Science.gov

Sample records for acute locomotor stimulant

  1. Acute and chronic cocaine behavioral effects in novel versus familiar environments: open-field familiarity differentiates cocaine locomotor stimulant effects from cocaine emotional behavioral effects.

    PubMed

    Carey, Robert J; DePalma, Gail; Damianopoulos, Ernest

    2005-03-30

    Cocaine is a potent stimulant drug, but its stimulant effects can be substantially modulated by environmental novelty versus familiarity. In this report, we varied exposures to a novel environment as a way to assess the impact of environmental familiarity versus novelty upon the locomotor activation induced by acute and chronic cocaine treatments. In experiment 1, the effects of 1 (PE1) versus 0 (PE0) pre-exposures to the test environment were compared for their impact upon the locomotor stimulant, central zone entry and grooming effects induced by an acute cocaine (10 mg/kg) treatment. In experiment 2, the effects of 10 (PE10) versus 0 (PE0) pre-exposures upon the cocaine effects were compared. Experiment 3 assessed the effects of nine cocaine treatments (10.0 mg/kg) initiated in a novel environment (PE0) versus familiar environment (PE10). In all experiments, cocaine had a potent locomotor stimulant effect in a novel environment, which was attenuated by environmental familiarity such that in PE10 groups, cocaine did not reliably induce an acute locomotor stimulant effect. Environmental novelty/familiarity, however, did not reliably alter cocaine effects upon central zone penetration, grooming behavior, or the neurochemical effects induced by cocaine. In the chronic treatment regimen, the PE0 group exhibited a tolerance-like decrease in locomotor activation, but the PE10 group exhibited a sensitization-like increase in locomotor activation. Despite the marked directional changes in the locomotor stimulant effects of cocaine treatments, initiated in a novel (PE0) versus familiar (PE10) environment, the same asymptotic levels of locomotor activation were achieved. In contrast, the behavioral measures of central zone activity progressively increased with repeated treatments regardless of whether the environment was initially novel (PE0) or familiar (PE10). Thus, habituation factors can profoundly alter the locomotor stimulant effects of cocaine and can induce pseudo

  2. Acute stress increases the synthesis of 7α-hydroxypregnenolone, a new key neurosteroid stimulating locomotor activity, through corticosterone action in newts.

    PubMed

    Haraguchi, Shogo; Koyama, Teppei; Hasunuma, Itaru; Okuyama, Shin-ichiro; Ubuka, Takayoshi; Kikuyama, Sakae; Do Rego, Jean-Luc; Vaudry, Hubert; Tsutsui, Kazuyoshi

    2012-02-01

    7α-Hydroxypregnenolone (7α-OH PREG) is a newly identified bioactive neurosteroid stimulating locomotor activity in the brain of newt, a wild animal, which serves as an excellent model to investigate the biosynthesis and biological action of neurosteroids. Here, we show that acute stress increases 7α-OH PREG synthesis in the dorsomedial hypothalamus (DMH) through corticosterone (CORT) action in newts. A 30-min restraint stress increased 7α-OH PREG synthesis in the brain tissue concomitant with the increase in plasma CORT concentrations. A 30-min restraint stress also increased the expression of cytochrome P450(7α) (CYP7B), the steroidogenic enzyme of 7α-OH PREG formation, in the DMH. Decreasing plasma CORT concentrations by hypophysectomy or trilostane administration decreased 7α-OH PREG synthesis in the diencephalon, whereas administration of CORT to these animals increased 7α-OH PREG synthesis. Glucocorticoid receptor was present in DMH neurons expressing CYP7B. Thus, CORT appears to act directly on DMH neurons to increase 7α-OH PREG synthesis. We further investigated the biological action of 7α-OH PREG in the brain under stress. A 30-min restraint stress or central administration of 7α-OH PREG increased serotonin concentrations in the diencephalon. Double immunolabeling further showed colocalization of CYP7B and serotonin in the DMH. These results indicate that acute stress increases the synthesis of 7α-OH PREG via CORT action in the DMH, and 7α-OH PREG activates serotonergic neurons in the DMH that may coordinate behavioral responses to stress. This is the first demonstration of neurosteroid biosynthesis regulated by peripheral steroid hormone and of neurosteroid action in the brain under stress in any vertebrate class.

  3. [Non-invasive transcutaneous spinal cord stimulation facilitates locomotor activity in decerebrated and spinal cats].

    PubMed

    Musienko, P E; Bogacheva, I N; Savochin, A A; Kilimnik, V A; Gorskiĭ, O V; Nikitin, O A; Gerasimenko, Ia P

    2013-08-01

    It is known that spinal neuronal networks activated by epidural electrical stimulation (EES) can produce the stepping EMG pattern and control the locomotor behavior. At present study we showed that non-invasive transcutaneous electrical spinal cord stimulation (tESCS) applied to the lumbar-sacral enlargement can facilitate the locomotor activity in decerebrated and spinal animals. The comparison of the motor responses evoked by EES vs tESCS showed that both methods produce the locomotor patterns with close properties and similar reflex mechanisms. The data obtained suggest that tESCS is an efficient approach for investigation of the locomotor control in acute and chronic experiments as well as facilitates of the locomotor abilities after spinal cord injury. Taking to account the non-invasivity and easement of tESCS, this approach could be further implemented in clinical practice for rehabilitation of the patient with spinal cord injury.

  4. Effect of caffeine on cocaine locomotor stimulant activity in rats.

    PubMed

    Misra, A L; Vadlamani, N L; Pontani, R B

    1986-03-01

    The effect of caffeine on the locomotor stimulant activity induced by intravenous cocaine in rats was investigated. Low doses of caffeine (20 mg/kg IP) potentiated the locomotor activity induced by 1, 2.5 mg/kg intravenous doses of cocaine and higher doses of caffeine (50, 100 mg/kg IP) had no significant effect. The locomotor stimulant effect of 20 mg/kg IP dose of caffeine per se in vehicle was significantly higher and that with 100 mg/kg dose significantly lower than that of the vehicle control. Thus caffeine produced dose-dependent effects on cocaine-induced locomotor stimulant activity, with low dose potentiating and higher doses having no significant effect on such activity. Pharmacokinetic or dispositional factors did not appear to play a role in potentiation of cocaine locomotor stimulant activity by caffeine. PMID:3703910

  5. Conservation of the ethanol-induced locomotor stimulant response among arthropods.

    PubMed

    Kliethermes, Christopher L

    2015-01-01

    Ethanol-induced locomotor stimulation has been variously described as reflective of the disinhibitory, euphoric, or reinforcing effects of ethanol and is commonly used as an index of acute ethanol sensitivity in rodents. The fruit fly Drosophila melanogaster also shows a locomotor stimulant response to ethanol that is believed to occur via conserved, ethanol-sensitive neurobiological mechanisms, but it is currently unknown whether this response is conserved among arthropod species or is idiosyncratic to D. melanogaster. The current experiments surveyed locomotor responses to ethanol in a phylogenetically diverse panel of insects and other arthropod species. A clear ethanol-induced locomotor stimulant response was seen in 9 of 13 Drosophilidae species tested, in 8 of 10 other species of insects, and in an arachnid (wolf spider) and a myriapod (millipede) species. Given the diverse phylogenies of the species that showed the response, these experiments support the hypothesis that locomotor stimulation is a conserved behavioral response to ethanol among arthropod species. Further comparative studies are needed to determine whether the specific neurobiological mechanisms known to underlie the stimulant response in D. melanogaster are conserved among arthropod and vertebrate species.

  6. Acute Neuroactive Drug Exposures alter Locomotor Activity in Larval Zebrafish

    EPA Science Inventory

    As part of the development of a rapid in vivo screen for prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae by assessing the acute effects of prototypic drugs that act on the central nervous system. Initially,...

  7. Evidence for a role of endogenous neurotensin in the development of sensitization to the locomotor stimulant effect of morphine.

    PubMed

    Lévesque, Karine; Lamarche, Caroline; Rompré, Pierre-Paul

    2008-10-10

    This experiment was aimed at exploring the role of endogenous neurotensin in the development of sensitization to the locomotor stimulant effect of morphine. During the induction phase (Days 1, 3, 5 and 7), male Long-Evans adult rats were treated with the neurotensin antagonist SR-48692 (160, 320 or 640 microg/kg, i.p.) or its vehicle, followed by morphine (5.0 mg/kg, i.p.) or its vehicle, and their locomotor activity (ambulatory, non-ambulatory and vertical activity) was measured for 2 h. One week after the last injection, each group received a single injection of morphine (2.5 mg/kg, i.p.) and their locomotor activity was again measured for 2 h (sensitization test, day 14). Results show that SR-48692 alone did not change locomotion. Morphine stimulated locomotor activity, an effect that was stronger on day 7 than on day 1. The two higher doses of SR-48692 attenuated the acute stimulant effect of morphine and prevented the observed increase from day 1 to day 7. The sensitization test on day 14 showed that rats pre-treated with morphine alone displayed significantly stronger ambulatory and vertical activity than vehicle pre-treated rats, a sensitization effect that was attenuated by SR-48692. The present results suggest that endogenous neurotensin contributes to the acute locomotor stimulant effect of morphine and to the induction of its sensitization. PMID:18706409

  8. Effects of cocaine on norepinephrine stimulated phosphoinositide hydrolysis and locomotor activity in rat

    SciTech Connect

    Mosaddeghi, M.

    1989-01-01

    The function of {alpha}{sub 1}-adrenoceptors was determined by stimulating cortical tissue slices, which were pre-labeled with ({sup 3}H)inositol, with norepinephrine (NE) in the presence of 8 mM LiCl. Results of in vitro studies showed that cocaine 10 {mu}M potentiated maximal NE-stimulated PI hydrolysis by 30%. In addition, the EC{sub 50} was decreased from 3.93 {plus minus} 0.42 to 1.91 {plus minus} 0.31 {mu}M NE. Concentrations of 0.1-100 {mu}M and 0.1-10 {mu}M cocaine enhanced PI hydrolysis stimulated by 0.3 and 3 {mu}M NE, respectively. The concentration-effect curves for NE-stimulated PI hydrolysis were shifted to the right 100-fold in the presence of 0.1 {mu}M prazosin. Cocaine (10 {mu}M) did not potentiate NE-stimulated PI hydrolysis in the presence of 0.1 {mu}M prazosin. ({sup 3}H)Prazosin saturation and NE ({sup 3}H)prazosin competition binding studies using crude membrane preparations showed that 10 {mu}M cocaine did not alter binding parameters B{sub max}, K{sub d}, Hill slope, and IC{sub 50}. Together, these results implied that cocaine in vitro potentiated NE-stimulated PI hydrolysis by blocking NE reuptake. For in vivo studies, the locomotor activity was determined after an acute or chronic injections of either cocaine or saline. Cocaine or saline-treated rats were killed after measurement of the locomotor activity, and NE-stimulated PI hydrolysis was measured. Acute administration of cocaine 3.2-42 mg/kg (i.p.) produced an inverted U shaped dose-response curve on locomotor activity. The peak increase in locomotor activity was at 32 mg/kg cocaine. A dose of 42 mg/kg cocaine produced a significant depression of maximal NE-stimulated PI hydrolysis.

  9. The high affinity dopamine uptake inhibitor, JHW 007, blocks cocaine-induced reward, locomotor stimulation and sensitization.

    PubMed

    Velázquez-Sánchez, C; Ferragud, A; Murga, J; Cardá, M; Canales, J J

    2010-07-01

    The discovery and evaluation of high affinity dopamine transport inhibitors with low abuse liability is an important step toward the development of efficacious medications for cocaine addiction. We examined in mice the behavioural effects of (N-(n-butyl)-3alpha-[bis(4'-fluorophenyl)methoxy]-tropane) (JHW 007), a benztropine (BZT) analogue that blocks dopamine uptake, and assessed its potential to influence the actions of cocaine in clinically-relevant models of cocaine addiction. In the conditioned place preference (CPP) paradigm, JHW 007 exposure did not produce place conditioning within an ample dose range but effectively blocked the CPP induced by cocaine administration. Similarly, in the CPP apparatus JHW 007 treatment failed to stimulate locomotor activity at any dose but dose-dependently suppressed the hyperactivity evoked by cocaine treatment. In locomotor sensitization assays performed in the open field, JHW 007 did not produce sensitized locomotor behaviour when given alone, but it prevented the sensitized component of the locomotor response elicited by subchronic (8-day) cocaine exposure. In the elevated plus maze (EPM), acute treatment with JHW 007, cocaine and combinations of the BZT analogue and cocaine produced an anxiogenic-like profile. Re-test in the EPM following subchronic (8-day) exposure enhanced the anxiogenic-like effect of the same drug treatments. The present findings indicate that JHW 007 exposure counteracts some critical behavioural correlates of cocaine treatment, including conditioned reward, locomotor stimulation and sensitization, and lend support to the further development of BZT analogues as potential replacement medications in cocaine addiction.

  10. Efficacy of Stochastic Vestibular Stimulation to Improve Locomotor Performance in a Discordant Sensory Environment

    NASA Technical Reports Server (NTRS)

    Temple, D. R.; De Dios, Y. E.; Layne, C. S.; Bloomberg, J. J.; Mulavara, A. P.

    2016-01-01

    Astronauts exposed to microgravity face sensorimotor challenges incurred when readapting to a gravitational environment. Sensorimotor Adaptability (SA) training has been proposed as a countermeasure to improve locomotor performance during re-adaptation, and it is suggested that the benefits of SA training may be further enhanced by improving detection of weak sensory signals via mechanisms such as stochastic resonance when a non-zero level of stochastic white noise based electrical stimulation is applied to the vestibular system (stochastic vestibular stimulation, SVS). The purpose of this study was to test the efficacy of using SVS to improve short-term adaptation in a sensory discordant environment during performance of a locomotor task.

  11. Diurnal changes in the synthesis of the neurosteroid 7alpha-hydroxypregnenolone stimulating locomotor activity in newts.

    PubMed

    Koyama, Teppei; Haraguchi, Shogo; Vaudry, Hubert; Tsutsui, Kazuyoshi

    2009-04-01

    We recently identified 7alpha-hydroxypregnenolone as a novel amphibian neurosteroid stimulating locomotor activity in newts. Because male newts show marked diurnal changes in locomotor activity, we hypothesized that 7alpha-hydroxypregnenolone may be a key factor for the induction of diurnal changes in locomotor activity in male newts. In this study, we found diurnal changes in 7alpha-hydroxypregnenolone synthesis in the brain of male newts, which paralleled locomotor activity. Interestingly, the production of 7alpha-hydroxypregnenolone in the male newt brain increased during the dark phase when locomotor activity of males was high.

  12. Acute neuroactive drug exposures alter locomotor activity in larval zebrafish

    EPA Science Inventory

    In an effort to develop a rapid in vivo screen for EPA's prioritization of toxic chemicals, we are characterizing the locomotor activity of zebrafish (Danio rerio) larvae after exposure to prototypic drugs that act on the central nervous system. MPTP (1-methyl-4phenyl- 1 ,2,3,6-...

  13. Seasonal changes in the synthesis of the neurosteroid 7alpha-hydroxypregnenolone stimulating locomotor activity in newts.

    PubMed

    Haraguchi, Shogo; Matsunaga, Masahiro; Koyama, Teppei; Do Rego, Jean-Luc; Tsutsui, Kazuyoshi

    2009-04-01

    We recently found that the newt brain actively produces 7alpha-hydroxypregnenolone, a novel amphibian neurosteroid stimulating locomotor activity. It is well known that locomotor activity of male newts increases during the breeding period. To understand the physiological role of 7alpha-hydroxypregnenolone, we investigated seasonal changes in 7alpha-hydroxypregnenolone synthesis in the brain of male newts. Interestingly, 7alpha-hydroxypregnenolone synthesis in the brain showed marked changes during the annual breeding cycle, with a maximal level in the breeding period when locomotor activity of male newts increases. These results suggest that 7alpha-hydroxypregnenolone induces seasonal locomotor changes in male newts.

  14. Restraint stress attenuates nicotine’s locomotor stimulant but not discriminative stimulus effects in rats

    PubMed Central

    Harris, Andrew C.; Mattson, Christina; Shelley, David; LeSage, Mark G.

    2014-01-01

    Stress enhances the locomotor stimulant and discriminative stimulus effects of several addictive drugs (e.g., morphine) in rodents, yet interactions between stress and nicotine’s effects in these behavioral models have not been well established. To this end, the current studies examined the effects of restraint stress on nicotine-induced locomotor activity and nicotine discrimination in rats. We used a novel approach in which onset of stress and nicotine administration occurred concurrently (i.e., simultaneous exposure) to simulate effects of stress on ongoing tobacco use, as well as a more traditional approach in which a delay was imposed between stress and nicotine administration (i.e., sequential exposure). Simultaneous exposure to stress reduced the rate of locomotor sensitization induced by daily injections of nicotine (0.4 mg/kg, s.c.). A lower dose of nicotine (0.1 mg/kg, s.c.) produced modest effects on activity that were generally unaffected by simultaneous exposure to stress. Sequential exposure to stress and nicotine (0.4 mg/kg, s.c.) slightly suppressed nicotine-induced activity, but did not influence rate of locomotor sensitization. Neither simultaneous nor sequential exposure to stress influenced the discriminative stimulus effects of nicotine (0.01 – 0.2 mg/kg, s.c.). These data show that restraint stress reduces nicotine’s locomotor stimulant effects, particularly when onset of stress and nicotine exposure occurs simultaneously, but does not influence nicotine discrimination. These findings contrast with the ability of stress to enhance the effects of other drugs in these models. This study also suggests that studying the influence of simultaneous stress exposure on drug effects may be useful for understanding the role of stress in addiction. PMID:24867077

  15. Inspiratory muscle work in acute hypoxia influences locomotor muscle fatigue and exercise performance of healthy humans.

    PubMed

    Amann, Markus; Pegelow, David F; Jacques, Anthony J; Dempsey, Jerome A

    2007-11-01

    Our aim was to isolate the independent effects of 1) inspiratory muscle work (W(b)) and 2) arterial hypoxemia during heavy-intensity exercise in acute hypoxia on locomotor muscle fatigue. Eight cyclists exercised to exhaustion in hypoxia [inspired O(2) fraction (Fi(O(2))) = 0.15, arterial hemoglobin saturation (Sa(O(2))) = 81 +/- 1%; 8.6 +/- 0.5 min, 273 +/- 6 W; Hypoxia-control (Ctrl)] and at the same work rate and duration in normoxia (Sa(O(2)) = 95 +/- 1%; Normoxia-Ctrl). These trials were repeated, but with a 35-80% reduction in W(b) achieved via proportional assist ventilation (PAV). Quadriceps twitch force was assessed via magnetic femoral nerve stimulation before and 2 min after exercise. The isolated effects of W(b) in hypoxia on quadriceps fatigue, independent of reductions in Sa(O(2)), were revealed by comparing Hypoxia-Ctrl and Hypoxia-PAV at equal levels of Sa(O(2)) (P = 0.10). Immediately after hypoxic exercise potentiated twitch force of the quadriceps (Q(tw,pot)) decreased by 30 +/- 3% below preexercise baseline, and this reduction was attenuated by about one-third after PAV exercise (21 +/- 4%; P = 0.0007). This effect of W(b) on quadriceps fatigue occurred at exercise work rates during which, in normoxia, reducing W(b) had no significant effect on fatigue. The isolated effects of reduced Sa(O(2)) on quadriceps fatigue, independent of changes in W(b), were revealed by comparing Hypoxia-PAV and Normoxia-PAV at equal levels of W(b). Q(tw,pot) decreased by 15 +/- 2% below preexercise baseline after Normoxia-PAV, and this reduction was exacerbated by about one-third after Hypoxia-PAV (-22 +/- 3%; P = 0.034). We conclude that both arterial hypoxemia and W(b) contribute significantly to the rate of development of locomotor muscle fatigue during exercise in acute hypoxia; this occurs at work rates during which, in normoxia, W(b) has no effect on peripheral fatigue.

  16. Locomotor Stimulant and Discriminative Stimulus Effects of “Bath Salt” Cathinones

    PubMed Central

    Gatch, Michael B.; Taylor, Cynthia M.; Forster, Michael J.

    2014-01-01

    A number of psychostimulant-like cathinone compounds are being sold as “legal” alternatives to methamphetamine or cocaine. The purpose of these experiments was to determine whether cathinone compounds stimulate motor activity and have discriminative stimulus effects similar to cocaine and/or methamphetamine. 3,4-Methylenedioxypyrovalerone (MDPV), methylone, mephedrone, naphyrone, flephedrone and butylone were tested for locomotor stimulant effects in mice and subsequently for substitution in rats trained to discriminate cocaine (10 mg/kg, i.p.) or methamphetamine (1 mg/kg, i.p.) from saline. All compounds fully substituted for the discriminative stimulus effects of cocaine and methamphetamine. Several commonly marketed cathinones produce discriminative stimulus effects comparable to those of cocaine and methamphetamine, which suggests that these compounds are likely to have similar abuse liability. MDPV and naphyrone produced locomotor stimulant effects that lasted much longer than cocaine or methamphetamine and therefore may be of particular concern, particularly since MDPV is one of the most commonly found substances associated with emergency room visits due to adverse effects from taking “bath salts”. PMID:23839026

  17. Development of a home cage locomotor tracking system capable of detecting the stimulant and sedative properties of drugs in rats.

    PubMed

    Dunne, Fergal; O'Halloran, Ambrose; Kelly, John P

    2007-10-01

    The advent of automated locomotor activity methodologies has been extremely useful in removing the subjectivity and bias out of measuring this parameter in rodents. However, many of these behavioural studies are still conducted in novel environments, rather than in ones that the animals are familiar with, such as their home cage. The purpose of the present series of experiments was to develop an automated home cage tracking (HCT) profile using EthoVision software and assessing the acute effects of stimulant (amphetamine and methamphetamine, 0-5 mg/kg, sc) and sedative (diazepam, 0-20 mg/kg, sc and chlordiazepoxide, 0-50 mg/kg sc) drugs in this apparatus. Young adult male Sprague-Dawley rats were used, and the home cage locomotor activity was recorded for 11-60 min following administration (n=4 per group). For amphetamine and methamphetamine, a dose-dependent increase in home cage activity was evident for both drugs, with a plateau, followed by reduction at higher doses. Methamphetamine was more potent, whereas amphetamine produced greater maximal responses. Both diazepam and chlordiazepoxide dose-dependently reduced locomotor activity, with diazepam exhibiting a greater potency and having stronger sedative effects than chlordiazepoxide. Three doses of each drug were selected at the 31-40 min time period following administration, and compared to open field responses. Diazepam, chlordiazepoxide and amphetamine did not produce significant changes in the open field, whilst methamphetamine produced a significant increase in the 2.5 mg/kg group. In conclusion, these studies have successfully developed a sensitive HCT methodology that has been validated using drugs with stimulant and sedative properties in the same test conditions, with relatively small numbers of animals required to produce statistically significant results. It has proven superior to the open field investigations in allowing dose-response effects to be observed over a relatively short observation period

  18. Exaggerated sympathetic and cardiovascular responses to stimulation of the mesencephalic locomotor region in spontaneously hypertensive rats.

    PubMed

    Liang, Nan; Mitchell, Jere H; Smith, Scott A; Mizuno, Masaki

    2016-01-01

    The sympathetic and pressor responses to exercise are exaggerated in hypertension. However, the underlying mechanisms causing this abnormality remain to be fully elucidated. Central command, a neural drive originating in higher brain centers, is known to activate cardiovascular and locomotor control circuits concomitantly. As such, it is a viable candidate for the generation of the augmented vascular response to exercise in this disease. We hypothesized that augmentations in central command function contribute to the heightened cardiovascular response to exercise in hypertension. To test this hypothesis, changes in renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) in response to electrical stimulation of mesencephalic locomotor region (MLR; 20-50 μA in 10-μA steps evoking fictive locomotion), a putative component of the central command pathway, were examined in decerebrate, paralyzed normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Tibial nerve discharge during MLR stimulation significantly increased in an intensity-dependent manner in both WKY and SHR but was not different between groups. Stimulation of the MLR evoked significantly larger increases in RSNA and MAP with increasing stimulation intensity in both groups. Importantly, the increases in sympathetic and pressor responses to this fictive locomotion were significantly greater in SHR compared with WKY across all stimulation intensities (e.g., at 50 μA, ΔRSNA: WKY 153 ± 31%, SHR 287 ± 42%; ΔMAP: WKY 87 ± 9 mmHg, SHR 139 ± 7 mmHg). These findings provide the first evidence that central command may be a critical contributor to the exaggerated rise in sympathetic activity and blood pressure during exercise in hypertension. PMID:26545711

  19. 7alpha-Hydroxypregnenolone acts as a neuronal activator to stimulate locomotor activity of breeding newts by means of the dopaminergic system.

    PubMed

    Matsunaga, Masahiro; Ukena, Kazuyoshi; Baulieu, Etienne-Emile; Tsutsui, Kazuyoshi

    2004-12-01

    It is becoming clear that steroids can be synthesized de novo by the brain and other nervous systems. Such steroids are called neurosteroids, and de novo neurosteroidogenesis from cholesterol is a conserved property of vertebrate brains. In this study, we show that the newt brain actively produces 7alpha-hydroxypregnenolone, a previously undescribed amphibian neurosteroid that stimulates locomotor activity. 7alpha-hydroxypregnenolone was identified as a most abundant amphibian neurosteroid in the newt brain by using biochemical techniques combined with HPLC, TLC, and GC-MS analyses. The production of 7alpha-hydroxypregnenolone in the diencephalon and rhombencephalon was higher than that in the telencephalon and peripheral steroidogenic glands. In addition, 7alpha-hydroxypregnenolone synthesis in the brain showed marked changes during the annual breeding cycle, with a maximal level in the spring breeding period when locomotor activity of the newt increases. Behavioral analysis of newts in the nonbreeding period demonstrated that administration of this previously undescribed amphibian neurosteroid acutely increased locomotor activity. In vitro analysis further revealed that 7alpha-hydroxypregnenolone treatment resulted in a dose-dependent increase in the release of dopamine from cultured brain tissue of nonbreeding newts. The effect of this neurosteroid on locomotion also was abolished by dopamine D(2)-like receptor antagonists. These results indicate that 7alpha-hydroxypregnenolone acts as a neuronal activator to stimulate locomotor activity of breeding newts through the dopaminergic system. This study demonstrates a physiological function of 7alpha-hydroxypregnenolone that has not been described previously in any vertebrate class. This study also provides findings on the regulatory mechanism of locomotor activity from a unique standpoint.

  20. Brain and pineal 7α-hydroxypregnenolone stimulating locomotor activity: identification, mode of action and regulation of biosynthesis.

    PubMed

    Tsutsui, Kazuyoshi; Haraguchi, Shogo; Fukada, Yoshitaka; Vaudry, Hubert

    2013-08-01

    Biologically active steroids synthesized in the central and peripheral nervous systems are termed neurosteroids. However, the biosynthetic pathways leading to the formation of neurosteroids are still incompletely elucidated. 7α-Hydroxypregnenolone, a novel bioactive neurosteroid stimulating locomotor activity, has been recently identified in the brain of newts and quail. Subsequently, the mode of action and regulation of biosynthesis of 7α-hydroxypregnenolone have been determined. Moreover, recent studies on birds have demonstrated that the pineal gland, an endocrine organ located close to the brain, is an important site of production of neurosteroids de novo from cholesterol. 7α-Hydroxypregnenolone is a major pineal neurosteroid that stimulates locomotor activity in juvenile chickens, connecting light-induced gene expression with locomotion. This review summarizes the advances in our understanding of the identification, mode of action and regulation of biosynthesis of brain and pineal 7α-hydroxypregnenolone, a potent stimulator of locomotor activity.

  1. Dynamics of locomotor activity and heat production in rats after acute stress.

    PubMed

    Pertsov, S S; Alekseeva, I V; Koplik, E V; Sharanova, N E; Kirbaeva, N V; Gapparov, M M G

    2014-05-01

    The dynamics of locomotor activity and heat production were studied in rats demonstrating passive and active behavior in the open field test at different time after exposure to acute emotional stress caused by 12-h immobilization during dark hours. The most pronounced changes in behavior and heat production followed by disturbances in circadian rhythms of these parameters were detected within the first 2 days after stress. In contrast to behaviorally active rats, the most significant decrease in locomotor activity and heat production of passive animals subjected to emotional stress was observed during dark hours. Circadian rhythms of behavior and heat production in rats tended to recover on day 3 after immobilization stress. These data illustrate the specificity of metabolic and behavioral changes reflecting the shift of endogenous biological rhythms in individuals with different prognostic resistance to stress at different terms after exposure to negative emotiogenic stimuli. PMID:24906959

  2. Intracranial self-stimulation and locomotor traces as indicators for evaluating and developing antipsychotic drugs.

    PubMed

    Takigawa, M; Fukuzako, H; Ueyama, K; Tominaga, H

    1994-03-01

    When chlorpromazine (CPZ) and lithium chloride (LiCl) are compared, the former suppresses both rat's intracranial self-stimulation (ICSS) and methamphetamine (MAP)-induced hyperactivity. On the other hand, the latter suppresses only MAP-induced abnormal hyperactivity but hardly suppresses a purpose-oriented ICSS associated with the reward system. Therefore, LiCl inhibits abnormal hyperactivity induced by MAP, but it does not suppress physiological motivation. Using the two types of antipsychotic drugs, the authors propose a method of combining the ICSS and locomotor activity together with its traces. These proposals are useful indicators for evaluating and developing the new antipsychotic drugs which are used clinically for psychotic patients and for understanding the drug-induced akinesia and anhedonia.

  3. Differential roles of GABAB1 subunit isoforms on locomotor responses to acute and repeated administration of cocaine.

    PubMed

    Jacobson, Laura H; Sweeney, Fabian F; Kaupmann, Klemens; O'Leary, Olivia F; Gassmann, Martin; Bettler, Bernhard; Cryan, John F

    2016-02-01

    GABAB receptors are crucial modulators of the behavioural effects of drug abuse, and agonists and positive allosteric modulators show promise as pharmacological strategies for anti-addiction therapeutics. GABAB receptors are functional heterodimers of GABAB1 and GABAB2 subunits. The predominant neuronal GABAB1 subunit isoforms are GABAB1a and GABAB1b. Selective ablation of these isoforms in mice revealed differential behavioural responses in fear, cognition and stress sensitivity. However, the influence of the two GABAB1 isoforms on responses to drugs of abuse is unclear. Therefore we examined the responses of GABAB1 subunit isoform null mice to cocaine in acute locomotor activity and conditioned place preference (CPP) paradigms. During habituation for the acute locomotor activity assay, GABAB1b(-/-) mice showed higher levels of locomotor activity relative to wild-type (WT) and GABAB1a(-/-) mice, in accordance with previous studies. Acute cocaine (10 mg/kg) increased locomotor activity in habituated mice of all three genotypes, with GABAB1a(-/-) mice showing sustained hyperlocomotor responses 30 min after cocaine relative to WT and GABAB1b(-/-) mice. No genotypes demonstrated a cocaine-induced place preference, however, GABAB1a(-/-) mice demonstrated enhanced locomotor sensitisation to chronic cocaine in the CPP paradigm in comparison to WT mice, whereas GABAB1b(-/-) mice failed to develop locomotor sensitisation, despite higher levels of basal locomotor activity. These findings indicate that GABAB1a and GABAB1b isoforms differentially regulate behavioural responses to cocaine, with deletion of GABAB1a enhancing cocaine-induced locomotor activity and deletion of GABAB1b protecting from cocaine-induced sensitisation.

  4. Effect of 1 GeV/n Fe particles on cocaine-stimulated locomotor activity

    NASA Astrophysics Data System (ADS)

    Vazquez, M.; Bruneus, M.; Gatley, J.; Russell, S.; Billups, A.

    Space travel beyond the Earth's protective magnetic field (for example, to Mars) will involve exposure of astronauts to irradiation by high-energy nuclei such as 56Fe (HZE radiation), which are a component of galactic cosmic rays. These particles have high linear energy transfer (LET) and are expected to irreversibly damage cells they traverse. Our working hypothesis is that long-term behavioral alterations are induced after exposure of the brain to 1 GeV/n iron particles with fluences of 1 to 8 particles/cell targets. Previous studies support this notion but are not definitive, especially with regard to long-term effects. Using the Alternating Gradient Synchrotron (AGS) we expose C57 mice to 1 GeV/n 56Fe radiation (head only) at doses of 0, 15, 30, 60, 120 and 240 cGy. There were originally 19 mice per group. The ability of cocaine to increase locomotor activity in 16 of these animals in response to an intraperitoneal injection of cocaine has been measured so far at 1, 4, 8, 12, 16, 20, 24 and 28 weeks. Cocaine-stimulated locomotor activity was chosen in part because it is a behavioral assay with which we have considerable experience. More importantly, the ability to respond to cocaine is a complex behavior involving many neurotransmitter systems and brain circuits. Therefore, the probability of alteration of this behavior by HZE particles was considered high. However, the central circuit is the nigrostriatal dopamine system, in which dopamine is released in striatum from nerve terminals whose cell bodies are located in the substantia nigra. Cocaine activates behavior by blocking dopamine transporters on striatal nerve terminals and therefore elevating the concentration of dopamine in the synapse. Dopamine activates receptors on striatal GABAergic cells that project via other brain regions to the thalamus. Activation of the motor cortex by glutamatergic projections from the thalamus leads ultimately to increased locomotion. The experimental paradigm involves

  5. Augmentation of Voluntary Locomotor Activity by Transcutaneous Spinal Cord Stimulation in Motor-Incomplete Spinal Cord-Injured Individuals.

    PubMed

    Hofstoetter, Ursula S; Krenn, Matthias; Danner, Simon M; Hofer, Christian; Kern, Helmut; McKay, William B; Mayr, Winfried; Minassian, Karen

    2015-10-01

    The level of sustainable excitability within lumbar spinal cord circuitries is one of the factors determining the functional outcome of locomotor therapy after motor-incomplete spinal cord injury. Here, we present initial data using noninvasive transcutaneous lumbar spinal cord stimulation (tSCS) to modulate this central state of excitability during voluntary treadmill stepping in three motor-incomplete spinal cord-injured individuals. Stimulation was applied at 30 Hz with an intensity that generated tingling sensations in the lower limb dermatomes, yet without producing muscle reflex activity. This stimulation changed muscle activation, gait kinematics, and the amount of manual assistance required from the therapists to maintain stepping with some interindividual differences. The effect on motor outputs during treadmill-stepping was essentially augmentative and step-phase dependent despite the invariant tonic stimulation. The most consistent modification was found in the gait kinematics, with the hip flexion during swing increased by 11.3° ± 5.6° across all subjects. This preliminary work suggests that tSCS provides for a background increase in activation of the lumbar spinal locomotor circuitry that has partially lost its descending drive. Voluntary inputs and step-related feedback build upon the stimulation-induced increased state of excitability in the generation of locomotor activity. Thus, tSCS essentially works as an electrical neuroprosthesis augmenting remaining motor control.

  6. Optic flow improves adaptability of spatiotemporal characteristics during split-belt locomotor adaptation with tactile stimulation.

    PubMed

    Eikema, Diderik Jan A; Chien, Jung Hung; Stergiou, Nicholas; Myers, Sara A; Scott-Pandorf, Melissa M; Bloomberg, Jacob J; Mukherjee, Mukul

    2016-02-01

    Human locomotor adaptation requires feedback and feed-forward control processes to maintain an appropriate walking pattern. Adaptation may require the use of visual and proprioceptive input to decode altered movement dynamics and generate an appropriate response. After a person transfers from an extreme sensory environment and back, as astronauts do when they return from spaceflight, the prolonged period required for re-adaptation can pose a significant burden. In our previous paper, we showed that plantar tactile vibration during a split-belt adaptation task did not interfere with the treadmill adaptation however, larger overground transfer effects with a slower decay resulted. Such effects, in the absence of visual feedback (of motion) and perturbation of tactile feedback, are believed to be due to a higher proprioceptive gain because, in the absence of relevant external dynamic cues such as optic flow, reliance on body-based cues is enhanced during gait tasks through multisensory integration. In this study, we therefore investigated the effect of optic flow on tactile-stimulated split-belt adaptation as a paradigm to facilitate the sensorimotor adaptation process. Twenty healthy young adults, separated into two matched groups, participated in the study. All participants performed an overground walking trial followed by a split-belt treadmill adaptation protocol. The tactile group (TC) received vibratory plantar tactile stimulation only, whereas the virtual reality and tactile group (VRT) received an additional concurrent visual stimulation: a moving virtual corridor, inducing perceived self-motion. A post-treadmill overground trial was performed to determine adaptation transfer. Interlimb coordination of spatiotemporal and kinetic variables was quantified using symmetry indices and analyzed using repeated-measures ANOVA. Marked changes of step length characteristics were observed in both groups during split-belt adaptation. Stance and swing time symmetries were

  7. Acute effects of ethanol or d-amphetamine on the locomotor activity of larval zebrafish in a microtiter plate format.

    EPA Science Inventory

    As part of an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae. We are assessing the acute effects of prototypic drugs that are known to act on the central ...

  8. Rat locomotor spinal circuits in vitro are activated by electrical stimulation with noisy waveforms sampled from human gait

    PubMed Central

    Dose, Francesco; Menosso, Rachele; Taccola, Giuliano

    2013-01-01

    Noisy waveforms, sampled from an episode of fictive locomotion (FL) and delivered to a dorsal root (DR), are a novel electrical stimulating protocol demonstrated as the most effective for generating the locomotor rhythm in the rat isolated spinal cord. The present study explored if stimulating protocols constructed by sampling real human locomotion could be equally efficient to activate these locomotor networks in vitro. This approach may extend the range of usable stimulation protocols and provide a wide palette of noisy waveforms for this purpose. To this end, recorded electromyogram (EMG) from leg muscles of walking adult volunteers provided a protocol named ReaListim (Real Locomotion-induced stimulation) that applied to a single DR successfully activated FL. The smoothed kinematic profile of the same gait failed to do so like nonphasic noisy patterns derived from standing and isometric contraction. Power spectrum analysis showed distinctive low-frequency domains in ReaListim, along with the high-frequency background noise. The current study indicates that limb EMG signals (recorded during human locomotion) applied to DR of the rat spinal cord are more effective than EMG traces taken during standing or isometric contraction of the same muscles to activate locomotor networks. Finally, EMGs recorded during various human motor tasks demonstrated that noisy waves of the same periodicity as ReaListim, could efficiently activate the in vitro central pattern generator (CPG), regardless of the motor task from which they had been sampled. These data outline new strategies to optimize functional stimulation of spinal networks after injury. PMID:24303112

  9. Locomotor Stimulant and Rewarding Effects of Inhaling Methamphetamine, MDPV, and Mephedrone via Electronic Cigarette-Type Technology.

    PubMed

    Nguyen, Jacques D; Aarde, Shawn M; Cole, Maury; Vandewater, Sophia A; Grant, Yanabel; Taffe, Michael A

    2016-10-01

    Although inhaled exposure to drugs is a prevalent route of administration for human substance abusers, preclinical models that incorporate inhaled exposure to psychomotor stimulants are not commonly available. Using a novel method that incorporates electronic cigarette-type technology to facilitate inhalation, male Wistar rats were exposed to vaporized methamphetamine (MA), 3,4-methylenedioxypyrovalerone (MDPV), and mephedrone (4-methylmethcathinone) in propylene glycol vehicle using concentrations ranging from 12.5 to 200 mg/ml. Rats exhibited increases in spontaneous locomotor activity, measured by implanted radiotelemetry, following exposure to methamphetamine (12.5 and 100 mg/ml), MDPV (25, 50, and 100 mg/ml), and mephedrone (200 mg/ml). Locomotor effects were blocked by pretreatment with the dopamine D1-like receptor antagonist SCH23390 (10 μg/kg, intraperitoneal (i.p.)). MA and MDPV vapor inhalation also altered activity on a running wheel in a biphasic manner. An additional group of rats was trained on a discrete trial intracranial self-stimulation (ICSS) procedure interpreted to assess brain reward status. ICSS-trained rats that received vaporized MA, MDPV, or mephedrone exhibited a significant reduction in threshold of ICSS reward compared with vehicle. The effect of vapor inhalation of the stimulants was found comparable to the locomotor and ICSS threshold-reducing effects of i.p. injection of mephedrone (5.0 mg/kg), MA (0.5-1.0 mg/kg), or MDPV (0.5-1.0 mg/kg). These data provide robust validation of e-cigarette-type technology as a model for inhaled delivery of vaporized psychostimulants. Finally, these studies demonstrate the potential for human use of e-cigarettes to facilitate covert use of a range of psychoactive stimulants. Thus, these devices pose health risks beyond their intended application for the delivery of nicotine.

  10. Locomotor Stimulant and Rewarding Effects of Inhaling Methamphetamine, MDPV, and Mephedrone via Electronic Cigarette-Type Technology.

    PubMed

    Nguyen, Jacques D; Aarde, Shawn M; Cole, Maury; Vandewater, Sophia A; Grant, Yanabel; Taffe, Michael A

    2016-10-01

    Although inhaled exposure to drugs is a prevalent route of administration for human substance abusers, preclinical models that incorporate inhaled exposure to psychomotor stimulants are not commonly available. Using a novel method that incorporates electronic cigarette-type technology to facilitate inhalation, male Wistar rats were exposed to vaporized methamphetamine (MA), 3,4-methylenedioxypyrovalerone (MDPV), and mephedrone (4-methylmethcathinone) in propylene glycol vehicle using concentrations ranging from 12.5 to 200 mg/ml. Rats exhibited increases in spontaneous locomotor activity, measured by implanted radiotelemetry, following exposure to methamphetamine (12.5 and 100 mg/ml), MDPV (25, 50, and 100 mg/ml), and mephedrone (200 mg/ml). Locomotor effects were blocked by pretreatment with the dopamine D1-like receptor antagonist SCH23390 (10 μg/kg, intraperitoneal (i.p.)). MA and MDPV vapor inhalation also altered activity on a running wheel in a biphasic manner. An additional group of rats was trained on a discrete trial intracranial self-stimulation (ICSS) procedure interpreted to assess brain reward status. ICSS-trained rats that received vaporized MA, MDPV, or mephedrone exhibited a significant reduction in threshold of ICSS reward compared with vehicle. The effect of vapor inhalation of the stimulants was found comparable to the locomotor and ICSS threshold-reducing effects of i.p. injection of mephedrone (5.0 mg/kg), MA (0.5-1.0 mg/kg), or MDPV (0.5-1.0 mg/kg). These data provide robust validation of e-cigarette-type technology as a model for inhaled delivery of vaporized psychostimulants. Finally, these studies demonstrate the potential for human use of e-cigarettes to facilitate covert use of a range of psychoactive stimulants. Thus, these devices pose health risks beyond their intended application for the delivery of nicotine. PMID:27277119

  11. Modulation of methamphetamine's locomotor stimulation and self-administration by JHW 007, an atypical dopamine reuptake blocker.

    PubMed

    Ferragud, A; Velázquez-Sánchez, C; Canales, J J

    2014-05-15

    JHW 007 [N-(n-butil)-3α-[bis(4'-fluorophenil)methoxi]-tropane] belongs to the family of N-substituted benztropine (BZT) analogs, atypical dopamine transporter (DAT) blockers that are able to strongly modulate cocaine- and amphetamine-related behavior. In the present study, we tested in rats the ability of JHW 007 to alter the stimulant and reinforcing properties of methamphetamine (METH) using locomotor activity, fixed ratio and progressive ratio (PR) self-administration tests. The results showed that JHW 007 attenuated METH-induced locomotor stimulation in a dose-dependent manner and had no stimulant effects when administered alone. The BZT analog, given as a pre-treatment, attenuated METH self-administration without affecting responding for sucrose. In the PR tests JHW 007 produced an increase of the breaking point achieved for both METH- and sucrose self-administration, suggesting that the ability of the BZT analog to reduce self-administration may be linked to its ability to enhance the reinforcing properties of METH. Taken together, these data suggest that DAT inhibition with a high affinity blocker such as JHW 007 can exert differential effects on METH-associated behaviors, reducing METH-induced motor stimulation but augmenting METH׳s reinforcing effects.

  12. Locomotor activity and tissue levels following acute administration of lambda- and gamma-cyhalothrin in rats

    EPA Science Inventory

    Pyrethroids produce neurotoxicity that depends, in part, on the chemical structure. Common behavioral effects include locomotor activity changes and specific toxic syndromes (types I and II). In general these neurobehavioral effects correlate well with peak internal dose metric...

  13. Relationships between locomotor activation and alterations in brain temperature during selective blockade and stimulation of dopamine transmission.

    PubMed

    Brown, P L; Bae, D; Kiyatkin, E A

    2007-03-01

    It is well known that the dopamine (DA) system plays an essential role in the organization and regulation of brain activational processes. Various environmental stimuli that induce locomotor activation also increase DA transmission, while DA antagonists decrease spontaneous locomotion. Our previous work supports close relationships between locomotor activation and brain and body temperature increases induced by salient environmental challenges or occurring during motivated behavior. While this correlation was also true for psychomotor stimulant drugs such as methamphetamine and MDMA, more complex relationships or even inverted correlations were found for other drugs that are known to increase DA transmission (i.e. heroin and cocaine). In the present study we examined brain, muscle and skin temperatures together with conventional locomotion during selective interruption of DA transmission induced by a mixture of D1 and D2 antagonists (SCH-23390 and eticlopride at 0.2 mg/kg, s.c.) and its selective activation by apomorphine (APO; 0.05 and 0.25 mg/kg, i.v.) in rats. While full DA receptor blockade decreased spontaneous locomotion, it significantly increased brain, muscle and skin temperatures, suggesting metabolic brain activation under conditions of vasodilatation (or weakening of normal vascular tone). In contrast, APO strongly decreased skin temperature but tended to decrease brain and muscle temperatures despite strong hyperlocomotion and stereotypy. The brain temperature response to APO was strongly dependent on basal brain temperature, with hypothermia at high basal temperatures and weak hyperthermia at low temperatures. While supporting the role of DA in locomotor activation, these data suggest more complex relationships between drug-induced alterations in DA transmission, behavioral activation and metabolic brain activation.

  14. Induction of brain cytochrome P450 2E1 boosts the locomotor-stimulating effects of ethanol in mice.

    PubMed

    Ledesma, Juan Carlos; Miquel, Marta; Pascual, María; Guerri, Consuelo; Aragon, Carlos M G

    2014-10-01

    In the central nervous system ethanol (EtOH) is metabolized into acetaldehyde by different enzymes. Brain catalase accounts for 60% of the total production of EtOH-derived acetaldehyde, whereas cerebral cytochrome P450 2E1 (CYP 2E1) produces 20% of this metabolite. Acetaldehyde formed by the activity of central catalase has been implicated in some of the neurobehavioral properties of EtOH, yet the contribution of CYP 2E1 to the pharmacological actions of this drug has not been investigated. Here we assessed the possible participation of CYP 2E1 in the behavioral effects of EtOH. Thus, we induced CYP 2E1 activity and expression by exposing mice to chronic acetone intake (1% v/v for 10 days) and examined its consequences on the stimulating and uncoordinating effects of EtOH (0-3.2 g/kg) injected intraperitoneally. Our data showed that 24 h after withdrawal of acetone brain expression and activity of CYP 2E1 was induced. Furthermore, the locomotion produced by EtOH was boosted over the same interval of time. Locomotor stimulation produced by amphetamine or tert-butanol was unchanged by previous treatment with acetone. EtOH-induced motor impairment as evaluated in a Rota-Rod apparatus was unaffected by the preceding exposure to acetone. These results indicate that cerebral CYP 2E1 activity could contribute to the locomotor-stimulating effects of EtOH, and therefore we suggest that centrally produced acetaldehyde might be a possible mediator of some EtOH-induced pharmacological effects.

  15. Interactions between Dorsal and Ventral Root Stimulation on the Generation of Locomotor-Like Activity in the Neonatal Mouse Spinal Cord

    PubMed Central

    2016-01-01

    Abstract We investigated whether dorsal (DR) and ventral root (VR) stimulus trains engage common postsynaptic components to activate the central pattern generator (CPG) for locomotion in the neonatal mouse spinal cord. VR stimulation did not activate the first order interneurons mediating the activation of the locomotor CPG by sacrocaudal afferent stimulation. Simultaneous stimulation of adjacent dorsal or ventral root pairs, subthreshold for evoking locomotor-like activity, did not summate to activate the CPG. This suggests that locomotor-like activity is triggered when a critical class of efferent or afferent axons is stimulated and does not depend on the number of stimulated axons or activated postsynaptic neurons. DR- and VR-evoked episodes exhibited differences in the coupling between VR pairs. In DR-evoked episodes, the coupling between the ipsilateral and contralateral flexor/extensor roots was similar and stronger than the bilateral extensor roots. In VR-evoked episodes, ipsilateral flexor/extensor coupling was stronger than both the contralateral flexor/extensor and the bilateral extensor coupling. For both types of stimulation, the coupling was greatest between the bilateral L1/L2 flexor-dominated roots. This indicates that the recruitment and/or the firing pattern of motoneurons differed in DR and VR-evoked episodes. However, the DR and VR trains do not appear to activate distinct CPGs because trains of DR and VR stimuli at frequencies too low to evoke locomotor-like activity did so when they were interleaved. These results indicate that the excitatory actions of VR stimulation converge onto the CPG through an unknown pathway that is not captured by current models of the locomotor CPG. PMID:27419215

  16. Effects of the imidazobenzodiazepine R015-4513 on the stimulant and depressant actions of ethanol on spontaneous locomotor activity

    SciTech Connect

    Becker, H.C.

    1988-01-01

    The purpose of this study was to investigate the effects of the imidazobenzodiazepine R015-4513, a partial inverse agonist at benzodiazepine (BDZ) receptors, on the stimulant and depressant actions of ethanol in mice. For comparative purposes, another BDZ inverse agonist, FG-7142, was examined as well. Neither R015-4513 nor FG-7142 influenced the low-dose excitatory effects of ethanol on spontaneous locomotor activity. However, both R015-4513 and FG-7142 significantly antagonized the depressant effects of ethanol, and this antagonism was completely reversed by pretreatment with the BDZ receptor antagonist, R015-1788. These data suggest that R015-4513 is capable of antagonizing only some of the behavioral effects of ethanol, and in particular, those responses to ethanol that are mediated by modulation of the GABA/BDZ-chloride channel receptor complex.

  17. The stimulant effects of caffeine on locomotor behaviour in mice are mediated through its blockade of adenosine A2A receptors

    PubMed Central

    Yacoubi, Malika El; Ledent, Catherine; Ménard, Jean-François; Parmentier, Marc; Costentin, Jean; Vaugeois, Jean-Marie

    2000-01-01

    The locomotor stimulatory effects induced by caffeine (1,3,7-trimethylxanthine) in rodents have been attributed to antagonism of adenosine A1 and A2A receptors. Little is known about its locomotor depressant effects seen when acutely administered at high doses. The roles of adenosine A1 and A2A receptors in these activities were investigated using a Digiscan actimeter in experiments carried out in mice. Besides caffeine, the A2A antagonist SCH 58261 (5-amino-7-(β-phenylethyl)-2-(8-furyl)pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine), the A1 antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine), the A1 agonist CPA (N6-cyclopentyladenosine) and A2A receptor knockout mice were used.Caffeine had a biphasic effect on locomotion of wild-type mice not habituated to the open field, stimulating locomotion at 6.25–25 mg kg−1 i.p. doses, while depressing it at 100 mg kg−1. In sharp contrast, caffeine dose-dependently decreased locomotion in A2A receptor knockout mice over the whole range of tested doses.The depressant effects induced by high doses of caffeine were lost in control CD1 mice habituated to the open field.The A1 agonist CPA depressed locomotion at 0.3–1 mg kg−1 i.p. doses.The A1 antagonist DPCPX decreased locomotion of A2A receptor knockouts and CD1 mice at 5 mg kg−1 i.p. and 25 mg kg−1 i.p. respectively.DPCPX (0.2–1 mg kg−1 i.p.) left unaltered or even reduced the stimulant effect of SCH 58261 (1–3 mg kg−1 i.p.) on CD1 mice.These results suggest therefore that the stimulant effect of low doses of caffeine is mediated by A2A receptor blockade while the depressant effect seen at higher doses under some conditions is explained by A1 receptor blockade. PMID:10742303

  18. Acute pharmacological blockade of corticosterone secretion reverses food restriction-induced sensitization of the locomotor response to cocaine.

    PubMed

    Marinelli, M; Le Moal, M; Piazza, P V

    1996-06-17

    Several data indicate that a blockade of stress-induced corticosterone secretion prevents the development of the stress-induced sensitization of the behavioral effects of drugs of abuse. In this report we investigated if an acute blockade of corticosterone secretion could reverse stress-induced sensitization once it is already established. Food restriction (90% of initial body weight) was used as stressor. Corticosterone secretion was blocked by the corticosterone synthesis inhibitor metyrapone (100 mg/kg). After 8 days of food restriction, animals received an injection of metyrapone and 3 h later they were tested either for the locomotor response to cocaine or for the corticosterone secretion in response to stress (restraint, 30 min). Neither metyrapone nor food restriction had any effect on the locomotor response to a saline injection. In contrast, food-restricted animals, compared to ad libitum-fed controls, showed a higher locomotor response to cocaine and higher corticosterone levels. Treatment with metyrapone totally abolished these effects. Food-restricted animals, receiving a single injection of metyrapone, did not differ from ad libitum-fed controls for both locomotor response to cocaine and corticosterone secretion. Metyrapone treatment also similarly reduced the response to cocaine and corticosterone secretion in ad libitum-fed controls. In conclusion, this study provides further evidence that the enhancement in drug effects produced by stress depends on an increase in corticosterone levels. Since stress-induced sensitization is considered one of the conditions predisposing to drug abuse, the present results might have implications for the treatment of addiction. PMID:8828576

  19. Acute injection of ASP in the third ventricle inhibits food intake and locomotor activity in rats.

    PubMed

    Roy, Christian; Roy, Marie-Claude; Gauvreau, Danny; Poulin, Anne-Marie; Tom, Fun-Qun; Timofeeva, Elena; Richard, Denis; Cianflone, Katherine

    2011-07-01

    Acylation-stimulating protein (ASP; also known as C3adesArg) stimulates triglyceride synthesis and glucose transport via interaction with its receptor C5L2, which is expressed peripherally (adipose tissue, muscle) and centrally. Previous studies have shown that ASP-deficient mice (C3KO) and C5L2-deficient mice (C5L2KO) are hyperphagic (59 to 229% increase, P < 0.0001), which is counterbalanced by increased energy expenditure measured as oxygen consumption (Vo(2)) and a lower RQ. The aim of the present study was to evaluate ASP's effect on food intake, energy expenditure, and neuropeptide expression. Male rats were surgically implanted with intracerebroventricular (icv) cannulas directed toward the third ventricle. After a 5-h fast, rats were injected, and food intake was assessed at 0.5, 1, 2, 4, 16, 24, and 48 h, with a 5- to 7-day washout period between each injection. Acute icv injections of ASP (0.3-1,065 pmol) had a time-dependent effect on decreasing food intake by 20 to 57% (P < 0.05). Decreases were detected by 30 min (maximum 57%, P < 0.01) and at the highest dose effects extended to 48 h (19%, P < 0.05, 24- to 48-h period). Daily body weight gain was decreased by 131% over the first 24 h and 29% over the second 24 h (P < 0.05). A conditioned taste aversion test indicated that there was no malaise. Furthermore, acute ASP injection affected energy substrate usage, demonstrated by decreased Vo(2) and RQ (P < 0.05; implicating greater fatty acid usage), with a 49% decrease in total activity over 24 h (P < 0.05). ASP administration also increased anorexic neuropeptide POMC expression (44%) in the arcuate nucleus, with no change in NPY. Altogether ASP may have central in addition to peripheral effects.

  20. The Effects of Acute Exposure to Neuroactive Drugs on the Locomotor Activity of Larval Zebrafish

    EPA Science Inventory

    In an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae using prototypic drugs that act on the central nervous system. Initially, we chose to define the beh...

  1. Influences of acute ethanol exposure on locomotor activities of zebrafish larvae under different illumination.

    PubMed

    Guo, Ning; Lin, Jia; Peng, Xiaolan; Chen, Haojun; Zhang, Yinglan; Liu, Xiuyun; Li, Qiang

    2015-11-01

    Larval zebrafish present unique opportunities to study the behavioral responses of a model organism to environmental challenges during early developmental stages. The purpose of the current study was to investigate the locomotor activities of AB strain zebrafish larvae at 5 and 7 days post-fertilization (dpf) in response to light changes under the influence of ethanol, and to explore potential neurological mechanisms that are involved in ethanol intoxication. AB strain zebrafish larvae at both 5 and 7 dpf were treated with ethanol at 0% (control), 0.1%, 0.25%, 0.5%, 1%, and 2% (v/v%). The locomotor activities of the larvae during alternating light-dark challenges, as well as the locomotor responses immediately following the light transitions, were investigated. The levels of various neurotransmitters were also measured in selected ethanol-treated groups. The larvae at 5 and 7 dpf demonstrated similar patterns of locomotor responses to ethanol treatment. Ethanol treatment at 1% increased the swimming distances of the zebrafish larvae in the dark periods, but had no effect on the swimming distances in the light periods. In contrast, ethanol treatment at 2% increased the swimming distances in the light periods, but did not potentiate the swimming activity in the dark periods, compared to controls. Differences in the levels of neurotransmitters that are involved in norepinephrine, dopamine, and serotonin pathways were also observed in groups with different ethanol treatments. These results indicated the behavioral studies concerning the ethanol effects on locomotor activities of zebrafish larvae could be carried out as early as 5 dpf. The 1% and 2% ethanol-treated zebrafish larvae modeled ethanol effects at different intoxication states, and the differences in neurotransmitter levels suggested the involvement of various neurotransmitter pathways in different ethanol intoxication states. PMID:26384924

  2. Influences of acute ethanol exposure on locomotor activities of zebrafish larvae under different illumination.

    PubMed

    Guo, Ning; Lin, Jia; Peng, Xiaolan; Chen, Haojun; Zhang, Yinglan; Liu, Xiuyun; Li, Qiang

    2015-11-01

    Larval zebrafish present unique opportunities to study the behavioral responses of a model organism to environmental challenges during early developmental stages. The purpose of the current study was to investigate the locomotor activities of AB strain zebrafish larvae at 5 and 7 days post-fertilization (dpf) in response to light changes under the influence of ethanol, and to explore potential neurological mechanisms that are involved in ethanol intoxication. AB strain zebrafish larvae at both 5 and 7 dpf were treated with ethanol at 0% (control), 0.1%, 0.25%, 0.5%, 1%, and 2% (v/v%). The locomotor activities of the larvae during alternating light-dark challenges, as well as the locomotor responses immediately following the light transitions, were investigated. The levels of various neurotransmitters were also measured in selected ethanol-treated groups. The larvae at 5 and 7 dpf demonstrated similar patterns of locomotor responses to ethanol treatment. Ethanol treatment at 1% increased the swimming distances of the zebrafish larvae in the dark periods, but had no effect on the swimming distances in the light periods. In contrast, ethanol treatment at 2% increased the swimming distances in the light periods, but did not potentiate the swimming activity in the dark periods, compared to controls. Differences in the levels of neurotransmitters that are involved in norepinephrine, dopamine, and serotonin pathways were also observed in groups with different ethanol treatments. These results indicated the behavioral studies concerning the ethanol effects on locomotor activities of zebrafish larvae could be carried out as early as 5 dpf. The 1% and 2% ethanol-treated zebrafish larvae modeled ethanol effects at different intoxication states, and the differences in neurotransmitter levels suggested the involvement of various neurotransmitter pathways in different ethanol intoxication states.

  3. Dopamine transporter occupancy by RTI-55, inhibition of dopamine transport and stimulation of locomotor activity

    SciTech Connect

    Gatley, S.J.; Gifford, A.N.; Volkow, N.D.

    1997-05-01

    Cocaine analogs such as RTI-55 (or {beta}CIT) with a higher affinity for the DAT are potentially useful as therapeutic drugs in cocaine abuse as well as for radiopharmaceutical use. Previously we showed that in mice RTI-55 (2 mg/Kg, i/p) reduced H-3 cocaine striatum-to-cerebellum ratios (St/Cb, {lg_bullet}) from 1.6 to 1.2 at 3 h after administration, with recovery by 12 h. In the present study we demonstrate a very similar time-course for transport {triangle} measured in striatal homo within 2 min of sacrifice. The maximum inhibition of uptake at about 1 h corresponded to about 80% of the control uptake rate, similar to the percent reduction in St/Cb. The time-course of the effect of this dose of RTI-55 on locomotor activity ({sq_bullet}) was complex, with a drop in the activity measure at 7 h, after a further injection of RTI-55, but activity remained higher than in saline controls. In spite of this complexity, which may be associated with stereotypies and/or exhaustion, the duration of increased activity is consistent with the duration of transporter blockade. These experiments support the notion that PET/SPECT measures of transporter occupancy accurately reflect transporter inhibition.

  4. Comparison of (+)- and (-)-Naloxone on the Acute Psychomotor-Stimulating Effects of Heroin, 6-Acetylmorphine, and Morphine in Mice.

    PubMed

    Eriksen, Guro Søe; Andersen, Jannike Mørch; Boix, Fernando; Bergh, Marianne Skov-Skov; Vindenes, Vigdis; Rice, Kenner C; Huestis, Marilyn A; Mørland, Jørg

    2016-08-01

    Toll-like receptor 4 (TLR4) signaling is implied in opioid reinforcement, reward, and withdrawal. Here, we explored whether TLR4 signaling is involved in the acute psychomotor-stimulating effects of heroin, 6-acetylmorphine (6-AM), and morphine as well as whether there are differences between the three opioids regarding TLR4 signaling. To address this, we examined how pretreatment with (+)-naloxone, a TLR4 active but opioid receptor (OR) inactive antagonist, affected the acute increase in locomotor activity induced by heroin, 6-AM, or morphine in mice. We also assessed the effect of pretreatment with (-)-naloxone, a TLR4 and OR active antagonist, as well as the pharmacokinetic profiles of (+) and (-)-naloxone in the blood and brain. We found that (-)-naloxone reduced acute opioid-induced locomotor activity in a dose-dependent manner. By contrast, (+)-naloxone, administered in doses assumed to antagonize TLR4 but not ORs, did not affect acute locomotor activity induced by heroin, 6-AM, or morphine. Both naloxone isomers exhibited similar concentration versus time profiles in the blood and brain, but the brain concentrations of (-)-naloxone reached higher levels than those of (+)-naloxone. However, the discrepancies in their pharmacokinetic properties did not explain the marked difference between the two isomers' ability to affect opioid-induced locomotor activity. Our results underpin the importance of OR activation and do not indicate an apparent role of TLR4 signaling in acute opioid-induced psychomotor stimulation in mice. Furthermore, there were no marked differences between heroin, 6-AM, and morphine regarding involvement of OR or TLR4 signaling. PMID:27278234

  5. The Anorexigenic Peptide Neuromedin U (NMU) Attenuates Amphetamine-Induced Locomotor Stimulation, Accumbal Dopamine Release and Expression of Conditioned Place Preference in Mice

    PubMed Central

    Vallöf, Daniel; Vestlund, Jesper; Engel, Jörgen A.; Jerlhag, Elisabet

    2016-01-01

    Amphetamine dependence, besides its substantial economical consequence, is a serious cause of mortality and morbidity. By investigations of the neurochemical correlates through which addictive drugs, such as amphetamine, activate the mesoaccumbal dopamine system unique targets for treatment of drug addiction can be identified. This reward link consists of a dopamine projection from the ventral tegmental area to the nucleus accumbens (NAc) suggesting that these brain areas are important for reward. The physiological function of gut-brain peptides has expanded beyond food intake modulation and involves regulation of drug reinforcement. A novel candidate for reward regulation is the anorexigenic peptide neuromedin U (NMU). We therefore investigated the effects of intracerebroventricular (icv) administration of NMU on amphetamine’s well-documented effects on the mesoaccumbal dopamine system, i.e. locomotor stimulation and accumbal dopamine release in mice. In addition, the effect of accumbal NMU administration on locomotor activity was examined. The effect of NMU, icv or intra-NAc, on the expression of conditioned place preference (CPP) was elucidated. Firstly, we showed that icv administration of NMU attenuate the amphetamine-induced locomotor stimulation, accumbal dopamine release and expression of CPP in mice. Secondly, we found that a lower dose of NMU (icv) reduce the amphetamine-induced locomotor stimulation in mice. Thirdly, we demonstrated that NMU administration into the NAc block the ability of amphetamine to cause a locomotor stimulation in mice. However, accumbal NMU administration did not attenuate the amphetamine-induced expression of CPP in mice. Our novel data suggest that central NMU signalling is involved in development of amphetamine dependence. PMID:27139195

  6. Using low levels of stochastic vestibular stimulation to improve locomotor stability

    PubMed Central

    Mulavara, Ajitkumar P.; Kofman, Igor S.; De Dios, Yiri E.; Miller, Chris; Peters, Brian T.; Goel, Rahul; Galvan-Garza, Raquel; Bloomberg, Jacob J.

    2015-01-01

    Low levels of bipolar binaural white noise based imperceptible stochastic electrical stimulation to the vestibular system (stochastic vestibular stimulation, SVS) have been shown to improve stability during balance tasks in normal, healthy subjects by facilitating enhanced information transfer using stochastic resonance (SR) principles. We hypothesize that detection of time-critical sub-threshold sensory signals using low levels of bipolar binaural SVS based on SR principles will help improve stability of walking during support surface perturbations. In the current study 13 healthy subjects were exposed to short continuous support surface perturbations for 60 s while walking on a treadmill and simultaneously viewing perceptually matched linear optic flow. Low levels of bipolar binaural white noise based SVS were applied to the vestibular organs. Multiple trials of the treadmill locomotion test were performed with stimulation current levels varying in the range of 0–1500 μA, randomized across trials. The results show that subjects significantly improved their walking stability during support surface perturbations at stimulation levels with peak amplitude predominantly in the range of 100–500 μA consistent with the SR phenomenon. Additionally, objective perceptual motion thresholds were measured separately as estimates of internal noise while subjects sat on a chair with their eyes closed and received 1 Hz bipolar binaural sinusoidal electrical stimuli. The optimal improvement in walking stability was achieved on average with peak stimulation amplitudes of approximately 35% of perceptual motion threshold. This study shows the effectiveness of using low imperceptible levels of SVS to improve dynamic stability during walking on a laterally oscillating treadmill via the SR phenomenon. PMID:26347619

  7. Using low levels of stochastic vestibular stimulation to improve locomotor stability.

    PubMed

    Mulavara, Ajitkumar P; Kofman, Igor S; De Dios, Yiri E; Miller, Chris; Peters, Brian T; Goel, Rahul; Galvan-Garza, Raquel; Bloomberg, Jacob J

    2015-01-01

    Low levels of bipolar binaural white noise based imperceptible stochastic electrical stimulation to the vestibular system (stochastic vestibular stimulation, SVS) have been shown to improve stability during balance tasks in normal, healthy subjects by facilitating enhanced information transfer using stochastic resonance (SR) principles. We hypothesize that detection of time-critical sub-threshold sensory signals using low levels of bipolar binaural SVS based on SR principles will help improve stability of walking during support surface perturbations. In the current study 13 healthy subjects were exposed to short continuous support surface perturbations for 60 s while walking on a treadmill and simultaneously viewing perceptually matched linear optic flow. Low levels of bipolar binaural white noise based SVS were applied to the vestibular organs. Multiple trials of the treadmill locomotion test were performed with stimulation current levels varying in the range of 0-1500 μA, randomized across trials. The results show that subjects significantly improved their walking stability during support surface perturbations at stimulation levels with peak amplitude predominantly in the range of 100-500 μA consistent with the SR phenomenon. Additionally, objective perceptual motion thresholds were measured separately as estimates of internal noise while subjects sat on a chair with their eyes closed and received 1 Hz bipolar binaural sinusoidal electrical stimuli. The optimal improvement in walking stability was achieved on average with peak stimulation amplitudes of approximately 35% of perceptual motion threshold. This study shows the effectiveness of using low imperceptible levels of SVS to improve dynamic stability during walking on a laterally oscillating treadmill via the SR phenomenon. PMID:26347619

  8. Caffeine stimulates locomotor activity in the mammalian spinal cord via adenosine A1 receptor-dopamine D1 receptor interaction and PKA-dependent mechanisms.

    PubMed

    Acevedo, JeanMarie; Santana-Almansa, Alexandra; Matos-Vergara, Nikol; Marrero-Cordero, Luis René; Cabezas-Bou, Ernesto; Díaz-Ríos, Manuel

    2016-02-01

    Caffeine is a potent psychostimulant that can have significant and widely variable effects on the activity of multiple neuronal pathways. The most pronounced caffeine-induced behavioral effect seen in rodents is to increase locomotor activity which has been linked to a dose-dependent inhibition of A1 and A(2A) receptors. The effects of caffeine at the level of the lumbar spinal central pattern generator (CPG) network for hindlimb locomotion are lacking. We assessed the effects of caffeine to the locomotor function of the spinal CPG network via extracellular ventral root recordings using the isolated neonatal mouse spinal cord preparation. Addition of caffeine and of an A1 receptor antagonist significantly decreased the cycle period accelerating the ongoing locomotor rhythm, while decreasing burst duration reversibly in most preparations suggesting the role of A1 receptors as the primary target of caffeine. Caffeine and an A1 receptor antagonist failed to stimulate ongoing locomotor activity in the absence of dopamine or in the presence of a D1 receptor antagonist supporting A1/D1 receptor-dependent mechanism of action. The use of caffeine or an A1 receptor blocker failed to stimulate an ongoing locomotor rhythm in the presence of a blocker of the cAMP-dependent protein kinase (PKA) supporting the need of this intracellular pathway for the modulatory effects of caffeine to occur. These results support a stimulant effect of caffeine on the lumbar spinal network controlling hindlimb locomotion through the inhibition of A1 receptors and subsequent activation of D1 receptors via a PKA-dependent intracellular mechanism.

  9. Locomotor response to acute nicotine in adolescent mice is altered by maternal undernutrition during lactation.

    PubMed

    Dutra-Tavares, Ana C; Manhães, Alex C; Silva, Juliana O; Nunes-Freitas, André L; Conceição, Ellen P S; Moura, Egberto G; Lisboa, Patrícia C; Filgueiras, Cláudio C; Abreu-Villaça, Yael; Ribeiro-Carvalho, Anderson

    2015-12-01

    Undernutrition during brain development causes long lasting alterations in different neurotransmitter systems that may alter responses to psychoactive drugs. Despite the recognized effects of early undernutrition on the cholinergic system, no evidence that demonstrates the influence of this insult on nicotine susceptibility has been reported. We investigated the effects of protein/calorie restriction during lactation on the susceptibility to nicotine in adolescent mice. Dams were randomly assigned to one of the following groups: Control (C, 20 litters)--free access to standard laboratory diet (23% protein); Protein Restricted (PR, 12 litters)--free access to a isoenergetic, 8% protein diet; Calorie Restricted (CR, 12 litters)--access to standard laboratory diet in restricted quantities (mean ingestion of PR: pair-fed group). Undernutrition extended from postnatal day 2 (PN2) to weaning (PN21). At PN30, animals either received an i.p. injection of nicotine (0.5mg/Kg) or saline and were immediately placed in open field (OF). After the OF, adrenal glands and serum were collected for the analyses of stress-related endocrine parameters and leptin concentration. PR and CR offspring showed less body mass gain and visceral fat mass. PR offspring presented reduced serum leptin concentration. In the OF, nicotine increased locomotor activity of C and PR, but not of CR. CR and PR offspring showed decreased adrenal catecholamine content, which was not dependent on nicotine exposure. Our results indicate that early undernutrition interferes with nicotine-elicited locomotor effects in adolescent mice and suggest that endocrine parameters alterations in malnourished animals do not influence the behavioral response to nicotine.

  10. An enriched environment reduces the stress level and locomotor activity induced by acute morphine treatment and by saline after chronic morphine treatment in mice.

    PubMed

    Xu, Jia; Sun, Jinling; Xue, Zhaoxia; Li, Xinwang

    2014-06-18

    This study investigated the relationships among an enriched environment, stress levels, and drug addiction. Mice were divided randomly into four treatment groups (n=12 each): enriched environment without restraint stress (EN), standard environment without restraint stress (SN), enriched environment with restraint stress (ES), and standard environment with restraint stress (SS). Mice were reared in the respective environment for 45 days. Then, the ES and SS groups were subjected to restraint stress daily (2 h/day) for 14 days, whereas the EN and SN groups were not subjected to restraint stress during this stage. The stress levels of all mice were tested in the elevated plus maze immediately after exposure to restraint stress. After the 2-week stress testing period, mice were administered acute or chronic morphine (5 mg/kg) treatment for 7 days. Then, after a 7-day withdrawal period, the mice were injected with saline (1 ml/kg) or morphine (5 mg/kg) daily for 2 days to observe locomotor activity. The results indicated that the enriched environment reduced the stress and locomotor activity induced by acute morphine administration or saline after chronic morphine treatment. However, the enriched environment did not significantly inhibit locomotor activity induced by morphine challenge. In addition, the stress level did not mediate the effect of the enriched environment on drug-induced locomotor activity after acute or chronic morphine treatment.

  11. Inducing hindlimb locomotor recovery in adult rat after complete thoracic spinal cord section using repeated treadmill training with perineal stimulation only

    PubMed Central

    Alluin, Olivier; Delivet-Mongrain, Hugo

    2015-01-01

    Although a complete thoracic spinal cord section in various mammals induces paralysis of voluntary movements, the spinal lumbosacral circuitry below the lesion retains its ability to generate hindlimb locomotion. This important capacity may contribute to the overall locomotor recovery after partial spinal cord injury (SCI). In rats, it is usually triggered by pharmacological and/or electrical stimulation of the cord while a robot sustains the animals in an upright posture. In the present study we daily trained a group of adult spinal (T7) rats to walk with the hindlimbs for 10 wk (10 min/day for 5 days/wk), using only perineal stimulation. Kinematic analysis and terminal electromyographic recordings revealed a strong effect of training on the reexpression of hindlimb locomotion. Indeed, trained animals gradually improved their locomotion while untrained animals worsened throughout the post-SCI period. Kinematic parameters such as averaged and instant swing phase velocity, step cycle variability, foot drag duration, off period duration, and relationship between the swing features returned to normal values only in trained animals. The present results clearly demonstrate that treadmill training alone, in a normal horizontal posture, elicited by noninvasive perineal stimulation is sufficient to induce a persistent hindlimb locomotor recovery without the need for more complex strategies. This provides a baseline level that should be clearly surpassed if additional locomotor-enabling procedures are added. Moreover, it has a clinical value since intrinsic spinal reorganization induced by training should contribute to improve locomotor recovery together with afferent feedback and supraspinal modifications in patients with incomplete SCI. PMID:26203108

  12. Identification of 7alpha-hydroxypregnenolone, a novel bioactive amphibian neurosteroid stimulating locomotor activity, and its physiological roles in the regulation of locomotion.

    PubMed

    Tsutsui, Kazuyoshi; Haraguchi, Shogo; Matsunaga, Masahiro; Koyama, Teppei; Do Rego, Jean-Luc; Vaudry, Hubert

    2010-09-01

    We now know that steroids can be synthesized de novo by the brain and the peripheral nervous system. Such steroids are called neurosteroids and de novo neurosteroidogenesis from cholesterol is a conserved property of vertebrate brains. Our studies over the past decade have demonstrated that the brain expresses several kinds of steroidogenic enzymes and produces a variety of neurosteroids in sub-mammalian species. However, neurosteroid biosynthetic pathways in amphibians, as well as other vertebrates may still not be fully mapped. We first found that the newt brain actively produces 7alpha-hydroxypregnenolone, a previously undescribed amphibian neurosteroid. We then demonstrated that 7alpha-hydroxypregnenolone acts as a novel bioactive neurosteroid to stimulate locomotor activity of newt by means of the dopaminergic system. Subsequently, we analyzed the physiological roles of 7alpha-hydroxypregnenolone in the regulation of locomotor activity of newt. This paper summarizes the advances made in our understanding of 7alpha-hydroxypregnenolone, a newly discovered bioactive amphibian neurosteroid stimulating locomotor activity, and its physiological roles in the regulation of locomotion in newt.

  13. Effects of repeated exposure to morphine in adolescent and adult male C57BL/6J mice: age-dependent differences in locomotor stimulation, sensitization, and body weight loss

    PubMed Central

    Koek, Wouter

    2013-01-01

    Rationale Given evidence for age-related differences in the effects of drugs of abuse, surprisingly few preclinical studies have explored effects of opioids in adolescents (versus adults). Objectives This study compared the motor stimulating and ataxic effects of repeatedly-administered morphine in adolescent, late-adolescent, and adult mice. Methods Mice were treated with saline or morphine (10–100 mg/kg, i.p.) once per day for 4 days, and morphine (3.2–56 mg/kg)-induced locomotion was assessed 3 days or 5 weeks later. Different mice were treated repeatedly with morphine and ataxia was measured. Results Acute administration of morphine increased locomotion more in adolescents than in adults. Repeated morphine enhanced morphine-induced locomotion, assessed 3 days later, to a similar extent in each age group (minimum effective dose: 17.8 mg/kg). This sensitization was still evident 5 weeks later when the adolescents had become adult, but was smaller and occurred at a higher dose (56 mg/kg). In animals treated repeatedly with morphine as adults, sensitization was no longer apparent 5 weeks later. Intermittent morphine was at least 10-fold less potent to produce body weight loss in adolescents than in adults. Repeated morphine did not alter morphine-induced ataxia at any age. Conclusions Compared with adults, adolescents were more sensitive to the acute locomotor stimulating effects of morphine and to its long-lasting locomotor sensitizing effects, consistent with overactivity of dopamine systems during adolescence. In contrast, adolescents were less sensitive than adults to body weight loss induced by intermittent morphine, an effect indicative of morphine withdrawal in adult rodents. PMID:24096538

  14. Agmatine blocks ethanol-induced locomotor hyperactivity in male mice.

    PubMed

    Ozden, Onder; Kayir, Hakan; Ozturk, Yusuf; Uzbay, Tayfun

    2011-05-20

    Ethanol-induced locomotor activity is associated to rewarding effects of ethanol and ethanol dependence. Agmatine is a novel endogenous ligand at α2-adrenoceptors, imidazoline and N-methyl-d-aspartate (NMDA) receptors, as well as a nitric oxide synthase (NOS) inhibitor. There is no evidence presented for the relationship between the acute locomotor stimulating effect of ethanol and agmatine. Thus, the present study investigated the effects of agmatine on acute ethanol-induced locomotor hyperactivity in mice. Adult male Swiss-Webster mice (26-36g) were used as subjects. Locomotor activity of the mice was recorded for 30min immediately following intraperitoneal administration of ethanol (0.5, 1 and 2g/kg) or saline (n=8 for each group). Agmatine (5, 10 and 20mg/kg) or saline was administered intraperitoneally to another four individual groups (n=8 for each group) of the mice 20min before the ethanol injection. In these groups, locomotor activity was also recorded immediately following ethanol (0.5g/kg) injection for 30min. Ethanol (0.5g/kg) produced some significant increases in locomotor activity of the mice. Agmatine (5-20mg/kg) significantly blocked the ethanol (0.5g/kg)-induced locomotor hyperactivity. These doses of agmatine did not affect the locomotor activity in naive mice when they were administered alone. Our results suggest that agmatine has an important role in ethanol-induced locomotor hyperactivity in mice. There may be a relationship between the addictive psychostimulant effects of the ethanol and central agmatinergic system.

  15. Effects of chronic and acute methylphenidate hydrochloride (Ritalin) administration on locomotor activity, ultrasonic vocalizations, and neuromotor development in 3- to 11-day-old CD-1 mouse pups.

    PubMed

    Penner, M R; McFadyen, M P; Carrey, N; Brown, R E

    2001-11-01

    The present study examined the effects of chronic and acute treatment with methylphenidate hydrochloride (Ritalin) on isolation-induced ultrasonic vocalizations, spontaneous locomotor activity, and neuromotor coordination in 3- to 11-day-old CD-1 mouse pups. In Experiment 1, 3- to 11-day-old pups received daily injections of saline, 5 mg/kg or 20 mg/kg of methylphenidate hydrochloride, or no injection and were tested on postnatal Days 3, 5, 7, 9, and 11. Both doses of methylphenidate resulted in significant increases in locomotor activity at all ages, but had no significant effect on body weight, neuromotor development, or emission of ultrasonic vocalizations. In Experiment 2, pups were given a single dose of methylphenidate (5 or 20 mg/kg), saline, or no injection on one of postnatal Days 5, 7, 9, or 11. This acute methylphenidate treatment increased locomotor activity, but had no significant effects on ultrasonic vocalizations or neuromotor coordination. These results indicate that short-term, chronic methylphenidate treatment elevates locomotor responses, but has no immediate effects on anxietylike responses or on the development of neuromotor behavior of CD-1 mice in the first 11 days of life.

  16. Effect of Ambient Temperature on the Thermoregulatory and Locomotor Stimulant Effects of 4-Methylmethcathinone in Wistar and Sprague-Dawley Rats

    PubMed Central

    Wright, M. Jerry; Angrish, Deepshikha; Aarde, Shawn M.; Barlow, Deborah J.; Buczynski, Matthew W.; Creehan, Kevin M.; Vandewater, Sophia A.; Parsons, Loren H.; Houseknecht, Karen L.; Dickerson, Tobin J.; Taffe, Michael A.

    2012-01-01

    The drug 4-methylmethcathinone (4-MMC; aka, mephedrone, MMCAT, “plant food”, “bath salts”) is a recent addition to the list of popular recreational psychomotor-stimulant compounds. Relatively little information about this drug is available in the scientific literature, but popular media reports have driven recent drug control actions in the UK and several US States. Online user reports of subjective similarity to 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”) prompted the current investigation of the thermoregulatory and locomotor effects of 4-MMC. Male Wistar and Sprague-Dawley rats were monitored after subcutaneous administration of 4-MMC (1–10 mg/kg ) using an implantable radiotelemetry system under conditions of low (23°C) and high (27°C) ambient temperature. A reliable reduction of body temperature was produced by 4-MMC in Wistar rats at 23°C or 27°C with only minimal effect in Sprague-Dawley rats. Increased locomotor activity was observed after 4-MMC administration in both strains with significantly more activity produced in the Sprague-Dawley strain. The 10 mg/kg s.c. dose evoked greater increase in extracellular serotonin, compared with dopamine, in the nucleus accumbens. Follow-up studies confirmed that the degree of locomotor stimulation produced by 10 mg/kg 4-MMC was nearly identical to that produced by 1 mg/kg d-methamphetamine in each strain. Furthermore, hypothermia produced by the serotonin 1A/7 receptor agonist 8-hydroxy-N,N-dipropyl-2-aminotetralin (8-OH-DPAT) was similar in each strain. These results show that the cathinone analog 4-MMC exhibits thermoregulatory and locomotor properties that are distinct from those established for methamphetamine or MDMA in prior work, despite recent evidence of neuropharmacological similarity with MDMA. PMID:22952999

  17. Effect of ambient temperature on the thermoregulatory and locomotor stimulant effects of 4-methylmethcathinone in Wistar and Sprague-Dawley rats.

    PubMed

    Wright, M Jerry; Angrish, Deepshikha; Aarde, Shawn M; Barlow, Deborah J; Buczynski, Matthew W; Creehan, Kevin M; Vandewater, Sophia A; Parsons, Loren H; Houseknecht, Karen L; Dickerson, Tobin J; Taffe, Michael A

    2012-01-01

    The drug 4-methylmethcathinone (4-MMC; aka, mephedrone, MMCAT, "plant food", "bath salts") is a recent addition to the list of popular recreational psychomotor-stimulant compounds. Relatively little information about this drug is available in the scientific literature, but popular media reports have driven recent drug control actions in the UK and several US States. Online user reports of subjective similarity to 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") prompted the current investigation of the thermoregulatory and locomotor effects of 4-MMC. Male Wistar and Sprague-Dawley rats were monitored after subcutaneous administration of 4-MMC (1-10 mg/kg ) using an implantable radiotelemetry system under conditions of low (23°C) and high (27°C) ambient temperature. A reliable reduction of body temperature was produced by 4-MMC in Wistar rats at 23°C or 27°C with only minimal effect in Sprague-Dawley rats. Increased locomotor activity was observed after 4-MMC administration in both strains with significantly more activity produced in the Sprague-Dawley strain. The 10 mg/kg s.c. dose evoked greater increase in extracellular serotonin, compared with dopamine, in the nucleus accumbens. Follow-up studies confirmed that the degree of locomotor stimulation produced by 10 mg/kg 4-MMC was nearly identical to that produced by 1 mg/kg d-methamphetamine in each strain. Furthermore, hypothermia produced by the serotonin 1(A/7) receptor agonist 8-hydroxy-N,N-dipropyl-2-aminotetralin (8-OH-DPAT) was similar in each strain. These results show that the cathinone analog 4-MMC exhibits thermoregulatory and locomotor properties that are distinct from those established for methamphetamine or MDMA in prior work, despite recent evidence of neuropharmacological similarity with MDMA.

  18. Fast and delayed locomotor response to acute high-dose nicotine administration in adult male rats.

    PubMed

    Jandová, K; Marešová, D; Pokorný, J

    2013-01-01

    The aim of the present study was to compare the immediate and delayed locomotor response to high-dose nicotine (NIC) administration in rats. The vertical and horizontal activity of behavior in adult male rats exposed to 1 mg/kg NIC or saline (SAL) were tested in a Laboras apparatus for one hour after drug application. Animals were then returned to their cages and housed for another seven days. After this period all animals were placed in Laboras again and their behavioral pattern was retested for another period of one hour (delayed response). Horizontal activity: immediately after nicotine administration animal were less mobile (first 2-minutes interval), when compared with controls. The immobilization effect of nicotine disappeared within 4 minutes and during whole first 10-minutes interval time spent by locomotion did not differ from controls. Locomotion activity of animals treated with nicotine increased robustly in following 10 minutes and remained significantly higher in 2nd, 3rd and 5th 10-minutes interval. Vertical activity: Rearing frequency was significantly lowered by NIC administration in first two minutes of the experiment and the same was found when the duration of rearing was analyzed. Lower rearing intensity of NIC treated animals disappeared in 4 minutes and was finally higher during whole test session as compared with controls. When duration of rearing was analyzed it was significantly longer in NIC treated animals. In majority of observed behavioral aspects there were no differences between NIC treated rats and controls seven days after NIC or SAL treatment. Our results reflect effect of NIC and we conclude that NIC significantly influences behavior of experimental animals.

  19. Intermittent noxious stimulation following spinal cord contusion injury impairs locomotor recovery and reduces spinal BDNF-TrkB signaling in adult rats

    PubMed Central

    Garraway, Sandra M.; Turtle, Joel D.; Huie, J. Russell; Lee, Kuan H.; Hook, Michelle A.; Woller, Sarah A.; Grau, James W.

    2011-01-01

    Intermittent nociceptive stimulation following a complete transection or contused spinal cord injury (SCI) has been shown to exert several short and long lasting negative consequences. These include maladaptive spinal plasticity, enhanced mechanical allodynia and impaired functional recovery of locomotor and bladder functions. The neurotrophin, brain derived neurotrophic factor (BDNF) has been shown to play an important role in adaptive plasticity and also to restore functions following SCI. This suggests that the negative behavioral effects of shock are most likely related to corresponding changes in BDNF spinal levels. In this study we investigated the cellular effects of nociceptive stimulation in contused adult rats focusing on BDNF, its receptor, TrkB, and the subsequent downstream signaling system. The goal was to determine whether the behavioral effect of stimulation is associated with concomitant cellular changes induced during the initial post-injury period. Quantitative RT-PCR and western blotting were used to assess changes in the mRNA and/or protein levels of BDNF, TrkB and the downstream signaling proteins CAMKII and ERK1/2 at 1 hour, 24 hours and 7 days following administration of intermittent noxious shock to the tail of contused subjects. In addition, recovery of locomotor function (BBB score) was assessed daily for the first week post injury. The results showed that, while nociceptive stimulation failed to induce any changes in gene expression at 1 hour, it significantly reduced the expression of BDNF, TrkB, ERK2 and CAMKII, at 24 hours. In general, changes in gene expression were spatially localized to the dorsal spinal cord. In addition, locomotor recovery was impaired by shock. Evidence is also provided suggesting that shock engages a neuronal circuitry without having any negative effects on neuronal survival at 24 hours. These results suggest that nociceptive activity following SCI decreases BDNF and TrkB levels, which may significantly

  20. Nanomolar oxytocin synergizes with weak electrical afferent stimulation to activate the locomotor CpG of the rat spinal cord in vitro.

    PubMed

    Dose, Francesco; Zanon, Patrizia; Coslovich, Tamara; Taccola, Giuliano

    2014-01-01

    Synergizing the effect of afferent fibre stimulation with pharmacological interventions is a desirable goal to trigger spinal locomotor activity, especially after injury. Thus, to better understand the mechanisms to optimize this process, we studied the role of the neuropeptide oxytocin (previously shown to stimulate locomotor networks) on network and motoneuron properties using the isolated neonatal rat spinal cord. On motoneurons oxytocin (1 nM-1 μM) generated sporadic bursts with superimposed firing and dose-dependent depolarization. No desensitization was observed despite repeated applications. Tetrodotoxin completely blocked the effects of oxytocin, demonstrating the network origin of the responses. Recording motoneuron pool activity from lumbar ventral roots showed oxytocin mediated depolarization with synchronous bursts, and depression of reflex responses in a stimulus and peptide-concentration dependent fashion. Disinhibited bursting caused by strychnine and bicuculline was accelerated by oxytocin whose action was blocked by the oxytocin antagonist atosiban. Fictive locomotion appeared when subthreshold concentrations of NMDA plus 5HT were coapplied with oxytocin, an effect prevented after 24 h incubation with the inhibitor of 5HT synthesis, PCPA. When fictive locomotion was fully manifested, oxytocin did not change periodicity, although cycle amplitude became smaller. A novel protocol of electrical stimulation based on noisy waveforms and applied to one dorsal root evoked stereotypic fictive locomotion. Whenever the stimulus intensity was subthreshold, low doses of oxytocin triggered fictive locomotion although oxytocin per se did not affect primary afferent depolarization evoked by dorsal root pulses. Among the several functional targets for the action of oxytocin at lumbar spinal cord level, the present results highlight how small concentrations of this peptide could bring spinal networks to threshold for fictive locomotion in combination with other

  1. Eating High Fat Chow Decreases Dopamine Clearance in Adolescent and Adult Male Rats but Selectively Enhances the Locomotor Stimulating Effects of Cocaine in Adolescents

    PubMed Central

    Baladi, Michelle G.; Horton, Rebecca E.; Owens, William A.; Daws, Lynette C.

    2015-01-01

    Background: Feeding conditions can influence dopamine neurotransmission and impact behavioral and neurochemical effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters the locomotor effects of cocaine and dopamine transporter activity in adolescent (postnatal day 25) and adult (postnatal day 75) male Sprague-Dawley rats. Methods: Dose-response curves for cocaine-induced locomotor activity were generated in rats with free access to either standard or high fat chow or restricted access to high fat chow (body weight matched to rats eating standard chow). Results: Compared with eating standard chow, eating high fat chow increased the sensitivity of adolescent, but not adult, rats to the acute effects of cocaine. When tested once per week, sensitization to the locomotor effects of cocaine was enhanced in adolescent rats eating high fat chow compared with adolescent rats eating standard chow. Sensitization to cocaine was not different among feeding conditions in adults. When adolescent rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. As measured by chronoamperometry, dopamine clearance rate in striatum was decreased in both adolescent and adult rats eating high fat chow compared with age-matched rats eating standard chow. Conclusions: These results suggest that high fat diet-induced reductions in dopamine clearance rate do not always correspond to increased sensitivity to the locomotor effects of cocaine, suggesting that mechanisms other than dopamine transporter might play a role. Moreover, in adolescent but not adult rats, eating high fat chow increases sensitivity to cocaine and enhances the sensitization that develops to cocaine. PMID:25805560

  2. Effects of Robot-assisted Gait Training Combined with Functional Electrical Stimulation on Recovery of Locomotor Mobility in Chronic Stroke Patients: A Randomized Controlled Trial.

    PubMed

    Bae, Young-Hyeon; Ko, Young Jun; Chang, Won Hyuk; Lee, Ju Hyeok; Lee, Kyeong Bong; Park, Yoo Jung; Ha, Hyun Geun; Kim, Yun-Hee

    2014-12-01

    [Purpose] The purpose of the present study was to investigate the effects of robot-assisted gait training combined with functional electrical stimulation on locomotor recovery in patients with chronic stroke. [Subjects] The 20 subjects were randomly assigned into either an experimental group (n = 10) that received a combination of robot-assisted gait training and functional electrical stimulation on the ankle dorsiflexor of the affected side or a control group (n = 10) that received robot-assisted gait training only. [Methods] Both groups received the respective therapies for 30 min/day, 3 days/week for 5 weeks. The outcome was measured using the Modified Motor Assessment Scale (MMAS), Timed Up-and-Go Test (TUG), Berg Balance Scale (BBS), and gait parameters through gait analysis (Vicon 370 motion analysis system, Oxford Metrics Ltd., Oxford, UK). All the variables were measured before and after training. [Results] Step length and maximal knee extension were significantly greater than those before training in the experimental group only. Maximal Knee flexion showed a significant difference between the experimental and control groups. The MMAS, BBS, and TUG scores improved significantly after training compared with before training in both groups. [Conclusion] We suggest that the combination of robot-assisted gait training and functional electrical stimulation encourages patients to actively participate in training because it facilitates locomotor recovery without the risk of adverse effects.

  3. Comparison of (+)- and (−)-Naloxone on the Acute Psychomotor-Stimulating Effects of Heroin, 6-Acetylmorphine, and Morphine in Mice

    PubMed Central

    Andersen, Jannike Mørch; Boix, Fernando; Bergh, Marianne Skov-Skov; Vindenes, Vigdis; Rice, Kenner C.; Huestis, Marilyn A.; Mørland, Jørg

    2016-01-01

    Toll-like receptor 4 (TLR4) signaling is implied in opioid reinforcement, reward, and withdrawal. Here, we explored whether TLR4 signaling is involved in the acute psychomotor-stimulating effects of heroin, 6-acetylmorphine (6-AM), and morphine as well as whether there are differences between the three opioids regarding TLR4 signaling. To address this, we examined how pretreatment with (+)-naloxone, a TLR4 active but opioid receptor (OR) inactive antagonist, affected the acute increase in locomotor activity induced by heroin, 6-AM, or morphine in mice. We also assessed the effect of pretreatment with (−)-naloxone, a TLR4 and OR active antagonist, as well as the pharmacokinetic profiles of (+) and (−)-naloxone in the blood and brain. We found that (−)-naloxone reduced acute opioid-induced locomotor activity in a dose-dependent manner. By contrast, (+)-naloxone, administered in doses assumed to antagonize TLR4 but not ORs, did not affect acute locomotor activity induced by heroin, 6-AM, or morphine. Both naloxone isomers exhibited similar concentration versus time profiles in the blood and brain, but the brain concentrations of (−)-naloxone reached higher levels than those of (+)-naloxone. However, the discrepancies in their pharmacokinetic properties did not explain the marked difference between the two isomers’ ability to affect opioid-induced locomotor activity. Our results underpin the importance of OR activation and do not indicate an apparent role of TLR4 signaling in acute opioid-induced psychomotor stimulation in mice. Furthermore, there were no marked differences between heroin, 6-AM, and morphine regarding involvement of OR or TLR4 signaling. PMID:27278234

  4. Brief light stimulation during the mouse nocturnal activity phase simultaneously induces a decline in core temperature and locomotor activity followed by EEG-determined sleep

    PubMed Central

    Studholme, Keith M.; Gompf, Heinrich S.

    2013-01-01

    Light exerts a variety of effects on mammals. Unexpectedly, one of these effects is the cessation of nocturnal locomotion and the induction of behavioral sleep (photosomnolence). Here, we extend the initial observations in several ways, including the fundamental demonstration that core body temperature (Tc) drops substantially (about 1.5°C) in response to the light stimulation at CT15 or CT18 in a manner suggesting that the change is a direct response to light rather than simply a result of the locomotor suppression. The results show that 1) the decline of locomotion and Tc begin soon after nocturnal light stimulation; 2) the variability in the magnitude and onset of light-induced locomotor suppression is very large, whereas the variability in Tc is very small; 3) Tc recovers from the light-induced decline in advance of the recovery of locomotion; 4) under entrained and freerunning conditions, the daily late afternoon Tc increase occurs in advance of the corresponding increase in wheel running; and 5) toward the end of the subjective night, the nocturnally elevated Tc persists longer than does locomotor activity. Finally, EEG measurements confirm light-induced sleep and, when Tc or locomotion was measured, show their temporal association with sleep onset. Both EEG- and immobility-based sleep detection methods confirm rapid induction of light-induced sleep. The similarities between light-induced loss of locomotion and drop in Tc suggest a common cause for parallel responses. The photosomnolence response may be contingent upon both the absence of locomotion and a simultaneous low Tc. PMID:23364525

  5. 3-Methoxynaltrexone is not a selective antagonist for the acute psychomotor stimulating effects of heroin and 6-monoacetylmorphine in mice.

    PubMed

    Eriksen, Guro Søe; Andersen, Jannike Mørch; Boix, Fernando; Mørland, Jørg

    2014-07-01

    The opioid receptor antagonist 3-methoxynaltrexone (3-MeONtx) has previously been shown in rodents to selectively reverse the analgesic actions of heroin and its metabolites 6-monoacetylmorphine (6-MAM), and morphine-6-glucuronide (M6G), but not that of morphine. Based on these and other results, a heroin/6-MAM/M6G μ-opioid receptor binding site or subreceptor mediating their analgesic activity has been proposed. It is however unknown whether this also accounts for the acute psychomotor stimulating properties of these opioids. The aim of the present study was therefore to explore if the acute psychomotor stimulating effects of heroin, 6-MAM, and morphine are mediated by distinct μ-opioid receptor binding sites or subreceptors. To address this aim, we examined how pretreatment with 3-MeONtx or naltrexone (NTX) affected the acute increase in locomotor activity induced by heroin, 6-MAM, or morphine in mice. The pharmacokinetic profiles of 3-MeONtx and NTX were also assessed in mouse brain. We found that 3-MeONtx similarly antagonized the acute increase in locomotor activity induced by equipotent doses of heroin, 6-MAM, or morphine. This antagonistic effect was comparable to the one observed following administration of NTX, and both antagonists gave similar pharmacokinetic profiles in mouse brain. Our findings do not support that different μ-opioid receptor subtypes or a distinct binding site at the μ-opioid receptor is involved in morphine-induced versus heroin/6-MAM-induced psychomotor activation. This might suggest that the opioid-induced psychomotor stimulation is mediated by different μ-opioid subreceptors than those responsible for their analgesic effects.

  6. Requirement for the POZ/BTB protein NAC1 in acute but not chronic psychomotor stimulant response.

    PubMed

    Mackler, Scott; Pacchioni, Alejandra; Degnan, Ryan; Homan, Ying; Conti, Alana C; Kalivas, Peter; Blendy, Julie A

    2008-02-11

    NAC1 is a novel member of the POZ/BTB (Pox virus and Zinc finger/Bric-a-bracTramtrack Broad complex) but varies from other proteins of this class in that it lacks the characteristic DNA-binding motif, suggesting a novel role. We have employed constitutive gene deletion to elucidate the role of NAC1 in vivo. Nac1 mutant mice are viable with no obvious developmental or physiological impairments. Previous studies suggest a role for NAC1 in cocaine-mediated behaviors. Therefore, we evaluated a variety of behaviors associated with psychomotor stimulant effects in Nac1 mutant mice. Acute locomotor activating effects of cocaine or amphetamine are absent in Nac1 mutant mice, however longer exposure to these psychomotor stimulants result in the development of behavioral sensitization. Acute rewarding properties of cocaine and amphetamine are also blunted in mutant mice, yet repeated exposure resulted in conditioned place preference similar to that observed in wild-type mice. Lastly, increases in extracellular dopamine in the nucleus accumbens, which accompany acute cocaine administration, are blunted in mutant mice, but following chronic cocaine extracellular dopamine levels are increased to the same extent as in wild-type mice. Together these data indicate involvement of NAC1 in the acute behavioral and neurochemical responses to psychomotor stimulants.

  7. Chronic Electrical Stimulation of the Intact Corticospinal System After Unilateral Injury Restores Skilled Locomotor Control and Promotes Spinal Axon Outgrowth

    PubMed Central

    Carmel, Jason B.; Berrol, Lauren J.; Brus-Ramer, Marcel; Martin, John H.

    2010-01-01

    Injury to the brain or spinal cord usually preserves some corticospinal (CS) connections. These residual circuits sprout spontaneously and in response to activity-based treatments. We hypothesized that augmenting activity in spared CS circuits would restore the skilled motor control lost after injury and augment outgrowth of CS terminations in the spinal cord. After selective injury of one half of the CS tract (CST) in the rat, we applied 10 days of electrical stimulation to the forelimb area of motor cortex of the spared half and tested motor performance for 30 days. Rats with injury and CST stimulation showed substantial improvements in skilled paw placement while walking over a horizontal ladder. By the end of the testing period, the walking errors of the previously impaired forelimb in rats with injury and stimulation returned to baseline, while the errors remained elevated in rats with injury only. Whereas the time to perform the task returned to normal in all animals, the pattern of errors returned to normal only in the stimulated group. Electrical stimulation also caused robust outgrowth of CST axon terminations in the ipsilateral spinal cord, the side of impairment, compared with rats with injury only. The outgrowth was directed to the normal gray matter territory of ipsilateral CST axon terminations. Thus, stimulation of spared CS circuits induced substantial axon outgrowth to the largely denervated side of the spinal cord and restored normal motor control in the previously impaired limbs. PMID:20702720

  8. Chronic electrical stimulation of the intact corticospinal system after unilateral injury restores skilled locomotor control and promotes spinal axon outgrowth.

    PubMed

    Carmel, Jason B; Berrol, Lauren J; Brus-Ramer, Marcel; Martin, John H

    2010-08-11

    Injury to the brain or spinal cord usually preserves some corticospinal (CS) connections. These residual circuits sprout spontaneously and in response to activity-based treatments. We hypothesized that augmenting activity in spared CS circuits would restore the skilled motor control lost after injury and augment outgrowth of CS terminations in the spinal cord. After selective injury of one half of the CS tract (CST) in the rat, we applied 10 d of electrical stimulation to the forelimb area of motor cortex of the spared half and tested motor performance for 30 d. Rats with injury and CST stimulation showed substantial improvements in skilled paw placement while walking over a horizontal ladder. By the end of the testing period, the walking errors of the previously impaired forelimb in rats with injury and stimulation returned to baseline, while the errors remained elevated in rats with injury only. Whereas the time to perform the task returned to normal in all animals, the pattern of errors returned to normal only in the stimulated group. Electrical stimulation also caused robust outgrowth of CST axon terminations in the ipsilateral spinal cord, the side of impairment, compared with rats with injury only. The outgrowth was directed to the normal gray matter territory of ipsilateral CST axon terminations. Thus, stimulation of spared CS circuits induced substantial axon outgrowth to the largely denervated side of the spinal cord and restored normal motor control in the previously impaired limbs. PMID:20702720

  9. Cognitive enhancement by transcranial laser stimulation and acute aerobic exercise.

    PubMed

    Hwang, Jungyun; Castelli, Darla M; Gonzalez-Lima, F

    2016-08-01

    This is the first randomized, controlled study comparing the cognitive effects of transcranial laser stimulation and acute aerobic exercise on the same cognitive tasks. We examined whether transcranial infrared laser stimulation of the prefrontal cortex, acute high-intensity aerobic exercise, or the combination may enhance performance in sustained attention and working memory tasks. Sixty healthy young adults were randomly assigned to one of the following four treatments: (1) low-level laser therapy (LLLT) with infrared laser to two forehead sites while seated (total 8 min, 1064 nm continuous wave, 250 mW/cm(2), 60 J/cm(2) per site of 13.6 cm(2)); (2) acute exercise (EX) of high-intensity (total 20 min, with 10-min treadmill running at 85-90 % VO2max); (3) combined treatment (LLLT + EX); or (4) sham control (CON). Participants were tested for prefrontal measures of sustained attention with the psychomotor vigilance task (PVT) and working memory with the delayed match-to-sample task (DMS) before and after the treatments. As compared to CON, both LLLT and EX reduced reaction time in the PVT [F(1.56) = 4.134, p = 0.01, η (2)  = 0.181] and increased the number of correct responses in the DMS [F(1.56) = 4.690, p = 0.005, η (2)  = 0.201], demonstrating a significant enhancing effect of LLLT and EX on cognitive performance. LLLT + EX effects were similar but showed no significantly greater improvement on PVT and DMS than LLLT or EX alone. The transcranial infrared laser stimulation and acute aerobic exercise treatments were similarly effective for cognitive enhancement, suggesting that they augment prefrontal cognitive functions similarly.

  10. Cognitive enhancement by transcranial laser stimulation and acute aerobic exercise.

    PubMed

    Hwang, Jungyun; Castelli, Darla M; Gonzalez-Lima, F

    2016-08-01

    This is the first randomized, controlled study comparing the cognitive effects of transcranial laser stimulation and acute aerobic exercise on the same cognitive tasks. We examined whether transcranial infrared laser stimulation of the prefrontal cortex, acute high-intensity aerobic exercise, or the combination may enhance performance in sustained attention and working memory tasks. Sixty healthy young adults were randomly assigned to one of the following four treatments: (1) low-level laser therapy (LLLT) with infrared laser to two forehead sites while seated (total 8 min, 1064 nm continuous wave, 250 mW/cm(2), 60 J/cm(2) per site of 13.6 cm(2)); (2) acute exercise (EX) of high-intensity (total 20 min, with 10-min treadmill running at 85-90 % VO2max); (3) combined treatment (LLLT + EX); or (4) sham control (CON). Participants were tested for prefrontal measures of sustained attention with the psychomotor vigilance task (PVT) and working memory with the delayed match-to-sample task (DMS) before and after the treatments. As compared to CON, both LLLT and EX reduced reaction time in the PVT [F(1.56) = 4.134, p = 0.01, η (2)  = 0.181] and increased the number of correct responses in the DMS [F(1.56) = 4.690, p = 0.005, η (2)  = 0.201], demonstrating a significant enhancing effect of LLLT and EX on cognitive performance. LLLT + EX effects were similar but showed no significantly greater improvement on PVT and DMS than LLLT or EX alone. The transcranial infrared laser stimulation and acute aerobic exercise treatments were similarly effective for cognitive enhancement, suggesting that they augment prefrontal cognitive functions similarly. PMID:27220529

  11. Spinal neuronal activation during locomotor-like activity enabled by epidural stimulation and 5-HT agonists in spinal rats

    PubMed Central

    Duru, Paul O.; Tillakaratne, Niranjala J.K.; Kim, Jung A.; Zhong, Hui; Stauber, Stacey M.; Pham, Trinh T.; Xiao, Mei S.; Edgerton, V. Reggie; Roy, Roland R.

    2015-01-01

    The neural networks that generate stepping in complete spinal adult rats remain poorly defined. To address this problem we used c-fos (an activity-dependent marker) to identify active interneurons and motoneurons in the lumbar spinal cord of adult spinal rats during a 30-minute bout of bipedal stepping. Spinal rats were either step trained (30 min/day, 3 days/week for 7.5 weeks) or not step-trained. Stepping was enabled by epidural stimulation and the administration of the serotonergic agonists quipazine and 8-OHDPAT. A third group of spinal rats served as untreated (no stimulation, drugs, or stepping) controls. The number of activated cholinergic central canal cluster cells and partition neurons was higher in both step-trained and non-trained than untreated rats, and higher in non-trained than step-trained rats. The latter finding suggests that daily treatment with epidural stimulation plus serotonergic agonist treatment without step training enhanced the excitability of a broader cholinergic interneuronal population than step training. The number of activated interneurons in laminae II-VI of lumbar cross sections was higher in both step-trained and non-trained than untreated rats, and highest in step-trained rats. This finding suggests that this population of interneurons was responsive to epidural stimulation plus serotonergic treatment and that load-bearing induced when stepping had an additive effect. The number of activated motoneurons of all size categories was higher in the step-trained than the other two groups, reflecting a strong effect of loading on motoneuron recruitment. In general, these results indicate that the spinal networks for locomotion are similar with and without brain input. PMID:25789848

  12. The novel recreational drug 3,4-methylenedioxypyrovalerone (MDPV) is a potent psychomotor stimulant: self-administration and locomotor activity in rats

    PubMed Central

    Aarde, S. M.; Huang, P.K.; Creehan, K.M.; Dickerson, T. J.; Taffe, M. A.

    2013-01-01

    Recreational use of the cathinone derivative 3,4-methylenedioxypyrovalerone (MDPV; “bath salts”) has increased worldwide in past years, accompanied by accounts of health and legal problems in the popular media and efforts to criminalize possession in numerous jurisdictions. Minimal information exists on the effects of MDPV in laboratory models. This study determined the effects of MDPV, alongside those of the better studied stimulant d-methamphetamine (METH), using rodent models of intravenous self-administration (IVSA), thermoregulation and locomotor activity. Male Wistar rats were trained to self-administer MDPV or METH (0.05 mg/kg/infusion, i.v.) or were prepared with radiotelemetry implants for the assessment of body temperature and activity responses to MDPV or METH (0–5.6 mg/kg s.c.). METH and MDPV were consistently self-administered within 10 training sessions (mg/kg/hour; METH Mean=0.4 and Max = 1.15; MDPV Mean=0.9 and Max = 5.8). Dose-substitution studies demonstrated that behavior was sensitive to dose for both drugs, but MDPV (0.01–0.50 mg/kg/inf) showed greater potency and efficacy than METH (0.1–0.25 mg/kg/inf). In addition, both MDPV and METH increased locomotor activity at lower doses (0.5–1.0 mg/kg, s.c.) and transiently decreased activity at the highest dose (5.6 mg/kg, s.c.). Body temperature increased monotonically with increasing doses of METH but MDPV had a negligible effect on temperature. Stereotypy was associated with relatively high self-administered cumulative doses of MDPV (~1.5 mg/kg/hr) as well as with non-contingent MDPV administration wherein the intensity and duration of stereotypy increased as MDPV dose increased. Thus, MDPV poses a substantial threat for compulsive use that is potentially greater than that for METH. PMID:23597511

  13. Acute Thermal Stressor Increases Glucocorticoid Response but Minimizes Testosterone and Locomotor Performance in the Cane Toad (Rhinella marina)

    PubMed Central

    Narayan, Edward J.; Hero, Jean-Marc

    2014-01-01

    Climatic warming is a global problem and acute thermal stressor in particular could be considered as a major stressor for wildlife. Cane toads (Rhinella marina) have expanded their range into warmer regions of Australia and they provide a suitable model species to study the sub-lethal impacts of thermal stressor on the endocrine physiology of amphibians. Presently, there is no information to show that exposure to an acute thermal stressor could initiate a physiological stress (glucocorticoid) response and secondly, the possible effects on reproductive hormones and performance. Answering these questions is important for understanding the impacts of extreme temperature on amphibians. In this study, we experimented on cane toads from Queensland, Australia by acclimating them to mildly warm temperature (25°C) and then exposing to acute temperature treatments of 30°, 35° or 40°C (hypothetical acute thermal stressors). We measured acute changes in the stress hormone corticosterone and the reproductive hormone testosterone using standard capture and handling protocol and quantified the metabolites of both hormones non-invasively using urinary enzyme-immunoassays. Furthermore, we measured performance trait (i.e. righting response score) in the control acclimated and the three treatment groups. Corticosterone stress responses increased in all toads during exposure to an acute thermal stressor. Furthermore, exposure to a thermal stressor also decreased testosterone levels in all toads. The duration of the righting response (seconds) was longer for toads that were exposed to 40°C than to 30°, 35° or 25°C. The increased corticosterone stress response with increased intensity of the acute thermal stressor suggests that the toads perceived this treatment as a stressor. Furthermore, the results also highlight a potential trade-off with performance and reproductive hormones. Ultimately, exposure acute thermal stressors due to climatic variability could impact amphibians at

  14. Neurochemical factors underlying individual differences in locomotor activity and anxiety-like behavioral responses in zebrafish.

    PubMed

    Tran, Steven; Nowicki, Magda; Muraleetharan, Arrujyan; Chatterjee, Diptendu; Gerlai, Robert

    2016-02-01

    Variation among individuals may arise for several reasons, and may have diverse underlying mechanisms. Individual differences have been studied in a variety of species, but recently a new model organism has emerged in this field that offers both sophistication in phenotypical characterization and powerful mechanistic analysis. Recently, zebrafish, one of the favorites of geneticists, have been shown to exhibit consistent individual differences in baseline locomotor activity. In the current study, we further explore this finding and examine whether individual differences in locomotor activity correlate with anxiety-like behavioral measures and with levels of dopamine, serotonin and the metabolites of these neurotransmitters. In addition, we examine whether individual differences in locomotor activity are also associated with reactivity to the locomotor stimulant effects of and neurochemical responses to acute ethanol exposure (30min long, 1% v/v ethanol bath application). Principal component analyses revealed a strong association among anxiety-like responses, locomotor activity, serotonin and dopamine levels. Furthermore, ethanol exposure was found to abolish the locomotion-dependent anxiety-like behavioral and serotonergic responses suggesting that this drug also engages a common underlying pathway. Overall, our results provide support for an important role of the serotonergic system in mediating individual differences in anxiety-like responses and locomotor activity in zebrafish and for a minor modulatory role of the dopaminergic system.

  15. Stimulation of brain muscarinic acetylcholine receptors acutely reverses radiogenic hypodipsia

    SciTech Connect

    Mickley, G.A.; Stevens, K.E.

    1986-03-01

    A sufficiently large dose of ionizing radiation produces changes in water consumption. However, the direction, durations, and physiological substrates of these alterations remain in question. Here we report a 5-d hypodipsia in rats exposed to 600 rads /sup 60/Co but a more transient, albeit larger, reduction in drinking after 1000 /sup 60/Co. Brain cholinergic neurons have been implicated as mediators of thirst. Therefore, we explored the role of hypothalamic muscarinic receptors in the production of radiation-induced hypodipsia. This was accomplished through the intrahypothalamic injection of carbachol (a muscarinic agonist) or atropine (a muscarinic antagonist) in irradiated rats. Intracranial carbachol produced acute reversal of radiogenic hypodipsia while atropine potentiated the hypodipsia. These post-irradiation drug-induced behaviors were similar to those observed after the same drug treatments before irradiation. Since cholinergic neuronal functions persist and are labile (can be pharmacologically stimulated and blocked) after irradiation, this suggests that other neuronal systems and/or neurochemicals may be more prominently involved in radiogenic hypodipsia.

  16. Serotonin Reuptake Transporter Deficiency Modulates the Acute Thermoregulatory and Locomotor Activity Response to 3,4-(±)-Methylenedioxymethamphetamine, and Attenuates Depletions in Serotonin Levels in SERT-KO Rats

    PubMed Central

    Lizarraga, Lucina E.; Phan, Andy V.; Cholanians, Aram B.; Herndon, Joseph M.; Lau, Serrine S.; Monks, Terrence J.

    2014-01-01

    3,4-(±)-Methylenedioxymethamphetamine (MDMA) is a ring-substituted amphetamine derivative with potent psychostimulant properties. The neuropharmacological effects of MDMA are biphasic in nature, initially causing synaptic monoamine release, primarily of serotonin (5-HT), inducing thermogenesis and hyperactivity (5-HT syndrome). The long-term effects of MDMA manifest as a prolonged depletion in 5-HT, and structural damage to 5-HT nerve terminals. MDMA toxicity is in part mediated by an ability to inhibit the presynaptic 5-HT reuptake transporter (SERT). Using a SERT-knockout (SERT-KO) rat model, we determined the impact of SERT deficiency on thermoregulation, locomotor activity, and neurotoxicity in SERT-KO or Wistar-based wild-type (WT) rats exposed to MDMA. WT and SERT-KO animals exhibited the highest thermogenic responses to MDMA (four times 10 mg/kg, sc at 12 h intervals) during the diurnal (first and third) doses according to peak body temperature and area under the curve (∑°C × h) analysis. Although no differences in peak body temperature were observed between MDMA-treated WT and SERT-KO animals, ∑°C × h following the first MDMA dose was reduced in SERT-KO rats. Exposure to a single dose of MDMA stimulated horizontal velocity in both WT and SERT-KO rats, however, this effect was delayed and attenuated in the KO animals. Finally, SERT-KO rats were insensitive to MDMA-induced long-term (7 days) depletions in 5-HT and its metabolite, 5-hydroxyindole acetic acid, in both cortex and striatum. In conclusion, SERT deficiency modulated MDMA-mediated thermogenesis, hyperactivity and neurotoxicity in KO rats. The data confirm that the SERT is essential for the manifestation of the acute and long-term toxicities of MDMA. PMID:24595820

  17. Effects of consuming a diet high in fat and/or sugar on the locomotor effects of acute and repeated cocaine in male and female C57BL/6J mice

    PubMed Central

    Collins, Gregory T.; Chen, Yu; Tschumi, Chris; Rush, Elise L.; Mensah, Ayele; Koek, Wouter; France, Charles P.

    2015-01-01

    Drug abuse and obesity are serious public health problems. Dopamine plays a central role in mediating the reinforcing effects of drugs and food. Prolonged use of drugs is known to alter the function and/or sensitivity of many neurotransmitter systems, including dopamine, however, the impact of consuming foods high in fat and/or sugar is less clear. These studies characterized the locomotor effects of acute and repeated cocaine in male and female C57BL/6J mice consuming one of four diets: (1) standard chow + water; (2) standard chow + 10% sucrose solution; (3) high-fat chow + water; or (4) high-fat chow + 10% sucrose solution. The acute locomotor effects of cocaine (3.2–32.0 mg/kg) were evaluated four weeks after initiating dietary conditions; the effects of repeated cocaine administration were evaluated after 5, 6, 7, and 12 weeks. During acute tests, mice consuming a diet high in fat and/or sucrose exhibited greater locomotor responses to cocaine than mice consuming standard chow and water, regardless of sex. Although diet-induced enhancements persisted across repeated cocaine testing, locomotor sensitization developed more rapidly in females drinking sucrose (and consuming either standard or high-fat chow) than in females consuming standard chow and water. In addition to providing evidence that consuming a diet high in fat and/or sugar enhances abuse-related effects of cocaine in ways that might increase vulnerability to abuse cocaine, these studies identified a potentially important sex-related difference in the interaction between nutrition and cocaine effects, with the impacts of sucrose consumption being greater in females than in males. PMID:26237320

  18. Task dependency of motor adaptations to an acute noxious stimulation.

    PubMed

    Hug, François; Hodges, Paul W; Tucker, Kylie

    2014-06-01

    This study explored motor adaptations in response to an acute noxious stimulation during three tasks that differed in the number of available degrees of freedom. Fifteen participants performed three isometric force-matched tasks (single leg knee extension, single leg squat, and bilateral leg squat) in three conditions (Control, Pain, and Washout). Pain was induced by injection of hypertonic saline into the vastus medialis muscle (VM; left leg). Supersonic shear imaging was used to measure muscle shear elastic modulus as this is considered to be an index of muscle stress. Surface electromyography (EMG) was recorded bilaterally from six muscles to assess changes in neural strategies. During tasks with fewer degrees of freedom (knee extension and single leg squat task), there was no change in VM EMG amplitude or VM shear elastic modulus. In contrast, during the bilateral leg squat, VM (-32.9 ± 15.8%; P < 0.001) and vastus lateralis (-28.7 ± 14.8%; P < 0.001) EMG amplitude decreased during Pain. This decrease in activation was associated with reduced VM shear elastic modulus (-17.6 ± 23.3%; P = 0.029) and reduced force produced by the painful leg (-10.0 ± 10.2%; P = 0.046). This work provides evidence that when an obvious solution is available to decrease stress on painful tissue, this option is selected. It confirms the fundamental assumption that motor adaptations to pain aim to alter load on painful tissue to protect for further pain and/or injury. The lack of adaptation observed during force-matched tasks with fewer degrees of freedom might be explained by the limited potential to redistribute stress or a high cost induced by such a compensation.

  19. Acute stimulation of brain mu opioid receptors inhibits glucose-stimulated insulin secretion via sympathetic innervation.

    PubMed

    Tudurí, Eva; Beiroa, Daniel; Stegbauer, Johannes; Fernø, Johan; López, Miguel; Diéguez, Carlos; Nogueiras, Rubén

    2016-11-01

    Pancreatic insulin-secreting β-cells express opioid receptors, whose activation by opioid peptides modulates hormone secretion. Opioid receptors are also expressed in multiple brain regions including the hypothalamus, where they play a role in feeding behavior and energy homeostasis, but their potential role in central regulation of glucose metabolism is unknown. Here, we investigate whether central opioid receptors participate in the regulation of insulin secretion and glucose homeostasis in vivo. C57BL/6J mice were acutely treated by intracerebroventricular (i.c.v.) injection with specific agonists for the three main opioid receptors, kappa (KOR), delta (DOR) and mu (MOR) opioid receptors: activation of KOR and DOR did not alter glucose tolerance, whereas activation of brain MOR with the specific agonist DAMGO blunted glucose-stimulated insulin secretion (GSIS), reduced insulin sensitivity, increased the expression of gluconeogenic genes in the liver and, consequently, impaired glucose tolerance. Pharmacological blockade of α2A-adrenergic receptors prevented DAMGO-induced glucose intolerance and gluconeogenesis. Accordingly, DAMGO failed to inhibit GSIS and to impair glucose tolerance in α2A-adrenoceptor knockout mice, indicating that the effects of central MOR activation on β-cells are mediated via sympathetic innervation. Our results show for the first time a new role of the central opioid system, specifically the MOR, in the regulation of insulin secretion and glucose metabolism. PMID:27511839

  20. In vivo potency and efficacy of the novel cathinone α-pyrrolidinopentiophenone and 3,4-methylenedioxypyrovalerone: Self-administration and locomotor stimulation in male rats

    PubMed Central

    Aarde, Shawn M.; Creehan, Kevin M.; Vandewater, Sophia A.; Dickerson, Tobin J.; Taffe, Michael A.

    2015-01-01

    Rationale Numerous substituted cathinone drugs have appeared in recreational use. This variety is often a response to legal actions; the scheduling of 3,4-methylenedioxypyrovalerone (MDPV; “bath salts”) in the U.S.A. was followed by the appearance of the closely related drug α-pyrrolidinopentiophenone (alpha-PVP; “flakka”). Objectives To directly compare the efficacy and potency of alpha-PVP with that of MDPV. Methods Groups of male Wistar rats were trained in the intravenous self-administration (IVSA) alpha-PVP or MDPV under a fixed-ratio 1 schedule of reinforcement. An additional group was examined for locomotor and body temperature responses to non-contingent administration of MDVP or alpha-PVP (1.0, 5.6, 10.0 mg/kg, i.p.). Results Acquisition of alpha-PVP (0.1 mg/kg/infusion) IVSA resulted in low, yet consistent drug intake and excellent discrimination for the drug-paired lever. Dose-substitution (0.05-0.25 mg/kg/infusion) under a fixed-ratio 1 schedule confirmed potency is similar to MDPV in prior studies. In direct comparison to MDPV (0.05 mg/kg/infusion), rats trained on alpha-PVP (0.05 mg/kg/infusion) responded for more infusions but demonstrated similar drug-lever discrimination by the end of acquisition. However, the dose-response (0.018-0.56 mg/kg/inf) functions of these drugs under a progressive-ratio schedule of reinforcement reflected identical efficacy and potency. Peak locomotor responses to MDPV or alpha-PVP were observed after the 1.0 mg/kg, i.p. dose and lasted ~2 hours. Modest body temperature decreases were of similar magnitude (~0.75°C) for each compound. Conclusions The potency and efficacy of MDPV and alpha-PVP were very similar across multiple assays, predicting that the abuse liability of alpha-PVP will be significant and similar to that of MDPV. PMID:25925780

  1. Extended Access Cocaine Self-Administration Results in Tolerance to the Dopamine-Elevating and Locomotor-Stimulating Effects of Cocaine

    PubMed Central

    Calipari, Erin S.; Ferris, Mark J.; Jones, Sara R.

    2013-01-01

    Tolerance to the neurochemical and psychoactive effects of cocaine after repeated use is a hallmark of cocaine addiction in humans. However, comprehensive studies on tolerance to the behavioral, psychoactive, and neurochemical effects of cocaine following contingent administration in rodents are lacking. We outlined the consequences of extended access cocaine self-administration as it related to tolerance to the psychomotor activating, dopamine (DA) elevating, and DA transporter (DAT) inhibiting effects of cocaine. Cocaine self-administration (1.5 mg/kg/inj; 40 inj; 5 days), which resulted in escalation of first hour intake, caused reductions in evoked DA release and reduced maximal rates of uptake through the DAT as measured by slice voltammetry in the nucleus accumbens core. Further, we report reductions in cocaine-induced uptake inhibition as measured by fast scan cyclic voltammetry, and a corresponding increase in the dose of cocaine required for 50% inhibition of DA uptake (Ki) at the DAT. Cocaine tolerance at the DAT translated to reductions in cocaine-induced DA overflow as measured by microdialysis. Additionally, cocaine-induced elevations in locomotor activity and stereotypy were reduced, while rearing behavior was enhanced in animals with a history of cocaine self-administration. Here we demonstrate both neurochemical and behavioral cocaine tolerance in an extended-access rodent model of cocaine abuse, which allows for a better understanding of the neurochemical and psychomotor tolerance that develops to cocaine in human addicts. PMID:24102293

  2. Neuromodulation of the lumbar spinal locomotor circuit.

    PubMed

    AuYong, Nicholas; Lu, Daniel C

    2014-01-01

    The lumbar spinal cord contains the necessary circuitry to independently drive locomotor behaviors. This function is retained following spinal cord injury (SCI) and is amenable to rehabilitation. Although the effectiveness of task-specific training and pharmacologic modulation has been repeatedly demonstrated in animal studies, results from human studies are less striking. Recently, lumbar epidural stimulation (EDS) along with locomotor training was shown to restore weight-bearing function and lower-extremity voluntary control in a chronic, motor-complete human SCI subject. Related animal studies incorporating EDS as part of the therapeutic regiment are also encouraging. EDS is emerging as a promising neuromodulatory tool for SCI. PMID:24262896

  3. Acute Stimulant Ingestion and Neurocognitive Performance in Healthy Participants

    PubMed Central

    Powers, Michael E.

    2015-01-01

    Context: Concussion management has become an area of great concern in athletics, and neurocognitive tests, such as Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT), are commonly used as management tools. Given the restrictive nature of current management plans, anecdotal concerns have been raised about athletes trying to cheat the assessments and return to participation sooner. Stimulants have been shown to improve neurocognitive measures similar to those used in ImPACT. Therefore, they could possibly improve performance during baseline and postinjury testing. Objective: To examine the effects of a supplement containing stimulants on ImPACT performance. Design: Crossover study. Setting: Research laboratory. Patients or Other Participants: A total of 5 men (age = 20.6 ± 1.5 years, height = 176.3 ± 9.6 cm, mass = 76.9 ± 18.6 kg) and 7 women (age = 20.6 ± 1.1 years, height = 162.9 ± 7.8 cm, mass = 60.9 ± 8.2 kg) with no histories of physician-diagnosed head injury, learning disability, or attention-deficit disorder. Intervention(s): Participants were assessed under supplement (5.5 g of Jacked 3D, which contains caffeine and 1,3-dimethylamylamine), placebo, and control conditions separated by 1 week. Main Outcome Measure(s): I compared ImPACT composite scores for verbal and visual memory, visual motor speed, reaction time, impulse control, and a cognitive-efficiency index under each of the 3 conditions and assessed them 30 minutes after ingestion. Results: I observed a difference when comparing reaction times, as the participants reacted faster during the supplement condition (0.53 ± 0.03 seconds) than during the placebo (0.55 ± 0.03 seconds) and control (0.55 ± 0.03 seconds) conditions (F2,22 = 4.31, P = .03). A difference also was observed for the cognitive-efficiency index, as participants scored higher during the supplement condition (0.49 ± 0.09) than during the placebo (0.41 ± 0.10) and control (0.41 ± 0.12) conditions (F2,22 = 4

  4. The dopamine D1-D2 receptor heteromer exerts tonic inhibitory effect on the expression of amphetamine-induced locomotor sensitization

    PubMed Central

    Shen, Maurice Y.F.; Perreault, Melissa L.; Fan, Theresa; George, Susan R.

    2014-01-01

    A role for the dopamine D1-D2 receptor heteromer in the regulation of reward and addiction-related processes has been previously implicated. In the present study, we examined the effects of D1-D2 heteromer stimulation by the agonist SKF 83959 and its disruption by a selective TAT-D1 peptide on amphetamine-induced locomotor sensitization, a behavioural model widely used to study the neuroadaptations associated with psychostimulant addiction. D1-D2 heteromer activation by SKF 83959 did not alter the acute locomotor effects of amphetamine but significantly inhibited amphetamine-induced locomotor responding across the 5 day treatment regimen. In addition, a single injection of SKF 83959 was sufficient to abolish the expression of locomotor sensitization induced by a priming injection of amphetamine after a 72-hour withdrawal. Conversely, inhibition of D1-D2 heteromer activity by the TAT-D1 peptide enhanced subchronic amphetamine-induced locomotion and the expression of amphetamine locomotor sensitization. Treatment solely with the TAT-D1 disrupting peptide during the initial 5 day treatment phase was sufficient to induce a sensitized locomotor phenotype in response to the priming injection of amphetamine. Together these findings demonstrate that the dopamine D1-D2 receptor heteromer exerts tonic inhibitory control on neurobiological processes involved in sensitization to amphetamine, indicating that the dopamine D1-D2 receptor heteromer may be a novel molecular substrate in addiction processes involving psychostimulants. PMID:25444866

  5. Evaluation of focused multipolar stimulation for cochlear implants in acutely deafened cats

    NASA Astrophysics Data System (ADS)

    George, Shefin S.; Wise, Andrew K.; Shivdasani, Mohit N.; Shepherd, Robert K.; Fallon, James B.

    2014-12-01

    Objective. The conductive nature of the fluids and tissues of the cochlea can lead to broad activation of spiral ganglion neurons using contemporary cochlear implant stimulation configurations such as monopolar (MP) stimulation. The relatively poor spatial selectivity is thought to limit implant performance, particularly in noisy environments. Several current focusing techniques have been proposed to reduce the spread of activation with the aim towards achieving improved clinical performance. Approach. The present research evaluated the efficacy of focused multipolar (FMP) stimulation, a relatively new focusing technique in the cochlea, and compared its efficacy to both MP stimulation and tripolar (TP) stimulation. The spread of neural activity across the inferior colliculus (IC), measured by recording the spatial tuning curve, was used as a measure of spatial selectivity. Adult cats (n = 6) were acutely deafened and implanted with an intracochlear electrode array before multi-unit responses were recorded across the cochleotopic gradient of the contralateral IC. Recordings were made in response to acoustic and electrical stimulation using the MP, TP and FMP configurations. Main results. FMP and TP stimulation resulted in greater spatial selectivity than MP stimulation. However, thresholds were significantly higher (p < 0.001) for FMP and TP stimulation compared to MP stimulation. There were no differences found in spatial selectivity and threshold between FMP and TP stimulation. Significance. The greater spatial selectivity of FMP and TP stimulation would be expected to result in improved clinical performance. However, further research will be required to demonstrate the efficacy of these modes of stimulation after longer durations of deafness.

  6. Acute seizure suppression by transcranial direct current stimulation in rats

    PubMed Central

    Dhamne, Sameer C; Ekstein, Dana; Zhuo, Zhihong; Gersner, Roman; Zurakowski, David; Loddenkemper, Tobias; Pascual-Leone, Alvaro; Jensen, Frances E; Rotenberg, Alexander

    2015-01-01

    Objective Cathodal transcranial direct current stimulation (tDCS) is a focal neuromodulation technique that suppresses cortical excitability by low-amplitude constant electrical current, and may have an antiepileptic effect. Yet, tDCS has not been tested in status epilepticus (SE). Furthermore, a combined tDCS and pharmacotherapy antiseizure approach is unexplored. We therefore examined in the rat pentylenetetrazol (PTZ) SE model whether cathodal tDCS (1) suppresses seizures, (2) augments lorazepam (LZP) efficacy, and (3) enhances GABAergic cortical inhibition. Methods Experiment 1 aimed to identify an effective cathodal tDCS intensity. Rats received intraperitoneal PTZ followed by tDCS (sham, cathodal 1 mA, or cathodal 0.1 mA; for 20 min), and then a second PTZ challenge. In Experiment 2, two additional animal groups received a subtherapeutic LZP dose after PTZ, and then verum or sham tDCS. Clinical and electroencephalography (EEG) epileptic activity were compared between all groups. In Experiment 3, we measured GABA-mediated paired-pulse inhibition of the motor evoked potential by paired-pulse transcranial magnetic stimulation (ppTMS) in rats that received PTZ or saline, and either verum or sham tDCS. Results Cathodal 1 mA tDCS (1) reduced EEG spike bursts, and suppressed clinical seizures after the second PTZ challenge, (2) in combination with LZP was more effective in seizure suppression and improved the clinical seizure outcomes compared to either tDCS or LZP alone, and (3) prevented the loss of ppTMS motor cortex inhibition that accompanied PTZ injection. Interpretation These results suggest that cathodal 1 mA tDCS alone and in combination with LZP can suppress seizures by augmenting GABAergic cortical inhibition. PMID:26339678

  7. Effects of acute selective pudendal nerve electrical stimulation after simulated childbirth injury

    PubMed Central

    Gill, Bradley C.; Dissaranan, Charuspong; Zutshi, Massarat; Balog, Brian M.; Lin, Danli; Damaser, Margot S.

    2013-01-01

    During childbirth, a combinatorial injury occurs and can result in stress urinary incontinence (SUI). Simulated childbirth injury, consisting of vaginal distension (VD) and pudendal nerve crush (PNC), results in slowed recovery of continence, as well as decreased expression of brain-derived neurotrophic factor (BDNF), a regenerative cytokine. Electrical stimulation has been shown to upregulate BDNF in motor neurons and facilitate axon regrowth through the increase of βII-tubulin expression after injury. In this study, female rats underwent selective pudendal nerve motor branch (PNMB) stimulation after simulated childbirth injury or sham injury to determine whether such stimulation affects bladder and anal function after injury and whether the stimulation increases BDNF expression in Onuf's nucleus after injury. Rats received 4 h of VD followed by bilateral PNC and 1 h of subthreshold electrical stimulation of the left PNMB and sham stimulation of the right PNMB. Rats underwent filling cystometry and anal pressure recording before, during, and after the stimulation. Bladder and anal contractile function were partially disrupted after injury. PNMB stimulation temporarily inhibited bladder contraction after injury. Two days and 1 wk after injury, BDNF expression in Onuf's nucleus of the stimulated side was significantly increased compared with the sham-stimulated side, whereas βII-tubulin expression in Onuf's nucleus of the stimulated side was significantly increased only 1 wk after injury. Acute electrical stimulation of the pudendal nerve proximal to the crush site upregulates BDNF and βII-tubulin in Onuf's nucleus after simulated childbirth injury, which could be a potential preventive option for SUI after childbirth injury. PMID:23152293

  8. Locomotor exercise in weightlessness

    NASA Technical Reports Server (NTRS)

    Thornton, W.; Whitmore, H.

    1991-01-01

    The requirements for exercise in space by means of locomotion are established and addressed with prototype treadmills for use during long-duration spaceflight. The adaptation of the human body to microgravity is described in terms of 1-G locomotor biomechanics, the effects of reduced activity, and effective activity-replacement techniques. The treadmill is introduced as a complement to other techniques of force replacement with reference given to the angle required for exercise. A motor-driven unit is proposed that can operate at a variety of controlled speeds and equivalent grades. The treadmills permit locomotor exercise as required for long-duration space travel to sustain locomotor and cardiorespiratory capacity at a level consistent with postflight needs.

  9. Systemic vascular effects of acute electrical baroreflex stimulation.

    PubMed

    Burgoyne, Steven; Georgakopoulos, Dimitrios; Belenkie, Israel; Tyberg, John V

    2014-07-15

    We intended to determine if acute baroreflex activation therapy (BAT) increases venous capacitance and aortic conductance. BAT is effective in resistant hypertension, but its effect on the systemic vasculature is poorly understood. Left ventricular (LV) and aortic pressures and subdiaphragmatic aortic and caval flows (ultrasonic) were measured in six anesthetized dogs. Changes in abdominal blood volume (Vabdominal) were estimated as the integrated difference in abdominal aortic inflow and caval outflow. An electrode was implanted on the right carotid sinus. Data were measured during control and BAT. Next, sodium nitroprusside (SNP) was infused and BAT was subsequently added. Finally, angiotensin II (ANG II) was infused, and three increased BAT currents were added. We found that BAT decreased mean aortic pressure (PAo) by 22.5 ± 1.3 mmHg (P < 0.001) and increased aortic conductance by 16.2 ± 4.9% (P < 0.01) and Vabdominal at a rate of 2.2 ± 0.6 ml·kg(-1)·min(-1) (P < 0.01). SNP decreased PAo by 17.4 ± 0.7 mmHg (P < 0.001) and increased Vabdominal at a rate of 2.2 ± 0.7 ml·kg(-1)·min(-1) (P < 0.05). During the SNP infusion, BAT decreased PAo further, by 26.0 ± 2.1 mmHg (P < 0.001). ANG II increased PAo by 40.4 ± 3.5 mmHg (P = 0.001). When an increased BAT current was added, PAo decreased to baseline (P < 0.01) while aortic conductance increased from 62.3 ± 5.2% to 80.2 ± 3.3% (P < 0.05) of control. Vabdominal increased at a rate of 1.8 ± 0.9 ml·kg(-1)·min(-1) (P < 0.01), reversing the ANG II effects. In conclusion, BAT increases arterial conductance, decreases PAo, and increases venous capacitance even in the presence of powerful vasoactive drugs. Increasing venous capacitance may be an important effect of BAT in hypertension. PMID:24816258

  10. Acute Response to Unilateral Unipolar Electrical Carotid Sinus Stimulation in Patients With Resistant Arterial Hypertension.

    PubMed

    Heusser, Karsten; Tank, Jens; Brinkmann, Julia; Menne, Jan; Kaufeld, Jessica; Linnenweber-Held, Silvia; Beige, Joachim; Wilhelmi, Mathias; Diedrich, André; Haller, Hermann; Jordan, Jens

    2016-03-01

    Bilateral bipolar electric carotid sinus stimulation acutely reduced muscle sympathetic nerve activity (MSNA) and blood pressure (BP) in patients with resistant arterial hypertension but is no longer available. The second-generation device uses a smaller unilateral unipolar disk electrode to reduce invasiveness while saving battery life. We hypothesized that the second-generation device acutely lowers BP and MSNA in treatment-resistant hypertensive patients. Eighteen treatment-resistant hypertensive patients (9 women/9 men; 53±11 years; 33±5 kg/m(2)) on stable medications have been included in the study. We monitored finger and brachial BP, heart rate, and MSNA. Without stimulation, BP was 165±31/91±18 mm Hg, heart rate was 75±17 bpm, and MSNA was 48±14 bursts per minute. Acute stimulation with intensities producing side effects that were tolerable in the short term elicited interindividually variable changes in systolic BP (-16.9±15.0 mm Hg; range, 0.0 to -40.8 mm Hg; P=0.002), heart rate (-3.6±3.6 bpm; P=0.004), and MSNA (-2.0±5.8 bursts per minute; P=0.375). Stimulation intensities had to be lowered in 12 patients to avoid side effects at the expense of efficacy (systolic BP, -6.3±7.0 mm Hg; range, 2.8 to -14.5 mm Hg; P=0.028 and heart rate, -1.5±2.3 bpm; P=0.078; comparison against responses with side effects). Reductions in diastolic BP and MSNA (total activity) were correlated (r(2)=0.329; P=0.025). In our patient cohort, unilateral unipolar electric baroreflex stimulation acutely lowered BP. However, side effects may limit efficacy. The approach should be tested in a controlled comparative study.

  11. Acute Response to Unilateral Unipolar Electrical Carotid Sinus Stimulation in Patients With Resistant Arterial Hypertension.

    PubMed

    Heusser, Karsten; Tank, Jens; Brinkmann, Julia; Menne, Jan; Kaufeld, Jessica; Linnenweber-Held, Silvia; Beige, Joachim; Wilhelmi, Mathias; Diedrich, André; Haller, Hermann; Jordan, Jens

    2016-03-01

    Bilateral bipolar electric carotid sinus stimulation acutely reduced muscle sympathetic nerve activity (MSNA) and blood pressure (BP) in patients with resistant arterial hypertension but is no longer available. The second-generation device uses a smaller unilateral unipolar disk electrode to reduce invasiveness while saving battery life. We hypothesized that the second-generation device acutely lowers BP and MSNA in treatment-resistant hypertensive patients. Eighteen treatment-resistant hypertensive patients (9 women/9 men; 53±11 years; 33±5 kg/m(2)) on stable medications have been included in the study. We monitored finger and brachial BP, heart rate, and MSNA. Without stimulation, BP was 165±31/91±18 mm Hg, heart rate was 75±17 bpm, and MSNA was 48±14 bursts per minute. Acute stimulation with intensities producing side effects that were tolerable in the short term elicited interindividually variable changes in systolic BP (-16.9±15.0 mm Hg; range, 0.0 to -40.8 mm Hg; P=0.002), heart rate (-3.6±3.6 bpm; P=0.004), and MSNA (-2.0±5.8 bursts per minute; P=0.375). Stimulation intensities had to be lowered in 12 patients to avoid side effects at the expense of efficacy (systolic BP, -6.3±7.0 mm Hg; range, 2.8 to -14.5 mm Hg; P=0.028 and heart rate, -1.5±2.3 bpm; P=0.078; comparison against responses with side effects). Reductions in diastolic BP and MSNA (total activity) were correlated (r(2)=0.329; P=0.025). In our patient cohort, unilateral unipolar electric baroreflex stimulation acutely lowered BP. However, side effects may limit efficacy. The approach should be tested in a controlled comparative study. PMID:26831195

  12. Adenylyl cylases 1 and 8 mediate select striatal-dependent behaviors and sensitivity to ethanol stimulation in the adolescent period following acute neonatal ethanol exposure.

    PubMed

    Susick, Laura L; Lowing, Jennifer L; Bosse, Kelly E; Hildebrandt, Clara C; Chrumka, Alexandria C; Conti, Alana C

    2014-08-01

    Neonatal alcohol exposure in rodents causes dramatic neurodegenerative effects throughout the developing nervous system, particularly in the striatum, acutely after exposure. These acute neurodegenerative effects are augmented in mice lacking adenylyl cyclases 1 and 8 (AC1/8) as neonatal mice with a genetic deletion of both AC isoforms (DKO) have increased vulnerability to ethanol-induced striatal neurotoxicity compared to wild type (WT) controls. While neonatal ethanol exposure is known to negatively impact cognitive behaviors, such as executive functioning and working memory in adolescent and adult animals, the threshold of ethanol exposure required to impinge upon developmental behaviors in mice has not been extensively examined. Therefore, the purpose of this study was to determine the behavioral effects of neonatal ethanol exposure using various striatal-dependent developmental benchmarks and to assess the impact of AC1/8 deletion on this developmental progression. WT and DKO mice were treated with 2.5 g/kg ethanol or saline on postnatal day (P)6 and later subjected to the wire suspension, negative geotaxis, postural reflex, grid hang, tail suspension and accelerating rotarod tests at various time points. At P30, mice were evaluated for their hypnotic responses to 4.0 g/kg ethanol by using the loss of righting reflex assay and ethanol-induced stimulation of locomotor activity after 2.0 g/kg ethanol. Ethanol exposure significantly impaired DKO performance in the negative geotaxis test while genetic deletion of AC1/8 alone increased grid hang time and decreased immobility time in the tail suspension test with a concomitant increase in hindlimb clasping behavior. Locomotor stimulation was significantly increased in animals that received ethanol as neonates, peaking significantly in ethanol-treated DKO mice compared to ethanol-treated WT controls, while sedation duration following high-dose ethanol challenge was unaffected. These data indicate that the

  13. Adenylyl cylases 1 and 8 mediate select striatal-dependent behaviors and sensitivity to ethanol stimulation in the adolescent period following acute neonatal ethanol exposure

    PubMed Central

    Susick, Laura L.; Lowing, Jennifer L.; Bosse, Kelly E.; Hildebrandt, Clara C.; Chrumka, Alexandria C.; Conti, Alana C.

    2014-01-01

    Neonatal alcohol exposure in rodents causes dramatic neurodegenerative effects throughout the developing nervous system, particularly in the striatum, acutely after exposure. These acute neurodegenerative effects are augmented in mice lacking adenylyl cyclases 1 and 8 (AC1/8) as neonatal mice with a genetic deletion of both AC isoforms (DKO) have increased vulnerability to ethanol-induced striatal neurotoxicity compared to wild type (WT) controls. While neonatal ethanol exposure is known to negatively impact cognitive behaviors, such as executive functioning and working memory in adolescent and adult animals, the threshold of ethanol exposure required to impinge upon developmental behaviors in mice has not been extensively examined. Therefore, the purpose of this study was to determine the behavioral effects of neonatal ethanol exposure using various striatal-dependent developmental benchmarks and to assess the impact of AC1/8 deletion on this developmental progression. WT and DKO mice were treated with 2.5 g/kg ethanol or saline on postnatal day (P)6 and later subjected to the wire suspension, negative geotaxis, postural reflex, grid hang, tail suspension and accelerating rotarod tests at various time points. At P30, mice were evaluated for their hypnotic responses to 4.0 g/kg ethanol by using the loss of righting reflex assay and ethanol-induced stimulation of locomotor activity after 2.0 g/kg ethanol. Ethanol exposure significantly impaired DKO performance in the negative geotaxis test while genetic deletion of AC1/8 alone increased grid hang time and decreased immobility time in the tail suspension test with a concomitant increase in hindlimb clasping behavior. Locomotor stimulation was significantly increased in animals that received ethanol as neonates, peaking significantly in ethanol-treated DKO mice compared to ethanol-treated WT controls, while sedation duration following high-dose ethanol challenge was unaffected. These data indicate that the

  14. Acute Auditory Stimulation with Different Styles of Music Influences Cardiac Autonomic Regulation in Men

    PubMed Central

    da Silva, Sheila Ap. F.; Guida, Heraldo L.; dos Santos Antonio, Ana Marcia; de Abreu, Luiz Carlos; Monteiro, Carlos B. M.; Ferreira, Celso; Ribeiro, Vivian F.; Barnabe, Viviani; Silva, Sidney B.; Fonseca, Fernando L. A.; Adami, Fernando; Petenusso, Marcio; Raimundo, Rodrigo D.; Valenti, Vitor E.

    2014-01-01

    Background: No clear evidence is available in the literature regarding the acute effect of different styles of music on cardiac autonomic control. Objectives: The present study aimed to evaluate the acute effects of classical baroque and heavy metal musical auditory stimulation on Heart Rate Variability (HRV) in healthy men. Patients and Methods: In this study, HRV was analyzed regarding time (SDNN, RMSSD, NN50, and pNN50) and frequency domain (LF, HF, and LF / HF) in 12 healthy men. HRV was recorded at seated rest for 10 minutes. Subsequently, the participants were exposed to classical baroque or heavy metal music for five minutes through an earphone at seated rest. After exposure to the first song, they remained at rest for five minutes and they were again exposed to classical baroque or heavy metal music. The music sequence was random for each individual. Standard statistical methods were used for calculation of means and standard deviations. Besides, ANOVA and Friedman test were used for parametric and non-parametric distributions, respectively. Results: While listening to heavy metal music, SDNN was reduced compared to the baseline (P = 0.023). In addition, the LF index (ms2 and nu) was reduced during exposure to both heavy metal and classical baroque musical auditory stimulation compared to the control condition (P = 0.010 and P = 0.048, respectively). However, the HF index (ms2) was reduced only during auditory stimulation with music heavy metal (P = 0.01). The LF/HF ratio on the other hand decreased during auditory stimulation with classical baroque music (P = 0.019). Conclusions: Acute auditory stimulation with the selected heavy metal musical auditory stimulation decreased the sympathetic and parasympathetic modulation on the heart, while exposure to a selected classical baroque music reduced sympathetic regulation on the heart. PMID:25177673

  15. Statistical Analysis of Zebrafish Locomotor Response.

    PubMed

    Liu, Yiwen; Carmer, Robert; Zhang, Gaonan; Venkatraman, Prahatha; Brown, Skye Ashton; Pang, Chi-Pui; Zhang, Mingzhi; Ma, Ping; Leung, Yuk Fai

    2015-01-01

    Zebrafish larvae display rich locomotor behaviour upon external stimulation. The movement can be simultaneously tracked from many larvae arranged in multi-well plates. The resulting time-series locomotor data have been used to reveal new insights into neurobiology and pharmacology. However, the data are of large scale, and the corresponding locomotor behavior is affected by multiple factors. These issues pose a statistical challenge for comparing larval activities. To address this gap, this study has analyzed a visually-driven locomotor behaviour named the visual motor response (VMR) by the Hotelling's T-squared test. This test is congruent with comparing locomotor profiles from a time period. Different wild-type (WT) strains were compared using the test, which shows that they responded differently to light change at different developmental stages. The performance of this test was evaluated by a power analysis, which shows that the test was sensitive for detecting differences between experimental groups with sample numbers that were commonly used in various studies. In addition, this study investigated the effects of various factors that might affect the VMR by multivariate analysis of variance (MANOVA). The results indicate that the larval activity was generally affected by stage, light stimulus, their interaction, and location in the plate. Nonetheless, different factors affected larval activity differently over time, as indicated by a dynamical analysis of the activity at each second. Intriguingly, this analysis also shows that biological and technical repeats had negligible effect on larval activity. This finding is consistent with that from the Hotelling's T-squared test, and suggests that experimental repeats can be combined to enhance statistical power. Together, these investigations have established a statistical framework for analyzing VMR data, a framework that should be generally applicable to other locomotor data with similar structure. PMID:26437184

  16. Acute corticosterone administration during meiotic segregation stimulates females to produce more male offspring.

    PubMed

    Pinson, Sara E; Parr, Christina M; Wilson, Jeanna L; Navara, Kristen J

    2011-01-01

    Birds have demonstrated a remarkable ability to manipulate offspring sex. Previous studies suggest that treatment with hormones can stimulate females to manipulate offspring sex before ovulation. For example, chronic treatments with corticosterone, the primary stress hormone produced by birds, stimulated significant skews toward female offspring. It has been suggested that corticosterone acts by influencing which sex chromosome is donated by the heterogametic female bird into the ovulated ovarian follicle. However, it is difficult to pinpoint when in developmental time corticosterone affects offspring sex, because in previous studies corticosterone treatment was given over a long period of time. We treated laying hens with acute high-dose corticosterone injections 5 h before the predicted time of ovulation and quantified the sexes of the subsequently ovulated eggs to determine whether mechanisms exist by which corticosterone can skew offspring sex ratios just before ovulation. We hypothesized that an injection of corticosterone coincident with segregation of the sex chromosomes would stimulate hens to produce more female than male offspring. Contrary to our predictions, hens injected with corticosterone produced a significant bias toward male offspring, nearly 83%. These results suggest that acute corticosterone treatment during meiosis I can influence primary sex ratios in birds, potentially through nonrandom chromosome segregation. Furthermore, acute corticosterone exposure, compared with chronic exposure, may act through different mechanisms to skew offspring sex.

  17. Acute inflammation stimulates a regenerative response in the neonatal mouse heart.

    PubMed

    Han, Chunyong; Nie, Yu; Lian, Hong; Liu, Rui; He, Feng; Huang, Huihui; Hu, Shengshou

    2015-10-01

    Cardiac injury in neonatal 1-day-old mice stimulates a regenerative response characterized by reactive cardiomyocyte proliferation, which is distinguished from the fibrotic repair process in adults. Acute inflammation occurs immediately after heart injury and has generally been believed to exert a negative effect on heart regeneration by promoting scar formation in adults; however, little is known about the role of acute inflammation in the cardiac regenerative response in neonatal mice. Here, we show that acute inflammation induced cardiomyocyte proliferation after apical intramyocardial microinjection of immunogenic zymosan A particles into the neonatal mouse heart. We also found that cardiac injury-induced regenerative response was suspended after immunosuppression in neonatal mice, and that cardiomyocytes could not be reactivated to proliferate after neonatal heart injury in the absence of interleukin-6 (IL-6). Furthermore, cardiomyocyte-specific deletion of signal transducer and activator of transcription 3 (STAT3), the major downstream effector of IL-6 signaling, decreased reactive cardiomyocyte proliferation after apical resection. Our results indicate that acute inflammation stimulates the regenerative response in neonatal mouse heart, and suggest that modulation of inflammatory signals might have important implications in cardiac regenerative medicine.

  18. Acute influence of alcohol, THC or central stimulants on violent suicide: A Swedish population study.

    PubMed

    Lundholm, Lena; Thiblin, Ingemar; Runeson, Bo; Leifman, Anders; Fugelstad, Anna

    2014-03-01

    Alcohol and substance abuse in general is a risk factor for suicide, but very little is known about the acute effect in relation to suicide method. Based on information from 18,894 medico-legal death investigations, including toxicological findings and manner of death, did the present study investigate whether acute influence of alcohol, tetrahydrocannabinol (THC), or central stimulants (amphetamine and cocaine) was related to the use of a violent suicide method, in comparison with the nonviolent method self-poisoning and alcohol-/illicit drug-negative suicide decedents. Multivariate analysis was conducted, and the results revealed that acute influence of THC was related to using the violent suicide method–– jumping from a height (RR 1.62; 95% CI 1.01–2.41). Alcohol intoxication was not related to any violent method, while the central stimulant-positive suicide decedent had a higher, albeit not significant, risk of several violent methods. The study contributes with elucidating suicide methods in relation to acute intoxication. PMID:24745078

  19. In vitro stimulation of cell-mediated cytotoxicity by acute leukaemias.

    PubMed Central

    Taylor, G. M.

    1981-01-01

    Acute leukaemias stimulated proliferative and cell-mediated cytotoxic (CMC) responses in vitro in normal (unprimed) lymphocytes. Proliferation was detected by increases in viable cell counts and [3H]dT incorporation in mixed lymphocyte-leukaemia-cell cultures. CMC detected on cultured cell-line targets (CCL) including K562 was generally much stronger than on fresh leukaemia cells, and correlated with stimulation of [3H]dT uptake in the responding lymphocytes. Leukaemias which were resistant as targets to CMC were able competitively to inhibit CMC on K562, though not as efficiently as blocking by K562 itself. With one leukaemia, blocking of CMC increased as the level of CMC on K562 was amplified by greater numbers of stimulating cells in the sensitization phase. This suggests that in certain cases blocking of effector cells by acute-leukaemia cells may depend upon the state of activation of the effector cells. Lymphocytes from a leukaemia patient in remission, treated with allogeneic leukaemia-cell immunotherapy and stimulated in vitro with immunizing leukaemia cells, developed strong anti-leukaemic CMC. A non-immunized patient's lymphocytes did not respond in this way, despite comparable levels of CMC on K562 in both patients. Dual stimulation of unprimed normal lymphocytes and remission lymphocytes with allogeneic or autologous leukaemias and various cell lines, amplified anti-leukaemic CMC, but did not markedly alter CMC or CCL. These data do not formally exclude the mediation of in vitro-stimulated anti-leukaemic CMC by NK-like cells, but suggest that such effector cells differ qualitatively from NK-like cells detected in the absence of anti-leukaemic CMC. PMID:6451236

  20. Acute and chronic effects of anteromedial globus pallidus stimulation in Parkinson's disease

    PubMed Central

    Durif, F.; Lemaire, J.; Debilly, B.; Dordain, G.

    1999-01-01

    OBJECTIVE—To evaluate the effects of acute and chronic stimulation in the anteromedial part of the globus pallidus internus (GPi) on the symptoms of patients with Parkinson's disease.
METHODS—Six patients with severe Parkinson's disease (Hoehn and Yahr stage 4-5 in "off" drug condition) with motor fluctuations and levodopa induced dyskinesia (LID) were operated on. Chronic electrodes were implanted in the anteromedial GPi bilaterally in five patients and unilaterally in one patient. The effect of stimulation via the four contacts for each electrode (n=11) was assessed postoperatively on the contralateral parkinsonian signs in the off condition and on the contralateral and ipsilateral LID in the "on" condition. The core assessement program for intracerebral transplantation protocol was performed before surgery and then 1, 3, and 6 months after surgery in on and off conditions and in on and off stimulation conditions.
RESULTS—Stimulation performed postoperatively showed a significant improvement (p<0.05) by 47% (contralateral rigidity) and 32% (contralateral bradykinesia) when stimulation was applied through the distal contact. Levodopa induced dyskinesias were improved by 95% (contralateral LID) and by 66% (ipsilateral LID) when stimulation was applied through the distal contact. Six months after the surgery, GPi stimulation in the off condition led to a mean improvement in the motor score of UPDRS by 36%. The mean daily duration in the off state decreased by 52% (p<0.05). The mean duration of LIDs decreased by 68% (p<0.05) and their severity by 53% (p<0.05).
CONCLUSION—Chronic stimulation in the anteromedial GPi shows that this is a safe and effective treatment for advanced Parkinson's disease with benefit sustained for at least 6months.

 PMID:10449552

  1. Stimulants

    MedlinePlus

    Stimulants are drugs that increase your heart rate, breathing rate, and brain function. Some stimulants affect only a specific organ, such as the heart, lungs, brain, or nervous system. Epinephrine is a stimulant. It ...

  2. Attenuated acute salivary α-amylase responses to gustatory stimulation with citric acid in thin children.

    PubMed

    Chen, Long Hui; Yang, Ze Min; Chen, Wei Wen; Lin, Jing; Zhang, Min; Yang, Xiao Rong; Zhao, Ling Bo

    2015-04-14

    Salivary α-amylase (sAA) is responsible for the 'pre-digestion' of starch in the oral cavity and accounts for up to 50 % of salivary protein in human saliva. An accumulating body of literature suggests that sAA is of nutritional importance; however, it is still not clear how sAA is related to individual's nutritional status. Although copy number variations (CNV) of the salivary amylase gene (AMY1) are associated with variation in sAA levels, a significant amount of sAA variation is not explained by AMY1 CNV. To measure sAA responses to gustatory stimulation with citric acid, we used sAA ratio (the ratio of stimulated sAA levels to those of resting sAA) and investigated acute sAA responses to citric acid in children with normal (Normal-BMI, n 22) and low (Low-BMI, n 21) BMI. The AMY1 gene copy number was determined by quantitative PCR. We, for the first time, demonstrated attenuated acute sAA responses (decreased sAA ratio) to gustatory stimulation in Low-BMI (thinness grade 3) children compared with the Normal-BMI children, which suggest that sAA responses to gustatory stimulation may be of nutritional importance. However, child's nutritional status was not directly related to their resting or stimulated sAA levels, and it was not associated with AMY1 gene copy number. Finally, AMY1 CNV might influence, but did not eventually determine, sAA levels in children. PMID:25784372

  3. Attenuated acute salivary α-amylase responses to gustatory stimulation with citric acid in thin children.

    PubMed

    Chen, Long Hui; Yang, Ze Min; Chen, Wei Wen; Lin, Jing; Zhang, Min; Yang, Xiao Rong; Zhao, Ling Bo

    2015-04-14

    Salivary α-amylase (sAA) is responsible for the 'pre-digestion' of starch in the oral cavity and accounts for up to 50 % of salivary protein in human saliva. An accumulating body of literature suggests that sAA is of nutritional importance; however, it is still not clear how sAA is related to individual's nutritional status. Although copy number variations (CNV) of the salivary amylase gene (AMY1) are associated with variation in sAA levels, a significant amount of sAA variation is not explained by AMY1 CNV. To measure sAA responses to gustatory stimulation with citric acid, we used sAA ratio (the ratio of stimulated sAA levels to those of resting sAA) and investigated acute sAA responses to citric acid in children with normal (Normal-BMI, n 22) and low (Low-BMI, n 21) BMI. The AMY1 gene copy number was determined by quantitative PCR. We, for the first time, demonstrated attenuated acute sAA responses (decreased sAA ratio) to gustatory stimulation in Low-BMI (thinness grade 3) children compared with the Normal-BMI children, which suggest that sAA responses to gustatory stimulation may be of nutritional importance. However, child's nutritional status was not directly related to their resting or stimulated sAA levels, and it was not associated with AMY1 gene copy number. Finally, AMY1 CNV might influence, but did not eventually determine, sAA levels in children.

  4. Mild sensory stimulation re-establishes cortical function during the acute phase of ischemia

    PubMed Central

    Lay, Christopher C.; Davis, Melissa F.; Chen-Bee, Cynthia H.; Frostig, Ron D.

    2011-01-01

    When delivered within 1 and in most cases 2 hours of permanent middle cerebral artery occlusion (pMCAO), mild sensory stimulation (intermittent single whisker stimulation) was shown to be completely neuroprotective according to assessment with multiple techniques 24 hours after pMCAO in a rodent model of ischemic stroke (Lay et al., 2010). The acute effect of stimulation treatment on the ischemic cortex however, had yet to be reported. Here we characterize cortical function and perfusion during the 120 minute whisker stimulation period in four experimental groups with treatment initiated 0, 1, 2 hours (protected groups) or 3 hours post-pMCAO (unprotected group) using multiple techniques. According to functional imaging, a gradual return of evoked whisker functional representation to baseline levels was initiated with treatment onset and completed within the treatment period. Evoked neuronal activity and reperfusion to the ischemic area also showed a gradual recovery in protected animals. Surprisingly, a similar recovery profile was observed in response to treatment in all protected animals, irrespective of treatment onset time. Non-stimulated pMCAO control group data demonstrate that reperfusion is not spontaneous. This makes the complete protection observed in the majority of animals stimulated at 2 hours post-pMCAO even more surprising as these animals recovered despite having been in this severely ischemic state for two full hours. In summary, when delivered within a 2 hour window post- pMCAO, whisker stimulation treatment initiated reperfusion and a gradual recovery of cortical function that was completed or nearly completed within the treatment period. PMID:21832179

  5. Panic disorder and locomotor activity

    PubMed Central

    Sakamoto, Noriyuki; Yoshiuchi, Kazuhiro; Kikuchi, Hiroe; Takimoto, Yoshiyuki; Kaiya, Hisanobu; Kumano, Hiroaki; Yamamoto, Yoshiharu; Akabayashi, Akira

    2008-01-01

    Background Panic disorder is one of the anxiety disorders, and anxiety is associated with some locomotor activity changes such as "restlessness". However, there have been few studies on locomotor activity in panic disorder using actigraphy, although many studies on other psychiatric disorders have been reported using actigraphy. Therefore, the aim of the present study was to investigate the relationship between panic disorder and locomotor activity pattern using a wrist-worn activity monitor. In addition, an ecological momentary assessment technique was used to record panic attacks in natural settings. Methods Sixteen patients with panic disorder were asked to wear a watch-type computer as an electronic diary for recording panic attacks for two weeks. In addition, locomotor activity was measured and recorded continuously in an accelerometer equipped in the watch-type computer. Locomotor activity data were analyzed using double cosinor analysis to calculate mesor and the amplitude and acrophase of each of the circadian rhythm and 12-hour harmonic component. Correlations between panic disorder symptoms and locomotor activity were investigated. Results There were significant positive correlations between the frequency of panic attacks and mesor calculated from double cosinor analysis of locomotor activity (r = 0.55) and between HAM-A scores and mesor calculated from double cosinor analysis of locomotor activity (r = 0.62). Conclusion Panic disorder patients with more panic attacks and more anxiety have greater objectively assessed locomotor activity, which may reflect the "restlessness" of anxiety disorders. PMID:19017383

  6. Methamphetamine-induced locomotor activity and behavioral sensitization: are dopamine d3 receptors involved?

    PubMed

    Jones, C D; Bartee, J A; Leite-Browning, M L; Blackshear, M A

    2007-05-15

    Drug sensitization is a behavioral phenomenon that occurs following repeated administration of methamphetamine (METH) and similar CNS stimulants. The mechanism of drug sensitization is unknown, but is believed to be due to downregulation of dopamine D3 receptors. It is hypothesized that repeated administration of dopamine D3 agonists results in downregulation of D3 receptors in methamphetamine-induced (METH-IND) sensitization. Furthermore, repeated administration of dopamine D3 antagonists and METH cause upregulation of D3 receptors and block METH-IND sensitization. The objective of this study was to determine the role of D3 receptors in METH-IND sensitization. To test these hypotheses, male mice received chronic injections (i.p.) of 2 mg/kg of the dopamine D3 agonist, PD128907 plus 0.5 mg/kg of METH or 8 mg/kg of D3 antagonist, U99194A and 0.5 mg\\kg of METH daily for 7-days. Drugs were withdrawn on day 8, and METH-IND sensitization was determined on day 18. Locomotor activity was measured for 75 minutes immediately after METH administration in an activity monitor. Acute administration of PD128907 decreased METH-IND locomotion, p < 0. 01, and acute U99194A increased it. However, chronic administration of these drugs did not alter the locomotor effects of METH (p > 0.05). These findings support in-part the hypothesis that dopamine D3 receptors are downregulated in METH-IND sensitization.

  7. Nitric oxide mediates caerulein-induced suppression of locomotor activity.

    PubMed

    Volke, V; Soosaar, A; Kõks, S; Bourin, M; Männistö, P T; Vasar, E

    1996-08-01

    Caerulein, a non-selective agonist of cholecystokinin (CCK) receptors, is shown to suppress locomotor activity in rodents via stimulation of CCK(A) receptors. In the present study we examined the possible involvement of nitric oxide (NO) in caerulein-induced hypolocomotion in rats. Caerulein (10 microg/kg) markedly decreased the horizontal and vertical components of locomotor activity in rats measured in dark motility boxes. Pretreatment with a nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME), at 5 mg/kg i.p., abolished the inhibiting action of caerulein on the horizontal activity, but did not affect the reduced frequency of rearing. The other doses of L-NAME (1, 10 and 20 mg/kg) were ineffective against caerulein. As L-NAME at this dose range does not stimulate locomotor activity, it is likely that NO is involved in the motor suppressant effect of systemically administered caerulein.

  8. Vestibular perceptual thresholds to angular rotation in acute unilateral vestibular paresis and with galvanic stimulation.

    PubMed

    Cutfield, Nicholas J; Cousins, Sian; Seemungal, Barry M; Gresty, Michael A; Bronstein, Adolfo M

    2011-09-01

    Studies of compensation of injury to the human vestibular system have, in the main, focused on the vestibular-ocular reflex. Probing vestibular perception allows more of the sensory pathway to be assessed. We present a novel paradigm for simultaneously testing vestibular perceptual and nystagmic thresholds to angular acceleration around an earth vertical axis. The perceptual thresholds can be modulated asymmetrically in normal subjects by DC galvanic stimulation with the head flexed in the roll plane, as expected from the main torsional plane of action of the galvanic stimulus. The perceptual and nystagmic thresholds were bilaterally elevated in acute vestibular neuritis, a unilateral condition, possibly due to central suppression of vestibular input. The degree of asymmetry in thresholds was small in comparison with the large caloric asymmetry present in the patients, indicating a relatively preserved capacity for near-threshold performance of the non-damaged labyrinth both in the "on" and "off" directions.

  9. Glucose-Stimulated Calcium Dynamics in Islets of Langerhans in Acute Mouse Pancreas Tissue Slices

    PubMed Central

    Stožer, Andraž; Dolenšek, Jurij; Rupnik, Marjan Slak

    2013-01-01

    In endocrine cells within islets of Langerhans calcium ions couple cell stimulation to hormone secretion. Since the advent of modern fluorimetry, numerous in vitro studies employing primarily isolated mouse islets have investigated the effects of various secretagogues on cytoplasmic calcium, predominantly in insulin-secreting beta cells. Due to technical limitations, insights of these studies are inherently limited to a rather small subpopulation of outermost cells. The results also seem to depend on various factors, like culture conditions and duration, and are not always easily reconcilable with findings in vivo. The main controversies regard the types of calcium oscillations, presence of calcium waves, and the level of synchronized activity. Here, we set out to combine the in situ acute mouse pancreas tissue slice preparation with noninvasive fluorescent calcium labeling and subsequent confocal laser scanning microscopy to shed new light on the existing controversies utilizing an innovative approach enabling the characterization of responses in many cells from all layers of islets. Our experiments reproducibly showed stable fast calcium oscillations on a sustained plateau rather than slow oscillations as the predominant type of response in acute tissue slices, and that calcium waves are the mechanistic substrate for synchronization of oscillations. We also found indirect evidence that even a large amplitude calcium signal was not sufficient and that metabolic activation was necessary to ensure cell synchronization upon stimulation with glucose. Our novel method helped resolve existing controversies and showed the potential to help answer important physiological questions, making it one of the methods of choice for the foreseeable future. PMID:23358454

  10. Muscarinic contribution to the acute cortical effects of vagus nerve stimulation

    NASA Astrophysics Data System (ADS)

    Nichols, Justin A.

    2011-12-01

    Electrical stimulation of the vagus nerve (VNS) has been used to treat more than 60,000 patients with drug-resistant epilepsy and is under investigation as a treatment for several other neurological disorders and conditions. Among these, VNS increases memory performance and enhances recovery of motor and cognitive function in animal models of traumatic brain injury. Recent research indicates that pairing brief VNS with tones multiple-times a day for several weeks induces long-term, input specific cortical plasticity, which can be used to re-normalize the pathological cortical reorganization and eliminate a behavioral correlate of chronic tinnitus in noise exposed rats. Despite the therapeutic potential, the mechanisms of action of VNS remain speculative. In chapter 2 of this dissertation, the acute effects of VNS on cortical synchrony, excitability, and temporal processing are examined. In anesthetized rats implanted with multi-electrode arrays, VNS increased and decorrelated spontaneous multi-unit activity, and suppressed entrainment to repetitive noise burst stimulation at 6 to 8 Hz, but not after systemic administration of the muscarinic antagonist scopolamine. Chapter 3 focuses on VNS-tone pairing induced cortical plasticity. Pairing VNS with a tone one hundred times in anesthetized rats resulted in frequency specific plasticity in 31% of the auditory cortex sites. Half of these sites exhibited a frequency specific increase in firing rate and half exhibited a frequency specific decrease. Muscarinic receptor blockade with scopolamine almost entirely prevented the frequency specific increases, but not decreases. Collectively, these experiments demonstrate the capacity for VNS to not only acutely influence cortical synchrony, and excitability, but to also influence temporal and spectral tuning via muscarinic receptor activation. These results strengthen the hypothesis that acetylcholine and muscarinic receptors are involved in the mechanisms of action of VNS and

  11. Effects of sodium butyrate on methamphetamine-sensitized locomotor activity.

    PubMed

    Harkness, John H; Hitzemann, Robert J; Edmunds, Stephanie; Phillips, Tamara J

    2013-02-15

    Neuroadaptations associated with behavioral sensitization induced by repeated exposure to methamphetamine (MA) appear to be involved in compulsive drug pursuit and use. Increased histone acetylation, an epigenetic effect resulting in altered gene expression, may promote sensitized responses to psychostimulants. The role of histone acetylation in the expression and acquisition of MA-induced locomotor sensitization was examined by measuring the effect of histone deacetylase inhibition by sodium butyrate (NaB). For the effect on expression, mice were treated repeatedly with MA (10 days of 2mg/kg MA) or saline (10 days), and then vehicle or NaB (630 mg/kg, intraperitoneally) was administered 30 min prior to MA challenge and locomotor response was measured. NaB treatment increased the locomotor response to MA in both acutely MA treated and sensitized animals. For acquisition, NaB was administered 30 min prior to each MA exposure (10 days of 1 or 2mg/kg), but not prior to the MA challenge test. Treatment with NaB during the sensitization acquisition period significantly increased locomotor activation by MA in sensitized mice only. NaB alone did not significantly alter locomotor activity. Acute NaB or MA, but not the combination, increased striatal acetylation at histone H4. Repeated treatment with MA, but not NaB or MA plus NaB, increased striatal acetylation at histone H3. Although increased histone acetylation may alter the expression of genes involved in acute locomotor response to MA and in the acquisition of MA-induced sensitization, results for acetylation at H3 and H4 showed little correspondence with behavior.

  12. Temporal gene expression profile after acute electroconvulsive stimulation in the rat.

    PubMed

    Dyrvig, Mads; Christiansen, Søren H; Woldbye, David P D; Lichota, Jacek

    2014-04-10

    Electroconvulsive therapy (ECT) remains one of the most effective treatments of major depression. It has been suggested that the mechanisms of action involve gene expression. In recent decades there have been several investigations of gene expression following both acute and chronic electroconvulsive stimulation (ECS). These studies have focused on several distinct gene targets but have generally included only few time points after ECS for measuring gene expression. Here we measured gene expression of three types of genes: Immediate early genes, synaptic proteins, and neuropeptides at six time points following an acute ECS. We find significant increases for c-Fos, Egr1, Neuritin 1 (Nrn 1), Bdnf, Snap29, Synaptotagmin III (Syt 3), Synapsin I (Syn 1), and Psd95 at differing time points after ECS. For some genes these changes are prolonged whereas for others they are transient. Npy expression significantly increases whereas the gene expression of its receptors Npy1r, Npy2r, and Npy5r initially decreases. These decreases are followed by a significant increase for Npy2r, suggesting anticonvulsive adaptations following seizures. In summary, we find distinct changes in mRNA quantities that are characteristic for each gene. Considering the observed transitory and inverse changes in expression patterns, these data underline the importance of conducting measurements at several time points post-ECS. PMID:24518690

  13. A case of salicylazosulfapyridine (Salazopyrin)-induced acute pancreatitis with positive lymphocyte stimulation test (LST).

    PubMed

    Chiba, M; Horie, Y; Ishida, H; Arakawa, H; Masamune, O

    1987-04-01

    A case of acute pancreatitis induced by salicylazosulfapyridine (Salazopyrin, SASP) was reported. A 33-year-old man with ulcerative colitis was given SASP. Five weeks later, P-type serum amylase was found to be elevated. The amylase/creatinine clearance ratio (ACCR) and serum lipase were also elevated. There were neither subjective symptoms nor abnormal ultrasound findings in the pancrease. Lymphocyte stimulation test (LST) to SASP was positive. Asymptomatic pancreatitis by SASP was suspected and SASP administration was halted. Afterwards the abnormal data became normal. Readministration of SASP because of relapse caused an episode of pancreatitis similar to the first occasion. LST was negative before SASP intake and became positive after intake. Desensitization to SASP was unsuccessful. LST was negative before attempting desensitization and became positive when the dosage of SASP increased to 100 mg daily. This is the second case of acute pancreatitis reported to be induced by SASP and this is the first case in which LST to SASP was described. To our knowledge, this is also the first case in which a positive LST was described in drug-induced pancreatitis. This case provides evidence for the role of delayed type hypersensitivity in the etiopathogenesis of SASP allergy and of dose-independent drug-induced pancreatitis. PMID:2885242

  14. Molecular and cellular mechanisms used in the acute phase of stimulated steroidogenesis.

    PubMed

    Thomson, M

    1998-01-01

    Steroidogenic tissue can respond almost immediately to a stimulatory hormonal stimuli. Recent findings are shedding light on the molecular and cellular mechanisms that are used to synthesize and export steroid hormones in the acute phase of stimulation. In addition to utilising the cAMP intracellular messenger system to convey a stimulatory message, steroidogenic cells may employ the protein kinase C, arachidonic acid, tyrosine phosphate and nitrous oxide systems. It has been proposed that cholesterol laden vesicles travel along a network of intermediate filaments to reach the mitochondria. Cholesterol may then translocate from the outer mitochondrial membrane to the inner via sites of contact between the two membranes. These contact sites may be composed of protein bridges which include the constituents, porin, the benzodiazepine receptor and GTP binding proteins. Cholesterol is transported through the contact sites to the inner membrane and on reaching cytochrome P450 side chain cleavage (P450scc), cholesterol is converted to pregnenolone. Pregnenolone is in turn converted to a range of steroid hormones via enzyme casades. GTP binding proteins may regulate the contact site between the inner and outer membranes and thereby modulate cholesterol flux to P450scc. In the adrenal and gonads the rate that cholesterol traverses the contact point to reach the inner membrane is accelerated by the steroidogenic acute regulatory protein. Newly synthesized steroid hormones are transported to the cell periphery for export via a mechanism that may utilise an ion exchange protein.

  15. The effects of granulocyte colony-stimulating factor in preclinical models of infection and acute inflammation.

    PubMed

    Marshall, John C

    2005-12-01

    The cytokine granulocyte colony-stimulating factor (G-CSF) is a potent endogenous trigger for the release of neutrophils from bone marrow stores and for their activation for enhanced antimicrobial activity. G-CSF has been widely evaluated in preclinical models of acute illness, with generally promising though divergent results. A recombinant G-CSF molecule has recently undergone clinical trials to assess its efficacy as an adjuvant therapy in community-acquired and nosocomial pneumonia, however, these studies failed to provide convincing evidence of benefit. We undertook a systematic review of the published literature reporting the effects of modulation of G-CSF in preclinical in vivo models to determine whether evidence of differential efficacy might explain the disappointing results of human studies and point to disease states that might be more likely to benefit from G-CSF therapy. G-CSF has been evaluated in 86 such studies involving a variety of different models. The strongest evidence of benefit was seen in studies involving intraperitoneal challenge with live organisms; benefit was evident whether the agent was given before or after challenge. G-CSF demonstrates anti-inflammatory activity in models of systemic challenge with viable organisms or endotoxin, but only when the agent is given before challenge; evidence of benefit after challenge was minimal. Preclinical models of intrapulmonary challenge only show efficacy when the cytokine is administered before the infectious challenge, and suggested harm in gram-negative pneumonia resulting from challenge with Escherichia coli or Klebsiella. There is little evidence for therapeutic efficacy in noninfectious models of acute illness. We conclude that the most promising populations for evaluation of G-CSF are neutropenic patients with invasive infection and patients with intra-abdominal infection, particularly those with the syndrome of tertiary, or recurrent, peritonitis. Significant variability in the design

  16. Erythropoiesis-stimulating agents increase the risk of acute stroke in patients with chronic kidney disease

    PubMed Central

    Seliger, Stephen L.; Zhang, Amy D.; Weir, Matthew R.; Walker, Loreen; Hsu, Van Doren; Parsa, Afshin; Diamantidis, Clarissa; Fink, Jeffrey C.

    2013-01-01

    Erythropoiesis-stimulating agents (ESAs) are effective in ameliorating anemia in chronic kidney disease (CKD). However, a recent trial in diabetic CKD patients suggested a greater stroke risk associated with full correction of anemia using ESAs. We performed a case-control study examining the association of incident ESA use with acute stroke in CKD patients, using national Veterans Affairs data. Patients with eGFR<60 cc/min/1.73m2 and outpatient hemoglobin (Hb)<12g/dL were included. Acute hospitalized stroke cases (N=2071) were identified using diagnosis codes and matched 1:5 to controls without stroke. Conditional logistic regression was used to estimate the association of ESA use with stroke, adjusting for potential confounders. After multivariate adjustment, ESA use (N=1026, 8.3%) was associated with 30% greater odds of stroke (odds ratio[OR]=1.30, 95% confidence interval[CI]: 1.06, 1.58). There was significant interaction (p=.015) between ESA use and cancer; ESA use was associated with 85% greater odds of stroke in cancer patients (95% CI: 1.26, 2.65), but not associated with stroke in patients without cancer (OR=1.07, 95% CI: 0.85, 1.35). ESA-treated patients with cancer received a median initial dose 2.5 to 4 times greater than ESA patients without cancer, but pre-ESA Hb and rate of Hb change did not differ between groups. Among a large national sample of anemic CKD patients, ESA treatment is associated with an increased risk of acute stroke, with the greatest effect among patients with cancer. PMID:21389972

  17. Dense arrays of micro-needles for recording and electrical stimulation of neural activity in acute brain slices

    NASA Astrophysics Data System (ADS)

    Gunning, D. E.; Beggs, J. M.; Dabrowski, W.; Hottowy, P.; Kenney, C. J.; Sher, A.; Litke, A. M.; Mathieson, K.

    2013-02-01

    Objective. This paper describes the design, microfabrication, electrical characterization and biological evaluation of a high-density micro-needle array. The array records from and electrically stimulates individual neurons simultaneously in acute slices of brain tissue. Approach. Acute slices, arguably the closest in-vitro model of the brain, have a damaged surface layer. Since electrophysiological recording methods rely heavily on electrode-cell proximity, this layer significantly attenuates the signal amplitude making the use of traditional planar electrodes unsuitable. To penetrate into the tissue, bypassing the tissue surface, and to record and stimulate neural activity in the healthy interior volume of the slice, an array of 61 micro-needles was fabricated. Main results. This device is shown to record extracellular action potentials from individual neurons in acute cortical slices with a signal to noise ratio of up to ˜15:1. Electrical stimulation of individual neurons is achieved with stimulation thresholds of 1.1-2.9 µA. Significance. The novelty of this system is the combination of close needle spacing (60 µm), needle heights of up to 250 µm and small (5-10 µm diameter) electrodes allowing the recording of single unit activity. The array is coupled to a custom-designed readout system forming a powerful electrophysiological tool that permits two-way electrode-cell communication with populations of neurons in acute brain slices.

  18. Heterogeneity of Left Ventricular Signal Characteristics in Response to Acute Vagal Stimulation during Ventricular Fibrillation in Dogs

    PubMed Central

    Nazeri, Alireza; Elayda, MacArthur A.; Dragnev, Lubomir; Frank, Christopher M.; Qu, Jihong; Afonso, Valtino X.; Rasekh, Abdi; Saeed, Mohammad; Cheng, Jie; Shuraih, Mossaab; Massumi, Ali; Razavi, Mehdi

    2011-01-01

    Studies have shown that long-term vagal stimulation is protective against ventricular fibrillation; however, the effects of acute vagal stimulation during ventricular fibrillation in the normal heart have not been investigated. We examined the effects of acute vagal stimulation on ventricular fibrillation in a canine model. In 4 dogs, we induced 30-second periods of ventricular fibrillation by means of intraventricular pacing. During 2 of the 4 periods of fibrillation that we analyzed, vagal stimulation was delivered through electrodes in the caudal ends of the vagus nerves. Noncontact unipolar electrograms were recorded from 3 ventricular regions: the basal septum, apical septum, and lateral free wall. We then computed the most frequent cycle length, mean organization index, and mean electrogram amplitude for each region. During fibrillation, vagal stimulation shortened the most frequent cycle lengths in the basal septum (P=0.02) and apical septum (P=0.0001), but not in the lateral wall (P=0.46). In addition, vagal stimulation significantly reduced the mean organization indices in the apical septum (P <0.001) and lateral wall (P <0.001), but not in the basal septum (P=0.19). Furthermore, vagal stimulation raised the mean electrogram amplitude in the basal septum (P <0.01) but lowered it substantially in the apical septum (P=0.00005) and lateral wall (P=0.00003). We conclude that vagal stimulation acutely affects the characteristics of ventricular fibrillation in canine myocardium in a spatially heterogeneous manner. This nonuniformity of response may have implications with regard to manipulating the autonomic system as a means of modifying the substrate for ventricular dysrhythmias. PMID:22199421

  19. Exendin-4 Decreases Amphetamine-induced Locomotor Activity

    PubMed Central

    Erreger, Kevin; Davis, Adeola R.; Poe, Amanda M.; Greig, Nigel H.; Stanwood, Gregg D.; Galli, Aurelio

    2012-01-01

    Glucagon-like peptide-1 (GLP-1) is released in response to nutrient ingestion and is a regulator of energy metabolism and consummatory behaviors through both peripheral and central mechanisms. The GLP-1 receptor (GLP-1R) is widely distributed in the central nervous system, however little is known about how GLP-1Rs regulate ambulatory behavior. The abused psychostimulant amphetamine (AMPH) promotes behavioral locomotor activity primarily by inducing the release of the neurotransmitter dopamine. Here, we identify the GLP-1R agonist exendin-4 (Ex-4) as a modulator of behavioral activation by AMPH. We report that in rats a single acute administration of Ex-4 decreases both basal locomotor activity as well as AMPH-induced locomotor activity. Ex-4 did not induce behavioral responses reflecting anxiety or aversion. Our findings implicate GLP-1R signaling as a novel modulator of psychostimulant-induced behavior and therefore a potential therapeutic target for psychostimulant abuse. PMID:22465309

  20. Acute lethal graft-versus-host disease stimulates cellular proliferation in the adult rat liver.

    PubMed

    Klein, R M; Clancy, J; Stuart, S

    1982-11-01

    The present investigation was designed to analyse the effects of acute lethal graft-versus-host disease (GVHD) in adult (DA x LEW)F1 rats on cellular proliferation within the liver. The influence of the host thymus on GVHD-induced proliferation was also assessed. From 1-28 days after initiation of GVHD [3H]thymidine ([3H]-TdR) was injected i.v. and rats were killed one hour later. Percentage labelled cells (LI) of periportal infiltrating cells (PIC), hepatocytes (H), and sinusoidal lining cells (SC) were counted. Mean values for control rats were 0.3 +/- 0.1% (H), 0.4 +/- 0.1% (SC) and 0.2 +/- 0.1% (PIC). GVHD rats demonstrated a significant increase in LI of PIC (days 1-21), SC (days 2-17) and H (days 2-17). Most labelled cells in PIC were large lymphocytes. Peak LI values were 7.0 +/- 1.0% PIC (day 17), 6.8 +/- 0.9% SC (day 17), and 5.2 +/- 0.9% H (day 7), with all cellular compartments returning to near normal LI values by day 28. Stimulation of cellular proliferation occurred in all three liver cell compartments in neonatally thymectomized (TXM) rats. The intensity of GVHD-induced cell proliferation was significantly decreased at day 7 in all compartments and PIC was dramatically decreased at day 21 in TXM-GVHD rats as compared to non-TXM-GVHD rats. It is hypothesized that the general stimulation of hepatocyte cell proliferation in GVHD is related to the secretion of lymphokines by primarily donor and secondarily host T cells in the periportal infiltrate. PMID:7172201

  1. Combined neuromodulatory interventions in acute experimental pain: assessment of melatonin and non-invasive brain stimulation

    PubMed Central

    da Silva, Nádia Regina Jardim; Laste, Gabriela; Deitos, Alícia; Stefani, Luciana Cadore; Cambraia-Canto, Gustavo; Torres, Iraci L. S.; Brunoni, Andre R.; Fregni, Felipe; Caumo, Wolnei

    2015-01-01

    Transcranial direct current stimulation (tDCS) and melatonin can effectively treat pain. Given their potentially complementary mechanisms of action, their combination could have a synergistic effect. Thus, we tested the hypothesis that compared to the control condition and melatonin alone, tDCS combined with melatonin would have a greater effect on pain modulatory effect, as assessed by quantitative sensory testing (QST) and by the pain level during the Conditioned Pain Modulation (CPM)-task. Furthermore, the combined treatment would have a greater cortical excitability effect as indicated by the transcranial magnetic stimulation (TMS) and on the serum BDNF level. Healthy males (n = 20), (aged 18–40 years), in a blinded, placebo-controlled, crossover, clinical trial, were randomized into three groups: sublingual melatonin (0.25 mg/kg) + a-tDCS, melatonin (0.25 mg/kg) + sham-(s)-tDCS, or sublingual placebo+sham-(s)-tDCS. Anodal stimulation (2 mA, 20 min) was applied over the primary motor cortex. There was a significant difference in the heat pain threshold (°C) for melatonin+a-tDCS vs. placebo+s-tDCS (mean difference: 4.86, 95% confidence interval [CI]: 0.9 to 8.63) and melatonin+s-tDCS vs. placebo+s-tDCS (mean: 5.16, 95% CI: 0.84 to 8.36). There was no difference between melatonin+s-tDCS and melatonin+a-tDCS (mean difference: 0.29, 95% CI: −3.72 to 4.23). The mean change from the baseline on amplitude of motor evocate potential (MEP) was significantly higher in the melatonin+a-tDCS (−19.96% ± 5.2) compared with melatonin+s-tDCS group (−1.36% ± 5.35) and with placebo+s-tDCS group (3.61% ± 10.48), respectively (p < 0.05 for both comparisons). While melatonin alone or combined with a-tDCS did not significantly affect CPM task result, and serum BDNF level. The melatonin effectively reduced pain; however, its association with a-tDCS did not present an additional modulatory effect on acute induced pain. PMID:25873871

  2. Childhood Acute Lymphoblastic Leukemia and Indicators of Early Immune Stimulation: A Childhood Leukemia International Consortium Study

    PubMed Central

    Rudant, Jérémie; Lightfoot, Tracy; Urayama, Kevin Y.; Petridou, Eleni; Dockerty, John D.; Magnani, Corrado; Milne, Elizabeth; Spector, Logan G.; Ashton, Lesley J.; Dessypris, Nikolaos; Kang, Alice Y.; Miller, Margaret; Rondelli, Roberto; Simpson, Jill; Stiakaki, Eftichia; Orsi, Laurent; Roman, Eve; Metayer, Catherine; Infante-Rivard, Claire; Clavel, Jacqueline

    2015-01-01

    The associations between childhood acute lymphoblastic leukemia (ALL) and several proxies of early stimulation of the immune system, that is, day-care center attendance, birth order, maternally reported common infections in infancy, and breastfeeding, were investigated by using data from 11 case-control studies participating in the Childhood Leukemia International Consortium (enrollment period: 1980–2010). The sample included 7,399 ALL cases and 11,181 controls aged 2–14 years. The data were collected by questionnaires administered to the parents. Pooled odds ratios and 95% confidence intervals were estimated by unconditional logistic regression adjusted for age, sex, study, maternal education, and maternal age. Day-care center attendance in the first year of life was associated with a reduced risk of ALL (odds ratio = 0.77, 95% confidence interval: 0.71, 0.84), with a marked inverse trend with earlier age at start (P < 0.0001). An inverse association was also observed with breastfeeding duration of 6 months or more (odds ratio = 0.86, 95% confidence interval: 0.79, 0.94). No significant relationship with a history of common infections in infancy was observed even though the odds ratio was less than 1 for more than 3 infections. The findings of this large pooled analysis reinforce the hypothesis that day-care center attendance in infancy and prolonged breastfeeding are associated with a decreased risk of ALL. PMID:25731888

  3. Pleiotrophin gene transcription in the rat nucleus accumbens is stimulated by an acute dose of amphetamine.

    PubMed

    Le Grevès, Pierre

    2005-05-30

    Pleiotrophin (PTN) is a heparin-binding protein with diverse functions. For example, it stimulates neurite outgrowth, mitogenesis, repair and differentiation, effects that are similar to those of the neurotrophins. The neurotrophins have, in recent years, been implicated as mediators of structural plasticity, suggested to underlie the development of behavioural sensitisation to many drugs of abuse. Since NMDA receptor antagonists inhibit the underlying morphological changes, the mechanisms are thought to be highly dependent on the activation of the NMDA subtype of glutamate receptors. To investigate if PTN has a possible role in structural plasticity, its responsiveness to an acute dose of amphetamine was studied. Amphetamine is a well-characterised inducer of sensitisation. A group of rats was systemically treated with amphetamine (10 mg/kg) and the effect on the PTN gene transcription was studied 4 h later. A separate group of rats was pretreated with the NMDA receptor antagonist MK-801 (0.25 mg/kg) 30 min prior to the administration of amphetamine. Northern blot analysis revealed a significant increase of the PTN transcript after the administration of amphetamine. However, MK-801 pretreatment did not block this effect; in contrast, it further increased PTN mRNA levels. As the response to the two drugs resembles the one earlier reported on the gene expression of brain-derived neurotrophic factor (BDNF), the present results suggest that PTN may be an attractive protein to study further in the field of synaptic plasticity.

  4. Intracranial self-stimulation in rats: sensitization to an opioid antagonist following acute or chronic treatment with mu opioid agonists.

    PubMed

    Easterling, K W; Holtzman, S G

    1997-04-01

    Acute mu opioid agonist pretreatment (4 hr) dose-dependently sensitizes rats responding for food reinforcement to the rate-decreasing effects of naltrexone (NTX). In the present study, adult rats were trained to respond in an intracranial self-stimulation autotitration procedure in which responding resulted in electrical stimulation of the medial forebrain bundle that decreased in frequency until reset to the initial value. In an acute sensitization experiment, pretreatment (4 hr) doses of 3.0 and 10 mg/kg morphine reduced the ED25 value for the intracranial self-stimulation rate-decreasing effect of NTX from 28.2 mg/kg to 0.29 and 0.02 mg/kg, respectively. All mu-selective opioid agonists tested, fentanyl > levorphanol > methadone > morphine > meperidine (listed in order of decreasing potency), produced similar large increases in sensitivity to NTX. Acute sensitization was not induced by the kappa-selective opioid agonist spiradoline, the dextrorotary enantiomer of levorphanol, dextrorphan, or the nonopioid drugs d-amphetamine and pentobarbital. Pretreatment with morphine for 10 days by continuous subcutaneous infusion (15 mg/kg/day) reduced the ED25 value of NTX from 28.2 to 0.002 +/- 1.48 mg/kg. The correlation of decreases in ED25 values for the rate-decreasing effect of NTX after both acute and chronic morphine administration is consistent with the theory that acute agonist-induced sensitization reflects receptor-mediated changes occurring early in the development of physical dependence.

  5. Hemodynamic results of acute thoracic aortomyoplasty in a canine model: comparison of stimulation regimens.

    PubMed

    Dumcius, Arimantas; Bavarskis, Egidijus; Bytautas, Algimantas; Chekanov, Valeri

    2003-01-01

    Our previous investigations in a sheep model demonstrated that when electrical stimulation (ES) was applied to a newly mobilized latissimus dorsi muscle (LDM) in a work-rest regimen and at a rate of 15 contractions per minute, it did not damage this muscle. This regimen was used twice during a 60 minute period, once a day for 16 days, with no LDM damage. The goal of our current investigation was to apply this regimen in studies of acute thoracic aortomyoplasty. In two experimental groups, we mobilized the LDM but left it in situ. Two hours later, contractile force (CF) testing (20 g/kg preload, six impulses per burst) was performed until CF dropped to 50% of baseline. Recovery time needed to completely restore CF was calculated. In one group (six sheep), we applied continuous ES; in another (six sheep), we applied ES in a work-rest regimen (1 min work, 1 min rest). In two other groups of six dogs each, aortomyoplasty was performed; the LDM flap was subjected to ES immediately postoperatively (six impulses per burst; ventricular-LDM delay, 290 ms). Again, one group received continuous ES, and the other received work-rest ES. In the mobilized LDM under continuous ES, CF decreased to 50% of baseline values after 52 +/- 8 minutes, and returned to baseline after 84 +/- 16 minutes of rest. Under the work-rest regimen, this decrease took 105 +/- 8 minutes, and the return to baseline took 25 +/- 6 minutes (p < 0.05). In LDM subjected to work-rest ES, light microscopy revealed no additional damage to LDM tissue than was seen immediately after mobilization. However, LDM subjected to continuous ES had evidence of increased basophilic degeneration and wavy fibers. After acute thoracic aortomyoplasty, assisted hemodynamic values under the continuous ES exceeded unassisted values for only 40 minutes, compared with 100 minutes for work-rest ES (p < 0.05). When counterpulsation was completed, for continuous ES, recovery time to baseline was 96 +/- 9 minutes; for work-rest ES, it

  6. Ultrasound guided, painful electrical stimulation of lumbar facet joint structures: an experimental model of acute low back pain.

    PubMed

    O'Neill, Søren; Graven-Nielsen, Thomas; Manniche, Claus; Arendt-Nielsen, Lars

    2009-07-01

    Quantitative sensory testing has indicated generalized muscle hyperalgesia in patients with chronic low back pain. The temporal development of such hyperalgesia is not well understood. The aim of the present study was to demonstrate whether generalized muscle hyperalgesia can develop within minutes of acute low back pain using a new experimental model of lumbar facet joint pain. Thirteen healthy volunteers were included and baseline pressure pain thresholds were assessed at eight separate sites, outside the area of evoked low back and referred pain. Using ultrasonography, two electrode needles were placed either side of a lumbar facet joint (right L3-4) and used to induce experimental low back pain for 10 min with continuous stimulation. Thresholds, stimulus-response relationships, distribution and quality of the electrically induced pain were recorded. Electrical facet joint stimulation induced low back pain and pain referral into the anterior leg, ipsilaterally, proximal to the knee, similar to what is observed clinically. Pressure pain thresholds did not change significantly before, during and after facet joint stimulation. In conclusion, we describe a novel model of acute experimental low back pain and demonstrate that generalized hyperalgesia did not develop within minutes of acute low back pain. PMID:19376652

  7. Acute-phase response protein serum amyloid A stimulates renal tubule formation: studies in vitro and in vivo.

    PubMed

    Kelly, Katherine J; Kluve-Beckerman, Barbara; Dominguez, Jesus H

    2009-06-01

    Serum amyloid A protein (SAA) surges 1,000-fold in the blood of acute-phase animals, and yet its function during these acute events remains unknown. We report herein that SAA stimulates a developmental program in cultured NRK-52E cells that culminates in differentiated and functional tubules that feature a proximal tubule phenotype. We also found strong SAA expression in states of tubule formation (in utero stage) and regeneration (recovery from ischemia-reperfusion injury). These data lend support to a novel view of a more localized renal acute-phase reaction, where renal SAA may act as a paracrine or autocrine molecule that promotes tubule formation during development and repair.

  8. Effects of chronic and acute stimulants on brain functional connectivity hubs.

    PubMed

    Konova, Anna B; Moeller, Scott J; Tomasi, Dardo; Goldstein, Rita Z

    2015-12-01

    The spatial distribution and strength of information processing 'hubs' are essential features of the brain׳s network topology, and may thus be particularly susceptible to neuropsychiatric disease. Despite growing evidence that drug addiction alters functioning and connectivity of discrete brain regions, little is known about whether chronic drug use is associated with abnormalities in this network-level organization, and if such abnormalities could be targeted for intervention. We used functional connectivity density (FCD) mapping to evaluate how chronic and acute stimulants affect brain hubs (i.e., regions with many short-range or long-range functional connections). Nineteen individuals with cocaine use disorders (CUD) and 15 healthy controls completed resting-state fMRI scans following a randomly assigned dose of methylphenidate (MPH; 20mg) or placebo. Short-range and long-range FCD maps were computed for each participant and medication condition. CUD participants had increased short-range and long-range FCD in the ventromedial prefrontal cortex, posterior cingulate/precuneus, and putamen/amygdala, which in areas of the default mode network correlated with years of use. Across participants, MPH decreased short-range FCD in the thalamus/putamen, and decreased long-range FCD in the supplementary motor area and postcentral gyrus. Increased density of short-range and long-range functional connections to default mode hubs in CUD suggests an overrepresentation of these resource-expensive hubs. While the effects of MPH on FCD were only partly overlapping with those of CUD, MPH-induced reduction in the density of short-range connections to the putamen/thalamus, a network of core relevance to habit formation and addiction, suggests that some FCD abnormalities could be targeted for intervention.

  9. Movement Exploration and Locomotor Skills.

    ERIC Educational Resources Information Center

    National Center on Educational Media and Materials for the Handicapped, Columbus, OH.

    Selected from the National Instructional Materials Information System (NIMIS)--a computer based on-line interactive retrieval system on special education materials--the bibliography covers 23 materials for teaching movement exploration and locomotor skills to handicapped students at all educational levels. Entries are presented in order of NIMIS…

  10. Further characterization and high-resolution mapping of quantitative trait loci for ethanol-induced locomotor activity.

    PubMed

    Demarest, K; Koyner, J; McCaughran, J; Cipp, L; Hitzemann, R

    2001-01-01

    Differential sensitivity to the stimulant effects of ethanol on locomotor activity is determined in part by genetic differences. Among inbred strains of mice, moderate doses of ethanol (1-2 g/kg) stimulate locomotor activity in some strains, e.g., the DBA/2J (D2), but only mildly affect activity in other strains, e.g., C57BL/6J (B6) (Crabbe et al., 1982, 1983; Crabbe, 1986; Dudek and Phillips, 1990; Dudek et al., 1991; Dudek and Tritto, 1994). Quantitative trait loci (QTL) for the acute ethanol (1.5 g/kg) locomotor response has been identified in the BXD recombinant inbred (RI) series (N = 25 strains), a C57BL/6J x DBA/2J (B6D2) F2 intercross (N = 1800), and heterogeneous stock (HS) mice (N = 550). QTLs detected (p < .01) in the RI series were found on chromosomes 1, 2, and 6 and these QTLs were expressed in a time-dependent fashion. The QTLs on chromosomes 1 and 2 were confirmed in the F2 intercross at p < 10(-7) or better. HS mice from G32 to G35 were used to fine-map the chromosome 2 QTL. Compared to the consensus map, the genetic map in the HS animals was expanded 10- to 15-fold. Over the region flanked by D2Mit94 to D2Mit304, three separate QTLs were detected in the HS animals. The data obtained confirm the usefulness of HS mice for the fine-mapping of QTLs to a resolution of 2 cM or less.

  11. Early applied electric field stimulation attenuates secondary apoptotic responses and exerts neuroprotective effects in acute spinal cord injury of rats.

    PubMed

    Zhang, C; Zhang, G; Rong, W; Wang, A; Wu, C; Huo, X

    2015-04-16

    Injury potential, which refers to a direct current voltage between intact and injured nerve ends, is mainly caused by injury-induced Ca2+ influx. Our previous studies revealed that injury potential increased with the onset and severity of spinal cord injury (SCI), and an application of applied electric field stimulation (EFS) with the cathode distal to the lesion could delay and attenuate injury potential formation. As Ca2+ influx is also considered as a major trigger for secondary injury after SCI, we hypothesize that EFS would protect an injured spinal cord from secondary injury and consequently improve functional and pathological outcomes. In this study, rats were divided into three groups: (1) sham group, laminectomy only; (2) control group, subjected to SCI only; and (3) EFS group, received EFS immediately post-injury with the injury potential modulated to 0±0.5 mV by EFS. Functional recovery of the hind limbs was assessed using the Basso, Beattie, and Bresnahan (BBB) locomotor scale. Results revealed that EFS-treated rats exhibited significantly better locomotor function recovery. Luxol fast blue staining was performed to assess the spared myelin area. Immunofluorescence was used to observe the number of myelinated nerve fibers. Ultrastructural analysis was performed to evaluate the size of myelinated nerve fibers. Findings showed that the EFS group rats exhibited significantly less myelin loss and had larger and more myelinated nerve fibers than the control group rats in dorsal corticospinal tract (dCST) 8 weeks after SCI. Furthermore, we found that EFS inhibited the activation of calpain and caspase-3, as well as the expression of Bax, as detected by Western blot analysis. Moreover, EFS decreased cellular apoptosis, as measured by TUNEL, within 4 weeks post-injury. Results suggest that early EFS could significantly reduce spinal cord degeneration and improve functional and historical recovery. Furthermore, these neuroprotective effects may be related to

  12. Characterization of pulse amplitude and pulse rate modulation for a human vestibular implant during acute electrical stimulation

    NASA Astrophysics Data System (ADS)

    Nguyen, T. A. K.; DiGiovanna, J.; Cavuscens, S.; Ranieri, M.; Guinand, N.; van de Berg, R.; Carpaneto, J.; Kingma, H.; Guyot, J.-P.; Micera, S.; Perez Fornos, A.

    2016-08-01

    Objective. The vestibular system provides essential information about balance and spatial orientation via the brain to other sensory and motor systems. Bilateral vestibular loss significantly reduces quality of life, but vestibular implants (VIs) have demonstrated potential to restore lost function. However, optimal electrical stimulation strategies have not yet been identified in patients. In this study, we compared the two most common strategies, pulse amplitude modulation (PAM) and pulse rate modulation (PRM), in patients. Approach. Four subjects with a modified cochlear implant including electrodes targeting the peripheral vestibular nerve branches were tested. Charge-equivalent PAM and PRM were applied after adaptation to baseline stimulation. Vestibulo-ocular reflex eye movement responses were recorded to evaluate stimulation efficacy during acute clinical testing sessions. Main results. PAM evoked larger amplitude eye movement responses than PRM. Eye movement response axes for lateral canal stimulation were marginally better aligned with PRM than with PAM. A neural network model was developed for the tested stimulation strategies to provide insights on possible neural mechanisms. This model suggested that PAM would consistently cause a larger ensemble firing rate of neurons and thus larger responses than PRM. Significance. Due to the larger magnitude of eye movement responses, our findings strongly suggest PAM as the preferred strategy for initial VI modulation.

  13. Modulation of Locomotor Activation by the Rostromedial Tegmental Nucleus

    PubMed Central

    Lavezzi, Heather N; Parsley, Kenneth P; Zahm, Daniel S

    2015-01-01

    The rostromedial tegmental nucleus (RMTg) is a strong inhibitor of dopamine neurons in the ventral tegmental area (VTA) reported to influence neurobiological and behavioral responses to reward omission, aversive and fear-eliciting stimuli, and certain drugs of abuse. Insofar as previous studies implicate ventral mesencephalic dopamine neurons as an essential component of locomotor activation, we hypothesized that the RMTg also should modulate locomotion activation. We observed that bilateral infusions into the RMTg of the gamma-aminobutyric acid A (GABAA) agonist, muscimol, indeed activate locomotion. Alternatively, bilateral RMTg infusions of the GABAA receptor antagonist, bicuculline, suppress robust activations of locomotion elicited in two distinct ways: (1) by disinhibitory stimulation of neurons in the lateral preoptic area and (2) by return of rats to an environment previously paired with amphetamine administration. The possibility that suppressive locomotor effects of RMTg bicuculline infusions were due to unintended spread of drug to the nearby VTA was falsified by a control experiment showing that bilateral infusions of bicuculline into the VTA produce activation rather than suppression of locomotion. These results objectively implicate the RMTg in the regulation of locomotor activation. The effect is important because much evidence reported in the literature suggests that locomotor activation can be an involuntary behavioral expression of expectation and/or want without which the willingness to execute adaptive behaviors is impaired. PMID:25164249

  14. Effects of nicotinic acetylcholine receptor agonists in assays of acute pain-stimulated and pain-depressed behaviors in rats.

    PubMed

    Freitas, Kelen C; Carroll, F Ivy; Negus, S Stevens

    2015-11-01

    Agonists at nicotinic acetylcholine receptors (nAChRs) constitute one drug class being evaluated as candidate analgesics. Previous preclinical studies have implicated α4β2 and α7 nAChRs as potential mediators of the antinociceptive effects of (–)-nicotine hydrogen tartrate (nicotine) and other nAChR agonists; however, these studies have relied exclusively on measures of pain-stimulated behavior, which can be defined as behaviors that increase in frequency, rate, or intensity after presentation of a noxious stimulus. Pain is also associated with depression of many behaviors, and drug effects can differ in assays of pain-stimulated versus pain-depressed behavior. Accordingly, this study compared the effects of nicotine, the selective α4/6β2 agonist 5-(123I)iodo-3-[2(S)-2-azetidinylmethoxy]pyridine (5-I-A-85380), and the selective α7 agonist N-(3R)-1-azabicyclo(2.2.2)oct-3-yl-4-chlorobenzamide in assays of pain-stimulated and pain-depressed behavior in male Sprague-Dawley rats. Intraperitoneal injection of dilute lactic acid served as an acute noxious stimulus to either stimulate a stretching response or depress the operant responding, which is maintained by electrical brain stimulation in an intracranial self-stimulation (ICSS) procedure. Nicotine produced a dose-dependent, time-dependent, and mecamylamine-reversible blockade of both acid-stimulated stretching and acid-induced depression of ICSS. 5-I-A-85380 also blocked both acid-stimulated stretching and acid-induced depression of ICSS, whereas N-(3R)-1-azabicyclo(2.2.2)oct-3-yl-4-chlorobenzamide produced no effect in either procedure. Both nicotine and 5-I-A-85380 were ≥10-fold more potent in blocking the acid-induced depression of ICSS than in blocking the acid-induced stimulation of stretching. These results suggest that stimulation of α4β2 and/or α6β2 nAChRs may be especially effective to alleviate the signs of pain-related behavioral depression in rats; however, nonselective behavioral effects

  15. Resting-state fMRI study of acute migraine treatment with kinetic oscillation stimulation in nasal cavity.

    PubMed

    Li, Tie-Qiang; Wang, Yanlu; Hallin, Rolf; Juto, Jan-Erik

    2016-01-01

    Kinetic oscillatory stimulation (KOS) in the nasal cavity is a non-invasive cranial nerve stimulation method with promising efficacy for acute migraine and other inflammatory disorders. For a better understanding of the underlying neurophysiological mechanisms of KOS treatment, we conducted a resting-state functional magnetic resonance imaging (fMRI) study of 10 acute migraine patients and 10 normal control subjects during KOS treatment in a 3 T clinical MRI scanner. The fMRI data were first processed using a group independent component analysis (ICA) method and then further analyzed with a voxel-wise 3-way ANOVA modeling and region of interest (ROI) of functional connectivity metrics. All migraine participants were relieved from their acute migraine symptoms after 10-20 min KOS treatment and remained migraine free for 3-6 months. The resting-state fMRI result indicates that migraine patients have altered intrinsic functional activity in the anterior cingulate, inferior frontal gyrus and middle/superior temporal gyrus. KOS treatment gave rise to up-regulated intrinsic functional activity for migraine patients in a number of brain regions involving the limbic and primary sensory systems, while down regulating temporally the activity for normal controls in a few brain areas, such as the right dorsal posterior insula and inferior frontal gyrus. The result of this study confirms the efficacy of KOS treatment for relieving acute migraine symptoms and reducing attack frequency. Resting-state fMRI measurements demonstrate that migraine is associated with aberrant intrinsic functional activity in the limbic and primary sensory systems. KOS in the nasal cavity gives rise to the adjustment of the intrinsic functional activity in the limbic and primary sensory networks and restores the physiological homeostasis in the autonomic nervous system. PMID:27622142

  16. Acute deep brain stimulation in the thalamic reticular nucleus protects against acute stress and modulates initial events of adult hippocampal neurogenesis.

    PubMed

    Magdaleno-Madrigal, Víctor Manuel; Pantoja-Jiménez, Christopher Rodrigo; Bazaldúa, Adrián; Fernández-Mas, Rodrigo; Almazán-Alvarado, Salvador; Bolaños-Alejos, Fernanda; Ortíz-López, Leonardo; Ramírez-Rodriguez, Gerardo Bernabé

    2016-11-01

    Deep brain stimulation (DBS) is used as an alternative therapeutic procedure for pharmacoresistant psychiatric disorders. Recently the thalamic reticular nucleus (TRN) gained attention due to the description of a novel pathway from the amygdala to this nucleus suggesting that may be differentially disrupted in mood disorders. The limbic system is implicated in the regulation of these disorders that are accompanied by neuroplastic changes. The hippocampus is highly plastic and shows the generation of new neurons, process affected by stress but positively regulated by antidepressant drugs. We explored the impact of applying acute DBS to the TRN (DBS-TRN) in male Wistar rats exposed to acute stress caused by the forced-swim Porsolt's test (FST) and on initial events of hippocampal neurogenesis. After the first session of forced-swim, rats were randomly subdivided in a DBS-TRN and a Sham group. Stimulated rats received 10min of DBS, thus the depressant-like behavior reflected as immobility was evaluated in the second session of forced-swim. Locomotricity was evaluated in the open field test. Cell proliferation and doublecortin-associated cells were quantified in the hippocampus of other cohorts of rats. No effects of electrode implantation were found in locomotricity. Acute DBS-TRN reduced immobility in comparison to the Sham group (p<0.001). DBS-TRN increased cell proliferation (Ki67 or BrdU-positive cells; p=0.02, p=0.02) and the number of doublecortin-cells compared to the Sham group (p<0.02). Similar effects were found in rats previously exposed to the first session of forced-swim. Our data could suggest that TRN brain region may be a promising target for DBS to treat intractable depression.

  17. Acute deep brain stimulation in the thalamic reticular nucleus protects against acute stress and modulates initial events of adult hippocampal neurogenesis.

    PubMed

    Magdaleno-Madrigal, Víctor Manuel; Pantoja-Jiménez, Christopher Rodrigo; Bazaldúa, Adrián; Fernández-Mas, Rodrigo; Almazán-Alvarado, Salvador; Bolaños-Alejos, Fernanda; Ortíz-López, Leonardo; Ramírez-Rodriguez, Gerardo Bernabé

    2016-11-01

    Deep brain stimulation (DBS) is used as an alternative therapeutic procedure for pharmacoresistant psychiatric disorders. Recently the thalamic reticular nucleus (TRN) gained attention due to the description of a novel pathway from the amygdala to this nucleus suggesting that may be differentially disrupted in mood disorders. The limbic system is implicated in the regulation of these disorders that are accompanied by neuroplastic changes. The hippocampus is highly plastic and shows the generation of new neurons, process affected by stress but positively regulated by antidepressant drugs. We explored the impact of applying acute DBS to the TRN (DBS-TRN) in male Wistar rats exposed to acute stress caused by the forced-swim Porsolt's test (FST) and on initial events of hippocampal neurogenesis. After the first session of forced-swim, rats were randomly subdivided in a DBS-TRN and a Sham group. Stimulated rats received 10min of DBS, thus the depressant-like behavior reflected as immobility was evaluated in the second session of forced-swim. Locomotricity was evaluated in the open field test. Cell proliferation and doublecortin-associated cells were quantified in the hippocampus of other cohorts of rats. No effects of electrode implantation were found in locomotricity. Acute DBS-TRN reduced immobility in comparison to the Sham group (p<0.001). DBS-TRN increased cell proliferation (Ki67 or BrdU-positive cells; p=0.02, p=0.02) and the number of doublecortin-cells compared to the Sham group (p<0.02). Similar effects were found in rats previously exposed to the first session of forced-swim. Our data could suggest that TRN brain region may be a promising target for DBS to treat intractable depression. PMID:27435420

  18. Sex-related effects of agmatine on caffeine-induced locomotor activity in Swiss Webster mice.

    PubMed

    Uzbay, Tayfun; Kose, Akin; Kayir, Hakan; Ulusoy, Gokhan; Celik, Turgay

    2010-03-25

    In mammalian brain, agmatine is an endogenous amine that is synthesized through the decarboxylation of l-arginine by arginine decarboxylase. It has been proposed as a new neurotransmitter and/or neuromodulator. It was shown that agmatine had some beneficial effects in animal models of opioid and alcohol addiction. Locomotor stimulant properties of drugs such as ethanol, caffeine, nicotine and amphetamine have been linked to their addictive properties. The present study investigates the effects of agmatine on caffeine-induced locomotor activity both in male and female mice. Adult Swiss Webster mice were used in the study. Locomotor activity was measured for 30min immediately following caffeine (2.5, 5, 10 and 20mg/kg, i.p.) or saline treatments. Agmatine (5, 10 and 20mg/kg, i.p.) were injected 20min before caffeine (2.5 and 5mg/kg, i.p.) administration. In both sexes, agmatine (5-20mg/kg) were also tested for ability to depress or stimulate locomotor activity in the absence of caffeine. Caffeine (5mg/kg) induced a significant increase in locomotor activity of both male and female mice. There was no significant difference in the locomotor-activating effects of caffeine between male and female mice. Agmatine blocked the caffeine (5mg/kg)-induced locomotor stimulation dose dependently in male but not female mice. Agmatine had not any effect on the lower dose (2.5mg/kg) of caffeine in both sexes. These results suggest that agmatine has sex-related inhibitory effects on caffeine-induced locomotor activity in Swiss Webster mice, and male mice are more sensitive than the females to the effect of agmatine.

  19. Electrical stimulation as a treatment intervention to improve function, edema or pain following acute lateral ankle sprains: A systematic review.

    PubMed

    Feger, Mark A; Goetschius, John; Love, Hailey; Saliba, Sue A; Hertel, Jay

    2015-11-01

    The purpose of this systematic review was to assess whether electrical stimulation (ES), when used in conjunction with a standard treatment, can reduce levels of functional impairment, edema, and pain compared to a standard treatment alone, in patients following a lateral ankle sprain. We searched PubMed, CINAHL, SportDiscus, and Medline (OVID) databases through June 2014 using the terms "ankle sprain or ankle sprains or ligament injury or ligamentous injury," and "electric stimulation or electric stimulation or electrotherapy." Our search identified four randomized control trials, of which, neuromuscular ES and high-voltage pulsed stimulation were the only two ES modalities utilized. Effect sizes and 95% confidence intervals (CI) were estimated using Cohen's d for comparison between treatment groups. Three of four effect sizes for function had 95% CI that crossed zero. Twenty-four of the thirty-two effect sizes for edema had 95% CI that crossed zero. All effect sizes for pain had 95% CI that crossed zero. Therefore, the use of ES is not recommended as a means to improve function, reduce edema, or decrease pain in the treatment of acute lateral ankle sprains.

  20. Protein ingestion acutely inhibits insulin-stimulated muscle carnitine uptake in healthy young men1

    PubMed Central

    Shannon, Chris E; Nixon, Aline V; Greenhaff, Paul L; Stephens, Francis B

    2016-01-01

    Background: Increasing skeletal muscle carnitine content represents an appealing intervention in conditions of perturbed lipid metabolism such as obesity and type 2 diabetes but requires chronic l-carnitine feeding on a daily basis in a high-carbohydrate beverage. Objective: We investigated whether whey protein ingestion could reduce the carbohydrate load required to stimulate insulin-mediated muscle carnitine accretion. Design: Seven healthy men [mean ± SD age: 24 ± 5 y; body mass index (in kg/m2): 23 ± 3] ingested 80 g carbohydrate, 40 g carbohydrate + 40 g protein, or control (flavored water) beverages 60 min after the ingestion of 4.5 g l-carnitine tartrate (3 g l-carnitine; 0.1% 2[H]3-l-carnitine). Serum insulin concentration, net forearm carnitine balance (NCB; arterialized-venous and venous plasma carnitine difference × brachial artery flow), and carnitine disappearance (Rd) and appearance (Ra) rates were determined at 20-min intervals for 180 min. Results: Serum insulin and plasma flow areas under the curve (AUCs) were similarly elevated by carbohydrate [4.5 ± 0.8 U/L · min (P < 0.01) and 0.5 ± 0.6 L (P < 0.05), respectively] and carbohydrate+protein [3.8 ± 0.6 U/L · min (P < 0.01) and 0.4 ± 0.6 L (P = 0.05), respectively] consumption, respectively, compared with the control visit (0.04 ± 0.1 U/L · min and −0.5 ± 0.2 L). Plasma carnitine AUC was greater after carbohydrate+protein consumption (3.5 ± 0.5 mmol/L · min) than after control and carbohydrate visits [2.1 ± 0.2 mmol/L · min (P < 0.05) and 1.9 ± 0.3 mmol/L · min (P < 0.01), respectively]. NCB AUC with carbohydrate (4.1 ± 3.1 μmol) was greater than during control and carbohydrate-protein visits (−8.6 ± 3.0 and −14.6 ± 6.4 μmol, respectively; P < 0.05), as was Rd AUC after carbohydrate (35.7 ± 25.2 μmol) compared with control and carbohydrate consumption [19.7 ± 15.5 μmol (P = 0.07) and 14.8 ± 9.6 μmol (P < 0.05), respectively]. Conclusions: The insulin

  1. The glial cell modulators, ibudilast and its amino analog, AV1013, attenuate methamphetamine locomotor activity and its sensitization in mice.

    PubMed

    Snider, Sarah E; Vunck, Sarah A; van den Oord, Edwin J C G; Adkins, Daniel E; McClay, Joseph L; Beardsley, Patrick M

    2012-03-15

    Over 800,000 Americans abuse the psychomotor stimulant, methamphetamine, yet its abuse is without an approved medication. Methamphetamine induces hypermotor activity, and sensitization to this effect is suggested to represent aspects of the addiction process. Methamphetamine's regulation of 3'-5'-cyclic adenosine monophosphate (cAMP) levels may be partially responsible for its behavioral effects, and compounds that inhibit phosphodiesterase (PDE), the enzyme that degrades cAMP, can alter methamphetamine-induced behaviors. Methamphetamine also activates glial cells and causes a subsequent increase in pro-inflammatory cytokine levels. Modulation of glial cell activation is associated with changes in behavioral responses, and substances that oppose inflammatory activity can attenuate drug-induced behaviors. Ibudilast (aka AV411; 3-isobutyryl-2-isopropylpyrazolo-[1,5-a]pyridine), inhibits both PDE and glial pro-inflammatory activity. Ibudilast's amino analog, AV1013, modulates similar glial targets but negligibly inhibits PDE. The present study determined whether ibudilast and AV1013 would attenuate methamphetamine-induced locomotor activity and its sensitization in C57BL/6J mice. Mice were treated b.i.d. with ibudilast (1.8-13 mg/kg), AV1013 (10-56 mg/kg) or their vehicles intraperitoneally for 7 days, beginning 48 h before 5 days of daily 1-h locomotor activity tests. Each test was initiated by either a methamphetamine (3 mg/kg) or a saline injection. Ibudilast significantly (P<0.05) reduced the acute, chronic, and sensitization effects of methamphetamine's locomotor activity without significantly affecting activity by itself. AV1013 had similar anti-methamphetamine effects, suggesting that glial cell activity, by itself, can modulate methamphetamine's effects and perhaps serve as a medication target for its abuse.

  2. Inhibition of Cdk5 in the nucleus accumbens enhances the locomotor-activating and incentive-motivational effects of cocaine.

    PubMed

    Taylor, Jane R; Lynch, Wendy J; Sanchez, Hayde; Olausson, Peter; Nestler, Eric J; Bibb, James A

    2007-03-01

    Neuronal adaptations in striatal dopamine signaling have been implicated in enhanced responses to addictive drugs. Cyclin-dependent kinase 5 (Cdk5) regulates striatal dopamine signaling and is a downstream target gene of the transcription factor DeltaFosB, which accumulates in striatal neurons after chronic cocaine exposure. Here we investigated the role of Cdk5 activity in the nucleus accumbens (NAc) on cocaine-induced locomotor sensitization, responding for reward-associated stimuli (conditioned reinforcement), and cocaine self-administration under a progressive ratio schedule. Repeated infusions of the Cdk5 inhibitor roscovitine into the NAc before cocaine injections augmented both the development and expression of cocaine sensitization without having any intrinsic stimulant actions of its own. Additionally, repeated intra-NAc infusions of roscovitine to saline-injected rats enhanced locomotor responses to a subsequent cocaine challenge. Similar effects were found after infusions of another Cdk5 inhibitor, olomoucine, but not its inactive congener, iso-olomoucine. Repeated inhibition of Cdk5 within the NAc also robustly enhanced the incentive-motivational effects of cocaine, similar to the effect of prior repeated cocaine exposure. The enhanced responding with conditioned reinforcement induced by cocaine persisted at least 2 weeks after the final roscovitine infusion. NAc infusions of olomoucine also produced acute and enduring increases in "breakpoints" achieved on a progressive ratio schedule for cocaine reinforcement. These results demonstrate profound and persistent effects of NAc Cdk5 inhibition on locomotor sensitization and incentive-motivational processes and provide direct evidence for a role for striatal Cdk5-induced alterations in the brain's long-term adaptations to cocaine.

  3. Nonreplicating, Cyst-Defective Type II Toxoplasma gondii Vaccine Strains Stimulate Protective Immunity against Acute and Chronic Infection

    PubMed Central

    2015-01-01

    Live attenuated vaccine strains, such as type I nonreplicating uracil auxotroph mutants, are highly effective in eliciting lifelong immunity to virulent acute infection by Toxoplasma gondii. However, it is currently unknown whether vaccine-elicited immunity can provide protection against acute infection and also prevent chronic infection. To address this problem, we developed nonreverting, nonreplicating, live attenuated uracil auxotroph vaccine strains in the type II Δku80 genetic background by targeting the deletion of the orotidine 5′-monophosphate decarboxylase (OMPDC) and uridine phosphorylase (UP) genes. Deletion of OMPDC induced a severe uracil auxotrophy with loss of replication, loss of virulence in mice, and loss of the ability to develop cysts and chronic infection. Vaccination of mice using type II Δku80 Δompdc mutants stimulated a fully protective CD8+ T cell-dependent immunity that prevented acute infection by type I and type II strains of T. gondii, and this vaccination also severely reduced or prevented cyst formation after type II challenge infection. Nonreverting, nonreplicating, and non-cyst-forming Δompdc mutants provide new tools to examine protective immune responses elicited by vaccination with a live attenuated type II vaccine. PMID:25776745

  4. Hepatic fatty acid biosynthesis is more responsive to protein than carbohydrate in rainbow trout during acute stimulations.

    PubMed

    Dai, Weiwei; Panserat, Stéphane; Kaushik, Sadasivam; Terrier, Frédéric; Plagnes-Juan, Elisabeth; Seiliez, Iban; Skiba-Cassy, Sandrine

    2016-01-01

    The link between dietary carbohydrate/protein and de novo lipogenesis (DNL) remains debatable in carnivorous fish. We aimed to evaluate and compare the response of hepatic lipogenic gene expression to dietary carbohydrate intake/glucose and dietary protein intake/amino acids (AAs) during acute stimulations using both in vivo and in vitro approaches. For the in vivo trial, three different diets and a controlled-feeding method were employed to supply fixed amount of dietary protein or carbohydrate in a single meal; for the in vitro trial, primary hepatocytes were stimulated with a low or high level of glucose (3 mM or 20 mM) and a low or high level of AAs (one-fold or four-fold concentrated AAs). In vitro data showed that a high level of AAs upregulated the expression of enzymes involved in DNL [fatty acid synthase (FAS) and ATP citrate lyase (ACLY)], lipid bioconversion [elongation of very long chain fatty acids like-5 (Elovl5), Elovl2, Δ6 fatty acyl desaturase (D6D) and stearoyl-CoA desaturase-1 (SCD1)], NADPH production [glucose-6-phosphate dehydrogenase (G6PDH) and malic enzyme (ME)], and transcriptional factor sterol regulatory element binding protein 1-like, while a high level of glucose only elevated the expression of ME. Data in trout liver also showed that high dietary protein intake induced higher lipogenic gene expression (FAS, ACLY, and Elovl2) regardless of dietary carbohydrate intake, while high carbohydrate intake markedly suppressed the expression of acetyl-CoA carboxylase (ACC) and Elovl5. Overall, we conclude that, unlike rodents or humans, hepatic fatty acid biosynthetic gene expression in rainbow trout is more responsive to dietary protein intake/AAs than dietary carbohydrate intake/glucose during acute stimulations. This discrepancy probably represents one important physiological and metabolic difference between carnivores and omnivores. PMID:26491101

  5. Hepatic fatty acid biosynthesis is more responsive to protein than carbohydrate in rainbow trout during acute stimulations.

    PubMed

    Dai, Weiwei; Panserat, Stéphane; Kaushik, Sadasivam; Terrier, Frédéric; Plagnes-Juan, Elisabeth; Seiliez, Iban; Skiba-Cassy, Sandrine

    2016-01-01

    The link between dietary carbohydrate/protein and de novo lipogenesis (DNL) remains debatable in carnivorous fish. We aimed to evaluate and compare the response of hepatic lipogenic gene expression to dietary carbohydrate intake/glucose and dietary protein intake/amino acids (AAs) during acute stimulations using both in vivo and in vitro approaches. For the in vivo trial, three different diets and a controlled-feeding method were employed to supply fixed amount of dietary protein or carbohydrate in a single meal; for the in vitro trial, primary hepatocytes were stimulated with a low or high level of glucose (3 mM or 20 mM) and a low or high level of AAs (one-fold or four-fold concentrated AAs). In vitro data showed that a high level of AAs upregulated the expression of enzymes involved in DNL [fatty acid synthase (FAS) and ATP citrate lyase (ACLY)], lipid bioconversion [elongation of very long chain fatty acids like-5 (Elovl5), Elovl2, Δ6 fatty acyl desaturase (D6D) and stearoyl-CoA desaturase-1 (SCD1)], NADPH production [glucose-6-phosphate dehydrogenase (G6PDH) and malic enzyme (ME)], and transcriptional factor sterol regulatory element binding protein 1-like, while a high level of glucose only elevated the expression of ME. Data in trout liver also showed that high dietary protein intake induced higher lipogenic gene expression (FAS, ACLY, and Elovl2) regardless of dietary carbohydrate intake, while high carbohydrate intake markedly suppressed the expression of acetyl-CoA carboxylase (ACC) and Elovl5. Overall, we conclude that, unlike rodents or humans, hepatic fatty acid biosynthetic gene expression in rainbow trout is more responsive to dietary protein intake/AAs than dietary carbohydrate intake/glucose during acute stimulations. This discrepancy probably represents one important physiological and metabolic difference between carnivores and omnivores.

  6. Acute central stimulation of luteinizing hormone by parenterally administered N-methyl-D,L-aspartic acid in the male rat.

    PubMed

    Schainker, B A; Cicero, T J

    1980-02-24

    N-methyl-D,L-aspartic acid (NMA), a potent neuroexcitatory and neurotoxic glutamic acid analogue, acutely elevated serum luteinizing hormone (LH) in male rats when given subcutaneously in doses below those that cause morphologically detectable hypothalamic neurotoxicity. NMA treatment in doses known to be subtoxic by morphological criteria fails to induce any permanent neuroendocrine dysfunction as assessed by several physiological parameters, including NMA responsiveness after multiple consecutive dosees spaced at 24 h intervals, subsequent basal LH levels and subsequent postcastration LH elevations. Like naloxone, NMA elevates serum LH by reversibly stimulating a central labile pool. Neither has a direct stimulatory effect on the pituitary in vitro. Treatment with either attenuates naloxone-induced LH stimulation 2 h, but not 14 days, later while pituitary responsiveness to LHRH in vivo remains unaltered. Neither NMA nor naloxone is dependent upon testosterone for its LH stimulatory action and both increase serum LH through physiological mechanisms responsive to testosterone inhibition. It is concluded that subtoxic LH stimulating doses of NMA provide a useful tool in discerning neurotransmitter systems involved in central control of the hypothalamic-pituitary-gonadal axis.

  7. Pre-stimulation of the kallikrein system in cisplatin-induced acute renal injury: An approach to renoprotection

    SciTech Connect

    Aburto, Andrés; Barría, Agustín; Cárdenas, Areli; Carpio, Daniel; Figueroa, Carlos D.; Burgos, Maria E.; Ardiles, Leopoldo

    2014-10-15

    Antineoplastic treatment with cisplatin is frequently complicated by nephrotoxicity. Although oxidative stress may be involved, the pathogenic mechanisms responsible for renal damage have not been completely clarified. In order to investigate the role of the renal kinin system in this condition, a group of rats was submitted to high potassium diet to stimulate the synthesis and excretion of tissue kallikrein 1 (rKLK1) previous to an intraperitoneal injection of 7 mg/kg cisplatin. A significant reduction in lipoperoxidation, evidenced by urinary excretion of malondialdehyde and renal immunostaining of hidroxy-nonenal, was accompanied by a decline in apoptosis. Coincident with these findings we observed a reduction in the expression of renal KIM-1 suggesting that renoprotection may be occurring. Stimulation or indemnity of the renal kinin system deserves to be evaluated as a complementary pharmacological measure to diminish cisplatin nephrotoxicity. - Highlights: • Mechanisms of cisplatin-induced-renal damage have not been completely clarified. • Cisplatin induces oxidative stress and apoptosis. • The renal kallikrein-kinin system is protective in experimental acute renal damage. • Kallikrein stimulation reduces oxidative stress and apoptosis induced by cisplatin. • Protection of the kallikrein-kinin system may reduce cisplatin toxicity.

  8. Locomotor patterns in cerebellar ataxia.

    PubMed

    Martino, G; Ivanenko, Y P; Serrao, M; Ranavolo, A; d'Avella, A; Draicchio, F; Conte, C; Casali, C; Lacquaniti, F

    2014-12-01

    Several studies have demonstrated how cerebellar ataxia (CA) affects gait, resulting in deficits in multijoint coordination and stability. Nevertheless, how lesions of cerebellum influence the locomotor muscle pattern generation is still unclear. To better understand the effects of CA on locomotor output, here we investigated the idiosyncratic features of the spatiotemporal structure of leg muscle activity and impairments in the biomechanics of CA gait. To this end, we recorded the electromyographic (EMG) activity of 12 unilateral lower limb muscles and analyzed kinematic and kinetic parameters of 19 ataxic patients and 20 age-matched healthy subjects during overground walking. Neuromuscular control of gait in CA was characterized by a considerable widening of EMG bursts and significant temporal shifts in the center of activity due to overall enhanced muscle activation between late swing and mid-stance. Patients also demonstrated significant changes in the intersegmental coordination, an abnormal transient in the vertical ground reaction force and instability of limb loading at heel strike. The observed abnormalities in EMG patterns and foot loading correlated with the severity of pathology [International Cooperative Ataxia Rating Scale (ICARS), a clinical ataxia scale] and the changes in the biomechanical output. The findings provide new insights into the physiological role of cerebellum in optimizing the duration of muscle activity bursts and the control of appropriate foot loading during locomotion.

  9. Granulocyte-macrophage colony-stimulating factor (GM-CSF) induces antiapoptotic and proapoptotic signals in acute myeloid leukemia.

    PubMed

    Faderl, Stefan; Harris, David; Van, Quin; Kantarjian, Hagop M; Talpaz, Moshe; Estrov, Zeev

    2003-07-15

    High levels of cytokines are associated with a poor prognosis in acute myeloid leukemia (AML). However, cytokines may induce, on one hand, survival factor expression and cell proliferation and, on the other hand, expression of inhibitory signals such as up-regulation of suppressors of cytokine signaling (SOCS) and induce apoptotic cell death. Because blasts from patients with AML express high procaspase protein levels, we asked whether granulocyte-macrophage colony-stimulating factor (GM-CSF) enhances procaspase protein production in AML cells. In the GM-CSF-responsive OCIM2 AML cell line, GM-CSF induced signal transducer and activator of transcription 5 (Stat 5) phosphorylation, up-regulated cyclin D2, and stimulated cell cycle progression. Concurrently, GM-CSF stimulated expression of SOCS-2 and -3 and of procaspases 2 and 3 and induced caspase 3 activation, poly(ADP[adenosine 5'-diphosphate]-ribose) polymerase (PARP) cleavage, and apoptotic cell death. The Janus kinase (Jak)-Stat inhibitor AG490 abrogated GM-CSF-induced expression of procaspase 3 and activation of caspase 3. Under the same conditions GM-CSF up-regulated production of BAX as well as Bcl-2, Bcl-XL, survivin, and XIAP. GM-CSF also increased procaspase 3 protein levels in OCI/AML3 and Mo7e cells, suggesting that this phenomenon is not restricted to a single leukemia cell line. Our data suggest that GM-CSF exerts a dual effect: it stimulates cell division but contemporaneously up-regulates Jak-Stat-dependent proapoptotic proteins. Up-regulation of procaspase levels in AML is thus a beacon for an ongoing growth-stimulatory signal.

  10. Locomotor Expertise Predicts Infants' Perseverative Errors

    ERIC Educational Resources Information Center

    Berger, Sarah E.

    2010-01-01

    This research examined the development of inhibition in a locomotor context. In a within-subjects design, infants received high- and low-demand locomotor A-not-B tasks. In Experiment 1, walking 13-month-old infants followed an indirect path to a goal. In a control condition, infants took a direct route. In Experiment 2, crawling and walking…

  11. Hindlimb movement in the cat induced by amplitude-modulated stimulation using extra-spinal electrodes

    NASA Astrophysics Data System (ADS)

    Tai, Changfeng; Wang, Jicheng; Shen, Bing; Wang, Xianchun; Roppolo, James R.; de Groat, William C.

    2008-06-01

    Hindlimb movement in the cat induced by electrical stimulation with an amplitude-modulated waveform of the dorsal surface of the L5-S1 spinal cord or the L5-S1 dorsal/ventral roots was investigated before and after acute spinal cord transection at the T13-L1 level. Stimulation of the spinal cord or dorsal/ventral root at the same spinal segment induced similar movements including coordinated multi-joint flexion or extension. The induced movements changed from flexion to extension when the stimulation was moved from rostral (L5) to caudal (S1) spinal segments. Stimulation of a dorsal or ventral root on one side induced only ipsilateral hindlimb movement. However, stimulation on the dorsal surface of the spinal cord along the midline or across the spinal cord induced bilateral movements. The extension induced by stimulation of L7 dorsal root produced the largest ground reaction force that was strong enough to support body weight. Dorsal root stimulation induced a larger ground reaction force than ventral root stimulation and produced a more graded recruitment curve. Stepping at different speeds could be generated by combined stimulation of the rostral (L5) and the caudal (L6/L7) spinal segments with an appropriate timing between the different stimulation channels. Acute transection of the spinal cord did not change the responses indicating that the induced movements did not require the involvement of the supraspinal locomotor centers. The methods and the stimulation strategy developed in this study might be utilized to restore locomotor function after spinal cord injury.

  12. Sigma ligand S14905 and locomotor activity in mice.

    PubMed

    Hascoet, M; Bourin, M; Payeur, R; Lombet, A; Peglion, J L

    1995-12-01

    The binding and locomotor profile of a new sigma ligand, S14905, (isobutyl-N-(1-indan-2yl-piperid-4-yl)N-methyl carbamate, furamate) was studied. The binding data revealed that S14905 has a high affinity for sigma receptors and very low affinity for both dopamine D1 and D2 receptors. We have demonstrated that this sigma ligand prevents the locomotor stimulation induced by morphine (32 and 64 mg/kg), cocaine (16 mg/kg), amphetamine (4 mg/kg) and adrafinil (32 mg/kg) at doses lower than those required to depress spontaneous locomotor activity. The antagonism observed in the present study seems to be more specific of morphine induced hyperlocomotion. The high affinity of this compound for sigma receptors makes it a good choice to study the role of this receptor in the CNS. In addition, S14905 does not directly block dopamine receptors but may modulate them in some manner, and would thus warrant further study as a potential atypical antipsychotic agent, and an antagonist for the hyperactivity induced by opiate drug. PMID:8998401

  13. Sigma ligand S14905 and locomotor activity in mice.

    PubMed

    Hascoet, M; Bourin, M; Payeur, R; Lombet, A; Peglion, J L

    1995-12-01

    The binding and locomotor profile of a new sigma ligand, S14905, (isobutyl-N-(1-indan-2yl-piperid-4-yl)N-methyl carbamate, furamate) was studied. The binding data revealed that S14905 has a high affinity for sigma receptors and very low affinity for both dopamine D1 and D2 receptors. We have demonstrated that this sigma ligand prevents the locomotor stimulation induced by morphine (32 and 64 mg/kg), cocaine (16 mg/kg), amphetamine (4 mg/kg) and adrafinil (32 mg/kg) at doses lower than those required to depress spontaneous locomotor activity. The antagonism observed in the present study seems to be more specific of morphine induced hyperlocomotion. The high affinity of this compound for sigma receptors makes it a good choice to study the role of this receptor in the CNS. In addition, S14905 does not directly block dopamine receptors but may modulate them in some manner, and would thus warrant further study as a potential atypical antipsychotic agent, and an antagonist for the hyperactivity induced by opiate drug.

  14. Fluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns

    PubMed Central

    Cruchet, Steeve; Gustafson, Kyle; Benton, Richard; Floreano, Dario

    2015-01-01

    The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs—locomotor bouts—matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior. PMID:26600381

  15. Central noradrenergic mechanisms and the acute stress response during painful stimulation.

    PubMed

    Chapman, C Richard; Bradshaw, David H; Donaldson, Gary W; Jacobson, Robert C; Nakamura, Yoshio

    2014-12-01

    Events that threaten tissue integrity including noxious stimulation activate central noradrenergic circuits, particularly locus coeruleus and its projections. Recent advances in theory hold that an adaptive, defensive shift in brain activity takes place in response to threat. In principle, this shift may accentuate the autonomic and central biomarkers of the perception of painful events and the experience of pain itself. We have examined the effects of an alpha-2 agonist on pupil dilation responses, skin conductance responses, near field somatosensory evoked potentials and pain reports in normal volunteers undergoing repeated trials of painful fingertip stimulation delivered at low, medium and high intensities. In a double-blinded study, 114 healthy male and female volunteers underwent repeated noxious stimulation under baseline, placebo and active drug conditions where the active drug was the alpha-2 agonist tizanidine 4 mg. In contrast to baseline and placebo conditions, tizanidine 4 mg significantly reduced the magnitudes of the mean pupil dilation response, the mean skin conductance response, the mean near field somatosensory evoked potential peak-to-peak amplitude and the mean pain intensity rating. Stimulus intensity significantly altered all three biomarkers and the pain report in a graded fashion. There were no sex differences. These findings support the hypotheses that painful events activate central noradrenergic circuits, and that these circuits play a role in the autonomic and central arousal associated with pain. PMID:25122041

  16. Effects of Acute and Repeated Administration of Oxycodone and Naloxone-Precipitated Withdrawal on Intracranial Self-Stimulation in Rats.

    PubMed

    Wiebelhaus, Jason M; Walentiny, D Matthew; Beardsley, Patrick M

    2016-01-01

    Incidence of prescription opioid abuse and overdose, often led by oxycodone, continues to increase, producing twice as many overdose deaths as heroin. Surprisingly, preclinical reports relevant to oxycodone's abuse-related effects are relatively sparse considering its history and patient usage. The goal of this study was to characterize dose- and time-dependent effects of acute and repeated oxycodone administration in a frequency-rate intracranial self-stimulation (ICSS) procedure, an assay often predictive of drug-related reinforcing effects, in male Sprague-Dawley rats. We hypothesized that oxycodone would produce a biphasic profile of rate-increasing and rate-decreasing effects maintained by ICSS similar to μ-opioid receptor agonists. Oxycodone (0.03, 0.3, 1, and 3 mg/kg, s.c.) produced dose- and time-dependent alterations on ICSS, with the predicted biphasic profile of rate-increasing effects at lower stimulation frequencies followed by rate-decreasing effects at higher frequencies. Peak effects were observed between 30 and 60 minutes, which were reversed by naloxone pretreatment (30 minutes). Tolerance to rate-decreasing effects was observed over a 5-day period when rats were treated with 1 mg/kg oxycodone twice a day. Subsequently, the dosing regimen was increased to 3 mg/kg twice a day over 10 days, although further marked tolerance did not develop. When then challenged with 10 mg/kg naloxone, a significant suppression below baseline levels of ICSS-maintained responding occurred indicative of dependence that recovered to baseline within 5 hours. The results of this study provide the first report of acute and chronic effects of oxycodone on responding maintained by ICSS presentation and the use of ICSS-maintained responding to characterize its tolerance and dependence effects.

  17. Drugs that Target Dopamine Receptors: Changes in Locomotor Activity in Larval Zebrafish

    EPA Science Inventory

    As part of an effort at the US Environmental Protection Agency to develop a rapid in vivo screen for prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae. This includes assessing the acute effects of drugs known...

  18. Neuroinflammation and disruption in working memory in aged mice after acute stimulation of the peripheral innate immune system.

    PubMed

    Chen, Jing; Buchanan, Jessica B; Sparkman, Nathan L; Godbout, Jonathan P; Freund, Gregory G; Johnson, Rodney W

    2008-03-01

    Acute cognitive disorders are common in elderly patients with peripheral infections but it is not clear why. Here, we injected old and young mice with Escherichia coli lipopolysaccharide (LPS) to mimic an acute peripheral infection and separated the hippocampal neuronal cell layers from the surrounding hippocampal tissue by laser capture microdissection and measured mRNA for several inflammatory cytokines (IL-1 beta, IL-6, and TNFalpha) that are known to disrupt cognition. The results showed that old mice had an increased inflammatory response in the hippocampus after LPS compared to younger cohorts. Immunohistochemistry further showed more microglial cells in the hippocampus of old mice compared to young adults, and that more IL-1 beta-positive cells were present in the dentate gyrus and in the CA1, CA2, and CA3 regions of LPS-treated old mice compared to young adults. In a test of cognition that required animals to effectively integrate new information with a preexisting schema to complete a spatial task, we found that hippocampal processing is more easily disrupted in old animals than in younger ones when the peripheral innate immune system is stimulated. Collectively, the results suggest that aging can facilitate neurobehavioral complications associated with peripheral infections probably by allowing the over expression of inflammatory cytokines in brain areas that mediate cognitive processing. PMID:17951027

  19. Pharmacological stimulation of Hypoxia Inducible Factor-1α facilitates the corticosterone response to a mild acute stressor

    PubMed Central

    Harrell, Constance S.; Rowson, Sydney A.; Neigh, Gretchen N.

    2015-01-01

    While both glucocorticoids (the principal output of the hypothalamic-pituitary-adrenal axis) and oxidative stress have been implicated in outcomes due to an excessive or prolonged stress response, the precise mechanisms linking these two systems remain poorly elucidated. One potential mediator between the hypothalamic-pituitary-adrenal axis and oxidative stress is the Hypoxia Inducible Factor-1 (HIF-1) pathway. HIF-1 is an oxygen-responsive transcription factor with diverse effects including changes in cellular metabolism. The experiments in this manuscript sought to determine if pharmacological stimulation of HIF-1α via administration of dimethyloxalylglycine (DMOG) would facilitate the corticosterone response to a mild acute stressor. DMOG administration significantly increased plasma corticosterone five minutes after an acute airpuff without changing baseline plasma corticosterone or plasma corticosterone level two hours post-startle. DMOG administration also reduced hippocampal gene expression of the pro-translocation co-chaperone for the glucocorticoid receptor, FKBP4, two hours after airpuff startle. At this same two-hour time point, hippocampal expression of FKBP5, an anti-translocation co-chaperone of glucocorticoid receptor, in the DMOG-treated group was also positively correlated with plasma corticosterone levels. These data indicate that there is significant crosstalk between the hypothalamic-pituitary-axis and the HIF-1 pathway and extend the current knowledge of glucocorticoid and hypoxia interactions in an ethologically relevant stress model. PMID:26037418

  20. Behavioral, neurochemical and molecular changes after acute deep brain stimulation of the infralimbic prefrontal cortex.

    PubMed

    Jiménez-Sánchez, Laura; Linge, Raquel; Campa, Leticia; Valdizán, Elsa M; Pazos, Ángel; Díaz, Álvaro; Adell, Albert

    2016-09-01

    Deep brain stimulation (DBS) is a treatment that has shown some efficacy in treatment-resistant depression. In particular, DBS of the subcallosal cingulate gyrus (Brodmann's area 25, Cg25) has been successfully applied to treat refractory depression. In the rat, we have demonstrated that DBS applied to infralimbic (IL) cortex elevates the levels of glutamate and monoamines in the prefrontal cortex, and requires the stimulation of cortical α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors for its antidepressant-like effects. However, the molecular targets of IL DBS are not fully known. To gain insight into these pathways, we have investigated whether IL DBS is able to reverse the behavioral, biochemical and molecular changes exhibited by the olfactory bulbectomized (OBX) rat. Our results revealed that 1 h IL DBS diminished hyperlocomotion, hyperemotionality and anhedonia, and increased social interaction shown by the OBX rats. Further, IL DBS increased prefrontal efflux of glutamate and serotonin in both sham-operated and OBX rats. With regard to molecular targets, IL DBS increases the synthesis of brain-derived neurotrophic factor (BDNF) and the GluA1 AMPA receptor subunit, and stimulates the Akt/mammalian target of rapamycin (mTOR) as well as the AMPA receptor/c-AMP response element binding (CREB) pathways. Temsirolimus, a known in vivo mTOR blocker, suppressed the antidepressant-like effect of IL DBS in naïve rats in the forced swim test, thus demonstrating for the first time that mTOR signaling is required for the antidepressant-like effects of IL DBS, which is in line with the antidepressant response of other rapid-acting antidepressant drugs.

  1. β-Arrestin-biased AT1R stimulation promotes cell survival during acute cardiac injury.

    PubMed

    Kim, Ki-Seok; Abraham, Dennis; Williams, Barbara; Violin, Jonathan D; Mao, Lan; Rockman, Howard A

    2012-10-15

    Pharmacological blockade of the ANG II type 1 receptor (AT1R) is a common therapy for treatment of congestive heart failure and hypertension. Increasing evidence suggests that selective engagement of β-arrestin-mediated AT1R signaling, referred to as biased signaling, promotes cardioprotective signaling. Here, we tested the hypothesis that a β-arrestin-biased AT1R ligand TRV120023 would confer cardioprotection in response to acute cardiac injury compared with the traditional AT1R blocker (ARB), losartan. TRV120023 promotes cardiac contractility, assessed by pressure-volume loop analyses, while blocking the effects of endogenous ANG II. Compared with losartan, TRV120023 significantly activates MAPK and Akt signaling pathways. These hemodynamic and biochemical effects were lost in β-arrestin-2 knockout (KO) mice. In response to cardiac injury induced by ischemia reperfusion injury or mechanical stretch, pretreatment with TRV120023 significantly diminishes cell death compared with losartan, which did not appear to be cardioprotective. This cytoprotective effect was lost in β-arrestin-2 KO mice. The β-arrestin-biased AT1R ligand, TRV120023, has cardioprotective and functional properties in vivo, which are distinct from losartan. Our data suggest that this novel class of drugs may provide an advantage over conventional ARBs by supporting cardiac function and reducing cellular injury during acute cardiac injury.

  2. Acute stimulation of feeding with repeated injections of morphine sulphate to non-obese and fatty Zucker rats.

    PubMed

    Thornhill, J A; Saunders, W S

    1983-01-01

    Food intake studies with genetically obese rodents show that these hyperphagic animals, which have increased central and peripheral levels of endogenous opioid peptides (E.O.P.), have an increased sensitivity to the suppressive feeding effects of narcotic antagonists compared to lean controls. Feeding experiments were conducted to determine if genetically obese rats, with enhanced E.O.P., have a reduced sensitivity toward the narcotic agonist property of stimulated feeding seen in non-obese rats. Food intake was monitored continuously over each experimental day in groups of female Sprague-Dawley (S.D.,), fatty Zucker (fa/fa) and their lean heterozygote littermates (Fa/fa) following subcutaneous a.m. injections of sterile saline, morphine sulphate (5 or 10 mg/kg) or naloxone HCl (10 mg/kg) and during recovery. Acute 4-h post-injection feeding was reduced in all groups with the first 10 mg/kg injection of morphine sulphate. With repeated morphine administration, a phase of stimulated feeding occurred in both obese and non-obese groups. Due to the post-injection phase of vigorous feeding with repeated morphine injections, the circadian pattern of day/night food intake of all groups was altered such that daytime feeding increased from saline control levels. Naloxone HCl abolished the post-injection phase of stimulated feeding seen with chronic morphine injections and reduced 4-h post-injection food intakes. Plasma glucose and serum insulin levels were decreased in non-obese rats from saline controls of blood samples taken 2-h following the 7th daily M.S. injection. These levels increased again by the end of the recovery period. No blood glucose or insulin changes were seen in the obese Zucker rats with morphine administration.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Soft tissue impact characterisation kit (STICK) for ex situ investigation of heart rhythm responses to acute mechanical stimulation.

    PubMed

    Cooper, Patricia J; Epstein, Avi; Macleod, Iain A; Schaaf, Sarah T M; Sheldon, Judith; Boulin, Christian; Kohl, Peter

    2006-01-01

    Both mechanical induction and mechanical termination of arrhythmias have been reported in man. Examples include pre-cordial impacts by sports implements (baseballs, pucks) that can trigger arrhythmias, including ventricular fibrillation, or via the so-called pre-cordial thump, used as an emergency resuscitation measure to convert arrhythmias to normal sinus node rhythm. These interventions have been partially reproduced in experimental studies on whole animals. Relating observations at the system's level to underlying mechanisms has been difficult, however, largely because of: (i) a deficit in efficient and affordable pharmacological agents to selectively target (sub-)cellular responses in whole animal studies, and (ii) the lack of suitable experimental models to study the above responses at intermediate levels of functional and structural integration, such as the isolated heart or cardiac tissue. This paper presents a soft tissue impact characterisation kit (STICK), suitable for quantitative investigations into the effects of acute mechanical stimulation on cardiac electro-mechanical function in rodent isolated heart or tissue preparations. The STICK offers independent control over a range of relevant biophysical parameters, such as impact location and energy, pre-impact projectile speed and contact area, as well as over the timing of a mechanical stimulus relative to the cardiac cycle (monitored via electrocardiogram, ECG, here recorded directly from the cardiac surface). Projectile deceleration upon interaction with the tissue is monitored, contact-free, with a resolution of 175 microm, providing information on tissue deformation dynamics, force, pressure and work of the mechanical intervention. In order to study functional effects of cardiac mechanical stimulation in the absence of tissue damage, impacts must be limited (for juvenile Guinea pig heart) to 2-2.5 mJ in the slack left ventricle (diastolic impact) and 5-10 mJ in contracture (systolic impact), as

  4. Acute Neuropsychological Effects of Methylphenidate in Stimulant Drug-Naive Boys with ADHD II--Broader Executive and Non-Executive Domains

    ERIC Educational Resources Information Center

    Rhodes, Sinead M.; Coghill, David R.; Matthews, Keith

    2006-01-01

    Background: Accumulating evidence supports methylphenidate-induced enhancement of neuropsychological functioning in attention deficit hyperactivity disorder (ADHD). The present study was designed to investigate the acute effects of the psychostimulant drug, methylphenidate (MPH), on neuropsychological performance in stimulant naive boys with ADHD.…

  5. Acute exercise stimulates macrophage function: possible role of NF-kappaB pathways.

    PubMed

    Silveira, Elza M S; Rodrigues, Mariana F; Krause, Maurício S; Vianna, Damiana R; Almeida, Bibiana S; Rossato, Juliane S; Oliveira, Lino P; Curi, Rui; de Bittencourt, Paulo I Homem

    2007-01-01

    Moderate physical activity when performed on a regular basis presents a number of benefits to the whole organism, especially regarding immune system function, such as augmenting resistance to infections and to cancer growth. Although glutamine production by active muscle cells as well as neuroendocrine alterations mediated by the chronic adaptation to exercise may play a role, the entire mechanism by which exercise makes the immune system aware of challenges remains mostly uncovered. This is particularly true for the effects of an acute exercise session on immune function. In this work, circulating monocytes/macrophages from sedentary rats submitted to an acute (1 h) swimming session were tested for the ability of phagocytosing zymosan particles, phorbol myristate acetate (PMA)-induced hydrogen peroxide production, nitric oxide (NO) release (assessed by nitrate and nitrite production) and the expression of NO synthases (NOS-1, NOS-2 and NOS-3). The results showed that an exercise bout induced a 2.4-fold rise in macrophage phagocytic capacity (p = 0.0041), a 9.6-fold elevation in PMA-induced hydrogen peroxide release into the incubation media (1-h, p = 0.0022) and a 95.5%-augmentation in nitrite basal production (1-h incubation; p = 0.0220), which was associated with a marked expression of NOS-2 (the inducible NOS isoform; p = 0.0319), but not in other NOS gene products. Although NOS-2 expression is nuclear factor-kappaB (NF-kappaB)-dependent, no systemic oxidative stress was found, as inferred from the data of plasma TBARS and glutathione disulphide (GSSG) to glutathione (GSH) ratio in circulating blood erythrocytes which remained constant after the acute exercise. Also, no stressful situation seemed to be faced by monocytes/macrophages, since the expression of the 70-kDa heat shock protein (HSP70) remained unchanged. We conclude that NF-kappaB-dependent induction of NOS-2 and macrophage activation must be related to local factor(s) produced in the surroundings of

  6. Pituitary-gonadal response to acute I.M. stimulation with clomiphene citrate in normal men.

    PubMed

    Miechi, H R; Turner, D; Guitelman, A; Aparicio, N J; Schwarzstein, L

    1975-06-01

    In order to asses the effect of acute i.m. injection of clomiphene citrate (CC) on LH, FSH, and testosterone (T) secretion, five normal, fertile men received 5 mg of the drug dissolved in 2 ml 0.9% saline, while a further five were injected 10 mg of the same preparation. All tests were performed at 8 a.m. Blood samples were drawn at 0, 30, 60, 120 and 180 minutes of the injection. Serum LH, FSH, and T values were determined by the double antibody radioimmunoassay technique. A significant rise of the LH, FSH, and T levels was obtained in both groups. Peak LH values were obtained at 30 minutes (average), whereas FSH and T peaks occurred at 60 minutes. The 180-minute values were similar to basal. The results seem to indicate that intramsucularly administered CC could be useful, as a rapid test, in evaluating the function of the hypothalamic-pituitary-gonadal axis.

  7. The Effect of Intravenous Lidocaine on Brain Activation During Non-Noxious and Acute Noxious Stimulation of the Forepaw: A Functional Magnetic Resonance Imaging Study in the Rat

    PubMed Central

    Luo, Zhongchi; Yu, Mei; Smith, S. David; Kritzer, Mary; Du, Congwu; Ma, Yu; Volkow, Nora D.; Glass, Peter S.; Benveniste, Helene

    2009-01-01

    BACKGROUND Lidocaine can alleviate acute as well as chronic neuropathic pain at very low plasma concentrations in humans and laboratory animals. The mechanism(s) underlying lidocaine’s analgesic effect when administered systemically is poorly understood but clearly not related to interruption of peripheral nerve conduction. Other targets for lidocaine’s analgesic action(s) have been suggested, including sodium channels and other receptor sites in the central rather than peripheral nervous system. To our knowledge, the effect of lidocaine on the brain’s functional response to pain has never been investigated. Here, we therefore characterized the effect of systemic lidocaine on the brain’s response to innocuous and acute noxious stimulation in the rat using functional magnetic resonance imaging (fMRI). METHODS Alpha-chloralose anesthetized rats underwent fMRI to quantify brain activation patterns in response to innocuous and noxious forepaw stimulation before and after IV administration of lidocaine. RESULTS Innocuous forepaw stimulation elicited brain activation only in the contralateral primary somatosensory (S1) cortex. Acute noxious forepaw stimulation induced activation in additional brain areas associated with pain perception, including the secondary somatosensory cortex (S2), thalamus, insula and limbic regions. Lidocaine administered at IV doses of either 1 mg/kg, 4 mg/kg or 10 mg/kg did not abolish or diminish brain activation in response to innocuous or noxious stimulation. In fact, IV doses of 4 mg/kg and 10 mg/kg lidocaine enhanced S1 and S2 responses to acute nociceptive stimulation, increasing the activated cortical volume by 50%–60%. CONCLUSION The analgesic action of systemic lidocaine in acute pain is not reflected in a straightforward interruption of pain-induced fMRI brain activation as has been observed with opioids. The enhancement of cortical fMRI responses to acute pain by lidocaine observed here has also been reported for cocaine. We

  8. Phospholemman is not required for the acute stimulation of Na⁺-K⁺-ATPase α₂-activity during skeletal muscle fatigue.

    PubMed

    Manoharan, Palanikumar; Radzyukevich, Tatiana L; Hakim Javadi, Hesamedin; Stiner, Cory A; Landero Figueroa, Julio A; Lingrel, Jerry B; Heiny, Judith A

    2015-12-15

    The Na(+)-K(+)-ATPase α2-isoform in skeletal muscle is rapidly stimulated during muscle use and plays a critical role in fatigue resistance. The acute mechanisms that stimulate α2-activity are not completely known. This study examines whether phosphorylation of phospholemman (PLM/FXYD1), a regulatory subunit of Na(+)-K(+)-ATPase, plays a role in the acute stimulation of α2 in working muscles. Mice lacking PLM (PLM KO) have a normal content of the α2-subunit and show normal exercise capacity, in contrast to the greatly reduced exercise capacity of mice that lack α2 in the skeletal muscles. Nerve-evoked contractions in vivo did not induce a change in total PLM or PLM phosphorylated at Ser63 or Ser68, in either WT or PLM KO. Isolated muscles of PLM KO mice maintain contraction and resist fatigue as well as wild type (WT). Rb(+) transport by the α2-Na(+)-K(+)-ATPase is stimulated to the same extent in contracting WT and contracting PLM KO muscles. Phosphorylation of sarcolemmal membranes prepared from WT but not PLM KO skeletal muscles stimulates the activity of both α1 and α2 in a PLM-dependent manner. The stimulation occurs by an increase in Na(+) affinity without significant change in Vmax and is more effective for α1 than α2. These results demonstrate that phosphorylation of PLM is capable of stimulating the activity of both isozymes in skeletal muscle; however, contractile activity alone is not sufficient to induce PLM phosphorylation. Importantly, acute stimulation of α2, sufficient to support exercise and oppose fatigue, does not require PLM or its phosphorylation.

  9. Acute effects of nonexcitatory electrical stimulation during systole in isolated cardiac myocytes and perfused heart

    PubMed Central

    Blinova, Ksenia; Stohlman, Jayna; Krauthamer, Victor; Knapton, Alan; Bloomquist, Erik; Gray, Richard A.

    2014-01-01

    Abstract Application of electrical field to the heart during the refractory period of the beat has been shown to increase the force of contraction both in animal models and in heart failure patients (cardiac contractility modulation, or CCM). A direct increase in intracellular calcium during CCM has been suggested to be the mechanism behind the positive inotropic effect of CCM. We studied the effect of CCM on isolated rabbit cardiomyocytes and perfused whole rat hearts. The effect of CCM was observed in single cells via fluorescent measurements of intracellular calcium concentration ([Ca2+]i) and cell length (L). Cells were paced once per second throughout these recordings, and CCM stimulation was delivered via biphasic electric fields of 20 ms duration applied during the refractory period. CCM increased the peak amplitude of both [Ca2+]i and L for the first beat during CCM compared to control, but then [Ca2+]i and L decayed to levels lower than the control. During CCM, all contractions had a faster time to peak for both [Ca2+]i and L; after stopping CCM the rise times returned to control levels. In the whole rat heart, the positive inotropic effect of CCM stimulation on left ventricular pressure was completely abolished in the presence of metoprolol, a beta‐1 adrenergic blocker. In summary, the CCM‐induced changes in intracellular calcium handling by cardiomyocytes did not explain the sustained positive inotropic effect in the whole heart and the β‐adrenergic pathway may be involved in the CCM mechanism of action. PMID:25096553

  10. NBCe1 mediates the acute stimulation of astrocytic glycolysis by extracellular K+

    PubMed Central

    Ruminot, Iván; Gutiérrez, Robin; Peña-Münzenmayer, Gaspar; Añazco, Carolina; Sotelo-Hitschfeld, Tamara; Lerchundi, Rodrigo; Niemeyer, María Isabel; Shull, Gary E.; Barros, L. Felipe

    2011-01-01

    Excitatory synaptic transmission stimulates brain tissue glycolysis. This phenomenon is the signal detected in FDG-PET imaging and, through enhanced lactate production, is also thought to contribute to the fMRI signal. Using a method based on Förster resonance energy transfer in mouse astrocytes, we have recently observed that a small rise in extracellular K+ can stimulate glycolysis by over 300% within seconds. The K+ response was blocked by ouabain, but intracellular engagement of the Na+/K+ ATPase pump with Na+ was ineffective, suggesting that the canonical feedback regulatory pathway involving the Na+ pump and ATP depletion is only permissive and that a second mechanism is involved. Because of their predominant K+ permeability and high expression of the electrogenic Na+/HCO3− cotransporter NBCe1, astrocytes respond to a rise in extracellular K+ with plasma membrane depolarization and intracellular alkalinization. In the present article we show that a fast glycolytic response can be elicited independently of K+ by plasma membrane depolarization or by intracellular alkalinization. The glycolytic response to K+ was absent in astrocytes from NBCe1 null mice (Slc4a4) and was blocked by functional or pharmacological inhibition of the NBCe1. Hippocampal neurons acquired K+-sensitive glycolysis upon heterologous NBCe1 expression. The phenomenon could also be reconstituted in HEK293 cells by co-expression of the NBCe1 and a constitutively-open K+ channel. We conclude that the NBCe1 is a key element in a feedforward mechanism linking excitatory synaptic transmission to fast modulation of glycolysis in astrocytes. PMID:21976511

  11. Effect of physical exercise prelabyrinthectomy on locomotor balance compensation in the squirrel monkey

    NASA Technical Reports Server (NTRS)

    Igarashi, M.; Ohashi, K.; Yoshihara, T.; MacDonald, S.

    1989-01-01

    This study examines the effectiveness of physical exercise, during a prepathology state, on locomotor balance compensation after subsequent unilateral labyrinthectomy in squirrel monkeys. An experimental group underwent 3 hr. of daily running exercise on a treadmill for 3 mo. prior to the surgery, whereas a control group was not exercised. Postoperatively, the locomotor balance function of both groups was tested for 3 mo. There was no significant difference in gait deviation counts in the acute phase of compensation. However, in the chronic compensation maintenance phase, the number of gait deviation counts was fewer in the exercise group, which showed significantly better performance stability.

  12. Acute stress reduces intraparenchymal lung natural killer cells via beta-adrenergic stimulation

    PubMed Central

    Kanemi, O; Zhang, X; Sakamoto, Y; Ebina, M; Nagatomi, R

    2005-01-01

    There are lines of evidence that natural killer (NK) cells are sensitive to physical and psychological stress. Alterations in the immune system including NK cells are known to differ among tissues and organs. The effect of stress on the lung immune system, however, has not been well documented in spite of the fact that the lungs always confront viral or bacterial attacks as well as tumour cell metastasis. In this study, we intended to investigate the effect of restraint stress on lung lymphocytes including NK cells. C57BL/6 mice were exposed to 2 h restraint stress. The concentration of plasma epinephrine significantly rose immediately after the release from restraint as compared to home-cage control mice. Flow cytometric analysis revealed that the numbers of most lymphocyte subsets including NK cells were decreased in the lungs and blood but not in the spleen, immediately after restraint stress. Immunohistochemical examination revealed that the number of NK cells was decreased in the intraparenchymal region of the lungs, while the number of alveolar macrophages did not change. The decrease in the number of NK cells in the lungs and blood was reversed by the administration of propranolol, a nonselective beta adrenergic antagonist. Taken together, our findings suggest that acute stress reduces the number of intraparenchymal lung NK cells via activation of beta adrenergic receptors. PMID:15606610

  13. Granulocyte-colony stimulating factor for acute-on-chronic liver failure: systematic review and meta-analysis.

    PubMed

    Chavez-Tapia, Norberto C; Mendiola-Pastrana, Indira; Ornelas-Arroyo, Victoria J; Noreña-Herrera, Camilo; Vidaña-Perez, Desiree; Delgado-Sanchez, Guadalupe; Uribe, Misael; Barrientos-Gutierrez, Tonatiuh

    2015-01-01

    Acute-on-chronic liver failure (ACLF) is associated with increased short and long-term mortality. Animal models of liver failure have demonstrated that granulocyte-colony stimulating factor (G-CSF) accelerates the liver regeneration process and improves survival. However, clinical evidence regarding the use of G-CSF in ACLF remains scarce. The aim of this study was to assess the benefits and harms of G-CSF in patients with acute-on-chronic liver failure. An electronic search was made in The Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE and LILACS up to November 2013. Randomized clinical trials comparing the use of any regimen of G-CSF against placebo or no intervention in patients with ACLF were included. Primary outcomes included overal mortality, mortality due multi-organ failure, and adverse events. Relative risk (RR) and mean difference (MD) were used. Two trials involving 102 patients were included. A significant reduction in short-term overall mortality was observed in patients receiving G-CSF compared to controls (RR 0.56; 95%CI 0.39,0.80). G-CSF failed to reduce mortality secondary to gastrointestinal bleeding (RR 1.45; 95%CI 0.50, 4.27). Adverse effects reported included: fever, rash, herpes zoster, headache and nausea. In conclusion, the use of G-CSF for the treatment of patients with ACLF significantly reduced short-term mortality. While the evidence is still limited, the apparent benefit observed on short-term mortality, mild adverse effects and lack of an alternative therapy make the use of G-CSF in ACLF patients a reasonable alternative when liver transplantation is contraindicated or unavailable.

  14. Schedule-induced locomotor activity in humans.

    PubMed

    Muller, P G; Crow, R E; Cheney, C D

    1979-01-01

    In two experiments, humans received tokens either on a fixed-interval schedule for plunger pulling or various response-nondependent fixed-time schedules ranging from 16 to 140 seconds. Locomotor activity such as walking, shifting weight, or pacing was recorded in quarters of the interreinforcement interval to examine the induced characteristics of that behavior in humans. While performance was variable, several characteristics were present that have counterparts in experiments with nonhumans during periodic schedules of food reinforcement: (a) first quarter rates, and sometimes overall rates, of locomotor activity were greater during intervals that terminated in a visual stimulus and token delivery than those without: (b) overall rates of locomotor activity were greater during fixed-time 16-second schedules than during fixed-time 80- or 140-second schedules; (c) rates of locomotor activity decreased during the interreinforcement intervals; (d) locomotor activity was induced by response-dependent and response-nondependent token delivery. These results showed that the rate and temporal pattern of locomotor activity can be schedule-induced in humans. PMID:429959

  15. Stimulation of Brain AMP-Activated Protein Kinase Attenuates Inflammation and Acute Lung Injury in Sepsis

    PubMed Central

    Mulchandani, Nikhil; Yang, Weng-Lang; Khan, Mohammad Moshahid; Zhang, Fangming; Marambaud, Philippe; Nicastro, Jeffrey; Coppa, Gene F; Wang, Ping

    2015-01-01

    Sepsis and septic shock are enormous public health problems with astronomical financial repercussions on health systems worldwide. The central nervous system (CNS) is closely intertwined in the septic process but the underlying mechanism is still obscure. AMP-activated protein kinase (AMPK) is a ubiquitous energy sensor enzyme and plays a key role in regulation of energy homeostasis and cell survival. In this study, we hypothesized that activation of AMPK in the brain would attenuate inflammatory responses in sepsis, particularly in the lungs. Adult C57BL/6 male mice were treated with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR, 20 ng), an AMPK activator, or vehicle (normal saline) by intracerebroventricular (ICV) injection, followed by cecal ligation and puncture (CLP) at 30 min post-ICV. The septic mice treated with AICAR exhibited elevated phosphorylation of AMPKα in the brain along with reduced serum levels of aspartate aminotransferase, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), compared with the vehicle. Similarly, the expressions of TNF-α, IL-1β, keratinocyte-derived chemokine and macrophage inflammatory protein-2 as well as myeloperoxidase activity in the lungs of AICAR-treated mice were significantly reduced. Moreover, histological findings in the lungs showed improvement of morphologic features and reduction of apoptosis with AICAR treatment. We further found that the beneficial effects of AICAR on septic mice were diminished in AMPKα2 deficient mice, showing that AMPK mediates these effects. In conclusion, our findings reveal a new functional role of activating AMPK in the CNS to attenuate inflammatory responses and acute lung injury in sepsis. PMID:26252187

  16. Effects of Functional Electric Stimulation Cycle Ergometry Training on Lower Limb Musculature in Acute Sci Individuals

    PubMed Central

    Demchak, Timothy J.; Linderman, Jon K.; Mysiw, W. Jerry; Jackson, Rebecca; Suun, Jihong; Devor, Steven T.

    2005-01-01

    The purpose of this study was to compare three different intervals for a between sets rest period during a common isokinetic knee extension strength-testing protocol of twenty older Brazilian men (66.30 ± 3.92 yrs). The volunteers underwent unilateral knee extension (Biodex System 3) testing to determine their individual isokinetic peak torque at 60, 90, and 120° ·s-1. The contraction speeds and the rest periods between sets (30, 60 and 90 s) were randomly performed in three different days with a minimum rest period of 48 hours. Significant differences between and within sets were analyzed using a One Way Analysis of Variance (ANOVA) with repeated measures. Although, at angular velocity of 60°·s-1 produced a higher peak torque, there were no significant differences in peak torque among any of the rest periods. Likewise, there were no significant differences between mean peak torque among all resting periods (30, 60 and 90s) at angular velocities of 90 and 120°·s-1. The results showed that during a common isokinetic strength testing protocol a between set rest period of at least 30 s is sufficient for recovery before the next test set in older men. Key Points Muscle fiber cross sectional area (CSAf ) decreased 38% following spinal cord injury (SCI). Early intervention with functional electric stimulation cycle ergometry (FES-CE) prevented further loss of CSAf in SCI patients and increased power output. Muscle myosin heavy chain (MHC) and myonuclear density were unaffected by SCI or FES-CE PMID:24453530

  17. Effects of functional electric stimulation cycle ergometry training on lower limb musculature in acute sci individuals.

    PubMed

    Demchak, Timothy J; Linderman, Jon K; Mysiw, W Jerry; Jackson, Rebecca; Suun, Jihong; Devor, Steven T

    2005-09-01

    The purpose of this study was to compare three different intervals for a between sets rest period during a common isokinetic knee extension strength-testing protocol of twenty older Brazilian men (66.30 ± 3.92 yrs). The volunteers underwent unilateral knee extension (Biodex System 3) testing to determine their individual isokinetic peak torque at 60, 90, and 120° ·s-1. The contraction speeds and the rest periods between sets (30, 60 and 90 s) were randomly performed in three different days with a minimum rest period of 48 hours. Significant differences between and within sets were analyzed using a One Way Analysis of Variance (ANOVA) with repeated measures. Although, at angular velocity of 60°·s-1 produced a higher peak torque, there were no significant differences in peak torque among any of the rest periods. Likewise, there were no significant differences between mean peak torque among all resting periods (30, 60 and 90s) at angular velocities of 90 and 120°·s-1. The results showed that during a common isokinetic strength testing protocol a between set rest period of at least 30 s is sufficient for recovery before the next test set in older men. Key PointsMuscle fiber cross sectional area (CSAf ) decreased 38% following spinal cord injury (SCI).Early intervention with functional electric stimulation cycle ergometry (FES-CE) prevented further loss of CSAf in SCI patients and increased power output.Muscle myosin heavy chain (MHC) and myonuclear density were unaffected by SCI or FES-CE. PMID:24453530

  18. The acute effects of flotation restricted environmental stimulation technique on recovery from maximal eccentric exercise.

    PubMed

    Morgan, Paul M; Salacinski, Amanda J; Stults-Kolehmainen, Matthew A

    2013-12-01

    Flotation restricted environmental stimulation technique (REST) involves compromising senses of sound, sight, and touch by creating a quiet dark environment. The individual lies supine in a tank of Epsom salt and water heated to roughly skin temperature (34-35° C). This study was performed to determine if a 1-hour flotation REST session would aid in the recovery process after maximal eccentric knee extensions and flexions. Twenty-four untrained male students (23.29 ± 2.1 years, 184.17 ± 6.85 cm, 85.16 ± 11.54 kg) participated in a randomized, repeated measures crossover study. The participants completed 2 exercise and recovery protocols: a 1-hour flotation REST session and a 1-hour seated control (passive recovery). After isometric muscle strength testing, participants were fatigued with eccentric isokinetic muscle contractions (50 repetitions at 60°·s) of the nondominant knee extensors and flexors. Blood lactate, blood glucose, heart rate, OMNI-rating of perceived exertion for resistance exercise (OMNI-RPE), perceived pain, muscle soreness, and isometric strength were collected before exercise, after treatment, and 24 and 48 hours later. A multivariate analysis of covariance found that treatment had a significant main effect on blood lactate, whereas subsequent univariate analyses of variance found statistical significance with the immediate posttreatment blood lactate measures. The results indicate that flotation REST appears to have a significant impact on blood lactate and perceived pain compared with a 1-hour passive recovery session in untrained healthy men. No difference was found between conditions for muscle strength, blood glucose, muscle soreness, heart rate, or OMNI-RPE. Flotation REST may be used for recreational and professional athletes to help reduce blood lactate levels after eccentric exercise. PMID:23478477

  19. Angiogenesis Is Induced and Wound Size Is Reduced by Electrical Stimulation in an Acute Wound Healing Model in Human Skin

    PubMed Central

    Ud-Din, Sara; Sebastian, Anil; Giddings, Pamela; Colthurst, James; Whiteside, Sigrid; Morris, Julie; Nuccitelli, Richard; Pullar, Christine; Baguneid, Mo; Bayat, Ardeshir

    2015-01-01

    Angiogenesis is critical for wound healing. Insufficient angiogenesis can result in impaired wound healing and chronic wound formation. Electrical stimulation (ES) has been shown to enhance angiogenesis. We previously showed that ES enhanced angiogenesis in acute wounds at one time point (day 14). The aim of this study was to further evaluate the role of ES in affecting angiogenesis during the acute phase of cutaneous wound healing over multiple time points. We compared the angiogenic response to wounding in 40 healthy volunteers (divided into two groups and randomised), treated with ES (post-ES) and compared them to secondary intention wound healing (control). Biopsy time points monitored were days 0, 3, 7, 10, 14. Objective non-invasive measures and H&E analysis were performed in addition to immunohistochemistry (IHC) and Western blotting (WB). Wound volume was significantly reduced on D7, 10 and 14 post-ES (p = 0.003, p = 0.002, p<0.001 respectively), surface area was reduced on days 10 (p = 0.001) and 14 (p<0.001) and wound diameter reduced on days 10 (p = 0.009) and 14 (p = 0.002). Blood flow increased significantly post-ES on D10 (p = 0.002) and 14 (p = 0.001). Angiogenic markers were up-regulated following ES application; protein analysis by IHC showed an increase (p<0.05) in VEGF-A expression by ES treatment on days 7, 10 and 14 (39%, 27% and 35% respectively) and PLGF expression on days 3 and 7 (40% on both days), compared to normal healing. Similarly, WB demonstrated an increase (p<0.05) in PLGF on days 7 and 14 (51% and 35% respectively). WB studies showed a significant increase of 30% (p>0.05) on day 14 in VEGF-A expression post-ES compared to controls. Furthermore, organisation of granulation tissue was improved on day 14 post-ES. This randomised controlled trial has shown that ES enhanced wound healing by reduced wound dimensions and increased VEGF-A and PLGF expression in acute cutaneous wounds, which further substantiates the role of ES in up

  20. Electrical stimulation and motor recovery.

    PubMed

    Young, Wise

    2015-01-01

    In recent years, several investigators have successfully regenerated axons in animal spinal cords without locomotor recovery. One explanation is that the animals were not trained to use the regenerated connections. Intensive locomotor training improves walking recovery after spinal cord injury (SCI) in people, and >90% of people with incomplete SCI recover walking with training. Although the optimal timing, duration, intensity, and type of locomotor training are still controversial, many investigators have reported beneficial effects of training on locomotor function. The mechanisms by which training improves recovery are not clear, but an attractive theory is available. In 1949, Donald Hebb proposed a famous rule that has been paraphrased as "neurons that fire together, wire together." This rule provided a theoretical basis for a widely accepted theory that homosynaptic and heterosynaptic activity facilitate synaptic formation and consolidation. In addition, the lumbar spinal cord has a locomotor center, called the central pattern generator (CPG), which can be activated nonspecifically with electrical stimulation or neurotransmitters to produce walking. The CPG is an obvious target to reconnect after SCI. Stimulating motor cortex, spinal cord, or peripheral nerves can modulate lumbar spinal cord excitability. Motor cortex stimulation causes long-term changes in spinal reflexes and synapses, increases sprouting of the corticospinal tract, and restores skilled forelimb function in rats. Long used to treat chronic pain, motor cortex stimuli modify lumbar spinal network excitability and improve lower extremity motor scores in humans. Similarly, epidural spinal cord stimulation has long been used to treat pain and spasticity. Subthreshold epidural stimulation reduces the threshold for locomotor activity. In 2011, Harkema et al. reported lumbosacral epidural stimulation restores motor control in chronic motor complete patients. Peripheral nerve or functional electrical

  1. Na+ transport across rumen epithelium of hay-fed sheep is acutely stimulated by the peptide IGF-1 in vitro.

    PubMed

    Shen, Zanming; Martens, Holger; Schweigel-Röntgen, Monika

    2012-04-01

    An energy-rich diet leads to enhanced ruminal Na(+) absorption, which is associated with elevated plasma insulin-like growth factor 1 (IGF-1) levels and an increased number of IGF-1 receptors in rumen papillae. This study examined the in vitro effect of IGF-1 on Na(+) transport across the rumen epithelium of hay-fed sheep, in which the IGF-1 concentration in plasma is lower than in concentrate-fed animals. At concentrations ranging from 20 to 100 μg l(-1), serosal LR3-IGF-1, a recombinant analogue of IGF-1, rapidly (within 30 min) stimulated the mucosal-to-serosal Na(+) flux (J(ms)Na) and consequently the net Na(+) flux (J(net)Na). Compared with controls, J(net)Na increased by about 60% (P < 0.05) following the serosal application of LR3-IGF-1 (20 μg l(-1)). The IGF-1-induced increment of J(ms)Na and J(net)Na was inhibited by mucosal amiloride (1 mmol l(-1)). Neither IGF-1 nor amiloride altered tissue conductance or the short-circuit current of the isolated rumen epithelium. These data support the assumption that the stimulating effect of serosally applied IGF-1 on Na(+) transport across the rumen epithelium is mediated by Na(+)-H(+) exchange (NHE). A further study was performed with cultured rumen epithelial cells and a fluorescent probe (BCECF) to estimate the rate of pH(i) recovery after acid loading. The pH(i) of isolated rumen epithelial cells was 6.43 ± 0.15 after butyrate loading and recovered by 0.26 ± 0.02 pH units (15 min)(-1). Application of LR3-IGF-1 (20 μg l(-1)) significantly increased the rate of pH(i) recovery to 0.33 ± 0.02 pH units (15 min)(-1). Amiloride administration reduced the recovery rate in both control and IGF-1-stimulated cells. These results show, for the first time, that an acute effect of IGF-1 on Na(+) absorption across rumen epithelium results from increased NHE activity. Insulin-like growth factor 1 is thus important for the fast functional adaptation of ruminal Na(+) transport via NHE.

  2. Randomized Trial of Two Dosages of Prophylactic Granulocyte Colony-Stimulating Factor after Induction Chemotherapy in Pediatric Acute Myeloid Leukemia

    PubMed Central

    Inaba, Hiroto; Cao, Xueyuan; Pounds, Stanley; Pui, Ching-Hon; Rubnit, Jeffrey E.; Ribeiro, Raul C.; Razzouk, Bassem I.

    2010-01-01

    Background Granulocyte colony-stimulating factor (G-CSF) is effective in accelerating neutrophil recovery after intensive chemotherapy for acute myeloid leukemia (AML). However, the optimal G-CSF dosage for patients with AML has not been determined. To our knowledge, G-CSF dosages have not been compared in a randomized AML study. Methods Patients enrolled on the St. Jude AML97 protocol who remained on study after window therapy were eligible to participate. The effect of the dosage of G-CSF given after induction chemotherapy courses 1 and 2 was analyzed in 46 patients randomly assigned in a double-blinded manner to receive 5 or 10 μg/kg/day of G-CSF. The number of days of G-CSF treatment, neutropenia (absolute neutrophil count < 0.5 × 109/L), and hospitalization; the number of episodes of febrile neutropenia, grade 2-4 infection, and antimicrobial therapy; transfusion requirements; the cost of supportive care; and survival were compared between the two study arms. Results We found no statistically significant difference between the two arms in any of the endpoints measured. Conclusions The higher G-CSF dosage (10 μg/kg/day) offers no greater benefit than the lower dosage (5 μg/kg/day) in patients undergoing intensive chemotherapy for AML. PMID:21381017

  3. V3 spinal neurons establish a robust and balanced locomotor rhythm during walking

    PubMed Central

    Zhang, Ying; Narayan, Sujatha; Geiman, Eric; Lanuza, Guillermo M.; Velasquez, Tomoko; Shanks, Bayle; Akay, Turgay; Dyck, Jason; Pearson, Keir; Gosgnach, Simon; Fan, Chen-Ming; Goulding, Martyn

    2009-01-01

    Summary A robust and well-organized rhythm is a key feature of many neuronal networks, including those that regulate essential behaviors such as circadian rhythmogenesis, breathing and locomotion. Here we show that excitatory V3-derived neurons are necessary for a robust and organized locomotor rhythm during walking. When V3-mediated neurotransmission is selectively blocked by the expression of the Tetanus toxin light chain subunit (TeNT), the regularity and robustness of the locomotor rhythm is severely perturbed. A similar degeneration in the locomotor rhythm occurs when the excitability of V3-derived neurons is reduced acutely by ligand-induced activation of the allatostatin receptor. The V3-derived neurons additionally function to balance the locomotor output between both halves of the spinal cord, thereby ensuring a symmetrical pattern of locomotor activity during walking. We propose that the V3 neurons establish a robust and balanced motor rhythm by distributing excitatory drive between both halves of the spinal cord. PMID:18940590

  4. Levamisole enhances the rewarding and locomotor-activating effects of cocaine in rats

    PubMed Central

    Tallarida, Christopher S.; Tallarida, Ronald J.; Rawls, Scott M.

    2015-01-01

    Background The Drug Enforcement Agency estimates that 80% of cocaine seized in the United States contains the veterinary pharmaceutical levamisole (LVM). One problem with LVM is that it is producing life-threatening neutropenia in an alarming number of cocaine abusers. The neuropharmacological profile of LVM is also suggestive of an agent with modest reinforcing and stimulant effects that could enhance cocaine’s addictive effects. Methods We tested the hypothesis that LVM (ip) enhances the rewarding and locomotor stimulant effects of cocaine (ip) using rat conditioned place preference (CPP) and locomotor assays. Effects of LVM by itself were also tested. Results LVM (0–10 mg/kg) produced CPP at 1 mg/kg (P < 0.05) and locomotor activation at 5 mg/kg (P < 0.05). For CPP combination experiments, a statistically inactive dose of LVM (0.1 mg/kg) was administered with a low dose of cocaine (2.5 mg/kg). Neither agent produced CPP compared to saline (P > 0.05); however, the combination of LVM and cocaine produced enhanced CPP compared to saline or either drug by itself (P < 0.01). For locomotor experiments, the same inactive dose of LVM (0.1 mg/kg, ip) was administered with low (10 mg/kg) and high doses (30 mg/kg) of cocaine. LVM (0.1 mg/kg) enhanced locomotor activation produced by 10 mg/kg of cocaine (P < 0.05) but not by 30 mg/kg (P > 0.05). Conclusions LVM can enhance rewarding and locomotor-activating effects of low doses of cocaine in rats while possessing modest activity of its own. PMID:25683823

  5. Sound Stabilizes Locomotor-Respiratory Coupling and Reduces Energy Cost

    PubMed Central

    Hoffmann, Charles P.; Torregrosa, Gérald; Bardy, Benoît G.

    2012-01-01

    A natural synchronization between locomotor and respiratory systems is known to exist for various species and various forms of locomotion. This Locomotor-Respiratory Coupling (LRC) is fundamental for the energy transfer between the two subsystems during long duration exercise and originates from mechanical and neurological interactions. Different methodologies have been used to compute LRC, giving rise to various and often diverging results in terms of synchronization, (de-)stabilization via information, and associated energy cost. In this article, the theory of nonlinear-coupled oscillators was adopted to characterize LRC, through the model of the sine circle map, and tested it in the context of cycling. Our specific focus was the sound-induced stabilization of LRC and its associated change in energy consumption. In our experimental study, participants were instructed during a cycling exercise to synchronize either their respiration or their pedaling rate with an external auditory stimulus whose rhythm corresponded to their individual preferential breathing or cycling frequencies. Results showed a significant reduction in energy expenditure with auditory stimulation, accompanied by a stabilization of LRC. The sound-induced effect was asymmetrical, with a better stabilizing influence of the metronome on the locomotor system than on the respiratory system. A modification of the respiratory frequency was indeed observed when participants cycled in synchrony with the tone, leading to a transition toward more stable frequency ratios as predicted by the sine circle map. In addition to the classical mechanical and neurological origins of LRC, here we demonstrated using the sine circle map model that information plays an important modulatory role of the synchronization, and has global energetic consequences. PMID:23028849

  6. Initial locomotor sensitivity to cocaine varies widely among inbred mouse strains.

    PubMed

    Wiltshire, T; Ervin, R B; Duan, H; Bogue, M A; Zamboni, W C; Cook, S; Chung, W; Zou, F; Tarantino, L M

    2015-03-01

    Initial sensitivity to psychostimulants can predict subsequent use and abuse in humans. Acute locomotor activation in response to psychostimulants is commonly used as an animal model of initial drug sensitivity and has been shown to have a substantial genetic component. Identifying the specific genetic differences that lead to phenotypic differences in initial drug sensitivity can advance our understanding of the processes that lead to addiction. Phenotyping inbred mouse strain panels are frequently used as a first step for studying the genetic architecture of complex traits. We assessed locomotor activation following a single, acute 20 mg/kg dose of cocaine (COC) in males from 45 inbred mouse strains and observed significant phenotypic variation across strains indicating a substantial genetic component. We also measured levels of COC, the active metabolite, norcocaine and the major inactive metabolite, benzoylecgonine, in plasma and brain in the same set of inbred strains. Pharmacokinetic (PK) and behavioral data were significantly correlated, but at a level that indicates that PK alone does not account for the behavioral differences observed across strains. Phenotypic data from this reference population of inbred strains can be utilized in studies aimed at examining the role of psychostimulant-induced locomotor activation on drug reward and reinforcement and to test theories about addiction processes. Moreover, these data serve as a starting point for identifying genes that alter sensitivity to the locomotor stimulatory effects of COC.

  7. Initial locomotor sensitivity to cocaine varies widely among inbred mouse strains

    PubMed Central

    Wiltshire, T.; Ervin, R. B.; Duan, H.; Bogue, M. A.; Zamboni, W. C.; Cook, S.; Chung, W.; Zou, F.; Tarantino, L. M.

    2015-01-01

    Initial sensitivity to psychostimulants can predict subsequent use and abuse in humans. Acute locomotor activation in response to psychostimulants is commonly used as an animal model of initial drug sensitivity and has been shown to have a substantial genetic component. Identifying the specific genetic differences that lead to phenotypic differences in initial drug sensitivity can advance our understanding of the processes that lead to addiction. Phenotyping inbred mouse strain panels are frequently used as a first step for studying the genetic architecture of complex traits. We assessed locomotor activation following a single, acute 20 mg/kg dose of cocaine (COC) in males from 45 inbred mouse strains and observed significant phenotypic variation across strains indicating a substantial genetic component. We also measured levels of COC, the active metabolite, norcocaine and the major inactive metabolite, benzoylecgonine, in plasma and brain in the same set of inbred strains. Pharmacokinetic (PK) and behavioral data were significantly correlated, but at a level that indicates that PK alone does not account for the behavioral differences observed across strains. Phenotypic data from this reference population of inbred strains can be utilized in studies aimed at examining the role of psychostimulant-induced locomotor activation on drug reward and reinforcement and to test theories about addiction processes. Moreover, these data serve as a starting point for identifying genes that alter sensitivity to the locomotor stimulatory effects of COC. PMID:25727211

  8. Sensitivity Analysis of Vagus Nerve Stimulation Parameters on Acute Cardiac Autonomic Responses: Chronotropic, Inotropic and Dromotropic Effects

    PubMed Central

    Ojeda, David; Le Rolle, Virginie; Romero-Ugalde, Hector M.; Gallet, Clément; Bonnet, Jean-Luc; Henry, Christine; Bel, Alain; Mabo, Philippe; Carrault, Guy; Hernández, Alfredo I.

    2016-01-01

    Although the therapeutic effects of Vagus Nerve Stimulation (VNS) have been recognized in pre-clinical and pilot clinical studies, the effect of different stimulation configurations on the cardiovascular response is still an open question, especially in the case of VNS delivered synchronously with cardiac activity. In this paper, we propose a formal mathematical methodology to analyze the acute cardiac response to different VNS configurations, jointly considering the chronotropic, dromotropic and inotropic cardiac effects. A latin hypercube sampling method was chosen to design a uniform experimental plan, composed of 75 different VNS configurations, with different values for the main parameters (current amplitude, number of delivered pulses, pulse width, interpulse period and the delay between the detected cardiac event and VNS onset). These VNS configurations were applied to 6 healthy, anesthetized sheep, while acquiring the associated cardiovascular response. Unobserved VNS configurations were estimated using a Gaussian process regression (GPR) model. In order to quantitatively analyze the effect of each parameter and their combinations on the cardiac response, the Sobol sensitivity method was applied to the obtained GPR model and inter-individual sensitivity markers were estimated using a bootstrap approach. Results highlight the dominant effect of pulse current, pulse width and number of pulses, which explain respectively 49.4%, 19.7% and 6.0% of the mean global cardiovascular variability provoked by VNS. More interestingly, results also quantify the effect of the interactions between VNS parameters. In particular, the interactions between current and pulse width provoke higher cardiac effects than the changes on the number of pulses alone (between 6 and 25% of the variability). Although the sensitivity of individual VNS parameters seems similar for chronotropic, dromotropic and inotropic responses, the interacting effects of VNS parameters provoke

  9. Extremes of Interferon-Stimulated Gene Expression Associate with Worse Outcomes in the Acute Respiratory Distress Syndrome

    PubMed Central

    Nick, Jerry A.; Caceres, Silvia M.; Kret, Jennifer E.; Poch, Katie R.; Strand, Matthew; Faino, Anna V.; Nichols, David P.; Saavedra, Milene T.; Taylor-Cousar, Jennifer L.; Geraci, Mark W.; Burnham, Ellen L.; Fessler, Michael B.; Suratt, Benjamin T.; Abraham, Edward; Moss, Marc; Malcolm, Kenneth C.

    2016-01-01

    Acute Respiratory Distress Syndrome (ARDS) severity may be influenced by heterogeneity of neutrophil activation. Interferon-stimulated genes (ISG) are a broad gene family induced by Type I interferons, often as a response to viral infections, which evokes extensive immunomodulation. We tested the hypothesis that over- or under-expression of immunomodulatory ISG by neutrophils is associated with worse clinical outcomes in patients with ARDS. Genome-wide transcriptional profiles of circulating neutrophils isolated from patients with sepsis-induced ARDS (n = 31) and healthy controls (n = 19) were used to characterize ISG expression. Hierarchical clustering of expression identified 3 distinct subject groups with Low, Mid and High ISG expression. ISG accounting for the greatest variability in expression were identified (MX1, IFIT1, and ISG15) and used to analyze a prospective cohort at the Colorado ARDS Network site. One hundred twenty ARDS patients from four urban hospitals were enrolled within 72 hours of initiation of mechanical ventilation. Circulating neutrophils were isolated from patients and expression of ISG determined by PCR. Samples were stratified by standard deviation from the mean into High (n = 21), Mid, (n = 82) or Low (n = 17) ISG expression. Clinical outcomes were compared between patients with High or Low ISG expression to those with Mid-range expression. At enrollment, there were no differences in age, gender, co-existing medical conditions, or type of physiologic injury between cohorts. After adjusting for age, race, gender and BMI, patients with either High or Low ISG expression had significantly worse clinical outcomes than those in the Mid for number of 28-day ventilator- and ICU-free days (P = 0.0006 and 0.0004), as well as 90-day mortality and 90-day home with unassisted breathing (P = 0.02 and 0.004). These findings suggest extremes of ISG expression by circulating neutrophils from ARDS patients recovered early in the syndrome are associated

  10. Extremes of Interferon-Stimulated Gene Expression Associate with Worse Outcomes in the Acute Respiratory Distress Syndrome.

    PubMed

    Nick, Jerry A; Caceres, Silvia M; Kret, Jennifer E; Poch, Katie R; Strand, Matthew; Faino, Anna V; Nichols, David P; Saavedra, Milene T; Taylor-Cousar, Jennifer L; Geraci, Mark W; Burnham, Ellen L; Fessler, Michael B; Suratt, Benjamin T; Abraham, Edward; Moss, Marc; Malcolm, Kenneth C

    2016-01-01

    Acute Respiratory Distress Syndrome (ARDS) severity may be influenced by heterogeneity of neutrophil activation. Interferon-stimulated genes (ISG) are a broad gene family induced by Type I interferons, often as a response to viral infections, which evokes extensive immunomodulation. We tested the hypothesis that over- or under-expression of immunomodulatory ISG by neutrophils is associated with worse clinical outcomes in patients with ARDS. Genome-wide transcriptional profiles of circulating neutrophils isolated from patients with sepsis-induced ARDS (n = 31) and healthy controls (n = 19) were used to characterize ISG expression. Hierarchical clustering of expression identified 3 distinct subject groups with Low, Mid and High ISG expression. ISG accounting for the greatest variability in expression were identified (MX1, IFIT1, and ISG15) and used to analyze a prospective cohort at the Colorado ARDS Network site. One hundred twenty ARDS patients from four urban hospitals were enrolled within 72 hours of initiation of mechanical ventilation. Circulating neutrophils were isolated from patients and expression of ISG determined by PCR. Samples were stratified by standard deviation from the mean into High (n = 21), Mid, (n = 82) or Low (n = 17) ISG expression. Clinical outcomes were compared between patients with High or Low ISG expression to those with Mid-range expression. At enrollment, there were no differences in age, gender, co-existing medical conditions, or type of physiologic injury between cohorts. After adjusting for age, race, gender and BMI, patients with either High or Low ISG expression had significantly worse clinical outcomes than those in the Mid for number of 28-day ventilator- and ICU-free days (P = 0.0006 and 0.0004), as well as 90-day mortality and 90-day home with unassisted breathing (P = 0.02 and 0.004). These findings suggest extremes of ISG expression by circulating neutrophils from ARDS patients recovered early in the syndrome are associated

  11. Extremes of Interferon-Stimulated Gene Expression Associate with Worse Outcomes in the Acute Respiratory Distress Syndrome.

    PubMed

    Nick, Jerry A; Caceres, Silvia M; Kret, Jennifer E; Poch, Katie R; Strand, Matthew; Faino, Anna V; Nichols, David P; Saavedra, Milene T; Taylor-Cousar, Jennifer L; Geraci, Mark W; Burnham, Ellen L; Fessler, Michael B; Suratt, Benjamin T; Abraham, Edward; Moss, Marc; Malcolm, Kenneth C

    2016-01-01

    Acute Respiratory Distress Syndrome (ARDS) severity may be influenced by heterogeneity of neutrophil activation. Interferon-stimulated genes (ISG) are a broad gene family induced by Type I interferons, often as a response to viral infections, which evokes extensive immunomodulation. We tested the hypothesis that over- or under-expression of immunomodulatory ISG by neutrophils is associated with worse clinical outcomes in patients with ARDS. Genome-wide transcriptional profiles of circulating neutrophils isolated from patients with sepsis-induced ARDS (n = 31) and healthy controls (n = 19) were used to characterize ISG expression. Hierarchical clustering of expression identified 3 distinct subject groups with Low, Mid and High ISG expression. ISG accounting for the greatest variability in expression were identified (MX1, IFIT1, and ISG15) and used to analyze a prospective cohort at the Colorado ARDS Network site. One hundred twenty ARDS patients from four urban hospitals were enrolled within 72 hours of initiation of mechanical ventilation. Circulating neutrophils were isolated from patients and expression of ISG determined by PCR. Samples were stratified by standard deviation from the mean into High (n = 21), Mid, (n = 82) or Low (n = 17) ISG expression. Clinical outcomes were compared between patients with High or Low ISG expression to those with Mid-range expression. At enrollment, there were no differences in age, gender, co-existing medical conditions, or type of physiologic injury between cohorts. After adjusting for age, race, gender and BMI, patients with either High or Low ISG expression had significantly worse clinical outcomes than those in the Mid for number of 28-day ventilator- and ICU-free days (P = 0.0006 and 0.0004), as well as 90-day mortality and 90-day home with unassisted breathing (P = 0.02 and 0.004). These findings suggest extremes of ISG expression by circulating neutrophils from ARDS patients recovered early in the syndrome are associated

  12. High-definition transcranial direct current stimulation induces both acute and persistent changes in broadband cortical synchronization: a simultaneous tDCS-EEG study.

    PubMed

    Roy, Abhrajeet; Baxter, Bryan; He, Bin

    2014-07-01

    The goal of this study was to develop methods for simultaneously acquiring electrophysiological data during high-definition transcranial direct current stimulation (tDCS) using high-resolution electroencephalography (EEG). Previous studies have pointed to the after-effects of tDCS on both motor and cognitive performance, and there appears to be potential for using tDCS in a variety of clinical applications. However, little is known about the real-time effects of tDCS on rhythmic cortical activity in humans due to the technical challenges of simultaneously obtaining electrophysiological data during ongoing stimulation. Furthermore, the mechanisms of action of tDCS in humans are not well understood. We have conducted a simultaneous tDCS-EEG study in a group of healthy human subjects. Significant acute and persistent changes in spontaneous neural activity and event-related synchronization (ERS) were observed during and after the application of high-definition tDCS over the left sensorimotor cortex. Both anodal and cathodal stimulation resulted in acute global changes in broadband cortical activity which were significantly different than the changes observed in response to sham stimulation. For the group of eight subjects studied, broadband individual changes in spontaneous activity during stimulation were apparent both locally and globally. In addition, we found that high-definition tDCS of the left sensorimotor cortex can induce significant ipsilateral and contralateral changes in event-related desynchronization and ERS during motor imagination following the end of the stimulation period. Overall, our results demonstrate the feasibility of acquiring high-resolution EEG during high-definition tDCS and provide evidence that tDCS in humans directly modulates rhythmic cortical synchronization during and after its administration.

  13. An Epstein-Barr Virus Encoded Inhibitor of Colony Stimulating Factor-1 Signaling Is an Important Determinant for Acute and Persistent EBV Infection

    PubMed Central

    Ohashi, Makoto; Fogg, Mark H.; Orlova, Nina; Quink, Carol; Wang, Fred

    2012-01-01

    Acute Epstein-Barr virus (EBV) infection is the most common cause of Infectious Mononucleosis. Nearly all adult humans harbor life-long, persistent EBV infection which can lead to development of cancers including Hodgkin Lymphoma, Burkitt Lymphoma, nasopharyngeal carcinoma, gastric carcinoma, and lymphomas in immunosuppressed patients. BARF1 is an EBV replication-associated, secreted protein that blocks Colony Stimulating Factor 1 (CSF-1) signaling, an innate immunity pathway not targeted by any other virus species. To evaluate effects of BARF1 in acute and persistent infection, we mutated the BARF1 homologue in the EBV-related herpesvirus, or lymphocryptovirus (LCV), naturally infecting rhesus macaques to create a recombinant rhLCV incapable of blocking CSF-1 (ΔrhBARF1). Rhesus macaques orally challenged with ΔrhBARF1 had decreased viral load indicating that CSF-1 is important for acute virus infection. Surprisingly, ΔrhBARF1 was also associated with dramatically lower virus setpoints during persistent infection. Normal acute viral load and normal viral setpoints during persistent rhLCV infection could be restored by Simian/Human Immunodeficiency Virus-induced immunosuppression prior to oral inoculation with ΔrhBARF1 or infection of immunocompetent animals with a recombinant rhLCV where the rhBARF1 was repaired. These results indicate that BARF1 blockade of CSF-1 signaling is an important immune evasion strategy for efficient acute EBV infection and a significant determinant for virus setpoint during persistent EBV infection. PMID:23300447

  14. Neuronal control of locomotor handedness in Drosophila.

    PubMed

    Buchanan, Sean M; Kain, Jamey S; de Bivort, Benjamin L

    2015-05-26

    Genetically identical individuals display variability in their physiology, morphology, and behaviors, even when reared in essentially identical environments, but there is little mechanistic understanding of the basis of such variation. Here, we investigated whether Drosophila melanogaster displays individual-to-individual variation in locomotor behaviors. We developed a new high-throughout platform capable of measuring the exploratory behavior of hundreds of individual flies simultaneously. With this approach, we find that, during exploratory walking, individual flies exhibit significant bias in their left vs. right locomotor choices, with some flies being strongly left biased or right biased. This idiosyncrasy was present in all genotypes examined, including wild-derived populations and inbred isogenic laboratory strains. The biases of individual flies persist for their lifetime and are nonheritable: i.e., mating two left-biased individuals does not yield left-biased progeny. This locomotor handedness is uncorrelated with other asymmetries, such as the handedness of gut twisting, leg-length asymmetry, and wing-folding preference. Using transgenics and mutants, we find that the magnitude of locomotor handedness is under the control of columnar neurons within the central complex, a brain region implicated in motor planning and execution. When these neurons are silenced, exploratory laterality increases, with more extreme leftiness and rightiness. This observation intriguingly implies that the brain may be able to dynamically regulate behavioral individuality.

  15. Myelodysplastic syndrome and acute myeloid leukemia following adjuvant chemotherapy with and without granulocyte colony-stimulating factors for breast cancer.

    PubMed

    Calip, Gregory S; Malmgren, Judith A; Lee, Wan-Ju; Schwartz, Stephen M; Kaplan, Henry G

    2015-11-01

    Risk of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) post-breast cancer treatment with adjuvant chemotherapy and granulocyte colony-stimulating factors (G-CSF) is not fully characterized. Our objective was to estimate MDS/AML risk associated with specific breast cancer treatments. We conducted a retrospective cohort study of women aged ≥66 years with stage I-III breast cancer between 2001 and 2009 using the Surveillance, Epidemiology, and End Results-Medicare database. Women were classified as receiving treatment with radiation, chemotherapy, and/or G-CSF. We used multivariable Cox proportional hazards models to estimate adjusted hazard ratios (HR) and 95 % confidence intervals (CI) for MDS/AML risk. Among 56,251 breast cancer cases, 1.2 % developed MDS/AML during median follow-up of 3.2 years. 47.1 % of women received radiation and 14.3 % received chemotherapy. Compared to breast cancer cases treated with surgery alone, those treated with chemotherapy (HR = 1.38, 95 %-CI 0.98-1.93) and chemotherapy/radiation (HR = 1.77, 95 %-CI 1.25-2.51) had increased risk of MDS/AML, but not radiation alone (HR = 1.08, 95 % CI 0.86-1.36). Among chemotherapy regimens and G-CSF, MDS/AML risk was differentially associated with anthracycline/cyclophosphamide-containing regimens (HR = 1.86, 95 %-CI 1.33-2.61) and filgrastim (HR = 1.47, 95 %-CI 1.05-2.06), but not pegfilgrastim (HR = 1.10, 95 %-CI 0.73-1.66). We observed increased MDS/AML risk among older breast cancer survivors treated with anthracycline/cyclophosphamide chemotherapy that was enhanced by G-CSF. Although small, this risk warrants consideration when determining adjuvant chemotherapy and neutropenia prophylaxis for breast cancer patients.

  16. Wide-pulse electrical stimulation to an intrinsic foot muscle induces acute functional changes in forefoot-rearfoot coupling behaviour during walking.

    PubMed

    James, D C; Chesters, T; Sumners, D P; Cook, D P; Green, D A; Mileva, K N

    2013-05-01

    Interventions for strengthening intrinsic foot muscles may be beneficial for rehabilitation from overuse injuries. In this study the acute effects of high-frequency, low-intensity wide-pulse electrical stimulation (WPS) over an intrinsic muscle on subsequent foot function during walking was assessed in healthy participants. WPS was delivered to the m. abductor hallucis (m.AH) of the non-dominant foot during relaxed standing. 3-dimensional forefoot (FF)--rearfoot (RF) coordination was quantified with a vector coding technique within separate periods of the stance phase to study WPS functional effects on foot motion. 4 types of coordinative strategies between the FF and RF were interpreted and compared PRE-to-POST-WPS for both the experimental and control feet. Bilateral electromyography (EMG) from m.AH was analysed during the intervention period for evidence of acute neuromuscular adaptation. The results showed that WPS significantly modulated FF-RF coordination during mid-stance, indicative of a more stable foot. Specifically, a statistically significant increase in FF eversion with concomitant RF inversion in the frontal plane and RF-dominated adduction in the transverse plane was observed. Subject-specific increases in post-stimulus m.AH EMG activation were observed but this was not reflected in an overall group effect. It is concluded that the structural integrity of the foot during walking is enhanced following an acute session of WPS and that this mechanical effect is most likely due to stimulation induced post-tetanic potentiation of synaptic transmission.

  17. Characterization of sacral interneurons that mediate activation of locomotor pattern generators by sacrocaudal afferent input.

    PubMed

    Etlin, Alex; Finkel, Eran; Mor, Yoav; O'Donovan, Michael J; Anglister, Lili; Lev-Tov, Aharon

    2013-01-01

    Identification of the neural pathways involved in retraining the spinal central pattern generators (CPGs) by afferent input in the absence of descending supraspinal control is feasible in isolated rodent spinal cords where the locomotor CPGs are potently activated by sacrocaudal afferent (SCA) input. Here we study the involvement of sacral neurons projecting rostrally through the ventral funiculi (VF) in activation of the CPGs by sensory stimulation. Fluorescent labeling and immunostaining showed that VF neurons are innervated by primary afferents immunoreactive for vesicular glutamate transporters 1 and 2 and by intraspinal neurons. Calcium imaging revealed that 55% of the VF neurons were activated by SCA stimulation. The activity of VF neurons and the sacral and lumbar CPGs was abolished when non-NMDA receptors in the sacral segments were blocked by the antagonist CNQX. When sacral NMDA receptors were blocked by APV, the sacral CPGs were suppressed, VF neurons with nonrhythmic activity were recruited and a moderate-drive locomotor rhythm developed during SCA stimulation. In contrast, when the sacral CPGs were activated by SCA stimulation, rhythmic and nonrhythmic VF neurons were recruited and the locomotor rhythm was most powerful. The activity of 73 and 27% of the rhythmic VF neurons was in-phase with the ipsilateral and contralateral motor output, respectively. Collectively, our studies indicate that sacral VF neurons serve as a major link between SCA and the hindlimb CPGs and that the ability of SCA to induce stepping can be enhanced by the sacral CPGs. The nature of the ascending drive to lumbar CPGs, the identity of subpopulations of VF neurons, and their potential role in activating the locomotor rhythm are discussed. PMID:23303951

  18. Modulatory effects by CB1 receptors on rat spinal locomotor networks after sustained application of agonists or antagonists.

    PubMed

    Veeraraghavan, P; Nistri, A

    2015-09-10

    Sustained administration of cannabinoid agonists acting on neuronal CB1 receptors (CB1Rs) are proposed for treating spasticity and chronic pain. The impact of CB1Rs on mammalian locomotor networks remains, however, incompletely understood. To clarify how CB1Rs may control synaptic activity and locomotor network function, we used the rat spinal cord in vitro which is an advantageous model to investigate locomotor circuit mechanisms produced by the local central pattern generator. Neither the CB1 agonist anandamide (AEA) nor the CB1R antagonist AM-251 evoked early (<3h) changes in mono or polysynaptic reflexes or in locomotor rhythms. Application of AEA (24h) significantly decreased the ability of dorsal root (DR) afferents to elicit oscillatory cycles, and left synaptic responses unchanged. Similar application of LY 2183240, or JZL 184, inhibitors of endocannabinoid uptake processes, produced analogous results. Application of the antagonist AM-251 (or rimonabant) for >3-24h largely impaired locomotor network activity induced by DR stimuli or neurochemicals, and depressed disinhibited bursting without changing reflex amplitude or inducing neurotoxicity even if CB1R immunoreactivity was lowered in the central region. Since CB1R activation usually inhibits cyclic adenosine monophosphate (cAMP) synthesis, we investigated how a 24-h application of AEA or AM-251 affected basal or forskolin-stimulated cAMP levels. While AEA decreased them in an AM-251-sensitive manner, AM-251 per se did not change resting or stimulated cAMP. Our data suggest that CB1Rs may control the circuit gateway regulating the inflow of sensory afferent inputs into the locomotor circuits, indicating a potential site of action for restricting peripheral signals disruptive for locomotor activity.

  19. Fostering Locomotor Behavior of Children with Developmental Disabilities: An Overview of Studies Using Treadmills and Walkers with Microswitches

    ERIC Educational Resources Information Center

    Lancioni, Giulio E.; Singh, Nirbhay N.; O'Reilly, Mark F.; Sigafoos, Jeff; Didden, Robert; Manfredi, Francesco; Putignano, Pietro; Stasolla, Fabrizio; Basili, Gabriella

    2009-01-01

    This paper provides an overview of studies using programs with treadmills or walkers with microswitches and contingent stimulation to foster locomotor behavior of children with developmental disabilities. Twenty-six studies were identified in the period 2000-2008 (i.e., the period in which research in this area has actually taken shape).…

  20. Plantar tactile perturbations enhance transfer of split-belt locomotor adaptation

    PubMed Central

    Mukherjee, Mukul; Eikema, Diderik Jan A.; Chien, Jung Hung; Myers, Sara A.; Scott-Pandorf, Melissa; Bloomberg, Jacob J.; Stergiou, Nicholas

    2015-01-01

    Patterns of human locomotion are highly adaptive and flexible, and depend on the environmental context. Locomotor adaptation requires the use of multisensory information to perceive altered environmental dynamics and generate an appropriate movement pattern. In this study, we investigated the use of multisensory information during locomotor learning. Proprioceptive perturbations were induced by vibrating tactors, placed bilaterally over the plantar surfaces. Under these altered sensory conditions, participants were asked to perform a split-belt locomotor task representative of motor learning. Twenty healthy young participants were separated into two groups: no-tactors (NT) and tactors (TC). All participants performed an overground walking trial, followed by treadmill walking including 18 minutes of split-belt adaptation and an overground trial to determine transfer effects. Interlimb coordination was quantified by symmetry indices and analyzed using mixed repeated measures ANOVAs. Both groups adapted to the locomotor task, indicated by significant reductions in gait symmetry during the split-belt task. No significant group differences in spatiotemporal and kinetic parameters were observed on the treadmill. However, significant groups differences were observed overground. Step and swing time asymmetries learned on the split belt treadmill, were retained and decayed more slowly overground in the TC group whereas in NT, asymmetries were rapidly lost. These results suggest that tactile stimulation contributed to increased lower limb proprioceptive gain. High proprioceptive gain allows for more persistent overground after-effects, at the cost of reduced adaptability. Such persistence may be utilized in populations displaying pathologic asymmetric gait by retraining a more symmetric pattern. PMID:26169104

  1. Locomotor corollary activation of trigeminal motoneurons: coupling of discrete motor behaviors.

    PubMed

    Hänzi, Sara; Banchi, Roberto; Straka, Hans; Chagnaud, Boris P

    2015-06-01

    During motor behavior, corollary discharges of the underlying motor commands inform sensory-motor systems about impending or ongoing movements. These signals generally limit the impact of self-generated sensory stimuli but also induce motor reactions that stabilize sensory perception. Here, we demonstrate in isolated preparations of Xenopus laevis tadpoles that locomotor corollary discharge provokes a retraction of the mechanoreceptive tentacles during fictive swimming. In the absence of sensory feedback, these signals activate a cluster of trigeminal motoneurons that cause a contraction of the tentacle muscle. This corollary discharge encodes duration and strength of locomotor activity, thereby ensuring a reliable coupling between locomotion and tentacle motion. The strict phase coupling between the trigeminal and spinal motor activity, present in many cases, suggests that the respective corollary discharge is causally related to the ongoing locomotor output and derives at least in part from the spinal central pattern generator; however, additional contributions from midbrain and/or hindbrain locomotor centers are likely. The swimming-related retraction might protect the touch-receptive Merkel cells on the tentacle from sensory over-stimulation and damage and/or reduce the hydrodynamic drag. The intrinsic nature of the coupling of tentacle retraction to locomotion is an excellent example of a context-dependent, direct link between otherwise discrete motor behaviors.

  2. Plantar tactile perturbations enhance transfer of split-belt locomotor adaptation.

    PubMed

    Mukherjee, Mukul; Eikema, Diderik Jan A; Chien, Jung Hung; Myers, Sara A; Scott-Pandorf, Melissa; Bloomberg, Jacob J; Stergiou, Nicholas

    2015-10-01

    Patterns of human locomotion are highly adaptive and flexible and depend on the environmental context. Locomotor adaptation requires the use of multisensory information to perceive altered environmental dynamics and generate an appropriate movement pattern. In this study, we investigated the use of multisensory information during locomotor learning. Proprioceptive perturbations were induced by vibrating tactors, placed bilaterally over the plantar surfaces. Under these altered sensory conditions, participants were asked to perform a split-belt locomotor task representative of motor learning. Twenty healthy young participants were separated into two groups: no-tactors (NT) and tactors (TC). All participants performed an overground walking trial, followed by treadmill walking including 18 min of split-belt adaptation and an overground trial to determine transfer effects. Interlimb coordination was quantified by symmetry indices and analyzed using mixed repeated-measures ANOVAs. Both groups adapted to the locomotor task, indicated by significant reductions in gait symmetry during the split-belt task. No significant group differences in spatiotemporal and kinetic parameters were observed on the treadmill. However, significant group differences were observed overground. Step and swing time asymmetries learned on the split-belt treadmill were retained and decayed more slowly overground in the TC group whereas in NT, asymmetries were rapidly lost. These results suggest that tactile stimulation contributed to increased lower limb proprioceptive gain. High proprioceptive gain allows for more persistent overground after effects, at the cost of reduced adaptability. Such persistence may be utilized in populations displaying pathologic asymmetric gait by retraining a more symmetric pattern.

  3. A novel substituted piperazine, CM156, attenuates the stimulant and toxic effects of cocaine in mice.

    PubMed

    Xu, Yan-Tong; Kaushal, Nidhi; Shaikh, Jamaluddin; Wilson, Lisa L; Mésangeau, Christophe; McCurdy, Christopher R; Matsumoto, Rae R

    2010-05-01

    Cocaine is a highly abused drug without effective pharmacotherapies to treat it. It interacts with sigma (sigma) receptors, providing logical targets for the development of medications to counteract its actions. Cocaine causes toxic and stimulant effects that can be categorized as acute effects such as convulsions and locomotor hyperactivity and subchronic effects including sensitization and place conditioning. In the present study, 3-(4-(4-cyclohexylpiperazin-1-yl)butyl)benzo[d]thiazole-2(3H)-thione (CM156), a novel compound, was developed and tested for interactions with sigma receptors using radioligand binding studies. It was also evaluated against cocaine-induced effects in behavioral studies. The results showed that CM156 has nanomolar affinities for each of the sigma receptor subtypes in the brain and much weaker affinities for non-sigma binding sites. Pretreatment of male Swiss-Webster mice with CM156, before administering either a convulsive or locomotor stimulant dose of cocaine, led to a significant attenuation of these acute effects. CM156 also significantly reduced the expression of behavioral sensitization and place conditioning evoked by subchronic exposure to cocaine. The protective effects of CM156 are consistent with sigma receptor-mediated actions. Together with previously reported findings, the data from CM156 and related sigma compounds indicate that sigma receptors can be targeted to alleviate deleterious actions of cocaine.

  4. Changes in cell death of peripheral blood lymphocytes isolated from children with acute lymphoblastic leukemia upon stimulation with 7 Hz, 30 mT pulsed electromagnetic field.

    PubMed

    Kaszuba-Zwoińska, Jolanta; Ćwiklińska, Magdalena; Balwierz, Walentyna; Chorobik, Paulina; Nowak, Bernadeta; Wójcik-Piotrowicz, Karolina; Ziomber, Agata; Malina-Novak, Kinga; Zaraska, Wiesław; Thor, Piotr J

    2015-03-01

    Pulsed electromagnetic field (PEMF) influenced the viability of proliferating in vitro peripheral blood mononuclear cells (PBMCs) isolated from Crohn's disease patients as well as acute myeloblastic leukemia (AML) patients by induction of cell death, but did not cause any vital changes in cells from healthy donors. Experiments with lymphoid U937 and monocytic MonoMac6 cell lines have shown a protective effect of PEMF on the death process in cells treated with death inducers. The aim of the current study was to investigate the influence of PEMF on native proliferating leukocytes originating from newly diagnosed acute lymphoblastic leukemia (ALL) patients. The effects of exposure to PEMF were studied in PBMCs from 20 children with ALL. PBMCs were stimulated with three doses of PEMF (7 Hz, 30 mT) for 4 h each with 24 h intervals. After the last stimulation, the cells were double stained with annexin V and propidium iodide dye to estimate viability by flow cytometric analysis. The results indicated an increase of annexin V positive as well as double stained annexin V and propidium iodide positive cells after exposure to threefold PEMF stimulation. A low-frequency pulsed electromagnetic field induces cell death in native proliferating cells isolated from ALL patients. The increased vulnerability of proliferating PBMCs to PEMF-induced interactions may be potentially applied in the therapy of ALL. The analysis of expression of apoptosis-related genes revealed changes in mRNA of some genes engaged in the intrinsic apoptotic pathway belonging to the Bcl-2 family and the pathway with apoptosis-inducing factor (AIF) abundance upon PEMF stimulation of PBMCs.

  5. Melanin-concentrating hormone is necessary for olanzapine-inhibited locomotor activity in male mice.

    PubMed

    Chee, Melissa J S; Douris, Nicholas; Forrow, Avery B; Monnard, Arnaud; Lu, Shuangyu; Flaherty, Stephen E; Adams, Andrew C; Maratos-Flier, Eleftheria

    2015-10-01

    Olanzapine (OLZ), an atypical antipsychotic, can be effective in treating patients with restricting type anorexia nervosa who exercise excessively. Clinical improvements include weight gain and reduced pathological hyperactivity. However the neuronal populations and mechanisms underlying OLZ actions are not known. We studied the effects of OLZ on hyperactivity using male mice lacking the hypothalamic neuropeptide melanin-concentrating hormone (MCHKO) that are lean and hyperactive. We compared the in vivo effects of systemic or intra-accumbens nucleus (Acb) OLZ administration on locomotor activity in WT and MCHKO littermates. Acute systemic OLZ treatment in WT mice significantly reduced locomotor activity, an effect that is substantially attenuated in MCHKO mice. Furthermore, OLZ infusion directly into the Acb of WT mice reduced locomotor activity, but not in MCHKO mice. To identify contributing neuronal mechanisms, we assessed the effect of OLZ treatment on Acb synaptic transmission ex vivo and in vitro. Intraperitoneal OLZ treatment reduced Acb GABAergic activity in WT but not MCHKO neurons. This effect was also seen in vitro by applying OLZ to acute brain slices. OLZ reduced the frequency and amplitude of GABAergic activity that was more robust in WT than MCHKO Acb. These findings indicate that OLZ reduced Acb GABAergic transmission and that MCH is necessary for the hypolocomotor effects of OLZ.

  6. Dose-dependent changes in the synaptic strength on dopamine neurons and locomotor activity after cocaine exposure

    PubMed Central

    Wanat, M.J.; Bonci, A.

    2016-01-01

    Changes in synaptic strength on ventral tegmental area (VTA) dopamine neurons are thought to play a critical role in the development of addiction-related behaviors. However, it is unknown how a single injection of cocaine at different doses affects locomotor activity, behavioral sensitization, and glutamatergic synaptic strength on VTA dopamine neurons in mice. We observed that behavioral sensitization to a challenge cocaine injection scaled with the dose of cocaine received one day prior. Interestingly, the locomotor activity after the initial exposure to different doses of cocaine corresponded to the changes in glutamatergic strength on VTA dopamine neurons. These results in mice suggest that a single exposure to cocaine dose-dependently affects excitatory synapses on VTA dopamine neurons, and that this acute synaptic alteration is directly associated with the locomotor responses to cocaine and not to behavioral sensitization. PMID:18655120

  7. Effects of coal mine wastewater on locomotor and non-locomotor activities of empire gudgeons (Hypseleotris compressa).

    PubMed

    Lanctôt, C; Melvin, S D; Fabbro, L; Leusch, F D L; Wilson, S P

    2016-05-01

    Coal mining represents an important industry in many countries, but concerns exist about the possible adverse effects of minewater releases on aquatic animals and ecosystems. Coal mining generates large volumes of complex wastewater, which often contains high concentrations of dissolved solids, suspended solids, metals, hydrocarbons, salts and other compounds. Traditional toxicological testing has generally involved the assessment of acute toxicity or chronic toxicity with longer-term tests, and while such tests provide useful information, they are poorly suited to ongoing monitoring or rapid assessment following accidental discharge events. As such, there is considerable interest in developing rapid and sensitive approaches to environmental monitoring, and particularly involving the assessment of sub-lethal behavioural responses in locally relevant aquatic species. We therefore investigated behavioural responses of a native Australian fish to coal mine wastewater, to evaluate its potential use for evaluating sub-lethal effects associated with wastewater releases on freshwater ecosystems. Empire gudgeons (Hypseleotris compressa) were exposed to wastewater from two dams located at an open cut coal mine in Central Queensland, Australia and activity levels were monitored using the Multispecies Freshwater Biomonitor® (LimCo International GmbH). A general decrease in locomotor activity (i.e., low frequency movement) and increase in non-locomotor activity (i.e., high frequency movement including ventilation and small fin movement) was observed in exposed fish compared to those in control water. Altered activity levels were observable within the first hour of exposure and persisted throughout the 15-d experiment. Results demonstrate the potential for using behavioural endpoints as tools for monitoring wastewater discharges using native fish species, but more research is necessary to identify responsible compounds and response thresholds, and to understand the relevance

  8. Acute ENaC stimulation by cAMP in a kidney cell line is mediated by exocytic insertion from a recycling channel pool.

    PubMed

    Butterworth, Michael B; Edinger, Robert S; Johnson, John P; Frizzell, Raymond A

    2005-01-01

    Acute hormonal regulation of the epithelial sodium channel (ENaC) in tight epithelia increases transcellular Na(+) transport via trafficking of intracellular channels to the apical surface. The fate of the channels removed from the apical surface following agonist washout is less clear. By repetitively stimulating polarized mouse cortical collecting duct (mCCD, (MPK)CCD(14)) epithelia, we evaluated the hypothesis that ENaC recycles through an intracellular pool to be available for reinsertion into the apical membrane. Short circuit current (I(SC)), membrane capacitance (C(T)), and conductance (G(T)) were recorded from mCCD epithelia mounted in modified Ussing chambers. Surface biotinylation of ENaC demonstrated an increase in channel number in the apical membrane following cAMP stimulation. This increase was accompanied by a 83 +/- 6% (n = 31) increase in I(SC) and a 15.3 +/- 1.5% (n = 15) increase in C(T). Selective membrane permeabilization demonstrated that the C(T) increase was due to an increase in apical membrane capacitance. I(SC) and C(T) declined to basal levels on stimulus washout. Repetitive cAMP stimulation and washout (approximately 1 h each cycle) resulted in response fatigue; DeltaI(SC) decreased approximately 10% per stimulation-recovery cycle. When channel production was blocked by cycloheximide, DeltaI(SC) decreased approximately 15% per stimulation cycle, indicating that newly synthesized ENaC contributed a relatively small fraction of the channels mobilized to the apical membrane. Selective block of surface ENaC by benzamil demonstrated that channels inserted from a subapical pool made up >90% of the stimulated I(SC), and that on restimulation a large proportion of channels retrieved from the apical surface were reinserted into the apical membrane. Channel recycling was disrupted by brefeldin A, which inhibited ENaC exocytosis, by chloroquine, which inhibited ENaC endocytosis and recycling, and by latrunculin A, which blocked ENaC exocytosis. A

  9. Dynamics of the locomotor-respiratory coupling at different frequencies.

    PubMed

    Hoffmann, Charles P; Bardy, Benoît G

    2015-05-01

    The locomotor-respiratory coupling (LRC) is a universal phenomenon reported for various forms of rhythmic exercise. In this study, we investigated the effect of movement and respiratory frequencies on LRC. Participants were instructed to cycle or breath in synchrony with a periodic auditory stimulation at preferred and non-preferred frequencies. LRC stability was assessed by frequency and phase coupling indexes using the theory of nonlinear coupled oscillators through the sine circle map model, and the Farey tree. Results showed a stabilizing effect of sound on LRC for all frequencies and for the two systems paced. The sound-induced effect was more prominent when the rhythm of the stimulation corresponded to the preferred frequencies. The adoption of cycling or respiratory frequencies far off preferential ones led to a loss of stability in LRC. Contrary to previous findings, our results suggest that LRC is not unidirectional-from locomotion onto respiration-but bidirectional between the two systems. They also suggest that auditory information plays an important role in the modulation of LRC. PMID:25796188

  10. Changes in immune gene expression and resistance to bacterial infection in lobster (Homarus gammarus) post-larval stage VI following acute or chronic exposure to immune stimulating compounds.

    PubMed

    Hauton, C; Brockton, V; Smith, V J

    2007-01-01

    Real-time PCR was used to measure changes in transcript abundance of genes encoding important immune proteins, namely prophenoloxidase (proPO gene), beta-1,3-glucan binding protein (betaGBP gene) and a 12.2 kDa antimicrobial peptide (amp gene) in post-larval stage VI (PLVI) juveniles of the European lobster, Homarus gammarus. Gene expression was studied in both healthy PLVI and following single or repeat exposure to a range of compounds claimed to induce immune reactivity. A single acute (3-h) exposure to any of the tested stimulants did not produce a significant increase in expression of either the proPO or betaGBP genes, measured 6h after stimulation. However, there were a small sub-group of positive responders, identified mainly from betaGBP expression, within the experimental groups stimulated with either a beta-1,3-glucan or an alginate. There was also no significant increase in the expression of any of the three genes tested 24 h after repeated weekly (3-h) exposures to a either the beta-1,3-glucan or the alginate over the longer (36-day) period. The results do show that amp is expressed at an extremely high level compared to proPO or betaGBP in healthy animals and a significant correlation was found between the expression of proPO and both betaGBP and amp, irrespective of whether or not the larvae were stimulated. None of the immune stimulated compounds improved survival of PLVI challenged with the opportunistic pathogen, Listonella anguillarum, or the lobster pathogen, Aerococcus viridans var. homari. Thus, we found no evidence to support recent claims that immunity and disease resistance can be primed or promoted within a given population of crustaceans or that these animals exhibit functional immune memory to some soluble immune elicitors. PMID:16569431

  11. Effects of phthalate esters on the locomotor activity of the freshwater amphipod Gammarus pulex

    SciTech Connect

    Thuren, A. ); Woin, P. )

    1991-01-01

    Phthalates are of environmental concern owing to their large-scale annual production and to their ubiquitous use as additives in the manufacture of plastics. Among the phthalates, di-2-ethylhexyl phthalate (DEHP) and dibutylphthalate (DBP) are the most commonly used compounds. Phthalates are lipophilic with a relatively low water solubility and show low acute toxicity to fish and selectively toxic to cladocerans. Little is known, however, about their effects on the behavior, reproductive success or the growth of organisms. In this investigation of locomotor activity of G. pulex was studied under phthalate stress. The aim of the study was to determine the effects of phthalates on overall locomotor activity of G. pulex and the impact of long term exposure on diel activity.

  12. Locomotor training alters the behavior of flexor reflexes during walking in human spinal cord injury.

    PubMed

    Smith, Andrew C; Mummidisetty, Chaithanya K; Rymer, William Zev; Knikou, Maria

    2014-11-01

    In humans, a chronic spinal cord injury (SCI) impairs the excitability of pathways mediating early flexor reflexes and increases the excitability of late, long-lasting flexor reflexes. We hypothesized that in individuals with SCI, locomotor training will alter the behavior of these spinally mediated reflexes. Nine individuals who had either chronic clinically motor complete or incomplete SCI received an average of 44 locomotor training sessions. Flexor reflexes, elicited via sural nerve stimulation of the right or left leg, were recorded from the ipsilateral tibialis anterior (TA) muscle before and after body weight support (BWS)-assisted treadmill training. The modulation pattern of the ipsilateral TA responses following innocuous stimulation of the right foot was also recorded in 10 healthy subjects while they stepped at 25% BWS to investigate whether body unloading during walking affects the behavior of these responses. Healthy subjects did not receive treadmill training. We observed a phase-dependent modulation of early TA flexor reflexes in healthy subjects with reduced body weight during walking. The early TA flexor reflexes were increased at heel contact, progressively decreased during the stance phase, and then increased throughout the swing phase. In individuals with SCI, locomotor training induced the reappearance of early TA flexor reflexes and changed the amplitude of late TA flexor reflexes during walking. Both early and late TA flexor reflexes were modulated in a phase-dependent pattern after training. These new findings support the adaptive capability of the injured nervous system to return to a prelesion excitability and integration state.

  13. Evidence That GABA Mediates Dopaminergic and Serotonergic Pathways Associated with Locomotor Activity in Juvenile Chinook Salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Clements, S.; Schreck, C.B.

    2004-01-01

    The authors examined the control of locomotor activity in juvenile salmon (Oncorhynchus tshawytscha) by manipulating 3 neurotransmitter systems-gamma-amino-n-butyric acid (GABA), dopamine, and serotonin-as well as the neuropeptide corticotropin releasing hormone (CRH). Intracerebroventricular (ICV) injections of CRH and the GABAAagonist muscimol stimulated locomotor activity. The effect of muscimol was attenuated by administration of a dopamine receptor antagonist, haloperidol. Conversely, the administration of a dopamine uptake inhibitor (4???,4??? -difluoro-3-alpha-[diphenylmethoxy] tropane hydrochloride [DUI]) potentiated the effect of muscimol. They found no evidence that CRH-induced hyperactivity is mediated by dopaminergic systems following concurrent injections of haloperidol or DUI with CRH. Administration of muscimol either had no effect or attenuated the locomotor response to concurrent injections of CRH and fluoxetine, whereas the GABAA antagonist bicuculline methiodide potentiated the effect of CRH and fluoxetine.

  14. Patch-clamp recordings of rat neurons from acute brain slices of the somatosensory cortex during magnetic stimulation

    PubMed Central

    Pashut, Tamar; Magidov, Dafna; Ben-Porat, Hana; Wolfus, Shuki; Friedman, Alex; Perel, Eli; Lavidor, Michal; Bar-Gad, Izhar; Yeshurun, Yosef; Korngreen, Alon

    2014-01-01

    Although transcranial magnetic stimulation (TMS) is a popular tool for both basic research and clinical applications, its actions on nerve cells are only partially understood. We have previously predicted, using compartmental modeling, that magnetic stimulation of central nervous system neurons depolarized the soma followed by initiation of an action potential in the initial segment of the axon. The simulations also predict that neurons with low current threshold are more susceptible to magnetic stimulation. Here we tested these theoretical predictions by combining in vitro patch-clamp recordings from rat brain slices with magnetic stimulation and compartmental modeling. In agreement with the modeling, our recordings demonstrate the dependence of magnetic stimulation-triggered action potentials on the type and state of the neuron and its orientation within the magnetic field. Our results suggest that the observed effects of TMS are deeply rooted in the biophysical properties of single neurons in the central nervous system and provide a framework both for interpreting existing TMS data and developing new simulation-based tools and therapies. PMID:24917788

  15. Bimodal Respiratory-Locomotor Neurons in the Neonatal Rat Spinal Cord.

    PubMed

    Le Gal, Jean-Patrick; Juvin, Laurent; Cardoit, Laura; Morin, Didier

    2016-01-20

    Neural networks that can generate rhythmic motor output in the absence of sensory feedback, commonly called central pattern generators (CPGs), are involved in many vital functions such as locomotion or respiration. In certain circumstances, these neural networks must interact to produce coordinated motor behavior adapted to environmental constraints and to satisfy the basic needs of an organism. In this context, we recently reported the existence of an ascending excitatory influence from lumbar locomotor CPG circuitry to the medullary respiratory networks that is able to depolarize neurons of the parafacial respiratory group during fictive locomotion and to subsequently induce an increased respiratory rhythmicity (Le Gal et al., 2014b). Here, using an isolated in vitro brainstem-spinal cord preparation from neonatal rat in which the respiratory and the locomotor networks remain intact, we show that during fictive locomotion induced either pharmacologically or by sacrocaudal afferent stimulation, the activity of both thoracolumbar expiratory motoneurons and interneurons is rhythmically modulated with the locomotor activity. Completely absent in spinal inspiratory cells, this rhythmic pattern is highly correlated with the hindlimb ipsilateral flexor activities. Furthermore, silencing brainstem neural circuits by pharmacological manipulation revealed that this locomotor-related drive to expiratory motoneurons is solely dependent on propriospinal pathways. Together these data provide the first evidence in the newborn rat spinal cord for the existence of bimodal respiratory-locomotor motoneurons and interneurons onto which both central efferent expiratory and locomotor drives converge, presumably facilitating the coordination between the rhythmogenic networks responsible for two different motor functions. Significance statement: In freely moving animals, distant regions of the brain and spinal cord controlling distinct motor acts must interact to produce the best

  16. Long-Term Potentiation by Theta-Burst Stimulation Using Extracellular Field Potential Recordings in Acute Hippocampal Slices.

    PubMed

    Abrahamsson, Therese; Lalanne, Txomin; Watt, Alanna J; Sjöström, P Jesper

    2016-01-01

    This protocol describes how to carry out theta-burst long-term potentiation (LTP) with extracellular field recordings in acute rodent hippocampal slices. This method is relatively simple and noninvasive and provides a way to sample many neurons simultaneously, making it suitable for applications requiring higher throughput than whole-cell recording. PMID:27250947

  17. Design of a symmetry controller for cycling induced by electrical stimulation: preliminary results on post-acute stroke patients.

    PubMed

    Ambrosini, Emilia; Ferrante, Simona; Schauer, Thomas; Ferrigno, Giancarlo; Molteni, Franco; Pedrocchi, Alessandra

    2010-08-01

    This study deals with the design of a controller for cycling induced by functional electrical stimulation. The controller will be exploitable in the rehabilitation of hemiparetic patients who need to recover motor symmetry. It uses the pulse width as the control variable in the stimulation of the two legs in order to nullify the unbalance between the torques produced at the two crank arms. It was validated by means of isokinetic trials performed both by healthy subjects and stroke patients. The results showed that the controller was able to reach, and then maintain, a symmetrical pedaling. In the future, the controller will be validated on a larger number of stroke patients.

  18. Design of a symmetry controller for cycling induced by electrical stimulation: preliminary results on post-acute stroke patients.

    PubMed

    Ambrosini, Emilia; Ferrante, Simona; Schauer, Thomas; Ferrigno, Giancarlo; Molteni, Franco; Pedrocchi, Alessandra

    2010-08-01

    This study deals with the design of a controller for cycling induced by functional electrical stimulation. The controller will be exploitable in the rehabilitation of hemiparetic patients who need to recover motor symmetry. It uses the pulse width as the control variable in the stimulation of the two legs in order to nullify the unbalance between the torques produced at the two crank arms. It was validated by means of isokinetic trials performed both by healthy subjects and stroke patients. The results showed that the controller was able to reach, and then maintain, a symmetrical pedaling. In the future, the controller will be validated on a larger number of stroke patients. PMID:20528850

  19. Modelling the locomotor energetics of extinct hominids.

    PubMed

    Kramer, P A

    1999-10-01

    Bipedality is the defining characteristic of Hominidae and, as such, an understanding of the adaptive significance and functional implications of bipedality is imperative to any study of human evolution. Hominid bipedality is, presumably, a solution to some problem for the early hominids, one that has much to do with energy expenditure. Until recently, however, little attention could be focused on the quantifiable energetic aspects of bipedality as a unique locomotor form within Primates because of the inability to measure empirically the energy expenditure of non-modern hominids. A recently published method provides a way of circumventing the empirical measurement dilemma by calculating energy expenditure directly from anatomical variables and movement profiles. Although the origins of bipedality remain clouded, two discernible forms of locomotor anatomy are present in the hominid fossil record: the australopithecine and modern configurations. The australopithecine form is best represented by AL 288-1, a partial skeleton of Australopithecus afarensis, and is characterized as having short legs and a wide pelvis. The modern form is represented by modern humans and has long legs and a narrow pelvis. Human walking is optimized to take advantage of the changing levels of potential and kinetic energy that occur as the body and limbs move through the stride cycle. Although this optimization minimizes energy expenditure, some energy is required to maintain motion. I quantify this energy by developing a dynamic model that uses kinematic equations to determine energy expenditure. By representing both configurations with such a model, I can compare their rates of energy expenditure. I find that the australopithecine configuration uses less energy than that of a modern human. Despite arguments presented in the anthropological literature, the shortness of the legs of AL 288-1 provides no evidence that she was burdened with a compromised or transitional locomotor anatomy

  20. Modelling the locomotor energetics of extinct hominids.

    PubMed

    Kramer, P A

    1999-10-01

    Bipedality is the defining characteristic of Hominidae and, as such, an understanding of the adaptive significance and functional implications of bipedality is imperative to any study of human evolution. Hominid bipedality is, presumably, a solution to some problem for the early hominids, one that has much to do with energy expenditure. Until recently, however, little attention could be focused on the quantifiable energetic aspects of bipedality as a unique locomotor form within Primates because of the inability to measure empirically the energy expenditure of non-modern hominids. A recently published method provides a way of circumventing the empirical measurement dilemma by calculating energy expenditure directly from anatomical variables and movement profiles. Although the origins of bipedality remain clouded, two discernible forms of locomotor anatomy are present in the hominid fossil record: the australopithecine and modern configurations. The australopithecine form is best represented by AL 288-1, a partial skeleton of Australopithecus afarensis, and is characterized as having short legs and a wide pelvis. The modern form is represented by modern humans and has long legs and a narrow pelvis. Human walking is optimized to take advantage of the changing levels of potential and kinetic energy that occur as the body and limbs move through the stride cycle. Although this optimization minimizes energy expenditure, some energy is required to maintain motion. I quantify this energy by developing a dynamic model that uses kinematic equations to determine energy expenditure. By representing both configurations with such a model, I can compare their rates of energy expenditure. I find that the australopithecine configuration uses less energy than that of a modern human. Despite arguments presented in the anthropological literature, the shortness of the legs of AL 288-1 provides no evidence that she was burdened with a compromised or transitional locomotor anatomy

  1. Stem cell mobilisation by granulocyte-colony stimulating factor in patients with acute myocardial infarction. Long-term results of the REVIVAL-2 trial.

    PubMed

    Steppich, Birgit; Hadamitzky, Martin; Ibrahim, Tareq; Groha, Philip; Schunkert, Heribert; Laugwitz, Karl-Ludwig; Kastrati, Adnan; Ott, Ilka

    2016-04-01

    Treatment with granulocyte-colony stimulating factor (G-CSF) mobilises cells from the bone marrow to the peripheral blood. Previous preclinical and early clinical trials may suggest that treatment with G-CSF leads to improved myocardial perfusion and function in acute or chronic ischaemic heart disease. In the REVIVAL-2 study we found that stem cell mobilisation by G-CSF does not influence infarct size, left ventricular function and coronary restenosis in patients with acute myocardial infarction (MI) that underwent successful percutaneous coronary intervention. The objective of the present analysis was to assess the impact of G-CSF treatment on seven-year clinical outcomes from the REVIVAL-2 trial. In the randomized, double-blind, placebo-controlled REVIVAL-2 study, 114 patients with the diagnosis of acute myocardial infarction were enrolled five days after successful reperfusion by percutaneous coronary intervention. Patients were assigned to receive 10 µg/kg G-CSF (n=56) or placebo (n=58) for five days. The primary endpoint for this long-term outcome analysis was the composite of death, myocardial infarction or stroke seven years after randomisation. The endpoint occurred in 14.3 % of patients in the G-CSF group versus 17.2 % assigned to placebo (p=0.67). The combined incidence of death or myocardial infarction occurred in 14.3 % of the patients assigned to G-CSF and 15.5 % of the patients assigned to placebo (p=0.85). In conclusion, these long-term follow-up data show that G-CSF does not improve clinical outcomes of patients with acute myocardial infarction.

  2. Motor Control: Illuminating an Enigmatic Midbrain Locomotor Center.

    PubMed

    Esposito, Maria S; Arber, Silvia

    2016-04-01

    A recent study has functionally disentangled the hitherto enigmatic mesencephalic locomotor region of the brain on the basis of cell type diversity and identified differential upstream regulatory pathways.

  3. Cross-Sensitization Between Cocaine and Acute Restraint Stress is Associated with Sensitized Dopamine but not Glutamate Release in the Nucleus Accumbens

    PubMed Central

    Garcia-Keller, C; Martinez, SA; Esparza, A; Bollati, F; Kalivas, PW; Cancela, LM

    2015-01-01

    Repeated administration of psychostimulant drugs or stress can elicit a sensitized response to the stimulating and reinforcing properties of the drug. Here we explore the mechanisms in the nucleus accumbens (NAc) whereby an acute restraint stress augments the acute locomotor response to cocaine. This was accomplished by a combination of behavioral pharmacology, microdialysis measures of extracellular dopamine and glutamate, and Western blotting for GluR1 subunit of the AMPA glutamate receptor (AMPAR). A single exposure to restraint stress 3 weeks before testing revealed that enduring locomotor sensitization to cocaine was paralleled by an increase in extracellular dopamine in the core, but not the shell subcompartment of the NAc. Wistar rats pre-exposed to acute stress showed increased basal levels of glutamate in the core but the increase in glutamate by acute cocaine was blunted. The alterations in extracellular glutamate seem to be relevant, since blocking AMPAR by CNQX microinjection into the core prevented both the behavioral cross-sensitization and the augmented increase in cocaine-induced extracellular dopamine. Further implicating glutamate, the locomotor response to AMPAR stimulation in the core was potentiated, but not in the shell of pre-stressed animals, and this was accompanied by an increase in NAc GluR1 surface expression. This study provides evidence that the long-term expression of restraint stress-induced behavioral cross-sensitization to cocaine recapitulates some mechanisms thought to underpin the sensitization induced by daily cocaine administration, and shows that long-term neurobiological changes induced in the NAc by acute stress are consequential in the expression of cross-sensitization to cocaine. PMID:23360446

  4. The Gottingen Minipig Is a Model of the Hematopoietic Acute Radiation Syndrome: G-Colony Stimulating Factor Stimulates Hematopoiesis and Enhances Survival From Lethal Total-Body γ-Irradiation

    SciTech Connect

    Moroni, Maria; Ngudiankama, Barbara F.; Christensen, Christine; Olsen, Cara H.; Owens, Rossitsa; Lombardini, Eric D.; Holt, Rebecca K.; Whitnall, Mark H.

    2013-08-01

    Purpose: We are characterizing the Gottingen minipig as an additional large animal model for advanced drug testing for the acute radiation syndrome (ARS) to enhance the discovery and development of novel radiation countermeasures. Among the advantages provided by this model, the similarities to human hematologic parameters and dynamics of cell loss/recovery after irradiation provide a convenient means to compare the efficacy of drugs known to affect bone marrow cellularity and hematopoiesis. Methods and Materials: Male Gottingen minipigs, 4 to 5 months old and weighing 9 to 11 kg, were used for this study. We tested the standard off-label treatment for ARS, rhG-CSF (Neupogen, 10 μg/kg/day for 17 days), at the estimated LD70/30 total-body γ-irradiation (TBI) radiation dose for the hematopoietic syndrome, starting 24 hours after irradiation. Results: The results indicated that granulocyte colony stimulating factor (G-CSF) enhanced survival, stimulated recovery from neutropenia, and induced mobilization of hematopoietic progenitor cells. In addition, the administration of G-CSF resulted in maturation of monocytes/macrophages. Conclusions: These results support continuing efforts toward validation of the minipig as a large animal model for advanced testing of radiation countermeasures and characterization of the pathophysiology of ARS, and they suggest that the efficacy of G-CSF in improving survival after total body irradiation may involve mechanisms other than increasing the numbers of circulating granulocytes.

  5. Development of a spinal locomotor rheostat

    PubMed Central

    Zhang, Hong-Yan; Issberner, Jon; Sillar, Keith T.

    2011-01-01

    Locomotion in immature animals is often inflexible, but gradually acquires versatility to enable animals to maneuver efficiently through their environment. Locomotor activity in adults is produced by complex spinal cord networks that develop from simpler precursors. How does complexity and plasticity emerge during development to bestow flexibility upon motor behavior? And how does this complexity map onto the peripheral innervation fields of motorneurons during development? We show in postembryonic Xenopus laevis frog tadpoles that swim motorneurons initially form a homogenous pool discharging single action potential per swim cycle and innervating most of the dorsoventral extent of the swimming muscles. However, during early larval life, in the prelude to a free-swimming existence, the innervation fields of motorneurons become restricted to a more limited sector of each muscle block, with individual motorneurons reaching predominantly ventral, medial, or dorsal regions. Larval motorneurons then can also discharge multiple action potentials in each cycle of swimming and differentiate in terms of their firing reliability during swimming into relatively high-, medium-, or low-probability members. Many motorneurons fall silent during swimming but can be recruited with increasing locomotor frequency and intensity. Each region of the myotome is served by motorneurons spanning the full range of firing probabilities. This unfolding developmental plan, which occurs in the absence of movement, probably equips the organism with the neuronal substrate to bend, pitch, roll, and accelerate during swimming in ways that will be important for survival during the period of free-swimming larval life that ensues. PMID:21709216

  6. The effects of acute exposure to ethanol on neurotensin and guanine nucleotide-stimulation of phospholipase C activity in intact NIE-115 neuroblastoma cells

    SciTech Connect

    Smith, T.L. )

    1990-01-01

    Both ethanol and neurotensin produce sedation and hypothermia. When administered in combination the behavioral effects of these two substances are potentiated. In order to better understand the biochemical nature of this interaction, the direct effects of ethanol on neurotensin receptors and an associated signal transduction process were determined in NIE-115 neuroblastoma cells. Ethanol in physiologically relevant concentrations significantly reduced neurotensin stimulated ({sup 3}H)inositol phosphate production while having no effect on the specific binding of ({sup 3}H)neurotensin. In addition, ethanol up to 200 mM had no effect on GTPYS mediated ({sup 3}H)inositol phosphate production. The results indicate that acute exposure ethanol partially disrupts the normal coupling of activated neurotensin receptors to the guanine nucleotide binding protein associated with phospholipase C.

  7. Neurophysiological responses to unpleasant stimuli (acute electrical stimulations and emotional pictures) are increased in patients with schizophrenia.

    PubMed

    Duval, Céline Z; Goumon, Yannick; Kemmel, Véronique; Kornmeier, Jürgen; Dufour, André; Andlauer, Olivier; Vidailhet, Pierre; Poisbeau, Pierrick; Salvat, Eric; Muller, André; Mensah-Nyagan, Ayikoé G; Schmidt-Mutter, Catherine; Giersch, Anne

    2016-01-01

    Patients with schizophrenia have often been described as insensitive to nociceptive signals, but objective evidence is sparse. We address this question by combining subjective behavioral and objective neurochemical and neurophysiological measures. The present study involved 21 stabilized and mildly symptomatic patients with schizophrenia and 21 control subjects. We applied electrical stimulations below the pain threshold and assessed sensations of pain and unpleasantness with rating scales, and Somatosensory Evoked Potentials (SEPs/EEG). We also measured attention, two neurochemical stress indices (ACTH/cortisol), and subjective VEPs/EEG responses to visual emotional stimuli. Our results revealed that, subjectively, patients' evaluations do not differ from controls. However, the amplitude of EEG evoked potentials was greater in patients than controls as early as 50 ms after electrical stimulations and beyond one second after visual processing of emotional pictures. Such responses could not be linked to the stress induced by the stimulations, since stress hormone levels were stable. Nor was there a difference between patients and controls in respect of attention performance and tactile sensitivity. Taken together, all indices measured in patients in our study were either heightened or equivalent relative to healthy volunteers. PMID:26935652

  8. Neurophysiological responses to unpleasant stimuli (acute electrical stimulations and emotional pictures) are increased in patients with schizophrenia.

    PubMed

    Duval, Céline Z; Goumon, Yannick; Kemmel, Véronique; Kornmeier, Jürgen; Dufour, André; Andlauer, Olivier; Vidailhet, Pierre; Poisbeau, Pierrick; Salvat, Eric; Muller, André; Mensah-Nyagan, Ayikoé G; Schmidt-Mutter, Catherine; Giersch, Anne

    2016-03-03

    Patients with schizophrenia have often been described as insensitive to nociceptive signals, but objective evidence is sparse. We address this question by combining subjective behavioral and objective neurochemical and neurophysiological measures. The present study involved 21 stabilized and mildly symptomatic patients with schizophrenia and 21 control subjects. We applied electrical stimulations below the pain threshold and assessed sensations of pain and unpleasantness with rating scales, and Somatosensory Evoked Potentials (SEPs/EEG). We also measured attention, two neurochemical stress indices (ACTH/cortisol), and subjective VEPs/EEG responses to visual emotional stimuli. Our results revealed that, subjectively, patients' evaluations do not differ from controls. However, the amplitude of EEG evoked potentials was greater in patients than controls as early as 50 ms after electrical stimulations and beyond one second after visual processing of emotional pictures. Such responses could not be linked to the stress induced by the stimulations, since stress hormone levels were stable. Nor was there a difference between patients and controls in respect of attention performance and tactile sensitivity. Taken together, all indices measured in patients in our study were either heightened or equivalent relative to healthy volunteers.

  9. Neurophysiological responses to unpleasant stimuli (acute electrical stimulations and emotional pictures) are increased in patients with schizophrenia

    PubMed Central

    Duval, Céline Z.; Goumon, Yannick; Kemmel, Véronique; Kornmeier, Jürgen; Dufour, André; Andlauer, Olivier; Vidailhet, Pierre; Poisbeau, Pierrick; Salvat, Eric; Muller, André; Mensah-Nyagan, Ayikoé G.; Schmidt-Mutter, Catherine; Giersch, Anne

    2016-01-01

    Patients with schizophrenia have often been described as insensitive to nociceptive signals, but objective evidence is sparse. We address this question by combining subjective behavioral and objective neurochemical and neurophysiological measures. The present study involved 21 stabilized and mildly symptomatic patients with schizophrenia and 21 control subjects. We applied electrical stimulations below the pain threshold and assessed sensations of pain and unpleasantness with rating scales, and Somatosensory Evoked Potentials (SEPs/EEG). We also measured attention, two neurochemical stress indices (ACTH/cortisol), and subjective VEPs/EEG responses to visual emotional stimuli. Our results revealed that, subjectively, patients’ evaluations do not differ from controls. However, the amplitude of EEG evoked potentials was greater in patients than controls as early as 50 ms after electrical stimulations and beyond one second after visual processing of emotional pictures. Such responses could not be linked to the stress induced by the stimulations, since stress hormone levels were stable. Nor was there a difference between patients and controls in respect of attention performance and tactile sensitivity. Taken together, all indices measured in patients in our study were either heightened or equivalent relative to healthy volunteers. PMID:26935652

  10. Locomotor Behaviour of Blattella germanica Modified by DEET

    PubMed Central

    Sfara, Valeria; Mougabure-Cueto, Gastón A.; Zerba, Eduardo N.; Alzogaray, Raúl A.

    2013-01-01

    N,N-diethyl-3-methylbenzamide (DEET) is the active principle of most insect repellents used worldwide. However, its toxicity on insects has not been widely studied. The aim of this work is to study the effects of DEET on the locomotor activity of Blattella germanica. DEET has a dose-dependent repellent activity on B. germanica. Locomotor activity was significantly lower when insects were pre-exposed to 700 µg/cm2 of DEET for 20 or 30 minutes, but it did not change when pre-exposure was shorter. Locomotor activity of insects that were pre-exposed to 2.000 µg/cm2 of DEET for 10 minutes was significantly lower than the movement registered in controls. No differences were observed when insects were pre-exposed to lower concentrations of DEET. A 30-minute pre-exposure to 700 µg/cm2 of DEET caused a significant decrease in locomotor activity. Movement was totally recovered 24 h later. The locomotor activity measured during the exposure to different concentrations of DEET remained unchanged. Insects with decreased locomotor activity were repelled to the same extent than control insects by the same concentration of DEET. We demonstrated that the repellency and modification of locomotor activity elicited by DEET are non-associated phenomena. We also suggested that the reduction in locomotor activity indicates toxicity of DEET, probably to insect nervous system. PMID:24376701

  11. Evidence for a Role of Orexin/Hypocretin System in Vestibular Lesion-Induced Locomotor Abnormalities in Rats.

    PubMed

    Pan, Leilei; Qi, Ruirui; Wang, Junqin; Zhou, Wei; Liu, Jiluo; Cai, Yiling

    2016-01-01

    Vestibular damage can induce locomotor abnormalities in both animals and humans. Rodents with bilateral vestibular loss showed vestibular deficits syndrome such as circling, opisthotonus as well as locomotor and exploratory hyperactivity. Previous studies have investigated the changes in the dopamine system after vestibular loss, but the results are inconsistent and inconclusive. Numerous evidences indicate that the orexin system is implicated in central motor control. We hypothesized that orexin may be potentially involved in vestibular loss-induced motor disorders. In this study, we examined the effects of arsanilate- or 3,3'-iminodipropionitrile (IDPN)-induced vestibular lesion (AVL or IVL) on the orexin-A (OXA) labeling in rat hypothalamus using immunohistochemistry. The vestibular lesion-induced locomotor abnormalities were recorded and verified using a histamine H4 receptor antagonist JNJ7777120 (20 mg/kg, i.p.). The effects of the orexin receptor type 1 antagonist SB334867 (16 μg, i.c.v.) on these behavior responses were also investigated. At 72 h post-AVL and IVL, animals exhibited vestibular deficit syndrome and locomotor hyperactivity in the home cages. These responses were significantly alleviated by JNJ7777120 which also eliminated AVL-induced increases in exploratory behavior in an open field. The numbers of OXA-labeled neurons in the hypothalamus were significantly increased in the AVL animals at 72 h post-AVL and in the IVL animals at 24, 48, and 72 h post-IVL. SB334867 significantly attenuated the vestibular deficit syndrome and locomotor hyperactivity at 72 h post-AVL and IVL. It also decreased exploratory behavior in the AVL animals. These results suggested that the alteration of OXA expression might contribute to locomotor abnormalities after acute vestibular lesion. The orexin receptors might be the potential therapeutic targets for vestibular disorders. PMID:27507932

  12. Evidence for a Role of Orexin/Hypocretin System in Vestibular Lesion-Induced Locomotor Abnormalities in Rats

    PubMed Central

    Pan, Leilei; Qi, Ruirui; Wang, Junqin; Zhou, Wei; Liu, Jiluo; Cai, Yiling

    2016-01-01

    Vestibular damage can induce locomotor abnormalities in both animals and humans. Rodents with bilateral vestibular loss showed vestibular deficits syndrome such as circling, opisthotonus as well as locomotor and exploratory hyperactivity. Previous studies have investigated the changes in the dopamine system after vestibular loss, but the results are inconsistent and inconclusive. Numerous evidences indicate that the orexin system is implicated in central motor control. We hypothesized that orexin may be potentially involved in vestibular loss-induced motor disorders. In this study, we examined the effects of arsanilate- or 3,3′-iminodipropionitrile (IDPN)-induced vestibular lesion (AVL or IVL) on the orexin-A (OXA) labeling in rat hypothalamus using immunohistochemistry. The vestibular lesion-induced locomotor abnormalities were recorded and verified using a histamine H4 receptor antagonist JNJ7777120 (20 mg/kg, i.p.). The effects of the orexin receptor type 1 antagonist SB334867 (16 μg, i.c.v.) on these behavior responses were also investigated. At 72 h post-AVL and IVL, animals exhibited vestibular deficit syndrome and locomotor hyperactivity in the home cages. These responses were significantly alleviated by JNJ7777120 which also eliminated AVL-induced increases in exploratory behavior in an open field. The numbers of OXA-labeled neurons in the hypothalamus were significantly increased in the AVL animals at 72 h post-AVL and in the IVL animals at 24, 48, and 72 h post-IVL. SB334867 significantly attenuated the vestibular deficit syndrome and locomotor hyperactivity at 72 h post-AVL and IVL. It also decreased exploratory behavior in the AVL animals. These results suggested that the alteration of OXA expression might contribute to locomotor abnormalities after acute vestibular lesion. The orexin receptors might be the potential therapeutic targets for vestibular disorders. PMID:27507932

  13. Conditioned Reinforcement and Locomotor Activating Effects of Caffeine and Ethanol Combinations in Mice

    PubMed Central

    Hilbert, Megan L.T.; May, Christina E.; Griffin, William C.

    2013-01-01

    A growing trend among ethanol drinkers, especially young adults, is to combine caffeinated energy drinks with ethanol during a drinking episode. The primary active ingredient of these mixers is caffeine, which may significantly interact with ethanol. We tested the two hypotheses that caffeine would enhance ethanol-conditioned place preference and also enhance ethanol-stimulated locomotor activity. The interactive pharmacology of ethanol and caffeine was examined in C57BL/6J (B6) mice in a conditioned place preference procedure with 1.75 g/kg ethanol and 3 mg/kg caffeine. Additionally, we used B6 mice to evaluate ethanol/caffeine combinations on locomotor activity using 3 doses of ethanol (1.75, 2.5 and 3.25 g/kg) and 2 two doses of caffeine (3 and 15 mg/kg). Both ethanol and caffeine administered alone increased preference for the drug paired side, though the effect of caffeine was more modest than that of ethanol. The drug combination produced significant place preference itself, but this was not greater than that for ethanol alone. Additionally, the combination of caffeine and ethanol significantly increased locomotion compared to giving either drug alone. The effect was strongest with a stimulatory dose of ethanol (1.75 g/kg) and waned with increasing doses of ethanol. Thus, combinations of caffeine and ethanol had significant conditioned reinforcing and locomotor activating effects in mice. PMID:23872371

  14. Endogenous extracellular serotonin modulates the spinal locomotor network of the neonatal mouse.

    PubMed

    Dunbar, Mary J; Tran, Michelle A; Whelan, Patrick J

    2010-01-01

    Serotonin (5-HT) can potently activate and modulate spinal locomotor circuits in a variety of species. Many of these findings have been obtained by applying serotonin exogenously to the isolated spinal cord of in vitro preparations, which has the drawback of indiscriminately activating extrasynaptic receptors and neurons. To investigate the role of endogenously released serotonin in modulating locomotor networks, the selective serotonin reuptake inhibitor citalopram was used. Fictive locomotion was elicited by either electrical stimulation of the brainstem or the sacral 4 (S4) dorsal root. The addition of 20 microm of citalopram caudal to thoracic segment 5 (T5) had an overall inhibitory effect on the lumbar central pattern generator (CPG). Left-right and flexor-extensor coupling were significantly decreased, and there was also a phase shift in the flexor-extensor relationship. In addition, there was a significant decrease in burst amplitude. These effects were observed during both afferent and brainstem evoked fictive locomotion. When citalopram was added in the presence of 5-HT(1A) and 5-HT(1B) antagonists, the inhibitory effects were largely reversed. The remaining excitatory effects were mediated by 5-HT(7) and 5-HT(2) receptors. These results suggest that endogenous 5-HT release can modulate locomotor-like activity early in neonatal development.

  15. PTEN permits acute increases in D3-phosphoinositide levels following TCR stimulation but inhibits distal signaling events by reducing the basal activity of Akt.

    PubMed

    Seminario, Maria-Cristina; Precht, Patricia; Bunnell, Stephen C; Warren, Sarah E; Morris, Christa M; Taub, Dennis; Wange, Ronald L

    2004-11-01

    Phosphoinositide 3-kinase (PI3K) is important in TCR signaling. PI3K generates phosphatidylinositol 3, 4, 5-trisphosphate (PI-3,4,5-P3), which regulates membrane localization and/or activity of multiple signaling proteins. PTEN (phosphatase and tensin homologue deleted on chromosome 10) opposes PI3K, reversing this reaction. Maintaining the balance between these two enzymes is important for normal T cell function. Here we use the PTEN-null Jurkat T cell line to address the role of PTEN in modulating proximal and distal TCR-signaling events. PTEN expression at levels that restored low basal Akt phosphorylation (an indicator of PI-3,4,5-P3 levels), but which were not themselves cytotoxic, had minimal effect on TCR-stimulated activation of phospholipase Cgamma1 and Ca2+ flux, but reduced the duration of extracellular signal-regulated kinase (Erk) activation. Distal signaling events, including nuclear factor of activated T cells (NFAT) activation, CD69 expression and IL-2 production, were all inhibited by PTEN expression. Notably, PTEN did not block TCR-stimulated PI-3,4,5-P3 accumulation. The effect of PTEN on distal TCR signaling events was strongly correlated with the loss of the constitutive Akt activation and glycogen synthase kinase-3 (GSK3) inhibition that is typical of Jurkat cells, and could be reversed by expression of activated Akt or pharmacologic inhibition of GSK3. These results suggest that PTEN acts in T cells primarily to control basal PI-3,4,5-P3 levels, rather than opposing PI3K acutely during TCR stimulation.

  16. The mesencephalic locomotor region sends a bilateral glutamatergic drive to hindbrain reticulospinal neurons in a tetrapod

    PubMed Central

    Ryczko, Dimitri; Auclair, Francois; Cabelguen, Jean‐Marie

    2015-01-01

    In vertebrates, stimulation of the mesencephalic locomotor region (MLR) on one side evokes symmetrical locomotor movements on both sides. How this occurs was previously examined in detail in a swimmer using body undulations (lamprey), but in tetrapods the downstream projections from the MLR to brainstem neurons are not fully understood. Here we examined the brainstem circuits from the MLR to identified reticulospinal neurons in the salamander Notophthalmus viridescens. Using neural tracing, we show that the MLR sends bilateral projections to the middle reticular nucleus (mRN, rostral hindbrain) and the inferior reticular nucleus (iRN, caudal hindbrain). Ca2+ imaging coupled to electrophysiology in in vitro isolated brains revealed very similar responses in reticulospinal neurons on both sides to a unilateral MLR stimulation. As the strength of MLR stimulation was increased, the responses increased in size in reticulospinal neurons of the mRN and iRN, but the responses in the iRN were smaller. Bath‐application or local microinjections of glutamatergic antagonists markedly reduced reticulospinal neuron responses, indicating that the MLR sends glutamatergic inputs to reticulospinal neurons. In addition, reticulospinal cells responded to glutamate microinjections and the size of the responses paralleled the amount of glutamate microinjected. Immunofluorescence coupled with anatomical tracing confirmed the presence of glutamatergic projections from the MLR to reticulospinal neurons. Overall, we show that the brainstem circuits activated by the MLR in the salamander are organized similarly to those previously described in lampreys, indicating that the anatomo‐physiological features of the locomotor drive are well conserved in vertebrates. J. Comp. Neurol. 524:1361–1383, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26470600

  17. Two-dimensional zymography differentiates gelatinase isoforms in stimulated microglial cells and in brain tissues of acute brain injuries.

    PubMed

    Chen, Shanyan; Meng, Fanjun; Chen, Zhenzhou; Tomlinson, Brittany N; Wesley, Jennifer M; Sun, Grace Y; Whaley-Connell, Adam T; Sowers, James R; Cui, Jiankun; Gu, Zezong

    2015-01-01

    Excessive activation of gelatinases (MMP-2/-9) is a key cause of detrimental outcomes in neurodegenerative diseases. A single-dimension zymography has been widely used to determine gelatinase expression and activity, but this method is inadequate in resolving complex enzyme isoforms, because gelatinase expression and activity could be modified at transcriptional and posttranslational levels. In this study, we investigated gelatinase isoforms under in vitro and in vivo conditions using two-dimensional (2D) gelatin zymography electrophoresis, a protocol allowing separation of proteins based on isoelectric points (pI) and molecular weights. We observed organomercuric chemical 4-aminophenylmercuric acetate-induced activation of MMP-2 isoforms with variant pI values in the conditioned medium of human fibrosarcoma HT1080 cells. Studies with murine BV-2 microglial cells indicated a series of proform MMP-9 spots separated by variant pI values due to stimulation with lipopolysaccharide (LPS). The MMP-9 pI values were shifted after treatment with alkaline phosphatase, suggesting presence of phosphorylated isoforms due to the proinflammatory stimulation. Similar MMP-9 isoforms with variant pI values in the same molecular weight were also found in mouse brains after ischemic and traumatic brain injuries. In contrast, there was no detectable pI differentiation of MMP-9 in the brains of chronic Zucker obese rats. These results demonstrated effective use of 2D zymography to separate modified MMP isoforms with variant pI values and to detect posttranslational modifications under different pathological conditions.

  18. Integrated Locomotor Function Tests for Countermeasure Evaluation

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Landsness, E. C.; Black, F. O.

    2005-01-01

    Following spaceflight crewmembers experience locomotor dysfunction due to inflight adaptive alterations in sensorimotor function. Countermeasures designed to mitigate these postflight gait alterations need to be assessed with a new generation of tests that evaluate the interaction of various sensorimotor sub-systems central to locomotor control. The goal of the present study was to develop new functional tests of locomotor control that could be used to test the efficacy of countermeasures. These tests were designed to simultaneously examine the function of multiple sensorimotor systems underlying the control of locomotion and be operationally relevant to the astronaut population. Traditionally, gaze stabilization has been studied almost exclusively in seated subjects performing target acquisition tasks requiring only the involvement of coordinated eye-head movements. However, activities like walking involve full-body movement and require coordination between lower limbs and the eye-head-trunk complex to achieve stabilized gaze during locomotion. Therefore the first goal of this study was to determine how the multiple, interdependent, full-body sensorimotor gaze stabilization subsystems are functionally coordinated during locomotion. In an earlier study we investigated how alteration in gaze tasking changes full-body locomotor control strategies. Subjects walked on a treadmill and either focused on a central point target or read numeral characters. We measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, shank and foot, accelerations along the vertical axis at the head and the shank, and the vertical forces acting on the support surface. In comparison to the point target fixation condition, the results of the number reading task showed that compensatory head pitch movements increased, peak head acceleration was reduced and knee flexion at heel-strike was increased. In a more recent study we investigated the

  19. Intermittent cortical stimulation evokes sensitization to cocaine and enduring changes in matrix and striosome neuron responsiveness.

    PubMed

    Canales, Juan J

    2005-07-01

    Both the behavioral sensitization syndrome and the changes in the responsiveness of striatal neurons evoked by chronic cocaine exposure may be linked to enhanced neocortical activity, yet a direct demonstration of the effects of cortical stimulation on these parameters is lacking. We have found that repeated stimulation of the rat prelimbic cortex with picrotoxin (0.25 microg/0.25 microl, five injections on alternate days followed by 7-day withdrawal) contributed to increase c-Fos protein expression in the striosomes of the dorsolateral striatum, while producing the opposite effect in the matrix compartment, after a single exposure to cocaine (25 mg/kg). Moreover, rats exposed to cortical stimulation showed decreased locomotor activation but enhanced stereotypy following acute cocaine treatment. Thus, pulsatile stimulation of the prelimbic cortex facilitated modifications in striatal activity typically produced by chronic cocaine treatment and sensitized drug-naive animals to acute cocaine challenge. These results suggest that enhanced activation of the prelimbic cortex may contribute to the long-term adaptations induced by cocaine on neural activity and behavior.

  20. Plantar tactile perturbations enhance transfer of split-belt locomotor adaptation.

    PubMed

    Mukherjee, Mukul; Eikema, Diderik Jan A; Chien, Jung Hung; Myers, Sara A; Scott-Pandorf, Melissa; Bloomberg, Jacob J; Stergiou, Nicholas

    2015-10-01

    Patterns of human locomotion are highly adaptive and flexible and depend on the environmental context. Locomotor adaptation requires the use of multisensory information to perceive altered environmental dynamics and generate an appropriate movement pattern. In this study, we investigated the use of multisensory information during locomotor learning. Proprioceptive perturbations were induced by vibrating tactors, placed bilaterally over the plantar surfaces. Under these altered sensory conditions, participants were asked to perform a split-belt locomotor task representative of motor learning. Twenty healthy young participants were separated into two groups: no-tactors (NT) and tactors (TC). All participants performed an overground walking trial, followed by treadmill walking including 18 min of split-belt adaptation and an overground trial to determine transfer effects. Interlimb coordination was quantified by symmetry indices and analyzed using mixed repeated-measures ANOVAs. Both groups adapted to the locomotor task, indicated by significant reductions in gait symmetry during the split-belt task. No significant group differences in spatiotemporal and kinetic parameters were observed on the treadmill. However, significant group differences were observed overground. Step and swing time asymmetries learned on the split-belt treadmill were retained and decayed more slowly overground in the TC group whereas in NT, asymmetries were rapidly lost. These results suggest that tactile stimulation contributed to increased lower limb proprioceptive gain. High proprioceptive gain allows for more persistent overground after effects, at the cost of reduced adaptability. Such persistence may be utilized in populations displaying pathologic asymmetric gait by retraining a more symmetric pattern. PMID:26169104

  1. Effects of nicotine on ethanol-induced locomotor sensitization: A model of neuroadaptation.

    PubMed

    Gubner, Noah R; Phillips, Tamara J

    2015-07-15

    Co-morbid use of nicotine-containing tobacco products and alcohol (ethanol) is prevalent in young adults initiating use and in alcohol dependent adults, suggesting that these drugs in combination may increase risk to develop dependence on one or both drugs. Neuroadaptations caused by repeated drug exposure are related to the development of drug dependence and vulnerability to relapse. Locomotor sensitization has been used as a behavioral measure used to detect changes in neural drug sensitivity that are thought to contribute to drug dependence and relapse. Locomotor sensitization was measured in the current studies to examine potential differences in the effects of nicotine and ethanol given alone and in combination. Baseline activity levels of DBA/2J mice were assessed on 2 days, then mice were treated for 10 days with saline, nicotine (1 or 2mg/kg of nicotine tartrate), ethanol (1 or 2g/kg), or nicotine plus ethanol and locomotor activity was assessed every third day. On the following day, all mice were challenged with ethanol to measure the expression of sensitization. Mice treated with both nicotine and ethanol exhibited greater stimulation than predicted from the combined independent effects of these drugs, consistent with our previously published results. The combined effects of nicotine and ethanol on locomotor sensitization were dependent on the dose of ethanol and whether testing was performed after the drugs were given together, or after challenge with ethanol alone. These results suggest that nicotine and ethanol in combination can have neuroadaptive effects that differ from the independent effects of these drugs.

  2. Unique Spatiotemporal Neuromodulation of the Lumbosacral Circuitry Shapes Locomotor Success after Spinal Cord Injury.

    PubMed

    Shah, Prithvi K; Sureddi, Shakthi; Alam, Monzurul; Zhong, Hui; Roy, Roland R; Edgerton, V Reggie; Gerasimenko, Yury

    2016-09-15

    Spinal cord epidural stimulation has resulted in the initiation of voluntary leg movements and improvement in postural, bladder, and sexual function. However, one of the limitations in reaching the full potential of epidural stimulation for therapeutic purposes in humans has been the identification of optimal stimulation configurations that can neuromodulate the spinal cord for stepping. In the present work, we investigated the mechanisms underlying the specificity of interaction between the rostral and caudal spinal cord circuitries in enabling locomotion in spinal rats (n = 10) by epidural spinal cord stimulation. By using unique spatiotemporal epidural stimulation parameters of the lumbar and sacral spinal cords, a robust stepping pattern in spinal rats was observed with only six training sessions and as early as 3 weeks post-injury. Electrophysiological evidence reveals that in addition to frequency of stimulation pulses at the stimulation sites, the relative timing between stimulation pulses applied at the lumbar (L2) and sacral (S1) segments of the spinal cord heavily impacted stepping performance. Best stepping was established at a higher stimulation frequency (40 Hz vs. 5, 10, 15, and 20Hz) and at specific relative time-intervals between the stimulation pulses (L2 pulse applied at 18-25 msec after the onset of the S1 pulse; S1 pulse applied 0-7 msec after the L2 pulse). Our data suggest that controlling pulse-to-pulse timing at multiple stimulation sources provides a novel strategy to optimize spinal stepping by fine-tuning the physiological state of the locomotor networks. These findings hold direct relevance to the clinician who will incorporate electrical stimulation strategies for optimizing control of locomotion after complete paralysis.

  3. Acute stimulation of mesenchymal stem cells with cigarette smoke extract affects their migration, differentiation, and paracrine potential

    PubMed Central

    Wahl, Elizabeth A.; Schenck, Thilo L.; Machens, Hans-Günther; Egaña, J. Tomás

    2016-01-01

    Mesenchymal stem cells (MSCs) are known to play a key role in tissue regeneration, while smoking cigarettes is described to impair it. This work focuses on the effect cigarette smoke extract (CSE) has on the migration, differentiation, and paracrine potential of human adipose derived MSCs (AdMSCs). To mimic native conditions in vitro, AdMSCs were cultured in either monolayer or three-dimensional pellet cultures. While constant exposure to high concentrations of CSE had lethal effects on AdMSCs, lower concentrations of CSE impaired cell migration when compared to control conditions. The secretion of key interleukins was downregulated when CSE was exposed to the cells at low concentrations. Moreover, in this work AdMSCs were exposed to CSE while simultaneously being induced to differentiate into adipocytes, osteoblasts, and chondrocytes to determine the effect of CSE on the cells potential to differentiate. While adipogenic differentiation showed no significant variation, AdMSCs exposed to osteogenic and chondrogenic supplements showed both early and late genetic level variation when acutely exposed to low concentrations of CSE. Our results indicate that even a small amount of cigarette smoke can have detrimental effects on the regenerative potential of MSCs. PMID:26976359

  4. Higher Thyroid-Stimulating Hormone, Triiodothyronine and Thyroxine Values Are Associated with Better Outcome in Acute Liver Failure

    PubMed Central

    Sowa, Jan-Peter; Manka, Paul; Katsounas, Antonios; Syn, Wing-Kin; Führer, Dagmar; Gieseler, Robert K.; Bechmann, Lars P.; Gerken, Guido; Moeller, Lars C.; Canbay, Ali

    2015-01-01

    Introduction Changes in thyroid hormone levels, mostly as non-thyroidal illness syndrome (NTIS), have been described in many diseases. However, the relationship between acute liver failure (ALF) and thyroid hormone levels has not yet been clarified. The present study evaluates potential correlations of select thyroid functional parameters with ALF. Methods 84 consecutively recruited ALF patients were grouped according to the outcome of ALF (spontaneous recovery: SR; transplantation or death: NSR). TSH, free thyroxine (fT4), free triiodothyronine (fT3), T4, and T3 were determined. Results More than 50% of patients with ALF presented with abnormal thyroid parameters. These patients had greater risk for an adverse outcome than euthyroid patients. SR patients had significantly higher TSH, T4, and T3 concentrations than NSR patients. Albumin concentrations were significantly higher in SR than in NSR. In vitro T3 treatment was not able to rescue primary human hepatocytes from acetaminophen induced changes in mRNA expression. Conclusions In patients with ALF, TSH and total thyroid hormone levels differed significantly between SR patients and NSR patients. This might be related to diminished liver-derived transport proteins, such as albumin, in more severe forms of ALF. Thyroid parameters may serve as additional indicators of ALF severity. PMID:26147961

  5. Na,K-ATPase α2 activity in mammalian skeletal muscle T-tubules is acutely stimulated by extracellular K+

    PubMed Central

    Hakimjavadi, Hesamedin; Lingrel, Jerry B.

    2015-01-01

    The Na,K-ATPase α2 isoform is the predominant Na,K-ATPase in adult skeletal muscle and the sole Na,K-ATPase in the transverse tubules (T-tubules). In quiescent muscles, the α2 isozyme operates substantially below its maximal transport capacity. Unlike the α1 isoform, the α2 isoform is not required for maintaining resting ion gradients or the resting membrane potential, canonical roles of the Na,K-ATPase in most other cells. However, α2 activity is stimulated immediately upon the start of contraction and, in working muscles, its contribution is crucial to maintaining excitation and resisting fatigue. Here, we show that α2 activity is determined in part by the K+ concentration in the T-tubules, through its K+ substrate affinity. Apparent K+ affinity was determined from measurements of the K1/2 for K+ activation of pump current in intact, voltage-clamped mouse flexor digitorum brevis muscle fibers. Pump current generated by the α2 Na,K-ATPase, Ip, was identified as the outward current activated by K+ and inhibited by micromolar ouabain. Ip was outward at all potentials studied (−90 to −30 mV) and increased with depolarization in the subthreshold range, −90 to −50 mV. The Q10 was 2.1 over the range of 22–37°C. The K1/2,K of Ip was 4.3 ± 0.3 mM at −90 mV and was relatively voltage independent. This K+ affinity is lower than that reported for other cell types but closely matches the dynamic range of extracellular K+ concentrations in the T-tubules. During muscle contraction, T-tubule luminal K+ increases in proportion to the frequency and duration of action potential firing. This K1/2,K predicts a low fractional occupancy of K+ substrate sites at the resting extracellular K+ concentration, with occupancy increasing in proportion to the frequency of membrane excitation. The stimulation of preexisting pumps by greater K+ site occupancy thus provides a rapid mechanism for increasing α2 activity in working muscles. PMID:26371210

  6. Effects of Serotonergic Medications on Locomotor Performance in Humans with Incomplete Spinal Cord Injury

    PubMed Central

    Leech, Kristan A.; Kinnaird, Catherine R.

    2014-01-01

    Abstract Incomplete spinal cord injury (iSCI) often results in significant motor impairments that lead to decreased functional mobility. Loss of descending serotonergic (5HT) input to spinal circuits is thought to contribute to motor impairments, with enhanced motor function demonstrated through augmentation of 5HT signaling. However, the presence of spastic motor behaviors in SCI is attributed, in part, to changes in spinal 5HT receptors that augment their activity in the absence of 5HT, although data demonstrating motor effects of 5HT agents that deactivate these receptors are conflicting. The effects of enhancement or depression of 5HT signaling on locomotor function have not been thoroughly evaluated in human iSCI. Therefore, the aim of the current study was to investigate acute effects of 5HT medications on locomotion in 10 subjects with chronic (>1 year) iSCI. Peak overground and treadmill locomotor performance, including measures of gait kinematics, electromyographic (EMG) activity, and oxygen consumption, were assessed before and after single-dose administration of either a selective serotonin reuptake inhibitor (SSRI) or a 5HT antagonist using a double-blinded, randomized, cross-over design. Results indicate that neither medication led to improvements in locomotion, with a significant decrease in peak overground gait speed observed after 5HT antagonists (from 0.8±0.1 to 0.7±0.1 m/s; p=0.01). Additionally, 5-HT medications had differential effects on EMG activity, with 5HT antagonists decreasing extensor activity and SSRIs increasing flexor activity. Our data therefore suggest that acute manipulation of 5HT signaling, despite changes in muscle activity, does not improve locomotor performance after iSCI. PMID:24742292

  7. A behavioural comparison of acute and chronic Delta9-tetrahydrocannabinol and cannabidiol in C57BL/6JArc mice.

    PubMed

    Long, Leonora E; Chesworth, Rose; Huang, Xu-Feng; McGregor, Iain S; Arnold, Jonathon C; Karl, Tim

    2010-08-01

    Cannabis contains over 70 unique compounds and its abuse is linked to an increased risk of developing schizophrenia. The behavioural profiles of the psychotropic cannabis constituent Delta9-tetrahydrocannabinol (Delta9-THC) and the non-psychotomimetic constituent cannabidiol (CBD) were investigated with a battery of behavioural tests relevant to anxiety and positive, negative and cognitive symptoms of schizophrenia. Male adult C57BL/6JArc mice were given 21 daily intraperitoneal injections of vehicle, Delta9-THC (0.3, 1, 3 or 10 mg/kg) or CBD (1, 5, 10 or 50 mg/kg). Delta9-THC produced the classic cannabinoid CB1 receptor-mediated tetrad of hypolocomotion, analgesia, catalepsy and hypothermia while CBD had modest hyperthermic effects. While sedative at this dose, Delta9-THC (10 mg/kg) produced locomotor-independent anxiogenic effects in the open-field and light-dark tests. Chronic CBD produced moderate anxiolytic-like effects in the open-field test at 50 mg/kg and in the light-dark test at a low dose (1 mg/kg). Acute and chronic Delta9-THC (10 mg/kg) decreased the startle response while CBD had no effect. Prepulse inhibition was increased by acute treatment with Delta9-THC (0.3, 3 and 10 mg/kg) or CBD (1, 5 and 50 mg/kg) and by chronic CBD (1 mg/kg). Chronic CBD (50 mg/kg) attenuated dexamphetamine (5 mg/kg)-induced hyperlocomotion, suggesting an antipsychotic-like action for this cannabinoid. Chronic Delta9-THC decreased locomotor activity before and after dexamphetamine administration suggesting functional antagonism of the locomotor stimulant effect. These data provide the first evidence of anxiolytic- and antipsychotic-like effects of chronic but not acute CBD in C57BL/6JArc mice, extending findings from acute studies in other inbred mouse strains and rats.

  8. Emotional and risk seeking behavior after prepuberal subchronic or adult acute stimulation of 5-HT7-Rs in Naples High Excitability rats.

    PubMed

    Ruocco, Lucia A; Romano, Emilia; Treno, Concetta; Lacivita, Enza; Arra, Claudio; Gironi-Carnevale, Ugo A; Travaglini, Domenica; Leopoldo, Marcello; Laviola, Giovanni; Sadile, Adolfo G; Adriani, Walter

    2014-04-01

    We report here the results of studies aimed to investigate the involvement of serotonin receptor 7 subtype (5-HT7-R) in the modulation of emotional response in Naples High-Excitability (NHE) rat, a validated model for hyperactivity and impaired attention. A range of dosages (0.0, 0.125, 0.250, or 0.500 mg/kg) of LP-211, a selective agonist of 5-HT7-Rs, has been evaluated in animals at different age (adolescence and adulthood). Male NHE and random bred (NRB) control rats were tested in an Elevated Zero-Maze (EZM) after LP-211 treatment in two different regimens: at the issue of adolescent, subchronic exposure (14 intraperitoneal [i.p.] injections, once/day, pnd 31-44, tested on pnd 45--Exp. 1) or as adult, acute effect (15 min after i.p. injection--Exp. 2). Adolescent, subchronic LP-211 at 0.500 mg/kg dosage increased the frequency of head-dips only in NHE rats. Drug effect on time spent and entries in open EZM quadrants were revealed with adult, acute administration of 0.125 mg/kg LP-211 (both strains), indicating a tendency toward anxiolytic effects. In conclusion, data demonstrate that subchronic stimulation of 5-HT7-Rs during prepuberal period increases novelty-seeking/risk-taking propensity in NHE adults. These sequels are revealing increased disinhibition and/or motivation to explore in the NHE rats, which are characterized by a hyperactive dopaminergic system. These data may open new perspectives in studying mechanism of risk-seeking behavior.

  9. Effect of high-voltage electrical stimulation on the albumin and histamine serum concentrations, edema, and pain in acute joint inflammation of rats

    PubMed Central

    Sandoval, Maria C.; Ramirez, Carolina R.; Camargo, Diana M.; Russo, Thiago L.; Salvini, Tania F.

    2015-01-01

    BACKGROUND: The mechanism by which high-voltage electrical stimulation (HVPC) acts on edema reduction is unknown. OBJECTIVE: To assess the effect of HVPC with negative polarity (-) applied to the ankle of rats with acute joint inflammation. METHOD: Sixty-four rats were divided into four groups (n=16): inflamed+HVPC(-), 0.03 mL application of ι-carrageenan (3%) to the tibiotarsal joint plus HVPC(-); inflamed+HVPC placebo, carrageenan application and HVPC placebo; normal+HVPC(-), HVPC application(-); and normal control, no intervention. The HVPC(-) 100 Hz at a submotor level was applied daily for 45 min on three consecutive days. The variables were pain, hind-foot volume, and serum histamine and albumin assessed before and during the 48 hours following inflammation. The variables were compared using the t test, one-way ANOVA, nested ANOVA for repeated measures, and the post hoc Bonferroni test. Analysis of covariance was applied to adjust the effects of HVPC(-) by measurements of pain, inflammation, albumin, and histamine at 24 h, and the final weight was compared to the other groups. The significance level was set at p<0.05. RESULTS: There were no differences between the inflamed+HVPC(-) and inflamed+HVPC placebo groups in terms of pain or edema (p>0.05). Albumin was reduced in the groups that received the intervention, but there was no differences between them. There was only a 24 hour increase in histamine with the normal+HVPC(-) (p=0.0001) and inflamed+HVPC placebo groups (p=0.01) compared to the normal control group. CONCLUSIONS: The results of the present study suggest that HVPC(-) with the parameters employed did not reduce pain or edema and did not change serum albumin or histamine levels,, which indicates the inability of this resource to have a positive effect when treating treat acute joint inflammation. PMID:25993623

  10. Astrocytes Are Primed by Chronic Neurodegeneration to Produce Exaggerated Chemokine and Cell Infiltration Responses to Acute Stimulation with the Cytokines IL-1β and TNF-α

    PubMed Central

    Hennessy, Edel; Griffin, Éadaoin W.

    2015-01-01

    Microgliosis and astrogliosis are standard pathological features of neurodegenerative disease. Microglia are primed by chronic neurodegeneration such that toll-like receptor agonists, such as LPS, drive exaggerated cytokine responses on this background. However, sterile inflammatory insults are more common than direct CNS infection in the degenerating brain and these insults drive robust IL-1β and TNF-α responses. It is unclear whether these pro-inflammatory cytokines can directly induce exaggerated responses in the degenerating brain. We hypothesized that glial cells in the hippocampus of animals with chronic neurodegenerative disease (ME7 prion disease) would display exaggerated responses to central cytokine challenges. TNF-α or IL-1β were administered intrahippocampally to ME7-inoculated mice and normal brain homogenate-injected (NBH) controls. Both IL-1β and TNF-α produced much more robust IL-1β synthesis in ME7 than in NBH animals and this occurred exclusively in microglia. However, there was strong nuclear localization of the NFκB subunit p65 in the astrocyte population, associated with marked astrocytic synthesis of the chemokines CXCL1 and CCL2 in response to both cytokine challenges in ME7 animals. Conversely, very limited expression of these chemokines was apparent in NBH animals similarly challenged. Thus, astrocytes are primed in the degenerating brain to produce exaggerated chemokine responses to acute stimulation with pro-inflammatory cytokines. Furthermore, this results in markedly increased neutrophil, T-cell, and monocyte infiltration in the diseased brain. These data have significant implications for acute sterile inflammatory insults such as stroke and traumatic brain injury occurring on a background of aging or neurodegeneration. PMID:26041910

  11. Colony-stimulating factors for the treatment of the hematopoietic component of the acute radiation syndrome (H-ARS): a review.

    PubMed

    Singh, Vijay K; Newman, Victoria L; Seed, Thomas M

    2015-01-01

    One of the greatest national security threats to the United States is the detonation of an improvised nuclear device or a radiological dispersal device in a heavily populated area. As such, this type of security threat is considered to be of relatively low risk, but one that would have an extraordinary high impact on health and well-being of the US citizenry. Psychological counseling and medical assessments would be necessary for all those significantly impacted by the nuclear/radiological event. Direct medical interventions would be necessary for all those individuals who had received substantial radiation exposures (e.g., >1 Gy). Although no drugs or products have yet been specifically approved by the United States Food and Drug Administration (US FDA) to treat the effects of acute radiation syndrome (ARS), granulocyte colony-stimulating factor (G-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF), and pegylated G-CSF have been used off label for treating radiation accident victims. Recent threats of terrorist attacks using nuclear or radiologic devices makes it imperative that the medical community have up-to-date information and a clear understanding of treatment protocols using therapeutically effective recombinant growth factors and cytokines such as G-CSF and GM-CSF for patients exposed to injurious doses of ionizing radiation. Based on limited human studies with underlying biology, we see that the recombinants, G-CSF and GM-CSF appear to have modest, but significant medicinal value in treating radiation accident victims. In the near future, the US FDA may approve G-CSF and GM-CSF as ‘Emergency Use Authorization’ (EUA) for managing radiation-induced aplasia, an ARS-related pathology. In this article, we review the status of growth factors for the treatment of radiological/nuclear accident victims. PMID:25215458

  12. Human spinal locomotor control is based on flexibly organized burst generators.

    PubMed

    Danner, Simon M; Hofstoetter, Ursula S; Freundl, Brigitta; Binder, Heinrich; Mayr, Winfried; Rattay, Frank; Minassian, Karen

    2015-03-01

    Constant drive provided to the human lumbar spinal cord by epidural electrical stimulation can cause local neural circuits to generate rhythmic motor outputs to lower limb muscles in people paralysed by spinal cord injury. Epidural spinal cord stimulation thus allows the study of spinal rhythm and pattern generating circuits without their configuration by volitional motor tasks or task-specific peripheral feedback. To reveal spinal locomotor control principles, we studied the repertoire of rhythmic patterns that can be generated by the functionally isolated human lumbar spinal cord, detected as electromyographic activity from the legs, and investigated basic temporal components shared across these patterns. Ten subjects with chronic, motor-complete spinal cord injury were studied. Surface electromyographic responses to lumbar spinal cord stimulation were collected from quadriceps, hamstrings, tibialis anterior, and triceps surae in the supine position. From these data, 10-s segments of rhythmic activity present in the four muscle groups of one limb were extracted. Such samples were found in seven subjects. Physiologically adequate cycle durations and relative extension- and flexion-phase durations similar to those needed for locomotion were generated. The multi-muscle activation patterns exhibited a variety of coactivation, mixed-synergy and locomotor-like configurations. Statistical decomposition of the electromyographic data across subjects, muscles and samples of rhythmic patterns identified three common temporal components, i.e. basic or shared activation patterns. Two of these basic patterns controlled muscles to contract either synchronously or alternatingly during extension- and flexion-like phases. The third basic pattern contributed to the observed muscle activities independently from these extensor- and flexor-related basic patterns. Each bifunctional muscle group was able to express both extensor- and flexor-patterns, with variable ratios across the

  13. Locomotor, discriminative stimulus, and place conditioning effects of MDAI in rodents.

    PubMed

    Gatch, Michael B; Dolan, Sean B; Forster, Michael J

    2016-09-01

    5,6-Methylenedioxy-2-aminoindane (MDAI) has become a common substitute for (±)-3,4-methylenedioxymethamphetamine (MDMA) in Ecstasy. MDAI is known to produce MDMA-like discriminative stimulus effects, but it is not known whether MDAI has psychostimulant or hallucinogen-like effects. MDAI was tested for locomotor stimulant effects in mice and subsequently for discriminative stimulus effects in rats trained to discriminate cocaine (10 mg/kg, intraperitoneally), methamphetamine (1 mg/kg, intraperitoneally), ±MDMA (1.5 mg/kg, intraperitoneally), or (-)-2,5-dimethoxy-4-methylamphetamine hydrochloride (0.5 mg/kg, intraperitoneally) from saline. The ability of MDAI to produce conditioned place preference was also tested in mice. MDAI (3 to 30 mg/kg) depressed locomotor activity from 10 to 60 min. A rebound stimulant effect was observed at 1 to 3.5 h following 30 mg/kg. Lethality occurred in 8/8 mice following 100 mg/kg MDAI. Similarly, MDMA depressed locomotor activity immediately following the administration of 0.25 mg/kg and stimulant effects were observed 50-70 min following the administration of 0.5 and 1 mg/kg. MDAI fully substituted for the discriminative stimulus effects of MDMA (2.5 mg/kg), (-)-2,5-dimethoxy-4-methylamphetamine hydrochloride (5 mg/kg), and cocaine (7.5 mg/kg), but produced only 73% methamphetamine-appropriate responding at a dose that suppressed responding (7.5 mg/kg). MDAI produced tremors at 10 mg/kg in one methamphetamine-trained rat. MDAI produced conditioned place preference from 0.3 to 10 mg/kg. The effects of MDAI on locomotor activity and drug discrimination were similar to those produced by MDMA, having both psychostimulant-like and hallucinogen-like effects; thus, MDAI may have similar abuse potential as MDMA. PMID:27028902

  14. Hindlimb Stretching Alters Locomotor Function Post-Spinal Cord Injury in the Adult Rat

    PubMed Central

    Caudle, Krista L.; Atkinson, Darryn A.; Brown, Edward H.; Donaldson, Katie; Seibt, Erik; Chea, Tim; Smith, Erin; Chung, Karianne; Shum-Siu, Alice; Cron, Courtney C.; Magnuson, David S. K.

    2014-01-01

    Background Stretching is a widely accepted standard-of-care therapy following spinal cord injury that has not been systematically studied in animal models. Objective To investigate the influence of a daily stretch-based physical therapy program on locomotor recovery in adult rats with moderate T9 contusive SCI. Methods A randomized treatment and control study of stretching in an animal model of acute spinal cord injury (SCI). Moderate spinal cord injuries were delivered with the NYU Impactor. Daily stretching (30 min./day, 5 days/wk for 8 wks) was provided by a team of animal handlers. Hindlimb function was assessed using the BBB Open Field Locomotor Scale and kinematically. Passive range-of-motion for each joint was determined weekly using a goniometer. Results Declines in hindlimb function during overground stepping were observed for the first 4 weeks. BBB scores improved weeks 5–10 but remained below the control group. Stretched animals had significant deficits in knee passive ROM starting at week 4 and for the duration of the study. Kinematic assessment showed decreased joint excursion during stepping that partially recovered beginning at week 5. Conclusion Stretch-based therapy significantly impaired functional recovery in adult rats with a moderate contusive SCI at T10. The negative impact on function was greatest acutely, but persisted even after the stretching ceased at 8 weeks post-injury. PMID:25106555

  15. Acute effects of transcutaneous electrical diaphragmatic stimulation on respiratory pattern in COPD patients: cross-sectional and comparative clinical trial

    PubMed Central

    Cancelliero-Gaiad, Karina M.; Ike, Daniela; Pantoni, Camila B. F.; Mendes, Renata G.; Borghi-Silva, Audrey; Costa, Dirceu

    2013-01-01

    Background Transcutaneous electrical diaphragmatic stimulation (TEDS) has been used to improve respiratory muscle strength in patients with respiratory muscle weakness. However, this physical therapy resource has not been studied in chronic obstructive pulmonary disease (COPD). Objective To evaluate the respiratory pattern during one session of TEDS in COPD patients. Method Fifteen COPD patients participated in one TEDS session for plethysmographic analysis and assessment of peripheral oxygen saturation (SpO2) and heart rate (HR). After the session, patients were divided into two groups: Responder (R; n=9) and Non-Responder (NR; n=6) to TEDS. Statistic analysis was performed using the Shapiro-Wilk normality test and two-way ANOVA. For the parameters that showed interaction, the Student t test was used (P<0.05). Results R group consisted mainly of men, with lower SpO2 and higher HR than NR group. When time (before and during) and groups (R and NR) were compared (interaction), there were differences in the parameters minute ventilation (Vent), inspiratory tidal volume (ViVol), expiratory tidal volume (VeVol), and respiratory rate (Br/M). In the intergroup comparison, differences were observed in the parameters Vent, ViVol, and VeVol. A significant effect was also observed for time in change in end-expiratory lung volume level (qDEEL), phase relation during inspiration (PhRIB); phase relation during expiration (PhREB); phase relation of entire breath (PhRTB), and phase angle (PhAng). During TEDS, there was an increase in SpO2 and a reduction in HR in both groups. Conclusions The most hypoxemic group with greater HR responded to TEDS and there was interaction between group and time of analysis for the pulmonary volumes. The time factor had an influence on the two groups with an increase in thoracoabdominal asynchrony. PMID:24271095

  16. Non-invasive vagus nerve stimulation for PREVention and Acute treatment of chronic cluster headache (PREVA): A randomised controlled study

    PubMed Central

    Diener, Hans-Christoph; Silver, Nicholas; Magis, Delphine; Reuter, Uwe; Andersson, Annelie; Liebler, Eric J; Straube, Andreas

    2015-01-01

    Background Chronic cluster headache (CH) is a debilitating disorder for which few well-controlled studies demonstrate effectiveness of available therapies. Non-invasive vagus nerve stimulation (nVNS) was examined as adjunctive prophylactic treatment of chronic CH. Methods PREVA was a prospective, open-label, randomised study that compared adjunctive prophylactic nVNS (n = 48) with standard of care (SoC) alone (control (n = 49)). A two-week baseline phase was followed by a four-week randomised phase (SoC plus nVNS vs control) and a four-week extension phase (SoC plus nVNS). The primary end point was the reduction in the mean number of CH attacks per week. Response rate, abortive medication use and safety/tolerability were also assessed. Results During the randomised phase, individuals in the intent-to-treat population treated with SoC plus nVNS (n = 45) had a significantly greater reduction in the number of attacks per week vs controls (n = 48) (−5.9 vs −2.1, respectively) for a mean therapeutic gain of 3.9 fewer attacks per week (95% CI: 0.5, 7.2; p = 0.02). Higher ≥50% response rates were also observed with SoC plus nVNS (40% (18/45)) vs controls (8.3% (4/48); p < 0.001). No serious treatment-related adverse events occurred. Conclusion Adjunctive prophylactic nVNS is a well-tolerated novel treatment for chronic CH, offering clinical benefits beyond those with SoC. PMID:26391457

  17. Enhanced locomotor adaptation aftereffect in the “broken escalator” phenomenon using anodal tDCS

    PubMed Central

    Kaski, D.; Quadir, S.; Patel, M.; Yousif, N.

    2012-01-01

    The everyday experience of stepping onto a stationary escalator causes a stumble, despite our full awareness that the escalator is broken. In the laboratory, this “broken escalator” phenomenon is reproduced when subjects step onto an obviously stationary platform (AFTER trials) that was previously experienced as moving (MOVING trials) and attests to a process of motor adaptation. Given the critical role of M1 in upper limb motor adaptation and the potential for transcranial direct current stimulation (tDCS) to increase cortical excitability, we hypothesized that anodal tDCS over leg M1 and premotor cortices would increase the size and duration of the locomotor aftereffect. Thirty healthy volunteers received either sham or real tDCS (anodal bihemispheric tDCS; 2 mA for 15 min at rest) to induce excitatory effects over the primary motor and premotor cortex before walking onto the moving platform. The real tDCS group, compared with sham, displayed larger trunk sway and increased gait velocity in the first AFTER trial and a persistence of the trunk sway aftereffect into the second AFTER trial. We also used transcranial magnetic stimulation to probe changes in cortical leg excitability using different electrode montages and eyeblink conditioning, before and after tDCS, as well as simulating the current flow of tDCS on the human brain using a computational model of these different tDCS montages. Our data show that anodal tDCS induces excitability changes in lower limb motor cortex with resultant enhancement of locomotor adaptation aftereffects. These findings might encourage the use of tDCS over leg motor and premotor regions to improve locomotor control in patients with neurological gait disorders. PMID:22323638

  18. The role of the serotonergic system in locomotor recovery after spinal cord injury

    PubMed Central

    Ghosh, Mousumi; Pearse, Damien D.

    2015-01-01

    Serotonin (5-HT), a monoamine neurotransmitter synthesized in various populations of brainstem neurons, plays an important role in modulating the activity of spinal networks involved in vertebrate locomotion. Following spinal cord injury (SCI) there is a disruption of descending serotonergic projections to spinal motor areas, which results in a subsequent depletion in 5-HT, the dysregulation of 5-HT transporters as well as the elevated expression, super-sensitivity and/or constitutive auto-activation of specific 5-HT receptors. These changes in the serotonergic system can produce varying degrees of locomotor dysfunction through to paralysis. To date, various approaches targeting the different components of the serotonergic system have been employed to restore limb coordination and improve locomotor function in experimental models of SCI. These strategies have included pharmacological modulation of serotonergic receptors, through the administration of specific 5-HT receptor agonists, or by elevating the 5-HT precursor 5-hydroxytryptophan, which produces a global activation of all classes of 5-HT receptors. Stimulation of these receptors leads to the activation of the locomotor central pattern generator (CPG) below the site of injury to facilitate or improve the quality and frequency of movements, particularly when used in concert with the activation of other monoaminergic systems or coupled with electrical stimulation. Another approach has been to employ cell therapeutics to replace the loss of descending serotonergic input to the CPG, either through transplanted fetal brainstem 5-HT neurons at the site of injury that can supply 5-HT to below the level of the lesion or by other cell types to provide a substrate at the injury site for encouraging serotonergic axon regrowth across the lesion to the caudal spinal cord for restoring locomotion. PMID:25709569

  19. Reliability review of the remote tool delivery system locomotor

    SciTech Connect

    Chesser, J.B.

    1999-04-01

    The locomotor being built by RedZone Robotics is designed to serve as a remote tool delivery (RID) system for waste retrieval, tank cleaning, viewing, and inspection inside the high-level waste tanks 8D-1 and 8D-2 at West Valley Nuclear Services (WVNS). The RTD systm is to be deployed through a tank riser. The locomotor portion of the RTD system is designed to be inserted into the tank and is to be capable of moving around the tank by supporting itself and moving on the tank internal structural columns. The locomotor will serve as a mounting platform for a dexterous manipulator arm. The complete RTD system consists of the locomotor, dexterous manipulator arm, cameras, lights, cables, hoses, cable/hose management system, power supply, and operator control station.

  20. Coupling of cardiac and locomotor rhythms.

    PubMed

    Kirby, R L; Nugent, S T; Marlow, R W; MacLeod, D A; Marble, A E

    1989-01-01

    The pressure within exercising skeletal muscle rises and falls rhythmically during normal human locomotion, the peak pressure reaching levels that intermittently impede blood flow to the exercising muscle. Speculating that a reciprocal relationship between the timing of peak intramuscular and pulsatile arterial pressures should optimize blood flow through muscle and minimize cardiac load, we tested the hypothesis that heart rate becomes entrained with walking and running cadence at some locomotion speeds, by means of electrocardiography and an accelerometer to provide signals reflecting heart rate and cadence, respectively. In 18 of 25 subjects, 1:1 coupling of heart and step rates was present at one or more speeds on a motorized treadmill, generally at moderate to high exercise intensities. To determine how exercise specific this phenomenon is, and to refute the competing hypothesis that coupling is due to vertical accelerations of the heart during locomotion, we had 12 other subjects cycle on an electronically braked bicycle ergometer. Coupling was found between heart rate and pedaling frequency in 10 of them. Cardiac-locomotor coupling appears to be a normal physiological phenomenon, and its identification provides a fresh perspective from which to study endurance.

  1. Testosterone induces "splitting" of circadian locomotor activity rhythms in birds.

    PubMed

    Gwinner, E

    1974-07-01

    Under the influence of testosterone, the free-running circadian rhythm of locomotor activity of the starling, Sturnus vulgaris, tends to "split" into two components which temporarily run with different circadian frequencies: "splitting" occurred in intact birds whose testes grew, and in castrated birds that were injected with testosterone. Since "splitting" most probably reflects the temporal separation of two (or two groups of) circadian oscillators, these results suggest that testosterone affects the mutual coupling of circadian oscillators controlling locomotor activity.

  2. Granulocyte colony-stimulating factor does not enhance recruitment of bone marrow-derived cells in rats with acute myocardial infarction.

    PubMed

    Sato, Daisuke; Otani, Hajime; Fujita, Masanori; Shimazu, Takayuki; Yoshioka, Kei; Enoki, Chiharu; Minato, Naoki; Iwasaka, Toshiji

    2012-09-01

    Despite the potential benefit of granulocyte colony-stimulating factor (G-CSF) therapy in patients with acute myocardial infarction (MI), the efficacy of G-CSF in regenerating the heart after MI remains controversial. The authors hypothesize that the limited efficacy of G-CSF is related to its inhibitory effect on recruitment of bone marrow-derived cells (BMCs) to the infarcted tissue. MI was induced in rats with intrabone marrow-bone marrow transplantation from syngenic rats expressing green fluorescence protein to track BMCs. G-CSF was administered for five days after the onset of MI. G-CSF increased the number of CD45(+) cells in the peripheral circulation but did not increase their recruitment to the heart. G-CSF had no effect on myocardial stromal-derived factor-1 alpha and chemokine (C-X-C motif) receptor 4 (CXCR4) expression in mononuclear cells in the peripheral blood and CXCR4(+) cells in the heart. G-CSF had no effect on angiogenesis, myocardial fibrosis or left ventricular function four weeks after MI. These results suggest that G-CSF mobilizes BMCs to the peripheral circulation but does not increase recruitment to the infarcted myocardium despite preservation of the stromal-derived factor-1 alpha/CXCR4 axis. PMID:23620693

  3. The Relationship between Membrane Potential and Calcium Dynamics in Glucose-Stimulated Beta Cell Syncytium in Acute Mouse Pancreas Tissue Slices

    PubMed Central

    Miller, Evan W.; Slak Rupnik, Marjan

    2013-01-01

    Oscillatory electrical activity is regarded as a hallmark of the pancreatic beta cell glucose-dependent excitability pattern. Electrophysiologically recorded membrane potential oscillations in beta cells are associated with in-phase oscillatory cytosolic calcium activity ([Ca2+]i) measured with fluorescent probes. Recent high spatial and temporal resolution confocal imaging revealed that glucose stimulation of beta cells in intact islets within acute tissue slices produces a [Ca2+]i change with initial transient phase followed by a plateau phase with highly synchronized [Ca2+]i oscillations. Here, we aimed to correlate the plateau [Ca2+]i oscillations with the oscillations of membrane potential using patch-clamp and for the first time high resolution voltage-sensitive dye based confocal imaging. Our results demonstrated that the glucose-evoked membrane potential oscillations spread over the islet in a wave-like manner, their durations and wave velocities being comparable to the ones for [Ca2+]i oscillations and waves. High temporal resolution simultaneous records of membrane potential and [Ca2+]i confirmed tight but nevertheless limited coupling of the two processes, with membrane depolarization preceding the [Ca2+]i increase. The potassium channel blocker tetraethylammonium increased the velocity at which oscillations advanced over the islet by several-fold while, at the same time, emphasized differences in kinetics of the membrane potential and the [Ca2+]i. The combination of both imaging techniques provides a powerful tool that will help us attain deeper knowledge of the beta cell network. PMID:24324777

  4. Locomotor stereotypy produced by dexbenzetimide and scopolamine is reduced by SKF 83566, not sulpiride.

    PubMed

    Fritts, M E; Mueller, K; Morris, L

    1998-07-01

    Like amphetamine, scopolamine produces locomotor stereotypy (repetitive routes of locomotion) in an open field. To determine whether locomotor stereotypy is a common behavioral effect of anticholingeric agents, several doses of the anticholinergic dexbenzetimide were tested for the ability to produce locomotor stereotypy; like scopolamine, dexbenzetimide produced locomotor stereotypy. To investigate a possible role of dopamine in anticholinergic-induced locomotor stereotypy, we tested the ability of the dopamine D1 antagonist SKF 83566 and the D2 antagonist sulpiride to block the locomotor stereotypy induced by scopolamine as well as dexbenzetimide. SKF 83566 blocked scopolamine- and dexbenzetimide-induced locomotor stereotypy; sulpiride did not reduce dexbenzetimide-induced locomotor stereotypy, but enhanced scopolamine-induced locomotor stereotypy. Hyperlocomotion was reduced by both dopamine antagonists. Results are interpreted in support of the notion that dopamine is the likely candidate mediating locomotor stereotypy. PMID:9678647

  5. Interaction among cardiac, respiratory, and locomotor rhythms during cardiolocomotor synchronization.

    PubMed

    Niizeki, K; Kawahara, K; Miyamoto, Y

    1993-10-01

    The nature of entrainment between cardiac and locomotor rhythms was investigated while normal human subjects walked or ran on a treadmill. To detect the incidence of entrainment occurrence, the phase relationships among cardiac, respiratory, and locomotor rhythms were analyzed. The phase relationship between heartbeats and gait signals showed that entrainment of cardiac rhythm to locomotor rhythm occurred in all subjects at one or more treadmill speeds. To elucidate interactions among cardiac, respiratory, and locomotor rhythms during the cardiolocomotor synchronization, spectral and coherence analyses were done for these three rhythms. Spectral and coherence analyses on fluctuations in the heart period and respiratory rhythms revealed that the strength of coupling between cardiac and respiratory rhythms decreased in the presence of cardiolocomotor synchronization. In addition, the coupling of cardiac and locomotor rhythms appeared to induce dissociation of coupling between respiratory and locomotor rhythms. These results were similar to those observed when stepping was voluntarily synchronized with cardiac rhythm. Possible mechanisms to explain coordination and interaction among the neural oscillators innervating these three rhythms are discussed.

  6. Limitations to the generality of cocaine locomotor sensitization.

    PubMed

    Marusich, Julie A; Branch, Marc N; Dallery, Jesse

    2008-08-01

    Repeated exposure to cocaine often leads to tolerance to effects on operant behavior, whereas sensitization often develops to effects on locomotor activity. The purpose of the present set of experiments was to examine if locomotor sensitization to cocaine would develop in the presence or absence of an operant contingency in rats. In Experiment 1, rats lever pressed on an FR schedule of reinforcement, and were administered chronic cocaine. Tolerance to effects of cocaine on lever pressing developed in most subjects. No subjects developed locomotor sensitization even when the operant contingency was removed. Experiment 2 examined effects of chronic cocaine administration in rats with no exposure to an operant contingency. Tolerance developed to locomotor effects of cocaine in some subjects, but none developed sensitization. In Experiment 3, rats were exposed to a shorter drug regimen, and given time off before a sensitization-test session. Some, but not all subjects showed locomotor sensitization during the test session. The present results, therefore, show that locomotor sensitization to cocaine is not an inevitable consequence of repeated exposure to the drug.

  7. Double dissociating effects of sensory stimulation and cocaine on serotonin activity in the occipital and temporal cortices.

    PubMed

    Müller, Christian P; De Souza Silva, Maria A; Huston, Joseph P

    2007-03-01

    Visual cues that become associated with the consumption of psychostimulant drugs energize craving and the intake of the drug by mechanisms of which little is known. In two experiments using in vivo microdialysis in freely moving rats we compared the effects of visual and auditory stimulation with that of cocaine (0, 5, 10, 20mg/kg; i.p.) on the extracellular serotonin (5-HT) activity in the occipital and temporal cortices in relation to behavior. Visual stimulation increased 5-HT in the occipital, but not temporal cortex, parallel to an increase in locomotion. Auditory stimulation decreased 5-HT in the auditory, but not occipital cortex, thus, showing a double dissociated 5-HT response. These data suggest that a locally restricted 5-HT response to sensory stimulation may gate behavioral activity sense-modality selectively. Cocaine affected 5-HT in the occipital cortex and behavioral activity in the same direction as visual stimulation, but in an amplified and prolonged way. In the temporal cortex cocaine also caused an increase in 5-HT. The findings demonstrate common effects of visual stimulation and cocaine on 5-HT activity in the occipital cortex in relation to locomotor activity. The results suggest that concepts of how neutral visual cues become powerful energizers of addiction-related behaviors should be expanded to incorporate not only an acute enhancement of reward processing mechanisms, but, in parallel, also an amplified processing of visual stimuli in the occipital cortex. PMID:17116310

  8. Individual differences in cocaine-induced locomotor activity of male Sprague-Dawley rats are not explained by plasma corticosterone levels

    PubMed Central

    Nelson, Anna M.; Kleschen, Melissa J.; Zahniser, Nancy R.

    2010-01-01

    Humans differ in their initial response to, and subsequent abuse of, addictive drugs like cocaine. Rodents also exhibit marked individual differences in responsiveness to cocaine. Previously, we classified male Sprague-Dawley rats as either low or high cocaine responders (LCRs or HCRs, respectively), based on their acute low-dose cocaine-induced locomotor activity, and found that with repeated drug exposure LCRs exhibit greater cocaine locomotor sensitization, reward and reinforcement than HCRs. Differential cocaine-induced increases in striatal dopamine help to explain the LCR/HCR phenotypes. Differential levels of stress and/or anxiety could also contribute but have not been explored. Here we measured open-field activity and plasma corticosterone levels both pre- and post-cocaine treatment in LCRs, HCRs, and saline-treated controls. The three groups did not differ in baseline locomotor activity or corticosterone levels. Importantly, LCR/HCR differences in corticosterone levels were also not observed following acute cocaine (10 mg/kg, i.p.), when cocaine induced approximately 3.5-fold greater locomotor activity in HCRs than LCRs. Additionally, there were no LCR/HCR differences in plasma corticosterone levels following five days of once-daily cocaine, during which time LCRs developed locomotor sensitization such that their cocaine-induced locomotor activity no longer differed from that of HCRs. Likewise, there were no group activity differences in any of four concentric zones within the open-field chamber. In summary, neither plasma corticosterone levels nor thigmotaxis-type anxiety appears to be a factor that contributes to the observed cocaine-induced LCR/HCR behavioral differences. PMID:20302913

  9. Argon prevents the development of locomotor sensitization to amphetamine and amphetamine-induced changes in mu opioid receptor in the nucleus accumbens.

    PubMed

    David, Hélène N; Dhilly, Martine; Poisnel, Géraldine; Degoulet, Mickael; Meckler, Cédric; Vallée, Nicolas; Blatteau, Jean-Éric; Risso, Jean-Jacques; Lemaire, Marc; Debruyne, Danièle; Abraini, Jacques H

    2014-01-01

    Systemic administration of γ-amino-butyric acid type A (GABA-A) and benzodiazepine receptor agonists has been reported to block the development of locomotor sensitization to amphetamine. Here, we investigated whether the non-anesthetic noble gas argon, shown to possess agonistic properties at these receptors, may block the acquisition of amphetamine-induced locomotor sensitization and mu opioid receptor activation in the nucleus accumbens. Rats were pretreated with saline solution or amphetamine (1 mg/kg) from day 1 to day 3 and then exposed, immediately after injection of amphetamine, to medicinal air or argon at 75 vol% (with the remainder being oxygen). After a 3-day period of withdrawal, rats were challenged with amphetamine on day 7. Rats pretreated with amphetamine and argon had lower locomotor activity (U = 5, P < 0.005) and mu opioid receptor activity in the nucleus accumbens (U = 0, P < 0.001) than rats pretreated with amphetamine and air. In contrast, argon had effect on locomotor and mu receptor activity neither in rats pretreated with saline and challenged with amphetamine (acute amphetamine) nor in rats pretreated and challenged with saline solution (controls). These results indicate that argon inhibits the development of both locomotor sensitization and mu opioid receptor activation induced by repeated administration of amphetamine.

  10. Brain temperature responses to salient stimuli persist during dopamine receptor blockade despite a blockade of locomotor responses.

    PubMed

    Kiyatkin, Eugene A

    2008-12-01

    We examined how an acute dopamine (DA) receptor blockade affects locomotor and brain (nucleus accumbens or NAcc), muscle and skin temperature responses to three arousing stimuli (procedure of sc injection, tail-pinch and social interaction with another male rat) and intravenous cocaine (1 mg/kg). DA receptor blockade was induced by mixture of D1- (SCH23390) and D-2 selective (eticlopride) DA antagonists at 0.2 mg/kg doses. Each arousing stimulus and cocaine caused locomotor activation, prolonged increase in NAcc and muscle temperature (0.6-1.0 degrees C for 20-50 min) and transient skin hypothermia (-0.6 degrees C for 1-3 min) in drug-naive conditions. DA receptor blockade strongly decreased basal locomotor activity, but moderately increased brain, muscle and skin temperatures. Therefore, selective interruption of DA transmission does not inhibit the brain, making it more metabolically active and warmer despite skin vasodilatation and the enhanced heat loss to the body and the external environment. DA antagonists strongly decreased locomotor responses to all stimuli and cocaine, had no effects on acute skin vasoconstriction, but differentially affected stimuli- and drug-induced changes in NAcc and muscle temperatures. While brain and muscle temperatures induced by cocaine were fully blocked and both temperatures slightly decreased, temperature increases induced by tail-pinch and social interaction, despite a significant attenuation, persisted during DA receptor blockade. These data are discussed to define the role of the DA system in regulating the central activation processes and behavioral responsiveness to natural arousing and drug stimuli. PMID:18727935

  11. Locomotor exercise induces long-lasting impairments in the capacity of the human motor cortex to voluntarily activate knee extensor muscles.

    PubMed

    Sidhu, Simranjit K; Bentley, David J; Carroll, Timothy J

    2009-02-01

    Muscle fatigue is a reduction in the capacity to exert force and may involve a "central" component originating in the brain and/or spinal cord. Here we examined whether supraspinal factors contribute to impaired central drive after locomotor endurance exercise. On 2 separate days, 10 moderately active individuals completed a locomotor cycling exercise session or a control session. Brief (2 s) and sustained (30 s) isometric knee extension contractions were completed before and after locomotor exercise consisting of eight, 5-min bouts of cycling at 80% of maximum workload. In the control session, subjects completed the isometric contractions in a rested state. Twitch responses to supramaximal motor nerve stimulation and transcranial magnetic stimulation were obtained to assess peripheral force-generating capacity and voluntary activation. Maximum voluntary contraction (MVC) force during brief contractions decreased by 23 +/- 6.3% after cycling exercise and remained 12 +/- 2.8% below baseline 45 min later (F(1,9) > 15.5; P < 0.01). Resting twitch amplitudes declined by approximately 45% (F(1,9) = 28.3; P < 0.001). Cortical voluntary activation declined from 90.6 +/- 1.6% at baseline to 80.6 +/- 2.1% after exercise (F(1,9) = 28.0; P < 0.001) and remained significantly reduced relative to control 30-45 min later (80.6 +/- 3.4%; F(1,9) = 10.7; P < 0.01). Thus locomotor exercise caused a long-lasting impairment in the capacity of the motor cortex to drive the knee extensors. Force was reduced more during sustained MVC after locomotor exercise than in the control session. Peripheral mechanisms contributed relatively more to this force reduction in the control session, whereas supraspinal fatigue played a greater role in sustained MVC reduction after locomotor exercise. PMID:19056999

  12. Prolactin increases the synthesis of 7alpha-hydroxypregnenolone, a key factor for induction of locomotor activity, in breeding male Newts.

    PubMed

    Haraguchi, Shogo; Koyama, Teppei; Hasunuma, Itaru; Vaudry, Hubert; Tsutsui, Kazuyoshi

    2010-05-01

    We recently found that the Japanese red-bellied newt, Cynops pyrrhogaster, actively produces 7alpha-hydroxypregnenolone, a previously undescribed amphibian neurosteroid. 7alpha-Hydroxypregnenolone stimulates locomotor activity of male newts. Locomotor activity of male newts increases during the breeding period as in other wild animals, but the molecular mechanism for such a change in locomotor activity is poorly understood. Here we show that the adenohypophyseal hormone prolactin (PRL) stimulates 7alpha-hydroxypregnenolone synthesis in the brain, thus increasing locomotor activity of breeding male newts. In this study, cytochrome P450(7alpha) (CYP7B), a steroidogenic enzyme catalyzing the formation of 7alpha-hydroxypregnenolone, was first identified to analyze seasonal changes in 7alpha-hydroxypregnenolone synthesis. Only males exhibited marked seasonal changes in 7alpha-hydroxypregnenolone synthesis and CYP7B expression in the brain, with a maximum level in the spring breeding period when locomotor activity of males increases. Subsequently we identified PRL as a key component of the mechanism regulating 7alpha-hydroxypregnenolone synthesis. Hypophysectomy decreased 7alpha-hydroxypregnenolone synthesis in the male brain, whereas administration of PRL but not gonadotropins to hypophysectomized males caused a dose-dependent increase in 7alpha-hydroxypregnenolone synthesis. To analyze the mode of PRL action, CYP7B and the receptor for PRL were localized in the male brain. PRL receptor was expressed in the neurons expressing CYP7B in the magnocellular preoptic nucleus. Thus, PRL appears to act directly on neurosteroidogenic magnocellular preoptic nucleus neurons to regulate 7alpha-hydroxypregnenolone synthesis, thus inducing seasonal locomotor changes in male newts. This is the first report describing the regulation of neurosteroidogenesis in the brain by an adenohypophyseal hormone in any vertebrate.

  13. Developmental Deltamethrin Exposure Causes Persistent Changes in Dopaminergic Gene Expression, Neurochemistry, and Locomotor Activity in Zebrafish

    PubMed Central

    Kung, Tiffany S.; Richardson, Jason R.; Cooper, Keith R.; White, Lori A.

    2015-01-01

    Pyrethroids are commonly used insecticides that are considered to pose little risk to human health. However, there is an increasing concern that children are more susceptible to the adverse effects of pesticides. We used the zebrafish model to test the hypothesis that developmental exposure to low doses of the pyrethroid deltamethrin results in persistent alterations in dopaminergic gene expression, neurochemistry, and locomotor activity. Zebrafish embryos were treated with deltamethrin (0.25–0.50 μg/l), at concentrations below the LOAEL, during the embryonic period [3–72 h postfertilization (hpf)], after which transferred to fresh water until the larval stage (2-weeks postfertilization). Deltamethrin exposure resulted in decreased transcript levels of the D1 dopamine (DA) receptor (drd1) and increased levels of tyrosine hydroxylase at 72 hpf. The reduction in drd1 transcripts persisted to the larval stage and was associated with decreased D2 dopamine receptor transcripts. Larval fish, exposed developmentally to deltamethrin, had increased levels of homovanillic acid, a DA metabolite. Since the DA system is involved in locomotor activity, we measured the swim activity of larval fish following a transition to darkness. Developmental exposure to deltamethrin significantly increased larval swim activity which was attenuated by concomitant knockdown of the DA transporter. Acute exposure to methylphenidate, a DA transporter inhibitor, increased swim activity in control larva, while reducing swim activity in larva developmentally exposed to deltamethrin. Developmental exposure to deltamethrin causes locomotor deficits in larval zebrafish, which is likely mediated by dopaminergic dysfunction. This highlights the need to understand the persistent effects of low-dose neurotoxicant exposure during development. PMID:25912032

  14. An innovative spinal cord injury model for the study of locomotor networks.

    PubMed

    Nistri, A

    2012-03-01

    An acute lesion to the spinal cord triggers complex mechanisms responsible for amplification of the initial damage and its chronicity. In vitro preparations of the rodent spinal cord retain the intrinsic ability to produce locomotor-like discharges from lumbar ventral roots and, thus, offer the opportunity to study the still unclear process of lesion progression in relation to cell number and topography. In addition, these models enable a detailed approach to the molecular mechanisms of damage and to pharmacological tools to counteract them. Using the rat spinal cord in vitro, our laboratory has shown how to reliably produce discrete lesions by applying the glutamate agonist kainate that evokes delayed neuronal loss via a non-apoptotic cell death mechanism termed parthanatos. Parthanatos is believed to be due to mitochondrial damage and exhaustion of cell energy stores caused by hyperactivation of enzymatic systems initially set to repair DNA damage. Locomotor network activity is irreversibly destroyed by kainate in a virtually all-or-none manner, suggesting destruction of a highly-vulnerable cell population crucial for the expression of locomotion. Hypoxic challenge to the spinal cord together with toxic radicals primarily damages white matter cells with deficit (without full suppression) of locomotor network function, while neurons are less vulnerable. Pharmacological agents to inhibit different targets involved in the early pathophysiology of spinal injury provided limited success, indicating that novel approaches based on newly identified steps in the biochemical cascade leading to cell death should be investigated for their potential to improve the outcome of spinal cord injury.

  15. An innovative spinal cord injury model for the study of locomotor networks.

    PubMed

    Nistri, A

    2012-03-01

    An acute lesion to the spinal cord triggers complex mechanisms responsible for amplification of the initial damage and its chronicity. In vitro preparations of the rodent spinal cord retain the intrinsic ability to produce locomotor-like discharges from lumbar ventral roots and, thus, offer the opportunity to study the still unclear process of lesion progression in relation to cell number and topography. In addition, these models enable a detailed approach to the molecular mechanisms of damage and to pharmacological tools to counteract them. Using the rat spinal cord in vitro, our laboratory has shown how to reliably produce discrete lesions by applying the glutamate agonist kainate that evokes delayed neuronal loss via a non-apoptotic cell death mechanism termed parthanatos. Parthanatos is believed to be due to mitochondrial damage and exhaustion of cell energy stores caused by hyperactivation of enzymatic systems initially set to repair DNA damage. Locomotor network activity is irreversibly destroyed by kainate in a virtually all-or-none manner, suggesting destruction of a highly-vulnerable cell population crucial for the expression of locomotion. Hypoxic challenge to the spinal cord together with toxic radicals primarily damages white matter cells with deficit (without full suppression) of locomotor network function, while neurons are less vulnerable. Pharmacological agents to inhibit different targets involved in the early pathophysiology of spinal injury provided limited success, indicating that novel approaches based on newly identified steps in the biochemical cascade leading to cell death should be investigated for their potential to improve the outcome of spinal cord injury. PMID:22407008

  16. Endothelial dysfunction and increased responses to renal nerve stimulation in rat kidneys during rhabdomyolysis-induced acute renal failure: role of hydroxyl radical.

    PubMed

    Cil, Onur; Ertunc, Mert; Gucer, Kadri Safak; Ozaltin, Fatih; Iskit, Alper Bektas; Onur, Rustu

    2012-01-01

    Rhabdomyolysis is an important cause of acute renal failure (ARF) and renal vasoconstriction is the main mechanism in the pathogenesis of ARF. Lipid peroxidation due to hydroxyl radical (.OH) formation and redox cycling of myoglobin also have a role. We investigated the disturbance in renal vascular reactivity to reveal the mechanisms leading to ARF. Female Wistar rats (n = 7) were injected with glycerol (10 mL/kg, 50% in saline) intramuscularly to induce rhabdomyolysis, and then the kidneys were isolated and perfused. We investigated acetylcholine (ACh)-induced endothelium-dependent and papaverine (PAP)-induced endothelium-independent vasodilation responses and renal nerve stimulation (RNS)-induced vasoconstrictions. These were also investigated both in rats which received either .OH scavenger, dimethylthiourea (DMTU: 500 mg/kg before glycerol injection and 125 mg/kg 8 h after glycerol injection, n = 7), or myoglobin redox cycling inhibitor, acetaminophen (ApAP: 100 mg/kg 2 h before glycerol injection and 100 mg/kg each 4 h, and 22 h after glycerol injection, n = 7). ACh-induced responses in glycerol group were decreased (p < 0.001), but PAP-induced vasodilation did not change. RNS-induced vasoconstriction in all kidneys was greater (p < 0.001) in glycerol group. DMTU restored both endothelium-dependent vasodilation and RNS-induced vasoconstriction. ApAP had no effect on vascular responses. Both DMTU and ApAP exerted a partial protective effect in renal histology without restoring serum creatinine and blood urea nitrogen (BUN) levels or creatinine clearance. This study showed that endothelial dysfunction and increased vasoconstriction developed during rhabdomyolysis. .OH plays an important role in the development of these vascular responses. These findings suggest that decreased endothelium-dependent vasodilation and augmented renal sympathetic tonus contribute to the development of renal vasoconstriction during rhabdomyolysis-induced ARF.

  17. Inflammation-mediating cytokine response to acute handcycling exercise with/without functional electrical stimulation-evoked lower-limb cycling.

    PubMed

    Paulson, Thomas A W; Bishop, Nicolette C; Smith, Brett M; Goosey-Tolfrey, Victoria L

    2014-01-01

    This feasibility study compared the plasma inflammation-mediating cytokine response to an acute bout of handcycling (HC) with and without the addition of functional electrical stimulation (FES)-evoked lower-limb cycling. On two separate occasions, five recreationally active, community-based participants with motor complete paraplegia (thoracic 5- 7) performed 30 min HC and hybrid exercise (HYB) at a fixed power output. Venous blood samples were collected at rest, immediately postexercise, 1 h postexercise (post+1) and 2 h postexercise (post+2). Plasma interleukin (IL)-6, IL-10, IL-1 receptor antagonist (IL-1ra), adrenaline, and cortisol concentrations were determined via enzyme-linked immunoassay. Plasma IL-6 concentrations were significantly (p < 0.04) elevated (~2.5-fold) at post+1 and post+2 in HYB only. A small (0.5-fold), nonsignificant (p > 0.05) increase in IL-6 was observed at post+1 in HC, with concentrations significantly higher in HYB at post+2 (p < 0.02). Plasma IL-1ra was unaffected in both trials. Although not reaching statistical significance (p = 0.15), a ~1-fold increase in IL-10 concentration was seen in HYB at post+2. In contrast, increases in adrenaline (p < 0.04) and cortisol (p = 0.08) were observed immediately postexercise in HC and HYB. Initial findings suggest paralyzed skeletal muscle releases IL-6 in response to FES-evoked contractions. HYB may provide a greater anti-inflammatory potential in individuals with a thoracic spinal cord injury compared with HC alone. PMID:25144177

  18. Two components of nocturnal locomotor suppression by light.

    PubMed

    Morin, Lawrence P; Lituma, Pablo J; Studholme, Keith M

    2010-06-01

    In nocturnal rodents, millisecond light ("flash") stimuli can induce both a large circadian rhythm phase shift and an associated state change from highly active to quiescence followed by behavioral sleep. Suppression of locomotion ("negative masking") is an easily measured correlate of the state change. The present mouse studies used both flashes and longer light stimuli ("pulses") to distinguish initiation from maintenance effects of light on locomotor suppression and to determine whether the locomotor suppression exhibits temporal integration as is thought to be characteristic of phase shift responses to pulse, but not flash, stimuli. In experiment 1, locomotor suppression increased with irradiance (0.01-100 microW/cm( 2)), in accordance with previous reports. It also increased with stimulus duration (3-3000 sec), but interpretation of this result is complicated by the ability of light to both initiate and maintain locomotor suppression. In experiment 2, an irradiance response curve was determined using a stimulus series of 10 flashes, 2 msec each, with total flash energy varying from 0.0025 to 110.0 J/m(2). This included a test for temporal integration in which the effects of two equal energy series of flashes that differed in the number of flashes per series (10 vs 100), were compared. The 10 flash series more effectively elicited locomotor suppression than the 100 flash series, a result consistent with prior observations involving flash-induced phase shifts. In experiment 3, exposure of mice to an 11-h light stimulus yielded irradiance-dependent locomotor suppression that was maintained for the entire stimulus duration by a 100-microW/cm(2) stimulus. Light has the ability to initiate a time-limited (30-40 min) interval of locomotor suppression (initiation effect) that can be extended by additional light (maintenance effect). Temporal integration resembling that seen in phase-shifting responses to light does not exist for either phase shift or locomotor

  19. Chronic electromyographic analysis of circadian locomotor activity in crayfish.

    PubMed

    Tomina, Yusuke; Kibayashi, Akihiro; Yoshii, Taishi; Takahata, Masakazu

    2013-07-15

    Animals generally exhibit circadian rhythms of locomotor activity. They initiate locomotor behavior not only reflexively in response to external stimuli but also spontaneously in the absence of any specific stimulus. The neuronal mechanisms underlying circadian locomotor activity can, therefore, be based on the rhythmic changes in either reflexive efficacy or endogenous activity. In crayfish Procambarus clarkii, it can be determined by analyzing electromyographic (EMG) patterns of walking legs whether the walking behavior is initiated reflexively or spontaneously. In this study, we examined quantitatively the leg muscle activity that underlies the locomotor behavior showing circadian rhythms in crayfish. We newly developed a chronic EMG recording system that allowed the animal to freely behave under a tethered condition for more than 10 days. In the LD condition in which the animals exhibited LD entrainment, the rhythmic burst activity of leg muscles for stepping behavior was preceded by non-rhythmic tonic activation that lasted for 1323±488ms when the animal initiated walking. In DD and LL free-running conditions, the pre-burst activation lasted for 1779±31 and 1517±39ms respectively. In the mechanical stimulus-evoked walking, the pre-burst activation ended within 79±6ms. These data suggest that periodic changes in the crayfish locomotor activity under the condition of LD entrainment or free-running are based on activity changes in the spontaneous initiation mechanism of walking behavior rather than those in the sensori-motor pathway connecting mechanoreceptors with leg movements.

  20. Modular diversification of the locomotor system in damselfishes (Pomacentridae).

    PubMed

    Aguilar-Medrano, Rosalía; Frédérich, Bruno; Barber, Paul H

    2016-05-01

    As fish move and interact with their aquatic environment by swimming, small morphological variations of the locomotor system can have profound implications on fitness. Damselfishes (Pomacentridae) have inhabited coral reef ecosystems for more than 50 million years. As such, habitat preferences and behavior could significantly constrain the morphology and evolvability of the locomotor system. To test this hypothesis, we used phylogenetic comparative methods on morphometric, ecological and behavioral data. While body elongation represented the primary source of variation in the locomotor system of damselfishes, results also showed a diverse suite of morphological combinations between extreme morphologies. Results show clear associations between behavior, habitat preferences, and morphology, suggesting ecological constraints on shape diversification of the locomotor system. In addition, results indicate that the three modules of the locomotor system are weakly correlated, resulting in versatile and independent characters. These results suggest that Pomacentridae is shape may result from the interaction between (1) integrated parts of morphological variation that maintain overall swimming ability and (2) relatively independent parts of the morphology that facilitate adaptation and diversification.

  1. Opioid administration following spinal cord injury: implications for pain and locomotor recovery.

    PubMed

    Woller, Sarah A; Hook, Michelle A

    2013-09-01

    Approximately one-third of people with a spinal cord injury (SCI) will experience persistent neuropathic pain following injury. This pain negatively affects quality of life and is difficult to treat. Opioids are among the most effective drug treatments, and are commonly prescribed, but experimental evidence suggests that opioid treatment in the acute phase of injury can attenuate recovery of locomotor function. In fact, spinal cord injury and opioid administration share several common features (e.g. central sensitization, excitotoxicity, aberrant glial activation) that have been linked to impaired recovery of function, as well as the development of pain. Despite these effects, the interactions between opioid use and spinal cord injury have not been fully explored. A review of the literature, described here, suggests that caution is warranted when administering opioids after SCI. Opioid administration may synergistically contribute to the pathology of SCI to increase the development of pain, decrease locomotor recovery, and leave individuals at risk for infection. Considering these negative implications, it is important that guidelines are established for the use of opioids following spinal cord and other central nervous system injuries.

  2. Cardiac, respiratory, and locomotor coordination during walking in humans.

    PubMed

    Niizeki, K; Kawahara, K; Miyamoto, Y

    1996-01-01

    Interactions between locomotor, respiratory, and cardiac rhythms were investigated in human subjects (n = 11) walking on a treadmill. Investigation of the phase relationship between heart rate and gait signals revealed that cardiac rhythms were entrained to locomotor rhythms when both frequencies were close to an integer ratio. Coherence spectra were estimated between heartbeat fluctuation, respiratory, and gait signals, and their magnitudes were evaluated. The results suggest that the respiratory-induced fluctuation in heartbeat would vary depending on the strength of the cardiolocomotor coupling. The synchronization tends to occur for one or two specific phases in an individual subject, but there was some variation among subjects. When the subjects voluntarily synchronized their cadence with the cardiac rhythm, the heart rate and blood pressure varied depending on the phase lag within a cardiac cycle. The coordination of locomotor and cardiac rhythms is discussed.

  3. Quaternary naltrexone reverses radiogenic and morphine-induced locomotor hyperactivity

    SciTech Connect

    Mickley, G.A.; Stevens, K.E.; Galbraith, J.A.; White, G.A.; Gibbs, G.L.

    1984-04-01

    The present study attempted to determine the relative role of the peripheral and central nervous system in the production of morphine-induced or radiation-induced locomotor hyperactivity of the mouse. Toward this end, we used a quaternary derivative of an opiate antagonist (naltrexone methobromide), which presumably does not cross the blood-brain barrier. Quaternary naltrexone was used to challenge the stereotypic locomotor response observed in these mice after either an i.p. injection of morphine or exposure to 1500 rads /sup 60/Co. The quaternary derivative of naltrexone reversed the locomotor hyperactivity normally observed in the C57BL/6J mouse after an injection of morphine. It also significantly attenuated radiation-induced locomotion. The data reported here support the hypothesis of endorphin involvement in radiation-induced and radiogenic behaviors. However, these conclusions are contingent upon further research which more fully evaluates naltrexone methobromide's capacity to cross the blood-brain barrier.

  4. Developing Sensorimotor Countermeasures to Mitigate Post-Flight Locomotor Dysfunction

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Cohen, H.; Miller, C. A.; Richards, J. T.; Houser, J.; McDonald, P. V.; Seidler, R. D.; Merkle, L. A.; Stelmach, G. E.

    2001-01-01

    Following spaceflight, crewmembers experience postural and locomotor instability. The magnitude and duration of post-flight sensorimotor disturbances increase with longer duration exposure to microgravity. These post-flight postural and locomotor alterations can pose a risk to crew safety and to mission objectives if nominal or emergency vehicle egress is required immediately following long-duration spaceflight. Gait instabilities could prevent or extend the time required to make an emergency egress from the Orbiter, Crew Return Vehicle or a future Martian lander leading to compromised mission objectives. We propose a countermeasure that aids in maintaining functional locomotor performance. This includes retaining the ability to perform vehicular egress and meet early mission objectives soon after landing on a planetary surface.

  5. Effects of μ-opioid receptor agonists in assays of acute pain-stimulated and pain-depressed behavior in male rats: role of μ-agonist efficacy and noxious stimulus intensity.

    PubMed

    Altarifi, Ahmad A; Rice, Kenner C; Negus, S Stevens

    2015-02-01

    Pain is associated with stimulation of some behaviors and depression of others, and μ-opioid receptor agonists are among the most widely used analgesics. This study used parallel assays of pain-stimulated and pain-depressed behavior in male Sprague-Dawley rats to compare antinociception profiles for six μ-agonists that varied in efficacy at μ-opioid receptors (from highest to lowest: methadone, fentanyl, morphine, hydrocodone, buprenorphine, and nalbuphine). Intraperitoneal injection of diluted lactic acid served as an acute noxious stimulus to either stimulate stretching or depress operant responding maintained by electrical stimulation in an intracranial self-stimulation (ICSS). All μ-agonists blocked both stimulation of stretching and depression of ICSS produced by 1.8% lactic acid. The high-efficacy agonists methadone and fentanyl were more potent at blocking acid-induced depression of ICSS than acid-stimulated stretching, whereas lower-efficacy agonists displayed similar potency across assays. All μ-agonists except morphine also facilitated ICSS in the absence of the noxious stimulus at doses similar to those that blocked acid-induced depression of ICSS. The potency of the low-efficacy μ-agonist nalbuphine, but not the high-efficacy μ-agonist methadone, to block acid-induced depression of ICSS was significantly reduced by increasing the intensity of the noxious stimulus to 5.6% acid. These results demonstrate sensitivity of acid-induced depression of ICSS to a range of clinically effective μ-opioid analgesics and reveal distinctions between opioids based on efficacy at the μ-receptor. These results also support the use of parallel assays of pain-stimulated and -depressed behaviors to evaluate analgesic efficacy of candidate drugs. PMID:25406170

  6. Modulation of the locomotor response to amphetamine by corticosterone.

    PubMed

    Cador, M; Dulluc, J; Mormède, P

    1993-10-01

    In the present experiments, we investigated the influence of chronic modifications of circulating levels of corticosterone on the locomotor response to amphetamine. Different groups of rats were adrenalectomized and implanted subcutaneously with pellets releasing different amounts of corticosterone (0-200 mg). A wide range of corticosterone concentrations was reached in order to saturate selectively either the type I (mineralocorticoid) or the type II (glucocorticoid) corticosteroid receptors. The locomotor response to d-amphetamine (1.5 mg/kg) was studied 10-14 days later. We found that adrenalectomy reduced the response to d-amphetamine by 33% and that a normal response was restored with pellets releasing physiological concentrations of corticosterone (50-mg pellets), and was potentiated in animals with pellets releasing high amounts of corticosterone mimicking chronic stress situations (200-mg pellets). The correlation between plasma corticosterone concentration, locomotor activity following d-amphetamine and thymus weight, which is a reliable indicator of glucocorticoid action, shows that the influence of the locomotor response to d-amphetamine administration is likely to be mediated via a type II receptor. Since the locomotor activating effect of peripheral administration of d-amphetamine has been shown to depend on the integrity of the dopaminergic innervation of the nucleus accumbens, the effect of d-amphetamine at different doses (0, 1, 3, 10 micrograms/microliter) injected directly into the nucleus accumbens was studied. The results demonstrated that removing the circulating corticosterone induced a similar decrease of the locomotor activity elicited by d-amphetamine injection in the nucleus accumbens. This response was restored in animals with the 50- and 200-mg pellets.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8284048

  7. Short-term Cortical Plasticity Associated With Feedback-Error Learning After Locomotor Training in a Patient With Incomplete Spinal Cord Injury

    PubMed Central

    Peters, Sue; Borich, Michael R.; Boyd, Lara A.; Lam, Tania

    2015-01-01

    Background and Purpose For rehabilitation strategies to be effective, training should be based on principles of motor learning, such as feedback-error learning, that facilitate adaptive processes in the nervous system by inducing errors and recalibration of sensory and motor systems. This case report suggests that locomotor resistance training can enhance somatosensory and corticospinal excitability and modulate resting-state brain functional connectivity in a patient with motor-incomplete spinal cord injury (SCI). Case Description The short-term cortical plasticity of a 31-year-old man who had sustained an incomplete SCI 9.5 years previously was explored in response to body-weight–supported treadmill training with velocity-dependent resistance applied with a robotic gait orthosis. The following neurophysiological and neuroimaging measures were recorded before and after training. Sensory evoked potentials were elicited by electrical stimulation of the tibial nerve and recorded from the somatosensory cortex. Motor evoked potentials were generated with transcranial magnetic stimulation applied over the tibialis anterior muscle representation in the primary motor cortex. Resting-state functional magnetic resonance imaging was performed to evaluate short-term changes in patterns of brain activity associated with locomotor training. Outcomes Somatosensory excitability and corticospinal excitability were observed to increase after locomotor resistance training. Motor evoked potentials increased (particularly at higher stimulation intensities), and seed-based resting-state functional magnetic resonance imaging analyses revealed increased functional connectivity strength in the motor cortex associated with the less affected side after training. Discussion The observations suggest evidence of short-term cortical plasticity in 3 complementary neurophysiological measures after one session of locomotor resistance training. Future investigation in a sample of people with

  8. Locomotor activity, object exploration and space preference in children with autism and Down syndrome.

    PubMed

    Kawa, Rafał; Pisula, Ewa

    2010-01-01

    There have been ambiguous accounts of exploration in children with intellectual disabilities with respect to the course of that exploration, and in particular the relationship between the features of explored objects and exploratory behaviour. It is unclear whether reduced exploratory activity seen with object exploration but not with locomotor activity is autism-specific or if it is also present in children with other disabilities. The purpose of the present study was to compare preschool children with autism with their peers with Down syndrome and typical development in terms of locomotor activity and object exploration and to determine whether the complexity of explored objects affects the course of exploration activity in children with autism. In total there were 27 children in the study. The experimental room was divided into three zones equipped with experimental objects providing visual stimulation of varying levels of complexity. Our results indicate that children with autism and Down syndrome differ from children with typical development in terms of some measures of object exploration (i.e. looking at objects) and time spent in the zone with the most visually complex objects.

  9. Dopamine exerts activation-dependent modulation of spinal locomotor circuits in the neonatal mouse.

    PubMed

    Humphreys, Jennifer M; Whelan, Patrick J

    2012-12-01

    Monoamines can modulate the output of a variety of invertebrate and vertebrate networks, including the spinal cord networks that control walking. Here we examined the multiple changes in the output of locomotor networks induced by dopamine (DA). We found that DA can depress the activation of locomotor networks in the neonatal mouse spinal cord following ventral root stimulation. By examining disinhibited rhythms, where the Renshaw cell pathway was blocked, we found that DA depresses a putative recurrent excitatory pathway that projects onto rhythm-generating circuitry of the spinal cord. This depression was D(2) but not D(1) receptor dependent and was not due exclusively to depression of excitatory drive to motoneurons. Furthermore, the depression in excitation was not dependent on network activity. We next compared the modulatory effects of DA on network function by focusing on a serotonin and a N-methyl-dl-aspartate-evoked rhythm. In contrast to the depressive effects on a ventral root-evoked rhythm, we found that DA stabilized a drug-evoked rhythm, reduced the frequency of bursting, and increased amplitude. Overall, these data demonstrate that DA can potentiate network activity while at the same time reducing the gain of recurrent excitatory feedback loops from motoneurons onto the network.

  10. Genotypic structure of a Drosophila population for adult locomotor activity

    SciTech Connect

    Grechanyi, G.V.; Korzun, V.M.

    1995-01-01

    Analysis of the variation of adult locomotor activity in four samples taken at different times from a natural population of Drosophila melanogaster showed that the total variation of this trait is relatively stable in time and has a substantial genetic component. Genotypic structure of the population for locomotor activity is characterized by the presence of large groups of genotypes with high and low values of this trait. A possible explanation for the presence of such groups in a population is cyclic density-dependent selection.

  11. Determination of the spontaneous locomotor activity in Drosophila melanogaster.

    PubMed

    Woods, Jared K; Kowalski, Suzanne; Rogina, Blanka

    2014-01-01

    Drosophila melanogaster has been used as an excellent model organism to study environmental and genetic manipulations that affect behavior. One such behavior is spontaneous locomotor activity. Here we describe our protocol that utilizes Drosophila population monitors and a tracking system that allows continuous monitoring of the spontaneous locomotor activity of flies for several days at a time. This method is simple, reliable, and objective and can be used to examine the effects of aging, sex, changes in caloric content of food, addition of drugs, or genetic manipulations that mimic human diseases. PMID:24747955

  12. Graft monocytic myeloid-derived suppressor cell content predicts the risk of acute graft-versus-host disease after allogeneic transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood stem cells.

    PubMed

    Vendramin, Antonio; Gimondi, Silvia; Bermema, Anisa; Longoni, Paolo; Rizzitano, Sara; Corradini, Paolo; Carniti, Cristiana

    2014-12-01

    Myeloid-derived suppressor cells (MDSCs) are powerful immunomodulatory cells that in mice play a role in infectious and inflammatory disorders, including acute graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation. Their relevance in clinical acute GVHD is poorly known. We analyzed whether granulocyte colony-stimulating factor (G-CSF) administration, used to mobilize hematopoietic stem cells, affected the frequency of MDSCs in the peripheral blood stem cell grafts of 60 unrelated donors. In addition, we evaluated whether the MDSC content in the peripheral blood stem cell grafts affected the occurrence of acute GVHD in patients undergoing unrelated donor allogeneic stem cell transplantation. Systemic treatment with G-CSF induces an expansion of myeloid cells displaying the phenotype of monocytic MDSCs (Lin(low/neg)HLA-DR(-)CD11b(+)CD33(+)CD14(+)) with the ability to suppress alloreactive T cells in vitro, therefore meeting the definition of MDSCs. Monocytic MDSC dose was the only graft parameter to predict acute GVHD. The cumulative incidence of acute GVHD at 180 days after transplantation for recipients receiving monocytic MDSC doses below and above the median was 63% and 22%, respectively (P = .02). The number of monocytic MDSCs infused did not impact the relapse rate or the transplant-related mortality rate (P > .05). Although further prospective studies involving larger sample size are needed to validate the exact monocytic MDSC graft dose that protects from acute GVHD, our results strongly suggest the modulation of G-CSF might be used to affect monocytic MDSCs graft cell doses for prevention of acute GVHD.

  13. Serotonergic involvement in methamphetamine-induced locomotor activity: a detailed pharmacological study.

    PubMed

    Steed, Emily; Jones, Caitlin A; McCreary, Andrew C

    2011-06-20

    The mechanism by which the psychostimulant methamphetamine (METH) increases locomotor activity may be attributable to indirect activation of serotonin (5-HT) and dopamine (DA) receptors. In the present study, the ability of the serotonin reuptake inhibitor fluvoxamine, 5-HT(1A), 5-HT(1B), 5-HT(2A) and 5-HT(2C) receptor antagonists WAY100635, GR127935, M100907 and SB242084, and the 5-HT(2C) receptor agonists WAY163909 and Ro 60-0175 or the 5-HT synthesis inhibitor para-chlorophenylalanine (pCPA) to alter METH-induced hyperactivity was analysed. Further, for comparative purposes, the involvement of the DA D(1) and D(2) receptor antagonists SCH23390 and haloperidol, D(2) partial agonists terguride, (-)3PPP and aripiprazole and finally clozapine were assessed. Doses of pCPA that attenuated 5-HT levels reduced METH activity. The 5-HT(1B) antagonist GR127935 had no effect on METH-induced locomotor activity but blocked that induced by MDMA. The 5-HT(1A) antagonist WAY100635 reduced activity but this did not reach significance. In contrast, M100907 (minimal effective dose; MED=0.125 mg/kg), WAY163909 (MED=3mg/kg), Ro 60-0175 (MED=3mg/kg), haloperidol (MED=0.1mg/kg), clozapine (MED=5mg/kg), aripiprazole (MED=1mg/kg), (-)3PPP (MED=3mg/kg), terguride (MED=0.2mg/kg) and SCH23390 (MED=0.001325 mg/kg) attenuated METH-induced locomotor activity. Administration of 20mg/kg fluvoxamine attenuated, while SB242084 (MED=0.25mg/kg) potentiated METH-induced activity. These results contribute significantly to the understanding of the mechanism of action of this psychostimulant and suggest for the first time, that METH-induced locomotor stimulation is modulated by 5-HT(2A) and 5-HT(2C) receptors, but demonstrate that 5-HT(1B) receptors are not directly involved. The involvement of the dopaminergic system was also demonstrated.

  14. The dopamine uptake inhibitor 3 alpha-[bis(4'-fluorophenyl)metoxy]-tropane reduces cocaine-induced early-gene expression, locomotor activity, and conditioned reward.

    PubMed

    Velázquez-Sánchez, Clara; Ferragud, Antonio; Hernández-Rabaza, Vicente; Nácher, Amparo; Merino, Virginia; Cardá, Miguel; Murga, Juan; Canales, Juan J

    2009-11-01

    Benztropine (BZT) analogs, a family of high-affinity dopamine transporter ligands, are molecules that exhibit pharmacological and behavioral characteristics predictive of significant therapeutic potential in cocaine addiction. Here, we examined in mice the effects of 3 alpha-[bis(4'-fluorophenyl)metoxy]-tropane (AHN-1055) on motor activity, conditioned place preference (CPP) and c-Fos expression in the striatum. AHN-1055 produced mild attenuation of spontaneous locomotor activity at a low dose (1 mg/kg) and weak stimulation at a higher dose (10 mg/kg). In parallel, the BZT analog significantly increased c-Fos expression in the dorsolateral caudoputamen at the high dose, whereas producing marginal decreases at low and moderate doses (1, 3 mg/kg) in both dorsal and ventral striatum. Interaction assays showed that cocaine's ability to stimulate locomotor activity was decreased by AHN-1055 treatment, but not by treatment with D-amphetamine. Such reduced ability did not result from an increase in stereotyped behavior. Another dopamine uptake inhibitor, nomifensine, decreased cocaine-induced locomotor activity but evoked by itself intense motor stereotypies. Remarkably, the BZT analog dose-dependently blocked cocaine-induced CPP without producing CPP when given alone, and blocked in conditioned mice cocaine-stimulated early-gene activation in the nucleus accumbens and dorsomedial striatum. These observations provide evidence that AHN-1055 does not behave as a classical psychomotor stimulant and that some of its properties, including attenuation of cocaine-induced striatal c-Fos expression, locomotor stimulation, and CPP, support its candidacy, and that of structurally related molecules, as possible pharmacotherapies in cocaine addiction.

  15. The dopamine uptake inhibitor 3 alpha-[bis(4'-fluorophenyl)metoxy]-tropane reduces cocaine-induced early-gene expression, locomotor activity, and conditioned reward.

    PubMed

    Velázquez-Sánchez, Clara; Ferragud, Antonio; Hernández-Rabaza, Vicente; Nácher, Amparo; Merino, Virginia; Cardá, Miguel; Murga, Juan; Canales, Juan J

    2009-11-01

    Benztropine (BZT) analogs, a family of high-affinity dopamine transporter ligands, are molecules that exhibit pharmacological and behavioral characteristics predictive of significant therapeutic potential in cocaine addiction. Here, we examined in mice the effects of 3 alpha-[bis(4'-fluorophenyl)metoxy]-tropane (AHN-1055) on motor activity, conditioned place preference (CPP) and c-Fos expression in the striatum. AHN-1055 produced mild attenuation of spontaneous locomotor activity at a low dose (1 mg/kg) and weak stimulation at a higher dose (10 mg/kg). In parallel, the BZT analog significantly increased c-Fos expression in the dorsolateral caudoputamen at the high dose, whereas producing marginal decreases at low and moderate doses (1, 3 mg/kg) in both dorsal and ventral striatum. Interaction assays showed that cocaine's ability to stimulate locomotor activity was decreased by AHN-1055 treatment, but not by treatment with D-amphetamine. Such reduced ability did not result from an increase in stereotyped behavior. Another dopamine uptake inhibitor, nomifensine, decreased cocaine-induced locomotor activity but evoked by itself intense motor stereotypies. Remarkably, the BZT analog dose-dependently blocked cocaine-induced CPP without producing CPP when given alone, and blocked in conditioned mice cocaine-stimulated early-gene activation in the nucleus accumbens and dorsomedial striatum. These observations provide evidence that AHN-1055 does not behave as a classical psychomotor stimulant and that some of its properties, including attenuation of cocaine-induced striatal c-Fos expression, locomotor stimulation, and CPP, support its candidacy, and that of structurally related molecules, as possible pharmacotherapies in cocaine addiction. PMID:19606084

  16. Assessment of substance abuse liability in rodents: self-administration, drug discrimination, and locomotor sensitization.

    PubMed

    Paterson, Neil E

    2012-09-01

    Assessing abuse liability is a crucial step in the development of a novel chemical entity (NCE) with central nervous system (CNS) activity or with chemical or pharmacological properties in common with known abused substances. Rodent assessment of abuse liability is highly attractive due to its relatively low cost and high predictive validity. Described in this unit are three rodent assays commonly used to provide data on the potential for abuse liability based on the acute effects of NCEs: specifically, self-administration, drug discrimination, and locomotor sensitization. As these assays provide insight into the potential abuse liability of NCEs as well as in vivo pharmacological mechanism(s) of action, they should form a key part of the development process for novel therapeutics aimed at treating CNS disorders.

  17. Virus-mediated shRNA knockdown of prodynorphin in the rat nucleus accumbens attenuates depression-like behavior and cocaine locomotor sensitization.

    PubMed

    Cohen, Ami; Whitfield, Timothy W; Kreifeldt, Max; Koebel, Pascale; Kieffer, Brigitte L; Contet, Candice; George, Olivier; Koob, George F

    2014-01-01

    Dynorphins, endogenous opioid peptides that arise from the precursor protein prodynorphin (Pdyn), are hypothesized to be involved in the regulation of mood states and the neuroplasticity associated with addiction. The current study tested the hypothesis that dynorphin in the nucleus accumbens (NAcc) mediates such effects. More specifically, we examined whether knockdown of Pdyn within the NAcc in rats would alter the expression of depressive-like and anxiety-like behavior, as well as cocaine locomotor sensitization. Wistar rats were injected with adeno-associated viral (AAV) vectors encoding either a Pdyn-specific short hairpin RNA (AAV-shPdyn) or a scrambled shRNA (AAV-shScr) as control. Four weeks later, rats were tested for anxiety-like behavior in the elevated plus maze test and depressive-like behavior in the forced swim test (FST). Finally, rats received one daily injection of saline or cocaine (20 mg/kg, i.p.), followed by assessment of locomotion for 4 consecutive days. Following 3 days of abstinence, the rats completed 2 additional daily cocaine/saline locomotor trials. Pdyn knockdown in the NAcc led to a significant reduction in depressive-like behavior in the FST, but had no effect on anxiety-like behavior in the elevated plus maze. Pdyn knockdown did not alter baseline locomotor behavior, the locomotor response to acute cocaine, or the initial sensitization of the locomotor response to cocaine over the first 4 cocaine treatment days. However, following 3 days abstinence the locomotor response to the cocaine challenge returned to their original levels in the AAV-shPdyn rats while remaining heightened in the AAV-shScr rats. These results suggest that dynorphin in a very specific area of the nucleus accumbens contributes to depressive-like states and may be involved in neuroadaptations in the NAcc that contribute to the development of cocaine addiction as a persistent and lasting condition.

  18. Rapid Sensitization of Physiological, Neuronal, and Locomotor Effects of Nicotine: Critical Role of Peripheral Drug Actions

    PubMed Central

    Lenoir, Magalie; Tang, Jeremy S.; Woods, Amina S.

    2013-01-01

    Repeated exposure to nicotine and other psychostimulant drugs produces persistent increases in their psychomotor and physiological effects (sensitization), a phenomenon related to the drugs' reinforcing properties and abuse potential. Here we examined the role of peripheral actions of nicotine in nicotine-induced sensitization of centrally mediated physiological parameters (brain, muscle, and skin temperatures), cortical and VTA EEG, neck EMG activity, and locomotion in freely moving rats. Repeated injections of intravenous nicotine (30 μg/kg) induced sensitization of the drug's effects on all these measures. In contrast, repeated injections of the peripherally acting analog of nicotine, nicotine pyrrolidine methiodide (nicotinePM, 30 μg/kg, i.v.) resulted in habituation (tolerance) of the same physiological, neuronal, and behavioral measures. However, after repeated nicotine exposure, acute nicotinePM injections induced nicotine-like physiological responses: powerful cortical and VTA EEG desynchronization, EMG activation, a large brain temperature increase, but weaker hyperlocomotion. Additionally, both the acute locomotor response to nicotine and nicotine-induced locomotor sensitization were attenuated by blockade of peripheral nicotinic receptors by hexamethonium (3 mg/kg, i.v.). These data suggest that the peripheral actions of nicotine, which precede its direct central actions, serve as a conditioned interoceptive cue capable of eliciting nicotine-like physiological and neural responses after repeated nicotine exposure. Thus, by providing a neural signal to the CNS that is repeatedly paired with the direct central effects of nicotine, the drug's peripheral actions play a critical role in the development of nicotine-induced physiological, neural, and behavioral sensitization. PMID:23761889

  19. Conditioned place preference and locomotor activity in response to methylphenidate, amphetamine and cocaine in mice lacking dopamine D4 receptors

    SciTech Connect

    Thanos, P.K.; Thanos, P.K.; Bermeo, C.; Rubinstein, M.; Suchland, K.L.; Wang, G.-J.; Grandy, D.K.; Volkow, N.D.

    2010-05-01

    Methylphenidate (MP) and amphetamine (AMPH) are the most frequently prescribed medications for the treatment of attention-deficit/hyperactivity disorder (ADHD). Both drugs are believed to derive their therapeutic benefit by virtue of their dopamine (DA)-enhancing effects, yet an explanation for the observation that some patients with ADHD respond well to one medication but not to the other remains elusive. The dopaminergic effects of MP and AMPH are also thought to underlie their reinforcing properties and ultimately their abuse. Polymorphisms in the human gene that codes for the DA D4 receptor (D4R) have been repeatedly associated with ADHD and may correlate with the therapeutic as well as the reinforcing effects of responses to these psychostimulant medications. Conditioned place preference (CPP) for MP, AMPH and cocaine were evaluated in wild-type (WT) mice and their genetically engineered littermates, congenic on the C57Bl/6J background, that completely lack D4Rs (knockout or KO). In addition, the locomotor activity in these mice during the conditioning phase of CPP was tested in the CPP chambers. D4 receptor KO and WT mice showed CPP and increased locomotor activity in response to each of the three psychostimulants tested. D4R differentially modulates the CPP responses to MP, AMPH and cocaine. While the D4R genotype affected CPP responses to MP (high dose only) and AMPH (low dose only) it had no effects on cocaine. Inasmuch as CPP is considered an indicator of sensitivity to reinforcing responses to drugs these data suggest a significant but limited role of D4Rs in modulating conditioning responses to MP and AMPH. In the locomotor test, D4 receptor KO mice displayed attenuated increases in AMPH-induced locomotor activity whereas responses to cocaine and MP did not differ. These results suggest distinct mechanisms for D4 receptor modulation of the reinforcing (perhaps via attenuating dopaminergic signalling) and locomotor properties of these stimulant drugs

  20. Anxiolytic-like, stimulant and neuroprotective effects of Ilex paraguariensis extracts in mice.

    PubMed

    Santos, E C S; Bicca, M A; Blum-Silva, C H; Costa, A P R; Dos Santos, A A; Schenkel, E P; Farina, M; Reginatto, F H; de Lima, T C M

    2015-04-30

    Yerba-mate (Ilex paraguariensis St. Hil.) is the most used beverage in Latin America with approximately 426 thousand of tons consumed per year. Considering the broad use of this plant, we aimed to investigate the anxiety-like and stimulant activity of both the hydroethanolic (HE) and aqueous (AE) extracts from leaves of I. paraguariensis. Swiss mice were treated with I. paraguariensis HE or AE chronically or acutely, respectively, followed by evaluation in the elevated plus-maze (EPM; anxiety-like paradigm), open field (OF; locomotor activity) or the step-down avoidance task (memory assessment). Following behavioral protocols the brains were collected for evaluation of acetylcholinesterase (AChE) activity ex vivo. Chronic treatment with HE induced an anxiolytic-like effect and increased motor activity besides augmented AChE activity. Additionally, acute treatment with AE prevented the scopolamine-induced memory deficit in the step-down avoidance task. Overall, our results indicate the importance of the I. paraguariensis-induced CNS effects, since it is a widely used nutraceutical. We have reported anxiolytic, stimulant and neuroprotective effects for this plant species. These effects are potentially modulated by the cholinergic system as well as by caffeine.

  1. Adenosinergic regulation of binge-like ethanol drinking and associated locomotor effects in male C57BL/6J mice.

    PubMed

    Fritz, Brandon M; Boehm, Stephen L

    2015-08-01

    We recently observed that the addition of caffeine (a nonselective adenosine receptor antagonist) to a 20% ethanol solution significantly altered the intoxication profile of male C57BL/6J (B6) mice induced by voluntary binge-like consumption in the 'Drinking-in-the-Dark' (DID) paradigm. In the current study, the roles of A1 and A2A adenosine receptor subtypes, specifically, in binge-like ethanol consumption and associated locomotor effects were explored. Adult male B6 mice (PND 60-70) were allowed to consume 20% ethanol (v/v) or 2% sucrose (w/v) for 6days via DID. On day 7, mice received a systemic administration (i.p.) of the A1 antagonist DPCPX (1, 3, 6mg/kg), the A2A antagonist MSX-3 (1, 2, 4mg/kg), or vehicle immediately prior to fluid access in DID. Antagonism of the A1 receptor via DPCPX was found to dose-dependently decrease binge-like ethanol intake and associated blood ethanol concentrations (p's<0.05), although no effect was observed on sucrose intake. Antagonism of A2A had no effect on ethanol or sucrose consumption, however, MSX-3 elicited robust locomotor stimulation in mice consuming either solution (p's<0.05). Together, these findings suggest unique roles for the A1 and A2A adenosine receptor subtypes in binge-like ethanol intake and its associated locomotor effects. PMID:26033424

  2. Effects of caffeine and L-phenylisopropyladenosine on locomotor activity of mice

    SciTech Connect

    Buckholtz, N.S.; Middaugh, L.D.

    1987-10-01

    C57BL/6J and DBA/2J mice were used to determine if possible differences in the behavioral response to caffeine might be related to differences in A1 adenosine receptors. Caffeine stimulated locomotor activity of both strains, but the dose-response relationship and time course of drug action differed according to strain. Although their response to caffeine differed, the strains did not differ in response to the A1 adenosine agonist L-phenylisopropyladenosine (PIA) nor in the binding of the A1 agonist (/sup 3/H)N6-cyclohexyladenosine (CHA) in various brain regions. Thus, the behavioral differences in response to caffeine could not be accounted for by differences in adenosine binding. Of alternative mechanisms, strain differences in A2 receptors appear to be the most promising.

  3. A computerized system for the simultaneous monitoring of place conditioning and locomotor activity in rats.

    PubMed

    Brockwell, N T; Ferguson, D S; Beninger, R J

    1996-02-01

    Place conditioning is one of the most popular behavioral methods for assessing the rewarding properties of various substances. Many substances that are rewarding also influence motor activity. This report describes a computerized system designed to simultaneously monitor both place conditioning and locomotor activity. The system consists of 4 independent conditioning boxes, each equipped with 6 pairs of photosensors connected to an Experiment Controller, an electronic board containing a microprocessor, a programable timer, and 16 K of RAM used to store both instructions and data. The effects of the stimulant (+)-amphetamine were assessed using this system and found to produce a place preference comparable to that obtained from a previously utilized mechanical timer system. The computerized system also demonstrated that amphetamine increased unconditioned activity. There are a number of advantages and broader applications of the new methodology.

  4. Locomotor Experience and Use of Social Information Are Posture Specific

    ERIC Educational Resources Information Center

    Adolph, Karen E.; Tamis-LeMonda, Catherine S.; Ishak, Shaziela; Karasik, Lana B.; Lobo, Sharon A.

    2008-01-01

    The authors examined the effects of locomotor experience on infants' perceptual judgments in a potentially risky situation--descending steep and shallow slopes--while manipulating social incentives to determine where perceptual judgments are most malleable. Twelve-month-old experienced crawlers and novice walkers were tested on an adjustable…

  5. DRUG EFFECTS ON THE LOCOMOTOR ACTIVITY OF LARVAL ZEBRAFISH.

    EPA Science Inventory

    As part of an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae and the effects of prototype drugs. Zebrafish larvae (6-7 days post-fertilization) were indiv...

  6. Active Gaze, Visual Look-Ahead, and Locomotor Control

    ERIC Educational Resources Information Center

    Wilkie, Richard M.; Wann, John P.; Allison, Robert S.

    2008-01-01

    The authors examined observers steering through a series of obstacles to determine the role of active gaze in shaping locomotor trajectories. Participants sat on a bicycle trainer integrated with a large field-of-view simulator and steered through a series of slalom gates. Steering behavior was determined by examining the passing distance through…

  7. A Model of Locomotor-Respiratory Coupling in Quadrupeds

    ERIC Educational Resources Information Center

    Giuliodori,, Mauricio J.; Lujan, Heidi L.; Briggs, Whitney S.; DiCarlo, Stephen E.

    2009-01-01

    Locomotion and respiration are not independent phenomena in running mammals because locomotion and respiration both rely on cyclic movements of the ribs, sternum, and associated musculature. Thus, constraints are imposed on locomotor and respiratory function by virtue of their linkage. Specifically, locomotion imposes mechanical constraints on…

  8. Retinal Stimulation on Rabbit Using Complementary Metal Oxide Semiconductor Based Multichip Flexible Stimulator toward Retinal Prosthesis

    NASA Astrophysics Data System (ADS)

    Tokuda, Takashi; Asano, Ryosuke; Sugitani, Sachie; Taniyama, Mari; Terasawa, Yasuo; Nunoshita, Masahiro; Nakauchi, Kazuaki; Fujikado, Takashi; Tano, Yasuo; Ohta, Jun

    2008-04-01

    The Functionality of a complementary metal oxide semiconductor (CMOS) LSI-based, multichip flexible retinal stimulator was demonstrated in retinal stimulation experiments on rabbits. A 1×4-configured multichip stimulator was fabricated for application to experiments on animals. An experimental procedure including surgical operations was developed, and retinal stimulation was performed with the fabricated multichip stimulator. Neural responses on the visual cortex were successfully evoked by the fabricated stimulator. The stimulator is confirmed to be applicable to acute animal experiments.

  9. Inducible Nitric Oxide Inhibitors Block NMDA Antagonist-Stimulated Motoric Behaviors and Medial Prefrontal Cortical Glutamate Efflux

    PubMed Central

    Bergstrom, Hadley C.; Darvesh, Altaf S.; Berger, S. P.

    2015-01-01

    Nitric oxide (NO) plays a critical role in the motoric and glutamate releasing action of N-methyl-D-aspartate (NMDA)-antagonist stimulants. Earlier studies utilized neuronal nitric oxide synthase inhibitors (nNOS) for studying the neurobehavioral effects of non-competitive NMDA-antagonist stimulants such as dizocilpine (MK-801) and phencyclidine (PCP). This study explores the role of the inducible nitric oxide synthase inhibitors (iNOS) aminoguanidine (AG) and (-)-epigallocatechin-3-gallate (EGCG) in NMDA-antagonist induced motoric behavior and prefrontal cortical glutamate efflux. Adult male rats were administered a dose range of AG, EGCG, or vehicle prior to receiving NMDA antagonists MK-801, PCP, or a conventional psychostimulant (cocaine) and tested for motoric behavior in an open arena. Glutamate in the medial prefrontal cortex (mPFC) was measured using in vivo microdialysis after a combination of AG or EGCG prior to MK-801. Acute administration of AG or EGCG dose-dependently attenuated the locomotor and ataxic properties of MK-801 and PCP. Both AG and EGCG were unable to block the motoric effects of cocaine, indicating the acute pharmacologic action of AG and EGCG is specific to NMDA antagonism and not generalizable to all stimulant class drugs. AG and EGCG normalized MK-801-stimulated mPFC glutamate efflux. These data demonstrate that AG and EGCG attenuates NMDA antagonist-stimulated motoric behavior and cortical glutamate efflux. Our results suggest that EGCG-like polyphenol nutraceuticals (contained in “green tea” and chocolate) may be clinically useful in protecting against the adverse behavioral dissociative and cortical glutamate stimulating effects of NMDA antagonists. Medications that interfere with NMDA antagonists such as MK-801 and PCP have been proposed as treatments for schizophrenia. PMID:26696891

  10. Inducible Nitric Oxide Inhibitors Block NMDA Antagonist-Stimulated Motoric Behaviors and Medial Prefrontal Cortical Glutamate Efflux.

    PubMed

    Bergstrom, Hadley C; Darvesh, Altaf S; Berger, S P

    2015-01-01

    Nitric oxide (NO) plays a critical role in the motoric and glutamate releasing action of N-methyl-D-aspartate (NMDA)-antagonist stimulants. Earlier studies utilized neuronal nitric oxide synthase inhibitors (nNOS) for studying the neurobehavioral effects of non-competitive NMDA-antagonist stimulants such as dizocilpine (MK-801) and phencyclidine (PCP). This study explores the role of the inducible nitric oxide synthase inhibitors (iNOS) aminoguanidine (AG) and (-)-epigallocatechin-3-gallate (EGCG) in NMDA-antagonist induced motoric behavior and prefrontal cortical glutamate efflux. Adult male rats were administered a dose range of AG, EGCG, or vehicle prior to receiving NMDA antagonists MK-801, PCP, or a conventional psychostimulant (cocaine) and tested for motoric behavior in an open arena. Glutamate in the medial prefrontal cortex (mPFC) was measured using in vivo microdialysis after a combination of AG or EGCG prior to MK-801. Acute administration of AG or EGCG dose-dependently attenuated the locomotor and ataxic properties of MK-801 and PCP. Both AG and EGCG were unable to block the motoric effects of cocaine, indicating the acute pharmacologic action of AG and EGCG is specific to NMDA antagonism and not generalizable to all stimulant class drugs. AG and EGCG normalized MK-801-stimulated mPFC glutamate efflux. These data demonstrate that AG and EGCG attenuates NMDA antagonist-stimulated motoric behavior and cortical glutamate efflux. Our results suggest that EGCG-like polyphenol nutraceuticals (contained in "green tea" and chocolate) may be clinically useful in protecting against the adverse behavioral dissociative and cortical glutamate stimulating effects of NMDA antagonists. Medications that interfere with NMDA antagonists such as MK-801 and PCP have been proposed as treatments for schizophrenia.

  11. Low-dose effect of ethanol on locomotor activity induced by activation of the mesolimbic system.

    PubMed

    Milton, G V; Randall, P K; Erickson, C K

    1995-06-01

    Four experiments were designed to study the ability of 0.5 g/kg ethanol (EtOH) intraperitoneally to modify locomotor activity induced by drugs that interact with different sites in the mesolimbic system (MLS) of male Sprague-Dawley rats. Locomotor activity was measured in a doughnut-shaped circular arena after various treatments. EtOH alone did not alter locomotor activity in any of the experiments. Amphetamine (AMP, intraperitoneally or intraaccumbens) increased locomotor activity in a dose-dependent manner, and the presence of EtOH attenuated AMP-induced locomotor activity. Bilateral infusion of GABAA antagonist picrotoxin (PIC) into the ventral tegmental area also increased locomotor activity in a dose-dependent manner, and the presence of EtOH attenuated PIC-induced locomotor activity. On the other hand, the interaction between bilateral infusion of mu-receptor agonist Tyr-D-Ala-Gly-NMe-Phe-Gly-ol (DAGO) and EtOH on locomotor activity is complex. The highest dose of DAGO that significantly increased locomotor activity was not affected by the presence of EtOH. But, with lower doses of DAGO that either had no effect or a small increase in locomotor activity, the combination of EtOH and DAGO increased and attenuated locomotor activity, respectively. Results from this study support our hypothesis that a low dose of EtOH that does not modify behavior can interact with neurotransmitter systems in the brain and modify drug-induced locomotor activity. Modification of this drug-induced locomotor activity by a low dose of EtOH is dependent on the rate of ongoing locomotor behavior induced by drug and the neurotransmitter substrate that the drug modified to induce locomotor behavior.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Locomotor Dysfunction after Long-duration Space Flight and Development of Countermeasures to Facilitate Faster Recovery

    NASA Astrophysics Data System (ADS)

    Mulavara, Ajitkumar; Wood, Scott; Cohen, Helen; Bloomberg, Jacob

    2012-07-01

    movement control and a functional mobility test to investigate overall functional locomotor ability. Postflight sessions were given on days 1, 2, 4, 7 after their return. Subjects walked on a treadmill driven at 1.8 m/s while performing a visual task. Motion data from head and trunk segmental motion data were obtained to calculate the angular head pitch (HP) movements during walking trials while subjects performed the visual task, to estimate the contributions of vestibular reflexive mechanisms in HP movements. Astronauts showed a heterogeneous response pattern of both increases and decreases in the amplitude of HP movement. We investigated the underlying mechanisms of this heterogeneity in postflight responses in head movement control by examining data obtained using the same experimental test paradigm on a vestibular clinical population (VC) and in normal subjects undergoing adaptation to acute body load support unloading. Results showed that exposure to unloaded locomotion caused a significant increase in HP movements, whereas in the VC patients the HP movements were significantly decreased. We infer that BLS-mediated somatosensory input centrally modulates vestibular input and can adaptively modify head-movement control during locomotion. Thus, space flight may cause a central adaptation of the converging vestibular and body load-sensing somatosensory systems. To investigate changes in functional mobility astronaut subjects walked at their preferred pace around an obstacle course consisting of several pylons and obstacles set up on a foam floor, which provided an unstable walking surface. Subjects were instructed to walk around the course as fast as possible without touching any of the objects on the course for a total of six individual trials per test session. One of the dependent measures was time to complete the course (TCC, sec). The learning rate over the six trials performed on preflight and the first day after landing (micro curve) was used to characterize the

  13. The Nicotine-Evoked Locomotor Response: A Behavioral Paradigm for Toxicity Screening in Zebrafish (Danio rerio) Embryos and Eleutheroembryos Exposed to Methylmercury

    PubMed Central

    Mora-Zamorano, Francisco X.; Svoboda, Kurt R.; Carvan, Michael J.

    2016-01-01

    This study is an adaptation of the nicotine-evoked locomotor response (NLR) assay, which was originally utilized for phenotype-based neurotoxicity screening in zebrafish embryos. Zebrafish embryos do not exhibit spontaneous swimming until roughly 4 days post-fertilization (dpf), however, a robust swimming response can be induced as early as 36 hours post-fertilization (hpf) by means of acute nicotine exposure (30–240μM). Here, the NLR was tested as a tool for early detection of locomotor phenotypes in 36, 48 and 72 hpf mutant zebrafish embryos of the non-touch-responsive maco strain; this assay successfully discriminated mutant embryos from their non-mutant siblings. Then, methylmercury (MeHg) was used as a proof-of-concept neurotoxicant to test the effectiveness of the NLR assay as a screening tool in toxicology. The locomotor effects of MeHg were evaluated in 6 dpf wild type eleutheroembryos exposed to waterborne MeHg (0, 0.01, 0.03 and 0.1μM). Afterwards, the NLR assay was tested in 48 hpf embryos subjected to the same MeHg exposure regimes. Embryos exposed to 0.01 and 0.03μM of MeHg exhibited significant increases in locomotion in both scenarios. These findings suggest that similar locomotor phenotypes observed in free swimming fish can be detected as early as 48 hpf, when locomotion is induced with nicotine. PMID:27123921

  14. Coca-paste seized samples characterization: chemical analysis, stimulating effect in rats and relevance of caffeine as a major adulterant.

    PubMed

    López-Hill, Ximena; Prieto, José Pedro; Meikle, María Noel; Urbanavicius, Jessika; Abin-Carriquiry, Juan Andrés; Prunell, Giselle; Umpiérrez, Eleuterio; Scorza, María Cecilia

    2011-08-01

    Coca-paste (CP) is a drug of abuse that so far has not been extensively characterized. CP is an intermediate product of the cocaine alkaloid extraction process from coca leaves, hence it has a high content of cocaine base mixed with other chemical substances (impurities) and it is probably adulterated when it reaches the consumers. Despite its high prevalence and distribution through South America, little is known about its effects on the central nervous system. In the present study, a chemical analysis of CP samples from different police seizures was performed to determine the cocaine base content and the presence and content of impurities and adulterants. Some CP representative samples were selected to study the effects on the locomotor activity induced after acute systemic administration in rats as a measure of its stimulant action. The behavioral response was compared to equivalent doses of cocaine. As expected, cocaine was the main component in most of the CP samples assayed. Caffeine was the only active adulterant detected. Interestingly, several CP samples elicited a higher stimulant effect compared to that observed after cocaine when administered at equivalent doses of cocaine base. Combined treatment of cocaine and caffeine, as surrogate of different CP samples mimicked their stimulant effect. We demonstrated that cocaine and caffeine are the main components responsible for the CP-induced stimulant action while the contribution of the impurities was imperceptible.

  15. The expression of methiopropamine-induced locomotor sensitization requires dopamine D2, but not D1, receptor activation in the rat.

    PubMed

    Yoon, Hyung Shin; Cai, Wen Ting; Lee, Young Hun; Park, Kyung Tae; Lee, Yong Sup; Kim, Jeong-Hoon

    2016-09-15

    Methiopropamine (MPA) is a structural analog to methamphetamine and is categorized as a novel psychoactive substance that needs to be controlled. However, no study has been performed to determine whether MPA actually develops an addiction-like behavior similar to those arising from other psychomotor stimulants. Thus, we attempted to determine whether MPA produces locomotor sensitization in a manner similar to amphetamine. In the first experiment, rats were pre-exposed to either saline or one of three different doses of MPA (0.2, 1.0, or 5.0mg/kg, IP) with a total of four injections, respectively. After a 2-week withdrawal period, when they were challenged with the same dose of MPA, only the group that was pre-exposed to high dose of MPA (5.0mg/kg) showed sensitized locomotor activity. In the second experiment, all rats were pre-exposed to MPA (5.0mg/kg) only. Interestingly, the expression of MPA-induced locomotor sensitization was inhibited by a pre-injection of a dopamine D2 receptor antagonist, eticlopride (0.05mg/kg, IP), though not by a dopamine D1 receptor antagonist, SCH23390 (0.01mg/kg, IP). These results suggest that repeated injection of MPA in the rat provokes certain neuronal changes involving specific, likely D2, dopamine receptor-mediated pathways that contribute to the expression of MPA-induced locomotor sensitization. PMID:27265782

  16. Acute and chronic hypoxia: implications for cerebral function and exercise tolerance

    PubMed Central

    Goodall, Stuart; Twomey, Rosie; Amann, Markus

    2015-01-01

    Purpose To outline how hypoxia profoundly affects neuronal functionality and thus compromise exercise-performance. Methods Investigations using electroencephalography (EEG) and transcranial magnetic stimulation (TMS) detecting neuronal changes at rest and those studying fatiguing effects on whole-body exercise performance in acute (AH) and chronic hypoxia (CH) were evaluated. Results At rest during very early hypoxia (<1-h), slowing of cerebral neuronal activity is evident despite no change in corticospinal excitability. As time in hypoxia progresses (3-h), increased corticospinal excitability becomes evident; however, changes in neuronal activity are unknown. Prolonged exposure (3–5 d) causes a respiratory alkalosis which modulates Na+ channels, potentially explaining reduced neuronal excitability. Locomotor exercise in AH exacerbates the development of peripheral-fatigue; as the severity of hypoxia increases, mechanisms of peripheral-fatigue become less dominant and CNS hypoxia becomes the predominant factor. The greatest central-fatigue in AH occurs when SaO2 is ≤75%, a level that coincides with increasing impairments in neuronal activity. CH does not improve the level of peripheral-fatigue observed in AH; however, it attenuates the development of central-fatigue paralleling increases in cerebral O2 availability and corticospinal excitability. Conclusions The attenuated development of central-fatigue in CH might explain, the improvements in locomotor exercise-performance commonly observed after acclimatisation to high altitude. PMID:25593787

  17. Multi-terrain locomotor interactions in flying snakes

    NASA Astrophysics Data System (ADS)

    Yeaton, Isaac; Baumgardner, Grant; Ross, Shane; Socha, John

    Arboreal snakes of the genus Chrysopelea are the only known snakes to glide. To execute aerial locomotion, a snake uses one of several stereotyped jumps from a tree into the air, while simultaneously flattening its body into an aerodynamically favorable shape. Large amplitude traveling waves are propagated posteriorly during the stable glide, while landing involves body wrapping, passive body compression, and energy absorption through compliance in the landing substrate to dissipate the accumulated kinetic energy from the glide. In all of these locomotor events, from interacting with cylindrical branches, falling through the air, grasping compliant tree branches and leaves, to landing on solid ground, snakes appropriate the same body morphology and perhaps the same basic neural mechanisms. Here we discuss our use of computational models and animal experiments to understand how flying snakes interact with and locomote on and through multiple media, potentially providing principles for legless locomotor designs. Supported by NSF 1351322.

  18. A Locomotor Deficit Induced by Sublethal Doses of Pyrethroid and Neonicotinoid Insecticides in the Honeybee Apis mellifera

    PubMed Central

    Charreton, Mercédès; Decourtye, Axel; Henry, Mickaël; Rodet, Guy; Sandoz, Jean-Christophe; Charnet, Pierre; Collet, Claude

    2015-01-01

    The toxicity of pesticides used in agriculture towards non-targeted organisms and especially pollinators has recently drawn the attention from a broad scientific community. Increased honeybee mortality observed worldwide certainly contributes to this interest. The potential role of several neurotoxic insecticides in triggering or potentiating honeybee mortality was considered, in particular phenylpyrazoles and neonicotinoids, given that they are widely used and highly toxic for insects. Along with their ability to kill insects at lethal doses, they can compromise survival at sublethal doses by producing subtle deleterious effects. In this study, we compared the bee’s locomotor ability, which is crucial for many tasks within the hive (e.g. cleaning brood cells, feeding larvae…), before and after an acute sublethal exposure to one insecticide belonging to the two insecticide classes, fipronil and thiamethoxam. Additionally, we examined the locomotor ability after exposure to pyrethroids, an older chemical insecticide class still widely used and known to be highly toxic to bees as well. Our study focused on young bees (day 1 after emergence) since (i) few studies are available on locomotion at this stage and (ii) in recent years, pesticides have been reported to accumulate in different hive matrices, where young bees undergo their early development. At sublethal doses (SLD48h, i.e. causing no mortality at 48h), three pyrethroids, namely cypermethrin (2.5 ng/bee), tetramethrin (70 ng/bee), tau-fluvalinate (33 ng/bee) and the neonicotinoid thiamethoxam (3.8 ng/bee) caused a locomotor deficit in honeybees. While the SLD48h of fipronil (a phenylpyrazole, 0.5 ng/bee) had no measurable effect on locomotion, we observed high mortality several days after exposure, an effect that was not observed with the other insecticides. Although locomotor deficits observed in the sublethal range of pyrethroids and thiamethoxam would suggest deleterious effects in the field, the case

  19. A Locomotor Deficit Induced by Sublethal Doses of Pyrethroid and Neonicotinoid Insecticides in the Honeybee Apis mellifera.

    PubMed

    Charreton, Mercédès; Decourtye, Axel; Henry, Mickaël; Rodet, Guy; Sandoz, Jean-Christophe; Charnet, Pierre; Collet, Claude

    2015-01-01

    The toxicity of pesticides used in agriculture towards non-targeted organisms and especially pollinators has recently drawn the attention from a broad scientific community. Increased honeybee mortality observed worldwide certainly contributes to this interest. The potential role of several neurotoxic insecticides in triggering or potentiating honeybee mortality was considered, in particular phenylpyrazoles and neonicotinoids, given that they are widely used and highly toxic for insects. Along with their ability to kill insects at lethal doses, they can compromise survival at sublethal doses by producing subtle deleterious effects. In this study, we compared the bee's locomotor ability, which is crucial for many tasks within the hive (e.g. cleaning brood cells, feeding larvae…), before and after an acute sublethal exposure to one insecticide belonging to the two insecticide classes, fipronil and thiamethoxam. Additionally, we examined the locomotor ability after exposure to pyrethroids, an older chemical insecticide class still widely used and known to be highly toxic to bees as well. Our study focused on young bees (day 1 after emergence) since (i) few studies are available on locomotion at this stage and (ii) in recent years, pesticides have been reported to accumulate in different hive matrices, where young bees undergo their early development. At sublethal doses (SLD48h, i.e. causing no mortality at 48 h), three pyrethroids, namely cypermethrin (2.5 ng/bee), tetramethrin (70 ng/bee), tau-fluvalinate (33 ng/bee) and the neonicotinoid thiamethoxam (3.8 ng/bee) caused a locomotor deficit in honeybees. While the SLD48h of fipronil (a phenylpyrazole, 0.5 ng/bee) had no measurable effect on locomotion, we observed high mortality several days after exposure, an effect that was not observed with the other insecticides. Although locomotor deficits observed in the sublethal range of pyrethroids and thiamethoxam would suggest deleterious effects in the field, the case of

  20. Running training and adaptive strategies of locomotor-respiratory coordination.

    PubMed

    McDermott, William J; Van Emmerik, Richard E A; Hamill, Joseph

    2003-06-01

    It has been suggested that stronger coupling between locomotory and breathing rhythms may occur as a result of training in the particular movement pattern and also may reduce the perceived workload or metabolic cost of the movement. Research findings on human locomotor-respiratory coordination are equivocal, due in part to the fact that assessment techniques range in sensitivity to important aspects of coordination (e.g. temporal ordering of patterns, half-integer couplings and changes in frequency and phase coupling). An additional aspect that has not received much attention is the adaptability of this coordination to changes in task constraints. The current study investigated the effect of running training on the locomotor-respiratory coordination and the adaptive strategies observed across a wide range of walking and running speeds. Locomotor-respiratory coordination was evaluated by the strength and variability of both frequency and phase coupling patterns that subjects displayed within and across the speed conditions. Male subjects (five runners, five non-runners) locomoted at seven different treadmill speeds. Group results indicated no differences between runners and non-runners with respect to breathing parameters, stride parameters, as well as the strength and variability of the coupling at each speed. Individual results, however, showed that grouping subjects masks large individual differences and strategies across speeds. Coupling strategies indicated that runners show more stable dominant couplings across locomotory speeds than non-runners do. These findings suggest that running training does not change the strength of locomotor-respiratory coupling but rather how these systems adapt to changing speeds.

  1. Motor neurons control locomotor circuit function retrogradely via gap junctions.

    PubMed

    Song, Jianren; Ampatzis, Konstantinos; Björnfors, E Rebecka; El Manira, Abdeljabbar

    2016-01-21

    Motor neurons are the final stage of neural processing for the execution of motor behaviours. Traditionally, motor neurons have been viewed as the 'final common pathway', serving as passive recipients merely conveying to the muscles the final motor program generated by upstream interneuron circuits. Here we reveal an unforeseen role of motor neurons in controlling the locomotor circuit function via gap junctions in zebrafish. These gap junctions mediate a retrograde analogue propagation of voltage fluctuations from motor neurons to control the synaptic release and recruitment of the upstream V2a interneurons that drive locomotion. Selective inhibition of motor neurons during ongoing locomotion de-recruits V2a interneurons and strongly influences locomotor circuit function. Rather than acting as separate units, gap junctions unite motor neurons and V2a interneurons into functional ensembles endowed with a retrograde analogue computation essential for locomotor rhythm generation. These results show that motor neurons are not a passive recipient of motor commands but an integral component of the neural circuits responsible for motor behaviour.

  2. Locomotor experience and use of social information are posture specific.

    PubMed

    Adolph, Karen E; Tamis-LeMonda, Catherine S; Ishak, Shaziela; Karasik, Lana B; Lobo, Sharon A

    2008-11-01

    The authors examined the effects of locomotor experience on infants' perceptual judgments in a potentially risky situation--descending steep and shallow slopes--while manipulating social incentives to determine where perceptual judgments are most malleable. Twelve-month-old experienced crawlers and novice walkers were tested on an adjustable sloping walkway as their mothers encouraged and discouraged descent. A psychophysical procedure was used to estimate infants' ability to crawl/walk down slopes, followed by test trials in which mothers encouraged and discouraged infants to crawl/walk down. Both locomotor experience and social incentives affected perceptual judgments. In the encourage condition, crawlers only attempted safe slopes within their abilities, but walkers repeatedly attempted impossibly risky slopes, replicating previous work. The discourage condition showed where judgments are most malleable. When mothers provided negative social incentives, crawlers occasionally avoided safe slopes, and walkers occasionally avoided the most extreme 50 degrees increment, although they attempted to walk on more than half the trials. Findings indicate that both locomotor experience and social incentives play key roles in adaptive responding, but the benefits are specific to the posture that infants use for balance and locomotion. PMID:18999332

  3. Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton.

    PubMed

    Gordon, Keith E; Kinnaird, Catherine R; Ferris, Daniel P

    2013-04-01

    Locomotor adaptation in humans is not well understood. To provide insight into the neural reorganization that occurs following a significant disruption to one's learned neuromuscular map relating a given motor command to its resulting muscular action, we tied the mechanical action of a robotic exoskeleton to the electromyography (EMG) profile of the soleus muscle during walking. The powered exoskeleton produced an ankle dorsiflexion torque proportional to soleus muscle recruitment thus limiting the soleus' plantar flexion torque capability. We hypothesized that neurologically intact subjects would alter muscle activation patterns in response to the antagonistic exoskeleton by decreasing soleus recruitment. Subjects practiced walking with the exoskeleton for two 30-min sessions. The initial response to the perturbation was to "fight" the resistive exoskeleton by increasing soleus activation. By the end of training, subjects had significantly reduced soleus recruitment resulting in a gait pattern with almost no ankle push-off. In addition, there was a trend for subjects to reduce gastrocnemius recruitment in proportion to the soleus even though only the soleus EMG was used to control the exoskeleton. The results from this study demonstrate the ability of the nervous system to recalibrate locomotor output in response to substantial changes in the mechanical output of the soleus muscle and associated sensory feedback. This study provides further evidence that the human locomotor system of intact individuals is highly flexible and able to adapt to achieve effective locomotion in response to a broad range of neuromuscular perturbations. PMID:23307949

  4. Vestibular lesion-induced developmental plasticity in spinal locomotor networks during Xenopus laevis metamorphosis.

    PubMed

    Beyeler, Anna; Rao, Guillaume; Ladepeche, Laurent; Jacques, André; Simmers, John; Le Ray, Didier

    2013-01-01

    During frog metamorphosis, the vestibular sensory system remains unchanged, while spinal motor networks undergo a massive restructuring associated with the transition from the larval to adult biomechanical system. We investigated in Xenopus laevis the impact of a pre- (tadpole stage) or post-metamorphosis (juvenile stage) unilateral labyrinthectomy (UL) on young adult swimming performance and underlying spinal locomotor circuitry. The acute disruptive effects on locomotion were similar in both tadpoles and juvenile frogs. However, animals that had metamorphosed with a preceding UL expressed restored swimming behavior at the juvenile stage, whereas animals lesioned after metamorphosis never recovered. Whilst kinematic and electrophysiological analyses of the propulsive system showed no significant differences in either juvenile group, a 3D biomechanical simulation suggested that an asymmetry in the dynamic control of posture during swimming could account for the behavioral restoration observed in animals that had been labyrinthectomized before metamorphosis. This hypothesis was subsequently supported by in vivo electromyography during free swimming and in vitro recordings from isolated brainstem/spinal cord preparations. Specifically, animals lesioned prior to metamorphosis at the larval stage exhibited an asymmetrical propulsion/posture coupling as a post-metamorphic young adult. This developmental alteration was accompanied by an ipsilesional decrease in propriospinal coordination that is normally established in strict left-right symmetry during metamorphosis in order to synchronize dorsal trunk muscle contractions with bilateral hindlimb extensions in the swimming adult. Our data thus suggest that a disequilibrium in descending vestibulospinal information during Xenopus metamorphosis leads to an altered assembly of adult spinal locomotor circuitry. This in turn enables an adaptive compensation for the dynamic postural asymmetry induced by the vestibular imbalance

  5. Gestational Toluene Exposure Effects on Spontaneous and Amphetamine-Induced Locomotor Behavior in Rats

    PubMed Central

    Mohammadi, Michael H.; Batis, Jeffery C.; Hannigan, John H.

    2007-01-01

    The abuse of volatile organic solvents (inhalants) continues to be a major health concern throughout the world. Toluene, which is found in many products such as glues and household cleaners, is among the most commonly abused organic solvents. The neurobehavioral teratogenic sequelae of solvent abuse (i.e., repeated, brief inhalation exposures to very high concentrations of solvents) have not been examined thoroughly. In a preclinical model of inhalant abuse, timed-pregnant Sprague-Dawley rats were exposed to 0, 8,000, or 12,000 parts per million (ppm) for 15 min twice daily from gestation day 8 (GD8) through GD20. In the first experiment, separate groups of offspring were observed individually in an open-field on postnatal day 22 (PN22), PN42 or PN63. In the second experiment, other offspring given identical prenatal toluene exposures were observed in an “open-field” following an acute i.p. injection of amphetamine (0, 0.56, 1.78 mg/kg) on PN28. Automated measurements of distance traveled and ambulatory time were recorded. Prenatal toluene exposure resulted in small alterations in spontaneous activity compared to non-exposed rats. Prenatal exposure to 12,000 ppm toluene resulted in significant hyposensitivity to the locomotor stimulatory effects of the amphetamine challenge in male but not female rats on PN28. The results demonstrate that prenatal exposure to abuse patterns of high concentrations of toluene through inhalation can alter spontaneous and amphetamine-induced locomotor behavior in rats. The expression of these effects also appears to depend upon the postnatal age of testing. These results imply that abuse of organic solvents during pregnancy in humans may also produce long-lasting effects on biobehavioral development. PMID:17112700

  6. Plastic Changes in Lumbar Locomotor Networks after a Partial Spinal Cord Injury in Cats.

    PubMed

    Gossard, Jean-Pierre; Delivet-Mongrain, Hugo; Martinez, Marina; Kundu, Aritra; Escalona, Manuel; Rossignol, Serge

    2015-06-24

    After an incomplete spinal cord injury (SCI), we know that plastic reorganization occurs in supraspinal structures with residual descending tracts. However, our knowledge about spinal plasticity is rather limited. Our recent studies point to changes within the spinal cord below the lesion. After a lateral left hemisection (T10), cats recovered stepping with both hindlimbs within 3 weeks. After a complete section (T13) in these cats, bilateral stepping was seen on the next day, a skill usually acquired after several weeks of treadmill training. This indicates that durable plastic changes occurred below the lesion. However, because sensory feedback entrains the stepping rhythm, it is difficult to reveal central pattern generator (CPG) adaptation. Here, we investigated whether lumbar segments of cats with a chronic hemisection were able to generate fictive locomotion-that is, without phasic sensory feedback as monitored by five muscle nerves in each hindlimb. With a chronic left hemisection, the number of muscle nerves displaying locomotor bursts was larger on the left than on the right. In addition, transmission of cutaneous reflexes was relatively facilitated on the left. Later during the acute experiment, a complete spinalization (T13) was performed and clonidine was injected to induce rhythmic activities. There were still more muscle nerves displaying locomotor bursts on the left. The results demonstrate that spinal networks were indeed modified after a hemisection with a clear asymmetry between left and right in the capacity to generate locomotion. Plastic changes in CPG and reflex transmission below the lesion are thus involved in the stepping recovery after an incomplete SCI. PMID:26109667

  7. Vestibular Lesion-Induced Developmental Plasticity in Spinal Locomotor Networks during Xenopus laevis Metamorphosis

    PubMed Central

    Beyeler, Anna; Rao, Guillaume; Ladepeche, Laurent; Jacques, André; Simmers, John; Le Ray, Didier

    2013-01-01

    During frog metamorphosis, the vestibular sensory system remains unchanged, while spinal motor networks undergo a massive restructuring associated with the transition from the larval to adult biomechanical system. We investigated in Xenopus laevis the impact of a pre- (tadpole stage) or post-metamorphosis (juvenile stage) unilateral labyrinthectomy (UL) on young adult swimming performance and underlying spinal locomotor circuitry. The acute disruptive effects on locomotion were similar in both tadpoles and juvenile frogs. However, animals that had metamorphosed with a preceding UL expressed restored swimming behavior at the juvenile stage, whereas animals lesioned after metamorphosis never recovered. Whilst kinematic and electrophysiological analyses of the propulsive system showed no significant differences in either juvenile group, a 3D biomechanical simulation suggested that an asymmetry in the dynamic control of posture during swimming could account for the behavioral restoration observed in animals that had been labyrinthectomized before metamorphosis. This hypothesis was subsequently supported by in vivo electromyography during free swimming and in vitro recordings from isolated brainstem/spinal cord preparations. Specifically, animals lesioned prior to metamorphosis at the larval stage exhibited an asymmetrical propulsion/posture coupling as a post-metamorphic young adult. This developmental alteration was accompanied by an ipsilesional decrease in propriospinal coordination that is normally established in strict left-right symmetry during metamorphosis in order to synchronize dorsal trunk muscle contractions with bilateral hindlimb extensions in the swimming adult. Our data thus suggest that a disequilibrium in descending vestibulospinal information during Xenopus metamorphosis leads to an altered assembly of adult spinal locomotor circuitry. This in turn enables an adaptive compensation for the dynamic postural asymmetry induced by the vestibular imbalance

  8. Involvement of tissue plasminogen activator "tPA" in ethanol-induced locomotor sensitization and conditioned-place preference.

    PubMed

    Bahi, Amine; Dreyer, Jean-Luc

    2012-01-01

    Ethanol is one of the most abused drugs in the western societies. It is well established that mesolimbic dopaminergic neurons mediate the rewarding properties of ethanol. In our previous studies we have shown that the serine protease tissue plasminogen activator (tPA) is involved in the rewarding properties of morphine and amphetamine. In the current study, we investigated the role of tPA in ethanol-induced behavioral sensitization and conditioned-place preference (CPP). Ethanol treatment dose-dependently induced tPA enzymatic activity in the nucleus accumbens (NAc). In addition, ethanol-induced increase in tPA activity was completely inhibited by pre-treatment with the dopamine D1 and D2 receptor antagonists SCH23390 and raclopride respectively. Furthermore, ethanol-induced locomotor stimulation, behavioral sensitization and conditioned-place preference were enhanced following tPA over-expression in the NAc using a lentiviral vector. In contrast, tPA knock down in the NAc with specific shRNA blocked the rewarding properties of ethanol. The defect of locomotor stimulation in shRNA-injected mice was reversed by microinjections of exogenous recombinant tPA into the nucleus accumbens. Collectively, these results indicate, for the first time, that activation of tPA is effective in enhancing the rewarding effects of ethanol. Targeting the tissue plasminogen activator system would provide new therapeutic approaches to the treatment of alcoholism.

  9. Sensory-evoked perturbations of locomotor activity by sparse sensory input: a computational study.

    PubMed

    Bui, Tuan V; Brownstone, Robert M

    2015-04-01

    Sensory inputs from muscle, cutaneous, and joint afferents project to the spinal cord, where they are able to affect ongoing locomotor activity. Activation of sensory input can initiate or prolong bouts of locomotor activity depending on the identity of the sensory afferent activated and the timing of the activation within the locomotor cycle. However, the mechanisms by which afferent activity modifies locomotor rhythm and the distribution of sensory afferents to the spinal locomotor networks have not been determined. Considering the many sources of sensory inputs to the spinal cord, determining this distribution would provide insights into how sensory inputs are integrated to adjust ongoing locomotor activity. We asked whether a sparsely distributed set of sensory inputs could modify ongoing locomotor activity. To address this question, several computational models of locomotor central pattern generators (CPGs) that were mechanistically diverse and generated locomotor-like rhythmic activity were developed. We show that sensory inputs restricted to a small subset of the network neurons can perturb locomotor activity in the same manner as seen experimentally. Furthermore, we show that an architecture with sparse sensory input improves the capacity to gate sensory information by selectively modulating sensory channels. These data demonstrate that sensory input to rhythm-generating networks need not be extensively distributed. PMID:25673740

  10. Severity of Locomotor and Cardiovascular Derangements after Experimental High-Thoracic Spinal Cord Injury Is Anesthesia Dependent in Rats

    PubMed Central

    Beattie, Michael S.; Bresnahan, Jacqueline C.

    2012-01-01

    Abstract Anesthetics affect outcomes from central nervous system (CNS) injuries differently. This is the first study to show how two commonly used anesthetics affect continuously recorded hemodynamic parameters and locomotor recovery during a 2-week period after two levels of contusion spinal cord injury (SCI) in rats. We hypothesized that the level of cardiovascular depression and recovery of locomotor function would be dependent upon the anesthetic used during SCI. Thirty-two adult female rats were subjected to a sham, 25-mm or 50-mm SCI at T3–4 under pentobarbital or isoflurane anesthesia. Mean arterial pressure (MAP) and heart rate (HR) were telemetrically recorded before, during, and after SCI. Locomotor function recovered best in the 25-mm-injured isoflurane-anesthetized animals. There was no significant difference in locomotor recovery between the 25-mm-injured pentobarbital-anesthetized animals and the 50-mm-injured isoflurane-anesthetized animals. White matter sparing and extent of intermediolateral cell column loss appeared larger in animals anesthetized with pentobarbital, but this was not significant. There were no differential effects of anesthetics on HR and MAP before SCI, but recovery from anesthesia was significantly slower in pentobarbital-anesthetized animals. At the time of SCI, MAP was acutely elevated in the pentobarbital-anesthetized animals, whereas MAP decreased in the isoflurane-anesthetized animals. Hypotension occurred in the pentobarbital-anesthetized groups and in the 50-mm-injured isoflurane-anesthetized group. In pentobarbital-anesthetized animals, SCI resulted in acute elevation of HR, although HR remained low. Return of HR to baseline was much slower in the pentobarbital-anesthetized animals. Severe SCI at T3 produced significant chronic tachycardia that was injury severity dependent. Although some laboratories monitor blood pressure, HR, and other physiological variables during surgery for SCI, inherently few have monitored

  11. Age Differences of Salivary Alpha-Amylase Levels of Basal and Acute Responses to Citric Acid Stimulation Between Chinese Children and Adults

    PubMed Central

    Yang, Ze-Min; Chen, Long-Hui; Zhang, Min; Lin, Jing; Zhang, Jie; Chen, Wei-Wen; Yang, Xiao-Rong

    2015-01-01

    It remains unclear how salivary alpha-amylase (sAA) levels respond to mechanical stimuli in different age groups. In addition, the role played by the sAA gene (AMY1) copy number and protein expression (glycosylated and non-glycosylated) in sAA activity has also been rarely reported. In this study, we analyzed saliva samples collected before and after citric acid stimulation from 47 child and 47 adult Chinese subjects. We observed that adults had higher sAA activity and sAA glycosylated levels (glycosylated sAA amount/total sAA amount) in basal and stimulated saliva when compared with children, while no differences were found in total or glycosylated sAA amount between them. Interestingly, adults showed attenuated sAA activity levels increase over those of children after stimulation. Correlation analysis showed that total sAA amount, glycosylated sAA amount, and AMY1 copy number × total sAA amount were all positively correlated with sAA activity before and after stimulation in both groups. Interestingly, correlation r between sAA levels (glycosylated sAA amount and total sAA amount) and sAA activity decreased after stimulation in children, while adults showed an increase in correlation r. In addition, the correlation r between AMY1 copy number × total sAA amount and sAA activity was higher than that between AMY1 copy number, total sAA amount, and sAA activity, respectively. Taken together, our results suggest that total sAA amount, glycosylated sAA amount, and the positive interaction between AMY1 copy number and total sAA amount are crucial in influencing sAA activity before and after stimulation in children and adults. PMID:26635626

  12. Corticospinal reorganization after locomotor training in a person with motor incomplete paraplegia.

    PubMed

    Hajela, Nupur; Mummidisetty, Chaithanya K; Smith, Andrew C; Knikou, Maria

    2013-01-01

    Activity-dependent plasticity as a result of reorganization of neural circuits is a fundamental characteristic of the central nervous system that occurs simultaneously in multiple sites. In this study, we established the effects of subthreshold transcranial magnetic stimulation (TMS) over the primary motor cortex region on the tibialis anterior (TA) long-latency flexion reflex. Neurophysiological tests were conducted before and after robotic gait training in one person with a motor incomplete spinal cord injury (SCI) while at rest and during robotic-assisted stepping. The TA flexion reflex was evoked following nonnociceptive sural nerve stimulation and was conditioned by TMS at 0.9 TA motor evoked potential resting threshold at conditioning-test intervals that ranged from 70 to 130 ms. Subthreshold TMS induced a significant facilitation on the TA flexion reflex before training, which was reversed to depression after training with the subject seated at rest. During stepping, corticospinal facilitation of the flexion reflex at early and midstance phases before training was replaced with depression at early and midswing followed by facilitation at late swing after training. These results constitute the first neurophysiologic evidence that locomotor training reorganizes the cortical control of spinal interneuronal circuits that generate patterned motor activity, modifying spinal reflex function, in the chronic lesioned human spinal cord.

  13. Spaceflight Sensorimotor Analogs: Simulating Acute and Adaptive Effects

    NASA Technical Reports Server (NTRS)

    Taylor, Laura C.; Harm, Deborah L.; Kozlovskaya, Inessa; Reschke, Millard F.; Wood, Scott J.

    2009-01-01

    Adaptive changes in sensorimotor function during spaceflight are reflected by spatial disorientation, motion sickness, gaze destabilization and decrements in balance, locomotion and eye-hand coordination that occur during and following transitions between different gravitational states. The purpose of this study was to conduct a meta-synthesis of data from spaceflight analogs to evaluate their effectiveness in simulating adaptive changes in sensorimotor function. METHODS. The analogs under review were categorized as either acute analogs used to simulate performance decrements accompanied with transient changes, or adaptive analogs used to drive sensorimotor learning to altered sensory feedback. The effectiveness of each analog was evaluated in terms of mechanisms of action, magnitude and time course of observed deficits compared to spaceflight data, and the effects of amplitude and exposure duration. RESULTS. Parabolic flight has been used extensively to examine effects of acute variation in gravitational loads, ranging from hypergravity to microgravity. More recently, galvanic vestibular stimulation has been used to elicit acute postural, locomotor and gaze dysfunction by disrupting vestibular afferents. Patient populations, e.g., with bilateral vestibular loss or cerebellar dysfunction, have been proposed to model acute sensorimotor dysfunction. Early research sponsored by NASA involved living onboard rotating rooms, which appeared to approximate the time course of adaptation and post-exposure recovery observed in astronauts following spaceflight. Exposure to different bed-rest paradigms (6 deg head down, dry immersion) result in similar motor deficits to that observed following spaceflight. Shorter adaptive analogs have incorporated virtual reality environments, visual distortion paradigms, exposure to conflicting tilt-translation cues, and exposure to 3Gx centrifugation. As with spaceflight, there is considerable variability in responses to most of the analogs

  14. Impaired terrestrial and arboreal locomotor performance in the western fence lizard (Sceloporus occidentalis) after exposure to an AChE-inhibiting pesticide.

    PubMed

    DuRant, Sarah E; Hopkins, William A; Talent, Larry G

    2007-09-01

    We examined the effects of a commonly used AChE-inhibiting pesticide on terrestrial and arboreal sprint performance, important traits for predator avoidance and prey capture, in the western fence lizard (Sceloporus occidentalis). Lizards were exposed to carbaryl (2.5, 25, and 250 microg/g) and were raced before and 4, 24, and 96 h after dosing. In the terrestrial setting, exposure to low concentrations of carbaryl had stimulatory effects on performance, but exposure to the highest concentration was inhibitory. No stimulatory effects of carbaryl were noted in the arboreal environment and performance in lizards was reduced after exposure to both the medium and highest dose of carbaryl. Our findings suggest that acute exposure to high concentrations of carbaryl can have important sublethal consequences on fitness-related traits in reptiles and that arboreal locomotor performance is a more sensitive indicator of AChE-inhibiting pesticide poisoning than terrestrial locomotor performance. PMID:17360091

  15. Tamoxifen and estradiol improved locomotor function and increased spared tissue in rats after spinal cord injury: their antioxidant effect and role of estrogen receptor alpha.

    PubMed

    Mosquera, Laurivette; Colón, Jennifer M; Santiago, José M; Torrado, Aranza I; Meléndez, Margarita; Segarra, Annabell C; Rodríguez-Orengo, José F; Miranda, Jorge D

    2014-05-01

    17β-Estradiol is a multi-active steroid that imparts neuroprotection via diverse mechanisms of action. However, its role as a neuroprotective agent after spinal cord injury (SCI), or the involvement of the estrogen receptor-alpha (ER-α) in locomotor recovery, is still a subject of much debate. In this study, we evaluated the effects of estradiol and of Tamoxifen (an estrogen receptor mixed agonist/antagonist) on locomotor recovery following SCI. To control estradiol cyclical variability, ovariectomized female rats received empty or estradiol filled implants, prior to a moderate contusion to the spinal cord. Estradiol improved locomotor function at 7, 14, 21, and 28 days post injury (DPI), when compared to control groups (measured with the BBB open field test). This effect was ER-α mediated, because functional recovery was blocked with an ER-α antagonist. We also observed that ER-α was up-regulated after SCI. Long-term treatment (28 DPI) with estradiol and Tamoxifen reduced the extent of the lesion cavity, an effect also mediated by ER-α. The antioxidant effects of estradiol were seen acutely at 2 DPI but not at 28 DPI, and this acute effect was not receptor mediated. Rats treated with Tamoxifen recovered some locomotor activity at 21 and 28 DPI, which could be related to the antioxidant protection seen at these time points. These results show that estradiol improves functional outcome, and these protective effects are mediated by the ER-α dependent and independent-mechanisms. Tamoxifen׳s effects during late stages of SCI support the use of this drug as a long-term alternative treatment for this condition.

  16. Degradation of mouse locomotor pattern in the absence of proprioceptive sensory feedback

    PubMed Central

    Akay, Turgay; Tourtellotte, Warren G.; Arber, Silvia; Jessell, Thomas M.

    2014-01-01

    Mammalian locomotor programs are thought to be directed by the actions of spinal interneuron circuits collectively referred to as “central pattern generators.” The contribution of proprioceptive sensory feedback to the coordination of locomotor activity remains less clear. We have analyzed changes in mouse locomotor pattern under conditions in which proprioceptive feedback is attenuated genetically and biomechanically. We find that locomotor pattern degrades upon elimination of proprioceptive feedback from muscle spindles and Golgi tendon organs. The degradation of locomotor pattern is manifest as the loss of interjoint coordination and alternation of flexor and extensor muscles. Group Ia/II sensory feedback from muscle spindles has a predominant influence in patterning the activity of flexor muscles, whereas the redundant activities of group Ia/II and group Ib afferents appear to determine the pattern of extensor muscle firing. These findings establish a role for proprioceptive feedback in the control of fundamental aspects of mammalian locomotor behavior. PMID:25389309

  17. Degradation of mouse locomotor pattern in the absence of proprioceptive sensory feedback.

    PubMed

    Akay, Turgay; Tourtellotte, Warren G; Arber, Silvia; Jessell, Thomas M

    2014-11-25

    Mammalian locomotor programs are thought to be directed by the actions of spinal interneuron circuits collectively referred to as "central pattern generators." The contribution of proprioceptive sensory feedback to the coordination of locomotor activity remains less clear. We have analyzed changes in mouse locomotor pattern under conditions in which proprioceptive feedback is attenuated genetically and biomechanically. We find that locomotor pattern degrades upon elimination of proprioceptive feedback from muscle spindles and Golgi tendon organs. The degradation of locomotor pattern is manifest as the loss of interjoint coordination and alternation of flexor and extensor muscles. Group Ia/II sensory feedback from muscle spindles has a predominant influence in patterning the activity of flexor muscles, whereas the redundant activities of group Ia/II and group Ib afferents appear to determine the pattern of extensor muscle firing. These findings establish a role for proprioceptive feedback in the control of fundamental aspects of mammalian locomotor behavior.

  18. An IL-1 receptor antagonist blocks a morphine-induced attenuation of locomotor recovery after spinal cord injury.

    PubMed

    Hook, Michelle A; Washburn, Stephanie N; Moreno, Georgina; Woller, Sarah A; Puga, Denise; Lee, Kuan H; Grau, James W

    2011-02-01

    Morphine is one of the most commonly prescribed medications for the treatment of chronic pain after a spinal cord injury (SCI). Despite widespread use, however, little is known about the secondary consequences of morphine use after SCI. Unfortunately, our previous studies show that administration of a single dose of morphine, in the acute phase of a moderate spinal contusion injury, significantly attenuates locomotor function, reduces weight gain, and produces symptoms of paradoxical pain (Hook et al., 2009). The current study focused on the cellular mechanisms that mediate these effects. Based on data from other models, we hypothesized that pro-inflammatory cytokines might play a role in the morphine-induced attenuation of function. Experiment 1 confirmed that systemic morphine (20 mg/kg) administered one day after a contusion injury significantly increased expression levels of spinal IL-1β 24 h later. Experiment 2 extended these findings, demonstrating that a single dose of morphine (90 μg, i.t.) applied directly onto the spinal cord increased expression levels of spinal IL-1β at both 30 min and 24 h after administration. Experiment 3 showed that administration of an interleukin-1 receptor antagonist (IL-1ra, i.t.) prior to intrathecal morphine (90 μg), blocked the adverse effects of morphine on locomotor recovery. Further, pre-treatment with 3 μg IL-1ra prevented the increased expression of at-level neuropathic pain symptoms that was observed 28 days later in the group treated with morphine-alone. However, the IL-1ra also had adverse effects that were independent of morphine. Treatment with the IL-1ra alone undermined recovery of locomotor function, potentiated weight loss and significantly increased tissue loss at the injury site. Overall, these data suggest that morphine disrupts a critical balance in concentrations of pro-inflammatory cytokines in the spinal cord, and this undermines recovery of function. PMID:20974246

  19. Cathinone increases body temperature, enhances locomotor activity, and induces striatal c-fos expression in the Siberian hamster.

    PubMed

    Jones, S; Fileccia, E L; Murphy, M; Fowler, M J; King, M V; Shortall, S E; Wigmore, P M; Green, A R; Fone, K C F; Ebling, F J P

    2014-01-24

    Cathinone is a β-keto alkaloid that is the major active constituent of khat, the leaf of the Catha edulis plant that is chewed recreationally in East Africa and the Middle East. Related compounds, such as methcathinone and mephedrone have been increasing in popularity as recreational drugs, resulting in the recent proposal to classify khat as a Class C drug in the UK. There is still limited knowledge of the pharmacological effects of cathinone. This study examined the acute effects of cathinone on core body temperature, locomotor and other behaviors, and neuronal activity in Siberian hamsters. Adult male hamsters, previously implanted with radio telemetry devices, were treated with cathinone (2 or 5mg/kg i.p.), the behavioral profile scored and core body temperature and locomotor activity recorded by radio telemetry. At the end of the study, hamsters received vehicle or cathinone (5mg/kg) and neuronal activation in the brain was determined using immunohistochemical evaluation of c-fos expression. Cathinone dose-dependently induced significant (p<0.0001) increases in both temperature and locomotor activity lasting 60-90min. Cathinone (2mg/kg) increased rearing (p<0.02), and 5mg/kg increased both rearing (p<0.001) and lateral head twitches (p<0.02). Both cathinone doses decreased the time spent at rest (p<0.001). The number of c-fos immunopositive cells were significantly increased in the striatum (p<0.0001) and suprachiasmatic nucleus (p<0.05) following cathinone, indicating increased neuronal activity. There was no effect of cathinone on food intake or body weight. It is concluded that systemic administration of cathinone induces significant behavioral changes and CNS activation in the hamster.

  20. Comparison between intraperitoneal and subcutaneous phencyclidine administration in Sprague-Dawley rats: a locomotor activity and gene induction study.

    PubMed

    Kalinichev, Mikhail; Robbins, Melanie J; Hartfield, Elizabeth M; Maycox, Peter R; Moore, Susan H; Savage, Kevin M; Austin, Nigel E; Jones, Declan N C

    2008-02-15

    In a putative model of acute phencyclidine (PCP)-induced psychosis we evaluated effects of the drug on locomotor activity (LMA) and immediate early gene (IEG) induction in the rat using two routes of drug administration, intraperitoneal (i.p.) and subcutaneous (s.c.). Adult male rats received saline or PCP (1.0-5.0 mg/kg) either i.p or s.c. and were assessed for LMA for 60 min. At the end of the LMA testing animals were culled and blood and brain samples were collected for PCP concentration analysis. Separate cohorts of animals received 5.0 mg/kg PCP (i.p. or s.c.) and were used to investigate (1) the pharmacokinetics of PCP or (2) induction of IEG (Arc, c-fos, BDNF, junB, Krox-20, sgk-1, NURR1, fra-2, Krox-24, and egr-3) mRNA expression in the prefrontal cortex (PFC). Administration of PCP resulted in locomotor hyperactivity which was more robust and longer-lasting in animals dosed s.c. compared to i.p.-treated-animals. Differences in hyperlocomotion were paralleled by higher concentrations of PCP in the blood and in the brain of s.c.-treated animals compared to i.p.-treated animals. The differences in the concentration of PCP between the two routes of administration were detected 30 min after dosing and persisted for up to 4 h. Administration of PCP via the s.c. route resulted in induction of more IEGs and consistently larger magnitudes of induction than that via the i.p. route. Therefore, we have outlined the dosing conditions to induce rapid and robust effect of acute PCP on behaviour, gene induction, and pharmacokinetic profile, to allow investigation of this as a potential animal model of acute psychosis.

  1. Development of a Countermeasure to Mitigate Postflight Locomotor Dysfunction

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Richards, J. T.; Miller, C. A.; Brady, R.; Warren, L. E.; Ruttley, T. M.

    2006-01-01

    Astronauts returning from space flight experience locomotor dysfunction following their return to Earth. Our laboratory is currently developing a gait adaptability training program that is designed to facilitate recovery of locomotor function following a return to a gravitational environment. The training program exploits the ability of the sensorimotor system to generalize from exposure to multiple adaptive challenges during training so that the gait control system essentially learns to learn and therefore can reorganize more rapidly when faced with a novel adaptive challenge. Evidence for the potential efficacy of an adaptive generalization gait training program can be obtained from numerous studies in the motor learning literature which have demonstrated that systematically varying the conditions of training enhances the ability of the performer to learn and retain a novel motor task. These variable practice training approaches have been used in applied contexts to improve motor skills required in a number of different sports. The central nervous system (CNS) can produce voluntary movement in an almost infinite number of ways. For example, locomotion can be achieved with many different combinations of joint angles, muscle activation patterns and forces. The CNS can exploit these degrees of freedom to enhance motor response adaptability during periods of adaptive flux like that encountered during a change in gravitational environment. Ultimately, the functional goal of an adaptive generalization countermeasure is not necessarily to immediately return movement patterns back to normal. Rather the training regimen should facilitate the reorganization of available sensory and motor subsystems to achieve safe and effective locomotion as soon as possible after long duration space flight. Indeed, this approach has been proposed as a basic feature underlying effective neurological rehabilitation. We have previously confirmed that subjects participating in an adaptive

  2. Locomotor energetics and leg length in hominid bipedality.

    PubMed

    Kramer, P A; Eck, G G

    2000-05-01

    Because bipedality is the quintessential characteristic of Hominidae, researchers have compared ancient forms of bipedality with modern human gait since the first clear evidence of bipedal australopithecines was unearthed over 70 years ago. Several researchers have suggested that the australopithecine form of bipedality was transitional between the quadrupedality of the African apes and modern human bipedality and, consequently, inefficient. Other researchers have maintained that australopithecine bipedality was identical to that of Homo. But is it reasonable to require that all forms of hominid bipedality must be the same in order to be optimized? Most attempts to evaluate the locomotor effectiveness of the australopithecines have, unfortunately, assumed that the locomotor anatomy of modern humans is the exemplar of consummate bipedality. Modern human anatomy is, however, the product of selective pressures present in the particular milieu in which Homo arose and it is not necessarily the only, or even the most efficient, bipedal solution possible. In this report, we investigate the locomotion of Australopithecus afarensis, as represented by AL 288-1, using standard mechanical analyses. The osteological anatomy of AL 288-1 and movement profiles derived from modern humans are applied to a dynamic model of a biped, which predicts the mechanical power required by AL 288-1 to walk at various velocities. This same procedure is used with the anatomy of a composite modern woman and a comparison made. We find that AL 288-1 expends less energy than the composite woman when locomoting at walking speeds. This energetic advantage comes, however, at a price: the preferred transition speed (from a walk to a run) of AL 288-1 was lower than that of the composite woman. Consequently, the maximum daily range of AL 288-1 may well have been substantially smaller than that of modern people. The locomotor anatomy of A. afarensis may have been optimized for a particular ecological niche

  3. Monitoring Locomotor Load in Soccer: Is Metabolic Power, Powerful?

    PubMed

    Buchheit, M; Manouvrier, C; Cassirame, J; Morin, J-B

    2015-12-01

    The aim of the present study was to examine the validity and reliability of metabolic power (P) estimated from locomotor demands during soccer-specific drills. 14 highly-trained soccer players performed a soccer-specific circuit with the ball (3×1-min bouts, interspersed with 30-s passive recovery) on 2 different occasions. Locomotor activity was monitored with 4-Hz GPSs, while oxygen update (VO2) was collected with a portable gas analyzer. P was calculated using either net VO2 responses and traditional calorimetry principles (PVO2, W.kg(-1)) or locomotor demands (PGPS, W.kg(-1)). Distance covered into different speed, acceleration and P zones was recorded. While PGPS was 29±10% lower than PVO2 (d<- 3) during the exercise bouts, it was 85±7% lower (d<- 8) during recovery phases. The typical error between PGPS vs. PVO2 was moderate: 19.8%, 90% confidence limits: (18.4;21.6). The correlation between both estimates of P was small: 0.24 (0.14;0.33). Very large day-to-day variations were observed for acceleration, deceleration and > 20 W.kg(-1) distances (all CVs > 50%), while average Po2 and PGPS showed CVs < 10%. ICC ranged from very low- (acceleration and > 20 W.kg(-1) distances) to-very high (PVO2). PGPS largely underestimates the energy demands of soccer-specific drills, especially during the recovery phases. The poor reliability of PGPS >20 W.kg(-1) questions its value for monitoring purposes in soccer.

  4. Locomotor function in the early stage of Parkinson's disease.

    PubMed

    Carpinella, Ilaria; Crenna, Paolo; Calabrese, Elena; Rabuffetti, Marco; Mazzoleni, Paolo; Nemni, Raffaello; Ferrarin, Maurizio

    2007-12-01

    The cardinal motor symptoms of Parkinson's disease (PD) have been widely investigated with particular reference to abnormalities of steady-state walking. The great majority of studies, however are related to severe forms of PD patients (phases > = 3 of Hoehn and Yahr scale), where locomotor abnormalities are clearly manifested. Goal of the present study was to quantitatively describe locomotor symptoms in subjects with mild PD. Accordingly, a multitask protocol involving instrumental analysis of steady-state linear walking, initiation of gait, and turning while walking was applied to a group of patients with idiopathic PD in their early clinical stage (phases 1 and 2 of Hoehn and Yahr scale), as well as in age-matched elderly controls. Kinematic, kinetic, and myoelectric measures were obtained by optoelectronic motion analysis, force platform, and telemetric electromyography. Results in PD patients showed a tendency to bradykinetic gait, with reduction of walking speed and cadence. Impairments of gait initiation consisted in reduction of the backward shift of the center of pressure (CoP) and prolongation of the stepping phase. Alterations of the turning task were more consistent and included delayed reorientation of the head toward the new direction, altered head-upper trunk rotational strategy, and adoption of a greater number of steps to complete the turning. It is concluded that patients in the early stage of PD reveal mild alterations of steady-state linear walking and more significant anomalies in the transitional conditions, especially during changes in the travel direction. Quantitative analysis of nonstationary locomotor tasks might be a potentially useful starting point for further studies on the pathophysiology of PD.

  5. Locomotor energetics and leg length in hominid bipedality.

    PubMed

    Kramer, P A; Eck, G G

    2000-05-01

    Because bipedality is the quintessential characteristic of Hominidae, researchers have compared ancient forms of bipedality with modern human gait since the first clear evidence of bipedal australopithecines was unearthed over 70 years ago. Several researchers have suggested that the australopithecine form of bipedality was transitional between the quadrupedality of the African apes and modern human bipedality and, consequently, inefficient. Other researchers have maintained that australopithecine bipedality was identical to that of Homo. But is it reasonable to require that all forms of hominid bipedality must be the same in order to be optimized? Most attempts to evaluate the locomotor effectiveness of the australopithecines have, unfortunately, assumed that the locomotor anatomy of modern humans is the exemplar of consummate bipedality. Modern human anatomy is, however, the product of selective pressures present in the particular milieu in which Homo arose and it is not necessarily the only, or even the most efficient, bipedal solution possible. In this report, we investigate the locomotion of Australopithecus afarensis, as represented by AL 288-1, using standard mechanical analyses. The osteological anatomy of AL 288-1 and movement profiles derived from modern humans are applied to a dynamic model of a biped, which predicts the mechanical power required by AL 288-1 to walk at various velocities. This same procedure is used with the anatomy of a composite modern woman and a comparison made. We find that AL 288-1 expends less energy than the composite woman when locomoting at walking speeds. This energetic advantage comes, however, at a price: the preferred transition speed (from a walk to a run) of AL 288-1 was lower than that of the composite woman. Consequently, the maximum daily range of AL 288-1 may well have been substantially smaller than that of modern people. The locomotor anatomy of A. afarensis may have been optimized for a particular ecological niche

  6. Acute reduction in anxiety after deep transcranial magnetic stimulation (DTMS) in unipolar major depression- a systematic review and meta-analysis.

    PubMed

    Kedzior, Karina Karolina; Gellersen, Helena Marie; Roth, Yiftach; Zangen, Abraham

    2015-12-30

    The current study investigated the anxiolytic properties of the deep transcranial magnetic stimulation (DTMS) in unipolar major depression using a systematic literature review and meta-analysis. Compared to baseline, large anxiolytic and antidepressant outcomes were obtained after 20 daily sessions of high-frequency DTMS according to data from six open-label studies with 95 patients. Unlike the antidepressant effect, the anxiolytic effect was more heterogeneous among studies and did not depend on concurrent treatment with antidepressants. PMID:26616303

  7. Modular functional organisation of the axial locomotor system in salamanders.

    PubMed

    Cabelguen, Jean-Marie; Charrier, Vanessa; Mathou, Alexia

    2014-02-01

    Most investigations on tetrapod locomotion have been concerned with limb movements. However, there is compelling evidence that the axial musculoskeletal system contributes to important functions during locomotion. Adult salamanders offer a remarkable opportunity to examine these functions because these amphibians use axial undulations to propel themselves in both aquatic and terrestrial environments. In this article, we review the currently available biological data on axial functions during various locomotor modes in salamanders. We also present data showing the modular organisation of the neural networks that generate axial synergies during locomotion. The functional implication of this modular organisation is discussed.

  8. Locomotor Dysfunction after Spaceflight: Characterization and Countermeasure Development

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Cohen, H. S.; Peters, B. T.; Miller, C. A.; Brady, R.; Bloomberg, Jacob J.

    2007-01-01

    Astronauts returning from space flight show disturbances in locomotor control manifested by changes in various sub-systems including head-trunk coordination, dynamic visual acuity, lower limb muscle activation patterning and kinematics (Glasauer, et al., 1995; Bloomberg, et al., 1997; McDonald, et al., 1996; 1997; Layne, et al., 1997; 1998, 2001, 2004; Newman, et al., 1997; Bloomberg and Mulavara, 2003). These post flight changes in locomotor performance, due to neural adaptation to the microgravity conditions of space flight, affect the ability of crewmembers especially after a long duration mission to egress their vehicle and perform extravehicular activities soon after landing on Earth or following a landing on the surface of the Moon or Mars. At present, no operational training intervention is available pre- or in- flight to mitigate post flight locomotor disturbances. Our laboratory is currently developing a gait adaptability training program that is designed to facilitate recovery of locomotor function following a return to a gravitational environment. The training program exploits the ability of the sensorimotor system to generalize from exposure to multiple adaptive challenges during training so that the gait control system essentially "learns to learn" and therefore can reorganize more rapidly when faced with a novel adaptive challenge. Ultimately, the functional goal of an adaptive generalization countermeasure is not necessarily to immediately return movement patterns back to "normal". Rather the training regimen should facilitate the reorganization of available sensorimotor sub-systems to achieve safe and effective locomotion as soon as possible after space flight. We have previously confirmed that subjects participating in adaptive generalization training programs, using a variety of visuomotor distortions and different motor tasks from throwing to negotiating an obstacle course as the dependent measure, can learn to enhance their ability to adapt to a

  9. Predictive Measures of Locomotor Performance on an Unstable Walking Surface

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Caldwell, E. E.; Batson, C. D.; De Dios, Y. E.; Gadd, N. E.; Goel, R.; Wood, S. J.; Cohen, H. S.; Oddsson, L. I.; Seidler, R. D.

    2016-01-01

    Locomotion requires integration of visual, vestibular, and somatosensory information to produce the appropriate motor output to control movement. The degree to which these sensory inputs are weighted and reorganized in discordant sensory environments varies by individual and may be predictive of the ability to adapt to novel environments. The goals of this project are to: 1) develop a set of predictive measures capable of identifying individual differences in sensorimotor adaptability, and 2) use this information to inform the design of training countermeasures designed to enhance the ability of astronauts to adapt to gravitational transitions improving balance and locomotor performance after a Mars landing and enhancing egress capability after a landing on Earth.

  10. Biphasic effects of Δ9-tetrahydrocannabinol on brain stimulation reward and motor activity.

    PubMed

    Katsidoni, Vicky; Kastellakis, Andreas; Panagis, George

    2013-11-01

    Δ(9)-tetrahydrocannabinol (Δ(9)-THC), the main psychoactive ingredient of marijuana, has led to equivocal results when tested with the intracranial self-stimulation (ICSS) procedure or the open-field test for motor activity, two behavioural models for evaluating the reward-facilitating and locomotor stimulating effects of drugs of abuse, respectively. Therefore, in the present study, the effects of high and low doses of Δ(9)-THC were compared in the ICSS procedure and the open-field test. Moreover, the involvement of CB(1) receptors in tentative Δ(9)-THC-induced effects was investigated by pre-treating the animals with the CB(1) receptor antagonist SR141716A (rimonabant). The results obtained show that low doses of Δ(9)-THC induce opposite effects from high doses of Δ(9)-THC. Specifically, 0.1 mg/kg Δ(9)-THC decreased ICSS thresholds and produced hyperactivity, whereas 1 mg/kg increased ICSS thresholds and produced hypoactivity. Both effects were reversed by pre-treatment with SR141716A, indicating the involvement of CB(1) receptors on these actions. Altogether, our results indicate that Δ(9)-THC can produce acute activating effects in locomotion that coincide with its reward-facilitating effects in the ICSS paradigm. The present findings provide further support that Δ(9)-THC induces behaviours typical of abuse and substantiate the notion that marijuana resembles other drugs of abuse.

  11. Hypothyroidism Stimulates D2 Receptor-mediated Breathing in Response to Acute Hypoxia and alters D2 Receptors Levels in Carotid Bodies & Brain

    PubMed Central

    Schlenker, Evelyn H.; Schultz, Harold D.

    2011-01-01

    Hypothyroidism can depress breathing and alter dopamine D2 receptor expression and function. We hypothesized that relative to euthyroid hamsters (EH), hypothyroid hamsters (HH) contain increased D2 receptors in brain regions associated with breathing and carotid bodies (CB), and that stimulation of D2 receptors would decease ventilation more in the HH compared to the EH. Hamsters were treated with vehicle, carmoxirile (peripherally acting D2 receptor agonist), or bromocriptine (central and peripherally acting D2 receptor agonist) and breathing was evaluated during exposure to air, hypoxia, and then air. HH exhibited increased D2 receptor protein levels in the striatum and CB’s, but decreased levels in the paraventricular hypothalamic nucleus. Relative to vehicle, carmoxirole and bromocriptine stimulated ventilation in the HH during and following exposure to hypoxia. Only bromocriptine depressed ventilation in the EH during and after exposure to hypoxia. Thus,, hypothyroidism impacts the expression of D2 receptors in the carotid body, PVN and striatum, and D2 stimulation affects ventilation remarkably differently than in EH. PMID:22051191

  12. Cutaneous inputs from the back abolish locomotor-like activity and reduce spastic-like activity in the adult cat following complete spinal cord injury

    PubMed Central

    Frigon, Alain; Thibaudier, Yann; Johnson, Michael D.; Heckman, C.J.; Hurteau, Marie-France

    2012-01-01

    Spasticity is a condition that can include increased muscle tone, clonus, spasms, and hyperreflexia. In this study, we report the effect of manually stimulating the dorsal lumbosacral skin on spontaneous locomotor-like activity and on a variety of reflex responses in 5 decerebrate chronic spinal cats treated with clonidine. Cats were spinalized 1 month before the terminal experiment. Stretch reflexes were evoked by stretching the left triceps surae muscles. Crossed reflexes were elicited by electrically stimulating the right tibial or superficial peroneal nerves. Windup of reflex responses was evoked by electrically stimulating the left tibial or superficial peroneal nerves. We found that pinching the skin of the back abolished spontaneous locomotor-like activity. We also found that back pinch abolished the rhythmic activity observed during reflex testing without eliminating the reflex responses. Some of the rhythmic episodes of activity observed during reflex testing were consistent with clonus with an oscillation frequency greater than 3 Hz. Pinching the skin of the back effectively abolished rhythmic activity occurring spontaneously or evoked during reflex testing, irrespective of oscillation frequency. The results are consistent with the hypothesis that locomotion and clonus are produced by common central pattern-generators. Stimulating the skin of the back could prove helpful in managing undesired rhythmic activity in spinal cord-injured humans. PMID:22487200

  13. Improved Outcome of Refractory/Relapsed Acute Myeloid Leukemia after Post-Transplantation Cyclophosphamide-Based Haploidentical Transplantation with Myeloablative Conditioning and Early Prophylactic Granulocyte Colony-Stimulating Factor-Mobilized Donor Lymphocyte Infusions.

    PubMed

    Jaiswal, Sarita Rani; Zaman, Shamsuz; Chakrabarti, Aditi; Sen, Subrata; Mukherjee, Shashwata; Bhargava, Sneh; Ray, Kunal; O'Donnell, Paul V; Chakrabarti, Suparno

    2016-10-01

    We carried out post-transplantation cyclophosphamide (PTCy)-based haploidentical peripheral blood stem cell transplantation in 51 patients with refractory/relapsed acute myeloid leukemia not in remission. The first 10 patients received nonmyeloablative conditioning followed by planned granulocyte colony-stimulating factor (G-CSF)-mobilized donor lymphocyte infusions (DLIs) on days 35, 60, and 90. No patient developed graft-versus-host disease (GVHD), but 90% had disease progression between 3 and 6 months. A subsequent 41 patients received myeloablative conditioning (MAC); the first 20 patients did not receive DLIs (MAC group) and the next 21 patients received G-CSF-mobilized DLIs (G-DLI) on days 21, 35, and 60 (MAC-DLI group). The incidence of disease progression and progression-free survival at 18 months were 66% and 25% in the MAC group compared with 21.4% and 61.9% in the MAC-DLI group (P = .01). Chronic GVHD but not acute GVHD was increased in the MAC-DLI group (41.2% versus 11%, P = .05). Natural killer cell alloreactive donor was associated with lower incidence of disease progression in the MAC but not in MAC-DLI group. The only factor favorably influencing disease progression and progression-free survival was administration of G-DLI after myeloablative conditioning. Our study shows that early administration of G-DLI is feasible after PTCy-based haploidentical hematopoietic stem cell transplantation for refractory/relapsed acute myeloid leukemia and might be associated with improved survival after MAC. PMID:27470289

  14. Arylsulfatase B Improves Locomotor Function after Mouse Spinal Cord Injury

    PubMed Central

    Yoo, Myungsik; Khaled, Muntasir; Gibbs, Kurt M.; Kim, Jonghun; Kowalewski, Björn; Dierks, Thomas; Schachner, Melitta

    2013-01-01

    Bacterial chondroitinase ABC (ChaseABC) has been used to remove the inhibitory chondroitin sulfate chains from chondroitin sulfate proteoglycans to improve regeneration after rodent spinal cord injury. We hypothesized that the mammalian enzyme arylsulfatase B (ARSB) would also enhance recovery after mouse spinal cord injury. Application of the mammalian enzyme would be an attractive alternative to ChaseABC because of its more robust chemical stability and reduced immunogenicity. A one-time injection of human ARSB into injured mouse spinal cord eliminated immunoreactivity for chondroitin sulfates within five days, and up to 9 weeks after injury. After a moderate spinal cord injury, we observed improvements of locomotor recovery assessed by the Basso Mouse Scale (BMS) in ARSB treated mice, compared to the buffer-treated control group, at 6 weeks after injection. After a severe spinal cord injury, mice injected with equivalent units of ARSB or ChaseABC improved similarly and both groups achieved significantly more locomotor recovery than the buffer-treated control mice. Serotonin and tyrosine hydroxylase immunoreactive axons were more extensively present in mouse spinal cords treated with ARSB and ChaseABC, and the immunoreactive axons penetrated further beyond the injury site in ARSB or ChaseABC treated mice than in control mice. These results indicate that mammalian ARSB improves functional recovery after CNS injury. The structural/molecular mechanisms underlying the observed functional improvement remain to be elucidated. PMID:23520469

  15. Origin of thoracic spinal network activity during locomotor-like activity in the neonatal rat.

    PubMed

    Beliez, Lauriane; Barrière, Grégory; Bertrand, Sandrine S; Cazalets, Jean-René

    2015-04-15

    Effective quadrupedal locomotor behaviors require the coordination of many muscles in the limbs, back, neck, and tail. Because of the spinal motoneuronal somatotopic organization, motor coordination implies interactions among distant spinal networks. Here, we investigated some of the interactions between the lumbar locomotor networks that control limb movements and the thoracic networks that control the axial muscles involved in trunk movement. For this purpose, we used an in vitro isolated newborn rat spinal cord (from T2 to sacrococcygeal) preparation. Using extracellular ventral root recordings, we showed that, while the thoracic cord possesses an intrinsic rhythmogenic capacity, the lumbar circuits, if they are rhythmically active, will entrain the rhythmicity of the thoracic circuitry. However, if the lumbar circuits are rhythmically active, these latter circuits will entrain the rhythmicity of the thoracic circuitry. Blocking the synaptic transmission in some thoracic areas revealed that the lumbar locomotor network could trigger locomotor bursting in distant thoracic segments through short and long propriospinal pathways. Patch-clamp recordings revealed that 72% of the thoracic motoneurons (locomotor-driven motoneurons) expressed membrane potential oscillations and spiking activity coordinated with the locomotor activity expressed by the lumbar cord. A biphasic excitatory (glutamatergic)/inhibitory (glycinergic) synaptic drive was recorded in thoracic locomotor-driven motoneurons. Finally, we found evidence that part of this locomotor drive involved a monosynaptic component coming directly from the lumbar locomotor network. We conclude that the lumbar locomotor network plays a central role in the generation of locomotor outputs in the thoracic cord by acting at both the premotoneuronal and motoneuronal levels. PMID:25878284

  16. Cortical edema in moderate fluid percussion brain injury is attenuated by vagus nerve stimulation.

    PubMed

    Clough, R W; Neese, S L; Sherill, L K; Tan, A A; Duke, A; Roosevelt, R W; Browning, R A; Smith, D C

    2007-06-29

    Development of cerebral edema (intracellular and/or extracellular water accumulation) following traumatic brain injury contributes to mortality and morbidity that accompanies brain injury. Chronic intermittent vagus nerve stimulation (VNS) initiated at either 2 h or 24 h (VNS: 30 s train of 0.5 mA, 20 Hz, biphasic pulses every 30 min) following traumatic brain injury enhances recovery of motor and cognitive function in rats in the weeks following brain injury; however, the mechanisms of facilitated recovery are unknown. The present study examines the effects of VNS on development of acute cerebral edema following unilateral fluid percussion brain injury (FPI) in rats, concomitant with assessment of their behavioral recovery. Two hours following FPI, VNS was initiated. Behavioral testing, using both beam walk and locomotor placing tasks, was conducted at 1 and 2 days following FPI. Edema was measured 48 h post-FPI by the customary method of region-specific brain weights before and after complete dehydration. Results of this study replicated that VNS initiated at 2 h after FPI: 1) effectively facilitated the recovery of vestibulomotor function at 2 days after FPI assessed by beam walk performance (P<0.01); and 2) tended to improve locomotor placing performance at the same time point (P=0.18). Most interestingly, results of this study showed that development of edema within the cerebral cortex ipsilateral to FPI was significantly attenuated at 48 h in FPI rats receiving VNS compared with non-VNS FPI rats (P<0.04). Finally, a correlation analysis between beam walk performance and cerebral edema following FPI revealed a significant inverse correlation between behavior performance and cerebral edema. Together, these results suggest that VNS facilitation of motor recovery following experimental brain injury in rats is associated with VNS-mediated attenuation of cerebral edema. PMID:17543463

  17. Toxicity of organophosphates on morphology and locomotor behavior in brine shrimp, Artemia salina.

    PubMed

    Venkateswara Rao, J; Kavitha, P; Jakka, N M; Sridhar, V; Usman, P K

    2007-08-01

    The acute toxicity and hatching success of four organophosphorus insecticides--acephate (ACEP), chlorpyrifos (CPP), monocrotophos (MCP), and profenofos (PF)--was studied in a short-term bioassay using brine shrimp, Artemia salina. Fifty percent hatchability inhibition concentration and median lethal concentration (LC(50)) values were calculated after probit transformation of the resulting data. Among the insecticides tested, CPP is found to be the most toxic and also to inhibit hatching success of A. salina cysts in a concentration-dependent manner. In addition, the effect of these pesticides on locomotor behavior (swimming speed) and morphologic differences were studied in LC(50)-exposed nauplii after 24 hours. The in vivo effect of these insecticides on acetylcholinesterase (Enzyme commission number (EC 3.1.1.7) activity was also determined in LC(50)-exposed nauplii after 24 hours. Maximum percent decrease in their swimming speed and significant morphologic alterations were noticed in CPP-exposed brine shrimps. The order of toxicity was CPP > PF > MCP > ACEP in all the parameters studied. PMID:17549541

  18. Adenosine kinase inhibitors: polar 7-substitutent of pyridopyrimidine derivatives improving their locomotor selectivity.

    PubMed

    Zheng, Guo Zhu; Mao, Yue; Lee, Chih-Hung; Pratt, John K; Koenig, John R; Perner, Richard J; Cowart, Marlon D; Gfesser, Gregory A; McGaraughty, Steve; Chu, Katharine L; Zhu, Chang; Yu, Haixia; Kohlhaas, Kathy; Alexander, Karen M; Wismer, Carol T; Mikusa, Joseph; Jarvis, Michael F; Kowaluk, Elizabeth A; Stewart, Andrew O

    2003-09-15

    We have discovered that polar 7-substituents of pyridopyrimidine derivatives affect not only whole cell AK inhibitory potency, but also selectivity in causing locomotor side effects in vivo animal models. We have identified compound, 1o, which has potent whole cell AK inhibitory potency, analgesic activity and minimal reduction of locomotor activity.

  19. Locomotor behavior and long bone morphology in individual free-ranging chimpanzees.

    PubMed

    Carlson, Kristian J; Doran-Sheehy, Diane M; Hunt, Kevin D; Nishida, Toshisada; Yamanaka, Atsushi; Boesch, Christophe

    2006-04-01

    We combine structural limb data and behavioral data for free-ranging chimpanzees from Taï (Ivory Coast) and Mahale National Parks (Tanzania) to begin to consider the relationship between individual variation in locomotor activity and morphology. Femoral and humeral cross sections of ten individuals were acquired via computed tomography. Locomotor profiles of seven individuals were constructed from 3387 instantaneous time-point observations (87.4 hours). Within the limited number of suitable chimpanzees, individual variation in locomotor profiles displayed neither clear nor consistent trends with diaphyseal cross-sectional shapes. The percentages of specific locomotor modes did not relate well to diaphyseal shapes since neither infrequent nor frequent locomotor modes varied consistently with shapes. The percentage of arboreal locomotion, rather than estimated body mass, apparently had comparatively greater biological relevance to variation in diaphyseal shape. The mechanical consequences of locomotor modes on femoral and humeral diaphyseal shapes (e.g., orientation of bending strains) may overlap between naturalistic modes more than currently is recognized. Alternatively, diaphyseal shape may be unresponsive to mechanical demands of these specific locomotor modes. More data are needed in order to discern between these possibilities. Increasing the sample to include additional free-ranging chimpanzees, or primates in general, as well as devoting more attention to the mechanics of a greater variety of naturalistic locomotor modes would be fruitful to understanding the behavioral basis of diaphyseal shapes.

  20. Locomotor Tests Predict Community Mobility in Children and Youth with Cerebral Palsy

    ERIC Educational Resources Information Center

    Ferland, Chantale; Moffet, Helene; Maltais, Desiree

    2012-01-01

    Ambulatory children and youth with cerebral palsy have limitations in locomotor capacities and in community mobility. The ability of three locomotor tests to predict community mobility in this population (N = 49, 27 boys, 6-16 years old) was examined. The tests were a level ground walking test, the 6-min-Walk-Test (6MWT), and two tests of advanced…

  1. Temperature and population density effects on locomotor activity of Musca domestica (Diptera: Muscidae).

    PubMed

    Schou, T M; Faurby, S; Kjærsgaard, A; Pertoldi, C; Loeschcke, V; Hald, B; Bahrndorff, S

    2013-12-01

    The behavior of ectotherm organisms is affected by both abiotic and biotic factors. However, a limited number of studies have investigated the synergistic effects on behavioral traits. This study examined the effect of temperature and density on locomotor activity of Musca domestica (L.). Locomotor activity was measured for both sexes and at four densities (with mixed sexes) during a full light and dark (L:D) cycle at temperatures ranging from 10 to 40°C. Locomotor activity during daytime increased with temperature at all densities until reaching 30°C and then decreased. High-density treatments significantly reduced the locomotor activity per fly, except at 15°C. For both sexes, daytime activity also increased with temperature until reaching 30 and 35°C for males and females, respectively, and thereafter decreased. Furthermore, males showed a significantly higher and more predictable locomotor activity than females. During nighttime, locomotor activity was considerably lower for all treatments. Altogether the results of the current study show that there is a significant interaction of temperature and density on daytime locomotor activity of M. domestica and that houseflies are likely to show significant changes in locomotor activity with change in temperature.

  2. Subchronic phencyclidine in rats: alterations in locomotor activity, maze performance, and GABA(A) receptor binding.

    PubMed

    Beninger, Richard J; Beuk, Jonathan; Banasikowski, Tomek J; van Adel, Michael; Boivin, Gregory A; Reynolds, James N

    2010-02-01

    Phencyclidine (PCP), an antagonist at the N-methyl-D-aspartate subtype of ionotropic glutamatergic receptors, decreases gamma-aminobutyric acid (GABA)ergic inhibition, suggesting that changes in GABAergic receptor function underlie behavioral and cognitive deficits resulting from repeated administration of PCP. To test this hypothesis, male Sprague-Dawley rats treated with PCP (4.5 mg/kg, intraperitoneal, twice a day for 7 consecutive days) or saline were tested in behavioral and cognitive tasks 7 days after injections. The PCP group showed increased amphetamine (1.5 mg/kg)-stimulated locomotor activity, and exhibited a greater number of errors in the double Y-maze memory task, when compared with controls. Subchronic PCP treatment increased [H]muscimol-binding sites and decreased affinity for [H]muscimol binding in frontal cortex, hippocampus, and striatum in comparison with controls. There were no changes in the expression of glutamic acid decarboxylase or the GABA membrane transporter protein. These data show that subchronic PCP administration induces an impaired performance of a previously learned task and an enhanced response to amphetamine in the rat. The observed changes in GABAA receptors in the rat brain are consistent with the notion that alterations in GABAergic receptor function contribute to the behavioral and cognitive impairments associated with repeated exposure to PCP. PMID:19949321

  3. Locomotor Trajectories of Stroke Patients during Oriented Gait and Turning

    PubMed Central

    Van Hamme, Angele; Bensmail, Djamel

    2016-01-01

    Background The Timed Up and Go (TUG) test is widely used to assess locomotion in patients with stroke and is considered to predict the risk of falls. The analysis of locomotor trajectories during the TUG appears pertinent in stroke patients. The aims of this study were i) to analyze locomotor trajectories in patients with stroke during the walking and turning sub-tasks of the TUG, and to compare them with healthy subjects, ii) to determine whether trajectory parameters provide additional information to that provided by the conventional measure (performance time), iii) to compare the trajectory parameters of fallers and non-fallers with stroke and of patients with right and left hemisphere stroke, and iv) to evaluate correlations between trajectory parameters and Berg Balance Scale scores. Methods 29 patients with stroke (mean age 54.2±12.2 years, 18 men, 8 fallers) and 25 healthy subjects (mean age 51.6±8.7 years, 11 men) underwent three-dimensional analysis of the TUG. The trajectory of the center of mass was analyzed by calculation of the global trajectory length, Hausdorff distance and Dynamic Time Warping. The parameters were compared with a reference trajectory during the total task and each sub-task (Go, Turn, Return) of the TUG. Results Values of trajectory parameters were significantly higher for the stroke group during the total TUG and the Go and Turn sub-tasks (p<0.05). Moreover, logistic regression indicated that these parameters better discriminated stroke patients and healthy subjects than the conventional timed performance during the Go sub-task. In addition, fallers were distinguished by higher Dynamic Time Warping during the Go (p<0.05). There were no differences between patients with right and left hemisphere stroke. Discussion and Conclusion The trajectories of the stroke patients were longer and more deviated during the turn and the preceding phase. Trajectory parameters provided additional information to timed performance of this locomotor

  4. Tetrabenazine inhibition of monoamine uptake and methamphetamine behavioral effects: Locomotor activity, drug discrimination and self-administration

    PubMed Central

    Meyer, AC; Horton, DB; Neugebauer, NM; Wooters, TE; Nickell, JR; Dwoskin, LP; Bardo, MT

    2013-01-01

    Tetrabenazine (TBZ), a benzoquinolizine derivative, binds with high affinity to the vesicular monoamine transporter-2 (VMAT2), inhibiting uptake of cytosolic monoamines. The current study aimed to provide preclinical evidence supporting the potential use of TBZ as a treatment for methamphetamine abuse. Effects of TBZ on function of the dopamine transporter (DAT) and serotonin transporter (SERT) in striatal and hippocampal synaptosomes, respectively, and on VMAT2 function in isolated striatal synaptic vesicles were determined. Effect of TBZ (acute, 0.1 - 3.0 mg/kg, s.c.; repeated, 1.0 mg/kg for 7 days) on locomotor activity in methamphetamine-sensitized rats was assessed. Ability of TBZ (0.1 -3.0 mg/kg; s.c.) or vehicle to decrease the discriminative effect of methamphetamine also was determined. Ability of TBZ (acute, 0.1 - 1.0 mg/kg, s.c.; repeated, 0.1 or 1.0 mg/kg for 7 days) to specifically decrease methamphetamine self-administration was determined; for comparison, a separate group of rats was assessed for effects of TBZ on food-maintained responding. Results show that TBZ was 11-fold more potent inhibiting DAT than SERT, and 2.5-fold more potent inhibiting VMAT2 than DAT. Results from behavioral studies showed that the lowest dose of TBZ transiently increased methamphetamine self-administration, whereas higher TBZ doses decreased methamphetamine self-administration. Also, TBZ at high doses decreased methamphetamine locomotor sensitization and discriminative stimulus effects, as well as food-maintained responding. Thus, despite acting as a potent VMAT2 inhibitor, these preclinical results indicate that TBZ lacks behavioral specificity as an inhibitor of methamphetamine-induced reinforcement, diminishing its viability as a suitable treatment for methamphetamine abuse. PMID:21669212

  5. Tetrabenazine inhibition of monoamine uptake and methamphetamine behavioral effects: locomotor activity, drug discrimination and self-administration.

    PubMed

    Meyer, A C; Horton, D B; Neugebauer, N M; Wooters, T E; Nickell, J R; Dwoskin, L P; Bardo, M T

    2011-09-01

    Tetrabenazine (TBZ), a benzoquinolizine derivative, binds with high affinity to the vesicular monoamine transporter-2 (VMAT2), inhibiting uptake of cytosolic monoamines. The current study aimed to provide preclinical evidence supporting the potential use of TBZ as a treatment for methamphetamine abuse. Effects of TBZ on function of the dopamine transporter (DAT) and serotonin transporter (SERT) in striatal and hippocampal synaptosomes, respectively, and on VMAT2 function in isolated striatal synaptic vesicles were determined. Effect of TBZ (acute, 0.1-3.0 mg/kg, s.c.; repeated, 1.0 mg/kg for 7 days) on locomotor activity in methamphetamine-sensitized rats was assessed. Ability of TBZ (0.1-3.0 mg/kg; s.c.) or vehicle to decrease the discriminative effect of methamphetamine also was determined. Ability of TBZ (acute, 0.1-1.0 mg/kg, s.c.; repeated, 0.1 or 1.0 mg/kg for 7 days) to specifically decrease methamphetamine self-administration was determined; for comparison, a separate group of rats was assessed for effects of TBZ on food-maintained responding. Results show that TBZ was 11-fold more potent inhibiting DAT than SERT, and 2.5-fold more potent inhibiting VMAT2 than DAT. Results from behavioral studies showed that the lowest dose of TBZ transiently increased methamphetamine self-administration, whereas higher TBZ doses decreased methamphetamine self-administration. Also, TBZ at high doses decreased methamphetamine locomotor sensitization and discriminative stimulus effects, as well as food-maintained responding. Thus, despite acting as a potent VMAT2 inhibitor, these preclinical results indicate that TBZ lacks behavioral specificity as an inhibitor of methamphetamine-induced reinforcement, diminishing its viability as a suitable treatment for methamphetamine abuse.

  6. Anti-cocaine antibody and butyrylcholinesterase-derived cocaine hydrolase exert cooperative effects on cocaine pharmacokinetics and cocaine-induced locomotor activity in mice

    PubMed Central

    Brimijoin, Stephen; Orson, Frank; Kosten, Tom; Kinsey, Berma; Shen, Xiao Yun; White, Sarah J.; Gao, Yang

    2012-01-01

    We are investigating treatments for cocaine abuse based on viral gene transfer of a cocaine hydrolase (CocH) derived from human butyrylcholinesterase, which can reduce cocaine-stimulated locomotion and cocaine-primed reinstatement of drug-seeking behavior in rats for many months. Here, in mice, we explored the possibility that anti-cocaine antibodies can complement the actions of CocH to reduce cocaine uptake in brain and block centrally-evoked locomotor stimulation. Direct injections of test proteins showed that CocH (0.3 or 1 mg/kg) was effective by itself in reducing drug levels in plasma and brain of mice given cocaine (10 mg/kg, s.c., or 20 mg/kg, i.p). Administration of cocaine antibody per se at a low dose (8 mg/kg, i.p.) exerted little effect on cocaine distribution. However, a higher dose of antibody (12 mg/kg) caused peripheral trapping (increased plasma drug levels), which led to increased cocaine metabolism by CocH, as evidenced by a 6-fold rise in plasma benzoic acid. Behavioral tests with small doses of CocH and antibody (1 and 8 mg/kg, respectively) showed that neither agent alone reduced mouse locomotor activity triggered by a very large cocaine dose (100 mg/kg, i.p.). However, dual treatment completely suppressed the locomotor stimulation. Altogether, we found cooperative and possibly synergistic actions that warrant further exploration of dual therapies for treatment of cocaine abuse. PMID:22960160

  7. Tarsier-like locomotor specializations in the Oligocene primate Afrotarsius

    PubMed Central

    Rasmussen, D. Tab; Conroy, Glenn C.; Simons, Elwyn L.

    1998-01-01

    Tarsiers and extinct tarsier-like primates have played a central role in views of primate phylogeny and evolution for more than a century. Because of the importance of tarsiers in so many primatological problems, there has been particular interest in questions about the origin of tarsier specializations and the biogeography of early tarsioid radiations. We report on a new fossil of rare Afrotarsius that shows near identity to modern Tarsius in unique specializations of the leg, which provides information about the locomotor behavior and clarifies the phylogenetic position of this previously controversial primate. These specializations constitute evidence that Afrotarsius is a tarsiid, closely related to extant Tarsius; hence, it is now excluded from being a generalized sister taxon to Anthropoidea. PMID:9843978

  8. Cool running: locomotor performance at low body temperature in mammals.

    PubMed

    Rojas, A Daniella; Körtner, Gerhard; Geiser, Fritz

    2012-10-23

    Mammalian torpor saves enormous amounts of energy, but a widely assumed cost of torpor is immobility and therefore vulnerability to predators. Contrary to this assumption, some small marsupial mammals in the wild move while torpid at low body temperatures to basking sites, thereby minimizing energy expenditure during arousal. Hence, we quantified how mammalian locomotor performance is affected by body temperature. The three small marsupial species tested, known to use torpor and basking in the wild, could move while torpid at body temperatures as low as 14.8-17.9°C. Speed was a sigmoid function of body temperature, but body temperature effects on running speed were greater than those in an ectothermic lizard used for comparison. We provide the first quantitative data of movement at low body temperature in mammals, which have survival implications for wild heterothermic mammals, as directional movement at low body temperature permits both basking and predator avoidance.

  9. Unpredictable saccharin reinforcement enhances locomotor responding to amphetamine.

    PubMed

    Singer, B F; Scott-Railton, J; Vezina, P

    2012-01-01

    Drug-naïve, non-deprived rats were trained to lever press for saccharin under fixed-ratio (FR) or variable-ratio (VR) schedules of reinforcement. Rats trained on the VR schedule in which saccharin reinforcement was not predicted by a fixed number of lever presses subsequently showed an enhanced locomotor response to a threshold amphetamine challenge injection (0.5mg/kg IP) administered 2 weeks following the last saccharin session. This finding suggests that chronic exposure to gambling-like conditions of uncertain reinforcement can induce neuroadaptations in brain reward systems that are similar to those produced by repeated psychostimulant exposure and may lead to the development of addictive behaviors.

  10. Schedule-induced polydipsia experience decreases locomotor response to amphetamine.

    PubMed

    Tazi, A; Dantzer, R; Le Moal, M

    1988-04-01

    To investigate the influence of schedule-induced polydipsia (SIP) on central dopaminergic systems, rats trained in a SIP procedure were challenged with the psychostimulant and dopaminergic agonist, D-amphetamine. In a first experiment, rats that had access to water and developed SIP (SIP-positive) displayed a lower response to amphetamine than rats that had access to water but did not develop SIP (SIP-negative) and rats that had no access to water. There was no difference in the spontaneous activity of these different groups of animals. In a second experiment, SIP-positive rats displayed the same reduced response to amphetamine following only 10 min of SIP drinking. In addition, SIP-positive rats that were tested without access to water during the SIP test displayed an increased locomotor activity both after saline and amphetamine treatments. These results suggest that SIP has stress-reducing properties. PMID:3370459

  11. Novel locomotor muscle design in extreme deep-diving whales.

    PubMed

    Velten, B P; Dillaman, R M; Kinsey, S T; McLellan, W A; Pabst, D A

    2013-05-15

    Most marine mammals are hypothesized to routinely dive within their aerobic dive limit (ADL). Mammals that regularly perform deep, long-duration dives have locomotor muscles with elevated myoglobin concentrations that are composed of predominantly large, slow-twitch (Type I) fibers with low mitochondrial volume densities (V(mt)). These features contribute to extending ADL by increasing oxygen stores and decreasing metabolic rate. Recent tagging studies, however, have challenged the view that two groups of extreme deep-diving cetaceans dive within their ADLs. Beaked whales (including Ziphius cavirostris and Mesoplodon densirostris) routinely perform the deepest and longest average dives of any air-breathing vertebrate, and short-finned pilot whales (Globicephala macrorhynchus) perform high-speed sprints at depth. We investigated the locomotor muscle morphology and estimated total body oxygen stores of several species within these two groups of cetaceans to determine whether they (1) shared muscle design features with other deep divers and (2) performed dives within their calculated ADLs. Muscle of both cetaceans displayed high myoglobin concentrations and large fibers, as predicted, but novel fiber profiles for diving mammals. Beaked whales possessed a sprinter's fiber-type profile, composed of ~80% fast-twitch (Type II) fibers with low V(mt). Approximately one-third of the muscle fibers of short-finned pilot whales were slow-twitch, oxidative, glycolytic fibers, a rare fiber type for any mammal. The muscle morphology of beaked whales likely decreases the energetic cost of diving, while that of short-finned pilot whales supports high activity events. Calculated ADLs indicate that, at low metabolic rates, both beaked and short-finned pilot whales carry sufficient onboard oxygen to aerobically support their dives.

  12. Novelty-related rapid locomotor effects of corticosterone in rats.

    PubMed

    Sandi, C; Venero, C; Guaza, C

    1996-04-01

    Glucocorticoids modulate brain function and behaviour through different mechanisms. Although classical effects are mediated through intracellular receptors that modulate gene transcription, recent evidence supports the existence of rapid, nongenomic steroid effects through the neuronal membrane. In this study, we explored possible rapid behavioural effects of corticosterone in the rat, which could provide a model to characterize further the mechanisms involved in rapid corticosteroid nongenomic actions. We found that a corticosterone injection, at doses (2.5 or 5 mg/kg) that mimic plasma concentrations produced by substantial stress, rapidly increases (within 7.5 min of its systemic administration) the locomotor response displayed by rats in a novel environment (activity cage). A lower dose of 1 mg/kg failed to induce this effect. In addition, corticosterone failed to increase locomotion when administered to rats that had been previously exposed to the activity cage. Corticosterone-induced increased locomotion in a novelty situation was not counteracted by either the intracerebroventricular administration of the protein synthesis inhibitor cycloheximide, or by the intracerebroventricular administration of specific antagonists for each type of intracellular corticosteroid receptor, i.e. RU28318, a mineralocorticoid receptor antagonist and RU38486, a glucocorticoid receptor antagonist. Further studies supported the viability of the receptor antagonists to display an anti-corticosteroid action interfering, as previously reported, with the behavioural &winning test. Therefore, the rapid actions of corticosterone in locomotor activity described here, which appear to be nongenomic, might provide a model for future research on the elucidation of the mechanisms involved in steroid-membrane interactions.

  13. A murine model of acute myeloid leukemia with Evi1 overexpression and autocrine stimulation by an intracellular form of GM-CSF in DA-3 cells.

    PubMed

    Cardona, Maria E; Simonson, Oscar E; Oprea, Iulian I; Moreno, Pedro M D; Silva-Lara, Maria F; Mohamed, Abdalla J; Christensson, Birger; Gahrton, Gösta; Dilber, M Sirac; Smith, C I Edvard; Arteaga, H Jose

    2016-01-01

    The poor treatment response of acute myeloid leukemia (AML) overexpressing high-risk oncogenes such as EVI1, demands specific animal models for new treatment evaluations. Evi1 is a common site of activating integrations in murine leukemia virus (MLV)-induced AML and in retroviral and lentiviral gene-modified HCS. Still, a model of overt AML induced by Evi1 has not been generated. Cell lines from MLV-induced AML are growth factor-dependent and non-transplantable. Hence, for the leukemia maintenance in the infected animals, a growth factor source such as chronic immune response has been suggested. We have investigated whether these leukemias are transplantable if provided with growth factors. We show that the Evi1(+)DA-3 cells modified to express an intracellular form of GM-CSF, acquired growth factor independence and transplantability and caused an overt leukemia in syngeneic hosts, without increasing serum GM-CSF levels. We propose this as a general approach for modeling different forms of high-risk human AML using similar cell lines.

  14. The effects of radio-frequency lesions of the nucleus accumbens on d-amphetamine-induced locomotor and rearing behavior in rats.

    PubMed

    Kehne, J H; Sant, W W; Sorenson, C A

    1981-01-01

    A large body of evidence supports the conclusion that mesolimbic dopaminergic neurons, particularly those that innervate the nucleus accumbens (n. ACC), are important for the expression of amphetamine-stimulated locomotor behavior (ASLB). However, a contradictory report (Wirtshafter et al. 1978), stating that bilateral lesions of the n. ACC fail to block ASLB, was based on a general measure of activity that did not distinguish between locomotion and rearing. In the present study, observer ratings of videotaped responses were used to determine the separate effects of 2.0 mg/kg d-amphetamine (d-AMP) on locomotion and rearing in rats with either sham or radio-frequency lesions of the n. ACC. The n.ACC lesions blocked the locomotor stimulation, but not the increased rearing that follows d-AMP administration. These results support the general conclusion that dopaminergic terminals in the n. ACC are important for the expression of ASLB, and further suggest that d-AMP-stimulated locomotion and rearing are mediated through different neural substrates. PMID:6803281

  15. Individual Differences in Ethanol Locomotor Sensitization Are Associated with Dopamine D1 Receptor Intra-Cellular Signaling of DARPP-32 in the Nucleus Accumbens

    PubMed Central

    Abrahao, Karina Possa; Oliveira Goeldner, Francine; Souza-Formigoni, Maria Lucia Oliveira

    2014-01-01

    In mice there are clear individual differences in the development of behavioral sensitization to ethanol, a progressive potentiation of its psychomotor stimulant effect. Variability in the behavioral responses to ethanol has been associated with alcohol preference. Here we investigated if the functional hyperresponsiveness of D1 receptors observed in ethanol sensitized mice leads to an increased activation of DARPP-32, a central regulatory protein in medium spiny neurons, in the nucleus accumbens - a brain region known to play a role in drug reinforcement. Swiss Webster mice received ethanol (2.2 g/kg/day) or saline i.p. administrations for 21 days and were weekly evaluated regarding their locomotor activity. From those treated with ethanol, the 33% with the highest levels of locomotor activity were classified as “sensitized” and the 33% with the lowest levels as "non-sensitized”. The latter presented similar locomotor levels to those of saline-treated mice. Different subgroups of mice received intra-accumbens administrations of saline and, 48 h later, SKF-38393, D1 receptor agonist 0.1 or 1 µg/side. Indeed, sensitized mice presented functional hyperresponsiveness of D1 receptors in the accumbens. Two weeks following the ethanol treatment, other subgroups received systemic saline or SKF 10 mg/kg, 20 min before the euthanasia. The nucleus accumbens were dissected for the Western Blot analyses of total DARPP-32 and phospho-Thr34-DARPP-32 expression. D1 receptor activation induced higher phospho-Thr34-DARPP-32 expression in sensitized mice than in non-sensitized or saline. The functionally hyperresponsiveness of D1 receptors in the nucleus accumbens is associated with an increased phospho-Thr34-DARPP-32 expression after D1 receptor activation. These data suggest that an enduring increase in the sensitivity of the dopamine D1 receptor intracellular pathway sensitivity represents a neurobiological correlate associated with the development of locomotor

  16. Effects on steroid hormones secretion resulting from the acute stimulation of sectioning the superior ovarian nerve to pre-pubertal rats

    PubMed Central

    2012-01-01

    In the adult rat, neural signals arriving to the ovary via the superior ovarian nerve (SON) modulate progesterone (P4), testosterone (T) and estradiol (E2) secretion. The aims of the present study were to analyze if the SON in the pre-pubertal rat also modulates ovarian hormone secretion and the release of follicle stimulating hormone (FSH) and luteinizing (LH) hormone. P4, T, E2, FSH and LH serum levels were measured 30 or 60 minutes after sectioning the SON of pre-pubertal female rats. Our results indicate that the effects on hormone levels resulting from unilaterally or bilaterally sectioning the SON depends on the analyzed hormone, and the time lapse between surgery and autopsy, and that the treatment yielded asymmetric results. The results also suggest that in the pre-pubertal rat the neural signals arriving to the ovaries via the SON regulate the enzymes participating in P4, T and E2 synthesis in a non-parallel way, indicating that the mechanisms regulating the synthesis of each hormone are not regulated by the same signals. Also, that the changes in the steroids hormones are not explained exclusively by the modifications in gonadotropins secretion. The observed differences in hormone levels between rats sacrificed 30 and 60 min after surgery reflect the onset of the compensatory systems regulating hormones secretion. PMID:23110668

  17. Upregulation of Steroidogenic Acute Regulatory Protein by Hypoxia Stimulates Aldosterone Synthesis in Pulmonary Artery Endothelial Cells to Promote Pulmonary Vascular Fibrosis

    PubMed Central

    Maron, Bradley A.; Oldham, William M.; Chan, Stephen Y.; Vargas, Sara O.; Arons, Elena; Zhang, Ying-Yi; Loscalzo, Joseph; Leopold, Jane A.

    2014-01-01

    Background The molecular mechanism(s) regulating hypoxia-induced vascular fibrosis are unresolved. Hyperaldosteronism correlates positively with vascular remodeling in pulmonary arterial hypertension (PAH), suggesting that aldosterone may contribute to the pulmonary vasculopathy of hypoxia. The hypoxia-sensitive transcription factors c-Fos/c-Jun regulate steroidogenic acute regulatory protein (StAR), which facilitates the rate-limiting step of aldosterone steroidogenesis. We hypothesized that c-Fos/c-Jun upregulation by hypoxia activates StAR-dependent aldosterone synthesis in human pulmonary artery endothelial cells (HPAECs) to promote vascular fibrosis in PAH. Methods and Results Patients with PAH, rats with Sugen/hypoxia-PAH, and mice exposed to chronic hypoxia expressed increased StAR in remodeled pulmonary arterioles, providing a basis for investigating hypoxia-StAR signaling in HPAECs. Hypoxia (2.0% FiO2) increased aldosterone levels selectively in HPAECs, which was confirmed by liquid chromatography-mass spectrometry. Increased aldosterone by hypoxia resulted from enhanced c-Fos/c-Jun binding to the proximal activator protein (AP-1) site of the StAR promoter in HPAECs, which increased StAR expression and activity. In HPAECs transfected with StAR-siRNA or treated with the AP-1 inhibitor, SR-11302, hypoxia failed to increase aldosterone, confirming that aldosterone biosynthesis required StAR activation by c-Fos/c-Jun. The functional consequences of aldosterone were confirmed by pharmacological inhibition of the mineralocorticoid receptor with spironolactone or eplerenone, which attenuated hypoxia-induced upregulation of the fibrogenic protein connective tissue growth factor and collagen III in vitro, and decreased pulmonary vascular fibrosis to improve pulmonary hypertension in Conclusions Our findings identify autonomous aldosterone synthesis in HPAECs due to hypoxia-mediated upregulation of StAR as a novel molecular mechanism that promotes pulmonary vascular

  18. Hyperglycemia Determines Increased Specific MicroRNAs Levels in Sera and HDL of Acute Coronary Syndrome Patients and Stimulates MicroRNAs Production in Human Macrophages

    PubMed Central

    Carnuta, Mihaela G.; Sanda, Gabriela M.; Stancu, Camelia S.; Popescu, Andreea C.; Popescu, Mihaela R.; Vlad, Adelina; Dimulescu, Doina R.; Simionescu, Maya; Sima, Anca V.

    2016-01-01

    We aimed to determine the levels of microRNAs (miRNAs) in sera and HDL of acute coronary syndrome (ACS) compared to stable angina (SA) patients with/without hyperglycemia, and evaluate comparatively the functional effect of these sera on the processing machinery proteins (Drosha, DGCR8, Dicer) and miRNAs production in human macrophages. MiRNAs levels in sera and HDL from 35 SA and 72 ACS patients and 30 healthy subjects were measured by using microRNA TaqMan assays. MiR-223, miR-92a, miR-486, miR-122, miR-125a and miR-146a levels were higher in the hyperglycemic ACS compared to normoglycemic sera. MiR-223 and miR-486 prevailed in HDL2, while miR-92a predominated in HDL3, all three miRNAs discriminating between ACS and SA patients; their levels were increased in HDL from hyperglycemic ACS patients versus normoglycemic ones. The incubation of human macrophages with sera from ACS and SA patients showed that all patients’ sera induced an increase of Drosha, DGCR8 and Dicer expressions and of selected miRNAs levels compared to control sera, the effect being higher in the case of hyperglycemic versus normoglycemic ACS sera. The addition of glucose to SA and ACS sera increased Drosha, DGCR8 and Dicer expression and miRNAs levels in the exposed macrophages. In conclusion, hyperglycemia is associated with increased miR-223, miR-92a, miR-486 levels in HDL, which discriminate between ACS and SA patients. Exposure of human macrophages to ACS compared to SA sera determines the upregulation of Drosha, DGCR8 and Dicer expression and the increase of selected miRNAs production, the effect being augmented by an increased glucose concentration. PMID:27519051

  19. Hyperglycemia Determines Increased Specific MicroRNAs Levels in Sera and HDL of Acute Coronary Syndrome Patients and Stimulates MicroRNAs Production in Human Macrophages.

    PubMed

    Simionescu, Natalia; Niculescu, Loredan S; Carnuta, Mihaela G; Sanda, Gabriela M; Stancu, Camelia S; Popescu, Andreea C; Popescu, Mihaela R; Vlad, Adelina; Dimulescu, Doina R; Simionescu, Maya; Sima, Anca V

    2016-01-01

    We aimed to determine the levels of microRNAs (miRNAs) in sera and HDL of acute coronary syndrome (ACS) compared to stable angina (SA) patients with/without hyperglycemia, and evaluate comparatively the functional effect of these sera on the processing machinery proteins (Drosha, DGCR8, Dicer) and miRNAs production in human macrophages. MiRNAs levels in sera and HDL from 35 SA and 72 ACS patients and 30 healthy subjects were measured by using microRNA TaqMan assays. MiR-223, miR-92a, miR-486, miR-122, miR-125a and miR-146a levels were higher in the hyperglycemic ACS compared to normoglycemic sera. MiR-223 and miR-486 prevailed in HDL2, while miR-92a predominated in HDL3, all three miRNAs discriminating between ACS and SA patients; their levels were increased in HDL from hyperglycemic ACS patients versus normoglycemic ones. The incubation of human macrophages with sera from ACS and SA patients showed that all patients' sera induced an increase of Drosha, DGCR8 and Dicer expressions and of selected miRNAs levels compared to control sera, the effect being higher in the case of hyperglycemic versus normoglycemic ACS sera. The addition of glucose to SA and ACS sera increased Drosha, DGCR8 and Dicer expression and miRNAs levels in the exposed macrophages. In conclusion, hyperglycemia is associated with increased miR-223, miR-92a, miR-486 levels in HDL, which discriminate between ACS and SA patients. Exposure of human macrophages to ACS compared to SA sera determines the upregulation of Drosha, DGCR8 and Dicer expression and the increase of selected miRNAs production, the effect being augmented by an increased glucose concentration. PMID:27519051

  20. Rotenone-stimulated superoxide release from mitochondrial complex I acutely augments L-type Ca2+ current in A7r5 aortic smooth muscle cells.

    PubMed

    Ochi, Rikuo; Dhagia, Vidhi; Lakhkar, Anand; Patel, Dhara; Wolin, Michael S; Gupte, Sachin A

    2016-05-01

    Voltage-gated L-type Ca(2+) current (ICa,L) induces contraction of arterial smooth muscle cells (ASMCs), and ICa,L is increased by H2O2 in ASMCs. Superoxide released from the mitochondrial respiratory chain (MRC) is dismutated to H2O2 We studied whether superoxide per se acutely modulates ICa,L in ASMCs using cultured A7r5 cells derived from rat aorta. Rotenone is a toxin that inhibits complex I of the MRC and increases mitochondrial superoxide release. The superoxide content of mitochondria was estimated using mitochondrial-specific MitoSOX and HPLC methods, and was shown to be increased by a brief exposure to 10 μM rotenone. ICa,L was recorded with 5 mM BAPTA in the pipette solution. Rotenone administration (10 nM to 10 μM) resulted in a greater ICa,L increase in a dose-dependent manner to a maximum of 22.1% at 10 μM for 1 min, which gradually decreased to 9% after 5 min. The rotenone-induced ICa,L increase was associated with a shift in the current-voltage relationship (I-V) to a hyperpolarizing direction. DTT administration resulted in a 17.9% increase in ICa,L without a negative shift in I-V, and rotenone produced an additional increase with a shift. H2O2 (0.3 mM) inhibited ICa,L by 13%, and additional rotenone induced an increase with a negative shift. Sustained treatment with Tempol (4-hydroxy tempo) led to a significant ICa,L increase but it inhibited the rotenone-induced increase. Staurosporine, a broad-spectrum protein kinase inhibitor, partially inhibited ICa,L and completely suppressed the rotenone-induced increase. Superoxide released from mitochondria affected protein kinases and resulted in stronger ICa,L preceding its dismutation to H2O2 The removal of nitric oxide is a likely mechanism for the increase in ICa,L. PMID:26873970

  1. Cytotoxic Capacity of IL-15-Stimulated Cytokine-Induced Killer Cells Against Human Acute Myeloid Leukemia and Rhabdomyosarcoma in Humanized Preclinical Mouse Models

    PubMed Central

    Rettinger, Eva; Meyer, Vida; Kreyenberg, Hermann; Volk, Andreas; Kuçi, Selim; Willasch, Andre; Koscielniak, Ewa; Fulda, Simone; Wels, Winfried S.; Boenig, Halvard; Klingebiel, Thomas; Bader, Peter

    2012-01-01

    Allogeneic stem cell transplantation (allo-SCT) has become an important treatment modality for patients with high-risk acute myeloid leukemia (AML) and is also under investigation for soft tissue sarcomas. The therapeutic success is still limited by minimal residual disease (MRD) status ultimately leading to patients’ relapse. Adoptive donor lymphocyte infusions based on MRD status using IL-15-expanded cytokine-induced killer (CIK) cells may prevent relapse without causing graft-versus-host-disease (GvHD). To generate preclinical data we developed mouse models to study anti-leukemic- and anti-tumor-potential of CIK cells in vivo. Immunodeficient mice (NOD/SCID/IL-2Rγc−, NSG) were injected intravenously with human leukemic cell lines THP-1, SH-2 and with human rhabdomyosarcoma (RMS) cell lines RH41 and RH30 at minimal doses required for leukemia or tumor engraftment. Mice transplanted with THP-1 or RH41 cells were randomly assigned for analysis of CIK cell treatment. Organs of mice were analyzed by flow cytometry as well as quantitative polymerase chain reaction for engraftment of malignant cells and CIK cells. Potential of CIK cells to induce GvHD was determined by histological analysis. Tissues of the highest degree of THP-1 cell expansion included bone marrow followed by liver, lung, spleen, peripheral blood (PB), and brain. RH30 and RH41 engraftment mainly took place in liver and lung, but was also detectable in spleen and PB. In spite of delayed CIK cell expansion compared with malignant cells, CIK cells injected at equal amounts were sufficient for significant reduction of RH41 cells, whereas against fast-expanding THP-1 cells 250 times more CIK than THP-1 cells were needed to achieve comparable results. Our preclinical in vivo mouse models showed a reliable 100% engraftment of malignant cells which is essential for analysis of anti-cancer therapy. Furthermore our data demonstrated that IL-15-activated CIK cells have potent cytotoxic capacity against AML

  2. Tolerance to the locomotor-activating effects of 3,4-methylenedioxymethamphetamine (MDMA) predicts escalation of MDMA self-administration and cue-induced reinstatement of MDMA seeking in rats.

    PubMed

    Ball, Kevin T; Slane, Mylissa

    2014-11-01

    Pre-clinical studies of individual differences in addiction vulnerability have been increasing over recent years, but the amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) has received relatively little attention in this regard. Previously, we reported large individual differences both in rats' initial behavioral response to experimenter-administered MDMA and their degree of behavioral sensitization to repeated administration. To determine whether these differences could predict subsequent patterns of MDMA-taking or -seeking behaviors we used the self-administration-extinction-reinstatement model to examine addiction-like behavior (i.e., escalation of MDMA self-administration and cue-induced reinstatement of MDMA seeking) in rats a priori characterized for either locomotor sensitization or tolerance to MDMA. Rats that developed tolerance to the locomotor-activating effects of MDMA had a significantly larger locomotor response to the first MDMA injection relative to rats that developed sensitization. Importantly, rats that developed tolerance subsequently displayed an escalation of MDMA self-administration over days, as well as clear cue-induced reinstatement of MDMA seeking following extinction. Conversely, rats that developed locomotor sensitization to MDMA subsequently maintained relatively stable levels of MDMA self-administration over days and showed no cue-induced reinstatement of MDMA seeking. These results show that differences in the level of psychomotor activation following acute and repeated MDMA administration can reliably predict two important addiction-like behaviors in rats, which may have implications in the prediction of compulsive MDMA use in humans.

  3. Deep brain stimulation affects conditioned and unconditioned anxiety in different brain areas.

    PubMed

    van Dijk, A; Klanker, M; van Oorschot, N; Post, R; Hamelink, R; Feenstra, M G P; Denys, D

    2013-01-01

    Deep brain stimulation (DBS) of the nucleus accumbens (NAc) has proven to be an effective treatment for therapy refractory obsessive-compulsive disorder. Clinical observations show that anxiety symptoms decrease rapidly following DBS. As in clinical studies different regions are targeted, it is of principal interest to understand which brain area is responsible for the anxiolytic effect and whether high-frequency stimulation of different areas differentially affect unconditioned (innate) and conditioned (learned) anxiety. In this study, we examined the effect of stimulation in five brain areas in rats (NAc core and shell, bed nucleus of the stria terminalis (BNST), internal capsule (IC) and the ventral medial caudate nucleus (CAU)). The elevated plus maze was used to test the effect of stimulation on unconditioned anxiety, the Vogel conflict test for conditioned anxiety, and an activity test for general locomotor behaviour. We found different anxiolytic effects of stimulation in the five target areas. Stimulation of the CAU decreased both conditioned and unconditioned anxiety, while stimulation of the IC uniquely reduced conditioned anxiety. Remarkably, neither the accumbens nor the BNST stimulation affected conditioned or unconditioned anxiety. Locomotor activity increased with NAc core stimulation but decreased with the BNST. These findings suggest that (1) DBS may have a differential effect on unconditioned and conditioned anxiety depending on the stimulation area, and that (2) stimulation of the IC exclusively reduces conditioned anxiety. This suggests that the anxiolytic effects of DBS seen in OCD patients may not be induced by stimulation of the NAc, but rather by the IC. PMID:23900312

  4. Acute ingestion of citrulline stimulates nitric oxide synthesis but does not increase blood flow in healthy young and older adults with heart failure.

    PubMed

    Kim, Il-Young; Schutzler, Scott E; Schrader, Amy; Spencer, Horace J; Azhar, Gohar; Deutz, Nicolaas E P; Wolfe, Robert R

    2015-12-01

    To determine if age-associated vascular dysfunction in older adults with heart failure (HF) is due to insufficient synthesis of nitric oxide (NO), we performed two separate studies: 1) a kinetic study with a stable isotope tracer method to determine in vivo kinetics of NO metabolism, and 2) a vascular function study using a plethysmography method to determine reactive hyperemic forearm blood flow (RH-FBF) in older and young adults in the fasted state and in response to citrulline ingestion. In the fasted state, NO synthesis (per kg body wt) was ∼ 50% lower in older vs. young adults and was related to a decreased rate of appearance of the NO precursor arginine. Citrulline ingestion (3 g) stimulated de novo arginine synthesis in both older [6.88 ± 0.83 to 35.40 ± 4.90 μmol · kg body wt(-1) · h(-1)] and to a greater extent in young adults (12.02 ± 1.01 to 66.26 ± 4.79 μmol · kg body wt(-1) · h(-1)). NO synthesis rate increased correspondingly in older (0.17 ± 0.01 to 2.12 ± 0.36 μmol · kg body wt(-1) · h(-1)) and to a greater extent in young adults (0.36 ± 0.04 to 3.57 ± 0.47 μmol · kg body wt(-1) · h(-1)). Consistent with the kinetic data, RH-FBF in the fasted state was ∼ 40% reduced in older vs. young adults. However, citrulline ingestion (10 g) failed to increase RH-FBF in either older or young adults. In conclusion, citrulline ingestion improved impaired NO synthesis in older HF adults but not RH-FBF, suggesting that factors other than NO synthesis play a role in the impaired RH-FBF in older HF adults, and/or it may require a longer duration of supplementation to be effective in improving RH-FBF.

  5. Establishment of a retinoic acid-resistant human acute promyelocytic leukaemia (APL) model in human granulocyte-macrophage colony-stimulating factor (hGM-CSF) transgenic severe combined immunodeficiency (SCID) mice.

    PubMed Central

    Fukuchi, Y.; Kizaki, M.; Kinjo, K.; Awaya, N.; Muto, A.; Ito, M.; Kawai, Y.; Umezawa, A.; Hata, J.; Ueyama, Y.; Ikeda, Y.

    1998-01-01

    To understand the mechanisms and identify novel approaches to overcoming retinoic acid (RA) resistance in acute promyelocytic leukaemia (APL), we established the first human RA-resistant APL model in severe combined immunodeficiency (SCID) mice. UF-1 cells, an RA-resistant APL cell line established in our laboratory, were transplanted into human granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing SCID (hGMTg SCID) mice and inoculated cells formed subcutaneous tumours in all hGMTg SCID mice, but not in the non-transgenic control SCID mice. Single-cell suspensions (UF-1/GMTg SCID cells) were similar in morphological, immunological, cytogenetic and molecular genetic features to parental UF-1 cells. All-trans RA did not change the morphological features of cells or their expression of CD11b. RA did not alter the growth curve of cells as determined by MTT assay, suggesting that UF-1/GMTg SCID cells are resistant to RA. These results demonstrate that this is the first RA-resistant APL animal model that may be useful for investigating the biology of this myeloid leukaemia in vivo, as well as for evaluating novel therapeutic approaches including patients with RA-resistant APL. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9764578

  6. Sustained receptor activation and hyperproliferation in response to granulocyte colony-stimulating factor (G-CSF) in mice with a severe congenital neutropenia/acute myeloid leukemia-derived mutation in the G-CSF receptor gene.

    PubMed

    Hermans, M H; Antonissen, C; Ward, A C; Mayen, A E; Ploemacher, R E; Touw, I P

    1999-02-15

    In approximately 20% of cases of severe congenital neutropenia (SCN), mutations are found in the gene encoding the granulocyte colony-stimulating factor receptor (G-CSF-R). These mutations introduce premature stop codons, which result in truncation of 82-98 COOH-terminal amino acids of the receptor. SCN patients who develop secondary myelodysplastic syndrome and acute myeloid leukemia almost invariably acquired a GCSFR mutation, suggesting that this genetic alteration represents a key step in leukemogenesis. Here we show that an equivalent mutation targeted in mice (gcsfr-Delta715) results in the selective expansion of the G-CSF- responsive progenitor (G-CFC) compartment in the bone marrow. In addition, in vivo treatment of gcsfr-Delta715 mice with G-CSF results in increased production of neutrophils leading to a sustained neutrophilia. This hyperproliferative response to G-CSF is accompanied by prolonged activation of signal transducer and activator of transcription (STAT) complexes and extended cell surface expression of mutant receptors due to defective internalization. In view of the continuous G-CSF treatment of SCN patients, these data provide insight into why progenitor cells expressing truncated receptors clonally expand in vivo, and why these cells may be targets for additional genetic events leading to leukemia. PMID:9989983

  7. Sustained Receptor Activation and Hyperproliferation in Response to Granulocyte Colony-stimulating Factor (G-CSF) in Mice with a Severe Congenital Neutropenia/Acute Myeloid Leukemia–derived Mutation in the G-CSF Receptor Gene

    PubMed Central

    Hermans, Mirjam H.A.; Antonissen, Claudia; Ward, Alister C.; Mayen, Angelique E.M.; Ploemacher, Rob E.; Touw, Ivo P.

    1999-01-01

    In approximately 20% of cases of severe congenital neutropenia (SCN), mutations are found in the gene encoding the granulocyte colony-stimulating factor receptor (G-CSF–R). These mutations introduce premature stop codons, which result in truncation of 82–98 COOH-terminal amino acids of the receptor. SCN patients who develop secondary myelodysplastic syndrome and acute myeloid leukemia almost invariably acquired a GCSFR mutation, suggesting that this genetic alteration represents a key step in leukemogenesis. Here we show that an equivalent mutation targeted in mice (gcsfr-Δ715) results in the selective expansion of the G-CSF– responsive progenitor (G-CFC) compartment in the bone marrow. In addition, in vivo treatment of gcsfr-Δ715 mice with G-CSF results in increased production of neutrophils leading to a sustained neutrophilia. This hyperproliferative response to G-CSF is accompanied by prolonged activation of signal transducer and activator of transcription (STAT) complexes and extended cell surface expression of mutant receptors due to defective internalization. In view of the continuous G-CSF treatment of SCN patients, these data provide insight into why progenitor cells expressing truncated receptors clonally expand in vivo, and why these cells may be targets for additional genetic events leading to leukemia. PMID:9989983

  8. New Role for Granulocyte Colony-Stimulating Factor-Induced Extracellular Signal-Regulated Kinase 1/2 in Histone Modification and Retinoic Acid Receptor α Recruitment to Gene Promoters: Relevance to Acute Promyelocytic Leukemia Cell Differentiation ▿

    PubMed Central

    Cassinat, B.; Zassadowski, F.; Ferry, C.; Llopis, L.; Bruck, N.; Lainey, E.; Duong, V.; Cras, A.; Despouy, G.; Chourbagi, O.; Beinse, G.; Fenaux, P.; Rochette Egly, C.; Chomienne, C.

    2011-01-01

    The induction of the granulocytic differentiation of leukemic cells by all-trans retinoic acid (RA) has been a major breakthrough in terms of survival for acute promyelocytic leukemia (APL) patients. Here we highlight the synergism and the underlying novel mechanism between RA and the granulocyte colony-stimulating factor (G-CSF) to restore differentiation of RA-refractory APL blasts. First, we show that in RA-refractory APL cells (UF-1 cell line), PML-RA receptor alpha (RARα) is not released from target promoters in response to RA, resulting in the maintenance of chromatin repression. Consequently, RARα cannot be recruited, and the RA target genes are not activated. We then deciphered how the combination of G-CSF and RA successfully restored the activation of RA target genes to levels achieved in RA-sensitive APL cells. We demonstrate that G-CSF restores RARα recruitment to target gene promoters through the activation of the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway and the subsequent derepression of chromatin. Thus, combinatorial activation of cytokines and RARs potentiates transcriptional activity through epigenetic modifications induced by specific signaling pathways. PMID:21262770

  9. Sustained receptor activation and hyperproliferation in response to granulocyte colony-stimulating factor (G-CSF) in mice with a severe congenital neutropenia/acute myeloid leukemia-derived mutation in the G-CSF receptor gene.

    PubMed

    Hermans, M H; Antonissen, C; Ward, A C; Mayen, A E; Ploemacher, R E; Touw, I P

    1999-02-15

    In approximately 20% of cases of severe congenital neutropenia (SCN), mutations are found in the gene encoding the granulocyte colony-stimulating factor receptor (G-CSF-R). These mutations introduce premature stop codons, which result in truncation of 82-98 COOH-terminal amino acids of the receptor. SCN patients who develop secondary myelodysplastic syndrome and acute myeloid leukemia almost invariably acquired a GCSFR mutation, suggesting that this genetic alteration represents a key step in leukemogenesis. Here we show that an equivalent mutation targeted in mice (gcsfr-Delta715) results in the selective expansion of the G-CSF- responsive progenitor (G-CFC) compartment in the bone marrow. In addition, in vivo treatment of gcsfr-Delta715 mice with G-CSF results in increased production of neutrophils leading to a sustained neutrophilia. This hyperproliferative response to G-CSF is accompanied by prolonged activation of signal transducer and activator of transcription (STAT) complexes and extended cell surface expression of mutant receptors due to defective internalization. In view of the continuous G-CSF treatment of SCN patients, these data provide insight into why progenitor cells expressing truncated receptors clonally expand in vivo, and why these cells may be targets for additional genetic events leading to leukemia.

  10. Involvement of neuropeptide FF receptors in neuroadaptive responses to acute and chronic opiate treatments.

    PubMed

    Elhabazi, K; Trigo, J M; Mollereau, C; Moulédous, L; Zajac, J-M; Bihel, F; Schmitt, M; Bourguignon, J J; Meziane, H; Petit-demoulière, B; Bockel, F; Maldonado, R; Simonin, F

    2012-01-01

    BACKGROUND AND PURPOSE Opiates remain the most effective compounds for alleviating severe pain across a wide range of conditions. However, their use is associated with significant side effects. Neuropeptide FF (NPFF) receptors have been implicated in several opiate-induced neuroadaptive changes including the development of tolerance. In this study, we investigated the consequences of NPFF receptor blockade on acute and chronic stimulation of opioid receptors in mice by using RF9, a potent and selective antagonist of NPFF receptors that can be administered systemically. EXPERIMENTAL APPROACH The effects of RF9 were investigated on opioid pharmacological responses including locomotor activity, antinociception, opioid-induced hyperalgesia, rewarding properties and physical dependence. KEY RESULTS RF9 had no effect on morphine-induced horizontal hyperlocomotion and slightly attenuated the decrease induced in vertical activity. Furthermore, RF9 dose-dependently blocked the long-lasting hyperalgesia produced by either acute fentanyl or chronic morphine administration. RF9 also potentiated opiate early analgesic effects and prevented the development of morphine tolerance. Finally, RF9 increased morphine-induced conditioned place preference without producing any rewarding effect by itself and decreased naltrexone-precipitated withdrawal syndrome following chronic morphine treatment. CONCLUSION AND IMPLICATIONS The NPFF system is involved in the development of two major undesirable effects: tolerance and dependence, which are clinically associated with prolonged exposure to opiates. Our findings suggest that NPFF receptors are interesting therapeutic targets to improve the analgesic efficacy of opiates by limiting the development of tolerance, and for the treatment of opioid dependence.

  11. Extract of Hypericum perforatum blocks caffeine-induced locomotor activity in mice: a possible role of nitric oxide.

    PubMed

    Uzbay, I Tayfun; Coskun, Ilke; Kayir, Hakan; Ozturk, Nilgun; Ozturk, Yusuf

    2007-05-01

    The present study investigated the effects of HPE on caffeine-induced locomotor activity in mice. Caffeine (4-16 mg/kg) or saline were given to adult male Swiss-Webster mice, and the locomotor activity was immediately measured for 30 min. HPE (6-48 mg/kg) and saline were injected to another group of mice and the locomotor activity was measured 20 min later. HPE (6-24 mg/kg) was also administered to another group of mice 20 min before caffeine (16 mg/kg) injections and the locomotor activity was recorded for 30 min immediately after caffeine administrations. Finally l-arginine (1 g/kg) was administered i.p. 20 min before HPE (6 mg/kg) and the locomotor activity was measured as mentioned above. Each group of mice was used only once. Caffeine produced some significant increases in locomotor activity of the mice. HPE (6-24 mg/kg) significantly blocked the caffeine-induced locomotor hyperactivity. Pretreatment of l-arginine (1 g/kg) reversed the inhibitory effect of HPE (6 mg/kg) on caffeine-induced locomotor activity without producing any significant effect on locomotor activity of the mice when it was administered alone. The results suggest that HPE blocks caffeine-induced locomotor hyperactivity in mice. Furthermore, the inhibitory effect of HPE on caffeine-induced locomotor activity may be related to its NOS inhibitory property.

  12. CCK-8 injected into the nucleus accumbens attenuates the supersensitive locomotor response to apomorphine in 6-OHDA and chronic-neuroleptic treated rats.

    PubMed

    Weiss, F; Ettenberg, A; Koob, G F

    1989-01-01

    Postsynaptic dopamine-cholecystokinin (CCK) interactions in the nucleus accumbens were studied in two behavioral preparations of DA receptor supersensitivity: chronic-neuroleptic treated and 6-hydroxydopamine (6-OHDA) denervated rats. Subcutaneous (SC) injections of apomorphine (APO; 0.15 mg/kg) in experiment 1 produced marked hyperlocomotion in rats following 12 days of pretreatment with cis-[Z]-flupenthixol (2 mg/kg; twice per day). Bilateral intra-accumbens (N.Acc.) microinjections of CCK-8 (2 ng and 2 micrograms) reliably reduced APO-stimulated hyperlocomotion. An intermediate CCK dose (20 ng) was without effect. No change in APO responsivity following chronic vehicle treatment was observed and the baseline APO response was not altered by CCK at any dose. Denervation of mesolimbic dopamine (DA) terminals by intra-N.Acc. injections of 6-hydroxydopamine (6-OHDA; 8 micrograms/side) in experiment 2 similarly resulted in intense locomotor hyperactivity after APO stimulation (0.1 mg/kg; SC). Bilateral intra-N.Acc. injections of CCK-8 (1, 10, 100 ng, and 1 micrograms) significantly attenuated the supersensitive locomotor response to APO. As in experiment 1, CCK produced "biphasic" dose-response effects with strong attenuation that persisted throughout the entire 60-min test at both high (1 microgram) and low (1 ng) doses. Intermediate CCK doses (10 and 100 ng) produced only short-term reductions in activity. Hypomotility induced by APO in SHAM-lesioned rats was not effectively reversed by CCK treatments. CCK had no effect on unstimulated baseline locomotor activity in either 6-OHDA or SHAM-lesioned rats. These results provide further evidence that CCK-8 modulates mesolimbic DA activity by functionally opposing the postsynaptic effects of DA in the region of the nucleus accumbens. PMID:2574480

  13. Stereoselective Effects of Abused “Bath Salt” Constituent 3,4-Methylenedioxypyrovalerone in Mice: Drug Discrimination, Locomotor Activity, and Thermoregulation

    PubMed Central

    Gannon, Brenda M.; Williamson, Adrian; Suzuki, Masaki; Rice, Kenner C.

    2016-01-01

    3,4-Methylenedioxypyrovalerone (MDPV) is a common constituent of illicit “bath salts” products. MDPV is a chiral molecule, but the contribution of each enantiomer to in vivo effects in mice has not been determined. To address this, mice were trained to discriminate 10 mg/kg cocaine from saline, and substitutions with racemic MDPV, S(+)-MDPV, and R(−)-MDPV were performed. Other mice were implanted with telemetry probes to monitor core temperature and locomotor responses elicited by racemic MDPV, S(+)-MDPV, and R(−)-MDPV under a warm (28°C) or cool (20°C) ambient temperature. Mice reliably discriminated the cocaine training dose from saline, and each form of MDPV fully substituted for cocaine, although marked potency differences were observed such that S(+)-MDPV was most potent, racemic MDPV was less potent than the S(+) enantiomer, and R(−)-MDPV was least potent. At both ambient temperatures, locomotor stimulant effects were observed after doses of S(+)-MDPV and racemic MDPV, but R(−)-MDPV did not elicit locomotor stimulant effects at any tested dose. Interestingly, significant increases in maximum core body temperature were only observed after administration of racemic MDPV in the warm ambient environment; neither MDPV enantiomer altered core temperature at any dose tested, at either ambient temperature. These studies suggest that all three forms of MDPV induce biologic effects, but R(−)-MDPV is less potent than S(+)-MDPV and racemic MDPV. Taken together, these data suggest that the S(+)-MDPV enantiomer is likely responsible for the majority of the biologic effects of the racemate and should be targeted in therapeutic efforts against MDPV overdose and abuse. PMID:26769917

  14. Locomotor activity and zonation of upper shore arthropods in a sandy beach of north central Chile

    NASA Astrophysics Data System (ADS)

    Jaramillo, E.; Contreras, H.; Duarte, C.; Avellanal, M. H.

    2003-10-01

    The tenebrionid beetle Phalerisida maculata Kulzer, the talitrid amphipod Orchestoidea tuberculata Nicolet and the oniscid isopod Tylos spinulosus Dana are semi-terrestrial burrowing species, which coexist on sandy beaches of north central Chile (28-30°S). During the night, these scavengers emerge to make downshore migrations. Given the similarity in niches of these three species (all are known to include macroalgal detritus in their diet) and their relatively high abundance on that beaches, there is the potential for some degree of interaction, both inter- and intraspecific. Field studies were carried out to examine zonation of these burrowing organisms and eventual time and/or space partitioning of locomotor activity during night hours. Locomotor activity on the beach surface was analyzed over 12 h periods during spring and neap tides of September and December 2000, and March 2001. Scavengers moving over the beach surface were captured using pitfall traps buried with their rims flush with the beach surface along a transect extended from the foot of the dunes to the highest levels reached by the swashes. Every 1 h the captured animals in the traps were collected. Locomotor activity was also studied in the laboratory with chambers equipped with infrared recording systems (actographs). Data downloaded from the actographs were graphed to obtain a display of locomotor activity per 15 min interval during the course of the 7 day experiments. Results show space partitioning of burrowed organisms and time partitioning in the locomotor activity of O. tuberculata, T. spinulosus and P. maculata over the beach surface. Circular statistics showed that usually the activity peaks of O. tuberculata were more different from those of P. maculata and T. spinulosus than those of the last two species when compared with each other. Intraspecific differences were also found in the surface locomotor activity, primarily between juveniles and adults of O. tuberculata. Interseasonal

  15. Cystitis - acute

    MedlinePlus

    Uncomplicated urinary tract infection; UTI - acute; Acute bladder infection; Acute bacterial cystitis ... International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: A 2010 ...

  16. Symmetry in locomotor central pattern generators and animal gaits

    NASA Astrophysics Data System (ADS)

    Golubitsky, Martin; Stewart, Ian; Buono, Pietro-Luciano; Collins, J. J.

    1999-10-01

    Animal locomotion is controlled, in part, by a central pattern generator (CPG), which is an intraspinal network of neurons capable of generating a rhythmic output. The spatio-temporal symmetries of the quadrupedal gaits walk, trot and pace lead to plausible assumptions about the symmetries of locomotor CPGs. These assumptions imply that the CPG of a quadruped should consist of eight nominally identical subcircuits, arranged in an essentially unique matter. Here we apply analogous arguments to myriapod CPGs. Analyses based on symmetry applied to these networks lead to testable predictions, including a distinction between primary and secondary gaits, the existence of a new primary gait called `jump', and the occurrence of half-integer wave numbers in myriapod gaits. For bipeds, our analysis also predicts two gaits with the out-of-phase symmetry of the walk and two gaits with the in-phase symmetry of the hop. We present data that support each of these predictions. This work suggests that symmetry can be used to infer a plausible class of CPG network architectures from observed patterns of animal gaits.

  17. Sex differences in Siberian hamster ultradian locomotor rhythms.

    PubMed

    Prendergast, Brian J; Stevenson, Tyler J; Zucker, Irving

    2013-02-17

    Sex differences in ultradian activity rhythms (URs) and circadian rhythms (CRs) were assessed in Siberian hamsters kept in long day (LD) or short day (SD) photoperiods for 40 weeks. For both sexes URs of locomotor activity were more prevalent, greater in amplitude and more robust in SDs. The UR period was longer in females than males in both day lengths. The reproductive system underwent regression and body mass declined during the initial 10 weeks of SD treatment, and in both sexes these traits spontaneously reverted to the LD phenotype at or before 40 weeks in SD, reflecting the development of neuroendocrine refractoriness to SD patterns of melatonin secretion. Hamsters of both sexes, however, continued to display SD-like URs at the 40 weeks time point. CRs were less prevalent and the waveform less robust and lower in amplitude in SDs than LDs; the SD circadian waveform also did not revert to the long-day phenotype after 40 weeks of SD treatment. Short day lengths enhanced ultradian and diminished circadian rhythms in both sexes. Day length controls several UR characteristics via gonadal steroid and melatonin-independent mechanisms. Sex differences in ultradian timing may contribute to sex diphenisms in rhythms of sleep, food intake and exercise.

  18. Evolving Hox Activity Profiles Govern Diversity in Locomotor Systems

    PubMed Central

    Jung, Heekyung; Mazzoni, Esteban O.; Soshnikova, Natalia; Hanley, Olivia; Venkatesh, Byrappa; Duboule, Denis; Dasen, Jeremy S.

    2014-01-01

    Summary The emergence of limb-driven locomotor behaviors was a key event in the evolution of vertebrates and fostered the transition from aquatic to terrestrial life. We show that the generation of limb-projecting lateral motor column (LMC) neurons in mice relies on a transcriptional autoregulatory module initiated via transient activity of multiple genes within the HoxA and HoxC clusters. Repression of this module at thoracic levels restricts expression of LMC determinants, thus dictating LMC position relative to the limbs. This suppression is mediated by a key regulatory domain that is specifically found in the Hoxc9 proteins of appendage-bearing vertebrates. The profile of Hoxc9 expression inversely correlates with LMC position in land vertebrates, and likely accounts for the absence of LMC neurons in limbless species such as snakes. Thus, modulation of both Hoxc9 protein function and Hoxc9 gene expression likely contributed to evolutionary transitions between undulatory and ambulatory motor circuit connectivity programs. PMID:24746670

  19. Locomotor head movements and semicircular canal morphology in primates

    PubMed Central

    Malinzak, Michael D.; Kay, Richard F.; Hullar, Timothy E.

    2012-01-01

    Animal locomotion causes head rotations, which are detected by the semicircular canals of the inner ear. Morphologic features of the canals influence rotational sensitivity, and so it is hypothesized that locomotion and canal morphology are functionally related. Most prior research has compared subjective assessments of animal “agility” with a single determinant of rotational sensitivity: the mean canal radius of curvature (R). In fact, the paired variables of R and body mass are correlated with agility and have been used to infer locomotion in extinct species. To refine models of canal functional morphology and to improve locomotor inferences for extinct species, we compare 3D vector measurements of head rotation during locomotion with 3D vector measures of canal sensitivity. Contrary to the predictions of conventional models that are based upon R, we find that axes of rapid head rotation are not aligned with axes of either high or low sensitivity. Instead, animals with fast head rotations have similar sensitivities in all directions, which they achieve by orienting the three canals of each ear orthogonally (i.e., along planes at 90° angles to one another). The extent to which the canal configuration approaches orthogonality is correlated with rotational head speed independent of body mass and phylogeny, whereas R is not. PMID:23045679

  20. Remote control of respiratory neural network by spinal locomotor generators.

    PubMed

    Le Gal, Jean-Patrick; Juvin, Laurent; Cardoit, Laura; Thoby-Brisson, Muriel; Morin, Didier

    2014-01-01

    During exercise and locomotion, breathing rate rapidly increases to meet the suddenly enhanced oxygen demand. The extent to which direct central interactions between the spinal networks controlling locomotion and the brainstem networks controlling breathing are involved in this rhythm modulation remains unknown. Here, we show that in isolated neonatal rat brainstem-spinal cord preparations, the increase in respiratory rate observed during fictive locomotion is associated with an increase in the excitability of pre-inspiratory neurons of the parafacial respiratory group (pFRG/Pre-I). In addition, this locomotion-induced respiratory rhythm modulation is prevented both by bilateral lesion of the pFRG region and by blockade of neurokinin 1 receptors in the brainstem. Thus, our results assign pFRG/Pre-I neurons a new role as elements of a previously undescribed pathway involved in the functional interaction between respiratory and locomotor networks, an interaction that also involves a substance P-dependent modulating mechanism requiring the activation of neurokinin 1 receptors. This neurogenic mechanism may take an active part in the increased respiratory rhythmicity produced at the onset and during episodes of locomotion in mammals.

  1. Repeated corticosterone administration sensitizes the locomotor response to amphetamine.

    PubMed

    Deroche, V; Piazza, P V; Maccari, S; Le Moal, M; Simon, H

    1992-07-01

    Repeated exposures to stressful situations has been shown to increase individual reactivity to psychostimulants, although the biological factors involved in such stress-induced changes are still poorly understood. In this study, we investigated the role of corticosterone in the effects of stress on the response to psychostimulants. We found that repeated corticosterone administration (both 1.5 mg/kg, intraperitoneally and 50 micrograms/ml in drinking water, once per day for 15 days) increased the locomotor response to amphetamine (1.15 mg/kg, i.p.). At the doses used in these experiments, corticosterone administration induced similar increases in plasma levels of the hormone to those induced by stress. These results suggest that corticosterone secretion may be one of the mechanisms by which repeated stress increases the behavioral responses to amphetamine. Since an enhanced reactivity to psychostimulants has been found to be an index of a propensity for drug self-administration and a model of certain psychopathological conditions, these findings point to a role for glucocorticoids in such abnormal states. PMID:1515947

  2. Sex differences in Siberian hamster ultradian locomotor rhythms.

    PubMed

    Prendergast, Brian J; Stevenson, Tyler J; Zucker, Irving

    2013-02-17

    Sex differences in ultradian activity rhythms (URs) and circadian rhythms (CRs) were assessed in Siberian hamsters kept in long day (LD) or short day (SD) photoperiods for 40 weeks. For both sexes URs of locomotor activity were more prevalent, greater in amplitude and more robust in SDs. The UR period was longer in females than males in both day lengths. The reproductive system underwent regression and body mass declined during the initial 10 weeks of SD treatment, and in both sexes these traits spontaneously reverted to the LD phenotype at or before 40 weeks in SD, reflecting the development of neuroendocrine refractoriness to SD patterns of melatonin secretion. Hamsters of both sexes, however, continued to display SD-like URs at the 40 weeks time point. CRs were less prevalent and the waveform less robust and lower in amplitude in SDs than LDs; the SD circadian waveform also did not revert to the long-day phenotype after 40 weeks of SD treatment. Short day lengths enhanced ultradian and diminished circadian rhythms in both sexes. Day length controls several UR characteristics via gonadal steroid and melatonin-independent mechanisms. Sex differences in ultradian timing may contribute to sex diphenisms in rhythms of sleep, food intake and exercise. PMID:23333554

  3. Intranasal haloperidol-loaded miniemulsions for brain targeting: Evaluation of locomotor suppression and in-vivo biodistribution.

    PubMed

    El-Setouhy, Doaa Ahmed; Ibrahim, A B; Amin, Maha M; Khowessah, Omneya M; Elzanfaly, Eman S

    2016-09-20

    Haloperidol is a commonly prescribed antipsychotic drug currently administered as oral and injectable preparations. This study aimed to prepare haloperidol intranasal miniemulsion helpful for psychiatric emergencies and exhibiting lower systemic exposure and side effects associated with non-target site delivery. Haloperidol miniemulsions were successfully prepared by spontaneous emulsification adopting 2(3) factorial design. The effect of three independent variables at two levels each namely; oil type (Capmul®-Capryol™90), lipophilic emulsifier type (Span 20-Span 80) and HLB value (12-14) on globule size, PDI and percent locomotor activity inhibition in mice was evaluated. The optimized formula (F4, Capmul®, Tween 80/Span 20, HLB 14) showed globule size of 209.5±0.98nm, PDI of 0.402±0.03 and locomotor inhibition of 83.89±9.15% with desirability of 0.907. Biodistribution study following intranasal and intravenous administration of the radiolabeled (99m)Tc mucoadhesive F4 revealed that intranasal administration achieved 1.72-fold higher and 6 times faster peak brain levels compared with intravenous administration. Drug targeting efficiency percent and brain/blood exposure ratios remained above 100% and 1 respectively after intranasal instillation compared to a maximum brain/blood exposure ratio of 0.8 post intravenous route. Results suggested the CNS delivery of major fraction of haloperidol via direct transnasal to brain pathway that can be a promising alternative to oral and parenteral routes in chronic and acute situations. Haloperidol concentration of 275.6ng/g brain 8h post intranasal instillation, higher than therapeutic concentration range of haloperidol (0.8 to 5.15ng/ml), suggests possible sustained delivery of the drug through nasal route.

  4. Long-term treatment with PP2 after spinal cord injury resulted in functional locomotor recovery and increased spared tissue.

    PubMed

    Rosas, Odrick R; Torrado, Aranza I; Santiago, Jose M; Rodriguez, Ana E; Salgado, Iris K; Miranda, Jorge D

    2014-12-15

    The spinal cord has the ability to regenerate but the microenvironment generated after trauma reduces that capacity. An increase in Src family kinase (SFK) activity has been implicated in neuropathological conditions associated with central nervous system trauma. Therefore, we hypothesized that a decrease in SFK activation by a long-term treatment with 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyramidine (PP2), a selective SFK inhibitor, after spinal cord contusion with the New York University (NYU) impactor device would generate a permissive environment that improves axonal sprouting and/or behavioral activity. Results demonstrated that long-term blockade of SFK activation with PP2 increases locomotor activity at 7, 14, 21 and 28 days post-injury in the Basso, Beattie, and Bresnahan open field test, round and square beam crossing tests. In addition, an increase in white matter spared tissue and serotonin fiber density was observed in animals treated with PP2. However, blockade of SFK activity did not change the astrocytic response or infiltration of cells from the immune system at 28 days post-injury. Moreover, a reduced SFK activity with PP2 diminished Ephexin (a guanine nucleotide exchange factor) phosphorylation in the acute phase (4 days post-injury) after trauma. Together, these findings suggest a potential role of SFK in the regulation of spared tissue and/or axonal outgrowth that may result in functional locomotor recovery during the pathophysiology generated after spinal cord injury. Our study also points out that ephexin1 phosphorylation (activation) by SFK action may be involved in the repulsive microenvironment generated after spinal cord injury. PMID:25657738

  5. Long-term treatment with PP2 after spinal cord injury resulted in functional locomotor recovery and increased spared tissue

    PubMed Central

    Rosas, Odrick R.; Torrado, Aranza I.; Santiago, Jose M.; Rodriguez, Ana E.; Salgado, Iris K.; Miranda, Jorge D.

    2014-01-01

    The spinal cord has the ability to regenerate but the microenvironment generated after trauma reduces that capacity. An increase in Src family kinase (SFK) activity has been implicated in neuropathological conditions associated with central nervous system trauma. Therefore, we hypothesized that a decrease in SFK activation by a long-term treatment with 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyramidine (PP2), a selective SFK inhibitor, after spinal cord contusion with the New York University (NYU) impactor device would generate a permissive environment that improves axonal sprouting and/or behavioral activity. Results demonstrated that long-term blockade of SFK activation with PP2 increases locomotor activity at 7, 14, 21 and 28 days post-injury in the Basso, Beattie, and Bresnahan open field test, round and square beam crossing tests. In addition, an increase in white matter spared tissue and serotonin fiber density was observed in animals treated with PP2. However, blockade of SFK activity did not change the astrocytic response or infiltration of cells from the immune system at 28 days post-injury. Moreover, a reduced SFK activity with PP2 diminished Ephexin (a guanine nucleotide exchange factor) phosphorylation in the acute phase (4 days post-injury) after trauma. Together, these findings suggest a potential role of SFK in the regulation of spared tissue and/or axonal outgrowth that may result in functional locomotor recovery during the pathophysiology generated after spinal cord injury. Our study also points out that ephexin1 phosphorylation (activation) by SFK action may be involved in the repulsive microenvironment generated after spinal cord injury. PMID:25657738

  6. Effect of locomotor training in completely spinalized cats previously submitted to a spinal hemisection.

    PubMed

    Martinez, Marina; Delivet-Mongrain, Hugo; Leblond, Hugues; Rossignol, Serge

    2012-08-01

    After a spinal hemisection in cats, locomotor plasticity occurring at the spinal level can be revealed by performing, several weeks later, a complete spinalization below the first hemisection. Using this paradigm, we recently demonstrated that the hemisection induces durable changes in the symmetry of locomotor kinematics that persist after spinalization. Can this asymmetry be changed again in the spinal state by interventions such as treadmill locomotor training started within a few days after the spinalization? We performed, in 9 adult cats, a spinal hemisection at thoracic level 10 and then a complete spinalization at T13, 3 weeks later. Cats were not treadmill trained during the hemispinal period. After spinalization, 5 of 9 cats were not trained and served as control while 4 of 9 cats were trained on the treadmill for 20 min, 5 d a week for 3 weeks. Using detailed kinematic analyses, we showed that, without training, the asymmetrical state of locomotion induced by the hemisection was retained durably after the subsequent spinalization. By contrast, training cats after spinalization induced a reversal of the left/right asymmetries, suggesting that new plastic changes occurred within the spinal cord through locomotor training. Moreover, training was shown to improve the kinematic parameters and the performance of the hindlimb on the previously hemisected side. These results indicate that spinal locomotor circuits, previously modified by past experience such as required for adaptation to the hemisection, can remarkably respond to subsequent locomotor training and improve bilateral locomotor kinematics, clearly showing the benefits of locomotor training in the spinal state.

  7. Locomotor behavior of fish hatched from embryos exposed to flight conditions

    NASA Technical Reports Server (NTRS)

    Kleerekoper, H.

    1978-01-01

    Embryos of Fundulus heteroclitus in various stages of development were exposed to space flight conditions aboard Apollo spacecraft and Cosmos satellites. The objective of the study was to ascertain whether fish hatched from these embryos displayed locomotor behavior different from that of control fish of the same age. An electronic monitoring technique was used to record behavior. Results indicate no change in locomotor behavior in fish on Apollo Spacecraft, but inexplicable significant changes were noted in fish aboard Cosmos Satellites.

  8. Transcutaneous electrical spinal-cord stimulation in humans

    PubMed Central

    Gerasimenko, Yury; Gorodnichev, Ruslan; Moshonkina, Tatiana; Sayenko, Dimitry; Gad, Parag; Edgerton, V. Reggie

    2016-01-01

    Locomotor behavior is controlled by specific neural circuits called central pattern generators primarily located at the lumbosacral spinal cord. These locomotor-related neuronal circuits have a high level of automaticity; that is, they can produce a “stepping” movement pattern also seen on electromyography (EMG) in the absence of supraspinal and/or peripheral afferent inputs. These circuits can be modulated by epidural spinal-cord stimulation and/or pharmacological intervention. Such interventions have been used to neuromodulate the neuronal circuits in patients with motor-complete spinal-cord injury (SCI) to facilitate postural and locomotor adjustments and to regain voluntary motor control. Here, we describe a novel non-invasive stimulation strategy of painless transcutaneous electrical enabling motor control (pcEmc) to neuromodulate the physiological state of the spinal cord. The technique can facilitate a stepping performance in non-injured subjects with legs placed in a gravity-neutral position. The stepping movements were induced more effectively with multi-site than single-site spinal-cord stimulation. From these results, a multielectrode surface array technology was developed. Our preliminary data indicate that use of the multielectrode surface array can fine-tune the control of the locomotor behavior. As well, the pcEmc strategy combined with exoskeleton technology is effective for improving motor function in paralyzed patients with SCI. The potential impact of using pcEmc to neuromodulate the spinal circuitry has significant implications for furthering our understanding of the mechanisms controlling locomotion and for rehabilitating sensorimotor function even after severe SCI. PMID:26205686

  9. Reversal of apomorphine locomotor sensitization by a single post-conditioning trial treatment with a low autoreceptor dose of apomorphine: a memory re-consolidation approach.

    PubMed

    Carrera, Marinete Pinheiro; Carey, Robert J; Dias, Flávia Regina Cruz; de Matos, Liana Wermelinger

    2011-07-01

    Sensitization is a common feature of psychostimulants and sensitization effects are generally considered to be linked to the addictive properties of these drugs. We used a conventional paired/unpaired Pavlovian protocol to induce a context specific sensitization to the locomotor stimulant effect of a high dose of apomorphine (2.0mg/kg). Two days following a 5 session sensitization induction phase, a brief 5min non-drug test for conditioning was conducted. Only the paired groups exhibited locomotor stimulant conditioned response effects. Immediately following this brief test for conditioning, the paired and the unpaired groups received injections of 0.05mg/kg apomorphine, 2.0mg/kg apomorphine or vehicle designed to differentially impact memory re-consolidation of the conditioning. Two days later, all groups received a sensitization challenge test with 2.0mg/kg apomorphine. The 2.0mg/kg apomorphine post-trial treatment potentiated sensitization while the 0.05mg/kg eliminated sensitization. These effects were only observed in the paired groups. The activation of dopaminergic systems by the high dose of apomorphine strengthened the drug/environment association whereas the inhibition of dopamine activity by the low auto-receptor dose eliminated this association. The results point to the importance of conditioning to context specific sensitization and targeting memory re-consolidation of conditioning as a paradigm to modify sensitization.

  10. R7BP Complexes With RGS9-2 and RGS7 in the Striatum Differentially Control Motor Learning and Locomotor Responses to Cocaine

    PubMed Central

    Anderson, Garret R; Cao, Yan; Davidson, Steve; Truong, Hai V; Pravetoni, Marco; Thomas, Mark J; Wickman, Kevin; Giesler, Glenn J; Martemyanov, Kirill A

    2010-01-01

    In the striatum, signaling through G protein-coupled dopamine receptors mediates motor and reward behavior, and underlies the effects of addictive drugs. The extent of receptor responses is determined by RGS9-2/Gβ5 complexes, a striatally enriched regulator that limits the lifetime of activated G proteins. Recent studies suggest that the function of RGS9-2/Gβ5 is controlled by the association with an additional subunit, R7BP, making elucidation of its contribution to striatal signaling essential for understanding molecular mechanisms of behaviors mediated by the striatum. In this study, we report that elimination of R7BP in mice results in motor coordination deficits and greater locomotor response to morphine administration, consistent with the essential role of R7BP in maintaining RGS9-2 expression in the striatum. However, in contrast to previously reported observations with RGS9-2 knockouts, mice lacking R7BP do not show higher sensitivity to locomotor-stimulating effects of cocaine. Using a striatum-specific knockdown approach, we show that the sensitivity of motor stimulation to cocaine is instead dependent on RGS7, whose complex formation with R7BP is dictated by RGS9-2 expression. These results indicate that dopamine signaling in the striatum is controlled by concerted interplay between two RGS proteins, RGS7 and RGS9-2, which are balanced by a common subunit, R7BP. PMID:20043004

  11. Effects of captivity and body condition on plasma corticosterone, locomotor behavior, and plasma metabolites in curve-billed thrashers.

    PubMed

    Fokidis, H Bobby; Hurley, Laura; Rogowski, Christopher; Sweazea, Karen; Deviche, Pierre

    2011-01-01

    The acute stress response involves the secretion of catabolic glucocorticoids, such as corticosterone (CORT) in birds, that mobilize intrinsic energy stores primarily through a gluconeogenic pathway involving fat breakdown, thus linking body condition and stress. We measured changes in CORT and gluconeogenic metabolites (triglycerides, free glycerols, glucose) during handling stress in curve-billed thrashers Toxostoma curvirostre from two habitats (urban vs. desert) that may differ in food abundance in the wild, in captivity, and in response to both food restriction and subsequent recovery. Urban thrashers were heavier and secreted more CORT than desert birds in the field, but differences did not persist in captivity. Decreased access to food resulted in decreased body mass and a diminished ability to elevate plasma CORT in response to handling stress. However, the opposite effect was observed as these birds recovered from food restriction. Plasma levels of glucose and triglycerides did not change with stress. Food restriction also increased locomotor activity, which likely further exacerbated energy loss. These observations suggest that body condition and stress differences between urban and desert birds may be related to differences in their relative energetic states, possibly due to food availability. Body condition may affect the extent to which an individual can elevate CORT and use free glycerol as energy during acute stress. PMID:22030852

  12. ROCK1 in AgRP neurons regulates energy expenditure and locomotor activity in male mice.

    PubMed

    Huang, Hu; Lee, Seung Hwan; Ye, Chianping; Lima, Ines S; Oh, Byung-Chul; Lowell, Bradford B; Zabolotny, Janice M; Kim, Young-Bum

    2013-10-01

    Normal leptin signaling is essential for the maintenance of body weight homeostasis. Proopiomelanocortin- and agouti-related peptide (AgRP)-producing neurons play critical roles in regulating energy metabolism. Our recent work demonstrates that deletion of Rho-kinase 1 (ROCK1) in the AgRP neurons of mice increased body weight and adiposity. Here, we report that selective loss of ROCK1 in AgRP neurons caused a significant decrease in energy expenditure and locomotor activity of mice. These effects were independent of any change in food intake. Furthermore, AgRP neuron-specific ROCK1-deficient mice displayed central leptin resistance, as evidenced by impaired Signal Transducer and Activator of Transcription 3 activation in response to leptin administration. Leptin's ability to hyperpolarize and decrease firing rate of AgRP neurons was also abolished in the absence of ROCK1. Moreover, diet-induced and genetic forms of obesity resulted in reduced ROCK1 activity in murine arcuate nucleus. Of note, high-fat diet also impaired leptin-stimulated ROCK1 activity in arcuate nucleus, suggesting that a defect in hypothalamic ROCK1 activity may contribute to the pathogenesis of central leptin resistance in obesity. Together, these data demonstrate that ROCK1 activation in hypothalamic AgRP neurons is required for the homeostatic regulation of energy expenditure and adiposity. These results further support previous work identifying ROCK1 as a key regulator of energy balance and suggest that targeting ROCK1 in the hypothalamus may lead to development of antiobesity therapeutics. PMID:23885017

  13. Effects of sex pheromones and sexual maturation on locomotor activity in female sea lamprey (Petromyzon marinus)

    USGS Publications Warehouse

    Walaszczyk, Erin J.; Johnson, Nicholas S.; Steibel, Juan Pedro; Li, Weiming

    2013-01-01

    Synchronization of male and female locomotor rhythmicity can play a vital role in ensuring reproductive success. Several physiological and environmental factors alter these locomotor rhythms. As sea lamprey, Petromyzon marinus, progress through their life cycle, their locomotor activity rhythm changes multiple times. The goal of this study was to elucidate the activity patterns of adult female sea lamprey during the sexual maturation process and discern the interactions of these patterns with exposure to male pheromones. During these stages, preovulated and ovulated adult females are exposed to sex pheromone compounds, which are released by spermiated males and attract ovulated females to the nest for spawning. The locomotor behavior of adult females was monitored in a natural stream with a passive integrated tag responder system as they matured, and they were exposed to a sex pheromone treatment (spermiated male washings) or a control (prespermiated male washings). Results showed that, dependent on the hour of day, male sex pheromone compounds reduce total activity (p < 0.05) and cause increases in activity during several daytime hours in preovulated and ovulated females. These results are one of the first examples of how sex pheromones modulate a locomotor rhythm in a vertebrate, and they suggest that the interaction between maturity stage and sex pheromone exposure contributes to the differential locomotor rhythms found in adult female sea lamprey. This phenomenon may contribute to the reproductive synchrony of mature adults, thus increasing reproductive success in this species.

  14. Relating ranging ecology, limb length, and locomotor economy in terrestrial animals.

    PubMed

    Pontzer, Herman

    2012-03-01

    Ecomorphological analyses have identified a number of important evolutionary trends in vertebrate limb design, but the relationships between daily travel distance, locomotor ecology, and limb length in terrestrial animals remain poorly understood. In this paper I model the net rate of energy intake as a function of foraging efficiency, and thus of locomotor economy; improved economy leads to greater net energy intake. However, the relationship between locomotor economy and net intake is highly dependent on foraging efficiency; only species with low foraging efficiencies experience strong selection pressure for improved locomotor economy and increased limb length. Examining 237 terrestrial species, I find that nearly all taxa obtain sufficiently high foraging efficiencies that selection for further increases in economy is weak. Thus selection pressures for increased economy and limb length among living terrestrial animals may be relatively weak and similar in magnitude across ecologically diverse species. The Economy Selection Pressure model for locomotor economy may be useful in investigating the evolution of limb design in early terrestrial taxa and the coevolution of foraging ecology and locomotor anatomy in lineages with low foraging efficiencies.

  15. Caffeine and amphetamine produce cross-sensitization to nicotine-induced locomotor activity in mice.

    PubMed

    Celik, Eylem; Uzbay, I Tayfun; Karakas, Sirel

    2006-01-01

    Sensitization development is linked to the addictive potential of the drugs. The same mechanisms might play a role in sensitization development to the different addictive drugs. The aim of the study was to investigate the development of cross-sensitization to caffeine and amphetamine in nicotine-induced locomotor sensitization in mice. Caffeine (2.5-20 mg/kg), amphetamine (1-16 mg/kg) or saline were injected to Swiss-Webster mice and locomotor activity was recorded for 30 min. Nicotine (0.5-2 mg/kg) or saline were injected to mice and locomotor activity was recorded for 30 min. Process was applied for 19 days, every other day (10 sessions). Caffeine (5 mg/kg), amphetamine (4 mg/kg) or saline were challenged to the different groups of nicotine-sensitized mice 2 days later on the last nicotine injection, and locomotor activity was recorded. Repetitive injections of nicotine (0.5-2 mg) produced locomotor sensitization in mice. After caffeine and amphetamine challenge injections, locomotor activity of the nicotine-sensitized mice was found to be significantly higher than saline-pretreated mice. Saline challenge did not produce any significant effect in nicotine- or saline-pretreated mice. Our results suggest that a cross-sensitization developed to both caffeine and amphetamine in nicotine-sensitized mice. In conclusion, similar central mechanisms may be responsible for the development of addiction to these substances.

  16. Treadmill exercise facilitates recovery of locomotor function through axonal regeneration following spinal cord injury in rats.

    PubMed

    Jung, Sun-Young; Seo, Tae-Beom; Kim, Dae-Young

    2016-08-01

    Spinal cord injury (SCI) disrupts both axonal pathways and segmental spinal cord circuity, resulting in permanent neurological deficits. Physical exercise is known to increase the expression of neurotrophins for improving the injured spinal cord. In the present study, we investigated the effects of treadmill exercise on locomotor function in relation with brain-derived neurotrophic factor (BDNF) expression after SCI. The rats were divided into five groups: control group, sham operation group, sham operation and exercise group, SCI group, and SCI and exercise group. The laminectomy was performed at the T9-T10 level. The exposed dorsal surface of the spinal cord received contusion injury (10 g × 25 mm) using the impactor. Treadmill exercise was performed 6 days per a week for 6 weeks. In order to evaluate the locomotor function of animals, Basso-Beattie-Bresnahan (BBB) locomotor scale was conducted once a week for 6 weeks. We examined BDNF expression and axonal sprouting in the injury site of the spinal cord using Western blot analysis and immunofluorescence staining. SCI induced loss of locomotor function with decreased BDNF expression in the injury site. Treadmill exercise increased the score of BBB locomotor scale and reduced cavity formation in the injury site. BDNF expression and axonal sprouting within the trabecula were further facilitated by treadmill exercise in SCI-exposed rats. The present study provides the evidence that treadmill exercise may facilitate recovery of locomotor function through axonal regeneration via BDNF expression following SCI.

  17. Treadmill exercise facilitates recovery of locomotor function through axonal regeneration following spinal cord injury in rats

    PubMed Central

    Jung, Sun-Young; Seo, Tae-Beom; Kim, Dae-Young

    2016-01-01

    Spinal cord injury (SCI) disrupts both axonal pathways and segmental spinal cord circuity, resulting in permanent neurological deficits. Physical exercise is known to increase the expression of neurotrophins for improving the injured spinal cord. In the present study, we investigated the effects of treadmill exercise on locomotor function in relation with brain-derived neurotrophic factor (BDNF) expression after SCI. The rats were divided into five groups: control group, sham operation group, sham operation and exercise group, SCI group, and SCI and exercise group. The laminectomy was performed at the T9–T10 level. The exposed dorsal surface of the spinal cord received contusion injury (10 g × 25 mm) using the impactor. Treadmill exercise was performed 6 days per a week for 6 weeks. In order to evaluate the locomotor function of animals, Basso-Beattie-Bresnahan (BBB) locomotor scale was conducted once a week for 6 weeks. We examined BDNF expression and axonal sprouting in the injury site of the spinal cord using Western blot analysis and immunofluorescence staining. SCI induced loss of locomotor function with decreased BDNF expression in the injury site. Treadmill exercise increased the score of BBB locomotor scale and reduced cavity formation in the injury site. BDNF expression and axonal sprouting within the trabecula were further facilitated by treadmill exercise in SCI-exposed rats. The present study provides the evidence that treadmill exercise may facilitate recovery of locomotor function through axonal regeneration via BDNF expression following SCI. PMID:27656624

  18. Treadmill exercise facilitates recovery of locomotor function through axonal regeneration following spinal cord injury in rats

    PubMed Central

    Jung, Sun-Young; Seo, Tae-Beom; Kim, Dae-Young

    2016-01-01

    Spinal cord injury (SCI) disrupts both axonal pathways and segmental spinal cord circuity, resulting in permanent neurological deficits. Physical exercise is known to increase the expression of neurotrophins for improving the injured spinal cord. In the present study, we investigated the effects of treadmill exercise on locomotor function in relation with brain-derived neurotrophic factor (BDNF) expression after SCI. The rats were divided into five groups: control group, sham operation group, sham operation and exercise group, SCI group, and SCI and exercise group. The laminectomy was performed at the T9–T10 level. The exposed dorsal surface of the spinal cord received contusion injury (10 g × 25 mm) using the impactor. Treadmill exercise was performed 6 days per a week for 6 weeks. In order to evaluate the locomotor function of animals, Basso-Beattie-Bresnahan (BBB) locomotor scale was conducted once a week for 6 weeks. We examined BDNF expression and axonal sprouting in the injury site of the spinal cord using Western blot analysis and immunofluorescence staining. SCI induced loss of locomotor function with decreased BDNF expression in the injury site. Treadmill exercise increased the score of BBB locomotor scale and reduced cavity formation in the injury site. BDNF expression and axonal sprouting within the trabecula were further facilitated by treadmill exercise in SCI-exposed rats. The present study provides the evidence that treadmill exercise may facilitate recovery of locomotor function through axonal regeneration via BDNF expression following SCI.

  19. Locomotor, feeding and melatonin daily rhythms in sharpsnout seabream (Diplodus puntazzo).

    PubMed

    Vera, L M; Madrid, J A; Sánchez-Vázquez, F J

    2006-06-15

    Sharpsnout seabream is a marine teleost of increasing interest for Mediterranean aquaculture, but there is still a lack of information regarding its circadian organization. In this study, we have investigated sharpsnout seabream locomotor activity, feeding and plasma melatonin daily rhythms under a 12:12-h LD cycle, as well as the persistence of locomotor activity circadian rhythmicity under constant light (LL) conditions. When submitted to an LD cycle, most sharpsnout seabream displayed a diurnal locomotor pattern, with an average 74% of activity recorded during daytime. However, along the experiment 40% of fish spontaneously changed their locomotor rhythm phasing and became nocturnal. Feeding behaviour, nevertheless, remained strictly diurnal in all cases, with 97% of food demands being made during the light period. Free-running locomotor rhythms were recorded in one third of the fish kept under LL. Daily plasma melatonin levels displayed a rhythmic profile, with low daytime values (111 pg/ml) and high nighttime concentrations (791 pg/ml). Taken together, these results evidence a high degree of plasticity for sharpsnout seabream activity patterns, as well as phasing independence of locomotor and feeding rhythms. Finally, the existence of a well-defined daily rhythm of plasma melatonin was found. PMID:16682061

  20. Treadmill exercise facilitates recovery of locomotor function through axonal regeneration following spinal cord injury in rats.

    PubMed

    Jung, Sun-Young; Seo, Tae-Beom; Kim, Dae-Young

    2016-08-01

    Spinal cord injury (SCI) disrupts both axonal pathways and segmental spinal cord circuity, resulting in permanent neurological deficits. Physical exercise is known to increase the expression of neurotrophins for improving the injured spinal cord. In the present study, we investigated the effects of treadmill exercise on locomotor function in relation with brain-derived neurotrophic factor (BDNF) expression after SCI. The rats were divided into five groups: control group, sham operation group, sham operation and exercise group, SCI group, and SCI and exercise group. The laminectomy was performed at the T9-T10 level. The exposed dorsal surface of the spinal cord received contusion injury (10 g × 25 mm) using the impactor. Treadmill exercise was performed 6 days per a week for 6 weeks. In order to evaluate the locomotor function of animals, Basso-Beattie-Bresnahan (BBB) locomotor scale was conducted once a week for 6 weeks. We examined BDNF expression and axonal sprouting in the injury site of the spinal cord using Western blot analysis and immunofluorescence staining. SCI induced loss of locomotor function with decreased BDNF expression in the injury site. Treadmill exercise increased the score of BBB locomotor scale and reduced cavity formation in the injury site. BDNF expression and axonal sprouting within the trabecula were further facilitated by treadmill exercise in SCI-exposed rats. The present study provides the evidence that treadmill exercise may facilitate recovery of locomotor function through axonal regeneration via BDNF expression following SCI. PMID:27656624

  1. Quantification of locomotor recovery following spinal cord contusion in adult rats.

    PubMed

    McEwen, Melanie L; Springer, Joe E

    2006-11-01

    Injury to the spinal cord not only disrupts the functioning of spinal circuits at the site of the impact, but also limits sensorimotor function caudal to the level of the lesion. Ratings of gross locomotor skill are generally used to quantify locomotor recovery following spinal cord injury (SCI). The purpose of this study was to assess behavioral recovery following SCI with three tasks: (1) BBB ratings, (2) walking on a horizontal ladder, and (3) footprint analyses. Behavioral testing was conducted for 6 postoperative weeks, and then the spinal cords were processed for the amount of white matter spared. As expected, BBB ratings dramatically decreased and then improved during recovery. The number of hindlimb foot-faults on the horizontal ladder increased after injury and remained elevated during the recovery period. Footprint analyses revealed that sham-control rats used several different gaits to cross the runway. In contrast, the locomotor function of rats with a SCI was impaired throughout the postoperative period. Some locomotor parameters of the injured rats improved slightly (velocity, stride length, stride duration, stance duration), some did not change (interlimb coordination, swing duration, forelimb base of support, hindpaw angle), and others declined (hindlimb base of support) during the recovery period. Together, these results show that gross locomotor skill improved after SCI, while recovery of fine locomotor function was more limited. Multiple tests should be included in future experiments in order to assess gross and fine changes in sensorimotor function following SCI. PMID:17115910

  2. Low-dose cytarabine and aclarubicin combined with granulocyte colony-stimulating factor for the treatment of relapsed or primary refractory acute lymphocytic leukemia: a retrospective study of 25 Chinese patients.

    PubMed

    Xue, Sheng-Li; Cui, Hong-Xia; Zou, Jing-Ying; Xue, Meng-Xing; Tang, Xiao-Wen; Zhang, Yan-Ming; Wu, De-Pei

    2013-12-01

    Despite improvements in treatment, the prognosis of relapsed or primary refractory acute lymphocytic leukemia (ALL) remains poor, and outcomes are worse in older adults with the short first complete remission (CR). Attainment of the second CR by salvage therapy would improve the survival of these patients and may enable them to undergo curative treatment with allogeneic hematopoietic stem cell transplantation. The fact that there are diverse salvage protocols for these adult patients but without a striking CR-induction efficacy indicates that efforts are still needed to indentify new effective reinduction regimens. In this study, the CAG regimen (cytarabine, 10 mg/m(2) subcutaneously every 12 h on days 1-14; aclarubicin, 5-7 mg/m(2) intravenously daily on days 1-8; and concurrent granulocyte colony-stimulating factor, 200 µg/m(2) /day subcutaneously) was administered to 25 patients with relapsed or refractory ALL, including 11 T-cell ALL (T-ALL) and 14 B-cell (B-ALL) patients (age range, 11-61 years; median age, 26 years), to assess its efficacy as a salvage therapy. One course of the CAG regimen resulted in an overall response [CR or partial remission (PR)] rate of 64%, a CR rate of 56% and generally mild adverse effects. An overall response was observed in all 11 T-ALL patients (10 CR and 1 PR) and 35.7% of B-ALL patients (p = 0.0009). The significant treatment potential of CAG regimen for relapsed or primary refractory ALL, especially for T-ALL patients, described in this report would prepare them for a second CR to pursue longer survival.

  3. Granulocyte colony-stimulating factor potentiates differentiation induction by all-trans retinoic acid and arsenic trioxide and enhances arsenic uptake in the acute promyelocytic leukemia cell line HT93A.

    PubMed

    Iriyama, Noriyoshi; Yuan, Bo; Hatta, Yoshihiro; Horikoshi, Akira; Yoshino, Yuta; Toyoda, Hiroo; Aizawa, Shin; Takeuchi, Jin

    2012-11-01

    The effects of arsenic trioxide (ATO), all-trans retinoic acid (ATRA) and granulocyte colony-stimulating factor (G-CSF), alone or in combination, were investigated by focusing on differentiation, growth inhibition and arsenic uptake in the acute promyelocytic leukemia (APL) cell line HT93A. ATO induced differentiation at low concentrations (0.125 µM) and apoptosis at high concentrations (1-2 µM). Furthermore, ATRA induced greater differentiation than ATO. No synergistic effect of ATRA and ATO was found on differentiation. G-CSF promoted differentiation-inducing activities of both ATO and ATRA. The combination of ATRA and G-CSF showed maximum differentiation and ATO addition was not beneficial. Addition of 1 µM ATRA and/or 50 ng/ml G-CSF to ATO did not affect apoptosis compared to ATO treatment alone. ATRA induced expression of aquaporin-9 (AQP9), a transmembrane transporter recognized as a major pathway of arsenic uptake, in a time- and dose-dependent manner. However, treatment with 1 µM ATRA decreased arsenic uptake by 43.7% compared to control subject. Although G-CSF addition did not enhance AQP9 expression in the cells, the reduced arsenic uptake was recovered to the same level as that in controls. ATRA decreased cell viability and addition of 50 ng/ml G-CSF to ATRA significantly increased the number of viable cells compared with that in ATRA alone treated cells. G-CSF not only promotes differentiation-inducing activities of both ATRA and ATO, but also makes APL cells vulnerable to increased arsenic uptake. These observations provide new insights into combination therapy using these three agents for the treatment of APL.

  4. General and Specific Strategies Used to Facilitate Locomotor Maneuvers

    PubMed Central

    Wu, Mengnan; Matsubara, Jesse H.; Gordon, Keith E.

    2015-01-01

    People make anticipatory changes in gait patterns prior to initiating a rapid change of direction. How they prepare will change based on their knowledge of the maneuver. To investigate specific and general strategies used to facilitate locomotor maneuvers, we manipulated subjects’ ability to anticipate the direction of an upcoming lateral “lane-change” maneuver. To examine specific anticipatory adjustments, we observed the four steps immediately preceding a maneuver that subjects were instructed to perform at a known time in a known direction. We hypothesized that to facilitate a specific change of direction, subjects would proactively decrease margin of stability in the future direction of travel. Our results support this hypothesis: subjects significantly decreased lateral margin of stability by 69% on the side ipsilateral to the maneuver during only the step immediately preceding the maneuver. This gait adaptation may have improved energetic efficiency and simplified the control of the maneuver. To examine general anticipatory adjustments, we observed the two steps immediately preceding the instant when subjects received information about the direction of the maneuver. When the maneuver direction was unknown, we hypothesized that subjects would make general anticipatory adjustments that would improve their ability to actively initiate a maneuver in multiple directions. This second hypothesis was partially supported as subjects increased step width and stance phase hip flexion during these anticipatory steps. These modifications may have improved subjects’ ability to generate forces in multiple directions and maintain equilibrium during the onset and execution of the rapid maneuver. However, adapting these general anticipatory strategies likely incurred an additional energetic cost. PMID:26167931

  5. The evolution of jumping in frogs: morphological evidence for the basal anuran locomotor condition and the radiation of locomotor systems in crown group anurans.

    PubMed

    Reilly, Stephen M; Jorgensen, Michael E

    2011-02-01

    Our understanding of the evolution of frog locomotion follows from the work of Emerson in which anurans are proposed to possess one of three different iliosacral configurations: 1) a lateral-bending system found in walking and hopping frogs; 2) a fore-aft sliding mechanism found in several locomotor modes; and 3) a sagittal-hinge-type pelvis posited to be related to long-distance jumping performance. The most basal living (Ascaphus) and fossil (Prosalirus) frogs are described as sagittal-hinge pelvic types, and it has been proposed that long-distance jumping with a sagittal-hinge pelvis arose early in frog evolution. We revisited osteological traits of the pelvic region to conduct a phylogenetic analysis of the relationships between pelvic systems and locomotor modes in frogs. Using two of Emerson's diagnostic traits from the sacrum and ilium and two new traits from the urostyle, we resampled the taxa originally studied by Emerson and key paleotaxa and conducted an analysis of ancestral-character state evolution in relation to locomotor mode. We present a new pattern for the evolution of pelvic systems and locomotor modes in frogs. Character analysis shows that the lateral-bender, walker/hopper condition is both basal and generally conserved across the Anura. Long-distance jumping frogs do not appear until well within the Neobatrachia. The sagittal-hinge morphology is correlated with long-distance jumping in terrestrial frogs; however, it evolved convergently multiple times in crown group anurans with the same four pelvic traits described herein. Arboreal jumping has appeared in multiple crown lineages as well, but with divergent patterns of evolution involving each of the three pelvic types. The fore-aft slider morph appears independently in three different locomotor modes and, thus, is a more complex system than previously thought. Finally, it appears that the advent of a bicondylar sacro-urostylic articulation was originally related to providing axial rigidity

  6. Determinants of locomotor disability in people aged 55 years and over: the Rotterdam Study.

    PubMed

    Odding, E; Valkenburg, H A; Stam, H J; Hofman, A

    2001-01-01

    Locomotor disability, as defined by difficulties in activities of daily living related to lower limb function, can be the consequence of diseases and impairments of the cardiovascular, pulmonary, nervous, sensory and musculoskeletal system. We estimated the associations between specific diseases and impairments and locomotor disability, and the proportion of disability attributable to each condition, controlling for age and comorbidity. The Rotterdam Study is a prospective follow-up study among people aged 55 years and over in the general population. Locomotor disability in 1219 men and 1856 women was assessed with the Stanford Health Assessment Questionnaire. Diseases and impairments were radiological osteoarthritis, pain of the hips and knees, morning stiffness, fractures, hypertension, vascular disease, ischemic heart disease, stroke, heart failure, chronic obstructive pulmonary disease (COPD), depression, Parkinson's disease, osteoporosis, diabetes mellitus, overweight, and low vision. Adjusted odds ratios, etiologic and attributable fractions were calculated for locomotor disability. The occurrence of locomotor disability can partly be ascribed to joint pain, COPD, morning stiffness, diabetes and heart failure in both men and women. In addition in women osteoarthritis, osteoporosis, low vision, fractures, stroke and Parkinson's disease are significant etiologic fractions. In men with morning stiffness, joint pain, heart failure, diabetes mellitus, and COPD a significant proportion of their disability is attributable to this impairment. In women this was the case for Parkinson's disease, morning stiffness, low vision, heart failure, joint pain, diabetes, radiological osteoarthritis, stroke, COPD, osteoporosis, and fractures of the lower limbs, in that order. We conclude that locomotor complaints, heart failure, COPD and diabetes mellitus contribute considerably to locomotor disability in non-institutionalized elderly people. PMID:12380718

  7. Postcranial morphology and the locomotor habits of living and extinct carnivorans.

    PubMed

    Samuels, Joshua X; Meachen, Julie A; Sakai, Stacey A

    2013-02-01

    Members of the order Carnivora display a broad range of locomotor habits, including cursorial, scansorial, arboreal, semiaquatic, aquatic, and semifossorial species from multiple families. Ecomorphological analyses from osteological measurements have been used successfully in prior studies of carnivorans and rodents to accurately infer the locomotor habits of extinct species. This study uses 20 postcranial measurements that have been shown to be effective indicators of locomotor habits in rodents and incorporates an extensive sample of over 300 individuals from more than 100 living carnivoran species. We performed statistical analyses, including analysis of variance (ANOVA) and stepwise discriminant function analysis, using a set of 16 functional indices (ratios). Our ANOVA results reveal consistent differences in postcranial skeletal morphology among locomotor groups. Cursorial species display distal elongation of the limbs, gracile limb elements, and relatively narrow humeral and femoral epicondyles. Aquatic and semiaquatic species display relatively robust, shortened femora and elongate metatarsals. Semifossorial species display relatively short, robust limbs with enlarged muscular attachment sites and elongate claws. Both semiaquatic and semifossorial species have relatively elongate olecranon process of the ulna and enlarged humeral and femoral epicondyles. Terrestrial, scansorial, and arboreal species are characterized by having primarily intermediate features, but arboreal species do show relatively elongate manual digits. Morphological indices effectively discriminate locomotor groups, with cursorial and arboreal species more accurately classified than terrestrial, scansorial, or semiaquatic species. Both within and between families, species with similar locomotor habits converge toward similar postcranial morphology despite their independent evolutionary histories. The discriminant analysis worked particularly well to correctly classify members of the

  8. Influence of dimethoate on acetylcholinesterase activity and locomotor function in terrestrial isopods.

    PubMed

    Engenheiro, Elizabeth L; Hankard, Peter K; Sousa, José P; Lemos, Marco F; Weeks, Jason M; Soares, Amadeu M V M

    2005-03-01

    Locomotor behavior in terrestrial organisms is crucial for burrowing, avoiding predators, food seeking, migration, and reproduction; therefore, it is a parameter with ecological relevance. Acetylcholinesterase (AChE) is a nervous system enzyme inhibited by several compounds and widely used as an exposure biomarker in several organisms. Moreover, changes in energy reserves also may indicate an exposure to a stress situation. The aim of this study is to link biomarkers of different levels of biological organization in isopods exposed to increasing doses of dimethoate in semifield conditions. Locomotor parameters, AChE activity, and energy reserves (lipid, glycogen, and protein contents) were evaluated in the isopod Porcellio dilatatus after 48-h and 10-d exposure to dimethoate-contaminated soil. Results showed a clear impairment of both locomotor and AChE activity during the entire study, although effects were more pronounced after 48 h. Most locomotor parameters and AChE activity showed a clear dose-response relationship. By contrast, no clear trend was observed on energetic components. A positive and significant relationship was found between AChE activity and those locomotor parameters indicating activity, and the opposite was observed with those locomotor parameters indicating confusion and disorientation. The results obtained in this study enhance the importance of linking biochemical responses to parameters with ecological relevance at individual level, the value of locomotor behavior as an important marker to assess effects of toxicants, and also the usefulness and the acquisition of ecological relevance by AChE as a biomarker, by linking it with ecologically relevant behavioral parameters.

  9. Locomotor Dysfunction after Long-duration Space Flight and Development of Countermeasures to Facilitate Faster Recovery

    NASA Astrophysics Data System (ADS)

    Mulavara, Ajitkumar; Wood, Scott; Cohen, Helen; Bloomberg, Jacob

    2012-07-01

    movement control and a functional mobility test to investigate overall functional locomotor ability. Postflight sessions were given on days 1, 2, 4, 7 after their return. Subjects walked on a treadmill driven at 1.8 m/s while performing a visual task. Motion data from head and trunk segmental motion data were obtained to calculate the angular head pitch (HP) movements during walking trials while subjects performed the visual task, to estimate the contributions of vestibular reflexive mechanisms in HP movements. Astronauts showed a heterogeneous response pattern of both increases and decreases in the amplitude of HP movement. We investigated the underlying mechanisms of this heterogeneity in postflight responses in head movement control by examining data obtained using the same experimental test paradigm on a vestibular clinical population (VC) and in normal subjects undergoing adaptation to acute body load support unloading. Results showed that exposure to unloaded locomotion caused a significant increase in HP movements, whereas in the VC patients the HP movements were significantly decreased. We infer that BLS-mediated somatosensory input centrally modulates vestibular input and can adaptively modify head-movement control during locomotion. Thus, space flight may cause a central adaptation of the converging vestibular and body load-sensing somatosensory systems. To investigate changes in functional mobility astronaut subjects walked at their preferred pace around an obstacle course consisting of several pylons and obstacles set up on a foam floor, which provided an unstable walking surface. Subjects were instructed to walk around the course as fast as possible without touching any of the objects on the course for a total of six individual trials per test session. One of the dependent measures was time to complete the course (TCC, sec). The learning rate over the six trials performed on preflight and the first day after landing (micro curve) was used to characterize the

  10. Species typical display behavior following stimulation of the reptilian striatum.

    PubMed

    Tarr, R S

    1982-10-01

    Seventy unanesthetized, unrestrained western fence lizards (Sceloporus occidentalis) were electrically stimulated through implanted electrodes. Behavior elicited included the species typical assertion display, elements of the challenge display and elementary locomotor responses: circling, rolling and curling. The assertion and challenge displays were elicited from telencephalic sites whereas the elementary locomotor effects were elicited from electrodes in the brain stem. Assertion displays were consistently elicited in 25 animals at an average threshold current of 46 microA. Sites showing the lowest threshold and greatest reliability were tightly clustered in the striatum and nucleus accumbens. Challenge behavior was elicited in eleven animals at an average threshold of 58 microA. Seven of the animals with challenge responses had electrodes in a small area anterior and dorsal to nucleus sphericus. The implications of these results are discussed relative to current views of the comparative neuroanatomy of the basal ganglia and relative to the basic functional organization of the vertebrate central nervous system. PMID:6891077

  11. Frequency dependence of behavioral modulation by hippocampal electrical stimulation

    PubMed Central

    La Corte, Giorgio; Wei, Yina; Chernyy, Nick; Gluckman, Bruce J.

    2013-01-01

    Electrical stimulation offers the potential to develop novel strategies for the treatment of refractory medial temporal lobe epilepsy. In particular, direct electrical stimulation of the hippocampus presents the opportunity to modulate pathological dynamics at the ictal focus, although the neuroanatomical substrate of this region renders it susceptible to altering cognition and affective processing as a side effect. We investigated the effects of three electrical stimulation paradigms on separate groups of freely moving rats (sham, 8-Hz and 40-Hz sine-wave stimulation of the ventral/intermediate hippocampus, where 8- and 40-Hz stimulation were chosen to mimic naturally occurring hippocampal oscillations). Animals exhibited attenuated locomotor and exploratory activity upon stimulation at 40 Hz, but not at sham or 8-Hz stimulation. Such behavioral modifications were characterized by a significant reduction in rearing frequency, together with increased freezing behavior. Logistic regression analysis linked the observed changes in animal locomotion to 40-Hz electrical stimulation independently of time-related variables occurring during testing. Spectral analysis, conducted to monitor the electrophysiological profile in the CA1 area of the dorsal hippocampus, showed a significant reduction in peak theta frequency, together with reduced theta power in the 40-Hz vs. the sham stimulation animal group, independent of locomotion speed (theta range: 4–12 Hz). These findings contribute to the development of novel and safe medical protocols by indicating a strategy to constrain or optimize parameters in direct hippocampal electrical stimulation. PMID:24198322

  12. Rhythmic 24 h variation of core body temperature and locomotor activity in a subterranean rodent (Ctenomys aff. knighti), the tuco-tuco.

    PubMed

    Tachinardi, Patricia; Bicudo, José Eduardo Wilken; Oda, Gisele Akemi; Valentinuzzi, Verónica Sandra

    2014-01-01

    The tuco-tuco Ctenomys aff. knighti is a subterranean rodent which inhabits a semi-arid area in Northwestern Argentina. Although they live in underground burrows where environmental cycles are attenuated, they display robust, 24 h locomotor activity rhythms that are synchronized by light/dark cycles, both in laboratory and field conditions. The underground environment also poses energetic challenges (e.g. high-energy demands of digging, hypoxia, high humidity, low food availability) that have motivated thermoregulation studies in several subterranean rodent species. By using chronobiological protocols, the present work aims to contribute towards these studies by exploring day-night variations of thermoregulatory functions in tuco-tucos, starting with body temperature and its temporal relationship to locomotor activity. Animals showed daily, 24 h body temperature rhythms that persisted even in constant darkness and temperature, synchronizing to a daily light/dark cycle, with highest values occurring during darkness hours. The range of oscillation of body temperature was slightly lower than those reported for similar-sized and dark-active rodents. Most rhythmic parameters, such as period and phase, did not change upon removal of the running wheel. Body temperature and locomotor activity rhythms were robustly associated in time. The former persisted even after removal of the acute effects of intense activity on body temperature by a statistical method. Finally, regression gradients between body temperature and activity were higher in the beginning of the night, suggesting day-night variation in thermal conductance and heat production. Consideration of these day-night variations in thermoregulatory processes is beneficial for further studies on thermoregulation and energetics of subterranean rodents.

  13. Rhythmic 24 h Variation of Core Body Temperature and Locomotor Activity in a Subterranean Rodent (Ctenomys aff. knighti), the Tuco-Tuco

    PubMed Central

    Tachinardi, Patricia; Bicudo, José Eduardo Wilken; Oda, Gisele Akemi; Valentinuzzi, Verónica Sandra

    2014-01-01

    The tuco-tuco Ctenomys aff. knighti is a subterranean rodent which inhabits a semi-arid area in Northwestern Argentina. Although they live in underground burrows where environmental cycles are attenuated, they display robust, 24 h locomotor activity rhythms that are synchronized by light/dark cycles, both in laboratory and field conditions. The underground environment also poses energetic challenges (e.g. high-energy demands of digging, hypoxia, high humidity, low food availability) that have motivated thermoregulation studies in several subterranean rodent species. By using chronobiological protocols, the present work aims to contribute towards these studies by exploring day-night variations of thermoregulatory functions in tuco-tucos, starting with body temperature and its temporal relationship to locomotor activity. Animals showed daily, 24 h body temperature rhythms that persisted even in constant darkness and temperature, synchronizing to a daily light/dark cycle, with highest values occurring during darkness hours. The range of oscillation of body temperature was slightly lower than those reported for similar-sized and dark-active rodents. Most rhythmic parameters, such as period and phase, did not change upon removal of the running wheel. Body temperature and locomotor activity rhythms were robustly associated in time. The former persisted even after removal of the acute effects of intense activity on body temperature by a statistical method. Finally, regression gradients between body temperature and activity were higher in the beginning of the night, suggesting day-night variation in thermal conductance and heat production. Consideration of these day-night variations in thermoregulatory processes is beneficial for further studies on thermoregulation and energetics of subterranean rodents. PMID:24454916

  14. Acute and chronic tianeptine treatments attenuate ethanol withdrawal syndrome in rats.

    PubMed

    Uzbay, Tayfun; Kayir, Hakan; Celik, Turgay; Yüksel, Nevzat

    2006-05-01

    Effects of acute and chronic tianeptine treatments on ethanol withdrawal syndrome were investigated in rats. Ethanol (7.2% v/v) was given to adult male Wistar rats by a liquid diet for 30 days. Acute or chronic (twice daily) tianeptine (5, 10 and 20 mg/kg) and saline were administered to rats intraperitoneally. Acute and last chronic tianeptine injections and saline were done 30 min before ethanol withdrawal testing. After 2nd, 4th and 6th hours of ethanol withdrawal, rats were observed for 5 min, and withdrawal signs which included locomotor hyperactivity, agitation, tremor, wet dog shakes, stereotyped behavior and audiogenic seizures were recorded or rated. Locomotor activity in naive (no ethanol-dependent rats) was also tested after acute tianeptine treatments. Acute but not chronic tianeptine treatment attenuated locomotor hyperactivity and agitation in ethanol-dependent rats. Both acute and chronic tianeptine treatment produced some significant inhibitory effects on tremor, wet dog shakes, stereotyped behaviors and audiogenic seizures during the ethanol withdrawal. Our results suggest that acute or chronic tianeptine treatment attenuates ethanol withdrawal syndrome in ethanol-dependent rats and this drug may be useful for treatment of ethanol-type dependence.

  15. Short-term individual housing induced social deficits in female Mongolian gerbils: attenuation by chronic but not acute imipramine.

    PubMed

    Pickles, A R; Hagan, J J; Jones, D N C; Hendrie, C A

    2012-04-01

    Mongolian gerbils are highly sensitive to manipulations of their social environments. Housing females individually for short periods (in the order of 7-21 days) has been shown to produce robust and reliable impairments of their subsequent social behaviour. These effects are typified by a marked reduction in the social investigation of an unfamiliar male in a neutral arena and/or a marked increases in levels of freezing whilst and only whilst they are being socially investigated (Immobile in contact). These responses demonstrate housing induced impaired motivation to socially interact. These effects have also been shown to be sensitive to treatment with chronic (but not acute) administration of the selective serotonin reuptake inhibitor (SSRI) fluoxetine. It was therefore of interest to know if similar effects would be produced by treatment with the tricyclic antidepressant Imipramine. This mixed NA/5-HT reuptake inhibitor first developed in the 1950's is a commonly used standard in animal models of depression and remains in clinical use today. Female gerbils were individually housed for 7 days or maintained in single-sex groups of 4 for the same period. All animals were then randomly allocated to be administered with either 0, 10 or 20 mg/kg imipramine. Acute administration did not reverse the social impairments produced by the individual housing but did produce non-specific stimulant effects on locomotion in both housing conditions. These social impairments were however reduced after a further 14 days chronic treatment with 10 or 20 mg/kg imipramine and stimulant effects were no longer seen. Following chronic administration in group-housed animals locomotor stimulation was replaced with sedation, which resulted in a reduction in social behaviour. That is, opposite to the effect seen in Individual housed animals. It is therefore concluded that chronic treatment with imipramine serves to increase social behaviour but only in those animals with a pre-existing social

  16. Altered patterns of reflex excitability, balance, and locomotion following spinal cord injury and locomotor training.

    PubMed

    Bose, Prodip K; Hou, Jiamei; Parmer, Ronald; Reier, Paul J; Thompson, Floyd J

    2012-01-01

    Spasticity is an important problem that complicates daily living in many individuals with spinal cord injury (SCI). While previous studies in human and animals revealed significant improvements in locomotor ability with treadmill locomotor training, it is not known to what extent locomotor training influences spasticity. In addition, it would be of considerable practical interest to know how the more ergonomically feasible cycle training compares with treadmill training as therapy to manage SCI-induced spasticity and to improve locomotor function. Thus the main objective of our present studies was to evaluate the influence of different types of locomotor training on measures of limb spasticity, gait, and reflex components that contribute to locomotion. For these studies, 30 animals received midthoracic SCI using the standard Multicenter Animal Spinal cord Injury Studies (MASCIS) protocol (10 g 2.5 cm weight drop). They were divided randomly into three equal groups: control (contused untrained), contused treadmill trained, and contused cycle trained. Treadmill and cycle training were started on post-injury day 8. Velocity-dependent ankle torque was tested across a wide range of velocities (612-49°/s) to permit quantitation of tonic (low velocity) and dynamic (high velocity) contributions to lower limb spasticity. By post-injury weeks 4 and 6, the untrained group revealed significant velocity-dependent ankle extensor spasticity, compared to pre-surgical control values. At these post-injury time points, spasticity was not observed in either of the two training groups. Instead, a significantly milder form of velocity-dependent spasticity was detected at postcontusion weeks 8-12 in both treadmill and bicycle training groups at the four fastest ankle rotation velocities (350-612°/s). Locomotor training using treadmill or bicycle also produced significant increase in the rate of recovery of limb placement measures (limb axis, base of support, and open field

  17. Altered Patterns of Reflex Excitability, Balance, and Locomotion Following Spinal Cord Injury and Locomotor Training

    PubMed Central

    Bose, Prodip K.; Hou, Jiamei; Parmer, Ronald; Reier, Paul J.; Thompson, Floyd J.

    2012-01-01

    Spasticity is an important problem that complicates daily living in many individuals with spinal cord injury (SCI). While previous studies in human and animals revealed significant improvements in locomotor ability with treadmill locomotor training, it is not known to what extent locomotor training influences spasticity. In addition, it would be of considerable practical interest to know how the more ergonomically feasible cycle training compares with treadmill training as therapy to manage SCI-induced spasticity and to improve locomotor function. Thus the main objective of our present studies was to evaluate the influence of different types of locomotor training on measures of limb spasticity, gait, and reflex components that contribute to locomotion. For these studies, 30 animals received midthoracic SCI using the standard Multicenter Animal Spinal cord Injury Studies (MASCIS) protocol (10 g 2.5 cm weight drop). They were divided randomly into three equal groups: control (contused untrained), contused treadmill trained, and contused cycle trained. Treadmill and cycle training were started on post-injury day 8. Velocity-dependent ankle torque was tested across a wide range of velocities (612–49°/s) to permit quantitation of tonic (low velocity) and dynamic (high velocity) contributions to lower limb spasticity. By post-injury weeks 4 and 6, the untrained group revealed significant velocity-dependent ankle extensor spasticity, compared to pre-surgical control values. At these post-injury time points, spasticity was not observed in either of the two training groups. Instead, a significantly milder form of velocity-dependent spasticity was detected at postcontusion weeks 8–12 in both treadmill and bicycle training groups at the four fastest ankle rotation velocities (350–612