in the arrhythmic females. In ZT16, LPS inhibited LMA in the dark phase immediately after injection but not on subsequent nights in both chronotypes; in contrast, LPS at ZT1 elicited more enduring (~4 day) locomotor hypoactivity in ARR than in RHYTH hamsters. Power and period of dark-phase ultradian rhythms (URs) in LMA and Tb were markedly altered by LPS treatment, as was the power in the circadian waveform. Disrupted circadian rhythms in this model system attenuated responses to LPS in a trait- and ZT-specific manner; changes in UR period and power are novel components of the acute-phase response to infection that may affect energy conservation. PMID:26566981

  8. Predictive and Reactive Locomotor Adaptability in Healthy Elderly: A Systematic Review and Meta-Analysis.

    PubMed

    Bohm, Sebastian; Mademli, Lida; Mersmann, Falk; Arampatzis, Adamantios

    2015-12-01

    Locomotor adaptability is based on the implementation of error-feedback information from previous perturbations to predictively adapt to expected perturbations (feedforward) and to facilitate reactive responses in recurring unexpected perturbations ('savings'). The effect of aging on predictive and reactive adaptability is yet unclear. However, such understanding is fundamental for the design and application of effective interventions targeting fall prevention. We systematically searched the Web of Science, MEDLINE, Embase and Science Direct databases as well as the reference lists of the eligible articles. A study was included if it addressed an investigation of the locomotor adaptability in response to repeated mechanical movement perturbations of healthy older adults (≥60 years). The weighted average effect size (WAES) of the general adaptability (adaptive motor responses to repeated perturbations) as well as predictive (after-effects) and reactive adaptation (feedback responses to a recurring unexpected perturbation) was calculated and tested for an overall effect. A subgroup analysis was performed regarding the factor age group [i.e., young (≤35 years) vs. older adults]. Furthermore, the methodological study quality was assessed. The review process yielded 18 studies [1009 participants, 613 older adults (70 ± 4 years)], which used various kinds of locomotor tasks and perturbations. The WAES for the general locomotor adaptability was 1.21 [95% confidence interval (CI) 0.68-1.74, n = 11] for the older and 1.39 (95% CI 0.90-1.89, n = 10) for the young adults with a significant (p < 0.05) overall effect for both age groups and no significant subgroup differences. Similar results were found for the predictive (older: WAES 1.10, 95% CI 0.37-1.83, n = 8; young: WAES 1.54, 95% CI 0.11-2.97, n = 7) and reactive (older: WAES 1.09, 95% CI 0.22-1.96, n = 5; young: WAES 1.35, 95% CI 0.60-2.09, n = 5) adaptation featuring significant (p < 0.05) overall effects without

  9. Zebrafish Locomotor Responses Predict Irritant Potential of ...

    EPA Pesticide Factsheets

    Over the past few decades, the drying and warming trends of global climate change have increased wildland fire (WF) season length, as well as geographic area impacted. Consequently, exposures to WF fine particulate matter (PM2.5; aerodynamic diameter <2.5 µm) are likely to increase in frequency and duration, contributing to a growing public health burden. Given the influence of fuel type and combustion conditions on WFPM2.5 composition, there is pressing need to identify the biomass fuel sources and emission constituents that drive toxicity. Previously, we reported the utility of 6-day post-fertilization (dpf) zebrafish larvae in evaluating diesel exhaust PM-induced irritation, demonstrating responses analogous to those in mammals. In the present study, combustions, separated by smoldering or flaming conditions, of pine needles, red oak, pine, eucalyptus, and peat were achieved using an automated tube furnace paired with a cryo-trapping apparatus to collect condensates of emissions. The condensates were extracted and prepared for use in zebrafish assays. We hypothesized that 1) the extractable organic fractions of biomass smoke PM will elicit dose-dependent irritant responses in 6-dpf zebrafish larvae, and 2) the relative potencies will vary across biomass emissions, potentially driven by varying chemical composition of fuel sources. Six-dpf zebrafish (n= 28-32/group) were exposed acutely to PM extracts (5 concentrations; 0.3-30 µg/ml; half-log intervals) and

  10. Cerebellar contribution to locomotor behavior: A neurodevelopmental perspective.

    PubMed

    Sathyanesan, Aaron; Gallo, Vittorio

    2018-04-30

    The developmental trajectory of the formation of cerebellar circuitry has significant implications for locomotor plasticity and adaptive learning at later stages. While there is a wealth of knowledge on the development of locomotor behavior in human infants, children, and adolescents, pre-clinical animal models have fallen behind on the study of the emergence of behavioral motifs in locomotor function across postnatal development. Since cerebellar development is protracted, it is subject to higher risk of genetic or environmental disruption, potentially leading to abnormal behavioral development. This highlights the need for more sophisticated and specific functional analyses of adaptive cerebellar behavior within the context of whole-body locomotion across the entire span of postnatal development. Here we review evidence on cerebellar contribution to adaptive locomotor behavior, highlighting methodologies employed to quantify and categorize behavior at different developmental stages, with the ultimate goal of following the course of early behavioral alterations in neurodevelopmental disorders. Since experimental paradigms used to study cerebellar behavior are lacking in both specificity and applicability to locomotor contexts, we highlight the use of the Erasmus Ladder - an advanced, computerized, fully automated system to quantify adaptive cerebellar learning in conjunction with locomotor function. Finally, we emphasize the need to develop objective, quantitative, behavioral tasks which can track changes in developmental trajectories rather than endpoint measurement at the adult stage of behavior. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. A selective, non-peptide CRF receptor 1 antagonist prevents sodium lactate-induced acute panic-like responses.

    PubMed

    Shekhar, Anantha; Johnson, Philip L; Fitz, Stephanie D; Nakazato, Atsuro; Chaki, Shigeyuki; Steckler, Thomas; Schmidt, Mark

    2011-04-01

    Corticotropin releasing factor (CRF) is implicated in a variety of stress-related disorders such as depression and anxiety, and blocking CRF receptors is a putative strategy for treating such disorders. Using a well-studied animal model of panic, we tested the efficacy of JNJ19567470/CRA5626, a selective, non-peptidergic CRF type 1 receptor (CRF1) antagonist (3, 10 and 40 mg/kg intraperitoneal injection), in preventing the sodium lactate (NaLac)-induced panic-like behavioural and cardiovascular responses. Adult male rats with chronic reduction of GABA levels (by inhibition of GABA synthesis with l-allyglycine, a glutamic acid decarboxylase inhibitor) in the dorsomedial/perifornical hypothalamus are highly anxious and exhibit physiological and behavioural responses to intravenous NaLac infusions similar to patients with panic disorder. These 'panic-prone' rats pre-treated with vehicle injections displayed NaLac-induced increases in autonomic responses (i.e. tachycardia and hypertensive responses), anxiety-like behaviour in the social interaction test, and flight-like increases in locomotor activity. However, systemically injecting such panic-prone rats with the highest dose of CRF1 receptor antagonist prior to NaLac infusions blocked all NaLac-induced behaviour and cardiovascular responses. These data suggest that selective CRF1 receptor antagonists could be a novel target for developing anti-panic drugs that are as effective as benzodiazepines in acute treatment of a panic attack without the deleterious side-effects (e.g. sedation and cognitive impairment) associated with benzodiazepines.

  12. Locomotor-respiratory coupling during axillary crutch ambulation.

    PubMed

    Hurst, C A; Kirby, R L; MacLeod, D A

    2001-11-01

    To test the hypotheses that locomotor-respiratory coupling occurs in humans using axillary crutches in a swing-through ambulation pattern and that expiration occurs during crutch-stance phase during locomotor-respiratory coupling. Eighteen able-bodied persons were trained in one-footed swing-through gait with axillary crutches. Then, as subjects walked at "somewhat hard" speeds (Borg) on a motorized treadmill for 5 min, we recorded signals from a crutch pressure switch and a mouthpiece-mounted thermocouple. Coupling was defined as being present when the onset of inspiration varied by < or = 5% with respect to the onset of the crutch gait cycle for a minimum of 10 consecutive gait cycles and when there was no drift on a raster plot of the respiratory phases relative to the onset of the gait cycle. Ten (56%) of the 18 subjects exhibited locomotor-respiratory coupling on 1-4 occasions each, with episodes lasting 11.3-148 sec. In 17 (89%) of the 19 episodes of 1:1 locomotor-respiratory coupling, expiration occurred during the crutch-stance phase of the gait cycle and inspiration occurred during crutch swing. Transient 1:1 locomotor-respiratory coupling occurs in many able-bodied subjects ambulating with axillary crutches and a swing-through gait. Expiration is most often associated with the crutch-stance phase of the gait cycle. This study may have implications for training axillary crutch users.

  13. Spontaneous individual differences in cognitive performances of young adult rats predict locomotor response to amphetamine.

    PubMed

    Dellu-Hagedorn, F

    2005-01-01

    Inter-individual differences in cognitive capacities of young adult rats have largely been ignored. To explore this variability and its neurobiological bases, the relationships between individual differences in working memory and locomotor responses to novelty and to amphetamine were investigated in SD rats. Groups of good and poor learners were isolated, the latter demonstrating a markedly slower learning of the task compared to performant rats, with more perseverations independently to motivational state. They also presented a much higher increase in amphetamine-induced locomotion that remained significant for more than 1h after the injection. These results provide evidence that variability in cognitive capacities can be used to reveal their neurobiological substrates. They open new perspectives to study a possible cognitive origin of addictive behaviors and to investigate the involvement of these inter-individual differences on those observed later in life.

  14. Dynamic Locomotor Capabilities Revealed by Early Dinosaur Trackmakers from Southern Africa

    PubMed Central

    Wilson, Jeffrey A.; Marsicano, Claudia A.; Smith, Roger M. H.

    2009-01-01

    Background A new investigation of the sedimentology and ichnology of the Early Jurassic Moyeni tracksite in Lesotho, southern Africa has yielded new insights into the behavior and locomotor dynamics of early dinosaurs. Methodology/Principal Findings The tracksite is an ancient point bar preserving a heterogeneous substrate of varied consistency and inclination that includes a ripple-marked riverbed, a bar slope, and a stable algal-matted bar top surface. Several basal ornithischian dinosaurs and a single theropod dinosaur crossed its surface within days or perhaps weeks of one another, but responded to substrate heterogeneity differently. Whereas the theropod trackmaker accommodated sloping and slippery surfaces by gripping the substrate with its pedal claws, the basal ornithischian trackmakers adjusted to the terrain by changing between quadrupedal and bipedal stance, wide and narrow gauge limb support (abduction range = 31°), and plantigrade and digitigrade foot posture. Conclusions/Significance The locomotor adjustments coincide with changes in substrate consistency along the trackway and appear to reflect ‘real time’ responses to a complex terrain. It is proposed that these responses foreshadow important locomotor transformations characterizing the later evolution of the two main dinosaur lineages. Ornithischians, which shifted from bipedal to quadrupedal posture at least three times in their evolutionary history, are shown to have been capable of adopting both postures early in their evolutionary history. The substrate-gripping behavior demonstrated by the early theropod, in turn, is consistent with the hypothesized function of pedal claws in bird ancestors. PMID:19806213

  15. Dynamic locomotor capabilities revealed by early dinosaur trackmakers from southern Africa.

    PubMed

    Wilson, Jeffrey A; Marsicano, Claudia A; Smith, Roger M H

    2009-10-06

    A new investigation of the sedimentology and ichnology of the Early Jurassic Moyeni tracksite in Lesotho, southern Africa has yielded new insights into the behavior and locomotor dynamics of early dinosaurs. The tracksite is an ancient point bar preserving a heterogeneous substrate of varied consistency and inclination that includes a ripple-marked riverbed, a bar slope, and a stable algal-matted bar top surface. Several basal ornithischian dinosaurs and a single theropod dinosaur crossed its surface within days or perhaps weeks of one another, but responded to substrate heterogeneity differently. Whereas the theropod trackmaker accommodated sloping and slippery surfaces by gripping the substrate with its pedal claws, the basal ornithischian trackmakers adjusted to the terrain by changing between quadrupedal and bipedal stance, wide and narrow gauge limb support (abduction range = 31 degrees ), and plantigrade and digitigrade foot posture. The locomotor adjustments coincide with changes in substrate consistency along the trackway and appear to reflect 'real time' responses to a complex terrain. It is proposed that these responses foreshadow important locomotor transformations characterizing the later evolution of the two main dinosaur lineages. Ornithischians, which shifted from bipedal to quadrupedal posture at least three times in their evolutionary history, are shown to have been capable of adopting both postures early in their evolutionary history. The substrate-gripping behavior demonstrated by the early theropod, in turn, is consistent with the hypothesized function of pedal claws in bird ancestors.

  16. Locomotor activity: A distinctive index in morphine self-administration in rats

    PubMed Central

    Kong, Qingyao

    2017-01-01

    Self-administration of addictive drugs is a widely used tool for studying behavioral, neurobiological, and genetic factors in addiction. However, how locomotor activity is affected during self-administration of addictive drugs has not been extensively studied. In our present study, we tested the locomotor activity levels during acquisition, extinction and reinstatement of morphine self-administration in rats. We found that compared with saline self-administration (SA), rats that trained with morphine SA had higher locomotor activity. Rats that successfully acquired SA also showed higher locomotor activity than rats that failed in acquiring SA. Moreover, locomotor activity was correlated with the number of drug infusions but not with the number of inactive pokes. We also tested the locomotor activity in the extinction and the morphine-primed reinstatement session. Interestingly, we found that in the first extinction session, although the number of active pokes did not change, the locomotor activity was significantly lower than in the last acquisition session, and this decrease can be maintained for at least six days. Finally, morphine priming enhanced the locomotor activity during the reinstatement test, regardless of if the active pokes were significantly increased or not. Our results clearly suggest that locomotor activity, which may reflect the pharmacological effects of morphine, is different from drug seeking behavior and is a distinctive index in drug self-administration. PMID:28380023

  17. Locomotor activity: A distinctive index in morphine self-administration in rats.

    PubMed

    Zhang, Jian-Jun; Kong, Qingyao

    2017-01-01

    Self-administration of addictive drugs is a widely used tool for studying behavioral, neurobiological, and genetic factors in addiction. However, how locomotor activity is affected during self-administration of addictive drugs has not been extensively studied. In our present study, we tested the locomotor activity levels during acquisition, extinction and reinstatement of morphine self-administration in rats. We found that compared with saline self-administration (SA), rats that trained with morphine SA had higher locomotor activity. Rats that successfully acquired SA also showed higher locomotor activity than rats that failed in acquiring SA. Moreover, locomotor activity was correlated with the number of drug infusions but not with the number of inactive pokes. We also tested the locomotor activity in the extinction and the morphine-primed reinstatement session. Interestingly, we found that in the first extinction session, although the number of active pokes did not change, the locomotor activity was significantly lower than in the last acquisition session, and this decrease can be maintained for at least six days. Finally, morphine priming enhanced the locomotor activity during the reinstatement test, regardless of if the active pokes were significantly increased or not. Our results clearly suggest that locomotor activity, which may reflect the pharmacological effects of morphine, is different from drug seeking behavior and is a distinctive index in drug self-administration.

  18. Mirtazapine attenuates the expression of nicotine-induced locomotor sensitization in rats.

    PubMed

    Barbosa-Méndez, Susana; Jurado, Noé; Matus-Ortega, Maura; Martiñon, Susana; Heinze, Gerardo; Salazar-Juárez, Alberto

    2017-10-05

    Nicotine is the primary psychoactive component of tobacco. Many addictive nicotinic actions are mediated by an increase in the activity of the serotonin (5-HT) system. Some studies show that the 5-HT 2A , 5-HT 2C , and 5-HT 3 receptors have a central role in the induction and expression of nicotine-induced locomotor sensitization. Mirtazapine, an antagonist of the α 2- adrenergic receptors, the 5-HT 2A/C , and the 5-HT 3 receptors, has proven effective in reducing behavioral effects induced by drugs like cocaine and methamphetamines in human and animal. In this study, we evaluated the effect of mirtazapine on the locomotor activity and on the expression of nicotine-induced locomotor sensitization. We used the nicotine locomotor sensitization paradigm to assess the effects of mirtazapine on nicotine-induced locomotor activity and locomotor sensitization. Mirtazapine (30mg/kg, i.p.) was administered during extinction. Our study found that mirtazapine attenuated the expression of locomotor sensitization induced by different nicotine doses, decreased the duration of locomotor effects and locomotor activity induced by binge administration of nicotine. In addition, our study revealed that treatment with mirtazapine for 60 days produced an enhanced attenuation of nicotine-induced locomotor activity during the expression phase of behavioral sensitization, compared to that obtained when mirtazapine was administered for 30 days. This suggests that use of mirtazapine in controlled clinical trials may be a useful therapy to maintain abstinence for long periods. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Dietary Omega-3 Fatty Acids Differentially Impact Acute Ethanol-Responsive Behaviors and Ethanol Consumption in DBA/2J Versus C57BL/6J Mice.

    PubMed

    Wolstenholme, Jennifer T; Bowers, M Scott; Pais, Alexander B; Pais, A Christian; Poland, Ryan S; Poklis, Justin L; Davies, Andrew G; Bettinger, Jill C

    2018-05-22

    Complex interactions between environmental and genetic factors influence the risk of developing alcohol use disorder (AUD) in humans. To date, studies of the impact of environment on AUD risk have primarily focused on psychological characteristics or on the effects of developmental exposure to ethanol (EtOH). We recently observed that modifying levels of the long-chain ω-3 (LC ω-3) fatty acid, eicosapentaenoic acid (EPA), alters acute physiological responses to EtOH in Caenorhabditis elegans. Because mammals derive ω-3 fatty acids from their diet, here we asked if manipulating dietary levels of LC ω-3 fatty acids can affect EtOH-responsive behaviors in mice. We used 2 well-characterized inbred mouse strains, C57BL/6J (B6) and DBA/2J (D2), which differ in their responses to EtOH. Age-matched young adult male mice were maintained on isocaloric diets that differed only by being enriched or depleted in LC ω-3 fatty acids. Animals were subsequently tested for acute EtOH sensitivity (locomotor activation and sedation), voluntary consumption, and metabolism. Fat deposition was also determined. We found that dietary levels of LC ω-3s altered EtOH sensitivity and consumption in a genotype-specific manner. Both B6 and D2 animals fed high LC ω-3 diets demonstrated lower EtOH-induced locomotor stimulation than those fed low LC ω-3 diets. EtOH sedation and EtOH metabolism were greater in D2, but not B6 mice on the high LC ω-3 diet. Conversely, LC ω-3 dietary manipulation altered EtOH consumption in B6, but not in D2 mice. B6 mice on a high LC ω-3 diet consumed more EtOH in a 2-bottle choice intermittent access model than B6 mice on a low LC ω-3 diet. Because EtOH sensitivity is predictive of risk of developing AUD in humans, our data indicate that dietary LC ω-3 levels should be evaluated for their impact on AUD risk in humans. Further, these studies indicate that genetic background can interact with fatty acids in the diet to significantly alter EtOH-responsive

  20. Continuous tamoxifen delivery improves locomotor recovery 6h after spinal cord injury by neuronal and glial mechanisms in male rats.

    PubMed

    Colón, Jennifer M; González, Pablo A; Cajigas, Ámbar; Maldonado, Wanda I; Torrado, Aranza I; Santiago, José M; Salgado, Iris K; Miranda, Jorge D

    2018-01-01

    No treatment is available for patients with spinal cord injury (SCI). Patients often arrive to the hospital hours after SCI suggesting the need of a therapy that can be used on a clinically relevant window. Previous studies showed that Tamoxifen (TAM) treatment 24h after SCI benefits locomotor recovery in female rats. Tamoxifen exerts beneficial effects in male and female rodents but a gap of knowledge exists on: the therapeutic window of TAM, the spatio-temporal mechanisms activated and if this response is sexually dimorphic. We hypothesized that TAM will favor locomotor recovery when administered up-to 24h after SCI in male Sprague-Dawley rats. Rats received a thoracic (T10) contusion using the MACSIS impactor followed by placebo or TAM (15mg/21days) pellets in a therapeutic window of 0, 6, 12, or 24h. Animals were sacrificed at 2, 7, 14, 28 or 35days post injury (DPI) to study the molecular and cellular changes in the acute and chronic stages. Immediate or delayed therapy (t=6h) improved locomotor function, increased white matter spared tissue, and neuronal survival. TAM reduced reactive gliosis during chronic stages and increased the expression of Olig-2. A significant difference was observed in estrogen receptor alpha between male and female rodents from 2 to 28 DPI suggesting a sexually dimorphic characteristic that could be related to the behavioral differences observed in the therapeutic window of TAM. This study supports the use of TAM in the SCI setting due to its neuroprotective effects but with a significant sexually dimorphic therapeutic window. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Opioid administration following spinal cord injury: Implications for pain and locomotor recovery

    PubMed Central

    Woller, Sarah A.; Hook, Michelle A.

    2013-01-01

    Approximately one-third of people with a spinal cord injury (SCI) will experience persistent neuropathic pain following injury. This pain negatively affects quality of life and is difficult to treat. Opioids are among the most effective drug treatments, and are commonly prescribed, but experimental evidence suggests that opioid treatment in the acute phase of injury can attenuate recovery of locomotor function. In fact, spinal cord injury and opioid administration share several common features (e.g. central sensitization, excitotoxicity, aberrant glial activation) that have been linked to impaired recovery of function, as well as the development of pain. Despite these effects, the interactions between opioid use and spinal cord injury have not been fully explored. A review of the literature, described here, suggests that caution is warranted when administering opioids after SCI. Opioid administration may synergistically contribute to the pathology of SCI to increase the development of pain, decrease locomotor recovery, and leave individuals at risk for infection. Considering these negative implications, it is important that guidelines are established for the use of opioids following spinal cord and other central nervous system injuries. PMID:23501709

  2. Neurochemical excitation of propriospinal neurons facilitates locomotor command signal transmission in the lesioned spinal cord.

    PubMed

    Zaporozhets, Eugene; Cowley, Kristine C; Schmidt, Brian J

    2011-06-01

    Previous studies of the in vitro neonatal rat brain stem-spinal cord showed that propriospinal relays contribute to descending transmission of a supraspinal command signal that is capable of activating locomotion. Using the same preparation, the present series examines whether enhanced excitation of thoracic propriospinal neurons facilitates propagation of the locomotor command signal in the lesioned spinal cord. First, we identified neurotransmitters contributing to normal endogenous propriospinal transmission of the locomotor command signal by testing the effect of receptor antagonists applied to cervicothoracic segments during brain stem-induced locomotor-like activity. Spinal cords were either intact or contained staggered bilateral hemisections located at right T1/T2 and left T10/T11 junctions designed to abolish direct long-projecting bulbospinal axons. Serotonergic, noradrenergic, dopaminergic, and glutamatergic, but not cholinergic, receptor antagonists blocked locomotor-like activity. Approximately 73% of preparations with staggered bilateral hemisections failed to generate locomotor-like activity in response to electrical stimulation of the brain stem alone; such preparations were used to test the effect of neuroactive substances applied to thoracic segments (bath barriers placed at T3 and T9) during brain stem stimulation. The percentage of preparations developing locomotor-like activity was as follows: 5-HT (43%), 5-HT/N-methyl-D-aspartate (NMDA; 33%), quipazine (42%), 8-hydroxy-2-(di-n-propylamino)tetralin (20%), methoxamine (45%), and elevated bath K(+) concentration (29%). Combined norepinephrine and dopamine increased the success rate (67%) compared with the use of either agent alone (4 and 7%, respectively). NMDA, Mg(2+) ion removal, clonidine, and acetylcholine were ineffective. The results provide proof of principle that artificial excitation of thoracic propriospinal neurons can improve supraspinal control over hindlimb locomotor networks in the

  3. Human physiological responses to cold exposure: Acute responses and acclimatization to prolonged exposure.

    PubMed

    Castellani, John W; Young, Andrew J

    2016-04-01

    Cold exposure in humans causes specific acute and chronic physiological responses. This paper will review both the acute and long-term physiological responses and external factors that impact these physiological responses. Acute physiological responses to cold exposure include cutaneous vasoconstriction and shivering thermogenesis which, respectively, decrease heat loss and increase metabolic heat production. Vasoconstriction is elicited through reflex and local cooling. In combination, vasoconstriction and shivering operate to maintain thermal balance when the body is losing heat. Factors (anthropometry, sex, race, fitness, thermoregulatory fatigue) that influence the acute physiological responses to cold exposure are also reviewed. The physiological responses to chronic cold exposure, also known as cold acclimation/acclimatization, are also presented. Three primary patterns of cold acclimatization have been observed, a) habituation, b) metabolic adjustment, and c) insulative adjustment. Habituation is characterized by physiological adjustments in which the response is attenuated compared to an unacclimatized state. Metabolic acclimatization is characterized by an increased thermogenesis, whereas insulative acclimatization is characterized by enhancing the mechanisms that conserve body heat. The pattern of acclimatization is dependent on changes in skin and core temperature and the exposure duration. Published by Elsevier B.V.

  4. Striatal dopamine dynamics in mice following acute and repeated toluene exposure.

    PubMed

    Apawu, Aaron K; Mathews, Tiffany A; Bowen, Scott E

    2015-01-01

    The abused inhalant toluene has potent behavioral effects, but only recently has progress been made in understanding the neurochemical actions that mediate the action of toluene in the brain. Available evidence suggests that toluene inhalation alters dopamine (DA) neurotransmission, but toluene's mechanism of action is unknown. The present study evaluated the effect of acute and repeated toluene inhalation (0, 2,000, or 4,000 ppm) on locomotor activity as well as striatal DA release and uptake using slice fast-scan cyclic voltammetry. Acutely, 2,000 and 4,000 ppm toluene increased locomotor activity, while neurochemically only 4,000 ppm toluene potentiated electrically evoked DA release across the caudate-putamen and the nucleus accumbens. Repeated administration of toluene resulted in sensitization to toluene's locomotor activity effects. Brain slices obtained from mice repeatedly exposed to toluene demonstrated no difference in stimulated DA release in the caudate-putamen as compared to control animals. Repeated exposure to 2,000 and 4,000 ppm toluene caused a concentration-dependent decrease of 25-50 % in evoked DA release in the nucleus accumbens core and shell relative to air-exposed mice. These voltammetric neurochemical findings following repeated toluene exposure suggest that there may be a compensatory downregulation of the DA system. Acute or repeated toluene exposure had no effect on the DA uptake kinetics. Taken together, these results demonstrate that acute toluene inhalation potentiates DA release, while repeated toluene exposure attenuates DA release in the nucleus accumbens only.

  5. Distributed plasticity of locomotor pattern generators in spinal cord injured patients.

    PubMed

    Grasso, Renato; Ivanenko, Yuri P; Zago, Myrka; Molinari, Marco; Scivoletto, Giorgio; Castellano, Vincenzo; Macellari, Velio; Lacquaniti, Francesco

    2004-05-01

    Recent progress with spinal cord injured (SCI) patients indicates that with training they can recover some locomotor ability. Here we addressed the question of whether locomotor responses developed with training depend on re-activation of the normal motor patterns or whether they depend on learning new motor patterns. To this end we recorded detailed kinematic and EMG data in SCI patients trained to step on a treadmill with body-weight support (BWST), and in healthy subjects. We found that all patients could be trained to step with BWST in the laboratory conditions, but they used new coordinative strategies. Patients with more severe lesions used their arms and body to assist the leg movements via the biomechanical coupling of limb and body segments. In all patients, the phase-relationship of the angular motion of the different lower limb segments was very different from the control, as was the pattern of activity of most recorded muscles. Surprisingly, however, the new motor strategies were quite effective in generating foot motion that closely matched the normal in the laboratory conditions. With training, foot motion recovered the shape, the step-by-step reproducibility, and the two-thirds power relationship between curvature and velocity that characterize normal gait. We mapped the recorded patterns of muscle activity onto the approximate rostrocaudal location of motor neuron pools in the human spinal cord. The reconstructed spatiotemporal maps of motor neuron activity in SCI patients were quite different from those of healthy subjects. At the end of training, the locomotor network reorganized at both supralesional and sublesional levels, from the cervical to the sacral cord segments. We conclude that locomotor responses in SCI patients may not be subserved by changes localized to limited regions of the spinal cord, but may depend on a plastic redistribution of activity across most of the rostrocaudal extent of the spinal cord. Distributed plasticity underlies

  6. A behavioural comparison of acute and chronic Delta9-tetrahydrocannabinol and cannabidiol in C57BL/6JArc mice.

    PubMed

    Long, Leonora E; Chesworth, Rose; Huang, Xu-Feng; McGregor, Iain S; Arnold, Jonathon C; Karl, Tim

    2010-08-01

    Cannabis contains over 70 unique compounds and its abuse is linked to an increased risk of developing schizophrenia. The behavioural profiles of the psychotropic cannabis constituent Delta9-tetrahydrocannabinol (Delta9-THC) and the non-psychotomimetic constituent cannabidiol (CBD) were investigated with a battery of behavioural tests relevant to anxiety and positive, negative and cognitive symptoms of schizophrenia. Male adult C57BL/6JArc mice were given 21 daily intraperitoneal injections of vehicle, Delta9-THC (0.3, 1, 3 or 10 mg/kg) or CBD (1, 5, 10 or 50 mg/kg). Delta9-THC produced the classic cannabinoid CB1 receptor-mediated tetrad of hypolocomotion, analgesia, catalepsy and hypothermia while CBD had modest hyperthermic effects. While sedative at this dose, Delta9-THC (10 mg/kg) produced locomotor-independent anxiogenic effects in the open-field and light-dark tests. Chronic CBD produced moderate anxiolytic-like effects in the open-field test at 50 mg/kg and in the light-dark test at a low dose (1 mg/kg). Acute and chronic Delta9-THC (10 mg/kg) decreased the startle response while CBD had no effect. Prepulse inhibition was increased by acute treatment with Delta9-THC (0.3, 3 and 10 mg/kg) or CBD (1, 5 and 50 mg/kg) and by chronic CBD (1 mg/kg). Chronic CBD (50 mg/kg) attenuated dexamphetamine (5 mg/kg)-induced hyperlocomotion, suggesting an antipsychotic-like action for this cannabinoid. Chronic Delta9-THC decreased locomotor activity before and after dexamphetamine administration suggesting functional antagonism of the locomotor stimulant effect. These data provide the first evidence of anxiolytic- and antipsychotic-like effects of chronic but not acute CBD in C57BL/6JArc mice, extending findings from acute studies in other inbred mouse strains and rats.

  7. Measuring the incentive value of escalating doses of heroin in heroin-dependent Fischer rats during acute spontaneous withdrawal

    PubMed Central

    Reed, Brian; Ho, Ann; Kreek, Mary Jeanne

    2011-01-01

    Rationale/objectives Although continued heroin use and relapse are thought to be motivated, in part, by the positive incentive-motivational value attributed to heroin, little is understood about heroin’s incentive value during the relapse-prone state of withdrawal. This study uses place preference to measure the incentive value attributed to escalating-dose heroin in the context of heroin dependence. Methods Male Fischer rats were exposed chronically to escalating doses of heroin in the homecage and during place preference conditioning sessions. Conditioned preference for the context paired with escalating-dose heroin was tested after homecage exposure was discontinued and rats entered acute spontaneous withdrawal. Individuals’ behavioral and locomotor responses to heroin and somatic withdrawal signs were recorded. Results Conditioned preference for the heroin-paired context was strong in rats that received chronic homecage exposure to escalating-dose heroin and were tested in acute withdrawal. Behavioral responses to heroin (e.g., stereotypy) varied widely across individuals, with rats that expressed stronger heroin preference also expressing stronger behavioral activation in response to heroin. Individual differences in preference were also related to locomotor responses to heroin but not to overt somatic withdrawal signs. Conclusions Escalating doses of heroin evoked place preference in rats, suggesting that positive incentive-motivational value is attributed to this clinically relevant pattern of drug exposure. This study offers an improved preclinical model for studying dependence and withdrawal and provides insight into individual vulnerabilities to addiction-like behavior. PMID:21748254

  8. Involvement of neuropeptide FF receptors in neuroadaptive responses to acute and chronic opiate treatments.

    PubMed

    Elhabazi, K; Trigo, J M; Mollereau, C; Moulédous, L; Zajac, J-M; Bihel, F; Schmitt, M; Bourguignon, J J; Meziane, H; Petit-demoulière, B; Bockel, F; Maldonado, R; Simonin, F

    2012-01-01

    BACKGROUND AND PURPOSE Opiates remain the most effective compounds for alleviating severe pain across a wide range of conditions. However, their use is associated with significant side effects. Neuropeptide FF (NPFF) receptors have been implicated in several opiate-induced neuroadaptive changes including the development of tolerance. In this study, we investigated the consequences of NPFF receptor blockade on acute and chronic stimulation of opioid receptors in mice by using RF9, a potent and selective antagonist of NPFF receptors that can be administered systemically. EXPERIMENTAL APPROACH The effects of RF9 were investigated on opioid pharmacological responses including locomotor activity, antinociception, opioid-induced hyperalgesia, rewarding properties and physical dependence. KEY RESULTS RF9 had no effect on morphine-induced horizontal hyperlocomotion and slightly attenuated the decrease induced in vertical activity. Furthermore, RF9 dose-dependently blocked the long-lasting hyperalgesia produced by either acute fentanyl or chronic morphine administration. RF9 also potentiated opiate early analgesic effects and prevented the development of morphine tolerance. Finally, RF9 increased morphine-induced conditioned place preference without producing any rewarding effect by itself and decreased naltrexone-precipitated withdrawal syndrome following chronic morphine treatment. CONCLUSION AND IMPLICATIONS The NPFF system is involved in the development of two major undesirable effects: tolerance and dependence, which are clinically associated with prolonged exposure to opiates. Our findings suggest that NPFF receptors are interesting therapeutic targets to improve the analgesic efficacy of opiates by limiting the development of tolerance, and for the treatment of opioid dependence. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  9. Involvement of neuropeptide FF receptors in neuroadaptive responses to acute and chronic opiate treatments

    PubMed Central

    Elhabazi, K; Trigo, JM; Mollereau, C; Moulédous, L; Zajac, J-M; Bihel, F; Schmitt, M; Bourguignon, JJ; Meziane, H; Petit-demoulière, B; Bockel, F; Maldonado, R; Simonin, F

    2012-01-01

    BACKGROUND AND PURPOSE Opiates remain the most effective compounds for alleviating severe pain across a wide range of conditions. However, their use is associated with significant side effects. Neuropeptide FF (NPFF) receptors have been implicated in several opiate-induced neuroadaptive changes including the development of tolerance. In this study, we investigated the consequences of NPFF receptor blockade on acute and chronic stimulation of opioid receptors in mice by using RF9, a potent and selective antagonist of NPFF receptors that can be administered systemically. EXPERIMENTAL APPROACH The effects of RF9 were investigated on opioid pharmacological responses including locomotor activity, antinociception, opioid-induced hyperalgesia, rewarding properties and physical dependence. KEY RESULTS RF9 had no effect on morphine-induced horizontal hyperlocomotion and slightly attenuated the decrease induced in vertical activity. Furthermore, RF9 dose-dependently blocked the long-lasting hyperalgesia produced by either acute fentanyl or chronic morphine administration. RF9 also potentiated opiate early analgesic effects and prevented the development of morphine tolerance. Finally, RF9 increased morphine-induced conditioned place preference without producing any rewarding effect by itself and decreased naltrexone-precipitated withdrawal syndrome following chronic morphine treatment. CONCLUSION AND IMPLICATIONS The NPFF system is involved in the development of two major undesirable effects: tolerance and dependence, which are clinically associated with prolonged exposure to opiates. Our findings suggest that NPFF receptors are interesting therapeutic targets to improve the analgesic efficacy of opiates by limiting the development of tolerance, and for the treatment of opioid dependence. PMID:21718302

  10. Modular diversification of the locomotor system in damselfishes (Pomacentridae).

    PubMed

    Aguilar-Medrano, Rosalía; Frédérich, Bruno; Barber, Paul H

    2016-05-01

    As fish move and interact with their aquatic environment by swimming, small morphological variations of the locomotor system can have profound implications on fitness. Damselfishes (Pomacentridae) have inhabited coral reef ecosystems for more than 50 million years. As such, habitat preferences and behavior could significantly constrain the morphology and evolvability of the locomotor system. To test this hypothesis, we used phylogenetic comparative methods on morphometric, ecological and behavioral data. While body elongation represented the primary source of variation in the locomotor system of damselfishes, results also showed a diverse suite of morphological combinations between extreme morphologies. Results show clear associations between behavior, habitat preferences, and morphology, suggesting ecological constraints on shape diversification of the locomotor system. In addition, results indicate that the three modules of the locomotor system are weakly correlated, resulting in versatile and independent characters. These results suggest that Pomacentridae is shape may result from the interaction between (1) integrated parts of morphological variation that maintain overall swimming ability and (2) relatively independent parts of the morphology that facilitate adaptation and diversification. © 2016 Wiley Periodicals, Inc.

  11. Voluntary and reactive recruitment of locomotor muscle synergies during perturbed walking

    PubMed Central

    Chvatal, Stacie A.; Ting, Lena H.

    2012-01-01

    The modular control of muscles in groups, often referred to as muscle synergies, has been proposed to provide a motor repertoire of actions for the robust control of movement. However it is not clear whether muscle synergies identified in one task are also recruited by different neural pathways subserving other motor behaviors. We tested the hypothesis that voluntary and reactive modifications to walking in humans result from the recruitment of locomotor muscle synergies. We recorded the activity of 16 muscles in the right leg as subjects walked a 7.5 m path at two different speeds. To elicit a second motor behavior, midway through the path we imposed ramp and hold translation perturbations of the support surface in each of four cardinal directions. Variations in the temporal recruitment of locomotor muscle synergies could account for cycle-by-cycle variations in muscle activity across strides. Locomotor muscle synergies were also recruited in atypical phases of gait, accounting for both anticipatory gait modifications prior to perturbations and reactive feedback responses to perturbations. Our findings are consistent with the idea that a common pool of spatially-fixed locomotor muscle synergies can be recruited by different neural pathways, including the central pattern generator for walking, brainstem pathways for balance control, and cortical pathways mediating voluntary gait modifications. Together with electrophysiological studies, our work suggests that muscle synergies may provide a library of motor subtasks that can be flexibly recruited by parallel descending pathways to generate a variety of complex natural movements in the upper and lower limbs. PMID:22933805

  12. Development of Testing Methodologies to Evaluate Postflight Locomotor Performance

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Richards, J. T.; Miller, C. A.; Brady, R.; Warren, L. E.; Bloomberg, J. J.

    2006-01-01

    Crewmembers experience locomotor and postural instabilities during ambulation on Earth following their return from space flight. Gait training programs designed to facilitate recovery of locomotor function following a transition to a gravitational environment need to be accompanied by relevant assessment methodologies to evaluate their efficacy. The goal of this paper is to demonstrate the operational validity of two tests of locomotor function that were used to evaluate performance after long duration space flight missions on the International Space Station (ISS).

  13. Adenylyl Cyclase 1 Is Required for Ethanol-Induced Locomotor Sensitization and Associated Increases in NMDA Receptor Phosphorylation and Function in the Dorsal Medial Striatum

    PubMed Central

    Bosse, Kelly E.; Oginsky, Max F.; Susick, Laura L.; Ramalingam, Sailesh; Ferrario, Carrie R.

    2017-01-01

    Neuroadaptive responses to chronic ethanol, such as behavioral sensitization, are associated with N-methyl-D-aspartate receptor (NMDAR) recruitment. Ethanol enhances GluN2B-containing NMDAR function and phosphorylation (Tyr-1472) of the GluN2B-NMDAR subunit in the dorsal medial striatum (DMS) through a protein kinase A (PKA)–dependent pathway. Ethanol-induced phosphorylation of PKA substrates is partially mediated by calcium-stimulated adenylyl cyclase 1 (AC1), which is enriched in the dorsal striatum. As such, AC1 is poised as an upstream modulator of ethanol-induced DMS neuroadaptations that promote drug responding, and thus represents a therapeutic target. Our hypothesis is that loss of AC1 activity will prevent ethanol-induced locomotor sensitization and associated DMS GluN2B-NMDAR adaptations. We evaluated AC1’s contribution to ethanol-evoked locomotor responses and DMS GluN2B-NMDAR phosphorylation and function using AC1 knockout (AC1KO) mice. Results were mechanistically validated with the AC1 inhibitor, NB001. Acute ethanol (2.0 g/kg) locomotor responses in AC1KO and wild-type (WT) mice pretreated with NB001 (10 mg/kg) were comparable to WT ethanol controls. However, repeated ethanol treatment (10 days, 2.5 g/kg) failed to produce sensitization in AC1KO or NB001 pretreated mice, as observed in WT ethanol controls, following challenge exposure (2.0 g/kg). Repeated exposure to ethanol in the sensitization procedure significantly increased pTyr-1472 GluN2B levels and GluN2B-containing NMDAR transmission in the DMS of WT mice. Loss of AC1 signaling impaired ethanol-induced increases in DMS pGluN2B levels and NMDAR-mediated transmission. Together, these data support a critical and specific role for AC1 in striatal signaling that mediates ethanol-induced behavioral sensitization, and identify GluN2B-containing NMDARs as an important AC1 target. PMID:28838956

  14. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors.

    PubMed

    DiGiovanna, Jack; Dominici, Nadia; Friedli, Lucia; Rigosa, Jacopo; Duis, Simone; Kreider, Julie; Beauparlant, Janine; van den Brand, Rubia; Schieppati, Marco; Micera, Silvestro; Courtine, Grégoire

    2016-10-05

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral context. To investigate this possibility, we recorded whole-body kinematics, muscle synergies, and hindlimb motor cortex modulation in freely moving rats performing a range of natural locomotor procedures. We found that the activation of hindlimb motor cortex preceded gait initiation. During overground locomotion, the motor cortex exhibited consistent neuronal population responses that were synchronized with the spatiotemporal activation of hindlimb motoneurons. Behaviors requiring enhanced muscle activity or skilled paw placement correlated with substantial adjustment in neuronal population responses. In contrast, all rats exhibited a reduction of cortical activity during more automated behavior, such as stepping on a treadmill. Despite the facultative role of the motor cortex in the production of locomotion in rats, these results show that the encoding of hindlimb features in motor cortex dynamics is comparable in rats and cats. However, the extent of motor cortex modulations appears linked to the degree of volitional engagement and complexity of the task, reemphasizing the importance of goal-directed behaviors for motor control studies, rehabilitation, and neuroprosthetics. We mapped the neuronal population responses in the hindlimb motor cortex to hindlimb kinematics and hindlimb muscle synergies across a spectrum of natural locomotion behaviors. Robust task-specific neuronal population responses revealed that the rat motor cortex displays similar modulation as other mammals during locomotion. However, the reduced motor cortex activity during more automated behaviors suggests a relationship between the degree of engagement and task complexity. This relationship

  15. Examination of methylphenidate-mediated behavior regulation by glycogen synthase kinase-3 in mice.

    PubMed

    Mines, Marjelo A; Beurel, Eleonore; Jope, Richard S

    2013-01-05

    Abnormalities in dopaminergic activity have been implicated in psychiatric diseases, such as attention deficit hyperactivity disorder (ADHD), and are treated with therapeutic stimulants, commonly methylphenidate or amphetamine. Amphetamine administration increases glycogen synthase kinase-3 (GSK3) activation, which is necessary for certain acute behavioral responses to amphetamine, including increased locomotor activity and impaired sensorimotor gating. Here, we tested if modulating GSK3 by administration of the GSK3 inhibitor lithium or expression of constitutively active GSK3 altered behavioral responses to methylphenidate administered to mice acutely or daily for 8 days. Methylphenidate or amphetamine was administered to mice intraperitoneally for 1 or 8 days. Open-field activity and pre-pulse inhibition (PPI) were measured. In contrast to lithium's blockade of acute amphetamine-induced locomotor hyperactivity, lithium treatment did not significantly reduce methylphenidate-induced locomotor hyperactivity in wild-type mice after acute or 8 days of repeated methylphenidate administration. Lithium treatment significantly increased the impairment in PPI caused by methylphenidate, but significantly reduced the amphetamine-induced PPI deficit. In GSK3 knockin mice, expression of constitutively active GSK3β, but not GSK3α, significantly increased locomotor hyperactivity after acute methylphenidate treatment, and significantly impaired PPI, preventing further methylphenidate-induced impairment of PPI that was evident in wild-type mice and GSK3α knockin mice. Lithium does not counteract locomotor activity and PPI responses to methylphenidate as it does these responses to amphetamine, indicating that different mechanisms mediate these behavioral responses to methylphenidate and amphetamine. Only active GSK3β, not GSK3α, modulates behavioral responses to MPH, indicating selectivity in the actions of GSK3 isoforms. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Sensory-evoked perturbations of locomotor activity by sparse sensory input: a computational study

    PubMed Central

    Brownstone, Robert M.

    2015-01-01

    Sensory inputs from muscle, cutaneous, and joint afferents project to the spinal cord, where they are able to affect ongoing locomotor activity. Activation of sensory input can initiate or prolong bouts of locomotor activity depending on the identity of the sensory afferent activated and the timing of the activation within the locomotor cycle. However, the mechanisms by which afferent activity modifies locomotor rhythm and the distribution of sensory afferents to the spinal locomotor networks have not been determined. Considering the many sources of sensory inputs to the spinal cord, determining this distribution would provide insights into how sensory inputs are integrated to adjust ongoing locomotor activity. We asked whether a sparsely distributed set of sensory inputs could modify ongoing locomotor activity. To address this question, several computational models of locomotor central pattern generators (CPGs) that were mechanistically diverse and generated locomotor-like rhythmic activity were developed. We show that sensory inputs restricted to a small subset of the network neurons can perturb locomotor activity in the same manner as seen experimentally. Furthermore, we show that an architecture with sparse sensory input improves the capacity to gate sensory information by selectively modulating sensory channels. These data demonstrate that sensory input to rhythm-generating networks need not be extensively distributed. PMID:25673740

  17. Functional redundancy of ventral spinal locomotor pathways.

    PubMed

    Loy, David N; Magnuson, David S K; Zhang, Y Ping; Onifer, Stephen M; Mills, Michael D; Cao, Qi-lin; Darnall, Jessica B; Fajardo, Lily C; Burke, Darlene A; Whittemore, Scott R

    2002-01-01

    Identification of long tracts responsible for the initiation of spontaneous locomotion is critical for spinal cord injury (SCI) repair strategies. Pathways derived from the mesencephalic locomotor region and pontomedullary medial reticular formation responsible for fictive locomotion in decerebrate preparations project to the thoracolumbar levels of the spinal cord via reticulospinal axons in the ventrolateral funiculus (VLF). However, white matter regions critical for spontaneous over-ground locomotion remain unclear because cats, monkeys, and humans display varying degrees of locomotor recovery after ventral SCIs. We studied the contributions of myelinated tracts in the VLF and ventral columns (VC) to spontaneous over-ground locomotion in the adult rat using demyelinating lesions. Animals received ethidium bromide plus photon irradiation producing discrete demyelinating lesions sufficient to stop axonal conduction in the VLF, VC, VLF-VC, or complete ventral white matter (CV). Behavior [open-field Basso, Beattie, and Bresnahan (BBB) scores and grid walking] and transcranial magnetic motor-evoked potentials (tcMMEP) were studied at 1, 2, and 4 weeks after lesion. VLF lesions resulted in complete loss or severe attenuation of tcMMEPs, with mean BBB scores of 18.0, and no grid walking deficits. VC lesions produced behavior similar to VLF-lesioned animals but did not significantly affect tcMMEPs. VC-VLF and CV lesions resulted in complete loss of tcMMEP signals with mean BBB scores of 12.7 and 6.5, respectively. Our data support a diffuse arrangement of axons within the ventral white matter that may comprise a system of multiple descending pathways subserving spontaneous over-ground locomotion in the intact animal.

  18. Differences in the locomotor-activating effects of indirect serotonin agonists in habituated and non-habituated rats.

    PubMed

    Halberstadt, Adam L; Buell, Mahálah R; Price, Diana L; Geyer, Mark A

    2012-07-01

    The indirect serotonin (5-HT) agonist 3,4-methylenedioxymethamphetamine (MDMA) produces a distinct behavioral profile in rats consisting of locomotor hyperactivity, thigmotaxis, and decreased exploration. The indirect 5-HT agonist α-ethyltryptamine (AET) produces a similar behavioral profile. Using the Behavioral Pattern Monitor (BPM), the present investigation examined whether the effects of MDMA and AET are dependent on the novelty of the testing environment. These experiments were conducted in Sprague-Dawley rats housed on a reversed light cycle and tested during the dark phase of the light/dark cycle. We found that racemic MDMA (RS-MDMA; 3 mg/kg, SC) increased locomotor activity in rats tested in novel BPM chambers, but had no effect on locomotor activity in rats habituated to the BPM chambers immediately prior to testing. Likewise, AET (5 mg/kg, SC) increased locomotor activity in non-habituated animals but not in animals habituated to the test chambers. These results were unexpected because previous reports indicate that MDMA has robust locomotor-activating effects in habituated animals. To further examine the influence of habituation on MDMA-induced locomotor activity, we conducted parametric studies with S-(+)-MDMA (the more active enantiomer) in habituated and non-habituated rats housed on a standard or reversed light cycle. Light cycle was included as a variable due to reported differences in sensitivity to serotonergic ligands during the dark and light phases. In confirmation of our initial studies, rats tested during the dark phase and habituated to the BPM did not show an S-(+)-MDMA (3 mg/kg, SC)-induced increase in locomotor activity, whereas non-habituated rats did. By contrast, in rats tested during the light phase, S-(+)-MDMA increased locomotor activity in both non-habituated and habituated rats, although the response in habituated animals was attenuated. The finding that habituation and light cycle interact to influence MDMA- and AET

  19. Different effects of chronic THC on the neuroadaptive response of dopamine D2/3 receptor-mediated signaling in roman high- and roman low-avoidance rats.

    PubMed

    Tournier, Benjamin B; Dimiziani, Andrea; Tsartsalis, Stergios; Millet, Philippe; Ginovart, Nathalie

    2018-04-01

    The Roman high (RHA)- and low (RLA)-avoidance rat sublines have been identified as an addiction-prone and addiction-resistant phenotype based on their high vs. low locomotor responsiveness to novelty and high vs. low ability to develop neurochemical and behavioral sensitization to psychostimulants, respectively. Most studies though have focused on psychostimulants and little is known about the neuroadaptive response of these two lines to cannabinoids. This study investigated the effects of chronic exposure to Δ 9 -tetrahydrocannabinol (THC) on dopamine D 2/3 receptor (D 2/3 R) availabilities and functional sensitivity in the mesostriatal system of RHA and RLA rats. At baseline, RLA rats exhibited higher densities of mesostriatal D2/3R but lower levels of striatal CB 1 R mRNA and displayed a lower locomotor response to acute THC as compared to RHAs. Following chronic THC treatment, striking changes in D 2/3 R signaling were observed in RLA but not in RHA rats, namely an increased availability and functional supersensitivity of striatal D 2/3 R, as evidenced by a supersensitive psychomotor response to the D 2/3 R agonist quinpirole. Moreover, in RLA rats, the lower was the locomotor response to acute THC, the higher was the psychomotor response to quinpirole following chronic THC. These results showing a greater neuroadaptive response of RLA vs. RHA rats to chronic THC thus contrast with previous studies showing a resistance to neuroadaptive response of RLAs to psychostimulants, This suggests that, contrasting with their low proneness to psychostimulant drug-seeking, RLAs may exhibit a heightened proneness to cannabinoid drug-seeking as compared to RHA rats. © 2017 Wiley Periodicals, Inc.

  20. Mephedrone interactions with cocaine: prior exposure to the 'bath salt' constituent enhances cocaine-induced locomotor activation in rats.

    PubMed

    Gregg, Ryan A; Tallarida, Christopher S; Reitz, Allen B; Rawls, Scott M

    2013-12-01

    Concurrent use of mephedrone (4-methylmethcathinone; MEPH) and established drugs of abuse is now commonplace, but knowledge about interactions between these drugs is sparse. The present study was designed to test the hypothesis that prior MEPH exposure enhances the locomotor-stimulant effects of cocaine and methamphetamine (METH). For cocaine experiments, rats pretreated with saline, cocaine (15 mg/kg), or MEPH (15 mg/kg) for 5 days were injected with cocaine after 10 days of drug absence. For METH experiments, rats pretreated with saline, METH (2 mg/kg), or MEPH (15 mg/kg) were injected with METH after 10 days of drug absence. Cocaine challenge produced greater locomotor activity after pretreatment with cocaine or MEPH than after pretreatment with saline. METH challenge produced greater locomotor activity after METH pretreatment than after saline pretreatment; however, locomotor activity in rats pretreated with MEPH or saline and then challenged with METH was not significantly different. The locomotor response to MEPH (15 mg/kg) was not significantly affected by pretreatment with cocaine (15 mg/kg) or METH (0.5, 2 mg/kg). The present demonstration that cocaine-induced locomotor activation is enhanced by prior MEPH exposure suggests that MEPH cross-sensitizes to cocaine and increases cocaine efficacy. Interestingly, MEPH cross-sensitization was not bidirectional and did not extend to METH, suggesting that the phenomenon is sensitive to specific psychostimulants.

  1. The acute phase response and exercise: court and field sports

    PubMed Central

    Fallon, K; Fallon, S; Boston, T

    2001-01-01

    Objective—To determine the presence or absence of an acute phase response after training for court and field sports. Participants—All members of the Australian women's soccer team (n = 18) and all members of the Australian Institute of Sport netball team (n = 14). Methods—Twelve acute phase reactants (white blood cell count, neutrophil count, platelet count, serum iron, ferritin, and transferrin, percentage transferrin saturation, α1 antitrypsin, caeruloplasmin, α2 acid glycoprotein, C reactive protein, and erythrocyte sedimentation rate) were measured during a rest period and after moderate and heavy training weeks in members of elite netball and women's soccer teams. Results—Responses consistent with an acute phase response were found in five of 24 tests in the soccer players, and in three of 24 tests in the netball players. Responses in the opposite direction were found in seven of 24 tests in the soccer players and two of 24 tests in the netballers. The most sensitive reactant measured, C reactive protein, did not respond in a manner typical of an acute phase response. Conclusion—An acute phase response does not seem to occur as a consequence of the levels of training typical of elite female netball and soccer teams. This has implications for the interpretation of biochemical variables in these groups. Key Words: acute phase response; iron; plasma proteins; inflammation PMID:11375875

  2. Tamoxifen and estradiol improved locomotor function and increased spared tissue in rats after spinal cord injury: their antioxidant effect and role of estrogen receptor alpha.

    PubMed

    Mosquera, Laurivette; Colón, Jennifer M; Santiago, José M; Torrado, Aranza I; Meléndez, Margarita; Segarra, Annabell C; Rodríguez-Orengo, José F; Miranda, Jorge D

    2014-05-02

    17β-Estradiol is a multi-active steroid that imparts neuroprotection via diverse mechanisms of action. However, its role as a neuroprotective agent after spinal cord injury (SCI), or the involvement of the estrogen receptor-alpha (ER-α) in locomotor recovery, is still a subject of much debate. In this study, we evaluated the effects of estradiol and of Tamoxifen (an estrogen receptor mixed agonist/antagonist) on locomotor recovery following SCI. To control estradiol cyclical variability, ovariectomized female rats received empty or estradiol filled implants, prior to a moderate contusion to the spinal cord. Estradiol improved locomotor function at 7, 14, 21, and 28 days post injury (DPI), when compared to control groups (measured with the BBB open field test). This effect was ER-α mediated, because functional recovery was blocked with an ER-α antagonist. We also observed that ER-α was up-regulated after SCI. Long-term treatment (28 DPI) with estradiol and Tamoxifen reduced the extent of the lesion cavity, an effect also mediated by ER-α. The antioxidant effects of estradiol were seen acutely at 2 DPI but not at 28 DPI, and this acute effect was not receptor mediated. Rats treated with Tamoxifen recovered some locomotor activity at 21 and 28 DPI, which could be related to the antioxidant protection seen at these time points. These results show that estradiol improves functional outcome, and these protective effects are mediated by the ER-α dependent and independent-mechanisms. Tamoxifen׳s effects during late stages of SCI support the use of this drug as a long-term alternative treatment for this condition. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Timing of Locomotor Recovery from Anoxia Modulated by the white Gene in Drosophila

    PubMed Central

    Xiao, Chengfeng; Robertson, R. Meldrum

    2016-01-01

    Locomotor recovery from anoxia follows the restoration of disordered ion distributions and neuronal excitability. The time taken for locomotor recovery after 30 sec anoxia (around 10 min) is longer than the time for the propagation of action potentials to be restored (<1 min) in Drosophila wild type. We report here that the white (w) gene modulates the timing of locomotor recovery. Wild-type flies displayed fast and consistent recovery of locomotion from anoxia, whereas mutants of w showed significantly delayed and more variable recovery. Genetic analysis including serial backcrossing revealed a strong association between the w locus and the timing of locomotor recovery, and haplo-insufficient function of w+ in promoting fast recovery. The locomotor recovery phenotype was independent of classic eye pigmentation, although both are associated with the w gene. Introducing up to four copies of mini-white (mw+) into w1118 was insufficient to promote fast and consistent locomotor recovery. However, flies carrying w+ duplicated to the Y chromosome showed wild-type-like fast locomotor recovery. Furthermore, Knockdown of w by RNA interference (RNAi) in neurons but not glia delayed locomotor recovery, and specifically, knockdown of w in subsets of serotonin neurons was sufficient to delay the locomotor recovery. These data reveal an additional role for w in modulating the timing of locomotor recovery from anoxia. PMID:27029736

  4. P2X7 receptors in body temperature, locomotor activity, and brain mRNA and lncRNA responses to sleep deprivation.

    PubMed

    Davis, Christopher J; Taishi, Ping; Honn, Kimberly A; Koberstein, John N; Krueger, James M

    2016-12-01

    The ionotropic purine type 2X7 receptor (P2X7R) is a nonspecific cation channel implicated in sleep regulation and brain cytokine release. Many endogenous rhythms covary with sleep, including locomotor activity and core body temperature. Furthermore, brain-hypothalamic cytokines and purines play a role in the regulation of these physiological parameters as well as sleep. We hypothesized that these parameters are also affected by the absence of the P2X7 receptor. Herein, we determine spontaneous expression of body temperature and locomotor activity in wild-type (WT) and P2X7R knockout (KO) mice and how they are affected by sleep deprivation (SD). We also compare hypothalamic, hippocampal, and cortical cytokine- and purine-related receptor and enzyme mRNA expressions before and after SD in WT and P2X7RKO mice. Next, in a hypothesis-generating survey of hypothalamic long noncoding (lnc) RNAs, we compare lncRNA expression levels between strains and after SD. During baseline conditions, P2X7RKO mice had attenuated temperature rhythms compared with WT mice, although locomotor activity patterns were similar in both strains. After 6 h of SD, body temperature and locomotion were enhanced to a greater extent in P2X7RKO mice than in WT mice during the initial 2-3 h after SD. Baseline mRNA levels of cortical TNF-α and P2X4R were higher in the KO mice than WT mice. In response to SD, the KO mice failed to increase hypothalamic adenosine deaminase and P2X4R mRNAs. Further, hypothalamic lncRNA expressions varied by strain, and with SD. Current data are consistent with a role for the P2X7R in thermoregulation and lncRNA involvement in purinergic signaling. Copyright © 2016 the American Physiological Society.

  5. P2X7 receptors in body temperature, locomotor activity, and brain mRNA and lncRNA responses to sleep deprivation

    PubMed Central

    Taishi, Ping; Honn, Kimberly A.; Koberstein, John N.; Krueger, James M.

    2016-01-01

    The ionotropic purine type 2X7 receptor (P2X7R) is a nonspecific cation channel implicated in sleep regulation and brain cytokine release. Many endogenous rhythms covary with sleep, including locomotor activity and core body temperature. Furthermore, brain-hypothalamic cytokines and purines play a role in the regulation of these physiological parameters as well as sleep. We hypothesized that these parameters are also affected by the absence of the P2X7 receptor. Herein, we determine spontaneous expression of body temperature and locomotor activity in wild-type (WT) and P2X7R knockout (KO) mice and how they are affected by sleep deprivation (SD). We also compare hypothalamic, hippocampal, and cortical cytokine- and purine-related receptor and enzyme mRNA expressions before and after SD in WT and P2X7RKO mice. Next, in a hypothesis-generating survey of hypothalamic long noncoding (lnc) RNAs, we compare lncRNA expression levels between strains and after SD. During baseline conditions, P2X7RKO mice had attenuated temperature rhythms compared with WT mice, although locomotor activity patterns were similar in both strains. After 6 h of SD, body temperature and locomotion were enhanced to a greater extent in P2X7RKO mice than in WT mice during the initial 2-3 h after SD. Baseline mRNA levels of cortical TNF-α and P2X4R were higher in the KO mice than WT mice. In response to SD, the KO mice failed to increase hypothalamic adenosine deaminase and P2X4R mRNAs. Further, hypothalamic lncRNA expressions varied by strain, and with SD. Current data are consistent with a role for the P2X7R in thermoregulation and lncRNA involvement in purinergic signaling. PMID:27707719

  6. Distinct sets of locomotor modules control the speed and modes of human locomotion

    PubMed Central

    Yokoyama, Hikaru; Ogawa, Tetsuya; Kawashima, Noritaka; Shinya, Masahiro; Nakazawa, Kimitaka

    2016-01-01

    Although recent vertebrate studies have revealed that different spinal networks are recruited in locomotor mode- and speed-dependent manners, it is unknown whether humans share similar neural mechanisms. Here, we tested whether speed- and mode-dependence in the recruitment of human locomotor networks exists or not by statistically extracting locomotor networks. From electromyographic activity during walking and running over a wide speed range, locomotor modules generating basic patterns of muscle activities were extracted using non-negative matrix factorization. The results showed that the number of modules changed depending on the modes and speeds. Different combinations of modules were extracted during walking and running, and at different speeds even during the same locomotor mode. These results strongly suggest that, in humans, different spinal locomotor networks are recruited while walking and running, and even in the same locomotor mode different networks are probably recruited at different speeds. PMID:27805015

  7. Comparison of (+)- and (−)-Naloxone on the Acute Psychomotor-Stimulating Effects of Heroin, 6-Acetylmorphine, and Morphine in Mice

    PubMed Central

    Andersen, Jannike Mørch; Boix, Fernando; Bergh, Marianne Skov-Skov; Vindenes, Vigdis; Rice, Kenner C.; Huestis, Marilyn A.; Mørland, Jørg

    2016-01-01

    Toll-like receptor 4 (TLR4) signaling is implied in opioid reinforcement, reward, and withdrawal. Here, we explored whether TLR4 signaling is involved in the acute psychomotor-stimulating effects of heroin, 6-acetylmorphine (6-AM), and morphine as well as whether there are differences between the three opioids regarding TLR4 signaling. To address this, we examined how pretreatment with (+)-naloxone, a TLR4 active but opioid receptor (OR) inactive antagonist, affected the acute increase in locomotor activity induced by heroin, 6-AM, or morphine in mice. We also assessed the effect of pretreatment with (−)-naloxone, a TLR4 and OR active antagonist, as well as the pharmacokinetic profiles of (+) and (−)-naloxone in the blood and brain. We found that (−)-naloxone reduced acute opioid-induced locomotor activity in a dose-dependent manner. By contrast, (+)-naloxone, administered in doses assumed to antagonize TLR4 but not ORs, did not affect acute locomotor activity induced by heroin, 6-AM, or morphine. Both naloxone isomers exhibited similar concentration versus time profiles in the blood and brain, but the brain concentrations of (−)-naloxone reached higher levels than those of (+)-naloxone. However, the discrepancies in their pharmacokinetic properties did not explain the marked difference between the two isomers’ ability to affect opioid-induced locomotor activity. Our results underpin the importance of OR activation and do not indicate an apparent role of TLR4 signaling in acute opioid-induced psychomotor stimulation in mice. Furthermore, there were no marked differences between heroin, 6-AM, and morphine regarding involvement of OR or TLR4 signaling. PMID:27278234

  8. Response to novelty and cocaine stimulant effects: lack of stability across environments in female Swiss mice.

    PubMed

    Nyssen, Laura; Brabant, Christian; Didone, Vincent; Quertemont, Etienne

    2016-02-01

    In humans, novelty/sensation seeking is seen as a personality trait with a positive relationship with addiction vulnerability. In animal studies, one of the standard procedures to model novelty seeking is the "response to novelty," i.e., the levels of locomotor activity in a new environment. In rodents, a positive correlation was demonstrated between the response to novelty and several effects of drugs, especially the locomotor stimulant effects of cocaine. The present study was designed to test in mice whether the response to novelty is stable across environments and whether its relationship with the stimulant effects of cocaine is altered by environmental changes. Experiment 1 assessed the responses to novelty of the same mice in two different novel environments. Experiment 2 tested the correlation between response to novelty and acute stimulant effects of cocaine recorded in two distinct environments. The results show a weak correlation only during the first 5 min of the session between the responses to novelty measured in two distinct environments. Experiment 2 demonstrates that novelty responses and stimulant effects of cocaine are positively correlated only when both behavioral responses are measured in the same environment. In contrast, the relationship between response to novelty and acute stimulant effects of cocaine is completely lost when the behavioral responses are recorded in two different environments. The present results question the usual interpretation of the correlation between the response to novelty and the stimulant effects of cocaine as reflecting a relationship between two underlying individual stable characteristics.

  9. Neuronal control of locomotor handedness in Drosophila.

    PubMed

    Buchanan, Sean M; Kain, Jamey S; de Bivort, Benjamin L

    2015-05-26

    Genetically identical individuals display variability in their physiology, morphology, and behaviors, even when reared in essentially identical environments, but there is little mechanistic understanding of the basis of such variation. Here, we investigated whether Drosophila melanogaster displays individual-to-individual variation in locomotor behaviors. We developed a new high-throughout platform capable of measuring the exploratory behavior of hundreds of individual flies simultaneously. With this approach, we find that, during exploratory walking, individual flies exhibit significant bias in their left vs. right locomotor choices, with some flies being strongly left biased or right biased. This idiosyncrasy was present in all genotypes examined, including wild-derived populations and inbred isogenic laboratory strains. The biases of individual flies persist for their lifetime and are nonheritable: i.e., mating two left-biased individuals does not yield left-biased progeny. This locomotor handedness is uncorrelated with other asymmetries, such as the handedness of gut twisting, leg-length asymmetry, and wing-folding preference. Using transgenics and mutants, we find that the magnitude of locomotor handedness is under the control of columnar neurons within the central complex, a brain region implicated in motor planning and execution. When these neurons are silenced, exploratory laterality increases, with more extreme leftiness and rightiness. This observation intriguingly implies that the brain may be able to dynamically regulate behavioral individuality.

  10. Effects of zacopride and BMY25801 (batanopride) on radiation-induced emesis and locomotor behavior in the ferret

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, G.L.; Landauer, M.R.

    1990-06-01

    The antiemetic and locomotor effects of two substituted benzamides, zacopride and batanopride (BMY25801), were compared in ferrets after bilateral 60Co irradiation at 2, 4 or 6 Gy. Both zacopride and BMY25801 were effective against emesis and related signs. Zacopride, tested at several doses (0.003, 0.03 and 0.3 mg/kg), appeared to be more potent because it abolished emesis at 100-fold lower doses than did BMY25801 (3 mg/kg). The ED50 value for the antiemetic effect of zacopride was 0.026 mg/kg (confidence levels = 0.0095, 0.072 mg/kg). However, analysis of emetic parameters recorded from vomiting animals (e.g., latency to first emesis) demonstrated thatmore » BMY25801 provided greater antiemetic protection in this population than zacopride without any apparent side effects. Locomotor activity was significantly depressed by both radiation (all doses) and zacopride alone (0.03 mg/kg and 0.3 mg/kg). BMY25801 alone did not affect locomotor activity, and protected against the radiation-induced locomotor decrement. Although zacopride potentiated the locomotor decrement to radiation, no clear dose-response relationship was evident. Bilateral abdominal vagotomy significantly increased the latency to the first emetic episode and significantly reduced the number of retches, but did not alter the duration of the prodromal response to 4-Gy irradiation. Unilateral vagotomies had no effect. Zacopride (at 0.03 mg/kg and 0.3 mg/kg) remained an effective antiemetic in animals that received a bilateral vagotomy, abolishing emesis in four of eight and two of eight ferrets, respectively. These data suggest that the antiemetic action of zacopride does not fully depend on intact vagal innervation and also acts via other pathways.« less

  11. Temperature and population density effects on locomotor activity of Musca domestica (Diptera: Muscidae).

    PubMed

    Schou, T M; Faurby, S; Kjærsgaard, A; Pertoldi, C; Loeschcke, V; Hald, B; Bahrndorff, S

    2013-12-01

    The behavior of ectotherm organisms is affected by both abiotic and biotic factors. However, a limited number of studies have investigated the synergistic effects on behavioral traits. This study examined the effect of temperature and density on locomotor activity of Musca domestica (L.). Locomotor activity was measured for both sexes and at four densities (with mixed sexes) during a full light and dark (L:D) cycle at temperatures ranging from 10 to 40°C. Locomotor activity during daytime increased with temperature at all densities until reaching 30°C and then decreased. High-density treatments significantly reduced the locomotor activity per fly, except at 15°C. For both sexes, daytime activity also increased with temperature until reaching 30 and 35°C for males and females, respectively, and thereafter decreased. Furthermore, males showed a significantly higher and more predictable locomotor activity than females. During nighttime, locomotor activity was considerably lower for all treatments. Altogether the results of the current study show that there is a significant interaction of temperature and density on daytime locomotor activity of M. domestica and that houseflies are likely to show significant changes in locomotor activity with change in temperature.

  12. Relating ranging ecology, limb length, and locomotor economy in terrestrial animals.

    PubMed

    Pontzer, Herman

    2012-03-07

    Ecomorphological analyses have identified a number of important evolutionary trends in vertebrate limb design, but the relationships between daily travel distance, locomotor ecology, and limb length in terrestrial animals remain poorly understood. In this paper I model the net rate of energy intake as a function of foraging efficiency, and thus of locomotor economy; improved economy leads to greater net energy intake. However, the relationship between locomotor economy and net intake is highly dependent on foraging efficiency; only species with low foraging efficiencies experience strong selection pressure for improved locomotor economy and increased limb length. Examining 237 terrestrial species, I find that nearly all taxa obtain sufficiently high foraging efficiencies that selection for further increases in economy is weak. Thus selection pressures for increased economy and limb length among living terrestrial animals may be relatively weak and similar in magnitude across ecologically diverse species. The Economy Selection Pressure model for locomotor economy may be useful in investigating the evolution of limb design in early terrestrial taxa and the coevolution of foraging ecology and locomotor anatomy in lineages with low foraging efficiencies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Clinical Application Of Advanced Infrared Thermography (IRT) In Locomotor Diseases

    NASA Astrophysics Data System (ADS)

    Engel, Joachim-Michael

    1983-11-01

    Locomotor diseases is a wide range of about 450 different illnesses with all different pathologies, clinical and prognostic features and response to treatment. No single method will be able to cover the whole spectrum of local and systemic signs and symptoms. Nevertheless there is a need for objective measurements at the site of disease: clinical examination is often enough depending from subjective estimations and personal experiance of the clinician. Laboratory tests only show the systemic effect of the disease, like inflammation. X-rays are restricted to the detection of structural changes appearing late during the pathological process, even when using different techniques. Here IRT offers several advantages to the clinician as well as to the patient. As a non invasive method it monitors the course of disease at the anatomic site of pathology. Quantitative figures calculated from the thermogram,either taken at steady-state or during dynamic tests, are essential for differential diagnosis and follow-up. Advanced IRT camera systems fulfill all requirements set up for medical thermography recently by the National Bureau of Standards. Although, the user should check his system daily with regard to precision of absolute temperature measurements. Standardisation of recording technique is essential as well,to get reliable results. Ambient conditions must be adapted to the locomotor disease pathology under study. Advanced IRT systems , e.g. ZEISS-IKOTHERM, together with image processing capability and special software, e.g. THERMOTOM package, are valuable tools to the rheumatologist for diagnosing and monitoring locomotor diseases.

  14. The acute-phase response impairs host defence against Enterococcus faecium peritonitis

    PubMed Central

    Leendertse, Masja; Willems, Rob J L; Giebelen, Ida A J; van den Pangaart, Petra S; Bonten, Marc J M; van der Poll, Tom

    2009-01-01

    Enterococcus faecium is an emerging pathogen that causes infections in hospitalized patients with various co-morbid diseases. These underlying diseases are often associated with an acute-phase response that renders patients vulnerable to nosocomial infections. To study the influence of the acute-phase response induced by sterile tissue injury on host defence against E. faecium, mice were injected subcutaneously with either turpentine or casein 1 day before intraperitoneal infection with E. faecium. Control mice were subcutaneously injected with saline or sodium bicarbonate, respectively. Turpentine and casein induced an acute-phase response as reflected by increases in the plasma concentrations of interleukin-6, serum amyloid P and C3. A pre-existent acute-phase response in mice was associated with a strongly reduced capacity to clear E. faecium, resulting in prolonged bacteraemia for several days. The inflammatory response to E. faecium was impaired in mice with an acute-phase response, as shown by reduced capacity to mount a neutrophilic leucocytosis in peripheral blood and by decreased local cytokine concentrations. These data indicate that the acute-phase response impairs host defence against E. faecium, suggesting that this condition may contribute to the increased vulnerability of critically ill patients to enterococcal infections. PMID:19175794

  15. Perturbation schedule does not alter retention of a locomotor adaptation across days.

    PubMed

    Hussain, Sara J; Morton, Susanne M

    2014-06-15

    Motor adaptation in response to gradual vs. abrupt perturbation schedules may involve different neural mechanisms, potentially leading to different levels of motor memory. However, no study has investigated whether perturbation schedules alter memory of a locomotor adaptation across days. We measured adaptation and retention (memory) of altered interlimb symmetry during walking in two groups of participants over 2 days. On day 1, participants adapted to either a single, large perturbation (abrupt schedule) or a series of small perturbations that increased in size over time (gradual schedule). Retention was examined on day 2. On day 1, initial swing time and foot placement symmetry error sizes differed between groups but overall adaptation magnitudes were similar. On day 2, participants in both groups showed similar retention, readaptation, and aftereffect sizes, although there were some trends for improved memory in the abrupt group. These results conflict with previous data but are consistent with newer studies reporting no behavioral differences following adaptation using abrupt vs. gradual schedules. Although memory levels were very similar between groups, we cannot rule out the possibility that the neural mechanisms underlying this memory storage differ. Overall, it appears that adaptation of locomotor patterns via abrupt and gradual perturbation schedules produces similar expression of locomotor memories across days. Copyright © 2014 the American Physiological Society.

  16. Locomotor Status and the Development of Spatial Search Skills.

    ERIC Educational Resources Information Center

    Bai, Dina L.; Bertenthal, Bennett I.

    1992-01-01

    Investigated the possibility that previous reports of a relation between locomotor status and stage-4 object permanence performance could be generalized to performance on an object localization task. Findings suggest that the effects of locomotor experience on infants' search performance are quite specific and mediated by a variety of factors that…

  17. Daily rhythms of locomotor and demand-feeding activities in Schizothorax pelzami (Kessler, 1870).

    PubMed

    Ebrahimi, Ehsan; Kamrani, Ehsan; Heydarnejad, Mohammad Saeed; Safari, Omid

    2017-01-01

    A study was carried out to investigate the daily rhythms of locomotor and feeding activity of Khajoo, Schizothorax pelzami, a candidate species for freshwater aquaculture. Using self-feeder juvenile Khajoo were exposed to a 12/12 LD cycle to determine the rhythms of locomotor and feeding activity. The effects of feeding on locomotor and feeding activity of fish were also examined. Finally, the endogenous rhythmicity under different lighting condition tested. Fish displayed a strictly diurnal feeding and locomotor activities with 98% and 84% of the total activity occurred in the photophase, respectively. In scheduled feeding, both the L-group (fed in light) and the D-group (fed in the dark) showed a diurnal locomotor activity pattern. However, the L-group had a peak of locomotor activity near the feeding time, but the D-group had a scarce locomotor activity in the scatophase with no significant change at the mealtime. Most of the individuals display free-running rhythms when exposed to different lighting condition including, constant darkness, ultradian 45:45 min LD cycle and reversed DL photo cycle. Taken together the results of this study showed that both locomotor and feeding activity have diurnal rhythms in Khajoo S. pelzami, even fish feeding had taken place at night. Additionally, the free-running locomotor activity of the fish in the absence of external light stimuli, suggests the existence of an endogenous timing mechanism in this fish species.

  18. White - cGMP Interaction Promotes Fast Locomotor Recovery from Anoxia in Adult Drosophila

    PubMed Central

    2017-01-01

    Increasing evidence indicates that the white (w) gene in Drosophila possesses extra-retinal functions in addition to its classical role in eye pigmentation. We have previously shown that w+ promotes fast and consistent locomotor recovery from anoxia, but how w+ modulates locomotor recovery is largely unknown. Here we show that in the absence of w+, several PDE mutants, especially cyclic guanosine monophosphate (cGMP)-specific PDE mutants, display wildtype-like fast locomotor recovery from anoxia, and that during the night time, locomotor recovery was light-sensitive in white-eyed mutant w1118, and light-insensitive in PDE mutants under w1118 background. Data indicate the involvement of cGMP in the modulation of recovery timing and presumably, light-evoked cGMP fluctuation is associated with light sensitivity of locomotor recovery. This was further supported by the observations that w-RNAi-induced delay of locomotor recovery was completely eliminated by upregulation of cGMP through multiple approaches, including PDE mutation, simultaneous overexpression of an atypical soluble guanylyl cyclase Gyc88E, or sildenafil feeding. Lastly, prolonged sildenafil feeding promoted fast locomotor recovery from anoxia in w1118. Taken together, these data suggest that a White-cGMP interaction modulates the timing of locomotor recovery from anoxia. PMID:28060942

  19. Systemic inflammatory response following acute myocardial infarction

    PubMed Central

    Fang, Lu; Moore, Xiao-Lei; Dart, Anthony M; Wang, Le-Min

    2015-01-01

    Acute cardiomyocyte necrosis in the infarcted heart generates damage-associated molecular patterns, activating complement and toll-like receptor/interleukin-1 signaling, and triggering an intense inflammatory response. Inflammasomes also recognize danger signals and mediate sterile inflammatory response following acute myocardial infarction (AMI). Inflammatory response serves to repair the heart, but excessive inflammation leads to adverse left ventricular remodeling and heart failure. In addition to local inflammation, profound systemic inflammation response has been documented in patients with AMI, which includes elevation of circulating inflammatory cytokines, chemokines and cell adhesion molecules, and activation of peripheral leukocytes and platelets. The excessive inflammatory response could be caused by a deregulated immune system. AMI is also associated with bone marrow activation and spleen monocytopoiesis, which sustains a continuous supply of monocytes at the site of inflammation. Accumulating evidence has shown that systemic inflammation aggravates atherosclerosis and markers for systemic inflammation are predictors of adverse clinical outcomes (such as death, recurrent myocardial infarction, and heart failure) in patients with AMI. PMID:26089856

  20. Nitric oxide-mediated modulation of the murine locomotor network

    PubMed Central

    Foster, Joshua D.; Dunford, Catherine; Sillar, Keith T.

    2013-01-01

    Spinal motor control networks are regulated by neuromodulatory systems to allow adaptability of movements. The present study aimed to elucidate the role of nitric oxide (NO) in the modulation of mammalian spinal locomotor networks. This was investigated with isolated spinal cord preparations from neonatal mice in which rhythmic locomotor-related activity was induced pharmacologically. Bath application of the NO donor diethylamine NONOate (DEA/NO) decreased the frequency and modulated the amplitude of locomotor-related activity recorded from ventral roots. Removal of endogenous NO with coapplication of a NO scavenger (PTIO) and a nitric oxide synthase (NOS) blocker [nitro-l-arginine methyl ester (l-NAME)] increased the frequency and decreased the amplitude of locomotor-related activity. This demonstrates that endogenously derived NO can modulate both the timing and intensity of locomotor-related activity. The effects of DEA/NO were mimicked by the cGMP analog 8-bromo-cGMP. In addition, the soluble guanylyl cyclase (sGC) inhibitor ODQ blocked the effects of DEA/NO on burst amplitude and frequency, although the frequency effect was only blocked at low concentrations of DEA/NO. This suggests that NO-mediated modulation involves cGMP-dependent pathways. Sources of NO were studied within the lumbar spinal cord during postnatal development (postnatal days 1–12) with NADPH-diaphorase staining. NOS-positive cells in the ventral horn exhibited a rostrocaudal gradient, with more cells in rostral segments. The number of NOS-positive cells was also found to increase during postnatal development. In summary, we have shown that NO, derived from sources within the mammalian spinal cord, modulates the output of spinal motor networks and is therefore likely to contribute to the fine-tuning of locomotor behavior. PMID:24259545

  1. Acute concomitant effects of MDMA binge dosing on extracellular 5-HT, locomotion and body temperature and the long-term effect on novel object discrimination in rats.

    PubMed

    Rodsiri, Ratchanee; Spicer, Clare; Green, A Richard; Marsden, Charles A; Fone, Kevin C F

    2011-02-01

    3,4-methylenedioxymethamphetamine (MDMA, ecstasy) produces an acute release of 5-HT in the brain, together with increased locomotion and hyperthermia. This study examined whether the acute functional changes of locomotor activity and body temperature are related to enhanced 5-HT release induced by MDMA. We concomitantly measured changes in extraneuronal 5-HT by in vivo brain microdialysis and used radiotelemetry to measure locomotion and body temperature to establish whether any positive correlations occur between these three parameters. 'Binge-type' repeated administration of low doses of MDMA (3 and 6 mg/kg given at 2-h intervals three times) were given to provide drug exposure similar to that experienced by recreational drug users. MDMA induced acute hyperactivity, changes in core body temperature (both hypothermia and hyperthermia) and elevation of hippocampal 5-HT overflow, all of which were dependent on the dose of MDMA administered. The change in locomotor activity and the magnitude of the hyperthermia appeared to be unrelated both to each other and to the magnitude of MDMA-induced 5-HT release. The study also found evidence of long-term disruption of novel object discrimination 2 weeks following "binge-type" repeated MDMA administration. MDMA-induced 5-HT release in the brain was not responsible for either the hyperthermia or increased locomotor activity that occurred. Since neither dose schedule of MDMA induced a neurotoxic loss of brain 5-HT 2 weeks after its administration, the impairment of recognition memory found in novel object discrimination probably results from other long-term changes yet to be established.

  2. Previous Exposure to Δ9-Tetrahydrocannibinol Enhances Locomotor Responding to but Not Self-Administration of AmphetamineS⃞

    PubMed Central

    Cortright, James J.; Lorrain, Daniel S.; Beeler, Jeff A.; Tang, Wei-Jen

    2011-01-01

    Previous exposure to amphetamine leads to enhanced locomotor and nucleus accumbens (NAcc) dopamine (DA) responding to the drug as well as enhanced amphetamine self-administration. Here, we investigated the effects of exposure to Δ9-tetrahydrocannibinol (Δ9-THC) on behavioral and biochemical responding to amphetamine. Rats in different groups received five exposure injections of vehicle or one of five doses of Δ9-THC (0.4, 0.75, 1.5, 3.0, and 6.0 mg/kg i.p.) and were tested 2 days and 2 weeks later. Exposure to all but the lowest and highest doses of Δ9-THC enhanced the locomotor response to amphetamine (0.75 mg/kg i.p.), but all failed to enhance NAcc DA overflow in response to the drug. Moreover, exposure to 3.0 mg/kg i.p. Δ9-THC increased forskolin-evoked adenylyl cyclase activity in the NAcc and rats' locomotor response to the direct DA receptor agonist apomorphine (1.0 mg/kg s.c.), suggesting that Δ9-THC sensitized locomotor responding to amphetamine by up-regulating postsynaptic DA receptor signaling in the NAcc. Finally, amphetamine self-administration (200 μg/kg/infusion i.v.) was enhanced in amphetamine (5 × 1.5 mg/kg i.p.)-exposed rats, but not in rats exposed to Δ9-THC (5 × 3.0 mg/kg i.p.). Previous exposure to this dose of Δ9-THC modestly increased apomorphine SA (0.5 mg/kg/infusion i.v.). Thus, unlike amphetamine exposure, exposure to Δ9-THC does not enhance the subsequent NAcc DA response to amphetamine or promote amphetamine self-administration. Although Δ9-THC leads to alterations in postsynaptic DA receptor signaling in the NAcc and these can affect the generation of locomotion, these neuroadaptations do not seem to be linked to the expression of enhanced amphetamine self-administration. PMID:21389094

  3. α6β2 nicotinic acetylcholine receptors influence locomotor activity and ethanol consumption.

    PubMed

    Kamens, Helen M; Peck, Colette; Garrity, Caitlin; Gechlik, Alex; Jenkins, Brenita C; Rajan, Akshat

    2017-06-01

    Nicotinic acetylcholine receptors (nAChRs) in the mesolimbic dopamine system have been implicated in ethanol behaviors. In particular, work in genetically engineered mice has demonstrated that α6-containing nAChRs are involved in ethanol consumption and sedation. A limitation of these studies is that the alteration in the receptor was present throughout development. The recently described α6β2 antagonist, N,N-decane-1,10-diyl-bis-3-picolinium diiodide (bPiDI), now makes it possible to test for the involvement of these receptors using a pharmacological approach. The aim of this study was to examine the role of α6β2 nAChRs in ethanol behaviors using a pharmacological approach. Adolescent C57BL/6J mice were treated with bPiDI 30 min prior to testing the mice for binge-like ethanol consumption in the drinking-in-the-dark (DID) test, ethanol-induced motor incoordination using the balance beam, and ethanol-induced sedation using the Loss of Righting Reflex (LORR) paradigm. Adolescent animals were chosen because they express a high amount of α6 mRNA relative to adult animals. Control studies were also performed to determine the effect of bPiDI on locomotor activity and ethanol metabolism. Female mice treated with 20 mg/kg bPiDI had reduced locomotor activity compared to saline-treated animals during the first 30 min following an acute injection. Pretreatment with the α6β2 antagonist reduced adolescent ethanol consumption but also reduced saccharin consumption. No significant effects were observed on ethanol-induced ataxia, sedation, or metabolism. This study provides evidence that α6β2 nAChRs are involved in locomotor activity as well as ethanol and saccharin consumption in adolescent animals. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Determining the Heritability of Ethanol-induced Locomotor Sensitization in Mice Using Short-term Behavioral Selection

    PubMed Central

    Linsenbardt, David N.; Boehm, Stephen L.

    2013-01-01

    Rationale Sensitization to the locomotor stimulant effects of alcohol (ethanol) is thought to be a heritable risk factor for the development of alcoholism that reflects progressive increases in the positive motivational effects of this substance. However, very little is known about the degree to which genes influence this complex behavioral phenomenon. Objectives The primary goal of this work was to determine the heritability of ethanol-induced locomotor sensitization in mice using short-term behavioral selection. Methods Genetically heterogeneous C57BL/6J (B6) × DBA/2J (D2) F2 mice were generated from B6D2F1 progenitors, phenotyped for the expression of locomotor sensitization, and bred for high (HLS) and low (LLS) expression of this behavior. Selective breeding was conducted in two independently generated replicate sets to increase the confidence of our heritability estimates and for future correlated trait analyses. Results Large and significant differences in locomotor sensitization between HLS and LLS lines were evident by the fourth generation. Twenty-two percent of the observed line difference(s) were attributable to genes (h2=.22). Interestingly, locomotor activity in the absence of ethanol was genetically correlated with ethanol sensitization; high activity was associated with high sensitization. Conclusions That changes in ethanol sensitivity following repeated exposures are genetically regulated highlights the relevance of studies aimed at determining how genes regulate susceptibility to ethanol-induced behavioral and neural adaptations. As alcohol use and abuse disorders develop following many repeated alcohol exposures, these data emphasize the need for future studies determining the genetic basis by which changes in response to alcohol occur. PMID:23732838

  5. Attenuation of nicotine's discriminative stimulus effects in rats and its locomotor activity effects in mice by serotonergic 5-HT2A/2C receptor agonists.

    PubMed

    Batman, Angela M; Munzar, Patrik; Beardsley, Patrick M

    2005-05-01

    Reports have indicated that administration of nicotine inhibits, while withdrawal of chronically administered nicotine augments effects of serotonergic 5HT2A/2C agonists. It was our objective to determine whether 5HT2A/2C agonists can modulate the discriminative stimulus effects of nicotine in rats or its locomotor activity effects in mice. Adult male Sprague-Dawley rats were trained to discriminate 0.3 mg/kg nicotine base from saline in a two-lever, fixed-ratio (FR10), food-reinforced, operant-conditioning task during daily (Monday-Friday) 15-min experimental sessions. After characterizing a dose-response curve for nicotine, we tested the ability of the 5HT(2A/2C) agonists (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCL (DOI; 0.18-1.0 mg/kg) and 1-(4-bromo-2, 5-dimethoxyphenyl)-2-aminopropane (DOB; 0.1-1.0 mg/kg), the 5HT2C agonist 6-chloro-2-(1-piperazinyl)pyrazine hydrochloride (MK 212; 0.1 mg/kg-1.0 mg/kg), and the 5HT1A agonist (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT; 0.01 mg/kg-1.0 mg/kg) to modulate nicotine's discriminative stimulus effects. After finding that DOI was able to attenuate the percentage nicotine lever responding (%NLR), we tested for it to also reverse nicotine's effects on locomotor activity in mice. The 5HT2A/2C agonists-in particular DOI-dose dependently attenuated %NLR. The effects of DOI were reversed by the 5HT2A/2C antagonist ketanserin. MK 212 and 8-OH-DPAT had irregular effects among rats and only reduced %NLR to below 50% levels at doses markedly suppressing responding. DOI also dose dependently blocked nicotine's acute rate-lowering locomotor activity effects. These results indicate that activation of serotonin 5HT2A/2C receptors can blunt the discriminative stimulus and locomotor activity effects of nicotine and presents the possibility that activation of these receptors might also be able to attenuate other effects of nicotine.

  6. Male accessory gland substances from Aedes albopictus affect the locomotor activity of Aedes aegypti females

    PubMed Central

    Lima-Camara, Tamara Nunes; Codeço, Claudia Torres; Honório, Nildimar Alves; Bruno, Rafaela Vieira; Peixoto, Alexandre Afranio; Lounibos, Leon Philip

    2013-01-01

    Dengue is one of the world’s most important mosquito-borne diseases and is usually transmitted by one of two vector species: Aedes aegypti or Aedes albopictus . These two diurnal mosquitoes are frequently found coexisting in similar habitats, enabling interactions between adults, such as cross-mating. The objective of this study was to assess cross-mating between Ae. aegypti females and Ae. albopictus males under artificial conditions and evaluate the locomotor activity of Ae. aegypti virgin females injected with male accessory gland (MAG) homogenates to infer the physiological and behavioural responses to interspecific mating. After seven days of exposure, 3.3-16% of Ae. aegypti females mated with Ae. albopictus males. Virgin Ae. aegypti females injected with conspecific and heterospecific MAGs showed a general decrease in locomotor activity compared to controls and were refractory to mating with conspecific males. The reduction in diurnal locomotor activity induced by injections of conspecific or heterospecific MAGs is consistent with regulation of female reproductive activities by male substances, which are capable of sterilising female Ae. aegypti through satyrisation by Ae. albopictus . PMID:24473799

  7. Evidence That GABA Mediates Dopaminergic and Serotonergic Pathways Associated with Locomotor Activity in Juvenile Chinook Salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Clements, S.; Schreck, C.B.

    2004-01-01

    The authors examined the control of locomotor activity in juvenile salmon (Oncorhynchus tshawytscha) by manipulating 3 neurotransmitter systems-gamma-amino-n-butyric acid (GABA), dopamine, and serotonin-as well as the neuropeptide corticotropin releasing hormone (CRH). Intracerebroventricular (ICV) injections of CRH and the GABAAagonist muscimol stimulated locomotor activity. The effect of muscimol was attenuated by administration of a dopamine receptor antagonist, haloperidol. Conversely, the administration of a dopamine uptake inhibitor (4???,4??? -difluoro-3-alpha-[diphenylmethoxy] tropane hydrochloride [DUI]) potentiated the effect of muscimol. They found no evidence that CRH-induced hyperactivity is mediated by dopaminergic systems following concurrent injections of haloperidol or DUI with CRH. Administration of muscimol either had no effect or attenuated the locomotor response to concurrent injections of CRH and fluoxetine, whereas the GABAA antagonist bicuculline methiodide potentiated the effect of CRH and fluoxetine.

  8. Effects of caffeine on locomotor activity in streptozotocin-induced diabetic rats.

    PubMed

    Bădescu, S V; Tătaru, C P; Kobylinska, L; Georgescu, E L; Zahiu, D M; Zăgrean, A M; Zăgrean, L

    2016-01-01

    Diabetes mellitus modifies the expression of adenosine receptors in the brain. Caffeine acts as an antagonist of A1 and A2A adenosine receptors and was shown to have a dose-dependent biphasic effect on locomotion in mice. The present study investigated the link between diabetes and locomotor activity in an animal model of streptozotocin-induced diabetes, and the effects of a low-medium dose of caffeine in this relation. The locomotor activity was investigated by using Open Field Test at 6 weeks after diabetes induction and after 2 more weeks of chronic caffeine administration. Diabetes decreased locomotor activity (total distance moved and mobility time). Chronic caffeine exposure impaired the locomotor activity in control rats, but not in diabetic rats. Our data suggested that the medium doses of caffeine might block the A2A receptors, shown to have an increased density in the brain of diabetic rats, and improve or at least maintain the locomotor activity, offering a neuroprotective support in diabetic rats. Abbreviations : STZ = streptozotocin, OFT = Open Field Test.

  9. Effects of caffeine on locomotor activity in streptozotocin-induced diabetic rats

    PubMed Central

    Bădescu, SV; Tătaru, CP; Kobylinska, L; Georgescu, EL; Zahiu, DM; Zăgrean, AM; Zăgrean, L

    2016-01-01

    Diabetes mellitus modifies the expression of adenosine receptors in the brain. Caffeine acts as an antagonist of A1 and A2A adenosine receptors and was shown to have a dose-dependent biphasic effect on locomotion in mice. The present study investigated the link between diabetes and locomotor activity in an animal model of streptozotocin-induced diabetes, and the effects of a low-medium dose of caffeine in this relation. The locomotor activity was investigated by using Open Field Test at 6 weeks after diabetes induction and after 2 more weeks of chronic caffeine administration. Diabetes decreased locomotor activity (total distance moved and mobility time). Chronic caffeine exposure impaired the locomotor activity in control rats, but not in diabetic rats. Our data suggested that the medium doses of caffeine might block the A2A receptors, shown to have an increased density in the brain of diabetic rats, and improve or at least maintain the locomotor activity, offering a neuroprotective support in diabetic rats. Abbreviations: STZ = streptozotocin, OFT = Open Field Test PMID:27974933

  10. Agmatine improves locomotor function and reduces tissue damage following spinal cord injury.

    PubMed

    Yu, C G; Marcillo, A E; Fairbanks, C A; Wilcox, G L; Yezierski, R P

    2000-09-28

    Clinically effective drug treatments for spinal cord injury (SCI) remain unavailable. Agmatine, an NMDA receptor antagonist and inhibitor of nitric oxide synthase (NOS), is an endogenous neuromodulator found in the brain and spinal cord. Evidence is presented that agmatine significantly improves locomotor function and reduces tissue damage following traumatic SCI in rats. The results suggest the importance of future therapeutic strategies encompassing the use of single drugs with multiple targets for the treatment of acute SCI. The therapeutic targets of agmatine (NMDA receptor and NOS) have been shown to be critically linked to the pathophysiological sequelae of CNS injury and this, combined with the non-toxic profile, lends support to agmatine being considered as a potential candidate for future clinical applications.

  11. Application of the Copenhagen Soccer Test in high-level women players - locomotor activities, physiological response and sprint performance.

    PubMed

    Bendiksen, Mads; Pettersen, Svein Arne; Ingebrigtsen, Jørgen; Randers, Morten B; Brito, João; Mohr, Magni; Bangsbo, Jens; Krustrup, Peter

    2013-12-01

    We evaluated the physiological response, sprint performance and technical ability in various phases of the Copenhagen Soccer Test for Women (CSTw) and investigated whether the locomotor activities of the CSTw were comparable to competitive match-play (CM). Physiological measurements and physical/technical assessments were performed during CSTw for eleven Norwegian high-level women soccer players. The activity pattern during CSTw and CM was monitored using the ZXY tracking system. No differences were observed between CSTw and CM with regards to total distance covered (10093±94 and 9674±191m), high intensity running (1278±67 and 1193±115m) or sprinting (422±55 and 372±46m) (p>.05). During CSTw, average HR was 85±2%HRmax with 35±2% playing time >90%HRmax. Blood lactate increased (p<.05) from 1.4±0.3mM at rest to an average of 4.7±0.5mM during CSTw, with no changes during the test. Blood glucose was 5.4±0.3mM at rest and remained unaltered during CSTw. Sprint performance (2×20m) decreased (p<.05) by 3% during CSTw (8.19±0.06-8.47±0.10s). In conclusion, the locomotor activities during CSTw were comparable to that of high-level competitive match-play. The physiological demands of the CSTw were high, with no changes in heart rate, blood lactate or technical performance during the test, but a lowered sprint performance towards the end of the test. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Pharmacological Effects of a Monoclonal Antibody against 6-Monoacetylmorphine upon Heroin-Induced Locomotor Activity and Pharmacokinetics in Mice.

    PubMed

    Kvello, Anne Marte Sjursen; Andersen, Jannike Mørch; Øiestad, Elisabeth Leere; Mørland, Jørg; Bogen, Inger Lise

    2016-08-01

    Immunotherapy can provide a supplemental treatment strategy against heroin use on the principle of sequestering the active drug in the bloodstream, thereby reducing its distribution to the brain. Previous studies have shown that heroin's first metabolite, 6-monoacetylmorphine (6-MAM), is the main mediator of acute heroin effects. The objective of the present study was to characterize the pharmacological potential of a monoclonal antibody against 6-MAM (anti-6-MAM mAb) to counteract the heroin response. The individual contributions from heroin and 6-MAM to heroin effects were also examined by pretreating mice with anti-6-MAM mAb (10-100 mg/kg) prior to either heroin or 6-MAM injection (1.25-2.5 μmol/kg). The opioid-induced behavioral response was assessed in a locomotor activity test, followed by opioid and antibody quantification in blood and brain tissue. Pretreatment with mAb caused a profound reduction of heroin- and 6-MAM-induced behavior, accompanied by correspondingly decreased levels of 6-MAM in brain tissue. mAb pretreatment was more efficient against 6-MAM injection than against heroin, leading to an almost complete blockade of 6-MAM-induced effects. mAb pretreatment was unable to block the immediate (5-minute) transport of active metabolites across the blood-brain barrier after heroin injection, indicating that heroin itself appears to enhance the immediate delivery of 6-MAM to the brain. The current study provides additional evidence that 6-MAM sequestration is crucial for counteracting the acute heroin response, and demonstrates the pharmacological potential of immunotherapy against heroin use. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  13. Inhalation of diethylamine--acute nasal effects and subjective response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundqvist, G.R.; Yamagiwa, M.; Pedersen, O.F.

    1992-03-01

    Adult volunteers were exposed to 25 ppm (75 mg/m3) diethylamine in a climate chamber for 15 min in order to study the acute nasal reactions to an exposure equivalent to the present threshold limit value-short-term exposure limit. Changes in nasal volume and nasal resistance were measured by acoustic rhinometry and by rhinomanometry. Acute change in nasal volume, usually seen as acute nasal mucosa response to thermal stimuli, was not observed, nor was an acute change in nasal airway resistance. In a subsequent experiment, the aim was to measure acute sensory effects. Exposure to a concentration increasing from 0 to 12more » ppm took place for 60 min, equal to an average concentration of 10 ppm (30 mg/m3). A moderate to strong olfactory response and distinct nasal and eye irritation were observed. In spite of considerable individual variation, the results were in agreement with sensory effect estimates obtained from animal studies.« less

  14. OSO paradigm--A rapid behavioral screening method for acute psychosocial stress reactivity in mice.

    PubMed

    Brzózka, M M; Unterbarnscheidt, T; Schwab, M H; Rossner, M J

    2016-02-09

    Chronic psychosocial stress is an important environmental risk factor for the development of psychiatric diseases. However, studying the impact of chronic psychosocial stress in mice is time consuming and thus not optimally suited to 'screen' increasing numbers of genetically manipulated mouse models for psychiatric endophenotypes. Moreover, many studies focus on restraint stress, a strong physical stressor with limited relevance for psychiatric disorders. Here, we describe a simple and a rapid method based on the resident-intruder paradigm to examine acute effects of mild psychosocial stress in mice. The OSO paradigm (open field--social defeat--open field) compares behavioral consequences on locomotor activity, anxiety and curiosity before and after exposure to acute social defeat stress. We first evaluated OSO in male C57Bl/6 wildtype mice where a single episode of social defeat reduced locomotor activity, increased anxiety and diminished exploratory behavior. Subsequently, we applied the OSO paradigm to mouse models of two schizophrenia (SZ) risk genes. Transgenic mice with neuronal overexpression of Neuregulin-1 (Nrg1) type III showed increased risk-taking behavior after acute stress exposure suggesting that NRG1 dysfunction is associated with altered affective behavior. In contrast, Tcf4 transgenic mice displayed a normal stress response which is in line with the postulated predominant contribution of TCF4 to cognitive deficits of SZ. In conclusion, the OSO paradigm allows for rapid screening of selected psychosocial stress-induced behavioral endophenotypes in mouse models of psychiatric diseases. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Melanopsin is required for non-image-forming photic responses in blind mice.

    PubMed

    Panda, Satchidananda; Provencio, Ignacio; Tu, Daniel C; Pires, Susana S; Rollag, Mark D; Castrucci, Ana Maria; Pletcher, Mathew T; Sato, Trey K; Wiltshire, Tim; Andahazy, Mary; Kay, Steve A; Van Gelder, Russell N; Hogenesch, John B

    2003-07-25

    Although mice lacking rod and cone photoreceptors are blind, they retain many eye-mediated responses to light, possibly through photosensitive retinal ganglion cells. These cells express melanopsin, a photopigment that confers this photosensitivity. Mice lacking melanopsin still retain nonvisual photoreception, suggesting that rods and cones could operate in this capacity. We observed that mice with both outer-retinal degeneration and a deficiency in melanopsin exhibited complete loss of photoentrainment of the circadian oscillator, pupillary light responses, photic suppression of arylalkylamine-N-acetyltransferase transcript, and acute suppression of locomotor activity by light. This indicates the importance of both nonvisual and classical visual photoreceptor systems for nonvisual photic responses in mammals.

  16. The effects of locomotor-respiratory coupling on the pattern of breathing in horses.

    PubMed Central

    Lafortuna, C L; Reinach, E; Saibene, F

    1996-01-01

    1. To investigate the effect of locomotor activity on the pattern of breathing in quadrupeds, ventilatory response was studied in four healthy horses during horizontal and inclined (7%) treadmill exercise at different velocities (1.4-6.9 m s(-1)) and during chemical stimulation with a rebreathing method. Stride frequency (f(s)) and locomotor-respiratory coupling (LRC) were also simultaneously determined by means of video recordings synchronized with respiratory events. 2. Tidal volume (V(T)) was positively correlated with pulmonary ventilation (V(E)) but significantly different linear regression equations were found between the experimental conditions (P < 0.0001), since the chemical hyperventilation was mainly due to increases in V(T), whereas the major contribution to exercise hyperpnoea came from changes in respiratory frequency (f(R)). 3. The average f(R) at each exercise level was not significantly different from f(S), although there was not always a tight 1:1 LRC. At constant speeds, f(S) was independent of the treadmill slope and hence the greater V(E) during inclined exercise was due to increased V(T). 4. At any ventilatory level, the differences in breathing patterns between locomotion and rebreathing or locomotion at different slopes derived from different set points of the inspiratory off-switch mechanism. 5. The percentage of single breaths entrained with locomotor rhythm rose progressively and significantly with treadmill speed (P < 0.0001) up to a 1:1 LRC and was significantly affected by treadmill slope (P < 0.001). 6. A LRC of 1:1 was systematically observed at canter (10 out of 10 trials) and sometimes at trot (5 out of 14) and it entailed (i) a 4- to 5-fold reduction in both V(T) and f(R) variability, and (ii) a gait-specific phase locking of inspiratory onset during the locomotor cycle. 7. It is concluded that different patterns of breathing are employed during locomotion and rebreathing due to the interference between locomotor and respiratory

  17. Functional Reorganization of the Locomotor Network in Parkinson Patients with Freezing of Gait

    PubMed Central

    Fling, Brett W.; Cohen, Rajal G.; Mancini, Martina; Carpenter, Samuel D.; Fair, Damien A.; Nutt, John G.; Horak, Fay B.

    2014-01-01

    Freezing of gait (FoG) is a transient inability to initiate or maintain stepping that often accompanies advanced Parkinson’s disease (PD) and significantly impairs mobility. The current study uses a multimodal neuroimaging approach to assess differences in the functional and structural locomotor neural network in PD patients with and without FoG and relates these findings to measures of FoG severity. Twenty-six PD patients and fifteen age-matched controls underwent resting-state functional magnetic resonance imaging and diffusion tensor imaging along with self-reported and clinical assessments of FoG. After stringent movement correction, fifteen PD patients and fourteen control participants were available for analysis. We assessed functional connectivity strength between the supplementary motor area (SMA) and the following locomotor hubs: 1) subthalamic nucleus (STN), 2) mesencephalic and 3) cerebellar locomotor region (MLR and CLR, respectively) within each hemisphere. Additionally, we quantified structural connectivity strength between locomotor hubs and assessed relationships with metrics of FoG. FoG+ patients showed greater functional connectivity between the SMA and bilateral MLR and between the SMA and left CLR compared to both FoG− and controls. Importantly, greater functional connectivity between the SMA and MLR was positively correlated with i) clinical, ii) self-reported and iii) objective ratings of freezing severity in FoG+, potentially reflecting a maladaptive neural compensation. The current findings demonstrate a re-organization of functional communication within the locomotor network in FoG+ patients whereby the higher-order motor cortex (SMA) responsible for gait initiation communicates with the MLR and CLR to a greater extent than in FoG− patients and controls. The observed pattern of altered connectivity in FoG+ may indicate a failed attempt by the CNS to compensate for the loss of connectivity between the STN and SMA and may reflect a loss

  18. Development of a Countermeasure to Mitigate Postflight Locomotor Dysfunction

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Richards, J. T.; Miller, C. A.; Brady, R.; Warren, L. E.; Ruttley, T. M.

    2006-01-01

    Astronauts returning from space flight experience locomotor dysfunction following their return to Earth. Our laboratory is currently developing a gait adaptability training program that is designed to facilitate recovery of locomotor function following a return to a gravitational environment. The training program exploits the ability of the sensorimotor system to generalize from exposure to multiple adaptive challenges during training so that the gait control system essentially learns to learn and therefore can reorganize more rapidly when faced with a novel adaptive challenge. Evidence for the potential efficacy of an adaptive generalization gait training program can be obtained from numerous studies in the motor learning literature which have demonstrated that systematically varying the conditions of training enhances the ability of the performer to learn and retain a novel motor task. These variable practice training approaches have been used in applied contexts to improve motor skills required in a number of different sports. The central nervous system (CNS) can produce voluntary movement in an almost infinite number of ways. For example, locomotion can be achieved with many different combinations of joint angles, muscle activation patterns and forces. The CNS can exploit these degrees of freedom to enhance motor response adaptability during periods of adaptive flux like that encountered during a change in gravitational environment. Ultimately, the functional goal of an adaptive generalization countermeasure is not necessarily to immediately return movement patterns back to normal. Rather the training regimen should facilitate the reorganization of available sensory and motor subsystems to achieve safe and effective locomotion as soon as possible after long duration space flight. Indeed, this approach has been proposed as a basic feature underlying effective neurological rehabilitation. We have previously confirmed that subjects participating in an adaptive

  19. Fibrin(ogen) mediates acute inflammatory responses to biomaterials

    PubMed Central

    1993-01-01

    Although "biocompatible" polymeric elastomers are generally nontoxic, nonimmunogenic, and chemically inert, implants made of these materials may trigger acute and chronic inflammatory responses. Early interactions between implants and inflammatory cells are probably mediated by a layer of host proteins on the material surface. To evaluate the importance of this protein layer, we studied acute inflammatory responses of mice to samples of polyester terephthalate film (PET) that were implanted intraperitoneally for short periods. Material preincubated with albumin is "passivated," accumulating very few adherent neutrophils or macrophages, whereas uncoated or plasma- coated PET attracts large numbers of phagocytes. Neither IgG adsorption nor surface complement activation is necessary for this acute inflammation; phagocyte accumulation on uncoated implants is normal in hypogammaglobulinemic mice and in severely hypocomplementemic mice. Rather, spontaneous adsorption of fibrinogen appears to be critical: (a) PET coated with serum or hypofibrinogenemic plasma attracts as few phagocytes as does albumin-coated material; (b) in contrast, PET preincubated with serum or hypofibrinogenemic plasma containing physiologic amounts of fibrinogen elicits "normal" phagocyte recruitment; (c) most importantly, hypofibrinogenemic mice do not mount an inflammatory response to implanted PET unless the material is coated with fibrinogen or the animals are injected with fibrinogen before implantation. Thus, spontaneous adsorption of fibrinogen appears to initiate the acute inflammatory response to an implanted polymer, suggesting an interesting nexus between two major iatrogenic effects of biomaterials: clotting and inflammation. PMID:8245787

  20. Locomotor problems among rural elderly population in a District of Aligarh, North India.

    PubMed

    Maroof, Mohd; Ahmad, Anees; Khalique, Najam; Ansari, M Athar

    2017-01-01

    Locomotor functions decline with the age along with other physiological changes. This results in deterioration of the quality of life with decreased social and economic role in the society, as well as increased dependency, for the health care and other basic services. The demographic transition resulting in increased proportion of elderly may pose a burden to the health system. To find the prevalence of locomotor problems among the elderly population, and related sociodemographic factors. The study was a community-based cross-sectional study done at field practice area of Rural Health Training Centre, JN Medical College, AMU, Aligarh, Uttar Pradesh, India. A sample of 225 was drawn from 1018 elderly population aged 60 years and above using systematic random sampling with probability proportionate to size. Sociodemographic characteristics were obtained using pretested and predesigned questionnaire. Locomotor problems were assessed using the criteria used by National Sample Survey Organization. Data were analyzed using SPSS version 20. Chi-square test was used to test relationship of locomotor problems with sociodemographic factors. P <0.05 was considered statistically significant. The prevalence of locomotor problems among the elderly population was 25.8%. Locomotor problems were significantly associated with age, gender, and working status whereas no significant association with literacy status and marital status was observed. The study concluded that approximately one-fourth of the elderly population suffered from locomotor problems. The sociodemographic factors related to locomotor problems needs to be addressed properly to help them lead an independent and economically productive life.

  1. Dual spinal lesion paradigm in the cat: evolution of the kinematic locomotor pattern.

    PubMed

    Barrière, Grégory; Frigon, Alain; Leblond, Hugues; Provencher, Janyne; Rossignol, Serge

    2010-08-01

    The recovery of voluntary quadrupedal locomotion after an incomplete spinal cord injury can involve different levels of the CNS, including the spinal locomotor circuitry. The latter conclusion was reached using a dual spinal lesion paradigm in which a low thoracic partial spinal lesion is followed, several weeks later, by a complete spinal transection (i.e., spinalization). In this dual spinal lesion paradigm, cats can express hindlimb walking 1 day after spinalization, a process that normally takes several weeks, suggesting that the locomotor circuitry within the lumbosacral spinal cord had been modified after the partial lesion. Here we detail the evolution of the kinematic locomotor pattern throughout the dual spinal lesion paradigm in five cats to gain further insight into putative neurophysiological mechanisms involved in locomotor recovery after a partial spinal lesion. All cats recovered voluntary quadrupedal locomotion with treadmill training (3-5 days/wk) over several weeks. After the partial lesion, the locomotor pattern was characterized by several left/right asymmetries in various kinematic parameters, such as homolateral and homologous interlimb coupling, cycle duration, and swing/stance durations. When no further locomotor improvement was observed, cats were spinalized. After spinalization, the hindlimb locomotor pattern rapidly reappeared, but left/right asymmetries in swing/stance durations observed after the partial lesion could disappear or reverse. It is concluded that, after a partial spinal lesion, the hindlimb locomotor pattern was actively maintained by new dynamic interactions between spinal and supraspinal levels but also by intrinsic changes within the spinal cord.

  2. MK-801 increases locomotor activity in a context-dependent manner in zebrafish.

    PubMed

    Tran, Steven; Muraleetharan, Arrujyan; Fulcher, Niveen; Chatterjee, Diptendu; Gerlai, Robert

    2016-01-01

    Zebrafish have become a popular animal model for behavioral neuroscience with an increasing number of studies examining the effects of pharmacological compounds targeting the brain. Exposure to MK-801, a non-competitive N-methyl-d-aspartate receptor antagonist has been shown to increase locomotor activity in zebrafish. However, others have failed to replicate this finding as several contradicting studies report no changes in locomotor activity following exposure to similar doses. In the current study we reconcile these behavioral reports by demonstrating that zebrafish do not exhibit changes in locomotor activity during exposure to non-sedative doses of MK-801. Interestingly, zebrafish do exhibit significant increases in locomotion if pre-treated with MK-801 followed by subsequent testing in a novel environment, which suggests the effects of MK-801 are context-dependent. In addition, we examine the potential role of the dopaminergic system in mediating MK-801's locomotor stimulant effect by quantifying the levels of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in the brains of zebrafish following a 30 min exposure to 10 μM of MK-801 (the dose found to induce the largest increase in locomotor activity). Our findings indicate that the MK-801-induced increase in locomotor activity is not accompanied by changes in whole-brain levels of dopamine or DOPAC. Overall, our results suggest that MK-801's context-dependent locomotor stimulant effect may be independent of whole-brain dopaminergic activation. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Descending glutamatergic pathways of PFC are involved in acute and chronic action of Methylphenidate

    PubMed Central

    Wanchoo, S.J.; Swann, A.C.; Dafny, N.

    2012-01-01

    Progressive augmentation of behavioral response following repeated psychostimulant administrations is known as behavioral sensitization, and is an indicator of a drug’s liability for abuse. It is known that methylphenidate (MPD) (also known as Ritalin), a drug used to treat Attention-Deficit Hyperactivity Disorder (ADHD), induces sensitization in animals following repeated injections. It was recently reported that bilateral electric (non-specific) lesion of prefrontal cortex (PFC) prevented MPD elicited behavioral sensitization. Since PFC sends glutamatergic afferents to both ventral tegmental area (VTA) and nucleus accumbens (NAc), sites that are involved in induction and expression of behavioral sensitization respectively and glutamate from PFC is known to modulate dopamine cell activity in VTA and NAc, this study investigated the role of descending glutamate from PFC in MPD elicited behavioral sensitization. Locomotor activity of three groups of rats- control, sham operated and group with specific chemical lesion of glutamate neurons of PFC- was recorded using an open-field assay. On experimental day (ED) 1, the locomotor activity was recorded post a saline injection. The sham and lesion groups underwent respective surgeries on ED 2, and were allowed to recover for five days (from ED 3 to ED 7). The post-surgery baseline was recorded on ED 8 following a saline injection. On ED’s 9 through 14, 2.5 mg/kg MPD was given, followed by a four day washout period (ED 15 –18). All three groups received a rechallenge injection of 2.5 mg/kg on ED 19 and their locomotor activity on various days was analyzed. It was found that ibotenic acid lesion modulated the acute and chronic effects of MPD and hence suggests that PFC glutamatergic afferents are involved in the acute effect of MPD as well as in its chronic effects such as behavioral sensitization to MPD. PMID:19747456

  4. Descending glutamatergic pathways of PFC are involved in acute and chronic action of methylphenidate.

    PubMed

    Wanchoo, S J; Swann, A C; Dafny, N

    2009-12-08

    Progressive augmentation of behavioral response following repeated psychostimulant administrations is known as behavioral sensitization, and is an indicator of a drug's liability for abuse. It is known that methylphenidate (MPD) (also known as Ritalin), a drug used to treat attention-deficit hyperactivity disorder (ADHD), induces sensitization in animals following repeated injections. It was recently reported that bilateral electric (non-specific) lesion of prefrontal cortex (PFC) prevented MPD elicited behavioral sensitization. Since PFC sends glutamatergic afferents to both ventral tegmental area (VTA) and nucleus accumbens (NAc), sites that are involved in induction and expression of behavioral sensitization respectively and glutamate from PFC is known to modulate dopamine cell activity in VTA and NAc, this study investigated the role of descending glutamate from PFC in MPD elicited behavioral sensitization. Locomotor activity of three groups of rats-control, sham operated and group with specific chemical lesion of glutamate neurons of PFC-was recorded using an open-field assay. On experimental day (ED) 1, the locomotor activity was recorded post a saline injection. The sham and lesion groups underwent respective surgeries on ED 2, and were allowed to recover for 5 days (from ED 3 to ED 7). The post-surgery baseline was recorded on ED 8 following a saline injection. On ED's 9 through 14, 2.5 mg/kg MPD was given, followed by a 4-day washout period (ED 15 -18). All three groups received a rechallenge injection of 2.5 mg/kg on ED 19 and their locomotor activity on various days was analyzed. It was found that ibotenic acid lesion modulated the acute and chronic effects of MPD and hence suggests that PFC glutamatergic afferents are involved in the acute effect of MPD as well as in its chronic effects such as behavioral sensitization to MPD.

  5. Masking responses to light in period mutant mice.

    PubMed

    Pendergast, Julie S; Yamazaki, Shin

    2011-10-01

    Masking is an acute effect of an external signal on an overt rhythm and is distinct from the process of entrainment. In the current study, we investigated the phase dependence and molecular mechanisms regulating masking effects of light pulses on spontaneous locomotor activity in mice. The circadian genes, Period1 (Per1) and Per2, are necessary components of the timekeeping machinery and entrainment by light appears to involve the induction of the expression of Per1 and Per2 mRNAs in the suprachiasmatic nuclei (SCN). We assessed the roles of the Per genes in regulating masking by assessing the effects of light pulses on nocturnal locomotor activity in C57BL/6J Per mutant mice. We found that Per1(-/-) and Per2(-/-) mice had robust negative masking responses to light. In addition, the locomotor activity of Per1(-/-)/Per2(-/-) mice appeared to be rhythmic in the light-dark (LD) cycle, and the phase of activity onset was advanced (but varied among individual mice) relative to lights off. This rhythm persisted for 1 to 2 days in constant darkness in some Per1(-/-)/Per2(-/-) mice. Furthermore, Per1(-/-)/Per2(-/-) mice exhibited robust negative masking responses to light. Negative masking was phase dependent in wild-type mice such that maximal suppression was induced by light pulses at zeitgeber time 14 (ZT14) and gradually weaker suppression occurred during light pulses at ZT16 and ZT18. By measuring the phase shifts induced by the masking protocol (light pulses were administered to mice maintained in the LD cycle), we found that the phase responsiveness of Per mutant mice was altered compared to wild-types. Together, our data suggest that negative masking responses to light are robust in Per mutant mice and that the Per1(-/-)/Per2(-/-) SCN may be a light-driven, weak/damping oscillator.

  6. A Locomotor Deficit Induced by Sublethal Doses of Pyrethroid and Neonicotinoid Insecticides in the Honeybee Apis mellifera.

    PubMed

    Charreton, Mercédès; Decourtye, Axel; Henry, Mickaël; Rodet, Guy; Sandoz, Jean-Christophe; Charnet, Pierre; Collet, Claude

    2015-01-01

    The toxicity of pesticides used in agriculture towards non-targeted organisms and especially pollinators has recently drawn the attention from a broad scientific community. Increased honeybee mortality observed worldwide certainly contributes to this interest. The potential role of several neurotoxic insecticides in triggering or potentiating honeybee mortality was considered, in particular phenylpyrazoles and neonicotinoids, given that they are widely used and highly toxic for insects. Along with their ability to kill insects at lethal doses, they can compromise survival at sublethal doses by producing subtle deleterious effects. In this study, we compared the bee's locomotor ability, which is crucial for many tasks within the hive (e.g. cleaning brood cells, feeding larvae…), before and after an acute sublethal exposure to one insecticide belonging to the two insecticide classes, fipronil and thiamethoxam. Additionally, we examined the locomotor ability after exposure to pyrethroids, an older chemical insecticide class still widely used and known to be highly toxic to bees as well. Our study focused on young bees (day 1 after emergence) since (i) few studies are available on locomotion at this stage and (ii) in recent years, pesticides have been reported to accumulate in different hive matrices, where young bees undergo their early development. At sublethal doses (SLD48h, i.e. causing no mortality at 48 h), three pyrethroids, namely cypermethrin (2.5 ng/bee), tetramethrin (70 ng/bee), tau-fluvalinate (33 ng/bee) and the neonicotinoid thiamethoxam (3.8 ng/bee) caused a locomotor deficit in honeybees. While the SLD48h of fipronil (a phenylpyrazole, 0.5 ng/bee) had no measurable effect on locomotion, we observed high mortality several days after exposure, an effect that was not observed with the other insecticides. Although locomotor deficits observed in the sublethal range of pyrethroids and thiamethoxam would suggest deleterious effects in the field, the case of

  7. A Locomotor Deficit Induced by Sublethal Doses of Pyrethroid and Neonicotinoid Insecticides in the Honeybee Apis mellifera

    PubMed Central

    Charreton, Mercédès; Decourtye, Axel; Henry, Mickaël; Rodet, Guy; Sandoz, Jean-Christophe; Charnet, Pierre; Collet, Claude

    2015-01-01

    The toxicity of pesticides used in agriculture towards non-targeted organisms and especially pollinators has recently drawn the attention from a broad scientific community. Increased honeybee mortality observed worldwide certainly contributes to this interest. The potential role of several neurotoxic insecticides in triggering or potentiating honeybee mortality was considered, in particular phenylpyrazoles and neonicotinoids, given that they are widely used and highly toxic for insects. Along with their ability to kill insects at lethal doses, they can compromise survival at sublethal doses by producing subtle deleterious effects. In this study, we compared the bee’s locomotor ability, which is crucial for many tasks within the hive (e.g. cleaning brood cells, feeding larvae…), before and after an acute sublethal exposure to one insecticide belonging to the two insecticide classes, fipronil and thiamethoxam. Additionally, we examined the locomotor ability after exposure to pyrethroids, an older chemical insecticide class still widely used and known to be highly toxic to bees as well. Our study focused on young bees (day 1 after emergence) since (i) few studies are available on locomotion at this stage and (ii) in recent years, pesticides have been reported to accumulate in different hive matrices, where young bees undergo their early development. At sublethal doses (SLD48h, i.e. causing no mortality at 48h), three pyrethroids, namely cypermethrin (2.5 ng/bee), tetramethrin (70 ng/bee), tau-fluvalinate (33 ng/bee) and the neonicotinoid thiamethoxam (3.8 ng/bee) caused a locomotor deficit in honeybees. While the SLD48h of fipronil (a phenylpyrazole, 0.5 ng/bee) had no measurable effect on locomotion, we observed high mortality several days after exposure, an effect that was not observed with the other insecticides. Although locomotor deficits observed in the sublethal range of pyrethroids and thiamethoxam would suggest deleterious effects in the field, the case

  8. Locomotor skills and balance strategies in adolescents idiopathic scoliosis.

    PubMed

    Mallau, Sophie; Bollini, Gérard; Jouve, Jean-Luc; Assaiante, Christine

    2007-01-01

    Locomotor balance control assessment was performed to study the effect of idiopathic scoliosis on head-trunk coordination in 17 patients with adolescent idiopathic scoliosis (AIS) and 16 control subjects. The aim of this study was to explore the functional effects of structural spinal deformations like idiopathic scoliosis on the balance strategies used during locomotion. Up to now, the repercussion of the idiopathic scoliosis on head-trunk coordination and balance strategies during locomotion is relatively unknown. Seventeen patients with AIS (mean age 14 years 3 months, 10 degrees < Cobb angle > 30 degrees) and 16 control subjects (mean age 14 years 1 month) were tested during various locomotor tasks: walking on the ground, walking on a line, and walking on a beam. Balance control was examined in terms of rotation about the vertical axis (yaw) and on a frontal plane (roll). Kinematics of foot, pelvis, trunk, shoulder, and head rotations were measured with an automatic optical TV image processor in order to calculate angular dispersions and segmental stabilizations. Decreasing the walking speed is the main adaptive strategy used in response to balance problems in control subjects as well as patients with AIS. However, patients with AIS performed walking tasks more slowly than normal subjects (around 15%). Moreover, the pelvic stabilization is preserved, despite the structural changes affecting the spine. Lastly, the biomechanical defect resulting from idiopathic scoliosis mainly affects the yaw head stabilization during locomotion. Patients with AIS show substantial similarities with control subjects in adaptive strategies relative to locomotor velocity as well as balance control based on segmental stabilization. In contrast, the loss of the yaw head stabilization strategies, mainly based on the use of vestibular information, probably reflects the presence of vestibular deficits in the patients with AIS.

  9. Acute stress responses: A review and synthesis of ASD, ASR, and CSR.

    PubMed

    Isserlin, Leanna; Zerach, Gadi; Solomon, Zahava

    2008-10-01

    Toward the development of a unifying diagnosis for acute stress responses this article attempts to find a place for combat stress reaction (CSR) within the spectrum of other defined acute stress responses. This article critically compares the diagnostic criteria of acute stress disorder (ASD), acute stress reaction (ASR), and CSR. Prospective studies concerning the predictive value of ASD, ASR, and CSR are reviewed. Questions, recommendations, and implications for clinical practice are raised concerning the completeness of the current acute stress response diagnoses, the heterogeneity of different stressors, the scope of expected outcomes, and the importance of decline in function as an indicator of future psychological, psychiatric, and somatic distress. PsycINFO Database Record 2009 APA.

  10. The Rewarding and Locomotor-Sensitizing Effects of Repeated Cocaine Administration are Distinct and Separable in Mice

    PubMed Central

    Riday, Thorfinn T.; Kosofsky, Barry E.; Malanga, C.J.

    2011-01-01

    Repeated psychostimulant exposure progressively increases their potency to stimulate motor activity in rodents. This behavioral or locomotor sensitization is considered a model for some aspects of drug addiction in humans, particularly drug craving during abstinence. However, the role of increased motor behavior in drug reward remains incompletely understood. Intracranial self-stimulation (ICSS) was measured concurrently with locomotor activity to determine if acute intermittent cocaine administration had distinguishable effects on motor behavior and perception of brain stimulation-reward (BSR) in the same mice. Sensitization is associated with changes in neuronal activity and glutamatergic neurotransmission in brain reward circuitry. Expression of AMPA receptor subunits (GluR1 and GluR2) and CRE binding protein (CREB) was measured in the ventral tegmental area (VTA), dorsolateral striatum (STR) and nucleus accumbens (NAc) before and after a sensitizing regimen of cocaine, with and without ICSS. Repeated cocaine administration sensitized mice to its locomotor stimulating effects but not its ability to potentiate BSR. ICSS increased GluR1 in the VTA but not NAc or STR, demonstrating selective changes in protein expression with electrical stimulation of discrete brain structures. Repeated cocaine reduced GluR1, GluR2 and CREB expression in the NAc, and reductions of GluR1 and GluR2 but not CREB were further enhanced by ICSS. These data suggest that the effects of repeated cocaine exposure on reward and motor processes are dissociable in mice, and that reduction of excitatory neurotransmission in the NAc may predict altered motor function independently from changes in reward perception. PMID:22197517

  11. Supraspinal Control Predicts Locomotor Function and Forecasts Responsiveness to Training after Spinal Cord Injury

    PubMed Central

    Field-Fote, Edelle C.; Yang, Jaynie F.; Basso, D. Michele; Gorassini, Monica A.

    2017-01-01

    Abstract Restoration of walking ability is an area of great interest in the rehabilitation of persons with spinal cord injury. Because many cortical, subcortical, and spinal neural centers contribute to locomotor function, it is important that intervention strategies be designed to target neural elements at all levels of the neuraxis that are important for walking ability. While to date most strategies have focused on activation of spinal circuits, more recent studies are investigating the value of engaging supraspinal circuits. Despite the apparent potential of pharmacological, biological, and genetic approaches, as yet none has proved more effective than physical therapeutic rehabilitation strategies. By making optimal use of the potential of the nervous system to respond to training, strategies can be developed that meet the unique needs of each person. To complement the development of optimal training interventions, it is valuable to have the ability to predict future walking function based on early clinical presentation, and to forecast responsiveness to training. A number of clinical prediction rules and association models based on common clinical measures have been developed with the intent, respectively, to predict future walking function based on early clinical presentation, and to delineate characteristics associated with responsiveness to training. Further, a number of variables that are correlated with walking function have been identified. Not surprisingly, most of these prediction rules, association models, and correlated variables incorporate measures of volitional lower extremity strength, illustrating the important influence of supraspinal centers in the production of walking behavior in humans. PMID:27673569

  12. Sex differences and the role of acute stress in the open-field tower maze.

    PubMed

    Lipatova, Olga; Campolattaro, Matthew M; Dixon, Dawndra C; Durak, Ayse

    2018-05-15

    Many studies provide evidence that differences in spatial learning exist between males and females. However, it is necessary to consider non-mnemonic factors that may influence these findings. The present experiment investigated acquisition, retention, and the effects of stress on response- and place-learning in male and female rats. Rats were trained in an open-field tower maze. Procedures were used to minimize stress in the rats, and their ability to solve place- or response-learning in the maze was determined by analyzing a response variable (i.e., first choice correct response) that was not influenced by general locomotor activity. The results revealed that male and female rats acquire place- and response-learning at the same rate even though females moved significantly faster in the maze. However, females showed better retrieval of place-, but not response-learning compared to male rats. This effect appeared to be enhanced when the rats were tested immediately following an acute restraint stress. Furthermore, both female and male rats that were exposed to acute restraint stress showed less impairment than controls when subsequently tested in a novel situation. These findings have clinical implications that a mild physiological stress response can make one more cognitively resistant to adversities later in life. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Effects of edaravone on muscle atrophy and locomotor function in patients with ischemic stroke: a randomized controlled pilot study.

    PubMed

    Naritomi, Hiroaki; Moriwaki, Hiroshi; Metoki, Norifumi; Nishimura, Hiroyuki; Higashi, Yasuto; Yamamoto, Yasumasa; Yuasa, Hiroyuki; Oe, Hiroshi; Tanaka, Kortaro; Saito, Kozue; Terayama, Yasuo; Oda, Tadafumi; Tanahashi, Norio; Kondo, Hisao

    2010-01-01

    Stroke patients with severe leg paralysis are often bedridden in the acute and subacute phase, which increases the risk of disuse muscle atrophy in the chronic phase. The evidence to date indicates that oxidative stress plays an important role in the mechanism of disuse muscle atrophy. Therefore, the aim of this study was to determine if long-term radical scavenger treatment with edaravone following an acute stroke prevents the progression of disuse muscle atrophy and improves leg locomotor function in the chronic phase. This randomized controlled pilot study was conducted at 19 acute stroke and rehabilitation centers across Japan. Forty-seven ischemic stroke patients with at least leg motor weakness admitted within 24 hours of onset were randomly assigned to receive continuous intravenous infusions of edaravone 30 mg twice daily for 3 days (short-term group) or 10-14 days (long-term group). The primary endpoints of the study included the degree of leg disuse muscle atrophy, as measured by the percentage change from baseline in femoral muscle circumference 15 cm above the knee, and the improvement in leg locomotor function, as assessed by the maximum walking speed over 10 m, 3 months after the onset of stroke. Three-month follow-up was completed by a total of 41 patients (21 in the short-term group and 20 in the long-term group). On admission, there was no significant difference in the severity of stroke or the grade of leg paresis between the two treatment groups. The grade of disuse muscle atrophy and incidence of gait impairment 3 weeks after stroke onset were also similar between the short- and long-term groups. However, disuse muscle atrophy of the paretic and non-paretic legs was significantly less severe in the long-term versus the short-term treatment group (3.6 ± 5.9% and 1.5 ± 6.0% vs 8.3 ± 5.2% and 5.7 ± 6.4%; p < 0.01 and p < 0.05) 3 months after stroke onset. Additionally, the maximum walking speed over a distance of 10 m

  14. Oxytocin decreases cocaine taking, cocaine seeking, and locomotor activity in female rats

    PubMed Central

    Leong, Kah-Chung; Zhou, Luyi; Ghee, Shannon M.; See, Ronald E.; Reichel, Carmela M.

    2015-01-01

    Oxytocin has been shown to decrease cocaine taking and seeking in male rats, suggesting potential treatment efficacy for drug addiction. In the present study, we extended these findings to the assessment of cocaine seeking and taking in female rats. Further, we made direct comparisons of oxytocin’s impact on cocaine induced locomotor activity in both males and females. In females, systemic oxytocin (0.3, 1.0, 3.0 mg/kg) attenuated lever pressing for cocaine during self-administration and oxytocin (1.0 mg/kg) attenuated cue-induced cocaine seeking following extinction. Cocaine increased baseline locomotor activity to a greater degree in females relative to males. Oxytocin (0.1, 0.3, 1.0, and 3.0 mg/kg) reduced cocaine-induced locomotor activity in females, but not significantly in males. These data illustrate sex similarities in oxytocin’s attenuation of cocaine seeking, but sex differences in cocaine-induced locomotor effects. While reductions in cocaine seeking cannot be attributed to a reduction in locomotor activity in males, attenuation of locomotor function cannot be entirely ruled out as an explanation for a decrease in cocaine seeking in females suggesting that oxytocin’s effect on cocaine seeking may be mediated by different mechanisms in male and females. PMID:26523890

  15. Integrated Locomotor Function Tests for Countermeasure Evaluation

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Landsness, E. C.; Black, F. O.

    2005-01-01

    Following spaceflight crewmembers experience locomotor dysfunction due to inflight adaptive alterations in sensorimotor function. Countermeasures designed to mitigate these postflight gait alterations need to be assessed with a new generation of tests that evaluate the interaction of various sensorimotor sub-systems central to locomotor control. The goal of the present study was to develop new functional tests of locomotor control that could be used to test the efficacy of countermeasures. These tests were designed to simultaneously examine the function of multiple sensorimotor systems underlying the control of locomotion and be operationally relevant to the astronaut population. Traditionally, gaze stabilization has been studied almost exclusively in seated subjects performing target acquisition tasks requiring only the involvement of coordinated eye-head movements. However, activities like walking involve full-body movement and require coordination between lower limbs and the eye-head-trunk complex to achieve stabilized gaze during locomotion. Therefore the first goal of this study was to determine how the multiple, interdependent, full-body sensorimotor gaze stabilization subsystems are functionally coordinated during locomotion. In an earlier study we investigated how alteration in gaze tasking changes full-body locomotor control strategies. Subjects walked on a treadmill and either focused on a central point target or read numeral characters. We measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, shank and foot, accelerations along the vertical axis at the head and the shank, and the vertical forces acting on the support surface. In comparison to the point target fixation condition, the results of the number reading task showed that compensatory head pitch movements increased, peak head acceleration was reduced and knee flexion at heel-strike was increased. In a more recent study we investigated the

  16. Effects of chronic prenatal MK-801 treatment on object recognition, cognitive flexibility, and drug-induced locomotor activity in juvenile and adult rat offspring.

    PubMed

    Gallant, S; Welch, L; Martone, P; Shalev, U

    2017-06-15

    Patients with schizophrenia display impaired cognitive functioning and increased sensitivity to psychomimetic drugs. The neurodevelopmental hypothesis of schizophrenia posits that disruption of the developing brain predisposes neural networks to lasting structural and functional abnormalities resulting in the emergence of such symptoms in adulthood. Given the critical role of the glutamatergic system in early brain development, we investigated whether chronic prenatal exposure to the glutamate NMDA receptor antagonist, MK-801, induces schizophrenia-like behavioural and neurochemical changes in juvenile and adult rats. Pregnant Long-Evans rats were administered saline or MK-801 (0.1mg/kg; s.c.) at gestation day 7-19. Object recognition memory and cognitive flexibility were assessed in the male offspring using a novel object preference task and a maze-based set-shifting procedure, respectively. Locomotor-activating effects of acute amphetamine and MK-801 were also assessed. Adult, but not juvenile, prenatally MK-801-treated rats failed to show novel object preference after a 90min delay, suggesting that object recognition memory may have been impaired. In addition, the set-shifting task revealed impaired acquisition of a new rule in adult prenatally MK-801-treated rats compared to controls. This deficit appeared to be driven by regression to the previously learned behaviour. There were no significant differences in drug-induced locomotor activity in juvenile offspring or in adult offspring following acute amphetamine challenges. Unexpectedly, MK-801-induced locomotor activity in adult prenatally MK-801-treated rats was lower compared to controls. Glutamate transmission dysfunction during early development may modify behavioural parameters in adulthood, though these parameters do not appear to model deficits observed in schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Cytokine responses in acute and persistent human parvovirus B19 infection

    PubMed Central

    Isa, A; Lundqvist, A; Lindblom, A; Tolfvenstam, T; Broliden, K

    2007-01-01

    The aim of this study was to characterize the proinflammatory and T helper (Th)1/Th2 cytokine responses during acute parvovirus B19 (B19) infection and determine whether an imbalance of the Th1/Th2 cytokine pattern is related to persistent B19 infection. Cytokines were quantified by multiplex beads immunoassay in serum from B19-infected patients and controls. The cytokine responses were correlated with B19 serology, quantitative B19 DNA levels and clinical symptoms. In addition to a proinflammatory response, elevated levels of the Th1 type of cytokines interleukin (IL)-2, IL-12 and IL-15 were evident at time of the initial peak of B19 viral load in a few patients during acute infection. This pattern was seen in the absence of an interferon (IFN)-γ response. During follow-up (20–130 weeks post-acute infection) some of these patients had a sustained Th1 cytokine response. The Th1 cytokine response correlated with the previously identified sustained CD8+ T cell response and viraemia. A cross-sectional study on patients with persistent B19 infection showed no apparent imbalance of their cytokine pattern, except for an elevated level of IFN-γ response. No general immunodeficiency was diagnosed as an explanation for the viral persistence in this later group. Neither the acutely infected nor the persistently infected patients demonstrated a Th2 cytokine response. In conclusion, the acutely infected patients demonstrated a sustained Th1 cytokine response whereas the persistently infected patients did not exhibit an apparent imbalance of their cytokine pattern except for an elevated IFN-γ response. PMID:17302890

  18. Effect of thermal acclimation on locomotor energetics and locomotor performance in a lungless salamander, Desmognathus ochrophaeus.

    PubMed

    Feder, M E

    1986-03-01

    To determine the effects of thermal acclimation upon locomotor performance and the rate of oxygen consumption (MO2) during activity, small (less than 3 g), lungless salamanders, Desmognathus ochrophaeus Cope, were acclimated to three temperatures (5, 13 and 21 degrees C) and exercised at various controlled speeds within an exercise wheel while their MO2 was measured. MO2 increased with speed at low speeds (less than 14 cm min-1). Although animals could sustain greater speeds, MO2 did not increase further. These small, exclusively skin-breathing salamanders could increase their MO2 9-11 times during exercise and could sustain nearly half of the oxygen flux expected across a similar surface area of the mammalian lung. However, their maximum aerobic speed was remarkably slow (14 cm min-1) and their net cost of transport remarkably large (15-17 ml O2 g-1 km-1). Thermal acclimation affected MO2 during activity, the maximum sustainable speed and locomotor stamina in different ways. During exercise at 13 degrees C, cold-acclimated animals had a significantly greater MO2 than warm-acclimated animals, but did not differ in stamina or the maximum sustainable speed. During exercise at 21 degrees C, cold acclimation did not affect the MO2 significantly, but it decreased the stamina and increased the rate of lactate accumulation. Thus, these results suggest that thermal acclimation of the MO2 is not tightly coupled to thermal acclimation of locomotor performance in salamanders.

  19. Acute and repeated exposure with the nitric oxide (NO) donor sodium nitroprusside (SNP) differentially modulate responses in a rat model of anxiety.

    PubMed

    Orfanidou, Martha A; Lafioniatis, Anastasios; Trevlopoulou, Aikaterini; Touzlatzi, Ntilara; Pitsikas, Nikolaos

    2017-09-30

    The nitric oxide (NO) donor sodium nitroprusside (SNP) actually is under investigation for the treatment of schizophrenia. That anxiety disorders are noted to occur commonly in schizophrenia patients is known. Contradictory results were reported however, concerning the effects of SNP in animal models of anxiety disorders. The present study investigated the effects of acute and repeated administration of SNP on anxiety-like behaviour in rats assessed in the light/dark test. The effects of SNP on motility in a locomotor activity chamber were also investigated in rats. Acute administration of 1 mg/kg SNP 30 but not 60 min before testing induced anxiolytic-like behaviour which cannot be attributed to changes in locomotor activity. Conversely, a single injection of 3 mg/kg SNP at 30 min before testing depressed rats' general activity, while at 60 min this dose did not influence performance of animals either in the light/dark or in the motor activity test. Repeated application of SNP (1 and 3 mg/kg, for 5 consecutive days) did not alter rodents' performance in the above described behavioural paradigms. The present results suggest that the effects exerted by SNP in the light/dark test in rats are dose, time and treatment schedule-dependent. The current findings propose also a narrow therapeutic window for SNP in this animal model of anxiety. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Activation of Neurotensin Receptor Type 1 Attenuates Locomotor Activity

    PubMed Central

    Vadnie, Chelsea A.; Hinton, David J.; Choi, Sun; Choi, YuBin; Ruby, Christina L.; Oliveros, Alfredo; Prieto, Miguel L.; Park, Jun Hyun; Choi, Doo-Sup

    2014-01-01

    Intracerebroventricular administration of neurotensin (NT) suppresses locomotor activity. However, the brain regions that mediate the locomotor depressant effect of NT and receptor subtype-specific mechanisms involved are unclear. Using a brain-penetrating, selective NT receptor type 1 (NTS1) agonist PD149163, we investigated the effect of systemic and brain region-specific NTS1 activation on locomotor activity. Systemic administration of PD149163 attenuated the locomotor activity of C57BL/6J mice both in a novel environment and in their homecage. However, mice developed tolerance to the hypolocomotor effect of PD149163 (0.1 mg/kg, i.p.). Since NTS1 is known to modulate dopaminergic signaling, we examined whether PD149163 blocks dopamine receptor-mediated hyperactivity. Pretreatment with PD149163 (0.1 or 0.05 mg/kg, i.p.) inhibited D2R agonist bromocriptine (8 mg/kg, i.p.)-mediated hyperactivity. D1R agonist SKF81297 (8 mg/kg, i.p.)-induced hyperlocomotion was only inhibited by 0.1 mg/kg of PD149163. Since the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) have been implicated in the behavioral effects of NT, we examined whether microinjection of PD149163 into these regions reduces locomotion. Microinjection of PD149163 (2 pmol) into the NAc, but not the mPFC suppressed locomotor activity. In summary, our results indicate that systemic and intra-NAc activation of NTS1 is sufficient to reduce locomotion and NTS1 activation inhibits D2R-mediated hyperactivity. Our study will be helpful to identify pharmacological factors and a possible therapeutic window for NTS1-targeted therapies for movement disorders. PMID:24929110

  1. Locomotor Sub-functions for Control of Assistive Wearable Robots.

    PubMed

    Sharbafi, Maziar A; Seyfarth, Andre; Zhao, Guoping

    2017-01-01

    A primary goal of comparative biomechanics is to understand the fundamental physics of locomotion within an evolutionary context. Such an understanding of legged locomotion results in a transition from copying nature to borrowing strategies for interacting with the physical world regarding design and control of bio-inspired legged robots or robotic assistive devices. Inspired from nature, legged locomotion can be composed of three locomotor sub-functions, which are intrinsically interrelated: Stance : redirecting the center of mass by exerting forces on the ground. Swing : cycling the legs between ground contacts. Balance : maintaining body posture. With these three sub-functions, one can understand, design and control legged locomotory systems with formulating them in simpler separated tasks. Coordination between locomotor sub-functions in a harmonized manner appears then as an additional problem when considering legged locomotion. However, biological locomotion shows that appropriate design and control of each sub-function simplifies coordination. It means that only limited exchange of sensory information between the different locomotor sub-function controllers is required enabling the envisioned modular architecture of the locomotion control system. In this paper, we present different studies on implementing different locomotor sub-function controllers on models, robots, and an exoskeleton in addition to demonstrating their abilities in explaining humans' control strategies.

  2. Locomotor Sub-functions for Control of Assistive Wearable Robots

    PubMed Central

    Sharbafi, Maziar A.; Seyfarth, Andre; Zhao, Guoping

    2017-01-01

    A primary goal of comparative biomechanics is to understand the fundamental physics of locomotion within an evolutionary context. Such an understanding of legged locomotion results in a transition from copying nature to borrowing strategies for interacting with the physical world regarding design and control of bio-inspired legged robots or robotic assistive devices. Inspired from nature, legged locomotion can be composed of three locomotor sub-functions, which are intrinsically interrelated: Stance: redirecting the center of mass by exerting forces on the ground. Swing: cycling the legs between ground contacts. Balance: maintaining body posture. With these three sub-functions, one can understand, design and control legged locomotory systems with formulating them in simpler separated tasks. Coordination between locomotor sub-functions in a harmonized manner appears then as an additional problem when considering legged locomotion. However, biological locomotion shows that appropriate design and control of each sub-function simplifies coordination. It means that only limited exchange of sensory information between the different locomotor sub-function controllers is required enabling the envisioned modular architecture of the locomotion control system. In this paper, we present different studies on implementing different locomotor sub-function controllers on models, robots, and an exoskeleton in addition to demonstrating their abilities in explaining humans' control strategies. PMID:28928650

  3. Rapid Response Team activation for pediatric patients on the acute pain service.

    PubMed

    Teets, Maxwell; Tumin, Dmitry; Walia, Hina; Stevens, Jenna; Wrona, Sharon; Martin, David; Bhalla, Tarun; Tobias, Joseph D

    2017-11-01

    Untreated pain or overly aggressive pain management may lead to adverse physiologic consequences and activation of the hospital's Rapid Response Team. This study is a quality improvement initiative that attempts to identify patient demographics and patterns associated with Rapid Response Team consultations for patients on the acute pain service. A retrospective review of all patients on the acute pain service from February 2011 until June 2015 was cross-referenced with inpatients requiring consultation from the Rapid Response Team. Two independent practitioners reviewed electronic medical records to determine which events were likely associated with pain management interventions. Over a 4-year period, 4872 patients were admitted to the acute pain service of whom 135 unique patients required Rapid Response Team consults. There were 159 unique Rapid Response Team activations among 6538 unique acute pain service consults. A subset of 27 pain management-related Rapid Response Team consultations was identified. The largest percentage of patients on the acute pain service were adolescents aged 12-17 (36%). Compared to this age group, the odds of Rapid Response Team activation were higher among infants <1 year old (odds ratio = 2.85; 95% confidence interval: 1.59, 5.10; P < .001) and adults over 18 years (odds ratio = 1.68; 95% confidence interval: 1.01, 2.80; P = .046). Identifying demographics and etiologies of acute pain service patients requiring Rapid Response Team consultations may help to identify patients at risk for clinical decompensation. © 2017 John Wiley & Sons Ltd.

  4. Variation in brain anatomy in frogs and its possible bearing on their locomotor ecology.

    PubMed

    Manzano, Adriana S; Herrel, Anthony; Fabre, Anne-Claire; Abdala, Virginia

    2017-07-01

    Despite the long-standing interest in the evolution of the brain, relatively little is known about variation in brain anatomy in frogs. Yet, frogs are ecologically diverse and, as such, variation in brain anatomy linked to differences in lifestyle or locomotor behavior can be expected. Here we present a comparative morphological study focusing on the macro- and micro-anatomy of the six regions of the brain and its choroid plexus: the olfactory bulbs, the telencephalon, the diencephalon, the mesencephalon, the rhombencephalon, and the cerebellum. We also report on the comparative anatomy of the plexus brachialis responsible for the innervation of the forelimbs. It is commonly thought that amphibians have a simplified brain organization, associated with their supposedly limited behavioral complexity and reduced motor skills. We compare frogs with different ecologies that also use their limbs in different contexts and for other functions. Our results show that brain morphology is more complex and more variable than typically assumed. Moreover, variation in brain morphology among species appears related to locomotor behavior as suggested by our quantitative analyses. Thus we propose that brain morphology may be related to the locomotor mode, at least in the frogs included in our analysis. © 2017 Anatomical Society.

  5. Subchronic MK-801 treatment and post-weaning social isolation in rats: differential effects on locomotor activity and hippocampal long-term potentiation.

    PubMed

    Ashby, Donovan M; Habib, Diala; Dringenberg, Hans C; Reynolds, James N; Beninger, Richard J

    2010-09-01

    Subchronic NMDA receptor antagonist treatment and post-weaning social isolation are two animal models of schizophrenia symptoms. However, behavioral and physiological changes following a combination of these two procedures have not been investigated. Thus, we examined effects of a novel, "double hit" model combining these two treatments, comparing them to standard models involving only NMDA antagonist treatment or social isolation. Male, Sprague-Dawley rats were either group-housed or maintained in social isolation (starting at postnatal day [PD] 21 and continuing throughout the study). Each housing condition was further subdivided into two groups, receiving either subchronic treatment with either saline or MK-801 (0.5mg/kg, i.p., 2xday for seven days starting at PD 56). Post-weaning social isolation increased locomotor activity (assessed at PD 70) in response to a novel environment and an acute amphetamine injection, while subchronic MK-801 increased only amphetamine induced locomotor activity. Subsequent electrophysiological experiments (under urethane anesthesia) assessing changes in plasticity of hippocampal synapses showed that subchronic MK-801 treatment resulted in an increase in long-term potentiation in area CA1 in response to high frequency stimulation of the contralateral CA3 area, while housing condition had no effect. No other changes in hippocampal electrophysiology (input-output curves, paired-pulse facilitation) were observed. These data are the first to demonstrate an enhancement in hippocampal long-term plasticity in vivo following subchronic MK-801 administration, an effect that may be related to the well-characterized changes in glutamatergic and GABAergic systems seen after subchronic NMDA receptor blockade. That lack of additive or synergistic effects in the "double hit model" suggests that combining isolation and subchronic MK-801 treatment does not necessarily produce greater behavioral or physiological dysfunction than that seen with either

  6. Effects of caffeine and L-phenylisopropyladenosine on locomotor activity of mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckholtz, N.S.; Middaugh, L.D.

    1987-10-01

    C57BL/6J and DBA/2J mice were used to determine if possible differences in the behavioral response to caffeine might be related to differences in A1 adenosine receptors. Caffeine stimulated locomotor activity of both strains, but the dose-response relationship and time course of drug action differed according to strain. Although their response to caffeine differed, the strains did not differ in response to the A1 adenosine agonist L-phenylisopropyladenosine (PIA) nor in the binding of the A1 agonist (/sup 3/H)N6-cyclohexyladenosine (CHA) in various brain regions. Thus, the behavioral differences in response to caffeine could not be accounted for by differences in adenosine binding.more » Of alternative mechanisms, strain differences in A2 receptors appear to be the most promising.« less

  7. Effects of ketamine on the unconditioned and conditioned locomotor activity of preadolescent and adolescent rats: impact of age, sex, and drug dose.

    PubMed

    McDougall, Sanders A; Moran, Andrea E; Baum, Timothy J; Apodaca, Matthew G; Real, Vanessa

    2017-09-01

    Ketamine is used by preadolescent and adolescent humans for licit and illicit purposes. The goal of the present study was to determine the effects of acute and repeated ketamine treatment on the unconditioned behaviors and conditioned locomotor activity of preadolescent and adolescent rats. To assess unconditioned behaviors, female and male rats were injected with ketamine (5-40 mg/kg), and distance traveled was measured on postnatal day (PD) 21-25 or PD 41-45. To assess conditioned activity, male and female rats were injected with saline or ketamine in either a novel test chamber or the home cage on PD 21-24 or PD 41-44. One day later, rats were injected with saline and conditioned activity was assessed. Ketamine produced a dose-dependent increase in the locomotor activity of preadolescent and adolescent rats. Preadolescent rats did not exhibit sex differences, but ketamine-induced locomotor activity was substantially stronger in adolescent females than males. Repeated ketamine treatment neither caused a day-dependent increase in locomotor activity nor produced conditioned activity in preadolescent or adolescent rats. The activity-enhancing effects of ketamine are consistent with the actions of an indirect dopamine agonist, while the inability of ketamine to induce conditioned activity is unlike what is observed after repeated cocaine or amphetamine treatment. This dichotomy could be due to ketamine's ability to both enhance DA neurotransmission and antagonize N-methyl-D-aspartate (NMDA) receptors. Additional research will be necessary to parse out the relative contributions of DA and NMDA system functioning when assessing the behavioral effects of ketamine during early ontogeny.

  8. Reduced locomotor activity and exploratory behavior in CC chemokine receptor 4 deficient mice.

    PubMed

    Ambrée, Oliver; Klassen, Irene; Förster, Irmgard; Arolt, Volker; Scheu, Stefanie; Alferink, Judith

    2016-11-01

    Chemokines and their receptors are key regulators of immune cell trafficking and activation. Recent findings suggest that they may also play pathophysiological roles in psychiatric diseases like depression and anxiety disorders. The CC chemokine receptor 4 (CCR4) and its two ligands, CCL17 and CCL22, are functionally involved in neuroinflammation as well as anti-infectious and autoimmune responses. However, their influence on behavior remains unknown. Here we characterized the functional role of the CCR4-CCL17 chemokine-receptor axis in the modulation of anxiety-related behavior, locomotor activity, and object exploration and recognition. Additionally, we investigated social exploration of CCR4 and CCL17 knockout mice and wild type (WT) controls. CCR4 knockout (CCR4(-/-)) mice exhibited fewer anxiety-related behaviors in the elevated plus-maze, diminished locomotor activity, exploratory behavior, and social exploration, while their recognition memory was not affected. In contrast, CCL17 deficient mice did not show an altered behavior compared to WT mice regarding locomotor activity, anxiety-related behavior, social exploration, and object recognition memory. In the dark-light and object recognition tests, CCL17(-/-) mice even covered longer distances than WT mice. These data demonstrate a mechanistic or developmental role of CCR4 in the regulation of locomotor and exploratory behaviors, whereas the ligand CCL17 appears not to be involved in the behaviors measured here. Thus, either CCL17 and the alternative ligand CCL22 may be redundant, or CCL22 is the main activator of CCR4 in these processes. Taken together, these findings contribute to the growing evidence regarding the involvement of chemokines and their receptors in the regulation of behavior. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Comparative limb proportions reveal differential locomotor morphofunctions of alligatoroids and crocodyloids

    NASA Astrophysics Data System (ADS)

    Iijima, Masaya; Kubo, Tai; Kobayashi, Yoshitsugu

    2018-03-01

    Although two major clades of crocodylians (Alligatoroidea and Crocodyloidea) were split during the Cretaceous period, relatively few morphological and functional differences between them have been known. In addition, interaction of multiple morphofunctional systems that differentiated their ecology has barely been assessed. In this study, we examined the limb proportions of crocodylians to infer the differences of locomotor functions between alligatoroids and crocodyloids, and tested the correlation of locomotor and feeding morphofunctions. Our analyses revealed crocodyloids including Gavialis have longer stylopodia (humerus and femur) than alligatoroids, indicating that two groups may differ in locomotor functions. Fossil evidence suggested that alligatoroids have retained short stylopodia since the early stage of their evolution. Furthermore, rostral shape, an indicator of trophic function, is correlated with limb proportions, where slender-snouted piscivorous taxa have relatively long stylopodia and short overall limbs. In combination, trophic and locomotor functions might differently delimit the ecological opportunity of alligatoroids and crocodyloids in the evolution of crocodylians.

  10. Gradual training reduces practice difficulty while preserving motor learning of a novel locomotor task.

    PubMed

    Sawers, Andrew; Hahn, Michael E

    2013-08-01

    Motor learning strategies that increase practice difficulty and the size of movement errors are thought to facilitate motor learning. In contrast to this, gradual training minimizes movement errors and reduces practice difficulty by incrementally introducing task requirements, yet remains as effective as sudden training and its large movement errors for learning novel reaching tasks. While attractive as a locomotor rehabilitation strategy, it remains unknown whether the efficacy of gradual training extends to learning locomotor tasks and their unique requirements. The influence of gradual vs. sudden training on learning a locomotor task, asymmetric split belt treadmill walking, was examined by assessing whole body sagittal plane kinematics during 24 hour retention and transfer performance following either gradual or sudden training. Despite less difficult and less specific practice for the gradual cohort on day 1, gradual training resulted in equivalent motor learning of the novel locomotor task as sudden training when assessed by retention and transfer a day later. This suggests that large movement errors and increased practice difficulty may not be necessary for learning novel locomotor tasks. Further, gradual training may present a viable locomotor rehabilitation strategy avoiding large movement errors that could limit or impair improvements in locomotor performance. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Locomotor and discriminative stimulus effects of four novel hallucinogens in rodents.

    PubMed

    Gatch, Michael B; Dolan, Sean B; Forster, Michael J

    2017-08-01

    There has been increasing use of novel synthetic hallucinogenic compounds, 2-(4-bromo-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine hydrochloride (25B-NBOMe), 2-(4-chloro-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine hydrochloride (25C-NBOMe), 2-(4-iodo-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine hydrochloride (25I-NBOMe), and N,N-diallyl-5-methoxy tryptamine (5-MeO-DALT), which have been associated with severe toxicities. These four compounds were tested for discriminative stimulus effects similar to a prototypical hallucinogen (-)-2,5-dimethoxy-4-methylamphetamine (DOM) and the entactogen (±)-3,4-methylenedioxymethamphetamine (MDMA). Locomotor activity in mice was tested to obtain dose range and time-course information. 25B-NBOMe, 25C-NBOMe, and 25I-NBOMe decreased locomotor activity. 5-MeO-DALT dose dependently increased locomotor activity, with a peak at 10 mg/kg. A higher dose (25 mg/kg) suppressed activity. 25B-NBOMe fully substituted (≥80%) in both DOM-trained and MDMA-trained rats at 0.5 mg/kg. However, higher doses produced much lower levels of drug-appropriate responding in both DOM-trained and MDMA-trained rats. 25C-NBOMe fully substituted in DOM-trained rats, but produced only 67% drug-appropriate responding in MDMA-trained rats at doses that suppressed responding. 25I-NBOMe produced 74-78% drug-appropriate responding in DOM-trained and MDMA-trained rats at doses that suppressed responding. 5-MeO-DALT fully substituted for DOM, but produced few or no MDMA-like effects. All of the compounds, except 25I-NBOMe, fully substituted for DOM, whereas only 25B-NBOMe fully substituted for MDMA. However, the failure of 25I-NBOMe to fully substitute for either MDMA or DOM was more likely because of its substantial rate-depressant effects than weak discriminative stimulus effects. All of the compounds are likely to attract recreational users for their hallucinogenic properties, but probably of much less interest as substitutes for MDMA

  12. Neuromodulation of the lumbar spinal locomotor circuit.

    PubMed

    AuYong, Nicholas; Lu, Daniel C

    2014-01-01

    The lumbar spinal cord contains the necessary circuitry to independently drive locomotor behaviors. This function is retained following spinal cord injury (SCI) and is amenable to rehabilitation. Although the effectiveness of task-specific training and pharmacologic modulation has been repeatedly demonstrated in animal studies, results from human studies are less striking. Recently, lumbar epidural stimulation (EDS) along with locomotor training was shown to restore weight-bearing function and lower-extremity voluntary control in a chronic, motor-complete human SCI subject. Related animal studies incorporating EDS as part of the therapeutic regiment are also encouraging. EDS is emerging as a promising neuromodulatory tool for SCI. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Role of spared pathways in locomotor recovery after body-weight-supported treadmill training in contused rats.

    PubMed

    Singh, Anita; Balasubramanian, Sriram; Murray, Marion; Lemay, Michel; Houle, John

    2011-12-01

    Body-weight-supported treadmill training (BWSTT)-related locomotor recovery has been shown in spinalized animals. Only a few animal studies have demonstrated locomotor recovery after BWSTT in an incomplete spinal cord injury (SCI) model, such as contusion injury. The contribution of spared descending pathways after BWSTT to behavioral recovery is unclear. Our goal was to evaluate locomotor recovery in contused rats after BWSTT, and to study the role of spared pathways in spinal plasticity after BWSTT. Forty-eight rats received a contusion, a transection, or a contusion followed at 9 weeks by a second transection injury. Half of the animals in the three injury groups were given BWSTT for up to 8 weeks. Kinematics and the Basso-Beattie-Bresnahan (BBB) test assessed behavioral improvements. Changes in Hoffmann-reflex (H-reflex) rate depression property, soleus muscle mass, and sprouting of primary afferent fibers were also evaluated. BWSTT-contused animals showed accelerated locomotor recovery, improved H-reflex properties, reduced muscle atrophy, and decreased sprouting of small caliber afferent fibers. BBB scores were not improved by BWSTT. Untrained contused rats that received a transection exhibited a decrease in kinematic parameters immediately after the transection; in contrast, trained contused rats did not show an immediate decrease in kinematic parameters after transection. This suggests that BWSTT with spared descending pathways leads to neuroplasticity at the lumbar spinal level that is capable of maintaining locomotor activity. Discontinuing training after the transection in the trained contused rats abolished the improved kinematics within 2 weeks and led to a reversal of the improved H-reflex response, increased muscle atrophy, and an increase in primary afferent fiber sprouting. Thus continued training may be required for maintenance of the recovery. Transected animals had no effect of BWSTT, indicating that in the absence of spared pathways this

  14. A new model of the spinal locomotor networks of a salamander and its properties.

    PubMed

    Liu, Qiang; Yang, Huizhen; Zhang, Jinxue; Wang, Jingzhuo

    2018-05-22

    A salamander is an ideal animal for studying the spinal locomotor network mechanism of vertebrates from an evolutionary perspective since it represents the transition from an aquatic to a terrestrial animal. However, little is known about the spinal locomotor network of a salamander. A spinal locomotor network model is a useful tool for exploring the working mechanism of the spinal networks of salamanders. A new spinal locomotor network model for a salamander is built for a three-dimensional (3D) biomechanical model of the salamander using a novel locomotion-controlled neural network model. Based on recent experimental data on the spinal circuitry and observational results of gaits of vertebrates, we assume that different interneuron sets recruited for mediating the frequency of spinal circuits are also related to the generation of different gaits. The spinal locomotor networks of salamanders are divided into low-frequency networks for walking and high-frequency networks for swimming. Additionally, a new topological structure between the body networks and limb networks is built, which only uses the body networks to coordinate the motion of limbs. There are no direct synaptic connections among limb networks. These techniques differ from existing salamander spinal locomotor network models. A simulation is performed and analyzed to validate the properties of the new spinal locomotor networks of salamanders. The simulation results show that the new spinal locomotor networks can generate a forward walking gait, a backward walking gait, a swimming gait, and a turning gait during swimming and walking. These gaits can be switched smoothly by changing external inputs from the brainstem. These properties are consistent with those of a real salamander. However, it is still difficult for the new spinal locomotor networks to generate highly efficient turning during walking, 3D swimming, nonrhythmic movements, and so on. New experimental data are required for further validation.

  15. Activation of neurotensin receptor type 1 attenuates locomotor activity.

    PubMed

    Vadnie, Chelsea A; Hinton, David J; Choi, Sun; Choi, YuBin; Ruby, Christina L; Oliveros, Alfredo; Prieto, Miguel L; Park, Jun Hyun; Choi, Doo-Sup

    2014-10-01

    Intracerebroventricular administration of neurotensin (NT) suppresses locomotor activity. However, the brain regions that mediate the locomotor depressant effect of NT and receptor subtype-specific mechanisms involved are unclear. Using a brain-penetrating, selective NT receptor type 1 (NTS1) agonist PD149163, we investigated the effect of systemic and brain region-specific NTS1 activation on locomotor activity. Systemic administration of PD149163 attenuated the locomotor activity of C57BL/6J mice both in a novel environment and in their homecage. However, mice developed tolerance to the hypolocomotor effect of PD149163 (0.1 mg/kg, i.p.). Since NTS1 is known to modulate dopaminergic signaling, we examined whether PD149163 blocks dopamine receptor-mediated hyperactivity. Pretreatment with PD149163 (0.1 or 0.05 mg/kg, i.p.) inhibited D2R agonist bromocriptine (8 mg/kg, i.p.)-mediated hyperactivity. D1R agonist SKF-81297 (8 mg/kg, i.p.)-induced hyperlocomotion was only inhibited by 0.1 mg/kg of PD149163. Since the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) have been implicated in the behavioral effects of NT, we examined whether microinjection of PD149163 into these regions reduces locomotion. Microinjection of PD149163 (2 pmol) into the NAc, but not the mPFC suppressed locomotor activity. In summary, our results indicate that systemic and intra-NAc activation of NTS1 is sufficient to reduce locomotion and NTS1 activation inhibits D2R-mediated hyperactivity. Our study will be helpful to identify pharmacological factors and a possible therapeutic window for NTS1-targeted therapies for movement disorders. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Interpreting locomotor biomechanics from the morphology of human footprints.

    PubMed

    Hatala, Kevin G; Wunderlich, Roshna E; Dingwall, Heather L; Richmond, Brian G

    2016-01-01

    Fossil hominin footprints offer unique direct windows to the locomotor behaviors of our ancestors. These data could allow a clearer understanding of the evolution of human locomotion by circumventing issues associated with indirect interpretations of habitual locomotor patterns from fossil skeletal material. However, before we can use fossil hominin footprints to understand better the evolution of human locomotion, we must first develop an understanding of how locomotor biomechanics are preserved in, and can be inferred from, footprint morphologies. In this experimental study, 41 habitually barefoot modern humans created footprints under controlled conditions in which variables related to locomotor biomechanics could be quantified. Measurements of regional topography (depth) were taken from 3D models of those footprints, and principal components analysis was used to identify orthogonal axes that described the largest proportions of topographic variance within the human experimental sample. Linear mixed effects models were used to quantify the influences of biomechanical variables on the first five principal axes of footprint topographic variation, thus providing new information on the biomechanical variables most evidently expressed in the morphology of human footprints. The footprint's overall depth was considered as a confounding variable, since biomechanics may be linked to the extent to which a substrate deforms. Three of five axes showed statistically significant relationships with variables related to both locomotor biomechanics and substrate displacement; one axis was influenced only by biomechanics and another only by the overall depth of the footprint. Principal axes of footprint morphological variation were significantly related to gait type (walking or running), kinematics of the hip and ankle joints and the distribution of pressure beneath the foot. These results provide the first quantitative framework for developing hypotheses regarding the

  17. Developmental Deltamethrin Exposure Causes Persistent Changes in Dopaminergic Gene Expression, Neurochemistry, and Locomotor Activity in Zebrafish

    PubMed Central

    Kung, Tiffany S.; Richardson, Jason R.; Cooper, Keith R.; White, Lori A.

    2015-01-01

    Pyrethroids are commonly used insecticides that are considered to pose little risk to human health. However, there is an increasing concern that children are more susceptible to the adverse effects of pesticides. We used the zebrafish model to test the hypothesis that developmental exposure to low doses of the pyrethroid deltamethrin results in persistent alterations in dopaminergic gene expression, neurochemistry, and locomotor activity. Zebrafish embryos were treated with deltamethrin (0.25–0.50 μg/l), at concentrations below the LOAEL, during the embryonic period [3–72 h postfertilization (hpf)], after which transferred to fresh water until the larval stage (2-weeks postfertilization). Deltamethrin exposure resulted in decreased transcript levels of the D1 dopamine (DA) receptor (drd1) and increased levels of tyrosine hydroxylase at 72 hpf. The reduction in drd1 transcripts persisted to the larval stage and was associated with decreased D2 dopamine receptor transcripts. Larval fish, exposed developmentally to deltamethrin, had increased levels of homovanillic acid, a DA metabolite. Since the DA system is involved in locomotor activity, we measured the swim activity of larval fish following a transition to darkness. Developmental exposure to deltamethrin significantly increased larval swim activity which was attenuated by concomitant knockdown of the DA transporter. Acute exposure to methylphenidate, a DA transporter inhibitor, increased swim activity in control larva, while reducing swim activity in larva developmentally exposed to deltamethrin. Developmental exposure to deltamethrin causes locomotor deficits in larval zebrafish, which is likely mediated by dopaminergic dysfunction. This highlights the need to understand the persistent effects of low-dose neurotoxicant exposure during development. PMID:25912032

  18. Locomotor activity and gait in aged mice deficient for type IX collagen

    PubMed Central

    Costello, Kerry E.; Guilak, Farshid; Griffin, Timothy M.

    2010-01-01

    Osteoarthritis (OA) is a risk factor for physical inactivity and impaired mobility, but it is not well understood how these locomotor behaviors are affected by the age of onset of OA and disease severity. Male mice homozygous for a Col9a1 gene inactivation (Col9a1−/−) develop early onset knee OA, increased tactile pain sensitivity, and gait alterations by 9 mo of age. We hypothesized that aged Col9a1−/− mice would reduce joint pain by adopting locomotor behaviors that reduce both the magnitude and daily frequency of joint loading. We tested this hypothesis by evaluating gait and spontaneous locomotor activity in 15- to 17-mo-old male Col9a1−/− (n = 5) and Col9a1+/+(WT) (n = 5) mice using well-controlled measures of voluntary activity in overground and running wheel conditions, as well as studies of gait in a velocity-controlled treadmill. We found no difference due to genotype in freely chosen locomotor velocity, stride frequency, hindfoot duty factor, dark phase activity time, or dark-phase travel distance during overground, running wheel, or speed-matched treadmill locomotion. Interpretation of these findings is potentially confounded by the observation that WT mice have greater knee OA than Col9a1−/− mice in the lateral tibial plateau by 17 mo of age. When accounting for individual differences in knee OA, functional locomotor impairments in aged Col9a1−/− and WT mice are manifested as reductions in total locomotor activity levels (e.g., both distance traveled and time active), particularly for wheel running. These results support the concept that current disease status, rather than age of disease onset, is the primary determinant of impaired locomotor activity with aging. PMID:20360435

  19. Effect of locomotor training in completely spinalized cats previously submitted to a spinal hemisection.

    PubMed

    Martinez, Marina; Delivet-Mongrain, Hugo; Leblond, Hugues; Rossignol, Serge

    2012-08-08

    After a spinal hemisection in cats, locomotor plasticity occurring at the spinal level can be revealed by performing, several weeks later, a complete spinalization below the first hemisection. Using this paradigm, we recently demonstrated that the hemisection induces durable changes in the symmetry of locomotor kinematics that persist after spinalization. Can this asymmetry be changed again in the spinal state by interventions such as treadmill locomotor training started within a few days after the spinalization? We performed, in 9 adult cats, a spinal hemisection at thoracic level 10 and then a complete spinalization at T13, 3 weeks later. Cats were not treadmill trained during the hemispinal period. After spinalization, 5 of 9 cats were not trained and served as control while 4 of 9 cats were trained on the treadmill for 20 min, 5 d a week for 3 weeks. Using detailed kinematic analyses, we showed that, without training, the asymmetrical state of locomotion induced by the hemisection was retained durably after the subsequent spinalization. By contrast, training cats after spinalization induced a reversal of the left/right asymmetries, suggesting that new plastic changes occurred within the spinal cord through locomotor training. Moreover, training was shown to improve the kinematic parameters and the performance of the hindlimb on the previously hemisected side. These results indicate that spinal locomotor circuits, previously modified by past experience such as required for adaptation to the hemisection, can remarkably respond to subsequent locomotor training and improve bilateral locomotor kinematics, clearly showing the benefits of locomotor training in the spinal state.

  20. Quantification of locomotor activity in larval zebrafish: considerations for the design of high-throughput behavioral studies.

    PubMed

    Ingebretson, Justin J; Masino, Mark A

    2013-01-01

    High-throughput behavioral studies using larval zebrafish often assess locomotor activity to determine the effects of experimental perturbations. However, the results reported by different groups are difficult to compare because there is not a standardized experimental paradigm or measure of locomotor activity. To address this, we investigated the effects that several factors, including the stage of larval development and the physical dimensions (depth and diameter) of the behavioral arena, have on the locomotor activity produced by larval zebrafish. We provide evidence for differences in locomotor activity between larvae at different stages and when recorded in wells of different depths, but not in wells of different diameters. We also show that the variability for most properties of locomotor activity is less for older than younger larvae, which is consistent with previous reports. Finally, we show that conflicting interpretations of activity level can occur when activity is assessed with a single measure of locomotor activity. Thus, we conclude that although a combination of factors should be considered when designing behavioral experiments, the use of older larvae in deep wells will reduce the variability of locomotor activity, and that multiple properties of locomotor activity should be measured to determine activity level.

  1. Responses of the Acutely Injured Spinal Cord to Vibration that Simulates Transport in Helicopters or Mine-Resistant Ambush-Protected Vehicles.

    PubMed

    Streijger, Femke; Lee, Jae H T; Manouchehri, Neda; Melnyk, Angela D; Chak, Jason; Tigchelaar, Seth; So, Kitty; Okon, Elena B; Jiang, Shudong; Kinsler, Rachel; Barazanji, Khalid; Cripton, Peter A; Kwon, Brian K

    2016-12-15

    In the military environment, injured soldiers undergoing medical evacuation via helicopter or mine-resistant ambush-protected vehicle (MRAP) are subjected to vibration and shock inherent to the transport vehicle. We conducted the present study to assess the consequences of such vibration on the acutely injured spinal cord. We used a porcine model of spinal cord injury (SCI). After a T10 contusion-compression injury, animals were subjected to 1) no vibration (n = 7-8), 2) whole body vibration at frequencies and amplitudes simulating helicopter transport (n = 8), or 3) whole body vibration simulating ground transportation in an MRAP ambulance (n = 7). Hindlimb locomotor function (using Porcine Thoracic Injury Behavior Scale [PTIBS]), Eriochrome Cyanine histochemistry and biochemical analysis of inflammatory and neural damage markers were analyzed. Cerebrospinal fluid (CSF) expression levels for monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-6, IL-8, and glial fibrillary acidic protein (GFAP) were similar between the helicopter or MRAP group and the unvibrated controls. Spared white/gray matter tended to be lower in the MRAP-vibrated animals than in the unvibrated controls, especially rostral to the epicenter. However, spared white/gray matter in the helicopter-vibrated group appeared normal. Although there was a relationship between the extent of sparing and the extent of locomotor recovery, no significant differences were found in PTIBS scores between the groups. In summary, exposures to vibration in the context of ground (MRAP) or aeromedical (helicopter) transportation did not significantly impair functional outcome in our large animal model of SCI. However, MRAP vibration was associated with increased tissue damage around the injury site, warranting caution around exposure to vehicle vibration acutely after SCI.

  2. Delineating the Diversity of Spinal Interneurons in Locomotor Circuits.

    PubMed

    Gosgnach, Simon; Bikoff, Jay B; Dougherty, Kimberly J; El Manira, Abdeljabbar; Lanuza, Guillermo M; Zhang, Ying

    2017-11-08

    Locomotion is common to all animals and is essential for survival. Neural circuits located in the spinal cord have been shown to be necessary and sufficient for the generation and control of the basic locomotor rhythm by activating muscles on either side of the body in a specific sequence. Activity in these neural circuits determines the speed, gait pattern, and direction of movement, so the specific locomotor pattern generated relies on the diversity of the neurons within spinal locomotor circuits. Here, we review findings demonstrating that developmental genetics can be used to identify populations of neurons that comprise these circuits and focus on recent work indicating that many of these populations can be further subdivided into distinct subtypes, with each likely to play complementary functions during locomotion. Finally, we discuss data describing the manner in which these populations interact with each other to produce efficient, task-dependent locomotion. Copyright © 2017 the authors 0270-6474/17/3710835-07$15.00/0.

  3. Visual and kinesthetic locomotor imagery training integrated with auditory step rhythm for walking performance of patients with chronic stroke.

    PubMed

    Kim, Jin-Seop; Oh, Duck-Won; Kim, Suhn-Yeop; Choi, Jong-Duk

    2011-02-01

    To compare the effect of visual and kinesthetic locomotor imagery training on walking performance and to determine the clinical feasibility of incorporating auditory step rhythm into the training. Randomized crossover trial. Laboratory of a Department of Physical Therapy. Fifteen subjects with post-stroke hemiparesis. Four locomotor imagery trainings on walking performance: visual locomotor imagery training, kinesthetic locomotor imagery training, visual locomotor imagery training with auditory step rhythm and kinesthetic locomotor imagery training with auditory step rhythm. The timed up-and-go test and electromyographic and kinematic analyses of the affected lower limb during one gait cycle. After the interventions, significant differences were found in the timed up-and-go test results between the visual locomotor imagery training (25.69 ± 16.16 to 23.97 ± 14.30) and the kinesthetic locomotor imagery training with auditory step rhythm (22.68 ± 12.35 to 15.77 ± 8.58) (P < 0.05). During the swing and stance phases, the kinesthetic locomotor imagery training exhibited significantly increased activation in a greater number of muscles and increased angular displacement of the knee and ankle joints compared with the visual locomotor imagery training, and these effects were more prominent when auditory step rhythm was integrated into each form of locomotor imagery training. The activation of the hamstring during the swing phase and the gastrocnemius during the stance phase, as well as kinematic data of the knee joint, were significantly different for posttest values between the visual locomotor imagery training and the kinesthetic locomotor imagery training with auditory step rhythm (P < 0.05). The therapeutic effect may be further enhanced in the kinesthetic locomotor imagery training than in the visual locomotor imagery training. The auditory step rhythm together with the locomotor imagery training produces a greater positive effect in improving the walking

  4. Assessment of substance abuse liability in rodents: self-administration, drug discrimination, and locomotor sensitization.

    PubMed

    Paterson, Neil E

    2012-09-01

    Assessing abuse liability is a crucial step in the development of a novel chemical entity (NCE) with central nervous system (CNS) activity or with chemical or pharmacological properties in common with known abused substances. Rodent assessment of abuse liability is highly attractive due to its relatively low cost and high predictive validity. Described in this unit are three rodent assays commonly used to provide data on the potential for abuse liability based on the acute effects of NCEs: specifically, self-administration, drug discrimination, and locomotor sensitization. As these assays provide insight into the potential abuse liability of NCEs as well as in vivo pharmacological mechanism(s) of action, they should form a key part of the development process for novel therapeutics aimed at treating CNS disorders.

  5. Cardiac transcriptional response to acute and chronic angiotensin II treatments.

    PubMed

    Larkin, Jennie E; Frank, Bryan C; Gaspard, Renee M; Duka, Irena; Gavras, Haralambos; Quackenbush, John

    2004-07-08

    Exposure of experimental animals to increased angiotensin II (ANG II) induces hypertension associated with cardiac hypertrophy, inflammation, and myocardial necrosis and fibrosis. Some of the most effective antihypertensive treatments are those that antagonize ANG II. We investigated cardiac gene expression in response to acute (24 h) and chronic (14 day) infusion of ANG II in mice; 24-h treatment induces hypertension, and 14-day treatment induces hypertension and extensive cardiac hypertrophy and necrosis. For genes differentially expressed in response to ANG II treatment, we tested for significant regulation of pathways, based on Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Microarray Pathway Profiler (GenMAPP) databases, as well as functional classes based on Gene Ontology (GO) terms. Both acute and chronic ANG II treatments resulted in decreased expression of mitochondrial metabolic genes, notably those for the electron transport chain and Krebs-TCA cycle; chronic ANG II treatment also resulted in decreased expression of genes involved in fatty acid metabolism. In contrast, genes involved in protein translation and ribosomal activity increased expression following both acute and chronic ANG II treatments. Some classes of genes showed differential response between acute and chronic ANG II treatments. Acute treatment increased expression of genes involved in oxidative stress and amino acid metabolism, whereas chronic treatments increased cytoskeletal and extracellular matrix genes, second messenger cascades responsive to ANG II, and amyloidosis genes. Although a functional linkage between Alzheimer disease, hypertension, and high cholesterol has been previously documented in studies of brain tissue, this is the first demonstration of induction of Alzheimer disease pathways by hypertension in heart tissue. This study provides the most comprehensive available survey of gene expression changes in response to acute and chronic ANG II treatment, verifying

  6. Human spinal locomotor control is based on flexibly organized burst generators

    PubMed Central

    Danner, Simon M.; Hofstoetter, Ursula S.; Freundl, Brigitta; Binder, Heinrich; Mayr, Winfried; Rattay, Frank

    2015-01-01

    Constant drive provided to the human lumbar spinal cord by epidural electrical stimulation can cause local neural circuits to generate rhythmic motor outputs to lower limb muscles in people paralysed by spinal cord injury. Epidural spinal cord stimulation thus allows the study of spinal rhythm and pattern generating circuits without their configuration by volitional motor tasks or task-specific peripheral feedback. To reveal spinal locomotor control principles, we studied the repertoire of rhythmic patterns that can be generated by the functionally isolated human lumbar spinal cord, detected as electromyographic activity from the legs, and investigated basic temporal components shared across these patterns. Ten subjects with chronic, motor-complete spinal cord injury were studied. Surface electromyographic responses to lumbar spinal cord stimulation were collected from quadriceps, hamstrings, tibialis anterior, and triceps surae in the supine position. From these data, 10-s segments of rhythmic activity present in the four muscle groups of one limb were extracted. Such samples were found in seven subjects. Physiologically adequate cycle durations and relative extension- and flexion-phase durations similar to those needed for locomotion were generated. The multi-muscle activation patterns exhibited a variety of coactivation, mixed-synergy and locomotor-like configurations. Statistical decomposition of the electromyographic data across subjects, muscles and samples of rhythmic patterns identified three common temporal components, i.e. basic or shared activation patterns. Two of these basic patterns controlled muscles to contract either synchronously or alternatingly during extension- and flexion-like phases. The third basic pattern contributed to the observed muscle activities independently from these extensor- and flexor-related basic patterns. Each bifunctional muscle group was able to express both extensor- and flexor-patterns, with variable ratios across the

  7. THE EFFECT OF EARLY ENVIRONMENTAL MANIPULATION ON LOCOMOTOR SENSITIVITY AND METHAMPHETAMINE CONDITIONED PLACE PREFERENCE REWARD

    PubMed Central

    Hensleigh, E.; Pritchard, L. M.

    2014-01-01

    Early life stress leads to several effects on neurological development, affecting health and well-being later in life. Instances of child abuse and neglect are associated with higher rates of depression, risk taking behavior, and an increased risk of drug abuse later in life. This study used repeated neonatal separation of rat pups as a model of early life stress. Rat pups were either handled and weighed as controls or separated for 180 minutes per day during postnatal days 2-8. In adulthood, male and female rats were tested for methamphetamine conditioned place preference reward and methamphetamine induced locomotor activity. Tissue samples were collected and mRNA was quantified for the norepinephrine transporter in the prefrontal cortex and the dopamine transporter in the nucleus accumbens. Results indicated rats given methamphetamine formed a conditioned place preference, but there was no effect of early separation or sex. Separated males showed heightened methamphetamine-induced locomotor activity, but there was no effect of early separation for females. Overall females were more active than males in response to both saline and methamphetamine. No differences in mRNA levels were observed across any conditions. These results suggest early neonatal separation affects methamphetamine-induced locomotor activity in a sex-dependent manner but has no effects on methamphetamine conditioned place preference. PMID:24713150

  8. Effect of environmental temperature on sleep, locomotor activity, core body temperature and immune responses of C57BL/6J mice

    PubMed Central

    Jhaveri, KA; Trammell, RA; Toth, LA

    2007-01-01

    Ambient temperature exerts a prominent influence on sleep. In rats and humans, low ambient temperatures generally impair sleep, whereas higher temperatures tend to promote sleep. The purpose of the current study was to evaluate sleep patterns and core body temperatures of C57BL/6J mice at ambient temperatures of 22°C, 26°C and 30°C under baseline conditions, after sleep deprivation (SD), and after infection with influenza virus. C57BL/6J mice were surgically implanted with electrodes for recording electroencephalogram (EEG) and electromyogram (EMG) and with intraperitoneal transmitters for recording core body temperature (Tc) and locomotor activity. The data indicate that higher ambient temperatures (26°C and 30°C) promote spontaneous slow wave sleep (SWS) in association with reduced delta wave amplitude during SWS in C57BL/6J mice. Furthermore, higher ambient temperatures also promote recuperative sleep after SD. Thus, in mice, higher ambient temperatures reduced sleep depth under normal conditions, but augmented the recuperative response to sleep loss. Mice infected with influenza virus while maintained at 22 or 26°C developed more SWS, less rapid eye movement sleep, lower locomotor activity and greater hypothermia than did mice maintained at 30°C during infection. In addition, despite equivalent viral titers, mice infected with influenza virus at 30°C showed less leucopenia and lower cytokine induction as compared with 22 and 26°C, respectively, suggesting that less inflammation develops at the higher ambient temperature. PMID:17467232

  9. Quantification of locomotor activity in larval zebrafish: considerations for the design of high-throughput behavioral studies

    PubMed Central

    Ingebretson, Justin J.; Masino, Mark A.

    2013-01-01

    High-throughput behavioral studies using larval zebrafish often assess locomotor activity to determine the effects of experimental perturbations. However, the results reported by different groups are difficult to compare because there is not a standardized experimental paradigm or measure of locomotor activity. To address this, we investigated the effects that several factors, including the stage of larval development and the physical dimensions (depth and diameter) of the behavioral arena, have on the locomotor activity produced by larval zebrafish. We provide evidence for differences in locomotor activity between larvae at different stages and when recorded in wells of different depths, but not in wells of different diameters. We also show that the variability for most properties of locomotor activity is less for older than younger larvae, which is consistent with previous reports. Finally, we show that conflicting interpretations of activity level can occur when activity is assessed with a single measure of locomotor activity. Thus, we conclude that although a combination of factors should be considered when designing behavioral experiments, the use of older larvae in deep wells will reduce the variability of locomotor activity, and that multiple properties of locomotor activity should be measured to determine activity level. PMID:23772207

  10. Differential regulation of NMDA receptors by d-serine and glycine in mammalian spinal locomotor networks

    PubMed Central

    Acton, David

    2017-01-01

    Activation of N-methyl-d-aspartate receptors (NMDARs) requires the binding of a coagonist, either d-serine or glycine, in addition to glutamate. Changes in occupancy of the coagonist binding site are proposed to modulate neural networks including those controlling swimming in frog tadpoles. Here, we characterize regulation of the NMDAR coagonist binding site in mammalian spinal locomotor networks. Blockade of NMDARs by d(−)-2-amino-5-phosphonopentanoic acid (d-APV) or 5,7-dichlorokynurenic acid reduced the frequency and amplitude of pharmacologically induced locomotor-related activity recorded from the ventral roots of spinal-cord preparations from neonatal mice. Furthermore, d-APV abolished synchronous activity induced by blockade of inhibitory transmission. These results demonstrate an important role for NMDARs in murine locomotor networks. Bath-applied d-serine enhanced the frequency of locomotor-related but not disinhibited bursting, indicating that coagonist binding sites are saturated during the latter but not the former mode of activity. Depletion of endogenous d-serine by d-amino acid oxidase or the serine-racemase inhibitor erythro-β-hydroxy-l-aspartic acid (HOAsp) increased the frequency of locomotor-related activity, whereas application of l-serine to enhance endogenous d-serine synthesis reduced burst frequency, suggesting a requirement for d-serine at a subset of synapses onto inhibitory interneurons. Consistent with this, HOAsp was ineffective during disinhibited activity. Bath-applied glycine (1–100 µM) failed to alter locomotor-related activity, whereas ALX 5407, a selective inhibitor of glycine transporter-1 (GlyT1), enhanced burst frequency, supporting a role for GlyT1 in NMDAR regulation. Together these findings indicate activity-dependent and synapse-specific regulation of the coagonist binding site within spinal locomotor networks, illustrating the importance of NMDAR regulation in shaping motor output. NEW & NOTEWORTHY We provide

  11. Development of a Countermeasure to Enhance Postflight Locomotor Adaptability

    NASA Technical Reports Server (NTRS)

    Bloomberg, Jacob J.

    2006-01-01

    Astronauts returning from space flight experience locomotor dysfunction following their return to Earth. Our laboratory is currently developing a gait adaptability training program that is designed to facilitate recovery of locomotor function following a return to a gravitational environment. The training program exploits the ability of the sensorimotor system to generalize from exposure to multiple adaptive challenges during training so that the gait control system essentially learns to learn and therefore can reorganize more rapidly when faced with a novel adaptive challenge. We have previously confirmed that subjects participating in adaptive generalization training programs using a variety of visuomotor distortions can enhance their ability to adapt to a novel sensorimotor environment. Importantly, this increased adaptability was retained even one month after completion of the training period. Adaptive generalization has been observed in a variety of other tasks requiring sensorimotor transformations including manual control tasks and reaching (Bock et al., 2001, Seidler, 2003) and obstacle avoidance during walking (Lam and Dietz, 2004). Taken together, the evidence suggests that a training regimen exposing crewmembers to variation in locomotor conditions, with repeated transitions among states, may enhance their ability to learn how to reassemble appropriate locomotor patterns upon return from microgravity. We believe exposure to this type of training will extend crewmembers locomotor behavioral repertoires, facilitating the return of functional mobility after long duration space flight. Our proposed training protocol will compel subjects to develop new behavioral solutions under varying sensorimotor demands. Over time subjects will learn to create appropriate locomotor solution more rapidly enabling acquisition of mobility sooner after long-duration space flight. Our laboratory is currently developing adaptive generalization training procedures and the

  12. Analysis of Indonesian Spice Essential Oil Compounds That Inhibit Locomotor Activity in Mice

    PubMed Central

    Muchtaridi; Diantini, Adjeng; Subarnas, Anas

    2011-01-01

    Some fragrance components of spices used for cooking are known to have an effect on human behavior. The aim of this investigation was to examine the effect of the essential oils of basil (Ocimum formacitratum L.) leaves, lemongrass (Cymbopogon citrates L.) herbs, ki lemo (Litsea cubeba L.) bark, and laja gowah (Alpinia malaccencis Roxb.) rhizomes on locomotor activity in mice and identify the active component(s) that might be responsible for the activity. The effect of the essential oils was studied by a wheel cage method and the active compounds of the essential oils were identified by GC/MS analysis. The essential oils were administered by inhalation at doses of 0.1, 0.3, and 0.5 mL/cage. The results showed that the four essential oils had inhibitory effects on locomotor activity in mice. Inhalation of the essential oils of basil leaves, lemongrass herbs, ki lemo bark, and laja gowah rhizomes showed the highest inhibitory activity at doses of 0.5 (57.64%), 0.1 (55.72%), 0.5 (60.75%), and 0.1 mL/cage (47.09%), respectively. The major volatile compounds 1,8-cineole, α-terpineol, 4-terpineol, citronelol, citronelal, and methyl cinnamate were identified in blood plasma of mice after inhalation of the four oils. These compounds had a significant inhibitory effect on locomotion after inhalation. The volatile compounds of essential oils identified in the blood plasma may correlate with the locomotor-inhibiting properties of the oil when administered by inhalation.

  13. The role of dehydroepiandrosterone on functional innate immune responses to acute stress.

    PubMed

    Prall, Sean P; Larson, Emilee E; Muehlenbein, Michael P

    2017-12-01

    The androgen dehydroepiandrosterone (DHEA) responds to stress activation, exhibits anti-glucocorticoid properties, and modulates immunity in diverse ways, yet little is known of its role in acute stress responses. In this study, the effects of DHEA and its sulfate ester DHEA-S on human male immune function during exposure to an acute stressor is explored. Variation in DHEA, DHEA-S, testosterone, and cortisol, along with bacterial killing assays, was measured in response to a modified Trier Social Stress test in 27 young adult males. Cortisol was positively related to salivary innate immunity but only for participants who also exhibited high DHEA responses. Additionally, DHEA positively and DHEA-S negatively predicted salivary immunity, but the opposite was observed for serum-based innate immunity. The DHEA response to acute stress appears to be an important factor in stress-mediated immunological responses, with differential effects on immunity dependent upon the presence of other hormones, primarily cortisol and DHEA-S. These results suggest that DHEA plays an important role, alongside other hormones, in modulating immunological shifts during acute stress. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Acute renal response to rapid onset respiratory acidosis.

    PubMed

    Ramadoss, Jayanth; Stewart, Randolph H; Cudd, Timothy A

    2011-03-01

    Renal strong ion compensation to chronic respiratory acidosis has been established, but the nature of the response to acute respiratory acidosis is not well defined. We hypothesized that the response to acute respiratory acidosis in sheep is a rapid increase in the difference in renal fractional excretions of chloride and sodium (Fe(Cl) - Fe(Na)). Inspired CO(2) concentrations were increased for 1 h to significantly alter P(a)CO(2) and pH(a) from 32 ± 1 mm Hg and 7.52 ± 0.02 to 74 ± 2 mm Hg and 7.22 ± 0.02, respectively. Fe(Cl) - Fe(Na) increased significantly from 0.372 ± 0.206 to 1.240 ± 0.217% and returned to baseline at 2 h when P(a)CO(2) and pH(a) were 37 ± 0.6 mm Hg and 7.49 ± 0.01, respectively. Arterial pH and Fe(Cl) - Fe(Na) were significantly correlated. We conclude that the kidney responds rapidly to acute respiratory acidosis, within 30 min of onset, by differential reabsorption of sodium and chloride.

  15. Effects of Locomotor Exercise Intensity on Gait Performance in Individuals With Incomplete Spinal Cord Injury

    PubMed Central

    Leech, Kristan A.; Kinnaird, Catherine R.; Holleran, Carey L.; Kahn, Jennifer

    2016-01-01

    Background High-intensity stepping practice may be a critical component to improve gait following motor incomplete spinal cord injury (iSCI). However, such practice is discouraged by traditional theories of rehabilitation that suggest high-intensity locomotor exercise degrades gait performance. Accordingly, such training is thought to reinforce abnormal movement patterns, although evidence to support this notion is limited. Objective The purposes of this study were: (1) to evaluate the effects of short-term manipulations in locomotor intensity on gait performance in people with iSCI and (2) to evaluate potential detrimental effects of high-intensity locomotor training on walking performance. Design A single-day, repeated-measures, pretraining-posttraining study design was used. Methods Nineteen individuals with chronic iSCI performed a graded-intensity locomotor exercise task with simultaneous collection of lower extremity kinematic and electromyographic data. Measures of interest were compared across intensity levels of 33%, 67%, and 100% of peak gait speed. A subset of 9 individuals participated in 12 weeks of high-intensity locomotor training. Similar measurements were collected and compared between pretraining and posttraining evaluations. Results The results indicate that short-term increases in intensity led to significant improvements in muscle activity, spatiotemporal metrics, and joint excursions, with selected improvements in measures of locomotor coordination. High-intensity locomotor training led to significant increases in peak gait speed (0.64–0.80 m/s), and spatiotemporal and kinematic metrics indicate a trend for improved coordination. Limitations Measures of gait performance were assessed during treadmill ambulation and not compared with a control group. Generalizability of these results to overground ambulation is unknown. Conclusions High-intensity locomotor exercise and training does not degrade, but rather improves, locomotor function and

  16. Acute neuroendocrine response to sexual stimulation in sexual offenders.

    PubMed

    Haake, Philip; Schedlowski, Manfred; Exton, Michael S; Giepen, Christoph; Hartmann, Uwe; Osterheider, Michael; Flesch, Martin; Janssen, Onno E; Leygraf, Norbert; Krüger, Tillmann H C

    2003-05-01

    Several pharmacotherapeutic approaches have confirmed the influence of neuroendocrine parameters on sexual desire, function, and fantasies in men; however, the relevance of acute neuroendocrine changes in mediating heightened sexual drive remains unknown. We recently demonstrated that plasma prolactin substantially increases following orgasm in healthy men, suggesting a feedback mechanism for peripheral prolactin in the control of acute sexual arousal. Because prolactin appears to play a regulatory role in acute sexual drive, we initiated this study to see whether sexual offenders with a high sexual drive have a different neuroendocrine response to sexual arousal. This study compares the prolactin response to orgasm of sexual offenders with high sexual drive and that of healthy subjects with average sexual drive. From a subject pool of 150 inpatients held because of sexual crimes, we recruited 10 volunteers, based on their high sexual drive according to an intensive, semistructured clinical interview. We defined sexual drive by a short refractory period and strong sexualization, or a high frequency of sexual stimulation. We analyzed the acute psychoneuroendocrine response to sexual arousal and orgasm continuously before, during, and after masturbation-induced orgasm in patients and control subjects. Sexual offenders demonstrated higher sexual desire (P < 0.001) and function (P < 0.001) and a more positively perceived refractory period (P < 0.05). Both groups displayed a prolonged, significant increase in prolactin plasma levels after orgasm (P < 0.001). Sexual offenders did not differ from control subjects in neuroendocrine response to sexual arousal and orgasm. These data demonstrate that sexual offenders with a high sexual drive do not differ from control subjects in the postorgasmic neuroendocrine response, particularly in prolactin release. This study confirms that factors other than peripheral hormones influence deviant sexual behaviour.

  17. Modification of acute and late-phase allergic responses to ovalbumin with lipopolysaccharide.

    PubMed

    Tulic, Mark K; Holt, Patrick G; Sly, Peter D

    2002-10-01

    We have previously shown that lipopolysaccharide (LPS) exposure in sensitised animals 18 h after ovalbumin (OVA) challenge inhibits OVA-induced airway hyper-responsiveness (AHR). In the present study, we investigated the effect of LPS on OVA-induced acute and late-phase allergic responses in sensitised rats when challenged with OVA. Rats were sensitised with OVA and 11 days later challenged with 1% OVA in the presence or absence of LPS (0.5-50 microg/ml) given in the same nebulizer. Acute responses to OVA were measured each minute for 30 min after challenge. In a separate group of animals, late-phase responses to OVA were determined at 24 h. At the end of each study, Evans blue dye was injected and animals sacrificed 30 min later. Bronchoalveolar lavage was obtained to monitor inflammatory cell migration and microvascular leakage. OVA challenge in sensitised animals produced an acute response with changes in lung mechanics peaking 10.0 +/- 0.9 min after OVA and returning to baseline within 30 min. This was followed 24 h later by increased responses to methacholine chloride (MCh), inflammatory cell influx and increased Evans blue leakage into the lungs. Presence of 5 or 50 microg/ml LPS in the nebulizer during OVA challenge altered the kinetics of the acute-phase response, with an immediate decrease in lung function (time to peak decreased from 10.3 +/- 1.2 to 1.8 +/- 0.2 and 2.2 +/- 0.3 min, respectively: p < 0.001, n = 6) and a dose-dependent attenuation of late-phase AHR, cellular influx (n = 5, p < 0.001) and Evans blue leakage (n = 5, p < 0.001) at 24 h. In summary, co-administration of OVA with LPS modifies both the acute and late-phase responses to the allergen, inducing an earlier acute change in lung function and a dose-dependent inhibition of late-phase responses to the allergen. Copyright 2002 S. Karger AG, Basel

  18. Usefulness and limitation of dobutamine stress echocardiography to predict acute response to cardiac resynchronization therapy.

    PubMed

    Sénéchal, Mario; Lancellotti, Patrizio; Garceau, Patrick; Champagne, Jean; Dubois, Michelle; Magne, Julien; Blier, Louis; Molin, Frank; Philippon, François; Dumesnil, Jean G; Pierard, Luc; O'Hara, Gilles

    2010-01-01

    It has been hypothesized that a long-term response to cardiac resynchronization therapy (CRT) could correlate with myocardial viability in patients with left ventricular (LV) dysfunction. Contractile reserve and viability in the region of the pacing lead have not been investigated in regard to acute response after CRT. Fifty-one consecutive patients with advanced heart failure, LV ejection fraction 120 ms, and intraventricular asynchronism >or= 50 ms were prospectively included. The week before CRT implantation, the presence of viability was evaluated using dobutamine stress echocardiography. Acute responders were defined as a >or=15% increase in LV stroke volume. The average of viable segments was 5.8 +/- 1.9 in responders and 3.9 +/- 3 in nonresponders (P = 0.03). Viability in the region of the pacing lead had an excellent sensitivity (96%), but a low specificity (56%) to predict acute response to CRT. Mitral regurgitation (MR) was reduced in 21 patients (84%) with acute response. The presence of MR was a poor predictor of response (sensibility 93% and specificity 17%). However, combining the presence of MR and viability in the region of the pacing lead yields a sensibility (89%) and a specificity (70%) to predict acute response to CRT. Myocardial viability is an important factor influencing acute hemodynamic response to CRT. In acute responders, significant MR reduction is frequent. The combined presence of MR and viability in the region of the pacing lead predicts acute response to CRT with the best accuracy.

  19. Developmental Deltamethrin Exposure Causes Persistent Changes in Dopaminergic Gene Expression, Neurochemistry, and Locomotor Activity in Zebrafish.

    PubMed

    Kung, Tiffany S; Richardson, Jason R; Cooper, Keith R; White, Lori A

    2015-08-01

    Pyrethroids are commonly used insecticides that are considered to pose little risk to human health. However, there is an increasing concern that children are more susceptible to the adverse effects of pesticides. We used the zebrafish model to test the hypothesis that developmental exposure to low doses of the pyrethroid deltamethrin results in persistent alterations in dopaminergic gene expression, neurochemistry, and locomotor activity. Zebrafish embryos were treated with deltamethrin (0.25-0.50 μg/l), at concentrations below the LOAEL, during the embryonic period [3-72 h postfertilization (hpf)], after which transferred to fresh water until the larval stage (2-weeks postfertilization). Deltamethrin exposure resulted in decreased transcript levels of the D1 dopamine (DA) receptor (drd1) and increased levels of tyrosine hydroxylase at 72 hpf. The reduction in drd1 transcripts persisted to the larval stage and was associated with decreased D2 dopamine receptor transcripts. Larval fish, exposed developmentally to deltamethrin, had increased levels of homovanillic acid, a DA metabolite. Since the DA system is involved in locomotor activity, we measured the swim activity of larval fish following a transition to darkness. Developmental exposure to deltamethrin significantly increased larval swim activity which was attenuated by concomitant knockdown of the DA transporter. Acute exposure to methylphenidate, a DA transporter inhibitor, increased swim activity in control larva, while reducing swim activity in larva developmentally exposed to deltamethrin. Developmental exposure to deltamethrin causes locomotor deficits in larval zebrafish, which is likely mediated by dopaminergic dysfunction. This highlights the need to understand the persistent effects of low-dose neurotoxicant exposure during development. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Leptin in the nucleus accumbens core disrupts acute cocaine effects: Implications for GSK3β connections.

    PubMed

    Lee, Jung Won; Kim, Wha Young; Cho, Bo Ram; Vezina, Paul; Kim, Jeong-Hoon

    2018-01-30

    An adipose-derived peptide hormone, leptin, has a regulatory role in reward-related behaviors produced by drugs of abuse. Although it is known that leptin modulates mesolimbic dopaminergic pathways, little is known about its direct role in the nucleus accumbens (NAcc). In the present study, we measured acute cocaine-induced locomotor activity in the rat and the phosphorylation levels of GSK3β after bilateral microinjections of leptin into the NAcc core. Interestingly, leptin in the NAcc core significantly disrupts acute cocaine's effects on both locomotor activity and signaling molecules. In order to further confirm the role of GSK3β in these processes, we microinjected S9 peptide, a small synthetic peptide acting as a competitive inhibitor against phosphorylation site of GSK3β, followed by leptin co-microinjection, and found that leptin's effects on cocaine were all nullified. These results indicate that leptin in the NAcc core has a negative regulatory role in acute cocaine' effects, and suggest that GSK3β may play a major role in mediating these processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Levamisole enhances the rewarding and locomotor-activating effects of cocaine in rats.

    PubMed

    Tallarida, Christopher S; Tallarida, Ronald J; Rawls, Scott M

    2015-04-01

    The Drug Enforcement Agency estimates that 80% of cocaine seized in the United States contains the veterinary pharmaceutical levamisole (LVM). One problem with LVM is that it is producing life-threatening neutropenia in an alarming number of cocaine abusers. The neuropharmacological profile of LVM is also suggestive of an agent with modest reinforcing and stimulant effects that could enhance cocaine's addictive effects. We tested the hypothesis that LVM (ip) enhances the rewarding and locomotor stimulant effects of cocaine (ip) using rat conditioned place preference (CPP) and locomotor assays. Effects of LVM by itself were also tested. LVM (0-10 mg/kg) produced CPP at 1mg/kg (P<0.05) and locomotor activation at 5mg/kg (P < 0.05). For CPP combination experiments, a statistically inactive dose of LVM (0.1 mg/kg) was administered with a low dose of cocaine (2.5 mg/kg). Neither agent produced CPP compared to saline (P > 0.05); however, the combination of LVM and cocaine produced enhanced CPP compared to saline or either drug by itself (P < 0.01). For locomotor experiments, the same inactive dose of LVM (0.1mg/kg, ip) was administered with low (10 mg/kg) and high doses (30 mg/kg) of cocaine. LVM (0.1 mg/kg) enhanced locomotor activation produced by 10mg/kg of cocaine (P < 0.05) but not by 30 mg/kg (P>0.05). LVM can enhance rewarding and locomotor-activating effects of low doses of cocaine in rats while possessing modest activity of its own. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. The new kisspeptin derivative - kissorphin (KSO) - attenuates acute hyperlocomotion and sensitization induced by ethanol and morphine in mice.

    PubMed

    Gibula-Bruzda, Ewa; Marszalek-Grabska, Marta; Gawel, Kinga; Trzcinska, Roza; Silberring, Jerzy; Kotlinska, Jolanta H

    2017-11-01

    Kissorphin (KSO) is a new peptide derived from kisspeptin-10. This peptide possesses neuropeptide FF (NPFF)-like biological activity in vitro; NPFF, in many cases, inhibits opioid and ethanol effects in rodents. Therefore, the current study explored the influence of KSO on acute ethanol- and morphine-induced hyperactivity, and on the development and expression of locomotor sensitization induced by these drugs. In the present study, sensitization to locomotor effects was induced by repeated exposure to ethanol (2.4 g/kg, intraperitoneally [i.p.], 1 × 4 days) or morphine (10 mg/kg, subcutaneously [s.c.], 1 × 7 days). We found that KSO (1-10 nmol/300 μL, intravenously [i.v.]) did not have an impact on locomotor activity of naïve mice. However, it reduced both acute ethanol- (10 nmol/300 μL) and morphine-induced hyperactivity (3 and 10 nmol/300 μL). Pretreatment of animals with KSO (10 nmol/300 μL), before every ethanol or morphine injection during development of sensitization or before the ethanol or morphine challenge, attenuated the development, as well as the expression of locomotor sensitization to both substances. Moreover, prior administration of the NPFF receptor antagonist RF9 (10 nmol/300 μL, i.v.) inhibited the ability of KSO (10 nmol/300 μL) to reduce the expression of ethanol and morphine sensitization. KSO given alone, at all used doses, did not influence the motor coordination measured via the rotarod test. The results from this study show that KSO effectively attenuated acute and repeated effects of ethanol and morphine. Thus, KSO possesses NPFF-like anti-opioid activity in these behavioral studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Double invisible displacement understanding in orangutans: testing in non-locomotor and locomotor space.

    PubMed

    Mallavarapu, Suma; Stoinski, Tara S; Perdue, Bonnie M; Maple, Terry L

    2014-10-01

    The nonadjacent double invisible displacement task has been used to test for the ability of different species to mentally represent the unperceived trajectory of an object. The task typically requires three occluders/boxes in a linear array and involves hiding an object in one of two nonadjacent boxes visited in succession. Previous research indicates that 19-, 26-, and 30-month-old children and various nonhuman species cannot solve these displacements. It has been hypothesized that this is because individuals are unable to inhibit searching in the unbaited center box that was never visited by the experimenter. It has been suggested that presenting the task in a large-scale locomotor space might allow individuals to overcome this inhibition problem. In the present study, we tested orangutans on adjacent and nonadjacent double invisible displacements with the traditional setup (experiment 1) and in locomotor space with boxes placed 1.22 m apart (experiment 2). In both experiments, subjects were able to solve adjacent, but not nonadjacent, trials. The failure on nonadjacent trials appeared to be because of an inability to inhibit sequential search on the second choice as well as because of a large number of first-choice errors (directly choosing an incorrect box). The current results support previous findings that orangutans exhibit some constraints when representing the invisible trajectory of objects.

  4. The effects of the novel DA D3 receptor antagonist SR 21502 on cocaine reward, cocaine seeking and cocaine-induced locomotor activity in rats.

    PubMed

    Galaj, E; Ananthan, S; Saliba, M; Ranaldi, Robert

    2014-02-01

    There is a focus on developing D3 receptor antagonists as cocaine addiction treatments. We investigated the effects of a novel selective D3 receptor antagonist, SR 21502, on cocaine reward, cocaine-seeking, food reward, spontaneous locomotor activity and cocaine-induced locomotor activity in rats. In Experiment 1, rats were trained to self-administer cocaine under a progressive ratio (PR) schedule of reinforcement and tested with vehicle or one of three doses of SR 21502. In Experiment 2, animals were trained to self-administer cocaine under a fixed ratio schedule of reinforcement followed by extinction of the response. Then, animals were tested with vehicle or one of the SR 21502 doses on cue-induced reinstatement of responding. In Experiment 3, animals were trained to lever press for food under a PR schedule and tested with vehicle or one dose of the compound. In Experiments 4 and 5, in separate groups of animals, the vehicle and three doses of SR 21502 were tested on spontaneous or cocaine (10 mg/kg, IP)-induced locomotor activity, respectively. SR 21502 produced significant, dose-related (3.75, 7.5 and 15 mg/kg) reductions in breakpoint for cocaine self-administration, cue-induced reinstatement (3.75, 7.5 and 15 mg/kg) and cocaine-induced locomotor activity (3.75, 7.5 and 15 mg/kg) but failed to reduce food self-administration and spontaneous locomotor activity. SR 21502 decreases cocaine reward, cocaine-seeking and locomotor activity at doses that have no effect on food reward or spontaneous locomotor activity. These data suggest SR 21502 may selectively inhibit cocaine's rewarding, incentive motivational and stimulant effects.

  5. Acute glucocorticoid effects on response inhibition in borderline personality disorder.

    PubMed

    Carvalho Fernando, Silvia; Beblo, Thomas; Schlosser, Nicole; Terfehr, Kirsten; Wolf, Oliver Tobias; Otte, Christian; Löwe, Bernd; Spitzer, Carsten; Driessen, Martin; Wingenfeld, Katja

    2013-11-01

    Growing evidence suggests inhibition dysfunctions in borderline personality disorder (BPD). Moreover, abnormalities in hypothalamic-pituitary-adrenal (HPA) axis functioning have also been found in BPD patients. In healthy individuals, response inhibition has been sensitive to acute stress, and previous research indicates that effects mediated by the HPA axis become particularly apparent when emotional stimuli are processed. This study aimed to explore the influence of acute hydrocortisone administration on response inhibition of emotional stimuli in BPD patients compared to healthy control participants. After a single administration of 10mg hydrocortisone or placebo, 32 female BPD patients and 32 healthy female participants performed an adapted emotional go/no-go paradigm to assess response inhibition for emotional face stimuli in a cross-over study. Acute cortisol elevations decreased the reaction times to target stimuli in both BPD patients and healthy controls. Patients and controls did not differ in task performance; however, BPD patients with comorbid posttraumatic stress disorder (PTSD) displayed longer reaction times than patients without PTSD. In contrast, the occurrence of comorbid eating disorder had no significant impact on go/no-go performance. No significant interaction effect between the treatment condition and the emotional valence of the face stimuli was found. Acute hydrocortisone administration enhances response inhibition of face stimuli in BPD patients and healthy controls, regardless of their emotional valence. Our results agree with the suggestion that moderate cortisol enhancement increases the inhibition of task-irrelevant distracters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Mitochondria control acute and chronic responses to hypoxia.

    PubMed

    McElroy, G S; Chandel, N S

    2017-07-15

    There are numerous mechanisms by which mammals respond to hypoxia. These include acute changes in pulmonary arterial tone due to smooth muscle cell contraction, acute increases in respiration triggered by the carotid body chemosensory cells, and chronic changes such as induction of red blood cell proliferation and angiogenesis by hypoxia inducible factor targets erythropoietin and vascular endothelial growth factor, respectively. Mitochondria account for the majority of oxygen consumption in the cell and have recently been appreciated to serve as signaling organelles required for the initiation or propagation of numerous homeostatic mechanisms. Mitochondria can influence cell signaling by production of reactive oxygen species and metabolites. Here we review recent evidence that mitochondrial signals can imitate acute and chronic hypoxia responses. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Different pain responses to chronic and acute pain in various ethnic/racial groups.

    PubMed

    Rahavard, Behnoosh B; Candido, Kenneth D; Knezevic, Nebojsa Nick

    2017-09-01

    Our goal in this study was to review the similarities and differences among ethnic groups and their respective responses to acute and chronic clinically related and experimentally induced pain. In this review, the PUBMED and Google-Scholar databases were searched to analyze articles that have assessed the variations in both acute and chronic pain responses among different ethnic/racial groups. According to the results from 42 reviewed articles, significant differences exist among ethnic-racial groups for pain prevalence as well as responses to acute and chronic pain. Compared with Caucasians, other ethnic groups are more susceptible to acute pain responses to nociceptive stimulation and to the development of long-term chronic pain. These differences need to be addressed and assessed more extensively in the future in order to minimize the pain management disparities among various ethnic-racial groups and also to improve the relationship between pain management providers and their patients.

  8. The Effects of Sex-Ratio and Density on Locomotor Activity in the House Fly, Musca domestica

    PubMed Central

    Bahrndorff, Simon; Kjærsgaard, Anders; Pertoldi, Cino; Loeschcke, Volker; Schou, Toke M.; Skovgård, Henrik; Hald, Birthe

    2012-01-01

    Although locomotor activity is involved in almost all behavioral traits, there is a lack of knowledge on what factors affect it. This study examined the effects of sex—ratio and density on the circadian rhythm of locomotor activity of adult Musca domestica L. (Diptera: Muscidae) using an infra—red light system. Sex—ratio significantly affected locomotor activity, increasing with the percentage of males in the vials. In accordance with other studies, males were more active than females, but the circadian rhythm of the two sexes was not constant over time and changed during the light period. There was also an effect of density on locomotor activity, where males at intermediate densities showed higher activity. Further, the predictability of the locomotor activity, estimated as the degree of autocorrelation of the activity data, increased with the number of males present in the vials both with and without the presence of females. Overall, this study demonstrates that locomotor activity in M. domestica is affected by sex—ratio and density. Furthermore, the predictability of locomotor activity is affected by both sex—ratio, density, and circadian rhythm. These results add to our understanding of the behavioral interactions between houseflies and highlight the importance of these factors when designing behavioral experiments using M. domestica.

  9. A dose-response study of separate and combined effects of the serotonin agonist 8-OH-DPAT and the dopamine agonist quinpirole on locomotor sensitization, cross-sensitization, and conditioned activity.

    PubMed

    Johnson, Eric F; Szechtman, Henry

    2016-08-01

    Chronic treatment with the dopamine D2/D3 agonist, quinpirole, or the serotonin 1A agonist, 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT), induces behavioral sensitization. It is not known whether both drugs produce sensitization through a shared mechanism. Here, we examine whether quinpirole and 8-OH-DPAT show cross-sensitization and impact sensitization, as would be expected from shared mechanisms. Male rats (N=208) were assigned randomly to 16 groups formed by crossing four doses of quinpirole (0, 0.03125, 0.0625, or 0.125 mg/kg) with four doses of 8-OH-DPAT (0, 0.03125, 0.625, or 0.125 mg/kg). After a course of 10 drug treatments administered twice per week in locomotor activity chambers, all groups were challenged on separate tests with quinpirole (0.1 mg/kg), 8-OH-DPAT (0.1 mg/kg), or saline, and locomotor activity was evaluated. Challenge tests with quinpirole and 8-OHDPAT showed no cross-sensitization between the drugs. Chronic quinpirole (0.125 mg/kg) administration induced a sensitized quinpirole response that was attenuated dose-dependently by chronic 8-OH-DPAT cotreatment. Cotreatment with quinpirole (0.0625 mg/kg) and 8-OH-DPAT (all doses) induced quinpirole sensitization. Chronic 8-OH-DPAT (0.125 mg/kg) induced a sensitized 8-OHDPAT response that was prevented by chronic cotreatment with the lowest but not the highest dose of quinpirole. Cotreatment with 8-OHDPAT (0.0625) and quinpirole (0.125 mg/kg) induced sensitization to 8-OH-DPAT. The saline challenge test showed elevated locomotor activity in chronic quinpirole (0.125 mg/kg) and 8-OHDPAT (0.0625, 0.125 mg/kg) alone groups, and in seven of nine cotreated groups. The absence of cross-sensitization suggests separate mechanisms of sensitization to quinpirole and 8-OH-DPAT. Cotreatment effects suggest that induction of sensitization can be modulated by serotonin 1A and D2/D3 activity.

  10. Cannabidiol-Δ9-tetrahydrocannabinol interactions on acute pain and locomotor activity.

    PubMed

    Britch, Stevie C; Wiley, Jenny L; Yu, Zhihao; Clowers, Brian H; Craft, Rebecca M

    2017-06-01

    Previous studies suggest that cannabidiol (CBD) may potentiate or antagonize Δ 9 -tetrahydrocannabinol's (THC) effects. The current study examined sex differences in CBD modulation of THC-induced antinociception, hypolocomotion, and metabolism. In Experiment 1, CBD (0, 10 or 30mg/kg) was administered 15min before THC (0, 1.8, 3.2, 5.6 or 10mg/kg), and rats were tested for antinociception and locomotion 15-360min post-THC injection. In Experiments 2 and 3, CBD (30mg/kg) was administered 13h or 15min before THC (1.8mg/kg); rats were tested for antinociception and locomotion 30-480min post-THC injection (Experiment 2), or serum samples were taken 30-360min post-THC injection to examine CBD modulation of THC metabolism (Experiment 3). In Experiment 1, CBD alone produced no antinociceptive effects, while enhancing THC-induced paw pressure but not tail withdrawal antinociception 4-6h post-THC injection. CBD alone increased locomotor activity at 6h post-injection, but enhanced THC-induced hypolocomotion 4-6h post-THC injection, at lower THC doses. There were no sex differences in CBD-THC interactions. In Experiments 2 and 3, CBD did not significantly enhance THC's effects when CBD was administered 13h or 15min before THC; however, CBD inhibited THC metabolism, and this effect was greater in females than males. These results suggest that CBD may enhance THC's antinociceptive and hypolocomotive effects, primarily prolonging THC's duration of action; however, these effects were small and inconsistent across experiments. CBD inhibition of THC metabolism as well other mechanisms likely contribute to CBD-THC interactions on behavior. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Locomotor-Like Leg Movements Evoked by Rhythmic Arm Movements in Humans

    PubMed Central

    Sylos-Labini, Francesca; Ivanenko, Yuri P.; MacLellan, Michael J.; Cappellini, Germana; Poppele, Richard E.; Lacquaniti, Francesco

    2014-01-01

    Motion of the upper limbs is often coupled to that of the lower limbs in human bipedal locomotion. It is unclear, however, whether the functional coupling between upper and lower limbs is bi-directional, i.e. whether arm movements can affect the lumbosacral locomotor circuitry. Here we tested the effects of voluntary rhythmic arm movements on the lower limbs. Participants lay horizontally on their side with each leg suspended in an unloading exoskeleton. They moved their arms on an overhead treadmill as if they walked on their hands. Hand-walking in the antero-posterior direction resulted in significant locomotor-like movements of the legs in 58% of the participants. We further investigated quantitatively the responses in a subset of the responsive subjects. We found that the electromyographic (EMG) activity of proximal leg muscles was modulated over each cycle with a timing similar to that of normal locomotion. The frequency of kinematic and EMG oscillations in the legs typically differed from that of arm oscillations. The effect of hand-walking was direction specific since medio-lateral arm movements did not evoke appreciably leg air-stepping. Using externally imposed trunk movements and biomechanical modelling, we ruled out that the leg movements associated with hand-walking were mainly due to the mechanical transmission of trunk oscillations. EMG activity in hamstring muscles associated with hand-walking often continued when the leg movements were transiently blocked by the experimenter or following the termination of arm movements. The present results reinforce the idea that there exists a functional neural coupling between arm and legs. PMID:24608249

  12. Diffusion Tensor Imaging at 3 Hours after Traumatic Spinal Cord Injury Predicts Long-Term Locomotor Recovery

    PubMed Central

    Kim, Joong H.; Loy, David N.; Wang, Qing; Budde, Matthew D.; Schmidt, Robert E.; Trinkaus, Kathryn

    2010-01-01

    Abstract Accurate diagnosis of spinal cord injury (SCI) severity must be achieved before highly aggressive experimental therapies can be tested responsibly in the early phases after trauma. These studies demonstrate for the first time that axial diffusivity (λ||), derived from diffusion tensor imaging (DTI) within 3 h after SCI, accurately predicts long-term locomotor behavioral recovery in mice. Female C57BL/6 mice underwent sham laminectomy or graded contusive spinal cord injuries at the T9 vertebral level (5 groups, n = 8 for each group). In-vivo DTI examinations were performed immediately after SCI. Longitudinal measurements of hindlimb locomotor recovery were obtained using the Basso mouse scale (BMS). Injured and spared regions of ventrolateral white matter (VLWM) were reliably separated in the hyperacute phase by threshold segmentation. Measurements of λ|| were compared with histology in the hyperacute phase and 14 days after injury. The spared normal VLWM determined by hyperacute λ|| and 14-day histology correlated well (r = 0.95). A strong correlation between hindlimb locomotor function recovery and λ||-determined spared normal VLWM was also observed. The odds of significant locomotor recovery increased by 18% with each 1% increase in normal VLWM measured in the hyperacute phase (odds ratio = 1.18, p = 0.037). The capability of measuring subclinical changes in spinal cord physiology and murine genetic advantages offer an early window into the basic mechanisms of SCI that was not previously possible. Although significant obstacles must still be overcome to derive similar data in human patients, the path to clinical translation is foreseeable and achievable. PMID:20001686

  13. Pathology during acute infections: contributions of intracellular pathogens and the CTL response.

    PubMed

    Ganusov, Vitaly V; Antia, Rustom

    2005-06-22

    Previous work has shown how, in the case of cytotoxic T-lymphocyte (CTL) responses to persistent viral infections, pathology may arise as a consequence of cell destruction directly by the virus or indirectly due to the CTL response, leading to maximum pathology at intermediate efficacy of the immune response. We expand these studies to consider pathology arising during acute infections with intracellular pathogens controlled by the CTL response. We show that, in contrast to persistent infections, pathology during acute infections is minimized with increasing efficacy of the immune response. The implications of these results for vaccination are discussed.

  14. Locomotor Tests Predict Community Mobility in Children and Youth with Cerebral Palsy

    ERIC Educational Resources Information Center

    Ferland, Chantale; Moffet, Helene; Maltais, Desiree

    2012-01-01

    Ambulatory children and youth with cerebral palsy have limitations in locomotor capacities and in community mobility. The ability of three locomotor tests to predict community mobility in this population (N = 49, 27 boys, 6-16 years old) was examined. The tests were a level ground walking test, the 6-min-Walk-Test (6MWT), and two tests of advanced…

  15. Genomic Circuitry Underlying Immunological Response to Pediatric Acute Respiratory Infection.

    PubMed

    Henrickson, Sarah E; Manne, Sasikanth; Dolfi, Douglas V; Mansfield, Kathleen D; Parkhouse, Kaela; Mistry, Rakesh D; Alpern, Elizabeth R; Hensley, Scott E; Sullivan, Kathleen E; Coffin, Susan E; Wherry, E John

    2018-01-09

    Acute respiratory tract viral infections (ARTIs) cause significant morbidity and mortality. CD8 T cells are fundamental to host responses, but transcriptional alterations underlying anti-viral mechanisms and links to clinical characteristics remain unclear. CD8 T cell transcriptional circuitry in acutely ill pediatric patients with influenza-like illness was distinct for different viral pathogens. Although changes included expected upregulation of interferon-stimulated genes (ISGs), transcriptional downregulation was prominent upon exposure to innate immune signals in early IFV infection. Network analysis linked changes to severity of infection, asthma, sex, and age. An influenza pediatric signature (IPS) distinguished acute influenza from other ARTIs and outperformed other influenza prediction gene lists. The IPS allowed a deeper investigation of the connection between transcriptional alterations and clinical characteristics of acute illness, including age-based differences in circuits connecting the STAT1/2 pathway to ISGs. A CD8 T cell-focused systems immunology approach in pediatrics identified age-based alterations in ARTI host response pathways. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Locomotor Recovery in Spinal Cord Injury: Insights Beyond Walking Speed and Distance.

    PubMed

    Awai, Lea; Curt, Armin

    2016-08-01

    Recovery of locomotor function after incomplete spinal cord injury (iSCI) is clinically assessed through walking speed and distance, while improvements in these measures might not be in line with a normalization of gait quality and are, on their own, insensitive at revealing potential mechanisms underlying recovery. The objective of this study was to relate changes of gait parameters to the recovery of walking speed while distinguishing between parameters that rather reflect speed improvements from factors contributing to overall recovery. Kinematic data of 16 iSCI subjects were repeatedly recorded during in-patient rehabilitation. The responsiveness of gait parameters to walking speed was assessed by linear regression. Principal component analysis (PCA) was applied on the multivariate data across time to identify factors that contribute to recovery after iSCI. Parameters of gait cycle and movement dynamics were both responsive and closely related to the recovery of walking speed, which increased by 96%. Multivariate analysis revealed specific gait parameters (intralimb shape normality and consistency) that, although less related to speed increments, loaded highly on principal component one (PC1) (58.6%) explaining the highest proportion of variance (i.e., recovery of outcome over time). Interestingly, measures of hip, knee, and ankle range of motion showed varying degrees of responsiveness (from very high to very low) while not contributing to gait recovery as revealed by PCA. The conjunct application of two analysis methods distinguishes gait parameters that simply reflect increased walking speed from parameters that actually contribute to gait recovery in iSCI. This distinction may be of value for the evaluation of interventions for locomotor recovery.

  17. Acute Mucociliary Clearance Response to Aerobic Exercise in Smokers.

    PubMed

    Ramos, Ercy M C; Vanderlei, Luiz Carlos M; Ito, Juliana T; Lima, Fabiano F; Rodrigues, Fernanda M M; Manzano, Beatriz M; Fernandes, Rômulo A; Cecílio, Michel J; Toledo-Arruda, Alessandra C; Ramos, Dionei

    2015-11-01

    Mucociliary clearance is the main defense mechanism of the respiratory system, and it is influenced by several stimuli, including aerobic exercise and cigarette smoking. We evaluated the acute response of mucociliary clearance to aerobic exercise in smokers and nonsmokers compared with that found after acute smoking and smoking combined with exercise. Also, we investigated whether there was a correlation between mucociliary clearance and the autonomic nervous system under these conditions. Twenty-one smokers were evaluated for mucociliary clearance by saccharin transit time (STT), and the response of the autonomic nervous system was evaluated by heart rate variability after aerobic exercise, after exercise followed by smoking, after acute smoking, and after rest. For comparison, 17 nonsmokers were also assessed during exercise. Repeated-measures analysis of variance with the Tukey test or the Friedman test followed by the Dunn test was used to evaluate the STT, autonomic response, and other variables to exercise and/or smoking in smokers. A paired t test or Wilcoxon test was used to analyze responses to exercise in nonsmokers. Correlations were evaluated using Pearson or Spearman coefficients. The STT was reduced after exercise in both groups, with similar responses between them. Other stimuli also reduced the STT. The STT showed a negative correlation with sympathetic activity in smokers and a positive correlation with the parasympathetic system in nonsmokers. Although impaired in smokers, mucociliary clearance responded to the stimulus of exercise, as demonstrated by similar STTs compared with nonsmokers. This response was correlated with the autonomic nervous system in both groups. In smokers, mucociliary clearance also responded to the stimuli of smoking and exercise followed by smoking. Copyright © 2015 by Daedalus Enterprises.

  18. Interindividual Responses of Appetite to Acute Exercise: A Replicated Crossover Study.

    PubMed

    Goltz, Fernanda R; Thackray, Alice E; King, James A; Dorling, James L; Atkinson, Greg; Stensel, David J

    2018-04-01

    Acute exercise transiently suppresses appetite, which coincides with alterations in appetite-regulatory hormone concentrations. Individual variability in these responses is suspected, but replicated trials are needed to quantify them robustly. We examined the reproducibility of appetite and appetite-regulatory hormone responses to acute exercise and quantified the individual differences in responses. Fifteen healthy, recreationally active men completed two control (60-min resting) and two exercise (60-min fasted treadmill running at 70% peak oxygen uptake) conditions in randomized sequences. Perceived appetite and circulating concentrations of acylated ghrelin and total peptide YY (PYY) were measured immediately before and after the interventions. Interindividual differences were explored by correlating the two sets of response differences between exercise and control conditions. Within-participant covariate-adjusted linear mixed models were used to quantify participant-condition interactions. Compared with control, exercise suppressed mean acylated ghrelin concentrations and appetite perceptions (all ES = 0.62-1.47, P < 0.001) and elevated total PYY concentrations (ES = 1.49, P < 0.001). For all variables, the standard deviation of the change scores was substantially greater in the exercise versus control conditions. Moderate-to-large positive correlations were observed between the two sets of control-adjusted exercise responses for all variables (r = 0.54-0.82, P ≤ 0.036). After adjusting for baseline measurements, participant-condition interactions were present for all variables (P ≤ 0.053). Our replicated crossover study allowed, for the first time, the interaction between participant and acute exercise response in appetite parameters to be quantified. Even after adjustment for individual baseline measurements, participants demonstrated individual differences in perceived appetite and hormone responses to acute exercise bouts beyond any random within

  19. AN IL-1 RECEPTOR ANTAGONIST BLOCKS A MORPHINE-INDUCED ATTENUATION OF LOCOMOTOR RECOVERY AFTER SPINAL CORD INJURY

    PubMed Central

    Hook, Michelle A.; Washburn, Stephanie N.; Moreno, Georgina; Woller, Sarah A.; Puga, Denise; Lee, Kuan H.; Grau, James W.

    2010-01-01

    Morphine is one of the most commonly prescribed medications for the treatment of chronic pain after a spinal cord injury (SCI). Despite widespread use, however, little is known about the secondary consequences of morphine use after SCI. Unfortunately, our previous studies show that administration of a single dose of morphine, in the acute phase of a moderate spinal contusion injury, significantly attenuates locomotor function, reduces weight gain, and produces symptoms of paradoxical pain (Hook et al., 2009). The current study focused on the cellular mechanisms that mediate these effects. Based on data from other models, we hypothesized that pro-inflammatory cytokines might play a role in the morphine-induced attenuation of function. Experiment 1 confirmed that systemic morphine (20 mg/kg) administered one day after a contusion injury significantly increased expression levels of spinal IL-1β 24 hrs later. Experiment 2 extended these findings, demonstrating that a single dose of morphine (90 µg, i.t.) applied directly onto the spinal cord increased expression levels of spinal IL-1β at both 30 min and 24 hrs after administration. Experiment 3 showed that administration of an interleukin-1 receptor antagonist (IL-1ra, i.t.) prior to intrathecal morphine (90 µg), blocked the adverse effects of morphine on locomotor recovery. Further, pre-treatment with 3 µg IL-1ra prevented the increased expression of at-level neuropathic pain symptoms that was observed 28 days later in the group treated with morphine-alone. However, the IL-1ra also had adverse effects that were independent of morphine. Treatment with the IL-1ra alone undermined recovery of locomotor function, potentiated weight loss and significantly increased tissue loss at the injury site. Overall, these data suggest that morphine disrupts a critical balance in concentrations of pro-inflammatory cytokines in the spinal cord, and this undermines recovery of function. PMID:20974246

  20. Cathinone increases body temperature, enhances locomotor activity, and induces striatal c-fos expression in the Siberian hamster.

    PubMed

    Jones, S; Fileccia, E L; Murphy, M; Fowler, M J; King, M V; Shortall, S E; Wigmore, P M; Green, A R; Fone, K C F; Ebling, F J P

    2014-01-24

    Cathinone is a β-keto alkaloid that is the major active constituent of khat, the leaf of the Catha edulis plant that is chewed recreationally in East Africa and the Middle East. Related compounds, such as methcathinone and mephedrone have been increasing in popularity as recreational drugs, resulting in the recent proposal to classify khat as a Class C drug in the UK. There is still limited knowledge of the pharmacological effects of cathinone. This study examined the acute effects of cathinone on core body temperature, locomotor and other behaviors, and neuronal activity in Siberian hamsters. Adult male hamsters, previously implanted with radio telemetry devices, were treated with cathinone (2 or 5mg/kg i.p.), the behavioral profile scored and core body temperature and locomotor activity recorded by radio telemetry. At the end of the study, hamsters received vehicle or cathinone (5mg/kg) and neuronal activation in the brain was determined using immunohistochemical evaluation of c-fos expression. Cathinone dose-dependently induced significant (p<0.0001) increases in both temperature and locomotor activity lasting 60-90min. Cathinone (2mg/kg) increased rearing (p<0.02), and 5mg/kg increased both rearing (p<0.001) and lateral head twitches (p<0.02). Both cathinone doses decreased the time spent at rest (p<0.001). The number of c-fos immunopositive cells were significantly increased in the striatum (p<0.0001) and suprachiasmatic nucleus (p<0.05) following cathinone, indicating increased neuronal activity. There was no effect of cathinone on food intake or body weight. It is concluded that systemic administration of cathinone induces significant behavioral changes and CNS activation in the hamster. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Force wave transmission through the human locomotor system.

    PubMed

    Voloshin, A; Wosk, J; Brull, M

    1981-02-01

    A method to measure the capability of the human shock absorber system to attenuate input dynamic loading during the gait is presented. The experiments were carried out with two groups: healthy subjects and subjects with various pathological conditions. The results of the experiments show a considerable difference in the capability of each group's shock absorbers to attenuate force transmitted through the locomotor system. Comparison shows that healthy subjects definitely possess a more efficient shock-absorbing capacity than do those subjects with joint disorders. Presented results show that degenerative changes in joints reduce their shock absorbing capacity, which leads to overloading of the next shock absorber in the locomotor system. So, the development of osteoarthritis may be expected to result from overloading of a shock absorber's functional capacity.

  2. Muscle spindle feedback directs locomotor recovery and circuit reorganization after spinal cord injury.

    PubMed

    Takeoka, Aya; Vollenweider, Isabel; Courtine, Grégoire; Arber, Silvia

    2014-12-18

    Spinal cord injuries alter motor function by disconnecting neural circuits above and below the lesion, rendering sensory inputs a primary source of direct external drive to neuronal networks caudal to the injury. Here, we studied mice lacking functional muscle spindle feedback to determine the role of this sensory channel in gait control and locomotor recovery after spinal cord injury. High-resolution kinematic analysis of intact mutant mice revealed proficient execution in basic locomotor tasks but poor performance in a precision task. After injury, wild-type mice spontaneously recovered basic locomotor function, whereas mice with deficient muscle spindle feedback failed to regain control over the hindlimb on the lesioned side. Virus-mediated tracing demonstrated that mutant mice exhibit defective rearrangements of descending circuits projecting to deprived spinal segments during recovery. Our findings reveal an essential role for muscle spindle feedback in directing basic locomotor recovery and facilitating circuit reorganization after spinal cord injury. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Neuropharmacology of light-induced locomotor activation.

    PubMed

    Amato, Davide; Pum, Martin E; Groos, Dominik; Lauber, Andrea C; Huston, Joseph P; Carey, Robert J; de Souza Silva, Maria A; Müller, Christian P

    2015-08-01

    Presentation of non-aversive light stimuli for several seconds was found to reliably induce locomotor activation and exploratory-like activity. Light-induced locomotor activity (LIA) can be considered a convenient simple model to study sensory-motor activation. LIA was previously shown to coincide with serotonergic and dopaminergic activation in specific cortical areas in freely moving and anesthetized animals. In the present study we explore the neuropharmacology of LIA using a receptor antagonist/agonist approach in rats. The non-selective 5-HT2-receptor antagonist ritanserin (1.5-6 mg/kg, i.p.) dose-dependently reduced LIA. Selective antagonism of either the 5-HT2A-receptor by MDL 11,939 (0.1-0.4 mg/kg, i.p.), or the 5-HT2C-receptor by SDZ SER 082 (0.125-0.5 mg/kg, i.p.), alone or in combination, had no significant influence on LIA. Also the selective 5-HT1A-receptor antagonist, WAY 100635 (0.4 mg/kg, i.p.) did not affect LIA. Neither did the preferential dopamine D2-receptor antagonist, haloperidol (0.025-0.1 mg/kg, i.p.) nor the D2/D3-receptor agonist, quinpirole (0.025-0.5 mg/kg, i.p.) affect the expression of LIA. However, blocking the glutamatergic NMDA-receptor with phencyclidine (PCP, 1.5-6 mg/kg, i.p.) dose-dependently reduced LIA. This effect was also observed with ketamine (10 mg/kg, i.p.). These findings suggest that serotonin and dopamine receptors abundantly expressed in the cortex do not mediate light-stimulus triggered locomotor activity. PCP and ketamine effects, however, suggest an important role of NMDA receptors in LIA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Human spinal locomotor control is based on flexibly organized burst generators.

    PubMed

    Danner, Simon M; Hofstoetter, Ursula S; Freundl, Brigitta; Binder, Heinrich; Mayr, Winfried; Rattay, Frank; Minassian, Karen

    2015-03-01

    Constant drive provided to the human lumbar spinal cord by epidural electrical stimulation can cause local neural circuits to generate rhythmic motor outputs to lower limb muscles in people paralysed by spinal cord injury. Epidural spinal cord stimulation thus allows the study of spinal rhythm and pattern generating circuits without their configuration by volitional motor tasks or task-specific peripheral feedback. To reveal spinal locomotor control principles, we studied the repertoire of rhythmic patterns that can be generated by the functionally isolated human lumbar spinal cord, detected as electromyographic activity from the legs, and investigated basic temporal components shared across these patterns. Ten subjects with chronic, motor-complete spinal cord injury were studied. Surface electromyographic responses to lumbar spinal cord stimulation were collected from quadriceps, hamstrings, tibialis anterior, and triceps surae in the supine position. From these data, 10-s segments of rhythmic activity present in the four muscle groups of one limb were extracted. Such samples were found in seven subjects. Physiologically adequate cycle durations and relative extension- and flexion-phase durations similar to those needed for locomotion were generated. The multi-muscle activation patterns exhibited a variety of coactivation, mixed-synergy and locomotor-like configurations. Statistical decomposition of the electromyographic data across subjects, muscles and samples of rhythmic patterns identified three common temporal components, i.e. basic or shared activation patterns. Two of these basic patterns controlled muscles to contract either synchronously or alternatingly during extension- and flexion-like phases. The third basic pattern contributed to the observed muscle activities independently from these extensor- and flexor-related basic patterns. Each bifunctional muscle group was able to express both extensor- and flexor-patterns, with variable ratios across the

  5. LFP Oscillations in the Mesencephalic Locomotor Region during Voluntary Locomotion

    PubMed Central

    Noga, Brian R.; Sanchez, Francisco J.; Villamil, Luz M.; O’Toole, Christopher; Kasicki, Stefan; Olszewski, Maciej; Cabaj, Anna M.; Majczyński, Henryk; Sławińska, Urszula; Jordan, Larry M.

    2017-01-01

    Oscillatory rhythms in local field potentials (LFPs) are thought to coherently bind cooperating neuronal ensembles to produce behaviors, including locomotion. LFPs recorded from sites that trigger locomotion have been used as a basis for identification of appropriate targets for deep brain stimulation (DBS) to enhance locomotor recovery in patients with gait disorders. Theta band activity (6–12 Hz) is associated with locomotor activity in locomotion-inducing sites in the hypothalamus and in the hippocampus, but the LFPs that occur in the functionally defined mesencephalic locomotor region (MLR) during locomotion have not been determined. Here we record the oscillatory activity during treadmill locomotion in MLR sites effective for inducing locomotion with electrical stimulation in rats. The results show the presence of oscillatory theta rhythms in the LFPs recorded from the most effective MLR stimulus sites (at threshold ≤60 μA). Theta activity increased at the onset of locomotion, and its power was correlated with the speed of locomotion. In animals with higher thresholds (>60 μA), the correlation between locomotor speed and theta LFP oscillations was less robust. Changes in the gamma band (previously recorded in vitro in the pedunculopontine nucleus (PPN), thought to be a part of the MLR) were relatively small. Controlled locomotion was best achieved at 10–20 Hz frequencies of MLR stimulation. Our results indicate that theta and not delta or gamma band oscillation is a suitable biomarker for identifying the functional MLR sites. PMID:28579945

  6. Acute molecular response of mouse hindlimb muscles to chronic stimulation.

    PubMed

    LaFramboise, W A; Jayaraman, R C; Bombach, K L; Ankrapp, D P; Krill-Burger, J M; Sciulli, C M; Petrosko, P; Wiseman, R W

    2009-09-01

    Stimulation of the mouse hindlimb via the sciatic nerve was performed for a 4-h period to investigate acute muscle gene activation in a model of muscle phenotype conversion. Initial force production (1.6 +/- 0.1 g/g body wt) declined 45% within 10 min and was maintained for the remainder of the experiment. Force returned to initial levels upon study completion. An immediate-early growth response was present in the extensor digitorum longus (EDL) muscle (FOS, JUN, activating transcription factor 3, and musculoaponeurotic fibrosarcoma oncogene) with a similar but attenuated pattern in the soleus muscle. Transcript profiles showed decreased fast fiber-specific mRNA (myosin heavy chains 2A and 2B, fast troponins T(3) and I, alpha-tropomyosin, muscle creatine kinase, and parvalbumin) and increased slow transcripts (myosin heavy chain-1beta/slow, troponin C slow, and tropomyosin 3y) in the EDL versus soleus muscles. Histological analysis of the EDL revealed glycogen depletion without inflammatory cell infiltration in stimulated versus control muscles, whereas ultrastructural analysis showed no evidence of myofiber damage after stimulation. Multiple fiber type-specific transcription factors (tea domain family member 1, nuclear factor of activated T cells 1, peroxisome proliferator-activated receptor-gamma coactivator-1alpha and -beta, circadian locomotor output cycles kaput, and hypoxia-inducible factor-1alpha) increased in the EDL along with transcription factors characteristic of embryogenesis (Kruppel-like factor 4; SRY box containing 17; transcription factor 15; PBX/knotted 1 homeobox 1; and embryonic lethal, abnormal vision). No established in vivo satellite cell markers or genes activated in our parallel experiments of satellite cell proliferation in vitro (cyclins A(2), B(2), C, and E(1) and MyoD) were differentially increased in the stimulated muscles. These results indicated that the molecular onset of fast to slow phenotype conversion occurred in the EDL within

  7. Neonatal programming with testosterone propionate reduces dopamine transporter expression in nucleus accumbens and methylphenidate-induced locomotor activity in adult female rats.

    PubMed

    Dib, Tatiana; Martínez-Pinto, Jonathan; Reyes-Parada, Miguel; Torres, Gonzalo E; Sotomayor-Zárate, Ramón

    2018-07-02

    Research in programming is focused on the study of stimuli that alters sensitive periods in development, such as prenatal and neonatal stages, that can produce long-term deleterious effects. These effects can occur in various organs or tissues such as the brain, affecting brain circuits and related behaviors. Our laboratory has demonstrated that neonatal programming with sex hormones affects the mesocorticolimbic circuitry, increasing the synthesis and release of dopamine (DA) in striatum and nucleus accumbens (NAcc). However, the behavioral response to psychostimulant drugs such as methylphenidate and the possible mechanism(s) involved have not been studied in adult rats exposed to sex hormones during the first hours of life. Thus, the aim of this study was to examine the locomotor activity induced by methylphenidate (5mg/kg i.p.) and the expression of the DA transporter (DAT) in NAcc of adult rats exposed to a single dose of testosterone propionate (TP: 1mg/50μLs.c.) or estradiol valerate (EV: 0.1mg/50μLs.c.) at postnatal day 1. Our results demonstrated that adult female rats treated with TP have a lower methylphenidate-induced locomotor activity compared to control and EV-treated adult female rats. This reduction in locomotor activity is related with a lower NAcc DAT expression. However, neither methylphenidate-induced locomotor activity nor NAcc DAT expression was affected in EV or TP-treated adult male rats. Our results suggest that early exposure to sex hormones affects long-term dopaminergic brain areas involved in the response to psychostimulants, which could be a vulnerability factor to favor the escalating doses of drugs of abuse. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Methamphetamine potentiates behavioral and electrochemical responses after mild traumatic brain injury in mice.

    PubMed

    Shen, Hui; Harvey, Brandon K; Chiang, Yung-Hsiao; Pick, Chaim G; Wang, Yun

    2011-01-12

    We previously demonstrated that high doses of methamphetamine (MA) exacerbate damage induced by severe brain trauma. The purpose of the present study was to examine if MA, at low dosage, affected abnormalities in locomotor activity and dopamine turnover in a mouse model of mild traumatic brain injury (mTBI). Adult male CD1 mice were treated with MA (5 mg/kgi.p.) or vehicle 30-min prior to mTBI, conducted by dropping a 30 g metal weight onto the temporal skull, anterior the right ear. At 15 min after mTBI, animals were put into locomotor activity chambers for up to 72 h. During the first 3 h, mTBI alone, compared with vehicle control, did not alter total distance travelled. Treatment with MA significantly increased locomotor activity in the control animals during the first 3 h; mTBI reduced MA-induced hyperactivity. In contrast, at 2 and 3 days after injury, mTBI or MA alone reduced locomotor activity. Co-treatment with MA and mTBI further reduced this activity, suggesting a differential and temporal behavioral interaction between MA and mTBI during acute and subacute phases after injury. Dopamine and DOPAC levels in striatal tissue were analyzed using HPLC-ECD. At 1h after mTBI or injection, DA was not altered but DOPAC level and DOPAC/DA turnover ratios were significantly reduced. Co-treatment with MA further reduced the DOPAC/DA ratio. At 36 h after injury, mTBI increased tissue DA levels, but reduced DOPAC levels and DOPAC/DA ratios. Co-treatment with MA further reduced DOPAC/DA ratios in striatum. In conclusion, our data suggest that low dosage of MA worsens the suppression of locomotor responses and striatal dopamine turnover after mTBI. Published by Elsevier B.V.

  9. Asymmetric Operation of the Locomotor Central Pattern Generator in the Neonatal Mouse Spinal Cord

    PubMed Central

    Endo, Toshiaki; Kiehn, Ole

    2008-01-01

    The rhythmic voltage oscillations in motor neurons (MNs) during locomotor movements reflect the operation of the pre-MN central pattern generator (CPG) network. Recordings from MNs can thus be used as a method to deduct the organization of CPGs. Here, we use continuous conductance measurements and decomposition methods to quantitatively assess the weighting and phase tuning of synaptic inputs to different flexor and extensor MNs during locomotor-like activity in the isolated neonatal mice lumbar spinal cord preparation. Whole cell recordings were obtained from 22 flexor and 18 extensor MNs in rostral and caudal lumbar segments. In all flexor and the large majority of extensor MNs the extracted excitatory and inhibitory synaptic conductances alternate but with a predominance of inhibitory conductances, most pronounced in extensors. These conductance changes are consistent with a “push–pull” operation of locomotor CPG. The extracted excitatory and inhibitory synaptic conductances varied between 2 and 56% of the mean total conductance. Analysis of the phase tuning of the extracted synaptic conductances in flexor and extensor MNs in the rostral lumbar cord showed that the flexor-phase–related synaptic conductance changes have sharper locomotor-phase tuning than the extensor-phase–related conductances, suggesting a modular organization of premotor CPG networks consisting of reciprocally coupled, but differently composed, flexor and extensor CPG networks. There was a clear difference between phase tuning in rostral and caudal MNs, suggesting a distinct operation of CPG networks in different lumbar segments. The highly asymmetric features were preserved throughout all ranges of locomotor frequencies investigated and with different combinations of locomotor-inducing drugs. The asymmetric nature of CPG operation and phase tuning of the conductance profiles provide important clues to the organization of the rodent locomotor CPG and are compatible with a

  10. Potential contributions of training intensity on locomotor performance in individuals with chronic stroke.

    PubMed

    Holleran, Carey L; Rodriguez, Kelly S; Echauz, Anthony; Leech, Kristan A; Hornby, T George

    2015-04-01

    Many interventions can improve walking ability of individuals with stroke, although the training parameters that maximize recovery are not clear. For example, the contribution of training intensity has not been well established and may contribute to the efficacy of many locomotor interventions. The purpose of this preliminary study was to evaluate the effects of locomotor training intensity on walking outcomes in individuals with gait deficits poststroke. Using a randomized cross-over design, 12 participants with chronic stroke (>6-month duration) performed either high-intensity (70%-80% of heart rate reserve; n = 6) or low-intensity (30%-40% heart rate reserve; n = 6) locomotor training for 12 or fewer sessions over 4 to 5 weeks. Four weeks following completion, the alternate training intervention was performed. Training intensity was manipulated by adding loads or applying resistance during walking, with similar speeds, durations, and amount of stepping practice between conditions. Greater increases in 6-Minute Walk Test performance were observed following high-intensity training compared with low-intensity training. A significant interaction of intensity and order was also observed for 6-Minute Walk Test and peak treadmill speed, with the largest changes in those who performed high-intensity training first. Moderate correlations were observed between locomotor outcomes and measures of training intensity. This study provides the first evidence that the intensity of locomotor practice may be an important independent determinant of walking outcomes poststroke. In the clinical setting, the intensity of locomotor training can be manipulated in many ways, although this represents only 1 parameter to consider.Video Abstract available for more insights from the authors (see Supplemental Digital Content 1, http://links.lww.com/JNPT/A90).

  11. Alternate pathways of body shape evolution translate into common patterns of locomotor evolution in two clades of lizards.

    PubMed

    Bergmann, Philip J; Irschick, Duncan J

    2010-06-01

    Body shape has a fundamental impact on organismal function, but it is unknown how functional morphology and locomotor performance and kinematics relate across a diverse array of body shapes. We showed that although patterns of body shape evolution differed considerably between lizards of the Phrynosomatinae and Lerista, patterns of locomotor evolution coincided between clades. Specifically, we found that the phrynosomatines evolved a stocky phenotype through body widening and limb shortening, whereas Lerista evolved elongation through body lengthening and limb shortening. In both clades, relative limb length played a key role in locomotor evolution and kinematic strategies, with long-limbed species moving faster and taking longer strides. In Lerista, the body axis also influenced locomotor evolution. Similar patterns of locomotor evolution were likely due to constraints on how the body can move. However, these common patterns of locomotor evolution between the two clades resulted in different kinematic strategies and levels of performance among species because of their morphological differences. Furthermore, we found no evidence that distinct body shapes are adaptations to different substrates, as locomotor kinematics did not change on loose or solid substrates. Our findings illustrate the importance of studying kinematics to understand the mechanisms of locomotor evolution and phenotype-function relationships.

  12. Cannabidiol-Δ9-tetrahydrocannabinol interactions on acute pain and locomotor activity

    PubMed Central

    Britch, Stevie C.; Wiley, Jenny L.; Yu, Zhihao; Clowers, Brian H.; Craft, Rebecca M.

    2017-01-01

    Background Previous studies suggest that cannabidiol (CBD) may potentiate or antagonize Δ9-tetrahydrocannabinol’s (THC) effects. The current study examined sex differences in CBD-THC interactions on antinociception, locomotion, and THC metabolism. Methods In Experiment 1, CBD (0, 10 or 30 mg/kg) was administered 15 min before THC (0, 1.8, 3.2, 5.6 or10 mg/kg), and rats were tested for antinociception and locomotion 15–360 min post-THC injection. In Experiments 2 and 3, CBD (30 mg/kg) was administered 13 hr or 15 min before THC (1.8 mg/kg); rats were tested for antinociception and locomotion 30–480 min post-THC injection (Experiment 2), or serum samples were taken 30–360 min post-THC injection to examine CBD modulation of THC metabolism (Experiment 3). Results In Experiment 1, CBD alone produced no antinociceptive effects, while enhancing THC-induced paw pressure but not tail withdrawal antinociception 4–6 hr post-THC injection. CBD alone increased locomotor activity at 6 hr post-injection, but enhanced THC-induced hypolocomotion 4–6 hr post-THC injection, at lower THC doses. There were no sex differences in CBD-THC interactions. In Experiments 2 and 3, CBD did not significantly enhance THC’s effects when CBD was administered 13 hr or 15 min before THC; however, CBD inhibited THC metabolism, and this effect was greater in females than males. Conclusions These results suggest that CBD may enhance THC’s antinociceptive and hypolocomotive effects, primarily prolonging THC’s duration of action; however, these effects were small and inconsistent across experiments. CBD inhibition of THC metabolism as well other mechanisms likely contribute to CBD-THC interactions on behavior. PMID:28445853

  13. Schwann Cells Transplantation Improves Locomotor Recovery in Rat Models with Spinal Cord Injury: a Systematic Review and Meta-Analysis.

    PubMed

    Yang, Lei; Ge, Yingbin; Tang, Jian; Yuan, Jinxia; Ge, Dawei; Chen, Hongtao; Zhang, Hongxiu; Cao, Xiaojian

    2015-01-01

    Schwann cells (SCs) which were demonstrated to be responsible for axonal myelination and ensheathing are widely studied and commonly used for cell transplantation to treat spinal cord injury (SCI). We performed this meta-analysis to summarize the effects of SCs versus controls for locomotor recovery in rat models of traumatic SCI. Studies of the BBB scores after transplantation of SCs were searched out from Pubmed, Cochrane Library Medline databases and analyzed by Review Manager 5.2.5. Thirteen randomized controlled animal trials were selected with 283 rats enrolled. The studies were divided to different subgroups by different models of SCI, different cell doses for transplantation, different sources of SCs and different transplantation ways. The pooled results of this meta-analysis suggested that SCs transplantation cannot significantly improve the locomotor recovery at a short time after intervention (1 week after transplantation) in both impacted and hemi-sected SCI models. However, at a longer time after intervention (3, 5-7 and over 8 weeks after transplantation), significant improvement of BBB score emerged in SCs groups compared with control groups. Subgroup analyses revealed that SCs transplantation can significantly promote locomotor recovery regardless of in high or low doses of cells, from different sources (isolated from sciatic nerves or differentiated from bone marrow stromal cells(BMSCs)) and with or without scaffolding. SCs seem to demonstrate substantial beneficial effects on locomotor recovery in a widely-used animal models of SCI. © 2015 The Author(s) Published by S. Karger AG, Basel.

  14. Suppression of Locomotor Activity in Female C57Bl/6J Mice Treated with Interleukin-1β: Investigating a Method for the Study of Fatigue in Laboratory Animals.

    PubMed

    Bonsall, David R; Kim, Hyunji; Tocci, Catherine; Ndiaye, Awa; Petronzio, Abbey; McKay-Corkum, Grace; Molyneux, Penny C; Scammell, Thomas E; Harrington, Mary E

    2015-01-01

    Fatigue is a disabling symptom in patients with multiple sclerosis and Parkinson's Disease, and is also common in patients with traumatic brain injury, cancer, and inflammatory disorders. Little is known about the neurobiology of fatigue, in part due to the lack of an approach to induce fatigue in laboratory animals. Fatigue is a common response to systemic challenge by pathogens, a response in part mediated through action of the pro-inflammatory cytokine interleukin-1 beta (IL-1β). We investigated the behavioral responses of mice to IL-1β. Female C57Bl/6J mice of 3 ages were administered IL-1β at various doses i.p. Interleukin-1β reduced locomotor activity, and sensitivity increased with age. Further experiments were conducted with middle-aged females. Centrally administered IL-1β dose-dependently reduced locomotor activity. Using doses of IL-1β that caused suppression of locomotor activity, we measured minimal signs of sickness, such as hyperthermia, pain or anhedonia (as measured with abdominal temperature probes, pre-treatment with the analgesic buprenorphine and through sucrose preference, respectively), all of which are responses commonly reported with higher doses. We found that middle-aged orexin-/- mice showed equivalent effects of IL-1β on locomotor activity as seen in wild-type controls, suggesting that orexins are not necessary for IL-1β -induced reductions in wheel-running. Given that the availability and success of therapeutic treatments for fatigue is currently limited, we examined the effectiveness of two potential clinical treatments, modafinil and methylphenidate. We found that these treatments were variably successful in restoring locomotor activity after IL-1β administration. This provides one step toward development of a satisfactory animal model of the multidimensional experience of fatigue, a model that could allow us to determine possible pathways through which inflammation induces fatigue, and could lead to novel treatments for

  15. Oxidized trilinoleate and tridocosahexaenoate induce pica behavior and change locomotor activity.

    PubMed

    Kitamura, Fuki; Watanabe, Hiroyuki; Umeno, Aya; Yoshida, Yasukazu; Kurata, Kenji; Gotoh, Naohiro

    2013-01-01

    Pica behavior, a behavior that is characterized by eating a nonfood material such as kaolin and relates to the degree of discomfort in animals, and the variations of locomotor activity of rats after eating deteriorated fat and oil extracted from instant noodles were examined in our previous study. The result shows that oxidized fat and oil with at least 100 meq/kg in peroxide value (PV) increase pica behavior and decrease locomotor activity. In the present study, the same two behaviors were measured using autoxidized trilinoleate (tri-LA) and tridocosahexaenoate (tri-DHA) as a model of vegetable and fish oil, respectively, to compare fatty acid differences against the induction of two behaviors. The oxidized levels of tri-LA and tri-DHA were analyzed with PV and p-anisidine value (AnV), the method to analyze secondary oxidized products. The oxidation levels of respective triacylglycerol (TAG) samples were carefully adjusted to make them having almost the same PV and AnV. As the results, 600 or more meq/kg in PV of both TAGs significantly increased the consumption of kaolin pellets compared to the control group. Furthermore, 300 or more meq/kg in PV of tri-LA and 200 or more meq/kg in PV of tri-DHA demonstrated significant decrease in locomotor activity compared to control group. These results would indicate that the oxidized TAG having the same PV and/or AnV would induce the same type of pica behavior and locomotor activity. Furthermore, that the structure of oxidized products might not be important and the amount of hydroperoxide group and/or aldehyde group in deteriorated fats and oils might affect the pica behavior and locomotor activity were thought.

  16. The effects of long-term dopaminergic treatment on locomotor behavior in rats.

    PubMed

    Oliveira de Almeida, Welinton Alessandro; Maculano Esteves, Andrea; Leite de Almeida-Júnior, Canuto; Lee, Kil Sun; Kannebley Frank, Miriam; Oliveira Mariano, Melise; Frussa-Filho, Roberto; Tufik, Sergio; Tulio de Mello, Marco

    2014-12-01

    Long-term treatments with dopaminergic agents are associated with adverse effects, including augmentation. Augmentation consists of an exacerbation of restless legs syndrome (a sleep-related movement disorder) symptoms during treatment compared to those experienced during the period before therapy was initiated. The objective of this study was to examine locomotor activity in rats after long-term dopaminergic treatment and its relationship with expression of the D2 receptor, in addition to demonstrating possible evidence of augmentation. The rats were divided into control (CTRL) and drug (Pramipexole-PPX) groups that received daily saline vehicle and PPX treatments, respectively, for 71 days. The locomotor behavior of the animals was evaluated weekly in the Open Field test for 71 days. The expression of the dopamine D2 receptor was evaluated by Western Blot analysis. The animals that received the PPX demonstrated a significant reduction in locomotor activity from day 1 to day 57 and a significant increase in immobility time from day 1 to day 64 relative to baseline values, but these values had returned to baseline levels at 71 days. No changes in the expression of the D2 receptor were demonstrated after treatment with a dopaminergic agonist. This study suggests changes in locomotor activity in rats after long-term PPX treatment that include an immediate reduction of locomotion and an increase in immobilization, and after 64 days, these values returned to baseline levels without evidence of augmentation. In addition, it was not possible to demonstrate a relationship between locomotor activity and the expression of D2 receptors under these conditions.

  17. The effects of long-term dopaminergic treatment on locomotor behavior in rats

    PubMed Central

    Oliveira de Almeida, Welinton Alessandro; Maculano Esteves, Andrea; Leite de Almeida-Júnior, Canuto; Lee, Kil Sun; Kannebley Frank, Miriam; Oliveira Mariano, Melise; Frussa-Filho, Roberto; Tufik, Sergio; Tulio de Mello, Marco

    2014-01-01

    Long-term treatments with dopaminergic agents are associated with adverse effects, including augmentation. Augmentation consists of an exacerbation of restless legs syndrome (a sleep-related movement disorder) symptoms during treatment compared to those experienced during the period before therapy was initiated. The objective of this study was to examine locomotor activity in rats after long-term dopaminergic treatment and its relationship with expression of the D2 receptor, in addition to demonstrating possible evidence of augmentation. The rats were divided into control (CTRL) and drug (Pramipexole—PPX) groups that received daily saline vehicle and PPX treatments, respectively, for 71 days. The locomotor behavior of the animals was evaluated weekly in the Open Field test for 71 days. The expression of the dopamine D2 receptor was evaluated by Western Blot analysis. The animals that received the PPX demonstrated a significant reduction in locomotor activity from day 1 to day 57 and a significant increase in immobility time from day 1 to day 64 relative to baseline values, but these values had returned to baseline levels at 71 days. No changes in the expression of the D2 receptor were demonstrated after treatment with a dopaminergic agonist. This study suggests changes in locomotor activity in rats after long-term PPX treatment that include an immediate reduction of locomotion and an increase in immobilization, and after 64 days, these values returned to baseline levels without evidence of augmentation. In addition, it was not possible to demonstrate a relationship between locomotor activity and the expression of D2 receptors under these conditions. PMID:26483930

  18. THC inhibits the expression of ethanol-induced locomotor sensitization in mice.

    PubMed

    Filev, Renato; Engelke, Douglas S; Da Silveira, Dartiu X; Mello, Luiz E; Santos-Junior, Jair G

    2017-12-01

    The motivational circuit activated by ethanol leads to behavioral changes that recruit the endocannabinoid system (ECS). Case reports and observational studies suggest that the use of Cannabis sp. mitigates problematic ethanol consumption in humans. Here, we verified the effects of the two main phytocannabinoid compounds of Cannabis sp., cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC), in the expression of ethanol-induced locomotor sensitization in mice. Male adult DBA/2 mice were exposed to locomotor sensitization by daily intraperitoneal injections of ethanol (2.5 g/kg) for 12 days; control groups received saline. After the acquisition phase, animals were treated with cannabinoids: CBD (2.5 mg/kg); THC (2.5 mg/kg); CBD + THC (1:1 ratio), or vehicle for 4 days with no access to ethanol during this period. One day after the last cannabinoid injection, all animals were challenged with ethanol (2.0 g/kg) to evaluate the expression of the locomotor sensitization. Mice treated with THC alone or THC + CBD showed reduced expression of locomotor sensitization, compared to the vehicle control group. No effects were observed with CBD treatment alone. Our findings showing that phytocannabinoid treatment prevents the expression of behavioral sensitization in mice provide insight into the potential therapeutic use of phytocannabinoids in alcohol-related problems. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Objective and quantitative equilibriometric evaluation of individual locomotor behaviour in schizophrenia: Translational and clinical implications.

    PubMed

    Haralanov, Svetlozar; Haralanova, Evelina; Milushev, Emil; Shkodrova, Diana; Claussen, Claus-Frenz

    2018-04-17

    Psychiatry is the only medical specialty that lacks clinically applicable biomarkers for objective evaluation of the existing pathology at a single-patient level. On the basis of an original translational equilibriometric method for evaluation of movement patterns, we have introduced in the everyday clinical practice of psychiatry an easy-to-perform computerized objective quantification of the individual locomotor behaviour during execution of the Unterberger stepping test. For the last 20 years, we have gradually collected a large database of more than 1000 schizophrenic patients, their relatives, and matched psychiatric, neurological, and healthy controls via cross-sectional and longitudinal investigations. Comparative analyses revealed transdiagnostic locomotor similarities among schizophrenic patients, high-risk schizotaxic individuals, and neurological patients with multiple sclerosis and cerebellar ataxia, thus suggesting common underlying brain mechanisms. In parallel, intradiagnostic dissimilarities were revealed, which allow to separate out subclinical locomotor subgroups within the diagnostic categories. Prototypical qualitative (dysmetric and ataxic) locomotor abnormalities in schizophrenic patients were differentiated from 2 atypical quantitative ones, manifested as either hypolocomotion or hyperlocomotion. Theoretical analyses suggested that these 3 subtypes of locomotor abnormalities could be conceived as objectively measurable biomarkers of 3 schizophrenic subgroups with dissimilar brain mechanisms, which require different treatment strategies. Analogies with the prominent role of locomotor measures in some well-known animal models of mental disorders advocate for a promising objective translational research in the so far over-subjective field of psychiatry. Distinctions among prototypical, atypical, and diagnostic biomarkers, as well as between neuromotor and psychomotor locomotor abnormalities, are discussed. Conclusions are drawn about the

  20. Locomotor Training and Factors Associated with Blood Glucose Regulation After Spinal Cord Injury.

    PubMed

    Chilibeck, Philip D; Guertin, Pierre A

    2017-01-01

    Individuals with spinal cord injury (SCI) have increased rates of glucose intolerance, insulin insensitivity, and type II diabetes caused mainly by the deconditioning of paralyzed muscle. The purpose of this systematic review was to determine the effectiveness of locomotor training in individuals with SCI on blood glucose control. We searched studies on locomotor training for individuals with SCI with outcomes of glucose, insulin, or outcomes that could change glucose handling (i.e. increases in muscle mass, shifts in muscle fiber type composition, changes in transport proteins, or enzymes involved in glucose metabolism) in PubMed and EMBASE. Eleven studies (10 with incomplete SCI; 1 with complete SCI) were included in our review. Locomotor training included body weight supported treadmill training (BWSTT) with manual or robotic assistance, with and without functional electrical stimulation (FES), or involved FES-assisted over ground training. Six months of locomotor training in individuals with SCI resulted in significant decreases in glucose (15%) and insulin (33%) areas under the curve during oral glucose tolerance tests. Two to twelve months of locomotor training reversed some of the muscle atrophy - with muscle being the site of most glucose consumption, this is important for glucose control. Training also increased capacity for glucose storage, enzymes involved in glucose phosphorylation (hexokinase) and oxidation (citrate synthase), and glucose transport proteins (GLUT-4). Fiber type composition shifted to a slower fiber type, which favors glucose handling. There were no effects on fat mass. Locomotor training in individuals with SCI (generally an incomplete injury) increases capacity to handle glucose and results in muscular changes that should reduce the risk of type II diabetes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Long-term imaging of circadian locomotor rhythms of a freely crawling C. elegans population

    PubMed Central

    Winbush, Ari; Gruner, Matthew; Hennig, Grant W.; van der Linden, Alexander M.

    2016-01-01

    Background Locomotor activity is used extensively as a behavioral output to study the underpinnings of circadian rhythms. Recent studies have required a populational approach for the study of circadian rhythmicity in Caenorhabditis elegans locomotion. New method We describe an imaging system for long-term automated recording and analysis of locomotion data of multiple free-crawling C. elegans animals on the surface of an agar plate. We devised image analysis tools for measuring specific features related to movement and shape to identify circadian patterns. Results We demonstrate the utility of our system by quantifying circadian locomotor rhythms in wild-type and mutant animals induced by temperature cycles. We show that 13 °C:18 °C (12:12 h) cycles are sufficient to entrain locomotor activity of wild-type animals, which persist but are rapidly damped during 13 °C free-running conditions. Animals with mutations in tax-2, a cyclic nucleotide-gated (CNG) ion channel, significantly reduce locomotor activity during entrainment and free-running. Comparison with existing method(s) Current methods for measuring circadian locomotor activity is generally restricted to recording individual swimming animals of C. elegans, which is a distinct form of locomotion from crawling behavior generally observed in the laboratory. Our system works well with up to 20 crawling adult animals, and allows for a detailed analysis of locomotor activity over long periods of time. Conclusions Our population-based approach provides a powerful tool for quantification of circadian rhythmicity of C. elegans locomotion, and could allow for a screening system of candidate circadian genes in this model organism. PMID:25911068

  2. Management of Acute Hypertensive Response in Intracerebral Hemorrhage Patients After ATACH-2 Trial.

    PubMed

    Majidi, Shahram; Suarez, Jose I; Qureshi, Adnan I

    2017-10-01

    Acute hypertensive response is elevation of systolic blood pressure (SBP) in the first 24 h after symptom onset which is highly prevalent in patients with intracerebral hemorrhage (ICH). Observational studies suggested association between acute hypertensive response and hematoma expansion, peri-hematoma edema and death and disability, and possible reduction in these adverse outcomes with treatment of acute hypertensive response. Recent clinical trials have focused on determining the clinical efficacy of early intensive SBP reduction in ICH patients. The Antihypertensive Treatment of Acute Cerebral Hemorrhage (ATACH-2) trial was the latest phase 3 randomized controlled multicenter clinical trial aimed to study the efficacy of early intensive reduction of SBP in ICH patients. In this review article, we summarize the results of recent clinical trials, treatment principles based on the latest guidelines, and the anticipated interpretation and incorporation of ATACH-2 trial results in clinical practice.

  3. Plantar tactile perturbations enhance transfer of split-belt locomotor adaptation

    PubMed Central

    Mukherjee, Mukul; Eikema, Diderik Jan A.; Chien, Jung Hung; Myers, Sara A.; Scott-Pandorf, Melissa; Bloomberg, Jacob J.; Stergiou, Nicholas

    2015-01-01

    Patterns of human locomotion are highly adaptive and flexible, and depend on the environmental context. Locomotor adaptation requires the use of multisensory information to perceive altered environmental dynamics and generate an appropriate movement pattern. In this study, we investigated the use of multisensory information during locomotor learning. Proprioceptive perturbations were induced by vibrating tactors, placed bilaterally over the plantar surfaces. Under these altered sensory conditions, participants were asked to perform a split-belt locomotor task representative of motor learning. Twenty healthy young participants were separated into two groups: no-tactors (NT) and tactors (TC). All participants performed an overground walking trial, followed by treadmill walking including 18 minutes of split-belt adaptation and an overground trial to determine transfer effects. Interlimb coordination was quantified by symmetry indices and analyzed using mixed repeated measures ANOVAs. Both groups adapted to the locomotor task, indicated by significant reductions in gait symmetry during the split-belt task. No significant group differences in spatiotemporal and kinetic parameters were observed on the treadmill. However, significant groups differences were observed overground. Step and swing time asymmetries learned on the split belt treadmill, were retained and decayed more slowly overground in the TC group whereas in NT, asymmetries were rapidly lost. These results suggest that tactile stimulation contributed to increased lower limb proprioceptive gain. High proprioceptive gain allows for more persistent overground after-effects, at the cost of reduced adaptability. Such persistence may be utilized in populations displaying pathologic asymmetric gait by retraining a more symmetric pattern. PMID:26169104

  4. Plantar tactile perturbations enhance transfer of split-belt locomotor adaptation.

    PubMed

    Mukherjee, Mukul; Eikema, Diderik Jan A; Chien, Jung Hung; Myers, Sara A; Scott-Pandorf, Melissa; Bloomberg, Jacob J; Stergiou, Nicholas

    2015-10-01

    Patterns of human locomotion are highly adaptive and flexible and depend on the environmental context. Locomotor adaptation requires the use of multisensory information to perceive altered environmental dynamics and generate an appropriate movement pattern. In this study, we investigated the use of multisensory information during locomotor learning. Proprioceptive perturbations were induced by vibrating tactors, placed bilaterally over the plantar surfaces. Under these altered sensory conditions, participants were asked to perform a split-belt locomotor task representative of motor learning. Twenty healthy young participants were separated into two groups: no-tactors (NT) and tactors (TC). All participants performed an overground walking trial, followed by treadmill walking including 18 min of split-belt adaptation and an overground trial to determine transfer effects. Interlimb coordination was quantified by symmetry indices and analyzed using mixed repeated-measures ANOVAs. Both groups adapted to the locomotor task, indicated by significant reductions in gait symmetry during the split-belt task. No significant group differences in spatiotemporal and kinetic parameters were observed on the treadmill. However, significant group differences were observed overground. Step and swing time asymmetries learned on the split-belt treadmill were retained and decayed more slowly overground in the TC group whereas in NT, asymmetries were rapidly lost. These results suggest that tactile stimulation contributed to increased lower limb proprioceptive gain. High proprioceptive gain allows for more persistent overground after effects, at the cost of reduced adaptability. Such persistence may be utilized in populations displaying pathologic asymmetric gait by retraining a more symmetric pattern.

  5. Human Physiological Responses to Acute and Chronic Cold Exposure

    NASA Technical Reports Server (NTRS)

    Stocks, Jodie M.; Taylor, Nigel A. S.; Tipton, Michael J.; Greenleaf, John E.

    2001-01-01

    When inadequately protected humans are exposed to acute cold, excessive body heat is lost to the environment and unless heat production is increased and heat loss attenuated, body temperature will decrease. The primary physiological responses to counter the reduction in body temperature include marked cutaneous vasoconstriction and increased metabolism. These responses, and the hazards associated with such exposure, are mediated by a number of factors which contribute to heat production and loss. These include the severity and duration of the cold stimulus; exercise intensity; the magnitude of the metabolic response; and individual characteristics such as body composition, age, and gender. Chronic exposure to a cold environment, both natural and artificial, results in physiological alterations leading to adaptation. Three quite different, but not necessarily exclusive, patterns of human cold adaptation have been reported: metabolic, hypothermic, and insulative. Cold adaptation has also been associated with an habituation response, in which there is a desensitization, or damping, of the normal response to a cold stress. This review provides a comprehensive analysis of the human physiological and pathological responses to cold exposure. Particular attention is directed to the factors contributing to heat production and heat loss during acute cold stress, and the ability of humans to adapt to cold environments.

  6. The iFly Tracking System for an Automated Locomotor and Behavioural Analysis of Drosophila melanogaster

    PubMed Central

    Kohlhoff, Kai J.; Jahn, Thomas R.; Lomas, David A.; Dobson, Christopher M.; Crowther, Damian C.; Vendruscolo, Michele

    2016-01-01

    The use of animal models in medical research provides insights into molecular and cellular mechanisms of human disease, and helps identify and test novel therapeutic strategies. Drosophila melanogaster – the common fruit fly – is one of the most established model organisms, as its study can be performed more readily and with far less expense than for other model animal systems, such as mice, fish, or indeed primates. In the case of fruit flies, standard assays are based on the analysis of longevity and basic locomotor functions. Here we present the iFly tracking system, which enables to increase the amount of quantitative information that can be extracted from these studies, and to reduce significantly the duration and costs associated with them. The iFly system uses a single camera to simultaneously track the trajectories of up to 20 individual flies with about 100μm spatial and 33ms temporal resolution. The statistical analysis of fly movements recorded with such accuracy makes it possible to perform a rapid and fully automated quantitative analysis of locomotor changes in response to a range of different stimuli. We anticipate that the iFly method will reduce very considerably the costs and the duration of the testing of genetic and pharmacological interventions in Drosophila models, including an earlier detection of behavioural changes and a large increase in throughput compared to current longevity and locomotor assays. PMID:21698336

  7. A feasibility study on the design and walking operation of a biped locomotor via dynamic simulation

    NASA Astrophysics Data System (ADS)

    Wang, Mingfeng; Ceccarelli, Marco; Carbone, Giuseppe

    2016-06-01

    A feasibility study on the mechanical design and walking operation of a Cassino biped locomotor is presented in this paper. The biped locomotor consists of two identical 3 degrees-of-freedom tripod leg mechanisms with a parallel manipulator architecture. Planning of the biped walking gait is performed by coordinating the motions of the two leg mechanisms and waist. A threedimensional model is elaborated in SolidWorks® environment in order to characterize a feasible mechanical design. Dynamic simulation is carried out in MSC.ADAMS® environment with the aims of characterizing and evaluating the dynamic walking performance of the proposed design. Simulation results show that the proposed biped locomotor with proper input motions of linear actuators performs practical and feasible walking on flat surfaces with limited actuation and reaction forces between its feet and the ground. A preliminary prototype of the biped locomotor is built for the purpose of evaluating the operation performance of the biped walking gait of the proposed locomotor.

  8. Locomotor behavior of fish hatched from embryos exposed to flight conditions

    NASA Technical Reports Server (NTRS)

    Kleerekoper, H.

    1978-01-01

    Embryos of Fundulus heteroclitus in various stages of development were exposed to space flight conditions aboard Apollo spacecraft and Cosmos satellites. The objective of the study was to ascertain whether fish hatched from these embryos displayed locomotor behavior different from that of control fish of the same age. An electronic monitoring technique was used to record behavior. Results indicate no change in locomotor behavior in fish on Apollo Spacecraft, but inexplicable significant changes were noted in fish aboard Cosmos Satellites.

  9. Salivary Markers of Inflammation in Response to Acute Stress

    PubMed Central

    Slavish, Danica C.; Graham-Engeland, Jennifer E.; Smyth, Joshua M.; Engeland, Christopher G.

    2014-01-01

    There is burgeoning interest in the ability to detect inflammatory markers in response to stress within naturally occurring social contexts and/or across multiple time points per day within individuals. Salivary collection is a less invasive process than current methods of blood collection and enables intensive naturalistic methodologies, such as those involving extensive repeated measures per day over time. Yet the reliability and validity of saliva-based to blood-based inflammatory biomarkers in response to stress remains unclear. We review and synthesize the published studies that have examined salivary markers of inflammation following exposure to an acute laboratory stressor. Results from each study are reviewed by analyte (IL-1β, TNF-α, IL-6, IL-2, IL-4, IL-10, IL-12, CRP) and stress type (social-cognitive and exercise-physical), after which methodological issues and limitations are addressed. Although the literature is limited, several inflammatory markers (including IL-1β, TNF-α, and IL-6) have been reliably determined from saliva and have increased significantly in response to stress across multiple studies, with effect sizes ranging from very small to very large. Although CRP from saliva has been associated with CRP in circulating blood more consistently than other biomarkers have been associated with their counterparts in blood, evidence demonstrating it reliably responds to acute stress is absent. Although the current literature is presently too limited to allow broad assertion that inflammatory biomarkers determined from saliva are valuable for examining acute stress responses, this review suggests that specific targets may be valid and highlights specific areas of need for future research. PMID:25205395

  10. Cannabinoids & Stress: impact of HU-210 on behavioral tests of anxiety in acutely stressed mice.

    PubMed

    Kinden, Renee; Zhang, Xia

    2015-05-01

    Anxiety disorders are one of the most prevalent classes of mental disorders affecting the general population, but current treatment strategies are restricted by their limited efficacy and side effect profiles. Although the cannabinoid system is speculated to be a key player in the modulation of stress responses and emotionality, the vast majority of current research initiatives had not incorporated stress exposure into their experimental designs. This study was the first to investigate the impact of exogenous cannabinoid administration in an acutely stressed mouse model, where CD1 mice were pre-treated with HU-210, a potent CB1R agonist, prior to acute stress exposure and subsequent behavioral testing. Exogenous cannabinoid administration induced distinct behavioral phenotypes in stressed and unstressed mice. While low doses of HU-210 were anxiolytic in unstressed subjects, this effect was abolished when mice were exposed to an acute stressor. The administration of higher HU-210 doses in combination with acute stress exposure led to severe locomotor deficits that were not previously observed at the same dose in unstressed subjects. These findings suggest that exogenous cannabinoids and acute stress act synergistically in an anxiogenic manner. This study underlies the importance of including stress exposure into future anxiety-cannabinoid research due to the differential impact of cannabinoid administration on stressed and unstressed subjects. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Acute Knockdown of Kv4.1 Regulates Repetitive Firing Rates and Clock Gene Expression in the Suprachiasmatic Nucleus and Daily Rhythms in Locomotor Behavior

    PubMed Central

    Hermanstyne, Tracey O.; Mellor, Rebecca L.

    2017-01-01

    Abstract Rapidly activating and inactivating A-type K+ currents (IA) encoded by Kv4.2 and Kv4.3 pore-forming (α) subunits of the Kv4 subfamily are key regulators of neuronal excitability. Previous studies have suggested a role for Kv4.1 α-subunits in regulating the firing properties of mouse suprachiasmatic nucleus (SCN) neurons. To test this, we utilized an RNA-interference strategy to knockdown Kv4.1, acutely and selectively, in the SCN. Current-clamp recordings revealed that the in vivo knockdown of Kv4.1 significantly (p < 0.0001) increased mean ± SEM repetitive firing rates in SCN neurons during the day (6.4 ± 0.5 Hz) and at night (4.3 ± 0.6 Hz), compared with nontargeted shRNA-expressing SCN neurons (day: 3.1 ± 0.5 Hz; night: 1.6 ± 0.3 Hz). IA was also significantly (p < 0.05) reduced in Kv4.1-targeted shRNA-expressing SCN neurons (day: 80.3 ± 11.8 pA/pF; night: 55.3 ± 7.7 pA/pF), compared with nontargeted shRNA-expressing (day: 121.7 ± 10.2 pA/pF; night: 120.6 ± 16.5 pA/pF) SCN neurons. The magnitude of the effect of Kv4.1-targeted shRNA expression on firing rates and IA was larger at night. In addition, Kv4.1-targeted shRNA expression significantly (p < 0.001) increased mean ± SEM nighttime input resistance (Rin; 2256 ± 166 MΩ), compared to nontargeted shRNA-expressing SCN neurons (1143 ± 93 MΩ). Additional experiments revealed that acute knockdown of Kv4.1 significantly (p < 0.01) shortened, by ∼0.5 h, the circadian period of spontaneous electrical activity, clock gene expression and locomotor activity demonstrating a physiological role for Kv4.1-encoded IA channels in regulating circadian rhythms in neuronal excitability and behavior. PMID:28560311

  12. Acute Knockdown of Kv4.1 Regulates Repetitive Firing Rates and Clock Gene Expression in the Suprachiasmatic Nucleus and Daily Rhythms in Locomotor Behavior.

    PubMed

    Hermanstyne, Tracey O; Granados-Fuentes, Daniel; Mellor, Rebecca L; Herzog, Erik D; Nerbonne, Jeanne M

    2017-01-01

    Rapidly activating and inactivating A-type K + currents (I A ) encoded by Kv4.2 and Kv4.3 pore-forming (α) subunits of the Kv4 subfamily are key regulators of neuronal excitability. Previous studies have suggested a role for Kv4.1 α-subunits in regulating the firing properties of mouse suprachiasmatic nucleus (SCN) neurons. To test this, we utilized an RNA-interference strategy to knockdown Kv4.1, acutely and selectively, in the SCN. Current-clamp recordings revealed that the in vivo knockdown of Kv4.1 significantly ( p < 0.0001) increased mean ± SEM repetitive firing rates in SCN neurons during the day (6.4 ± 0.5 Hz) and at night (4.3 ± 0.6 Hz), compared with nontargeted shRNA-expressing SCN neurons (day: 3.1 ± 0.5 Hz; night: 1.6 ± 0.3 Hz). I A was also significantly ( p < 0.05) reduced in Kv4.1-targeted shRNA-expressing SCN neurons (day: 80.3 ± 11.8 pA/pF; night: 55.3 ± 7.7 pA/pF), compared with nontargeted shRNA-expressing (day: 121.7 ± 10.2 pA/pF; night: 120.6 ± 16.5 pA/pF) SCN neurons. The magnitude of the effect of Kv4.1-targeted shRNA expression on firing rates and I A was larger at night. In addition, Kv4.1-targeted shRNA expression significantly ( p < 0.001) increased mean ± SEM nighttime input resistance (R in ; 2256 ± 166 MΩ), compared to nontargeted shRNA-expressing SCN neurons (1143 ± 93 MΩ). Additional experiments revealed that acute knockdown of Kv4.1 significantly ( p < 0.01) shortened, by ∼0.5 h, the circadian period of spontaneous electrical activity, clock gene expression and locomotor activity demonstrating a physiological role for Kv4.1-encoded I A channels in regulating circadian rhythms in neuronal excitability and behavior.

  13. Physiological responses to an acute bout of sprint interval cycling.

    PubMed

    Freese, Eric C; Gist, Nicholas H; Cureton, Kirk J

    2013-10-01

    Sprint interval training has been shown to improve skeletal muscle oxidative capacity, V[Combining Dot Above]O2max, and health outcomes. However, the acute physiological responses to 4-7 maximal effort intervals have not been determined. To determine the V[Combining Dot Above]O2, cardiorespiratory responses, and energy expenditure during an acute bout of sprint interval cycling (SIC), health, college-aged subjects, 6 men and 6 women, completed 2 SIC sessions with at least 7 days between trials. Sprint interval cycling was performed on a cycle ergometer and involved a 5-minute warm-up followed by four 30-second all-out sprints with 4-minute active recovery. Peak oxygen uptake (ml·kg·min) during the 4 sprints were 35.3 ± 8.2, 38.8 ± 10.1, 38.8 ± 10.6, and 36.8 ± 9.3, and peak heart rate (b·min) were 164 ± 17, 172 ± 10, 177 ± 12, and 175 ± 22. We conclude that an acute bout of SIC elicits submaximal V[Combining Dot Above]O2 and cardiorespiratory responses during each interval that are above 80% of estimated maximal values. Although the duration of exercise in SIC is very short, the high level of V[Combining Dot Above]O2 and cardiorespiratory responses are sufficient to potentially elicit adaptations to training associated with elevated aerobic energy demand.

  14. Vestibular lesion-induced developmental plasticity in spinal locomotor networks during Xenopus laevis metamorphosis.

    PubMed

    Beyeler, Anna; Rao, Guillaume; Ladepeche, Laurent; Jacques, André; Simmers, John; Le Ray, Didier

    2013-01-01

    During frog metamorphosis, the vestibular sensory system remains unchanged, while spinal motor networks undergo a massive restructuring associated with the transition from the larval to adult biomechanical system. We investigated in Xenopus laevis the impact of a pre- (tadpole stage) or post-metamorphosis (juvenile stage) unilateral labyrinthectomy (UL) on young adult swimming performance and underlying spinal locomotor circuitry. The acute disruptive effects on locomotion were similar in both tadpoles and juvenile frogs. However, animals that had metamorphosed with a preceding UL expressed restored swimming behavior at the juvenile stage, whereas animals lesioned after metamorphosis never recovered. Whilst kinematic and electrophysiological analyses of the propulsive system showed no significant differences in either juvenile group, a 3D biomechanical simulation suggested that an asymmetry in the dynamic control of posture during swimming could account for the behavioral restoration observed in animals that had been labyrinthectomized before metamorphosis. This hypothesis was subsequently supported by in vivo electromyography during free swimming and in vitro recordings from isolated brainstem/spinal cord preparations. Specifically, animals lesioned prior to metamorphosis at the larval stage exhibited an asymmetrical propulsion/posture coupling as a post-metamorphic young adult. This developmental alteration was accompanied by an ipsilesional decrease in propriospinal coordination that is normally established in strict left-right symmetry during metamorphosis in order to synchronize dorsal trunk muscle contractions with bilateral hindlimb extensions in the swimming adult. Our data thus suggest that a disequilibrium in descending vestibulospinal information during Xenopus metamorphosis leads to an altered assembly of adult spinal locomotor circuitry. This in turn enables an adaptive compensation for the dynamic postural asymmetry induced by the vestibular imbalance

  15. Fluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns

    PubMed Central

    Cruchet, Steeve; Gustafson, Kyle; Benton, Richard; Floreano, Dario

    2015-01-01

    The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs—locomotor bouts—matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior. PMID:26600381

  16. Measuring drug absorption improves interpretation of behavioral responses in a larval zebrafish locomotor assay for predicting seizure liability.

    PubMed

    Cassar, Steven; Breidenbach, Laura; Olson, Amanda; Huang, Xin; Britton, Heather; Woody, Clarissa; Sancheti, Pankajkumar; Stolarik, DeAnne; Wicke, Karsten; Hempel, Katja; LeRoy, Bruce

    2017-11-01

    Unanticipated effects on the central nervous system are a concern during new drug development. A larval zebrafish locomotor assay can reveal seizure liability of experimental molecules before testing in mammals. Relative absorption of compounds by larvae is lacking in prior reports of such assays; having those data may be valuable for interpreting seizure liability assay performance. Twenty-eight reference drugs were tested at multiple dose levels in fish water and analyzed by a blinded investigator. Responses of larval zebrafish were quantified during a 30min dosing period. Predictive metrics were calculated by comparing fish activity to mammalian seizure liability for each drug. Drug level analysis was performed to calculate concentrations in dose solutions and larvae. Fifteen drug candidates with neuronal targets, some having preclinical convulsion findings in mammals, were tested similarly. The assay has good predictive value of established mammalian responses for reference drugs. Analysis of drug absorption by larval fish revealed a positive correlation between hyperactive behavior and pro-convulsive drug absorption. False negative results were associated with significantly lower compound absorption compared to true negative, or true positive results. The predictive value for preclinical toxicology findings was inferior to that suggested by reference drugs. Disproportionately low exposures in larvae giving false negative results demonstrate that drug exposure analysis can help interpret results. Due to the rigorous testing commonly performed in preclinical toxicology, predicting convulsions in those studies may be more difficult than predicting effects from marketed drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Self-esteem levels and cardiovascular and inflammatory responses to acute stress.

    PubMed

    O'Donnell, Katie; Brydon, Lena; Wright, Caroline E; Steptoe, Andrew

    2008-11-01

    Acute mental stress tests have helped to clarify the pathways through which psychosocial factors are linked to disease risk. This methodology is now being used to investigate potentially protective psychosocial factors. We investigated whether global self-esteem might buffer cardiovascular and inflammatory responses to acute stress. One hundred and one students completed the Rosenberg Self-Esteem Scale. Heart rate and heart rate variability (HRV) were recorded for 5 min periods at baseline, during two mental stress tasks, (a speech and a color-word task) and 10, 25 and 40 min into a recovery period. Plasma levels of tumor-necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6) and interleukin-1 receptor antagonist (IL-1Ra) were assessed at baseline, immediately post-stress and after 45 min recovery. Repeated measures analysis of variance demonstrated that heart rate levels were lower across all time points in those with high self-esteem, although heart rate reactivity to stress was not related to self-esteem. There were no differences in baseline HRV, TNF-alpha, IL-6 or IL-1Ra. Multiple linear regressions revealed that greater self-esteem was associated with a smaller reduction in heart rate variability during the speech task, but not the color-word task. Greater self-esteem was associated with smaller TNF-alpha and IL-1Ra responses immediately following acute stress and smaller IL-1Ra responses at 45 min post-stress. In conclusion, global self-esteem is associated with lower heart rate and attenuated HRV and inflammatory responses to acute stress. These responses could be processes through which self-esteem protects against the development of disease.

  18. The effects of lesions of the superior colliculus on locomotor orientation and the orienting reflex in the rat.

    PubMed

    Goodale, M A; Murison, R C

    1975-05-02

    The effects of bilateral removal of the superior colliculus or visual cortex on visually guided locomotor movements in rats performing a brightness discrimination task were investigated directly with the use of cine film. Rats with collicular lesions showed patterns of locomotion comparable to or more efficient than those of normal animals when approaching one of 5 small doors located at one end of a large open area. In contrast, animals with large but incomplete lesions of visual cortex were distinctly impaired in their visual control of approach responses to the same stimuli. On the other hand, rats with collicular damage showed no orienting reflex or evidence of distraction in the same task when novel visual or auditory stimuli were presented. However, both normal and visual-decorticate rats showed various components of the orienting reflex and disturbance in task performance when the same novel stimuli were presented. These results suggest that although the superior colliculus does not appear to be essential to the visual control of locomotor orientation, this midbrain structure might participate in the mediation of shifts in visual fixation and attention. Visual cortex, while contributing to visuospatial guidance of locomotor movements, might not play a significant role in the control and integration of the orienting reflex.

  19. Acetylcholine from the mesopontine tegmental nuclei differentially affects methamphetamine induced locomotor activity and neurotransmitter levels in the mesolimbic pathway

    PubMed Central

    Dobbs, Lauren K.; Mark, Gregory P.

    2012-01-01

    Methamphetamine (MA) increases dopamine (DA) levels within the mesolimbic pathway and acetylcholine (ACh), a neurotransmitter known to increase DA cell firing and release and mediate reinforcement, within the ventral tegmental area (VTA). The laterodorsal tegmental (LDT) and pedunculopontine tegmental (PPT) nuclei provide cholinergic input to the VTA; however, the contribution of LDT- and PPT-derived ACh to MA-induced DA and ACh levels and locomotor activation remains unknown. The first experiment examined the role of LDT-derived ACh in MA locomotor activation by reversibly inhibiting these neurons with bilateral intra-LDT microinjections of the M2 receptor agonist oxotremorine (OXO). Male C57BL/6 J mice were given a bilateral 0.1 µl OXO (0, 1, or 10 nM/side) microinjection immediately prior to IP saline or MA (2 mg/kg). The highest OXO concentration significantly inhibited both saline-and MA-primed locomotor activity. In a second set of experiments we characterized the individual contributions of ACh originating in the LDT or pedunculopontine tegmental nucleus (PPT) to MA-induced levels of ACh and DA by administering intra-LDT or PPT OXO and performing in vivo microdialysis in the VTA and NAc. Intra-LDT OXO dose-dependently attenuated the MA-induced increase in ACh within the VTA but had no effect on DA in NAc. Intra-PPT OXO had no effect on ACh or DA levels within the VTA or NAc, respectively. We conclude that LDT, but not PPT, ACh is important in locomotor behavior and the cholinergic, but not dopaminergic, response to systemic MA. PMID:21945297

  20. Role of the 5-HT₂A receptor in the locomotor hyperactivity produced by phenylalkylamine hallucinogens in mice.

    PubMed

    Halberstadt, Adam L; Powell, Susan B; Geyer, Mark A

    2013-07-01

    The 5-HT₂A receptor mediates the effects of serotonergic hallucinogens and may play a role in the pathophysiology of certain psychiatric disorders, including schizophrenia. Given these findings, there is a need for animal models to assess the behavioral effects of 5-HT₂A receptor activation. Our previous studies demonstrated that the phenylalkylamine hallucinogen and 5-HT₂A/₂C agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) produces dose-dependent effects on locomotor activity in C57BL/6J mice, increasing activity at low to moderate doses and reducing activity at high doses. DOI did not increase locomotor activity in 5-HT₂A knockout mice, indicating the effect is a consequence of 5-HT₂A receptor activation. Here, we tested a series of phenylalkylamine hallucinogens in C57BL/6J mice using the Behavioral Pattern Monitor (BPM) to determine whether these compounds increase locomotor activity by activating the 5-HT₂A receptor. Low doses of mescaline, 2,5-dimethoxy-4-ethylamphetamine (DOET), 2,5-dimethoxy-4-propylamphetamine (DOPR), 2,4,5-trimethoxyamphetamine (TMA-2), and the conformationally restricted phenethylamine (4-bromo-3,6-dimethoxybenzocyclobuten-1-yl)methylamine (TCB-2) increased locomotor activity. By contrast, the non-hallucinogenic phenylalkylamine 2,5-dimethoxy-4-tert-butylamphetamine (DOTB) did not alter locomotor activity at any dose tested (0.1-10 mg/kg i.p.). The selective 5-HT₂A antagonist M100907 blocked the locomotor hyperactivity induced by mescaline and TCB-2. Similarly, mescaline and TCB-2 did not increase locomotor activity in 5-HT₂A knockout mice. These results confirm that phenylalkylamine hallucinogens increase locomotor activity in mice and demonstrate that this effect is mediated by 5-HT₂A receptor activation. Thus, locomotor hyperactivity in mice can be used to assess phenylalkylamines for 5-HT₂A agonist activity and hallucinogen-like behavioral effects. These studies provide additional support for the link between 5

  1. Motoneurons regulate the central pattern generator during drug-induced locomotor-like activity in the neonatal mouse

    PubMed Central

    Falgairolle, Melanie; Puhl, Joshua G; Pujala, Avinash; Liu, Wenfang; O’Donovan, Michael J

    2017-01-01

    Motoneurons are traditionally viewed as the output of the spinal cord that do not influence locomotor rhythmogenesis. We assessed the role of motoneuron firing during ongoing locomotor-like activity in neonatal mice expressing archaerhopsin-3 (Arch), halorhodopsin (eNpHR), or channelrhodopsin-2 (ChR2) in Choline acetyltransferase neurons (ChAT+) or Arch in LIM-homeodomain transcription factor Isl1+ neurons. Illumination of the lumbar cord in mice expressing eNpHR or Arch in ChAT+ or Isl1+ neurons, depressed motoneuron discharge, transiently decreased the frequency, and perturbed the phasing of the locomotor-like rhythm. When the light was turned off motoneuron firing and locomotor frequency both transiently increased. These effects were not due to cholinergic neurotransmission, persisted during partial blockade of gap junctions and were mediated, in part, by AMPAergic transmission. In spinal cords expressing ChR2, illumination increased motoneuron discharge and transiently accelerated the rhythm. We conclude that motoneurons provide feedback to the central pattern generator (CPG) during drug-induced locomotor-like activity. DOI: http://dx.doi.org/10.7554/eLife.26622.001 PMID:28671548

  2. Osteological postcranial traits in hylid anurans indicate a morphological continuum between swimming and jumping locomotor modes.

    PubMed

    Soliz, Mónica; Tulli, Maria J; Abdala, Virginia

    2017-03-01

    Anurans exhibit a particularly wide range of locomotor modes that result in wide variations in their skeletal structure. This article investigates the possible correlation between morphological aspects of the hylid postcranial skeleton and their different locomotor modes and habitat use. To do so, we analyzed 18 morphometric postcranial variables in 19 different anuran species representative of a variety of locomotor modes (jumper, hopper, walker, and swimmer) and habitat uses (arboreal, bush, terrestrial, and aquatic). Our results show that the evolution of the postcranial hylid skeleton cannot be explained by one single model, as for example, the girdles suggest modular evolution while the vertebral column suggests other evolutionary modules. In conjunction with data from several other studies, we were able to show a relationship between hylid morphology and habitat use; offering further evidence that the jumper/swimmer and walker/hopper locomotor modes exhibit quite similar morphological architecture. This allowed us to infer that new locomotor modalities are, in fact, generated along a morphological continuum. J. Morphol. 278:403-417, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Acute Depletion of D2 Receptors from the Rat Substantia Nigra Alters Dopamine Kinetics in the Dorsal Striatum and Drug Responsivity

    PubMed Central

    Budygin, Evgeny A.; Oleson, Erik B.; Lee, Yun Beom; Blume, Lawrence C.; Bruno, Michael J.; Howlett, Allyn C.; Thompson, Alexis C.; Bass, Caroline E.

    2017-01-01

    Recent studies have used conditional knockout mice to selectively delete the D2 autoreceptor; however, these approaches result in global deletion of D2 autoreceptors early in development. The present study takes a different approach using RNA interference (RNAi) to knockdown the expression of the D2 receptors (D2R) in the substantia nigra (SN), including dopaminergic neurons, which project primarily to the dorsal striatum (dStr) in adult rats. This approach restricts the knockdown primarily to nigrostriatal pathways, leaving mesolimbic D2 autoreceptors intact. Analyses of dopamine (DA) kinetics in the dStr reveal a decrease in DA transporter (DAT) function in the knockdown rats, an effect not observed in D2 autoreceptor knockout mouse models. SN D2 knockdown rats exhibit a behavioral phenotype characterized by persistent enhancement of locomotor activity in a familiar open field, reduced locomotor responsiveness to high doses of cocaine and the ability to overcome haloperidol-induced immobility on the bar test. Together these results demonstrate that presynaptic D2R can be depleted from specific neuronal populations and implicates nigrostriatal D2R in different behavioral responses to psychotropic drugs. PMID:28154530

  4. Locomotor play drives motor skill acquisition at the expense of growth: A life history trade-off

    PubMed Central

    Berghänel, Andreas; Schülke, Oliver; Ostner, Julia

    2015-01-01

    The developmental costs and benefits of early locomotor play are a puzzling topic in biology, psychology, and health sciences. Evolutionary theory predicts that energy-intensive behavior such as play can only evolve if there are considerable benefits. Prominent theories propose that locomotor play is (i) low cost, using surplus energy remaining after growth and maintenance, and (ii) beneficial because it trains motor skills. However, both theories are largely untested. Studying wild Assamese macaques, we combined behavioral observations of locomotor play and motor skill acquisition with quantitative measures of natural food availability and individual growth rates measured noninvasively via photogrammetry. Our results show that investments in locomotor play were indeed beneficial by accelerating motor skill acquisition but carried sizable costs in terms of reduced growth. Even under moderate natural energy restriction, investment in locomotor play accounted for up to 50% of variance in growth, which strongly contradicts the current theory that locomotor play only uses surplus energy remaining after growth and maintenance. Male immatures played more, acquired motor skills faster, and grew less than female immatures, leading to persisting size differences until the age of female maturity. Hence, depending on skill requirements, investment in play can take ontogenetic priority over physical development unconstrained by costs of play with consequences for life history, which strongly highlights the ontogenetic and evolutionary importance of play. PMID:26601237

  5. Locomotor play drives motor skill acquisition at the expense of growth: A life history trade-off.

    PubMed

    Berghänel, Andreas; Schülke, Oliver; Ostner, Julia

    2015-08-01

    The developmental costs and benefits of early locomotor play are a puzzling topic in biology, psychology, and health sciences. Evolutionary theory predicts that energy-intensive behavior such as play can only evolve if there are considerable benefits. Prominent theories propose that locomotor play is (i) low cost, using surplus energy remaining after growth and maintenance, and (ii) beneficial because it trains motor skills. However, both theories are largely untested. Studying wild Assamese macaques, we combined behavioral observations of locomotor play and motor skill acquisition with quantitative measures of natural food availability and individual growth rates measured noninvasively via photogrammetry. Our results show that investments in locomotor play were indeed beneficial by accelerating motor skill acquisition but carried sizable costs in terms of reduced growth. Even under moderate natural energy restriction, investment in locomotor play accounted for up to 50% of variance in growth, which strongly contradicts the current theory that locomotor play only uses surplus energy remaining after growth and maintenance. Male immatures played more, acquired motor skills faster, and grew less than female immatures, leading to persisting size differences until the age of female maturity. Hence, depending on skill requirements, investment in play can take ontogenetic priority over physical development unconstrained by costs of play with consequences for life history, which strongly highlights the ontogenetic and evolutionary importance of play.

  6. Locomotor Dysfunction after Spaceflight: Characterization and Countermeasure Development

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Cohen, H. S.; Peters, B. T.; Miller, C. A.; Brady, R.; Bloomberg, Jacob J.

    2007-01-01

    Astronauts returning from space flight show disturbances in locomotor control manifested by changes in various sub-systems including head-trunk coordination, dynamic visual acuity, lower limb muscle activation patterning and kinematics (Glasauer, et al., 1995; Bloomberg, et al., 1997; McDonald, et al., 1996; 1997; Layne, et al., 1997; 1998, 2001, 2004; Newman, et al., 1997; Bloomberg and Mulavara, 2003). These post flight changes in locomotor performance, due to neural adaptation to the microgravity conditions of space flight, affect the ability of crewmembers especially after a long duration mission to egress their vehicle and perform extravehicular activities soon after landing on Earth or following a landing on the surface of the Moon or Mars. At present, no operational training intervention is available pre- or in- flight to mitigate post flight locomotor disturbances. Our laboratory is currently developing a gait adaptability training program that is designed to facilitate recovery of locomotor function following a return to a gravitational environment. The training program exploits the ability of the sensorimotor system to generalize from exposure to multiple adaptive challenges during training so that the gait control system essentially "learns to learn" and therefore can reorganize more rapidly when faced with a novel adaptive challenge. Ultimately, the functional goal of an adaptive generalization countermeasure is not necessarily to immediately return movement patterns back to "normal". Rather the training regimen should facilitate the reorganization of available sensorimotor sub-systems to achieve safe and effective locomotion as soon as possible after space flight. We have previously confirmed that subjects participating in adaptive generalization training programs, using a variety of visuomotor distortions and different motor tasks from throwing to negotiating an obstacle course as the dependent measure, can learn to enhance their ability to adapt to a

  7. Brief light stimulation during the mouse nocturnal activity phase simultaneously induces a decline in core temperature and locomotor activity followed by EEG-determined sleep

    PubMed Central

    Studholme, Keith M.; Gompf, Heinrich S.

    2013-01-01

    Light exerts a variety of effects on mammals. Unexpectedly, one of these effects is the cessation of nocturnal locomotion and the induction of behavioral sleep (photosomnolence). Here, we extend the initial observations in several ways, including the fundamental demonstration that core body temperature (Tc) drops substantially (about 1.5°C) in response to the light stimulation at CT15 or CT18 in a manner suggesting that the change is a direct response to light rather than simply a result of the locomotor suppression. The results show that 1) the decline of locomotion and Tc begin soon after nocturnal light stimulation; 2) the variability in the magnitude and onset of light-induced locomotor suppression is very large, whereas the variability in Tc is very small; 3) Tc recovers from the light-induced decline in advance of the recovery of locomotion; 4) under entrained and freerunning conditions, the daily late afternoon Tc increase occurs in advance of the corresponding increase in wheel running; and 5) toward the end of the subjective night, the nocturnally elevated Tc persists longer than does locomotor activity. Finally, EEG measurements confirm light-induced sleep and, when Tc or locomotion was measured, show their temporal association with sleep onset. Both EEG- and immobility-based sleep detection methods confirm rapid induction of light-induced sleep. The similarities between light-induced loss of locomotion and drop in Tc suggest a common cause for parallel responses. The photosomnolence response may be contingent upon both the absence of locomotion and a simultaneous low Tc. PMID:23364525

  8. Response inhibition and cognitive appraisal in clients with acute stress disorder and posttraumatic stress disorder.

    PubMed

    Abolghasemi, Abass; Bakhshian, Fereshteh; Narimani, Mohammad

    2013-08-01

    The purpose of the present study was to compare response inhibition and cognitive appraisal in clients with acute stress disorder, clients with posttraumatic stress disorder, and normal individuals. This was a comparative study. The sample consisted of 40 clients with acute stress disorder, 40 patients with posttraumatic stress disorder, and 40 normal individuals from Mazandaran province selected through convenience sampling method. Data were collected using Composite International Diagnostic Interview, Stroop Color-Word Test, Posttraumatic Cognitions Inventory, and the Impact of Event Scale. Results showed that individuals with acute stress disorder are less able to inhibit inappropriate responses and have more impaired cognitive appraisals compared to those with posttraumatic stress disorder. Moreover, results showed that response inhibition and cognitive appraisal explain 75% of the variance in posttraumatic stress disorder symptoms and 38% of the variance in posttraumatic stress disorder symptoms. The findings suggest that response inhibition and cognitive appraisal are two variables that influence the severity of posttraumatic stress disorder and acute stress disorder symptoms. Also, these results have important implications for pathology, prevention, and treatment of posttraumatic stress disorder and acute stress disorder.

  9. Modality-specific, multitask locomotor deficits persist despite good recovery after a traumatic brain injury.

    PubMed

    McFadyen, Bradford J; Cantin, Jean-François; Swaine, Bonnie; Duchesneau, Guylaine; Doyon, Julien; Dumas, Denyse; Fait, Philippe

    2009-09-01

    To study the effects of sensory modality of simultaneous tasks during walking with and without obstacles after moderate to severe traumatic brain injury (TBI). Group comparison study. Gait analysis laboratory within a postacute rehabilitation facility. Volunteer sample (N=18). Persons with moderate to severe TBI (n=11) (9 men, 3 women; age, 37.56+/-13.79 y) and a comparison group (n=7) of subjects without neurologic problems matched on average for body mass index and age (4 men, 3 women; age, 39.19+/-17.35 y). Not applicable. Magnitudes and variability for walking speeds, foot clearance margins (ratio of foot clearance distance to obstacle height), and response reaction times (both direct and as a relative cost because of obstacle avoidance). The TBI group had well-recovered walking speeds and a general ability to avoid obstacles. However, these subjects did show lower trail limb toe clearances (P=.003) across all conditions. Response reaction times to the Stroop tasks were longer in general for the TBI group (P=.017), and this group showed significant increases in response reaction times for the visual modality within the more challenging obstacle avoidance task that was not observed for control subjects. A measure of multitask costs related to differences in response reaction times between obstructed and unobstructed trials also only showed increased attention costs for the visual over the auditory stimuli for the TBI group (P=.002). Mobility is a complex construct, and the present results provide preliminary findings that, even after good locomotor recovery, subjects with moderate to severe TBI show residual locomotor deficits in multitasking. Furthermore, our results suggest that sensory modality is important, and greater multitask costs occur during sensory competition (ie, visual interference).

  10. The evolution of locomotor rhythmicity in tetrapods.

    PubMed

    Ross, Callum F; Blob, Richard W; Carrier, David R; Daley, Monica A; Deban, Stephen M; Demes, Brigitte; Gripper, Janaya L; Iriarte-Diaz, Jose; Kilbourne, Brandon M; Landberg, Tobias; Polk, John D; Schilling, Nadja; Vanhooydonck, Bieke

    2013-04-01

    Differences in rhythmicity (relative variance in cycle period) among mammal, fish, and lizard feeding systems have been hypothesized to be associated with differences in their sensorimotor control systems. We tested this hypothesis by examining whether the locomotion of tachymetabolic tetrapods (birds and mammals) is more rhythmic than that of bradymetabolic tetrapods (lizards, alligators, turtles, salamanders). Species averages of intraindividual coefficients of variation in cycle period were compared while controlling for gait and substrate. Variance in locomotor cycle periods is significantly lower in tachymetabolic than in bradymetabolic animals for datasets that include treadmill locomotion, non-treadmill locomotion, or both. When phylogenetic relationships are taken into account the pooled analyses remain significant, whereas the non-treadmill and the treadmill analyses become nonsignificant. The co-occurrence of relatively high rhythmicity in both feeding and locomotor systems of tachymetabolic tetrapods suggests that the anatomical substrate of rhythmicity is in the motor control system, not in the musculoskeletal components. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  11. Stereoselective Effects of Abused "Bath Salt" Constituent 3,4-Methylenedioxypyrovalerone in Mice: Drug Discrimination, Locomotor Activity, and Thermoregulation.

    PubMed

    Gannon, Brenda M; Williamson, Adrian; Suzuki, Masaki; Rice, Kenner C; Fantegrossi, William E

    2016-03-01

    3,4-Methylenedioxypyrovalerone (MDPV) is a common constituent of illicit "bath salts" products. MDPV is a chiral molecule, but the contribution of each enantiomer to in vivo effects in mice has not been determined. To address this, mice were trained to discriminate 10 mg/kg cocaine from saline, and substitutions with racemic MDPV, S(+)-MDPV, and R(-)-MDPV were performed. Other mice were implanted with telemetry probes to monitor core temperature and locomotor responses elicited by racemic MDPV, S(+)-MDPV, and R(-)-MDPV under a warm (28°C) or cool (20°C) ambient temperature. Mice reliably discriminated the cocaine training dose from saline, and each form of MDPV fully substituted for cocaine, although marked potency differences were observed such that S(+)-MDPV was most potent, racemic MDPV was less potent than the S(+) enantiomer, and R(-)-MDPV was least potent. At both ambient temperatures, locomotor stimulant effects were observed after doses of S(+)-MDPV and racemic MDPV, but R(-)-MDPV did not elicit locomotor stimulant effects at any tested dose. Interestingly, significant increases in maximum core body temperature were only observed after administration of racemic MDPV in the warm ambient environment; neither MDPV enantiomer altered core temperature at any dose tested, at either ambient temperature. These studies suggest that all three forms of MDPV induce biologic effects, but R(-)-MDPV is less potent than S(+)-MDPV and racemic MDPV. Taken together, these data suggest that the S(+)-MDPV enantiomer is likely responsible for the majority of the biologic effects of the racemate and should be targeted in therapeutic efforts against MDPV overdose and abuse. U.S. Government work not protected by U.S. copyright.

  12. Manipulation of dopamine metabolism contributes to attenuating innate high locomotor activity in ICR mice.

    PubMed

    Yamaguchi, Takeshi; Nagasawa, Mao; Ikeda, Hiromi; Kodaira, Momoko; Minaminaka, Kimie; Chowdhury, Vishwajit S; Yasuo, Shinobu; Furuse, Mitsuhiro

    2017-06-15

    Attention-deficit hyperactivity disorder (ADHD) is defined as attention deficiency, restlessness and distraction. The main characteristics of ADHD are hyperactivity, impulsiveness and carelessness. There is a possibility that these abnormal behaviors, in particular hyperactivity, are derived from abnormal dopamine (DA) neurotransmission. To elucidate the mechanism of high locomotor activity, the relationship between innate activity levels and brain monoamines and amino acids was investigated in this study. Differences in locomotor activity between ICR, C57BL/6J and CBA/N mice were determined using the open field test. Among the three strains, ICR mice showed the greatest amount of locomotor activity. The level of striatal and cerebellar DA was lower in ICR mice than in C57BL/6J mice, while the level of L-tyrosine (L-Tyr), a DA precursor, was higher in ICR mice. These results suggest that the metabolic conversion of L-Tyr to DA is lower in ICR mice than it is in C57BL/6J mice. Next, the effects of intraperitoneal injection of (6R)-5, 6, 7, 8-tetrahydro-l-biopterin dihydrochloride (BH 4 ) (a co-enzyme for tyrosine hydroxylase) and L-3,4-dihydroxyphenylalanine (L-DOPA) on DA metabolism and behavior in ICR mice were investigated. The DA level in the brain was increased by BH 4 administration, but the increased DA did not influence behavior. However, L-DOPA administration drastically lowered locomotor activity and increased DA concentration in several parts of the brain. The reduced locomotor activity may have been a consequence of the overproduction of DA. In conclusion, the high level of locomotor activity in ICR mice may be explained by a strain-specific DA metabolism. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Locomotor-respiratory coupling patterns and oxygen consumption during walking above and below preferred stride frequency.

    PubMed

    O'Halloran, Joseph; Hamill, Joseph; McDermott, William J; Remelius, Jebb G; Van Emmerik, Richard E A

    2012-03-01

    Locomotor respiratory coupling patterns in humans have been assessed on the basis of the interaction between different physiological and motor subsystems; these interactions have implications for movement economy. A complex and dynamical systems framework may provide more insight than entrainment into the variability and adaptability of these rhythms and their coupling. The purpose of this study was to investigate the relationship between steady state locomotor-respiratory coordination dynamics and oxygen consumption [Formula: see text] of the movement by varying walking stride frequency from preferred. Twelve male participants walked on a treadmill at a self-selected speed. Stride frequency was varied from -20 to +20% of preferred stride frequency (PSF) while respiratory airflow, gas exchange variables, and stride kinematics were recorded. Discrete relative phase and return map techniques were used to evaluate the strength, stability, and variability of both frequency and phase couplings. Analysis of [Formula: see text] during steady-state walking showed a U-shaped response (P = 0.002) with a minimum at PSF and PSF - 10%. Locomotor-respiratory frequency coupling strength was not greater (P = 0.375) at PSF than any other stride frequency condition. The dominant coupling across all conditions was 2:1 with greater occurrences at the lower stride frequencies. Variability in coupling was the greatest during PSF, indicating an exploration of coupling strategies to search for the coupling frequency strategy with the least oxygen consumption. Contrary to the belief that increased strength of frequency coupling would decrease oxygen consumption; these results conclude that it is the increased variability of frequency coupling that results in lower oxygen consumption.

  14. Differences in Monoamine Oxidase Activity in the Brain of Wistar and August Rats with High and Low Locomotor Activity: A Cytochemical Study.

    PubMed

    Sergutina, A V; Rakhmanova, V I

    2016-06-01

    Monoamine oxidase activity was quantitatively assessed by cytochemical method in brain structures (layers III and V of the sensorimotor cortex, caudate nucleus, nucleus accumbens, hippocampal CA3 field) of rats of August line and Wistar population with high and low locomotor activity in the open fi eld test. Monoamine oxidase activity (substrate tryptamine) predominated in the nucleus accumbens of Wistar rats with high motor activity in comparison with rats with low locomotor activity. In August rats, enzyme activity (substrates tryptamine and serotonin) predominated in the hippocampus of animals with high motor activity. Comparison of August rats with low locomotor activity and Wistar rats with high motor activity (i.e. animals demonstrating maximum differences in motor function) revealed significantly higher activity of the enzyme (substrates tryptamine and serotonin) in the hippocampus of Wistar rats. The study demonstrates clear-cut morphochemical specificity of monoaminergic metabolism based on the differences in the cytochemical parameter "monoamine oxidase activity", in the studied brain structures, responsible for the formation and realization of goal-directed behavior in Wistar and August rats.

  15. Digestive and locomotor capacity show opposing responses to changing food availability in an ambush predatory fish.

    PubMed

    Fu, Shi-Jian; Peng, Jing; Killen, Shaun S

    2018-06-14

    Metabolic rates vary widely within species, but little is known about how variation in the 'floor' [i.e. standard metabolic rate (SMR) in ectotherms] and 'ceiling' [maximum metabolic rate (MMR)] for an individual's aerobic scope (AS) are linked with digestive and locomotor function. Any links among metabolic traits and aspects of physiological performance may also be modulated by fluctuations in food availability. This study followed changes in SMR, MMR, and digestive and locomotor capacity in southern catfish ( Silurus meridionalis ) throughout 15 days of food deprivation and 15 days of refeeding. Individuals downregulated SMR during food deprivation and showed only a 10% body mass decrease during this time. Whereas critical swim speed ( U crit ) was robust to food deprivation, digestive function decreased after fasting with a reduced peak oxygen uptake during specific dynamic action (SDA) and prolonged SDA duration. During refeeding, individuals displayed rapid growth and digestive function recovered to pre-fasting levels. However, refed fish showed a lower U crit than would be expected for their increased body length and in comparison to measures at the start of the study. Reduced swimming ability may be a consequence of compensatory growth: growth rate was negatively correlated with changes in U crit during refeeding. Southern catfish downregulate digestive function to reduce energy expenditure during food deprivation, but regain digestive capacity during refeeding, potentially at the cost of decreased swimming performance. The plasticity of maintenance requirements suggests that SMR is a key fitness trait for in this ambush predator. Shifts in trait correlations with food availability suggest that the potential for correlated selection may depend on context. © 2018. Published by The Company of Biologists Ltd.

  16. Discrepancy among acute guideline levels for emergency response.

    PubMed

    Oberg, Mattias; Palmen, Nicole; Johanson, Gunnar

    2010-12-15

    Acute guidance values are tools for public health risk assessment and management during planning, preparedness and response related to sudden airborne release of hazardous chemicals. The two most frequently used values, i.e. Acute Exposure Guidance Levels (AEGL) and Emergency Response Planning Guideline (ERPG), were compared in qualitative and quantitative terms. There was no significant difference between the general level of AEGL and ERPG values, suggesting the two systems are equally precautious. However, the guidance values diverged by a factor of 3 or more for almost 40% of the substances, including many of high production volume. These deviations could be explained by differences in selection of critical effect or critical study and in a few cases differences in interpretation of the same critical study. Diverging guidance values may hamper proper risk communication and risk management. Key factors for broad international acceptance of harmonized values include transparency of the decision process, agreement on definition of toxicological tiers, and a target population including sensitive groups of the general population. In addition, development of purely health based values is encouraged. Risk management issues, such as land use and emergency response planning should be treated separately, as these rely on national legislation and considerations. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Brain regions involved in the development of acute phase responses accompanying fever in rabbits.

    PubMed Central

    Morimoto, A; Murakami, N; Nakamori, T; Sakata, Y; Watanabe, T

    1989-01-01

    1. The effects of microinjection of rabbit endogenous pyrogen and human recombinant interleukin-1 alpha on rectal temperature and acute phase responses were extensively examined in forty different brain regions of rabbits. The acute phase responses that were investigated were the changes in plasma levels of iron, zinc and copper concentration and the changes in circulating leucocyte count. 2. The rostral hypothalamic regions, such as nucleus broca ventralis, preoptic area and anterior hypothalamic region, responded to the microinjection of endogenous pyrogen or interleukin-1 by producing both fever and acute phase responses. 3. The microinjection of endogenous pyrogen or interleukin-1 into the rostral hypothalamic regions significantly decreased the plasma levels of iron and zinc concentration 8 and 24 h after injection. The circulating leucocyte count increased 8 h after injection. However, neither the injections of endogenous pyrogen nor interleukin-1 affected the number of red blood cells. 4. The present results show that the rostral hypothalamic regions respond directly to endogenous pyrogen or interleukin-1 with the consequent development of fever and acute phase responses. PMID:2514261

  18. Locomotor Experience: A Facilitator of Spatial Cognitive Development.

    ERIC Educational Resources Information Center

    Kermoian, Rosanne; Campos, Joseph J.

    1988-01-01

    Studies were designed to test the prediction that spatial search strategies in infants may be influenced by locomotor experience. The pattern of findings suggests that infants with efficient modes of locomotion are more likely than others to profit from the experiences generated by locomotion. (RJC)

  19. Effect of acute psychological stress on response inhibition: An event-related potential study.

    PubMed

    Qi, Mingming; Gao, Heming; Liu, Guangyuan

    2017-04-14

    This study aimed to investigate the effect of acute psychological stress on response inhibition and its electrophysiological correlates using a dual-task paradigm. Acute stress was induced by a primary task (mental arithmetic task), which consisted of a stress block and a control block. Response inhibition was measured using a secondary task (Go/NoGo task). In each trial, a Go/NoGo stimulus was presented immediately after the mental arithmetic task. The results revealed increased subjective stress and negative affect for the stress relative to control block, suggesting that the mental arithmetic task triggered a reliable stress response. ERPs locked to the Go/NoGo stimuli revealed that decreased P2 and increased N2 components were evoked for the stress block compared to the control block. These results demonstrated that acute psychological stress alters the response inhibition process by reducing the early selective attention process and enhancing the cognitive control process. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Development of the ACTH and corticosterone response to acute hypoxia in the neonatal rat

    PubMed Central

    Bruder, Eric D.; Taylor, Jennifer K.; Kamer, Kimberli J.; Raff, Hershel

    2008-01-01

    Acute episodes of severe hypoxia are among the most common stressors in neonates. An understanding of the development of the physiological response to acute hypoxia will help improve clinical interventions. The present study measured ACTH and corticosterone responses to acute, severe hypoxia (8% inspired O2 for 4 h) in neonatal rats at postnatal days (PD) 2, 5, and 8. Expression of specific hypothalamic, anterior pituitary, and adrenocortical mRNAs was assessed by real-time PCR, and expression of specific proteins in isolated adrenal mitochondria from adrenal zona fascisulata/reticularis was assessed by immunoblot analyses. Oxygen saturation, heart rate, and body temperature were also measured. Exposure to 8% O2 for as little as 1 h elicited an increase in plasma corticosterone in all age groups studied, with PD2 pups showing the greatest response (∼3 times greater than PD8 pups). Interestingly, the ACTH response to hypoxia was absent in PD2 pups, while plasma ACTH nearly tripled in PD8 pups. Analysis of adrenal mRNA expression revealed a hypoxia-induced increase in Ldlr mRNA at PD2, while both Ldlr and Star mRNA were increased at PD8. Acute hypoxia decreased arterial O2 saturation (SPo2) to ∼80% and also decreased body temperature by 5–6°C. The hypoxic thermal response may contribute to the ACTH and corticosterone response to decreases in oxygen. The present data describe a developmentally regulated, differential corticosterone response to acute hypoxia, shifting from ACTH independence in early life (PD2) to ACTH dependence less than 1 wk later (PD8). PMID:18703410

  1. THE ACUTE PHASE RESPONSE INDUCED BY BRONCHOSCOPY WITH LAVAGE

    EPA Science Inventory

    Bronchoscopy has been used to evaluate the inflammatory responses in vitro and in vivo. The procedure may affect acute inflammation in the lower respiratory tract. We reviewed consecutive bronchoscopies done in normal healthy non-smokers between April, 1998 and April, 2004. The...

  2. Profiling the humoral immune response of acute and chronic Q fever by protein microarray.

    PubMed

    Vigil, Adam; Chen, Chen; Jain, Aarti; Nakajima-Sasaki, Rie; Jasinskas, Algimantas; Pablo, Jozelyn; Hendrix, Laura R; Samuel, James E; Felgner, Philip L

    2011-10-01

    Antigen profiling using comprehensive protein microarrays is a powerful tool for characterizing the humoral immune response to infectious pathogens. Coxiella burnetii is a CDC category B bioterrorist infectious agent with worldwide distribution. In order to assess the antibody repertoire of acute and chronic Q fever patients we have constructed a protein microarray containing 93% of the proteome of Coxiella burnetii, the causative agent of Q fever. Here we report the profile of the IgG and IgM seroreactivity in 25 acute Q fever patients in longitudinal samples. We found that both early and late time points of infection have a very consistent repertoire of IgM and IgG response, with a limited number of proteins undergoing increasing or decreasing seroreactivity. We also probed a large collection of acute and chronic Q fever patient samples and identified serological markers that can differentiate between the two disease states. In this comparative analysis we confirmed the identity of numerous IgG biomarkers of acute infection, identified novel IgG biomarkers for acute and chronic infections, and profiled for the first time the IgM antibody repertoire for both acute and chronic Q fever. Using these results we were able to devise a test that can distinguish acute from chronic Q fever. These results also provide a unique perspective on isotype switch and demonstrate the utility of protein microarrays for simultaneously examining the dynamic humoral immune response against thousands of proteins from a large number of patients. The results presented here identify novel seroreactive antigens for the development of recombinant protein-based diagnostics and subunit vaccines, and provide insight into the development of the antibody response.

  3. Effects of sex pheromones and sexual maturation on locomotor activity in female sea lamprey (Petromyzon marinus)

    USGS Publications Warehouse

    Walaszczyk, Erin J.; Johnson, Nicholas S.; Steibel, Juan Pedro; Li, Weiming

    2013-01-01

    Synchronization of male and female locomotor rhythmicity can play a vital role in ensuring reproductive success. Several physiological and environmental factors alter these locomotor rhythms. As sea lamprey, Petromyzon marinus, progress through their life cycle, their locomotor activity rhythm changes multiple times. The goal of this study was to elucidate the activity patterns of adult female sea lamprey during the sexual maturation process and discern the interactions of these patterns with exposure to male pheromones. During these stages, preovulated and ovulated adult females are exposed to sex pheromone compounds, which are released by spermiated males and attract ovulated females to the nest for spawning. The locomotor behavior of adult females was monitored in a natural stream with a passive integrated tag responder system as they matured, and they were exposed to a sex pheromone treatment (spermiated male washings) or a control (prespermiated male washings). Results showed that, dependent on the hour of day, male sex pheromone compounds reduce total activity (p < 0.05) and cause increases in activity during several daytime hours in preovulated and ovulated females. These results are one of the first examples of how sex pheromones modulate a locomotor rhythm in a vertebrate, and they suggest that the interaction between maturity stage and sex pheromone exposure contributes to the differential locomotor rhythms found in adult female sea lamprey. This phenomenon may contribute to the reproductive synchrony of mature adults, thus increasing reproductive success in this species.

  4. A Model of Locomotor-Respiratory Coupling in Quadrupeds

    ERIC Educational Resources Information Center

    Giuliodori,, Mauricio J.; Lujan, Heidi L.; Briggs, Whitney S.; DiCarlo, Stephen E.

    2009-01-01

    Locomotion and respiration are not independent phenomena in running mammals because locomotion and respiration both rely on cyclic movements of the ribs, sternum, and associated musculature. Thus, constraints are imposed on locomotor and respiratory function by virtue of their linkage. Specifically, locomotion imposes mechanical constraints on…

  5. Gestational Toluene Exposure Effects on Spontaneous and Amphetamine-Induced Locomotor Behavior in Rats

    PubMed Central

    Mohammadi, Michael H.; Batis, Jeffery C.; Hannigan, John H.

    2007-01-01

    The abuse of volatile organic solvents (inhalants) continues to be a major health concern throughout the world. Toluene, which is found in many products such as glues and household cleaners, is among the most commonly abused organic solvents. The neurobehavioral teratogenic sequelae of solvent abuse (i.e., repeated, brief inhalation exposures to very high concentrations of solvents) have not been examined thoroughly. In a preclinical model of inhalant abuse, timed-pregnant Sprague-Dawley rats were exposed to 0, 8,000, or 12,000 parts per million (ppm) for 15 min twice daily from gestation day 8 (GD8) through GD20. In the first experiment, separate groups of offspring were observed individually in an open-field on postnatal day 22 (PN22), PN42 or PN63. In the second experiment, other offspring given identical prenatal toluene exposures were observed in an “open-field” following an acute i.p. injection of amphetamine (0, 0.56, 1.78 mg/kg) on PN28. Automated measurements of distance traveled and ambulatory time were recorded. Prenatal toluene exposure resulted in small alterations in spontaneous activity compared to non-exposed rats. Prenatal exposure to 12,000 ppm toluene resulted in significant hyposensitivity to the locomotor stimulatory effects of the amphetamine challenge in male but not female rats on PN28. The results demonstrate that prenatal exposure to abuse patterns of high concentrations of toluene through inhalation can alter spontaneous and amphetamine-induced locomotor behavior in rats. The expression of these effects also appears to depend upon the postnatal age of testing. These results imply that abuse of organic solvents during pregnancy in humans may also produce long-lasting effects on biobehavioral development. PMID:17112700

  6. Studies of locomotor network neuroprotection by the selective poly(ADP-ribose) polymerase-1 inhibitor PJ-34 against excitotoxic injury to the rat spinal cord in vitro.

    PubMed

    Nasrabady, Sara E; Kuzhandaivel, Anujaianthi; Nistri, Andrea

    2011-06-01

    Delayed neuronal destruction after acute spinal injury is attributed to excitotoxicity mediated by hyperactivation of poly(ADP-ribose) polymerase-1 (PARP-1) that induces 'parthanatos', namely a non-apoptotic cell death mechanism. With an in vitro model of excitotoxicity, we have previously observed parthanatos of rat spinal cord locomotor networks to be decreased by a broad spectrum PARP-1 inhibitor. The present study investigated whether the selective PARP-1 inhibitor N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino)acetamide.HCl (PJ-34) not only protected networks from kainate-evoked excitotoxicity, but also prevented loss of locomotor patterns recorded as fictive locomotion from lumbar (L) ventral roots (VRs) 24 h later. PJ-34 (60 μm) blocked PARP-1 activation and preserved dorsal, central and ventral gray matter with maintained reflex activity even after a large dose of kainate. Fictive locomotion could not, however, be restored by either electrical stimulation or bath-applied neurochemicals (N-methyl-D-aspartate plus 5-hydroxytryptamine). A low kainate concentration induced less histological damage that was widely prevented by PJ-34. Nonetheless, fictive locomotion was observed in just over 50% of preparations whose histological profile did not differ (except for the dorsal horn) from those lacking such a rhythm. Our data show that inhibition of PARP-1 could amply preserve spinal network histology after excitotoxicity, with return of locomotor patterns only when the excitotoxic stimulus was moderate. These results demonstrated divergence between histological and functional outcome, implying a narrow borderline between loss of fictive locomotion and neuronal preservation. Our data suggest that either damage of a few unidentified neurons or functional network inhibition was critical for ensuring locomotor cycles. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  7. Cytokine polymorphisms have a synergistic effect on severity of the acute sickness response to infection.

    PubMed

    Vollmer-Conna, Uté; Piraino, Barbara F; Cameron, Barbara; Davenport, Tracey; Hickie, Ian; Wakefield, Denis; Lloyd, Andrew R

    2008-12-01

    Functional polymorphisms in immune response genes are increasingly recognized as important contributors to the marked individual differences in susceptibility to and outcomes of infectious disease. The acute sickness response is a stereotypical set of illness manifestations mediated by the proinflammatory cytokines induced by many different pathogens. The genetic determinants of severity of the acute sickness response have not previously been explored. We examined the impact of functional polymorphisms in cytokine genes with critical roles in the early immune response (tumor necrosis factor-alpha, interleukin-6, interleukin-10, and interferon-gamma) on the severity and duration of illness following acute infection with Epstein-Barr virus, Coxiella burnetii (the causative agent of Q fever), or Ross River virus. We found that the interferon-gamma +874T/A and the interleukin-10 -592C/A polymorphisms significantly affected illness severity, cytokine protein levels, and the duration of illness. These cytokine genotypes acted in synergy to potentiate their influence on disease outcomes. These findings suggest that genetically determined variations in the intensity of the inflammatory response underpin the severity of the acute sickness response and predict the recovery time across varied infections.

  8. Role of the 5-HT2A receptor in the locomotor hyperactivity produced by phenylalkylamine hallucinogens in mice

    PubMed Central

    Halberstadt, Adam L.; Powell, Susan B.; Geyer, Mark A.

    2014-01-01

    The 5-HT2A receptor mediates the effects of serotonergic hallucinogens and may play a role in the pathophysiology of certain psychiatric disorders, including schizophrenia. Given these findings, there is a need for animal models to assess the behavioral effects of 5-HT2A receptor activation. Our previous studies demonstrated that the phenylalkylamine hallucinogen and 5-HT2A/2C agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) produces dose-dependent effects on locomotor activity in C57BL/6J mice, increasing activity at low to moderate doses and reducing activity at high doses. DOI did not increase locomotor activity in 5-HT2A knockout mice, indicating the effect is a consequence of 5-HT2A receptor activation. Here, we tested a series of phenylalkylamine hallucinogens in C57BL/6J mice using the Behavioral Pattern Monitor (BPM) to determine whether these compounds increase locomotor activity by activating the 5-HT2A receptor. Low doses of mescaline, 2,5-dimethoxy-4-ethylamphetamine (DOET), 2,5-dimethoxy-4-propylamphetamine (DOPR), 2,4,5-trimethoxyamphetamine (TMA-2), and the conformationally restricted phenethylamine (4-bromo-3,6-dimethoxybenzocyclobuten-1-yl)methylamine (TCB-2) increased locomotor activity. By contrast, the non-hallucinogenic phenylalkylamine 2,5-dimethoxy-4-tert-butylamphetamine (DOTB) did not alter locomotor activity at any dose tested (0.1-10 mg/kg i.p.). The selective 5-HT2A antagonist M100907 blocked the locomotor hyperactivity induced by mescaline and TCB-2. Similarly, mescaline and TCB-2 did not increase locomotor activity in 5-HT2A knockout mice. These results confirm that phenylalkylamine hallucinogens increase locomotor activity in mice and demonstrate that this effect is mediated by 5-HT2A receptor activation. Thus, locomotor hyperactivity in mice can be used to assess phenylalkylamines for 5-HT2A agonist activity and hallucinogen-like behavioral effects. These studies provide additional support for the link between 5-HT2A activation and

  9. Response to novelty as a predictor of cocaine sensitization and conditioning in rats: a correlational analysis.

    PubMed

    Carey, Robert J; DePalma, Gail; Damianopoulos, Ernest

    2003-07-01

    An animal's response to novelty has been suggested to be a predictor of its response to drugs of abuse. The possible relationship between an individual's behavioral response to novelty and its subsequent behavioral response to cocaine has not been subjected to a detailed correlational analysis. To use a repeated cocaine treatment protocol to induce cocaine sensitization and conditioned cocaine locomotor stimulant effects and to assess the relationship of these effects to pre-cocaine locomotor behavior in a novel environment. In two separate experiments, rats were given a 20-min test in a novel open-field environment. Subsequently, the rats were given a series of additional tests in conjunction with either saline or cocaine (10 mg/kg) treatments to induce cocaine sensitization and conditioned effects. The repeated cocaine treatments induced cocaine behavioral sensitization and conditioned effects. Correlational analyses showed that the initial 20-min novel environment test proved to be a strong predictor of an animal's subsequent saline activity level but did not predict the rats' behavioral acute and sensitized response to cocaine. When change in activity was used as the dependent variable, initial activity level was reliably negatively correlated with activity changes on cocaine tests as well as cocaine conditioning tests. The negative correlation between initial activity in a novel environment and the change in activity induced by cocaine indicates that low responders to environmental novelty tend to have the strongest response to cocaine. These results appear consistent with the classic initial value and response rate dependent analyses of stimulant drug effects.

  10. Circulating microRNAs as emerging cardiac biomarkers responsive to acute exercise.

    PubMed

    de Gonzalo-Calvo, David; Dávalos, Alberto; Fernández-Sanjurjo, Manuel; Amado-Rodríguez, Laura; Díaz-Coto, Susana; Tomás-Zapico, Cristina; Montero, Ana; García-González, Ángela; Llorente-Cortés, Vicenta; Heras, Maria Eugenia; Boraita Pérez, Araceli; Díaz-Martínez, Ángel E; Úbeda, Natalia; Iglesias-Gutiérrez, Eduardo

    2018-08-01

    Circulating microRNAs (c-miRNAs) are mediators of intercellular communication with great potential as cardiac biomarkers. The analysis of c-miRNAs in response to physiological stress, such as exercise, would provide valuable information for clinical practice and a deeper understanding of the molecular response to physical activity. Here, we analysed for the first time the acute exercise response of c-miRNAs reported as biomarkers of cardiac disease in a well-characterized cohort of healthy active adults. Blood samples were collected immediately before and after (0 h, 24 h, 72 h) a 10-km race, a half-marathon (HM) and a marathon (M). Serum RNA from 10-km and M samples was extracted and a panel of 74 miRNAs analysed using RT-qPCR. c-miRNA response was compared with a panel of nine cardiac biomarkers. Functional enrichment analysis was performed. Pre- and post-M echocardiographic analyses were carried out. Serum levels of all cardiac biomarkers were upregulated in a dose-dependent manner in response to exercise, even in the absence of symptoms or signs of cardiac injury. A deregulation in the profiles of 5 and 19 c-miRNAs was observed for 10-km and M, respectively. Each race induced a specific qualitative and quantitative alteration of c-miRNAs implicated in cardiac adaptions. Supporting their discriminative potential, a number of c-miRNAs previously associated with cardiac disease were undetectable or stable in response to exercise. Conversely, "pseudo-disease" signatures were also observed. c-miRNAs may be useful for the management of cardiac conditions in the context of acute aerobic exercise. Circulating microRNAs could offer incremental diagnostic value to established and emerging cardiac biomarkers, such as hs-cTnT or NT-proBNP, in those patients with cardiac dysfunction symptoms after an acute bout of endurance exercise. Furthermore, circulating miRNAs could also show "pseudo-disease" signatures in response to acute exercise. Clinical practitioners should

  11. Prism adaptation and generalization during visually guided locomotor tasks.

    PubMed

    Alexander, M Scott; Flodin, Brent W G; Marigold, Daniel S

    2011-08-01

    The ability of individuals to adapt locomotion to constraints associated with the complex environments normally encountered in everyday life is paramount for survival. Here, we tested the ability of 24 healthy young adults to adapt to a rightward prism shift (∼11.3°) while either walking and stepping to targets (i.e., precision stepping task) or stepping over an obstacle (i.e., obstacle avoidance task). We subsequently tested for generalization to the other locomotor task. In the precision stepping task, we determined the lateral end-point error of foot placement from the targets. In the obstacle avoidance task, we determined toe clearance and lateral foot placement distance from the obstacle before and after stepping over the obstacle. We found large, rightward deviations in foot placement on initial exposure to prisms in both tasks. The majority of measures demonstrated adaptation over repeated trials, and adaptation rates were dependent mainly on the task. On removal of the prisms, we observed negative aftereffects for measures of both tasks. Additionally, we found a unilateral symmetric generalization pattern in that the left, but not the right, lower limb indicated generalization across the 2 locomotor tasks. These results indicate that the nervous system is capable of rapidly adapting to a visuomotor mismatch during visually demanding locomotor tasks and that the prism-induced adaptation can, at least partially, generalize across these tasks. The results also support the notion that the nervous system utilizes an internal model for the control of visually guided locomotion.

  12. The Immune Response to Acute Focal Cerebral Ischemia and Associated Post-stroke Immunodepression: A Focused Review

    PubMed Central

    Famakin, Bolanle M.

    2014-01-01

    It is currently well established that the immune system is activated in response to transient or focal cerebral ischemia. This acute immune activation occurs in response to damage, and injury, to components of the neurovascular unit and is mediated by the innate and adaptive arms of the immune response. The initial immune activation is rapid, occurs via the innate immune response and leads to inflammation. The inflammatory mediators produced during the innate immune response in turn lead to recruitment of inflammatory cells and the production of more inflammatory mediators that result in activation of the adaptive immune response. Under ideal conditions, this inflammation gives way to tissue repair and attempts at regeneration. However, for reasons that are just being understood, immunosuppression occurs following acute stroke leading to post-stroke immunodepression. This review focuses on the current state of knowledge regarding innate and adaptive immune activation in response to focal cerebral ischemia as well as the immunodepression that can occur following stroke. A better understanding of the intricate and complex events that take place following immune response activation, to acute cerebral ischemia, is imperative for the development of effective novel immunomodulatory therapies for the treatment of acute stroke. PMID:25276490

  13. Locomotor performance of cane toads differs between native-range and invasive populations.

    PubMed

    Kosmala, Georgia; Christian, Keith; Brown, Gregory; Shine, Richard

    2017-07-01

    Invasive species provide a robust opportunity to evaluate how animals deal with novel environmental challenges. Shifts in locomotor performance-and thus the ability to disperse-(and especially, the degree to which it is constrained by thermal and hydric extremes) are of special importance, because they might affect the rate that an invader can spread. We studied cane toads ( Rhinella marina ) across a broad geographical range: two populations within the species' native range in Brazil, two invasive populations on the island of Hawai'i and eight invasive populations encompassing the eastern, western and southern limits of the toad invasion in Australia. A toad's locomotor performance on a circular raceway was strongly affected by both its temperature and its hydration state, but the nature and magnitude of those constraints differed across populations. In their native range, cane toads exhibited relatively low performance (even under optimal test conditions) and a rapid decrease in performance at lower temperatures and hydration levels. At the other extreme, performance was high in toads from southern Australia, and virtually unaffected by desiccation. Hawai'ian toads broadly resembled their Brazilian conspecifics, plausibly reflecting similar climatic conditions. The invasion of Australia has been accompanied by a dramatic enhancement in the toads' locomotor abilities, and (in some populations) by an ability to maintain locomotor performance even when the animal is cold and/or dehydrated. The geographical divergences in performance among cane toad populations graphically attest to the adaptability of invasive species in the face of novel abiotic challenges.

  14. [The influence of non-invasive electrical stimulation of the spinal cord on the locomotor function of patients presenting with movement disorders of central genesis].

    PubMed

    Balykin, M V; Yakupov, R N; Mashin, V V; Kotova, E Yu; Balykin, Yu M; Gerasimenko, Yu P

    The objective of the present study was to evaluate the influence of non-invasive (transcutaneous) electrical spinal cord stimulation on the locomotor function of the patients suffering from movement disorders. The study involved 10 patients of both sexes at the age from 32 to 70 years (including 40% of men and 60% of women) presenting with the compromised locomotor function of varying severity associated with the disturbances of cerebral blood circulation caused either by an injury to the brain and spinal cord or by stroke. The transcutaneous electrical spinal cord stimulation was applied using different frequency regimes with the placement of the electrodes in the projection onto the region of TXI-TXII vertebrae. The active factors were bipolar electrical stimuli 0.5 ms in duration; the current strength was chosen for each patient on an individual basis taking into consideration its threshold level. Electromyograms and evoked motor responses of selected muscles, viz. m. rectus femoris, m.biceps femoris, m. tibialis anterior, and m.gastrocnemius were recorded with the use of the 'Neuro-MVP-8 eight-channel electromyography' ('Neurosoft', Russia). The data obtained give evidence that the stimulation of the spinal cord with a frequency of 1 Hz induces reflectory responses with monosynaptic and polysynaptic components in the muscles of the lower extremities, with the thresholds of these responses being significantly higher in the patients presenting with serious neurological problems. Stimulation with the frequencies of 5 and 30 Hz caused in the patients with paresis the involuntary movement of the legs the characteristics of which were similar to those of the locomotor movements. It has been demonstrated that the application of transcutaneous electrical spinal cord stimulation leads to increased excitability of the lumbar spinal neural structures of the patients. The study has shown the possibility of regulation of the locomotor functions in the patients presenting

  15. Stereoselective Effects of Abused “Bath Salt” Constituent 3,4-Methylenedioxypyrovalerone in Mice: Drug Discrimination, Locomotor Activity, and Thermoregulation

    PubMed Central

    Gannon, Brenda M.; Williamson, Adrian; Suzuki, Masaki; Rice, Kenner C.

    2016-01-01

    3,4-Methylenedioxypyrovalerone (MDPV) is a common constituent of illicit “bath salts” products. MDPV is a chiral molecule, but the contribution of each enantiomer to in vivo effects in mice has not been determined. To address this, mice were trained to discriminate 10 mg/kg cocaine from saline, and substitutions with racemic MDPV, S(+)-MDPV, and R(−)-MDPV were performed. Other mice were implanted with telemetry probes to monitor core temperature and locomotor responses elicited by racemic MDPV, S(+)-MDPV, and R(−)-MDPV under a warm (28°C) or cool (20°C) ambient temperature. Mice reliably discriminated the cocaine training dose from saline, and each form of MDPV fully substituted for cocaine, although marked potency differences were observed such that S(+)-MDPV was most potent, racemic MDPV was less potent than the S(+) enantiomer, and R(−)-MDPV was least potent. At both ambient temperatures, locomotor stimulant effects were observed after doses of S(+)-MDPV and racemic MDPV, but R(−)-MDPV did not elicit locomotor stimulant effects at any tested dose. Interestingly, significant increases in maximum core body temperature were only observed after administration of racemic MDPV in the warm ambient environment; neither MDPV enantiomer altered core temperature at any dose tested, at either ambient temperature. These studies suggest that all three forms of MDPV induce biologic effects, but R(−)-MDPV is less potent than S(+)-MDPV and racemic MDPV. Taken together, these data suggest that the S(+)-MDPV enantiomer is likely responsible for the majority of the biologic effects of the racemate and should be targeted in therapeutic efforts against MDPV overdose and abuse. PMID:26769917

  16. The peacock train does not handicap cursorial locomotor performance

    PubMed Central

    Thavarajah, Nathan K.; Tickle, Peter G.; Nudds, Robert L.; Codd, Jonathan R.

    2016-01-01

    Exaggerated traits, like the peacock train, are recognized as classic examples of sexual selection. The evolution of sexual traits is often considered paradoxical as, although they enhance reproductive success, they are widely presumed to hinder movement and survival. Many exaggerated traits represent an additional mechanical load that must be carried by the animal and therefore may influence the metabolic cost of locomotion and constrain locomotor performance. Here we conducted respirometry experiments on peacocks and demonstrate that the exaggerated sexually selected train does not compromise locomotor performance in terms of the metabolic cost of locomotion and its kinematics. Indeed, peacocks with trains had a lower absolute and mass specific metabolic cost of locomotion. Our findings suggest that adaptations that mitigate any costs associated with exaggerated morphology are central in the evolution of sexually selected traits. PMID:27805067

  17. Effects of respiratory muscle work on respiratory and locomotor blood flow during exercise.

    PubMed

    Dominelli, Paolo B; Archiza, Bruno; Ramsook, Andrew H; Mitchell, Reid A; Peters, Carli M; Molgat-Seon, Yannick; Henderson, William R; Koehle, Michael S; Boushel, Robert; Sheel, A William

    2017-11-01

    What is the central question of this study? Does manipulation of the work of breathing during high-intensity exercise alter respiratory and locomotor muscle blood flow? What is the main finding and its importance? We found that when the work of breathing was reduced during exercise, respiratory muscle blood flow decreased, while locomotor muscle blood flow increased. Conversely, when the work of breathing was increased, respiratory muscle blood flow increased, while locomotor muscle blood flow decreased. Our findings support the theory of a competitive relationship between locomotor and respiratory muscles during intense exercise. Manipulation of the work of breathing (WOB) during near-maximal exercise influences leg blood flow, but the effects on respiratory muscle blood flow are equivocal. We sought to assess leg and respiratory muscle blood flow simultaneously during intense exercise while manipulating WOB. Our hypotheses were as follows: (i) increasing the WOB would increase respiratory muscle blood flow and decrease leg blood flow; and (ii) decreasing the WOB would decrease respiratory muscle blood flow and increase leg blood flow. Eight healthy subjects (n = 5 men, n = 3 women) performed a maximal cycle test (day 1) and a series of constant-load exercise trials at 90% of peak work rate (day 2). On day 2, WOB was assessed with oesophageal balloon catheters and was increased (via resistors), decreased (via proportional assist ventilation) or unchanged (control) during the trials. Blood flow was assessed using near-infrared spectroscopy optodes placed over quadriceps and the sternocleidomastoid muscles, coupled with a venous Indocyanine Green dye injection. Changes in WOB were significantly and positively related to changes in respiratory muscle blood flow (r = 0.73), whereby increasing the WOB increased blood flow. Conversely, changes in WOB were significantly and inversely related to changes in locomotor blood flow (r = 0.57), whereby decreasing the

  18. Acute promyelocytic leukemia: new issues on pathogenesis and treatment response.

    PubMed

    Vitoux, Dominique; Nasr, Rihab; de The, Hugues

    2007-01-01

    Pathogenesis of acute promyelocytic leukemia appears to be one of the best understood among human malignancies. The ability of retinoic acid (RA) and arsenic trioxide to directly target the oncogenic promyelocytic leukemia-retinoic receptor A (PML-RARA) fusion protein also made this disease the first model for oncogene-targeted therapies. A set of recent data has significantly increased the complexity of our view of acute promyelocytic leukemia pathogenesis, as well as of therapeutic response. This review summarizes and discusses these findings, which yield novels questions and models.

  19. Parathyroid hormone-related protein (PTHrP) as a causative factor of cancer-associated wasting: possible involvement of PTHrP in the repression of locomotor activity in rats bearing human tumor xenografts.

    PubMed

    Onuma, Etsuro; Tsunenari, Toshiaki; Saito, Hidemi; Sato, Koh; Yamada-Okabe, Hisafumi; Ogata, Etsuro

    2005-09-01

    Nude rats bearing the LC-6-JCK human lung cancer xenograft displayed cancer-associated wasting syndrome in addition to humoral hypercalcemia of malignancy. In these rats, not only PTHrP but also several other human proinflammatory cytokines, such as IL-6, leukemia-inducing factor, IL-8, IL-5 and IL-11, were secreted to the bloodstream. Proinflammatory cytokines induce acute-phase reactions, as evidenced by a decrease of serum albumin and an increase in alpha1-acid glycoprotein. Tumor resection abolished the production of proinflammatory cytokines and improved acute-phase reactions, whereas anti-PTHrP antibody affected neither proinflammatory cytokine production nor acute-phase reactions. Nevertheless, tumor resection and administration of anti-PTHrP antibody similarly and markedly attenuated not only hypercalcemia but also loss of fat, muscle and body weight. Body weight gain by anti-PTHrP antibody was associated with increased food consumption; increased body weight from anti-PTHrP antibody was observed when animals were freely fed but not when they were given the same feeding as those that received only vehicle. Furthermore, nude rats bearing LC-6-JCK showed reduced locomotor activity, less eating and drinking and low blood phosphorus; and anti-PTHrP antibody restored them. Although alendronate, a bisphosphonate drug, decreased blood calcium, it affected neither locomotor activity nor serum phosphorus level. These results indicate that PTHrP represses physical activity and energy metabolism independently of hypercalcemia and proinflammatory cytokine actions and that deregulation of such physiologic activities and functions by PTHrP is at least in part involved in PTHrP-induced wasting syndrome.

  20. Active noise control technique for diesel train locomotor exhaust noise abatement

    NASA Astrophysics Data System (ADS)

    Cotana, Franco; Rossi, Federico

    2002-11-01

    An original prototype for train locomotor exhaust gas pipe noise reduction (electronic muffler) is proposed: the system is based on an active noise control technique. An acoustical measurement campaign has shown that locomotor exhaust noise is characterized by very low frequency components (less than 80 Hz) and very high acoustic power (up to 110 dB). A peculiar electronic muffler characterized by high acoustical efficiency at very low frequencies has been designed and realized at Perugia University Acoustic Laboratory; it has been installed on an Italian D.245 train locomotor, equipped with a 500-kW diesel engine. The electronic muffler has been added to the traditional passive muffler. Very low transmission losses are introduced by the electronic muffler because of its particular shape; thus, engine efficiency does not further decrease. Canceling noise is generated by means of DSP-based numerical algorithm. Disturbing noise and canceling noise destructively interfere at the exhaust duct outlet section; outgoing noise is thus reduced. The control system reduces exhaust noise both in the steady and unsteady engine regime. Measurement results have shown that electronic muffler introduces up to 15 dB noise abatement in the low-frequency components.

  1. Nature and Causes of Locomotor Disabilities in India

    ERIC Educational Resources Information Center

    Halder, Santoshi; Talukdar, Arindam

    2013-01-01

    A large proportion of disability around the world is preventable. Levels of disability in many poor countries can be reduced by achieving the international development targets for economic, social and human development. In this paper, the author studied the different contributory and causative factors of locomotor disability, disease states and…

  2. Flexibility in the patterning and control of axial locomotor networks in lamprey.

    PubMed

    Buchanan, James T

    2011-12-01

    In lower vertebrates, locomotor burst generators for axial muscles generally produce unitary bursts that alternate between the two sides of the body. In lamprey, a lower vertebrate, locomotor activity in the axial ventral roots of the isolated spinal cord can exhibit flexibility in the timings of bursts to dorsally-located myotomal muscle fibers versus ventrally-located myotomal muscle fibers. These episodes of decreased synchrony can occur spontaneously, especially in the rostral spinal cord where the propagating body waves of swimming originate. Application of serotonin, an endogenous spinal neurotransmitter known to presynaptically inhibit excitatory synapses in lamprey, can promote decreased synchrony of dorsal-ventral bursting. These observations suggest the possible existence of dorsal and ventral locomotor networks with modifiable coupling strength between them. Intracellular recordings of motoneurons during locomotor activity provide some support for this model. Pairs of motoneurons innervating myotomal muscle fibers of similar ipsilateral dorsoventral location tend to have higher correlations of fast synaptic activity during fictive locomotion than do pairs of motoneurons innervating myotomes of different ipsilateral dorsoventral locations, suggesting their control by different populations of premotor interneurons. Further, these different motoneuron pools receive different patterns of excitatory and inhibitory inputs from individual reticulospinal neurons, conveyed in part by different sets of premotor interneurons. Perhaps, then, the locomotor network of the lamprey is not simply a unitary burst generator on each side of the spinal cord that activates all ipsilateral body muscles simultaneously. Instead, the burst generator on each side may comprise at least two coupled burst generators, one controlling motoneurons innervating dorsal body muscles and one controlling motoneurons innervating ventral body muscles. The coupling strength between these two

  3. Acute effects of cocaine and cannabis on response inhibition in humans: an ERP investigation.

    PubMed

    Spronk, Desirée B; De Bruijn, Ellen R A; van Wel, Janelle H P; Ramaekers, Johannes G; Verkes, Robbert J

    2016-11-01

    Substance abuse has often been associated with alterations in response inhibition in humans. Not much research has examined how the acute effects of drugs modify the neurophysiological correlates of response inhibition, or how these effects interact with individual variation in trait levels of impulsivity and novelty seeking. This study investigated the effects of cocaine and cannabis on behavioural and event-related potential (ERP) correlates of response inhibition in 38 healthy drug using volunteers. A double-blind placebo-controlled randomized three-way crossover design was used. All subjects completed a standard Go/NoGo task after administration of the drugs. Compared with a placebo, cocaine yielded improved accuracy, quicker reaction times and an increased prefrontal NoGo-P3 ERP. Cannabis produced opposing results; slower reaction times, impaired accuracy and a reduction in the amplitude of the prefrontal NoGo-P3. Cannabis in addition decreased the amplitude of the parietally recorded P3, while cocaine did not affect this. Neither drugs specifically affected the N2 component, suggesting that pre-motor response inhibitory processes remain unaffected. Neither trait impulsivity nor novelty seeking interacted with drug-induced effects on measures of response inhibition. We conclude that acute drug effects on response inhibition seem to be specific to the later, evaluative stages of response inhibition. The acute effects of cannabis appeared less specific to response inhibition than those of cocaine. Together, the results show that the behavioural effects on response inhibition are reflected in electrophysiological correlates. This study did not support a substantial role of vulnerability personality traits in the acute intoxication stage. © 2015 Society for the Study of Addiction.

  4. Effect of acute and chronic administration of caffeine on pain-like behaviors in rats with partial sciatic nerve injury.

    PubMed

    Wu, Wei-Ping; Hao, Jing-Xia; Fredholm, Bertil B; Wiesenfeld-Hallin, Zsuzsanna; Xu, Xiao-Jun

    2006-07-10

    Caffeine, used in many pain medications as an adjuvant analgesic, is an adenosine A1 and A2A receptor antagonist. Here we examined the effects of acute or chronic caffeine administration in rats after partial sciatic nerve injury. The hindpaw response to mechanical or cold stimulation was assessed following photochemically induced sciatic nerve injury which leads to hypersensitivity to these stimuli. Caffeine was administered i.p. acutely or in the drinking water chronically. The mechanical and cold hypersensitivity of sciatic nerve-injured rats was dose-dependently alleviated by acute systemic administration of caffeine (10-80 mg/kg). The effect of caffeine was, however, associated with side effects including locomotor stimulation or depression. Chronic oral administration (average daily doses 27.5 mg/kg/day or 61.5 mg/kg/day for 2 weeks) of caffeine starting at the time of nerve injury did not significantly affect the development of pain-like behaviors. Thus, acute, but not long term, caffeine intake reduced neuropathic pain state in nerve-injured rats, but only at very high doses. The potential hyperalgesic effect of chronic A1 adenosine receptor blockade may have been compensated for by an antinociceptive effect of caffeine through antagonism of A2A receptors and tolerance development.

  5. The influence of high intensity exercise and the Val66Met polymorphism on circulating BDNF and locomotor learning.

    PubMed

    Helm, Erin E; Matt, Kathleen S; Kirschner, Kenneth F; Pohlig, Ryan T; Kohl, Dave; Reisman, Darcy S

    2017-10-01

    Brain-derived neurotrophic factor (BDNF) has been directly related to exercise-enhanced motor performance in the neurologically injured animal model; however literature concerning the role of BDNF in the enhancement of motor learning in the human population is limited. Previous studies in healthy subjects have examined the relationship between intensity of an acute bout of exercise, increases in peripheral BDNF and motor learning of a simple isometric upper extremity task. The current study examined the role of high intensity exercise on upregulation of peripheral BDNF levels as well as the role of high intensity exercise in mediation of motor learning and retention of a novel locomotor task in neurologically intact adults. In addition, the impact of a single nucleotide polymorphism in the BDNF gene (Val66Met) in moderating the relationship between exercise and motor learning was explored. It was hypothesized that participation in high intensity exercise prior to practicing a novel walking task (split-belt treadmill walking) would elicit increases in peripheral BDNF as well as promote an increased rate and magnitude of within session learning and retention on a second day of exposure to the walking task. Within session learning and retention would be moderated by the presence or absence of Val66Met polymorphism. Fifty-four neurologically intact participants participated in two sessions of split-belt treadmill walking. Step length and limb phase were measured to assess learning of spatial and temporal parameters of walking. Serum BDNF was collected prior to and immediately following either high intensity exercise or 5min of quiet rest. The results demonstrated that high intensity exercise provides limited additional benefit to learning of a novel locomotor pattern in neurologically intact adults, despite increases in circulating BDNF. In addition, presence of a single nucleotide polymorphism on the BDNF gene did not moderate the magnitude of serum BDNF increases

  6. Sodium Butyrate Improves Locomotor Impairment and Early Mortality in a Rotenone-Induced Drosophila Model of Parkinson’s Disease

    PubMed Central

    St. Laurent, Robyn; O’Brien, Liam M.; Ahmad, S. Tariq

    2013-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder primarily affecting the dopaminergic neurons in the nigrastriatal pathway resulting in debilitating motor impairment in both familial and sporadic cases. Histone deacetylase (HDAC) inhibitors have been recently implicated as a therapeutic candidate because of their ability to correct the disrupted HDAC activity in PD and other neurodegenerative diseases. Sodium butyrate (SB), an HDAC inhibitor, reduces degeneration of dopaminergic neurons in a mutant alpha-synuclein Drosophila transgenic model of familial PD. Chronic exposure to the pesticide rotenone also causes selective degeneration of dopaminergic neurons and causes locomotor impairment and early mortality in a Drosophila model of chemically-induced PD. This study investigated the effects of sodium butyrate on locomotor impairment and early mortality in a rotenone-induced PD model. We show that treatment with 10 mM SB-supplemented food rescued the rotenone-induced locomotor impairment and early mortality in flies. Additionally, flies with the genetic knockdown of HDAC activity through Sin3A loss-of-function mutation (Sin3Alof) were resistant to rotenone-induced locomotor impairment and early mortality. Furthermore, SB-supplemented Sin3Alof flies had a modest additive effect for improving locomotor impairment. We also show SB-mediated improvement of rotenone-induced locomotor impairment was associated with elevated dopamine levels in the brain. However, the possibility of SB-mediated protective role through mechanisms independent from dopamine system is also discussed. These findings demonstrate that HDAC inhibitors like SB can ameliorate locomotor impairment in a rotenone-induced PD model. PMID:23623990

  7. Distinct Trajectories of Cortisol Response to Prolonged Acute Stress Are Linked to Affective Responses and Hippocampal Gray Matter Volume in Healthy Females

    PubMed Central

    Treadway, Michael T.; Valeri, Linda; Douglas, Samuel

    2017-01-01

    The development of robust laboratory procedures for acute stress induction over the last decades has greatly advanced our understanding of stress responses in humans and their underlying neurobiological mechanisms. Nevertheless, attempts to uncover linear relationships among endocrine, neural, and affective responses to stress have generally yielded inconsistent results. Here, 79 healthy females completed a well established laboratory procedure of acute stress induction that was modified to prolong its effect. Endocrinological and subjective affect assessments revealed stress-induced increases in cortisol release and negative affect that persisted 65 and 100 min after stress onset, respectively, confirming a relatively prolonged acute stress induction. Applying latent class linear mixed modeling on individuals' patterns of cortisol responses identified three distinct trajectories of cortisol response: the hyper-response (n = 10), moderate-response (n = 21), and mild-response (n = 48) groups. Notably, whereas all three groups exhibited a significant stress-induced increase in cortisol release and negative affect, the hyper-response and mild-response groups both reported more negative affect relative to the moderate-response group. Structural MRI revealed no group differences in hippocampal and amygdala volumes, yet a continuous measure of cortisol response (area under the curve) showed that high and low levels of stress-induced cortisol release were associated with less hippocampal gray matter volume compared with moderate cortisol release. Together, these results suggest that distinct trajectories of cortisol response to prolonged acute stress among healthy females may not be captured by conventional linear analyses; instead, quadratic relations may better describe links between cortisol response to stress and affective responses, as well as hippocampal structural variability. SIGNIFICANCE STATEMENT Despite substantial research, it is unclear whether and how

  8. Distinct Trajectories of Cortisol Response to Prolonged Acute Stress Are Linked to Affective Responses and Hippocampal Gray Matter Volume in Healthy Females.

    PubMed

    Admon, Roee; Treadway, Michael T; Valeri, Linda; Mehta, Malavika; Douglas, Samuel; Pizzagalli, Diego A

    2017-08-16

    The development of robust laboratory procedures for acute stress induction over the last decades has greatly advanced our understanding of stress responses in humans and their underlying neurobiological mechanisms. Nevertheless, attempts to uncover linear relationships among endocrine, neural, and affective responses to stress have generally yielded inconsistent results. Here, 79 healthy females completed a well established laboratory procedure of acute stress induction that was modified to prolong its effect. Endocrinological and subjective affect assessments revealed stress-induced increases in cortisol release and negative affect that persisted 65 and 100 min after stress onset, respectively, confirming a relatively prolonged acute stress induction. Applying latent class linear mixed modeling on individuals' patterns of cortisol responses identified three distinct trajectories of cortisol response: the hyper-response ( n = 10), moderate-response ( n = 21), and mild-response ( n = 48) groups. Notably, whereas all three groups exhibited a significant stress-induced increase in cortisol release and negative affect, the hyper-response and mild-response groups both reported more negative affect relative to the moderate-response group. Structural MRI revealed no group differences in hippocampal and amygdala volumes, yet a continuous measure of cortisol response (area under the curve) showed that high and low levels of stress-induced cortisol release were associated with less hippocampal gray matter volume compared with moderate cortisol release. Together, these results suggest that distinct trajectories of cortisol response to prolonged acute stress among healthy females may not be captured by conventional linear analyses; instead, quadratic relations may better describe links between cortisol response to stress and affective responses, as well as hippocampal structural variability. SIGNIFICANCE STATEMENT Despite substantial research, it is unclear whether and how

  9. Spaceflight Sensorimotor Analogs: Simulating Acute and Adaptive Effects

    NASA Technical Reports Server (NTRS)

    Taylor, Laura C.; Harm, Deborah L.; Kozlovskaya, Inessa; Reschke, Millard F.; Wood, Scott J.

    2009-01-01

    Adaptive changes in sensorimotor function during spaceflight are reflected by spatial disorientation, motion sickness, gaze destabilization and decrements in balance, locomotion and eye-hand coordination that occur during and following transitions between different gravitational states. The purpose of this study was to conduct a meta-synthesis of data from spaceflight analogs to evaluate their effectiveness in simulating adaptive changes in sensorimotor function. METHODS. The analogs under review were categorized as either acute analogs used to simulate performance decrements accompanied with transient changes, or adaptive analogs used to drive sensorimotor learning to altered sensory feedback. The effectiveness of each analog was evaluated in terms of mechanisms of action, magnitude and time course of observed deficits compared to spaceflight data, and the effects of amplitude and exposure duration. RESULTS. Parabolic flight has been used extensively to examine effects of acute variation in gravitational loads, ranging from hypergravity to microgravity. More recently, galvanic vestibular stimulation has been used to elicit acute postural, locomotor and gaze dysfunction by disrupting vestibular afferents. Patient populations, e.g., with bilateral vestibular loss or cerebellar dysfunction, have been proposed to model acute sensorimotor dysfunction. Early research sponsored by NASA involved living onboard rotating rooms, which appeared to approximate the time course of adaptation and post-exposure recovery observed in astronauts following spaceflight. Exposure to different bed-rest paradigms (6 deg head down, dry immersion) result in similar motor deficits to that observed following spaceflight. Shorter adaptive analogs have incorporated virtual reality environments, visual distortion paradigms, exposure to conflicting tilt-translation cues, and exposure to 3Gx centrifugation. As with spaceflight, there is considerable variability in responses to most of the analogs

  10. Locomotor activity, core body temperature, and circadian rhythms in mice selected for high or low heat loss.

    PubMed

    Mousel, M R; Stroup, W W; Nielsen, M K

    2001-04-01

    Daily locomotor activity, core body temperature, and their circadian rhythms were measured in lines of mice selected for high (MH) or low (ML) heat loss and unselected controls (MC). Lines were created by selecting for 16 generations in each of three replicates. Collection of locomotor activity and core temperature data spanned Generations 20 and 21 for a total of 352 mice. Physical activity and core body temperature data were accumulated using implanted transmitters and continuous automated collection. Measurement for each animal was for 3 d. Activity was recorded for each half hour and then averaged for the day; temperature was averaged daily; circadian rhythm was expressed in 12-h (light vs dark) or 6-h periods as well as by fitting cyclic models. Activity means were transformed to log base 2 to lessen heterogeneity of variance within lines. Heat loss for a 15-h period beginning at 1630 and feed intake for 7 d were measured on 74 additional mice in order to estimate the relationship between locomotor activity and heat loss or feed intake. Selection lines were different (P < 0.01) for both locomotor activity and core body temperature. Differences were due to selection (MH-ML, P < 0.01), and there was no evidence of asymmetry of response (P > 0.38). Retransformed from log base 2 to the scale of measurement, mean activity counts were 308, 210, and 150 for MH, MC, and ML, respectively. Mean core temperatures were 37.2, 36.9, and 36.7 degrees C for MH, MC, and ML (P < 0.01), respectively. Females had greater physical activity (P < 0.01) and body temperature (P < 0.01) than males. There was no evidence of a sex x selection criterion interaction for either activity or temperature (P > 0.20). Overall phenotypic correlation between body temperature and log base 2 activity was 0.43 (P < 0.01). Periods during the day were different for both 12- and 6-h analyses (P < 0.01), but there were no period x selection criterion interactions (P > 0.1) for physical activity or body

  11. Caffeine alters the behavioural and body temperature responses to mephedrone without causing long-term neurotoxicity in rats.

    PubMed

    Shortall, Sinead E; Green, A Richard; Fone, Kevin Cf; King, Madeleine V

    2016-07-01

    Administration of caffeine with 3,4-methylenedioxymethamphetamine (MDMA) alters the pharmacological properties of MDMA in rats. The current study examined whether caffeine alters the behavioural and neurochemical effects of mephedrone, which has similar psychoactive effects to MDMA. Rats received either saline, mephedrone (10 mg/kg), caffeine (10 mg/kg) or combined caffeine and mephedrone intraperitoneally twice weekly on consecutive days for three weeks. Locomotor activity (days 1 and 16), novel object discrimination (NOD, day 2), elevated plus maze (EPM) exploration (day 8), rectal temperature changes (day 9) and pre-pulse inhibition (PPI) of acoustic startle response (day 15) were assessed. Seven days after the final injection, brain regions were collected for the measurement of 5-hydroxytryptamine (5-HT), dopamine and their metabolites. Combined caffeine and mephedrone further enhanced the locomotor response observed following either drug administered alone, and converted mephedrone-induced hypothermia to hyperthermia. Co-administration also abolished mephedrone-induced anxiogenic response on the EPM, but had no effect on NOD or PPI. Importantly, no long-term neurotoxicity was detected following repeated mephedrone alone or when co-administered with caffeine. In conclusion, the study suggests a potentially dangerous effect of concomitant caffeine and mephedrone, and highlights the importance of taking polydrug use into consideration when investigating the acute adverse effect profile of popular recreational drugs. © The Author(s) 2016.

  12. The acute phase response of cod (Gadus morhua L.): expression of immune response genes.

    PubMed

    Audunsdottir, Sigridur S; Magnadottir, Bergljot; Gisladottir, Berglind; Jonsson, Zophonias O; Bragason, Birkir Th

    2012-02-01

    An acute phase response (APR) was experimentally induced in Atlantic cod (Gadus morhua L.) by intramuscular injection of turpentine oil. The change in the expression of immune related genes was monitored in the anterior kidney and the spleen over a period of 7 days. The genes examined were two types of pentraxins, apolipoprotein A1 (ApoA-I), the complement component C3, interleukin-1β (IL-1β), transferrin, cathelicidin, and hepcidin. All genes were constitutively expressed in both organs and their expression amplified by the turpentine injection. A pattern of response was observed both with respect to the organ preference and to the timing of a maximum response. The increased gene expression of the pentraxins, ApoA-I and C3 was restricted to the anterior kidney, the gene expression of IL-1β, cathelicidin, and transferrin increased in both organs, while hepcidin gene expression was only significantly increased in the spleen. The pentraxins and ApoA-I appear to be early mediators of APR in cod, possibly stimulating C3 and IL-1β response, while the antimicrobial peptides may play a minor role. The increase in transferrin gene expression in both organs, and apparent indifference to cortisol release associated with the turpentine injection, suggests that this could be a typical acute phase protein in cod. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Enkephalin and dynorphin neuropeptides are differently correlated with locomotor hypersensitivity and levodopa-induced dyskinesia in parkinsonian rats.

    PubMed

    Sgroi, Stefania; Capper-Loup, Christine; Paganetti, Paolo; Kaelin-Lang, Alain

    2016-06-01

    The opioidergic neuropeptides dynorphin (DYN) and enkephalin (ENK) and the D1 and D2 dopaminergic receptors (D1R, D2R) are involved in the striatal control of motor and behavioral function. In Parkinson's disease, motor disturbances such as "on-off" motor fluctuations and involuntary movements (dyskinesia) are severe complications that often arise after chronic l-dihydroxyphenylalanine (l-DOPA) treatment. Changes in the striatal expression of preproENK (PPENK), proDYN (PDYN), D1R, and D2R mRNA have been observed in parkinsonian animals treated with l-DOPA. Enhanced opioidergic transmission has been found in association with l-DOPA-induced dyskinesia, but the connection of PPENK, PDYN, D1R, and D2R mRNA expression with locomotor activity remains unclear. In this study, we measured PPENK, PDYN, D1R and D2R mRNA levels by in situ hybridization in the striatum of 6-OHDA hemi-parkinsonian rats treated with l-DOPA (PD+l-DOPA group), along with two control groups (PD+saline and naive+l-DOPA). We found different levels of expression of PPENK, PDYN, D1R and D2R mRNA across the experimental groups and correlated the changes in mRNA expression with dyskinesia and locomotor variables assessed by open field test during several phases of l-DOPA treatment. Both PDYN and PPENK mRNA levels were correlated with the severity of dyskinesia, while PPENK mRNA levels were also correlated with the frequency of contralateral rotational movements and with locomotor variables. Moreover, a strong correlation was found between D1R mRNA expression and D2R mRNA expression in the PD+l-DOPA group. These findings suggest that, in parkinsonian animals treated with l-DOPA, high levels of PPENK are a prerequisite for a locomotor sensitization to l-DOPA treatment, while PDYN overexpression is responsible only for the development of dyskinesia. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Effects of nicotine on ethanol-induced locomotor sensitization: A model of neuroadaptation.

    PubMed

    Gubner, Noah R; Phillips, Tamara J

    2015-07-15

    Co-morbid use of nicotine-containing tobacco products and alcohol (ethanol) is prevalent in young adults initiating use and in alcohol dependent adults, suggesting that these drugs in combination may increase risk to develop dependence on one or both drugs. Neuroadaptations caused by repeated drug exposure are related to the development of drug dependence and vulnerability to relapse. Locomotor sensitization has been used as a behavioral measure used to detect changes in neural drug sensitivity that are thought to contribute to drug dependence and relapse. Locomotor sensitization was measured in the current studies to examine potential differences in the effects of nicotine and ethanol given alone and in combination. Baseline activity levels of DBA/2J mice were assessed on 2 days, then mice were treated for 10 days with saline, nicotine (1 or 2mg/kg of nicotine tartrate), ethanol (1 or 2g/kg), or nicotine plus ethanol and locomotor activity was assessed every third day. On the following day, all mice were challenged with ethanol to measure the expression of sensitization. Mice treated with both nicotine and ethanol exhibited greater stimulation than predicted from the combined independent effects of these drugs, consistent with our previously published results. The combined effects of nicotine and ethanol on locomotor sensitization were dependent on the dose of ethanol and whether testing was performed after the drugs were given together, or after challenge with ethanol alone. These results suggest that nicotine and ethanol in combination can have neuroadaptive effects that differ from the independent effects of these drugs. Published by Elsevier B.V.

  15. Chronic tolerance to ethanol-induced sedation: implication for age-related differences in locomotor sensitization.

    PubMed

    Quoilin, Caroline; Didone, Vincent; Tirelli, Ezio; Quertemont, Etienne

    2013-06-01

    The adolescent brain has been suggested to be particularly sensitive to ethanol-induced neuroadaptations, which in turn could increase the risk of youths for alcohol abuse and dependence. Sensitization to the locomotor stimulant effects of ethanol has often been used as an animal model of ethanol-induced neuroadaptations. Previously, we showed that young mice were more sensitive than adults to the locomotor sensitization induced by high ethanol doses. However, this effect could be due to age-related differences in chronic tolerance to the sedative effects of ethanol. The aim of the present study is to assess chronic tolerance to the sedative effects of ethanol in weaning 21-day-old (P21), adolescent 35-day-old (P35) and adult 63-day-old (P63) female Swiss mice. After a daily injection of saline or 4 g/kg ethanol during 6 consecutive days, all P21, P35 and P63 mice were injected with 4 g/kg ethanol and submitted to the loss of righting reflex procedure. Our results confirm that the sensitivity to the acute sedative effects of ethanol gradually increases with age. Although this schedule of ethanol injections induces significant age-related differences in ethanol sensitization, it did not reveal significant differences between P21, P35 and P63 mice in the development of a chronic ethanol tolerance to its sedative effects. The present results show that age-related differences in the development of ethanol sensitization cannot be explained by differences in chronic ethanol tolerance to its sedative effects. More broadly, they do not support the idea that ethanol-induced sensitization is a by-product of chronic ethanol tolerance. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Involvement of Glutamate NMDA Receptors in the Acute, Long-Term, and Conditioned Effects of Amphetamine on Rat 50kHz Ultrasonic Vocalizations

    PubMed Central

    Costa, Giulia; Morelli, Micaela

    2015-01-01

    Background: Rats emit 50kHz ultrasonic vocalizations (USVs) in response to either natural or pharmacological pleasurable stimuli, and these USVs have emerged as a new behavioral measure for investigating the motivational properties of drugs. Earlier studies have indicated that activation of the dopaminergic system is critically involved in 50kHz USV emissions. However, evidence also exists that non-dopaminergic neurotransmitters participate in this behavioral response. Methods: To ascertain whether glutamate transmission plays a role in 50kHz USV emissions stimulated by amphetamine, rats received five amphetamine (1–2mg/kg, i.p.) administrations on alternate days in a test cage, either alone or combined with the glutamate N-methyl-D-aspartate receptor antagonist MK-801 (0.1–0.5mg/kg, i.p.). Seven days after treatment discontinuation, rats were re-exposed to the test cage to assess drug conditioning, and afterwards received a drug challenge. USVs and locomotor activity were evaluated, along with immunofluorescence for Zif-268 in various brain regions and spontaneous alternation in a Y maze. Results: Amphetamine-treated rats displayed higher 50kHz USV emissions and locomotor activity than vehicle-treated rats, and emitted conditioned vocalizations on test cage re-exposure. Rats co-administered amphetamine and MK-801 displayed lower and dose-dependent 50kHz USV emissions, but not lower locomotor activity, during repeated treatment and challenge, and scarce conditioned vocalization compared with amphetamine-treated rats. These effects were associated with lower levels of Zif-268 after amphetamine challenge and spontaneous alternation deficits. Conclusions: These results indicate that glutamate transmission participates in the acute, long-term, and conditioned effects of amphetamine on 50kHz USVs, possibly by influencing amphetamine-induced long-term neuronal changes and/or amphetamine-associated memories. PMID:25991653

  17. Locomotor function after long-duration space flight: effects and motor learning during recovery.

    PubMed

    Mulavara, Ajitkumar P; Feiveson, Alan H; Fiedler, James; Cohen, Helen; Peters, Brian T; Miller, Chris; Brady, Rachel; Bloomberg, Jacob J

    2010-05-01

    Astronauts returning from space flight and performing Earth-bound activities must rapidly transition from the microgravity-adapted sensorimotor state to that of Earth's gravity. The goal of the current study was to assess locomotor dysfunction and recovery of function after long-duration space flight using a test of functional mobility. Eighteen International Space Station crewmembers experiencing an average flight duration of 185 days performed the functional mobility test (FMT) pre-flight and post-flight. To perform the FMT, subjects walked at a self selected pace through an obstacle course consisting of several pylons and obstacles set up on a base of 10-cm-thick, medium-density foam for a total of six trials per test session. The primary outcome measure was the time to complete the course (TCC, in seconds). To assess the long-term recovery trend of locomotor function after return from space flight, a multilevel exponential recovery model was fitted to the log-transformed TCC data. All crewmembers exhibited altered locomotor function after space flight, with a median 48% increase in the TCC. From the fitted model we calculated that a typical subject would recover to 95% of his/her pre-flight level at approximately 15 days post-flight. In addition, to assess the early motor learning responses after returning from space flight, we modeled performance over the six trials during the first post-flight session by a similar multilevel exponential relation. We found a significant positive correlation between measures of long-term recovery and early motor learning (P < 0.001) obtained from the respective models. We concluded that two types of recovery processes influence an astronaut's ability to re-adapt to Earth's gravity environment. Early motor learning helps astronauts make rapid modifications in their motor control strategies during the first hours after landing. Further, this early motor learning appears to reinforce the adaptive realignment, facilitating re

  18. Pathogenesis of graft-versus-host disease: innate immunity amplifying acute alloimmune responses.

    PubMed

    Maeda, Yoshinobu

    2013-09-01

    In addition to reduced-intensity conditioning, which has expanded the eligibility for hematopoietic cell transplantation (HCT) to older patients, increased availability of alternative donors, including HLA-mismatched unrelated donors, has increased access to allogeneic HCT for more patients. However, acute graft-versus-host disease (GVHD) remains a lethal complication, even in HLA-matched donor-recipient pairs. The pathophysiology of GVHD depends on aspects of adaptive immunity and interactions between donor T-cells and host dendritic cells (DCs). Recent work has revealed that the role of other immune cells and endothelial cells and components of the innate immune response are also important. Tissue damage caused by the conditioning regimen leads to the release of exogenous and endogenous "danger signals". Exogenous danger signals called pathogen-associated molecular patterns and endogenous noninfectious molecules known as damage-associated molecular patterns (DAMPs) are responsible for initiating or amplifying acute GVHD by enhancing DC maturation and alloreactive T-cell responses. A significant association of innate immune receptor polymorphisms with outcomes, including GVHD severity, was observed in patients receiving allogeneic HCT. Understanding of the role of innate immunity in acute GVHD might offer new therapeutic approaches.

  19. Influence of fitness and age on the endothelial response to acute inflammation.

    PubMed

    Schroeder, Elizabeth C; Lane-Cordova, Abbi D; Ranadive, Sushant M; Baynard, Tracy; Fernhall, Bo

    2018-06-01

    What is the central question of the study? What are the effects of age and fitness on the vascular response to acute inflammation in younger and older adults? What is the main finding and its importance? In older adults, cardiorespiratory fitness level has a differential impact on endothelial function after acute inflammation. Compared with older adults with low fitness, older, moderately fit adults have a greater decrease in endothelial function, similar to that of younger adults. These findings have important implications in support of the beneficial effects of higher cardiorespiratory fitness in maintaining vascular reactivity and the ability to respond to stressors. Inflammation is associated with greater risk of cardiovascular events and reduced vascular function with ageing. Higher cardiorespiratory fitness is associated with lower risk of cardiovascular events and better vascular function. We evaluated the role of fitness in the vascular response to acute inflammation in 26 younger adults (YA) and 62 older adults (OA). We used an influenza vaccine to induce acute inflammation. Blood pressure, flow-mediated dilatation (FMD), augmentation index, carotid elastic modulus and inflammatory markers were measured before and 24 h after vaccination. Peak oxygen uptake was measured via a treadmill test. 'Fit' was defined as a peak oxygen uptake greater than the age- and sex-determined 50th percentile according to the American College of Sports Medicine. An interaction effect existed for the FMD response during acute inflammation (P < 0.05). The YA (low fit, from 11.5 ± 1.8 to 9.2 ± 1.3%; moderately fit, from 11.9 ± 0.8 to 9.0 ± 0.8%) and moderately fit OA (from 7.5 ± 1.0 to 3.9 ± 0.8%) had similar reductions in FMD at 24 h (P < 0.05). Low-fit OA did not reduce FMD at 24 h (from 5.5 ± 0.4 to 5.2 ± 0.5%, P > 0.05). The reduction in FMD in YA was similar between fitness groups (P > 0.05). All groups had similar reductions in mean

  20. Trace Amine-Associated Receptor 1 Modulates the Locomotor and Sensitization Effects of Nicotine

    PubMed Central

    Sukhanov, Ilya; Dorofeikova, Mariia; Dolgorukova, Antonina; Dorotenko, Artem; Gainetdinov, Raul R.

    2018-01-01

    Trace amine-associated receptor 1 (TAAR1) has emerged as a promising target for addiction treatments because it affects dopamine transmission in the mesolimbic pathway. TAAR1 is involved in the effects of addictive drugs, such as amphetamines, cocaine and ethanol, but the impact of TAAR1 on the effects of nicotine, the psychoactive drug responsible for the development and maintenance of tobacco smoking, has not yet been studied. This study was performed to investigate the possible modulatory action of TAAR1 on the effects of nicotine on locomotor behaviors in rats and mice. Pretreatment with the TAAR1 agonist RO5263397 dose-dependently decreased nicotine-induced hyperlocomotion in rats habituated to locomotor boxes, prevented the development of nicotine sensitization and blocked hypermotility in nicotine-sensitized rats at the highest tested dose (10 mg/kg). The lack of TAAR1 failed to affect the effects of nicotine on the locomotion of mutant mice. Based on the results of the present study, TAAR1 activation attenuates the locomotion-stimulating effects of nicotine on rats. These results further support the previously proposed hypothesis that TAAR1 is a promising target for the prevention and treatment of drug addiction. Further studies aimed at analyzing the effects of TAAR1 agonists on animal models of nicotine addiction are warranted. PMID:29681856

  1. Improved gait after repetitive locomotor training in children with cerebral palsy.

    PubMed

    Smania, Nicola; Bonetti, Paola; Gandolfi, Marialuisa; Cosentino, Alessandro; Waldner, Andreas; Hesse, Stefan; Werner, Cordula; Bisoffi, Giulia; Geroin, Christian; Munari, Daniele

    2011-02-01

    The aim of this study was to evaluate the effectiveness of repetitive locomotor training with an electromechanical gait trainer in children with cerebral palsy. In this randomized controlled trial, 18 ambulatory children with diplegic or tetraplegic cerebral palsy were randomly assigned to an experimental group or a control group. The experimental group received 30 mins of repetitive locomotor training with an applied technology (Gait Trainer GT I) plus 10 mins of passive joint mobilization and stretching exercises. The control group received 40 mins of conventional physiotherapy. Each subject underwent a total of 10 treatment sessions over a 2-wk period. Performance on the 10-m walk test, 6-min walk test, WeeFIM scale, and gait analysis was evaluated by a blinded rater before and after treatment and at 1-mo follow-up. The experimental group showed significant posttreatment improvement on the 10-m walk test, 6-min walk test, hip kinematics, gait speed, and step length, all of which were maintained at the 1-mo follow-up assessment. No significant changes in performance parameters were observed in the control group. Repetitive locomotor training with an electromechanical gait trainer may improve gait velocity, endurance, spatiotemporal, and kinematic gait parameters in patients with cerebral palsy.

  2. [Disorders of locomotor system and effectiveness of physiotherapy in coal miners].

    PubMed

    Bilski, Bartosz; Bednarek, Agata

    2003-01-01

    The aim of the survey was to analyze the efficacy of physiotherapy applied in coal miners as well as to assess their locomotor system load and the effects of working conditions in mines. The questionnaire survey covered a group of 51 miners, aged 28-76 years (mean, 54 years), undergoing physiotherapeutic procedures in the mine out-patient clinic during the first quarter of 2003. The survey revealed that lumbosacral disorders were the most frequent locomotor system complaints reported by miners, especially those who work in a bending down position. According to the clinical data, spondylosis and allied disorders were the main reasons for pain in this part of the body. Having analyzed the relationship between age and occurrence of back pains, the majority of complaints were found in the 46-55 age group (two complaints per one respondent). The analysis of the association between back pains and duration of employment revealed that the complaints for the locomotor system occurred already after a five-year employment. The survey showed that the application of physiotherapeutic procedures diminished the back pain in the study group by 2.83 on average on the 0-10 scale. It was also found that magnetotherapy proved to be the most effective method in treating the spinal degenerative changes.

  3. [Comparative analysis of metabotropic and ionotropic glutamate striatal receptors blockade influence on rats locomotor behaviour].

    PubMed

    Iakimovskiĭ, A F; Kerko, T V

    2013-02-01

    The influence of NMDA and metabotropic neostriatal glutamate receptors blockade to avoidance conditioning (in shuttle box) and free locomotor behavior (in open field) in chronic experiments in rats were investigated. The glutamate receptor antagonists were injected bilateral into striatum separately and with the GABA-A receptor antagonist picrotoxin (2 microg), that produced in rats the impairment of avoidance conditioning and choreo-myoklonic hyperkinesis. The most effective in preventing of negative picrotoxin influence on behavior was 5-type metabotropic glutamate receptors antagonist MTEP (3 microg). Separately injected MTEP did not influence on avoidance conditioning and free locomotor behavior. Unlike that, 1-type metabotropic glutamate receptors antagonist EMQMCM (3 microg) impaired normal locomotor behavior and did not prevent the picrotoxin effects. The NMDA glutamate receptors MK 801 (disocilpin--1 and 5 microg) impaired the picrotoxin-induced hyperkinesis, but did not to prevent the negative effects on avoidance conditioning; separately injected MK 801 reduced free locomotor activity. Based on location of investigated receptor types in neostriatal neurons membranes, we proposed that the most effective influence on 5-type metabotropic glutamate receptors is associated with their involvement in "indirect" efferent pathway, suffered in hyperkinetic extrapyramidal motor dysfunction--Huntington's chorea in human.

  4. Cellular respiration, oxygen consumption, and trade-offs of the jellyfish Cassiopea sp. in response to temperature change

    NASA Astrophysics Data System (ADS)

    Aljbour, Samir M.; Zimmer, Martin; Kunzmann, Andreas

    2017-10-01

    Pelagic jellyfish blooms are increasing worldwide as a potential response to climate-change. However, virtually nothing is known about physiological responses of jellyfish to e.g. sudden changes in water temperature due to extreme weather events. When confronted with a sudden decrease or increase in water temperature by 6 °C, medusae of Cassiopea sp. exhibited a strong response in locomotor activity (i.e., bell pulsation increased and decreased by ca. 37 and 46% in hot and cold acute (2 h) treatments, respectively) relative to control. Although medusae significantly gained in body mass (wet weight) upon chronic (2 weeks) heat treatment, their body size (e.g., bell diameter) did not change over this time interval. In contrast, chronic cold treatment resulted in both significant shrinking (reduced diameter) and mass loss. Measurements of mitochondrial electron transport system (ETS) activities and rate of respiratory oxygen uptake (MO2) are good estimates of energy consumption and the potential aerobic metabolic rates of an organism. While both acute treatments significantly increased ETS-activities, acclimation over two weeks resulted in a drop in activities to the control levels. Whereas acute heat treatment significantly increased MO2, chronic exposure resulted in significant MO2 decrease compared to control; however no changes in MO2 could be observed in both acute and chronic cold treatments. Overall these results suggest an enhanced growth in response to global warming, whereas low temperatures may set the limits for successful invasion of Cassiopea into colder water bodies. Our results provide a framework for understanding the physiological tolerance of Cassiopea under possible future climate changes.

  5. DRUG EFFECTS ON THE LOCOMOTOR ACTIVITY OF LARVAL ZEBRAFISH.

    EPA Science Inventory

    As part of an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae and the effects of prototype drugs. Zebrafish larvae (6-7 days post-fertilization) were indiv...

  6. Effects of cholestasis on learning and locomotor activity in bile duct ligated rats.

    PubMed

    Hosseini, Nasrin; Alaei, Hojjatallah; Nasehi, Mohammad; Radahmadi, Maryam; Mohammad Reza, Zarrindast

    2014-01-01

    Cognitive functions are impaired in patients with liver disease. Bile duct ligation causes cholestasis that impairs liver function. This study investigated the impact of cholestasis progression on the acquisition and retention times in the passive avoidance test and on the locomotor activity of rats. Cholestasis was induced in male Wistar rats by ligating the main bile duct. Locomotor activity, learning and memory were assessed by the passive avoidance learning test at day 7, day 14, and day 21 post-bile duct ligation. The serum levels of bilirubin, alanine aminotransferase, and alkaline phosphatase were measured. The results showed that acquisition time and locomotor activity were not affected at day 7 and day 14, but they were significantly (P < 0.05) impaired at day 21 post-bile duct ligation compared with the results for the control group. Additionally, memory was significantly impaired on day 7 (P < 0.01), day 14, and day 21 (P < 0.001) compared with the control groups. The levels of total bilirubin, direct bilirubin, indirect bilirubin, alanine aminotransferase, and alkaline phosphatase were significantly higher at day 7, day 14, and day 21 post-bile duct ligation compared with the levels in the sham group. Based on these findings, both liver and memory function were affected in the early stage of cholestasis (7 days after bile duct ligation), while learning and locomotor activity were impaired at 21 days after bile duct ligation following the progression of cholestasis.

  7. Acute phase response and plasma carotenoid concentrations in older women: findings from the nun study.

    PubMed

    Boosalis, M G; Snowdon, D A; Tully, C L; Gross, M D

    1996-01-01

    This cross-sectional study investigated whether the acute phase response was associated with suppressed circulating levels of antioxidants in a population of 85 Catholic sisters (nuns) ages 77-99 y. Fasting blood was drawn to determine the presence of an acute phase response, as defined by an elevation in the serum concentration of C-reactive protein. Serum concentrations of albumin, thyroxine-binding prealbumin, zinc, copper, and fibrinogen were determined as were plasma concentrations of carotenoids and alpha tocopherol. Results showed that the presence of an acute phase response was associated with (1) an expected significant decrease in the serum concentrations of albumin (p < 0.001) and thyroxine-binding prealbumin (p < 0.001); (2) an expected significant increase in copper (p < 0.001) and fibrinogen (p = 0.003); and (3) a significant decrease in the plasma concentrations of lycopene (p = 0.03), alpha carotene (p = 0.02), beta carotene (p = 0.02), and total carotenoids (p = 0.01). The acute phase response was associated with decreased plasma levels of the antioxidants lycopene, alpha carotene, and beta carotene. This decrease in circulating antioxidants may further compromise antioxidant status and increase oxidative stress and damage in elders.

  8. The within-match patterns of locomotor efficiency during professional soccer match play: Implications for injury risk?

    PubMed

    Barrett, Steve; Midgley, Adrian; Reeves, Matt; Joel, Tom; Franklin, Ed; Heyworth, Rob; Garrett, Andrew; Lovell, Ric

    2016-10-01

    The principle aim of the current study was to examine within-match patterns of locomotor efficiency in professional soccer, determined as the ratio between tri-axial accelerometer data (PlayerLoad™) and locomotor activities. Between match variability and determinants of PlayerLoad™ during match play were also assessed. A single cohort, observational study. Tri-axial accelerometer data (PlayerLoad™) was recorded during 86 competitive soccer matches in 63 English championship players (574 match observations). Accelerometer data accumulated (PlayerLoad Vector Magnitude [PLVM]) from the individual-component planes of PlayerLoad™ (anterior-posterior PlayerLoad™ [PLAP], medial-lateral PlayerLoad™ [PLML] and vertical PlayerLoad™ [PLV]), together with locomotor activity (Total Distance Covered [TDC]) were determined in 15-min segments. Locomotor efficiency was calculated using the ratio of PLVM and TDC (PlayerLoad™ per metre). The proportion of variance explaining the within-match trends in PLVM, PLAP, APML, APv, and TDC was determined owing to matches, individual players, and positional role. PLVM, PLAP, APML, APv and TDC reduced after the initial 15-min match period (p=0.001; η(2)=0.22-0.43, large effects). PL:TDC increased in the last 15min of each half (p=0.001; η(2)=0.25, large effect). The variance in PLVM during soccer match-play was explained by individual players (63.9%; p=0.001) and between-match variation (21.6%; p=0.001), but not positional role (14.1%; p=0.364). Locomotor efficiency is lower during the latter stages of each half of competitive soccer match-play, a trend synonymous with observations of increased injury incidence and fatigue in these periods. Locomotor efficiency may be a valuable metric to identify fatigue and heightened injury risk during soccer training and match-play. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  9. Aerobic Fitness Level Affects Cardiovascular and Salivary Alpha Amylase Responses to Acute Psychosocial Stress.

    PubMed

    Wyss, Thomas; Boesch, Maria; Roos, Lilian; Tschopp, Céline; Frei, Klaus M; Annen, Hubert; La Marca, Roberto

    2016-12-01

    Good physical fitness seems to help the individual to buffer the potential harmful impact of psychosocial stress on somatic and mental health. The aim of the present study is to investigate the role of physical fitness levels on the autonomic nervous system (ANS; i.e. heart rate and salivary alpha amylase) responses to acute psychosocial stress, while controlling for established factors influencing individual stress reactions. The Trier Social Stress Test for Groups (TSST-G) was executed with 302 male recruits during their first week of Swiss Army basic training. Heart rate was measured continuously, and salivary alpha amylase was measured twice, before and after the stress intervention. In the same week, all volunteers participated in a physical fitness test and they responded to questionnaires on lifestyle factors and personal traits. A multiple linear regression analysis was conducted to determine ANS responses to acute psychosocial stress from physical fitness test performances, controlling for personal traits, behavioural factors, and socioeconomic data. Multiple linear regression revealed three variables predicting 15 % of the variance in heart rate response (area under the individual heart rate response curve during TSST-G) and four variables predicting 12 % of the variance in salivary alpha amylase response (salivary alpha amylase level immediately after the TSST-G) to acute psychosocial stress. A strong performance at the progressive endurance run (high maximal oxygen consumption) was a significant predictor of ANS response in both models: low area under the heart rate response curve during TSST-G as well as low salivary alpha amylase level after TSST-G. Further, high muscle power, non-smoking, high extraversion, and low agreeableness were predictors of a favourable ANS response in either one of the two dependent variables. Good physical fitness, especially good aerobic endurance capacity, is an important protective factor against health

  10. Methamphetamine-Induced Locomotor Changes are Dependent on Age, Dose and Genotype

    PubMed Central

    Good, Renee L.; Radcliffe, Richard A.

    2012-01-01

    Adolescence is a critical age for addiction formation as a large percentage of pathological drug-seeking behaviors manifest during this time. The extent to which neurotoxic effects of drugs of abuse influence subsequent drug seeking behaviors and impulsivity is an understudied area of research. Methamphetamine (METH) is a widely abused drug that produces locomotor responses ranging from behavioral sensitization to tolerance, both of which are behaviors that may relate to risk of abuse. Here we investigated the effects of age, genotype, METH dose, including a neurotoxic dose, and METH metabolism on open-field activity (OFA) to gain insight into the complex disease of drug abuse. C57Bl/6 (B6), DBA/2 (D2), and 129S6SvEv/Tac (129) mouse strains were administered saline or either a high dose (4 × 5 mg/kg in 2h intervals for 2 days) or low dose (2 × 1 mg/kg in 24h intervals) METH pretreatment during adolescence (post natal day (PND) 40) or early adulthood (PND 80) followed by behavioral testing with a METH (1 mg/kg) or saline challenge 40 days later. Striatal concentrations of METH and AMPH were also determined. Significant findings include: 1) METH pretreated adolescent B6 mice displayed significant sensitization for horizontal locomotion due to high dose METH pretreatment; 2) METH pretreated B6 adults showed significant tolerance for the vertical activity measure caused by low dose METH pretreatment; 3) METH pretreated adult D2 mice exhibited significant sensitization for vertical activity induced by low dose METH pretreatment, and 4) 129 mice metabolized METH significantly faster than the B6 and D2 mice, but METH pretreatment did not alter metabolism. No significant behavioral responses to either METH pretreatment dose were observed for the D2 adolescent studies or either 129 age group. Our results highlight the importance of the interactions of age, strain and METH dose on locomotor behavioral outcomes. PMID:21163294

  11. Effects of scallop shell extract on scopolamine-induced memory impairment and MK801-induced locomotor activity.

    PubMed

    Hasegawa, Yasushi; Inoue, Tatsuro; Kawaminami, Satoshi; Fujita, Miho

    2016-07-01

    To evaluate the neuroprotective effects of the organic components of scallop shells (scallop shell extract) on memory impairment and locomotor activity induced by scopolamine or 5-methyl-10,11-dihydro-5H-dibenzo (a,d) cyclohepten-5,10-imine (MK801). Effect of the scallop shell extract on memory impairment and locomotor activity was investigated using the Y-maze test, the Morris water maze test, and the open field test. Scallop shell extract significantly reduced scopolamine-induced short-term memory impairment and partially reduced scopolamine-induced spatial memory impairment in the Morris water maze test. Scallop shell extract suppressed scopolamine-induced elevation of acetylcholine esterase activity in the cerebral cortex. Treatment with scallop shell extract reversed the increase in locomotor activity induced by scopolamine. Scallop shell extract also suppressed the increase in locomotor activity induced by MK801. Our results provide initial evidence that scallop shell extract reduces scopolamine-induced memory impairment and suppresses MK-801-induced hyperlocomotion. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  12. Differential Effects of Sex Pheromone Compounds on Adult Female Sea Lamprey (Petromyzon marinus) Locomotor Patterns.

    PubMed

    Walaszczyk, Erin J; Goheen, Benjamin B; Steibel, Juan Pedro; Li, Weiming

    2016-06-01

    Synchronization of male and female locomotor activity plays a critical role in ensuring reproductive success, especially in semelparous species. The goal of this study was to elucidate the effects of individual chemical signals, or pheromones, on the locomotor activity in the sea lamprey (Petromyzon marinus). In their native habitat, adult preovulated females (POF) and ovulated females (OF) are exposed to sex pheromone compounds that are released from spermiated males and attract females to nests during their migration and spawning periods. In this study, locomotor activity of individual POF and OF was measured hourly in controlled laboratory conditions using an automated video-tracking system. Differences in the activity between a baseline day (no treatment exposure) and a treatment day (sex pheromone compound or control exposure) were examined for daytime and nighttime periods. Results showed that different pheromone compound treatments affected both POF and OF sea lamprey (p < 0.05) but in different ways. Spermiated male washings (SMW) and one of its main components, 7α,12α,24-trihydroxy-5α-cholan-3-one 24 sulfate (3kPZS), decreased activity of POF during the nighttime. SMW also reduced activity in POF during the daytime. In contrast, SMW increased activity of OF during the daytime, and an additional compound found in SMW, petromyzonol sulfate (PZS), decreased the activity during the nighttime. In addition, we examined factors that allowed us to infer the overall locomotor patterns. SMW increased the maximum hourly activity during the daytime, decreased the maximum hourly activity during the nighttime, and reduced the percentage of nocturnal activity in OF. Our findings suggest that adult females have evolved to respond to different male compounds in regards to their locomotor activity before and after final maturation. This is a rare example of how species-wide chemosensory stimuli can affect not only the amounts of activity but also the overall locomotor

  13. Acute alcohol response phenotype in heavy social drinkers is robust and reproducible.

    PubMed

    Roche, Daniel J O; Palmeri, Michael D; King, Andrea C

    2014-03-01

    In 3 previously published works (Brumback et al., 2007, Drug Alcohol Depend 91:10-17; King et al., 2011a, Arch Gen Psychiatry 68:389-399; Roche and King, 2010, Psychopharmacology (Berl) 212:33-44), our group characterized acute alcohol responses in a large group of young, heavy binge drinkers (n = 104) across a variety of subjective, eye-tracking, and psychometric performance measures. The primary goal of the current study was to directly replicate prior findings of alcohol response in heavy social drinkers (HD) in a second independent cohort (n = 104) using identical methodology. A secondary goal was to examine the effects of family history (FH) of alcohol use disorders (AUD) on acute alcohol response in both samples. Participants attended 2 randomized laboratory sessions in which they consumed 0.8 g/kg alcohol or a taste-masked placebo. At pre- and post-drink time points, participants completed subjective scales, psychomotor performance and eye-movement tasks, and provided salivary samples for cortisol determination. Results showed that the second cohort of heavy drinkers exhibited a nearly identical pattern of alcohol responses to the original cohort, including sensitivity to alcohol's stimulating and hedonically rewarding effects during the rising breath alcohol content (BrAC) limb, increases in sedation during the declining BrAC limb, a lack of cortisol response, and psychomotor and eye-tracking impairment that was most evident at peak BrAC. The magnitude and temporal pattern of these acute effects of alcohol in the second cohort were similar to the first cohort across all measures, with the exception of 3 eye-movement measures: pro- and antisaccade accuracy and antisaccade velocity. FH of AUD did not affect alcohol response in the first cohort, and this was replicated in the second cohort. In sum, in 2 independent samples, we have demonstrated that HD display a consistent and reliable sensitivity to alcohol's subjective effects and impairment of eye

  14. A pair of dopamine neurons target the D1-like dopamine receptor DopR in the central complex to promote ethanol-stimulated locomotion in Drosophila.

    PubMed

    Kong, Eric C; Woo, Katherine; Li, Haiyan; Lebestky, Tim; Mayer, Nasima; Sniffen, Melissa R; Heberlein, Ulrike; Bainton, Roland J; Hirsh, Jay; Wolf, Fred W

    2010-04-01

    Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol.

  15. Drosophila Clock Is Required in Brain Pacemaker Neurons to Prevent Premature Locomotor Aging Independently of Its Circadian Function

    PubMed Central

    Issa, Abdul-Raouf; Seugnet, Laurent; Klarsfeld, André

    2017-01-01

    Circadian clocks control many self-sustained rhythms in physiology and behavior with approximately 24-hour periodicity. In many organisms, oxidative stress and aging negatively impact the circadian system and sleep. Conversely, loss of the clock decreases resistance to oxidative stress, and may reduce lifespan and speed up brain aging and neurodegeneration. Here we examined the effects of clock disruptions on locomotor aging and longevity in Drosophila. We found that lifespan was similarly reduced in three arrhythmic mutants (ClkAR, cyc0 and tim0) and in wild-type flies under constant light, which stops the clock. In contrast, ClkAR mutants showed significantly faster age-related locomotor deficits (as monitored by startle-induced climbing) than cyc0 and tim0, or than control flies under constant light. Reactive oxygen species accumulated more with age in ClkAR mutant brains, but this did not appear to contribute to the accelerated locomotor decline of the mutant. Clk, but not Cyc, inactivation by RNA interference in the pigment-dispersing factor (PDF)-expressing central pacemaker neurons led to similar loss of climbing performance as ClkAR. Conversely, restoring Clk function in these cells was sufficient to rescue the ClkAR locomotor phenotype, independently of behavioral rhythmicity. Accelerated locomotor decline of the ClkAR mutant required expression of the PDF receptor and correlated to an apparent loss of dopaminergic neurons in the posterior protocerebral lateral 1 (PPL1) clusters. This neuronal loss was rescued when the ClkAR mutation was placed in an apoptosis-deficient background. Impairing dopamine synthesis in a single pair of PPL1 neurons that innervate the mushroom bodies accelerated locomotor decline in otherwise wild-type flies. Our results therefore reveal a novel circadian-independent requirement for Clk in brain circadian neurons to maintain a subset of dopaminergic cells and avoid premature locomotor aging in Drosophila. PMID:28072817

  16. MK-801-induced locomotor activity in long-sleep x short-sleep recombinant inbred mouse strains: correlational analysis with low-dose ethanol and provisional quantitative trait loci.

    PubMed

    Zahniser, N R; Negri, C A; Hanania, T; Gehle, V M

    1999-11-01

    Low doses of the N-methyl-D-aspartate receptor (NMDAR) antagonist MK-801 (dizocilpine) or ethanol increase locomotor activity to a lesser extent in long-sleep (LS), than in short-sleep (SS), mice. LS mice also have fewer brain [3H]MK-801 binding sites than SS mice. In this study, LSXSS recombinant inbred (RI) mice were used to investigate whether different NMDAR densities contribute to differential MK-801 activation and whether common genes are involved in initial sensitivity to MK-801-and ethanol-induced activation. Locomotor activity was measured for 90 min after saline or MK-801 injection. Quantitative autoradiographic analysis of [3H]MK-801 binding was used to measure densities of NMDARs in seven brain regions. The ethanol (1-2 g/kg) activation scores from Erwin and colleagues (1997) were used for correlational analysis, as was their method for quantitative trait loci (QTL) analysis. Both saline and MK-801 (0.3 mg/kg, given intraperitoneally) induced a continuum of locomotor responses across the LSXSS RI strains. There was a 4-fold range of MK-801 difference scores (MK-801 score-saline baseline), with the RI 9 and RI 4 strains representing low and high responders, respectively. Dose-response experiments with these two strains confirmed that 0.3 mg/kg MK-801 produced significant activation, similar to previous results with LS and SS mice. However, unlike previous LS/SS results, lower densities of NMDARs were not observed in the RI 9 than in the RI 4 mouse brains. No significant genetic correlations were observed between MK-801-induced and ethanol-induced responses in the LSXSS RI mice. Two provisional MK-801 activation QTLs were identified (p < 0.01) on chromosomes 11 and 19, neither in common with those mapped for ethanol activation. Different densities of brain NMDARs are unlikely to account for the differential activation of LSXSS RI mice by MK-801. Additionally, in the RI mice either separate sets of genes regulate low dose MK-801- and ethanol

  17. Sex-Related Differences in Mood Responses to Acute Aerobic Exercise.

    PubMed

    McDowell, Cillian P; Campbell, Mark J; Herring, Matthew P

    2016-09-01

    Although some evidence supports stronger mood improvements in response to acute exercise among women, sex-related differences remain understudied. This study aimed to quantify and compare differences in baseline mood and the magnitude of mood responses to either acute aerobic exercise or quiet rest among young adult men and women. Fifty-three young adults (27 males and 26 females) completed two counterbalanced conditions: 30 min of vigorous treadmill exercise or 30 min of quiet rest. Outcomes included state anxiety, worry symptoms, and feelings of tension, depression, vigor, fatigue, anger, and confusion. ANOVA and RM-ANOVA examined sex-related differences at baseline and across condition and time, respectively. Hedges' d (95% CI) values were calculated to quantify and compare the magnitude of change in response to exercise compared with control. Females were more likely to report scores indicative of depression (Quick Inventory of Depressive Symptoms > 5; 38.5% vs 18.5%) and high trait anxiety (≥1 SD above age- and sex-related norm on the trait subscale of the State-Trait Anxiety Inventory; 26.9% vs 3.7%). Baseline worry symptoms and trait anxiety were significantly higher among females (P < 0.02). Although repeated-measures models did not support statistically significant differences between sexes, the magnitude of improvement in mood outcomes was larger among females than males for all outcomes other than feelings of tension. Compared with quiet rest, exercise significantly improved feelings of fatigue (d = 0.59, 95% CI = 0.01-1.17), confusion (d = 0.83, 95% CI = 0.24-1.41), and energy (d = 1.67, 95% CI = 1.02-2.33), and total mood disturbance (d = 1.09, 95% CI = 0.49-1.70) and resulted in a nonsignificant, moderate-sized improvement in state anxiety (d = 0.51, 95% CI = -0.07 to 1.08) among females. Findings support potential sex-related differences in mood response to acute aerobic exercise, with larger improvements found among females. Future research should

  18. Interrupted breeding in a songbird migrant triggers development of nocturnal locomotor activity.

    PubMed

    Mukhin, Andrey; Kobylkov, Dmitry; Kishkinev, Dmitry; Grinkevich, Vitaly

    2018-04-03

    Long-distance avian migrants, e.g. Eurasian reed warblers (Acrocephalus scirpaceus), can precisely schedule events of their annual cycle. However, the proximate mechanisms controlling annual cycle and their interplay with environmental factors are poorly understood. We artificially interrupted breeding in reed warblers by bringing them into captivity and recording birds' locomotor activity for 5-7 days. Over this time, most of the captive birds gradually developed nocturnal locomotor activity not observed in breeding birds. When the birds were later released and radio-tracked, the individuals with highly developed caged activity performed nocturnal flights. We also found that reed warblers kept indoors without access to local cues developed a higher level of nocturnal activity compared to the birds kept outdoors with an access to the familiar environment. Also, birds translocated from a distant site (21 km) had a higher motivation to fly at night-time after release compared to the birds captured within 1 km of a study site. Our study suggests that an interrupted breeding triggers development of nocturnal locomotor activity in cages, and the level of activity is correlated with motivation to perform nocturnal flights in the wild, which can be restrained by familiar environment.

  19. Relationship between cognitive emotion regulation, social support, resilience and acute stress responses in Chinese soldiers: Exploring multiple mediation model.

    PubMed

    Cai, Wen-Peng; Pan, Yu; Zhang, Shui-Miao; Wei, Cun; Dong, Wei; Deng, Guang-Hui

    2017-10-01

    The current study aimed to explore the association of cognitive emotion regulation, social support, resilience and acute stress responses in Chinese soldiers and to understand the multiple mediation effects of social support and resilience on the relationship between cognitive emotion regulation and acute stress responses. A total of 1477 male soldiers completed mental scales, including the cognitive emotion regulation questionnaire-Chinese version, the perceived social support scale, the Chinese version of the Connor-Davidson resilience scale, and the military acute stress scale. As hypothesized, physiological responses, psychological responses, and acute stress were associated with negative-focused cognitive emotion regulation, and negatively associated with positive-focused cognitive emotion regulation, social supports and resilience. Besides, positive-focused cognitive emotion regulation, social support, and resilience were significantly associated with one another, and negative-focused cognitive emotion regulation was negatively associated with social support. Regression analysis and bootstrap analysis showed that social support and resilience had partly mediating effects on negative strategies and acute stress, and fully mediating effects on positive strategies and acute stress. These results thus indicate that military acute stress is significantly associated with cognitive emotion regulation, social support, and resilience, and that social support and resilience have multiple mediation effects on the relationship between cognitive emotion regulation and acute stress responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. From acute to chronic postsurgical pain: the significance of the acute pain response.

    PubMed

    Blichfeldt-Eckhardt, Morten Rune

    2018-03-01

    The thesis comprises an overview and four papers, all published or submitted for publication in international peer-reviewed scientific journals.
 
Chronic pain after surgery is a common and debilitating complication after many types of surgery. The cause and pathology behind is still mainly uncovered, though several risk factors have been proposed. One of the strongest risk factors for persistent postsurgical pain is the intensity of the acute pain response though the mechanisms involved remain unsettled. The acute pain response consists of several different types of pain (i.e. somatic pain, visceral pain, referred pain, neuropathic pain). It's uncovered whether some components of the acute pain response are closer correlated to chronic pain than others and whether treatment of acute pain can change the risk of developing chronic pain.
 The aim of the thesis was to investigate which components of the acute pain response, was correlated to chronic postsurgical pain in patients for cholecystectomy and lobectomy.
 Furthermore, to study the type and time course of ipsilateral shoulder pain after lobectomy and whether an ultrasound-guided supraclavicular phrenic nerve block was effective in preventing acute and chronic shoulder pain after major thoracic surgery.
 Paper I is based on a prospective, observational, multicenter, cohort study, in which 100 patients for cholecystectomy was examined preoperatively, 1 week postoperatively and 3, 6, and 12 months postoperatively for pain, psychological factors and signs of hypersensitivity.
 Paper II and III are based on a prospective, observational, cohort study, in which 60 patients for lobectomy ware examined preoperatively, 4 days postoperatively and 12 months postoperatively for pain, psychological factors and signs of hypersensitivity. 
Paper IV is based on a prospective, randomized, double-blind and placebo-controlled trial, where 76 patients were randomized to receive ultrasound guided supraclavicular

  1. Modeling locomotor dysfunction following spaceflight with Galvanic vestibular stimulation.

    PubMed

    Moore, Steven T; MacDougall, Hamish G; Peters, Brian T; Bloomberg, Jacob J; Curthoys, Ian S; Cohen, Helen S

    2006-10-01

    In this study locomotor and gaze dysfunction commonly observed in astronauts following spaceflight were modeled using two Galvanic vestibular stimulation (GVS) paradigms: (1) pseudorandom, and (2) head-coupled (proportional to the summed vertical linear acceleration and yaw angular velocity obtained from a head-mounted Inertial Measurement Unit). Locomotor and gaze function during GVS were assessed by tests previously used to evaluate post-flight astronaut performance; dynamic visual acuity (DVA) during treadmill locomotion at 80 m/min, and navigation of an obstacle course. During treadmill locomotion with pseudorandom GVS there was a 12% decrease in coherence between head pitch and vertical translation at the step frequency relative to the no GVS condition, which was not significantly different to the 15% decrease in coherence observed in astronauts following shuttle missions. This disruption in head stabilization likely resulted in a decrease in DVA equivalent to the reduction in acuity observed in astronauts 6 days after return from extended missions aboard the International Space Station (ISS). There were significant increases in time-to-completion of the obstacle course during both pseudorandom (21%) and head-coupled (14%) GVS, equivalent to an ISS astronaut 5 days post-landing. An attempt to suppress head movement was evident during both pseudorandom and head-coupled GVS while negotiating the obstacle course, with a 20 and 16%, decrease in head pitch and yaw velocity, respectively. The results of this study demonstrate that pseudorandom GVS generates many of the salient features of post-flight locomotor dysfunction observed in astronauts following short and long duration missions. An ambulatory GVS system may prove a useful adjunct to the current pre-flight astronaut training regimen.

  2. Sound Stabilizes Locomotor-Respiratory Coupling and Reduces Energy Cost

    PubMed Central

    Hoffmann, Charles P.; Torregrosa, Gérald; Bardy, Benoît G.

    2012-01-01

    A natural synchronization between locomotor and respiratory systems is known to exist for various species and various forms of locomotion. This Locomotor-Respiratory Coupling (LRC) is fundamental for the energy transfer between the two subsystems during long duration exercise and originates from mechanical and neurological interactions. Different methodologies have been used to compute LRC, giving rise to various and often diverging results in terms of synchronization, (de-)stabilization via information, and associated energy cost. In this article, the theory of nonlinear-coupled oscillators was adopted to characterize LRC, through the model of the sine circle map, and tested it in the context of cycling. Our specific focus was the sound-induced stabilization of LRC and its associated change in energy consumption. In our experimental study, participants were instructed during a cycling exercise to synchronize either their respiration or their pedaling rate with an external auditory stimulus whose rhythm corresponded to their individual preferential breathing or cycling frequencies. Results showed a significant reduction in energy expenditure with auditory stimulation, accompanied by a stabilization of LRC. The sound-induced effect was asymmetrical, with a better stabilizing influence of the metronome on the locomotor system than on the respiratory system. A modification of the respiratory frequency was indeed observed when participants cycled in synchrony with the tone, leading to a transition toward more stable frequency ratios as predicted by the sine circle map. In addition to the classical mechanical and neurological origins of LRC, here we demonstrated using the sine circle map model that information plays an important modulatory role of the synchronization, and has global energetic consequences. PMID:23028849

  3. Intraspinal serotonergic signaling suppresses locomotor activity in larval zebrafish.

    PubMed

    Montgomery, Jacob E; Wahlstrom-Helgren, Sarah; Wiggin, Timothy D; Corwin, Brittany M; Lillesaar, Christina; Masino, Mark A

    2018-06-19

    Serotonin (5HT) is a modulator of many vital processes in the spinal cord (SC), such as production of locomotion. In the larval zebrafish, intraspinal serotonergic neurons (ISNs) are a source of spinal 5HT that, despite the availability of numerous genetic and optical tools, has not yet been directly shown to affect the spinal locomotor network. In order to better understand the functions of ISNs, we used a combination of strategies to investigate ISN development, morphology, and function. ISNs were optically isolated from one another by photoconverting Kaede fluorescent protein in individual cells, permitting morphometric analysis as they developed in vivo. ISN neurite lengths and projection distances exhibited the greatest amount of change between 3 and 4 days post-fertilization (dpf) and appeared to stabilize by 5 dpf. Overall ISN innervation patterns were similar between cells and between SC regions. ISNs possessed rostrally-extending neurites resembling dendrites and a caudally-extending neurite resembling an axon, which terminated with an enlarged growth cone-like structure. Interestingly, these enlargements remained even after neurite extension had ceased. Functionally, application of exogenous 5HT reduced spinally-produced motor nerve bursting. A selective 5HT reuptake inhibitor and ISN activation with channelrhodopsin each produced similar effects to 5HT, indicating that spinally-intrinsic 5HT originating from the ISNs has an inhibitory effect on the spinal locomotor network. Taken together this suggests that the ISNs are morphologically mature by 5 dpf and supports their involvement in modulating the activity of the spinal locomotor network. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  4. Acute injury in the peripheral nervous system triggers an alternative macrophage response

    PubMed Central

    2012-01-01

    Background The activation of the immune system in neurodegeneration has detrimental as well as beneficial effects. Which aspects of this immune response aggravate the neurodegenerative breakdown and which stimulate regeneration remains an open question. To unravel the neuroprotective aspects of the immune system we focused on a model of acute peripheral nerve injury, in which the immune system was shown to be protective. Methods To determine the type of immune response triggered after axotomy of the sciatic nerve, a model for Wallerian degeneration in the peripheral nervous system, we evaluated markers representing the two extremes of a type I and type II immune response (classical vs. alternative) using real-time quantitative polymerase chain reaction (RT-qPCR), western blot, and immunohistochemistry. Results Our results showed that acute peripheral nerve injury triggers an anti-inflammatory and immunosuppressive response, rather than a pro-inflammatory response. This was reflected by the complete absence of classical macrophage markers (iNOS, IFNγ, and IL12p40), and the strong up-regulation of tissue repair markers (arginase-1, Ym1, and Trem2). The signal favoring the alternative macrophage environment was induced immediately after nerve damage and appeared to be established within the nerve, well before the infiltration of macrophages. In addition, negative regulators of the innate immune response, as well as the anti-inflammatory cytokine IL-10 were induced. The strict regulation of the immune system dampens the potential tissue damaging effects of an over-activated response. Conclusions We here demonstrate that acute peripheral nerve injury triggers an inherent protective environment by inducing the M2 phenotype of macrophages and the expression of arginase-1. We believe that the M2 phenotype, associated with a sterile inflammatory response and tissue repair, might explain their neuroprotective capacity. As such, shifting the neurodegeneration-induced immune

  5. Time matters - acute stress response and glucocorticoid sensitivity in early multiple sclerosis.

    PubMed

    Kern, Simone; Rohleder, Nicolas; Eisenhofer, Graeme; Lange, Jan; Ziemssen, Tjalf

    2014-10-01

    Psychosocial stress has frequently been associated with disease activity and acute exacerbations in multiple sclerosis (MS). Despite this well established finding, strikingly little is known about the acute hypothalamic-pituitary-adrenal (HPA) and sympathetic-adrenal-medullary (SAM) stress response in MS. Twenty-six early relapsing-remitting MS (RRMS) patients and seventeen age- and sex-matched healthy control subjects (CS) took part in the Trier Social Stress Test (TSST), a well validated psycho-social laboratory stress protocol. Repeated blood samples were analyzed for stress-related cortisol and catecholamine levels as well as for glucocorticoid sensitivity (GCS) of target immune cells. Chronic and acute stress appraisals were assessed by self-report measures. RRMS patients and CS did not differ in stress-related cortisol/catecholamine levels, GCS or stress appraisal in response to the TSST. However, cortisol release as well as GCS was strongly correlated with time since diagnosis but not with neurological disability. Patients with shorter disease duration (2-12 months) expressed a significantly higher cortisol stress response while MS patients with longer disease duration (14-36 months) showed a significantly diminished HPA response as well as lower post-stress GCS. There is evidence for a time-dependent variability in the HPA stress system with an increased cortisol stress response in the first year after diagnosis along with a more blunted HPA stress response and a diminished GCS in subsequent disease stages. Data underscore the highly dynamic nature of HPA axis regulation in the MS disease process, which could possibly relate to compensatory mechanisms within a cytokine-HPA axis feedback circuit model. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Pulmonary vascular responses during acute and sustained respiratory alkalosis or acidosis in intact newborn piglets.

    PubMed

    Gordon, J B; Rehorst-Paea, L A; Hoffman, G M; Nelin, L D

    1999-12-01

    Acute alkalosis-induced pulmonary vasodilation and acidosis-induced pulmonary vasoconstriction have been well described, but responses were generally measured within 5-30 min of changing pH. In contrast, several in vitro studies have found that relatively brief periods of sustained alkalosis can enhance, and sustained acidosis can decrease, vascular reactivity. In this study of intact newborn piglets, effects of acute (20 min) and sustained (60-80 min) alkalosis or acidosis on baseline (35% O2) and hypoxic (12% O2) pulmonary vascular resistance (PVR) were compared with control piglets exposed only to eucapnia. Acute alkalosis decreased hypoxic PVR, but sustained alkalosis failed to attenuate either baseline PVR or the subsequent hypoxic response. Acute acidosis did not significantly increase hypoxic PVR, but sustained acidosis markedly increased both baseline PVR and the subsequent hypoxic response. Baseline PVR was similar in all piglets after resumption of eucapnic ventilation, but the final hypoxic response was greater in piglets previously exposed to alkalosis than in controls. Thus, hypoxic pulmonary vasoconstriction was not attenuated during sustained alkalosis, but was accentuated during sustained acidosis and after the resumption of eucapnia in alkalosis-treated piglets. Although extrapolation of data from normal piglets to infants and children with pulmonary hypertension must be done with caution, this study suggests that sustained alkalosis may be of limited efficacy in treating acute hypoxia-induced pulmonary hypertension and the risks of pulmonary hypertension must be considered when using ventilator strategies resulting in permissive hypercapnic acidosis.

  7. Cumulative exposure to prior collective trauma and acute stress responses to the Boston marathon bombings.

    PubMed

    Garfin, Dana Rose; Holman, E Alison; Silver, Roxane Cohen

    2015-06-01

    The role of repeated exposure to collective trauma in explaining response to subsequent community-wide trauma is poorly understood. We examined the relationship between acute stress response to the 2013 Boston Marathon bombings and prior direct and indirect media-based exposure to three collective traumatic events: the September 11, 2001 (9/11) terrorist attacks, Superstorm Sandy, and the Sandy Hook Elementary School shooting. Representative samples of residents of metropolitan Boston (n = 846) and New York City (n = 941) completed Internet-based surveys shortly after the Boston Marathon bombings. Cumulative direct exposure and indirect exposure to prior community trauma and acute stress symptoms were assessed. Acute stress levels did not differ between Boston and New York metropolitan residents. Cumulative direct and indirect, live-media-based exposure to 9/11, Superstorm Sandy, and the Sandy Hook shooting were positively associated with acute stress responses in the covariate-adjusted model. People who experience multiple community-based traumas may be sensitized to the negative impact of subsequent events, especially in communities previously exposed to similar disasters. © The Author(s) 2015.

  8. Sex-specific hippocampal 5-hydroxymethylcytosine is disrupted in response to acute stress

    PubMed Central

    Papale, Ligia A.; Li, Sisi; Madrid, Andy; Zhang, Qi; Chen, Li; Chopra, Pankaj; Jin, Peng; Keleş, Sündüz; Alisch, Reid S.

    2016-01-01

    Environmental stress is among the most important contributors to increased susceptibility to develop psychiatric disorders. While it is well known that acute environmental stress alters gene expression, the molecular mechanisms underlying these changes remain largely unknown. 5-hydroxymethylcytosine (5hmC) is a novel environmentally sensitive epigenetic modification that is highly enriched in neurons and is associated with active neuronal transcription. Recently, we reported a genome-wide disruption of hippocampal 5hmC in male mice following acute stress that was correlated to altered transcript levels of genes in known stress related pathways. Since sex-specific endocrine mechanisms respond to environmental stimulus by altering the neuronal epigenome, we examined the genome-wide profile of hippocampal 5hmC in female mice following exposure to acute stress and identified 363 differentially hydroxymethylated regions (DhMRs) linked to known (e.g., Nr3c1 and Ntrk2) and potentially novel genes associated with stress response and psychiatric disorders. Integration of hippocampal expression data from the same female mice found stress-related hydroxymethylation correlated to altered transcript levels. Finally, characterization of stress-induced sex-specific 5hmC profiles in the hippocampus revealed 778 sex-specific acute stress-induced DhMRs some of which were correlated to altered transcript levels that produce sex-specific isoforms in response to stress. Together, the alterations in 5hmC presented here provide a possible molecular mechanism for the adaptive sex-specific response to stress that may augment the design of novel therapeutic agents that will have optimal effectiveness in each sex. PMID:27576189

  9. Temporal response of positive and negative regulators in response to acute and chronic exercise training in mice

    PubMed Central

    Olenich, Sara A; Gutierrez-Reed, Navarre; Audet, Gerald N; Olfert, I Mark

    2013-01-01

    Angiogenesis is controlled by a balance between positive and negative angiogenic factors, but temporal protein expression of many key angiogenic regulators in response to exercise are still poorly defined. In C57BL/6 mice, we evaluated the temporal protein expression of several pro-angiogenic and anti-angiogenic factors in response to (1) a single acute bout of exercise and (2) chronic exercise training resulting from 3, 5, 7, 14 and 28 days of voluntary wheel running. Following acute exercise, protein levels of vascular endothelial growth factor-A (VEGF), endostatin and nucleolin were increased at 2–4 h (P < 0.05), whereas matrix metalloproteinase (MMP)-2 was elevated within a 12–24 h window (P < 0.05). Training increased muscle capillarity 11%, 15% and 22% starting with 7, 14 and 28 days of training, respectively (P < 0.01). Basal VEGF and MMP-2 were increased by 31% and 22%, respectively, compared to controls (P < 0.05) after 7 days (7d) training, but decreased to back to baseline after 14d training. After 28d training VEGF fell 49% below baseline control (P < 0.01). Basal muscle expression of thrombospondin 1 (TSP-1) was ∼900% greater in 14d- and 28d-trained mice compared to either 5d- and 7d-trained mice (P < 0.05), and tended to increase by ∼180–258% compared to basal control levels (P < 0.10). The acute responsiveness of VEGF to exercise in untrained mice (i.e. 161% increase, P < 0.001) was lost with capillary adaptation occurring after 7, 14 and 28d training. Taken together, these data support the notion that skeletal muscle angiogenesis is controlled by a balance between positive and negative mitogens, and reveals a complex, highly-coordinated, temporal scheme whereby these factors can differentially influence capillary growth in response to acute versus chronic exercise. PMID:23878369

  10. Intranasal haloperidol-loaded miniemulsions for brain targeting: Evaluation of locomotor suppression and in-vivo biodistribution.

    PubMed

    El-Setouhy, Doaa Ahmed; Ibrahim, A B; Amin, Maha M; Khowessah, Omneya M; Elzanfaly, Eman S

    2016-09-20

    Haloperidol is a commonly prescribed antipsychotic drug currently administered as oral and injectable preparations. This study aimed to prepare haloperidol intranasal miniemulsion helpful for psychiatric emergencies and exhibiting lower systemic exposure and side effects associated with non-target site delivery. Haloperidol miniemulsions were successfully prepared by spontaneous emulsification adopting 2(3) factorial design. The effect of three independent variables at two levels each namely; oil type (Capmul®-Capryol™90), lipophilic emulsifier type (Span 20-Span 80) and HLB value (12-14) on globule size, PDI and percent locomotor activity inhibition in mice was evaluated. The optimized formula (F4, Capmul®, Tween 80/Span 20, HLB 14) showed globule size of 209.5±0.98nm, PDI of 0.402±0.03 and locomotor inhibition of 83.89±9.15% with desirability of 0.907. Biodistribution study following intranasal and intravenous administration of the radiolabeled (99m)Tc mucoadhesive F4 revealed that intranasal administration achieved 1.72-fold higher and 6 times faster peak brain levels compared with intravenous administration. Drug targeting efficiency percent and brain/blood exposure ratios remained above 100% and 1 respectively after intranasal instillation compared to a maximum brain/blood exposure ratio of 0.8 post intravenous route. Results suggested the CNS delivery of major fraction of haloperidol via direct transnasal to brain pathway that can be a promising alternative to oral and parenteral routes in chronic and acute situations. Haloperidol concentration of 275.6ng/g brain 8h post intranasal instillation, higher than therapeutic concentration range of haloperidol (0.8 to 5.15ng/ml), suggests possible sustained delivery of the drug through nasal route. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Nanomolar Oxytocin Synergizes with Weak Electrical Afferent Stimulation to Activate the Locomotor CPG of the Rat Spinal Cord In Vitro

    PubMed Central

    Dose, Francesco; Zanon, Patrizia; Coslovich, Tamara; Taccola, Giuliano

    2014-01-01

    Synergizing the effect of afferent fibre stimulation with pharmacological interventions is a desirable goal to trigger spinal locomotor activity, especially after injury. Thus, to better understand the mechanisms to optimize this process, we studied the role of the neuropeptide oxytocin (previously shown to stimulate locomotor networks) on network and motoneuron properties using the isolated neonatal rat spinal cord. On motoneurons oxytocin (1 nM–1 μM) generated sporadic bursts with superimposed firing and dose-dependent depolarization. No desensitization was observed despite repeated applications. Tetrodotoxin completely blocked the effects of oxytocin, demonstrating the network origin of the responses. Recording motoneuron pool activity from lumbar ventral roots showed oxytocin mediated depolarization with synchronous bursts, and depression of reflex responses in a stimulus and peptide-concentration dependent fashion. Disinhibited bursting caused by strychnine and bicuculline was accelerated by oxytocin whose action was blocked by the oxytocin antagonist atosiban. Fictive locomotion appeared when subthreshold concentrations of NMDA plus 5HT were coapplied with oxytocin, an effect prevented after 24 h incubation with the inhibitor of 5HT synthesis, PCPA. When fictive locomotion was fully manifested, oxytocin did not change periodicity, although cycle amplitude became smaller. A novel protocol of electrical stimulation based on noisy waveforms and applied to one dorsal root evoked stereotypic fictive locomotion. Whenever the stimulus intensity was subthreshold, low doses of oxytocin triggered fictive locomotion although oxytocin per se did not affect primary afferent depolarization evoked by dorsal root pulses. Among the several functional targets for the action of oxytocin at lumbar spinal cord level, the present results highlight how small concentrations of this peptide could bring spinal networks to threshold for fictive locomotion in combination with other

  12. Sleep pattern and locomotor activity are impaired by doxorubicin in non-tumor-bearing rats.

    PubMed

    Lira, Fabio Santos; Esteves, Andrea Maculano; Pimentel, Gustavo Duarte; Rosa, José Cesar; Frank, Miriam Kannebley; Mariano, Melise Oliveira; Budni, Josiane; Quevedo, João; Santos, Ronaldo Vagner Dos; de Mello, Marco Túlio

    2016-01-01

    We sought explore the effects of doxorubicin on sleep patterns and locomotor activity. To investigate these effects, two groups were formed: a control group and a Doxorubicin (DOXO) group. Sixteen rats were randomly assigned to either the control or DOXO groups. The sleep patterns were examined by polysomnographic recording and locomotor activity was evaluated in an open-field test. In the light period, the total sleep time and slow wave sleep were decreased, while the wake after sleep onset and arousal were increased in the DOXO group compared with the control group (p<0.05). In the dark period, the total sleep time, arousal, and slow wave sleep were increased, while the wake after sleep onset was decreased in the DOXO group compared with the control group (p<0.05). Moreover, DOXO induced a decrease of crossing and rearing numbers when compared control group (p<0.05). Therefore, our results suggest that doxorubicin induces sleep pattern impairments and reduction of locomotor activity.

  13. 7α-Hydroxypregnenolone regulating locomotor behavior identified in the brain and pineal gland across vertebrates.

    PubMed

    Tsutsui, Kazuyoshi; Haraguchi, Shogo; Vaudry, Hubert

    2017-09-14

    The brain synthesizes steroids de novo from cholesterol, which are called neurosteroids. Based on extensive studies on neurosteroids over the past thirty years, it is now accepted that neurosteroidogenesis in the brain is a conserved property across vertebrates. However, the formation of bioactive neurosteroids in the brain is still incompletely elucidated in vertebrates. In fact, we recently identified 7α-hydroxypregnenolone (7α-OH PREG) as a novel bioactive neurosteroid stimulating locomotor behavior in the brain of several vertebrates. The follow-up studies have demonstrated that the stimulatory action of brain 7α-OH PREG on locomotor behavior is mediated by the dopaminergic system across vertebrates. More recently, we have further demonstrated that the pineal gland, an endocrine organ located close to the brain, is a major site of the formation of bioactive neurosteroids. In addition to the brain, the pineal gland actively produces 7α-OH PREG de novo from cholesterol as a major pineal neurosteroid that acts on the brain to control locomotor rhythms. This review summarizes the identification, biosynthesis and mode of action of brain and pineal 7α-OH PREG, a new bioactive neurosteroid regulating locomotor behavior, across vertebrates. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Behavioral Assessment of NIH Swiss Mice Acutely Intoxicated with Tetramethylenedisulfotetramine

    PubMed Central

    Flannery, Brenna M.; Silverman, Jill L.; Bruun, Donald A.; Puhger, Kyle R.; McCoy, Mark R.; Hammock, Bruce D.; Crawley, Jacqueline N.; Lein, Pamela J.

    2014-01-01

    Tetramethylenedisulfotetramine (TETS) is a potent convulsant poison that is thought to trigger seizures by inhibiting the function of the type A gamma-aminobutyric acid receptor (GABAAR). Acute intoxication with TETS can cause vomiting, convulsions, status epilepticus (SE) and even death. Clinical case reports indicate that individuals who survive poisoning may exhibit long-term neuropsychological issues and cognitive deficits. Therefore, the objective of this research was to determine whether a recently described mouse model of acute TETS intoxication exhibits persistent behavioral deficits. Young adult male NIH Swiss mice received a seizure-inducing dose of TETS (0.15 mg/kg, ip) and then were rescued from lethality by administration of diazepam (5 mg/kg, ip) approximately 20 min post-TETS-exposure. TETS-intoxicated mice typically exhibited 2 clonic seizures prior to administration of diazepam with no subsequent seizures post-diazepam injection as assessed using behavioral criteria. Seizures lasted an average of 72 seconds. Locomotor activity, anxiety-like and depression-relevant behaviors and cognition were assessed at 1 week, 1 month and 2 months post-TETS exposure using open field, elevated-plus maze, light↔dark transitions, tail suspension, forced swim and novel object recognition tasks. Interestingly, preliminary validation tests indicated that NIH Swiss mice do not respond to the shock in fear conditioning tasks. Subsequent evaluation of hot plate and tail flick nociception tasks revealed that this strain exhibits significantly decreased pain sensitivity relative to age- and sex-matched C57BL/6J mice, which displayed normal contextual fear conditioning. NIH Swiss mice acutely intoxicated with TETS exhibited no significant anxiety-related, depression-relevant, learning or memory deficits relative to vehicle controls at any of the time points assessed with the exception of significantly increased locomotor activity at 2 months post-TETS intoxication. The

  15. BIRC6/Apollon gene expression in childhood acute leukemia: impact on therapeutic response and prognosis.

    PubMed

    Ismail, Eman Abdel Rahman; Mahmoud, Hanan Mohamed; Tawfik, Lamis Mohamed; Habashy, Deena Mohamed; Adly, Amira Abdel Moneam; El-Sherif, Nayera Hazaa; Abdelwahab, Mahmoud Ahmed

    2012-02-01

    Although BIRC6/Apollon seems to play a critical role as an antiapoptotic regulator, its clinical relevance in acute leukemia remains largely elusive. Therefore, we aimed to investigate BIRC6 gene expression in childhood acute leukemia in relation to clinicopathological characteristics at presentation, therapeutic response, and prognosis. BIRC6 expression level was assessed in 75 children with acute leukemia; 30 patients with acute myeloblastic leukemia (AML) and 45 patients with acute lymphoblastic leukemia (ALL) using real-time quantitative reverse transcriptase-polymerase chain reaction. The median level of BIRC6 expression did not differ significantly between AML and ALL patients. BIRC6 expression level was higher in patients with AML and ALL with extramedullary involvement, white blood cell (WBC) count ≥ 10 × 10(9) /L, and unfavorable cytogenetics at diagnosis. BIRC6 gene expression was higher in patients with unfavorable response to therapy at day 14, those who developed relapse or died in both leukemic groups. The best cutoff value of BIRC6 to predict therapeutic response and disease outcome was determined. AML and ALL patients with BIRC6 overexpression had significantly shorter overall and disease free survivals. This is the first report to study BIRC6 gene in pediatric ALL. Our results suggested that BIRC6 gene expression could be considered as an adverse risk factor in childhood acute leukemia and, hence, could be used to guide therapeutic regimens. © 2012 John Wiley & Sons A/S.

  16. A cable-driven locomotor training system for restoration of gait in human SCI.

    PubMed

    Wu, Ming; Hornby, T George; Landry, Jill M; Roth, Heidi; Schmit, Brian D

    2011-02-01

    A novel cable-driven robotic locomotor training system was developed to provide compliant assistance/resistance forces to the legs during treadmill training in patients with incomplete spinal cord injury (SCI). Eleven subjects with incomplete SCI were recruited to participate in two experiments to test the feasibility of the robotic gait training system. Specifically, 10 subjects participated in one experimental session to test the characteristics of the robotic gait training system and one subject participated in repeated testing sessions over 8 weeks with the robotic device to test improvements in locomotor function. Limb kinematics were recorded in one experiment to evaluate the system characteristics of the cable-driven locomotor trainer and the overground gait speed and 6 min walking distance were evaluated at pre, 4 and 8 weeks post treadmill training of a single subject as well. The results indicated that the cable driven robotic gait training system improved the kinematic performance of the leg during treadmill walking and had no significant impact on the variability of lower leg trajectory, suggesting a high backdrivability of the cable system. In addition, results from a patient with incomplete SCI indicated that prolonged robotic gait training using the cable robot improved overground gait speed. Results from this study suggested that a cable driven robotic gait training system is effective in improving leg kinematic performance, yet allows variability of gait kinematics. Thus, it seems feasible to improve the locomotor function in human SCI using this cable driven robotic system, warranting testing with a larger group of patients. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Multi-Agent Simulations of the Immune Response to Hiv during the Acute Stage of Infection

    NASA Astrophysics Data System (ADS)

    Walshe, R.; Ruskin, H. J.; Callaghan, A.

    Results of multi-agent based simulations of the immune response to HIV during the acute phase of infection are presented here. The model successfully recreates the viral dynamics associated with the acute phase of infection, i.e., a rapid rise in viral load followed by a sharp decline to what is often referred to as a "set point", a result of T-cell response and emergence of HIV neutralizing antibodies. The results indicate that sufficient T Killer cell response is the key factor in controlling viral growth during this phase with antibody levels of critical importance only in the absence of a sufficient T Killer response.

  18. Acute and chronic stress and the inflammatory response in hyperprolactinemic rats.

    PubMed

    Ochoa-Amaya, J E; Malucelli, B E; Cruz-Casallas, P E; Nasello, A G; Felicio, L F; Carvalho-Freitas, M I R

    2010-01-01

    Prolactin (PRL), a hormone produced by the pituitary gland, has multiple physiological functions, including immunoregulation. PRL can also be secreted in response to stressful stimuli. During stress, PRL has been suggested to oppose the immunosuppressive effects of inflammatory mediators. Therefore, the aim of the present study was to analyze the effects of short- and long-term hyperprolactinemia on the inflammatory response in rats subjected to acute or chronic cold stress. Inflammatory edema was induced by carrageenan in male rats, and hyperprolactinemia was induced by injections of the dopamine receptor antagonist domperidone. The volume of inflammatory edema was measured by plethysmography after carrageenan injection. Additionally, the effects of hyperprolactinemia on body weight and serum corticosterone levels were evaluated. Five days of domperidone-induced hyperprolactinemia increased the volume of inflammatory edema. No differences in serum corticosterone levels were observed between groups. No significant differences were found among 30 days domperidone-induced hyperprolactinemic animals subjected to acute stress and the inflammatory response observed in chronic hyperprolactinemic animals subjected to chronic stress. The results suggest that short-term hyperprolactinemia has pro-inflammatory effects. Because such an effect was not observed in long-term hyperprolactinemic animals, PRL-induced tolerance seems likely. We suggest that short-term hyperprolactinemia may act as a protective factor in rats subjected to acute stress. These data suggest that hyperprolactinemia and stress interact differentially according to the time period. Copyright 2010 S. Karger AG, Basel.

  19. Sex-specific effect of endothelin in the blood pressure response to acute angiotensin II in growth-restricted rats

    PubMed Central

    Intapad, Suttira; Ojeda, Norma B.; Varney, Elliott; Royals, Thomas P.; Alexander, Barbara T.

    2015-01-01

    The renal endothelin system contributes to sex differences in blood pressure with males demonstrating greater endothelin type-A receptor-mediated responses relative to females. Intrauterine growth restriction programs hypertension and enhanced renal sensitivity to acute angiotensin II in male growth-restricted rats. Endothelin is reported to work synergistically with angiotensin II. Thus, this study tested the hypothesis that endothelin augments the blood pressure response to acute angiotensin II in male growth-restricted rats. Systemic and renal hemodynamics were determined in response to acute angiotensin II (100 nanogram/kilogram/minute for 30 minutes) with and without the endothelin type-A receptor antagonist, ABT 627(10 nanogram/kilogram/minute for 30 minutes), in rats pretreated with enalapril (250 milligram/Liter for one week) to normalize the endogenous renin angiotensin system. Endothelin type-A receptor blockade reduced angiotensin II-mediated increases in blood pressure in male control and male growth-restricted rats. Endothelin type-A receptor blockade also abolished hyper-responsiveness to acute angiotensin II in male growth-restricted rats. Yet, blood pressure remained significantly elevated above baseline following endothelin type-A receptor blockade suggesting that factors in addition to endothelin contribute to the basic angiotensin II-induced pressor response in male rats. We also determined sex-specific effects of endothelin on acute angiotensin II-mediated hemodynamic responses. Endothelin type-A receptor blockade did not reduce acute angiotensin II-mediated increases in blood pressure in female control or growth-restricted rats, intact or ovariectomized. Thus, these data suggest that endothelin type-A receptor blockade contributes to hypersensitivity to acute angiotensin II in male growth-restricted rats and further supports the sex-specific effect of endothelin on blood pressure. PMID:26459423

  20. Locomotor activity of adult Dermacentor reticulatus ticks (Ixodida: Ixodidae) in natural conditions.

    PubMed

    Buczek, Alicja; Zając, Zbigniew; Woźniak, Aneta; Kulina, Dorota; Bartosik, Katarzyna

    2017-05-11

    [b] Abstract Introduction and objective[/b]. Expansion into new areas and the great epidemiological significance of the D. reticulatus tick in Europe prompts investigations of its ethology. Therefore, the locomotor activity of D. reticulatus adult stages in an optimal habitat during the spring and autumn activity periods was analysed. [b]Materials and method[/b]. Marked D. reticulatus adults were placed at the central point of each experimental plot. At regular time intervals, specimens attached to the cloth used in the flagging method were collected, and the distance covered by the ticks was measured. In each collection round, the temperature and humidity level in the habitat was also measured. [b]Results.[/b] Within 7 weeks, adult D. reticulatus ticks can cover an average distance of 60.71±44 cm. The locomotor activity of adult stages is greater during the spring than the autumn activity period. Questing, females cover a greater distance (66.35±100 cm) than male ticks (54.85±45 cm). Adult stages are characterised by greater aggressiveness 24 hours after being released, i.e. 30% of females and 19% of males attempt to attach to host skin. The locomotor activity in adult ticks depends on the humidity of the habitat (Z=-1.198; p=0.050). The temperature does not affect tick walking. [b]Conclusions[/b]. Given the low rates of horizontal locomotion of adult D. reticulatus ticks, the prevalence of the species in nature is determined by the presence of their hosts and humidity conditions ensuring their further development and survival. The dependence of D. reticulatus locomotor activity and aggressiveness on the humidity level implies an increased risk of host attacks in locations and periods that offer favourable humidity conditions for this species.

  1. The acute and long-term neurotoxic effects of MDMA on marble burying behaviour in mice.

    PubMed

    Saadat, Kathryn S; Elliott, J Martin; Colado, M Isabel; Green, A Richard

    2006-03-01

    When mice are exposed to harmless objects such as marbles in their cage they bury them, a behaviour sometimes known as defensive burying. We investigated the effect of an acute dose of MDMA (èecstasy') and other psychoactive drugs on marble burying and also examined the effect of a prior neurotoxic dose of MDMA or p-chloroamphetamine (PCA) on burying. Acute administration of MDMA produced dose-dependent inhibition of marble burying (EC50: 7.6 micro mol/kg). Other drugs that enhance monoamine function also produced dose-dependent inhibition: methamphetamine PCA paroxetine MDMA GBR 12909 methylphenidate. None of these drugs altered locomotor activity at a dose that inhibited burying. A prior neurotoxic dose of MDMA, which decreased striatal dopamine content by 60%, but left striatal 5-HT content unaltered, did not alter spontaneous marble burying 18 or 40 days later. However, a neurotoxic dose of PCA which decreased striatal dopamine by 60% and striatal 5-HT by 70% attenuated marble burying 28 days later. Overall, these data suggest that MDMA, primarily by acutely increasing 5-HT function, acts like several anxiolytic drugs in this behavioural model. Long-term loss of cerebral 5-HT content also produced a similar effect. Since this change was observed only after 28 days, it is probably due to an adaptive response in the brain.

  2. Influence of Brain Stem on Axial and Hindlimb Spinal Locomotor Rhythm Generating Circuits of the Neonatal Mouse.

    PubMed

    Jean-Xavier, Céline; Perreault, Marie-Claude

    2018-01-01

    The trunk plays a pivotal role in limbed locomotion. Yet, little is known about how the brain stem controls trunk activity during walking. In this study, we assessed the spatiotemporal activity patterns of axial and hindlimb motoneurons (MNs) during drug-induced fictive locomotor-like activity (LLA) in an isolated brain stem-spinal cord preparation of the neonatal mouse. We also evaluated the extent to which these activity patterns are affected by removal of brain stem. Recordings were made in the segments T7, L2, and L5 using calcium imaging from individual axial MNs in the medial motor column (MMC) and hindlimb MNs in lateral motor column (LMC). The MN activities were analyzed during both the rhythmic and the tonic components of LLA, the tonic component being used as a readout of generalized increase in excitability in spinal locomotor networks. The most salient effect of brain stem removal was an increase in locomotor rhythm frequency and a concomitant reduction in burst durations in both MMC and LMC MNs. The lack of effect on the tonic component of LLA indicated specificity of action during the rhythmic component. Cooling-induced silencing of the brain stem reproduced the increase in rhythm frequency and accompanying decrease in burst durations in L2 MMC and LMC, suggesting a dependency on brain stem neuron activity. The work supports the idea that the brain stem locomotor circuits are operational already at birth and further suggests an important role in modulating trunk activity. The brain stem may influence the axial and hindlimb spinal locomotor rhythm generating circuits by extending their range of operation. This may represent a critical step of locomotor development when learning how to walk in different conditions and environments is a major endeavor.

  3. Influence of Brain Stem on Axial and Hindlimb Spinal Locomotor Rhythm Generating Circuits of the Neonatal Mouse

    PubMed Central

    Jean-Xavier, Céline; Perreault, Marie-Claude

    2018-01-01

    The trunk plays a pivotal role in limbed locomotion. Yet, little is known about how the brain stem controls trunk activity during walking. In this study, we assessed the spatiotemporal activity patterns of axial and hindlimb motoneurons (MNs) during drug-induced fictive locomotor-like activity (LLA) in an isolated brain stem-spinal cord preparation of the neonatal mouse. We also evaluated the extent to which these activity patterns are affected by removal of brain stem. Recordings were made in the segments T7, L2, and L5 using calcium imaging from individual axial MNs in the medial motor column (MMC) and hindlimb MNs in lateral motor column (LMC). The MN activities were analyzed during both the rhythmic and the tonic components of LLA, the tonic component being used as a readout of generalized increase in excitability in spinal locomotor networks. The most salient effect of brain stem removal was an increase in locomotor rhythm frequency and a concomitant reduction in burst durations in both MMC and LMC MNs. The lack of effect on the tonic component of LLA indicated specificity of action during the rhythmic component. Cooling-induced silencing of the brain stem reproduced the increase in rhythm frequency and accompanying decrease in burst durations in L2 MMC and LMC, suggesting a dependency on brain stem neuron activity. The work supports the idea that the brain stem locomotor circuits are operational already at birth and further suggests an important role in modulating trunk activity. The brain stem may influence the axial and hindlimb spinal locomotor rhythm generating circuits by extending their range of operation. This may represent a critical step of locomotor development when learning how to walk in different conditions and environments is a major endeavor. PMID:29479302

  4. Melatonin treatment during the incubation of sensitization attenuates methamphetamine-induced locomotor sensitization and MeCP2 expression.

    PubMed

    Wu, Jintao; Zhu, Dexiao; Zhang, Jing; Li, Guibao; Liu, Zengxun; Sun, Jinhao

    2016-02-04

    Behavior sensitization is a long-lasting enhancement of locomotor activity after exposure to psychostimulants. Incubation of sensitization is a phenomenon of remarkable augmentation of locomotor response after withdrawal and reflects certain aspects of compulsive drug craving. However, the mechanisms underlying these phenomena remain elusive. Here we pay special attention to the incubation of sensitization and suppose that the intervention of this procedure will finally decrease the expression of sensitization. Melatonin is an endogenous hormone secreted mainly by the pineal gland. It is effective in treating sleep disorder, which turns out to be one of the major withdrawal symptoms of methamphetamine (MA) addiction. Furthermore, melatonin can also protect neuronal cells against MA-induced neurotoxicity. In the present experiment, we treated mice with low dose (10mg/kg) of melatonin for 14 consecutive days during the incubation of sensitization. We found that melatonin significantly attenuated the expression of sensitization. In contrast, the vehicle treated mice showed prominent enhancement of locomotor activity after incubation. MeCP2 expression was also elevated in the vehicle treated mice and melatonin attenuated its expression. Surprisingly, correlation analysis suggested significant correlation between MeCP2 expression in the nucleus accumbens (NAc) and locomotion in both saline control and vehicle treated mice, but not in melatonin treated ones. MA also induced MeCP2 over-expression in PC12 cells. However, melatonin failed to reduce MeCP2 expression in vitro. Our results suggest that melatonin treatment during the incubation of sensitization attenuates MA-induced expression of sensitization and decreases MeCP2 expression in vivo. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Effects of zacopride and BMY25801 (batanopride) on radiation-induced emesis and locomotor behavior in the ferret

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, G.L.; Landauer, M.R.

    1990-01-01

    The antiemetic and locomotor effects of two substituted benzamides, zacopride and batanopride (BMY25801), were compared in ferrets after bilateral Co irradiation at 2, 4, or 6 Gy. Both zacopride and BMY25801 were effective against emesis and related signs. Zacopride, tested at several doses (0.003, 0.03 and 0.3 mg/kg), appeared to be more potent because it abolished emesis at 100-fold lower doses than did BMY25801 (3mg/kg). The ED value for the antiemetic effect of zacopride was 0.026 mg/kg (confidence levels = 0.0095, 0.072 mg/kg). However, analysis of emetic parameters recorded from vomiting animals (e.g., latency to first emesis) demonstrated that BMY25801more » provided greater antiemetic protection in this population than zacopride without and apparent side effects. Locomotor activity was significantly depressed by both radiation (all doses) and zacopride alone (0.03 mg/kg and 0.3 mg/kg). BMY25801 alone did not affect locomotor activity, and protected against the radiation-induced locomotor decrement.« less

  6. Comparison of acute countermovement jump responses after functional isometric and dynamic half squats.

    PubMed

    Boyd, David A; Donald, Neil; Balshaw, Thomas G

    2014-12-01

    The purpose of this study was to compare acute countermovement jump (CMJ) responses after functional isometric (FI) and dynamic half (DH) squats. Ten strength-trained males (relative full back squat 1 repetition maximum [1RM]: 1.9 ± 0.2) participated in a randomized crossover design study. On 2 separate days, participants performed baseline CMJs followed by either FI or DH squats loaded with 150% of full back squat 1RM. Further CMJs were performed between 2 and 11 minutes after FI or DH squats. Kinematic and kinetic CMJ variables were measured. There were no differences observed between conditions when peak CMJ variables after FI or DH squats were compared with baseline values (p > 0.05). Countermovement jump time effects (p ≤ 0.05) were observed after squats. Increases in peak force (p ≤ 0.05; FI: 3.9%, range: -0.9 to 9.1%; DH: 4.2%, range: 0.0-11.5%) and decreases in peak power (p ≤ 0.05; FI: -0.4%, range: -5.1 to 4.0%; DH: -1.1%, range: -6.6 to 2.9%) occurred for combined condition data. Positive correlations between lower-body strength and the extent or timing of acute CMJ responses were not detected (p > 0.05). Because of the apparent lack of additive acute CMJ responses, the use of conventional DH squat protocols should be considered rather than FI squats in precompetition and training situations. Furthermore, the establishment of individual FI and DH squat protocols also seems to be necessary, rather than relying on relative lower-body strength to predict the nature of acute CMJ responses.

  7. Either brain-derived neurotrophic factor or neurotrophin-3 only neurotrophin-producing grafts promote locomotor recovery in untrained spinalized cats.

    PubMed

    Ollivier-Lanvin, Karen; Fischer, Itzhak; Tom, Veronica; Houlé, John D; Lemay, Michel A

    2015-01-01

    Background. Transplants of cellular grafts expressing a combination of 2 neurotrophic factors, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) have been shown to promote and enhance locomotor recovery in untrained spinalized cats. Based on the time course of recovery and the absence of axonal growth through the transplants, we hypothesized that recovery was due to neurotrophin-mediated plasticity within the existing locomotor circuitry of the lumbar cord. Since BDNF and NT-3 have different effects on axonal sprouting and synaptic connectivity/strengthening, it becomes important to ascertain the contribution of each individual neurotrophins to recovery. Objective. We studied whether BDNF or NT-3 only producing cellular grafts would be equally effective at restoring locomotion in untrained spinal cats. Methods. Rat fibroblasts secreting one of the 2 neurotrophins were grafted into the T12 spinal transection site of adult cats. Four cats in each group (BDNF alone or NT-3 alone) were evaluated. Locomotor recovery was tested on a treadmill at 3 and 5 weeks post-transection/grafting. Results. Animals in both groups were capable of plantar weight-bearing stepping at speed up to 0.8 m/s as early as 3 weeks and locomotor capabilities were similar at 3 and 5 weeks for both types of graft. Conclusions. Even without locomotor training, either BDNF or NT-3 only producing grafts promote locomotor recovery in complete spinal animals. More clinically applicable delivery methods need to be developed. © The Author(s) 2014.

  8. A simplified method of walking track analysis to assess short-term locomotor recovery after acute spinal cord injury caused by thoracolumbar intervertebral disc extrusion in dogs.

    PubMed

    Song, R B; Oldach, M S; Basso, D M; da Costa, R C; Fisher, L C; Mo, X; Moore, S A

    2016-04-01

    The purpose of this study was to evaluate a simplified method of walking track analysis to assess treatment outcome in canine spinal cord injury. Measurements of stride length (SL) and base of support (BS) were made using a 'finger painting' technique for footprint analysis in all limbs of 20 normal dogs and 27 dogs with 28 episodes of acute thoracolumbar spinal cord injury (SCI) caused by spontaneous intervertebral disc extrusion. Measurements were determined at three separate time points in normal dogs and on days 3, 10 and 30 following decompressive surgery in dogs with SCI. Values for SL, BS and coefficient of variance (COV) for each parameter were compared between groups at each time point. Mean SL was significantly shorter in all four limbs of SCI-affected dogs at days 3, 10, and 30 compared to normal dogs. SL gradually increased toward normal in the 30 days following surgery. As measured by this technique, the COV-SL was significantly higher in SCI-affected dogs than normal dogs in both thoracic limbs (TL) and pelvic limbs (PL) only at day 3 after surgery. BS-TL was significantly wider in SCI-affected dogs at days 3, 10 and 30 following surgery compared to normal dogs. These findings support the use of footprint parameters to compare locomotor differences between normal and SCI-affected dogs, and to assess recovery from SCI. Additionally, our results underscore important changes in TL locomotion in thoracolumbar SCI-affected dogs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. S-phenylpiracetam, a selective DAT inhibitor, reduces body weight gain without influencing locomotor activity.

    PubMed

    Zvejniece, Liga; Svalbe, Baiba; Vavers, Edijs; Makrecka-Kuka, Marina; Makarova, Elina; Liepins, Vilnis; Kalvinsh, Ivars; Liepinsh, Edgars; Dambrova, Maija

    2017-09-01

    S-phenylpiracetam is an optical isomer of phenotropil, which is a clinically used nootropic drug that improves physical condition and cognition. Recently, it was shown that S-phenylpiracetam is a selective dopamine transporter (DAT) inhibitor that does not influence norepinephrine (NE) or serotonin (5-HT) receptors. The aim of the present study was to study the effects of S-phenylpiracetam treatment on body weight gain, blood glucose and leptin levels, and locomotor activity. Western diet (WD)-fed mice and obese Zucker rats were treated daily with peroral administration of S-phenylpiracetam for 8 and 12weeks, respectively. Weight gain and plasma metabolites reflecting glucose metabolism were measured. Locomotor activity was detected in an open-field test. S-phenylpiracetam treatment significantly decreased body weight gain and fat mass increase in the obese Zucker rats and in the WD-fed mice. In addition, S-phenylpiracetam reduced the plasma glucose and leptin concentration and lowered hyperglycemia in a glucose tolerance test in both the mice and the rats. S-phenylpiracetam did not influence locomotor activity in the obese Zucker rats or in the WD-fed mice. The results demonstrate that S-phenylpiracetam reduces body weight gain and improves adaptation to hyperglycemia without stimulating locomotor activity. Our findings suggest that selective DAT inhibitors, such as S-phenylpiracetam, could be potentially useful for treating obesity in patients with metabolic syndrome with fewer adverse health consequences compared to other anorectic agents. Copyright © 2017. Published by Elsevier Inc.

  10. Effects of repeated walking in a perturbing environment: a 4-day locomotor learning study.

    PubMed

    Blanchette, Andreanne; Moffet, Helene; Roy, Jean-Sébastien; Bouyer, Laurent J

    2012-07-01

    Previous studies have shown that when subjects repeatedly walk in a perturbing environment, initial movement error becomes smaller, suggesting that retention of the adapted locomotor program occurred (learning). It has been proposed that the newly learned locomotor program may be stored separately from the baseline program. However, how locomotor performance evolves with repeated sessions of walking with the perturbation is not yet known. To address this question, 10 healthy subjects walked on a treadmill on 4 consecutive days. Each day, locomotor performance was measured using kinematics and surface electromyography (EMGs), before, during, and after exposure to a perturbation, produced by an elastic tubing that pulled the foot forward and up during swing, inducing a foot velocity error in the first strides. Initial movement error decreased significantly between days 1 and 2 and then remained stable. Associated changes in medial hamstring EMG activity stabilized only on day 3, however. Aftereffects were present after perturbation removal, suggesting that daily adaptation involved central command recalibration of the baseline program. Aftereffects gradually decreased across days but were still visible on day 4. Separation between the newly learned and baseline programs may take longer than suggested by the daily improvement in initial performance in the perturbing environment or may never be complete. These results therefore suggest that reaching optimal performance in a perturbing environment should not be used as the main indicator of a completed learning process, as central reorganization of the motor commands continues days after initial performance has stabilized.

  11. The "beneficial" effects of locomotor training after various types of spinal lesions in cats and rats.

    PubMed

    Rossignol, Serge; Martinez, Marina; Escalona, Manuel; Kundu, Aritra; Delivet-Mongrain, Hugo; Alluin, Olivier; Gossard, Jean-Pierre

    2015-01-01

    This chapter reviews a number of experiments on the recovery of locomotion after various types of spinal lesions and locomotor training mainly in cats. We first recall the major evidence on the recovery of hindlimb locomotion in completely spinalized cats at the T13 level and the role played by the spinal locomotor network, also known as the central pattern generator, as well as the beneficial effects of locomotor training on this recovery. Having established that hindlimb locomotion can recover, we raise the issue as to whether spinal plastic changes could also contribute to the recovery after partial spinal lesions such as unilateral hemisections. We found that after such hemisection at T10, cats could recover quadrupedal locomotion and that deficits could be improved by training. We further showed that, after a complete spinalization a few segments below the first hemisection (at T13, i.e., the level of previous studies on spinalization), cats could readily walk with the hindlimbs within hours of completely severing the remaining spinal tracts and not days as is usually the case with only a single complete spinalization. This suggests that neuroplastic changes occurred below the first hemisection so that the cat was already primed to walk after the spinalization subsequent to the hemispinalization 3 weeks before. Of interest is the fact that some characteristic kinematic features in trained or untrained hemispinalized cats could remain after complete spinalization, suggesting that spinal changes induced by training could also be durable. Other studies on reflexes and on the pattern of "fictive" locomotion recorded after curarization corroborate this view. More recent work deals with training cats in more demanding situations such as ladder treadmill (vs. flat treadmill) to evaluate how the locomotor training regimen can influence the spinal cord. Finally, we report our recent studies in rats using compressive lesions or surgical complete spinalization and find

  12. Cognitive Performance and Locomotor Adaptation in Persons With Anterior Cruciate Ligament Reconstruction.

    PubMed

    Stone, Amanda E; Roper, Jaimie A; Herman, Daniel C; Hass, Chris J

    2018-05-01

    Persons with anterior cruciate ligament reconstruction (ACLR) show deficits in gait and neuromuscular control following rehabilitation. This altered behavior extends to locomotor adaptation and learning, however the contributing factors to this observed behavior have yet to be investigated. The purpose of this study was to assess differences in locomotor adaptation and learning between ACLR and controls, and identify underlying contributors to motor adaptation in these individuals. Twenty ACLR individuals and 20 healthy controls (CON) agreed to participate in this study. Participants performed four cognitive and dexterity tasks (local version of Trail Making Test, reaction time test, electronic pursuit rotor test, and the Purdue pegboard). Three-dimensional kinematics were also collected while participants walked on a split-belt treadmill. ACLR individuals completed the local versions of Trails A and Trails B significantly faster than CON. During split-belt walking, ACLR individuals demonstrated smaller step length asymmetry during EARLY and LATE adaptation, smaller double support asymmetry during MID adaptation, and larger stance time asymmetry during DE-ADAPT compared with CON. ACLR individuals performed better during tasks that required visual attention and task switching and were less perturbed during split-belt walking compared to controls. Persons with ACLR may use different strategies than controls, cognitive or otherwise, to adapt locomotor patterns.

  13. Differential changes in the spinal segmental locomotor output in Hereditary Spastic Paraplegia.

    PubMed

    Martino, G; Ivanenko, Y; Serrao, M; Ranavolo, A; Draicchio, F; Rinaldi, M; Casali, C; Lacquaniti, F

    2018-03-01

    A comprehensive treatment of Hereditary Spastic Paraplegia (HSP) should consider the specific pathophysiological changes in the spinal cord. Here we reported a detailed characterization of the spinal motoneuronal output in HSP during locomotion. We recorded kinematics and electromyographic (EMG) activity of 12 leg muscles in 29 patients with pure forms of HSP and compared them with 30 controls while walking at matched speeds. We assessed the spinal locomotor output by evaluating EMG patterns and by mapping them onto the rostrocaudal location of the spinal motoneuron pools. The activity profiles of muscles innervated from the sacral segments were significantly wider in patients. Similarly, spinal maps revealed a tendency for spreading the main loci of activation, involving initially the sacral segments and, at more severe stages, the lumbar segments. The degeneration of the corticospinal tract in HSP is associated with a widening of spinal locomotor output spreading from caudal to rostral segments. The findings highlight pathophysiologically relevant differential changes in the spinal locomotor output in HSP related to the specific innervation of muscles in the spinal cord, and might be helpful for developing future therapeutic strategies and identifying physiological markers of the disease. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  14. Generative rules of Drosophila locomotor behavior as a candidate homology across phyla

    PubMed Central

    Gomez-Marin, Alex; Oron, Efrat; Gakamsky, Anna; Dan Valente; Benjamini, Yoav; Golani, Ilan

    2016-01-01

    The discovery of shared behavioral processes across phyla is a significant step in the establishment of a comparative study of behavior. We use immobility as an origin and reference for the measurement of fly locomotor behavior; speed, walking direction and trunk orientation as the degrees of freedom shaping this behavior; and cocaine as the parameter inducing progressive transitions in and out of immobility. We characterize and quantify the generative rules that shape Drosophila locomotor behavior, bringing about a gradual buildup of kinematic degrees of freedom during the transition from immobility to normal behavior, and the opposite narrowing down into immobility. Transitions into immobility unfold via sequential enhancement and then elimination of translation, curvature and finally rotation. Transitions out of immobility unfold by progressive addition of these degrees of freedom in the opposite order. The same generative rules have been found in vertebrate locomotor behavior in several contexts (pharmacological manipulations, ontogeny, social interactions) involving transitions in-and-out of immobility. Recent claims for deep homology between arthropod central complex and vertebrate basal ganglia provide an opportunity to examine whether the rules we report also share common descent. Our approach prompts the discovery of behavioral homologies, contributing to the elusive problem of behavioral evolution. PMID:27271799

  15. Generative rules of Drosophila locomotor behavior as a candidate homology across phyla.

    PubMed

    Gomez-Marin, Alex; Oron, Efrat; Gakamsky, Anna; Dan Valente; Benjamini, Yoav; Golani, Ilan

    2016-06-08

    The discovery of shared behavioral processes across phyla is a significant step in the establishment of a comparative study of behavior. We use immobility as an origin and reference for the measurement of fly locomotor behavior; speed, walking direction and trunk orientation as the degrees of freedom shaping this behavior; and cocaine as the parameter inducing progressive transitions in and out of immobility. We characterize and quantify the generative rules that shape Drosophila locomotor behavior, bringing about a gradual buildup of kinematic degrees of freedom during the transition from immobility to normal behavior, and the opposite narrowing down into immobility. Transitions into immobility unfold via sequential enhancement and then elimination of translation, curvature and finally rotation. Transitions out of immobility unfold by progressive addition of these degrees of freedom in the opposite order. The same generative rules have been found in vertebrate locomotor behavior in several contexts (pharmacological manipulations, ontogeny, social interactions) involving transitions in-and-out of immobility. Recent claims for deep homology between arthropod central complex and vertebrate basal ganglia provide an opportunity to examine whether the rules we report also share common descent. Our approach prompts the discovery of behavioral homologies, contributing to the elusive problem of behavioral evolution.

  16. Sex-specific hippocampal 5-hydroxymethylcytosine is disrupted in response to acute stress.

    PubMed

    Papale, Ligia A; Li, Sisi; Madrid, Andy; Zhang, Qi; Chen, Li; Chopra, Pankaj; Jin, Peng; Keleş, Sündüz; Alisch, Reid S

    2016-12-01

    Environmental stress is among the most important contributors to increased susceptibility to develop psychiatric disorders. While it is well known that acute environmental stress alters gene expression, the molecular mechanisms underlying these changes remain largely unknown. 5-hydroxymethylcytosine (5hmC) is a novel environmentally sensitive epigenetic modification that is highly enriched in neurons and is associated with active neuronal transcription. Recently, we reported a genome-wide disruption of hippocampal 5hmC in male mice following acute stress that was correlated to altered transcript levels of genes in known stress related pathways. Since sex-specific endocrine mechanisms respond to environmental stimulus by altering the neuronal epigenome, we examined the genome-wide profile of hippocampal 5hmC in female mice following exposure to acute stress and identified 363 differentially hydroxymethylated regions (DhMRs) linked to known (e.g., Nr3c1 and Ntrk2) and potentially novel genes associated with stress response and psychiatric disorders. Integration of hippocampal expression data from the same female mice found stress-related hydroxymethylation correlated to altered transcript levels. Finally, characterization of stress-induced sex-specific 5hmC profiles in the hippocampus revealed 778 sex-specific acute stress-induced DhMRs some of which were correlated to altered transcript levels that produce sex-specific isoforms in response to stress. Together, the alterations in 5hmC presented here provide a possible molecular mechanism for the adaptive sex-specific response to stress that may augment the design of novel therapeutic agents that will have optimal effectiveness in each sex. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Acute phase response, inflammation and metabolic syndrome biomarkers of Libby asbestos exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shannahan, Jonathan H.; Alzate, Oscar; Winnik, Witold M.

    Identification of biomarkers assists in the diagnosis of disease and the assessment of health risks from environmental exposures. We hypothesized that rats exposed to Libby amphibole (LA) would present with a unique serum proteomic profile which could help elucidate epidemiologically-relevant biomarkers. In four experiments spanning varied protocols and temporality, healthy (Wistar Kyoto, WKY; and F344) and cardiovascular compromised (CVD) rat models (spontaneously hypertensive, SH; and SH heart failure, SHHF) were intratracheally instilled with saline (control) or LA. Serum biomarkers of cancer, inflammation, metabolic syndrome (MetS), and the acute phase response (APR) were analyzed. All rat strains exhibited acute increases inmore » α-2-macroglobulin, and α1-acid glycoprotein. Among markers of inflammation, lipocalin-2 was induced in WKY, SH and SHHF and osteopontin only in WKY after LA exposure. While rat strain- and age-related changes were apparent in MetS biomarkers, no LA effects were evident. The cancer marker mesothelin was increased only slightly at 1 month in WKY in one of the studies. Quantitative Intact Proteomic profiling of WKY serum at 1 day or 4 weeks after 4 weekly LA instillations indicated no oxidative protein modifications, however APR proteins were significantly increased. Those included serine protease inhibitor, apolipoprotein E, α-2-HS-glycoprotein, t-kininogen 1 and 2, ceruloplasmin, vitamin D binding protein, serum amyloid P, and more 1 day after last LA exposure. All changes were reversible after a short recovery regardless of the acute or long-term exposures. Thus, LA exposure induces an APR and systemic inflammatory biomarkers that could have implications in systemic and pulmonary disease in individuals exposed to LA. -- Highlights: ► Biomarkers of asbestos exposure are required for disease diagnosis. ► Libby amphibole exposure is associated with increased human mortality. ► Libby amphibole increases circulating proteins

  18. STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia.

    PubMed

    Bonetto, Andrea; Aydogdu, Tufan; Kunzevitzky, Noelia; Guttridge, Denis C; Khuri, Sawsan; Koniaris, Leonidas G; Zimmers, Teresa A

    2011-01-01

    Cachexia, or weight loss despite adequate nutrition, significantly impairs quality of life and response to therapy in cancer patients. In cancer patients, skeletal muscle wasting, weight loss and mortality are all positively associated with increased serum cytokines, particularly Interleukin-6 (IL-6), and the presence of the acute phase response. Acute phase proteins, including fibrinogen and serum amyloid A (SAA) are synthesized by hepatocytes in response to IL-6 as part of the innate immune response. To gain insight into the relationships among these observations, we studied mice with moderate and severe Colon-26 (C26)-carcinoma cachexia. Moderate and severe C26 cachexia was associated with high serum IL-6 and IL-6 family cytokines and highly similar patterns of skeletal muscle gene expression. The top canonical pathways up-regulated in both were the complement/coagulation cascade, proteasome, MAPK signaling, and the IL-6 and STAT3 pathways. Cachexia was associated with increased muscle pY705-STAT3 and increased STAT3 localization in myonuclei. STAT3 target genes, including SOCS3 mRNA and acute phase response proteins, were highly induced in cachectic muscle. IL-6 treatment and STAT3 activation both also induced fibrinogen in cultured C2C12 myotubes. Quantitation of muscle versus liver fibrinogen and SAA protein levels indicates that muscle contributes a large fraction of serum acute phase proteins in cancer. These results suggest that the STAT3 transcriptome is a major mechanism for wasting in cancer. Through IL-6/STAT3 activation, skeletal muscle is induced to synthesize acute phase proteins, thus establishing a molecular link between the observations of high IL-6, increased acute phase response proteins and muscle wasting in cancer. These results suggest a mechanism by which STAT3 might causally influence muscle wasting by altering the profile of genes expressed and translated in muscle such that amino acids liberated by increased proteolysis in cachexia are

  19. STAT3 Activation in Skeletal Muscle Links Muscle Wasting and the Acute Phase Response in Cancer Cachexia

    PubMed Central

    Kunzevitzky, Noelia; Guttridge, Denis C.; Khuri, Sawsan; Koniaris, Leonidas G.; Zimmers, Teresa A.

    2011-01-01

    Background Cachexia, or weight loss despite adequate nutrition, significantly impairs quality of life and response to therapy in cancer patients. In cancer patients, skeletal muscle wasting, weight loss and mortality are all positively associated with increased serum cytokines, particularly Interleukin-6 (IL-6), and the presence of the acute phase response. Acute phase proteins, including fibrinogen and serum amyloid A (SAA) are synthesized by hepatocytes in response to IL-6 as part of the innate immune response. To gain insight into the relationships among these observations, we studied mice with moderate and severe Colon-26 (C26)-carcinoma cachexia. Methodology/Principal Findings Moderate and severe C26 cachexia was associated with high serum IL-6 and IL-6 family cytokines and highly similar patterns of skeletal muscle gene expression. The top canonical pathways up-regulated in both were the complement/coagulation cascade, proteasome, MAPK signaling, and the IL-6 and STAT3 pathways. Cachexia was associated with increased muscle pY705-STAT3 and increased STAT3 localization in myonuclei. STAT3 target genes, including SOCS3 mRNA and acute phase response proteins, were highly induced in cachectic muscle. IL-6 treatment and STAT3 activation both also induced fibrinogen in cultured C2C12 myotubes. Quantitation of muscle versus liver fibrinogen and SAA protein levels indicates that muscle contributes a large fraction of serum acute phase proteins in cancer. Conclusions/Significance These results suggest that the STAT3 transcriptome is a major mechanism for wasting in cancer. Through IL-6/STAT3 activation, skeletal muscle is induced to synthesize acute phase proteins, thus establishing a molecular link between the observations of high IL-6, increased acute phase response proteins and muscle wasting in cancer. These results suggest a mechanism by which STAT3 might causally influence muscle wasting by altering the profile of genes expressed and translated in muscle such

  20. Suppression of Virus Specific Immune Responses by IL-10 in Acute Dengue Infection

    PubMed Central

    Malavige, Gathsaurie Neelika; Jeewandara, Chandima; Alles, K. M. Luckmaal; Salimi, Maryam; Gomes, Laksiri; Kamaladasa, Achala; Jayaratne, S. D.; Ogg, Graham Stuart

    2013-01-01

    Background Elevated IL-10 has been shown to be associated with severe dengue infection (DI). We proceeded to investigate the role of IL-10 in the pathogenesis of acute DI. Materials and methods Ex vivo and cultured IFNγ ELISpot assays for dengue virus (DENV) NS3 protein and non dengue viral proteins were carried out in 26 patients with acute DI (16 with dengue haemorrhagic fever) and 12 healthy dengue seropositive individuals from Sri Lanka. DENV serotype specific (SS) responses were determined by using a panel of SS peptides. Results Serum IL-10 level were significantly higher (p = 0.02) in those who did not have in vitro responses to DENV-SS peptides (mean 144.2 pg/ml) when compared to those who responded (mean 75.7 pg/ml). DENV-NS3 specific ex vivo IFNγ ELISpot responses were also significantly lower (p = 0.0001) in those who did not respond to DENV-SS peptides (mean 42 SFU/million PBMCs) when compared to those who responded to DENV-SS peptides (mean 1024 SFU/million PBMCs). Serum IL-10 levels correlated significantly (p = 0.03) and inversely (Spearmans R = −0.45) with ex vivo DENV-NS3 specific responses but not with ex vivo non DENV specific responses (Spearmans R = −014, p = 0.52). Blockage of IL-10 in vitro significantly increased (p = 0.04) the ex vivo IFNγ ELISpot DENV-NS3 specific responses but had no effect on responses to non DENV proteins. Conclusion IL-10 appears to contribute to the pathogenesis of acute dengue infections by inhibiting DENV-specific T cell responses, which can be restored by blocking IL-10. PMID:24040431

  1. ESTIMATION OF ACUTE TOXICITY BY FITTING A DOSE-TIME RESPONSE SURFACE

    EPA Science Inventory

    In acute toxicity testing, organisms are continuously exposed to progressively increasing concentrations of a chemical and deaths of test organisms are recorded at several selected times. he results of the test are traditionally summarized by a dose-response curve, and the time c...

  2. Cutaneous inputs from the back abolish locomotor-like activity and reduce spastic-like activity in the adult cat following complete spinal cord injury

    PubMed Central

    Frigon, Alain; Thibaudier, Yann; Johnson, Michael D.; Heckman, C.J.; Hurteau, Marie-France

    2012-01-01

    Spasticity is a condition that can include increased muscle tone, clonus, spasms, and hyperreflexia. In this study, we report the effect of manually stimulating the dorsal lumbosacral skin on spontaneous locomotor-like activity and on a variety of reflex responses in 5 decerebrate chronic spinal cats treated with clonidine. Cats were spinalized 1 month before the terminal experiment. Stretch reflexes were evoked by stretching the left triceps surae muscles. Crossed reflexes were elicited by electrically stimulating the right tibial or superficial peroneal nerves. Windup of reflex responses was evoked by electrically stimulating the left tibial or superficial peroneal nerves. We found that pinching the skin of the back abolished spontaneous locomotor-like activity. We also found that back pinch abolished the rhythmic activity observed during reflex testing without eliminating the reflex responses. Some of the rhythmic episodes of activity observed during reflex testing were consistent with clonus with an oscillation frequency greater than 3 Hz. Pinching the skin of the back effectively abolished rhythmic activity occurring spontaneously or evoked during reflex testing, irrespective of oscillation frequency. The results are consistent with the hypothesis that locomotion and clonus are produced by common central pattern-generators. Stimulating the skin of the back could prove helpful in managing undesired rhythmic activity in spinal cord-injured humans. PMID:22487200

  3. Modular control of varied locomotor tasks in children with incomplete spinal cord injuries

    PubMed Central

    Tester, Nicole J.; Kautz, Steven A.; Howland, Dena R.; Clark, David J.; Garvan, Cyndi; Behrman, Andrea L.

    2013-01-01

    A module is a functional unit of the nervous system that specifies functionally relevant patterns of muscle activation. In adults, four to five modules account for muscle activation during walking. Neurological injury alters modular control and is associated with walking impairments. The effect of neurological injury on modular control in children is unknown and may differ from adults due to their immature and developing nervous systems. We examined modular control of locomotor tasks in children with incomplete spinal cord injuries (ISCIs) and control children. Five controls (8.6 ± 2.7 yr of age) and five children with ISCIs (8.6 ± 3.7 yr of age performed treadmill walking, overground walking, pedaling, supine lower extremity flexion/extension, stair climbing, and crawling. Electromyograms (EMGs) were recorded in bilateral leg muscles. Nonnegative matrix factorization was applied, and the minimum number of modules required to achieve 90% of the “variance accounted for” (VAF) was calculated. On average, 3.5 modules explained muscle activation in the controls, whereas 2.4 modules were required in the children with ISCIs. To determine if control is similar across tasks, the module weightings identified from treadmill walking were used to reconstruct the EMGs from each of the other tasks. This resulted in VAF values exceeding 86% for each child and each locomotor task. Our results suggest that 1) modularity is constrained in children with ISCIs and 2) for each child, similar neural control mechanisms are used across locomotor tasks. These findings suggest that interventions that activate the neuromuscular system to enhance walking also may influence the control of other locomotor tasks. PMID:23761702

  4. Locomotor Experience and Use of Social Information Are Posture Specific

    ERIC Educational Resources Information Center

    Adolph, Karen E.; Tamis-LeMonda, Catherine S.; Ishak, Shaziela; Karasik, Lana B.; Lobo, Sharon A.

    2008-01-01

    The authors examined the effects of locomotor experience on infants' perceptual judgments in a potentially risky situation--descending steep and shallow slopes--while manipulating social incentives to determine where perceptual judgments are most malleable. Twelve-month-old experienced crawlers and novice walkers were tested on an adjustable…

  5. Contrasting effects of acute and chronic treatment with imipramine and fluoxetine on inhibitory avoidance and escape responses in mice exposed to the elevated T-maze.

    PubMed

    Gomes, Karina Santos; de Carvalho-Netto, Eduardo Ferreira; Monte, Kátia Cristina Da Silva; Acco, Bruno; Nogueira, Paulo José de Campos; Nunes-de-Souza, Ricardo Luiz

    2009-03-30

    The elevated T-maze (ETM) is an animal model of anxiety-like behavior that assesses two different defensive behavioral tasks in the same animal-acquisition of inhibitory avoidance and latency to escape from an open and elevated arm. In rats, cute and chronic treatments with anxiolytic-like drugs impair avoidance acquisition while only chronic administration of panicolytic-like drugs impairs open arm withdrawal. To date, only the acute effects of anxiolytic/anxiogenic or panicolytic/panicogenic drugs have been tested in the mouse ETM and the results have partially corroborated those found in the rat ETM. This study investigated the effects of acute (a single intraperitoneal injection 30 min before testing) and chronic (daily i.p. injections for 15 consecutive days) treatment with imipramine or fluoxetine, non-selective and selective serotonin reuptake inhibitors, respectively, on inhibitory avoidance and escape tasks in the mouse ETM. Neither acute nor chronic treatment with imipramine (0, 1, 5 or 10 mg/kg, i.p.) significantly changed the behavioral profile of mice in the two ETM tasks. Interestingly, while acute fluoxetine (0, 5, 10, 20 or 40 mg/kg, i.p.) facilitated inhibitory avoidance and impaired escape latency, chronic treatment (0, 5, 20 or 40 mg/kg, i.p.) with this selective serotonin reuptake inhibitor (SSRI) produced an opposite effect, i.e., it impaired inhibitory avoidance acquisition and facilitated open arm withdrawal. Importantly, acute or chronic treatment with imipramine (except at the highest dose that increased locomotion when given acutely) or fluoxetine failed to alter general locomotor activity in mice as assessed in an ETM in which all arms were enclosed by lateral walls (eETM). These results suggest that inhibitory avoidance acquisition is a useful task for the evaluation of acute and chronic effects of SSRI treatment on anxiety in mice. However, as open arm latency was actually increased and reduced by acute and chronic fluoxetine

  6. NeuroRecovery Network provides standardization of locomotor training for persons with incomplete spinal cord injury.

    PubMed

    Morrison, Sarah A; Forrest, Gail F; VanHiel, Leslie R; Davé, Michele; D'Urso, Denise

    2012-09-01

    To illustrate the continuity of care afforded by a standardized locomotor training program across a multisite network setting within the Christopher and Dana Reeve Foundation NeuroRecovery Network (NRN). Single patient case study. Two geographically different hospital-based outpatient facilities. This case highlights a 25-year-old man diagnosed with C4 motor incomplete spinal cord injury with American Spinal Injury Association Impairment Scale grade D. Standardized locomotor training program 5 sessions per week for 1.5 hours per session, for a total of 100 treatment sessions, with 40 sessions at 1 center and 60 at another. Ten-meter walk test and 6-minute walk test were assessed at admission and discharge across both facilities. For each of the 100 treatment sessions percent body weight support, average, and maximum treadmill speed were evaluated. Locomotor endurance, as measured by the 6-minute walk test, and overground gait speed showed consistent improvement from admission to discharge. Throughout training, the patient decreased the need for body weight support and was able to tolerate faster treadmill speeds. Data indicate that the patient continued to improve on both treatment parameters and walking function. Standardization across the NRN centers provided a mechanism for delivering consistent and reproducible locomotor training programs across 2 facilities without disrupting training or recovery progression. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  7. The role of the laterodorsal tegmental nucleus in methamphetamine conditioned place preference and locomotor activity.

    PubMed

    Dobbs, Lauren K; Cunningham, Christopher L

    2014-05-15

    Methamphetamine (METH) indirectly stimulates the laterodorsal tegmental nucleus (LDT) acetylcholine (ACh) neurons to increase ACh within the ventral tegmental area (VTA). LDT ACh inhibition attenuates METH and saline locomotor activity. The aim of these experiments was to determine whether LDT ACh contributes to METH conditioned place preference (CPP). C57BL/6J mice received a bilateral electrolytic or sham lesion of the LDT. After recovery, mice received alternating pairings of METH (0.5 mg/kg) and saline with distinct tactile floor cues over 8 days. During preference tests, mice were given access to both floor types and time spent on each was recorded. Mice were tested again after exposure to both extinction and reconditioning trials. Brains were then processed for choline acetyltransferase immunohistochemistry to label LDT ACh neurons. Lesioned mice had significantly fewer LDT ACh neurons and showed increased saline and METH locomotor activity during the first conditioning trial compared to sham mice. Locomotor activity (saline and METH) was negatively correlated with the number of LDT ACh neurons. Lesioned and sham mice showed similar METH CPP following conditioning, extinction and reconditioning trials. LDT ACh neurons are not necessary for METH reward as indexed by CPP, but may be important for basal and METH-induced locomotor activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Optic Flow Dominates Visual Scene Polarity in Causing Adaptive Modification of Locomotor Trajectory

    NASA Technical Reports Server (NTRS)

    Nomura, Y.; Mulavara, A. P.; Richards, J. T.; Brady, R.; Bloomberg, Jacob J.

    2005-01-01

    Locomotion and posture are influenced and controlled by vestibular, visual and somatosensory information. Optic flow and scene polarity are two characteristics of a visual scene that have been identified as being critical in how they affect perceived body orientation and self-motion. The goal of this study was to determine the role of optic flow and visual scene polarity on adaptive modification in locomotor trajectory. Two computer-generated virtual reality scenes were shown to subjects during 20 minutes of treadmill walking. One scene was a highly polarized scene while the other was composed of objects displayed in a non-polarized fashion. Both virtual scenes depicted constant rate self-motion equivalent to walking counterclockwise around the perimeter of a room. Subjects performed Stepping Tests blindfolded before and after scene exposure to assess adaptive changes in locomotor trajectory. Subjects showed a significant difference in heading direction, between pre and post adaptation stepping tests, when exposed to either scene during treadmill walking. However, there was no significant difference in the subjects heading direction between the two visual scene polarity conditions. Therefore, it was inferred from these data that optic flow has a greater role than visual polarity in influencing adaptive locomotor function.

  9. Pharmacogenetics of steroid-responsive acute graft-versus-host disease.

    PubMed

    Arora, Mukta; Weisdorf, Daniel J; Shanley, Ryan M; Thyagarajan, Bharat

    2017-05-01

    Glucocorticoids are central to effective therapy of acute graft-versus-host disease (GVHD). However, only about half of the patients respond to steroids in initial therapy. Based on postulated mechanisms for anti-inflammatory effectiveness, we explored genetic variations in glucocorticoid receptor, co-chaperone proteins, membrane transporters, inflammatory mediators, and variants in the T-cell receptor complex in hematopoietic cell transplant recipients with acute GVHD requiring treatment with steroids and their donors toward response at day 28 after initiation of therapy. A total of 300 recipient and donor samples were analyzed. Twenty-three SNPs in 17 genes affecting glucocorticoid pathways were included in the analysis. In multiple regression analysis, donor SNP rs3192177 in the ZAP70 gene (O.R. 2.8, 95% CI: 1.3-6.0, P=.008) and donor SNP rs34471628 in the DUSPI gene (O.R. 0.3, 95% CI: 0.1-1.0, P=.048) were significantly associated with complete or partial response. However, after adjustment for multiple testing, these SNPs did not remain statistically significant. Our results, on this small, exploratory, hypothesis generating analysis suggest that common genetic variation in glucocorticoid pathways may help identify subjects with differential response to glucocorticoids. This needs further assessment in larger datasets and if validated could help identify subjects for alternative treatments and design targeted treatments to overcome steroid resistance. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Increased neural responses to empathy for pain might explain how acute stress increases prosociality

    PubMed Central

    Tomova, L.; Majdandžić, J.; Hummer, A.; Windischberger, C.; Heinrichs, M.

    2017-01-01

    Abstract Recent behavioral investigations suggest that acute stress can increase prosocial behavior. Here, we investigated whether increased empathy represents a potential mechanism for this finding. Using functional magnetic resonance imaging, we assessed the effects of acute stress on neural responses related to automatic and regulatory components of empathy for pain as well as subsequent prosocial behavior. Stress increased activation in brain areas associated with the automatic sharing of others’ pain, such as the anterior insula, the anterior midcingulate cortex, and the primary somatosensory cortex. In addition, we found increased prosocial behavior under stress. Furthermore, activation in the anterior midcingulate cortex mediated the effects of stress on prosocial behavior. However, stressed participants also displayed stronger and inappropriate other-related responses in situations which required them to take the perspective of another person, and to regulate their automatic affective responses. Thus, while acute stress may increase prosocial behavior by intensifying the sharing of others’ emotions, this comes at the cost of reduced cognitive appraisal abilities. Depending on the contextual constraints, stress may therefore affect empathy in ways that are either beneficial or detrimental. PMID:27798249

  11. Dengue Infection Increases the Locomotor Activity of Aedes aegypti Females

    PubMed Central

    Luz, Paula M.; Castro, Márcia G.; Lourenço-de-Oliveira, Ricardo; Sorgine, Marcos H. F.; Peixoto, Alexandre A.

    2011-01-01

    Background Aedes aegypti is the main vector of the virus causing Dengue fever, a disease that has increased dramatically in importance in recent decades, affecting many tropical and sub-tropical areas of the globe. It is known that viruses and other parasites can potentially alter vector behavior. We investigated whether infection with Dengue virus modifies the behavior of Aedes aegypti females with respect to their activity level. Methods/Principal Findings We carried out intrathoracic Dengue 2 virus (DENV-2) infections in Aedes aegypti females and recorded their locomotor activity behavior. We observed an increase of up to ∼50% in the activity of infected mosquitoes compared to the uninfected controls. Conclusions Dengue infection alters mosquito locomotor activity behavior. We speculate that the higher levels of activity observed in infected Aedes aegypti females might involve the circadian clock. Further studies are needed to assess whether this behavioral change could have implications for the dynamics of Dengue virus transmission. PMID:21408119

  12. CRHR1 Gene SNPs and Response to Systemic Corticosteroids in Indian Asthmatic Children During Acute Exacerbation.

    PubMed

    Awasthi, Shally; Gupta, Sarika; Agarwal, Sarita; Sharma, Neeraj

    2015-09-01

    To determine association of corticotrophin releasing hormone receptor 1 (CRHR1) gene single nucleotide polymorphisms (SNPs), rs242939 (A>G) and rs242941 (G>T) with response to systemic corticosteroids in North Indian asthmatic children during acute exacerbation. This was a hospital based cross-sectional study. Sixty-eight children aged 1 to 12 y with acute exacerbation of asthma were included in the study. The study was approved by the institutional ethics committee and written informed consent was obtained from parents/guardians of recruited children. GINA guidelines 2008, were used for classification and treatment of acute exacerbation of asthma. As per the GINA guidelines 2008, children who had good response to injectable corticosteroid were classified as "Corticosteroid Responders" (CR). Rest of the children with incomplete or poor response to injectable corticosteroid were classified as "Corticosteroid Non Responders" (CNR). Among 68 hospitalized children, 45 (66.17 %) children were CR whereas 23 (33.83 %) children were CNR. On analyzing as dominant model, children with one or two copies of mutant allele of SNP rs242941 had statistically significant better response to systemic corticosteroid (OR = 5.00; 95 %CI = 1.32-19.64; p 0.013) as compared to children with no mutant allele. Thus, CRHR1 gene SNP rs242941 polymorphism is associated with better response to systemic corticosteroid during acute exacerbation of asthma.

  13. Hippocampal protection in mice with an attenuated inflammatory monocyte response to acute CNS picornavirus infection

    PubMed Central

    Howe, Charles L.; LaFrance-Corey, Reghann G.; Sundsbak, Rhianna S.; Sauer, Brian M.; LaFrance, Stephanie J.; Buenz, Eric J.; Schmalstieg, William F.

    2012-01-01

    Neuronal injury during acute viral infection of the brain is associated with the development of persistent cognitive deficits and seizures in humans. In C57BL/6 mice acutely infected with the Theiler's murine encephalomyelitis virus, hippocampal CA1 neurons are injured by a rapid innate immune response, resulting in profound memory deficits. In contrast, infected SJL and B6xSJL F1 hybrid mice exhibit essentially complete hippocampal and memory preservation. Analysis of brain-infiltrating leukocytes revealed that SJL mice mount a sharply attenuated inflammatory monocyte response as compared to B6 mice. Bone marrow transplantation experiments isolated the attenuation to the SJL immune system. Adoptive transfer of B6 inflammatory monocytes into acutely infected B6xSJL hosts converted these mice to a hippocampal damage phenotype and induced a cognitive deficit marked by failure to recognize a novel object. These findings show that inflammatory monocytes are the critical cellular mediator of hippocampal injury during acute picornavirus infection of the brain. PMID:22848791

  14. Effect of electrolytic lesion of the dorsomedial striatum on sexual behaviour and locomotor activity in rats.

    PubMed

    Ortiz-Pulido, R; Hernández-Briones, Z S; Tamariz-Rodríguez, A; Hernández, M E; Aranda-Abreu, G E; Coria-Avila, G A; Manzo, J; García, L I

    2017-06-01

    Cortical motor areas are influenced not only by peripheral sensory afferents and prefrontal association areas, but also by the basal ganglia, specifically the striatum. The dorsomedial striatum (DMS) and dorsolateral striatum are involved in both spatial and stimulus-response learning; however, each of these areas may mediate different components of learning. The aim of the study is to determine the effect of electrolytic lesion to the DMS on the learning and performance of sexual behaviour and locomotor activity in male rats. Once the subjects had learned to perform motor tests of balance, maze navigation, ramp ascent, and sexual behaviour, they underwent electrolytic lesion to the DMS. Five days later, the tests were repeated on 2 occasions and researchers compared performance latencies for each test. Average latency values for performance on the maze and balance tests were higher after the lesion. However, the average values for the ramp test and for sexual behaviour did not differ between groups. Electrolytic lesion of the DMS modifies the performance of locomotor activity (maze test and balance), but not of sexual behaviour. Copyright © 2015 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Perceptual-motor regulation in locomotor pointing while approaching a curb.

    PubMed

    Andel, Steven van; Cole, Michael H; Pepping, Gert-Jan

    2018-02-01

    Locomotor pointing is a task that has been the focus of research in the context of sport (e.g. long jumping and cricket) as well as normal walking. Collectively, these studies have produced a broad understanding of locomotor pointing, but generalizability has been limited to laboratory type tasks and/or tasks with high spatial demands. The current study aimed to generalize previous findings in locomotor pointing to the common daily task of approaching and stepping on to a curb. Sixteen people completed 33 repetitions of a task that required them to walk up to and step onto a curb. Information about their foot placement was collected using a combination of measures derived from a pressure-sensitive walkway and video data. Variables related to perceptual-motor regulation were analyzed on an inter-trial, intra-step and inter-step level. Similar to previous studies, analysis of the foot placements showed that, variability in foot placement decreased as the participants drew closer to the curb. Regulation seemed to be initiated earlier in this study compared to previous studies, as shown by a decreasing variability in foot placement as early as eight steps before reaching the curb. Furthermore, it was shown that when walking up to the curb, most people regulated their walk in a way so as to achieve minimal variability in the foot placement on top of the curb, rather than a placement in front of the curb. Combined, these results showed a strong perceptual-motor coupling in the task of approaching and stepping up a curb, rendering this task a suitable test for perceptual-motor regulation in walking. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Social interactions between live and artificial weakly electric fish: Electrocommunication and locomotor behavior of Mormyrus rume proboscirostris towards a mobile dummy fish

    PubMed Central

    Kirschbaum, Frank; von der Emde, Gerhard

    2017-01-01

    Mormyrid weakly electric fish produce short, pulse-type electric organ discharges for actively probing their environment and to communicate with conspecifics. Animals emit sequences of pulse-trains that vary in overall frequency and temporal patterning and can lead to time-locked interactions with the discharge activity of other individuals. Both active electrolocation and electrocommunication are additionally accompanied by stereotypical locomotor patterns. However, the concrete roles of electrical and locomotor patterns during social interactions in mormyrids are not well understood. Here we used a mobile fish dummy that was emitting different types of electrical playback sequences to study following behavior and interaction patterns (electrical and locomotor) between individuals of weakly electric fish. We confronted single individuals of Mormyrus rume proboscirostris with a mobile dummy fish designed to attract fish from a shelter and recruit them into an open area by emitting electrical playbacks of natural discharge sequences. We found that fish were reliably recruited by the mobile dummy if it emitted electrical signals and followed it largely independently of the presented playback patterns. While following the dummy, fish interacted with it spatially by displaying stereotypical motor patterns, as well as electrically, e.g. through discharge regularizations and by synchronizing their own discharge activity to the playback. However, the overall emission frequencies of the dummy were not adopted by the following fish. Instead, social signals based on different temporal patterns were emitted depending on the type of playback. In particular, double pulses were displayed in response to electrical signaling of the dummy and their expression was positively correlated with an animals' rank in the dominance hierarchy. Based on additional analysis of swimming trajectories and stereotypical locomotor behavior patterns, we conclude that the reception and emission of

  17. Tea component, epigallocatechin gallate, potentiates anticataleptic and locomotor-sensitizing effects of caffeine in mice.

    PubMed

    Kasture, Sanjay B; Gaikar, Mayur; Kasture, Veena; Arote, Sanjay; Salve, Balu; Rosas, Michela; Cotti, Elisabetta; Acquas, Elio

    2015-02-01

    Tea is the most popular beverage worldwide. Caffeine, the psychoactive principle of tea, pharmacologically interacts with several drugs and bioactive molecules. Epigallocatechin gallate (EGCG) is a major component of tea and its known interactions with caffeine make it worthwhile to further study them by investigating the influence of EGCG on the anticataleptic and locomotor-sensitizing effects of caffeine. In the present investigation, we observed that (a) administration of caffeine or EGCG alone inhibited haloperidol-induced catalepsy, a widely used animal model to study parkinsonism, and (b) a combination of caffeine and EGCG produced greater inhibition of haloperidol-induced catalepsy. Furthermore, after repeated administration of caffeine and EGCG, either alone or in combination, we observed that (c) caffeine and EGCG contrasted the sensitization of catalepsy observed after repeated haloperidol administration by significantly reducing the duration of catalepsy. Furthermore, as haloperidol-induced catalepsy was also associated with increased lipid peroxidation, we observed that (d) EGCG administration reduced striatal lipid peroxide levels in a dose-dependent manner and that (e) the combination of caffeine with EGCG was most effective in reducing haloperidol-increased striatal lipid peroxide. Finally, we observed that (f) chronic caffeine and EGCG significantly elicited locomotor sensitization and that (g) their combination resulted in significantly greater effects. In conclusion, EGCG potentiated the effects of caffeine on haloperidol-induced catalepsy and of caffeine-elicited locomotor sensitization. Overall, these observations indicate critical interactions between caffeine and EGCG in an animal model of parkinsonism and locomotor activity and suggest that tea consumption might reduce antipsychotic-induced side effects.

  18. Lumbar muscle inflammation alters spinally mediated locomotor recovery induced by training in a mouse model of complete spinal cord injury.

    PubMed

    Jeffrey-Gauthier, Renaud; Piché, Mathieu; Leblond, Hugues

    2017-09-17

    Locomotor networks after spinal cord injury (SCI) are shaped by training-activated proprioceptive and cutaneous inputs. Nociception from injured tissues may alter these changes but has largely been overlooked. The objective of the present study was to ascertain whether lumbar muscle inflammation hinders locomotion recovery in a mouse model of complete SCI. Lower limb kinematics during treadmill training was assessed before and after complete SCI at T8 (2, 7, 14, 21 and 28days post-injury). Locomotor recovery was compared in 4 groups of CD1 mice: control spinal mice; spinal mice with daily locomotor training; spinal mice with lumbar muscle inflammation (Complete Freund's Adjuvant (CFA) injection); and spinal mice with locomotor training and CFA. On day 28, H-reflex excitability and its inhibition at high-frequency stimulation (frequency-dependent depression: FDD) were compared between groups, all of which showed locomotor recovery. Recovery was enhanced by training, whereas lumbar muscle inflammation hindered these effects (knee angular excursion and paw drag: p's<0.05). In addition, lumbar muscle inflammation impaired hind limb coupling during locomotion (p<0.05) throughout recovery. Also, H-reflex disinhibition was prevented by training, with or without CFA injection (p's<0.05). Altogether, these results indicate that back muscle inflammation modulates spinally mediated locomotor recovery in mice with complete SCI, in part, by reducing adaptive changes induced by training. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. The acute autonomic stress response and amniotic fluid glucocorticoids in second-trimester pregnant women.

    PubMed

    La Marca-Ghaemmaghami, Pearl; Dainese, Sara M; La Marca, Roberto; Zimmermann, Roland; Ehlert, Ulrike

    2015-01-01

    The maternal autonomic nervous system (ANS) has received little attention in the investigation of biological mechanisms linking prenatal stress to fetal cortisol (F) excess. In vitro, norepinephrine and epinephrine inhibit placental 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), which protects the fetus from F overexposure by inactivating it to cortisone (E). Here, we investigated the acute ANS stress response to an amniocentesis and its association with amniotic fluid F, E, and E/(E + F) as a marker of fetoplacental 11β-HSD2 activity. An aliquot of amniotic fluid was obtained from 34 healthy, second-trimester pregnant women undergoing amniocentesis. Repeated assessment of mood states served to examine the psychological stress response to amniocentesis. Saliva samples were collected to measure stress-induced changes in salivary α-amylase concentrations in response to amniocentesis. Cardiac parameters were measured continuously. Undergoing amniocentesis induced significant psychological and autonomic alterations. Low-frequency (LF)/high-frequency (HF) baseline, suggested to reflect sympathovagal balance, was negatively correlated with amniotic E/(E + F) (r=-0.53, p = .002) and positively with F (r = 0.62, p < .001). In contrast, a stronger acute LF/HF response was positively associated with E/(E + F) (r = 0.44, p = .012) and negatively with F (r=-0.40, p = .025). These findings suggest that the maternal ANS is involved in the regulation of the fetoplacental barrier to stress. Allostatic processes may have been initiated to counterbalance acute stress effects. In contrast, higher LF/HF baseline values, possibly indicative of chronic stress exposure, may have inhibited 11β-HSD2 activity in the fetoplacental unit. These results parallel animal findings of up-regulated placental 11β-HSD2 in response to acute stress but impairment under chronic stress.

  20. Locomotor Activity and Body Temperature Patterns over a Temperature Gradient in the Highveld Mole-Rat (Cryptomys hottentotus pretoriae).

    PubMed

    Haupt, Meghan; Bennett, Nigel C; Oosthuizen, Maria K

    2017-01-01

    African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment.

  1. Locomotor Activity and Body Temperature Patterns over a Temperature Gradient in the Highveld Mole-Rat (Cryptomys hottentotus pretoriae)

    PubMed Central

    Haupt, Meghan; Bennett, Nigel C.

    2017-01-01

    African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment. PMID:28072840

  2. An assay for evoked locomotor behavior in Drosophila reveals a role for integrins in ethanol sensitivity and rapid ethanol tolerance.

    PubMed

    Bhandari, Poonam; Kendler, Kenneth S; Bettinger, Jill C; Davies, Andrew G; Grotewiel, Mike

    2009-10-01

    Ethanol induces similar behavioral responses in mammals and the fruit fly, Drosophila melanogaster. By coupling assays for ethanol-related behavior to the genetic tools available in flies, a number of genes have been identified that influence physiological responses to ethanol. To enhance the utility of the Drosophila model for investigating genes involved in ethanol-related behavior, we explored the value of an assay that measures the sedative effects of ethanol on negative geotaxis, an evoked locomotor response. We established eRING (ethanol Rapid Iterative Negative Geotaxis) as an assay for quantitating the sedative effects of ethanol on negative geotaxis (i.e., startle-induced climbing). We validated the assay by assessing acute sensitivity to ethanol and rapid ethanol tolerance in several different control strains and in flies with mutations known to disrupt these behaviors. We also used eRING in a candidate screen to identify mutants with altered ethanol-related behaviors. Negative geotaxis measured in eRING assays was dose-dependently impaired by ethanol exposure. Flies developed tolerance to the intoxicating effects of ethanol when tested during a second exposure. Ethanol sensitivity and rapid ethanol tolerance varied across 4 control strains, but internal ethanol concentrations were indistinguishable in the 4 strains during a first and second challenge with ethanol. Ethanol sensitivity and rapid ethanol tolerance, respectively, were altered in flies with mutations in amnesiac and hangover, genes known to influence these traits. Additionally, mutations in the beta integrin gene myospheroid and the alpha integrin gene scab increased the initial sensitivity to ethanol and enhanced the development of rapid ethanol tolerance without altering internal ethanol concentrations. The eRING assay is suitable for investigating genetic mechanisms that influence ethanol sensitivity and rapid ethanol tolerance. Ethanol sensitivity and rapid ethanol tolerance depend on the

  3. Case Comparison of Response To Aquatic Exercise: Acute versus Chronic Conditions.

    ERIC Educational Resources Information Center

    Mobily, Kenneth E.; Mobily, Paula R.; Lessard, Kerry A.; Berkenpas, Molly S.

    2000-01-01

    Describes the effects of individualized aquatic exercise programs on people with knee impairments. An adolescent athlete with an acute injury demonstrated significant functional improvement. A 33-year-old with arthritis demonstrated only marginal progress. Comparison of cases relative to valid data collection methods and response to aquatic…

  4. Body temperature modulates the antioxidant and acute immune responses to exercise.

    PubMed

    Mestre-Alfaro, Antonia; Ferrer, Miguel D; Banquells, Montserrat; Riera, Joan; Drobnic, Franchek; Sureda, Antoni; Tur, Josep A; Pons, Antoni

    2012-06-01

    The aim of this study was to determine the effects of whole body heat in combination with exercise on the oxidative stress and acute phase immune response. Nine male endurance-trained athletes voluntarily performed two running bouts of 45 minutes at 75-80% of VO(2max) in a climatic chamber in two conditions: cold and hot humid environment. Leukocyte, neutrophil and basophil counts significantly rose after exercise in both environments; it was significantly greater in the hot environment. Lymphocyte and neutrophil antioxidant enzyme activities and carbonyl index significantly increased or decreased after exercise only in the hot environment, respectively. The lymphocytes expression of catalase, Hsp72 and CuZn-superoxide dismutase was increased in the hot environment and Sirt3 in the cold environment, mainly during recovery. In conclusion, the increased core body temperature results in the acute phase immune response associated to intense exercise and in the immune cell adaptations to counteract the oxidative stress situation.

  5. Dopaminergic modulation of locomotor network activity in the neonatal mouse spinal cord

    PubMed Central

    Sharples, Simon A.; Humphreys, Jennifer M.; Jensen, A. Marley; Dhoopar, Sunny; Delaloye, Nicole; Clemens, Stefan

    2015-01-01

    Dopamine is now well established as a modulator of locomotor rhythms in a variety of developing and adult vertebrates. However, in mice, while all five dopamine receptor subtypes are present in the spinal cord, it is unclear which receptor subtypes modulate the rhythm. Dopamine receptors can be grouped into two families—the D1/5 receptor group and the D2/3/4 group, which have excitatory and inhibitory effects, respectively. Our data suggest that dopamine exerts contrasting dose-dependent modulatory effects via the two receptor families. Our data show that administration of dopamine at concentrations >35 μM slowed and increased the regularity of a locomotor rhythm evoked by bath application of 5-hydroxytryptamine (5-HT) and N-methyl-d(l)-aspartic acid (NMA). This effect was independent of the baseline frequency of the rhythm that was manipulated by altering the NMA concentration. We next examined the contribution of the D1- and D2-like receptor families on the rhythm. Our data suggest that the D1-like receptor contributes to enhancement of the stability of the rhythm. Overall, the D2-like family had a pronounced slowing effect on the rhythm; however, quinpirole, the D2-like agonist, also enhanced rhythm stability. These data indicate a receptor-dependent delegation of the modulatory effects of dopamine on the spinal locomotor pattern generator. PMID:25652925

  6. Discriminative and locomotor effects of five synthetic cathinones in rats and mice.

    PubMed

    Gatch, Michael B; Rutledge, Margaret A; Forster, Michael J

    2015-04-01

    Synthetic cathinones continue to be sold as "legal" alternatives to methamphetamine or cocaine. As these marginally legal compounds become controlled, suppliers move to other, unregulated compounds. The purpose of these experiments was to determine whether several temporarily controlled cathinone compounds, which are currently abused on the street, stimulate motor activity and have discriminative stimulus effects similar to cocaine and/or methamphetamine. Methcathinone, pentedrone, pentylone, 3-fluoromethcathinone (3-FMC), and 4-methylethcathinone (4-MEC) were tested for locomotor stimulant effects in mice and subsequently for substitution in rats trained to discriminate cocaine (10 mg/kg, i.p.) or methamphetamine (1 mg/kg, i.p.) from saline. Methcathinone, pentedrone, and pentylone produced locomotor stimulant effects which lasted up to 6 h. In addition, pentylone produced convulsions and lethality at 100 mg/kg. 4-MEC produced locomotor stimulant effects which lasted up to 2 h. Methcathinone, pentedrone, pentylone, 3-FMC, and 4-MEC each produced discriminative stimulus effects similar to those of cocaine and methamphetamine. All of the tested compounds produce discriminative stimulus effects similar to either those of cocaine, methamphetamine, or both, which suggests that these compounds are likely to have similar abuse liability to cocaine and/or methamphetamine. Pentylone may be more dangerous on the street, as it produced adverse effects at doses that produced maximal stimulant-like effects.

  7. Selection towards different adaptive optima drove the early diversification of locomotor phenotypes in the radiation of Neotropical geophagine cichlids.

    PubMed

    Astudillo-Clavijo, Viviana; Arbour, Jessica H; López-Fernández, Hernán

    2015-05-01

    Simpson envisaged a conceptual model of adaptive radiation in which lineages diversify into "adaptive zones" within a macroevolutionary adaptive landscape. However, only a handful of studies have empirically investigated this adaptive landscape and its consequences for our interpretation of the underlying mechanisms of phenotypic evolution. In fish radiations the evolution of locomotor phenotypes may represent an important dimension of ecomorphological diversification given the implications of locomotion for feeding and habitat use. Neotropical geophagine cichlids represent a newly identified adaptive radiation and provide a useful system for studying patterns of locomotor diversification and the implications of selective constraints on phenotypic divergence in general. We use multivariate ordination, models of phenotypic evolution and posterior predictive approaches to investigate the macroevolutionary adaptive landscape and test for evidence of early divergence of locomotor phenotypes in Geophagini. The evolution of locomotor phenotypes was characterized by selection towards at least two distinct adaptive peaks and the early divergence of modern morphological disparity. One adaptive peak included the benthic and epibenthic invertivores and was characterized by fishes with deep, laterally compressed bodies that optimize precise, slow-swimming manoeuvres. The second adaptive peak resulted from a shift in adaptive optima in the species-rich ram-feeding/rheophilic Crenicichla-Teleocichla clade and was characterized by species with streamlined bodies that optimize fast starts and rapid manoeuvres. Evolutionary models and posterior predictive approaches favoured an early shift to a new adaptive peak over decreasing rates of evolution as the underlying process driving the early divergence of locomotor phenotypes. The influence of multiple adaptive peaks on the divergence of locomotor phenotypes in Geophagini is compatible with the expectations of an ecologically driven

  8. Acute changes in community violence and increases in hospital visits and deaths from stress-responsive diseases.

    PubMed

    Ahern, Jennifer; Matthay, Ellicott C; Goin, Dana E; Farkas, Kriszta; Rudolph, Kara E

    2018-06-06

    Community violence may affect a broad range of health outcomes through physiologic stress responses and changes in health behaviors among residents. However, existing research on the health impacts of community violence suffers from problems with bias. We examined the relations of acute changes in community violence with hospital visits and deaths due to stress-responsive diseases (mental, respiratory, and cardiac conditions) in statewide data from California 2005-2013. The community violence exposure was measured as both binary spikes and continuous acute changes. We applied a combined fixed-effects and time-series design that separates the effects of violence from those of community- and individual-level confounders more effectively than past research. Temporal patterning was removed from community violence rates and disease rates in each place using a Kalman smoother, resulting in residual rates. We used linear regression with place fixed-effects to examine within-place associations of acute changes in community violence with residual rates of each outcome, controlling for local time-varying covariates. We found acute increases in hospital visits and deaths due to anxiety disorders (0.31 per 100,000; 95% Confidence Interval (CI) 0.02,0.59), substance use (0.47 per 100,000; 95%CI 0.14,0.80), asthma (0.56 per 100,000; 95%CI 0.16,0.95), and fatal acute myocardial infarction (0.09 per 100,000; 95%CI 0.00,0.18) co-occurring with violence spikes. The pattern of findings was similar for the exposure of continuous acute violence changes. Although the associations were small, the identified increases in stress-responsive conditions suggest the possibility of health impacts of acute changes in community violence.

  9. The central role of hypothalamic inflammation in the acute illness response and cachexia.

    PubMed

    Burfeind, Kevin G; Michaelis, Katherine A; Marks, Daniel L

    2016-06-01

    When challenged with a variety of inflammatory threats, multiple systems across the body undergo physiological responses to promote defense and survival. The constellation of fever, anorexia, and fatigue is known as the acute illness response, and represents an adaptive behavioral and physiological reaction to stimuli such as infection. On the other end of the spectrum, cachexia is a deadly and clinically challenging syndrome involving anorexia, fatigue, and muscle wasting. Both of these processes are governed by inflammatory mediators including cytokines, chemokines, and immune cells. Though the effects of cachexia can be partially explained by direct effects of disease processes on wasting tissues, a growing body of evidence shows the central nervous system (CNS) also plays an essential mechanistic role in cachexia. In the context of inflammatory stress, the hypothalamus integrates signals from peripheral systems, which it translates into neuroendocrine perturbations, altered neuronal signaling, and global metabolic derangements. Therefore, we will discuss how hypothalamic inflammation is an essential driver of both the acute illness response and cachexia, and why this organ is uniquely equipped to generate and maintain chronic inflammation. First, we will focus on the role of the hypothalamus in acute responses to dietary and infectious stimuli. Next, we will discuss the role of cytokines in driving homeostatic disequilibrium, resulting in muscle wasting, anorexia, and weight loss. Finally, we will address mechanisms and mediators of chronic hypothalamic inflammation, including endothelial cells, chemokines, and peripheral leukocytes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. High Fat Diet Augments Amphetamine Sensitization in Mice: Role of Feeding Pattern, Obesity, and Dopamine Terminal Changes

    PubMed Central

    Fordahl, Steve C.; Locke, Jason L.; Jones, Sara R.

    2016-01-01

    High fat (HF) diet-induced obesity has been shown to augment behavioral responses to psychostimulants that target the dopamine system. The purpose of this study was to characterize dopamine terminal changes induced by a HF diet that correspond with enhanced locomotor sensitization to amphetamine. C57BL/6J mice had limited (2hr 3d/week) or extended (24h 7d/week) access to a HF diet or standard chow for six weeks. Mice were then repeatedly exposed to amphetamine (AMPH), and their locomotor responses to an amphetamine challenge were measured. Fast scan cyclic voltammetry was used to identify changes in dopamine terminal function after AMPH exposure. Exposure to a HF diet reduced dopamine uptake and increased locomotor responses to acute, high-dose AMPH administration compared to chow fed mice. Microdialysis showed elevated extracellular dopamine in the nucleus accumbens (NAc) coincided with enhanced locomotion after acute AMPH in HF-fed mice. All mice exhibited locomotor sensitization to amphetamine, but both extended and limited access to a HF diet augmented this response. Neither HF-fed group showed the robust amphetamine sensitization-induced increases in dopamine release, reuptake, and amphetamine potency observed in chow fed animals. However, the potency of amphetamine as an uptake inhibitor was significantly elevated after sensitization in mice with extended (but not limited) access to HF. Conversely, after amphetamine sensitization, mice with limited (but not extended) access to HF displayed reduced autoreceptor sensitivity to the D2/D3 agonist quinpirole. Additionally, we observed reduced membrane dopamine transporter (DAT) levels after HF, and a shift in DAT localization to the cytosol was detected with limited access to HF. This study showed that different patterns of HF exposure produced distinct dopamine terminal adaptations to repeated AMPH, which differed from chow fed mice, and enhanced sensitization to AMPH. Locomotor sensitization in chow fed mice

  11. Volumetric changes in the aging rat brain and its impact on cognitive and locomotor functions.

    PubMed

    Hamezah, Hamizah Shahirah; Durani, Lina Wati; Ibrahim, Nor Faeizah; Yanagisawa, Daijiro; Kato, Tomoko; Shiino, Akihiko; Tanaka, Sachiko; Damanhuri, Hanafi Ahmad; Ngah, Wan Zurinah Wan; Tooyama, Ikuo

    2017-12-01

    Impairments in cognitive and locomotor functions usually occur with advanced age, as do changes in brain volume. This study was conducted to assess changes in brain volume, cognitive and locomotor functions, and oxidative stress levels in middle- to late-aged rats. Forty-four male Sprague-Dawley rats were divided into four groups: 14, 18, 23, and 27months of age. 1 H magnetic resonance imaging (MRI) was performed using a 7.0-Tesla MR scanner system. The volumes of the lateral ventricles, medial prefrontal cortex (mPFC), hippocampus, striatum, cerebellum, and whole brain were measured. Open field, object recognition, and Morris water maze tests were conducted to assess cognitive and locomotor functions. Blood was taken for measurements of malondialdehyde (MDA), protein carbonyl content, and antioxidant enzyme activity. The lateral ventricle volumes were larger, whereas the mPFC, hippocampus, and striatum volumes were smaller in 27-month-old rats than in 14-month-old rats. In behavioral tasks, the 27-month-old rats showed less exploratory activity and poorer spatial learning and memory than did the 14-month-old rats. Biochemical measurements likewise showed increased MDA and lower glutathione peroxidase (GPx) activity in the 27-month-old rats. In conclusion, age-related increases in oxidative stress, impairment in cognitive and locomotor functions, and changes in brain volume were observed, with the most marked impairments observed in later age. Copyright © 2017. Published by Elsevier Inc.

  12. Effects of Overground Locomotor Training on Walking Performance in Chronic Cervical Motor Incomplete Spinal Cord Injury: A Pilot Study.

    PubMed

    Gollie, Jared M; Guccione, Andrew A; Panza, Gino S; Jo, Peter Y; Herrick, Jeffrey E

    2017-06-01

    To determine the effects of a novel overground locomotor training program on walking performance in people with chronic cervical motor incomplete spinal cord injury (iSCI). Before-after pilot study. Human performance research laboratory. Adults (N=6, age >18y) with chronic cervical iSCI with American Spinal Injury Association Impairment Scale grades C and D. Overground locomotor training included two 90-minute sessions per week for 12 to 15 weeks. Training sessions alternated between uniplanar and multiplanar stepping patterns. Each session was comprised of 5 segments: joint mobility, volitional muscle activation, task isolation, task integration, and activity rehearsal. Overground walking speed, oxygen consumption (V˙o 2 ), and carbon dioxide production (V˙co 2 ). Overground locomotor training increased overground walking speed (.36±.20 vs .51±.24 m/s, P<.001, d=.68). Significant decreases in V˙o 2 (6.6±1.3 vs 5.7±1.4mL·kg·min, P=.038, d=.67) and V˙co 2 (753.1±125.5 vs 670.7±120.3mL/min, P=.036, d=.67) during self-selected constant work rate treadmill walking were also noted after training. The overground locomotor training program used in this pilot study is feasible and improved both overground walking speed and walking economy in a small sample of people with chronic cervical iSCI. Future studies are necessary to establish the efficacy of this overground locomotor training program and to differentiate among potential mechanisms contributing to enhanced walking performance in people with iSCI after overground locomotor training. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  13. Inflammatory biomarkers responses after acute whole body vibration in fibromyalgia.

    PubMed

    Ribeiro, V G C; Mendonça, V A; Souza, A L C; Fonseca, S F; Camargos, A C R; Lage, V K S; Neves, C D C; Santos, J M; Teixeira, L A C; Vieira, E L M; Teixeira Junior, A L; Mezêncio, B; Fernandes, J S C; Leite, H R; Poortmans, J R; Lacerda, A C R

    2018-03-01

    The aims of this study were 1) to characterize the intensity of the vibration stimulation in women diagnosed with fibromyalgia (FM) compared to a control group of healthy women (HW) matched by age and anthropometric parameters, and 2) to investigate the effect of a single session of whole body vibration (WBV) on inflammatory responses. Levels of adipokines, soluble tumor necrosis factor receptors (sTNFr1, sTNFr2), and brain-derived neurotrophic factor (BDNF) were determined by enzyme-linked immunosorbent assay. Oxygen consumption (VO2) was estimated by a portable gas analysis system, heart rate (HR) was measured using a HR monitor, and perceived exertion (RPE) was evaluated using the Borg scale of perceived exertion. Acutely mild WBV increased VO2 and HR similarly in both groups. There was an interaction (disease vs vibration) in RPE (P=0.0078), showing a higher RPE in FM compared to HW at rest, which further increased in FM after acute WBV, whereas it remained unchanged in HW. In addition, there was an interaction (disease vs vibration) in plasma levels of adiponectin (P=0.0001), sTNFR1 (P=0.000001), sTNFR2 (P=0.0052), leptin (P=0.0007), resistin (P=0.0166), and BDNF (P=0.0179). In conclusion, a single acute session of mild and short WBV can improve the inflammatory status in patients with FM, reaching values close to those of matched HW at their basal status. The neuroendocrine mechanism seems to be an exercise-induced modulation towards greater adaptation to stress response in these patients.

  14. Inflammatory biomarkers responses after acute whole body vibration in fibromyalgia

    PubMed Central

    Ribeiro, V.G.C.; Mendonça, V.A.; Souza, A.L.C.; Fonseca, S.F.; Camargos, A.C.R.; Lage, V.K.S.; Neves, C.D.C.; Santos, J.M.; Teixeira, L.A.C.; Vieira, E.L.M.; Teixeira, A.L.; Mezêncio, B.; Fernandes, J.S.C.; Leite, H.R.; Poortmans, J.R.; Lacerda, A.C.R.

    2018-01-01

    The aims of this study were 1) to characterize the intensity of the vibration stimulation in women diagnosed with fibromyalgia (FM) compared to a control group of healthy women (HW) matched by age and anthropometric parameters, and 2) to investigate the effect of a single session of whole body vibration (WBV) on inflammatory responses. Levels of adipokines, soluble tumor necrosis factor receptors (sTNFr1, sTNFr2), and brain-derived neurotrophic factor (BDNF) were determined by enzyme-linked immunosorbent assay. Oxygen consumption (VO2) was estimated by a portable gas analysis system, heart rate (HR) was measured using a HR monitor, and perceived exertion (RPE) was evaluated using the Borg scale of perceived exertion. Acutely mild WBV increased VO2 and HR similarly in both groups. There was an interaction (disease vs vibration) in RPE (P=0.0078), showing a higher RPE in FM compared to HW at rest, which further increased in FM after acute WBV, whereas it remained unchanged in HW. In addition, there was an interaction (disease vs vibration) in plasma levels of adiponectin (P=0.0001), sTNFR1 (P=0.000001), sTNFR2 (P=0.0052), leptin (P=0.0007), resistin (P=0.0166), and BDNF (P=0.0179). In conclusion, a single acute session of mild and short WBV can improve the inflammatory status in patients with FM, reaching values close to those of matched HW at their basal status. The neuroendocrine mechanism seems to be an exercise-induced modulation towards greater adaptation to stress response in these patients. PMID:29513791

  15. Cocaine- and amphetamine-regulated transcript peptide in the nucleus accumbens shell inhibits cocaine-induced locomotor sensitization to transient over-expression of α-Ca2+ /calmodulin-dependent protein kinase II.

    PubMed

    Xiong, Lixia; Meng, Qing; Sun, Xi; Lu, Xiangtong; Fu, Qiang; Peng, Qinghua; Yang, Jianhua; Oh, Ki-Wan; Hu, Zhenzhen

    2018-01-04

    Cocaine- and amphetamine-regulated transcript (CART) peptide is a widely distributed neurotransmitter that attenuates cocaine-induced locomotor activity when injected into the nucleus accumbens (NAc). Our previous work first confirmed that the inhibitory mechanism of the CART peptide on cocaine-induced locomotor activity is related to a reduction in cocaine-enhanced phosphorylated Ca 2+ /calmodulin-dependent protein kinaseIIα (pCaMKIIα) and the enhancement of cocaine-induced D3R function. This study investigated whether CART peptide inhibited cocaine-induced locomotor activity via inhibition of interactions between pCaMKIIα and the D3 dopamine receptor (D3R). We demonstrated that lentivirus-mediated gene transfer transiently increased pCaMKIIα expression, which peaked at 10 days after microinjection into the rat NAc shell, and induced a significant increase in Ca 2+ influx along with greater behavioral sensitivity in the open field test after intraperitoneal injections of cocaine (15 mg/kg). However, western blot analysis and coimmunoprecipitation demonstrated that CART peptide treatment in lentivirus-transfected CaMKIIα-over-expressing NAc rat tissues or cells prior to cocaine administration inhibited the cocaine-induced Ca 2+ influx and attenuated the cocaine-increased pCaMKIIα expression in lentivirus-transfected CaMKIIα-over-expressing cells. CART peptide decreased the cocaine-enhanced phosphorylated cAMP response element binding protein (pCREB) expression via inhibition of the pCaMKIIα-D3R interaction, which may account for the prolonged locomotor sensitization induced by repeated cocaine treatment in lentivirus-transfected CaMKIIα-over-expressing cells. These results provide strong evidence for the inhibitory modulation of CART peptide in cocaine-induced locomotor sensitization. © 2018 International Society for Neurochemistry.

  16. The thermal dependency of locomotor performance evolves rapidly within an invasive species.

    PubMed

    Kosmala, Georgia K; Brown, Gregory P; Christian, Keith A; Hudson, Cameron M; Shine, Richard

    2018-05-01

    Biological invasions can stimulate rapid shifts in organismal performance, via both plasticity and adaptation. We can distinguish between these two proximate mechanisms by rearing offspring from populations under identical conditions and measuring their locomotor abilities in standardized trials. We collected adult cane toads ( Rhinella marina ) from invasive populations that inhabit regions of Australia with different climatic conditions. We bred those toads and raised their offspring under common-garden conditions before testing their locomotor performance. At high (but not low) temperatures, offspring of individuals from a hotter location (northwestern Australia) outperformed offspring of conspecifics from a cooler location (northeastern Australia). This disparity indicates that, within less than 100 years, thermal performance in cane toads has adapted to the novel abiotic challenges that cane toads have encountered during their invasion of tropical Australia.

  17. Selective breeding for magnitude of methamphetamine-induced sensitization alters methamphetamine consumption

    PubMed Central

    Scibelli, Angela C.; McKinnon, Carrie S.; Reed, Cheryl; Burkhart-Kasch, Sue; Li, Na; Baba, Harue; Wheeler, Jeanna M.

    2012-01-01

    Rationale Genetically determined differences in susceptibility to drug-induced sensitization could be related to risk for drug consumption. Objectives Studies were performed to determine whether selective breeding could be used to create lines of mice with different magnitudes of locomotor sensitization to methamphetamine (MA). MA sensitization (MASENS) lines were also examined for genetically correlated responses to MA. Methods Beginning with the F2 cross of C57BL/6J and DBA/2J strains, mice were tested for locomotor sensitization to repeated injections of 1 mg/kg MA and bred based on magnitude of sensitization. Five selected offspring generations were tested. All generations were also tested for MA consumption, and some were tested for dose-dependent locomotor-stimulant responses to MA, consumption of saccharin, quinine, and potassium chloride as a measure of taste sensitivity, and MA clearance after acute and repeated MA. Results Selective breeding resulted in creation of two lines [MA high sensitization (MAHSENS) and MA low sensitization (MALSENS)] that differed in magnitude of MA-induced sensitization. Initially, greater MA consumption in MAHSENS mice reversed over the course of selection so that MALSENS mice consumed more MA. MAHSENS mice exhibited greater sensitivity to the acute stimulant effects of MA, but there were no significant differences between the lines in MA clearance from blood. Conclusions Genetic factors influence magnitude of MA-induced locomotor sensitization and some of the genes involved in magnitude of this response also influence MA sensitivity and consumption. Genetic factors leading to greater MA-induced sensitization may serve a protective role against high levels of MA consumption. PMID:21088960

  18. Light at night acutely impairs glucose tolerance in a time-, intensity- and wavelength-dependent manner in rats.

    PubMed

    Opperhuizen, Anne-Loes; Stenvers, Dirk J; Jansen, Remi D; Foppen, Ewout; Fliers, Eric; Kalsbeek, Andries

    2017-07-01

    Exposure to light at night (LAN) has increased dramatically in recent decades. Animal studies have shown that chronic dim LAN induced obesity and glucose intolerance. Furthermore, several studies in humans have demonstrated that chronic exposure to artificial LAN may have adverse health effects with an increased risk of metabolic disorders, including type 2 diabetes. It is well-known that acute exposure to LAN affects biological clock function, hormone secretion and the activity of the autonomic nervous system, but data on the effects of LAN on glucose homeostasis are lacking. This study aimed to investigate the acute effects of LAN on glucose metabolism. Male Wistar rats were subjected to i.v. glucose or insulin tolerance tests while exposed to 2 h of LAN in the early or late dark phase. In subsequent experiments, different light intensities and wavelengths were used. LAN exposure early in the dark phase at ZT15 caused increased glucose responses during the first 20 min after glucose infusion (p < 0.001), whereas LAN exposure at the end of the dark phase, at ZT21, caused increased insulin responses during the first 10 min (p < 0.01), indicating that LAN immediately induces glucose intolerance in rats. Subsequent experiments demonstrated that the effect of LAN was both intensity- and wavelength-dependent. White light of 50 and 150 lx induced greater glucose responses than 5 and 20 lx, whereas all intensities other than 5 lx reduced locomotor activity. Green light induced glucose intolerance, but red and blue light did not, suggesting the involvement of a specific retina-brain pathway. Together, these data show that exposure to LAN has acute adverse effects on glucose metabolism in a time-, intensity- and wavelength-dependent manner.

  19. Increased neural responses to empathy for pain might explain how acute stress increases prosociality.

    PubMed

    Tomova, L; Majdandžic, J; Hummer, A; Windischberger, C; Heinrichs, M; Lamm, C

    2017-03-01

    Recent behavioral investigations suggest that acute stress can increase prosocial behavior. Here, we investigated whether increased empathy represents a potential mechanism for this finding. Using functional magnetic resonance imaging, we assessed the effects of acute stress on neural responses related to automatic and regulatory components of empathy for pain as well as subsequent prosocial behavior. Stress increased activation in brain areas associated with the automatic sharing of others' pain, such as the anterior insula, the anterior midcingulate cortex, and the primary somatosensory cortex. In addition, we found increased prosocial behavior under stress. Furthermore, activation in the anterior midcingulate cortex mediated the effects of stress on prosocial behavior. However, stressed participants also displayed stronger and inappropriate other-related responses in situations which required them to take the perspective of another person, and to regulate their automatic affective responses. Thus, while acute stress may increase prosocial behavior by intensifying the sharing of others' emotions, this comes at the cost of reduced cognitive appraisal abilities. Depending on the contextual constraints, stress may therefore affect empathy in ways that are either beneficial or detrimental. © The Author (2016). Published by Oxford University Press.

  20. The role of parvovirus B19 and the immune response in the pathogenesis of acute leukemia.

    PubMed

    Kerr, Jonathan R; Mattey, Derek L

    2015-05-01

    In this article, we review the evidence suggesting a possible role for B19 virus in the pathogenesis of a subset of cases of acute leukemia. Human parvovirus B19 infection may complicate the clinical course of patients with acute leukemia and may also precede the development of acute leukemia by up to 180 days. Parvovirus B19 targets erythroblasts in the bone marrow and may cause aplastic crisis in patients with shortened-red cell survival. Aplastic crisis represents a prodrome of acute lymphoblastic leukemia in 2% patients. There is a significant overlap between those HLA classes I and II alleles that are associated with a vigorous immune response and development of symptoms during B19 infection and those HLA alleles that predispose to development of acute leukemia. Acute symptomatic B19 infection is associated with low circulating IL-10 consistent with a vigorous immune response; deficient IL-10 production at birth was recently found to be associated with subsequent development of acute leukemia. Anti-B19 IgG has been associated with a particular profile of methylation of human cancer genes in patients with acute leukemia, suggesting an additional hit and run mechanism. The proposed role for parvovirus B19 in the pathogenesis of acute leukemia fits well with the delayed infection hypothesis and with the two-step mutation model, which describes carriage of the first mutation prior to birth, followed by suppression of hematopoiesis, which allows rapid proliferation of cells harboring the first mutation, acquisition of a second activating mutation, and expansion of cells carrying both mutations, resulting in acute leukemia. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Adaptation in locomotor stability, cognition, and metabolic cost during sensory discordance.

    PubMed

    Peters, Brian T; Brady, Rachel A; Batson, Crystal D; Guined, Jamie R; Ploutz-Snyder, Robert J; Mulavara, Ajitkumar P; Bloomberg, Jacob J

    2013-06-01

    Locomotor instability may affect planetary extravehicular activities during the initial adaptation to the new gravitational environment. The goal of this study was to quantify the locomotor, cognitive, and metabolic effects of exposure to a discordant sensory environment. A treadmill mounted on a 6-degree-of-freedom motion base was used to present 15 healthy subjects with a destabilizing support surface while they walked. Dependent measures of locomotor stability, cognitive load, and metabolic cost were stride frequency (SF), reaction time (RT), and the volume of oxygen consumed (Vo2), respectively. Subjects completed an 8-min baseline walk followed by 20 min of walking with a continuous, sinusoidal, laterally oscillating support-surface perturbation. Data for minutes 1, 7, 13, and 20 of the support-surface perturbation period were compared with the baseline. SF, RT, and Vo2 were significantly greater during support-surface motion than during the baseline walking condition and showed a trend toward recovery to baseline levels during the perturbation period. Results demonstrated that adaptation to walking in a discordant sensory environment has quantifiable and significant costs in SF, RT, and Vo2 as shown by mean increases of 9%, 20%, and 4%, respectively, collected during the first minute of exposure. By the fourth minute of exposure, mean Vo2 consumption had increased to 20% over its baseline. We believe that preflight sensorimotor adaptation training paradigms will impart gains in stability and the ability to multitask, and might increase productive mission time by extending work time in extravehicular activity suits where metabolic expenditure is a limiting factor.

  2. Stimulation of the mesencephalic locomotor region for gait recovery after stroke.

    PubMed

    Fluri, Felix; Malzahn, Uwe; Homola, György A; Schuhmann, Michael K; Kleinschnitz, Christoph; Volkmann, Jens

    2017-11-01

    One-third of all stroke survivors are unable to walk, even after intensive physiotherapy. Thus, other concepts to restore walking are needed. Because electrical stimulation of the mesencephalic locomotor region (MLR) is known to elicit gait movements, this area might be a promising target for restorative neurostimulation in stroke patients with gait disability. The present study aims to delineate the effect of high-frequency stimulation of the MLR (MLR-HFS) on gait impairment in a rodent stroke model. Male Wistar rats underwent photothrombotic stroke of the right sensorimotor cortex and chronic implantation of a stimulating electrode into the right MLR. Gait was assessed using clinical scoring of the beam-walking test and video-kinematic analysis (CatWalk) at baseline and on days 3 and 4 after experimental stroke with and without MLR-HFS. Kinematic analysis revealed significant changes in several dynamic and static gait parameters resulting in overall reduced gait velocity. All rats exhibited major coordination deficits during the beam-walking challenge and were unable to cross the beam. Simultaneous to the onset of MLR-HFS, a significantly higher walking speed and improvements in several dynamic gait parameters were detected by the CatWalk system. Rats regained the ability to cross the beam unassisted, showing a reduced number of paw slips and misses. MLR-HFS can improve disordered locomotor function in a rodent stroke model. It may act by shielding brainstem and spinal locomotor centers from abnormal cortical input after stroke, thus allowing for compensatory and independent action of these circuits. Ann Neurol 2017;82:828-840. © 2017 American Neurological Association.

  3. Appetite and Energy Intake Responses to Acute Energy Deficits in Females versus Males

    PubMed Central

    ALAJMI, NAWAL; DEIGHTON, KEVIN; KING, JAMES A.; REISCHAK-OLIVEIRA, ALVARO; WASSE, LUCY K.; JONES, JENNY; BATTERHAM, RACHEL L.; STENSEL, DAVID J.

    2016-01-01

    ABSTRACT Purpose To explore whether compensatory responses to acute energy deficits induced by exercise or diet differ by sex. Methods In experiment one, 12 healthy women completed three 9-h trials (control, exercise-induced (Ex-Def) and food restriction–induced energy deficit (Food-Def)) with identical energy deficits being imposed in the Ex-Def (90-min run, ∼70% of V˙O2max) and Food-Def trials. In experiment two, 10 men and 10 women completed two 7-h trials (control and exercise). Sixty minutes of running (∼70% of V˙O2max) was performed at the beginning of the exercise trial. The participants rested throughout the remainder of the exercise trial and during the control trial. Appetite ratings, plasma concentrations of gut hormones, and ad libitum energy intake were assessed during main trials. Results In experiment one, an energy deficit of approximately 3500 kJ induced via food restriction increased appetite and food intake. These changes corresponded with heightened concentrations of plasma acylated ghrelin and lower peptide YY3–36. None of these compensatory responses were apparent when an equivalent energy deficit was induced by exercise. In experiment two, appetite ratings and plasma acylated ghrelin concentrations were lower in exercise than in control, but energy intake did not differ between trials. The appetite, acylated ghrelin, and energy intake response to exercise did not differ between men and women. Conclusions Women exhibit compensatory appetite, gut hormone, and food intake responses to acute energy restriction but not in response to an acute bout of exercise. Additionally, men and women seem to exhibit similar acylated ghrelin and PYY3–36 responses to exercise-induced energy deficits. These findings advance understanding regarding the interaction between exercise and energy homeostasis in women. PMID:26465216

  4. Supraspinal control of automatic postural responses in people with multiple sclerosis.

    PubMed

    Peterson, D S; Gera, G; Horak, F B; Fling, B W

    2016-06-01

    The neural underpinnings of delayed automatic postural responses in people with multiple sclerosis (PwMS) are unclear. We assessed whether white matter pathways of two supraspinal regions (the cortical proprioceptive Broadman's Area-3; and the balance/locomotor-related pedunculopontine nucleus) were related to delayed postural muscle response latencies in response to external perturbations. 19 PwMS (48.8±11.4years; EDSS=3.5 (range: 2-4)) and 12 healthy adults (51.7±12.2years) underwent 20 discrete, backward translations of a support surface. Onset latency of agonist (medial-gastrocnemius) and antagonist (tibialis anterior) muscles were assessed. Diffusion tensor imaging assessed white-matter integrity (i.e. radial diffusivity) of cortical proprioceptive and balance/locomotor-related tracts. Latency of the tibialis anterior, but not medial gastrocnemius was larger in PwMS than control subjects (p=0.012 and 0.071, respectively). Radial diffusivity of balance/locomotor tracts was higher (worse) in PwMS than control subjects (p=0.004), and was significantly correlated with tibialis (p=0.002), but not gastrocnemius (p=0.06) onset latency. Diffusivity of cortical proprioceptive tracts was not correlated with muscle onset. Lesions in supraspinal structures including the pedunculopontine nucleus balance/locomotor network may contribute to delayed onset of postural muscle activity in PwMS, contributing to balance deficits in PwMS. Published by Elsevier B.V.

  5. Mechanisms of Left-Right Coordination in Mammalian Locomotor Pattern Generation Circuits: A Mathematical Modeling View

    PubMed Central

    Talpalar, Adolfo E.; Rybak, Ilya A.

    2015-01-01

    The locomotor gait in limbed animals is defined by the left-right leg coordination and locomotor speed. Coordination between left and right neural activities in the spinal cord controlling left and right legs is provided by commissural interneurons (CINs). Several CIN types have been genetically identified, including the excitatory V3 and excitatory and inhibitory V0 types. Recent studies demonstrated that genetic elimination of all V0 CINs caused switching from a normal left-right alternating activity to a left-right synchronized “hopping” pattern. Furthermore, ablation of only the inhibitory V0 CINs (V0D subtype) resulted in a lack of left-right alternation at low locomotor frequencies and retaining this alternation at high frequencies, whereas selective ablation of the excitatory V0 neurons (V0V subtype) maintained the left–right alternation at low frequencies and switched to a hopping pattern at high frequencies. To analyze these findings, we developed a simplified mathematical model of neural circuits consisting of four pacemaker neurons representing left and right, flexor and extensor rhythm-generating centers interacting via commissural pathways representing V3, V0D, and V0V CINs. The locomotor frequency was controlled by a parameter defining the excitation of neurons and commissural pathways mimicking the effects of N-methyl-D-aspartate on locomotor frequency in isolated rodent spinal cord preparations. The model demonstrated a typical left-right alternating pattern under control conditions, switching to a hopping activity at any frequency after removing both V0 connections, a synchronized pattern at low frequencies with alternation at high frequencies after removing only V0D connections, and an alternating pattern at low frequencies with hopping at high frequencies after removing only V0V connections. We used bifurcation theory and fast-slow decomposition methods to analyze network behavior in the above regimes and transitions between them. The model

  6. [Thermal tolerance, diel variation of body temperature, and thermal dependence of locomotor performance of hatchling soft-shelled turtles, Trionyx sinensis].

    PubMed

    Sun, Pingyue; Xu, Xiaoyin; Chen, Huili; Ji, Xiang

    2002-09-01

    The thermal tolerance, body temperature, and influence of temperature on locomotor performance of hatchling soft-shelled turtles (Trionyx sinensis) were studied under dry and wet conditions, and the selected body temperature of hatchlings was 28.0 and 30.3 degrees C, respectively. Under wet condition, the critical thermal maximum and minimum averaged 40.9 and 7.8 degrees C, respectively. In the environments without thermal gradients, the diel variation of body temperature was highly consistent with the variation of both air and water temperatures, and the body temperature was more directly affected by water temperature than by air temperature, which implied that the physiological thermoregulation of hatchling T. sinensis was very weak. In the environments with thermal gradients, hatchling turtles could maintain relatively high and constant body temperatures, primarily through behavioral thermoregulation. The locomotor performance of hatchling turtles was highly dependent on their body temperature. Within a certain range, the locomotor performance increased with increasing body temperature. In our study, the optimal body temperature for locomotor performance was 31.5 degrees C, under which, the maximum continuous running distance, running distance per minute, and number of stops per minute averaged 1.87 m, 4.92 m.min-1, and 6.2 times.min-1, respectively. The correspondent values at 33.0 degrees C averaged 1.30 m, 4.28 m.min-1, and 7.7 times.min-1, respectively, which indicated that the locomotor performance of hatchling turtles was impaired at 33.0 degrees C. Therefore, extremely high body temperatures might have an adverse effect on locomotor performance of hatchling turtles.

  7. Acute testosterone and cortisol responses to high power resistance exercise.

    PubMed

    Fry, A C; Lohnes, C A

    2010-01-01

    This study examined the acute hormonal responses to a single high power resistance exercise training session. Four weight trained men (X +/- SD; age [yrs] = 24.5 +/- 2.9; hgt [m] = 1.82 + 0.05; BM [kg] = 96.9 +/- 10.6; I RM barbell squat [kg] = 129.3 +/- 17.4) participated as subjects in two randomly ordered sessions. During the lifting session, serum samples were collected pre- and 5 min post-exercise, and later analyzed for testosterone (Tes), cortisol (Cort), their ratio (Tes/Cort), and lactate (HLa). The lifting protocol was 10 x 5 speed squats at 70% of system mass (1 RM +/- BW) with 2 min inter-set rest intervals. Mean power and velocity were determined for each repetition using an external dynamometer. On the control day, the procedures and times (1600-1900 hrs) were identical except the subjects did not lift. Tes and Cort were analyzed via EIA. Mean +/- SD power and velocity was 1377.1 +/- 9.6 W and 0.79 +/- 0.01 m .s-1 respectively for all repetitions, and did not decrease over the 10 sets (p < 0.05). Although not significant, post-exercise Tes exhibited a very large effect size (nmol x L-1 pre = 12.5 +/- 2.9, post = 20.0 +/- 3.9; Cohen's D = 1.27). No changes were observed for either Cort or the Tes/Cort ratio. HLa significantly increased post-exercise (mmol x L-1 ; pre = 1.00 +/- 0.09, post = 4.85 +/- 1.10). The exercise protocol resulted in no significant changes in Tes, Cort or the Tes/Cort ratio, although the Cohen's D value indicates a very large effect size for the Tes response. The acute increase for Tes is in agreement with previous reports that high power activities can elicit a Tes response. High power resistance exercise protocols such as the one used in the present study produce acute increases of Tes. These results indicate that high power resistance exercise can contribute to an anabolic hormonal response with this type of training, and may partially explain the muscle hypertrophy observed in athletes who routinely employ high power

  8. Protocol for the Locomotor Experience Applied Post-stroke (LEAPS) trial: a randomized controlled trial

    PubMed Central

    Duncan, Pamela W; Sullivan, Katherine J; Behrman, Andrea L; Azen, Stanley P; Wu, Samuel S; Nadeau, Stephen E; Dobkin, Bruce H; Rose, Dorian K; Tilson, Julie K

    2007-01-01

    Background Locomotor training using body weight support and a treadmill as a therapeutic modality for rehabilitation of walking post-stroke is being rapidly adopted into clinical practice. There is an urgent need for a well-designed trial to determine the effectiveness of this intervention. The objective of the Locomotor Experience Applied Post-Stroke (LEAPS) trial is to determine if there is a difference in the proportion of participants who recover walking ability at one year post-stroke when randomized to a specialized locomotor training program (LTP), conducted at 2- or 6-months post-stroke, or those randomized to a home based non-specific, low intensity exercise intervention (HEP) provided 2 months post-stroke. We will determine if the timing of LTP delivery affects gait speed at 1 year and whether initial impairment severity interacts with the timing of LTP. The effect of number of treatment sessions will be determined by changes in gait speed taken pre-treatment and post-12, -24, and -36 sessions. Methods/Design We will recruit 400 adults with moderate or severe walking limitations within 30 days of stroke onset. At two months post stroke, participants are stratified by locomotor impairment severity as determined by overground walking speed and randomly assigned to one of three groups: (a) LTP-Early; (b) LTP-Late or (c) Home Exercise Program -Early. The LTP program includes body weight support on a treadmill and overground training. The LTP and HEP interventions are delivered for 36 sessions over 12 weeks. Primary outcome measure include successful walking recovery defined as the achievement of a 0.4 m/s gait speed or greater by persons with initial severe gait impairment or the achievement of a 0.8 m/s gait speed or greater by persons with initial moderate gait impairment. LEAPS is powered to detect a 20% difference in the proportion of participants achieving successful locomotor recovery between the LTP groups and the HEP group, and a 0.1 m/s mean

  9. The Drosophila Insulin Receptor Independently Modulates Lifespan and Locomotor Senescence

    PubMed Central

    Boylan, Michael; Achall, Rajesh; Shirras, Alan; Broughton, Susan J.

    2015-01-01

    The Insulin/IGF-like signalling (IIS) pathway plays an evolutionarily conserved role in ageing. In model organisms reduced IIS extends lifespan and ameliorates some forms of functional senescence. However, little is known about IIS in nervous system ageing and behavioural senescence. To investigate this role in Drosophila melanogaster, we measured the effect of reduced IIS on senescence of two locomotor behaviours, negative geotaxis and exploratory walking. Two long-lived fly models with systemic IIS reductions (daGAL4/UAS-InRDN (ubiquitous expression of a dominant negative insulin receptor) and d2GAL/UAS-rpr (ablation of insulin-like peptide producing cells)) showed an amelioration of negative geotaxis senescence similar to that previously reported for the long-lived IIS mutant chico. In contrast, exploratory walking in daGAL4/UAS-InRDN and d2GAL/UAS-rpr flies declined with age similarly to controls. To determine the contribution of IIS in the nervous system to these altered senescence patterns and lifespan, the InRDN was targeted to neurons (elavGAL4/UAS-InRDN), which resulted in extension of lifespan in females, normal negative geotaxis senescence in males and females, and detrimental effects on age-specific exploratory walking behaviour in males and females. These data indicate that the Drosophila insulin receptor independently modulates lifespan and age-specific function of different types of locomotor behaviour. The data suggest that ameliorated negative geotaxis senescence of long-lived flies with systemic IIS reductions is due to ageing related effects of reduced IIS outside the nervous system. The lifespan extension and coincident detrimental or neutral effects on locomotor function with a neuron specific reduction (elavGAL4/UAS-InRDN) indicates that reduced IIS is not beneficial to the neural circuitry underlying the behaviours despite increasing lifespan. PMID:26020640

  10. Slow Versus Fast Robot-Assisted Locomotor Training After Severe Stroke: A Randomized Controlled Trial.

    PubMed

    Rodrigues, Thais Amanda; Goroso, Daniel Gustavo; Westgate, Philip M; Carrico, Cheryl; Batistella, Linamara R; Sawaki, Lumy

    2017-10-01

    Robot-assisted locomotor training on a bodyweight-supported treadmill is a rehabilitation intervention that compels repetitive practice of gait movements. Standard treadmill speed may elicit rhythmic movements generated primarily by spinal circuits. Slower-than-standard treadmill speed may elicit discrete movements, which are more complex than rhythmic movements and involve cortical areas. Compare effects of fast (i.e., rhythmic) versus slow (i.e., discrete) robot-assisted locomotor training on a bodyweight-supported treadmill in subjects with chronic, severe gait deficit after stroke. Subjects (N = 18) were randomized to receive 30 sessions (5 d/wk) of either fast or slow robot-assisted locomotor training on a bodyweight-supported treadmill in an inpatient setting. Functional ambulation category, time up and go, 6-min walk test, 10-m walk test, Berg Balance Scale, and Fugl-Meyer Assessment were administered at baseline and postintervention. The slow group had statistically significant improvement on functional ambulation category (first quartile-third quartile, P = 0.004), 6-min walk test (95% confidence interval [CI] = 1.8 to 49.0, P = 0.040), Berg Balance Scale (95% CI = 7.4 to 14.8, P < 0.0001), time up and go (95% CI = -79.1 to 5.0, P < 0.0030), and Fugl-Meyer Assessment (95% CI = 24.1 to 45.1, P < 0.0001). The fast group had statistically significant improvement on Berg Balance Scale (95% CI = 1.5 to 10.5, P = 0.02). In initial stages of robot-assisted locomotor training on a bodyweight-supported treadmill after severe stroke, slow training targeting discrete movement may yield greater benefit than fast training.

  11. Perceived stress at work is associated with attenuated DHEA-S response during acute psychosocial stress.

    PubMed

    Lennartsson, Anna-Karin; Theorell, Töres; Kushnir, Mark M; Bergquist, Jonas; Jonsdottir, Ingibjörg H

    2013-09-01

    Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEA-S) have been suggested to play a protective role during acute psychosocial stress, because they act as antagonists to the effects of the stress hormone cortisol. This study aims to investigate whether prolonged psychosocial stress, measured as perceived stress at work during the past week, is related to the capacity to produce DHEA and DHEA-S during acute psychosocial stress. It also aims to investigate whether prolonged perceived stress affects the balance between production of cortisol and DHEA-S during acute psychosocial stress. Thirty-six healthy subjects (19 men and 17 women, mean age 37 years, SD 5 years), were included. Perceived stress at work during the past week was measured by using the Stress-Energy (SE) Questionnaire. The participants were divided into three groups based on their mean scores; Low stress, Medium stress and High stress. The participants underwent the Trier Social Stress Test (TSST) and blood samples were collected before, directly after the stress test, and after 30 min of recovery. General Linear Models were used to investigate if the Medium stress group and the High stress group differ regarding stress response compared to the Low stress group. Higher perceived stress at work was associated with attenuated DHEA-S response during acute psychosocial stress. Furthermore, the ratio between the cortisol production and the DHEA-S production during the acute stress test were higher in individuals reporting higher perceived stress at work compared to individuals reporting low perceived stress at work. There was no statistical difference in DHEA response between the groups. This study shows that prolonged stress, measured as perceived stress at work during the past week, seems to negatively affect the capacity to produce DHEA-S during acute stress. Given the protective functions of DHEA-S, attenuated DHEA-S production during acute stress may lead to higher risk for adverse

  12. Acute and Developmental Behavioral Effects of Flame ...

    EPA Pesticide Factsheets

    As polybrominated diphenyl ethers are phased out, numerous compounds are emerging as potential replacement flame retardants for use in consumer and electronic products. Little is known, however, about the neurobehavioral toxicity of these replacements. This study evaluated the neurobehavioral effects of acute or developmental exposure to t-butylphenyl diphenyl phosphate (BPDP), 2-ethylhexyl diphenyl phosphate (EHDP), isodecyl diphenyl phosphate (IDDP), isopropylated phenyl phosphate (IPP), tricresyl phosphate (TMPP; also abbreviated TCP), triphenyl phosphate (TPHP; also abbreviated TPP), tetrabromobisphenol A (TBBPA), tris (2-chloroethyl) phosphate (TCEP), tris (1,3-dichloroisopropyl) phosphate (TDCIPP; also abbreviated TDCPP), tri-o-cresyl phosphate (TOCP), and 2,2-,4,4’-tetrabromodiphenyl ether (BDE-47) in zebrafish (Danio rerio) larvae. Larvae (n≈24 per dose per compound) were exposed to test compounds (0.4 - 120 µM) at sub-teratogenic concentrations either developmentally or acutely, and locomotor activity was assessed at 6 days post fertilization. When given developmentally, all chemicals except BPDP, IDDP and TBBPA produced behavioral effects. When given acutely, all chemicals produced behavioral effects, with TPHP, TBBPA, EHDP, IPP, and BPDP eliciting the most effects at the most concentrations. The results indicate that these replacement flame retardants may have developmental or pharmacological effects on the vertebrate nervous system. This study

  13. Effect of clozapine on locomotor activity and anxiety-related behavior in the neonatal mice administered MK-801.

    PubMed

    Pınar, Neslihan; Akillioglu, Kubra; Sefil, Fatih; Alp, Harun; Sagir, Mustafa; Acet, Ahmet

    2015-08-11

    Atypical antipsychotics have been used to treat fear and anxiety disturbance that are highly common in schizophrenic patients. It is suggested that disruptions of N-methyl-d-aspartate (NMDA)-mediated transmission of glutamate may underlie the pathophysiology of schizophrenia. The present study was conducted to analyze the effectiveness of clozapine on the anxiety-related behavior and locomotor function of the adult brain, which had previously undergone NMDA receptor blockade during a developmental period. In order to block the NMDA receptor, male mice were administered 0.25 mg/kg of MK-801 on days 7 to 10 postnatal. In adulthood, they were administered intraperitoneally 0.5 mg/kg of clozapine and tested with open-field and elevated plus maze test, to assess their emotional behavior and locomotor activity. In the group receiving MK-801 in the early developmental period the elevated plus maze test revealed a reduction in the anxiety-related behavior (p<0.05), while the open-field test indicated a decrease in locomotor activity (p<0.01). Despite these reductions, clozapine could not reverse the NMDA receptor blockade. Also, as an atypical antipsychotic agent, clozapine could not reverse impairment in the locomotor activity and anxiety-related behavior, induced by administration of the MK-801 in neonatal period.

  14. Effect of clozapine on locomotor activity and anxiety-related behavior in the neonatal mice administered MK-801

    PubMed Central

    Pinar, Neslihan; Akillioglu, Kubra; Sefil, Fatih; Alp, Harun; Sagir, Mustafa; Acet, Ahmet

    2015-01-01

    Atypical antipsychotics have been used to treat fear and anxiety disturbance that are highly common in schizophrenic patients. It is suggested that disruptions of N-methyl-d-aspartate (NMDA)-mediated transmission of glutamate may underlie the pathophysiology of schizophrenia. The present study was conducted to analyze the effectiveness of clozapine on the anxiety-related behavior and locomotor function of the adult brain, which had previously undergone NMDA receptor blockade during a developmental period. In order to block the NMDA receptor, male mice were administered 0.25 mg/kg of MK-801 on days 7 to 10 postnatal. In adulthood, they were administered intraperitoneally 0.5 mg/kg of clozapine and tested with open-field and elevated plus maze test, to assess their emotional behavior and locomotor activity. In the group receiving MK-801 in the early developmental period the elevated plus maze test revealed a reduction in the anxiety-related behavior (p<0.05), while the open-field test indicated a decrease in locomotor activity (p<0.01). Despite these reductions, clozapine could not reverse the NMDA receptor blockade. Also, as an atypical antipsychotic agent, clozapine could not reverse impairment in the locomotor activity and anxiety-related behavior, induced by administration of the MK-801 in neonatal period. PMID:26295298

  15. Efficacy of Stochastic Vestibular Stimulation to Improve Locomotor Performance in a Discordant Sensory Environment

    NASA Technical Reports Server (NTRS)

    Temple, D. R.; De Dios, Y. E.; Layne, C. S.; Bloomberg, J. J.; Mulavara, A. P.

    2016-01-01

    Astronauts exposed to microgravity face sensorimotor challenges incurred when readapting to a gravitational environment. Sensorimotor Adaptability (SA) training has been proposed as a countermeasure to improve locomotor performance during re-adaptation, and it is suggested that the benefits of SA training may be further enhanced by improving detection of weak sensory signals via mechanisms such as stochastic resonance when a non-zero level of stochastic white noise based electrical stimulation is applied to the vestibular system (stochastic vestibular stimulation, SVS). The purpose of this study was to test the efficacy of using SVS to improve short-term adaptation in a sensory discordant environment during performance of a locomotor task.

  16. A refined risk score for acute GVHD that predicts response to initial therapy, survival and transplant-related mortality

    PubMed Central

    MacMillan, Margaret L.; Robin, Marie; Harris, Andrew C.; DeFor, Todd E.; Martin, Paul J.; Alousi, Amin; Ho, Vincent T.; Bolaños-Meade, Javier; Ferrara, James L.M.; Jones, Richard; Arora, Mukta; Blazar, Bruce R.; Holtan, Shernan G.; Jacobsohn, David; Pasquini, Marcelo; Socie, Gerard; Antin, Joseph H.; Levine, John E.; Weisdorf, Daniel J.

    2015-01-01

    To develop a novel acute graft-versus-host disease (GVHD) Risk Score, we examined the GVHD clinical stage and grade of 1723 patients at the onset of treatment with systemic steroids. Using clinical grouping, descriptive statistics and recursive partitioning, we identified poorly responsive, high-risk (HR) acute GVHD by the number of involved organs and severity of GVHD at onset. The overall response [(complete response/partial response (CR/PR)] rate 28 days after initiation of steroid therapy for acute GVHD was lower in the 269 patients with HR-GVHD than in the 1454 patients with standard risk (SR)-GVHD [44% (95% CI 38–50%) vs. 68% (95% CI 66–70%), p<0.001. Patients with HR-GVHD were less likely to respond at day 28 [odds ratio (OR), 0.3, 95% CI 0.2–0.4, p<0.001], and had higher risks of mortality [relative risk (RR) 2.1, 95% CI 1.7–2.6, P<0.001] and transplant-related mortality (RR 2.5, 95% CI 2.0–3.2%, p<0.001) compared to patients with SR-GVHD. This refined definition of acute GVHD risk is a better predictor of response, survival and transplant-related mortality than other published acute GVHD risk scores. Patients with HR-GVHD are candidates for studies investigating new treatment approaches. Likewise, patients with SR-GVHD are candidates for studies investigating less toxic therapy. PMID:25585275

  17. The delta-opioid receptor agonist SNC80 [(+)-4-[alpha(R)-alpha-[(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl]-(3-methoxybenzyl)-N,N-diethylbenzamide] synergistically enhances the locomotor-activating effects of some psychomotor stimulants, but not direct dopamine agonists, in rats.

    PubMed

    Jutkiewicz, Emily M; Baladi, Michelle G; Folk, John E; Rice, Kenner C; Woods, James H

    2008-02-01

    The nonpeptidic delta-opioid agonist SNC80 [(+)-4-[alpha(R)-alpha-[(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl]-(3-methoxybenzyl)-N,N-diethylbenzamide] produces many stimulant-like behavioral effects in rodents and monkeys, such as locomotor stimulation, generalization to cocaine in discrimination procedures, and antiparkinsonian effects. Tolerance to the locomotor-stimulating effects of SNC80 develops after a single administration of SNC80 in rats; it is not known whether cross-tolerance develops to the effects of other stimulant compounds. In the initial studies to determine whether SNC80 produced cross-tolerance to other stimulant compounds, it was discovered that amphetamine-stimulated locomotor activity was greatly enhanced in SNC80-pretreated rats. This study evaluated acute cross-tolerance between delta-opioid agonists and other locomotor-stimulating drugs. Locomotor activity was measured in male Sprague-Dawley rats implanted with radiotransmitters, and activity levels were recorded in the home cage environment. Three-hour SNC80 pretreatment produced tolerance to further delta-opioid receptor stimulation but also augmented greatly amphetamine-stimulated locomotor activity in a dose-dependent manner. Pretreatments with other delta-opioid agonists, (+)BW373U86 [(+)-4-[alpha(R)-alpha-[(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl]-3-hydroxybenzyl]-N,N-diethylbenzamide] and oxymorphindole (17-methyl-6,7-dehydro-4,5-epoxy-3,14-dihydroxy-6,7,2',3'-indolomorphinan), also modified amphetamine-induced activity levels. SNC80 pretreatment enhanced the stimulatory effects of the dopamine/norepinephrine transporter ligands cocaine and nomifensine (1,2,3,4-tetrahydro-2-methyl-4-phenyl-8-isoquinolinanmine maleate salt), but not the direct dopamine receptor agonists SKF81297 [R-(+)-6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide] and quinpirole [trans-(-)-(4alphaR)-4,4a, 5,6,7,8,8a,9-octahydro-5-propyl-1H-pyrazolo[3,4-g] quinoline

  18. The locomotor activity of soccer players based on playing positions during the 2010 World Cup.

    PubMed

    Soroka, Andrzej

    2018-06-01

    The aim of this study was to define the locomotor activity of footballer players during the 2010 World Cup and to assess what differences existed among different playing positions. Research was conducted using research material collected from the Castrol Performance Index, a kinematic game analysis system that records player movements during a game by use of semi-automatic cameras. A total of 599 players who participated in the championships were analyzed. The results were evaluated using one-way analysis of variance (ANOVA) and a post-hoc test that calculated the Honestly Significant Difference (HSD) in order to determine which mean values significantly differed among the player positions. It was found that midfielders covered on average the largest distance during a match (10,777.6 m, P<0.001) as well as performing the most locomotor activity at high and sprint intensities (2936.8 m and 108.4 m, respectively). Additionally, midfielders also spent the largest amount of time at performing at a high intensity (10.6%). Strikers also featured high levels of the above parameters; the total length of distance covered with high intensities was found to be on average 2586.7 m, the distance covered at sprint intensity was 105 m. The footballers, playing at the championship level feature excellent locomotor preparation. This fact is undoubtedly supported by the aerobic training of high intensity. Such training allows footballers to extend the distance they cover during the match, increase the intensity of locomotor activities and sprint speed distance.

  19. Advancing Measurement of Locomotor Rehabilitation Outcomes to Optimize Interventions and Differentiate between Recovery versus Compensation

    PubMed Central

    Bowden, Mark G.; Behrman, Andrea L.; Woodbury, Michelle; Gregory, Chris M.; Velozo, Craig A.; Kautz, Steven A.

    2017-01-01

    Progress in locomotor rehabilitation has created an increasing need to understand the factors that contribute to motor behavior, to determine whether these factors are modifiable, and if so, to determine how best to modify them in a way that promotes improved function. Currently available measures do not have the capacity to distinguish between neuromotor recovery and compensation for impaired underlying body structure/functions. The purpose of this Special Interest article is to examine the state of outcomes measurement in physical therapy in regards outcomes to locomotor rehabilitation, and to suggest approaches that may improve assessment of recovery and clinical decision-making capabilities. We examine historical approaches to measurement of locomotor rehabilitation outcomes including rating scales, timed movement tasks, and laboratory-based outcome measures, and we discuss the emerging use of portable technology to assess walking in a free living environment. The ability to accurately measure outcomes of rehabilitation, both in and away from the laboratory setting, allows assessment of skill acquisition, retention, and long-term carryover in a variety of environments. Accurate measurement allows behavioral changes to be observed and assessments to be made, not only regarding an individual's ability to adapt during interventions, but also their ability to incorporate new skills into a real-world behavior. The result of such an approach to assessment may be that interventions truly translate from laboratory to real-world environments. Future locomotor measurement tools must be based on a theoretical framework that can guide their use to accurately quantify treatment effects and provide a basis upon which to develop and refine therapeutic interventions. PMID:22333921

  20. The Acute Exercise-Induced Inflammatory Response: A Comparison of Young-Adult Smokers and Nonsmokers

    ERIC Educational Resources Information Center

    Kastelein, Tegan E.; Donges, Cheyne E.; Mendham, Amy E.; Duffield, Rob

    2017-01-01

    Purpose: This study examined postexercise inflammatory and leukocyte responses in smokers and nonsmokers, as well as the effects of cigarette smoking on the acute postexercise inflammatory and leukocyte response in habitual smokers. Method: Eleven recreationally active male smokers and 11 nonsmokers matched for age and aerobic fitness were…