Science.gov

Sample records for acute lymphoblastic t-cell

  1. Combination Chemotherapy in Treating Young Patients With Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia or T-cell Lymphoblastic Lymphoma

    ClinicalTrials.gov

    2016-08-24

    Adult T Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Stage II Adult T-Cell Leukemia/Lymphoma; Stage II Childhood Lymphoblastic Lymphoma; Stage II Contiguous Adult Lymphoblastic Lymphoma; Stage II Non-Contiguous Adult Lymphoblastic Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Adult T-Cell Leukemia/Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Adult T-Cell Leukemia/Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  2. The genetics and mechanisms of T cell acute lymphoblastic leukaemia.

    PubMed

    Belver, Laura; Ferrando, Adolfo

    2016-07-25

    T cell acute lymphoblastic leukaemia (T-ALL) is an aggressive haematological malignancy derived from early T cell progenitors. In recent years genomic and transcriptomic studies have uncovered major oncogenic and tumour suppressor pathways involved in T-ALL transformation and identified distinct biological groups associated with prognosis. An increased understanding of T-ALL biology has already translated into new prognostic biomarkers and improved animal models of leukaemia and has opened opportunities for the development of targeted therapies for the treatment of this disease. In this Review we examine our current understanding of the molecular mechanisms of T-ALL and recent developments in the translation of these results to the clinic. PMID:27451956

  3. Microenvironmental cues for T-cell acute lymphoblastic leukemia development.

    PubMed

    Passaro, Diana; Quang, Christine Tran; Ghysdael, Jacques

    2016-05-01

    Intensive chemotherapy regimens have led to a substantial improvement in the cure rate of patients suffering from T-cell acute lymphoblastic leukemia (T-ALL). Despite this progress, about 15% and 50% of pediatric and adult cases, respectively, show resistance to treatment or relapse with dismal prognosis, calling for further therapeutic investigations. T-ALL is an heterogeneous disease, which presents intrinsic alterations leading to aberrant expression of transcription factors normally involved in hematopoietic stem/progenitor cell development and mutations in genes implicated in the regulation of cell cycle progression, apoptosis, and T-cell development. Gene expression profiling allowed the classification of T-ALL into defined molecular subgroups that mostly reflects the stage of their differentiation arrest. So far this knowledge has not translated into novel, targeted therapy. Recent evidence points to the importance of extrinsic signaling cues in controlling the ability of T-ALL to home, survive, and proliferate, thus offering the perspective of new therapeutic options. This review summarizes the present understanding of the interactions between hematopoietic cells and bone marrow/thymic niches during normal hematopoiesis, describes the main signaling pathways implicated in this dialog, and finally highlights how malignant T cells rely on specific niches to maintain their ability to sustain and propagate leukemia. PMID:27088913

  4. PHF6 mutations in T-cell acute lymphoblastic leukemia

    PubMed Central

    Van Vlierberghe, Pieter; Palomero, Teresa; Khiabanian, Hossein; Van der Meulen, Joni; Castillo, Mireia; Van Roy, Nadine; De Moerloose, Barbara; Philippé, Jan; González-García, Sara; Toribio, María L; Taghon, Tom; Zuurbier, Linda; Cauwelier, Barbara; Harrison, Christine J; Schwab, Claire; Pisecker, Markus; Strehl, Sabine; Langerak, Anton W; Gecz, Jozef; Sonneveld, Edwin; Pieters, Rob; Paietta, Elisabeth; Rowe, Jacob M; Wiernik, Peter H; Benoit, Yves; Soulier, Jean; Poppe, Bruce; Yao, Xiaopan; Cordon-Cardo, Carlos; Meijerink, Jules; Rabadan, Raul; Speleman, Frank; Ferrando, Adolfo

    2010-01-01

    Tumor suppressor genes on the X chromosome may skew the gender distribution of specific types of cancer1,2. T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with an increased incidence in males3. In this study, we report the identification of inactivating mutations and deletions in the X-linked plant homeodomain finger 6 (PHF6) gene in 16% of pediatric and 38% of adult primary T-ALL samples. Notably, PHF6 mutations are almost exclusively found in T-ALL samples from male subjects. Mutational loss of PHF6 is significantly associated with leukemias driven by aberrant expression of the homeobox transcription factor oncogenes TLX1 and TLX3. Overall, these results identify PHF6 as a new X-linked tumor suppressor in T-ALL and point to a strong genetic interaction between PHF6 loss and aberrant expression of TLX transcription factors in the pathogenesis of this disease. PMID:20228800

  5. Hemophagocytosis by Leukemic Blasts in T Cell Acute Lymphoblastic Leukemia: An Unusual Finding.

    PubMed

    Harrison, Aradhana; Chandra, Dinesh; Kakkar, Naveen; Das, Sheila; John, M Joseph

    2016-06-01

    Hemophagocytosis shows engulfment of hematopoietic cells by histiocytes and is a property generally associated with cells of the histiocytic lineage. It can be familial or is seen in a wide spectrum of acquired disorders. Hemophagocytosis by leukemic blasts is an uncommon phenomenon and has been reported mainly in acute myeloid leukemia. Its association with acute lymphoblastic leukemia is rare. We present a case of hemophagocytosis by blasts in the bone marrow in a 11 year old boy with T cell-acute lymphoblastic leukemia. PMID:27408348

  6. A Case of T-cell Acute Lymphoblastic Leukemia Relapsed As Myeloid Acute Leukemia.

    PubMed

    Paganin, Maddalena; Buldini, Barbara; Germano, Giuseppe; Seganfreddo, Elena; Meglio, Annamaria di; Magrin, Elisa; Grillo, Francesca; Pigazzi, Martina; Rizzari, Carmelo; Cazzaniga, Giovanni; Khiabanian, Hossein; Palomero, Teresa; Rabadan, Raul; Ferrando, Adolfo A; Basso, Giuseppe

    2016-09-01

    A 4-year-old male with the diagnosis of T-cell acute lymphoblastic leukemia (T-ALL) relapsed after 19 months with an acute myeloid leukemia (AML). Immunoglobulin and T-cell receptor gene rearrangements analyses reveal that both leukemias were rearranged with a clonal relationship between them. Comparative genomic hybridization (Array-CGH) and whole-exome sequencing analyses of both samples suggest that this leukemia may have originated from a common T/myeloid progenitor. The presence of homozygous deletion of p16/INK4A, p14/ARF, p15/INK4B, and heterozygous deletion of WT1 locus remained stable in the leukemia throughout phenotypic switch, revealing that this AML can be genetically associated to T-ALL. PMID:27149388

  7. Role of CXCR4-mediated bone marrow colonization in CNS infiltration by T cell acute lymphoblastic leukemia.

    PubMed

    Jost, Tanja Rezzonico; Borga, Chiara; Radaelli, Enrico; Romagnani, Andrea; Perruzza, Lisa; Omodho, Lorna; Cazzaniga, Giovanni; Biondi, Andrea; Indraccolo, Stefano; Thelen, Marcus; Te Kronnie, Geertruy; Grassi, Fabio

    2016-06-01

    Infiltration of the central nervous system is a severe trait of T cell acute lymphoblastic leukemia. Inhibition of CXC chemokine receptor 4 significantly ameliorates T cell acute lymphoblastic leukemia in murine models of the disease; however, signaling by CXC chemokine receptor 4 is important in limiting the divagation of peripheral blood mononuclear cells out of the perivascular space into the central nervous system parenchyma. Therefore, Inhibition of CXC chemokine receptor 4 potentially may untangle T cell acute lymphoblastic leukemia cells from retention outside the brain. Here, we show that leukemic lymphoblasts massively infiltrate cranial bone marrow, with diffusion to the meninges without invasion of the brain parenchyma, in mice that underwent xenotransplantation with human T cell acute lymphoblastic leukemia cells or that developed leukemia from transformed hematopoietic progenitors. We tested the hypothesis that T cell acute lymphoblastic leukemia neuropathology results from meningeal infiltration through CXC chemokine receptor 4-mediated bone marrow colonization. Inhibition of leukemia engraftment in the bone marrow by pharmacologic CXC chemokine receptor 4 antagonism significantly ameliorated neuropathologic aspects of the disease. Genetic deletion of CXCR4 in murine hematopoietic progenitors abrogated leukemogenesis induced by constitutively active Notch1, whereas lack of CCR6 and CCR7, which have been shown to be involved in T cell and leukemia extravasation into the central nervous system, respectively, did not influence T cell acute lymphoblastic leukemia development. We hypothesize that lymphoblastic meningeal infiltration as a result of bone marrow colonization is responsible for the degenerative alterations of the neuroparenchyma as well as the alteration of cerebrospinal fluid drainage in T cell acute lymphoblastic leukemia xenografts. Therefore, CXC chemokine receptor 4 may constitute a pharmacologic target for T cell acute lymphoblastic

  8. Immature MEF2C-dysregulated T-cell leukemia patients have an early T-cell precursor acute lymphoblastic leukemia gene signature and typically have non-rearranged T-cell receptors

    PubMed Central

    Zuurbier, Linda; Gutierrez, Alejandro; Mullighan, Charles G.; Canté-Barrett, Kirsten; Gevaert, A. Olivier; de Rooi, Johan; Li, Yunlei; Smits, Willem K.; Buijs-Gladdines, Jessica G.C.A.M.; Sonneveld, Edwin; Look, A. Thomas; Horstmann, Martin; Pieters, Rob; Meijerink, Jules P.P.

    2014-01-01

    Three distinct immature T-cell acute lymphoblastic leukemia entities have been described including cases that express an early T-cell precursor immunophenotype or expression profile, immature MEF2C-dysregulated T-cell acute lymphoblastic leukemia cluster cases based on gene expression analysis (immature cluster) and cases that retain non-rearranged TRG@ loci. Early T-cell precursor acute lymphoblastic leukemia cases exclusively overlap with immature cluster samples based on the expression of early T-cell precursor acute lymphoblastic leukemia signature genes, indicating that both are featuring a single disease entity. Patients lacking TRG@ rearrangements represent only 40% of immature cluster cases, but no further evidence was found to suggest that cases with absence of bi-allelic TRG@ deletions reflect a distinct and even more immature disease entity. Immature cluster/early T-cell precursor acute lymphoblastic leukemia cases are strongly enriched for genes expressed in hematopoietic stem cells as well as genes expressed in normal early thymocyte progenitor or double negative-2A T-cell subsets. Identification of early T-cell precursor acute lymphoblastic leukemia cases solely by defined immunophenotypic criteria strongly underestimates the number of cases that have a corresponding gene signature. However, early T-cell precursor acute lymphoblastic leukemia samples correlate best with a CD1 negative, CD4 and CD8 double negative immunophenotype with expression of CD34 and/or myeloid markers CD13 or CD33. Unlike various other studies, immature cluster/early T-cell precursor acute lymphoblastic leukemia patients treated on the COALL-97 protocol did not have an overall inferior outcome, and demonstrated equal sensitivity levels to most conventional therapeutic drugs compared to other pediatric T-cell acute lymphoblastic leukemia patients. PMID:23975177

  9. Combination Chemotherapy With or Without Bortezomib in Treating Younger Patients With Newly Diagnosed T-Cell Acute Lymphoblastic Leukemia or Stage II-IV T-Cell Lymphoblastic Lymphoma

    ClinicalTrials.gov

    2016-09-12

    Adult T Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Stage II Childhood Lymphoblastic Lymphoma; Stage II Contiguous Adult Lymphoblastic Lymphoma; Stage II Non-Contiguous Adult Lymphoblastic Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage III Childhood Lymphoblastic Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Stage IV Childhood Lymphoblastic Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  10. Deletions of the long arm of chromosome 5 define subgroups of T-cell acute lymphoblastic leukemia

    PubMed Central

    La Starza, Roberta; Barba, Gianluca; Demeyer, Sofie; Pierini, Valentina; Di Giacomo, Danika; Gianfelici, Valentina; Schwab, Claire; Matteucci, Caterina; Vicente, Carmen; Cools, Jan; Messina, Monica; Crescenzi, Barbara; Chiaretti, Sabina; Foà, Robin; Basso, Giuseppe; Harrison, Christine J.; Mecucci, Cristina

    2016-01-01

    Recurrent deletions of the long arm of chromosome 5 were detected in 23/200 cases of T-cell acute lymphoblastic leukemia. Genomic studies identified two types of deletions: interstitial and terminal. Interstitial 5q deletions, found in five cases, were present in both adults and children with a female predominance (chi-square, P=0.012). Interestingly, these cases resembled immature/early T-cell precursor acute lymphoblastic leukemia showing significant down-regulation of five out of the ten top differentially expressed genes in this leukemia group, including TCF7 which maps within the 5q31 common deleted region. Mutations of genes known to be associated with immature/early T-cell precursor acute lymphoblastic leukemia, i.e. WT1, ETV6, JAK1, JAK3, and RUNX1, were present, while CDKN2A/B deletions/mutations were never detected. All patients had relapsed/resistant disease and blasts showed an early differentiation arrest with expression of myeloid markers. Terminal 5q deletions, found in 18 of patients, were more prevalent in adults (chi-square, P=0.010) and defined a subgroup of HOXA-positive T-cell acute lymphoblastic leukemia characterized by 130 up- and 197 down-regulated genes. Down-regulated genes included TRIM41, ZFP62, MAPK9, MGAT1, and CNOT6, all mapping within the 1.4 Mb common deleted region at 5q35.3. Of interest, besides CNOT6 down-regulation, these cases also showed low BTG1 expression and a high incidence of CNOT3 mutations, suggesting that the CCR4-NOT complex plays a crucial role in the pathogenesis of HOXA-positive T-cell acute lymphoblastic leukemia with terminal 5q deletions. In conclusion, interstitial and terminal 5q deletions are recurrent genomic losses identifying distinct subtypes of T-cell acute lymphoblastic leukemia. PMID:27151989

  11. Deletions of the long arm of chromosome 5 define subgroups of T-cell acute lymphoblastic leukemia.

    PubMed

    La Starza, Roberta; Barba, Gianluca; Demeyer, Sofie; Pierini, Valentina; Di Giacomo, Danika; Gianfelici, Valentina; Schwab, Claire; Matteucci, Caterina; Vicente, Carmen; Cools, Jan; Messina, Monica; Crescenzi, Barbara; Chiaretti, Sabina; Foà, Robin; Basso, Giuseppe; Harrison, Christine J; Mecucci, Cristina

    2016-08-01

    Recurrent deletions of the long arm of chromosome 5 were detected in 23/200 cases of T-cell acute lymphoblastic leukemia. Genomic studies identified two types of deletions: interstitial and terminal. Interstitial 5q deletions, found in five cases, were present in both adults and children with a female predominance (chi-square, P=0.012). Interestingly, these cases resembled immature/early T-cell precursor acute lymphoblastic leukemia showing significant down-regulation of five out of the ten top differentially expressed genes in this leukemia group, including TCF7 which maps within the 5q31 common deleted region. Mutations of genes known to be associated with immature/early T-cell precursor acute lymphoblastic leukemia, i.e. WT1, ETV6, JAK1, JAK3, and RUNX1, were present, while CDKN2A/B deletions/mutations were never detected. All patients had relapsed/resistant disease and blasts showed an early differentiation arrest with expression of myeloid markers. Terminal 5q deletions, found in 18 of patients, were more prevalent in adults (chi-square, P=0.010) and defined a subgroup of HOXA-positive T-cell acute lymphoblastic leukemia characterized by 130 up- and 197 down-regulated genes. Down-regulated genes included TRIM41, ZFP62, MAPK9, MGAT1, and CNOT6, all mapping within the 1.4 Mb common deleted region at 5q35.3. Of interest, besides CNOT6 down-regulation, these cases also showed low BTG1 expression and a high incidence of CNOT3 mutations, suggesting that the CCR4-NOT complex plays a crucial role in the pathogenesis of HOXA-positive T-cell acute lymphoblastic leukemia with terminal 5q deletions. In conclusion, interstitial and terminal 5q deletions are recurrent genomic losses identifying distinct subtypes of T-cell acute lymphoblastic leukemia. PMID:27151989

  12. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia

    PubMed Central

    Maude, Shannon L.; Teachey, David T.; Porter, David L.

    2015-01-01

    Relapsed and refractory acute lymphoblastic leukemia (ALL) remains difficult to treat, with minimal improvement in outcomes seen in more than 2 decades despite advances in upfront therapy and improved survival for de novo ALL. Adoptive transfer of T cells engineered to express a chimeric antigen receptor (CAR) has emerged as a powerful targeted immunotherapy, showing striking responses in highly refractory populations. Complete remission (CR) rates as high as 90% have been reported in children and adults with relapsed and refractory ALL treated with CAR-modified T cells targeting the B-cell–specific antigen CD19. Distinct CAR designs across several studies have produced similar promising CR rates, an encouraging finding. Even more encouraging are durable remissions observed in some patients without additional therapy. Duration of remission and CAR-modified T-cell persistence require further study and more mature follow-up, but emerging data suggest these factors may distinguish CAR designs. Supraphysiologic T-cell proliferation, a hallmark of this therapy, contributes to both efficacy and the most notable toxicity, cytokine release syndrome (CRS), posing a unique challenge for toxicity management. This review will discuss the current landscape of CD19 CAR clinical trials, CRS pathophysiology and management, and remaining challenges. PMID:25999455

  13. Antileukemic potency of CD19-specific T cells against chemoresistant pediatric acute lymphoblastic leukemia.

    PubMed

    Dolnikov, Alla; Shen, Sylvie; Klamer, Guy; Joshi, Swapna; Xu, Ning; Yang, Lu; Micklethwaite, Kenneth; O'Brien, Tracey A

    2015-12-01

    Adoptive therapy with chimeric antigen receptor (CAR) T cells (CART cells) has exhibited great promise in clinical trials, with efficient response correlated with CART-cell expansion and persistence. Despite extensive clinical use, the mechanisms regulating CART-cell expansion and persistence have not been completely elucidated. We have examined the antileukemia potency of CART cells targeting CD19 antigen using second-generation CAR containing a CD28 co-stimulatory domain cloned into piggyBac-transposon vector and patient-derived chemoresistant pediatric acute lymphoblastic leukemia samples. In the presence of large numbers of target cells characteristic of patients with high leukemia burden, excessive proliferation of CART cells leads to differentiation into short-lived effector cells. Transient leukemia growth delay was induced by CART-cell infusion in mice xenografted with rapidly growing CD19+ acute lymphoblastic leukemia cells and was followed by rapid CART-cell extinction. Conditioning with the hypomethylating agent 5-aza-2'-deoxycytidine-activating caspase 3 and promotion of apoptosis in leukemia cells maximized the effect of CART cells and improved CART-cell persistence. These data suggest that the clinical use of 5-aza-2'-deoxycytidine before CART cells could be considered. Coculture of leukemia cells with bone marrow stroma cells reduced target cell loss, suggesting that leukemia cell mobilization into circulation may help to remove the protective effect of bone marrow stroma and increase the efficacy of CART-cell therapy. PMID:26384559

  14. Bortezomib and Combination Chemotherapy in Treating Young Patients With Relapsed Acute Lymphoblastic Leukemia or Lymphoblastic Lymphoma

    ClinicalTrials.gov

    2014-09-30

    B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Lymphoblastic Lymphoma; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  15. ORP4L is essential for T-cell acute lymphoblastic leukemia cell survival.

    PubMed

    Zhong, Wenbin; Yi, Qing; Xu, Bing; Li, Shiqian; Wang, Tong; Liu, Fupei; Zhu, Biying; Hoffmann, Peter R; Ji, Guangju; Lei, Pingsheng; Li, Guoping; Li, Jiwei; Li, Jian; Olkkonen, Vesa M; Yan, Daoguang

    2016-01-01

    Metabolic pathways are reprogrammed in cancer to support cell survival. Here, we report that T-cell acute lymphoblastic leukemia (T-ALL) cells are characterized by increased oxidative phosphorylation and robust ATP production. We demonstrate that ORP4L is expressed in T-ALL but not normal T-cells and its abundance is proportional to cellular ATP. ORP4L acts as an adaptor/scaffold assembling CD3ɛ, Gαq/11 and PLCβ3 into a complex that activates PLCβ3. PLCβ3 catalyzes IP3 production in T-ALL as opposed to PLCγ1 in normal T-cells. Up-regulation of ORP4L thus results in a switch in the enzyme responsible for IP3-induced endoplasmic reticulum Ca(2+) release and oxidative phosphorylation. ORP4L knockdown results in suboptimal bioenergetics, cell death and abrogation of T-ALL engraftment in vivo. In summary, we uncovered a signalling pathway operating specifically in T-ALL cells in which ORP4L mediates G protein-coupled ligand-induced PLCβ3 activation, resulting in an increase of mitochondrial respiration for cell survival. Targeting ORP4L might represent a promising approach for T-ALL treatment. PMID:27581363

  16. Transcriptional regulatory networks downstream of TAL1/SCL in T-cell acute lymphoblastic leukemia.

    PubMed

    Palomero, Teresa; Odom, Duncan T; O'Neil, Jennifer; Ferrando, Adolfo A; Margolin, Adam; Neuberg, Donna S; Winter, Stuart S; Larson, Richard S; Li, Wei; Liu, X Shirley; Young, Richard A; Look, A Thomas

    2006-08-01

    Aberrant expression of 1 or more transcription factor oncogenes is a critical component of the molecular pathogenesis of human T-cell acute lymphoblastic leukemia (T-ALL); however, oncogenic transcriptional programs downstream of T-ALL oncogenes are mostly unknown. TAL1/SCL is a basic helix-loop-helix (bHLH) transcription factor oncogene aberrantly expressed in 60% of human T-ALLs. We used chromatin immunoprecipitation (ChIP) on chip to identify 71 direct transcriptional targets of TAL1/SCL. Promoters occupied by TAL1 were also frequently bound by the class I bHLH proteins E2A and HEB, suggesting that TAL1/E2A as well as TAL1/HEB heterodimers play a role in transformation of T-cell precursors. Using RNA interference, we demonstrated that TAL1 is required for the maintenance of the leukemic phenotype in Jurkat cells and showed that TAL1 binding can be associated with either repression or activation of genes whose promoters occupied by TAL1, E2A, and HEB. In addition, oligonucleotide microarray analysis of RNA from 47 primary T-ALL samples showed specific expression signatures involving TAL1 targets in TAL1-expressing compared with -nonexpressing human T-ALLs. Our results indicate that TAL1 may act as a bifunctional transcriptional regulator (activator and repressor) at the top of a complex regulatory network that disrupts normal T-cell homeostasis and contributes to leukemogenesis. PMID:16621969

  17. Successful treatment of disseminated mucormycosis in a neutropenic patient with T-cell acute lymphoblastic leukaemia

    PubMed Central

    Guymer, Chelsea; Khurana, Sanjeev; Suppiah, Ram; Hennessey, Iain; Cooper, Celia

    2013-01-01

    Mucormycosis is a rare angioinvasive fungal infection, more commonly seen in immunosuppressed patients, with reported mortality rates of 95% in disseminated disease. We present a case report of a patient with T-cell acute lymphoblastic leukaemia who developed disseminated infection with mucormycosis (involving the pancreas, left occipital lobe, right lower lobe of lung, appendix and right kidney) after having completed induction and consolidation chemotherapy. Growth of Lichtheimia corymbifera was initially isolated following a right pleural tap with fungal elements identified repeatedly on subsequent pathology specimens. Following radical surgical debridement and concurrent treatment with combination antifungal therapy, the patient survived. This case demonstrates that aggressive multisite surgical de-bulking of disseminated fungal foci, in conjunction with combination antifungal therapy and reversal of immunosuppression, can result in survival despite the grave prognosis associated with disseminated mucormycosis. PMID:23904418

  18. Acute renal failure and type B lactic acidosis as first manifestation of extranodal T-cell lymphoblastic lymphoma

    PubMed Central

    Yun, Seongseok; Walker, Courtney N; Vincelette, Nicole D; Anwer, Faiz

    2014-01-01

    We describe a rare case of a 19-year-old male patient with a history of epilepsy and developmental delay who presented with acute renal failure (ARF) and lactic acidosis (LA) as the first manifestation of T-cell lymphoblastic lymphoma. Renal ultrasound and CT of the abdomen showed renal parenchymal infiltration, and renal biopsy demonstrated T-cell lymphoblastic lymphoma. LA, ARF and electrolyte abnormalities were refractory to the initial treatment of bicarbonate infusion and hydration. However, these abnormalities rapidly normalised after the initiation of chemotherapy, suggesting that the LA and ARF were secondary to lymphomatous renal infiltration. PMID:24913086

  19. Heterogeneity in mechanisms of emergent resistance in pediatric T-cell acute lymphoblastic leukemia.

    PubMed

    Yadav, Babasaheb D; Samuels, Amy L; Wells, Julia E; Sutton, Rosemary; Venn, Nicola C; Bendak, Katerina; Anderson, Denise; Marshall, Glenn M; Cole, Catherine H; Beesley, Alex H; Kees, Ursula R; Lock, Richard B

    2016-08-11

    Relapse in pediatric T-cell acute lymphoblastic leukemia (T-ALL) remains a significant clinical problem and is thought to be associated with clonal selection during treatment. In this study we used an established pre-clinical model of induction therapy to increase our understanding of the effect of engraftment and chemotherapy on clonal selection and acquisition of drug resistance in vivo. Immune-deficient mice were engrafted with patient diagnostic specimens and exposed to a repeated combination therapy consisting of vincristine, dexamethasone, L-asparaginase and daunorubicin. Any re-emergence of disease following therapy was shown to be associated with resistance to dexamethasone, no resistance was observed to the other three drugs. Immunoglobulin/T-cell receptor gene rearrangements closely matched those in respective diagnosis and relapse patient specimens, highlighting that these clonal markers do not fully reflect the biological changes associated with drug resistance. Gene expression profiling revealed the significant underlying heterogeneity of dexamethasone-resistant xenografts. Alterations were observed in a large number of biological pathways, yet no dominant signature was common to all lines. These findings indicate that the biological changes associated with T-ALL relapse and resistance are stochastic and highly individual, and underline the importance of using sophisticated molecular techniques or single cell analyses in developing personalized approaches to therapy. PMID:27623214

  20. Potential for bispecific T-cell engagers: role of blinatumomab in acute lymphoblastic leukemia

    PubMed Central

    Le Jeune, Caroline; Thomas, Xavier

    2016-01-01

    Patients with relapsed/refractory (R/R) B-precursor acute lymphoblastic leukemia (ALL) and patients whose minimal residual disease persists during treatment have a poor leukemia-free survival. Despite improvements in front-line therapy, the outcome in these patients remains poor, especially after relapse. As there are no standard chemotherapeutic regimens for the treatment of patients with R/R B-precursor ALL, T-cell-based therapeutic approaches have recently come to the forefront in ALL therapy. Recently, monoclonal antibodies have been developed to target specific antigens expressed in B-lineage blast cells. In this setting, CD19 is of great interest as this antigen is expressed in B-lineage cells. Therefore, it has been selected as the target antigen for blinatumomab, a new bi-specific T-cell engager antibody. This sophisticated antibody binds sites for both CD19 and CD3, leading to T-cell proliferation and activation and B-cell apoptosis. Owing to its short serum half-life, blinatumomab has been administrated by continuous intravenous infusion with a favorable safety profile. The most significant toxicities were central nervous system events and the cytokine release syndrome. This new therapeutic approach using blinatumomab has been shown to be effective in patients with positive minimal residual disease and in patients with R/R B-precursor ALL leading to a recent approval by the US Food and Drug Administration after an accelerated review process. This review focuses on the profile of blinatumomab and its efficacy and safety. PMID:26937176

  1. microRNAs regulate TAL1 expression in T-cell acute lymphoblastic leukemia.

    PubMed

    Correia, Nádia C; Melão, Alice; Póvoa, Vanda; Sarmento, Leonor; Gómez de Cedrón, Marta; Malumbres, Marcos; Enguita, Francisco J; Barata, João T

    2016-02-16

    The transcription factor TAL1 is a proto-oncogene whose aberrant expression in committed T-cell precursors is associated with the development of T-cell acute lymphoblastic leukemia (T-ALL). The mechanisms leading to aberrant activation of TAL1 in T-ALL patients who lack chromosomal rearrangements involving the TAL1 locus remain largely unknown. We hypothesized that TAL1 levels decrease during normal T-cell development at least in part due to miRNA-dependent silencing, in which case TAL1 over-expression in some T-ALL cases could be the consequence of deregulated miRNA expression. By performing computational prediction of miRNAs that bind to the human TAL1 mRNA we compiled a list of miRNAs that are candidates to regulate TAL1. Using a luciferase reporter system and mutagenesis assays we confirmed the miRNA-TAL1 mRNA interactions and selected candidate miRNAs: miR-101, miR-520d-5p, miR-140-5p, miR-448 and miR-485-5p. Over-expression of these microRNAs in different T-ALL cell lines consistently resulted in the down-regulation of TAL1 protein. In accordance, inhibition of miR-101 and miR-520d-5p promoted TAL1 protein expression. Importantly, we found that miR-101, miR-140-5p, miR-448 and miR-485-5p were down-regulated in T-ALL patient specimens and T-ALL cell lines. Our results show for the first time the existence of epigenetic regulation of TAL1 by specific miRNAs which may contribute, at least in part, to the ectopic expression of TAL1 in some T-ALL cases. PMID:26882564

  2. microRNAs regulate TAL1 expression in T-cell acute lymphoblastic leukemia

    PubMed Central

    Correia, Nádia C.; Melão, Alice; Póvoa, Vanda; Sarmento, Leonor; de Cedrón, Marta Gómez; Malumbres, Marcos; Enguita, Francisco J.; Barata, João T.

    2016-01-01

    The transcription factor TAL1 is a proto-oncogene whose aberrant expression in committed T-cell precursors is associated with the development of T-cell acute lymphoblastic leukemia (T-ALL). The mechanisms leading to aberrant activation of TAL1 in T-ALL patients who lack chromosomal rearrangements involving the TAL1 locus remain largely unknown. We hypothesized that TAL1 levels decrease during normal T-cell development at least in part due to miRNA-dependent silencing, in which case TAL1 over-expression in some T-ALL cases could be the consequence of deregulated miRNA expression. By performing computational prediction of miRNAs that bind to the human TAL1 mRNA we compiled a list of miRNAs that are candidates to regulate TAL1. Using a luciferase reporter system and mutagenesis assays we confirmed the miRNA-TAL1 mRNA interactions and selected candidate miRNAs: miR-101, miR-520d-5p, miR-140-5p, miR-448 and miR-485-5p. Over-expression of these microRNAs in different T-ALL cell lines consistently resulted in the down-regulation of TAL1 protein. In accordance, inhibition of miR-101 and miR-520d-5p promoted TAL1 protein expression. Importantly, we found that miR-101, miR-140-5p, miR-448 and miR-485-5p were down-regulated in T-ALL patient specimens and T-ALL cell lines. Our results show for the first time the existence of epigenetic regulation of TAL1 by specific miRNAs which may contribute, at least in part, to the ectopic expression of TAL1 in some T-ALL cases. PMID:26882564

  3. Therapeutic potential of targeting mTOR in T-cell acute lymphoblastic leukemia (review).

    PubMed

    Evangelisti, Camilla; Evangelisti, Cecilia; Chiarini, Francesca; Lonetti, Annalisa; Buontempo, Francesca; Bressanin, Daniela; Cappellini, Alessandra; Orsini, Ester; McCubrey, James A; Martelli, Alberto M

    2014-09-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous neoplastic disorder of immature hematopoietic precursors committed to the T-cell lineage. T-ALL comprises about 15% of pediatric and 25% of adult ALL cases. Even if the prognosis of T-ALL has improved especially in the childhood due to the use of new intensified treatment protocols, the outcome of relapsed patients who are resistant to conventional chemotherapeutic drugs or who relapse is still poor. For this reason, there is a need for novel and less toxic targeted therapies against signaling pathways aberrantly activated in T-ALL, such as the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR). Small molecules designed to target key components of this signaling axis have proven their efficacy both in vitro and in vivo in pre-clinical settings of T-ALL. In particular, different classes of mTOR inhibitors have been disclosed by pharmaceutical companies, and they are currently being tested in clinical trials for treating T-ALL patients. One of the most promising approaches for the treatment of T-ALL seems to be the combination of mTOR inhibitors with traditional chemotherapeutic agents. This could lead to a lower drug dosage that may circumvent the systemic side effects of chemotherapeutics. In this review, we focus on the different classes of mTOR inhibitors that will possibly have an impact on the therapeutic arsenal we have at our disposal against T-ALL. PMID:24968804

  4. Inhibition of IRAK1/4 sensitizes T cell acute lymphoblastic leukemia to chemotherapies.

    PubMed

    Li, Zhaoyang; Younger, Kenisha; Gartenhaus, Ronald; Joseph, Ann Mary; Hu, Fang; Baer, Maria R; Brown, Patrick; Davila, Eduardo

    2015-03-01

    Signaling via the MyD88/IRAK pathway in T cells is indispensable for cell survival; however, it is not known whether this pathway functions in the progression of T acute lymphoblastic leukemia (T-ALL). Here, we determined that compared with thymic and peripheral T cells, T-ALL cells from patients have elevated levels of IRAK1 and IRAK4 mRNA as well as increased total and phosphorylated protein. Targeted inhibition of IRAK1 and IRAK4, either with shRNA or with a pharmacological IRAK1/4 inhibitor, dramatically impeded proliferation of T-ALL cells isolated from patients and T-ALL cells in a murine leukemia model; however, IRAK1/4 inhibition had little effect on cell death. We screened several hundred FDA-approved compounds and identified a set of drugs that had enhanced cytotoxic activity when combined with IRAK inhibition. Administration of an IRAK1/4 inhibitor or IRAK knockdown in combination with either ABT-737 or vincristine markedly reduced leukemia burden in mice and prolonged survival. IRAK1/4 signaling activated the E3 ubiquitin ligase TRAF6, increasing K63-linked ubiquitination and enhancing stability of the antiapoptotic protein MCL1; therefore, IRAK inhibition reduced MCL1 stability and sensitized T-ALL to combination therapy. These studies demonstrate that IRAK1/4 signaling promotes T-ALL progression through stabilization of MCL1 and suggest that impeding this pathway has potential as a therapeutic strategy to enhance chemotherapeutic efficacy. PMID:25642772

  5. TYK2-STAT1-BCL2 Pathway Dependence in T-Cell Acute Lymphoblastic Leukemia

    PubMed Central

    Sanda, Takaomi; Tyner, Jeffrey W.; Gutierrez, Alejandro; Ngo, Vu N.; Glover, Jason; Chang, Bill H.; Yost, Arla; Ma, Wenxue; Fleischman, Angela G.; Zhou, Wenjun; Yang, Yandan; Kleppe, Maria; Ahn, Yebin; Tatarek, Jessica; Kelliher, Michelle A.; Neuberg, Donna S.; Levine, Ross L.; Moriggl, Richard; Müller, Mathias; Gray, Nathanael S.; Jamieson, Catriona H. M.; Weng, Andrew P.; Staudt, Louis M.; Druker, Brian J.; Look, A. Thomas

    2013-01-01

    Targeted molecular therapy has yielded remarkable outcomes in certain cancers, but specific therapeutic targets remain elusive for many others. As a result of two independent RNA interference (RNAi) screens, we identified pathway dependence on a member of the JAK tyrosine kinase family, TYK2, and its downstream effector STAT1 in T-cell acute lymphoblastic leukemia (T-ALL). Gene knockdown experiments consistently demonstrated TYK2 dependence in both T-ALL primary specimens and cell lines, and a small-molecule inhibitor of JAK kinase activity induced T-ALL cell death. Activation of this TYK2-STAT1 pathway i n T-ALL cell lines occurs by gain-of-function TYK2 mutations or activation of IL-10 receptor signaling, and this pathway mediates T-ALL cell survival through upregulation of the anti-apoptotic protein BCL2. These findings indicate that in many T-ALL cases, the leukemic cells are dependent upon the TYK2-STAT1-BCL2 pathway for continued survival, supporting the development of molecular therapies targeting TYK2 and other components of this pathway. PMID:23471820

  6. Characterization of a set of tumor suppressor microRNAs in T cell acute lymphoblastic leukemia.

    PubMed

    Sanghvi, Viraj R; Mavrakis, Konstantinos J; Van der Meulen, Joni; Boice, Michael; Wolfe, Andrew L; Carty, Mark; Mohan, Prathibha; Rondou, Pieter; Socci, Nicholas D; Benoit, Yves; Taghon, Tom; Van Vlierberghe, Pieter; Leslie, Christina S; Speleman, Frank; Wendel, Hans-Guido

    2014-11-18

    The posttranscriptional control of gene expression by microRNAs (miRNAs) is highly redundant, and compensatory effects limit the consequences of the inactivation of individual miRNAs. This implies that only a few miRNAs can function as effective tumor suppressors. It is also the basis of our strategy to define functionally relevant miRNA target genes that are not under redundant control by other miRNAs. We identified a functionally interconnected group of miRNAs that exhibited a reduced abundance in leukemia cells from patients with T cell acute lymphoblastic leukemia (T-ALL). To pinpoint relevant target genes, we applied a machine learning approach to eliminate genes that were subject to redundant miRNA-mediated control and to identify those genes that were exclusively targeted by tumor-suppressive miRNAs. This strategy revealed the convergence of a small group of tumor suppressor miRNAs on the Myb oncogene, as well as their effects on HBP1, which encodes a transcription factor. The expression of both genes was increased in T-ALL patient samples, and each gene promoted the progression of T-ALL in mice. Hence, our systematic analysis of tumor suppressor miRNA action identified a widespread mechanism of oncogene activation in T-ALL. PMID:25406379

  7. UTX inhibition as selective epigenetic therapy against TAL1-driven T-cell acute lymphoblastic leukemia.

    PubMed

    Benyoucef, Aissa; Palii, Carmen G; Wang, Chaochen; Porter, Christopher J; Chu, Alphonse; Dai, Fengtao; Tremblay, Véronique; Rakopoulos, Patricia; Singh, Kulwant; Huang, Suming; Pflumio, Francoise; Hébert, Josée; Couture, Jean-Francois; Perkins, Theodore J; Ge, Kai; Dilworth, F Jeffrey; Brand, Marjorie

    2016-03-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous group of hematological tumors composed of distinct subtypes that vary in their genetic abnormalities, gene expression signatures, and prognoses. However, it remains unclear whether T-ALL subtypes differ at the functional level, and, as such, T-ALL treatments are uniformly applied across subtypes, leading to variable responses between patients. Here we reveal the existence of a subtype-specific epigenetic vulnerability in T-ALL by which a particular subgroup of T-ALL characterized by expression of the oncogenic transcription factor TAL1 is uniquely sensitive to variations in the dosage and activity of the histone 3 Lys27 (H3K27) demethylase UTX/KDM6A. Specifically, we identify UTX as a coactivator of TAL1 and show that it acts as a major regulator of the TAL1 leukemic gene expression program. Furthermore, we demonstrate that UTX, previously described as a tumor suppressor in T-ALL, is in fact a pro-oncogenic cofactor essential for leukemia maintenance in TAL1-positive (but not TAL1-negative) T-ALL. Exploiting this subtype-specific epigenetic vulnerability, we propose a novel therapeutic approach based on UTX inhibition through in vivo administration of an H3K27 demethylase inhibitor that efficiently kills TAL1-positive primary human leukemia. These findings provide the first opportunity to develop personalized epigenetic therapy for T-ALL patients. PMID:26944678

  8. ABT-199 mediated inhibition of BCL-2 as a novel therapeutic strategy in T-cell acute lymphoblastic leukemia.

    PubMed

    Peirs, Sofie; Matthijssens, Filip; Goossens, Steven; Van de Walle, Inge; Ruggero, Katia; de Bock, Charles E; Degryse, Sandrine; Canté-Barrett, Kirsten; Briot, Delphine; Clappier, Emmanuelle; Lammens, Tim; De Moerloose, Barbara; Benoit, Yves; Poppe, Bruce; Meijerink, Jules P; Cools, Jan; Soulier, Jean; Rabbitts, Terence H; Taghon, Tom; Speleman, Frank; Van Vlierberghe, Pieter

    2014-12-11

    T-cell acute lymphoblastic leukemia (T-ALL) is a high-risk subtype of acute lymphoblastic leukemia (ALL) with gradually improved survival through introduction of intensified chemotherapy. However, therapy-resistant or refractory T-ALL remains a major clinical challenge. Here, we evaluated B-cell lymphoma (BCL)-2 inhibition by the BH3 mimetic ABT-199 as a new therapeutic strategy in human T-ALL. The T-ALL cell line LOUCY, which shows a transcriptional program related to immature T-ALL, exhibited high in vitro and in vivo sensitivity for ABT-199 in correspondence with high levels of BCL-2. In addition, ABT-199 showed synergistic therapeutic effects with different chemotherapeutic agents including doxorubicin, l-asparaginase, and dexamethasone. Furthermore, in vitro analysis of primary patient samples indicated that some immature, TLX3- or HOXA-positive primary T-ALLs are highly sensitive to BCL-2 inhibition, whereas TAL1 driven tumors mostly showed poor ABT-199 responses. Because BCL-2 shows high expression in early T-cell precursors and gradually decreases during normal T-cell differentiation, differences in ABT-199 sensitivity could partially be mediated by distinct stages of differentiation arrest between different molecular genetic subtypes of human T-ALL. In conclusion, our study highlights BCL-2 as an attractive molecular target in specific subtypes of human T-ALL that could be exploited by ABT-199. PMID:25301704

  9. RNA sequencing unravels the genetics of refractory/relapsed T-cell acute lymphoblastic leukemia. Prognostic and therapeutic implications

    PubMed Central

    Gianfelici, Valentina; Chiaretti, Sabina; Demeyer, Sofie; Di Giacomo, Filomena; Messina, Monica; La Starza, Roberta; Peragine, Nadia; Paoloni, Francesca; Geerdens, Ellen; Pierini, Valentina; Elia, Loredana; Mancini, Marco; De Propris, Maria Stefania; Apicella, Valerio; Gaidano, Gianluca; Testi, Anna Maria; Vitale, Antonella; Vignetti, Marco; Mecucci, Cristina; Guarini, Anna; Cools, Jan; Foà, Robin

    2016-01-01

    Despite therapeutic improvements, a sizable number of patients with T-cell acute lymphoblastic leukemia still have a poor outcome. To unravel the genomic background associated with refractoriness, we evaluated the transcriptome of 19 cases of refractory/early relapsed T-cell acute lymphoblastic leukemia (discovery cohort) by performing RNA-sequencing on diagnostic material. The incidence and prognostic impact of the most frequently mutated pathways were validated by Sanger sequencing on genomic DNA from diagnostic samples of an independent cohort of 49 cases (validation cohort), including refractory, relapsed and responsive cases. Combined gene expression and fusion transcript analyses in the discovery cohort revealed the presence of known oncogenes and identified novel rearrangements inducing overexpression, as well as inactivation of tumor suppressor genes. Mutation analysis identified JAK/STAT and RAS/PTEN as the most commonly disrupted pathways in patients with chemorefractory disease or early relapse, frequently in association with NOTCH1/FBXW7 mutations. The analysis on the validation cohort documented a significantly higher risk of relapse, inferior overall survival, disease-free survival and event-free survival in patients with JAK/STAT or RAS/PTEN alterations. Conversely, a significantly better survival was observed in patients harboring only NOTCH1/FBXW7 mutations: this favorable prognostic effect was abrogated by the presence of concomitant mutations. Preliminary in vitro assays on primary cells demonstrated sensitivity to specific inhibitors. These data document the negative prognostic impact of JAK/STAT and RAS/PTEN mutations in T-cell acute lymphoblastic leukemia and suggest the potential clinical application of JAK and PI3K/mTOR inhibitors in patients harboring mutations in these pathways. PMID:27151993

  10. RNA sequencing unravels the genetics of refractory/relapsed T-cell acute lymphoblastic leukemia. Prognostic and therapeutic implications.

    PubMed

    Gianfelici, Valentina; Chiaretti, Sabina; Demeyer, Sofie; Di Giacomo, Filomena; Messina, Monica; La Starza, Roberta; Peragine, Nadia; Paoloni, Francesca; Geerdens, Ellen; Pierini, Valentina; Elia, Loredana; Mancini, Marco; De Propris, Maria Stefania; Apicella, Valerio; Gaidano, Gianluca; Testi, Anna Maria; Vitale, Antonella; Vignetti, Marco; Mecucci, Cristina; Guarini, Anna; Cools, Jan; Foà, Robin

    2016-08-01

    Despite therapeutic improvements, a sizable number of patients with T-cell acute lymphoblastic leukemia still have a poor outcome. To unravel the genomic background associated with refractoriness, we evaluated the transcriptome of 19 cases of refractory/early relapsed T-cell acute lymphoblastic leukemia (discovery cohort) by performing RNA-sequencing on diagnostic material. The incidence and prognostic impact of the most frequently mutated pathways were validated by Sanger sequencing on genomic DNA from diagnostic samples of an independent cohort of 49 cases (validation cohort), including refractory, relapsed and responsive cases. Combined gene expression and fusion transcript analyses in the discovery cohort revealed the presence of known oncogenes and identified novel rearrangements inducing overexpression, as well as inactivation of tumor suppressor genes. Mutation analysis identified JAK/STAT and RAS/PTEN as the most commonly disrupted pathways in patients with chemorefractory disease or early relapse, frequently in association with NOTCH1/FBXW7 mutations. The analysis on the validation cohort documented a significantly higher risk of relapse, inferior overall survival, disease-free survival and event-free survival in patients with JAK/STAT or RAS/PTEN alterations. Conversely, a significantly better survival was observed in patients harboring only NOTCH1/FBXW7 mutations: this favorable prognostic effect was abrogated by the presence of concomitant mutations. Preliminary in vitro assays on primary cells demonstrated sensitivity to specific inhibitors. These data document the negative prognostic impact of JAK/STAT and RAS/PTEN mutations in T-cell acute lymphoblastic leukemia and suggest the potential clinical application of JAK and PI3K/mTOR inhibitors in patients harboring mutations in these pathways. PMID:27151993

  11. T cell acute lymphoblastic leukaemia presenting with sudden onset right oculomotor nerve palsy with normal neuroradiography and cerebrospinal fluid studies

    PubMed Central

    Bhatt, Vijaya Raj; Naqi, Muniba; Bartaula, Rajiv; Murukutla, Srujitha; Misra, Sulagna; Popalzai, Muhammad; Paramanathan, Kavitha; Dai, Qun

    2012-01-01

    Leptomeningeal disease presenting with neurological dysfunction is not uncommon in leukaemia. However, it is often accompanied by abnormalities in cerebrospinal fluid (CSF) studies and/or neuroradiography. Here, the authors describe a case of a young patient presenting with sudden onset right oculomotor nerve palsy with normal neuroradiography and CSF studies, who was subsequently diagnosed to have T cell acute lymphoblastic leukaemia (T-ALL). This case highlights that neurological manifestations can be the initial presenting feature of T-ALL and can occur suddenly despite normal neuroradiography and initial CSF studies. PMID:22605802

  12. PTEN microdeletions in T-cell acute lymphoblastic leukemia are caused by illegitimate RAG-mediated recombination events.

    PubMed

    Mendes, Rui D; Sarmento, Leonor M; Canté-Barrett, Kirsten; Zuurbier, Linda; Buijs-Gladdines, Jessica G C A M; Póvoa, Vanda; Smits, Willem K; Abecasis, Miguel; Yunes, J Andres; Sonneveld, Edwin; Horstmann, Martin A; Pieters, Rob; Barata, João T; Meijerink, Jules P P

    2014-07-24

    Phosphatase and tensin homolog (PTEN)-inactivating mutations and/or deletions are an independent risk factor for relapse of T-cell acute lymphoblastic leukemia (T-ALL) patients treated on Dutch Childhood Oncology Group or German Cooperative Study Group for Childhood Acute Lymphoblastic Leukemia protocols. Some monoallelic mutated or PTEN wild-type patients lack PTEN protein, implying that additional PTEN inactivation mechanisms exist. We show that PTEN is inactivated by small deletions affecting a few exons in 8% of pediatric T-ALL patients. These microdeletions were clonal in 3% and subclonal in 5% of patients. Conserved deletion breakpoints are flanked by cryptic recombination signal sequences (cRSSs) and frequently have non-template-derived nucleotides inserted in between breakpoints, pointing to an illegitimate RAG recombination-driven activity. Identified cRSSs drive RAG-dependent recombination in a reporter system as efficiently as bona fide RSSs that flank gene segments of the T-cell receptor locus. Remarkably, equivalent microdeletions were detected in thymocytes of healthy individuals. Microdeletions strongly associate with the TALLMO subtype characterized by TAL1 or LMO2 rearrangements. Primary and secondary xenotransplantation of TAL1-rearranged leukemia allowed development of leukemic subclones with newly acquired PTEN microdeletions. Ongoing RAG activity may therefore actively contribute to the acquisition of preleukemic hits, clonal diversification, and disease progression. PMID:24904117

  13. Combination Chemotherapy and Imatinib Mesylate in Treating Children With Relapsed Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2013-10-07

    L1 Childhood Acute Lymphoblastic Leukemia; L2 Childhood Acute Lymphoblastic Leukemia; Non-T, Non-B Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  14. A novel 2,6-diisopropylphenyl-docosahexaenoamide conjugate induces apoptosis in T cell acute lymphoblastic leukemia cell lines

    SciTech Connect

    Altenburg, Jeffrey D.; Harvey, Kevin A.; McCray, Sharon; Xu, Zhidong; Siddiqui, Rafat A.

    2011-07-29

    Highlights: {yields} 2,6-Diisopropylphenyl-docosahexaenoamide conjugates (DIP-DHA) inhibits the proliferation of T-cell leukemic cell lines. {yields} DIP-DHA resulted in increased activation of caspase-3, and caspase-7. {yields} DIP-DHA significantly downregulated CXCR4 surface expression. -- Abstract: We have previously characterized the effects of 2,6-diisopropylphenyl-docosahexaenoamide (DIP-DHA) conjugates and their analogs on the proliferation and progression of breast cancer cell lines. For this study, we investigated the effects of the DIP-DHA conjugate on 2 representative T cell acute lymphoblastic leukemia (T-ALL) cell lines: CEM and Jurkat. Treatment of both cell lines with DIP-DHA resulted in significantly greater inhibition of proliferation and induction of apoptosis than that of parent compounds, 2,6-diisopropylphenol (DIP) or docosahexaenoate (DHA). Treatment of the cells with DIP-DHA resulted in increased activation of caspase-3, and caspase-7. Furthermore, induction of apoptosis in both cell lines was reversed in the presence of a caspase family inhibitor. Treatment with DIP-DHA reduced mitochondrial membrane potential. These observations suggest that the effects are driven by intrinsic apoptotic pathways. DIP-DHA treatment also downregulated surface CXCR4 expression, an important chemokine receptor involved in cancer metastasis that is highly expressed in both CEM and Jurkat cells. In conclusion, our data suggest that the DIP-DHA conjugate exhibits significantly more potent effects on CEM and Jurkat cells than that of DIP or DHA alone. These conjugates have potential use for treatment of patients with T cell acute lymphoblastic leukemia.

  15. T cells raised against allogeneic HLA-A2/CD20 kill primary follicular lymphoma and acute lymphoblastic leukemia cells.

    PubMed

    Abrahamsen, Ingerid Weum; Kjellevoll, Synneva; Greve-Isdahl, Margrethe; Mensali, Nadia; Wälchli, Sébastien; Kumari, Shraddha; Loland, Beate Fossum; Egeland, Torstein; Kolstad, Arne; Olweus, Johanna

    2012-04-15

    T cells mediating a graft-versus-leukemia/lymphoma effects without causing graft-versus-host disease would greatly improve the safety and applicability of hematopoietic stem cell transplantation. We recently demonstrated that highly peptide- and HLA-specific T cells can readily be generated against allogeneic HLA-A*02:01 in complex with a peptide from the B cell-restricted protein CD20. Here, we show that such CD20-specific T cells can easily be induced from naïve precursors in cord blood, demonstrating that they do not represent cross-reactive memory cells. The cells displayed high avidity and mediated potent cytotoxic effects on cells from patients with the CD20(pos) B cell malignancies follicular lymphoma (FL) and acute lymphoblastic leukemia (ALL). However, the cytotoxicity was consistently lower for cells from two of the ALL patients. The ALL cells that were less efficiently killed did not display lower surface expression of CD20 or HLA-A*02:01, or mutations in the CD20 sequence. Peptide pulsing fully restored the levels of cytotoxicity, indicating that they are indeed susceptible to T cell-mediated killing. Adoptive transfer of CD20-specific T cells to an HLA-A*02:01(pos) patient requires an HLA-A*02:01(neg) , but otherwise HLA identical, donor. A search clarified that donors meeting these criteria can be readily identified even for patients with rare haplotypes. The results bear further promise for the clinical utility of CD20-specific T cells in B cell malignancies. PMID:21630262

  16. NUP214-ABL1-mediated cell proliferation in T-cell acute lymphoblastic leukemia is dependent on the LCK kinase and various interacting proteins

    PubMed Central

    De Keersmaecker, Kim; Porcu, Michaël; Cox, Luk; Girardi, Tiziana; Vandepoel, Roel; de Beeck, Joyce Op; Gielen, Olga; Mentens, Nicole; Bennett, Keiryn L.; Hantschel, Oliver

    2014-01-01

    The NUP214-ABL1 fusion protein is a constitutively active protein tyrosine kinase that is found in 6% of patients with T-cell acute lymphoblastic leukemia and that promotes proliferation and survival of T-lymphoblasts. Although NUP214-ABL1 is sensitive to ABL1 kinase inhibitors, development of resistance to these compounds is a major clinical problem, underlining the need for additional drug targets in the sparsely studied NUP214-ABL1 signaling network. In this work, we identify and validate the SRC family kinase LCK as a protein whose activity is absolutely required for the proliferation and survival of T-cell acute lymphoblastic leukemia cells that depend on NUP214-ABL1 activity. These findings underscore the potential of SRC kinase inhibitors and of the dual ABL1/SRC kinase inhibitors dasatinib and bosutinib for the treatment of NUP214-ABL1-positive T-cell acute lymphoblastic leukemia. In addition, we used mass spectrometry to identify protein interaction partners of NUP214-ABL1. Our results strongly support that the signaling network of NUP214-ABL1 is distinct from that previously reported for BCR-ABL1. Moreover, we found that three NUP214-ABL1-interacting proteins, MAD2L1, NUP155, and SMC4, are strictly required for the proliferation and survival of NUP214-ABL1-positive T-cell acute lymphoblastic leukemia cells. In conclusion, this work identifies LCK, MAD2L1, NUP155 and SMC4 as four new potential drug targets in NUP214-ABL1-positive T-cell acute lymphoblastic leukemia. PMID:23872305

  17. MiR-146b negatively regulates migration and delays progression of T-cell acute lymphoblastic leukemia.

    PubMed

    Correia, Nádia C; Fragoso, Rita; Carvalho, Tânia; Enguita, Francisco J; Barata, João T

    2016-01-01

    Previous results indicated that miR-146b-5p is downregulated by TAL1, a transcription factor critical for early hematopoiesis that is frequently overexpressed in T-cell acute lymphoblastic leukemia (T-ALL) where it has an oncogenic role. Here, we confirmed that miR-146b-5p expression is lower in TAL1-positive patient samples than in other T-ALL cases. Furthermore, leukemia T-cells display decreased levels of miR-146b-5p as compared to normal T-cells, thymocytes and other hematopoietic progenitors. MiR-146b-5p silencing enhances the in vitro migration and invasion of T-ALL cells, associated with increased levels of filamentous actin and chemokinesis. In vivo, miR-146b overexpression in a TAL1-positive cell line extends mouse survival in a xenotransplant model of human T-ALL. In contrast, knockdown of miR-146b-5p results in leukemia acceleration and decreased mouse overall survival, paralleled by faster tumor infiltration of the central nervous system. Our results suggest that miR-146b-5p is a functionally relevant microRNA gene in the context of T-ALL, whose negative regulation by TAL1 and possibly other oncogenes contributes to disease progression by modulating leukemia cell motility and disease aggressiveness. PMID:27550837

  18. MiR-146b negatively regulates migration and delays progression of T-cell acute lymphoblastic leukemia

    PubMed Central

    Correia, Nádia C.; Fragoso, Rita; Carvalho, Tânia; Enguita, Francisco J.; Barata, João T.

    2016-01-01

    Previous results indicated that miR-146b-5p is downregulated by TAL1, a transcription factor critical for early hematopoiesis that is frequently overexpressed in T-cell acute lymphoblastic leukemia (T-ALL) where it has an oncogenic role. Here, we confirmed that miR-146b-5p expression is lower in TAL1-positive patient samples than in other T-ALL cases. Furthermore, leukemia T-cells display decreased levels of miR-146b-5p as compared to normal T-cells, thymocytes and other hematopoietic progenitors. MiR-146b-5p silencing enhances the in vitro migration and invasion of T-ALL cells, associated with increased levels of filamentous actin and chemokinesis. In vivo, miR-146b overexpression in a TAL1-positive cell line extends mouse survival in a xenotransplant model of human T-ALL. In contrast, knockdown of miR-146b-5p results in leukemia acceleration and decreased mouse overall survival, paralleled by faster tumor infiltration of the central nervous system. Our results suggest that miR-146b-5p is a functionally relevant microRNA gene in the context of T-ALL, whose negative regulation by TAL1 and possibly other oncogenes contributes to disease progression by modulating leukemia cell motility and disease aggressiveness. PMID:27550837

  19. Targeting leukemia stem cells: which pathways drive self-renewal activity in T-cell acute lymphoblastic leukemia?

    PubMed Central

    Belmonte, M.; Hoofd, C.; Weng, A.P.; Giambra, V.

    2016-01-01

    T-Cell acute lymphoblastic leukemia (t-all) is a malignancy of white blood cells, characterized by an uncontrolled accumulation of T-cell progenitors. During leukemic progression, immature T cells grow abnormally and crowd into the bone marrow, preventing it from making normal blood cells and spilling out into the bloodstream. Recent studies suggest that only discrete cell populations that possess the ability to recreate the entire tumour might be responsible for the initiation and propagation of t-all. Those unique cells are commonly called “cancer stem cells” or, in the case of hematopoietic malignancies, “leukemia stem cells” (lscs). Like normal hematopoietic stem cells, lscs are thought to be capable of self-renewal, during which, by asymmetrical division, they give rise to an identical copy of themselves as well as to a daughter cell that is no longer capable of self-renewal activity and represents a more “differentiated” progeny. Here, we review the main pathways of self-renewal activity in lscs, focusing on their involvement in the maintenance and development of t-all. New stem cell–directed therapies and lsc-targeted agents are also discussed. PMID:26966402

  20. Persistent Multiyear Control of Relapsed T-Cell Acute Lymphoblastic Leukemia With Successive Donor Lymphocyte Infusions: A Case Report.

    PubMed

    Huo, Jeffrey S; Symons, Heather J; Robey, Nancy; Borowitz, Michael J; Schafer, Eric S; Chen, Allen R

    2016-07-01

    There are few therapeutic options for patients with T-cell acute lymphoblastic leukemia (T-ALL) who have recurrent disease after initial matched sibling hematopoietic stem cell transplantation. While a second hematopoietic stem cell transplant (HSCT) from a haploidentical donor offers the conceptual possibility of greater graft versus leukemia effect, there is minimal literature to describe the efficacy of this approach in recurrent pediatric T-ALL. We present the case of a now 9-year-old female in whom second haploidentical HSCT, followed by successive donor lymphocyte infusions in response to minimal residual disease reemergence, has led to 3+ years of ongoing disease control without graft versus host disease and excellent quality of life. PMID:26990138

  1. Am80 inhibits stromal cell-derived factor-1-induced chemotaxis in T-cell acute lymphoblastic leukemia cells.

    PubMed

    Matsumoto, Taichi; Jimi, Shiro; Hara, Shuuji; Takamatsu, Yasushi; Suzumiya, Junji; Tamura, Kazuo

    2010-03-01

    C-X-C motif chemokine receptor 4 (CXCR4) and stromal cell-derived factor-1 (SDF-1) play a potent role in metastasis and infiltration of many types of tumors, including T-cell acute lymphoblastic leukemia (T-ALL), into the central nervous system or lymph nodes. Although higher levels of CXCR4 expression have been shown to correlate with shorter survival of patients, effective drugs affecting cell surface CXCR4 expression are still unknown. In the present study, we examined the effects of a synthetic retinoid Am80 on CXCR4 expression of cultured T-ALL cells, such as Jurkat. Am80 inhibited surface CXCR4 expression and SDF-1-induced chemotaxis by the acceleration of CXCR4 internalization via activation of conventional PKC. Am80 may be an effective drug to inhibit the extramedullary infiltration of T-ALL cells. PMID:20141446

  2. Apoptosis in T cell acute lymphoblastic leukemia cells after cell cycle arrest induced by pharmacological inhibition of notch signaling.

    PubMed

    Lewis, Huw D; Leveridge, Matthew; Strack, Peter R; Haldon, Christine D; O'neil, Jennifer; Kim, Hellen; Madin, Andrew; Hannam, Joanne C; Look, A Thomas; Kohl, Nancy; Draetta, Giulio; Harrison, Timothy; Kerby, Julie A; Shearman, Mark S; Beher, Dirk

    2007-02-01

    In this report, inhibitors of the gamma-secretase enzyme have been exploited to characterize the antiproliferative relationship between target inhibition and cellular responses in Notch-dependent human T cell acute lymphoblastic leukemia (T-ALL) cell lines. Inhibition of gamma-secretase led to decreased Notch signaling, measured by endogenous NOTCH intracellular domain (NICD) formation, and was associated with decreased cell viability. Flow cytometry revealed that decreased cell viability resulted from a G(0)/G(1) cell cycle block, which correlated strongly to the induction of apoptosis. These effects associated with inhibitor treatment were rescued by exogenous expression of NICD and were not mirrored when a markedly less active enantiomer was used, demonstrating the gamma-secretase dependency and specificity of these responses. Together, these data strengthen the rationale for using gamma-secretase inhibitors therapeutically and suggest that programmed cell death may contribute to reduction of tumor burden in the clinic. PMID:17317574

  3. The NOTCH signaling pathway: role in the pathogenesis of T-cell acute lymphoblastic leukemia and implication for therapy

    PubMed Central

    Tosello, Valeria

    2013-01-01

    T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) is characterized by aberrant activation of NOTCH1 in over 60% of T-ALL cases. The high prevalence of activating NOTCH1 mutations highlights the critical role of NOTCH signaling in the pathogenesis of this disease and has prompted the development of therapeutic approaches targeting the NOTCH signaling pathway. Small molecule gamma secretase inhibitors (GSIs) can effectively inhibit oncogenic NOTCH1 and are in clinical testing for the treatment of T-ALL. Treatment with GSIs and glucocorticoids are strongly synergistic and may overcome the gastrointestinal toxicity associated with systemic inhibition of the NOTCH pathway. In addition, emerging new anti-NOTCH1 therapies include selective inhibition of NOTCH1 with anti-NOTCH1 antibodies and stapled peptides targeting the NOTCH transcriptional complex in the nucleus. PMID:23730497

  4. Alemtuzumab and Combination Chemotherapy in Treating Patients With Untreated Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2014-03-20

    Acute Undifferentiated Leukemia; B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; L1 Adult Acute Lymphoblastic Leukemia; L1 Childhood Acute Lymphoblastic Leukemia; L2 Adult Acute Lymphoblastic Leukemia; L2 Childhood Acute Lymphoblastic Leukemia; Philadelphia Chromosome Negative Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Childhood Precursor Acute Lymphoblastic Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  5. Notch signals positively regulate activity of the mTOR pathway in T-cell acute lymphoblastic leukemia

    PubMed Central

    Chan, Steven M.; Weng, Andrew P.; Tibshirani, Robert; Aster, Jon C.

    2007-01-01

    Constitutive Notch activation is required for the proliferation of a subgroup of T-cell acute lymphoblastic leukemia (T-ALL). Downstream pathways that transmit pro-oncogenic signals are not well characterized. To identify these pathways, protein microarrays were used to profile the phosphorylation state of 108 epitopes on 82 distinct signaling proteins in a panel of 13 T-cell leukemia cell lines treated with a gamma-secretase inhibitor (GSI) to inhibit Notch signals. The microarray screen detected GSI-induced hypophosphorylation of multiple signaling proteins in the mTOR pathway. This effect was rescued by expression of the intracellular domain of Notch and mimicked by dominant negative MAML1, confirming Notch specificity. Withdrawal of Notch signals prevented stimulation of the mTOR pathway by mitogenic factors. These findings collectively suggest that the mTOR pathway is positively regulated by Notch in T-ALL cells. The effect of GSI on the mTOR pathway was independent of changes in phosphatidylinositol-3 kinase and Akt activity, but was rescued by expression of c-Myc, a direct transcriptional target of Notch, implicating c-Myc as an intermediary between Notch and mTOR. T-ALL cell growth was suppressed in a highly synergistic manner by simultaneous treatment with the mTOR inhibitor rapamycin and GSI, which represents a rational drug combination for treating this aggressive human malignancy. PMID:17363738

  6. Potential roles of microRNA-29a in the molecular pathophysiology of T-cell acute lymphoblastic leukemia

    PubMed Central

    Oliveira, Lucila H; Schiavinato, Josiane L; Fráguas, Mariane S; Lucena-Araujo, Antonio R; Haddad, Rodrigo; Araújo, Amélia G; Dalmazzo, Leandro F; Rego, Eduardo M; Covas, Dimas T; Zago, Marco A; Panepucci, Rodrigo A

    2015-01-01

    Recent evidence has shown that deregulated expression of members of the microRNA-29 (miR-29) family may play a critical role in human cancer, including hematological malignancies. However, the roles of miR-29 in the molecular pathophysiology of T-cell acute lymphoblastic leukemia (T-ALL) has not been investigated. Here, we show that lower levels of miR-29a were significantly associated with higher blast counts in the bone marrow and with increased disease-free survival in T-ALL patients. Furthermore, miR-29a levels are extremely reduced in T-ALL cells compared to normal T cells. Microarray analysis following introduction of synthetic miR-29a mimics into Jurkat cells revealed the downregulation of several predicted targets (CDK6, PXDN, MCL1, PIK3R1, and CXXC6), including targets with roles in active and passive DNA demethylation (such as DNMT3a, DNMT3b, and members of the TET family and TDG). Restoring miR-29a levels in Jurkat and Molt-4 T-ALL cells led to the demethylation of many genes commonly methylated in T-ALL. Overall, our results suggest that reduced miR-29a levels may contribute to the altered epigenetic status of T-ALL, highlighting its relevance in the physiopathology of this disease. PMID:26251039

  7. Inhibition of MerTK increases chemosensitivity and decreases oncogenic potential in T-cell acute lymphoblastic leukemia.

    PubMed

    Brandao, L N; Winges, A; Christoph, S; Sather, S; Migdall-Wilson, J; Schlegel, J; McGranahan, A; Gao, D; Liang, X; Deryckere, D; Graham, D K

    2013-01-01

    Pediatric leukemia survival rates have improved dramatically over the past decades. However, current treatment protocols are still largely ineffective in cases of relapsed leukemia and are associated with a significant rate of chronic health conditions. Thus, there is a continued need for new therapeutic options. Here, we show that mer receptor tyrosine kinase (MerTK) was abnormally expressed in approximately one half of pediatric T-cell leukemia patient samples and T-cell acute lymphoblastic leukemia (T-ALL) cell lines. Stimulation of MerTK by the ligand Gas6 led to activation of the prosurvival proteins Erk 1/2 and Stat5, and MerTK-dependent activation of the STAT pathway in leukemia represents a novel finding. Furthermore, inhibition of MerTK expression increased the sensitivity of T-ALL cells to treatment with chemotherapeutic agents and decreased the oncogenic potential of the Jurkat T-ALL cell line in a methylcellulose colony-forming assay. Lastly, inhibition of MerTK expression significantly increased median survival in a xenograft mouse model of leukemia (30.5 days vs 60 days, P<0.0001). These results suggest that inhibition of MerTK is a promising therapeutic strategy for the treatment of leukemia and may allow for dose reduction of currently used chemotherapeutics resulting in decreased rates of therapy-associated toxicities. PMID:23353780

  8. Inhibition of MerTK increases chemosensitivity and decreases oncogenic potential in T-cell acute lymphoblastic leukemia

    PubMed Central

    Brandao, L N; Winges, A; Christoph, S; Sather, S; Migdall-Wilson, J; Schlegel, J; McGranahan, A; Gao, D; Liang, X; DeRyckere, D; Graham, D K

    2013-01-01

    Pediatric leukemia survival rates have improved dramatically over the past decades. However, current treatment protocols are still largely ineffective in cases of relapsed leukemia and are associated with a significant rate of chronic health conditions. Thus, there is a continued need for new therapeutic options. Here, we show that mer receptor tyrosine kinase (MerTK) was abnormally expressed in approximately one half of pediatric T-cell leukemia patient samples and T-cell acute lymphoblastic leukemia (T-ALL) cell lines. Stimulation of MerTK by the ligand Gas6 led to activation of the prosurvival proteins Erk 1/2 and Stat5, and MerTK-dependent activation of the STAT pathway in leukemia represents a novel finding. Furthermore, inhibition of MerTK expression increased the sensitivity of T-ALL cells to treatment with chemotherapeutic agents and decreased the oncogenic potential of the Jurkat T-ALL cell line in a methylcellulose colony-forming assay. Lastly, inhibition of MerTK expression significantly increased median survival in a xenograft mouse model of leukemia (30.5 days vs 60 days, P<0.0001). These results suggest that inhibition of MerTK is a promising therapeutic strategy for the treatment of leukemia and may allow for dose reduction of currently used chemotherapeutics resulting in decreased rates of therapy-associated toxicities. PMID:23353780

  9. Potential roles of microRNA-29a in the molecular pathophysiology of T-cell acute lymphoblastic leukemia.

    PubMed

    Oliveira, Lucila H; Schiavinato, Josiane L; Fráguas, Mariane S; Lucena-Araujo, Antonio R; Haddad, Rodrigo; Araújo, Amélia G; Dalmazzo, Leandro F; Rego, Eduardo M; Covas, Dimas T; Zago, Marco A; Panepucci, Rodrigo A

    2015-10-01

    Recent evidence has shown that deregulated expression of members of the microRNA-29 (miR-29) family may play a critical role in human cancer, including hematological malignancies. However, the roles of miR-29 in the molecular pathophysiology of T-cell acute lymphoblastic leukemia (T-ALL) has not been investigated. Here, we show that lower levels of miR-29a were significantly associated with higher blast counts in the bone marrow and with increased disease-free survival in T-ALL patients. Furthermore, miR-29a levels are extremely reduced in T-ALL cells compared to normal T cells. Microarray analysis following introduction of synthetic miR-29a mimics into Jurkat cells revealed the downregulation of several predicted targets (CDK6, PXDN, MCL1, PIK3R1, and CXXC6), including targets with roles in active and passive DNA demethylation (such as DNMT3a, DNMT3b, and members of the TET family and TDG). Restoring miR-29a levels in Jurkat and Molt-4 T-ALL cells led to the demethylation of many genes commonly methylated in T-ALL. Overall, our results suggest that reduced miR-29a levels may contribute to the altered epigenetic status of T-ALL, highlighting its relevance in the physiopathology of this disease. PMID:26251039

  10. An early thymic precursor phenotype predicts outcome exclusively in HOXA-overexpressing adult T-cell acute lymphoblastic leukemia: a Group for Research in Adult Acute Lymphoblastic Leukemia study

    PubMed Central

    Bond, Jonathan; Marchand, Tony; Touzart, Aurore; Cieslak, Agata; Trinquand, Amélie; Sutton, Laurent; Radford-Weiss, Isabelle; Lhermitte, Ludovic; Spicuglia, Salvatore; Dombret, Hervé; Macintyre, Elizabeth; Ifrah, Norbert; Hamel, Jean-François; Asnafi, Vahid

    2016-01-01

    Gene expression studies have consistently identified a HOXA-overexpressing cluster of T-cell acute lymphoblastic leukemias, but it is unclear whether these constitute a homogeneous clinical entity, and the biological consequences of HOXA overexpression have not been systematically examined. We characterized the biology and outcome of 55 HOXA-positive cases among 209 patients with adult T-cell acute lymphoblastic leukemia uniformly treated during the Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL)-2003 and -2005 studies. HOXA-positive patients had markedly higher rates of an early thymic precursor-like immunophenotype (40.8% versus 14.5%, P=0.0004), chemoresistance (59.3% versus 40.8%, P=0.026) and positivity for minimal residual disease (48.5% versus 23.5%, P=0.01) than the HOXA-negative group. These differences were due to particularly high frequencies of chemoresistant early thymic precursor-like acute lymphoblastic leukemia in HOXA-positive cases harboring fusion oncoproteins that transactivate HOXA. Strikingly, the presence of an early thymic precursor-like immunophenotype was associated with marked outcome differences within the HOXA-positive group (5-year overall survival 31.2% in HOXA-positive early thymic precursor versus 66.7% in HOXA-positive non-early thymic precursor, P=0.03), but not in HOXA-negative cases (5-year overall survival 74.2% in HOXA-negative early thymic precursor versus 57.2% in HOXA-negative non-early thymic precursor, P=0.44). Multivariate analysis further revealed that HOXA positivity independently affected event-free survival (P=0.053) and relapse risk (P=0.039) of chemoresistant T-cell acute lymphoblastic leukemia. These results show that the underlying mechanism of HOXA deregulation dictates the clinico-biological phenotype, and that the negative prognosis of early thymic precursor acute lymphoblastic leukemia is exclusive to HOXA-positive patients, suggesting that early treatment intensification is currently

  11. The relevance of PTEN-AKT in relation to NOTCH1-directed treatment strategies in T-cell acute lymphoblastic leukemia.

    PubMed

    Mendes, Rui D; Canté-Barrett, Kirsten; Pieters, Rob; Meijerink, Jules P P

    2016-09-01

    The tumor suppressor phosphatase and tensin homolog (PTEN) negatively regulates phosphatidylinositol 3-kinase (PI3K)-AKT signaling and is often inactivated by mutations (including deletions) in a variety of cancer types, including T-cell acute lymphoblastic leukemia. Here we review mutation-associated mechanisms that inactivate PTEN together with other molecular mechanisms that activate AKT and contribute to T-cell leukemogenesis. In addition, we discuss how Pten mutations in mouse models affect the efficacy of gamma-secretase inhibitors to block NOTCH1 signaling through activation of AKT. Based on these models and on observations in primary diagnostic samples from patients with T-cell acute lymphoblastic leukemia, we speculate that PTEN-deficient cells employ an intrinsic homeostatic mechanism in which PI3K-AKT signaling is dampened over time. As a result of this reduced PI3K-AKT signaling, the level of AKT activation may be insufficient to compensate for NOTCH1 inhibition, resulting in responsiveness to gamma-secretase inhibitors. On the other hand, de novo acquired PTEN-inactivating events in NOTCH1-dependent leukemia could result in temporary, strong activation of PI3K-AKT signaling, increased glycolysis and glutaminolysis, and consequently gamma-secretase inhibitor resistance. Due to the central role of PTEN-AKT signaling and in the resistance to NOTCH1 inhibition, AKT inhibitors may be a promising addition to current treatment protocols for T-cell acute lymphoblastic leukemia. PMID:27582570

  12. L-type amino-acid transporter 1 (LAT1): a therapeutic target supporting growth and survival of T-cell lymphoblastic lymphoma/T-cell acute lymphoblastic leukemia.

    PubMed

    Rosilio, C; Nebout, M; Imbert, V; Griessinger, E; Neffati, Z; Benadiba, J; Hagenbeek, T; Spits, H; Reverso, J; Ambrosetti, D; Michiels, J-F; Bailly-Maitre, B; Endou, H; Wempe, M F; Peyron, J-F

    2015-06-01

    The altered metabolism of cancer cells is a treasure trove to discover new antitumoral strategies. The gene (SLC7A5) encoding system L amino-acid transporter 1 (LAT1) is overexpressed in murine lymphoma cells generated via T-cell deletion of the pten tumor suppressor, and also in human T-cell acute lymphoblastic leukemia (T-ALL)/lymphoma (T-LL) cells. We show here that a potent and LAT1 selective inhibitor (JPH203) decreased leukemic cell viability and proliferation, and induced transient autophagy followed by apoptosis. JPH203 could also alter the in vivo growth of luciferase-expressing-tPTEN-/- cells xenografted into nude mice. In contrast, JPH203 was nontoxic to normal murine thymocytes and human peripheral blood lymphocytes. JPH203 interfered with constitutive activation of mTORC1 and Akt, decreased expression of c-myc and triggered an unfolded protein response mediated by the C/EBP homologous protein (CHOP) transcription factor associated with cell death. A JPH203-resistant tPTEN-/-clone appeared CHOP induction deficient. We also demonstrate that targeting LAT1 may be an efficient broad spectrum adjuvant approach to treat deadly T-cell malignancies as the molecule synergized with rapamycin, dexamethasone, doxorubicin, velcade and l-asparaginase to alter leukemic cell viability. PMID:25482130

  13. Therapeutic targeting of Polo-like kinase-1 and Aurora kinases in T-cell acute lymphoblastic leukemia

    PubMed Central

    Spartà, Antonino Maria; Bressanin, Daniela; Chiarini, Francesca; Lonetti, Annalisa; Cappellini, Alessandra; Evangelisti, Cecilia; Evangelisti, Camilla; Melchionda, Fraia; Pession, Andrea; Bertaina, Alice; Locatelli, Franco; McCubrey, James A; Martelli, Alberto M

    2014-01-01

    Polo-like kinases (PLKs) and Aurora kinases (AKs) act as key cell cycle regulators in healthy human cells. In cancer, these protein kinases are often overexpressed and dysregulated, thus contributing to uncontrolled cell proliferation and growth. T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous malignancy arising in the thymus from T-cell progenitors. Primary chemoresistant and relapsed T-ALL patients have yet a poor outcome, therefore novel therapies, targeting signaling pathways important for leukemic cell proliferation, are required. Here, we demonstrate the potential therapeutic effects of BI6727, MK-5108, and GSK1070916, three selective inhibitors of PLK1, AK-A, and AK-B/C, respectively, in a panel of T-ALL cell lines and primary cells from T-ALL patients. The drugs were both cytostatic and cytotoxic to T-ALL cells by inducing G2/M-phase arrest and apoptosis. The drugs retained part of their pro-apoptotic activity in the presence of MS-5 bone marrow stromal cells. Moreover, we document for the first time that BI6727 perturbed both the PI3K/Akt/mTORC2 and the MEK/ERK/mTORC1 signaling pathways, and that a combination of BI6727 with specific inhibitors of the aforementioned pathways (MK-2206, CCI-779) displayed significantly synergistic cytotoxic effects. Taken together, our findings indicate that PLK1 and AK inhibitors display the potential for being employed in innovative therapeutic strategies for improving T-ALL patient outcome. PMID:24874015

  14. Immunophenotype and increased presence of CD4(+)CD25(+) regulatory T cells in patients with acute lymphoblastic leukemia.

    PubMed

    Wu, Cui-Ping; Qing, Xi; Wu, Cui-Yun; Zhu, Hong; Zhou, Hai-Yan

    2012-02-01

    Acute lymphoblastic leukemia (ALL), cancer of the white blood cells, is a heterogeneous disease that mainly occurs due to the malignant cloning of original and naive lymphocytes. The aim of this study was to explore the immunophenotype, the percentage of CD4(+)CD25(+) regulatory T cells (Tregs) and the expression of cytokines interleukin (IL)-2, IL-10 and TGF-β in patients with ALL. The immunophenotype and levels of CD4(+)CD25(+) Tregs were detected using flow cytometry in the peripheral blood of 35 ALL patients, with 18 healthy individuals being selected as controls. The results suggested that 22 patients had B cell ALL (B-ALL) and 13 had T cell ALL (T-ALL) among the 35 ALL patients. In B-ALL patients, the surface antigen CD19 was most commonly expressed; in T-ALL patients, CD7 was most common. Furthermore, the percentage of CD4(+)CD25(+) Treg cells in the peripheral blood of B-ALL and T-ALL patients was higher compared to that of healthy individuals (P<0.05). Additionally, IL-10 and TGF-β levels in cell culture supernatants from B-ALL and T-ALL patients were higher compared to those in the controls (P<0.05); IL-2 levels were lower in ALL patients. No significant differences were observed in the levels of CD4(+)CD25(+) Treg cells, IL-2, IL-10 or TGF-β in B-ALL versus T-ALL patients. The authors concluded that CD19 and CD7 may serve as diagnostic markers of B-ALL and T-ALL, respectively. The increased presence of CD4(+)CD25(+) Treg cells and the altered levels of secreted cytokines are indicative of an immunosuppressive mechanism in the pathogenesis of ALL. PMID:22740924

  15. Plumbagin exerts an immunosuppressive effect on human T-cell acute lymphoblastic leukemia MOLT-4 cells.

    PubMed

    Bae, Kyoung Jun; Lee, Yura; Kim, Soon Ae; Kim, Jiyeon

    2016-04-22

    Of the hematological disorders typified by poor prognoses and survival rates, T-cell acute lymphoblastic leukemia (T-ALL) is one of the most commonly diagnosed. Despite the development of new therapeutic agents, the treatment options for this cancer remain limited. In this manuscript, we investigated the anti-proliferative effects of plumbagin, mediated by the activation of mitogen-activated protein kinase (MAPK) pathways, and inhibition of NF-κB signaling; the human T-ALL MOLT-4 cell line was used as our experimental system. Plumbagin is a natural, plant derived compound, which exerts an anti-proliferative activity against many types of human cancer. Our experiments confirm that plumbagin induces a caspase-dependent apoptosis of MOLT-4 cells, with no significant cytotoxicity seen for normal peripheral blood mononuclear cells (PBMCs). Plumbagin also inhibited LPS-induced phosphorylation of p65, and the transcription of NF-κB target genes. Our results now show that plumbagin is a potent inhibitor of the NF-κB signaling pathway, and suppressor of T-ALL cell proliferation. PMID:27018383

  16. Targeting Oncogenic Interleukin-7 Receptor Signalling with N-acetylcysteine in T-cell acute lymphoblastic leukaemia

    PubMed Central

    Mansour, Marc R.; Reed, Casie; Eisenberg, Amy R.; Tseng, Jen-Chieh; Twizere, Jean-Claude; Daakour, Sarah; Yoda, Akinori; Rodig, Scott J.; Tal, Noa; Shochat, Chen; Berezovskaya, Alla; DeAngelo, Daniel J.; Sallan, Stephen E.; Weinstock, David M.; Izraeli, Shai; Kung, Andrew L.; Kentsis, Alex; Look, A. Thomas

    2014-01-01

    Activating mutations of the interleukin-7 receptor (IL7R) occur in approximately 10% of patients with T-cell acute lymphoblastic leukaemia (T-ALL). Most mutations generate a cysteine at the transmembrane domain leading to receptor homodimerization through disulfide bond formation and ligand-independent activation of STAT5. We hypothesized that the reducing agent N-acetylcysteine (NAC), a well-tolerated drug used widely in clinical practice to treat acetaminophen overdose, would reduce disulfide bond formation, and inhibit mutant IL7R-mediated oncogenic signalling. We found that treatment with NAC disrupted IL7R homodimerization in IL7R-mutant DND-41 cells as assessed by non-reducing Western blot, as well as in a luciferase complementation assay. NAC led to STAT5 dephosphorylation and cell apoptosis at clinically achievable concentrations in DND-41 cells, and Ba/F3 cells transformed by an IL7R-mutant construct containing a cysteine insertion. The apoptotic effects of NAC could be rescued in part by a constitutively active allele of STAT5. Despite using doses lower than those tolerated in humans, NAC treatment significantly inhibited the progression of human DND-41 cells engrafted in immunodeficient mice. Thus, targeting leukaemogenic IL7R homodimerization with NAC offers a potentially effective and feasible therapeutic strategy that warrants testing in patients with T-ALL. PMID:25256574

  17. PI3K inhibition synergizes with glucocorticoids but antagonizes with methotrexate in T-cell acute lymphoblastic leukemia

    PubMed Central

    Silveira, André Bortolini; Laranjeira, Angelo Brunelli Albertoni; Rodrigues, Gisele Olinto Libanio; Leal, Paulo César; Cardoso, Bruno António; Barata, João Taborda; Yunes, Rosendo Augusto; Zanchin, Nilson Ivo Tonin; Brandalise, Sílvia Regina; Yunes, José Andrés

    2015-01-01

    The PI3K pathway is frequently hyperactivated in primary T-cell acute lymphoblastic leukemia (T-ALL) cells. Activation of the PI3K pathway has been suggested as one mechanism of glucocorticoid resistance in T-ALL, and patients harboring mutations in the PI3K negative regulator PTEN may be at increased risk of induction failure and relapse. By gene expression microarray analysis of T-ALL cells treated with the PI3K inhibitor AS605240, we identified Myc as a prominent downstream target of the PI3K pathway. A significant association was found between the AS605240 gene expression signature and that of glucocorticoid resistance and relapse in T-ALL. AS605240 showed anti-leukemic activity and strong synergism with glucocorticoids both in vitro and in a NOD/SCID xenograft model of T-ALL. In contrast, PI3K inhibition showed antagonism with methotrexate and daunorubicin, drugs that preferentially target dividing cells. This antagonistic interaction, however, could be circumvented by the use of correct drug scheduling schemes. Our data indicate the potential benefits and difficulties for the incorporation of PI3K inhibitors in T-ALL therapy. PMID:25869207

  18. The Functional Role of PRC2 in Early T-cell Precursor Acute Lymphoblastic Leukemia (ETP-ALL) – Mechanisms and Opportunities

    PubMed Central

    Bernt, Kathrin M.; Hunger, Stephen P.; Neff, Tobias

    2016-01-01

    Early T-Cell precursor acute lymphoblastic leukemia (ETP-ALL) is a relatively newly identified subset of T-lineage ALL. There are conflicting results regarding prognosis, and the genetic basis of this condition is variable. Here, we summarize the current status of the field and discuss the role of mutations in the Polycomb Repressive Complex 2 frequently identified in ETP-ALL patients. PMID:27242978

  19. Targeted and controlled release delivery of daunorubicin to T-cell acute lymphoblastic leukemia by aptamer-modified gold nanoparticles.

    PubMed

    Danesh, Noor Mohammad; Lavaee, Parirokh; Ramezani, Mohammad; Abnous, Khalil; Taghdisi, Seyed Mohammad

    2015-07-15

    Clinical administration of daunorubicin (Dau) in treatment of leukemia has been limited by its cardiotoxicity. Targeted delivery of chemotherapy drugs could reduce their side effects and increase the therapeutic efficacy of these drugs. Biocompatibility and large surface area of gold nanoparticles (AuNPs) make these nanoparticles great candidates for biomedical applications. In this study sgc8c aptamer (Apt)-Dau-AuNPs complex was designed and evaluated for treatment of Molt-4 cells (human acute lymphoblastic leukemia T-cell, target). Apt-Dau-AuNPs complex formation was analyzed by fluorometric analysis and gel retardation assay. Dau release profiles from the complex were evaluated in pHs 5.5 and 7.4. For cytotoxic studies (MTT assay) U266 (B lymphocyte human myeloma, nontarget) and Molt-4 cells (target) were treated with Dau Apt-Dau conjugate and Apt-Dau-AuNPs complex. Internalization was monitored by flow cytometry and confocal imaging. 12 μM Dau was efficiently loaded onto 1 mL of Apt-modified AuNPs. Dau was released from the complex in a pH-dependent manner (higher rate of release at pH 5.5). The results of flow cytometry analysis and confocal imaging showed that the complex was effectively internalized into Molt-4 cells, but not into U266 cells. The results of MTT assay also confirmed the internalization data. Apt-Dau-AuNPs complex was less cytotoxic in U266 cells compared to Dau alone and even Apt-Dau conjugate. The complex was more cytotoxic in target cells in comparison with Dau alone and even Apt-Dau conjugate. In conclusion, Apt-Dau-AuNPs complex was able to selectively target Molt-4 cells. Another advantage of this system was pH-dependent release of drug from the complex. Furthermore, this complex has characteristics which make it ideal for clinical use. PMID:25936625

  20. Risk stratification of T-cell Acute Lymphoblastic Leukemia patients based on gene expression, mutations and copy number variation.

    PubMed

    Mirji, Gauri; Bhat, Jaydeep; Kode, Jyoti; Banavali, Shripad; Sengar, Manju; Khadke, Prashant; Sait, Osama; Chiplunkar, Shubhada

    2016-06-01

    Gene expression, copy number variations (CNV), mutations and survival were studied to delineate TCRγδ+T-cell acute lymphoblastic leukemia (T-ALL) as a distinct subgroup from TCRαβ+T-ALL. Gene Ontology analysis showed that differential regulation of genes involved in pathways for leukemogenesis, apoptosis, cytokine-cytokine receptor interaction and antigen processing/presentation may offer a survival benefit to TCRγδ+T-ALL patients. Genes involved in disease biology and having equal expression in both the subgroups, were further analysed for mutations and CNV using droplet digital PCR. TCRγδ+T-ALL patients exhibited differential level of mutations for NOTCH1 and IKZF3; however BRAF mutations were detected at equal levels in both the subgroups. Although TCRγδ+T-ALL patients with these mutations demonstrated improved disease-free survival (DFS) as compared TCRαβ+T-ALL patients, it was not statistically significant. Patients with homozygous deletion of CDKN2A/CDKN2B showed poor DFS in each subgroup. TCRγδ+T-ALL patients with wild type/heterozygous deletion of CDKN2A/CDKN2B possess significantly better DFS over TCRαβ+T-ALL patients (p=0.017 and 0.045, respectively). Thus, the present study has for the first time demonstrated TCRγδ clonality and CDKN2A/CDKN2B CNV together as potential prognostic markers in management of T-ALL. Further understanding the functional significance of differentially regulated genes in T-ALL patients would aid in designing risk based treatment strategies in subset specific manner. PMID:27070758

  1. Co-existence of PHF6 and NOTCH1 mutations in adult T-cell acute lymphoblastic leukemia

    PubMed Central

    LI, MIN; XIAO, LICHAN; XU, JINGYAN; ZHANG, RUN; GUO, JINGJING; OLSON, JUSTIN; WU, YUJIE; LI, JIANYONG; SONG, CHUNHUA; GE, ZHENG

    2016-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) results from the collaboration of multiple genetic abnormalities in the transformation of T-cell progenitors. Plant homeodomain finger protein 6 (PHF6) has recently been established as a key tumor suppressor, which is mutated in T-ALL; however, the clinical significance of PHF6 mutations has not been fully determined in adult T-ALL. In the present study, amplification of the PHF6 exons was performed, followed by DNA sequencing to identify the genomic mutations and examine the expression of PHF6 in adult patients with T-ALL. The correlation between PHF6 mutations and clinical features was also analyzed using a χ2 test, and between PHF6 mutations and survival curve using the Kaplan-Meier methods. PHF6 mutations were detected in 27.1% of the Chinese adults with T-ALL (16/59), 10 of which were found to be novel mutations. A significantly lower expression level of PHF6 was observed in T-ALL patients with PHF6 mutations compared with those without mutations. Of the observed mutations in PHF6, 6/16 were frame-shift mutations, indicating a PHF6 dysfunction in those patients. Of note, PHF6 mutations were found to be significantly associated with older age, lower hemoglobin levels, higher frequency of CD13 positivity and higher incidence of splenomegaly or lymphadenopathy. Furthermore, PHF6 mutations were found to be significantly correlated with Notch homolog 1, translocation-associated (Drosophila) (NOTCH1) mutations. The patients with T-ALL with co-existence of the two mutations had a significantly shorter event-free survival and a poor prognosis. The present results indicated that PHF6 is inactivated in adult T-ALL, due to its low expression and mutations. The present data indicated the synergistic effect of PHF6 and NOTCH1 mutations, as well as their co-existence, on the oncogenesis of adult T-ALL, and their potential as a prognostic marker for the disease. PMID:27347093

  2. Early T-Cell Precursor Acute Lymphoblastic Leukemia in an Infant With an NRAS Q61R Mutation and Clinical Features of Juvenile Myelomonocytic Leukemia.

    PubMed

    Raikar, Sunil S; Scarborough, John D; Sabnis, Himalee; Bergsagel, John; Wu, David; Cooper, Todd M; Keller, Frank G; Wood, Brent L; Bunting, Silvia T

    2016-09-01

    Early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) is a subtype of T-acute lymphoblastic leukemia (T-ALL) arising from a primitive precursor. We present a unique case of an infant with ETP-ALL with a missense NRAS mutation in codon 61 (c.182A>G, p.Q61R). The patient also had a minor population of non-ETP T-ALL blasts and clinical features typically associated with juvenile myelomonocytic leukemia (JMML), namely, absolute monocytosis, splenomegaly, and elevated hemoglobin F. The treatment was initiated with chemotherapy, followed by cord blood transplantation. The patient achieved remission, but unfortunately died from transplant-related complications. This case highlights an NRAS mutation in ETP-ALL with JMML-like phenotype. PMID:27145535

  3. T cell receptor alpha-chain gene rearrangements in B-precursor leukemia are in contrast to the findings in T cell acute lymphoblastic leukemia. Comparative study of T cell receptor gene rearrangement in childhood leukemia.

    PubMed Central

    Hara, J; Benedict, S H; Mak, T W; Gelfand, E W

    1987-01-01

    We have analyzed T cell receptor alpha-chain gene configuration using three genomic joining (J) region probes in 64 children with acute lymphoblastic leukemia (ALL). 11 out of 18 T-ALLs were T3 positive; alpha-chain gene rearrangements were demonstrated in only two of 18, indicating that the majority of T-ALLs would have rearrangements involving J alpha segments located upstream of these probes. In contrast, 15 out of 46 B-precursor ALLs showed rearrangements of the alpha-chain gene and J alpha segments located approximately 20-30 kb upstream of the constant region were involved in 13 of these patients. Nine of 15 B-precursor ALLs with rearranged alpha-chain genes had rearrangements of both gamma- and beta-chain genes, whereas the remaining six had no rearrangements of gamma- and beta-chain genes. These findings indicated that alpha-chain gene rearrangement is not specific for T lineage cells and gamma- and/or beta-chain gene rearrangement does not appear essential for alpha-chain gene rearrangement, at least in B-precursor leukemic cells. Images PMID:3500187

  4. Heterogeneity of T cell lymphoblastic leukaemias.

    PubMed Central

    Gómez, E; San Miguel, J F; González, M; Orfao, A; López-Berges, C; Ríos, A; López Borrasca, A

    1991-01-01

    Twenty eight out of 170 consecutive cases of acute lymphoblastic leukaemia (ALL) were examined. They were of T cell origin, with the following distribution: seven (28%) cases had pre-T or prothymic features; nine (36%) cases showed early thymocytic features, six (24%) had cortical features; and three (12%) had a "mature" phenotype. The remaining three cases could not be sub-classified. A striking finding was that pre-T ALL differed from intrathymic ALL not only in the absence of both E rosettes and intrathymic differentiation antigens, but also in the expression of two non-lineage specific antigens HLA-DR and CD10. Both antigens appear in the bone marrow from the very first stages of lymphoid differentiation, implying that the origin for pre-T ALL is bone marrow. A comparison of the clinical features of pre-T and thymic ALL showed that pre-T ALL disease showed a pattern more similar to non-T ALL disease: a lower incidence of mediastinal mass, absence of extrahaematopoietic disease, lower white cell counts and haemoglobin concentrations, and a higher incidence of bone pain. No obvious difference in response to treatment was apparent. The results show that T-ALL is not only a heterogeneous immunological group but also suggest that it may have different origins: bone marrow for pre-T ALL and the thymus for thymic ALL. PMID:1890194

  5. T-cell acute lymphoblastic leukemia with co-expression of CD56, CD34, CD117 and CD33: A case with poor prognosis

    PubMed Central

    Eren, Rafet; Aslan, Ceyda; Yokuş, Osman; Doğu, Mehmet Hilmi; Suyani, Elif

    2016-01-01

    T-cell acute lymphoblastic leukemia (ALL) is an aggressive hematological malignancy, accounting for ~25% of all adult cases of ALL. We herein report a case of T-cell ALL exhibiting aberrant CD34, CD56, CD33 and CD117 expression in addition to T-cell markers, which did not respond to induction treatment. A 55-year-old woman was admitted to our hospital with a sore throat unresponsive to medication for 1 month. The laboratory examination revealed pancytopenia and the peripheral blood smear examination revealed blast cells. On flow cytometric analysis, the blast cells were found to be positive for cytoplasmic CD3, CD2, CD5, CD7, CD34, CD56, CD33 and CD117, and negative for myeloperoxidase, CD13, CD11b, CD15, CD19, CD79a, CD22 and CD10. The patient was diagnosed with T-cell ALL according to the 2008 World Health Organisation classification. The patient did not respond to Hyper-cyclophosphamide, vincristine, adriamycin and dexamethasone (CVAD) course A treatment and succumbed to the disease during Hyper-CVAD course B treatment. To the best of our knowledge, this is the first report of aberrant co-expression of the natural killer cell marker CD56, myeloid cell markers CD117 and CD33 and stem cell marker CD34 in a patient with T-cell ALL. This appears to be associated with an unfavorable outcome, despite the use of intensive chemotherapy.

  6. MicroRNA-193b-3p acts as a tumor suppressor by targeting the MYB oncogene in T-cell acute lymphoblastic leukemia.

    PubMed

    Mets, E; Van der Meulen, J; Van Peer, G; Boice, M; Mestdagh, P; Van de Walle, I; Lammens, T; Goossens, S; De Moerloose, B; Benoit, Y; Van Roy, N; Clappier, E; Poppe, B; Vandesompele, J; Wendel, H-G; Taghon, T; Rondou, P; Soulier, J; Van Vlierberghe, P; Speleman, F

    2015-04-01

    The MYB oncogene is a leucine zipper transcription factor essential for normal and malignant hematopoiesis. In T-cell acute lymphoblastic leukemia (T-ALL), elevated MYB levels can arise directly through T-cell receptor-mediated MYB translocations, genomic MYB duplications or enhanced TAL1 complex binding at the MYB locus or indirectly through the TAL1/miR-223/FBXW7 regulatory axis. In this study, we used an unbiased MYB 3'untranslated region-microRNA (miRNA) library screen and identified 33 putative MYB-targeting miRNAs. Subsequently, transcriptome data from two independent T-ALL cohorts and different subsets of normal T-cells were used to select miRNAs with relevance in the context of normal and malignant T-cell transformation. Hereby, miR-193b-3p was identified as a novel bona fide tumor-suppressor miRNA that targets MYB during malignant T-cell transformation thereby offering an entry point for efficient MYB targeting-oriented therapies for human T-ALL. PMID:25231743

  7. MicroRNA-193b-3p acts as a tumor suppressor by targeting the MYB oncogene in T-cell acute lymphoblastic leukemia

    PubMed Central

    Mets, E; Van der Meulen, J; Van Peer, G; Boice, M; Mestdagh, P; Van de Walle, I; Lammens, T; Goossens, S; De Moerloose, B; Benoit, Y; Van Roy, N; Clappier, E; Poppe, B; Vandesompele, J; Wendel, H-G; Taghon, T; Rondou, P; Soulier, J; Van Vlierberghe, P; Speleman, F

    2016-01-01

    The MYB oncogene is a leucine zipper transcription factor essential for normal and malignant hematopoiesis. In T-cell acute lymphoblastic leukemia (T-ALL), elevated MYB levels can arise directly through T-cell receptor-mediated MYB translocations, genomic MYB duplications or enhanced TAL1 complex binding at the MYB locus or indirectly through the TAL1/miR-223/FBXW7 regulatory axis. In this study, we used an unbiased MYB 3′untranslated region–microRNA (miRNA) library screen and identified 33 putative MYB-targeting miRNAs. Subsequently, transcriptome data from two independent T-ALL cohorts and different subsets of normal T-cells were used to select miRNAs with relevance in the context of normal and malignant T-cell transformation. Hereby, miR-193b-3p was identified as a novel bona fide tumor-suppressor miRNA that targets MYB during malignant T-cell transformation thereby offering an entry point for efficient MYB targeting-oriented therapies for human T-ALL. PMID:25231743

  8. A 25-Year-Old Man with Exudative Retinal Detachments and Infiltrates without Hematological or Neurological Findings Found to Have Relapsed Precursor T-Cell Acute Lymphoblastic Leukemia

    PubMed Central

    Johnson, Jordan S.; Lopez, James S.; Kavanaugh, Arthur Scott; Liang, Chanping; Mata, Douglas A.

    2015-01-01

    Background Precursor T-cell acute lymphoblastic leukemia (pre-T-ALL) may cause ocular pathologies such as cotton-wool spots, retinal hemorrhage, and less commonly, retinal detachment or leukemic infiltration of the retina itself. However, these findings are typically accompanied by the pathognomonic hematological signs of acute leukemia. Case Presentation In this case report and review of the literature, we describe a particularly unusual case of a 25-year-old man who presented to our hospital with bilateral exudative retinal detachments associated with posterior pole thickening without any hematological or neurological findings. The patient, who had a history of previously treated pre-T-ALL in complete remission, was found to have leukemia cell infiltration on retinal biopsy. Conclusion Our case underscores the fact that the ophthalmologist may be the first provider to detect the relapse of previously treated leukemia, and that ophthalmic evaluation is critical for detecting malignant ocular infiltrates. PMID:26483676

  9. Tacrolimus and Methotrexate With or Without Sirolimus in Preventing Graft-Versus-Host Disease in Young Patients Undergoing Donor Stem Cell Transplant for Acute Lymphoblastic Leukemia in Complete Remission

    ClinicalTrials.gov

    2014-01-23

    B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Graft Versus Host Disease; L1 Childhood Acute Lymphoblastic Leukemia; L2 Childhood Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  10. In Vivo T Cell Depletion with Myeloablative Regimens on Outcomes after Cord Blood Transplantation for Acute Lymphoblastic Leukemia in Children.

    PubMed

    Ponce, Doris M; Eapen, Mary; Sparapani, Rodney; O'Brien, Tracey A; Chan, Ka Wah; Chen, Junfang; Craddock, John; Schultz, Kirk R; Wagner, John E; Perales, Miguel-Angel; Barker, Juliet N

    2015-12-01

    The inclusion of antithymocyte globulin (ATG) in cord blood transplantation is controversial. We evaluated outcomes according to ATG inclusion in 297 children and adolescents with acute lymphoblastic leukemia (ALL) who received myeloablative total body irradiation-based conditioning and either single-unit (74%) or double-unit (26%) grafts. Ninety-two patients (31%) received ATG and 205 (69%) did not. ATG recipients were more likely to be cytomegalovirus seronegative. The incidences of day 100 grades II to IV acute graft-versus-host disease (GVHD; 30% versus 54%, P = .0002) and chronic GVHD (22% versus 43%, P = .0008) were lower with ATG compared with non-ATG regimens. However, day 100 grades III to IV acute GVHD was comparable (11% versus 17%, P = .15). The 3-year incidences of transplant-related mortality (16% versus 17%, P = .98), relapse (17% versus 27%, P = .12), and leukemia-free survival (66% versus 55%, P = .23) in ATG and non-ATG recipients were similar. There were no differences in viral reactivation between treatment groups (60% versus 58%, P = .83). Therefore, the data suggest that incorporation of ATG with myeloablative conditioning regimens may be useful in reducing the risk of acute and chronic GVHD without any deleterious effect on transplant-related mortality, relapse, or leukemia-free survival in children and adolescents with ALL. PMID:26327630

  11. Advanced lymphoblastic clones detection in T-cell leukemia.

    PubMed

    Minervina, A A; Komkov, A Y; Mamedov, I Z; Lebedev, Y B

    2016-03-01

    T cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignant neoplasm of the lymphocyte precursors that suffered malignant transformation arresting the lymphoid cell differentiation. Clinical studies revealed monoor, more rarely, oligoclonal nature of the disease. A precise identification of malignant clone markers is both the crucial stage of early diagnostics and the essential prognostic factor for therapeutic treatment. Here we present an improved system for unbiased detection of lymphoblastic clones in bone marrow aspirates of T-ALL patients. The system based on multiplex PCR of rearranged T-cell receptor locus (TRB) and straightforward sequencing of the resulted PCR fragments. Testing of the system on genomic DNA from Jurkat cell line and four clinical bone marrow aspirates revealed a set of unique TRB rearrangements that precisely characterize each of tested samples. Therefore, the outcome of the system produces highly informative molecular genetic markers for further monitoring of minimal residual disease in T-ALL patients. PMID:27193704

  12. Clonal evolution enhances leukemia propagating cell frequency in T-cell acute lymphoblastic leukemia through Akt/mTORC1 pathway activation

    PubMed Central

    Blackburn, Jessica S.; Liu, Sali; Wilder, Jayme L.; Dobrinski, Kimberly P.; Lobbardi, Riadh; Moore, Finola E.; Martinez, Sarah A.; Chen, Eleanor Y.; Lee, Charles; Langenau, David M.

    2014-01-01

    SUMMARY Clonal evolution and intratumoral heterogeneity drive cancer progression through unknown molecular mechanisms. To address this issue, functional differences between single T-cell acute lymphoblastic leukemia (T-ALL) clones were assessed using a zebrafish transgenic model. Functional variation was observed within individual clones, with a minority of clones enhancing growth rate and leukemia propagating potential with time. Akt pathway activation was acquired in a subset of these evolved clones, which increased the number of leukemia propagating cells through activating mTORC1, elevated growth rate likely by stabilizing the Myc protein, and rendered cells resistant to dexamethasone, which was reversed by combined treatment with an Akt inhibitor. Thus, T-ALL clones spontaneously and continuously evolve to drive leukemia progression even in the absence of therapy-induced selection. PMID:24613413

  13. Regulation of gamma T-cell antigen receptor expression by intracellular calcium in acute lymphoblastic leukemia cell line DND41.

    PubMed

    Peralta-Zaragoza, O; Martínez-Valdez, H; Madrid-Marina, V

    1996-01-01

    The calcium ionophore, ionomycin, promotes an increase of intracellular calcium and regulates mRNA expression of gamma/delta-TcR gene in human T lymphocytes. The mechanism of this regulation is not yet clear. Thus, the regulation by intracellular calcium requires elucidation. We studied the gamma-TcR gene expression in acute lymphoblastic leukemia cell line DND41 (CD4- CD8-) by Northern blot and flow cytometric analysis. The mRNA levels of gamma-TcR increased by ionomycin, anti-CD3, and with TPA. TPA had an antagonistic effect to both ionomycin and anti-CD3. Also, TPA inhibits the increased intracellular calcium promoted by ionomycin but not the increase promoted by anti-CD3 and ionomycin. Our results suggest that intracellular calcium induces mRNA and protein expression of gamma-TcR chain. This effect is antagonized by protein kinase C-activation. Thus, we conclude that the target cells of the differential regulation on gamma-TcR mRNA expression by intracellular calcium modulators are the CD4- CD8- cells, and this is due to cytosolic calcium mobilization. PMID:8854386

  14. Anti-leukemic potency of piggyBac-mediated CD19-specific T cells against refractory Philadelphia chromosome–positive acute lymphoblastic leukemia

    PubMed Central

    Saito, Shoji; Nakazawa, Yozo; Sueki, Akane; Matsuda, Kazuyuki; Tanaka, Miyuki; Yanagisawa, Ryu; Maeda, Yasuhiro; Sato, Yuko; Okabe, Seiichi; Inukai, Takeshi; Sugita, Kanji; Wilson, Matthew H.; Rooney, Cliona M.; Koike, Kenichi

    2016-01-01

    Background aims To develop a treatment option for Philadelphia chromosome—positive acute lymphoblastic leukemia (Ph+ALL) resistant to tyrosine kinase inhibitors (TKIs), we evaluated the anti-leukemic activity of T cells non-virally engineered to express a CD19-specific chimeric antigen receptor (CAR). Methods A CD19.CAR gene was delivered into mononuclear cells from 10 mL of blood of healthy donors through the use of piggyBac-transposons and the 4-D Nucleofector System. Nucleofected cells were stimulated with CD3/CD28 antibodies, magnetically selected for the CD19.CAR, and cultured in interleukin-15–containing serum-free medium with autologous feeder cells for 21 days. To evaluate their cytotoxic potency, we co-cultured CAR T cells with seven Ph+ALL cell lines including three TKI-resistant (T315I–mutated) lines at an effector-to-target ratio of 1:5 or lower without cytokines. Results We obtained ~ 1.3 × 108 CART cells (CD4+, 25.4%; CD8+, 71.3%), co-expressing CD45RA and CCR7 up to ~80%. After 7-day co-culture, CAR T cells eradicated all tumor cells at the 1:5 and 1:10 ratios and substantially reduced tumor cell numbers at the 1:50 ratio. Kinetic analysis revealed up to 37-fold proliferation of CART cells during a 20-day culture period in the presence of tumor cells. On exposure to tumor cells, CAR T cells transiently and reproducibly upregulated the expression of transgene as well as tumor necrosis factor–related apoptosis-inducing ligand and interleukin-2. Conclusions We generated a clinically relevant number of CAR T cells from 10 mL of blood through the use of piggyBac-transposons, a 4D-Nulcleofector, and serum/xeno/tumor cell/virus-free culture system. CAR T cells exhibited marked cytotoxicity against Ph+ALL regardless of T315I mutation. PiggyBac-mediated CD19-specific T-cell therapy may provide an effective, inexpensive and safe option for drug-resistant Ph+ALL. PMID:25108652

  15. miRNA-149* promotes cell proliferation and suppresses apoptosis by mediating JunB in T-cell acute lymphoblastic leukemia.

    PubMed

    Fan, Sheng-Jin; Li, Hui-Bo; Cui, Gang; Kong, Xiao-Lin; Sun, Li-Li; Zhao, Yan-Qiu; Li, Ying-Hua; Zhou, Jin

    2016-02-01

    MicroRNA-149* (miRNA-149*) functions as an oncogenic regulator in human melanoma. However, the effect of miRNA-149* on T-cell acute lymphoblastic leukemia (T-ALL) is unclear. Here we aimed to analyze the effects of miRNA-149* on in vitro T-ALL cells and to uncover the target for miRNA-149* in these cells. The miRNA-149* level was determined in multiple cell lines and bone marrow cells derived from patients with T-ALL, B acute lymphoblastic leukemia (B-ALL), acute myelocytic leukemia (AML), and healthy donors. We found that miRNA-149* was highly expressed in T-ALL cell lines and T-ALL patients' bone marrow samples. JunB was identified as a direct target of miR-149*. miRNA-149* mimics downregulated JunB levels in Molt-4 and Jurkat cells, while miRNA-149* inhibitors dramatically upregulated JunB expression in these cells. miRNA-149* mimics promoted proliferation, decreased the proportion of cells in G1 phase, and reduced cell apoptosis in T-ALL cells, while miRNA-149* inhibitors prevented these effects. miRNA-149* mimics downregulated p21 and upregulated cyclinD1, 4EBP1, and p70s6k in Molt-4 and Jurkat cells. Again, inhibitors prevented these effects. Our findings demonstrate that miRNA-149* may serve as an oncogenic regulator in T-ALL by negatively regulating JunB. PMID:26725775

  16. CDK6-mediated repression of CD25 is required for induction and maintenance of Notch1-induced T-cell acute lymphoblastic leukemia.

    PubMed

    Jena, N; Sheng, J; Hu, J K; Li, W; Zhou, W; Lee, G; Tsichlis, N; Pathak, A; Brown, N; Deshpande, A; Luo, C; Hu, G F; Hinds, P W; Van Etten, R A; Hu, M G

    2016-05-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a high-risk subset of acute leukemia, characterized by frequent activation of Notch1 or AKT signaling, where new therapeutic approaches are needed. We showed previously that cyclin-dependent kinase 6 (CDK6) is required for thymic lymphoblastic lymphoma induced by activated AKT. Here, we show CDK6 is required for initiation and maintenance of Notch-induced T-ALL. In a mouse retroviral model, hematopoietic stem/progenitor cells lacking CDK6 protein or expressing kinase-inactive (K43M) CDK6 are resistant to induction of T-ALL by activated Notch, whereas those expressing INK4-insensitive (R31C) CDK6 are permissive. Pharmacologic inhibition of CDK6 kinase induces CD25 and RUNX1 expression, cell cycle arrest and apoptosis in mouse and human T-ALL. Ablation of Cd25 in a K43M background restores Notch-induced T leukemogenesis, with disease that is resistant to CDK6 inhibitors in vivo. These data support a model whereby CDK6-mediated suppression of CD25 is required for initiation of T-ALL by activated Notch1, and CD25 induction mediates the therapeutic response to CDK6 inhibition in established T-ALL. These results both validate CDK6 as a molecular target for therapy of this subset of T-ALL and suggest that CD25 expression could serve as a biomarker for responsiveness of T-ALL to CDK4/6 inhibitor therapy. PMID:26707936

  17. CDK6-mediated repression of CD25 is required for induction and maintenance of Notch1- induced T cell acute lymphoblastic leukemia

    PubMed Central

    Jena, Nilamani; Sheng, Jinghao; Hu, Jamie K.; Li, Wei; Zhou, Wenhui; Lee, Gene; Tsichlis, Nicolaos; Pathak, Aparna; Brown, Nelson; Deshpande, Amit; Luo, Chi; Hu, Guo-fu; Hinds, Philip W.; Van Etten, Richard A.; Hu, Miaofen G.

    2015-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a high-risk subset of acute leukemia, characterized by frequent activation of Notch1 or AKT signaling, where new_therapeutic approaches are needed. We showed previously that Cyclin-dependent kinase 6 (CDK6) is required for thymic lymphoblastic lymphoma induced by activated AKT. Here, we show CDK6 is required for initiation and maintenance of Notch-induced T-ALL. In a mouse retroviral model, hematopoietic stem/progenitor cells lacking CDK6 protein or expressing kinase-inactive (K43M) CDK6 are resistant to induction of T-ALL by activated Notch, whereas those expressing INK4-insensitive (R31C) CDK6 are permissive. Pharmacologic inhibition of CDK6 kinase induces CD25 and RUNX1 expression, cell cycle arrest, and apoptosis in mouse and human T-ALL. Ablation of Cd25 in a K43M background restores Notch-induced T-leukemogenesis, with disease that is resistant to CDK6 inhibitors in vivo. These data support a model whereby CDK6-mediated suppression of CD25 is required for initiation of T-ALL by activated Notch1, and CD25 induction mediates the therapeutic response to CDK6 inhibition in established T-ALL. These results both validate CDK6 as a molecular target for therapy of this subset of T-ALL and suggest that CD25 expression could serve as a biomarker for responsiveness of T-ALL to CDK4/6 inhibitor therapy. PMID:26707936

  18. Temsirolimus, Dexamethasone, Mitoxantrone Hydrochloride, Vincristine Sulfate, and Pegaspargase in Treating Young Patients With Relapsed Acute Lymphoblastic Leukemia or Non-Hodgkin Lymphoma

    ClinicalTrials.gov

    2015-07-09

    Childhood B Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Lymphoblastic Lymphoma

  19. Transplant Outcomes for Children with T Cell Acute Lymphoblastic Leukemia in Second Remission: A Report from the Center for International Blood and Marrow Transplant Research.

    PubMed

    Burke, Michael J; Verneris, Michael R; Le Rademacher, Jennifer; He, Wensheng; Abdel-Azim, Hisham; Abraham, Allistair A; Auletta, Jeffery J; Ayas, Mouhab; Brown, Valerie I; Cairo, Mitchell S; Chan, Ka Wah; Diaz Perez, Miguel A; Dvorak, Christopher C; Egeler, R Maarten; Eldjerou, Lamis; Frangoul, Haydar; Guilcher, Gregory M T; Hayashi, Robert J; Ibrahim, Ahmed; Kasow, Kimberly A; Leung, Wing H; Olsson, Richard F; Pulsipher, Michael A; Shah, Niketa; Shah, Nirali N; Thiel, Elizabeth; Talano, Julie-An; Kitko, Carrie L

    2015-12-01

    Survival for children with relapsed T cell acute lymphoblastic leukemia (T-ALL) is poor when treated with chemotherapy alone, and outcomes after allogeneic hematopoietic cell transplantation (HCT) is not well described. Two hundred twenty-nine children with T-ALL in second complete remission (CR2) received an HCT after myeloablative conditioning between 2000 and 2011 and were reported to the Center for International Blood and Marrow Transplant Research. Median age was 10 years (range, 2 to 18). Donor source was umbilical cord blood (26%), matched sibling bone marrow (38%), or unrelated bone marrow/peripheral blood (36%). Acute (grades II to IV) and chronic graft-versus-host disease occurred in, respectively, 35% (95% confidence interval [CI], 27% to 45%) and 26% (95% CI, 20% to 33%) of patients. Transplant-related mortality at day 100 and 3-year relapse rates were 13% (95% CI, 9% to 18%) and 30% (95% CI, 24% to 37%), respectively. Three-year overall survival and disease-free survival rates were 48% (95% CI, 41% to 55%) and 46% (95% CI, 39% to 52%), respectively. In multivariate analysis, patients with bone marrow relapse, with or without concurrent extramedullary relapse before HCT, were most likely to relapse (hazard ratio, 3.94; P = .005) as compared with isolated extramedullary disease. In conclusion, HCT for pediatric T-ALL in CR2 demonstrates reasonable and durable outcomes, and consideration for HCT is warranted. PMID:26327632

  20. Complete hematologic response of early T-cell progenitor acute lymphoblastic leukemia to the γ-secretase inhibitor BMS-906024: genetic and epigenetic findings in an outlier case

    PubMed Central

    Knoechel, Birgit; Bhatt, Ami; Pan, Li; Pedamallu, Chandra S.; Severson, Eric; Gutierrez, Alejandro; Dorfman, David M.; Kuo, Frank C.; Kluk, Michael; Kung, Andrew L.; Zweidler-McKay, Patrick; Meyerson, Matthew; Blacklow, Stephen C.; DeAngelo, Daniel J.; Aster, Jon C.

    2015-01-01

    Notch pathway antagonists such as γ-secretase inhibitors (GSIs) are being tested in diverse cancers, but exceptional responses have yet to be reported. We describe the case of a patient with relapsed/refractory early T-cell progenitor acute lymphoblastic leukemia (ETP-ALL) who achieved a complete hematologic response following treatment with the GSI BMS-906024. Whole-exome sequencing of leukemic blasts revealed heterozygous gain-of-function driver mutations in NOTCH1, CSF3R, and PTPN11, and a homozygous/hemizygous loss-of-function mutation in DNMT3A. The three gain-of-function mutations were absent from remission marrow cells, but the DNMT3A mutation persisted in heterozygous form in remission marrow, consistent with an origin for the patient's ETP-ALL from clonal hematopoiesis. Ex vivo culture of ETP-ALL blasts confirmed high levels of activated NOTCH1 that were repressed by GSI treatment, and RNA-seq documented that GSIs downregulated multiple known Notch target genes. Surprisingly, one potential target gene that was unaffected by GSIs was MYC, a key Notch target in GSI-sensitive T-ALL of cortical T-cell type. H3K27ac super-enhancer landscapes near MYC showed a pattern previously reported in acute myeloid leukemia (AML) that is sensitive to BRD4 inhibitors, and in line with this ETP-ALL blasts downregulated MYC in response to the BRD4 inhibitor JQ1. To our knowledge, this is the first example of complete response of a Notch-mutated ETP-ALL to a Notch antagonist and is also the first description of chromatin landscapes associated with ETP-ALL. Our experience suggests that additional attempts to target Notch in Notch-mutated ETP-ALL are merited. PMID:27148573

  1. Effects of valproic acid and pioglitazone on cell cycle progression and proliferation of T-cell acute lymphoblastic leukemia Jurkat cells

    PubMed Central

    Jazi, Marie Saghaeian; Mohammadi, Saeed; Yazdani, Yaghoub; Sedighi, Sima; Memarian, Ali; Aghaei, Mehrdad

    2016-01-01

    Objective(s): T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignant tumor. Administration of chemical compounds influencing apoptosis and T cell development has been discussed as promising novel therapeutic strategies. Valproic acid (VPA) as a recently emerged anti-neoplastic histone deacetylase (HDAC) inhibitor and pioglitazone (PGZ) as a high-affinity peroxisome proliferator-activated receptor-gamma (PPARγ) agonist have been shown to induce apoptosis and cell cycle arrest in different studies. Here, we aimed to investigate the underlying molecular mechanisms involved in anti-proliferative effects of these compounds on human Jurkat cells. Materials and Methods: Treated cells were evaluated for cell cycle progression and apoptosis using flowcytometry and MTT viability assay. Real-time RT-PCR was carried out to measure the alterations in key genes associated with cell death and cell cycle arrest. Results: Our findings illustrated that both VPA and PGZ can inhibit Jurkat E6.1 cells in vitro after 24 hr; however, PGZ 400 μM presents the most anti-proliferative effect. Interestingly, treated cells have been arrested in G2/M with deregulated cell division cycle 25A (Cdc25A) phosphatase and cyclin-dependent kinase inhibitor 1B (CDKN1B or p27) expression. Expression of cyclin D1 gene was inhibited when DNA synthesis entry was declined. Cell cycle deregulation in PGZ and VPA-exposed cells generated an increase in the proportion of aneuploid cell population, which has not reported before. Conclusion: These findings define that anti-proliferative effects of PGZ and VPA on Jurkat cell line are mediated by cell cycle deregulation. Thus, we suggest PGZ and VPA may relieve potential therapeutic application against apoptosis-resistant malignancies.

  2. Assessment of the effect of sphingosine kinase inhibitors on apoptosis,unfolded protein response and autophagy of T-cell acute lymphoblastic leukemia cells; indications for novel therapeutics.

    PubMed

    Evangelisti, Cecilia; Evangelisti, Camilla; Teti, Gabriella; Chiarini, Francesca; Falconi, Mirella; Melchionda, Fraia; Pession, Andrea; Bertaina, Alice; Locatelli, Franco; McCubrey, James A; Beak, Dong Jae; Bittman, Robert; Pyne, Susan; Pyne, Nigel J; Martelli, Alberto M

    2014-09-15

    Sphingosine 1-phosphate (S1P) is a bioactive lipid that is formed by the phosphorylation of sphingosine and catalysed by sphingosine kinase 1 (SK1) or sphingosine kinase 2 (SK2). Sphingosine kinases play a fundamental role in many signaling pathways associated with cancer, suggesting that proteins belonging to this signaling network represent potential therapeutic targets. Over the last years, many improvements have been made in the treatment of T-cell acute lymphoblastic leukemia (T-ALL); however, novel and less toxic therapies are still needed, especially for relapsing and chemo-resistant patients. Here, we analyzed the therapeutic potential of SKi and ROMe, a sphingosine kinase 1 and 2 inhibitor and SK2-selective inhibitor, respectively. While SKi induced apoptosis, ROMe initiated an autophagic cell death in our in vitro cell models. SKi treatment induced an increase in SK1 protein levels in Molt-4 cells, whereas it activated the endoplasmic reticulum (ER) stress/unfolded protein response (UPR) pathway in Jurkat and CEM-R cells as protective mechanisms in a sub-population of T-ALL cells. Interestingly, we observed a synergistic effect of SKi with the classical chemotherapeutic drug vincristine. In addition, we reported that SKi affected signaling cascades implicated in survival, proliferation and stress response of cells. These findings indicate that SK1 or SK2 represent potential targets for treating T-ALL. PMID:25226616

  3. HSP90 inhibition leads to degradation of the TYK2 kinase and apoptotic cell death in T-cell acute lymphoblastic leukemia

    PubMed Central

    Akahane, Koshi; Sanda, Takaomi; Mansour, Marc R.; Radimerski, Thomas; DeAngelo, Daniel J.; Weinstock, David M.; Look, A. Thomas

    2015-01-01

    We previously found that TYK2 tyrosine kinase signaling through its downstream effector phospho-STAT1 (p-STAT1) acts to upregulate BCL2, which in turn mediates aberrant survival of T-cell acute lymphoblastic leukemia (T-ALL) cells. Here we show that pharmacologic inhibition of heat shock protein 90 (HSP90) with a small-molecule inhibitor, NVP-AUY922 (AUY922), leads to rapid degradation of TYK2 and apoptosis in T-ALL cells. STAT1 protein levels were not affected by AUY922 treatment, but p-STAT1 (Tyr 701) levels rapidly became undetectable, consistent with a block in signaling downstream of TYK2. BCL2 expression was downregulated after AUY922 treatment, and although this effect was necessary for AUY922-induced apoptosis, it was not sufficient because many T-ALL cell lines were resistant to ABT-199, a specific inhibitor of BCL2. Unlike ABT-199, AUY922 also upregulated the proapoptotic proteins BIM and BAD, whose increased expression was required for AUY922-induced apoptosis. Thus, the potent cytotoxicity of AUY922 involves the synergistic combination of BCL2 downregulation coupled with upregulation of the proapoptotic proteins BIM and BAD. This two-pronged assault on the mitochondrial apoptotic machinery identifies HSP90 inhibitors as promising drugs for targeting the TYK2-mediated prosurvival signaling axis in T-ALL cells. PMID:26265185

  4. HSP90 inhibition leads to degradation of the TYK2 kinase and apoptotic cell death in T-cell acute lymphoblastic leukemia.

    PubMed

    Akahane, K; Sanda, T; Mansour, M R; Radimerski, T; DeAngelo, D J; Weinstock, D M; Look, A T

    2016-01-01

    We previously found that tyrosine kinase 2 (TYK2) signaling through its downstream effector phospho-STAT1 acts to upregulate BCL2, which in turn mediates aberrant survival of T-cell acute lymphoblastic leukemia (T-ALL) cells. Here we show that pharmacologic inhibition of heat shock protein 90 (HSP90) with a small-molecule inhibitor, NVP-AUY922 (AUY922), leads to rapid degradation of TYK2 and apoptosis in T-ALL cells. STAT1 protein levels were not affected by AUY922 treatment, but phospho-STAT1 (Tyr-701) levels rapidly became undetectable, consistent with a block in signaling downstream of TYK2. BCL2 expression was downregulated after AUY922 treatment, and although this effect was necessary for AUY922-induced apoptosis, it was not sufficient because many T-ALL cell lines were resistant to ABT-199, a specific inhibitor of BCL2. Unlike ABT-199, AUY922 also upregulated the proapoptotic proteins BIM and BAD, whose increased expression was required for AUY922-induced apoptosis. Thus, the potent cytotoxicity of AUY922 involves the synergistic combination of BCL2 downregulation coupled with upregulation of the proapoptotic proteins BIM and BAD. This two-pronged assault on the mitochondrial apoptotic machinery identifies HSP90 inhibitors as promising drugs for targeting the TYK2-mediated prosurvival signaling axis in T-ALL cells. PMID:26265185

  5. Efficacy of JAK/STAT pathway inhibition in murine xenograft models of early T-cell precursor (ETP) acute lymphoblastic leukemia

    PubMed Central

    Maude, Shannon L.; Dolai, Sibasish; Delgado-Martin, Cristina; Vincent, Tiffaney; Robbins, Alissa; Selvanathan, Arthavan; Ryan, Theresa; Hall, Junior; Wood, Andrew C.; Tasian, Sarah K.; Hunger, Stephen P.; Loh, Mignon L.; Mullighan, Charles G.; Wood, Brent L.; Hermiston, Michelle L.; Grupp, Stephan A.; Lock, Richard B.

    2015-01-01

    Early T-cell precursor (ETP) acute lymphoblastic leukemia (ALL) is a recently described subtype of T-ALL characterized by a unique immunophenotype and genomic profile, as well as a high rate of induction failure. Frequent mutations in cytokine receptor and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathways led us to hypothesize that ETP-ALL is dependent on JAK/STAT signaling. Here we demonstrate aberrant activation of the JAK/STAT pathway in ETP-ALL blasts relative to non-ETP T-ALL. Moreover, ETP-ALL showed hyperactivation of STAT5 in response to interleukin-7, an effect that was abrogated by the JAK1/2 inhibitor ruxolitinib. In vivo, ruxolitinib displayed activity in 6 of 6 patient-derived murine xenograft models of ETP-ALL, with profound single-agent efficacy in 5 models. Ruxolitinib treatment decreased peripheral blast counts relative to pretreatment levels and compared with control (P < .01) in 5 of 6 ETP-ALL xenografts, with marked reduction in mean splenic blast counts (P < .01) in 6 of 6 samples. Surprisingly, both JAK/STAT pathway activation and ruxolitinib efficacy were independent of the presence of JAK/STAT pathway mutations, raising the possibility that the therapeutic potential of ruxolitinib in ETP-ALL extends beyond those cases with JAK mutations. These findings establish the preclinical in vivo efficacy of ruxolitinib in ETP-ALL, a biologically distinct subtype for which novel therapies are needed. PMID:25645356

  6. Identification of differential PI3K pathway target dependencies in T-cell acute lymphoblastic leukemia through a large cancer cell panel screen.

    PubMed

    Lynch, James T; McEwen, Robert; Crafter, Claire; McDermott, Ultan; Garnett, Mathew J; Barry, Simon T; Davies, Barry R

    2016-04-19

    Selective phosphoinositide 3-kinase (PI3K)/AKT/mTOR inhibitors are currently under evaluation in clinical studies. To identify tumor types that are sensitive to PI3K pathway inhibitors we screened compounds targeting PI3Kα/δ (AZD8835), PI3Kβ/δ (AZD8186), AKT (AZD5363) and mTORC1/2 (AZD2014) against a cancer cell line panel (971 cell lines). There was an enrichment of hematological malignancies that were sensitive to AKT and mTOR inhibition, with the greatest degree of sensitivity observed in T-cell acute lymphoblastic leukemia (T-ALL). We found that all NOTCH mutant T-ALL cell lines were sensitive to AKT and mTORC1/2 inhibitors, with only partial sensitivity to agents that target the PI3K α, β or δ isoforms. Induction of apoptosis only occurred following AKTi treatment in cell lines with PTEN protein loss and high levels of active AKT. In summary, we have demonstrated that T-ALL cell lines show differential sensitivity to inhibition at different nodes in the PI3K/AKT/mTOR pathway and inhibiting AKT or mTOR may have a therapeutic benefit in this disease setting. PMID:26989080

  7. Lineage switch with t(6;11)(q27;q23) from T-cell lymphoblastic lymphoma to acute monoblastic leukemia at relapse.

    PubMed

    Higuchi, Yusuke; Tokunaga, Kenji; Watanabe, Yuko; Kawakita, Toshiro; Harada, Naoko; Yamaguchi, Shunichiro; Nosaka, Kisato; Mitsuya, Hiroaki; Asou, Norio

    2016-06-01

    We present a patient with T-cell lymphoblastic lymphoma (T-LBL) harboring t(6;11)(q27;q23) that converted to acute monoblastic leukemia at relapse. A 27-year-old man developed T-LBL with a mediastinal mass. He exhibited several recurrences in the central nervous system and marrow. A fifth relapse occurred in the marrow, with 42.8% blasts with CD4, CD5, CD7, CD10, CD33, CD34, HLA-DR and cytoplasmic (cy) CD3. While achieving complete remission with nelarabine, sixth relapse occurred in the marrow with 6.8% blasts, which had characteristics of monoblastic features, 2 months later. Marrow blasts were positive for myeloperoxidase, CD4, CD33, CD56, CD64, and HLA-DR, but were negative for cyCD3, CD5, CD7, CD10, and CD34. Marrow cells at both the 5th lymphoid and 6th myeloid relapses had t(6;11)(q27;q23) and the same MLL-MLLT4 fusion transcript. In addition, the MLL-MLLT4 fusion sequences documented in the initial mediastinal cells were the same as seen in peripheral blood cells at the 6th relapse. The patient continues 7th remission after one course of gemtuzumab ozogamicin therapy followed by cord blood transplantation for more than 3 years. Sequential phenotypic and cytogenetic studies may yield valuable insights into the mechanism of leukemic recurrence and possible implications for treatment selection. PMID:27268298

  8. Identification of differential PI3K pathway target dependencies in T-cell acute lymphoblastic leukemia through a large cancer cell panel screen

    PubMed Central

    Lynch, James T.; McEwen, Robert; Crafter, Claire; McDermott, Ultan; Garnett, Mathew J.; Barry, Simon T.; Davies, Barry R.

    2016-01-01

    Selective phosphoinositide 3-kinase (PI3K)/AKT/mTOR inhibitors are currently under evaluation in clinical studies. To identify tumor types that are sensitive to PI3K pathway inhibitors we screened compounds targeting PI3Kα/δ (AZD8835), PI3Kβ/δ (AZD8186), AKT (AZD5363) and mTORC1/2 (AZD2014) against a cancer cell line panel (971 cell lines). There was an enrichment of hematological malignancies that were sensitive to AKT and mTOR inhibition, with the greatest degree of sensitivity observed in T-cell acute lymphoblastic leukemia (T-ALL). We found that all NOTCH mutant T-ALL cell lines were sensitive to AKT and mTORC1/2 inhibitors, with only partial sensitivity to agents that target the PI3K α, β or δ isoforms. Induction of apoptosis only occurred following AKTi treatment in cell lines with PTEN protein loss and high levels of active AKT. In summary, we have demonstrated that T-ALL cell lines show differential sensitivity to inhibition at different nodes in the PI3K/AKT/mTOR pathway and inhibiting AKT or mTOR may have a therapeutic benefit in this disease setting. PMID:26989080

  9. Intracellular reactive oxygen species are essential for PI3K/Akt/mTOR-dependent IL-7-mediated viability of T-cell acute lymphoblastic leukemia cells.

    PubMed

    Silva, A; Gírio, A; Cebola, I; Santos, C I; Antunes, F; Barata, J T

    2011-06-01

    Interleukin-7 (IL-7) activates phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway, thereby mediating viability, proliferation and growth of T-cell acute lymphoblastic leukemia (T-ALL) cells. Reactive oxygen species (ROS) can be upregulated by growth factors and are known to regulate proliferation and viability. Here, we show that IL-7 upregulates ROS in T-ALL cells in a manner that is dependent on PI3K/Akt/mTOR pathway activity and that relies on both NADPH oxidase and mitochondrial respiratory chain. Conversely, IL-7-induced activation of PI3K signaling pathway requires mitochondrial respiration and ROS. We have previously shown that IL-7-mediated activation of PI3K pathway drives the upregulation of the glucose transporter Glut1, promoting glucose uptake in T-ALL cells. Using phloretin to inhibit Glut function, we demonstrate that glucose uptake is mandatory for ROS upregulation in IL-7-treated T-ALL cells, suggesting that IL-7 stimulation leads to increased ROS via PI3K pathway activation and consequent upregulation of Glut1 and glucose uptake. Overall, our data reveal the existence of a critical crosstalk between PI3K/Akt signaling pathway and ROS that is essential for IL-7-mediated T-ALL cell survival, and that may constitute a novel target for therapeutic intervention. PMID:21455214

  10. Andrographolide inhibits growth of human T-cell acute lymphoblastic leukemia Jurkat cells by downregulation of PI3K/AKT and upregulation of p38 MAPK pathways.

    PubMed

    Yang, Tingfang; Yao, Shuluan; Zhang, Xianfeng; Guo, Yan

    2016-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) as a prevalent hematologic malignancy is one of the most common malignant tumors worldwide in children. Andrographolide (Andro), the major active component from Andrographis paniculata, has been shown to possess antitumor activities in several types of cancer cells. However, whether Andro would inhibit T-ALL cell growth remains unclear. In this study, we investigated the cytotoxic effect of Andro on human T-ALL Jurkat cells and explored the mechanisms of cell death. Cell apoptosis was assayed by flow cytometry, and the signaling transduction for Andro was analyzed by Western blotting. The results indicated 10 μg/mL Andro could significantly induce Jurkat cells' apoptosis, depending on the inhibition of PI3K/AKT pathway. Moreover, Andro-induced apoptosis is enhanced by AKT-selective inhibitor LY294002. ERK- or JNK-selective inhibitors PD98059 and SP600125 had no effect on Andro-induced apoptosis. In addition, p38 inhibitor SB203580 could reverse Andro-induced apoptosis in Jurkat cells. We also found that the protein expression of p-p53 and p-p38 were increased after Andro treatments. The result of an in vivo study also demonstrated Andro's dose-dependent inhibition in subcutaneous Jurkat xenografts. In conclusion, our findings explained a novel mechanism of drug action by Andro in Jurkat cells and suggested that Andro might be developed into a new candidate therapy for T-ALL patients in the coming days. PMID:27114702

  11. Genetic mutational profiling analysis of T cell acute lymphoblastic leukemia reveal mutant FBXW7 as a prognostic indicator for inferior survival.

    PubMed

    Yuan, Lan; Lu, Ling; Yang, Yongchen; Sun, Hengjuan; Chen, Xi; Huang, Yi; Wang, Xingjuan; Zou, Lin; Bao, Liming

    2015-11-01

    T cell acute lymphoblastic leukemia (T-ALL) is an aggressive neoplasm for which there are currently no adequate biomarkers for developing risk-adapted therapeutic regimens to improve the treatment outcome. In this prospective study of 83 Chinese patients (54 children and 29 adults) with de novo T-ALL, we analyzed mutations in 11 T-ALL genes: NOTCH1, FBXW7, PHF6, PTEN, N-RAS, K-RAS, WT1, IL7R, PIK3CA, PIK3RA, and AKT1. NOTCH1 mutations were identified in 51.9 and 37.9 % of pediatric and adult patients, respectively, and these patients showed improved overall survival (OS) and event-free survival (EFS). The FBXW7 mutant was present in 25.9 and 6.9 % of pediatric and adult patients, respectively, and was associated with inferior OS and EFS in pediatric T-ALL. Multivariate analysis revealed that mutant FBXW7 was an independent prognostic indicator for inferior EFS (hazard ratio [HR] 4.38; 95 % confidence interval [CI] 1.15-16.71; p = 0.03) and tended to be associated with reduced OS (HR 2.81; 95 % CI 0.91-8.69; p = 0.074) in pediatric T-ALL. Mutant PHF6 was present in 13 and 20.7 % of our childhood and adult cohorts, respectively, while PTEN mutations were noted in 11.1 % of the pediatric patients. PTEN and NOTCH1 mutations were almost mutually exclusive, while IL7R and WT1 mutations were rare in pediatric T-ALL and PTPN11 and AKT1 mutations were infrequent in adult T-ALL. This study revealed differences in the mutational profiles of pediatric and adult T-ALL and suggests mutant FBXW7 as an independent prognostic indicator for inferior survival in pediatric T-ALL. PMID:26341754

  12. miR-664 negatively regulates PLP2 and promotes cell proliferation and invasion in T-cell acute lymphoblastic leukaemia

    SciTech Connect

    Zhu, Hong; Miao, Mei-hua; Ji, Xue-qiang; Xue, Jun; Shao, Xue-jun

    2015-04-03

    MicroRNAs (miRNAs) play important roles in the pathogenesis of many types of cancers by negatively regulating gene expression at posttranscriptional level. However, the role of microRNAs in leukaemia, particularly T-cell acute lymphoblastic leukaemia (T-ALL), has remained elusive. Here, we identified miR-664 and its predicted target gene PLP2 were differentially expressed in T-ALL using bioinformatics methods. In T-ALL cell lines, CCK-8 proliferation assay indicated that the cell proliferation was promoted by miR-664, while miR-664 inhibitor could significantly inhibited the proliferation. Moreover, migration and invasion assay showed that overexpression of miR-664 could significantly promoted the migration and invasion of T-ALL cells, whereas miR-664 inhibitor could reduce cell migration and invasion. luciferase assays confirmed that miR-664 directly bound to the 3'untranslated region of PLP2, and western blotting showed that miR-664 suppressed the expression of PLP2 at the protein levels. This study indicated that miR-664 negatively regulates PLP2 and promotes proliferation and invasion of T-ALL cell lines. Thus, miR-664 may represent a potential therapeutic target for T-ALL intervention. - Highlights: • miR-664 mimics promote the proliferation and invasion of T-ALL cells. • miR-664 inhibitors inhibit the proliferation and invasion of T-ALL cells. • miR-664 targets 3′ UTR of PLP2 in T-ALL cells. • miR-664 negatively regulates PLP2 in T-ALL cells.

  13. IGF1R Derived PI3K/AKT Signaling Maintains Growth in a Subset of Human T-Cell Acute Lymphoblastic Leukemias

    PubMed Central

    Gusscott, Samuel; Jenkins, Catherine E.; Lam, Sonya H.; Giambra, Vincenzo; Pollak, Michael; Weng, Andrew P.

    2016-01-01

    Insulin-like growth factor 1 receptor (IGF1R) is a prevalent signaling pathway in human cancer that supports cell growth/survival and thus contributes to aggressive biological behavior. Much work has gone into development of IGF1R inhibitors; however, candidate agents including small molecule tyrosine kinase inhibitors and blocking antibodies have yet to fulfill their promise clinically. Understanding cellular features that define sensitivity versus resistance are important for effective patient selection and anticipation of outgrowth of a resistant clone. We previously identified an important role for IGF signaling in T-cell acute lymphoblastic leukemia (T-ALL) relying primarily upon genetically defined mouse models. We present here an assessment of IGF1R dependence in human T-ALL using a broad panel of 27 established cell lines that capture a spectrum of the genetic variation that might be encountered in clinical practice. We observed that a subset of cell lines are sensitive to IGF1R inhibition and are characterized by high levels of surface IGF1R expression and PTEN positivity. Interestingly, lentiviral expression or knock-down of PTEN in PTEN-negative/positive cell lines, respectively, had limited effects on their response to IGF1R inhibition, suggesting that PTEN contributes to, but does not define IGF dependence. Additionally, we characterize downstream PI3K/AKT signaling as dominant over RAS/RAF/MEK/ERK in mediating growth and/or survival in this context. Finally, we demonstrate that IGF and interleukin-7 (IL-7) fulfill non-overlapping roles in supporting T-ALL growth. These findings are significant in that they reveal cellular features and downstream mechanisms that may determine the response of an individual patient’s tumor to IGF1R inhibitor therapy. PMID:27532210

  14. IGF1R Derived PI3K/AKT Signaling Maintains Growth in a Subset of Human T-Cell Acute Lymphoblastic Leukemias.

    PubMed

    Gusscott, Samuel; Jenkins, Catherine E; Lam, Sonya H; Giambra, Vincenzo; Pollak, Michael; Weng, Andrew P

    2016-01-01

    Insulin-like growth factor 1 receptor (IGF1R) is a prevalent signaling pathway in human cancer that supports cell growth/survival and thus contributes to aggressive biological behavior. Much work has gone into development of IGF1R inhibitors; however, candidate agents including small molecule tyrosine kinase inhibitors and blocking antibodies have yet to fulfill their promise clinically. Understanding cellular features that define sensitivity versus resistance are important for effective patient selection and anticipation of outgrowth of a resistant clone. We previously identified an important role for IGF signaling in T-cell acute lymphoblastic leukemia (T-ALL) relying primarily upon genetically defined mouse models. We present here an assessment of IGF1R dependence in human T-ALL using a broad panel of 27 established cell lines that capture a spectrum of the genetic variation that might be encountered in clinical practice. We observed that a subset of cell lines are sensitive to IGF1R inhibition and are characterized by high levels of surface IGF1R expression and PTEN positivity. Interestingly, lentiviral expression or knock-down of PTEN in PTEN-negative/positive cell lines, respectively, had limited effects on their response to IGF1R inhibition, suggesting that PTEN contributes to, but does not define IGF dependence. Additionally, we characterize downstream PI3K/AKT signaling as dominant over RAS/RAF/MEK/ERK in mediating growth and/or survival in this context. Finally, we demonstrate that IGF and interleukin-7 (IL-7) fulfill non-overlapping roles in supporting T-ALL growth. These findings are significant in that they reveal cellular features and downstream mechanisms that may determine the response of an individual patient's tumor to IGF1R inhibitor therapy. PMID:27532210

  15. Notch and NF-kB signaling pathways regulate miR-223/FBXW7 axis in T-cell acute lymphoblastic leukemia.

    PubMed

    Kumar, V; Palermo, R; Talora, C; Campese, A F; Checquolo, S; Bellavia, D; Tottone, L; Testa, G; Miele, E; Indraccolo, S; Amadori, A; Ferretti, E; Gulino, A; Vacca, A; Screpanti, I

    2014-12-01

    Notch signaling deregulation is linked to the onset of several tumors including T-cell acute lymphoblastic leukemia (T-ALL). Deregulated microRNA (miRNA) expression is also associated with several cancers, including leukemias. However, the transcriptional regulators of miRNAs, as well as the relationships between Notch signaling and miRNA deregulation, are poorly understood. To identify miRNAs regulated by Notch pathway, we performed microarray-based miRNA profiling of several Notch-expressing T-ALL models. Among seven miRNAs, consistently regulated by overexpressing or silencing Notch3, we focused our attention on miR-223, whose putative promoter analysis revealed a conserved RBPjk binding site, which was nested to an NF-kB consensus. Luciferase and chromatin immunoprecipitation assays on the promoter region of miR-223 show that both Notch and NF-kB are novel coregulatory signals of miR-223 expression, being able to activate cooperatively the transcriptional activity of miR-223 promoter. Notably, the Notch-mediated activation of miR-223 represses the tumor suppressor FBXW7 in T-ALL cell lines. Moreover, we observed the inverse correlation of miR-223 and FBXW7 expression in a panel of T-ALL patient-derived xenografts. Finally, we show that miR-223 inhibition prevents T-ALL resistance to γ-secretase inhibitor (GSI) treatment, suggesting that miR-223 could be involved in GSI sensitivity and its inhibition may be exploited in target therapy protocols. PMID:24727676

  16. Pilot Study of Nelarabine in Combination With Intensive Chemotherapy in High-Risk T-Cell Acute Lymphoblastic Leukemia: A Report From the Children's Oncology Group

    PubMed Central

    Dunsmore, Kimberly P.; Devidas, Meenakshi; Linda, Stephen B.; Borowitz, Michael J.; Winick, Naomi; Hunger, Stephen P.; Carroll, William L.; Camitta, Bruce M.

    2012-01-01

    Purpose Children's Oncology Group study AALL00P2 was designed to assess the feasibility and safety of adding nelarabine to a BFM 86–based chemotherapy regimen in children with newly diagnosed T-cell acute lymphoblastic leukemia (T-ALL). Patients and Methods In stage one of the study, eight patients with a slow early response (SER) by prednisone poor response (PPR; ≥ 1,000 peripheral blood blasts on day 8 of prednisone prephase) received chemotherapy plus six courses of nelarabine 400 mg/m2 once per day; four patients with SER by high minimal residual disease (MRD; ≥ 1% at day 36 of induction) received chemotherapy plus five courses of nelarabine; 16 patients with a rapid early response (RER) received chemotherapy without nelarabine. In stage two, all patients received six 5-day courses of nelarabine at 650 mg/m2 once per day (10 SER patients [one by MRD, nine by PPR]) or 400 mg/m2 once per day (38 RER patients; 12 SER patients [three by MRD, nine by PPR]). Results The only significant difference in toxicities was decreased neutropenic infections in patients treated with nelarabine (42% with v 81% without nelarabine). Five-year event-free survival (EFS) rates were 73% for 11 stage one SER patients and 67% for 22 stage two SER patients treated with nelarabine versus 69% for 16 stage one RER patients treated without nelarabine and 74% for 38 stage two RER patients treated with nelarabine. Five-year EFS for all patients receiving nelarabine (n = 70) was 73% versus 69% for those treated without nelarabine (n = 16). Conclusion Addition of nelarabine to a BFM 86–based chemotherapy regimen was well tolerated and produced encouraging results in pediatric patients with T-ALL, particularly those with a SER, who have historically fared poorly. PMID:22734022

  17. [Correlation between expression of SIL-TAL1 fusion gene and deletion of 6q in T-cell acute lymphoblastic leukemia].

    PubMed

    Wang, Qian; Wu, Li-Li; Dai, Hai-Ping; Ping, Na-Na; Wu, Chun-Xiao; Pan, Jin-Lan; Cen, Jian-Nong; Qiu, Hui-Ying; Chen, Su-Ning

    2014-12-01

    The present study was designed to investigate the prevalence and clinical significance of SIL-TAL1 rearrangements in T-cell acute lymphoblastic leukemia (T-ALL). The incidence of SIL-TAL1 rearrangements was analyzed by nest real-time quantitative polymerase chain reaction (RT-PCR) in 68 patients with T-ALL. Karyotypic analysis was performed by conventional R-banding assay and array-based comparative genomic hybridization (array-CGH). The results showed that SIL-TAL1 rearrangements were identified in 10/26 (38.5%) pediatric and 2/42 (4.8%) adult T-ALL cases, which indicate a pediatric preference for SIL-TAL1 rearrangements in T-ALL. Two different transcripts were detected in 6/12(50%) T-ALL samples. Abnormal karyotypes were detected in 6 out of 11 cases (54.5%) and a deletion of the long arm of chromosome 6 was observed in 4 cases. Array-CGH results of 2 T-ALL cases with SIL-TAL1 rearrangement revealed that this fusion gene was resulted from a cryptic deletion of 1p32, and the overlap region of 6q deletion was 6q14.1-16.3. These cases with SIL-TAL1 fusion had a higher white blood cell (WBC) count and higher serum levels of lactate dehydrogenase (LDH) than cases without SIL-TAL1 fusion. It is concluded that SIL-TAL1 rearrangements are associated with loss of heterozygosity of chromosomal 6q, and SIL-TAL1-positive patients are younger than SIL-TAL1-negative patients. In contrast to the cases without SIL-TAL1 fusion, there are many adverse prognostic factors in the cases with SIL-TAL1 fusion, such as higher WBC count and higher LDH levels. PMID:25543465

  18. Andrographolide inhibits growth of human T-cell acute lymphoblastic leukemia Jurkat cells by downregulation of PI3K/AKT and upregulation of p38 MAPK pathways

    PubMed Central

    Yang, Tingfang; Yao, Shuluan; Zhang, Xianfeng; Guo, Yan

    2016-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) as a prevalent hematologic malignancy is one of the most common malignant tumors worldwide in children. Andrographolide (Andro), the major active component from Andrographis paniculata, has been shown to possess antitumor activities in several types of cancer cells. However, whether Andro would inhibit T-ALL cell growth remains unclear. In this study, we investigated the cytotoxic effect of Andro on human T-ALL Jurkat cells and explored the mechanisms of cell death. Cell apoptosis was assayed by flow cytometry, and the signaling transduction for Andro was analyzed by Western blotting. The results indicated 10 μg/mL Andro could significantly induce Jurkat cells’ apoptosis, depending on the inhibition of PI3K/AKT pathway. Moreover, Andro-induced apoptosis is enhanced by AKT-selective inhibitor LY294002. ERK- or JNK-selective inhibitors PD98059 and SP600125 had no effect on Andro-induced apoptosis. In addition, p38 inhibitor SB203580 could reverse Andro-induced apoptosis in Jurkat cells. We also found that the protein expression of p-p53 and p-p38 were increased after Andro treatments. The result of an in vivo study also demonstrated Andro’s dose-dependent inhibition in subcutaneous Jurkat xenografts. In conclusion, our findings explained a novel mechanism of drug action by Andro in Jurkat cells and suggested that Andro might be developed into a new candidate therapy for T-ALL patients in the coming days. PMID:27114702

  19. Laboratory Treated T Cells in Treating Patients With Relapsed or Refractory Chronic Lymphocytic Leukemia, Non-Hodgkin Lymphoma, or Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-08-16

    Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Chronic Lymphocytic Leukemia; Recurrent Diffuse Large B-Cell Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Non-Hodgkin Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Diffuse Large B-Cell Lymphoma; Refractory Mantle Cell Lymphoma; Refractory Non-Hodgkin Lymphoma; Refractory Small Lymphocytic Lymphoma

  20. Etoposide, Prednisone, Vincristine Sulfate, Cyclophosphamide, and Doxorubicin Hydrochloride With Asparaginase in Treating Patients With Acute Lymphoblastic Leukemia or Lymphoblastic Lymphoma

    ClinicalTrials.gov

    2016-04-26

    B Acute Lymphoblastic Leukemia; B Lymphoblastic Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent B Lymphoblastic Lymphoma; Recurrent T Lymphoblastic Leukemia/Lymphoma; Refractory B Lymphoblastic Lymphoma; Refractory T Lymphoblastic Lymphoma; T Acute Lymphoblastic Leukemia; T Lymphoblastic Lymphoma

  1. FAS system deregulation in T-cell lymphoblastic lymphoma

    PubMed Central

    Villa-Morales, M; Cobos, M A; González-Gugel, E; Álvarez-Iglesias, V; Martínez, B; Piris, M A; Carracedo, A; Benítez, J; Fernández-Piqueras, J

    2014-01-01

    The acquisition of resistance towards FAS-mediated apoptosis may be required for tumor formation. Tumors from various histological origins exhibit FAS mutations, the most frequent being hematological malignancies. However, data regarding FAS mutations or FAS signaling alterations are still lacking in precursor T-cell lymphoblastic lymphomas (T-LBLs). The available data on acute lymphoblastic leukemia, of precursor origin as well, indicate a low frequency of FAS mutations but often report a serious reduction in FAS-mediated apoptosis as well as chemoresistance, thus suggesting the occurrence of mechanisms able to deregulate the FAS signaling pathway, different from FAS mutation. Our aim at this study was to determine whether FAS-mediated apoptotic signaling is compromised in human T-LBL samples and the mechanisms involved. This study on 26 T-LBL samples confirms that the FAS system is impaired to a wide extent in these tumors, with 57.7% of the cases presenting any alteration of the pathway. A variety of mechanisms seems to be involved in such alteration, in order of frequency the downregulation of FAS, the deregulation of other members of the pathway and the occurrence of mutations at FAS. Considering these results together, it seems plausible to think of a cumulative effect of several alterations in each T-LBL, which in turn may result in FAS/FASLG system deregulation. Since defective FAS signaling may render the T-LBL tumor cells resistant to apoptotic cell death, the correct prognosis, diagnosis and thus the success of anticancer therapy may require such an in-depth knowledge of the complete scenario of FAS-signaling alterations. PMID:24603338

  2. FAS system deregulation in T-cell lymphoblastic lymphoma.

    PubMed

    Villa-Morales, M; Cobos, M A; González-Gugel, E; Álvarez-Iglesias, V; Martínez, B; Piris, M A; Carracedo, A; Benítez, J; Fernández-Piqueras, J

    2014-01-01

    The acquisition of resistance towards FAS-mediated apoptosis may be required for tumor formation. Tumors from various histological origins exhibit FAS mutations, the most frequent being hematological malignancies. However, data regarding FAS mutations or FAS signaling alterations are still lacking in precursor T-cell lymphoblastic lymphomas (T-LBLs). The available data on acute lymphoblastic leukemia, of precursor origin as well, indicate a low frequency of FAS mutations but often report a serious reduction in FAS-mediated apoptosis as well as chemoresistance, thus suggesting the occurrence of mechanisms able to deregulate the FAS signaling pathway, different from FAS mutation. Our aim at this study was to determine whether FAS-mediated apoptotic signaling is compromised in human T-LBL samples and the mechanisms involved. This study on 26 T-LBL samples confirms that the FAS system is impaired to a wide extent in these tumors, with 57.7% of the cases presenting any alteration of the pathway. A variety of mechanisms seems to be involved in such alteration, in order of frequency the downregulation of FAS, the deregulation of other members of the pathway and the occurrence of mutations at FAS. Considering these results together, it seems plausible to think of a cumulative effect of several alterations in each T-LBL, which in turn may result in FAS/FASLG system deregulation. Since defective FAS signaling may render the T-LBL tumor cells resistant to apoptotic cell death, the correct prognosis, diagnosis and thus the success of anticancer therapy may require such an in-depth knowledge of the complete scenario of FAS-signaling alterations. PMID:24603338

  3. Comparative analysis between RQ-PCR and digital-droplet-PCR of immunoglobulin/T-cell receptor gene rearrangements to monitor minimal residual disease in acute lymphoblastic leukaemia.

    PubMed

    Della Starza, Irene; Nunes, Vittorio; Cavalli, Marzia; De Novi, Lucia Anna; Ilari, Caterina; Apicella, Valerio; Vitale, Antonella; Testi, Anna Maria; Del Giudice, Ilaria; Chiaretti, Sabina; Foà, Robin; Guarini, Anna

    2016-08-01

    Real-time quantitative polymerase chain reaction (RQ-PCR) is a standardized tool for minimal residual disease (MRD) monitoring in acute lymphoblastic leukaemia (ALL). The applicability of this technology is limited by the need of a standard curve based on diagnostic DNA. The digital droplet PCR (ddPCR) technology has been recently applied to various medical fields, but its use in MRD monitoring is under investigation. In this study, we analysed 50 ALL cases by both methods in two phases: in the first, we established analytical parameters to investigate the applicability of this new technique; in the second, we analysed MRD levels in 141 follow-up (FU) samples to investigate the possible use of ddPCR for MRD monitoring in ALL patients. We documented that ddPCR has sensitivity and accuracy at least comparable to those of RQ-PCR. Overall, the two methods gave concordant results in 124 of the 141 analysed MRD samples (88%, P = 0·94). Discordant results were found in 12% borderline cases. The results obtained prove that ddPCR is a reliable method for MRD monitoring in ALL, with the advantage of quantifying without the need of the calibration curves. Its application in a cohort of patients with a longer FU will conclusively define its clinical predictive value. PMID:27172403

  4. AKR1C3 is a biomarker of sensitivity to PR-104 in preclinical models of T-cell acute lymphoblastic leukemia.

    PubMed

    Moradi Manesh, Donya; El-Hoss, Jad; Evans, Kathryn; Richmond, Jennifer; Toscan, Cara E; Bracken, Lauryn S; Hedrick, Ashlee; Sutton, Rosemary; Marshall, Glenn M; Wilson, William R; Kurmasheva, Raushan T; Billups, Catherine; Houghton, Peter J; Smith, Malcolm A; Carol, Hernan; Lock, Richard B

    2015-09-01

    PR-104, a phosphate ester of the nitrogen mustard prodrug PR-104A, has shown evidence of efficacy in adult leukemia clinical trials. Originally designed to target hypoxic cells, PR-104A is independently activated by aldo-keto-reductase 1C3 (AKR1C3). The aim of this study was to test whether AKR1C3 is a predictive biomarker of in vivo PR-104 sensitivity. In a panel of 7 patient-derived pediatric acute lymphoblastic leukemia (ALL) xenografts, PR-104 showed significantly greater efficacy against T-lineage ALL (T-ALL) than B-cell-precursor ALL (BCP-ALL) xenografts. Single-agent PR-104 was more efficacious against T-ALL xenografts compared with a combination regimen of vincristine, dexamethasone, and l-asparaginase. Expression of AKR1C3 was significantly higher in T-ALL xenografts compared with BCP-ALL, and correlated with PR-104/PR-104A sensitivity in vivo and in vitro. Overexpression of AKR1C3 in a resistant BCP-ALL xenograft resulted in dramatic sensitization to PR-104 in vivo. Testing leukemic blasts from 11 patients confirmed that T-ALL cells were more sensitive than BCP-ALL to PR-104A in vitro, and that sensitivity correlated with AKR1C3 expression. Collectively, these results indicate that PR-104 shows promise as a novel therapy for relapsed/refractory T-ALL, and that AKR1C3 expression could be used as a biomarker to select patients most likely to benefit from such treatment in prospective clinical trials. PMID:26116659

  5. Acute lymphoblastic leukaemia

    PubMed Central

    Inaba, Hiroto; Greaves, Mel; Mullighan, Charles G.

    2013-01-01

    Summary Acute lymphoblastic leukaemia (ALL) is seen in both children and adults, but its incidence peaks between ages 2 and 5 years. The causation of ALL is considered to be multi-factorial, including exogenous or endogenous exposures, genetic susceptibility, and chance. The survival rate of paediatric ALL has improved to approximately 90% in recent trials with risk stratification by biologic features of leukaemic cells and response to therapy, therapy modification based on patient pharmacodynamics and pharmacogenomics, and improved supportive care. However, innovative approaches are needed to further improve survival while reducing adverse effects. While most children can be cured, the prognosis of infants and adults with ALL remains poor. Recent genome-wide profiling of germline and leukaemic cell DNA has identified novel submicroscopic structural genetic alterations and sequence mutations that contribute to leukaemogenesis, define new ALL subtypes, influence responsiveness to treatment, and may provide novel prognostic markers and therapeutic targets for personalized medicine. PMID:23523389

  6. Pediatric T-cell lymphoblastic leukemia evolves into relapse by clonal selection, acquisition of mutations and promoter hypomethylation

    PubMed Central

    Kunz, Joachim B.; Rausch, Tobias; Bandapalli, Obul R.; Eilers, Juliane; Pechanska, Paulina; Schuessele, Stephanie; Assenov, Yassen; Stütz, Adrian M.; Kirschner-Schwabe, Renate; Hof, Jana; Eckert, Cornelia; von Stackelberg, Arend; Schrappe, Martin; Stanulla, Martin; Koehler, Rolf; Avigad, Smadar; Elitzur, Sarah; Handgretinger, Rupert; Benes, Vladimir; Weischenfeldt, Joachim; Korbel, Jan O.; Muckenthaler, Martina U.; Kulozik, Andreas E.

    2015-01-01

    Relapsed precursor T-cell acute lymphoblastic leukemia is characterized by resistance against chemotherapy and is frequently fatal. We aimed at understanding the molecular mechanisms resulting in relapse of T-cell acute lymphoblastic leukemia and analyzed 13 patients at first diagnosis, remission and relapse by whole exome sequencing, targeted ultra-deep sequencing, multiplex ligation dependent probe amplification and DNA methylation array. Compared to primary T-cell acute lymphoblastic leukemia, in relapse the number of single nucleotide variants and small insertions and deletions approximately doubled from 11.5 to 26. Targeted ultra-deep sequencing sensitively detected subclones that were selected for in relapse. The mutational pattern defined two types of relapses. While both are characterized by selection of subclones and acquisition of novel mutations, ‘type 1’ relapse derives from the primary leukemia whereas ‘type 2’ relapse originates from a common pre-leukemic ancestor. Relapse-specific changes included activation of the nucleotidase NT5C2 resulting in resistance to chemotherapy and mutations of epigenetic modulators, exemplified by SUZ12, WHSC1 and SMARCA4. While mutations present in primary leukemia and in relapse were enriched for known drivers of leukemia, relapse-specific changes revealed an association with general cancer-promoting mechanisms. This study thus identifies mechanisms that drive progression of pediatric T-cell acute lymphoblastic leukemia to relapse and may explain the characteristic treatment resistance of this condition. PMID:26294725

  7. Pediatric T-cell lymphoblastic leukemia evolves into relapse by clonal selection, acquisition of mutations and promoter hypomethylation.

    PubMed

    Kunz, Joachim B; Rausch, Tobias; Bandapalli, Obul R; Eilers, Juliane; Pechanska, Paulina; Schuessele, Stephanie; Assenov, Yassen; Stütz, Adrian M; Kirschner-Schwabe, Renate; Hof, Jana; Eckert, Cornelia; von Stackelberg, Arend; Schrappe, Martin; Stanulla, Martin; Koehler, Rolf; Avigad, Smadar; Elitzur, Sarah; Handgretinger, Rupert; Benes, Vladimir; Weischenfeldt, Joachim; Korbel, Jan O; Muckenthaler, Martina U; Kulozik, Andreas E

    2015-11-01

    Relapsed precursor T-cell acute lymphoblastic leukemia is characterized by resistance against chemotherapy and is frequently fatal. We aimed at understanding the molecular mechanisms resulting in relapse of T-cell acute lymphoblastic leukemia and analyzed 13 patients at first diagnosis, remission and relapse by whole exome sequencing, targeted ultra-deep sequencing, multiplex ligation dependent probe amplification and DNA methylation array. Compared to primary T-cell acute lymphoblastic leukemia, in relapse the number of single nucleotide variants and small insertions and deletions approximately doubled from 11.5 to 26. Targeted ultra-deep sequencing sensitively detected subclones that were selected for in relapse. The mutational pattern defined two types of relapses. While both are characterized by selection of subclones and acquisition of novel mutations, 'type 1' relapse derives from the primary leukemia whereas 'type 2' relapse originates from a common pre-leukemic ancestor. Relapse-specific changes included activation of the nucleotidase NT5C2 resulting in resistance to chemotherapy and mutations of epigenetic modulators, exemplified by SUZ12, WHSC1 and SMARCA4. While mutations present in primary leukemia and in relapse were enriched for known drivers of leukemia, relapse-specific changes revealed an association with general cancer-promoting mechanisms. This study thus identifies mechanisms that drive progression of pediatric T-cell acute lymphoblastic leukemia to relapse and may explain the characteristic treatment resistance of this condition. PMID:26294725

  8. Vitamin E synthetic derivate-TPGS-selectively induces apoptosis in jurkat t cells via oxidative stress signaling pathways: implications for acute lymphoblastic leukemia.

    PubMed

    Ruiz-Moreno, Cristian; Jimenez-Del-Rio, Marlene; Sierra-Garcia, Ligia; Lopez-Osorio, Betty; Velez-Pardo, Carlos

    2016-09-01

    D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) is a water-soluble derivative of natural vitamin E commonly used as a drug delivery agent. Recently, TPGS alone has been reported to induce cell death in lung, breast and prostate cancer. However, the effect of TPGS on cancer cell viability remains unclear. Thus, this study was aimed to evaluate the cytotoxic effect of TPGS on human periphral blood lymphocytes (PBL) and on T cell acute lymphocytic leukemia (ALL) Jurkat clone E6-1 cells and its possible mechanism of action. PBL and Jurkat cells were treated with TPGS (10, 20, 40, 60, and 80 μM), and morphological changes in the cell nucleus, mitochondrial membrane potential (ΔΨm), and intracellular reactive oxygen species levels were determined by immune-fluorescence microscopy and flow cytometry. Cellular apoptosis markers were also evaluated by immunocytochemistry. In this study, TPGS induced apoptotic cell death in Jurkat cells, but not in PBL, in a dose-response manner with increasing nuclear DNA fragmentation, increasing cell cycle arrest, and decreasing ΔΨm. Additionally, TPGS increased dichlorofluorescein fluorescence intensity, indicative of H2O2 production, in a dose-independent fashion. TPGS increased DJ-1 Cys(106)-sulfonate, as a marker of intracellular stress and induced the activation of NF-κB, p53 and c-Jun transcription factors. Additionally, it increased the expression of apoptotic markers Bcl-2 related pro-apoptotic proteins Bax and PUMAand activated caspase-3. The antioxidant N-acetyl-L-cysteine and known pharmacological inhibitors protected the cells from the TPGS induced effects. In conclusion, TPGS selectively induces apoptosis in Jurkat cells through two independent but complementary H2O2-mediated signaling pathways. Our findings support the use of TPGS as a potential treatment for ALL. PMID:27364951

  9. Risk-Based Classification System of Patients With Newly Diagnosed Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-04-07

    Adult B Acute Lymphoblastic Leukemia; Adult T Acute Lymphoblastic Leukemia; Childhood B Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  10. The impact of NOTCH1, FBW7 and PTEN mutations on prognosis and downstream signaling in pediatric T- cell acute lymphoblastic leukemia: A report from the Children's Oncology Group

    PubMed Central

    Gedman, Amanda Larson; Chen, Qing; Desmoulin, Sita Kugel; Ge, Yubin; LaFiura, Katherine; Haska, Christina L.; Cherian, Christina; Devidas, Meenakshi; Linda, Stephen B.; Taub, Jeffrey W.; Matherly, Larry H.

    2009-01-01

    We explored the impact of mutations in the NOTCH1, FBW7 and PTEN genes on prognosis and downstream signaling in a well-defined cohort of 47 pediatric T-cell acute lymphoblastic leukemia (T-ALL) patients. In T-ALL lymphoblasts, we identified high frequency mutations in NOTCH1 (n=16), FBW7 (n=5) and PTEN (n=26). NOTCH1 mutations resulted in 1.3-3.3-fold increased transactivation of a HES1 reporter construct over wild-type NOTCH1; mutant FBW7 resulted in further augmentation of reporter gene activity. NOTCH1 and FBW7 mutations were accompanied by increased median transcripts for NOTCH1 target genes (HES1, DELTEX1, cMYC). However, none of these mutations were associated with treatment outcome. Elevated HES1, DELTEX1 and cMYC transcripts were associated with significant increases in transcript levels of several chemotherapy relevant genes, including MDR1, ABCC5, reduced folate carrier, asparagine synthetase, thiopurine methyltranserase, Bcl-2 and dihydrofolate reductase. PTEN transcripts positively correlated with HES1 and cMYC transcript levels. Our results suggest that (1) multiple factors should be considered with attempting to identify molecular-based prognostic factors for pediatric T-ALL, and (2) depending on the NOTCH1 signaling status, modifications in the types or dosing of standard chemotherapy drugs for T-ALL, or combinations of agents capable of targeting NOTCH1, AKT and/or mTOR with standard chemotherapy agents may be warranted. PMID:19340001

  11. T-cell lymphoblastic lymphoma presenting with a breast mass.

    PubMed

    Yumuk, Perran Fulden; Aydiner, Adnan; Topuz, Erkan; Cabioglu, Neslihan; Dogan, Oner

    2004-04-01

    Lymphomas secondarily involving the breast are uncommon, although they do represent the largest group of tumors metastatic to breast. A 20-year-old female with lymphoblastic lymphoma (LBL) presented here with 3 month history of weight loss, night sweats, fatigue and a mass in her left breast. Her physical examination revealed a left breast mass, lympadenopathy, bilateral pleural effusion and hepatomegaly. WBC count was 17,710/mm3 and LDH was mildly elevated. Breast ultrasound showed a 1.7 cm mass in the inner lower quadrant of left breast. Biopsy of the breast mass showed diffuse infiltration with small, round atypical cells which did not stain with CD20, CD43, CD34, cytokeratine and were positive for CD3. She was diagnosed as leukemic phase of a precursor T-cell LBL and treated with 6 cycles of CHOP (cyclophosphamide, doxorubicin, vincristine and prednisone), intrathecal methotrexate and cranial radiotherapy, achieving a complete response. She then was started on maintenance therapy. Four months later she returned with CNS involvement and was started on induction treatment. She had a very aggressive course of disease and died only 12 months after diagnosis. Breast involvement is very rarely seen in precursor T-cell LBL/ALL and in this patient occurred secondarily as part of widespread disease. PMID:15160967

  12. General Information about Adult Acute Lymphoblastic Leukemia

    MedlinePlus

    ... Acute Lymphoblastic Leukemia Treatment (PDQ®)–Patient Version General Information About Adult Acute Lymphoblastic Leukemia Go to Health ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  13. General Information about Childhood Acute Lymphoblastic Leukemia

    MedlinePlus

    ... Acute Lymphoblastic Leukemia Treatment (PDQ®)–Patient Version General Information About Childhood Acute Lymphoblastic Leukemia Go to Health ... the PDQ Pediatric Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  14. Biological Therapy in Treating Patients With Advanced Myelodysplastic Syndrome, Acute or Chronic Myeloid Leukemia, or Acute Lymphoblastic Leukemia Who Are Undergoing Stem Cell Transplantation

    ClinicalTrials.gov

    2013-07-03

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); B-cell Adult Acute Lymphoblastic Leukemia; B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; Essential Thrombocythemia; Polycythemia Vera; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Childhood Acute Lymphoblastic Leukemia

  15. PI3K pan-inhibition impairs more efficiently proliferation and survival of T-cell acute lymphoblastic leukemia cell lines when compared to isoform-selective PI3K inhibitors

    PubMed Central

    Spartà, Antonino Maria; Chiarini, Francesca; Buontempo, Francesca; Evangelisti, Camilla; Evangelisti, Cecilia; Orsini, Ester; McCubrey, James A.; Martelli, Alberto Maria

    2015-01-01

    Class I phosphatidylinositol 3-kinases (PI3Ks) are frequently activated in T-cell acute lymphoblastic leukemia (T-ALL), mainly due to the loss of PTEN function. Therefore, targeting PI3Ks is a promising innovative approach for T-ALL treatment, however at present no definitive evidence indicated which is the better therapeutic strategy between pan or selective isoform inhibition, as all the four catalytic subunits might participate in leukemogenesis. Here, we demonstrated that in both PTEN deleted and PTEN non deleted T-ALL cell lines, PI3K pan-inhibition exerted the highest cytotoxic effects when compared to both selective isoform inhibition or dual p110γ/δ inhibition. Intriguingly, the dual p110γ/δ inhibitor IPI-145 was effective in Loucy cells, which are representative of early T-precursor (ETP)-ALL, a T-ALL subtype associated with a poor outcome. PTEN gene deletion did not confer a peculiar reliance of T-ALL cells on PI3K activity for their proliferation/survival, as PTEN was inactivated in PTEN non deleted cells, due to posttranslational mechanisms. PI3K pan-inhibition suppressed Akt activation and induced caspase-independent apoptosis. We further demonstrated that in some T-ALL cell lines, autophagy could exert a protective role against PI3K inhibition. Our findings strongly support clinical application of class I PI3K pan-inhibitors in T-ALL treatment, with the possible exception of ETP-ALL cases. PMID:25871383

  16. Combination Chemotherapy With or Without Donor Stem Cell Transplant in Treating Patients With Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-09-09

    Adult Acute Lymphoblastic Leukemia in Remission; Adult B Acute Lymphoblastic Leukemia; Adult B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Adult L1 Acute Lymphoblastic Leukemia; Adult L2 Acute Lymphoblastic Leukemia; Adult T Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia

  17. Nivolumab and Dasatinib in Treating Patients With Relapsed or Refractory Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-06-28

    B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Refractory Adult Acute Lymphoblastic Leukemia; Refractory Childhood Acute Lymphoblastic Leukemia

  18. Haploinsufficiency of the c-myc transcriptional repressor FIR, as a dominant negative-alternative splicing model, promoted p53-dependent T-cell acute lymphoblastic leukemia progression by activating Notch1

    PubMed Central

    Rahmutulla, Bahityar; Tanaka, Nobuko; Ishige, Takayuki; Satoh, Mamoru; Hoshino, Tyuji; Miyagi, Satoru; Mori, Takeshi; Itoga, Sakae; Shimada, Hideaki; Tomonaga, Takeshi; Kito, Minoru; Nakajima-Takagi, Yaeko; Kubo, Shuji; Nakaseko, Chiaki; Hatano, Masahiko; Miki, Takashi; Matsuo, Masafumi; Fukuyo, Masaki; Kaneda, Atsushi; Iwama, Atsushi; Nomura, Fumio

    2015-01-01

    FUSE-binding protein (FBP)-interacting repressor (FIR) is a c-myc transcriptional suppressor. A splice variant of FIR that lacks exon 2 in the transcriptional repressor domain (FIRΔexon2) upregulates c-myc transcription by inactivating wild-type FIR. The ratio of FIRΔexon2/FIR mRNA was increased in human colorectal cancer and hepatocellular carcinoma tissues. Because FIRΔexon2 is considered to be a dominant negative regulator of FIR, FIR heterozygous knockout (FIR+/−) C57BL6 mice were generated. FIR complete knockout (FIR−/−) was embryonic lethal before E9.5; therefore, it is essential for embryogenesis. This strongly suggests that insufficiency of FIR is crucial for carcinogenesis. FIR+/− mice exhibited prominent c-myc mRNA upregulation, particularly in the peripheral blood (PB), without any significant pathogenic phenotype. Furthermore, elevated FIRΔexon2/FIR mRNA expression was detected in human leukemia samples and cell lines. Because the single knockout of TP53 generates thymic lymphoma, FIR+/−TP53−/− generated T-cell type acute lymphocytic/lymphoblastic leukemia (T-ALL) with increased organ or bone marrow invasion with poor prognosis. RNA-sequencing analysis of sorted thymic lymphoma cells revealed that the Notch signaling pathway was activated significantly in FIR+/−TP53−/− compared with that in FIR+/+TP53−/− mice. Notch1 mRNA expression in sorted thymic lymphoma cells was confirmed using qRT-PCR. In addition, flow cytometry revealed that c-myc mRNA was negatively correlated with FIR but positively correlated with Notch1 in sorted T-ALL/thymic lymphoma cells. Moreover, the knockdown of TP53 or c-myc using siRNA decreased Notch1 expression in cancer cells. In addition, an adenovirus vector encoding FIRΔexon2 cDNA increased bleomycin-induced DNA damage. Taken together, these data suggest that the altered expression of FIRΔexon2 increased Notch1 at least partially by activating c-Myc via a TP53-independent pathway. In conclusion

  19. Notch1 Receptor Regulates AKT Protein Activation Loop (Thr308) Dephosphorylation through Modulation of the PP2A Phosphatase in Phosphatase and Tensin Homolog (PTEN)-null T-cell Acute Lymphoblastic Leukemia Cells*

    PubMed Central

    Hales, Eric C.; Orr, Steven M.; Larson Gedman, Amanda; Taub, Jeffrey W.; Matherly, Larry H.

    2013-01-01

    Notch1 activating mutations occur in more than 50% of T-cell acute lymphoblastic leukemia (T-ALL) cases and increase expression of Notch1 target genes, some of which activate AKT. HES1 transcriptionally silences phosphatase and tensin homolog (PTEN), resulting in AKT activation, which is reversed by Notch1 inhibition with γ-secretase inhibitors (GSIs). Mutational loss of PTEN is frequent in T-ALL and promotes resistance to GSIs due to AKT activation. GSI treatments increased AKT-Thr308 phosphorylation and signaling in PTEN-deficient, GSI-resistant T-ALL cell lines (Jurkat, CCRF-CEM, and MOLT3), suggesting that Notch1 represses AKT independent of its PTEN transcriptional effects. AKT-Thr308 phosphorylation and downstream signaling were also increased by knocking down Notch1 in Jurkat (N1KD) cells. This was blocked by treatment with the AKT inhibitor perifosine. The PI3K inhibitor wortmannin and the protein phosphatase type 2A (PP2A) inhibitor okadaic acid both impacted AKT-Thr308 phosphorylation to a greater extent in nontargeted control than N1KD cells, suggesting decreased dephosphorylation of AKT-Thr308 by PP2A in the latter. Phosphorylations of AMP-activated protein kinaseα (AMPKα)-Thr172 and p70S6K-Thr389, both PP2A substrates, were also increased in both N1KD and GSI-treated cells and responded to okadaic acid treatment. A transcriptional regulatory mechanism was implied because ectopic expression of dominant-negative mastermind-like protein 1 increased and wild-type HES1 decreased phosphorylation of these PP2A targets. This was independent of changes in PP2A subunit levels or in vitro PP2A activity, but was accompanied by decreased association of PP2A with AKT in N1KD cells. These results suggest that Notch1 can regulate PP2A dephosphorylation of critical cellular regulators including AKT, AMPKα, and p70S6K. PMID:23788636

  20. Haemophagocytic syndrome complicating acute lymphoblastic leukaemia.

    PubMed Central

    Stark, R.; Manoharan, A.

    1989-01-01

    A 41 year old female developed reactive haemophagocytic histiocytosis secondary to herpes simplex infection, during remission induction for acute lymphoblastic leukaemia. She recovered fully with acyclovir and supportive treatment. Previous publications on the association between acute lymphoblastic leukaemia and haemophagocytic syndrome are reviewed, and the nature of the haemophagocytic disorder is discussed. Images Figure 1 PMID:2687829

  1. Human HMGA2 protein overexpressed in mice induces precursor T-cell lymphoblastic leukemia

    PubMed Central

    Efanov, A; Zanesi, N; Coppola, V; Nuovo, G; Bolon, B; Wernicle-Jameson, D; Lagana, A; Hansjuerg, A; Pichiorri, F; Croce, C M

    2014-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a neoplasia of thymocytes characterized by the rapid accumulation of the precursors of T lymphocytes. HMGA2 (high-mobility group AT-hook 2) gene expression is extremely low in normal adult tissues, but it is overexpressed in many tumors. To identify the biological function of HMGA2, we generated transgenic mice carrying the human HMGA2 gene under control of the VH promoter/Eμ enhancer. Approximately 90% of Eμ-HMGA2 transgenic mice became visibly sick between 4 and 8 months due to the onset and progression of a T-ALL-like disease. Characteristic features included severe alopecia (30% of mice); enlarged lymph nodes and spleen; and profound immunological abnormalities (altered cytokine levels, hypoimmunoglobulinemia) leading to reduced immune responsiveness. Immunophenotyping showed accumulation of CD5+CD4+, CD5+CD8+ or CD5+CD8+CD4+ T-cell populations in the spleens and bone marrow of sick animals. These findings show that HMGA2-driven leukemia in mice closely resembles spontaneous human T-ALL, indicating that HMGA2 transgenic mice should serve as an important model for investigating basic mechanisms and potential new therapies of relevance to human T-ALL. PMID:25014774

  2. Carfilzomib and Hyper-CVAD in Treating Patients With Newly Diagnosed Acute Lymphoblastic Leukemia or Lymphoma

    ClinicalTrials.gov

    2016-08-09

    Contiguous Stage II Adult Lymphoblastic Lymphoma; Noncontiguous Stage II Adult Lymphoblastic Lymphoma; Stage I Adult Lymphoblastic Lymphoma; Stage III Adult Lymphoblastic Lymphoma; Stage IV Adult Lymphoblastic Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia

  3. Novel Therapies for Relapsed Acute Lymphoblastic Leukemia

    PubMed Central

    Fullmer, Amber; O’Brien, Susan; Kantarjian, Hagop; Jabbour, Elias

    2015-01-01

    The outcome of salvage therapy for relapsed acute lymphoblastic leukemia (ALL) remains poor. Salvage therapy mimics regimens with activity in newly diagnosed ALL. Novel strategies under investigation as monotherapy or in combination with chemotherapy improve the treatment of relapsed disease. For some ALL subsets, specific therapies are indicated. The addition of targeted therapy in Philadelphia chromosome–positive ALL has improved responses in relapsed patients without resistance to available tyrosine kinase inhibitors. Nelarabine demonstrates activity as monotherapy in T-cell ALL and is approved by the US Food and Drug Administration. Clofarabine, a second-generation purine analogue approved in pediatric leukemia, has shown activity in adult acute leukemias including ALL and acute myeloid leukemia. The role of pegaspargase in adult ALL requires further investigation. The benefit of matched related-donor allogeneic stem cell transplantation is significant for standard-risk ALL but not for high-risk ALL. Development of new drugs and agents tailored to subset-specific cytogenetic-molecular characteristics remains vital to success in treating adult ALL. PMID:20425428

  4. Treatment Option Overview (Childhood Acute Lymphoblastic Leukemia)

    MedlinePlus

    ... recovery) and treatment options. Childhood acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... genetic conditions affect the risk of having childhood ALL. Anything that increases your risk of getting a ...

  5. Stages of Adult Acute Lymphoblastic Leukemia

    MedlinePlus

    ... recovery) and treatment options. Adult acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... to radiation may increase the risk of developing ALL. Anything that increases your risk of getting a ...

  6. Risk Groups for Childhood Acute Lymphoblastic Leukemia

    MedlinePlus

    ... recovery) and treatment options. Childhood acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... genetic conditions affect the risk of having childhood ALL. Anything that increases your risk of getting a ...

  7. Treatment Options for Adult Acute Lymphoblastic Leukemia

    MedlinePlus

    ... recovery) and treatment options. Adult acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... to radiation may increase the risk of developing ALL. Anything that increases your risk of getting a ...

  8. Treatment Options for Childhood Acute Lymphoblastic Leukemia

    MedlinePlus

    ... recovery) and treatment options. Childhood acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... genetic conditions affect the risk of having childhood ALL. Anything that increases your risk of getting a ...

  9. Treatment Option Overview (Adult Acute Lymphoblastic Leukemia)

    MedlinePlus

    ... recovery) and treatment options. Adult acute lymphoblastic leukemia (ALL) is a type of cancer in which the ... to radiation may increase the risk of developing ALL. Anything that increases your risk of getting a ...

  10. Risk-Adapted Chemotherapy in Treating Younger Patients With Newly Diagnosed Standard-Risk Acute Lymphoblastic Leukemia or Localized B-Lineage Lymphoblastic Lymphoma

    ClinicalTrials.gov

    2016-03-18

    Adult B Lymphoblastic Lymphoma; Childhood B Acute Lymphoblastic Leukemia; Childhood B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Childhood B Lymphoblastic Lymphoma; Down Syndrome; Stage I B Lymphoblastic Lymphoma; Stage II B Lymphoblastic Lymphoma; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  11. Monoclonal antibodies in acute lymphoblastic leukemia

    PubMed Central

    O’Brien, Susan; Ravandi, Farhad; Kantarjian, Hagop

    2015-01-01

    With modern intensive combination polychemotherapy, the complete response (CR) rate in adults with acute lymphoblastic leukemia (ALL) is 80% to 90%, and the cure rate is 40% to 50%. Hence, there is a need to develop effective salvage therapies and combine novel agents with standard effective chemotherapy. ALL leukemic cells express several surface antigens amenable to target therapies, including CD20, CD22, and CD19. Monoclonal antibodies target these leukemic surface antigens selectively and minimize off-target toxicity. When added to frontline chemotherapy, rituximab, an antibody directed against CD20, increases cure rates of adults with Burkitt leukemia from 40% to 80% and those with pre-B ALL from 35% to 50%. Inotuzumab ozogamicin, a CD22 monoclonal antibody bound to calicheamicin, has resulted in marrow CR rates of 55% and a median survival of 6 to 7 months when given to patients with refractory-relapsed ALL. Blinatumomab, a biallelic T cell engaging the CD3-CD19 monoclonal antibody, also resulted in overall response rates of 40% to 50% and a median survival of 6.5 months in a similar refractory-relapsed population. Other promising monoclonal antibodies targeting CD20 (ofatumumab and obinutuzumab) or CD19 or CD20 and bound to different cytotoxins or immunotoxins are under development. Combined modalities of chemotherapy and the novel monoclonal antibodies are under investigation. PMID:25999456

  12. New developments in acute lymphoblastic leukemia.

    PubMed

    Douer, Dan; Thomas, Deborah A

    2014-06-01

    Acute lymphoblastic leukemia (ALL) occurs in both children and adults. Significant improvements in survival outcomes have been realized over the last decade for all age groups with de novo ALL. Frontline treatment incorporates a tailored approach, based on factors such as the patient’s age and the disease subtype. Children, adolescents, and young adults are likely to receive intensifying or deintensifying chemotherapy regimens using standard chemotherapeutics (eg, anthracyclines, vincristine, asparaginase) based on risk stratification. Older adults appear to benefit from reduced-intensity chemotherapy regimens, which incorporate targeted therapy (eg, monoclonal antibodies). New data suggest that a more intensive pediatric protocol might be feasible in adult patients. More than half of ALL patients relapse, and their limited survival has led to the development of novel approaches. Recently approved chemotherapeutic agents include clofarabine, nelarabine, asparaginase Erwinia chrysanthemi, and vincristine sulfate liposome injection, a novel formulation that permits administration of a higher dosage of vincristine than that used in standard regimens. Approaches under investigation include cell therapy using autologous T-cell technologies, antibody-drug conjugates, and agents targeting common gene mutations. Many novel agents are undergoing evaluation in both the frontline and relapsed settings. PMID:25768275

  13. Decitabine in Treating Children With Relapsed or Refractory Acute Myeloid Leukemia or Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2013-01-22

    Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Promyelocytic Leukemia (M3); Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  14. Cardiac Manifestation of Acute Lymphoblastic Leukemia.

    PubMed

    Werner, Rudolf A; Rudelius, Martina; Thurner, Annette; Higuchi, Takahiro; Lapa, Constantin

    2016-07-01

    Here, we report on a 38-year-old man with unclear right heart failure. Imaging with cardiac MRI and combined PET/CT with F-FDG revealed a hypermetabolic mass extending from the right ventricle to the atrium. In addition, intense glucose utilization throughout the bone marrow was noted. Biopsies of both bone marrow and cardiac mass were performed and revealed precursor B-cell acute lymphoblastic leukemia with gross leukemic infiltration of the myopericardium, a rare manifestation of acute lymphoblastic leukemia at initial diagnosis. PMID:27088389

  15. Targeted Therapy in Treating Patients With Relapsed or Refractory Acute Lymphoblastic Leukemia or Acute Myelogenous Leukemia

    ClinicalTrials.gov

    2016-07-28

    Chronic Myelomonocytic Leukemia; Myelodysplastic Syndrome; Recurrent Acute Myeloid Leukemia With Myelodysplasia-Related Changes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Adult Acute Lymphoblastic Leukemia

  16. Notch signalling in T cell lymphoblastic leukaemia/lymphoma and other haematological malignancies

    PubMed Central

    Aster, Jon C.; Blacklow, Stephen C.; Pear, Warren S.

    2010-01-01

    Notch receptors participate in a highly conserved signalling pathway that regulates normal development and tissue homeostasis in a context- and dose-dependent manner. Deregulated Notch signalling has been implicated in many diseases, but the clearest example of a pathogenic role is found in T cell lymphoblastic leukaemia/lymphoma (T-LL), in which the majority of human and murine tumours have acquired mutations that lead to aberrant increases in Notch1 signalling. Remarkably, it appears that the selective pressure for Notch mutations is virtually unique among cancers to T-LL, presumably reflecting a special context-dependent role for Notch in normal T cell progenitors. Nevertheless, there are some recent reports suggesting that Notch signalling has subtle yet important roles in other forms of hematologic malignancy as well. Here, we review the role of Notch signalling in various blood cancers, focusing on T-LL with an eye toward targeted therapeutics. PMID:20967796

  17. Hemiparesis in an Adolescent With Acute Lymphoblastic Leukemia: Everything Is Not Always What it Seems.

    PubMed

    Andina, David; Lassaletta, Alvaro; Sevilla, Julian; Gutierrez, Silvia; Madero, Luis

    2016-01-01

    Acute lymphoblastic leukemia is a common malignancy in childhood. Managing adverse events during treatment can result in very complex situations. A previously healthy adolescent diagnosed with T-cell acute lymphoblastic leukemia developed on day +55 of induction chemotherapy hemiparesis, dysesthesia, and facial palsy. Blood tests and brain imaging techniques were unremarkable. The patient was diagnosed with a conversion disorder, which completely resolved. Although rare in clinical practice, children and adolescents with cancer do not always have organic pathology explaining their symptoms. Psychiatric disorders such as those of the somatoform spectrum must be considered, particularly in patients with anxiety or depression. PMID:25072371

  18. Combination Chemotherapy in Treating Young Patients With Newly Diagnosed High-Risk Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-08-23

    B Acute Lymphoblastic Leukemia; Bone Necrosis; Central Nervous System Leukemia; Cognitive Side Effects of Cancer Therapy; Neurotoxicity Syndrome; Pain; Testicular Leukemia; Therapy-Related Toxicity; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  19. Brain Function in Young Patients Receiving Methotrexate for Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-04-08

    Childhood B Acute Lymphoblastic Leukemia; Childhood T Acute Lymphoblastic Leukemia; Cognitive Side Effects of Cancer Therapy; Long-Term Effects Secondary to Cancer Therapy in Children; Neurotoxicity Syndrome; Psychological Impact of Cancer; Untreated Childhood Acute Lymphoblastic Leukemia

  20. Nilotinib and Imatinib Mesylate After Donor Stem Cell Transplant in Treating Patients With Acute Lymphoblastic Leukemia or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2014-12-09

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Chronic Phase Chronic Myelogenous Leukemia; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Childhood Precursor Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Relapsing Chronic Myelogenous Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  1. Rhinocerebral zygomycosis in acute lymphoblastic leukaemia.

    PubMed

    Sica, S; Morace, G; La Rocca, L M; Etuk, B; Di Mario, A; Pagano, L; Zini, G; Rutella, S; Leone, G

    1993-01-01

    We describe a patient with acute lymphoblastic leukaemia who developed rhinocerebral zygomycosis during the aplastic phase induced by antineoplastic chemotherapy. The patient was treated with fluconazole intravenously (400 mg daily) for 30 days and underwent surgical debridement. As a result of this treatment a complete remission of the zygomycosis-associated symptoms was observed. The possibility of treating zygomycosis with fluconazole is discussed. PMID:8015558

  2. Eosinophilic presentation of acute lymphoblastic leukemia

    PubMed Central

    Rezamand, Azim; Ghorashi, Ziaaedin; Ghorashi, Sona; Nezami, Nariman

    2013-01-01

    Patient: Male, 5 Primary Diagnosis: Rule-out appendicitis Co-existing Diseases: Acute lymphoblastic leukemia (ALL) Medication: Chemiotherapy Clinical Procedure: Chest CT • flow cytometry Specialty: Pediatrics’ oncology • infection diseases Objective: Rare disease Background: Leukemias are among the most common childhood malignancies. Acute lymphoblastic leukemia (ALL) accounts for 77% of all leukemias. In rare cases, ALL patients may present with eosinophilia. Case Report: Here, a 5-year old boy was admitted to our hospital with a possible diagnosis of appendicitis. This patient’s complete blood cell count demonstrated leukocytosis with severe eosinophilia. Following a 1-month clinical investigation, 2 bone marrow aspirations, and flow cytometry analysis, a diagnosis of acute lymphoblastic leukemia was proposed. Finally, the patient was transferred to the oncology ward to receive standard therapeutic protocol, which resulted in disease remission. After chemotherapy for 2 years, patient is successfully treated. Conclusions: ALL is diagnosed by eosinophilia in rare cases. These patients need immediate diagnosis and intensive therapy due to worsened prognosis of ALL presenting as hypereosinophilia. PMID:23869247

  3. Entinostat and Clofarabine in Treating Patients With Newly Diagnosed, Relapsed, or Refractory Poor-Risk Acute Lymphoblastic Leukemia or Bilineage/Biphenotypic Leukemia

    ClinicalTrials.gov

    2014-07-16

    Acute Leukemias of Ambiguous Lineage; Philadelphia Chromosome Negative Adult Precursor Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia

  4. T-cell Lymphoblastic Lymphoma in the Maxilla and Mandible of a Child: A Rare Case Report

    PubMed Central

    Dalirsani, Zohreh

    2015-01-01

    T-cell lymphoblastic lymphomas (T-LBL), defined as neoplasms of immature T cells, are the most common paediatric T-cell lymphoma. These account for approximately 90% of all lymphoblastic lymphomas. The primary manifestation of T-LBL rarely occurs in the oral cavity. In this case report, we describe a case of primary T-LBL affecting the maxilla and mandible of a 10-year-old male patient. This is the first case of T-LBL reported in this region. We emphasize that early diagnosis of aggressive lesions in the maxilla or mandible is one of the responsibilities of oral physicians, who can help patients to overcome the many challenges of malignant diseases. PMID:26284200

  5. Update on developmental therapeutics for acute lymphoblastic leukemia.

    PubMed

    Smith, Malcolm A

    2009-07-01

    This is an exciting time in drug development for acute lymphoblastic leukemia (ALL). A confluence of trends makes it likely that highly effective new agents for ALL will be identified in the coming decade. One contributory factor is the development of more representative preclinical models of ALL for testing and prioritizing novel agents. Another important trend in ALL drug development is the increasing understanding at the molecular level of the genomic changes that occur in B-precursor and T-cell ALL. A final important trend is the increasing availability of new agents against relevant molecular targets. Molecularly targeted agents of interest discussed in this review include novel antibody-based drugs targeted against leukemia surface antigens, proteasome inhibitors, mTOR inhibitors, JAK inhibitors, Aurora A kinase inhibitors, and inhibitors of Bcl-2 family proteins. PMID:20425431

  6. Biology and treatment of adult acute lymphoblastic leukemia.

    PubMed Central

    Levitt, L; Lin, R

    1996-01-01

    The molecular analysis of acute lymphoblastic leukemia (ALL) has provided exciting insights into the pathogenesis of this disease. This disease is heterogenous and can be subtyped based on chromosomal, immunophenotypic, and structural criteria. The varying prognostic implications of different ALL subtypes markedly influence the treatment decisions in adults. Many patients with T-cell ALL can be cured with chemotherapy alone. In contrast, patients with early B-lineage ALL with certain chromosomal abnormalities, especially the Philadelphia chromosome, do not have durable responses to chemotherapy and should receive a bone marrow transplantation if an HLA-matched donor is available. Recent reports have shown improved results for adults with B-cell ALL (Burkitt's) after intensive alternating cycles of chemotherapy containing high doses of methotrexate and cyclophosphamide. Future clinical and laboratory investigation should lead to the development of novel and possibly more effective treatments specifically tailored for different subsets of ALL. PMID:8775728

  7. Acute Respiratory Distress Syndrome Associated with Tumor Lysis Syndrome in a Child with Acute Lymphoblastic Leukemia

    PubMed Central

    Macaluso, Alessandra; Genova, Selene; Maringhini, Silvio; Coffaro, Giancarlo; Ziino, Ottavio; D’Angelo, Paolo

    2015-01-01

    Tumor lysis syndrome is a serious and dangerous complication usually associated with antiblastic treatment in some malignancies characterized by high cell turn-over. Mild or severe electrolyte abnormalities including high serum levels of uric acid, potassium, phosphorus, creatinine, bun and reduction of calcium can be responsible for multi-organ failure, involving mostly kidneys, heart and central nervous system. Renal damage can be followed by acute renal failure, weight gain, progressive liver impairment, overproduction of cytokines, and subsequent maintenance of multi-organ damage. Life-threatening acute respiratory failure associated with tumor lysis syndrome is rare. We describe a child with T-cell acute lymphoblastic leukemia, who developed an unusually dramatic tumor lysis syndrome, after administration of the first low doses of steroid, that was rapidly associated with severe acute respiratory distress syndrome. Subsequent clinical course and treatment modalities that resulted in the gradual and full recovery of the child are also described. PMID:25918625

  8. Dasatinib and Combination Chemotherapy in Treating Young Patients With Newly Diagnosed Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2016-03-25

    Adult B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Childhood B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL1; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  9. Epidemiology of acute lymphoblastic leukemia

    SciTech Connect

    Pendergrass, T.W.

    1985-06-01

    Although the etiology of acute leukemia is largely unknown, some facets of the puzzle are becoming clarified. Recognition of important patterns in age-specific mortality rates has suggested that events early in life, perhaps even prenatally, may have an influence on developing leukemia in childhood. The racial differences evident in mortality, incidence, and immunologic subtype of ALL suggest either differences in exposures to certain factors or differences in responses to those factors by white children. Hereditary factors appear to play a role. Familial and hereditary conditions exist that have high incidences of acute leukemia. Chromosomal anomalies are common in these conditions. Viral infections may play a role by contributing to alteration in genetic material through incorporation of the viral genome. How that virus is dealt with after primary infection seems important. The presence of immunodeficiency may allow wider dissemination or enhanced replication of such viruses, thereby increasing the likelihood of cellular transformation to an abnormal cell. Proliferation of that malignant cell to a clone may depend on other cofactors. Perhaps prolonged exposure to substances like benzene or alkylating agents may enhance these interactions between virus and genetic material. Does this change DNA repair mechanisms. Are viral infections handled differently. Is viral genomic information more easily integrated into host cells. Ionizing radiation has multiple effects. Alteration in genetic material occurs both at the molecular and chromosomal levels. DNA may be altered, lost, or added in the cell's attempt to recover from the injury.

  10. CXCL12-producing vascular endothelial niches control acute T cell leukemia maintenance

    PubMed Central

    Pitt, Lauren A.; Tikhonova, Anastasia N.; Hu, Hai; Trimarchi, Thomas; King, Bryan; Gong, Yixiao; Sanchez-Martin, Marta; Tsirigos, Aris; Littman, Dan R.; Ferrando, Adolfo; Morrison, Sean J.; Fooksman, David R.

    2015-01-01

    SUMMARY The role of the microenvironment in T cell acute lymphoblastic leukemia (T-ALL), or any acute leukemia, is poorly understood. Here we demonstrate that T-ALL cells are in direct, stable contact with CXCL12-producing bone marrow stroma. Cxcl12 deletion from vascular endothelial, but not perivascular, cells impeded tumor growth, suggesting a vascular niche for T-ALL. Moreover, genetic targeting of CXCR4 in murine T-ALL after disease onset led to rapid, sustained disease remission, and CXCR4 antagonism suppressed human T-ALL in primary xenografts. Loss of CXCR4 targeted key T-ALL regulators, including the MYC pathway, and decreased leukemia initiating cell activity in vivo. Our data identify a T-ALL niche, and suggest targeting CXCL12/CXCR4 signaling as a powerful therapeutic approach for T-ALL. PMID:26058075

  11. Acute lymphoblastic leukemia and developmental biology

    PubMed Central

    Campos-Sanchez, Elena; Toboso-Navasa, Amparo; Romero-Camarero, Isabel; Barajas-Diego, Marcos

    2011-01-01

    The latest scientific findings in the field of cancer research are redefining our understanding of the molecular and cellular basis of the disease, moving the emphasis toward the study of the mechanisms underlying the alteration of the normal processes of cellular differentiation. The concepts best exemplifying this new vision are those of cancer stem cells and tumoral reprogramming. The study of the biology of acute lymphoblastic leukemias (ALLs) has provided seminal experimental evidence supporting these new points of view. Furthermore, in the case of B cells, it has been shown that all the stages of their normal development show a tremendous degree of plasticity, allowing them to be reprogrammed to other cellular types, either normal or leukemic. Here we revise the most recent discoveries in the fields of B-cell developmental plasticity and B-ALL research and discuss their interrelationships and their implications for our understanding of the biology of the disease. PMID:22031225

  12. Novel Therapeutic Strategies in Acute Lymphoblastic Leukemia.

    PubMed

    Dias, Ajoy; Kenderian, Saad J; Westin, Gustavo F; Litzow, Mark R

    2016-08-01

    Chemotherapy cures only a minority of adult patients with acute lymphoblastic leukemia (ALL). In addition, relapsed ALL has a poor outcome with 5-year survival as low as 7 %. Hence, there is a need to develop effective therapies to treat relapsed disease and to combine these agents with chemotherapy to improve outcomes in newly diagnosed patients. ALL cells express several antigens amenable to target therapies including CD19, CD20, CD22, and CD52. Over the last decade, there has been a surge in the development of immune therapies which target these receptors and that have induced robust responses. In this manuscript, we review these novel immune agents in the treatment of B-ALL. As these new therapies mature, the challenge going forward will be to find safe and effective combinations of these agents with chemotherapy and to determine their place in the current treatment schema. PMID:27101015

  13. Aspergillus osteoarthritis in acute lymphoblastic leukemia.

    PubMed

    Gunsilius, E; Lass-Flörl, C; Mur, E; Gabl, C; Gastl, G; Petzer, A L

    1999-11-01

    We report an unusual case of arthritis of the right wrist due to Aspergillus fumigatus without evidence for a generalized infection, following chemotherapy for acute lymphoblastic leukemia. The diagnosis was made by surgical biopsy. Amphotericin-B (Am-B) was not tolerated by the patient. Liposomal preparations of Am-B penetrate poorly into bone and cartilage. Therefore, oral itraconazole was given; the arthritis improved and chemotherapy was continued without infectious complications. Two weeks after complete hematopoietic recovery, an intracranial hemorrhage from a mycotic aneurysm of a brain vessel occurred, although the patient was still receiving itraconazole. We emphasize the importance of prompt and thorough efforts to identify the causative agent in immunocompromised patients with a joint infection. Itraconazole is effective in Aspergillus osteoarthritis but, due to its poor penetration into the brain, the combination with a liposomal formulation of Am-B is recommended. PMID:10602898

  14. Contribution of JAK2 mutations to T-cell lymphoblastic lymphoma development

    PubMed Central

    Roncero, A M; López-Nieva, P; Cobos-Fernández, M A; Villa-Morales, M; González-Sánchez, L; López-Lorenzo, J L; Llamas, P; Ayuso, C; Rodríguez-Pinilla, S M; Arriba, M C; Piris, M A; Fernández-Navarro, P; Fernández, A F; Fraga, M F; Santos, J; Fernández-Piqueras, J

    2016-01-01

    The JAK-STAT pathway has a substantial role in lymphoid precursor cell proliferation, survival and differentiation. Nonetheless, the contribution of JAK2 to T-cell lymphoblastic lymphoma (T-LBL) development remains poorly understood. We have identified one activating TEL-JAK2 translocation and four missense mutations accumulated in 2 out of 16 T-LBL samples. Two of them are novel JAK2 mutations and the other two are reported for the first time in T-LBL. Notably, R683G and I682T might have arisen owing to RNA editing. Mutated samples showed different mutated transcripts suggesting sub-clonal heterogeneity. Functional approaches revealed that two JAK2 mutations (H574R and R683G) constitutively activate JAK-STAT signaling in γ2A cells and can drive the proliferation of BaF3-EpoR cytokine-dependent cell line. In addition, aberrant hypermethylation of SOCS3 might contribute to enhance the activation of JAK-STAT signaling. Of utmost interest is that primary T-LBL samples harboring JAK2 mutations exhibited increased expression of LMO2, suggesting a mechanistic link between JAK2 mutations and the expression of LMO2, which was confirmed for the four missense mutations in transfected γ2A cells. We therefore propose that active JAK2 contribute to T-LBL development by two different mechanisms, and that the use of pan-JAK inhibitors in combination with epigenetic drugs should be considered in future treatments. PMID:26216197

  15. Contribution of JAK2 mutations to T-cell lymphoblastic lymphoma development.

    PubMed

    Roncero, A M; López-Nieva, P; Cobos-Fernández, M A; Villa-Morales, M; González-Sánchez, L; López-Lorenzo, J L; Llamas, P; Ayuso, C; Rodríguez-Pinilla, S M; Arriba, M C; Piris, M A; Fernández-Navarro, P; Fernández, A F; Fraga, M F; Santos, J; Fernández-Piqueras, J

    2016-01-01

    The JAK-STAT pathway has a substantial role in lymphoid precursor cell proliferation, survival and differentiation. Nonetheless, the contribution of JAK2 to T-cell lymphoblastic lymphoma (T-LBL) development remains poorly understood. We have identified one activating TEL-JAK2 translocation and four missense mutations accumulated in 2 out of 16 T-LBL samples. Two of them are novel JAK2 mutations and the other two are reported for the first time in T-LBL. Notably, R683G and I682T might have arisen owing to RNA editing. Mutated samples showed different mutated transcripts suggesting sub-clonal heterogeneity. Functional approaches revealed that two JAK2 mutations (H574R and R683G) constitutively activate JAK-STAT signaling in γ2A cells and can drive the proliferation of BaF3-EpoR cytokine-dependent cell line. In addition, aberrant hypermethylation of SOCS3 might contribute to enhance the activation of JAK-STAT signaling. Of utmost interest is that primary T-LBL samples harboring JAK2 mutations exhibited increased expression of LMO2, suggesting a mechanistic link between JAK2 mutations and the expression of LMO2, which was confirmed for the four missense mutations in transfected γ2A cells. We therefore propose that active JAK2 contribute to T-LBL development by two different mechanisms, and that the use of pan-JAK inhibitors in combination with epigenetic drugs should be considered in future treatments. PMID:26216197

  16. Acute Lymphoblastic Leukemia (ALL) Treatment in Adults (Beyond the Basics)

    MedlinePlus

    ... 2016 UpToDate, Inc. Patient information: Acute lymphoblastic leukemia (ALL) treatment in adults (Beyond the Basics) Author Richard ... the content. Appropriately referenced content is required of all authors and must conform to UpToDate standards of ...

  17. Clinical use of blinatumomab for B-cell acute lymphoblastic leukemia in adults

    PubMed Central

    Lee, Kum Ja; Chow, Vivian; Weissman, Ashley; Tulpule, Sunil; Aldoss, Ibrahim; Akhtari, Mojtaba

    2016-01-01

    Adults with relapsed or refractory B-cell acute lymphoblastic leukemia have a dismal prognosis with a short median overall survival that can be measured in months. Because most patients will have chemotherapy-resistant disease, allogeneic hematopoietic stem cell transplantation remains the only potentially curative treatment. Despite advances in current management, patients continue to have poor outcomes and lack of durable responses. Thus, new therapies with alternative modes of actions are currently being investigated. Blinatumomab is a novel bispecific T-cell engager that simultaneously binds CD3-positive cytotoxic T-cells and CD19-positive B-cells, resulting in selective lysis of tumor cells. It has shown promising results in patients with relapsed or refractory acute lymphoblastic leukemia or those achieving hematologic response with persistent minimum residual disease. Future clinical trials will answer questions regarding its optimal place in the treatment paradigm. Dose-limiting toxicities include immunological toxicities and cytokine release syndrome. However, most patients tolerate the therapy relatively well. This review will focus on the pharmacology, clinical efficacy, and safety of blinatumomab in the treatment of adult B-cell acute lymphoblastic leukemia while highlighting its unique drug warnings and toxicity management. PMID:27601914

  18. Clinical use of blinatumomab for B-cell acute lymphoblastic leukemia in adults.

    PubMed

    Lee, Kum Ja; Chow, Vivian; Weissman, Ashley; Tulpule, Sunil; Aldoss, Ibrahim; Akhtari, Mojtaba

    2016-01-01

    Adults with relapsed or refractory B-cell acute lymphoblastic leukemia have a dismal prognosis with a short median overall survival that can be measured in months. Because most patients will have chemotherapy-resistant disease, allogeneic hematopoietic stem cell transplantation remains the only potentially curative treatment. Despite advances in current management, patients continue to have poor outcomes and lack of durable responses. Thus, new therapies with alternative modes of actions are currently being investigated. Blinatumomab is a novel bispecific T-cell engager that simultaneously binds CD3-positive cytotoxic T-cells and CD19-positive B-cells, resulting in selective lysis of tumor cells. It has shown promising results in patients with relapsed or refractory acute lymphoblastic leukemia or those achieving hematologic response with persistent minimum residual disease. Future clinical trials will answer questions regarding its optimal place in the treatment paradigm. Dose-limiting toxicities include immunological toxicities and cytokine release syndrome. However, most patients tolerate the therapy relatively well. This review will focus on the pharmacology, clinical efficacy, and safety of blinatumomab in the treatment of adult B-cell acute lymphoblastic leukemia while highlighting its unique drug warnings and toxicity management. PMID:27601914

  19. Deletion of Pten in CD45-expressing cells leads to development of T-cell lymphoblastic lymphoma but not myeloid malignancies

    PubMed Central

    Mirantes, Cristina; Dosil, Maria Alba; Hills, David; Yang, Jian; Eritja, Núria; Santacana, Maria; Gatius, Sònia; Vilardell, Felip; Medvinsky, Alexander; Matias-Guiu, Xavier

    2016-01-01

    Since its discovery in the late 1990s, Pten has turned out to be one of the most important tumor suppressor genes. Pten loss results in increased activation of the phosphatidylinositol 3-kinase/Akt signaling pathway, which is associated with increased proliferation, survival, and neoplastic growth. Here, we have addressed the effects of conditional deletion of Pten in hematopoietic cells by crossing Pten conditional knockout mice with a knock-in mouse expressing the Cre recombinase in the CD45 locus. CD45 is also known as leukocyte common antigen, and it is expressed in virtually all white cells and in hematopoietic stem cells. Using a reporter mouse, we demonstrate that CD45:Cre mouse displays recombinase activity in both myeloid and lymphoid cells. However, deletion of Pten in CD45-expressing cells induces development of T-cell acute lymphoblastic leukemia and lymphoma, but not other hematologic malignancies. PMID:26773036

  20. Deletion of Pten in CD45-expressing cells leads to development of T-cell lymphoblastic lymphoma but not myeloid malignancies.

    PubMed

    Mirantes, Cristina; Dosil, Maria Alba; Hills, David; Yang, Jian; Eritja, Núria; Santacana, Maria; Gatius, Sònia; Vilardell, Felip; Medvinsky, Alexander; Matias-Guiu, Xavier; Dolcet, Xavier

    2016-04-14

    Since its discovery in the late 1990s, Pten has turned out to be one of the most important tumor suppressor genes. Pten loss results in increased activation of the phosphatidylinositol 3-kinase/Akt signaling pathway, which is associated with increased proliferation, survival, and neoplastic growth. Here, we have addressed the effects of conditional deletion of Pten in hematopoietic cells by crossing Pten conditional knockout mice with a knock-in mouse expressing the Cre recombinase in the CD45 locus. CD45 is also known as leukocyte common antigen, and it is expressed in virtually all white cells and in hematopoietic stem cells. Using a reporter mouse, we demonstrate that CD45:Cre mouse displays recombinase activity in both myeloid and lymphoid cells. However, deletion of Pten in CD45-expressing cells induces development of T-cell acute lymphoblastic leukemia and lymphoma, but not other hematologic malignancies. PMID:26773036

  1. Cholinergic Machinery as Relevant Target in Acute Lymphoblastic T Leukemia

    PubMed Central

    Dobrovinskaya, Oxana; Valencia-Cruz, Georgina; Castro-Sánchez, Luis; Bonales-Alatorre, Edgar O.; Liñan-Rico, Liliana; Pottosin, Igor

    2016-01-01

    Various types of non-neuronal cells, including tumors, are able to produce acetylcholine (ACh), which acts as an autocrine/paracrine growth factor. T lymphocytes represent a key component of the non-neuronal cholinergic system. T cells-derived ACh is involved in a stimulation of their activation and proliferation, and acts as a regulator of immune response. The aim of the present work was to summarize the data about components of cholinergic machinery in T lymphocytes, with an emphasis on the comparison of healthy and leukemic T cells. Cell lines derived from acute lymphoblastic leukemias of T lineage (T-ALL) were found to produce a considerably higher amount of ACh than healthy T lymphocytes. Additionally, ACh produced by T-ALL is not efficiently hydrolyzed, because acetylcholinesterase (AChE) activity is drastically decreased in these cells. Up-regulation of muscarinic ACh receptors was also demonstrated at expression and functional level, whereas nicotinic ACh receptors seem to play a less important role and not form functional channels in cells derived from T-ALL. We hypothesized that ACh over-produced in T-ALL may act as an autocrine growth factor and play an important role in leukemic clonal expansion through shaping of intracellular Ca2+ signals. We suggest that cholinergic machinery may be attractive targets for new drugs against T-ALL. Specifically, testing of high affinity antagonists of muscarinic ACh receptors as well as antagomiRs, which interfere with miRNAs involved in the suppression of AChE expression, may be the first choice options.

  2. Epigenetic deregulation in pediatric acute lymphoblastic leukemia

    PubMed Central

    Chatterton, Zac; Morenos, Leah; Mechinaud, Francoise; Ashley, David M; Craig, Jeffrey M; Sexton-Oates, Alexandra; Halemba, Minhee S; Parkinson-Bates, Mandy; Ng, Jane; Morrison, Debra; Carroll, William L; Saffery, Richard; Wong, Nicholas C

    2014-01-01

    Similar to most cancers, genome-wide DNA methylation profiles are commonly altered in pediatric acute lymphoblastic leukemia (ALL); however, recent observations highlight that a large portion of malignancy-associated DNA methylation alterations are not accompanied by related gene expression changes. By analyzing and integrating the methylome and transcriptome profiles of pediatric B-cell ALL cases and primary tissue controls, we report 325 genes hypermethylated and downregulated and 45 genes hypomethylated and upregulated in pediatric B-cell ALL, irrespective of subtype. Repressed cation channel subunits and cAMP signaling activators and transducers are overrepresented, potentially indicating a reduced cellular potential to receive and propagate apoptotic signals. Furthermore, we report specific DNA methylation alterations with concurrent gene expression changes within individual ALL subtypes. The ETV6-RUNX1 translocation was associated with downregulation of ASNS and upregulation of the EPO-receptor, while Hyperdiploid patients (>50 chr) displayed upregulation of B-cell lymphoma (BCL) members and repression of PTPRG and FHIT. In combination, these data indicate genetically distinct B-cell ALL subtypes contain cooperative epimutations and genome-wide epigenetic deregulation is common across all B-cell ALL subtypes. PMID:24394348

  3. Genetic abnormalities associated with acute lymphoblastic leukemia.

    PubMed

    Yokota, Takafumi; Kanakura, Yuzuru

    2016-06-01

    Acute lymphoblastic leukemia (ALL) occurs with high frequency in childhood and is associated with high mortality in adults. Recent technical advances in next-generation sequencing have shed light on genetic abnormalities in hematopoietic stem/progenitor cells as the precursor to ALL pathogenesis. Based on these genetic abnormalities, ALL is now being reclassified into newly identified subtypes. Philadelphia chromosome-like B-lineage ALL is one of the new high-risk subtypes characterized by genetic alterations that activate various signaling pathways, including those involving cytokine receptors, tyrosine kinases, and epigenetic modifiers. Philadelphia chromosome-like ALL is essentially heterogeneous; however, deletion mutations in the IKZF1 gene encoding the transcription factor IKAROS underlie many cases as a key factor inducing aggressive phenotypes and poor treatment responses. Whole-genome sequencing studies of ALL patients and ethnically matched controls also identified inherited genetic variations in lymphoid neoplasm-related genes, which are likely to increase ALL susceptibility. These findings are directly relevant to clinical hematology, and further studies on this aspect could contribute to accurate diagnosis, effective monitoring of residual disease, and patient-oriented therapies. PMID:26991355

  4. Genomic characterization of childhood acute lymphoblastic leukemia

    PubMed Central

    Mullighan, Charles G.

    2013-01-01

    Acute lymphoblastic leukemia (ALL) is the most common childhood malignancy and a leading case of childhood cancer death. The last decade has witnessed a transformation in our understanding of the genetic basis of ALL due to detailed integrative genomic profiling of large cohorts of childhood ALL. Initially using microarray based approaches, and more recently with next-generation sequencing, these studies have enabled more precise sub-classification of ALL, and have shown that each ALL entity is characterized by constellations of structural and sequence mutations that typically perturb key cellular pathways including lymphoid development, cell cycle regulation, tumor suppression, Ras- and tyrosine kinase driven signaling, and epigenetic regulation. Importantly, several of the newly identified genetic alterations have entered the clinic to improve diagnosis and risk stratification, and are being pursued as new targets for therapeutic intervention. Studies of ALL have also led the way in dissecting the subclonal heterogeneity of cancer, and have shown that individual patients commonly harbor multiple related but genetically distinct subclones, and that this genetically determined clonal heterogeneity is an important determinant of relapse. In addition, genome-wide profiling has identified inherited genetic variants that influence ALL risk. Ongoing studies are deploying detailed integrative genetic transcriptomic and epigenetic sequencing to comprehensively define the genomic landscape of ALL. This review describes the recent advances in our understanding of the genetics of ALL, with an emphasis on those alterations of key pathogenic or therapeutic importance. PMID:24246699

  5. Genomic characterization of childhood acute lymphoblastic leukemia.

    PubMed

    Mullighan, Charles G

    2013-10-01

    Acute lymphoblastic leukemia (ALL) is the most common childhood malignancy and a leading case of childhood cancer death. The last decade has witnessed a transformation in our understanding of the genetic basis of ALL due to detailed integrative genomic profiling of large cohorts of childhood ALL. Initially using microarray based approaches, and more recently with next-generation sequencing, these studies have enabled more precise subclassification of ALL, and have shown that each ALL entity is characterized by constellations of structural and sequence mutations that typically perturb key cellular pathways including lymphoid development, cell cycle regulation, tumor suppression, Ras- and tyrosine kinase-driven signaling, and epigenetic regulation. Importantly, several of the newly identified genetic alterations have entered the clinic to improve diagnosis and risk stratification, and are being pursued as new targets for therapeutic intervention. Studies of ALL have also led the way in dissecting the subclonal heterogeneity of cancer, and have shown that individual patients commonly harbor multiple related but genetically distinct subclones, and that this genetically determined clonal heterogeneity is an important determinant of relapse. In addition, genome-wide profiling has identified inherited genetic variants that influence ALL risk. Ongoing studies are deploying detailed integrative genetic transcriptomic and epigenetic sequencing to comprehensively define the genomic landscape of ALL. This review describes the recent advances in our understanding of the genetics of ALL, with an emphasis on those alterations of key pathogenic or therapeutic importance. PMID:24246699

  6. Blinatumomab: Bridging the Gap in Adult Relapsed/Refractory B-Cell Acute Lymphoblastic Leukemia.

    PubMed

    Folan, Stephanie A; Rexwinkle, Amber; Autry, Jane; Bryan, Jeffrey C

    2016-08-01

    Adult patients with acute lymphoblastic leukemia who relapse after frontline therapy have extremely poor outcomes despite advances in chemotherapy and hematopoietic stem cell transplantation. Blinatumomab is a first-in-class bispecific T-cell engager that links T cells to tumor cells leading to T-cell activation and tumor cell lysis. In December 2014, the Food and Drug Administration approved blinatumomab for treatment of relapsed or refractory Philadelphia chromosome-negative precursor B-cell acute lymphoblastic leukemia. In a phase II trial, blinatumomab produced response rates of 43%, and 40% of patients achieving a complete remission proceeded to hematopoietic stem cell transplantation. Early use of blinatumomab was complicated with adverse effects, including cytokine release syndrome and neurotoxicity. Management strategies, including dexamethasone premedication and 2-step dose escalation during the first cycle of blinatumomab, have decreased the incidence and severity of these adverse effects. Blinatumomab currently is being studied for other B-cell malignancies and has the potential to benefit many patients with CD19+ malignancies in the future. PMID:27521320

  7. Research Progress on Regulatory T Cells in Acute Kidney Injury

    PubMed Central

    Wang, Yamei; Tao, Yuhong

    2015-01-01

    Immune inflammation is crucial in mediating acute kidney injury (AKI). Immune cells of both the innate and adaptive immune systems substantially contribute to overall renal damage in AKI. Regulatory T cells (Tregs) are key regulator of immunological function and have been demonstrated to ameliorate injury in several murine experimental models of renal inflammation. Recent studies have illuminated the renal-protective function of Tregs in AKI. Tregs appear to exert beneficial effects in both the acute injury phase and the recovery phase of AKI. Additionally, Tregs-based immunotherapy may represent a promising approach to ameliorate AKI and promote recovery from AKI. This review will highlight the recent insights into the role of Tregs and their therapeutic potential in AKI. PMID:26273681

  8. Characteristics of A20 gene polymorphisms in T-cell acute lymphocytic leukemia.

    PubMed

    Zhu, Lihua; Zhang, Fan; Shen, Qi; Chen, Shaohua; Wang, Xu; Wang, Liang; Yang, Lijian; Wu, Xiuli; Huang, Suming; Schmidt, Christian A; Li, Yangqiu

    2014-12-01

    A20 is a repressor of NF-κB and was recently shown to be frequently inactivated by deletions or mutations in several types of lymphomas including T-cell lymphoma. Little is known about the characteristics of A20 mutations in T-cell acute lymphoblastic leukemia (T-ALL). In this study, we analyzed A20 polymorphisms and characterized their features in 11 cases with T-ALL, 30 samples from healthy Chinese individuals, and 3 cells lines including CCRF-CEM, Molt-4, and Toledo cells. Two frequent A20 polymorphisms were found: a CCT deletion at position 12384 and a nucleotide exchange (A to C) at position 13751 (rs2307859 and rs661561). The homozygous form (CC) of rs661561 was detected in all 10 cases with detectable T-ALL, while only 80% (24/30) of the healthy controls had this genotype. We found one T-ALL case without the above frequent single-nucleotide polymorphisms (SNPs) in which a T to G mutation at position 12486 was found, which results in an amino acid exchange (Phe127Cys; rs2230926). Similar results were found in Molt-4 cells, which lack the frequent SNPs but have a heterozygous polymorphism at position 13749 (C > T) (rs5029948). Interestingly, the T-ALL case with the Phe127Cys mutation and Molt-4 cells demonstrated a high A20 copy number as measured by real-time polymerase chain reaction amplification with three primer sets that cover different regions of the A20 gene, corresponding to a high A20 and low NF-κB expression level. In conclusion, we characterized the features of A20 polymorphisms in T-ALL, and found that a low frequency A20 mutation, which was thought to be involved in malignant T-ALL development, might function differently in T cell lymphomas. PMID:24611736

  9. Defective CD8 T Cell Memory Following Acute Infection Without CD4 T Cell Help

    NASA Astrophysics Data System (ADS)

    Sun, Joseph C.; Bevan, Michael J.

    2003-04-01

    The CD8+ cytotoxic T cell response to pathogens is thought to be CD4+ helper T cell independent because infectious agents provide their own inflammatory signals. Mice that lack CD4+ T cells mount a primary CD8 response to Listeria monocytogenes equal to that of wild-type mice and rapidly clear the infection. However, protective memory to a challenge is gradually lost in the former animals. Memory CD8+ T cells from normal mice can respond rapidly, but memory CD8+ T cells that are generated without CD4 help are defective in their ability to respond to secondary encounters with antigen. The results highlight a previously undescribed role for CD4 help in promoting protective CD8 memory development.

  10. CD7 aberrant expression led to a lineage switch at relapsed childhood acute pre-B lymphoblastic leukemia.

    PubMed

    Fallah Azad, Vahid; Hedayati Asl, Amir Abbas; Tashvighi, Maryam; Niktoreh Mofrad, Naghmeh; Haghighi, Mansoureh; Mehrvar, Azim

    2016-03-01

    Immunophenotypic changes and lineage switch between diagnosis and relapse in acute lymphoblastic leukemia are uncommon and accompanied by poor outcomes. In this report, a 12-year-old boy with diagnosis of pre-B ALL with an aberrant expression of CD 7 is described. Patient was treated with the ALL-BFM 2000 protocol and suffered an episode of relapse with a lineage switch from pre-B ALL to T cell ALL. This report concludes that presence of aberrant expression of CD7 at diagnosis of pre-B ALL can have prognostic value of lineage switch to T cell ALL at relapse. PMID:26242204

  11. Dorsal column myelopathy following intrathecal chemotherapy for acute lymphoblastic leukemia

    PubMed Central

    Joseph, Prathap Jacob; Reyes, Maria Regina

    2014-01-01

    Objective/context To describe a distinctive clinical and radiographic pattern of myelopathy following intrathecal chemotherapy. Myelopathy is a rare complication of intrathecal chemotherapy used in the treatment of acute lymphoblastic leukemia (ALL). We present a 42-year-old female with T-cell ALL who developed a myelopathy primarily involving the dorsal columns. Method Case report and literature review. Findings Within 24 hours of an injection of intrathecal methotrexate, cytarabine, and hydrocortisone, the patient developed ascending lower limb numbness and balance difficulties progressing to the inability to ambulate. Clinical examination showed profound loss of lower limb proprioception and light touch sensation below T5, mild proximal limb weakness, but preserved pinprick and temperature sensation with intact bowel and bladder function. Initial thoracic and lumbar spine magnetic resonance imaging (MRI) at 1 week revealed no abnormalities. However, repeat imaging at 6 weeks showed abnormal signal in the posterior cord with sparing of the anterior and lateral columns, diffusely involving the lower cervical cord through the conus medullaris. Dermatomal somatosensory-evoked potential (DSEP) conduction abnormalities were consistent with thoracic myelopathy. An empiric trial of high-dose intravenous corticosteroids during inpatient rehabilitation more than 6 weeks later produced no significant clinical improvement. Conclusion/clinical relevance Preferential and persistent dorsal column myelopathy is a distinctive clinical and radiographic presentation of a rare complication of intrathecal chemotherapy. The MRI abnormalities were initially absent, but evolved to consist of multi-level spinal cord T2 and STIR hyperintensity with regional gadolinium enhancement. DSEPs more accurately reflected the clinical level of spinal cord dysfunction. PMID:24090227

  12. Rationale for an international consortium to study inherited genetic susceptibility to childhood acute lymphoblastic leukemia

    PubMed Central

    Sherborne, Amy L.; Hemminki, Kari; Kumar, Rajiv; Bartram, Claus R.; Stanulla, Martin; Schrappe, Martin; Petridou, Eleni; Semsei, Ágnes F.; Szalai, Csaba; Sinnett, Daniel; Krajinovic, Maja; Healy, Jasmine; Lanciotti, Marina; Dufour, Carlo; Indaco, Stefania; El-Ghouroury, Eman A; Sawangpanich, Ruchchadol; Hongeng, Suradej; Pakakasama, Samart; Gonzalez-Neira, Anna; Ugarte, Evelia L.; Leal, Valeria P.; Espinoza, Juan P.M.; Kamel, Azza M.; Ebid, Gamal T.A.; Radwan, Eman R.; Yalin, Serap; Yalin, Erdinc; Berkoz, Mehmet; Simpson, Jill; Roman, Eve; Lightfoot, Tracy; Hosking, Fay J.; Vijayakrishnan, Jayaram; Greaves, Mel; Houlston, Richard S.

    2011-01-01

    Acute lymphoblastic leukemia is the major pediatric cancer in developed countries. To date most association studies of acute lymphoblastic leukemia have been based on the candidate gene approach and have evaluated a restricted number of polymorphisms. Such studies have served to highlight difficulties in conducting statistically and methodologically rigorous investigations into acute lymphoblastic leukemia risk. Recent genome-wide association studies of childhood acute lymphoblastic leukemia have provided robust evidence that common variation at four genetic loci confers a modest increase in risk. The accumulated experience to date and relative lack of success of initial efforts to identify novel acute lymphoblastic leukemia predisposition loci emphasize the need for alternative study designs and methods. The International Childhood Acute Lymphoblastic Leukaemia Genetics Consortium includes 12 research groups in Europe, Asia, the Middle East and the Americas engaged in studying the genetics of acute lymphoblastic leukemia. The initial goal of this consortium is to identify and characterize low-penetrance susceptibility variants for acute lymphoblastic leukemia through association-based analyses. Efforts to develop genome-wide association studies of acute lymphoblastic leukemia, in terms of both sample size and single nucleotide polymorphism coverage, and to increase the number of single nucleotide polymorphisms taken forward to large-scale replication should lead to the identification of additional novel risk variants for acute lymphoblastic leukemia. Ethnic differences in the risk of acute lymphoblastic leukemia are well recognized and thus in assessing the interplay between inherited and non-genetic risk factors, analyses using different population cohorts with different incidence rates are likely to be highly informative. Given that the frequency of many acute lymphoblastic leukemia subgroups is small, identifying differential effects will realistically only be

  13. Neurodevelopmental Sequelae of Pediatric Acute Lymphoblastic Leukemia and Its Treatment

    ERIC Educational Resources Information Center

    Janzen, Laura A.; Spiegler, Brenda J.

    2008-01-01

    This review will describe the neurocognitive outcomes associated with pediatric acute lymphoblastic leukemia (ALL) and its treatment. The literature is reviewed with the aim of addressing methodological issues, treatment factors, risks and moderators, special populations, relationship to neuroimaging findings, and directions for future research.…

  14. Pulmonary function after treatment for acute lymphoblastic leukaemia in childhood.

    PubMed Central

    Nysom, K.; Holm, K.; Olsen, J. H.; Hertz, H.; Hesse, B.

    1998-01-01

    The aim of this study was to examine pulmonary function after acute lymphoblastic leukaemia in childhood and identify risk factors for reduced pulmonary function. We studied a population-based cohort of 94 survivors of acute lymphoblastic leukaemia in childhood who were in first remission after treatment without spinal irradiation or bone marrow transplantation. Pulmonary function test results were compared with reference values for our laboratory, based on 348 healthy subjects who had never smoked from a local population study. A median of 8 years after cessation of therapy (range 1-18 years) the participants had a slight, subclinical, restrictive ventilatory insufficiency and reduced transfer factor and transfer coefficient. The changes in lung function were related to younger age at treatment and to more dose-intensive treatment protocols that specified more use of cranial irradiation and higher cumulative doses of anthracyclines, cytosine arabinoside and intravenous cyclophosphamide than previous protocols. We conclude that, 8 years after treatment without bone marrow transplantation or spinal irradiation, survivors of childhood acute lymphoblastic leukaemia in first remission were without pulmonary symptoms but had signs of slight restrictive pulmonary disease including reduced transfer factor. The increased dose intensity of many recent protocols for childhood acute lymphoblastic leukaemia may lead to increased late pulmonary toxicity. PMID:9662245

  15. Combination Chemotherapy and Rituximab in Treating Young Patients With Recurrent or Refractory Non-Hodgkin's Lymphoma or Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2013-10-07

    B-cell Childhood Acute Lymphoblastic Leukemia; Childhood Burkitt Lymphoma; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; L3 Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Small Noncleaved Cell Lymphoma

  16. CPI-613 and Bendamustine Hydrochloride in Treating Patients With Relapsed or Refractory T-Cell Non-Hodgkin Lymphoma or Hodgkin Lymphoma

    ClinicalTrials.gov

    2016-07-26

    Adult Lymphocyte Depletion Hodgkin Lymphoma; Adult Lymphocyte Predominant Hodgkin Lymphoma; Adult Mixed Cellularity Hodgkin Lymphoma; Adult Nasal Type Extranodal NK/T-cell Lymphoma; Adult Nodular Sclerosis Hodgkin Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Hepatosplenic T-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Cutaneous T-cell Non-Hodgkin Lymphoma; Recurrent Mycosis Fungoides/Sezary Syndrome; T-cell Adult Acute Lymphoblastic Leukemia; T-cell Large Granular Lymphocyte Leukemia

  17. Antigen-based immunotherapy for the treatment of acute lymphoblastic leukemia: the emerging role of blinatumomab

    PubMed Central

    Litzow, Mark R

    2014-01-01

    Acute lymphoblastic leukemia (ALL) arises from immature B and T lymphoblasts. An increasing array of cytogenetic and molecular markers have been identified in ALL, which allows for increasingly sophisticated prognostication, as well as identification of potential new targets for therapy. The treatment of ALL in children has shown astounding success in the last 50 years, with more than 90% of children now able to be cured of their ALL. In adults, these success rates have not been duplicated. However, the use of pediatric-intensive regimens in young adults has shown increasing success. The use of monoclonal antibodies conjugated to drugs, immunotoxins, and cells also has shown early success and promises to enhance the outcome of newly diagnosed patients. Blinatumomab, a bispecific T-cell engager antibody, brings a malignant B cell in proximity to a T cell with redirected lysis. This antibody construct has shown promising results in patients with relapsed and refractory disease and is entering randomized clinical trials in newly diagnosed patients. The addition of monoclonal antibody therapy to chemotherapy in adults promises to enhance outcomes while hopefully not increasing toxicity. After many years of stagnation, it appears that the therapy of adults with ALL is showing significant improvement.

  18. Nilotinib and Combination Chemotherapy in Treating Patients With Newly Diagnosed Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia or Blastic Phase Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2015-10-29

    B-cell Adult Acute Lymphoblastic Leukemia; Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Untreated Adult Acute Lymphoblastic Leukemia

  19. Combination Chemotherapy in Treating Young Patients With Newly Diagnosed High-Risk B Acute Lymphoblastic Leukemia and Ph-Like TKI Sensitive Mutations

    ClinicalTrials.gov

    2016-09-14

    B Acute Lymphoblastic Leukemia; Bone Necrosis; Central Nervous System Leukemia; Cognitive Side Effects of Cancer Therapy; Neurotoxicity Syndrome; Pain; Testicular Leukemia; Therapy-Related Toxicity; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  20. Unrelated donor transplants in adults with Philadelphia-negative acute lymphoblastic leukemia in first complete remission

    PubMed Central

    Marks, David I.; Pérez, Waleska S.; He, Wensheng; Zhang, Mei-Jie; Bishop, Michael R.; Bolwell, Brian J.; Bredeson, Christopher N.; Copelan, Edward A.; Gale, Robert Peter; Gupta, Vikas; Hale, Gregory A.; Isola, Luis M.; Jakubowski, Ann A.; Keating, Armand; Klumpp, Thomas R.; Lazarus, Hillard M.; Liesveld, Jane L.; Maziarz, Richard T.; McCarthy, Philip L.; Sabloff, Mitchell; Schiller, Gary; Sierra, Jorge; Tallman, Martin S.; Waller, Edmund K.; Wiernik, Peter H.

    2008-01-01

    We report the retrospective outcomes of unrelated donor (URD) transplants in 169 patients with acute lymphoblastic leukemia (ALL) in first complete remission (CR1) who received transplants between 1995 and 2004. Median age was 33 years (range, 16-59 years). A total of 50% had a white blood cell count (WBC) more than 30 × 109/L, 18% extramedullary disease, 42% achieved CR more than 8 weeks from diagnosis, 25% had adverse cytogenetics, and 19% had T-cell leukemia. A total of 41% were HLA well-matched, 41% partially matched with their donors, and 18% were HLA-mismatched. At 54-month median follow-up, incidences of acute grade 2-IV, III to IV, and chronic graft-versus-host disease were 50%, 25%, and 43%, respectively. Five-year treatment-related mortality (TRM), relapse, and overall survival were 42%, 20%, and 39%, respectively. In multivariate analyses, TRM was significantly higher with HLA-mismatched donors and T-cell depletion. Relapse risk was higher if the diagnostic WBC was more than 100 × 109/L. Factors associated with poorer survival included WBC more than 100 × 109/L, more than 8 weeks to CR1, cytomegalovirus seropositivity, HLA mismatching, and T-cell depletion. Nearly 40% of adults with ALL in CR1 survive 5 years after URD transplantation. Relapse risks were modest; TRM is the major cause of treatment failure. Selecting closely HLA-matched URD and reducing TRM should improve results. PMID:18398065

  1. New decision support tool for acute lymphoblastic leukemia classification

    NASA Astrophysics Data System (ADS)

    Madhukar, Monica; Agaian, Sos; Chronopoulos, Anthony T.

    2012-03-01

    In this paper, we build up a new decision support tool to improve treatment intensity choice in childhood ALL. The developed system includes different methods to accurately measure furthermore cell properties in microscope blood film images. The blood images are exposed to series of pre-processing steps which include color correlation, and contrast enhancement. By performing K-means clustering on the resultant images, the nuclei of the cells under consideration are obtained. Shape features and texture features are then extracted for classification. The system is further tested on the classification of spectra measured from the cell nuclei in blood samples in order to distinguish normal cells from those affected by Acute Lymphoblastic Leukemia. The results show that the proposed system robustly segments and classifies acute lymphoblastic leukemia based on complete microscopic blood images.

  2. Acute Lymphoblastic Leukemia Arising in CALR Mutated Essential Thrombocythemia

    PubMed Central

    Langabeer, Stephen E.; Haslam, Karl; O'Brien, David; Kelly, Johanna; Andrews, Claire; Ryan, Ciara; Flavin, Richard; Hayden, Patrick J.; Bacon, Christopher L.

    2016-01-01

    The development of acute lymphoblastic leukemia in an existing myeloproliferative neoplasm is rare with historical cases unable to differentiate between concomitant malignancies or leukemic transformation. Molecular studies of coexisting JAK2 V617F-positive myeloproliferative neoplasms and mature B cell malignancies indicate distinct disease entities arising in myeloid and lymphoid committed hematopoietic progenitor cells, respectively. Mutations of CALR in essential thrombocythemia appear to be associated with a distinct phenotype and a lower risk of thrombosis yet their impact on disease progression is less well defined. The as yet undescribed scenario of pro-B cell acute lymphoblastic leukemia arising in CALR mutated essential thrombocythemia is presented. Intensive treatment for the leukemia allowed for expansion of the original CALR mutated clone. Whether CALR mutations in myeloproliferative neoplasms predispose to the acquisition of additional malignancies, particularly lymphoproliferative disorders, is not yet known. PMID:26904322

  3. [Massive bilateral subconjunctival hemorrhage revealing acute lymphoblastic leukemia].

    PubMed

    Taamallah-Malek, I; Chebbi, A; Bouladi, M; Nacef, L; Bouguila, H; Ayed, S

    2013-03-01

    We report the case of 20-year-old patient who presented in emergency with bilateral massive, spontaneous subconjunctival hemorrhage. Clinical findings suggested a blood dyscrasia, which was confirmed by blood cell count. The patient was urgently referred to hematology where the diagnosis of acute lymphoblastic leukemia was made. This case highlights the importance of working up any unusual subconjunctival hemorrhage, as it may reveal, in certain cases, a severe life-threatening disease. PMID:23122838

  4. Fludarabine Phosphate and Total-Body Irradiation Followed by Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Acute Lymphoblastic Leukemia or Chronic Myelogenous Leukemia That Has Responded to Treatment With Imatinib Mesylate, Dasatinib, or Nilotinib

    ClinicalTrials.gov

    2016-07-18

    Adult Acute Lymphoblastic Leukemia in Remission; Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Chronic Phase Chronic Myelogenous Leukemia; Philadelphia Chromosome Positive Adult Precursor Acute Lymphoblastic Leukemia; Philadelphia Chromosome Positive Childhood Precursor Acute Lymphoblastic Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Relapsing Chronic Myelogenous Leukemia

  5. Natural killer T cells: innate lymphocytes positioned as a bridge between acute and chronic inflammation?

    PubMed Central

    Fox, Lisa; Hegde, Subramanya

    2010-01-01

    Natural killer T cells are an innate population of T lymphocytes that recognize antigens derived from host lipids and glycolipids. In this review, we focus on how these unique T cells are positioned to influence both acute and chronic inflammatory processes through their early recruitment to sites of inflammation, interactions with myeloid antigen presenting cells, and recognition of lipids associated with inflammation. PMID:20850561

  6. The Approach to Acute Lymphoblastic Leukemia in Older Patients: Conventional Treatments and Emerging Therapies.

    PubMed

    Fedorov, Victor D; Upadhyay, Vivek A; Fathi, Amir T

    2016-06-01

    Acute lymphoblastic leukemia (ALL) among older adult patients presents significant clinical challenges. As opposed to pediatric populations, in whom long-term outcomes are markedly superior, those for adults remain grim. Nevertheless, younger adults with ALL have experienced a steady improvement in long-term survival in the last few decades. This is significantly different for older ALL patients, for whom long-term outcomes remain poor. Conventional chemotherapies are associated with sub-optimal outcomes and increased toxicity in this population. However, several emerging therapies, including antibody-drug conjugates, bi-specific engagers, and chimeric antigen receptor (CAR) T cells, have demonstrated much promise and are either incorporated into the existing therapeutic paradigms or being actively investigated to improve outcomes. PMID:26939921

  7. Deletion analysis of p16(INKa) and p15(INKb) in relapsed childhood acute lymphoblastic leukemia.

    PubMed

    Graf Einsiedel, Hagen; Taube, Tillmann; Hartmann, Reinhard; Wellmann, Sven; Seifert, Georg; Henze, Günter; Seeger, Karl

    2002-06-15

    This study aimed at determining the prevalence of INK4 deletions and their impact on outcome in 125 children with acute lymphoblastic leukemia (ALL) at first relapse using real-time quantitative polymerase chain reaction. Patients were enrolled into relapse trials ALL-REZ BFM (ALL-Relapse Berlin-Frankfurt-Münster) 90 and 96. The prevalence of p16(INK4a) and p15(INK4b) homozygous deletions was 35% (44 of 125) and 30% (38 of 125), respectively. A highly significant association of both gene deletions was found with the 2 major adverse prognostic factors known for relapsed childhood ALL: T-cell immunophenotype and first remission duration. There was no correlation between INK4 deletions and probability of event-free survival. These findings argue against an independent prognostic role of INK4 deletions in relapsed childhood ALL. PMID:12036898

  8. Direct reversal of glucocorticoid resistance by AKT inhibition in acute lymphoblastic leukemia.

    PubMed

    Piovan, Erich; Yu, Jiyang; Tosello, Valeria; Herranz, Daniel; Ambesi-Impiombato, Alberto; Da Silva, Ana Carolina; Sanchez-Martin, Marta; Perez-Garcia, Arianne; Rigo, Isaura; Castillo, Mireia; Indraccolo, Stefano; Cross, Justin R; de Stanchina, Elisa; Paietta, Elisabeth; Racevskis, Janis; Rowe, Jacob M; Tallman, Martin S; Basso, Giuseppe; Meijerink, Jules P; Cordon-Cardo, Carlos; Califano, Andrea; Ferrando, Adolfo A

    2013-12-01

    Glucocorticoid resistance is a major driver of therapeutic failure in T cell acute lymphoblastic leukemia (T-ALL). Here, we identify the AKT1 kinase as a major negative regulator of the NR3C1 glucocorticoid receptor protein activity driving glucocorticoid resistance in T-ALL. Mechanistically, AKT1 impairs glucocorticoid-induced gene expression by direct phosphorylation of NR3C1 at position S134 and blocking glucocorticoid-induced NR3C1 translocation to the nucleus. Moreover, we demonstrate that loss of PTEN and consequent AKT1 activation can effectively block glucocorticoid-induced apoptosis and induce resistance to glucocorticoid therapy. Conversely, pharmacologic inhibition of AKT with MK2206 effectively restores glucocorticoid-induced NR3C1 translocation to the nucleus, increases the response of T-ALL cells to glucocorticoid therapy, and effectively reverses glucocorticoid resistance in vitro and in vivo. PMID:24291004

  9. Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in acute lymphoblastic leukemia

    PubMed Central

    Herranz, Daniel; Ambesi-Impiombato, Alberto; Sudderth, Jessica; Sánchez-Martín, Marta; Belver, Laura; Tosello, Valeria; Xu, Luyao; Wendorff, Agnieszka A.; Castillo, Mireia; Haydu, J. Erika; Márquez, Javier; Matés, José M.; Kung, Andrew L.; Rayport, Stephen; Cordon-Cardo, Carlos; DeBerardinis, Ralph J.; Ferrando, Adolfo A.

    2015-01-01

    Activating mutations in NOTCH1 are common in T-cell acute lymphoblastic leukemia (TALL). Here we identify glutaminolysis as a critical pathway for leukemia cell growth downstream of NOTCH1 and a key determinant of clinical response to anti-NOTCH1 therapies. Mechanistically, inhibition of NOTCH1 signaling in T-ALL induces a metabolic shutdown with prominent inhibition of glutaminolysis and triggers autophagy as a salvage pathway supporting leukemia cell metabolism. Consequently, both inhibition of glutaminolysis and inhibition of autophagy strongly and synergistically enhance the antileukemic effects of anti-NOTCH1 therapies. Moreover, we demonstrate that Pten loss induces increased glycolysis and consequently rescues leukemic cell metabolism abrogating the antileukemic effects of NOTCH1 inhibition. Overall, these results identify glutaminolysis as a major node in cancer metabolism controlled by NOTCH1 and as therapeutic target for the treatment of T-ALL. PMID:26390244

  10. Direct reversal of glucocorticoid resistance by AKT inhibition in acute lymphoblastic leukemia

    PubMed Central

    Tosello, Valeria; Herranz, Daniel; Ambesi-Impiombato, Alberto; Da Silva, Ana Carolina; Sanchez-Martin, Marta; Perez-Garcia, Arianne; Rigo, Isaura; Castillo, Mireia; Indraccolo, Stefano; Cross, Justin R; de Stanchina, Elisa; Paietta, Elisabeth; Racevskis, Janis; Rowe, Jacob M; Tallman, Martin S; Basso, Giuseppe; Meijerink, Jules P; Cordon-Cardo, Carlos; Califano, Andrea; Ferrando, Adolfo A.

    2013-01-01

    SUMMARY Glucocorticoid resistance is a major driver of therapeutic failure in T-cell acute lymphoblastic leukemia (T-ALL). Here we identify the AKT1 kinase as a major negative regulator of the NR3C1 glucocorticoid receptor protein activity driving glucocorticoid resistance in T-ALL. Mechanistically, AKT1 impairs glucocorticoid-induced gene expression by direct phosphorylation of NR3C1 at position S134 and blocking glucocorticoid-induced NR3C1 translocation to the nucleus. Moreover, we demonstrate that loss of PTEN and consequent AKT1 activation can effectively block glucocorticoid induced apoptosis and induce resistance to glucocorticoid therapy. Conversely, pharmacologic inhibition of AKT with MK2206 effectively restores glucocorticoid-induced NR3C1 translocation to the nucleus, increases the response of T-ALL cells to glucocorticoid therapy and effectively reverses glucocorticoid resistance in vitro and in vivo. PMID:24291004

  11. Antileukemic Efficacy of Continuous vs Discontinuous Dexamethasone in Murine Models of Acute Lymphoblastic Leukemia

    PubMed Central

    Ramsey, Laura B.; Janke, Laura J.; Payton, Monique A.; Cai, Xiangjun; Paugh, Steven W.; Karol, Seth E.; Kamdem, Landry Kamdem; Cheng, Cheng; Williams, Richard T.; Jeha, Sima; Pui, Ching-Hon; Evans, William E.; Relling, Mary V.

    2015-01-01

    Osteonecrosis is one of the most common, serious, toxicities resulting from the treatment of acute lymphoblastic leukemia. In recent years, pediatric acute lymphoblastic leukemia clinical trials have used discontinuous rather than continuous dosing of dexamethasone in an effort to reduce the incidence of osteonecrosis. However, it is not known whether discontinuous dosing would compromise antileukemic efficacy of glucocorticoids. Therefore, we tested the efficacy of discontinuous dexamethasone against continuous dexamethasone in murine models bearing human acute lymphoblastic leukemia xenografts (n = 8 patient samples) or murine BCR-ABL+ acute lymphoblastic leukemia. Plasma dexamethasone concentrations (7.9 to 212 nM) were similar to those achieved in children with acute lymphoblastic leukemia using conventional dosages. The median leukemia-free survival ranged from 16 to 59 days; dexamethasone prolonged survival from a median of 4 to 129 days in all seven dexamethasone-sensitive acute lymphoblastic leukemias. In the majority of cases (7 of 8 xenografts and the murine BCR-ABL model) we demonstrated equal efficacy of the two dexamethasone dosing regimens; whereas for one acute lymphoblastic leukemia sample, the discontinuous regimen yielded inferior antileukemic efficacy (log-rank p = 0.002). Our results support the clinical practice of using discontinuous rather than continuous dexamethasone dosing in patients with acute lymphoblastic leukemia. PMID:26252865

  12. Treosulfan, Fludarabine Phosphate, and Total-Body Irradiation Before Donor Stem Cell Transplant in Treating Patients With High-Risk Acute Myeloid Leukemia, Myelodysplastic Syndrome, Acute Lymphoblastic Leukemia

    ClinicalTrials.gov

    2013-10-29

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Lymphoblastic Leukemia in Remission; Adult Acute Myeloid Leukemia in Remission; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Childhood Acute Lymphoblastic Leukemia in Remission; Childhood Acute Myeloid Leukemia in Remission; Childhood Chronic Myelogenous Leukemia; Childhood Myelodysplastic Syndromes; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Childhood Acute Lymphoblastic Leukemia

  13. Early UK experience in the use of clofarabine in the treatment of relapsed and refractory paediatric acute lymphoblastic leukaemia.

    PubMed

    O'Connor, David; Sibson, Keith; Caswell, Mark; Connor, Philip; Cummins, Michelle; Mitchell, Chris; Motwani, Jayashree; Taj, Mary; Vora, Ajay; Wynn, Robert; Kearns, Pamela R

    2011-08-01

    Clofarabine is a second-generation purine nucleoside analogue, which has shown promising activity in relapsed and refractory paediatric acute lymphoblastic leukaemia (ALL). This report summarizes the early United Kingdom experience of clofarabine for the treatment of paediatric ALL in 23 patients, outside of the context of a clinical trial. Our results demonstrated that clofarabine-based chemotherapy regimes were effective and well-tolerated in this heavily pre-treated group, with an overall response rate of 67% when used in combination regimes. Responses were seen in both B and T cell disease and in patients with adverse cytogenetics. PMID:21689087

  14. Immunological Reconstitution in Children After Completing Conventional Chemotherapy of Acute Lymphoblastic Leukemia is Marked by Impaired B-cell Compartment.

    PubMed

    Koskenvuo, Minna; Ekman, Ilse; Saha, Emmi; Salokannel, Ellinoora; Matomäki, Jaakko; Ilonen, Jorma; Kainulainen, Leena; Arola, Mikko; Lähteenmäki, Päivi Maria

    2016-09-01

    Humoral and cellular immunity were studied in 28 children completing conventional treatment of standard-risk (SR) or intermediate-risk (IR) acute lymphoblastic leukemia (ALL). Both naïve and memory B cells were most severely affected and showed slow recovery during the 2-year follow-up, while the T-cell compartment showed only minor changes. Immunoglobulins and IgG subclasses, components, and antibodies against vaccine-preventable diseases were not significantly affected. In conclusion, immune recovery after conventional chemotherapy for SR and IR ALL is marked by B-cell depletion, but otherwise did not show any severe deficiencies in lymphocyte function. PMID:27163649

  15. Spontaneous Proliferation of H2M-/- CD4 T Cells Results in Unusual Acute Hepatocellular Necrosis

    PubMed Central

    Do, Jeong-su; Baldwin, William M.; Min, Booki

    2014-01-01

    Naïve CD4 T cells are triggered to undergo spontaneous proliferation, a proliferative response induced in response to homeostatic stimulation, when exposed to severe lymphopenic environments. They spontaneously acquire proinflammatory effector phenotypes, playing a major role in inducing chronic inflammation in the intestine that is believed to be induced by T cell recognition of commensal antigens. While the antigens inducing the T cell responses and inflammation are being extensively investigated, the role of clonality of T cells involved in this process remains poorly understood. In this study, we utilized naïve CD4 T cells isolated from B6 H2M−/− mice, in which MHCII molecules are complexed with a single CLIP molecule, and examined spontaneous proliferation and intestinal inflammation of CD4 T cells expressing limited T cell receptor repertoire diversity. We found that H2M−/− CD4 T cells undergo robust spontaneous proliferation, differentiate into IFNγ-producing Th1 type effector cells, and, most unexpectedly, induce severe acute hepatocellular necrosis. T cell interaction with MHCII molecule on cells of hematopoietic origin was essential to induce the pathology. Interestingly, B cells are fully capable of preventing necrotic inflammation via IL-10-independent and B7-H1-dependent mechanism. This could be a useful animal model to examine T cell-mediated liver inflammation and B cell-mediated immune regulation. PMID:25313460

  16. Acute parotitis during induction therapy including L-asparaginase in acute lymphoblastic leukemia.

    PubMed

    Sica, S; Pagano, L; Salutari, P; Di Mario, A; Rutella, S; Leone, G

    1994-02-01

    In a patient affected by acute lymphoblastic leukemia (ALL) and subjected to therapy with Erwinia L-asparaginase, acute parotitis was observed. Microbiological studies excluded any infectious etiology. Regression of parotitis was spontaneous. This complication has not been previously reported and could be due to the same mechanism of pancreatic injury. The occurrence of acute parotitis needs to be promptly recognized in order to avoid the continuation of L-asparaginase. PMID:8148421

  17. Bone marrow fibrosis in childhood acute lymphoblastic leukaemia.

    PubMed Central

    Wallis, J P; Reid, M M

    1989-01-01

    Bone marrow trephine biopsy specimens were obtained at diagnosis from 63 of 76 consecutively presenting children with acute lymphoblastic leukaemia (ALL). The association between marrow fibrosis and presenting features, including immunophenotype, was analysed. Reticulin was increased in 45 of 56 cases in which blasts expressed B lineage markers, but in only one of seven with T-ALL. A weak association was also found between marrow fibrosis and splenomegaly in those with common ALL. Marrow fibrosis is apparently associated with some examples of ALL of B cell lineage, but precisely which subtypes and whether the phenomenon is clinically important remain to be determined. PMID:2613918

  18. Transplantations in adult acute lymphoblastic leukemia--grounds for optimism?

    PubMed

    Goldstone, Anthony H

    2009-01-01

    The large MRC/ECOG Adult Acute Lymphoblastic Leukemia Study establishes the value of sibling donor allogeneic transplantation in patients with standard risk, demonstrating superior outcome to conventional chemotherapy. The small but significant number of patients having matched unrelated donor transplantations on this study protocol appear to do well and might establish the value of such an approach for those without a sibling. Reduced-intensity conditioning might begin to address the transplantation-related mortality problems of the older patients. The youngest adults might not need to undergo transplantation at all. If they are now treated on pediatric chemotherapy protocols, their outcome appears to improve significantly. PMID:19778843

  19. Fanconi Syndrome: A Rare Initial Presentation of Acute Lymphoblastic Leukemia.

    PubMed

    Sahu, Kamal Kant; Law, Arjun Datt; Jain, Nidhi; Khadwal, Alka; Suri, Vikas; Malhotra, Pankaj; Varma, Subhash Chander

    2016-06-01

    A-14-year old boy, presented with a short history of excessive thirst and increased urine output. Clinical examination showed pallor, generalized lymphadenopathy and hepatosplenomegaly. For evaluation of his polyuric state he underwent routine laboratory investigations, including renal function test, acid-base studies, urine analysis. Blood tests suggested hypokalemia, hypouricemia, hypocalcemia and hyperchloremia with normal liver and kidney function tests. The arterial blood gas analysis was suggestive of normal anion gap metabolic acidosis. Urine analysis was suggestive of hyperuricosuria, hypercalciuria and glycosuria with a positive urine anion gap. His hemogram showed pancytopenia with differential count showing 88% blasts. Bone marrow examination and flowcytometry confirmed the diagnosis of B cell acute lymphoblastic leukemia. Hence this case was atypical and very interesting in the sense that the Fanconi syndrome is very rare to be an initial presenting feature of acute lymphoblastic leukemia. The patient was started on oral as well intravenous supplementation with potassium, bicarbonate, calcium and phosphorus. Simultaneously, as per the modified BFM -90 protocol (four drug based regimen-Prednisolone, vincristine, daunorubicin, cyclophosphamide along with l-asparaginase), he was started on induction protocol. By the end of 3rd week of induction therapy, his urine output started normalizing and finally settled at the end of induction therapy. At present he is in the maintenance phase of chemotherapy. PMID:27408343

  20. Hematopoietic Cell Transplantation for Acute Lymphoblastic Leukemia in Adults.

    PubMed

    Speziali, Craig; Paulson, Kristjan; Seftel, Matthew

    2016-06-01

    The majority of adults with acute lymphoblastic leukemia will achieve a first complete remission (CR). However relapse is the most common cause of treatment failure. Outcomes after relapse remain poor, with long-term survival in the order of 10 %. Treatment decisions made at the time of first complete remission are thus critical to ensuring long-term survival. Allogeneic hematopoietic cell transplant (HCT) is effective at preventing relapse in many transplant recipients but is also associated with significant treatment related morbidity and mortality. Alternatively, ongoing systemic chemotherapy offers lower toxicity at the expense of increased relapse rates. Over the past decades, both the safety of transplant and the efficacy of non-transplant chemotherapy have improved. Emerging data show substantially improved outcomes for young adults treated with pediatric-inspired chemotherapy regimens that question the role of HCT in the upfront setting. In this review, we review the data supporting the role of allogeneic transplantation in adult acute lymphoblastic leukemia (ALL), and we propose a therapeutic algorithm for upfront therapy of adults with ALL. PMID:26984203

  1. Comparison between qualitative and real-time polymerase chain reaction to evaluate minimal residual disease in children with acute lymphoblastic leukemia

    PubMed Central

    Paula, Francisco Danilo Ferreira; Elói-Santos, Silvana Maria; Xavier, Sandra Guerra; Ganazza, Mônica Aparecida; Jotta, Patricia Yoshioka; Yunes, José Andrés; Viana, Marcos Borato; Assumpção, Juliana Godoy

    2015-01-01

    Introduction Minimal residual disease is an important independent prognostic factor that can identify poor responders among patients with acute lymphoblastic leukemia. Objective The aim of this study was to analyze minimal residual disease using immunoglobulin (Ig) and T-cell receptor (TCR) gene rearrangements by conventional polymerase chain reaction followed by homo-heteroduplex analysis and to compare this with real-time polymerase chain reaction at the end of the induction period in children with acute lymphoblastic leukemia. Methods Seventy-four patients diagnosed with acute lymphoblastic leukemia were enrolled. Minimal residual disease was evaluated by qualitative polymerase chain reaction in 57 and by both tests in 44. The Kaplan–Meier and multivariate Cox methods and the log-rank test were used for statistical analysis. Results Nine patients (15.8%) were positive for minimal residual disease by qualitative polymerase chain reaction and 11 (25%) by real-time polymerase chain reaction considering a cut-off point of 1 × 10−3 for precursor B-cell acute lymphoblastic leukemia and 1 × 10−2 for T-cell acute lymphoblastic leukemia. Using the qualitative method, the 3.5-year leukemia-free survival was significantly higher in children negative for minimal residual disease compared to those with positive results (84.1% ± 5.6% versus 41.7% ± 17.3%, respectively; p-value = 0.004). There was no significant association between leukemia-free survival and minimal residual disease by real-time polymerase chain reaction. Minimal residual disease by qualitative polymerase chain reaction was the only variable significantly correlated to leukemia-free survival. Conclusion Given the difficulties in the implementation of minimal residual disease monitoring by real-time polymerase chain reaction in most treatment centers in Brazil, the qualitative polymerase chain reaction strategy may be a cost-effective alternative. PMID:26670399

  2. Allosuppressor- and allohelper-T cells in acute and chronic graft-vs. -host (GVH) disease. III. Different Lyt subsets of donor T cells induce different pathological syndromes

    SciTech Connect

    Rolink, A.G.; Gleichmann, E.

    1983-08-01

    Previous work from this laboratory has led to the hypothesis that the stimulatory pathological symptoms of chronic graft-vs.-host disease (GVHD) are caused by alloreactive donor T helper (TH) cells, whereas the suppressive pathological symptoms of acute GVHD are caused by alloreactive T suppressor (TS) cells of the donor. We analyzed the Lyt phenotypes of B10 donor T cells required for the induction of either acute or chronic GVHD in H-2-different (B10 X DBA/2)F1 recipients. When nonirradiated F1 mice were used as the recipients, we found unseparated B10 T cells induced only a moderate formation of systemic lupus erythematosus (SLE)-like autoantibodies, but a high percentage of lethal GVHD (LGVHD). In contrast, Lyt-1+2- donor T cells were unable to induce LGVHD in these recipients but were capable of inducing a vigorous formation of SLE-like autoantibodies and severe immune-complex glomerulonephritis. Lyt-1-2+ T cells were incapable of inducing either acute or chronic GVHD. The sensitivity and accuracy of the GVH system were increased by using irradiated F1 mice as recipients and then comparing donor-cell inocula that contained similar numbers of T lymphocytes. Donor-cell inocula were used that had been tested for their allohelper and allosuppressor effects on F1 B cells in vitro. In the irradiated F1 recipients unseparated donor T cells were superior to T cell subsets in inducing LGVHD. In contrast Lyt-1+2- T cells, but neither unseparated T cells nor Lyt-1-2+ T cells, were capable of inducing a vigorous formation of SLE-like auto-antibodies. We conclude that the stimulatory pathological symptoms of chronic GVHD are caused by Lyt-1+2- allohelper T cells. In contrast, the development of the suppressive pathological symptoms of acute GVHD appears to involve alloreactive Lyt-1+2+ T suppressor cells.

  3. Acute Pancreatitis and Diabetic Ketoacidosis following L-Asparaginase/Prednisone Therapy in Acute Lymphoblastic Leukemia

    PubMed Central

    Quintanilla-Flores, Dania Lizet; Flores-Caballero, Miguel Ángel; Rodríguez-Gutiérrez, René; Tamez-Pérez, Héctor Eloy; González-González, José Gerardo

    2014-01-01

    Acute pancreatitis and diabetic ketoacidosis are unusual adverse events following chemotherapy based on L-asparaginase and prednisone as support treatment for acute lymphoblastic leukemia. We present the case of a 16-year-old Hispanic male patient, in remission induction therapy for acute lymphoblastic leukemia on treatment with mitoxantrone, vincristine, prednisone, and L-asparaginase. He was hospitalized complaining of abdominal pain, nausea, and vomiting. Hyperglycemia, acidosis, ketonuria, low bicarbonate levels, hyperamylasemia, and hyperlipasemia were documented, and the diagnosis of diabetic ketoacidosis was made. Because of uncertainty of the additional diagnosis of acute pancreatitis as the cause of abdominal pain, a contrast-enhanced computed tomography was performed resulting in a Balthazar C pancreatitis classification. PMID:24716037

  4. Novel management options for adult patients with progressive acute lymphoblastic leukemia: introduction.

    PubMed

    Wang, Eunice S

    2015-06-01

    Acute lymphoblastic leukemia (ALL) is a heterogeneous hematologic malignancy characterized by highly proliferative immature lymphoid cells in the bone marrow and peripheral blood. In adults, ALL accounts for approximately 20% of all adult leukemias. ALL carries a poor prognosis in adults. The 5-year overall survival is 24% in patients ages 40 to 59 years and 18% in patients ages 60 to 69 years. ALL can be grouped into different categories according to its cell lineage (B cell or T cell), the presence or absence of the Philadelphia chromosome, and various cytogenetic and molecular classifications. A main goal of treatment is to allow the patient to achieve a complete remission and to consolidate this remission with either a maintenance regimen or an allogeneic stem cell transplant. Although the overall rate of complete remission following frontline therapy for newly diagnosed ALL is high, the majority of patients experience a disease relapse. In general, the duration of initial complete remission impacts the patient’s prognosis and response to further therapies. Subsequent treatments must balance the goal of achieving a remission with the need for the patient to maintain or improve quality of life. Recently approved agents, such as blinatumomab and vincristine sulfate liposome injection, offer the promise of a second remission that can serve as a bridge to allogeneic stem cell transplant while still maintaining quality of life. A novel approach using adoptive cellular immunotherapy with chimeric antigen receptor (CAR) T cells is associated with extremely robust responses. PMID:26431322

  5. Advances in the treatment of relapsed/refractory acute lymphoblastic leukemia: a case study compendium.

    PubMed

    Roboz, Gail J; Jabbour, Elias J; Faderl, Stefan; Douer, Dan

    2014-12-01

    Acute lymphoblastic leukemia (ALL) is a heterogeneous hematologic malignancy characterized by proliferation of immature lymphoid cells throughout the bone marrow and peripheral blood. Most cases are diagnosed before the age of 20 years. Adults have a worse prognosis than children. Approximately half of adult ALL patients relapse after their initial treatment. There is no standard treatment for ALL; strategies vary according to the patient’s age, comorbidities, and Philadelphia chromosome status. Regimens used in pediatric patients are being adapted for use in adults. Frontline management can include hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone alternating with cycles of high-dose methotrexate and cytarabine (hyper-CVAD) and the Berlin-Frankfurt-Münster regimen. Relapsed/refractory patients have several options, including a regimen consisting of fludarabine, high-dose cytarabine, and granulocyte colony–stimulating factor (FLAG); tyrosine kinase inhibitors; and chemotherapy. The US Food and Drug Administration recently approved 3 therapies for these patients: clofarabine, nelarabine, and vincristine sulfate liposome injection, a modified formulation of vincristine that allows the drug to be administered at a higher dosage. Several novel strategies are currently under investigation, including the monoclonal antibody blinatumomab, a bispecific T-cell engager that targets the B-cell–specific antigen CD19 and activates T cells to exert cytotoxic activity against the target B cell. This clinical roundtable monograph features case studies that illustrate important points in the management of adult patients with relapsed/refractory ALL. PMID:25768269

  6. Immune thrombocytopenic purpura in a child with acute lymphoblastic leukemia and mumps.

    PubMed

    Kurekci, A Emin; Atay, A Avni; Demirkaya, Erkan; Sarici, S Umit; Ozcan, Okan

    2006-03-01

    Immune thrombocytopenic purpura in childhood is characterized by a typical history of acute development of purpura and bruising in an otherwise healthy child. In children it usually follows a viral infection (eg, mumps, rubella) or immunization. We report for the first time a child with acute lymphoblastic leukemia who developed immune thrombocytopenic purpura due to mumps during the maintenance phase of acute lymphoblastic leukemia treatment. PMID:16679943

  7. Oncogenetics and minimal residual disease are independent outcome predictors in adult patients with acute lymphoblastic leukemia.

    PubMed

    Beldjord, Kheira; Chevret, Sylvie; Asnafi, Vahid; Huguet, Françoise; Boulland, Marie-Laure; Leguay, Thibaut; Thomas, Xavier; Cayuela, Jean-Michel; Grardel, Nathalie; Chalandon, Yves; Boissel, Nicolas; Schaefer, Beat; Delabesse, Eric; Cavé, Hélène; Chevallier, Patrice; Buzyn, Agnès; Fest, Thierry; Reman, Oumedaly; Vernant, Jean-Paul; Lhéritier, Véronique; Béné, Marie C; Lafage, Marina; Macintyre, Elizabeth; Ifrah, Norbert; Dombret, Hervé

    2014-06-12

    With intensified pediatric-like therapy and genetic disease dissection, the field of adult acute lymphoblastic leukemia (ALL) has evolved recently. In this new context, we aimed to reassess the value of conventional risk factors with regard to new genetic alterations and early response to therapy, as assessed by immunoglobulin/T-cell receptor minimal residual disease (MRD) levels. The study was performed in 423 younger adults with Philadelphia chromosome-negative ALL in first remission (265 B-cell precursor [BCP] and 158 T-cell ALL), with cumulative incidence of relapse (CIR) as the primary end point. In addition to conventional risk factors, the most frequent currently available genetic alterations were included in the analysis. A higher specific hazard of relapse was independently associated with postinduction MRD level ≥10(-4) and unfavorable genetic characteristics (ie, MLL gene rearrangement or focal IKZF1 gene deletion in BCP-ALL and no NOTCH1/FBXW7 mutation and/or N/K-RAS mutation and/or PTEN gene alteration in T-cell ALL). These 2 factors allowed definition of a new risk classification that is strongly associated with higher CIR and shorter relapse-free and overall survival. These results indicate that genetic abnormalities are important predictors of outcome in adult ALL not fully recapitulated by early response to therapy. Patients included in this study were treated in the multicenter GRAALL-2003 and GRAALL-2005 trials. Both trials were registered at http://www.clinicaltrials.gov as #NCT00222027 and #NCT00327678, respectively. PMID:24740809

  8. Orbital mass secondary to infantile acute lymphoblastic leukaemia.

    PubMed

    Hossain, Ibtesham Tausif; Moosajee, Mariya; Abou-Rayyah, Yassir; Pavasovic, Vesna

    2016-01-01

    An 8-month-old Asian infant girl was referred with a 1-week history of left periorbital swelling on a background of a narrowed left palpebral aperture over the preceding 8 weeks. There was no history of chronic illness, fever or other systemic features. Examination revealed a tender and fluctuant medial canthal swelling with associated periorbital haematoma. There were no other ophthalmic findings and neurological examination was normal. A MRI scan of the brain and orbit demonstrated abnormal soft tissue with features of an aggressive tumour in the left orbital region with no globe invasion. Peripheral blood smear revealed blast cells, confirmed by bone marrow aspirate. A diagnosis of infant acute lymphoblastic leukaemia was made. The patient was started on risk-stratified chemotherapy according to the Interfant-06 Protocol The periorbital swelling resolved by day eight following a course of prednisolone, the patient continues on chemotherapy and is currently in molecular remission. PMID:27143162

  9. Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia

    PubMed Central

    Park, Eugene; Papaemmanuil, Elli; Ford, Anthony; Kweon, Soo-Mi; Trageser, Daniel; Hasselfeld, Brian; Henke, Nadine; Mooster, Jana; Geng, Huimin; Schwarz, Klaus; Kogan, Scott C.; Casellas, Rafael; Schatz, David G.; Lieber, Michael R; Greaves, Mel F.; Müschen, Markus

    2015-01-01

    Childhood acute lymphoblastic leukemia can often be retraced to a pre-leukemic clone carrying a prenatal genetic lesion. Postnatally acquired mutations then drive clonal evolution towards overt leukemia. RAG1-RAG2 and AID enzymes, the diversifiers of immunoglobulin genes, are strictly segregated to early and late stages of B-lymphopoiesis, respectively. Here, we identified small pre-BII cells as a natural subset of increased genetic vulnerability owing to concurrent activation of these enzymes. Consistent with epidemiological findings on childhood ALL etiology, susceptibility to genetic lesions during B-lymphopoiesis at the large to small pre-BII transition is exacerbated by abnormal cytokine signaling and repetitive inflammatory stimuli. We demonstrate that AID and RAG1-RAG2 drive leukemic clonal evolution with repeated exposure to inflammatory stimuli, paralleling chronic infections in childhood. PMID:25985233

  10. Metabolic syndrome in the survivors of childhood acute lymphoblastic leukaemia.

    PubMed

    Abu-Ouf, Noran M; Jan, Mohammed M

    2015-01-01

    Metabolic syndrome is a common complication encountered in children surviving acute lymphoblastic leukaemia (ALL). Affected patients develop obesity, insulin resistance, hypertension, and hyperlipidemia. Metabolic syndrome is a consequence of multiple factors, particularly hormonal imbalance induced by various ALL treatments. This review aims to evaluate the risk factors and mechanisms leading to the development of metabolic syndrome. Further research is needed to improve our understanding of the mechanisms leading to insulin resistance and the associated endothelial and adipose tissue dysfunction. Future studies should also examine other possible contributing factors, such as environmental and genetic factors. Understanding these factors will help in guiding modifications of the current ALL treatment protocols in order to prevent the development of this syndrome and hence improve the quality of life of ALL survivors. Until this is achieved, clinicians should continue to identify patients at risk early and use a therapeutic approach that combines dietary restrictions and enhanced physical activity. PMID:25081809

  11. THE GENOMIC LANDSCAPE OF HYPODIPLOID ACUTE LYMPHOBLASTIC LEUKEMIA

    PubMed Central

    Holmfeldt, Linda; Wei, Lei; Diaz-Flores, Ernesto; Walsh, Michael; Zhang, Jinghui; Ding, Li; Payne-Turner, Debbie; Churchman, Michelle; Andersson, Anna; Chen, Shann-Ching; McCastlain, Kelly; Becksfort, Jared; Ma, Jing; Wu, Gang; Patel, Samir N.; Heatley, Susan L.; Phillips, Letha A.; Song, Guangchun; Easton, John; Parker, Matthew; Chen, Xiang; Rusch, Michael; Boggs, Kristy; Vadodaria, Bhavin; Hedlund, Erin; Drenberg, Christina; Baker, Sharyn; Pei, Deqing; Cheng, Cheng; Huether, Robert; Lu, Charles; Fulton, Robert S.; Fulton, Lucinda L.; Tabib, Yashodhan; Dooling, David J.; Ochoa, Kerri; Minden, Mark; Lewis, Ian D.; To, L. Bik; Marlton, Paula; Roberts, Andrew W.; Raca, Gordana; Stock, Wendy; Neale, Geoffrey; Drexler, Hans G.; Dickins, Ross A.; Ellison, David W.; Shurtleff, Sheila A.; Pui, Ching-Hon; Ribeiro, Raul C.; Devidas, Meenakshi; Carroll, Andrew J.; Heerema, Nyla A.; Wood, Brent; Borowitz, Michael J.; Gastier-Foster, Julie M.; Raimondi, Susana C.; Mardis, Elaine R.; Wilson, Richard K.; Downing, James R.; Hunger, Stephen P.; Loh, Mignon L.; Mullighan, Charles G.

    2013-01-01

    The genetic basis of hypodiploid acute lymphoblastic leukemia (ALL), a subtype of ALL characterized by aneuploidy and poor outcome, is unknown. Genomic profiling of 124 hypodiploid ALL cases, including whole genome and exome sequencing of 40 cases, identified two subtypes that differ in severity of aneuploidy, transcriptional profile and submicroscopic genetic alterations. Near haploid cases with 24–31 chromosomes harbor alterations targeting receptor tyrosine kinase- and Ras signaling (71%) and the lymphoid transcription factor IKZF3 (AIOLOS; 13%). In contrast, low hypodiploid ALL with 32–39 chromosomes are characterized by TP53 alterations (91.2%) which are commonly present in non-tumor cells, and alterations of IKZF2 (HELIOS; 53%) and RB1 (41%). Both near haploid and low hypodiploid tumors exhibit activation of Ras- and PI3K signaling pathways, and are sensitive to PI3K inhibitors, indicating that these drugs should be explored as a new therapeutic strategy for this aggressive form of leukemia. PMID:23334668

  12. Skin nodules in a patient with acute lymphoblastic leukaemia

    PubMed Central

    Le Clech, Lenaïg; Hutin, Pascal; Le Gal, Solène; Guillerm, Gaëlle

    2014-01-01

    Opportunistic infections cause a significant morbidity and mortality in immunocompromised patients. We describe the case of a patient with skin fusariosis and a probable cerebral toxoplasmosis after UCB stem cell transplantation for B-cell acute lymphoblastic leukaemia. Fusarium species (spp) infections are difficult to treat. To date, there has been no consensus on the treatment of fusariosis and the management of its side effects. Given the negative pretransplant Toxoplasma serology in this case, identifying the origin of the Toxoplasma infection was challenging. All usual transmission routes were screened for and ruled out. The patient's positive outcome was not consistent with that of the literature reporting 60% mortality due to each infection. PMID:24408938

  13. Asparaginase-associated toxicity in children with acute lymphoblastic leukemia

    PubMed Central

    Hijiya, Nobuko; van der Sluis, Inge M.

    2016-01-01

    Abstract Asparaginase is an integral component of multiagent chemotherapy regimens for the treatment of children with acute lymphoblastic leukemia. Positive outcomes are seen in patients who are able to complete their entire prescribed course of asparaginase therapy. Toxicities associated with asparaginase use include hypersensitivity (clinical and subclinical), pancreatitis, thrombosis, encephalopathy, and liver dysfunction. Depending on the nature and severity of the toxicity, asparaginase therapy may be altered or discontinued in some patients. Clinical hypersensitivity is the most common asparaginase-associated toxicity requiring treatment discontinuation, occurring in up to 30% of patients receiving Escherichia coli–derived asparaginase. The ability to rapidly identify and manage asparaginase-associated toxicity will help ensure patients receive the maximal benefit from asparaginase therapy. This review will provide an overview of the common toxicities associated with asparaginase use and recommendations for treatment management. PMID:26457414

  14. Cerebral aspergillus infection in pediatric acute lymphoblastic leukemia induction therapy

    PubMed Central

    Prakash, Gaurav; Thulkar, Sanjay; Arava, Sudheer Kumar; Bakhshi, Sameer

    2012-01-01

    Angioinvasive pulmonary infection from filamentous fungi is not an uncommon occurrence in immunocompromised patients like acute lymphoblastic leukemia (ALL). Rarely, these lesions can spread via the hematogenous route and involve multiple visceral organs. We report a case of a 14-year-old boy with ALL who developed angioinvasive pulmonary aspergillosis early in the course of induction therapy, which was followed by hematogenous dissemination and formation of multiple brain abscesses. The patient was treated with intravenous amphotericin B. There was no response to the therapy and the patient succumbed to disseminated infection. Postmortem lung biopsy confirmed angioinvasive pulmonary aspergillosis. Poor penetration of amphotericin B across the blood-brain barrier could be one of the contributory factors for poor response to antifungal therapy. We discuss the various antifungal agents with respect to their penetration in brain. PMID:23580827

  15. [Acute lymphoblastic leukemia of T progenitors: from biology to clinics].

    PubMed

    Genescà, Eulàlia; Ribera, Jordi; Ribera, Josep-Maria

    2015-03-01

    Acute lymphoblastic leukemia (ALL) is the most common cancer in children and the main cause of morbidity among childhood blood disorders. There are 2 subtypes according to the affected lymphoid progenitor: B-ALL and T-ALL. The T-ALL is the less common and, although historically was associated with poor prognosis in both adults and children, at present, treatment outcomes do not differ significantly between the 2 types of ALL. The T-ALL subtype is the most complex and heterogeneous at the genetic level and currently the one with less new therapeutic alternatives available. This trend is changing thanks to the remarkable progress upon understanding its biology. This review summarizes the most recent and important biological findings in T-ALL and their possible therapeutic implications. PMID:24667111

  16. Targeting survivin overcomes drug resistance in acute lymphoblastic leukemia

    PubMed Central

    Park, Eugene; Gang, Eun Ji; Hsieh, Yao-Te; Schaefer, Paul; Chae, Sanna; Klemm, Lars; Huantes, Sandra; Loh, Mignon; Conway, Edward M.; Kang, Eun-Suk; Hoe Koo, Hong; Hofmann, Wolf-Karsten; Heisterkamp, Nora; Pelus, Louis; Keerthivasan, Ganesan; Crispino, John; Kahn, Michael; Müschen, Markus

    2011-01-01

    Relapse of drug-resistant acute lymphoblastic leukemia (ALL) has been associated with increased expression of survivin/BIRC5, an inhibitor of apoptosis protein, suggesting a survival advantage for ALL cells. In the present study, we report that inhibition of survivin in patient-derived ALL can eradicate leukemia. Targeting survivin with shRNA in combination with chemotherapy resulted in no detectable minimal residual disease in a xenograft model of primary ALL. Similarly, pharmacologic knock-down of survivin using EZN-3042, a novel locked nucleic acid antisense oligonucleotide, in combination with chemotherapy eliminated drug-resistant ALL cells. These findings show the importance of survivin expression in drug resistance and demonstrate that survivin inhibition may represent a powerful approach to overcoming drug resistance and preventing relapse in patients with ALL. PMID:21715311

  17. The acute lymphoblastic leukemia of Down Syndrome - Genetics and pathogenesis.

    PubMed

    Izraeli, Shai

    2016-03-01

    Children with Down Syndrome (DS) are at markedly increased risk for acute lymphoblastic leukemia (ALL). The ALL is of B cell precursor (BCP) phenotype. T-ALL is only rarely diagnosed as well as infant leukemia. Gene expression profiling and cytogenetics suggest that DS-ALL is an heterogeneous disease. More than half of the leukemias are characterized by aberrant expression of the thymic stromal lymphopoietin (TSLP) receptor CRLF2 caused by genomic rearrangements. These rearrangements are often associated with somatic activating mutations in the receptors or in the downstream components of the JAK-STAT pathway. The activation of JAK-STAT pathway suggests that targeted therapy with JAK or downstream inhibitors may be effective for children with DS-ALL. The basis of the increased risk of BCP-ALL and in particular of the CRLF2 aberrations is presently unknown. Neither is it known which genes on the trisomic chromosome 21 are involved. PMID:26631987

  18. HIV-1-Specific CD8 T Cells Exhibit Limited Cross-Reactivity during Acute Infection.

    PubMed

    Du, Victor Y; Bansal, Anju; Carlson, Jonathan; Salazar-Gonzalez, Jesus F; Salazar, Maria G; Ladell, Kristin; Gras, Stephanie; Josephs, Tracy M; Heath, Sonya L; Price, David A; Rossjohn, Jamie; Hunter, Eric; Goepfert, Paul A

    2016-04-15

    Prior work has demonstrated that HIV-1-specific CD8 T cells can cross-recognize variant epitopes. However, most of these studies were performed in the context of chronic infection, where the presence of viral quasispecies makes it difficult to ascertain the true nature of the original antigenic stimulus. To overcome this limitation, we evaluated the extent of CD8 T cell cross-reactivity in patients with acute HIV-1 clade B infection. In each case, we determined the transmitted founder virus sequence to identify the autologous epitopes restricted by individual HLA class I molecules. Our data show that cross-reactive CD8 T cells are infrequent during the acute phase of HIV-1 infection. Moreover, in the uncommon instances where cross-reactive responses were detected, the variant epitopes were poorly recognized in cytotoxicity assays. Molecular analysis revealed that similar antigenic structures could be cross-recognized by identical CD8 T cell clonotypes mobilized in vivo, yet even subtle differences in a single TCR-accessible peptide residue were sufficient to disrupt variant-specific reactivity. These findings demonstrate that CD8 T cells are highly specific for autologous epitopes during acute HIV-1 infection. Polyvalent vaccines may therefore be required to provide optimal immune cover against this genetically labile pathogen. PMID:26983786

  19. Regulatory T cells control diabetes without compromising acute anti-viral defense☆

    PubMed Central

    Sachithanantham, Sowbarnika; Dave, Amy; Rodriguez-Calvo, Teresa; Miller, Jacqueline; von Herrath, Matthias

    2016-01-01

    While previous reports have demonstrated the efficacy of regulatory T cell therapy in the prevention of diabetes, systemic immunocompromise and Treg instability remain key safety concerns. Here we examined the influence of induced Treg (iTreg) cell therapy on anti-viral host defense and autoimmune T cell responses during acute viral infection in a murine model of autoimmune diabetes. Protective transfers of iTregs maintained IL-10 expression, and expanded in vivo and controlled diabetes, despite losing FoxP3 expression. Adoptive transfer of iTregs affected neither the primary anti-viral CD8 T cell response nor viral clearance, although a significant and sustained suppression of CD4 T cell responses was observed. Following acute viral clearance, iTregs transferred early suppressed both CD4 and CD8 T cell responses, which resulted in the reversion of diabetes. These observations indicate that iTregs suppress local autoimmune processes while preserving the immunocompetent host's ability to combat acute viral infection. PMID:24858581

  20. Prolonged Activation of Virus-Specific CD8+T Cells after Acute B19 Infection

    PubMed Central

    2005-01-01

    Background Human parvovirus B19 (B19) is a ubiquitous and clinically significant pathogen, causing erythema infectiosum, arthropathy, transient aplastic crisis, and intrauterine fetal death. The phenotype of CD8+ T cells in acute B19 infection has not been studied previously. Methods and Findings The number and phenotype of B19-specific CD8+ T cell responses during and after acute adult infection was studied using HLA–peptide multimeric complexes. Surprisingly, these responses increased in magnitude over the first year post-infection despite resolution of clinical symptoms and control of viraemia, with T cell populations specific for individual epitopes comprising up to 4% of CD8+ T cells. B19-specific T cells developed and maintained an activated CD38+ phenotype, with strong expression of perforin and CD57 and downregulation of CD28 and CD27. These cells possessed strong effector function and intact proliferative capacity. Individuals tested many years after infection exhibited lower frequencies of B19-specific cytotoxic T lymphocytes, typically 0.05%–0.5% of CD8+ T cells, which were perforin, CD38, and CCR7 low. Conclusion This is the first example to our knowledge of an “acute” human viral infection inducing a persistent activated CD8+ T cell response. The likely explanation—analogous to that for cytomegalovirus infection—is that this persistent response is due to low-level antigen exposure. CD8+ T cells may contribute to the long-term control of this significant pathogen and should be considered during vaccine development. PMID:16253012

  1. Longitudinal characterization of dysfunctional T cell-activation during human acute Ebola infection.

    PubMed

    Agrati, C; Castilletti, C; Casetti, R; Sacchi, A; Falasca, L; Turchi, F; Tumino, N; Bordoni, V; Cimini, E; Viola, D; Lalle, E; Bordi, L; Lanini, S; Martini, F; Nicastri, E; Petrosillo, N; Puro, V; Piacentini, M; Di Caro, A; Kobinger, G P; Zumla, A; Ippolito, G; Capobianchi, M R

    2016-01-01

    Data on immune responses during human Ebola virus disease (EVD) are scanty, due to limitations imposed by biosafety requirements and logistics. A sustained activation of T-cells was recently described but functional studies during the acute phase of human EVD are still missing. Aim of this work was to evaluate the kinetics and functionality of T-cell subsets, as well as the expression of activation, autophagy, apoptosis and exhaustion markers during the acute phase of EVD until recovery. Two EVD patients admitted to the Italian National Institute for Infectious Diseases, Lazzaro Spallanzani, were sampled sequentially from soon after symptom onset until recovery and analyzed by flow cytometry and ELISpot assay. An early and sustained decrease of CD4 T-cells was seen in both patients, with an inversion of the CD4/CD8 ratio that was reverted during the recovery period. In parallel with the CD4 T-cell depletion, a massive T-cell activation occurred and was associated with autophagic/apoptotic phenotype, enhanced expression of the exhaustion marker PD-1 and impaired IFN-gamma production. The immunological impairment was accompanied by EBV reactivation. The association of an early and sustained dysfunctional T-cell activation in parallel to an overall CD4 T-cell decline may represent a previously unknown critical point of Ebola virus (EBOV)-induced immune subversion. The recent observation of late occurrence of EBOV-associated neurological disease highlights the importance to monitor the immuno-competence recovery at discharge as a tool to evaluate the risk of late sequelae associated with resumption of EBOV replication. Further studies are required to define the molecular mechanisms of EVD-driven activation/exhaustion and depletion of T-cells. PMID:27031961

  2. Longitudinal characterization of dysfunctional T cell-activation during human acute Ebola infection

    PubMed Central

    Agrati, C; Castilletti, C; Casetti, R; Sacchi, A; Falasca, L; Turchi, F; Tumino, N; Bordoni, V; Cimini, E; Viola, D; Lalle, E; Bordi, L; Lanini, S; Martini, F; Nicastri, E; Petrosillo, N; Puro, V; Piacentini, M; Di Caro, A; Kobinger, G P; Zumla, A; Ippolito, G; Capobianchi, M R

    2016-01-01

    Data on immune responses during human Ebola virus disease (EVD) are scanty, due to limitations imposed by biosafety requirements and logistics. A sustained activation of T-cells was recently described but functional studies during the acute phase of human EVD are still missing. Aim of this work was to evaluate the kinetics and functionality of T-cell subsets, as well as the expression of activation, autophagy, apoptosis and exhaustion markers during the acute phase of EVD until recovery. Two EVD patients admitted to the Italian National Institute for Infectious Diseases, Lazzaro Spallanzani, were sampled sequentially from soon after symptom onset until recovery and analyzed by flow cytometry and ELISpot assay. An early and sustained decrease of CD4 T-cells was seen in both patients, with an inversion of the CD4/CD8 ratio that was reverted during the recovery period. In parallel with the CD4 T-cell depletion, a massive T-cell activation occurred and was associated with autophagic/apoptotic phenotype, enhanced expression of the exhaustion marker PD-1 and impaired IFN-gamma production. The immunological impairment was accompanied by EBV reactivation. The association of an early and sustained dysfunctional T-cell activation in parallel to an overall CD4 T-cell decline may represent a previously unknown critical point of Ebola virus (EBOV)-induced immune subversion. The recent observation of late occurrence of EBOV-associated neurological disease highlights the importance to monitor the immuno-competence recovery at discharge as a tool to evaluate the risk of late sequelae associated with resumption of EBOV replication. Further studies are required to define the molecular mechanisms of EVD-driven activation/exhaustion and depletion of T-cells. PMID:27031961

  3. Proposal for the standardization of flow cytometry protocols to detect minimal residual disease in acute lymphoblastic leukemia.

    PubMed

    Ikoma, Maura Rosane Valério; Beltrame, Miriam Perlingeiro; Ferreira, Silvia Inês Alejandra Cordoba Pires; Souto, Elizabeth Xisto; Malvezzi, Mariester; Yamamoto, Mihoko

    2015-01-01

    Minimal residual disease is the most powerful predictor of outcome in acute leukemia and is useful in therapeutic stratification for acute lymphoblastic leukemia protocols. Nowadays, the most reliable methods for studying minimal residual disease in acute lymphoblastic leukemia are multiparametric flow cytometry and polymerase chain reaction. Both provide similar results at a minimal residual disease level of 0.01% of normal cells, that is, detection of one leukemic cell in up to 10,000 normal nucleated cells. Currently, therapeutic protocols establish the minimal residual disease threshold value at the most informative time points according to the appropriate methodology employed. The expertise of the laboratory in a cancer center or a cooperative group could be the most important factor in determining which method should be used. In Brazil, multiparametric flow cytometry laboratories are available in most leukemia treatment centers, but multiparametric flow cytometry processes must be standardized for minimal residual disease investigations in order to offer reliable and reproducible results that ensure quality in the clinical application of the method. The Minimal Residual Disease Working Group of the Brazilian Society of Bone Marrow Transplantation (SBTMO) was created with that aim. This paper presents recommendations for the detection of minimal residual disease in acute lymphoblastic leukemia based on the literature and expertise of the laboratories who participated in this consensus, including pre-analytical and analytical methods. This paper also recommends that both multiparametric flow cytometry and polymerase chain reaction are complementary methods, and so more laboratories with expertise in immunoglobulin/T cell receptor (Ig/TCR) gene assays are necessary in Brazil. PMID:26670404

  4. Suppressor T cell clones from patients with acute Epstein-Barr virus-induced infectious mononucleosis.

    PubMed Central

    Wang, F; Blaese, R M; Zoon, K C; Tosato, G

    1987-01-01

    Suppression and/or cytotoxicity are believed to play an important role in the defense against Epstein-Barr virus (EBV) infection. To analyze the role of suppressor T cells in relation to EBV, we sought to clone and study these T cells. Analysis of 152 T cell clones derived from the peripheral blood of two patients with acute EBV-induced infectious mononucleosis (IM) yielded 11 highly suppressive clones that had no cytotoxic activity for the natural killer sensitive K562 cell line, an autologous EBV-infected cell line, or an allogeneic EBV-infected B cell line. Four of six suppressor T cell clones also profoundly inhibited EBV-induced immunoglobulin production, and five of five clones delayed the outgrowth of immortalized cells. These results indicate that during acute IM, suppressor T cells capable of inhibiting B cell activation in the absence of cytotoxicity can be identified, and may play a key role in the control of EBV infection. Images PMID:3025263

  5. LMO2 expression reflects the different stages of blast maturation and genetic features in B-cell acute lymphoblastic leukemia and predicts clinical outcome

    PubMed Central

    Malumbres, Raquel; Fresquet, Vicente; Roman-Gomez, Jose; Bobadilla, Miriam; Robles, Eloy F.; Altobelli, Giovanna G.; Calasanz, M.ª José; Smeland, Erlend B.; Aznar, Maria Angela; Agirre, Xabier; Martin-Palanco, Vanesa; Prosper, Felipe; Lossos, Izidore S.; Martinez-Climent, Jose A.

    2011-01-01

    Background LMO2 is highly expressed at the most immature stages of lymphopoiesis. In T-lymphocytes, aberrant LMO2 expression beyond those stages leads to T-cell acute lymphoblastic leukemia, while in B cells LMO2 is also expressed in germinal center lymphocytes and diffuse large B-cell lymphomas, where it predicts better clinical outcome. The implication of LMO2 in B-cell acute lymphoblastic leukemia must still be explored. Design and Methods We measured LMO2 expression by real time RT-PCR in 247 acute lymphoblastic leukemia patient samples with cytogenetic data (144 of them also with survival and immunophenotypical data) and in normal hematopoietic and lymphoid cells. Results B-cell acute lymphoblastic leukemia cases expressed variable levels of LMO2 depending on immunophenotypical and cytogenetic features. Thus, the most immature subtype, pro-B cells, displayed three-fold higher LMO2 expression than pre-B cells, common-CD10+ or mature subtypes. Additionally, cases with TEL-AML1 or MLL rearrangements exhibited two-fold higher LMO2 expression compared to cases with BCR-ABL rearrangements or hyperdyploid karyotype. Clinically, high LMO2 expression correlated with better overall survival in adult patients (5-year survival rate 64.8% (42.5%–87.1%) vs. 25.8% (10.9%–40.7%), P= 0.001) and constituted a favorable independent prognostic factor in B-ALL with normal karyotype: 5-year survival rate 80.3% (66.4%–94.2%) vs. 63.0% (46.1%–79.9%) (P= 0.043). Conclusions Our data indicate that LMO2 expression depends on the molecular features and the differentiation stage of B-cell acute lymphoblastic leukemia cells. Furthermore, assessment of LMO2 expression in adult patients with a normal karyotype, a group which lacks molecular prognostic factors, could be of clinical relevance. PMID:21459790

  6. Acute Viral Respiratory Infection Rapidly Induces a CD8+ T Cell Exhaustion-like Phenotype.

    PubMed

    Erickson, John J; Lu, Pengcheng; Wen, Sherry; Hastings, Andrew K; Gilchuk, Pavlo; Joyce, Sebastian; Shyr, Yu; Williams, John V

    2015-11-01

    Acute viral infections typically generate functional effector CD8(+) T cells (TCD8) that aid in pathogen clearance. However, during acute viral lower respiratory infection, lung TCD8 are functionally impaired and do not optimally control viral replication. T cells also become unresponsive to Ag during chronic infections and cancer via signaling by inhibitory receptors such as programmed cell death-1 (PD-1). PD-1 also contributes to TCD8 impairment during viral lower respiratory infection, but how it regulates TCD8 impairment and the connection between this state and T cell exhaustion during chronic infections are unknown. In this study, we show that PD-1 operates in a cell-intrinsic manner to impair lung TCD8. In light of this, we compared global gene expression profiles of impaired epitope-specific lung TCD8 to functional spleen TCD8 in the same human metapneumovirus-infected mice. These two populations differentially regulate hundreds of genes, including the upregulation of numerous inhibitory receptors by lung TCD8. We then compared the gene expression of TCD8 during human metapneumovirus infection to those in acute or chronic lymphocytic choriomeningitis virus infection. We find that the immunophenotype of lung TCD8 more closely resembles T cell exhaustion late into chronic infection than do functional effector T cells arising early in acute infection. Finally, we demonstrate that trafficking to the infected lung alone is insufficient for TCD8 impairment or inhibitory receptor upregulation, but that viral Ag-induced TCR signaling is also required. Our results indicate that viral Ag in infected lungs rapidly induces an exhaustion-like state in lung TCD8 characterized by progressive functional impairment and upregulation of numerous inhibitory receptors. PMID:26401005

  7. Acute myeloid leukaemia after treatment for acute lymphoblastic leukaemia in girl with Bloom syndrome

    PubMed Central

    Adams, Madeleine; Jenney, Meriel; Lazarou, Laz; White, Rhian; Birdsall, Sanda; Staab, Timo; Schindler, Detlev; Meyer, Stefan

    2014-01-01

    Bloom syndrome (BS) is an inherited genomic instability disorder caused by disruption of the BLM helicase and confers an extreme cancer predisposition. Here we report on a girl with BS who developed acute lymphoblastic leukaemia (ALL) at age nine, and treatment-related acute myeloid leukaemia (t-AML) aged 12. She was compound heterozygous for the novel BLM frameshift deletion c.1624delG and the previously described c.3415C>T nonsense mutation. Two haematological malignancies in a child with BS imply a fundamental role for BLM for normal haematopoiesis, in particular in the presence of genotoxic stress. PMID:24932421

  8. Acute myeloid leukaemia after treatment for acute lymphoblastic leukaemia in girl with Bloom syndrome.

    PubMed

    Adams, Madeleine; Jenney, Meriel; Lazarou, Laz; White, Rhian; Birdsall, Sanda; Staab, Timo; Schindler, Detlev; Meyer, Stefan

    2013-09-18

    Bloom syndrome (BS) is an inherited genomic instability disorder caused by disruption of the BLM helicase and confers an extreme cancer predisposition. Here we report on a girl with BS who developed acute lymphoblastic leukaemia (ALL) at age nine, and treatment-related acute myeloid leukaemia (t-AML) aged 12. She was compound heterozygous for the novel BLM frameshift deletion c.1624delG and the previously described c.3415C>T nonsense mutation. Two haematological malignancies in a child with BS imply a fundamental role for BLM for normal haematopoiesis, in particular in the presence of genotoxic stress. PMID:24932421

  9. The role of blinatumomab in patients with relapsed/refractory acute lymphoblastic leukemia

    PubMed Central

    Benjamin, Jonathan E.; Stein, Anthony S.

    2016-01-01

    Adults with relapsed/refractory B-acute lymphoblastic leukemia (ALL) have a complete remission (CR) rate of 20–45% and median overall survival of 3–9 months, depending on the duration of the first remission and number of lines of salvage therapy. Allogeneic hematopoietic stem cell transplantation (alloHSCT) is the only curative option for adult patients with relapsed/refractory ALL, and achievement of CR is a crucial step before alloHSCT. Blinatumomab is a bispecific T-cell engager (BiTE®) antibody construct with dual specificity for CD19 and CD3, simultaneously binding CD3-positive cytotoxic T cells and CD19-positive B cells, resulting in T-cell-mediated serial lysis of normal and malignant B cells. It recently gained accelerated approval by the US Food and Drug Administration (FDA) for the treatment of relapsed/refractory Philadelphia chromosome-negative ALL, based on a large phase II trial of 189 adults with relapsed/refractory B-ALL, which showed a CR/CRh (CR with partial hematologic recovery) of 43% after two cycles of treatment. Toxicities include cytokine-release syndrome (CRS) and neurologic events (encephalopathy, aphasia, and seizure). CRS can be alleviated by step-up dosing and dexamethasone, without affecting the cytotoxic effect of blinatumomab. The cause of neurologic toxicity is unclear but is also observed with other T-cell therapies and may relate to variable expression of CD19 within the brain. This review encompasses the preclinical rationale of using the BITE® class of compounds (blinatumomab being the only one that is FDA approved), with clinical data using blinatumomab in the relapsed/refractory setting (pediatrics and adults), the minimal residual disease setting (adults), as well as Philadelphia chromosome-positive ALL. The review also examines the main adverse events: their prevention, recognition, and management; possible mechanisms of resistance; causes of relapse. It also summarizes future trials evaluating the drug earlier in the

  10. The role of blinatumomab in patients with relapsed/refractory acute lymphoblastic leukemia.

    PubMed

    Benjamin, Jonathan E; Stein, Anthony S

    2016-06-01

    Adults with relapsed/refractory B-acute lymphoblastic leukemia (ALL) have a complete remission (CR) rate of 20-45% and median overall survival of 3-9 months, depending on the duration of the first remission and number of lines of salvage therapy. Allogeneic hematopoietic stem cell transplantation (alloHSCT) is the only curative option for adult patients with relapsed/refractory ALL, and achievement of CR is a crucial step before alloHSCT. Blinatumomab is a bispecific T-cell engager (BiTE®) antibody construct with dual specificity for CD19 and CD3, simultaneously binding CD3-positive cytotoxic T cells and CD19-positive B cells, resulting in T-cell-mediated serial lysis of normal and malignant B cells. It recently gained accelerated approval by the US Food and Drug Administration (FDA) for the treatment of relapsed/refractory Philadelphia chromosome-negative ALL, based on a large phase II trial of 189 adults with relapsed/refractory B-ALL, which showed a CR/CRh (CR with partial hematologic recovery) of 43% after two cycles of treatment. Toxicities include cytokine-release syndrome (CRS) and neurologic events (encephalopathy, aphasia, and seizure). CRS can be alleviated by step-up dosing and dexamethasone, without affecting the cytotoxic effect of blinatumomab. The cause of neurologic toxicity is unclear but is also observed with other T-cell therapies and may relate to variable expression of CD19 within the brain. This review encompasses the preclinical rationale of using the BITE® class of compounds (blinatumomab being the only one that is FDA approved), with clinical data using blinatumomab in the relapsed/refractory setting (pediatrics and adults), the minimal residual disease setting (adults), as well as Philadelphia chromosome-positive ALL. The review also examines the main adverse events: their prevention, recognition, and management; possible mechanisms of resistance; causes of relapse. It also summarizes future trials evaluating the drug earlier in the

  11. Limited Immunogenicity of HIV CD8+ T-Cell Epitopes in Acute Clade C Virus Infection

    PubMed Central

    Radebe, Mopo; Nair, Kriebashnie; Chonco, Fundisiwe; Bishop, Karen; Wright, Jaclyn K.; van der Stok, Mary; Bassett, Ingrid V.; Mncube, Zenele; Altfeld, Marcus; Walker, Bruce D.

    2011-01-01

    Background. Human immunodeficiency virus type 1 (HIV-1)–specific CD8+ responses contribute to the decline in acute peak viremia following infection. However, data on the relative immunogenicity of CD8+ T-cell epitopes during and after acute viremia are lacking. Methods. We characterized CD8+ T-cell responses in 20 acutely infected, antiretroviral-naive individuals with HIV-1 subtype C infection using the interferon-γ enzyme-linked immunosorbent spot assay. Eleven of these had not fully seroconverted at the time of analysis. Viruses from plasma were sequenced within defined cytotoxic T-lymphocyte (CTL) cell epitopes for selected subjects. Results. At approximately 28 days after estimated initial infection, CD8+ T-cell responses were directed against an average of 3 of the 410 peptides tested (range, 0–6); 2 individuals had no detectable responses at this time. At 18 weeks, the average number of peptides targeted had increased to 5 (range 0–11). Of the 56 optimal Gag CTL epitopes sequenced, 31 were wild-type in the infecting viruses, but only 11 of 31 elicited measurable CD8+ T-cell responses. Conclusions. These data demonstrate that the majority of CD8+ responses are not elicited during acute HIV infection despite the presence of the cognate epitope in the infecting strain. There is a need to define factors that influence lack of induction of effective immune responses and the parameters that dictate immunodominance in acute infection. PMID:21844303

  12. Dynamics of cytotoxic T cell subsets during immunotherapy predicts outcome in acute myeloid leukemia

    PubMed Central

    Sander, Frida Ewald; Rydström, Anna; Bernson, Elin; Kiffin, Roberta; Riise, Rebecca; Aurelius, Johan; Anderson, Harald; Brune, Mats; Foà, Robin; Hellstrand, Kristoffer; Thorén, Fredrik B.; Martner, Anna

    2016-01-01

    Preventing relapse after chemotherapy remains a challenge in acute myeloid leukemia (AML). Eighty-four non-transplanted AML patients in first complete remission received relapse-preventive immunotherapy with histamine dihydrochloride and low-dose interleukin-2 in an international phase IV trial (ClinicalTrials.gov; NCT01347996). Blood samples were drawn during cycles of immunotherapy and analyzed for CD8+ (cytotoxic) T cell phenotypes in blood. During the first cycle of therapy, a re-distribution of cytotoxic T cells was observed comprising a reduction of T effector memory cells and a concomitant increase of T effector cells. The dynamics of T cell subtypes during immunotherapy prognosticated relapse and survival, in particular among older patients and remained significantly predictive of clinical outcome after correction for potential confounders. Presence of CD8+ T cells with specificity for leukemia-associated antigens identified patients with low relapse risk. Our results point to novel aspects of T cell-mediated immunosurveillance in AML and provide conceivable biomarkers in relapse-preventive immunotherapy. PMID:26863635

  13. A Possible Role for WNT5A Hypermethylation in Pediatric Acute Lymphoblastic Leukemia

    PubMed Central

    Hatırnaz Ng, Özden; Fırtına, Sinem; Can, İsmail; Karakaş, Zeynep; Ağaoğlu, Leyla; Doğru, Ömer; Celkan, Tiraje; Akçay, Arzu; Yıldırmak, Yıldız; Timur, Çetin; Özbek, Uğur; Sayitoğlu, Müge

    2015-01-01

    Objective: WNT5A is one of the most studied noncanonical WNT ligands and is shown to be deregulated in different tumor types. Our aim was to clarify whether hypermethylation might be the cause of low WNT5A mRNA levels and whether we could restore this downregulation by reversing the event. Materials and Methods: The expression of WNT5A mRNA was studied in a large acute lymphoblastic leukemia (ALL) patient group (n=86) by quantitative real-time PCR. The methylation status was detected by methylation-specific PCR (MSPCR) and bisulphate sequencing. In order to determine whether methylation has a direct effect on WNT5A expression, disease-representative cell lines were treated by 5’-aza-20-deoxycytidine. Results: Here we designed a validation experiment of the WNT5A gene, which was previously examined and found to be differentially expressed by microarray study in 31 T-cell ALL patients. The expression levels were confirmed by quantitative real-time PCR and the expression levels were significantly lower in T-cell ALL patients than in control thymic subsets (p=0.007). MSPCR revealed that 86% of the patients were hypermethylated in the WNT5A promoter region. Jurkat and RPMI cell lines were treated with 5’-aza-20-deoxycytidine and WNT5A mRNA expression was restored after treatment. Conclusion: According to our results, WNT5A hypermethylation does occur in ALL patients and it has a direct effect on mRNA expression. Our findings show that epigenetic changes of WNT signaling can play a role in ALL pathogenesis and reversing methylation might be useful as a possible treatment of leukemia. PMID:26316480

  14. Subgroups of Paediatric Acute Lymphoblastic Leukaemia Might Differ Significantly in Genetic Predisposition to Asparaginase Hypersensitivity.

    PubMed

    Kutszegi, Nóra; Semsei, Ágnes F; Gézsi, András; Sági, Judit C; Nagy, Viktória; Csordás, Katalin; Jakab, Zsuzsanna; Lautner-Csorba, Orsolya; Gábor, Krisztina Míta; Kovács, Gábor T; Erdélyi, Dániel J; Szalai, Csaba

    2015-01-01

    L-asparaginase (ASP) is a key element in the treatment of paediatric acute lymphoblastic leukaemia (ALL). However, hypersensitivity reactions (HSRs) to ASP are major challenges in paediatric patients. Our aim was to investigate genetic variants that may influence the risk to Escherichia coli-derived ASP hypersensitivity. Sample and clinical data collection was carried out from 576 paediatric ALL patients who were treated according to protocols from the Berlin-Frankfurt-Münster Study Group. A total of 20 single nucleotide polymorphisms (SNPs) in GRIA1 and GALNT10 genes were genotyped. Patients with GRIA1 rs4958351 AA/AG genotype showed significantly reduced risk to ASP hypersensitivity compared to patients with GG genotype in the T-cell ALL subgroup (OR = 0.05 (0.01-0.26); p = 4.70E-04), while no such association was found in pre-B-cell ALL. In the medium risk group two SNPs of GRIA1 (rs2055083 and rs707176) were associated significantly with the occurrence of ASP hypersensitivity (OR = 0.21 (0.09-0.53); p = 8.48E-04 and OR = 3.02 (1.36-6.73); p = 6.76E-03, respectively). Evaluating the genders separately, however, the association of rs707176 with ASP HSRs was confined only to females. Our results suggest that genetic variants of GRIA1 might influence the risk to ASP hypersensitivity, but subgroups of patients can differ significantly in this respect. PMID:26457809

  15. IKZF1 rs4132601 polymorphism and acute lymphoblastic leukemia susceptibility: a meta-analysis.

    PubMed

    Li, Shihui; Ren, Lili; Fan, Li; Wang, Guangsheng

    2015-04-01

    Several studies have been conducted to examine the association between IKZF1 rs4132601 polymorphism and acute lymphoblastic leukemia (ALL) risk. However, the conclusions remain controversial. We therefore performed a meta-analysis. PubMed, Embase, Web of Science, Weipu and Chinese Biomedical Literature (CBM) databases were searched. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of association. A total of 15 case-control studies with 8333 cases and 36 036 controls were included in this meta-analysis. The results suggested that rs4132601 was associated with an increased ALL risk. Significant associations were found among Caucasians and Hispanics but not among Asians. In subgroup analysis by age group, both adults and children showed increased ALL risk. In subgroup analysis by subtype of ALL, significantly increased risks were observed in B-cell ALL and B hyperdiploid ALL, but not in T-cell ALL. This study suggests that IKZF1 rs4132601polymorphism is a risk factor for ALL. PMID:25012940

  16. Multi-loci diagnosis of acute lymphoblastic leukaemia with high-throughput sequencing and bioinformatics analysis.

    PubMed

    Ferret, Yann; Caillault, Aurélie; Sebda, Shéhérazade; Duez, Marc; Grardel, Nathalie; Duployez, Nicolas; Villenet, Céline; Figeac, Martin; Preudhomme, Claude; Salson, Mikaël; Giraud, Mathieu

    2016-05-01

    High-throughput sequencing (HTS) is considered a technical revolution that has improved our knowledge of lymphoid and autoimmune diseases, changing our approach to leukaemia both at diagnosis and during follow-up. As part of an immunoglobulin/T cell receptor-based minimal residual disease (MRD) assessment of acute lymphoblastic leukaemia patients, we assessed the performance and feasibility of the replacement of the first steps of the approach based on DNA isolation and Sanger sequencing, using a HTS protocol combined with bioinformatics analysis and visualization using the Vidjil software. We prospectively analysed the diagnostic and relapse samples of 34 paediatric patients, thus identifying 125 leukaemic clones with recombinations on multiple loci (TRG, TRD, IGH and IGK), including Dd2/Dd3 and Intron/KDE rearrangements. Sequencing failures were halved (14% vs. 34%, P = 0.0007), enabling more patients to be monitored. Furthermore, more markers per patient could be monitored, reducing the probability of false negative MRD results. The whole analysis, from sample receipt to clinical validation, was shorter than our current diagnostic protocol, with equal resources. V(D)J recombination was successfully assigned by the software, even for unusual recombinations. This study emphasizes the progress that HTS with adapted bioinformatics tools can bring to the diagnosis of leukaemia patients. PMID:26898266

  17. Absence of Association between CCR5 rs333 Polymorphism and Childhood Acute Lymphoblastic Leukemia

    PubMed Central

    de Oliveira, Carlos Eduardo Coral; Perim, Aparecida de Lourdes; Ozawa, Patricia Midori Murobushi; Freire Vitiello, Glauco Akelinghton; Losi Guembarovski, Roberta; Watanabe, Maria Angelica Ehara

    2014-01-01

    Acute lymphoblastic leukemia (ALL) is a malignant disorder that originates from one single hematopoietic precursor committed to B- or T-cell lineage. Ordinarily, these cells express CCR5 chemokine receptor, which directs the immune response to a cellular pattern and is involved in cancer pathobiology. The genetic rs333 polymorphism of CCR5 (Δ32), results in a diminished receptor expression, thus leading to impaired cell trafficking. The objective of the present study was to investigate the effect of CCR5 chemokine receptor rs333 polymorphism in the pathogenesis of ALL. The genotype distribution was studied in 79 patients and compared with 80 control subjects, in a childhood population of Southern Brazil. Genotyping was performed using DNA samples amplified by polymerase chain reaction with sequence-specific primers (PCR-SSP). The homozygous (Δ32/Δ32) deletion was not observed in any subject involved in the study. Heterozygous genotype was not associated with ALL risk (OR 0.7%; 95% CI 0.21–2.32; P > 0.05), nor recurrence status of ALL (OR 0.86; 95% CI 0.13–5.48; P > 0.05). This work demonstrated, for the first time, no significant differences in the frequency of the CCR5/Δ32 genotype between ALL and control groups, indicating no effect of this genetic variant on the ALL susceptibility and recurrence risk. PMID:24822066

  18. A pre-clinical model of resistance to induction therapy in pediatric acute lymphoblastic leukemia.

    PubMed

    Samuels, A L; Beesley, A H; Yadav, B D; Papa, R A; Sutton, R; Anderson, D; Marshall, G M; Cole, C H; Kees, U R; Lock, R B

    2014-01-01

    Relapse and acquired drug resistance in T-cell acute lymphoblastic leukemia (T-ALL) remains a significant clinical problem. This study was designed to establish a preclinical model of resistance to induction therapy in childhood T-ALL to examine the emergence of drug resistance and identify novel therapies. Patient-derived T-ALL xenografts in immune-deficient (non-obese diabetic/severe combined immunodeficient) mice were exposed to a four-drug combination of vincristine, dexamethasone (DEX), L-asparaginase and daunorubicin (VXLD). 'Relapse' xenografts were characterized by responses to drugs, changes in gene expression profiles and Connectivity Map (CMap) prediction of strategies to reverse drug resistance. Two of four xenografts developed ex vivo and in vivo drug resistance. Both resistant lines showed altered lipid and cholesterol metabolism, yet they had a distinct drug resistance pattern. CMap analyses reinforced these features, identifying the cholesterol pathway inhibitor simvastatin (SVT) as a potential therapy to overcome resistance. Combined ex vivo with DEX, SVT was significantly synergistic, yet when administered in vivo with VXLD it did not delay leukemia progression. Synergy of SVT with established chemotherapy may depend on higher drug doses than are tolerable in this model. Taken together, we have developed a clinically relevant in vivo model of T-ALL suitable to examine the emergence of drug resistance and to identify novel therapies. PMID:25083816

  19. A pre-clinical model of resistance to induction therapy in pediatric acute lymphoblastic leukemia

    PubMed Central

    Samuels, A L; Beesley, A H; Yadav, B D; Papa, R A; Sutton, R; Anderson, D; Marshall, G M; Cole, C H; Kees, U R; Lock, R B

    2014-01-01

    Relapse and acquired drug resistance in T-cell acute lymphoblastic leukemia (T-ALL) remains a significant clinical problem. This study was designed to establish a preclinical model of resistance to induction therapy in childhood T-ALL to examine the emergence of drug resistance and identify novel therapies. Patient-derived T-ALL xenografts in immune-deficient (non-obese diabetic/severe combined immunodeficient) mice were exposed to a four-drug combination of vincristine, dexamethasone (DEX), L-asparaginase and daunorubicin (VXLD). ‘Relapse' xenografts were characterized by responses to drugs, changes in gene expression profiles and Connectivity Map (CMap) prediction of strategies to reverse drug resistance. Two of four xenografts developed ex vivo and in vivo drug resistance. Both resistant lines showed altered lipid and cholesterol metabolism, yet they had a distinct drug resistance pattern. CMap analyses reinforced these features, identifying the cholesterol pathway inhibitor simvastatin (SVT) as a potential therapy to overcome resistance. Combined ex vivo with DEX, SVT was significantly synergistic, yet when administered in vivo with VXLD it did not delay leukemia progression. Synergy of SVT with established chemotherapy may depend on higher drug doses than are tolerable in this model. Taken together, we have developed a clinically relevant in vivo model of T-ALL suitable to examine the emergence of drug resistance and to identify novel therapies. PMID:25083816

  20. HLA-A11 is associated with poor prognosis in childhood acute lymphoblastic leukemia (ALL).

    PubMed

    Orgad, S; Cohen, I J; Neumann, Y; Vogel, R; Kende, G; Ramot, B; Zaizov, R; Gazit, E

    1988-12-01

    A possible association between HLA antigens, susceptibility or resistance to leukemia, and responsiveness to treatment has been studied in 144 patients with childhood acute lymphoblastic leukemia (ALL) and compared to other prognostic factors, i.e. white blood cell (WBC) counts, age at onset, sex, ethnic origin, and cell surface markers. All sequentially newly diagnosed children (97) comprised the group for the prospective study (PSG) and were followed for 6 years. The group included 37 patients classified as T-ALL, 41 as CALLA+, 27 as NULL, 12 as B and pre-B, and 27 unclassified patients, who were diagnosed before 1980. During the follow-up period, 45 patients of the PSG died. Forty-seven patients designated long-term survivors (LTS) have been followed 6-20 years after diagnosis, having completed a 3-5 year course of anti-leukemia therapy, and having remained disease free thereafter. High WBC counts at diagnosis and T-cell-surface markers were associated with poor prognosis, as were enthnic origin and specific HLA antigens. Thus, there was one (1) a significant increase in HLA-A30 and a decrease in HLA B-14 in the PSG Jewish patients; and (2) a complete absence of HLA-ALL in LTS while, in the PSG, 8 of 9 HLA-All-positive patients died during the follow-up period. This suggests that HLA-All is associated with poor prognosis in childhood ALL. PMID:3199882

  1. Acute lymphoblastic leukemia: A single center experience with Berlin, Frankfurt, and Munster-95 protocol

    PubMed Central

    Radhakrishnan, Venkatraman; Gupta, Sumant; Ganesan, Prasanth; Rajendranath, Rejiv; Ganesan, Trivadi S.; Rajalekshmy, Kamalalayan Raghavan; Sagar, Tenali Gnana

    2015-01-01

    Background: There is a paucity of data on the outcome following the treatment for acute lymphoblastic leukemia (ALL) from developing countries. Materials and Methods: Two hundred and thirty-eight consecutive patients with ALL <30 years of age diagnosed between January 2005 and December 2011 were analyzed retrospectively. Patients were treated modified Berlin, Frankfurt, and Munster 95 protocol. Event-free survival (EFS) was calculated using Kaplan–Meier survival analysis and variables were compared using log-rank test. Results: The EFS was 63.4% at a median follow-up was 32.7 months. On univariate analysis National Cancer Institute (NCI) risk stratification, sex, white blood cell count, day 8 blast clearance, and income were significantly associated with EFS. However, on multivariate analysis only female sex (P = 0.01) and day 8 blast clearance (P = 0.006) were significantly associated with EFS. Seventy-four of 238 (31%) patients had recurrent leukemia. The common sites of relapse were bone marrow in 55/74 (75%) patients and central nervous system in 11/74 (20%) patients. Conclusion: Compared to western data, there was an increased proportion of NCI high-risk patients and T-cell immunophenotype in our study. There has been an improvement in outcome of patients with ALL at our center over the last 2 decades. Female sex and clearance of blast in peripheral blood by day 8 of induction was associated with better EFS. PMID:26811597

  2. Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies

    PubMed Central

    van der Velden, Vincent H. J.; Brüggemann, Monika; Orfao, Alberto

    2015-01-01

    Monitoring of minimal residual disease (MRD) has become routine clinical practice in frontline treatment of virtually all childhood acute lymphoblastic leukemia (ALL) and in many adult ALL patients. MRD diagnostics has proven to be the strongest prognostic factor, allowing for risk group assignment into different treatment arms, ranging from significant treatment reduction to mild or strong intensification. Also in relapsed ALL patients and patients undergoing stem cell transplantation, MRD diagnostics is guiding treatment decisions. This is also why the efficacy of innovative drugs, such as antibodies and small molecules, are currently being evaluated with MRD diagnostics within clinical trials. In fact, MRD measurements might well be used as a surrogate end point, thereby significantly shortening the follow-up. The MRD techniques need to be sensitive (≤10−4), broadly applicable, accurate, reliable, fast, and affordable. Thus far, flow cytometry and polymerase chain reaction (PCR) analysis of rearranged immunoglobulin and T-cell receptor genes (allele-specific oligonucleotide [ASO]-PCR) are claimed to meet these criteria, but classical flow cytometry does not reach a solid 10−4, whereas classical ASO-PCR is time-consuming and labor intensive. Therefore, 2 high-throughput technologies are being explored, ie, high-throughput sequencing and next-generation (multidimensional) flow cytometry, both evaluating millions of sequences or cells, respectively. Each of them has specific advantages and disadvantages. PMID:25999452

  3. Comparative assessment of therapeutic safety of norcantharidin, N-farnesyloxy-norcantharimide, and N-farnesyl-norcantharimide against Jurkat T cells relative to human normal lymphoblast

    PubMed Central

    Chang, Ming-Che; Wu, Jin-Yi; Liao, Hui-Fen; Chen, Yu-Jen; Kuo, Cheng-Deng

    2016-01-01

    Abstract The therapeutic safety of an anticancer drug is one of the most important concerns of the physician treating the cancer patient. Half maximal inhibitory concentration (IC50) and hillslope are usually used to represent the strength and sensitivity of an anticancer drug on cancer cells. The therapeutic safety of the anticancer drug can be assessed by comparing the IC50 and hillslope of anticancer drugs on cancer cells relative to normal cells. Since there are situations where “more anticancer activity” implies “more toxicity,” the safety of an anticancer drug in these situations is hard to evaluate by using IC50 and hillslope alone. In a previous study, the “net effect” index was devised to represent the net therapeutic effects of one anticancer drug relative to the other. However, the therapeutic safety of one specific anticancer drug alone was not defined in the “net effect” index. This study introduced the “safety index (SI)” to quantify the degree of safety of an anticancer drug by using 4-parameter logistic model on cancer cells relative to normal cells. The therapeutic safety of norcantharidin (NCTD), N-farnesyloxy-norcantharimide (NOC15), and N-farnesyl-norcantharimide (NC15) in the treatment of Jurkat T cells relative to human normal lymphoblast was compared using the newly defined SI. We found that the SI of NOC15 and NC15 was significantly higher than that of NCTD, suggesting that both NOC15 and NC15 can damage more cancer cells and less normal cells than NCTD. We conclude that both NOC15 and NC15 are safer anticancer drugs than NCTD in the treatment of Jurkat T cells relative to human normal lymphoblast. The SI can be further applied to the screening, developments, and applications of anticancer drugs in the future. PMID:27495082

  4. Economic evaluation of treatment for acute lymphoblastic leukaemia in childhood.

    PubMed

    Rae, C; Furlong, W; Jankovic, M; Moghrabi, Albert; Naqvi, A; Sala, A; Samson, Y; DePauw, S; Feeny, D; Barr, R

    2014-11-01

    Berlin-Frankfurt-Munster (BFM) and Dana-Farber Cancer Institute (DFCI) consortia's treatment strategies for acute lymphoblastic leukaemia (ALL) in children are widely used. We compared the health effects and monetary costs of hospital treatments for these two strategies. Parents of children treated at seven centres in Canada, Italy and the USA completed health-related quality of life (HRQL) assessments during four active treatment phases and at 2 years after treatment. Mean HRQL scores were used to calculate quality-adjusted life years (QALYs) for a period of 5 years following diagnosis. Total costs of treatment were determined from variables in administrative databases in a universally accessible and publicly funded healthcare system. Valid HRQL assessments (n = 1200) were collected for 307 BFM and 317 DFCI patients, with costs measured for 66 BFM and 28 DFCI patients. QALYs per patient were <1.0% greater for BFM than DFCI. Median HRQL scores revealed no difference in QALYs. The difference in mean total costs for BFM (US$88 480) and DFCI (US$93 026) was not significant (P = 0.600). This study provides no evidence of superiority for one treatment strategy over the other. Current BFM or DFCI strategies should represent conventional management for the next economic evaluation of treatments for ALL in childhood. PMID:24393150

  5. [Transient hyperphosphatasemia observed in a boy with acute lymphoblastic leukemia].

    PubMed

    Kikuchi, S; Fujikawa, S; Hara, K; Ohira, M; Kojima, C; Maekawa, M

    1997-08-01

    A detailed time course of alkaline phosphatase (ALP; EC3.1.3.1) activity of transient hyperphosphatasemia (TH) in a 9-year-old boy with acute lymphoblastic leukemia (ALL) is described. The patient's serum ALP activity rose transiently to 49 times the upper limit of normal adult, without any evidences of hepatic and bone disease. The half-life of ALP activity was calculated about 10 days. We characterized ALP isoenzymes by usual electrophoresis using cellulose acetate membrane (Titan III iso-vis) and polyacrylamide disc gel (AlkPhor), and isoelectric focusing using polyacrylamide slab gel. The former two methods showed typical two bands (fast-alpha 2 and alpha 2 beta bands) and the latter one method revealed more basic bands of liver and bone, suggesting the extensive sialylation. The patient complained fever and diarrhea. Enterococcus faecium was detected from his stool. Etiologically, two more patients in the same ward showed TH in the same period. It suggested TH would be occurred by infectious states. Awareness of such benign forms of hyperphosphatasemia not related to malignancy will aid the physician in the differential diagnosis of elevated ALP activity. PMID:9283233

  6. Oligoclonality and new agent evaluation in acute lymphoblastic leukaemia.

    PubMed

    Gaynon, Paul S; Sun, Weili

    2016-06-01

    New agent development rests on the fundamental assumption that candidate agents or drug combinations that induce objective responses after relapse will prevent relapse, if applied prior to relapse. However, cumulative experience now includes at least 5 examples of interventions with post-relapse objective response rates greater than 50% that failed to improve outcomes when applied prior to relapse. Emerging insights into oligoclonality provide some explanation. In acute lymphoblastic leukaemia, the predominant clones at relapse differ from the predominant clones at presentation. Arguably, the more highly proliferative clones that predominate at relapse differ in drug sensitivity from the less proliferative clones that escape primary therapy. Interventions effective against the predominant clones at relapse may have no effect on the antecedent escapee clones. Response is not sufficient in new agent development. Duration of response has attracted less attention because of variability in post-remission therapy but some patient subsets have such a uniformly dismal outcome that details of post-remission therapy may be irrelevant. Benchmarks are needed. Are recovering blasts members of the same clone or do they represent a new clone? When you eradicate the predominant clones you get a response. When you eradicate all clones, you get a cure. PMID:27221005

  7. Personalization of dexamethasone therapy in childhood acute lymphoblastic leukaemia.

    PubMed

    Jackson, Rosanna K; Irving, Julie A E; Veal, Gareth J

    2016-04-01

    Dexamethasone is a key component in the treatment of childhood acute lymphoblastic leukaemia (ALL). Despite playing a key role in the improved survival of ALL over several decades, intensification of dexamethasone therapy has also contributed to the increased toxicity associated with treatment, which is now seen to be at unacceptable levels given the favourable disease prognosis. Therefore the focus for treatment is now shifting towards reducing toxicity whilst maintaining current survival rates. As approximately 50% of patients were successfully treated on less intensive protocols of the 1980s, it has been questioned whether therapy intensification is necessary in all patients. Furthermore, there remains a subset of children who are still not cured of their disease. New strategies are therefore needed to identify patients who could benefit from dose reduction or intensification. However, adjusting a potentially life threatening therapy is a challenging task, particularly given the heterogeneous nature of ALL. This review focuses on the potential for patient stratification based on our current knowledge of dexamethasone pharmacokinetics, pharmacogenetics and the action of dexamethasone at the cellular level. A carefully designed, combined approach is needed if we are to achieve the aim of improved personalization of dexamethasone therapy for future patients. PMID:26729065

  8. A 50-Year Journey to Cure Childhood Acute Lymphoblastic Leukemia

    PubMed Central

    Pui, Ching-Hon; Evans, William E.

    2013-01-01

    The 50th anniversary of Seminars in Hematology coincides with the 50th of St. Jude Children’s Research Hospital, and both milestones are inexorably linked to studies contributing to the cure of childhood acute lymphoblastic leukemia (ALL). We thought it fitting, therefore, to mark these events by traveling back in time to point out some of the achievements, institutions, study groups and individuals that have made cure of childhood ALL a reality. In many instances, progress was driven by new ideas, while in others it was driven by new experimental tools that allowed more precise assessment of the biology of leukemic blasts and their utility in selecting therapy. We also discuss a number of contemporary advances that point the way to exciting future directions. Whatever pathways are taken, a clear challenge will be to use emerging genome-based or immunologic-based treatment options in ways that will enhance, rather than duplicate or compromise, recent gains in outcome with classic cytotoxic chemotherapy. The theme of this journey serves as a reminder of the chief ingredient of any research directed to a catastrophic disease such as ALL. It is the audacity of a small group of investigators who confronted a childhood cancer with the goal of cure, not palliation, as their mindset. PMID:23953334

  9. Targeting bone marrow lymphoid niches in acute lymphoblastic leukemia.

    PubMed

    Uy, Geoffrey L; Hsu, Yen-Michael S; Schmidt, Amy P; Stock, Wendy; Fletcher, Theresa R; Trinkaus, Kathryn M; Westervelt, Peter; DiPersio, John F; Link, Daniel C

    2015-12-01

    In acute lymphoblastic leukemia (ALL) the bone marrow microenvironment provides growth and survival signals that may confer resistance to chemotherapy. Granulocyte colony-stimulating factor (G-CSF) potently inhibits lymphopoiesis by targeting stromal cells that comprise the lymphoid niche in the bone marrow. To determine whether lymphoid niche disruption by G-CSF sensitizes ALL cells to chemotherapy, we conducted a pilot study of G-CSF in combination with chemotherapy in patients with relapsed or refractory ALL. Thirteen patients were treated on study; three patients achieved a complete remission (CR/CRi) for an overall response rate of 23%. In the healthy volunteers, G-CSF treatment disrupted the lymphoid niche, as evidenced by reduced expression of CXCL12, interleukin-7, and osteocalcin. However, in most patients with relapsed/refractory ALL expression of these genes was markedly suppressed at baseline. Thus, although G-CSF treatment was associated with ALL cell mobilization into the blood, and increased apoptosis of bone marrow resident ALL cells, alterations in the bone marrow microenvironment were modest and highly variable. These data suggest that disruption of lymphoid niches by G-CSF to sensitize ALL cells to chemotherapy may be best accomplished in the consolidation where the bone marrow microenvironment is more likely to be normal. PMID:26467815

  10. Acute Lymphoblastic Leukemia with Eosinophilia and Strongyloides stercoralis Hyperinfection

    PubMed Central

    Nesheli, Hassan Mahmoodi; Moghaddam, Tahereh Galini; Zahedpasha, Yadollah; Norouzi, Ali-Reza

    2011-01-01

    Background Acute lymphoblastic leukemia (ALL) is the most common malignancy in children. Bone pain is an important symptom that can be severe. Eosinophilia without any other abnormal laboratory findings is rare in ALL. Strongyloides stercoralis in ALL causes disseminated fatal disease. Case Presentation This 9-year-old girl presented with bone pain in lumbar region. Bone pain was the only symptom. The patient didn't have organomegaly. The BM samples were studied by flow cytometry, which showed pre-B cell ALL. Larva of Strongyloides stercoralis was found in fecal examination. Plain chest x ray showed bilateral para-cardiac infiltration. Strongyloidiasis was treated before starting chemotherapy. After two days treatment with Mebendazol the patient developed cough, dyspnea, respiratory distress and fever. The treatment changed to Ivermectin for 2 days. Chemotherapy started five days after diagnosis of leukemia. Conclusion The patient complained merely of bone pain in lumbar region without any other signs and symptoms. Peripheral blood smear showed eosinophilia without any other abnormality. Stool examination showed Strongyloides stercoralis larvae. We suggest that all patients diagnosed as ALL in tropical and subtropical regions should be evaluated for parasitic infection especially with Strongyloides stercoralis. PMID:23056848

  11. Outcome following late marrow relapse in childhood acute lymphoblastic leukemia

    SciTech Connect

    Chessells, J.; Leiper, A.; Rogers, D.

    1984-10-01

    Thirty-four children with acute lymphoblastic leukemia, who developed bone marrow relapse after treatment was electively stopped, received reinduction, consolidation, continuing therapy, and intrathecal (IT) methotrexate (MTX). Sixteen children who relapsed within six months of stopping treatment had a median second-remission duration of 26 weeks; all next relapses occurred in the bone marrow. In 18 children who relapsed later, the median duration of second remission was in excess of two years, but after a minimum of four years follow-up, 16 patients have so far relapsed again (six in the CNS). CNS relapse occurred as a next event in four of 17 children who received five IT MTX injections only and in two of 14 children who received additional regular IT MTX. Although children with late marrow relapses may achieve long second remissions, their long-term out-look is poor, and regular IT MTX does not afford adequate CNS prophylaxis. It remains to be seen whether more intensive chemotherapy, including high-dose chemoradiotherapy and bone marrow transplantation, will improve the prognosis in this group of patients.

  12. Genetic and epigenetic characterization of hypodiploid acute lymphoblastic leukemia

    PubMed Central

    Safavi, Setareh; Olsson, Linda; Biloglav, Andrea; Veerla, Srinivas; Blendberg, Molly; Tayebwa, Johnbosco; Behrendtz, Mikael; Castor, Anders; Hansson, Markus; Johansson, Bertil; Paulsson, Kajsa

    2015-01-01

    Purpose To investigate the genetic and epigenetic landscape of hypodiploid (<45 chromosomes) acute lymphoblastic leukemia (ALL). Methods Single nucleotide polymorphism array, whole exome sequencing, RNA sequencing, and methylation array analyses were performed on eleven hypodiploid ALL cases. Results In line with previous studies, mutations in IKZF3 and FLT3 were detected in near-haploid (25–30 chromosomes) cases. Low hypodiploidy (31–39 chromosomes) was associated with somatic TP53 mutations. Notably, mutations of this gene were also found in 3/3 high hypodiploid (40–44 chromosomes) cases, suggesting that the mutational patterns are similar in low hypodiploid and high hypodiploid ALL. The high hypodiploid ALLs frequently displayed substantial cell-to-cell variability in chromosomal content, indicative of chromosomal instability; a rare phenomenon in ALL. Gene expression analysis showed that genes on heterodisomic chromosomes were more highly expressed in hypodiploid cases. Cases clustered according to hypodiploid subtype in the unsupervised methylation analyses, but there was no association between chromosomal copy number and methylation levels. A comparison between samples obtained at diagnosis and relapse showed that the relapse did not arise from the major diagnostic clone in 3/4 cases. Conclusion Taken together, our data support the conclusion that near-haploid and low hypodiploid ALL are different with regard to mutational profiles and also suggest that ALL cases with high hypodiploidy may harbor chromosomal instability. PMID:26544893

  13. Longitudinal language outcomes following intrathecal chemotherapy for acute lymphoblastic leukaemia.

    PubMed

    Lewis, Fiona M; Perry, Meghan L; Murdoch, Bruce E

    2013-04-01

    Intrathecal chemotherapy (ITC) is the treatment option for acute lymphoblastic leukaemia (ALL). Neurocognitive deficits have been described following ITC, but language status post-treatment is yet to be clarified. This study examined the language skills of nine children following ITC for ALL (mean age 7;8 years and 3;2 years post-diagnosis at baseline measurement) and nine age- and sex-matched controls, at baseline then 2 years later, using a battery of tests assessing general language skills. An assessment of cognitively-demanding high level language skills was undertaken on a sub-group of the children (n =12). Statistical analysis revealed no significant difference between children treated with ITC and controls when comparing change in performance scores from baseline measurement to 2 years post-baseline measurement. Descriptive analysis of three of the ALL participants in the Intermediate Stage survivorship at language re-assessment indicated no clinically-significant change in performance over 2 years for all measures except receptive language skills, which improved over the time for two of the children. As language skills continue to develop into late adolescence, the need for the monitoring of language abilities of children treated at a young age with ITC as they enter the Intermediate and Late Stages of survivorship is discussed. PMID:22663017

  14. Suppressed neutrophil function in children with acute lymphoblastic leukemia.

    PubMed

    Tanaka, Fumiko; Goto, Hiroaki; Yokosuka, Tomoko; Yanagimachi, Masakatsu; Kajiwara, Ryosuke; Naruto, Takuya; Nishimaki, Shigeru; Yokota, Shumpei

    2009-10-01

    Infection is a major obstacle in cancer chemotherapy. Neutropenia has been considered to be the most important risk factor for severe infection; however, other factors, such as impaired neutrophil function, may be involved in susceptibility to infection in patients undergoing chemotherapy. In this study, we analyzed neutrophil function in children with acute lymphoblastic leukemia (ALL). Whole blood samples were obtained from 16 children with ALL at diagnosis, after induction chemotherapy, and after consolidation chemotherapy. Oxidative burst and phagocytic activity of neutrophils were analyzed by flow cytometry. Oxidative burst of neutrophils was impaired in ALL patients. The percentage of neutrophils with normal oxidative burst after PMA stimulation was 59.0 +/- 13.2 or 70.0 +/- 21.0% at diagnosis or after induction chemotherapy, respectively, which was significantly lower compared with 93.8 +/- 6.1% in healthy control subjects (P = 0.00004, or 0.002, respectively); however, this value was normal after consolidation chemotherapy. No significant differences were noted in phagocytic activity in children with ALL compared with healthy control subjects. Impaired oxidative burst of neutrophils may be one risk factor for infections in children with ALL, especially in the initial periods of treatment. PMID:19728023

  15. Acute Lymphoblastic Leukemia Transformation in Polycythemia Vera: A Rare Phenomenon.

    PubMed

    Gaweł, Władysław B; Helbig, Grzegorz; Boral, Kinga; Kyrcz-Krzemień, Sławomira

    2016-06-01

    Leukemic transformation in patients diagnosed with polycythemia vera (PV) is associated with poor prognosis and median survival not exceeding 3 months. To date only a few cases of post-PV acute lymphoblastic leukemia (ALL) have been reported. A 64-year-old female patient developed ALL 4 years after she had met PV criteria. At PV diagnosis a molecular study was positive for the JAK2V617F mutation. Due to high risk features (history of deep vein thrombosis) she was treated with hydroxyurea (HU) with moderate efficacy. She became anemic and thrombocytopenic with mild leukocytosis while still on HU. Blood and bone marrow smears revealed 40 and 100 % of blast cells, respectively. The immunophenotyping of blasts was consistent with a diagnosis of early precursor B cell ALL. She was found to be positive for the JAK2V617F mutation. Patient received an ALL induction regimen and achieved complete remission with negative minimal residual disease by flow cytometry. The post-chemotherapy study for the JAK2V617F mutation was positive. Patient has remained in remission for 4 months. A suitable donor searching was initiated. Post-PV ALL is an extremely rare phenomenon. Due to poor prognosis, an allogeneic stem cell transplantation should be considered in fit patients who achieved remission. PMID:27408357

  16. Ancestry and pharmacogenomics of relapse in acute lymphoblastic leukemia.

    PubMed

    Yang, Jun J; Cheng, Cheng; Devidas, Meenakshi; Cao, Xueyuan; Fan, Yiping; Campana, Dario; Yang, Wenjian; Neale, Geoff; Cox, Nancy J; Scheet, Paul; Borowitz, Michael J; Winick, Naomi J; Martin, Paul L; Willman, Cheryl L; Bowman, W Paul; Camitta, Bruce M; Carroll, Andrew; Reaman, Gregory H; Carroll, William L; Loh, Mignon; Hunger, Stephen P; Pui, Ching-Hon; Evans, William E; Relling, Mary V

    2011-03-01

    Although five-year survival rates for childhood acute lymphoblastic leukemia (ALL) are now over 80% in most industrialized countries, not all children have benefited equally from this progress. Ethnic differences in survival after childhood ALL have been reported in many clinical studies, with poorer survival observed among African Americans or those with Hispanic ethnicity when compared with European Americans or Asians. The causes of ethnic differences remain uncertain, although both genetic and non-genetic factors are likely important. Interrogating genome-wide germline SNP genotypes in an unselected large cohort of children with ALL, we observed that the component of genomic variation that co-segregated with Native American ancestry was associated with risk of relapse (P = 0.0029) even after adjusting for known prognostic factors (P = 0.017). Ancestry-related differences in relapse risk were abrogated by the addition of a single extra phase of chemotherapy, indicating that modifications to therapy can mitigate the ancestry-related risk of relapse. PMID:21297632

  17. Pharmacogenetic studies in children with acute lymphoblastic leukemia in Argentina.

    PubMed

    Aráoz, Hilda Verónica; D'Aloi, Karina; Foncuberta, María Eugenia; Sanchez La Rosa, Christian Germán; Alonso, Cristina Noemí; Chertkoff, Lilien; Felice, Marisa

    2015-05-01

    The aim of this study was to evaluate the influence of the most common genetic variants in methylenetetrahydrofolate reductase (MTHFR), thiopurine methyltransferase (TPMT) and glutathione-S-transferases (GSTs) on the outcome of acute lymphoblastic leukemia (ALL) treatment in Argentinean children. Two hundred and eighty-six patients with ALL treated with two Berlin-Frankfurt-Münster (BFM)-based protocols were analyzed. Ten genetic variants were studied. Toxicity was evaluated during the consolidation phase. Children who received 2 g/m(2)/day of methotrexate and carried at least one 677T allele in MTHFR showed an increased risk of developing severe leukopenia (p = 0.004) and neutropenia (p = 0.003). Intermediate-risk (IR) patients with a heterozygous TPMT genotype had a higher probability of event-free survival than those with a wild-type genotype. Genotyping of MTHFR polymorphisms might be useful to optimize consolidation therapy, reducing the associated severe hematologic toxicity. Further studies are necessary to establish the usefulness of MTHFR and TPMT variants as additional markers to predict outcome in the IR group. PMID:25110820

  18. BCL6 modulation of acute lymphoblastic leukemia response to chemotherapy.

    PubMed

    Slone, William L; Moses, Blake S; Hare, Ian; Evans, Rebecca; Piktel, Debbie; Gibson, Laura F

    2016-04-26

    The bone marrow niche has a significant impact on acute lymphoblastic leukemia (ALL) cell phenotype. Of clinical relevance is the frequency with which quiescent leukemic cells, in this niche, survive treatment and contribute to relapse. This study suggests that marrow microenvironment regulation of BCL6 in ALL is one factor that may be involved in the transition between proliferative and quiescent states of ALL cells. Utilizing ALL cell lines, and primary patient tumor cells we observed that tumor cell BCL6 protein abundance is decreased in the presence of primary human bone marrow stromal cells (BMSC) and osteoblasts (HOB). Chemical inhibition, or shRNA knockdown, of BCL6 in ALL cells resulted in diminished ALL proliferation. As many chemotherapy regimens require tumor cell proliferation for optimal efficacy, we investigated the consequences of constitutive BCL6 expression in leukemic cells during co-culture with BMSC or HOB. Forced chronic expression of BCL6 during co-culture with BMSC or HOB sensitized the tumor to chemotherapy induced cell death. Combination treatment of caffeine, which increases BCL6 expression in ALL cells, with chemotherapy extended the event free survival of mice. These data suggest that BCL6 is one factor, modulated by microenvironment derived cues that may contribute to regulation of ALL therapeutic response. PMID:27015556

  19. Stem Cell Hierarchy and Clonal Evolution in Acute Lymphoblastic Leukemia

    PubMed Central

    Lang, Fabian; Wojcik, Bartosch; Rieger, Michael A.

    2015-01-01

    Cancer is characterized by a remarkable intertumoral, intratumoral, and cellular heterogeneity that might be explained by the cancer stem cell (CSC) and/or the clonal evolution models. CSCs have the ability to generate all different cells of a tumor and to reinitiate the disease after remission. In the clonal evolution model, a consecutive accumulation of mutations starting in a single cell results in competitive growth of subclones with divergent fitness in either a linear or a branching succession. Acute lymphoblastic leukemia (ALL) is a highly malignant cancer of the lymphoid system in the bone marrow with a dismal prognosis after relapse. However, stabile phenotypes and functional data of CSCs in ALL, the so-called leukemia-initiating cells (LICs), are highly controversial and the question remains whether there is evidence for their existence. This review discusses the concepts of CSCs and clonal evolution in respect to LICs mainly in B-ALL and sheds light onto the technical controversies in LIC isolation and evaluation. These aspects are important for the development of strategies to eradicate cells with LIC capacity. Common properties of LICs within different subclones need to be defined for future ALL diagnostics, treatment, and disease monitoring to improve the patients' outcome in ALL. PMID:26236346

  20. Pediatric Acute Lymphoblastic Leukemia and Exposure to Pesticides

    PubMed Central

    Soldin, Offie P.; Nsouly-Maktabi, Hala; Genkinger, Jeanine M.; Loffredo, Christopher A.; Ortega-Garcia, Juan Antonio; Colantino, Drew; Barr, Dana B.; Luban, Naomi L.; Shad, Aziza T.; Nelson, David

    2013-01-01

    Organophosphates are pesticides ubiquitous in the environment and have been hypothesized as one of the risk factors for acute lymphoblastic leukemia (ALL). In this study, we evaluated the associations of pesticide exposure in a residential environment with the risk for pediatric ALL. This is a case–control study of children newly diagnosed with ALL, and their mothers (n = 41 child–mother pairs) were recruited from Georgetown University Medical Center and Children's National Medical Center in Washington, DC, between January 2005 and January 2008. Cases and controls were matched for age, sex, and county of residence. Environmental exposures were determined by questionnaire and by urinalysis of pesticide metabolites using isotope dilution gas chromatography–high-resolution mass spectrometry. We found that more case mothers (33%) than controls (14%) reported using insecticides in the home (P < 0.02). Other environmental exposures to toxic substances were not significantly associated with the risk of ALL. Pesticide levels were higher in cases than in controls (P < 0.05). Statistically significant differences were found between children with ALL and controls for the organophosphate metabolites diethylthiophosphate (P < 0.03) and diethyldithiophosphate (P < 0.05). The association of ALL risk with pesticide exposure merits further studies to confirm the association. PMID:19571777

  1. Transplant Outcomes for Children with Hypodiploid Acute Lymphoblastic Leukemia

    PubMed Central

    Mehta, Parinda A.; Zhang, Mei-Jie; Eapen, Mary; He, Wensheng; Seber, Adriana; Gibson, Brenda; Camitta, Bruce M.; Kitko, Carrie L.; Dvorak, Christopher C.; Nemecek, Eneida R.; Frangoul, Haydar A.; Abdel-Azim, Hisham; Kasow, Kimberly A.; Lehmann, Leslie; Vicent, Marta Gonzalez; Diaz Pérez, Miguel A.; Ayas, Mouhab; Qayed, Muna; Carpenter, Paul A.; Jodele, Sonata; Lund, Troy C.; Leung, Wing H.; Davies, Stella M.

    2015-01-01

    Children with hypodiploid acute lymphoblastic leukemia (ALL) have inferior outcomes despite intensive risk adapted chemotherapy regimens. We describe 78 children with hypodiploid ALL who underwent hematopoietic stem cell transplant (HSCT) between 1990 and 2010. Thirty nine (50%) patients had ≤ 43 chromosomes, 12 (15%) had 44 chromosomes and 27 (35%) had 45 chromosomes. Forty three (55%) patients were transplanted in first remission (CR1) while 35 (45%) were transplanted in ≥CR2. Twenty nine patients (37%) received a graft from a related donor and 49 (63%) from an unrelated donor. All patients received a myeloablative conditioning regimen. The 5-year probabilities of leukemia-free survival (LFS), overall survival (OS), relapse, and treatment related mortality (TRM) for the entire cohort were 51%, 56%, 27% and 22% respectively. Multivariate analysis confirmed that mortality risks were higher for patients transplanted in CR2 (HR 2.16, p=0.05), with chromosome number ≤43 (HR 2.15, p=0.05) and for those transplanted in the first decade of the study period (HR 2.60, p=0.01). Similarly, treatment failure risks were higher with chromosome number ≤43 (HR 2.28, p=0.04) and the earlier transplant period (HR 2.51, p=0.01). Although survival is better with advances in donor selection and supportive care, disease-related risk factors significantly influence transplantation outcomes. PMID:25865650

  2. The molecular genetic makeup of acute lymphoblastic leukemia.

    PubMed

    Mullighan, Charles G

    2012-01-01

    Genomic profiling has transformed our understanding of the genetic basis of acute lymphoblastic leukemia (ALL). Recent years have seen a shift from microarray analysis and candidate gene sequencing to next-generation sequencing. Together, these approaches have shown that many ALL subtypes are characterized by constellations of structural rearrangements, submicroscopic DNA copy number alterations, and sequence mutations, several of which have clear implications for risk stratification and targeted therapeutic intervention. Mutations in genes regulating lymphoid development are a hallmark of ALL, and alterations of the lymphoid transcription factor gene IKZF1 (IKAROS) are associated with a high risk of treatment failure in B-ALL. Approximately 20% of B-ALL cases harbor genetic alterations that activate kinase signaling that may be amenable to treatment with tyrosine kinase inhibitors, including rearrangements of the cytokine receptor gene CRLF2; rearrangements of ABL1, JAK2, and PDGFRB; and mutations of JAK1 and JAK2. Whole-genome sequencing has also identified novel targets of mutation in aggressive T-lineage ALL, including hematopoietic regulators (ETV6 and RUNX1), tyrosine kinases, and epigenetic regulators. Challenges for the future are to comprehensively identify and experimentally validate all genetic alterations driving leukemogenesis and treatment failure in childhood and adult ALL and to implement genomic profiling into the clinical setting to guide risk stratification and targeted therapy. PMID:23233609

  3. Escin sodium induces apoptosis of human acute leukemia Jurkat T cells.

    PubMed

    Zhang, Zhenzhen; Gao, Jian; Cai, Xueting; Zhao, Youlong; Wang, Yafei; Lu, Wuguang; Gu, Zhenhua; Zhang, Shuangquan; Cao, Peng

    2011-12-01

    Escin sodium has been used in the clinic as an antioedematous, antiexudative and vasoprotective agent for many years and has shown excellent tolerability. However, little is known about its anticancer activity. This is a report for the first time that escin sodium exerts a cytotoxic effect on human acute leukemia Jurkat T cells via the induction of apoptosis rather than cell cycle arrest. Escin sodium activated the initiator caspase-8, -9, and the effector caspase-3, degraded poly (ADP-ribose) polymerase (PARP) and attenuated the expression of Bcl-2. In addition, escin sodium inhibited the growth of cancer cells in a selective manner with Jurkat cells most sensitive to it. Taken together, the data show that escin sodium possesses potent apoptogenic activity toward human acute leukemia Jurkat T cells. PMID:21452372

  4. Alterations of bone mineral metabolism of children with different cell lineage types of acute lymphoblastic leukaemia under chemotherapy

    PubMed Central

    Tragiannidis, A; Dokos, Ch; Sidi, V; Papageorgiou, Th; Koliouskas, D; Karamouzis, M; Papastergiou, Ch; Tsitouridis, I; Katzos, G; Rousso, I; Athanassiadou-Piperopoulou, F

    2011-01-01

    Background: Children with haematological malignancies such as acute lymphoblastic leukaemia (ALL) may have alteration of bone mineral metabolism therefore increased risk for osteopenia and osteoporosis. Patients and Methods: The purpose of this study was to examine the alterations of bone mineral metabolism in two groups of children (n=42) according to immunophenotyping (B-cell type, T-cell type) both quantitative (bone mineral density z-scores) and qualitative (serum osteocalcin - OC and carboxyl-terminal telopeptide of human type I collagen - ICTP) during diagnosis (T=0), after the intensified chemotherapy period (T=0.5) and the consolidation period (T=1). Results: According to our results 15 patients had osteopenia and 1 child developed osteoporosis at T=0.5 and 13 patients had osteopenia at T=1. Mean BMD z-score was significantly decreased in both groups during chemotherapy and especially statistically significant decline of T-cell type ALL group compared with B-cell type ALL patients. OC mean level remains in low levels for both groups reaching in plateau during chemotherapy and ICTP level was increased in T-cell type ALL group of patients compared with B-cell type in both periods of chemotherapy. Conclusions: It seems that not only the combination of chemotherapeutic agents but also the cell lineage of ALL are important parameters of altering bone mineral metabolism. PMID:21607035

  5. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity

    PubMed Central

    Jacoby, Elad; Nguyen, Sang M.; Fountaine, Thomas J.; Welp, Kathryn; Gryder, Berkley; Qin, Haiying; Yang, Yinmeng; Chien, Christopher D.; Seif, Alix E.; Lei, Haiyan; Song, Young K.; Khan, Javed; Lee, Daniel W.; Mackall, Crystal L.; Gardner, Rebecca A.; Jensen, Michael C.; Shern, Jack F.; Fry, Terry J.

    2016-01-01

    Adoptive immunotherapy using chimeric antigen receptor (CAR) expressing T cells targeting the CD19 B lineage receptor has demonstrated marked success in relapsed pre-B-cell acute lymphoblastic leukaemia (ALL). Persisting CAR-T cells generate sustained pressure against CD19 that may drive unique mechanisms of resistance. Pre-B ALL originates from a committed pre-B cell or an earlier progenitor, with potential to reprogram into other hematopoietic lineages. Here we report changes in lineage markers including myeloid conversion in patients following CD19 CAR therapy. Using murine ALL models we study the long-term effects of CD19 CAR-T cells and demonstrate partial or complete lineage switch as a consistent mechanism of CAR resistance depending on the underlying genetic oncogenic driver. Deletion of Pax5 or Ebf1 recapitulates lineage reprogramming occurring during CD19 CAR pressure. Our findings establish lineage switch as a mechanism of CAR resistance exposing inherent plasticity in genetic subtypes of pre-B-cell ALL. PMID:27460500

  6. CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity.

    PubMed

    Jacoby, Elad; Nguyen, Sang M; Fountaine, Thomas J; Welp, Kathryn; Gryder, Berkley; Qin, Haiying; Yang, Yinmeng; Chien, Christopher D; Seif, Alix E; Lei, Haiyan; Song, Young K; Khan, Javed; Lee, Daniel W; Mackall, Crystal L; Gardner, Rebecca A; Jensen, Michael C; Shern, Jack F; Fry, Terry J

    2016-01-01

    Adoptive immunotherapy using chimeric antigen receptor (CAR) expressing T cells targeting the CD19 B lineage receptor has demonstrated marked success in relapsed pre-B-cell acute lymphoblastic leukaemia (ALL). Persisting CAR-T cells generate sustained pressure against CD19 that may drive unique mechanisms of resistance. Pre-B ALL originates from a committed pre-B cell or an earlier progenitor, with potential to reprogram into other hematopoietic lineages. Here we report changes in lineage markers including myeloid conversion in patients following CD19 CAR therapy. Using murine ALL models we study the long-term effects of CD19 CAR-T cells and demonstrate partial or complete lineage switch as a consistent mechanism of CAR resistance depending on the underlying genetic oncogenic driver. Deletion of Pax5 or Ebf1 recapitulates lineage reprogramming occurring during CD19 CAR pressure. Our findings establish lineage switch as a mechanism of CAR resistance exposing inherent plasticity in genetic subtypes of pre-B-cell ALL. PMID:27460500

  7. Minimal residual disease analysis by eight-color flow cytometry in relapsed childhood acute lymphoblastic leukemia

    PubMed Central

    Karawajew, Leonid; Dworzak, Michael; Ratei, Richard; Rhein, Peter; Gaipa, Giuseppe; Buldini, Barbara; Basso, Giuseppe; Hrusak, Ondrej; Ludwig, Wolf-Dieter; Henze, Günter; Seeger, Karl; von Stackelberg, Arend; Mejstrikova, Ester; Eckert, Cornelia

    2015-01-01

    Multiparametric flow cytometry is an alternative approach to the polymerase chain reaction method for evaluating minimal residual disease in treatment protocols for primary acute lymphoblastic leukemia. Given considerable differences between primary and relapsed acute lymphoblastic leukemia treatment regimens, flow cytometric assessment of minimal residual disease in relapsed leukemia requires an independent comprehensive investigation. In the present study we addressed evaluation of minimal residual disease by flow cytometry in the clinical trial for childhood relapsed acute lymphoblastic leukemia using eight-color flow cytometry. The major challenge of the study was to reliably identify low amounts of residual leukemic cells against the complex background of regeneration, characteristic of follow-up samples during relapse treatment. In a prospective study of 263 follow-up bone marrow samples from 122 patients with B-cell precursor acute lymphoblastic leukemia, we tested various B-cell markers, adapted the antibody panel to the treatment protocol, and evaluated its performance by a blinded parallel comparison with the polymerase chain reaction data. The resulting eight-color single-tube panel showed a consistently high overall concordance (P<0.001) and, under optimal conditions, sensitivity similar to that of the reference polymerase chain reaction method. Overall, evaluation of minimal residual disease by flow cytometry can be successfully integrated into the clinical management of relapsed childhood acute lymphoblastic leukemia either as complementary to the polymerase chain reaction or as an independent risk stratification tool. ALL-REZ BFM 2002 clinical trial information: NCT00114348 PMID:26001791

  8. Assessing Compliance With Mercaptopurine Treatment in Younger Patients With Acute Lymphoblastic Leukemia in First Remission | Division of Cancer Prevention

    Cancer.gov

    This randomized phase III trial studies compliance to a mercaptopurine treatment intervention compared to standard of care in younger patients with acute lymphoblastic leukemia in remission. Assessing ways to help patients who have acute lymphoblastic leukemia to take their medications as prescribed may help them in taking their medications more consistently and may improve treatment outcomes. |

  9. Sorafenib in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2013-01-08

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia

  10. Meralgia Paresthetica as a Presentation of Acute Appendicitis in a Girl With Acute Lymphoblastic Leukemia.

    PubMed

    Nishimura, Miho; Kodama, Yuichi; Fukano, Reiji; Okamura, Jun; Ogaki, Kippei; Sakaguchi, Yoshihisa; Migita, Masahiro; Inagaki, Jiro

    2015-04-01

    A 7-year-old girl with Philadelphia chromosome-positive acute lymphoblastic leukemia developed recurrent fever and meralgia paresthetica (MP) during chemotherapy, which resolved after administration of antibiotics. Five months after the onset of these symptoms, enhanced computed tomography showed a periappendiceal abscess extending into the psoas muscle. The cause of her fever and MP was thought to be appendicitis, which probably developed during induction chemotherapy but did not result in typical abdominal pain. Patients with recurrent fever and MP should be evaluated by imaging examinations including computed tomography to search for appendicitis. PMID:24942034

  11. Early Gag Immunodominance of the HIV-Specific T-Cell Response during Acute/Early Infection Is Associated with Higher CD8+ T-Cell Antiviral Activity and Correlates with Preservation of the CD4+ T-Cell Compartment

    PubMed Central

    Ghiglione, Yanina; Falivene, Juliana; Socias, María Eugenia; Laufer, Natalia; Coloccini, Romina Soledad; Rodriguez, Ana María; Ruiz, María Julia; Pando, María Ángeles; Giavedoni, Luis David; Cahn, Pedro; Sued, Omar; Salomon, Horacio; Gherardi, María Magdalena

    2013-01-01

    The important role of the CD8+ T-cell response on HIV control is well established. Moreover, the acute phase of infection represents a proper scenario to delineate the antiviral cellular functions that best correlate with control. Here, multiple functional aspects (specificity, ex vivo viral inhibitory activity [VIA] and polyfunctionality) of the HIV-specific CD8+ T-cell subset arising early after infection, and their association with disease progression markers, were examined. Blood samples from 44 subjects recruited within 6 months from infection (primary HIV infection [PHI] group), 16 chronically infected subjects, 11 elite controllers (EC), and 10 healthy donors were obtained. Results indicated that, although Nef dominated the anti-HIV response during acute/early infection, a higher proportion of early anti-Gag T cells correlated with delayed progression. Polyfunctional HIV-specific CD8+ T cells were detected at early time points but did not associate with virus control. Conversely, higher CD4+ T-cell set points were observed in PHI subjects with higher HIV-specific CD8+ T-cell VIA at baseline. Importantly, VIA levels correlated with the magnitude of the anti-Gag cellular response. The advantage of Gag-specific cells may result from their enhanced ability to mediate lysis of infected cells (evidenced by a higher capacity to degranulate and to mediate VIA) and to simultaneously produce IFN-γ. Finally, Gag immunodominance was associated with elevated plasma levels of interleukin 2 (IL-2) and macrophage inflammatory protein 1β (MIP-1β). All together, this study underscores the importance of CD8+ T-cell specificity in the improved control of disease progression, which was related to the capacity of Gag-specific cells to mediate both lytic and nonlytic antiviral mechanisms at early time points postinfection. PMID:23616666

  12. Impairment of T cell development and acute inflammatory response in HIV-1 Tat transgenic mice

    PubMed Central

    Fiume, Giuseppe; Scialdone, Annarita; Albano, Francesco; Rossi, Annalisa; Maria Tuccillo, Franca; Rea, Domenica; Palmieri, Camillo; Caiazzo, Elisabetta; Cicala, Carla; Bellevicine, Claudio; Falcone, Cristina; Vecchio, Eleonora; Pisano, Antonio; Ceglia, Simona; Mimmi, Selena; Iaccino, Enrico; Laurentiis, Annamaria de; Pontoriero, Marilena; Agosti, Valter; Troncone, Giancarlo; Mignogna, Chiara; Palma, Giuseppe; Arra, Claudio; Mallardo, Massimo; Maria Buonaguro, Franco; Scala, Giuseppe; Quinto, Ileana

    2015-01-01

    Immune activation and chronic inflammation are hallmark features of HIV infection causing T-cell depletion and cellular immune dysfunction in AIDS. Here, we addressed the issue whether HIV-1 Tat could affect T cell development and acute inflammatory response by generating a transgenic mouse expressing Tat in lymphoid tissue. Tat-Tg mice showed thymus atrophy and the maturation block from DN4 to DP thymic subpopulations, resulting in CD4+ and CD8+ T cells depletion in peripheral blood. In Tat-positive thymus, we observed the increased p65/NF-κB activity and deregulated expression of cytokines/chemokines and microRNA-181a-1, which are involved in T-lymphopoiesis. Upon LPS intraperitoneal injection, Tat-Tg mice developed an abnormal acute inflammatory response, which was characterized by enhanced lethality and production of inflammatory cytokines. Based on these findings, Tat-Tg mouse could represent an animal model for testing adjunctive therapies of HIV-1-associated inflammation and immune deregulation. PMID:26343909

  13. Impairment of T cell development and acute inflammatory response in HIV-1 Tat transgenic mice.

    PubMed

    Fiume, Giuseppe; Scialdone, Annarita; Albano, Francesco; Rossi, Annalisa; Tuccillo, Franca Maria; Rea, Domenica; Palmieri, Camillo; Caiazzo, Elisabetta; Cicala, Carla; Bellevicine, Claudio; Falcone, Cristina; Vecchio, Eleonora; Pisano, Antonio; Ceglia, Simona; Mimmi, Selena; Iaccino, Enrico; de Laurentiis, Annamaria; Pontoriero, Marilena; Agosti, Valter; Troncone, Giancarlo; Mignogna, Chiara; Palma, Giuseppe; Arra, Claudio; Mallardo, Massimo; Buonaguro, Franco Maria; Scala, Giuseppe; Quinto, Ileana

    2015-01-01

    Immune activation and chronic inflammation are hallmark features of HIV infection causing T-cell depletion and cellular immune dysfunction in AIDS. Here, we addressed the issue whether HIV-1 Tat could affect T cell development and acute inflammatory response by generating a transgenic mouse expressing Tat in lymphoid tissue. Tat-Tg mice showed thymus atrophy and the maturation block from DN4 to DP thymic subpopulations, resulting in CD4(+) and CD8(+) T cells depletion in peripheral blood. In Tat-positive thymus, we observed the increased p65/NF-κB activity and deregulated expression of cytokines/chemokines and microRNA-181a-1, which are involved in T-lymphopoiesis. Upon LPS intraperitoneal injection, Tat-Tg mice developed an abnormal acute inflammatory response, which was characterized by enhanced lethality and production of inflammatory cytokines. Based on these findings, Tat-Tg mouse could represent an animal model for testing adjunctive therapies of HIV-1-associated inflammation and immune deregulation. PMID:26343909

  14. Anticancer activity of cryptotanshinone on acute lymphoblastic leukemia cells.

    PubMed

    Wu, Ching-Fen; Klauck, Sabine M; Efferth, Thomas

    2016-09-01

    Cryptotanshinone, a well-known diterpene quinone from a widely used traditional Chinese herb named Salvia miltiorrhiza, has been reported for its therapeutical potentials on diverse activities. In this study, pharmacological effects of cryptotanshinone on acute lymphoblastic leukemia cells were investigated. IC50 values of 5.0 and 4.8 were obtained in CEM/ADR5000 and CCRF-CEM. Microarray-based mRNA expression revealed that cryptotanshinone regulated genes associated with cell cycle, DNA damage, reactive oxygen species (ROS), NFκB signaling and cellular movement. The involvement of these pathways in the mode of action of cryptotanshinone was subsequently validated by additional independent in vitro studies. Cryptotanshinone stimulated ROS generation and induced DNA damage. It arrested cells in G2/M phase of the cell cycle and induced apoptosis as measured by annexin V-FITC-conjugating fluorescence. The induction of the intrinsic apoptotic pathway by cryptotanshinone was proved by loss of mitochondrial membrane potential and increased cleavage of caspase 3/7, caspase 9 and poly ADP ribose polymerase (PARP). DNA-binding motif analysis of the microarray-retrieved deregulated genes in the promoter region revealed NFκB as potential transcription factor involved in cryptotanshinone's mode of action. Molecular docking and Western blotting provided supportive evidence, suggesting that cryptotanshinone binds to IKK-β and inhibits the translocation of p65 from the cytosol to the nucleus. In addition, cryptotanshinone inhibited cellular movement as shown by a fibronectin-based cellular adhesion assay, indicating that this compound exerts anti-invasive features. In conclusion, cryptotanshinone exerts profound cytotoxicity, which is caused by multispecific modes of actions, including G2/M arrest, apoptosis and inhibition of cellular movement. The inhibitory activities of this compound may be explained by inhibition of NFκB, which orchestrates all these mechanisms. PMID

  15. Nanoparticle targeted therapy against childhood acute lymphoblastic leukemia

    NASA Astrophysics Data System (ADS)

    Satake, Noriko; Lee, Joyce; Xiao, Kai; Luo, Juntao; Sarangi, Susmita; Chang, Astra; McLaughlin, Bridget; Zhou, Ping; Kenney, Elaina; Kraynov, Liliya; Arnott, Sarah; McGee, Jeannine; Nolta, Jan; Lam, Kit

    2011-06-01

    The goal of our project is to develop a unique ligand-conjugated nanoparticle (NP) therapy against childhood acute lymphoblastic leukemia (ALL). LLP2A, discovered by Dr. Kit Lam, is a high-affinity and high-specificity peptidomimetic ligand against an activated α4β1 integrin. Our study using 11 fresh primary ALL samples (10 precursor B ALL and 1 T ALL) showed that childhood ALL cells expressed activated α4β1 integrin and bound to LLP2A. Normal hematopoietic cells such as activated lymphocytes and monocytes expressed activated α4β1 integrin; however, normal hematopoietic stem cells showed low expression of α4β1 integrin. Therefore, we believe that LLP2A can be used as a targeted therapy for childhood ALL. The Lam lab has developed novel telodendrimer-based nanoparticles (NPs) which can carry drugs efficiently. We have also developed a human leukemia mouse model using immunodeficient NOD/SCID/IL2Rγ null mice engrafted with primary childhood ALL cells from our patients. LLP2A-conjugated NPs will be evaluated both in vitro and in vivo using primary leukemia cells and this mouse model. NPs will be loaded first with DiD near infra-red dye, and then with the chemotherapeutic agents daunorubicin or vincristine. Both drugs are mainstays of current chemotherapy for childhood ALL. Targeting properties of LLP2A-conjugated NPs will be evaluated by fluorescent microscopy, flow cytometry, MTS assay, and mouse survival after treatment. We expect that LLP2A-conjugated NPs will be preferentially delivered and endocytosed to leukemia cells as an effective targeted therapy.

  16. Severe Hypertriglyceridemia During Therapy For Childhood Acute Lymphoblastic Leukemia

    PubMed Central

    Bhojwani, Deepa; Darbandi, Rashid; Pei, Deqing; Ramsey, Laura B.; Chemaitilly, Wassim; Sandlund, John T.; Cheng, Cheng; Pui, Ching-Hon; Relling, Mary V.; Jeha, Sima; Metzger, Monika L.

    2014-01-01

    Background Asparaginase and steroids can cause hypertriglyceridemia in children with acute lymphoblastic leukemia (ALL). There are no guidelines for screening or management of patients with severe hypertriglyceridemia (>1000 mg/dL) during ALL therapy. Patients and Methods Fasting lipid profiles were obtained prospectively at 4 time-points for 257 children consecutively enrolled on a frontline ALL study. Risk factors were evaluated by the exact chi-square test. Details of adverse events and management of hypertriglyceridemia were extracted retrospectively. Results Eighteen of 257 (7%) patients developed severe hypertriglyceridemia. Older age and treatment with higher doses of asparaginase and steroids on the standard/high-risk arm were significant risk factors. Severe hypertriglyceridemia was not associated with pancreatitis after adjustment for age and treatment arm or with osteonecrosis after adjustment for age. However, patients with severe hypertriglyceridemia had a 2.5 to 3 times higher risk of thrombosis compared to patients without, albeit the difference was not statistical significant. Of the 30 episodes of severe hypertriglyceridemia in 18 patients, 7 were managed conservatively while the others with pharmacotherapy. Seventeen of 18 patients continued to receive asparaginase and steroids. Triglyceride levels normalized after completion of ALL therapy in all 12 patients with available measurements. Conclusion Asparaginase- and steroid-induced transient hypertriglyceridemia can be adequately managed with dietary modifications and close monitoring without altering chemotherapy. Patients with severe hypertriglyceridemia were not at increased risk of adverse events, with a possible exception of thrombosis. The benefit of pharmacotherapy in decreasing symptoms and potential complications requires further investigation. PMID:25087182

  17. Rituximab in B-Lineage Adult Acute Lymphoblastic Leukemia.

    PubMed

    Maury, Sébastien; Chevret, Sylvie; Thomas, Xavier; Heim, Dominik; Leguay, Thibaut; Huguet, Françoise; Chevallier, Patrice; Hunault, Mathilde; Boissel, Nicolas; Escoffre-Barbe, Martine; Hess, Urs; Vey, Norbert; Pignon, Jean-Michel; Braun, Thorsten; Marolleau, Jean-Pierre; Cahn, Jean-Yves; Chalandon, Yves; Lhéritier, Véronique; Beldjord, Kheira; Béné, Marie C; Ifrah, Norbert; Dombret, Hervé

    2016-09-15

    Background Treatment with rituximab has improved the outcome for patients with non-Hodgkin's lymphoma. Patients with B-lineage acute lymphoblastic leukemia (ALL) may also have the CD20 antigen, which is targeted by rituximab. Although single-group studies suggest that adding rituximab to chemotherapy could improve the outcome in such patients, this hypothesis has not been tested in a randomized trial. Methods We randomly assigned adults (18 to 59 years of age) with CD20-positive, Philadelphia chromosome (Ph)-negative ALL to receive chemotherapy with or without rituximab, with event-free survival as the primary end point. Rituximab was given during all treatment phases, for a total of 16 to 18 infusions. Results From May 2006 through April 2014, a total of 209 patients were enrolled: 105 in the rituximab group and 104 in the control group. After a median follow-up of 30 months, event-free survival was longer in the rituximab group than in the control group (hazard ratio, 0.66; 95% confidence interval [CI], 0.45 to 0.98; P=0.04); the estimated 2-year event-free survival rates were 65% (95% CI, 56 to 75) and 52% (95% CI, 43 to 63), respectively. Treatment with rituximab remained associated with longer event-free survival in a multivariate analysis. The overall incidence rate of severe adverse events did not differ significantly between the two groups, but fewer allergic reactions to asparaginase were observed in the rituximab group. Conclusions Adding rituximab to the ALL chemotherapy protocol improved the outcome for younger adults with CD20-positive, Ph-negative ALL. (Funded by the Regional Clinical Research Office, Paris, and others; ClinicalTrials.gov number, NCT00327678 .). PMID:27626518

  18. A revised definition for cure of childhood acute lymphoblastic leukemia.

    PubMed

    Pui, C H; Pei, D; Campana, D; Cheng, C; Sandlund, J T; Bowman, W P; Hudson, M M; Ribeiro, R C; Raimondi, S C; Jeha, S; Howard, S C; Bhojwani, D; Inaba, H; Rubnitz, J E; Metzger, M L; Gruber, T A; Coustan-Smith, E; Downing, J R; Leung, W H; Relling, M V; Evans, W E

    2014-12-01

    With improved contemporary therapy, we reassess long-term outcome in patients completing treatment for childhood acute lymphoblastic leukemia (ALL) to determine when cure can be declared with a high degree of confidence. In six successive clinical trials between 1984 and 2007, 1291 (84.5%) patients completed all therapies in continuous complete remission. The post-therapy cumulative risk of relapse or development of a second neoplasm and the event-free survival rate and overall survival were analyzed according to the presenting features and the three treatment periods defined by relative outcome. Over the three treatment periods, there has been progressive increase in the rate of event-free survival (65.2% vs 74.8% vs 85.1% (P<0.001)) and overall survival (76.5% vs 81.1% vs 91.7% (P<0.001)) at 10 years. The most important predictor of outcome after completion of therapy was the type of treatment. In the most recent treatment period, which omitted the use of prophylactic cranial irradiation, the post-treatment cumulative risk of relapse was 6.4%, death in remission 1.5% and development of a second neoplasm 2.3% at 10 years, with all relapses except one occurring within 4 years of therapy. None of the 106 patients with the t(9;22)/BCR-ABL1, t(1;19)/TCF3-PBX1 or t(4;11)/MLL-AFF1 had relapsed after 2 years from completion of therapy. These findings demonstrate that with contemporary effective therapy that excludes cranial irradiation, approximately 6% of children with ALL may relapse after completion of treatment, and those who remain in remission at 4 years post treatment may be considered cured (that is, less than 1% chance of relapse). PMID:24781017

  19. Bone mineral density in survivors of childhood acute lymphoblastic leukemia.

    PubMed

    Athanassiadou, Fani; Tragiannidis, Athanassios; Rousso, Israel; Katsos, Georgios; Sidi, Vassiliki; Papageorgiou, Theodotis; Papastergiou, Christos; Tsituridis, Ioannis; Koliouskas, Dimitrios

    2006-01-01

    The aim of our study was to evaluate bone metabolism with measurement of bone mineral density (BMD) after management (chemo-, radiotherapy) for childhood acute lymphoblastic leukemia (ALL). Bone mineral density (g/cm2) of lumbar spine was measured by dual energy X-ray absorptiometry (Norland bone densitometer) in 18 children with ALL and a median of 34 months' post-diagnosis with no history of relapse, secondary malignancy, or transplantation. In addition, patients' BMDs were correlated with particular attention to age, sex and time (years) from completion of chemotherapy. The results were compared with healthy age- and sex-matched controls of the same population and expressed as standard deviation scores (SDS). Mean age of children was 9.8 +/- 3.7 years. Of 18 children (10 boys and 8 girls), 13 were grouped as standard and 5 as high-risk, respectively. Based on z-score values, 9 were classified as normal (z-score <1 SD), 7 as osteopenic (z-score 1-2.5 SD) and 2 as osteoporotic (z-score >2.5 SD). Children with ALL had reduced lumbar BMDs (z score -0.99) in comparison to healthy controls (z score -0.14) (p=0.011), which is indicative of relative osteopenia. Moreover, the reduced BMD was associated with patient age (z score -0.14 and -1.52 for ages <10 and >10 years, respectively, p=0.016). Reduced BMD was not correlated with time from completion of chemotherapy (p=0.33), risk group (p=0.9) and sex (p=0.3). We conclude that children's BMDs are reduced after completion of chemotherapy for ALL. The causes are multifactorial and mainly related to antineoplastic treatments, such as corticosteroids and methotrexate, physical inactivity and cranial irradiation. We suggest that further studies are needed to evaluate the long-term effect on BMD in these children and to prevent pathological fractures later in life. PMID:16848106

  20. Drugs under preclinical and clinical study for treatment of acute and chronic lymphoblastic leukemia

    PubMed Central

    Jacob, Joe Antony; Salmani, Jumah Masoud Mohammad; Chen, Baoan

    2016-01-01

    Targeted therapy has modernized the treatment of both chronic and acute lymphoblastic leukemia. The introduction of monoclonal antibodies and combinational drugs has increased the survival rate of patients. Preclinical studies with various agents have resulted in positive outputs with Phase III trial drugs and monoclonal antibodies entering clinical trials. Most of the monoclonal antibodies target the CD20 and CD22 receptors. This has led to the approval of a few of these drugs by the US Food and Drug Administration. This review focuses on the drugs under preclinical and clinical study in the ongoing efforts for treatment of acute and chronic lymphoblastic leukemia. PMID:27382259

  1. T-cell sinonasal lymphoma presenting as acute orbit with extraocular muscle infiltration.

    PubMed

    Cruz, Antonio Augusto V; Leite, Lívio Viana de Oliveira; Chahud, Fernando; Neder, Luciano; Tone, Luiz Gonzaga; Valera, Elvis Terci; Elias, Jorge

    2004-11-01

    We describe a rare case of sinonasal T-cell lymphoma in an 11-year-old boy who presented with a right acute orbit characterized by proptosis, eyelid edema and erythema, limitation of eye movements, and excruciating pain on the right side of his face. Orbital computed tomography showed progressive right extraocular muscle enlargement. One biopsy specimen showed extensive tissue necrosis and an infiltrate of atypical cells with pleomorphic nuclei within the walls of blood vessels. Immunohistochemical studies demonstrated that these cells were positive for leucocyte common antigen (CD45), CD3 cytoplasmic, CD45RO, and terminal deoxynucleotidyl transferase and negative for CD20, CD57, CD56, CD99 and Epstein-Barr virus. Chemotherapy for T-cell non-Hodgkin lymphoma was initiated, but the patient's status deteriorated and the child died of respiratory insufficiency, sepsis, and central nervous system infection. PMID:15599254

  2. Genome-wide analysis of T cell responses during acute and latent simian varicella virus infections in rhesus macaques.

    PubMed

    Haberthur, Kristen; Kraft, Aubrey; Arnold, Nicole; Park, Byung; Meyer, Christine; Asquith, Mark; Dewane, Jesse; Messaoudi, Ilhem

    2013-11-01

    Varicella zoster virus (VZV) is the etiological agent of varicella (chickenpox) and herpes zoster (HZ [shingles]). Clinical observations suggest that VZV-specific T cell immunity plays a more critical role than humoral immunity in the prevention of VZV reactivation and development of herpes zoster. Although numerous studies have characterized T cell responses directed against select VZV open reading frames (ORFs), a comprehensive analysis of the T cell response to the entire VZV genome has not yet been conducted. We have recently shown that intrabronchial inoculation of young rhesus macaques with simian varicella virus (SVV), a homolog of VZV, recapitulates the hallmarks of acute and latent VZV infection in humans. In this study, we characterized the specificity of T cell responses during acute and latent SVV infection. Animals generated a robust and broad T cell response directed against both structural and nonstructural viral proteins during acute infection in bronchoalveolar lavage (BAL) fluid and peripheral blood. During latency, T cell responses were detected only in the BAL fluid and were lower and more restricted than those observed during acute infection. Interestingly, we identified a small set of ORFs that were immunogenic during both acute and latent infection in the BAL fluid. Given the close genome relatedness of SVV and VZV, our studies highlight immunogenic ORFs that may be further investigated as potential components of novel VZV vaccines that specifically boost T cell immunity. PMID:23986583

  3. Full-breadth analysis of CD8+ T-cell responses in acute hepatitis C virus infection and early therapy.

    PubMed

    Lauer, Georg M; Lucas, Michaela; Timm, Joerg; Ouchi, Kei; Kim, Arthur Y; Day, Cheryl L; Schulze Zur Wiesch, Julian; Paranhos-Baccala, Glaucia; Sheridan, Isabelle; Casson, Deborah R; Reiser, Markus; Gandhi, Rajesh T; Li, Bin; Allen, Todd M; Chung, Raymond T; Klenerman, Paul; Walker, Bruce D

    2005-10-01

    Multispecific CD8(+) T-cell responses are thought to be important for the control of acute hepatitis C virus (HCV) infection, but to date little information is actually available on the breadth of responses at early time points. Additionally, the influence of early therapy on these responses and their relationships to outcome are controversial. To investigate this issue, we performed comprehensive analysis of the breadth and frequencies of virus-specific CD8(+) T-cell responses on the single epitope level in eight acutely infected individuals who were all started on early therapy. During the acute phase, responses against up to five peptides were identified. During therapy, CD8(+) T-cell responses decreased rather than increased as virus was controlled, and no new specificities emerged. A sustained virological response following completion of treatment was independent of CD8(+) T-cell responses, as well as CD4(+) T-cell responses. Rapid recrudescence also occurred despite broad CD8(+) T-cell responses. Importantly, in vivo suppression of CD3(+) T cells using OKT3 in one subject did not result in recurrence of viremia. These data suggest that broad CD8(+) T-cell responses alone may be insufficient to contain HCV replication, and also that early therapy is effective independent of such responses. PMID:16189000

  4. [Immunophenotype. Clinical and laboratory features of acute lymphoblastic leukemia in Chile. Study of 500 children and 131 adults].

    PubMed

    Cabrera, M E; Labra, S; Ugarte, S; Matutes, E; Greaves, M F

    1996-03-01

    We describe the clinical features and immunophenotype of 500 children and 131 adults with acute lymphoblastic leukemia (ALL), diagnosed between 1984 and 1993. Cases were classified, according to immunophenotype in B-cell ALL with three subtypes (pro-B or null, common and B) and T-cell ALL. Among children, common ALL accounted for 74% of cases and pro-B all was more common in children of less than one year (14%). B ALL was observed in 2% of children. Ten percent of children, mostly males, had T-cell ALL. The third part of these children had high leukocyte counts and a mediastinal mass. Children from Mapuche origin, compared with Caucasian children had a lower proportion of common ALL (36 and 74% respectively) and a higher proportions of T-cell ALL (41 and 10% respectively). Among adults common ALL was the most common phenotype (72%) followed by T-cell ALL (15%), pro-B ALL (11%) and B-cell ALL (2%). There was a lower incidence of children with common ALL with positive cytoplasmic immunoglobulin compared to North American or European studies (2 and 15-33% respectively) and a higher proportion of adults with common ALL compared with pro-B cell ALL, in contrast to European studies that show a higher proportion of patients with pro-B cell ALL. No other immunophenotypic, clinical or laboratory differences were observed with ALL from developed countries. It is concluded that the immunophenotyping of ALL allows a more precise diagnosis of this disease. PMID:9008940

  5. Consensus definitions of 14 severe acute toxic effects for childhood lymphoblastic leukaemia treatment: a Delphi consensus.

    PubMed

    Schmiegelow, Kjeld; Attarbaschi, Andishe; Barzilai, Shlomit; Escherich, Gabriele; Frandsen, Thomas Leth; Halsey, Christina; Hough, Rachael; Jeha, Sima; Kato, Motohiro; Liang, Der-Cherng; Mikkelsen, Torben Stamm; Möricke, Anja; Niinimäki, Riitta; Piette, Caroline; Putti, Maria Caterina; Raetz, Elizabeth; Silverman, Lewis B; Skinner, Roderick; Tuckuviene, Ruta; van der Sluis, Inge; Zapotocka, Ester

    2016-06-01

    Although there are high survival rates for children with acute lymphoblastic leukaemia, their outcome is often counterbalanced by the burden of toxic effects. This is because reported frequencies vary widely across studies, partly because of diverse definitions of toxic effects. Using the Delphi method, 15 international childhood acute lymphoblastic leukaemia study groups assessed acute lymphoblastic leukaemia protocols to address toxic effects that were to be considered by the Ponte di Legno working group. 14 acute toxic effects (hypersensitivity to asparaginase, hyperlipidaemia, osteonecrosis, asparaginase-associated pancreatitis, arterial hypertension, posterior reversible encephalopathy syndrome, seizures, depressed level of consciousness, methotrexate-related stroke-like syndrome, peripheral neuropathy, high-dose methotrexate-related nephrotoxicity, sinusoidal obstructive syndrome, thromboembolism, and Pneumocystis jirovecii pneumonia) that are serious but too rare to be addressed comprehensively within any single group, or are deemed to need consensus definitions for reliable incidence comparisons, were selected for assessment. Our results showed that none of the protocols addressed all 14 toxic effects, that no two protocols shared identical definitions of all toxic effects, and that no toxic effect definition was shared by all protocols. Using the Delphi method over three face-to-face plenary meetings, consensus definitions were obtained for all 14 toxic effects. In the overall assessment of outcome of acute lymphoblastic leukaemia treatment, these expert opinion-based definitions will allow reliable comparisons of frequencies and severities of acute toxic effects across treatment protocols, and facilitate international research on cause, guidelines for treatment adaptation, preventive strategies, and development of consensus algorithms for reporting on acute lymphoblastic leukaemia treatment. PMID:27299279

  6. Identification of cooperative genes for E2A-PBX1 to develop acute lymphoblastic leukemia.

    PubMed

    Sera, Yasuyuki; Yamasaki, Norimasa; Oda, Hideaki; Nagamachi, Akiko; Wolff, Linda; Inukai, Takeshi; Inaba, Toshiya; Honda, Hiroaki

    2016-07-01

    E2A-PBX1 is a chimeric gene product detected in t(1;19)-bearing acute lymphoblastic leukemia (ALL) with B-cell lineage. To investigate the leukemogenic process, we generated conditional knock-in (cKI) mice for E2A-PBX1, in which E2A-PBX1 is inducibly expressed under the control of the endogenous E2A promoter. Despite the induced expression of E2A-PBX1, no hematopoietic disease was observed, strongly suggesting that additional genetic alterations are required to develop leukemia. To address this possibility, retroviral insertional mutagenesis was used. Virus infection efficiently induced T-cell, B-cell, and biphenotypic ALL in E2A-PBX1 cKI mice. Inverse PCR identified eight retroviral common integration sites, in which enhanced expression was observed in the Gfi1, Mycn, and Pim1 genes. In addition, it is of note that viral integration and overexpression of the Zfp521 gene was detected in one tumor with B-cell lineage; we previously identified Zfp521 as a cooperative gene with E2A-HLF, another E2A-involving fusion gene with B-lineage ALL. The cooperative oncogenicity of E2A-PBX1 with overexpressed Zfp521 in B-cell tumorigenesis was indicated by the finding that E2A-PBX1 cKI, Zfp521 transgenic compound mice developed B-lineage ALL. Moreover, upregulation of ZNF521, the human counterpart of Zfp521, was found in several human leukemic cell lines bearing t(1;19). These results indicate that E2A-PBX1 cooperates with additional gene alterations to develop ALL. Among them, enhanced expression of ZNF521 may play a clinically relevant role in E2A fusion genes to develop B-lineage ALL. PMID:27088431

  7. Subgroups of Paediatric Acute Lymphoblastic Leukaemia Might Differ Significantly in Genetic Predisposition to Asparaginase Hypersensitivity

    PubMed Central

    Kutszegi, Nóra; Semsei, Ágnes F.; Gézsi, András; Sági, Judit C.; Nagy, Viktória; Csordás, Katalin; Jakab, Zsuzsanna; Lautner-Csorba, Orsolya; Gábor, Krisztina Míta; Kovács, Gábor T.; Erdélyi, Dániel J.; Szalai, Csaba

    2015-01-01

    L-asparaginase (ASP) is a key element in the treatment of paediatric acute lymphoblastic leukaemia (ALL). However, hypersensitivity reactions (HSRs) to ASP are major challenges in paediatric patients. Our aim was to investigate genetic variants that may influence the risk to Escherichia coli-derived ASP hypersensitivity. Sample and clinical data collection was carried out from 576 paediatric ALL patients who were treated according to protocols from the Berlin—Frankfurt—Münster Study Group. A total of 20 single nucleotide polymorphisms (SNPs) in GRIA1 and GALNT10 genes were genotyped. Patients with GRIA1 rs4958351 AA/AG genotype showed significantly reduced risk to ASP hypersensitivity compared to patients with GG genotype in the T-cell ALL subgroup (OR = 0.05 (0.01–0.26); p = 4.70E-04), while no such association was found in pre-B-cell ALL. In the medium risk group two SNPs of GRIA1 (rs2055083 and rs707176) were associated significantly with the occurrence of ASP hypersensitivity (OR = 0.21 (0.09–0.53); p = 8.48E-04 and OR = 3.02 (1.36–6.73); p = 6.76E-03, respectively). Evaluating the genders separately, however, the association of rs707176 with ASP HSRs was confined only to females. Our results suggest that genetic variants of GRIA1 might influence the risk to ASP hypersensitivity, but subgroups of patients can differ significantly in this respect. PMID:26457809

  8. Oxindole alkaloids from Uncaria tomentosa induce apoptosis in proliferating, G0/G1-arrested and bcl-2-expressing acute lymphoblastic leukaemia cells.

    PubMed

    Bacher, Nicole; Tiefenthaler, Martin; Sturm, Sonja; Stuppner, Hermann; Ausserlechner, Michael J; Kofler, Reinhard; Konwalinka, Günther

    2006-03-01

    Natural products are still an untapped source of promising lead compounds for the generation of antineoplastic drugs. Here, we investigated for the first time the antiproliferative and apoptotic effects of highly purified oxindole alkaloids, namely isopteropodine (A1), pteropodine (A2), isomitraphylline (A3), uncarine F (A4) and mitraphylline (A5) obtained from Uncaria tomentosa, a South American Rubiaceae, on human lymphoblastic leukaemia T cells (CCRF-CEM-C7H2). Four of the five tested alkaloids inhibited proliferation of acute lymphoblastic leukaemia cells. Furthermore, the antiproliferative effect of the most potent alkaloids pteropodine (A2) and uncarine F (A4) correlated with induction of apoptosis. After 48 h, 100 micromol/l A2 or A4 increased apoptotic cells by 57%. CEM-C7H2 sublines with tetracycline-regulated expression of bcl-2, p16ink4A or constitutively expressing the cowpox virus protein crm-A were used for further studies of the apoptosis-inducing properties of these alkaloids. Neither overexpression of bcl-2 or crm-A nor cell-cycle arrest in G0/G1 phase by tetracycline-regulated expression of p16INK4A could prevent alkaloid-induced apoptosis. Our results show the strong apoptotic effects of pteropodine and uncarine F on acute leukaemic lymphoblasts and recommend the alkaloids for further studies in xenograft models. PMID:16445836

  9. High hyperdiploid childhood acute lymphoblastic leukemia: Chromosomal gains as the main driver event.

    PubMed

    Paulsson, Kajsa

    2016-01-01

    High hyperdiploid childhood acute lymphoblastic leukemia is characterized by multiple chromosomal gains. Recent results show that this subtype harbors relatively few genetic abnormalities besides the extra chromosomes, which appear to arise early and are likely the main driver event. Secondary hits primarily target genes in the rat sarcoma (RAS) signaling pathway and histone modifiers. PMID:27308574

  10. Delayed Neurotoxicity Associated with Therapy for Children with Acute Lymphoblastic Leukemia

    ERIC Educational Resources Information Center

    Cole, Peter D.; Kamen, Barton A.

    2006-01-01

    Most children diagnosed today with acute lymphoblastic leukemia (ALL) will be cured. However, treatment entails risk of neurotoxicity, causing deficits in neurocognitive function that can persist in the years after treatment is completed. Many of the components of leukemia therapy can contribute to adverse neurologic sequelae, including…

  11. An Initial Reintegration Treatment of Children with Acute Lymphoblastic Leukemia (ALL).

    ERIC Educational Resources Information Center

    Lurie, Michelle; Kaufman, Nadeen

    2001-01-01

    Evaluated the cognitive, psychological, and social adjustment of pediatric acute lymphoblastic leukemia (ALL) patients and assessed how their needs could best be met through reintegration programs focusing on learning/ educational needs. Findings from three case studies highlight the need for ALL patients to be provided with comprehensive programs…

  12. Induction of apoptosis in acute lymphoblastic leukemia cells by isolated fractions from strawberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Strawberries contain phytochemicals that have anti-inflammatory and anti-cancer activity. We investigated the ability of isolated fractions from strawberry extracts to induce apoptotic cell death in three pre-B acute lymphoblastic leukemia (ALL) lines, including SEM and RS4;11 cell lines derived fr...

  13. Management and treatment of osteonecrosis in children and adolescents with acute lymphoblastic leukemia

    PubMed Central

    te Winkel, Mariël L.; Pieters, Rob; Wind, Ernst-Jan D.; Bessems, J.H.J.M. (Gert); van den Heuvel-Eibrink, Marry M.

    2014-01-01

    There is no consensus regarding how to manage osteonecrosis in pediatric acute lymphoblastic leukemia patients. Therefore, we performed a quality assessment of the literature with the result of a search strategy using the MESH terms osteonecrosis, children, childhood cancer, surgery, bisphosphonates, 6 hydroxymethyl-glutaryl CoA reductase inhibitors, anticoagulants and hyperbaric oxygen, and terms related to these MESH terms. A randomized controlled trial showed that osteonecrosis can be prevented by intermittent, instead of continuous, corticosteroid administration. The studies on interventions after onset of osteonecrosis were of low-quality evidence. Seven pediatric acute lymphoblastic leukemia studies described non-surgical interventions; bisphosphonates (n=5), hyperbaric oxygen therapy (n=1), or prostacyclin analogs (n=1). Safety and efficacy studies are lacking. Five studies focused on surgical interventions; none was of sufficient quality to draw definite conclusions. In conclusion, preventing osteonecrosis is feasible in a proportion of the pediatric acute lymphoblastic leukemia patients by discontinuous, instead of continuous, steroid scheduling. The questions as to how to treat childhood acute lymphoblastic leukemia patients with osteonecrosis cannot be answered as good-quality studies are lacking. PMID:24598854

  14. High hyperdiploid childhood acute lymphoblastic leukemia: Chromosomal gains as the main driver event

    PubMed Central

    Paulsson, Kajsa

    2016-01-01

    ABSTRACT High hyperdiploid childhood acute lymphoblastic leukemia is characterized by multiple chromosomal gains. Recent results show that this subtype harbors relatively few genetic abnormalities besides the extra chromosomes, which appear to arise early and are likely the main driver event. Secondary hits primarily target genes in the rat sarcoma (RAS) signaling pathway and histone modifiers. PMID:27308574

  15. [Acute intestinal obstruction revealing enteropathy associated t-cell lymphoma, about a case].

    PubMed

    Garba, Abdoul Aziz; Adamou, Harissou; Magagi, Ibrahim Amadou; Brah, Souleymane; Habou, Oumarou

    2016-01-01

    Enteropathy associated T-cell lymphoma (EATL) is a rare complication of celiac disease (CD). We report a case of EATL associated with CD revealed by acute intestinal obstruction. A North African woman of 38 years old with a history of infertility and chronic abdominal pain was admitted in emergency with acute intestinal obstruction. During the surgery, we found a tumor on the small intestine with mesenteric lymphadenopathy. Histology and immunohistochemistry of the specimen objectified a digestive T lymphoma CD3+ and immunological assessment of celiac disease was positive. The diagnosis of EATL was thus retained. Chemotherapy (CHOEP protocol) was established as well as gluten-free diet with a complete response to treatment. The EATL is a rare complication of CD that can be revealed by intestinal obstruction. The prognosis can be improved by early treatment involving surgery and chemotherapy. Its prevention requires early diagnosis of celiac and gluten-free diets. PMID:27217874

  16. Loss of CD28 on Peripheral T Cells Decreases the Risk for Early Acute Rejection after Kidney Transplantation

    PubMed Central

    Dedeoglu, Burç; Meijers, Ruud W. J.; Klepper, Mariska; Hesselink, Dennis A.; Baan, Carla C.; Litjens, Nicolle H. R.; Betjes, Michiel G. H.

    2016-01-01

    Background End-stage renal disease patients have a dysfunctional, prematurely aged peripheral T-cell system. Here we hypothesized that the degree of premature T-cell ageing before kidney transplantation predicts the risk for early acute allograft rejection (EAR). Methods 222 living donor kidney transplant recipients were prospectively analyzed. EAR was defined as biopsy proven acute allograft rejection within 3 months after kidney transplantation. The differentiation status of circulating T cells, the relative telomere length and the number of CD31+ naive T cells were determined as T-cell ageing parameters. Results Of the 222 patients analyzed, 30 (14%) developed an EAR. The donor age and the historical panel reactive antibody score were significantly higher (p = 0.024 and p = 0.039 respectively) and the number of related donor kidney transplantation was significantly lower (p = 0.018) in the EAR group. EAR-patients showed lower CD4+CD28null T-cell numbers (p<0.01) and the same trend was observed for CD8+CD28null T-cell numbers (p = 0.08). No differences regarding the other ageing parameters were found. A multivariate Cox regression analysis showed that higher CD4+CD28null T-cell numbers was associated with a lower risk for EAR (HR: 0.65, p = 0.028). In vitro, a significant lower percentage of alloreactive T cells was observed within CD28null T cells (p<0.001). Conclusion Immunological ageing-related expansion of highly differentiated CD28null T cells is associated with a lower risk for EAR. PMID:26950734

  17. Recognition of adult and pediatric acute lymphoblastic leukemia blasts by natural killer cells

    PubMed Central

    Torelli, Giovanni F.; Peragine, Nadia; Raponi, Sara; Pagliara, Daria; De Propris, Maria S.; Vitale, Antonella; Bertaina, Alice; Barberi, Walter; Moretta, Lorenzo; Basso, Giuseppe; Santoni, Angela; Guarini, Anna; Locatelli, Franco; Foà, Robin

    2014-01-01

    In this study, we aimed to investigate the pathways of recognition of acute lymphoblastic leukemia blasts by natural killer cells and to verify whether differences in natural killer cell activating receptor ligand expression among groups defined by age of patients, or presence of cytogenetic/molecular aberrations correlate with the susceptibility to recognition and killing. We analyzed 103 newly diagnosed acute lymphoblastic leukemia patients: 46 adults and 57 children. Pediatric blasts showed a significantly higher expression of Nec-2 (P=0.03), ULBP-1 (P=0.01) and ULBP-3 (P=0.04) compared to adult cells. The differential expression of these ligands between adults and children was confined to B-lineage acute lymphoblastic leukemia with no known molecular alterations. Within molecularly defined subgroups of patients, a high surface expression of NKG2D and DNAM1 ligands was found on BCR-ABL+ blasts, regardless of patient age. Accordingly, BCR-ABL+ blasts proved to be significantly more susceptible to natural killer-dependent lysis than B-lineage blasts without molecular aberrations (P=0.03). Cytotoxic tests performed in the presence of neutralizing antibodies indicated a pathway of acute lymphoblastic leukemia cell recognition in the setting of the Nec-2/DNAM-1 interaction. These data provide a biological explanation of the different roles played by alloreactive natural killer cells in pediatric versus adult acute lymphoblastic leukemia and suggest that new natural killer-based strategies targeting specific subgroups of patients, particularly those BCR-ABL+, are worth pursuing further. PMID:24658822

  18. CD8+ T-cells count in acute myocardial infarction in HIV disease in a predominantly male cohort.

    PubMed

    Badejo, Oluwatosin A; Chang, Chung-Chou; So-Armah, Kaku A; Tracy, Russell P; Baker, Jason V; Rimland, David; Butt, Adeel A; Gordon, Adam J; Rinaldo, Charles R; Kraemer, Kevin; Samet, Jeffrey H; Tindle, Hilary A; Goetz, Matthew B; Rodriguez-Barradas, Maria C; Bedimo, Roger; Gibert, Cynthia L; Leaf, David A; Kuller, Lewis H; Deeks, Steven G; Justice, Amy C; Freiberg, Matthew S

    2015-01-01

    Human Immunodeficiency Virus- (HIV-) infected persons have a higher risk for acute myocardial infarction (AMI) than HIV-uninfected persons. Earlier studies suggest that HIV viral load, CD4+ T-cell count, and antiretroviral therapy are associated with cardiovascular disease (CVD) risk. Whether CD8+ T-cell count is associated with CVD risk is not clear. We investigated the association between CD8+ T-cell count and incident AMI in a cohort of 73,398 people (of which 97.3% were men) enrolled in the U.S. Veterans Aging Cohort Study-Virtual Cohort (VACS-VC). Compared to uninfected people, HIV-infected people with high baseline CD8+ T-cell counts (>1065 cells/mm3) had increased AMI risk (adjusted HR=1.82, P<0.001, 95% CI: 1.46 to 2.28). There was evidence that the effect of CD8+ T-cell tertiles on AMI risk differed by CD4+ T-cell level: compared to uninfected people, HIV-infected people with CD4+ T-cell counts≥200 cells/mm3 had increased AMI risk with high CD8+ T-cell count, while those with CD4+ T-cell counts<200 cells/mm3 had increased AMI risk with low CD8+ T-cell count. CD8+ T-cell counts may add additional AMI risk stratification information beyond that provided by CD4+ T-cell counts alone. PMID:25688354

  19. CD8+ T-Cells Count in Acute Myocardial Infarction in HIV Disease in a Predominantly Male Cohort

    PubMed Central

    Chang, Chung-Chou; So-Armah, Kaku A.; Baker, Jason V.; Butt, Adeel A.; Gordon, Adam J.; Rinaldo, Charles R.; Samet, Jeffrey H.; Tindle, Hilary A.; Goetz, Matthew B.; Rodriguez-Barradas, Maria C.; Bedimo, Roger; Gibert, Cynthia L.; Kuller, Lewis H.; Deeks, Steven G.; Justice, Amy C.; Freiberg, Matthew S.

    2015-01-01

    Human Immunodeficiency Virus- (HIV-) infected persons have a higher risk for acute myocardial infarction (AMI) than HIV-uninfected persons. Earlier studies suggest that HIV viral load, CD4+ T-cell count, and antiretroviral therapy are associated with cardiovascular disease (CVD) risk. Whether CD8+ T-cell count is associated with CVD risk is not clear. We investigated the association between CD8+ T-cell count and incident AMI in a cohort of 73,398 people (of which 97.3% were men) enrolled in the U.S. Veterans Aging Cohort Study-Virtual Cohort (VACS-VC). Compared to uninfected people, HIV-infected people with high baseline CD8+ T-cell counts (>1065 cells/mm3) had increased AMI risk (adjusted HR = 1.82, P < 0.001, 95% CI: 1.46 to 2.28). There was evidence that the effect of CD8+ T-cell tertiles on AMI risk differed by CD4+ T-cell level: compared to uninfected people, HIV-infected people with CD4+ T-cell counts ≥200 cells/mm3 had increased AMI risk with high CD8+ T-cell count, while those with CD4+ T-cell counts <200 cells/mm3 had increased AMI risk with low CD8+ T-cell count. CD8+ T-cell counts may add additional AMI risk stratification information beyond that provided by CD4+ T-cell counts alone. PMID:25688354

  20. Therapeutic targeting of c-Myc in T-cell acute lymphoblastic leukemia, T-ALL.

    PubMed

    Loosveld, Marie; Castellano, Rémy; Gon, Stéphanie; Goubard, Armelle; Crouzet, Thomas; Pouyet, Laurent; Prebet, Thomas; Vey, Norbert; Nadel, Bertrand; Collette, Yves; Payet-Bornet, Dominique

    2014-05-30

    T-ALL patients treated with intensive chemotherapy achieve high rates of remission. However, frequent long-term toxicities and relapses into chemotherapy-refractory tumors constitute major clinical challenges which could be met by targeted therapies. c-MYC is a central oncogene in T-ALL, prompting the exploration of the efficacy of MYC inhibitors such as JQ1 (BET-bromodomain inhibitor), and SAHA (HDAC inhibitor). Using a standardized ex vivo drug screening assay, we show here that JQ1 and SAHA show competitive efficiency compared to inhibitors of proteasome, PI3K/AKT/mTOR and NOTCH pathways, and synergize in combination with Vincristine. We also compared for the first time the in vivo relevance of such associations in mice xenografted with human primary T-ALLs. Our data indicate that although treatments combining JQ1 or SAHA with chemotherapeutic regimens might represent promising developments in T-ALL, combinations will need to be tailored to specific subgroups of responsive patients, the profiles of which still remain to be precisely defined. PMID:24930440

  1. High sensitivity of flow cytometry improves detection of occult leptomeningeal disease in acute lymphoblastic leukemia and lymphoblastic lymphoma.

    PubMed

    Del Principe, Maria Ilaria; Buccisano, Francesco; Cefalo, Mariagiovanna; Maurillo, Luca; Di Caprio, Luigi; Di Piazza, Fabio; Sarlo, Chiara; De Angelis, Gottardo; Irno Consalvo, Maria; Fraboni, Daniela; De Santis, Giovanna; Ditto, Concetta; Postorino, Massimiliano; Sconocchia, Giuseppe; Del Poeta, Giovanni; Amadori, Sergio; Venditti, Adriano

    2014-09-01

    Conventional cytology (CC) of cerebrospinal fluid (CSF) fails to demonstrate malignant cells in up to 45 % of patients with acute lymphoblastic leukemia or lymphoblastic lymphoma (ALL/LL) in whom occult leptomeningeal disease is present. Flow cytometry (FCM) is considered more sensitive than CC, but clinical implications of CC negativity/CC positivity are not yet established. CSF samples from 38 adult patients with newly diagnosed ALL/LL were examined. Five (13 %) and nine (24 %) specimens were CC positive-FC positive (FCM(pos)/CC(pos)) and CC negative-FC positive (CC(neg)/FCM(pos)), respectively. The remaining 24 (63 %) samples were double negative (CC(neg)/FCM(neg)) (p = 0.001). CC(neg)/FCM(pos) patients showed a significantly shorter overall survival (OS) compared to CC(neg)/FCM(neg) ones. In multivariate analysis, the status of single FCM positivity was demonstrated to affect independently duration of OS (p = 0.005). In conclusion, FCM significantly improves detection of leptomeningeal occult localization in ALL/LL and appears to anticipate an adverse outcome. Further prospective studies on larger series are needed to confirm this preliminary observation. PMID:24752416

  2. Peripheral blood mononuclear cells and regulatory T cells in acute viral hepatitis.

    PubMed Central

    Barnaba, V; Tamburrini, E; Laghi, V; Cauda, R; Levrero, M; Ruocco, G; Ortona, L; Balsano, F

    1985-01-01

    During acute viral hepatitis, we observed a significant decrease in OKT4/OKT8 ratio with a significant increase in the OKT8 positive subset in acute type B and non-A-non-B hepatitis. This altered ratio persisted in type B for a long time until HBsAg antibody became detectable, while it soon returned to normal in type A and non-A-non-B hepatitis. In the majority of acute hepatitis the altered ratio is because of an increase and not to a decrease in the whole T cell population, as described in chronic HBV infection. The number of HNK-1 positive cells remained raised during the recovery phase of type B and non-A-non-B hepatitis, a finding consistent with the hypothesis that NK cells play a role in the host defence against B and non-A-non-B virus infections. Serum beta 2-microglobulin concentrations were increased only in acute hepatitis B and non-A-non-B where immunological mechanisms are suspected to be involved, and showed a good correlation with the population of activated OKIa positive cells. PMID:2862096

  3. Immune reconstitution during maintenance therapy in children with acute lymphoblastic leukemia, relation to co-existing infection.

    PubMed

    El-Chennawi, Farha A; Al-Tonbary, Youssef A; Mossad, Youssef M; Ahmed, Mona A

    2008-08-01

    therapy. In conclusion, persistent immunosuppression is documented in children with acute lymphoblastic leukemia during maintenance therapy. Reconstitution of B lymphocytes and Natural killer cells occurs early while T cell reconstitution shows delayed recovery of both T helper and T suppressor cells. Immunosupression during maintenance therapy has no major clinical impact in terms of increased incidence or severity of systemic infections. PMID:18796245

  4. Monoclonal Antibody Therapy in Treating Patients With Chronic Lymphocytic Leukemia, Lymphocytic Lymphoma, Acute Lymphoblastic Leukemia, or Acute Myeloid Leukemia

    ClinicalTrials.gov

    2013-06-03

    Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Nodal Marginal Zone B-cell Lymphoma; Noncontiguous Stage II Marginal Zone Lymphoma; Noncontiguous Stage II Small Lymphocytic Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Marginal Zone Lymphoma; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Splenic Marginal Zone Lymphoma; Stage III Marginal Zone Lymphoma; Stage III Small Lymphocytic Lymphoma; Stage IV Marginal Zone Lymphoma; Stage IV Small Lymphocytic Lymphoma

  5. CD123 redirected multiple virus-specific T cells for acute myeloid leukemia.

    PubMed

    Zhou, Li; Liu, Xin; Wang, Xingbing; Sun, Zimin; Song, Xiao-Tong

    2016-02-01

    Hematopoietic stem cell transplantation (HSCT) has been increasingly used as a curative treatment for acute myeloid leukemia (AML). However, relapse rates after HSCT in complete remission (CR) are reported between 30% and 70%. In addition, numerous studies suggested that secondary viral infection from a variety of viruses including Epstein-Barr virus (EBV), adenovirus (Adv), and cytomegalovirus (CMV) are among the most common causes of death post-HSCT. Currently, chimeric antigen receptor (CAR)-based T cells have been developed to treat AML in clinical studies, while virus-specific cytotoxic T cells (VST) have been proven to be able to effectively prevent or treat viral infection after HSCT. Thus it would be desirable to develop T cells with the ability of simultaneously targeting AML relapse and viral infection. In this article, we now describe the generation of VST cells that are engineered to express CAR for a specific AML cell-surface antigen CD123 (CD123-CAR-VST). Using Dendritic cells (DCs) pulsed with EBV, Adv, and CMV peptides as sources of viral antigens, we generated VST from A2 donor peripheral mononuclear cells (PBMC). VST were then transduced with retroviral vector encoding CD123-CAR to generate CD123-CAR-VST. We demonstrated that CD123-CAR-VST recognized EBV, Adv, and CMV epitopes and had HLA-restricted virus-specific cytotoxic effector function against EBV target. In addition, CD123-CAR-VST retained the specificity against CD123-positive AML cell lines such as MOLM13 and THP-1 in vitro. Thus our results suggested that CD123-CAR-VST might be a valuable candidate to simultaneously prevent or treat relapse and viral infection in AML HSCT recipients. PMID:26740053

  6. T Cell Immunity to the Alkyl Hydroperoxide Reductase of Burkholderia pseudomallei: A Correlate of Disease Outcome in Acute Melioidosis

    PubMed Central

    Reynolds, Catherine; Goudet, Amélie; Jenjaroen, Kemajittra; Sumonwiriya, Manutsanun; Rinchai, Darawan; Musson, Julie; Overbeek, Saskia; Makinde, Julia; Quigley, Kathryn; Manji, Jiten; Spink, Natasha; Yos, Pagnarith; Wuthiekanun, Vanaporn; Bancroft, Gregory; Robinson, John; Lertmemongkolchai, Ganjana; Dunachie, Susanna; Maillere, Bernard; Holden, Matthew; Altmann, Daniel

    2015-01-01

    There is an urgent need for a better understanding of adaptive immunity to Burkholderia pseudomallei, the causative agent of melioidosis that is frequently associated with sepsis or death in patients in Southeast Asia and Northern Australia. The imperative to identify vaccine targets is driven both by the public health agenda in these regions and biological threat concerns. In several intracellular bacterial pathogens, alkyl hydroperoxidase reductases are upregulated as part of the response to host oxidative stress, and they can stimulate strong adaptive immunity. We show that alkyl hydroperoxidase reductase (AhpC) of B. pseudomallei is strongly immunogenic for T cells of ‘humanized’ HLA transgenic mice and seropositive human donors. Some T cell epitopes, such as p6, are able to bind diverse HLA class II heterodimers and stimulate strong T cell immunity in mice and humans. Importantly, patients with acute melioidosis who survive infection show stronger T cell responses to AhpC relative to those who do not. Although the sequence of AhpC is virtually invariant among global B. pseudomallei clinical isolates, a Cambodian isolate varies only in C-terminal truncation of the p6 T cell epitope, raising the possibility of selection by host immunity. This variant peptide is virtually unable to stimulate T cell immunity. For an infection in which there has been debate about centrality of T cell immunity in defense, these observations support a role for T cell immunity to AhpC in disease protection. PMID:25862821

  7. Differential CD95 expression and function in T and B lineage acute lymphoblastic leukemia cells.

    PubMed

    Karawajew, L; Wuchter, C; Ruppert, V; Drexler, H; Gruss, H J; Dörken, B; Ludwig, W D

    1997-08-01

    CD95 (Fas/APO-1) is a cell surface receptor able to trigger apoptosis in a variety of cell types. The expression and function of the CD95 antigen on leukemic blasts from 42 patients with B lineage and 53 patients with T lineage acute lymphoblastic leukemia (ALL) were investigated using immunofluorescence staining and apoptosis assays. The CD95 surface antigen was expressed in most ALL cases, with the T lineage ALL usually showing a higher intensity of surface CD95 expression as compared with the B lineage ALL cells (relative fluorescence intensity, RFI: 4.8 +/- 0.47 vs 2.2 +/- 0.23, respectively, P < 0.01). Functional studies disclosed that upon oligomerization by anti-CD95 monoclonal antibodies the CD95 protein was either not able to initiate apoptosis of leukemic cells (75% of cases) or induced low rates of apoptosis (20% of cases). Only in 5% of cases did the apoptosis rate exceed the 20% level of the CD95-specific apoptosis. Most of the CD95-sensitive cases were found among T lineage ALLs (38% of T lineage vs 10% of B lineage ALLs). Overall, the extent of CD95-induced apoptosis did not correlate with the expression level of CD95. Similarly, no significant correlation between expression level and functionality of CD95 in human leukemia cell lines of B and T cell origin could be observed. Bcl-2 protein has been associated with prolonged cell survival and has been shown to block partially CD95-mediated apoptosis, but for ALL cells no correlation between bcl-2 expression and spontaneous or CD95-mediated apoptosis could be found. The results obtained in this study indicate that, despite constitutive expression of CD95, the ALL cells are mainly resistant to CD95-triggering. More detailed investigations of the molecular mechanisms involved in the intracellular apoptotic signal transduction, such as interactions of the bcl-2 and the other members of the bcl-2 family, and functionality of the interleukin-1beta converting enzyme (ICE) like-proteases, may give new

  8. The reduced soluble fibrinogen-like protein 2 and regulatory T cells in acute coronary syndrome.

    PubMed

    Liu, Kun; Li, Ting; Huang, Shiyuan; Long, Rui; You, Ya; Liu, Jinping; Wang, Zhaohui

    2016-02-01

    Soluble fibrinogen-like protein 2, sfgl2, is the new effector of CD4(+)CD25(+)FOXP3(+) regulatory T cell (Treg) and exerts immunosuppressive activity. We design this study to investigate the possible role of sfgl2 in atherosclerosis. A total of 58 acute coronary syndrome (ACS) patients, together with 22 stable angina (SA) patients and 31 normal coronary artery (NCA) people were enrolled in our study. Serum level of sfgl2 and plasma level of Treg were respectively measured. In line with the change of Treg, serum level of sfgl2 in ACS (8.70 ng/mL) was significantly decreased (P = 0.003), compared with that in SA (11.86 ng/mL) and NCA (17.55 ng/mL). Both sfgl2 and Treg level were obviously decreased in ACS; Sfgl2 may play a protective role in atherosclerosis. PMID:26515143

  9. Expansion of highly activated invariant natural killer T cells with altered phenotype in acute dengue infection.

    PubMed

    Kamaladasa, A; Wickramasinghe, N; Adikari, T N; Gomes, L; Shyamali, N L A; Salio, M; Cerundolo, V; Ogg, G S; Malavige, G Neelika

    2016-08-01

    Invariant natural killer T (iNKT) cells are capable of rapid activation and production of cytokines upon recognition of antigenic lipids presented by CD1d molecules. They have been shown to play a significant role in many viral infections and were observed to be highly activated in patients with acute dengue infection. In order to characterize further their role in dengue infection, we investigated the proportion of iNKT cells and their phenotype in adult patients with acute dengue infection. The functionality of iNKT cells in patients was investigated by both interferon (IFN)-γ and interleukin (IL)-4 ex-vivo enzyme-linked immunospot (ELISPOT) assays following stimulation with alpha-galactosyl-ceramide (αGalCer). We found that circulating iNKT cell proportions were significantly higher (P = 0·03) in patients with acute dengue when compared to healthy individuals and were predominantly of the CD4(+) subset. iNKT cells of patients with acute dengue had reduced proportions expressing CD8α and CD161 when compared to healthy individuals. The iNKT cells of patients were highly activated and iNKT activation correlated significantly with dengue virus-specific immunoglobulin (Ig)G antibody levels. iNKT cells expressing Bcl-6 (P = 0·0003) and both Bcl-6 and inducible T cell co-stimulator (ICOS) (P = 0·006) were increased significantly in patients when compared to healthy individuals. Therefore, our data suggest that in acute dengue infection there is an expansion of highly activated CD4(+) iNKT cells, with reduced expression of CD161 markers. PMID:26874822

  10. T-Cell Responses Are Associated with Survival in Acute Melioidosis Patients

    PubMed Central

    Jenjaroen, Kemajittra; Chumseng, Suchintana; Sumonwiriya, Manutsanun; Ariyaprasert, Pitchayanant; Chantratita, Narisara; Sunyakumthorn, Piyanate; Hongsuwan, Maliwan; Wuthiekanun, Vanaporn; Fletcher, Helen A.; Teparrukkul, Prapit; Limmathurotsakul, Direk; Day, Nicholas P. J.; Dunachie, Susanna J.

    2015-01-01

    Background Melioidosis is an increasingly recognised cause of sepsis and death across South East Asia and Northern Australia, caused by the bacterium Burkholderia pseudomallei. Risk factors include diabetes, alcoholism and renal disease, and a vaccine targeting at-risk populations is urgently required. A better understanding of the protective immune response in naturally infected patients is essential for vaccine design. Methods We conducted a longitudinal clinical and immunological study of 200 patients with melioidosis on admission, 12 weeks (n = 113) and 52 weeks (n = 65) later. Responses to whole killed B. pseudomallei were measured in peripheral blood mononuclear cells (PBMC) by interferon-gamma (IFN-γ) ELIspot assay and flow cytometry and compared to those of control subjects in the region with diabetes (n = 45) and without diabetes (n = 43). Results We demonstrated strong CD4+ and CD8+ responses to B. pseudomallei during acute disease, 12 weeks and 52 weeks later. 28-day mortality was 26% for melioidosis patients, and B. pseudomallei-specific cellular responses in fatal cases (mean 98 IFN-γ cells per million PBMC) were significantly lower than those in the survivors (mean 142 IFN-γ cells per million PBMC) in a multivariable logistic regression model (P = 0.01). A J-shaped curve association between circulating neutrophil count and mortality was seen with an optimal count of 4000 to 8000 neutrophils/μl. Melioidosis patients with known diabetes had poor diabetic control (median glycated haemoglobin HbA1c 10.2%, interquartile range 9.2–13.1) and showed a stunted B. pseudomallei-specific cellular response during acute illness compared to those without diabetes. Conclusions The results demonstrate the role of both CD4+ and CD8+ T-cells in protection against melioidosis, and an interaction between diabetes and cellular responses. This supports development of vaccine strategies that induce strong T-cell responses for the control of intracellular pathogens such

  11. Pre-Transplant Donor-Specific T-Cell Alloreactivity Is Strongly Associated with Early Acute Cellular Rejection in Kidney Transplant Recipients Not Receiving T-Cell Depleting Induction Therapy

    PubMed Central

    Crespo, Elena; Lucia, Marc; Cruzado, Josep M.; Luque, Sergio; Melilli, Edoardo; Manonelles, Anna; Lloberas, Nuria; Torras, Joan; Grinyó, Josep M.; Bestard, Oriol

    2015-01-01

    Preformed T-cell immune-sensitization should most likely impact allograft outcome during the initial period after kidney transplantation, since donor-specific memory T-cells may rapidly recognize alloantigens and activate the effector immune response, which leads to allograft rejection. However, the precise time-frame in which acute rejection is fundamentally triggered by preformed donor-specific memory T cells rather than by de novo activated naïve T cells is still to be established. Here, preformed donor-specific alloreactive T-cell responses were evaluated using the IFN-γ ELISPOT assay in a large consecutive cohort of kidney transplant patients (n = 90), to assess the main clinical variables associated with cellular sensitization and its predominant time-frame impact on allograft outcome, and was further validated in an independent new set of kidney transplant recipients (n = 67). We found that most highly T-cell sensitized patients were elderly patients with particularly poor HLA class-I matching, without any clinically recognizable sensitizing events. While one-year incidence of all types of biopsy-proven acute rejection did not differ between T-cell alloreactive and non-alloreactive patients, Receiver Operating Characteristic curve analysis indicated the first two months after transplantation as the highest risk time period for acute cellular rejection associated with baseline T-cell sensitization. This effect was particularly evident in young and highly alloreactive individuals that did not receive T-cell depletion immunosuppression. Multivariate analysis confirmed preformed T-cell sensitization as an independent predictor of early acute cellular rejection. In summary, monitoring anti-donor T-cell sensitization before transplantation may help to identify patients at increased risk of acute cellular rejection, particularly in the early phases after kidney transplantation, and thus guide decision-making regarding the use of induction therapy. PMID:25689405

  12. Acute lymphoblastic leukemia in children and adolescents: prognostic factors and analysis of survival

    PubMed Central

    Lustosa de Sousa, Daniel Willian; de Almeida Ferreira, Francisco Valdeci; Cavalcante Félix, Francisco Helder; de Oliveira Lopes, Marcos Vinicios

    2015-01-01

    Objective To describe the clinical and laboratory features of children and adolescents with acute lymphoblastic leukemia treated at three referral centers in Ceará and evaluate prognostic factors for survival, including age, gender, presenting white blood cell count, immunophenotype, DNA index and early response to treatment. Methods Seventy-six under 19-year-old patients with newly diagnosed acute lymphoblastic leukemia treated with the Grupo Brasileiro de Tratamento de Leucemia da Infância – acute lymphoblastic leukemia-93 and -99 protocols between September 2007 and December 2009 were analyzed. The diagnosis was based on cytological, immunophenotypic and cytogenetic criteria. Associations between variables, prognostic factors and response to treatment were analyzed using the chi-square test and Fisher's exact test. Overall and event-free survival were estimated by Kaplan–Meier analysis and compared using the log-rank test. A Cox proportional hazards model was used to identify independent prognostic factors. Results The average age at diagnosis was 6.3 ± 0.5 years and males were predominant (65%). The most frequently observed clinical features were hepatomegaly, splenomegaly and lymphadenopathy. Central nervous system involvement and mediastinal enlargement occurred in 6.6% and 11.8%, respectively. B-acute lymphoblastic leukemia was more common (89.5%) than T-acute lymphoblastic leukemia. A DNA index >1.16 was found in 19% of patients and was associated with favorable prognosis. On Day 8 of induction therapy, 95% of the patients had lymphoblast counts <1000/μL and white blood cell counts <5.0 × 109/L. The remission induction rate was 95%, the induction mortality rate was 2.6% and overall survival was 72%. Conclusion The prognostic factors identified are compatible with the literature. The 5-year overall and event-free survival rates were lower than those reported for developed countries. As shown by the multivariate analysis, age and baseline white

  13. Nelarabine in the Treatment of Refractory T-Cell Malignancies

    PubMed Central

    Roecker, Andrew M.; Stockert, Amy; Kisor, David F.

    2010-01-01

    Nelarabine is a nucleoside analog indicated for the treatment of adult and pediatric patients with T-cell acute lymphoblastic leukemia (T-ALL) or T-cell lymphoblastic lymphoma (T-LBL) that is refractory or has relapsed after treatment with at least two chemotherapy regimens. After being first synthesized in the late 1970s and receiving FDA approval in 2005, the appropriate use of nelarabine for refractory hematologic malignancies is still being elucidated. Nelarabine is the prodrug of 9-β-D-arabinofuranosylguanine (ara-G) which when phosphorylated intracellularly to ara-G triphosphate (ara-GTP), preferentially accumulates in cancerous T-cells. Dose-dependent toxicities, including neurotoxicity and myelosuppression, have been documented and may, in turn, limit the ability to appropriately treat the diagnosed malignancy. This article will summarize the pharmacologic properties of nelarabine and will address the current place in therapy nelarabine holds based upon the results of the available clinical trials to date. PMID:21151585

  14. Targeting of folate receptor β on acute myeloid leukemia blasts with chimeric antigen receptor-expressing T cells.

    PubMed

    Lynn, Rachel C; Poussin, Mathilde; Kalota, Anna; Feng, Yang; Low, Philip S; Dimitrov, Dimiter S; Powell, Daniel J

    2015-05-28

    T cells expressing a chimeric antigen receptor (CAR) can produce dramatic results in lymphocytic leukemia patients; however, therapeutic strategies for myeloid leukemia remain limited. Folate receptor β (FRβ) is a myeloid-lineage antigen expressed on 70% of acute myeloid leukemia (AML) patient samples. Here, we describe the development and evaluation of the first CARs specific for human FRβ (m909) in vitro and in vivo. m909 CAR T cells exhibited selective activation and lytic function against engineered C30-FRβ as well as endogenous FRβ(+) AML cell lines in vitro. In mouse models of human AML, m909 CAR T cells mediated the regression of engrafted FRβ(+) THP1 AML in vivo. In addition, we demonstrated that treatment of AML with all-trans retinoic acid (ATRA) enhanced FRβ expression, resulting in improved immune recognition by m909 CAR T cells. Because many cell surface markers are shared between AML blasts and healthy hematopoietic stem and progenitor cells (HSCs), we evaluated FRβ expression and recognition of HSCs by CAR T cells. m909 CAR T cells were not toxic against healthy human CD34(+) HSCs in vitro. Our results indicate that FRβ is a promising target for CAR T-cell therapy of AML, which may be augmented by combination with ATRA. PMID:25887778

  15. Rapid selection of escape mutants by the first CD8 T cell responses in acute HIV-1 infection

    SciTech Connect

    Korber, Bette Tina Marie

    2008-01-01

    The recent failure of a vaccine that primes T cell responses to control primary HIV-1 infection has raised doubts about the role of CD8+ T cells in early HIV-1 infection. We studied four patients who were identified shortly after HIV-1 infection and before seroconversion. In each patient there was very rapid selection of multiple HIV-1 escape mutants in the transmitted virus by CD8 T cells, including examples of complete fixation of non-synonymous substitutions within 2 weeks. Sequencing by single genome amplification suggested that the high rate of virus replication in acute infection gave a selective advantage to virus molecules that contained simultaneous and gained sequential T cell escape mutations. These observations show that whilst early HIV-1 specific CD8 T cells can act against virus, rapid escape means that these T cell responses are unlikely to benefit the patient and may in part explain why current HIV-1 T cell vaccines may not be protective.

  16. Targeting of folate receptor β on acute myeloid leukemia blasts with chimeric antigen receptor–expressing T cells

    PubMed Central

    Lynn, Rachel C.; Poussin, Mathilde; Kalota, Anna; Feng, Yang; Low, Philip S.; Dimitrov, Dimiter S.

    2015-01-01

    T cells expressing a chimeric antigen receptor (CAR) can produce dramatic results in lymphocytic leukemia patients; however, therapeutic strategies for myeloid leukemia remain limited. Folate receptor β (FRβ) is a myeloid-lineage antigen expressed on 70% of acute myeloid leukemia (AML) patient samples. Here, we describe the development and evaluation of the first CARs specific for human FRβ (m909) in vitro and in vivo. m909 CAR T cells exhibited selective activation and lytic function against engineered C30-FRβ as well as endogenous FRβ+ AML cell lines in vitro. In mouse models of human AML, m909 CAR T cells mediated the regression of engrafted FRβ+ THP1 AML in vivo. In addition, we demonstrated that treatment of AML with all-trans retinoic acid (ATRA) enhanced FRβ expression, resulting in improved immune recognition by m909 CAR T cells. Because many cell surface markers are shared between AML blasts and healthy hematopoietic stem and progenitor cells (HSCs), we evaluated FRβ expression and recognition of HSCs by CAR T cells. m909 CAR T cells were not toxic against healthy human CD34+ HSCs in vitro. Our results indicate that FRβ is a promising target for CAR T-cell therapy of AML, which may be augmented by combination with ATRA. PMID:25887778

  17. Acute Sensitivity of Ph-like Acute Lymphoblastic Leukemia to the SMAC-Mimetic Birinapant.

    PubMed

    Richmond, Jennifer; Robbins, Alissa; Evans, Kathryn; Beck, Dominik; Kurmasheva, Raushan T; Billups, Catherine A; Carol, Hernan; Heatley, Sue; Sutton, Rosemary; Marshall, Glenn M; White, Deborah; Pimanda, John; Houghton, Peter J; Smith, Malcolm A; Lock, Richard B

    2016-08-01

    Ph-like acute lymphoblastic leukemia (ALL) is a genetically defined high-risk ALL subtype with a generally poor prognosis. In this study, we evaluated the efficacy of birinapant, a small-molecule mimetic of the apoptotic regulator SMAC, against a diverse set of ALL subtypes. Birinapant exhibited potent and selective cytotoxicity against B-cell precursor ALL (BCP-ALL) cells that were cultured ex vivo or in vivo as patient-derived tumor xenografts (PDX). Cytotoxicity was consistently most acute in Ph-like BCP-ALL. Unbiased gene expression analysis of BCP-ALL PDX specimens identified a 68-gene signature associated with birinapant sensitivity, including an enrichment for genes involved in inflammatory response, hematopoiesis, and cell death pathways. All Ph-like PDXs analyzed clustered within this 68-gene classifier. Mechanistically, birinapant sensitivity was associated with expression of TNF receptor TNFR1 and was abrogated by interfering with the TNFα/TNFR1 interaction. In combination therapy, birinapant enhanced the in vivo efficacy of an induction-type regimen of vincristine, dexamethasone, and L-asparaginase against Ph-like ALL xenografts, offering a preclinical rationale to further evaluate this SMAC mimetic for BCP-ALL treatment. Cancer Res; 76(15); 4579-91. ©2016 AACR. PMID:27302164

  18. Immunophenotypic and antigen receptor gene rearrangement analysis in T cell neoplasia.

    PubMed Central

    Knowles, D. M.

    1989-01-01

    The author reviews the immunophenotypic profiles displayed by the major clinicopathologic categories of T cell neoplasia, the immunophenotypic criteria useful in the immunodiagnosis of T cell neoplasia, and the contributions made by antigen receptor gene rearrangement analysis to the understanding of T cell neoplasia. Neoplasms belonging to distinct clinicopathologic categories of T cell neoplasia often exhibit characteristic immunophenotypic profiles. Approximately 80% of lymphoblastic lymphomas and 20% of acute lymphoblastic leukemias express phenotypes consistent with prethymic and intrathymic stages of T cell differentiation, including intranuclear terminal deoxynucleotidyl transferase. Cutaneous T cell lymphomas of mycosis fungoides type usually express pan-T cell antigens CD2, CD5, and CD3, often lack the pan-T cell antigen CD7, and usually express the mature, peripheral helper subset phenotype, CD4+ CD8-. Cutaneous T cell lymphomas of nonmycosis fungoides type and peripheral T cell lymphomas often lack one or more pan-T cell antigens and, in addition, occasionally express the anomalous CD4+ CD8+ or CD4- CD8- phenotypes. T gamma-lymphoproliferative disease is divisable into two broad categories: those cases that are CD3 antigen positive and exhibit clonal T cell receptor beta chain (TCR-beta) gene rearrangements and those cases that are CD3 antigen negative and exhibit the TCR-beta gene germline configuration. Human T cell lymphotropic virus-I (HTLV-I) associated Japanese, Carribean, and sporadic adult T cell leukemia/lymphomas usually express pan-T cell antigens, the CD4+ CD8- phenotype, and various T cell-associated activation antigens, including the interleukin-2 receptor (CD25). Immunophenotypic criteria useful in the immunodiagnosis of T cell neoplasia include, in increasing order of utility, T cell predominance, T cell subset antigen restriction, anomalous T cell subset antigen expression, and deletion of one or more pan-T cell antigens. Only in

  19. Immunophenotyping with CD135 and CD117 predicts the FLT3, IL-7R and TLX3 gene mutations in childhood T-cell acute leukemia.

    PubMed

    Noronha, Elda Pereira; Andrade, Francianne Gomes; Zampier, Carolina; de Andrade, Camilla F C G; Terra-Granado, Eugênia; Pombo-de-Oliveira, Maria S

    2016-03-01

    With the combination of immunophenotyping and molecular tests, it is still a challenge to identify the characteristics of T cell acute lymphoblastic leukemia (T-ALL) associated with distinct outcomes. This study tests the possible correlation of cellular expression of CD135 and CD117 with somatic gene mutations in T-ALL. One hundred sixty-two samples were tested, including 143 at diagnosis, 15 from T-lymphoblastic lymphoma at relapse, and four relapse samples from sequential follow-up of T-ALL. CD135 and CD117 monoclonal antibodies were included in the T-ALL panel of flow cytometry. The percentage of cells positivity and the median fluorescence intensity were correlated with gene mutational status. STIL-TAL1, TLX3, FLT3 and IL7R mutations were tested using standard techniques. STIL-TAL1 was found in 24.8%, TLX3 in 12%, IL7R in 10% and FLT3-ITD in 5% of cases. FLT3 and IL7R mutations were mutually exclusive, as were FLT3-ITD and STIL-TAL1. Associations of CD135(high) (p<0.01), CD117(intermediate/high) (p=0.02) and FLT3-ITD, CD117(low) with IL7R(mutated) (p<0.01) and CD135(high) with TLX3(pos) were observed. We conclude that the addition of CD135 and CD117 to the diagnosis can predict molecular aberrations in T-ALL settings, mainly segregating patients with FLT3-ITD, who would benefit from treatment with inhibitors of tyrosine. PMID:26852660

  20. Mild axonal neuropathy of children during treatment for acute lymphoblastic leukaemia.

    PubMed

    Reinders-Messelink, H A; Van Weerden, T W; Fock, J M; Gidding, C E; Vingerhoets, H M; Schoemaker, M M; Göeken, L N; Bökkerink, J P; Kamps, W A

    2000-01-01

    Neurophysiological functioning was studied prospectively in children treated for acute lymphoblastic leukaemia with a low dose vincristine regime (8 x 1.5 mg/m2/dose), to obtain more insight into vincristine neuropathy. A WHO neurotoxicity score was estimated and vibration sense and electrophysiological measurements were taken at standardized times during vincristine treatment. The WHO neurotoxicity score showed decreased or disappearance of Achilles tendon reflexes, and mild sensory disturbances, but a grade 3-4 neurotoxicity was not demonstrated by any of the children. Vibration perception thresholds increased progressively during treatment and amplitudes of action potentials of peroneal and sensory ulnar and median nerves decreased, whereas nerve conduction velocities stayed unchanged. Both vibration perception thresholds and the electrophysiological findings hardly exceeded the limits of normality. We conclude that children treated for acute lymphoblastic leukaemia with a low dose vincristine regimen have mild axonal neuropathy which may be responsible for the motor problems in these children. PMID:11030069

  1. Supportive medical care for children with acute lymphoblastic leukemia in low- and middle-income countries.

    PubMed

    Ceppi, Francesco; Antillon, Federico; Pacheco, Carlos; Sullivan, Courtney E; Lam, Catherine G; Howard, Scott C; Conter, Valentino

    2015-10-01

    In the last two decades, remarkable progress in the treatment of children with acute lymphoblastic leukemia has been achieved in many low- and middle-income countries (LMIC), but survival rates remain significantly lower than those in high-income countries. Inadequate supportive care and consequent excess mortality from toxicity are important causes of treatment failure for children with acute lymphoblastic leukemia in LMIC. This article summarizes practical supportive care recommendations for healthcare providers practicing in LMIC, starting with core approaches in oncology nursing care, management of tumor lysis syndrome and mediastinal masses, nutritional support, use of blood products for anemia and thrombocytopenia, and palliative care. Prevention and treatment of infectious diseases are described in a parallel paper. PMID:26013005

  2. Alloreactive T Cells to Identify Risk HLA Alleles for Retransplantation After Acute Accelerated Steroid-Resistant Rejection.

    PubMed

    Leyking, S; Wolf, M; Mihm, J; Schaefer, M; Bohle, R M; Fliser, D; Sester, M; Sester, U

    2015-10-01

    The risk of rejection by cellular alloreactivity to the transplant donor is not routinely assessed. Here we analyzed alloreactive T cells in kidney transplant recipients and report how their detection may have helped to prevent rejection of a second kidney graft in a patient with a history of acute accelerated steroid-resistant nonhumoral rejection. Alloreactive CD4 and CD8 T cells were quantified using a flow-cytometric mixed lymphocyte reaction assay based on interferon-γ induction. A group of 16 nonrejecting transplant recipients did not show any alloreactive T-cell immunity to their respective donors, whereas alloreactivity to third-party controls was detectable. In the patient with rejection, HLA-specific antibodies were not detectable before and shortly after rejection, but after transplantation the patient showed exceptionally high frequencies of alloreactive T cells against 2 of 11 HLA-typed controls (0.604% and 0.791% alloreactive CD4 T cells and 0.792% and 0.978% alloreactive CD8 T cells) who shared HLA alleles (HLA-A*24, -B*44, -C*02, -DQB1*5) with the kidney donor. These HLA alleles were subsequently excluded for allocation of a second graft. No alloreactive T cells were observed toward the second kidney donor, and this transplantation was performed successfully. Thus, shared HLA alleles between the donor and third-party controls may suggest that alloreactive T cells had contributed to rejection of the first graft. The rejecting patient highlights that determination of cellular alloreactivity before transplantation may be applied to identify unacceptable mismatches and to reduce the risk for acute cellular rejection episodes. PMID:26518945

  3. Genetically Modified T-cell Immunotherapy in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia

    ClinicalTrials.gov

    2016-08-10

    Adult Acute Myeloid Leukemia in Remission; Donor; Early Relapse of Acute Myeloid Leukemia; Late Relapse of Acute Myeloid Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  4. The molecular genetic makeup of acute lymphoblastic leukemia | Office of Cancer Genomics

    Cancer.gov

    Abstract: Genomic profiling has transformed our understanding of the genetic basis of acute lymphoblastic leukemia (ALL). Recent years have seen a shift from microarray analysis and candidate gene sequencing to next-generation sequencing. Together, these approaches have shown that many ALL subtypes are characterized by constellations of structural rearrangements, submicroscopic DNA copy number alterations, and sequence mutations, several of which have clear implications for risk stratification and targeted therapeutic intervention.

  5. Difficult diagnosis of invasive fungal infection predominantly involving the lower gastrointestinal tract in acute lymphoblastic leukaemia

    PubMed Central

    Avcu, Gulhadiye; Karapinar, Deniz Yilmaz; Yazici, Pinar; Duyu, Muhterem; Polat, Suleyha Hilmioglu; Atabay, Berna; Doganavsargil, Basak; Karapinar, Bulent

    2016-01-01

    Invasive fungal infections are most commonly seen in immunocompromised patients and usually affect the respiratory system. Gastrointestinal system involvement of mucormycosis and invasive aspergillosis is rarely reported in childhood. Here we describe a 5 year old boy with acute lymphoblastic leukaemia who developed invasive fungal infection particularly affecting the lower gastrointestinal system to emphasise the difficulties in diagnosis and management of invasive fungal infections in immunocompromised patients. PMID:26937339

  6. Difficult diagnosis of invasive fungal infection predominantly involving the lower gastrointestinal tract in acute lymphoblastic leukaemia.

    PubMed

    Avcu, Gulhadiye; Karapinar, Deniz Yilmaz; Yazici, Pinar; Duyu, Muhterem; Polat, Suleyha Hilmioglu; Atabay, Berna; Doganavsargil, Basak; Karapinar, Bulent

    2016-03-01

    Invasive fungal infections are most commonly seen in immunocompromised patients and usually affect the respiratory system. Gastrointestinal system involvement of mucormycosis and invasive aspergillosis is rarely reported in childhood. Here we describe a 5 year old boy with acute lymphoblastic leukaemia who developed invasive fungal infection particularly affecting the lower gastrointestinal system to emphasise the difficulties in diagnosis and management of invasive fungal infections in immunocompromised patients. PMID:26937339

  7. No involvement of bovine leukemia virus in childhood acute lymphoblastic leukemia and non-Hodgkin's lymphoma

    SciTech Connect

    Bender, A.P.; Robison, L.L.; Kashmiri, S.V.; McClain, K.L.; Woods, W.G.; Smithson, W.A.; Heyn, R.; Finlay, J.; Schuman, L.M.; Renier, C.

    1988-05-15

    Bovine leukemia virus (BLV) is the causative agent of enzootic bovine lymphosarcoma. Much speculation continues to be directed at the role of BLV in human leukemia. To test this hypothesis rigorously, a case-control study of childhood acute lymphoblastic leukemia and non-Hodgkin's lymphoma was conducted between December 1983 and February 1986. Cases (less than or equal to 16 years at diagnosis) derived from patients diagnosed at the primary institutions and affiliated hospitals were matched (age, sex, and race) with regional population controls. DNA samples from bone marrow or peripheral blood from 157 cases (131 acute lymphoblastic leukemia, 26 non-Hodgkin's lymphoma) and peripheral blood from 136 controls were analyzed by Southern blot technique, under highly stringent conditions, using cloned BLV DNA as a probe. None of the 157 case or 136 control DNA samples hybridized with the probe. The high statistical power and specificity of this study provide the best evidence to date that genomic integration of BLV is not a factor in childhood acute lymphoblastic leukemia/non-Hodgkin's lymphoma.

  8. [Epidemiologic, clinical and cytohematologic characteristics of adult acute lymphoblastic leukemia in Tunisia].

    PubMed

    Elloumi, Moez; Hafsia, Raouf; el Omri, Halima; Souissi, Taoufik; Hafsia, Aicha; Ennabli, Souad; Ben Abdeladhim, Abdeladhim

    2002-04-01

    Through a national retrospective study, the authors report the clinical and hematological characteristics of 124 acute lymphoblastic leukemia of the adult diagnosed during 5 years (1993-1997). The national prevalence is of 0.28/100.000 inhabitants/year. The sex-ratio is of 1.3. Sixty six per cent of patients were 16-35 years of age, and only 10% of them were more than 60 years of age. A tumoral syndrome was present at 71% of the cases with peripheral adenopathies in 55%, splenomegaly in 40%, hepatomegaly in 19% and a mediastinal tumor in 18% of the cases. The bone pain were rarely signaled (10%) and neuro-meningeal affection was found in only 3% of cases. There was no testicular lesions. The white blood cells count was less than 30.000/mm3 in 60% whereas an important hyperleucocytosis superior than 100.103/mm3 was observed in 20% of the cases. Anemia and thrombopenia were noted in 94% and 90% of the cases respectively. Acute lymphoblastic leukemia typing by cytological study of Bone marrow according to the Fransh-American-Britain criteria (FAB) had found 43%, 48% and 4% for type 1,2 and 3 respectively. In 5% of the cases the type of the acute lymphoblastic leukemia was not precised (diagnosis based on the Bone biopsy). PMID:12416355

  9. Minimal Residual Disease Evaluation in Childhood Acute Lymphoblastic Leukemia: A Clinical Evidence Review

    PubMed Central

    2016-01-01

    Background Leukemia accounts for nearly a third of childhood cancers in Canada, with acute lymphoblastic leukemia (ALL) comprising nearly 80% of cases. Identification of prognostic factors that allow risk stratification and tailored treatment have improved overall survival. However, nearly a quarter of patients considered standard risk on the basis of conventional prognostic factors still relapse, and relapse is associated with increased morbidity and mortality. Relapse is thought to result from extremely low levels of leukemic cells left over once complete remission is reached, termed minimal residual disease (MRD). Poor event-free survival (EFS) as well as overall survival for those who are classified as MRD-positive have been substantiated in seminal studies demonstrating the prognostic value of MRD for EFS in the past few decades. This review sought to further elucidate the relationship between MRD and EFS by looking at relapse, the primary determinant of EFS and the biological mechanism through which MRD is thought to act. This evidence review aimed to ascertain whether MRD is an independent prognostic factor for relapse and to assess the effect of MRD-directed treatment on patient-important outcomes in childhood ALL. Methods Large prospective cohort studies with a priori multivariable analysis that includes potential confounders are required to draw confirmatory conclusions about the independence of a prognostic factor. Data on the prognostic value of MRD for relapse measured by molecular methods (polymerase chain reaction [PCR] of immunoglobulin or T-cell receptor rearrangements) or flow cytometry for leukemia-associated immunophenotypes or difference-from-normal approach were abstracted from included studies. Relevant data on relapse, EFS, and overall survival were abstracted from randomized controlled trials (RCTs) evaluating the effect of MRD-directed treatment. Results A total of 2,832 citations were reviewed, of which 12 studies were included in this

  10. Multiple T-cell responses are associated with better control of acute HIV-1 infection: An observational study.

    PubMed

    Sun, Jianping; Zhao, Yan; Peng, Yanchun; Han, Zhen; Liu, Guihai; Qin, Ling; Liu, Sai; Sun, Huanhuan; Wu, Hao; Dong, Tao; Zhang, Yonghong

    2016-07-01

    Cytotoxic T lymphocyte (CTL) responses play pivotal roles in controlling the replication of human immunodeficiency virus type 1 (HIV-1), but the correlation between CTL responses and the progression of HIV-1 infection are controversial on account of HIV immune escape mutations driven by CTL pressure were reported.The acute HIV-1-infected patients from Beijing were incorporated into our study to investigate the effects of CTL response on the progression of HIV-1 infection.A longitudinal study was performed on acute HIV-1-infected patients to clarify the kinetic of T-cell responses, the dynamic of escape mutations, as well as the correlation between effective T-cell response and the progression of HIV infection.Seven human leukocyte antigen-B51+ (HLA-B51+) individuals were screened from 105 acute HIV-1 infectors. The detailed kinetic of HLA-B51-restricted CTL responses was described through blood sampling time points including seroconversion, 3 and 6 months after HIV-1 infection in the 7 HLA-B51+ individuals, by using 16 known HLA-B51 restricted epitopes. Pol743-751 (LPPVVAKEI, LI9), Pol283-289 (TAFTIPSI, TI8), and Gag327-3459 (NANPDCKTI, NI9) were identified as 3 dominant epitopes, and ranked as starting with LI9, followed by TI8 and NI9 in the ability to induce T-cell responses. The dynamics of escape mutations in the 3 epitopes were also found with the same order as T-cell response, by using sequencing for viral clones on blood sampling at seroconversion, 3 and 6 months after HIV-1 infection.We use solid evidence to demonstrate the correlation between T-cell response and HIV-1 mutation, and postulate that multiple T-cell responses might benefit the control of HIV-1 infection, especially in acute infection phase. PMID:27472741

  11. Yttrium Y 90 Anti-CD45 Monoclonal Antibody BC8 Followed by Donor Stem Cell Transplant in Treating Patients With High-Risk Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2016-08-08

    Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Chronic Myelomonocytic Leukemia; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Secondary Acute Myeloid Leukemia

  12. Management of Concurrent Pregnancy and Acute Lymphoblastic Malignancy in Teenaged Patients: Two Illustrative Cases and Review of the Literature

    PubMed Central

    Johnson, Liza-Marie; Church, Christopher L.; Gomez-Garcia, Wendy C.; Popescu, Marcela I.; Margolin, Judith F.; Ribeiro, Raul C.

    2014-01-01

    The usual age range of acute lymphoblastic malignancies (acute lymphoblastic leukemia and advanced-stage lymphoblastic lymphoma) includes teenagers and young adults (<22 years of age) and coincides with the age of fertility. Concurrence of acute lymphoblastic malignancy with pregnancy is therefore most likely to happen during the younger childbearing ages. However, the therapeutic challenges posed by the dual diagnosis of lymphoblastic malignancy and pregnancy have not specifically been studied in the context of age, and management guidelines for pregnant young patients are lacking. Inconsistency in defining the legal decision-making rights of pregnant teenaged patients adds a further level of complexity in this age group. Management of this challenging combination in the young patient therefore entails unique ethical considerations. Here we present two illustrative cases of teenage pregnancy complicated by acute lymphoblastic malignancy, review the available literature, and offer suggestions for the therapeutic management of such cases in adolescent and young adult patients. Importantly, practical management recommendations are provided in the context of clinical ethics principles that are universally applicable, including in developing countries, where the highest incidence of adolescent pregnancies has been documented. PMID:25538861

  13. Early lymphocyte recovery after intensive timed sequential chemotherapy for acute myelogenous leukemia: peripheral oligoclonal expansion of regulatory T cells

    PubMed Central

    Kanakry, Christopher G.; Gocke, Christopher D.; Thoburn, Christopher; Kos, Ferdynand; Meyer, Christian; Briel, Janet; Luznik, Leo; Smith, B. Douglas; Levitsky, Hyam; Karp, Judith E.

    2011-01-01

    Few published studies characterize early lymphocyte recovery after intensive chemotherapy for acute myelogenous leukemia (AML). To test the hypothesis that lymphocyte recovery mirrors ontogeny, we characterized early lymphocyte recovery in 20 consecutive patients undergoing induction timed sequential chemotherapy for newly diagnosed AML. Recovering T lymphocytes were predominantly CD4+ and included a greatly expanded population of CD3+CD4+CD25+Foxp3+ T cells. Recovering CD3+CD4+CD25+Foxp3+ T cells were phenotypically activated regulatory T cells and showed suppressive activity on cytokine production in a mixed lymphocyte reaction. Despite an initial burst of thymopoiesis, most recovering regulatory T cells were peripherally derived. Furthermore, regulatory T cells showed marked oligoclonal skewing, suggesting that their peripheral expansion was antigen-driven. Overall, lymphocyte recovery after chemotherapy differs from ontogeny, specifically identifying a peripherally expanded oligoclonal population of activated regulatory T lymphocytes. These differences suggest a stereotyped immunologic recovery shared by patients with newly diagnosed AML after induction timed sequential chemotherapy. Further insight into this oligoclonal regulatory T-cell population will be fundamental toward developing effective immunomodulatory techniques to improve survival for patients with AML. PMID:20935254

  14. Perforin- and granulysin-mediated cytotoxicity and interleukin 15 play roles in neurocognitive impairment in patients with acute lymphoblastic leukaemia.

    PubMed

    Petranovic, Duska; Pilcic, Gorazd; Valkovic, Toni; Sotosek Tokmadzic, Vlatka; Laskarin, Gordana

    2014-07-01

    Acute lymphoblastic leukaemia (ALL) is an aggressive disease. The course of disease is regulated by pro-inflammatory agents, and malignant cell infiltration of tissues plays a deleterious role in disease progression, greatly impacting quality of life, especially in the cognitive domains. Our hypothesis is that significant serum concentrations of interleukin 15 (IL-15) are responsible for higher expression of adhesion molecules on endothelial cells of blood-brain barrier (BBB) which allow leukaemia cells and/or normal lymphocytes the infiltration into the brain. In brain tissue these cells could be stimulated to release perforin and granulysin causing induction of apoptosis in brain cells that are involved in complex neural signalling mediated by neurotransmitters, and consequent fine cognitive impairment. Such changes could be detected early, even before notable clinical psycho-neurological or radiological changes in patients with ALL. To evaluate this hypothesis we propose measuring cognitive function using Complex Reactiometer Drenovac (CRD) scores in patients with ALL. The expression of different adhesion molecules on BBB as well as presence and distribution of different lymphocytes in brain tissue will be analyzed. We will then correlate CRD scores with levels of IL-15 and the percentages of T cells, natural killer T cells, and natural killer cells expressing perforin and/or granulysin proteins. CRD is a scientifically recognised and highly sensitive psychometric laboratory test based on the complex chronometric mathematical measuring of speed of reaction to various stimuli. It provides an objective assessment of cognitive functions from the most complex mental activities to the simplest reaction reflexes. Early recognition of cognitive dysfunction might be important when selecting the most appropriate chemotherapy and/or radiotherapy regimens, and could allow for the implementation of preventive measures against further deterioration in cognitive function and

  15. CD90 and CD110 correlate with cancer stem cell potentials in human T-acute lymphoblastic leukemia cells

    SciTech Connect

    Yamazaki, Hiroto; Nishida, Hiroko; Iwata, Satoshi; Dang, Nam H.; Morimoto, Chikao

    2009-05-29

    Although cancer stem cells (CSCs) have been recently identified in myeloid leukemia, published data on lymphoid malignancy have been sparse. T-acute lymphoblastic leukemia (T-ALL) is characterized by the abnormal proliferation of T-cell precursors and is generally aggressive. As CD34 is the only positive-selection marker for CSCs in T-ALL, we performed extensive analysis of CD markers in T-ALL cell lines. We found that some of the tested lines consisted of heterogeneous populations of cells with various levels of surface marker expression. In particular, a small subpopulation of CD90 (Thy-1) and CD110 (c-Mpl) were shown to correlate with stem cell properties both in vitro and in transplantation experiments. As these markers are expressed on hematopoietic stem cells, our results suggest that stem cell-like population are enriched in CD90+/CD110+ fraction and they are useful positive-selection markers for the isolation of CSCs in some cases of T-ALL.

  16. Clonal origins of ETV6-RUNX1⁺ acute lymphoblastic leukemia: studies in monozygotic twins.

    PubMed

    Alpar, D; Wren, D; Ermini, L; Mansur, M B; van Delft, F W; Bateman, C M; Titley, I; Kearney, L; Szczepanski, T; Gonzalez, D; Ford, A M; Potter, N E; Greaves, M

    2015-04-01

    Studies on twins with concordant acute lymphoblastic leukemia (ALL) have revealed that ETV6-RUNX1 gene fusion is a common, prenatal genetic event with other driver aberrations occurring subclonally and probably postnatally. The fetal cell type that is transformed by ETV6-RUNX1 is not identified by such studies or by the analysis of early B-cell lineage phenotype of derived progeny. Ongoing, clonal immunoglobulin (IG) and cross-lineage T-cell receptor (TCR) gene rearrangements are features of B-cell precursor leukemia and commence at the pro-B-cell stage of normal B-cell lineage development. We reasoned that shared clonal rearrangements of IG or TCR genes by concordant ALL in twins would be informative about the fetal cell type in which clonal advantage is elicited by ETV6-RUNX1. Five pairs of twins were analyzed for all varieties of IG and TCR gene rearrangements. All pairs showed identical incomplete or complete variable-diversity-joining junctions coupled with substantial, subclonal and divergent rearrangements. This pattern was endorsed by single-cell genetic scrutiny in one twin pair. Our data suggest that the pre-leukemic initiating function of ETV6-RUNX1 fusion is associated with clonal expansion early in the fetal B-cell lineage. PMID:25388957

  17. Myeloid Antigen-positive T Cell Acute Lymphocytic Leukemia with t(14;18) and Trisomy 10: Report of a Case and Literature Review.

    PubMed

    Lin, Guoqiang; Liu, Limin; Zhao, Guangsheng; Si, Yejun; Zhang, Xingxia; Sun, Yumei; Lu, Shuhua; Zhang, Yanming

    2015-08-01

    The chromosomal translocation t(14;18)(q32;q21) is commonly associated with neoplasms of follicular center cell origin and has also been reported in cases of chronic lymphocytic leukemia. However, T cell acute lymphoblastic (or lymphocytic) leukemia (T-ALL) with t(14;18)(q32;q21) has been rarely reported. Here, we report a case of myeloid antigen-positive T-ALL (My+T-ALL) with t(14;18)(q32;q21) and trisomy 10. This is the first reported case of My+T-ALL (L2) with such chromosomal abnormalities. Other published de novo ALL cases, with t(14;18)(q32;q21) and without a documented history of lymphoma, are summarized and reviewed in this report. The patient in this study was treated with remission induction therapy and intensive chemotherapy, followed by maintenance therapy. As of this writing, he has remained in remission for more than 3 years and has presented a better clinical outcome compared with other reported adult ALL patients with t(14;18)(q32;q21). PMID:26265522

  18. An early defect in primary and secondary T cell responses in asymptomatic cats during acute feline immunodeficiency virus (FIV) infection.

    PubMed Central

    Bishop, S A; Williams, N A; Gruffydd-Jones, T J; Harbour, D A; Stokes, C R

    1992-01-01

    As in HIV infection of humans, cats infected with FIV are particularly susceptible to secondary infection by opportunistic pathogens, suggesting an impaired ability to elicit an effective immune response against foreign antigens. In order to investigate the development of immunity in FIV-infected cats, we have used an autologous culture system to directly measure priming of naive CD4+ T cells to soluble protein antigen, in vitro. Using this assay, we showed previously that cats infected with FIV for several months had significantly reduced primary proliferative responses. We have now examined cats before infection, and at varying times after infection with FIV, to determine how soon after infection this defect in T cell priming was evident, compared with other quantitative and qualitative measurements of lymphocyte function. Our results showed a progressive decline in immune function in asymptomatic cats during the acute stage of infection with FIV. Primary T cell responses were most sensitive and a significant reduction in proliferation of naive T cells to foreign antigen occurred 5 weeks after infection, despite normal blastogenesis to T cell mitogens and normal CD4+/CD8+ ratios at these times. Whilst lymphocyte proliferation to T cell mitogens was unaffected throughout, a significant reduction in proliferation to a B cell mitogen occurred from week 8 onwards. CD4+/CD8+ ratios fell significantly from week 13 onwards, and proliferation of the memory T cell population to a recall antigen was significantly impaired later, from week 19 onwards. The defect in the priming of naive T cells to foreign antigen early after infection may be important in determining susceptibility to secondary infections. PMID:1458687

  19. Acute Activation of Metabolic Syndrome Components in Pediatric Acute Lymphoblastic Leukemia Patients Treated with Dexamethasone

    PubMed Central

    Warris, Lidewij T.; van den Akker, Erica L. T.; Bierings, Marc B.; van den Bos, Cor; Zwaan, Christian M.; Sassen, Sebastiaan D. T.; Tissing, Wim J. E.; Veening, Margreet A.; Pieters, Rob; van den Heuvel-Eibrink, Marry M.

    2016-01-01

    Although dexamethasone is highly effective in the treatment of pediatric acute lymphoblastic leukemia (ALL), it can cause serious metabolic side effects. Because studies regarding the effects of dexamethasone are limited by their small scale, we prospectively studied the direct effects of treating pediatric ALL with dexamethasone administration with respect to activation of components of metabolic syndrome (MetS); in addition, we investigated whether these side effects were correlated with the level of dexamethasone. Fifty pediatric patients (3–16 years of age) with ALL were studied during a 5-day dexamethasone course during the maintenance phase of the Dutch Childhood Oncology Group ALL-10 and ALL-11 protocols. Fasting insulin, glucose, total cholesterol, HDL, LDL, and triglycerides levels were measured at baseline (before the start of dexamethasone; T1) and on the fifth day of treatment (T2). Dexamethasone trough levels were measured at T2. We found that dexamethasone treatment significantly increased the following fasting serum levels (P<0.05): HDL, LDL, total cholesterol, triglycerides, glucose, and insulin. In addition, dexamethasone increased insulin resistance (HOMA-IR>3.4) from 8% to 85% (P<0.01). Dexamethasone treatment also significantly increased the diastolic and systolic blood pressure. Lastly, dexamethasone trough levels (N = 24) were directly correlated with high glucose levels at T2, but not with other parameters. These results indicate that dexamethasone treatment acutely induces three components of the MetS. Together with the weight gain typically associated with dexamethasone treatment, these factors may contribute to the higher prevalence of MetS and cardiovascular risk among survivors of childhood leukemia who received dexamethasone treatment. PMID:27362350

  20. Donor Peripheral Blood Stem Cell Transplant and Pretargeted Radioimmunotherapy in Treating Patients With High-Risk Advanced Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or Myelodysplastic Syndrome

    ClinicalTrials.gov

    2016-03-01

    Chronic Myelomonocytic Leukemia; Myelodysplastic/Myeloproliferative Neoplasm, Unclassifiable; Previously Treated Myelodysplastic Syndrome; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Cytopenia With Multilineage Dysplasia; Refractory Cytopenia With Multilineage Dysplasia and Ringed Sideroblasts; Secondary Acute Myeloid Leukemia

  1. A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies.

    PubMed

    Mamonkin, Maksim; Rouce, Rayne H; Tashiro, Haruko; Brenner, Malcolm K

    2015-08-20

    Options for targeted therapy of T-cell malignancies remain scarce. Recent clinical trials demonstrated that chimeric antigen receptors (CARs) can effectively redirect T lymphocytes to eradicate lymphoid malignancies of B-cell origin. However, T-lineage neoplasms remain a more challenging task for CAR T cells due to shared expression of most targetable surface antigens between normal and malignant T cells, potentially leading to fratricide of CAR T cells or profound immunodeficiency. Here, we report that T cells transduced with a CAR targeting CD5, a common surface marker of normal and neoplastic T cells, undergo only limited fratricide and can be expanded long-term ex vivo. These CD5 CAR T cells effectively eliminate malignant T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoma lines in vitro and significantly inhibit disease progression in xenograft mouse models of T-ALL. These data support the therapeutic potential of CD5 CAR in patients with T-cell neoplasms. PMID:26056165

  2. CD8 T-cell recognition of acquired alloantigen promotes acute allograft rejection

    PubMed Central

    Harper, Simon J. F.; Ali, Jason M.; Wlodek, Elizabeth; Negus, Marg C.; Harper, Ines G.; Chhabra, Manu; Qureshi, M. Saeed; Mallik, Mekhola; Bolton, Eleanor; Bradley, J. Andrew; Pettigrew, Gavin J.

    2015-01-01

    Adaptive CD8 T-cell immunity is the principal arm of the cellular alloimmune response, but its development requires help. This can be provided by CD4 T cells that recognize alloantigen “indirectly,” as self-restricted allopeptide, but this process remains unexplained, because the target epitopes for CD4 and CD8 T-cell recognition are “unlinked” on different cells (recipient and donor antigen presenting cells (APCs), respectively). Here, we test the hypothesis that the presentation of intact and processed MHC class I alloantigen by recipient dendritic cells (DCs) (the “semidirect” pathway) allows linked help to be delivered by indirect-pathway CD4 T cells for generating destructive cytotoxic CD8 T-cell alloresponses. We show that CD8 T-cell–mediated rejection of murine heart allografts that lack hematopoietic APCs requires host secondary lymphoid tissue (SLT). SLT is necessary because within it, recipient dendritic cells can acquire MHC from graft parenchymal cells and simultaneously present it as intact protein to alloreactive CD8 T cells and as processed peptide alloantigen for recognition by indirect-pathway CD4 T cells. This enables delivery of essential help for generating cytotoxic CD8 T-cell responses that cause rapid allograft rejection. In demonstrating the functional relevance of the semidirect pathway to transplant rejection, our findings provide a solution to a long-standing conundrum as to why SLT is required for CD8 T-cell allorecognition of graft parenchymal cells and suggest a mechanism by which indirect-pathway CD4 T cells provide help for generating effector cytotoxic CD8 T-cell alloresponses at late time points after transplantation. PMID:26420874

  3. Randomized trial of radiation-free central nervous system prophylaxis comparing intrathecal triple therapy with liposomal cytarabine in acute lymphoblastic leukemia

    PubMed Central

    Bassan, Renato; Masciulli, Arianna; Intermesoli, Tamara; Audisio, Ernesta; Rossi, Giuseppe; Pogliani, Enrico Maria; Cassibba, Vincenzo; Mattei, Daniele; Romani, Claudio; Cortelezzi, Agostino; Corti, Consuelo; Scattolin, Anna Maria; Spinelli, Orietta; Tosi, Manuela; Parolini, Margherita; Marmont, Filippo; Borlenghi, Erika; Fumagalli, Monica; Cortelazzo, Sergio; Gallamini, Andrea; Marfisi, Rosa Maria; Oldani, Elena; Rambaldi, Alessandro

    2015-01-01

    Developing optimal radiation-free central nervous system prophylaxis is a desirable goal in acute lymphoblastic leukemia, to avoid the long-term toxicity associated with cranial irradiation. In a randomized, phase II trial enrolling 145 adult patients, we compared intrathecal liposomal cytarabine (50 mg: 6/8 injections in B-/T-cell subsets, respectively) with intrathecal triple therapy (methotrexate/cytarabine/prednisone: 12 injections). Systemic therapy included methotrexate plus cytarabine or L-asparaginase courses, with methotrexate augmented to 2.5 and 5 g/m2 in Philadelphia-negative B- and T-cell disease, respectively. The primary study objective was the comparative assessment of the risk/benefit ratio, combining the analysis of feasibility, toxicity and efficacy. In the liposomal cytarabine arm 17/71 patients (24%) developed grade 3–4 neurotoxicity compared to 2/74 (3%) in the triple therapy arm (P=0.0002), the median number of episodes of neurotoxicity of any grade was one per patient compared to zero, respectively (P=0.0001), and even though no permanent disabilities or deaths were registered, four patients (6%) discontinued intrathecal prophylaxis on account of these toxic side effects (P=0.06). Neurotoxicity worsened with liposomal cytarabine every 14 days (T-cell disease), and was improved by the adjunct of intrathecal dexamethasone. Two patients in the liposomal cytarabine arm suffered from a meningeal relapse (none with T-cell disease, only one after high-dose chemotherapy) compared to four in the triple therapy arm (1 with T-cell disease). While intrathecal liposomal cytarabine could contribute to improved, radiation-free central nervous system prophylaxis, the toxicity reported in this trial does not support its use at 50 mg and prompts the investigation of a lower dosage. (clinicaltrials.gov identifier: NCT-00795756). PMID:25749825

  4. A unique complex translocation involving six different chromosomes in a case of childhood acute lymphoblastic leukemia with the Philadelphia chromosome and adverse prognosis.

    PubMed

    Achkar, Walid Al; Wafa, Abdulsamad; Mkrtchyan, Hasmik; Moassass, Faten; Liehr, Thomas

    2010-09-01

    Acute lymphoblastic leukemia (ALL) is the most common childhood malignancy. Approximately 84% of cases of ALL are classified as B-precursor ALL, 14% of cases are T-cell and 2% of cases are B-cell (B-)ALL. About one third of B-ALL cases show an abnormal karyotype. Combining data obtained by immunophenotyping, karyotyping and molecular cytogenetic analyses allows for a better understanding of this heterogeneous disease. This study reports an exceptional B-ALL case with a poor prognosis and unique complex chromosomal aberrations not previously observed, i.e., a translocation involving the six chromosomal regions 1q42, 4q21, 4q24, 4q35 (twice), 8q22 and 10p15.3 besides 9q34 and 22q11.2. PMID:22966383

  5. Expression of TIA-1 and TIA-2 in T cell malignancies and T cell lymphocytosis.

    PubMed Central

    Matutes, E; Coelho, E; Aguado, M J; Morilla, R; Crawford, A; Owusu-Ankomah, K; Catovsky, D

    1996-01-01

    OBJECTIVE: To investigate the reactivity with TIA-1 and TIA-2, two monoclonal antibodies that recognise, respectively, granular structures in T lymphocytes and the T cell receptor chain in cells from a variety of T cell disorders. METHODS: Cytoplasmic staining with TIA-1 and TIA-2 was carried out by the immunoalkaline phosphatase anti-alkaline phosphatase technique in 67 cases with a T cell disorder: 31 large granular lymphocyte (LGL) leukaemia, nine T-prolymphocytic leukaemia (T-PLL), five Sezary syndrome, four peripheral T cell lymphoma (PTCL), 13 T cell lymphocytosis, and five T-acute lymphoblastic leukaemia (T-ALL). All had over 75% abnormal T cells which were CD2+, CD3+, CD5+, CD7+, and negative with B cell markers. RESULTS: TIA-1 was positive in 77% cases of LGL leukaemia and half of the PTCL and T-ALL, whereas it was negative in all Sezary syndrome and most T-PLL (8/9) and reactive T-lymphocytosis (10/13). In LGL leukaemia, TIA-1 was positive irrespective of the membrane phenotype, whether CD8+, CD4- or CD4+, CD8-, and was more often positive in cases where cells were CD16+, CD56+, or CD57+. TIA-2 was positive in 60% of cases encompassing all diagnostic types of T cell disorder. There was no correlation between TIA-2 expression and that of other T cell markers, activation antigens, and natural killer markers. CONCLUSIONS: The pattern of TIA-1 expression in T cell malignancies may help in the differential diagnosis among LGL leukaemia (high expression), T cell lymphocytosis and other T cell diseases (low expression). As TIA-2 is expressed in over 95% mature T lymphocytes and thymic cells, its assessment may be useful to demonstrate aberrant phenotypes which can be exploited for detecting minimal residual disease. Images PMID:8655683

  6. L-Asparaginase II Produced by Salmonella Typhimurium Inhibits T Cell Responses and Mediates Virulence

    PubMed Central

    Kullas, Amy L.; McClelland, Michael; Yang, Hee-Jeong; Tam, Jason W.; Torres, AnnMarie; Porwollik, Steffen; Mena, Patricio; McPhee, Joseph B.; Bogomolnaya, Lydia; Andrews-Polymenis, Helene; van der Velden, Adrianus W.M.

    2013-01-01

    SUMMARY Salmonella enterica serovar Typhimurium avoids clearance by the host immune system by suppressing T cell responses; however, the mechanisms that mediate this immunosuppression remain unknown. We show that S. Typhimurium inhibit T cell responses by producing L-Asparaginase II, which catalyzes the hydrolysis of L-asparagine to aspartic acid and ammonia. L-Asparaginase II is necessary and sufficient to suppress T cell blastogenesis, cytokine production, and proliferation and to downmodulate expression of the T cell receptor. Furthermore, S. Typhimurium-induced inhibition of T cells in vitro is prevented upon addition of L-asparagine. S. Typhimurium lacking the L-Asparaginase II gene (STM3106) are unable to inhibit T cell responses and exhibit attenuated virulence in vivo. L-Asparaginases are used to treat acute lymphoblastic leukemia through mechanisms that likely involve amino acid starvation of leukemic cells, and these findings indicate that pathogens similarly use L-asparagine deprivation to limit T cell responses. PMID:23245323

  7. Specificity of T cells invading the skin during acute graft-vs.-host disease after semiallogeneic bone marrow transplantation.

    PubMed Central

    Gaschet, J; Mahé, B; Milpied, N; Devilder, M C; Dréno, B; Bignon, J D; Davodeau, F; Hallet, M M; Bonneville, M; Vié, H

    1993-01-01

    The mechanisms responsible for skin lesions during acute graft-vs.-host disease (aGVHD) after allogeneic bone marrow transplantation (BMT) are poorly understood. The exact role of various effector cell populations and "major" (particularly HLA-DP) or "minor" antigens as target molecules is not known. To investigate the nature of cells responsible for tissue injury, we cultured T cells from skin biopsy first with interleukin 2 (IL-2) alone and then in polyclonal activation conditions to avoid in vitro antigenic sensitization before specificity testing. We applied this method to two biopsies performed during aGVHD after semiallogeneic BMT and obtained cytotoxic T cells against four graft mismatches: CD8+ T cells against HLA-A2.2 and HLA-B27 and CD4+ T cells against HLA-DP101 and HLA-DP401. This demonstrates that T cells with documented specificity can be obtained from an aGVHD lesion without antigenic selection. Moreover, these data directly implicate DP as a potential target antigen for aGVHD. Images PMID:8423212

  8. Endoplasmic Reticulum Stress Regulator XBP-1 Contributes to Effector CD8+ T Cell Differentiation during Acute Infection1

    PubMed Central

    Kamimura, Daisuke; Bevan, Michael J.

    2009-01-01

    The transcription factor X-box-binding protein-1 (XBP-1) plays an essential role in activating the unfolded protein response in the endoplasmic reticulum (ER). Transcribed XBP-1 mRNA is converted to its active form by unconventional cytoplasmic splicing mediated by inositol-requiring enzyme-1 (IRE-1) upon ER stress. We report activation of the IRE-1/XBP-1 pathway in effector CD8+ T cells during the response to acute infection. Transcription of unspliced XBP-1 mRNA is up-regulated by IL-2 signals, while its splicing is induced after TCR ligation. Splicing of XBP-1 mRNA was evident during the expansion of Ag-specific CD8+ T cells in response to viral or bacterial infection. An XBP-1 splicing reporter revealed that splicing activity was enriched in terminal effector cells expressing high levels of killer cell lectin-like receptor G1 (KLRG1). Overexpression of the spliced form of XBP-1 in CD8+ T cells enhanced KLRG1 expression during infection, whereas XBP-1−/− CD8+ T cells or cells expressing a dominant-negative form of XBP-1 showed a decreased proportion of KLRG1high effector cells. These results suggest that, in the response to pathogen, activation of ER stress sensors and XBP-1 splicing contribute to the differentiation of end-stage effector CD8+ T cells. PMID:18832700

  9. Regulatory T cells reduce acute lung injury fibroproliferation by decreasing fibrocyte recruitment.

    PubMed

    Garibaldi, Brian T; D'Alessio, Franco R; Mock, Jason R; Files, D Clark; Chau, Eric; Eto, Yoshiki; Drummond, M Bradley; Aggarwal, Neil R; Sidhaye, Venkataramana; King, Landon S

    2013-01-01

    Acute lung injury (ALI) causes significant morbidity and mortality. Fibroproliferation in ALI results in worse outcomes, but the mechanisms governing fibroproliferation remain poorly understood. Regulatory T cells (Tregs) are important in lung injury resolution. Their role in fibroproliferation is unknown. We sought to identify the role of Tregs in ALI fibroproliferation, using a murine model of lung injury. Wild-type (WT) and lymphocyte-deficient Rag-1(-/-) mice received intratracheal LPS. Fibroproliferation was characterized by histology and the measurement of lung collagen. Lung fibrocytes were measured by flow cytometry. To dissect the role of Tregs in fibroproliferation, Rag-1(-/-) mice received CD4(+)CD25(+) (Tregs) or CD4(+)CD25(-) Tcells (non-Tregs) at the time of LPS injury. To define the role of the chemokine (C-X-C motif) ligand 12 (CXCL12)-CXCR4 pathway in ALI fibroproliferation, Rag-1(-/-) mice were treated with the CXCR4 antagonist AMD3100 to block fibrocyte recruitment. WT and Rag-1(-/-) mice demonstrated significant collagen deposition on Day 3 after LPS. WT mice exhibited the clearance of collagen, but Rag-1(-/-) mice developed persistent fibrosis. This fibrosis was mediated by the sustained epithelial expression of CXCL12 (or stromal cell-derived factor 1 [SDF-1]) that led to increased fibrocyte recruitment. The adoptive transfer of Tregs resolved fibroproliferation by decreasing CXCL12 expression and subsequent fibrocyte recruitment. Blockade of the CXCL12-CXCR4 axis with AMD3100 also decreased lung fibrocytes and fibroproliferation. These results indicate a central role for Tregs in the resolution of ALI fibroproliferation by reducing fibrocyte recruitment along the CXCL12-CXCR4 axis. A dissection of the role of Tregs in ALI fibroproliferation may inform the design of new therapeutic tools for patients with ALI. PMID:23002097

  10. T cell immunohistochemistry refines lung transplant acute rejection diagnosis and grading

    PubMed Central

    2013-01-01

    Objective Lung transplant volume has been increasing. However, inaccurate and uncertain diagnosis for lung transplant rejection hurdles long-term outcome due to, in part, interobserver variability in rejection grading. Therefore, a more reliable method to facilitate diagnosing and grading rejection is warranted. Method Rat lung grafts were harvested on day 3, 7, 14 and 28 post transplant for histological and immunohistochemical assessment. No immunosuppressive treatment was administered. We explored the value of interstitial T lymphocytes quantification by immunohistochemistry and compared the role of T cell immunohistochemistry with H&E staining in diagnosing and grading lung transplant rejection. Results Typical acute rejection from grade A1 to A4 was found. Rejection severity was heterogeneously distributed in one-third transplanted lungs (14/40): lesions in apex and center were more augmented than in the base and periphery of the grafts, respectively. Immunohistochemistry showed profound difference in T lymphocyte infiltration among grade A1 to A4 rejections. The coincidence rate of H&E and immunohistochemistry was 77.5%. The amount of interstitial T lymphocyte infiltration increased gradually with the upgrading of rejection. The statistical analysis demonstrated that the difference in the amount of interstitial T lymphocytes between grade A2 and A3 was not obvious. However, T lymphocytes in lung tissue of grade A4 were significantly more abundant than in other grades. Conclusions Rejection severity was heterogeneously distributed within lung grafts. Immunohistochemistry improves the sensitivity and specificity of rejection diagnosis, and interstitial T lymphocyte quantitation has potential value in diagnosing and monitoring lung allograft rejection. Virtual slides The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1536075282108217. PMID:24330571

  11. Segmentation of White Blood Cell from Acute Lymphoblastic Leukemia Images Using Dual-Threshold Method.

    PubMed

    Li, Yan; Zhu, Rui; Mi, Lei; Cao, Yihui; Yao, Di

    2016-01-01

    We propose a dual-threshold method based on a strategic combination of RGB and HSV color space for white blood cell (WBC) segmentation. The proposed method consists of three main parts: preprocessing, threshold segmentation, and postprocessing. In the preprocessing part, we get two images for further processing: one contrast-stretched gray image and one H component image from transformed HSV color space. In the threshold segmentation part, a dual-threshold method is proposed for improving the conventional single-threshold approaches and a golden section search method is used for determining the optimal thresholds. For the postprocessing part, mathematical morphology and median filtering are utilized to denoise and remove incomplete WBCs. The proposed method was tested in segmenting the lymphoblasts on a public Acute Lymphoblastic Leukemia (ALL) image dataset. The results show that the performance of the proposed method is better than single-threshold approach independently performed in RGB and HSV color space and the overall single WBC segmentation accuracy reaches 97.85%, showing a good prospect in subsequent lymphoblast classification and ALL diagnosis. PMID:27313659

  12. Segmentation of White Blood Cell from Acute Lymphoblastic Leukemia Images Using Dual-Threshold Method

    PubMed Central

    Cao, Yihui; Yao, Di

    2016-01-01

    We propose a dual-threshold method based on a strategic combination of RGB and HSV color space for white blood cell (WBC) segmentation. The proposed method consists of three main parts: preprocessing, threshold segmentation, and postprocessing. In the preprocessing part, we get two images for further processing: one contrast-stretched gray image and one H component image from transformed HSV color space. In the threshold segmentation part, a dual-threshold method is proposed for improving the conventional single-threshold approaches and a golden section search method is used for determining the optimal thresholds. For the postprocessing part, mathematical morphology and median filtering are utilized to denoise and remove incomplete WBCs. The proposed method was tested in segmenting the lymphoblasts on a public Acute Lymphoblastic Leukemia (ALL) image dataset. The results show that the performance of the proposed method is better than single-threshold approach independently performed in RGB and HSV color space and the overall single WBC segmentation accuracy reaches 97.85%, showing a good prospect in subsequent lymphoblast classification and ALL diagnosis. PMID:27313659

  13. CD4+ T cells provide protection against acute lethal encephalitis caused by Venezuelan equine encephalitis virus

    PubMed Central

    Yun, Nadezhda E.; Peng, Bi-Hung; Bertke, Andrea S.; Borisevich, Viktoriya; Smith, Jennifer K.; Smith, Jeanon N.; Poussard, Allison L.; Salazar, Milagros; Judy, Barbara M.; Zacks, Michele A.; Estes, D. Mark; Paessler, Slobodan

    2009-01-01

    Studying the mechanisms of host survival resulting from viral encephalitis is critical to the development of vaccines. Here we have shown in several independent studies that high-dose treatment with neutralizing antibody prior to intranasal infection with Venezuelan equine encephalitis virus had an antiviral effect in the visceral organs and prolonged survival time of infected mice, even in the absence of alpha beta T cells. Nevertheless, the antibody treatment did not prevent the development of lethal encephalitis. In contrary, the adoptive transfer of primed CD4+ T cells is necessary to prevent lethal encephalitis in mice lacking alpha beta T cell receptor. PMID:19446933

  14. Idiopathic thrombocytopenic purpura following successful treatment of acute lymphoblastic leukemia.

    PubMed

    Tannir, N M; Kantarjian, H

    2001-03-01

    Thrombocytopenia is common in patients with acute lymphocytic leukemia (ALL) at diagnosis. It is a universal side effect of dose-intensive regimens employed in the treatment of adult ALL. In patients with ALL who achieve remission, thrombocytopenia frequently indicates relapse. We report three adult patients successfully treated for ALL who developed thrombocytopenia and were found to have immune-mediated thrombocytopenia (ITP). Possible pathophysiologic mechanisms underlying the association of ALL and ITP are discussed. PMID:11342378

  15. Terminal Deoxynucleotidyl Transferase in a Case of Childhood Acute Lymphoblastic Leukemia

    PubMed Central

    McCaffrey, Ronald; Smoler, Donna F.; Baltimore, David

    1973-01-01

    Cells from a patient with childhood acute lymphoblastic leukemia contain an apparent DNA polymerase activity that was not found in any other cells except thymus cells. The enzyme has the properties of terminal transferase, an enzyme known to be found in thymocytes. The cells also contain the three major DNA polymerases found in growing cells. The results suggest that these tumor cells arose from a block in the differentiation of thymocytes. Terminal transferase may be a marker for the origin of leukemic cells. PMID:4346893

  16. [Acute lymphoblastic leukemia presenting with multiple hemorrhagic brain metastases (case report)].

    PubMed

    Halefoğlu, Ahmet M; Ertürk, Mehmet; Ozel, Alper; Calişkan, K Can

    2004-06-01

    Intracranial metastases represent 7-17% of all brain tumors. Renal cell carcinoma, thyroid cancer, choriocarcinoma, melanoma, retinoblastoma, lung cancer and breast cancer have a propensity for producing hemorrhagic brain metastases. Leukemias have also been rarely reported to cause hemorrhagic brain metastases. We describe an 18-year-old girl diagnosed as acute lymphoblastic leukemia presenting with multiple hemorrhagic brain metastases. MRI demonstrated high signal intensity lesions on both T1- and T2-weighted images which were characteristic for extracellular methemoglobin and consistent with hemorrhagic metastases. PMID:15236125

  17. Institutional adherence to cardiovascular risk factor screening guidelines for young survivors of acute lymphoblastic leukemia.

    PubMed

    Lin, Maria H; Wood, Jamie R; Mittelman, Steven D; Freyer, David R

    2015-05-01

    Survivors of acute lymphoblastic leukemia have increased risk for long-term cardiovascular complications. Early identification of cardiovascular risk factors (CVRF) may allow for effective interventions. In this retrospective cohort study of 194 patients at Children's Hospital Los Angeles, we investigated CVRF screening practices in an established childhood cancer survivorship program relative to both the Children's Oncology Group (COG) Long-Term Follow-Up Guidelines and American Academy of Pediatrics (AAP) recommendations. CVRF screening practices met COG but not the more stringent AAP recommendations, particularly in areas of dyslipidemia and diabetes screening. Implications of our findings are discussed. PMID:25757021

  18. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia | Office of Cancer Genomics

    Cancer.gov

    Publication Abstract:  Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is characterized by a gene-expression profile similar to that of BCR-ABL1-positive ALL, alterations of lymphoid transcription factor genes, and a poor outcome. The frequency and spectrum of genetic alterations in Ph-like ALL and its responsiveness to tyrosine kinase inhibition are undefined, especially in adolescents and adults. We performed genomic profiling of 1725 patients with precursor B-cell ALL and detailed genomic analysis of 154 patients with Ph-like ALL.

  19. Brain white matter changes during treatment of a child for acute lymphoblastic leukemia.

    PubMed

    Maeda, Miho; Hayakawa, Jun; Ueda, Takahiro; Migita, Makoto; Asano, Takeshi; Fukunaga, Yoshitaka; Amano, Yasuo

    2005-10-01

    A 13-year old boy with acute lymphoblastic leukemia had bilateral paresis of the upper extremities and aphasia 1 week after high dose methotrexate and triple intrathecal therapy (methotrexate, cytarabin, hydrocortisone). The stroke-like neurological symptoms disappeared on the third day. T2-weighted magnetic resonance imaging showed hyperintensities of white matter on the second day. Despite resolution of the neurological symptoms, magnetic resonance images were still abnormal 3 years after the attack. Methotrexate has been considered to be responsible for ischemic damage to oligodendroglial cells, resulting in demyelination. The changes are occasionally prolonged without persistent neurologic symptoms. PMID:16247223

  20. Philadelphia Chromosome-positive Acute Lymphoblastic Leukemia or Chronic Myeloid Leukemia in Lymphoid Blast Crisis.

    PubMed

    Kolenova, Alexandra; Maloney, Kelly W; Hunger, Stephen P

    2016-08-01

    The clinical characteristics of chronic myeloid leukemia (CML) in lymphoid blast crisis (BC) can resemble those of Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph ALL). Because of this, there can be concern as to whether a patient with newly diagnosed Ph leukemia has Ph ALL or CML in lymphoid BC. This distinction has significant potential therapeutic implications because most children with Ph ALL are now treated with chemotherapy plus a tyrosine kinase inhibitor, whereas allogeneic stem cell transplant is usually recommended for any patient with CML that presents in or later develops BC. PMID:27164534

  1. Spectral karyotyping reveals a comprehensive karyotype in an adult acute lymphoblastic leukemia

    PubMed Central

    Guo, Bo; Zhu, Hong Li; Li, Su Xia; Lu, Xue Chun; Fan, Hui; Da, Wan Ming

    2012-01-01

    Cytogenetic abnormalities are frequently detected in patients with acute lymphoblastic leukemia (ALL). Comprehensive karyotype was related to poor prognosis frequently in ALL. We present a comprehensive karyotype in an adult ALL by spectral karyotyping (SKY) and R-banding. SKY not only confirmed the abnormalities previously seen by R-banding but also improved comprehensive karyotype analysis with the following result 47,XY,+9, ins(1;5)(q23;q23q34) t(6;7)(q23;p13). Our report demonstrated that SKY is able to provide more information accurately for prediction of disease prognosis in adult ALL with comprehensive karyotype. PMID:27298606

  2. Function of Ikaros as a tumor suppressor in B cell acute lymphoblastic leukemia

    PubMed Central

    Kastner, Philippe; Dupuis, Arnaud; Gaub, Marie-Pierre; Herbrecht, Raoul; Lutz, Patrick; Chan, Susan

    2013-01-01

    The Ikaros transcription factor is crucial for many aspects of hematopoiesis. Loss of function mutations in IKZF1, the gene encoding Ikaros, have been implicated in adult and pediatric B cell acute lymphoblastic leukemia (B-ALL). These mutations result in haploinsufficiency of the Ikaros gene in approximately half of the cases. The remaining cases contain more severe or compound mutations that lead to the generation of dominant-negative proteins or complete loss of function. All IKZF1 mutations are associated with a poor prognosis. Here we review the current genetic, clinical and mechanistic evidence for the role of Ikaros as a tumor suppressor in B-ALL. PMID:23358883

  3. Rationale for targeting the pre-B-cell receptor signaling pathway in acute lymphoblastic leukemia.

    PubMed

    Müschen, Markus

    2015-06-11

    Inhibitors of B-cell receptor (BCR) and pre-BCR signaling were successfully introduced into patient care for various subtypes of mature B-cell lymphoma (e.g., ibrutinib, idelalisib). Acute lymphoblastic leukemia (ALL) typically originates from pre-B cells that critically depend on survival signals emanating from a functional pre-BCR. However, whether patients with ALL benefit from treatment with (pre-) BCR inhibitors has not been explored. Recent data suggest that the pre-BCR functions as tumor suppressor in the majority of cases of human ALL. However, a distinct subset of human ALL is selectively sensitive to pre-BCR antagonists. PMID:25878119

  4. Gonadal function after 12-Gy testicular irradiation in childhood acute lymphoblastic leukemia

    SciTech Connect

    Castillo, L.A.; Craft, A.W.; Kernahan, J.; Evans, R.G.; Aynsley-Green, A. )

    1990-01-01

    Gonadal function was assessed in 15 boys with acute lymphoblastic leukemia (ALL) who had received testicular irradiation. The dose to the testes was 12 Gy in 12, 15 Gy in 1, and 24 Gy in 2 cases. All of those who had received 12 or 15 Gy had normal Leydig cell function, although high levels of gonadotropins suggest subclinical Leydig cell damage. The 2 who had 24 Gy had Leydig cell failure. All who were old enough to produce a semen specimen were azoospermic.

  5. Adipose tissue attracts and protects acute lymphoblastic leukemia cells from chemotherapy

    PubMed Central

    Pramanik, Rocky; Sheng, Xia; Ichihara, Brian; Heisterkamp, Nora; Mittelman, Steven D.

    2013-01-01

    Obesity is associated with an increased risk of acute lymphoblastic leukemia (ALL) relapse. Using mouse and cell co-culture models, we investigated whether adipose tissue attracts ALL to a protective microenvironment. Syngeneically implanted ALL cells migrated into adipose tissue within ten days. In vitro, murine ALL cells migrated towards adipose tissue explants and 3T3-L1 adipocytes. Human and mouse ALL cells migrated toward adipocyte conditioned media, which was mediated by SDF-1α. In addition, adipose tissue explants protected ALL cells against daunorubicin and vincristine. Our findings suggest that ALL migration into adipose tissue could contribute to drug resistance and potentially relapse. PMID:23332453

  6. Clofarabine-based combination chemotherapy for relapse and refractory childhood acute lymphoblastic leukemia.

    PubMed

    Arakawa, Yuki; Koh, Katsuyoshi; Aoki, Takahiro; Kubota, Yasuo; Oyama, Ryo; Mori, Makiko; Hayashi, Mayumi; Hanada, Ryoji

    2014-11-01

    Clofarabine, one of the key treatment agents for refractory and relapsed acute lymphoblastic leukemia (ALL), achieves a remission rate of approximately 30% with single-agent clofarabine induction chemotherapy. However, a remission rate of approximately 50% was reported with a combination chemotherapy regimen consisting of clofarabine, etoposide, and cyclophosphamide. We treated two cases with refractory and relapsed ALL with combination chemotherapy including clofarabine; one was an induction failure but the other achieved remission. Both cases developed an infectious complication (NCI-CTCAE grade 3) and body pain with infusion. Prophylactic antibiotic and opioid infusions facilitated avoiding septic shock and pain. Further investigation of such cases is required. PMID:25501414

  7. Cardiac Failure 30 Years after Treatment Containing Anthracycline for Childhood Acute Lymphoblastic Leukemia

    PubMed Central

    Goldberg, John M.; Scully, Rebecca E.; Sallan, Stephen E.; Lipshultz, Steven E.

    2012-01-01

    In 1977, a 5-year-old girl diagnosed with acute lymphoblastic leukemia (ALL) was treated on DFCI Childhood ALL Protocol 77-01, receiving a cumulative doxorubicin dose of 465 mg/m2, cranial radiation, and other drugs. After being in continuous complete remission for 34 months, she developed heart failure (HF) and was treated with digoxin and furosemide. At 16, she was diagnosed and treated for dilated cardiomyopathy. Over the years she continued to have bouts of HF, which became less responsive to treatment. At 36, she received a heart transplant. Six months later, she stopped taking her medications and suffered a sudden cardiac death. PMID:22584777

  8. Fatal adenovirus hepatitis during standard chemotherapy for childhood acute lymphoblastic leukemia.

    PubMed

    Hough, Rachael; Chetwood, Andrew; Sinfield, Rebecca; Welch, Jenny; Vora, Ajay

    2005-02-01

    Fulminant hepatitis is a rare complication of adenoviral infection that has not previously been reported in children receiving standard chemotherapy for acute leukemia. The authors have observed fatal adenovirus hepatitis in three children receiving first-line chemotherapy for acute lymphoblastic leukemia (ALL). The patients presented 10, 17, and 8 months into therapy according to the UKALL XI (third intensification), UKALL 97/99 (maintenance), and pilot UKALL 2003 (delayed intensification II) protocols, respectively. All patients received aggressive supportive care and intravenous immunoglobulins. The second and third patients were also treated with intravenous cidofovir. Despite these measures, all three children deteriorated rapidly and died of fulminant liver failure. Although rare, adenovirus infection should be considered in the differential diagnosis of acute hepatitis in children receiving standard chemotherapy for ALL. PMID:15701979

  9. Rebeccamycin Analog in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Myelodysplastic Syndrome, Acute Lymphoblastic Leukemia, or Chronic Myelogenous Leukemia

    ClinicalTrials.gov

    2013-01-22

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  10. T Cells

    MedlinePlus

    ... or turn off the immune response. Cytotoxic or “killer” T cells directly attack and destroy cells bearing ... involve selective activation of helper T cells and killer T cells, with a corresponding decrease in regulatory ...

  11. Broadly directed virus-specific CD4+ T cell responses are primed during acute hepatitis C infection, but rapidly disappear from human blood with viral persistence

    PubMed Central

    Schulze zur Wiesch, Julian; Ciuffreda, Donatella; Lewis-Ximenez, Lia; Kasprowicz, Victoria; Nolan, Brian E.; Streeck, Hendrik; Aneja, Jasneet; Reyor, Laura L.; Allen, Todd M.; Lohse, Ansgar W.; McGovern, Barbara; Chung, Raymond T.; Kwok, William W.; Kim, Arthur Y.

    2012-01-01

    Vigorous proliferative CD4+ T cell responses are the hallmark of spontaneous clearance of acute hepatitis C virus (HCV) infection, whereas comparable responses are absent in chronically evolving infection. Here, we comprehensively characterized the breadth, specificity, and quality of the HCV-specific CD4+ T cell response in 31 patients with acute HCV infection and varying clinical outcomes. We analyzed in vitro T cell expansion in the presence of interleukin-2, and ex vivo staining with HCV peptide-loaded MHC class II tetramers. Surprisingly, broadly directed HCV-specific CD4+ T cell responses were universally detectable at early stages of infection, regardless of the clinical outcome. However, persistent viremia was associated with early proliferative defects of the HCV-specific CD4+ T cells, followed by rapid deletion of the HCV-specific response. Only early initiation of antiviral therapy was able to preserve CD4+ T cell responses in acute, chronically evolving infection. Our results challenge the paradigm that HCV persistence is the result of a failure to prime HCV-specific CD4+ T cells. Instead, broadly directed HCV-specific CD4+ T cell responses are usually generated, but rapid exhaustion and deletion of these cells occurs in the majority of patients. The data further suggest a short window of opportunity to prevent the loss of CD4+ T cell responses through antiviral therapy. PMID:22213804

  12. Predicting interactome network perturbations in human cancer: application to gene fusions in acute lymphoblastic leukemia

    PubMed Central

    Hajingabo, Leon Juvenal; Daakour, Sarah; Martin, Maud; Grausenburger, Reinhard; Panzer-Grümayer, Renate; Dequiedt, Franck; Simonis, Nicolas; Twizere, Jean-Claude

    2014-01-01

    Genomic variations such as point mutations and gene fusions are directly or indirectly associated with human diseases. They are recognized as diagnostic, prognostic markers and therapeutic targets. However, predicting the functional effect of these genetic alterations beyond affected genes and their products is challenging because diseased phenotypes are likely dependent of complex molecular interaction networks. Using as models three different chromosomal translocations—ETV6-RUNX1 (TEL-AML1), BCR-ABL1, and TCF3-PBX1 (E2A-PBX1)—frequently found in precursor-B-cell acute lymphoblastic leukemia (preB-ALL), we develop an approach to extract perturbed molecular interactions from gene expression changes. We show that the MYC and JunD transcriptional circuits are specifically deregulated after ETV6-RUNX1 and TCF3-PBX1 gene fusions, respectively. We also identified the bulk mRNA NXF1-dependent machinery as a direct target for the TCF3-PBX1 fusion protein. Through a novel approach combining gene expression and interactome data analysis, we provide new insight into TCF3-PBX1 and ETV6-RUNX1 acute lymphoblastic leukemia. PMID:25273558

  13. Studies on the assessment of neurotoxicity in children with acute lymphoblastic leukemia

    SciTech Connect

    Muchi, H.; Satoh, T.; Yamamoto, K.; Karube, T.; Miyao, M.

    1987-03-01

    Central nervous system (CNS) prophylaxis caused a remarkable reduction in the incidence of CNS disease, however there has evolved a growing concern regarding the immediate or late toxicities to the developing CNS. Twenty-eight children with acute lymphoblastic leukemia who survived for more than 2 years were examined for the assessment of neurotoxicity induced by CNS prophylaxis and its treatment. The patients were stratified into three groups: Stratum I, prophylaxis with methotrexate; Stratum II, prophylaxis with cranial irradiation with methotrexate; and Stratum III, with CNS leukemia. Once CNS disease developed the sequelae were frequent and severe, due to the elevated methotrexate levels in the cerebrospinal fluid. CNS prophylaxis with intermediate-dose methotrexate was less toxic to the developing CNS than prophylactic cranial irradiation, especially in children under 5 years of age. Electroencephalograms and evoked potentials are likely to find increasing application in defining the CNS sequelae of acute lymphoblastic leukemia in children and its treatment. Although the sample size was small, the findings delineate specific areas of neurotoxicity.

  14. Association of Serum Leptin Level with Obesity in Children with Acute Lymphoblastic Leukemia

    PubMed Central

    Zareifar, S; Shorafa, S; Haghpanah, S; Karamizadeh, Z; Adelian, R

    2015-01-01

    Background Obesity is a medical problem in survivors of childhood acute lymphoblastic leukemia. Obesity is associated with many complications, so it is important to investigate the respective etiology. Leptin is a protein synthesized in the fatty tissue and is effective in the control of obesity. Survey of leptin in acute lymphoblastic leukemia (ALL) survivors could be helpful in controlling obesity. Materials and Methods In this prospective study, 53 pediatric patients diagnosed with ALL between 2006 and 2012 from Southern Iran, were enrolled. We examined body mass index (BMI) status and performed laboratory measuring tests including triglyceride, cholesterol, fasting blood sugar, leptin at diagnosis time and then every 6 months and in the last visit. Results Participants consisted of 35 male and 18 female patients. At the time of diagnosis, 5.66% were overweight or obese, whereas at the end of treatment, approximately 13 patients (24.53%) were overweight or obese. The median and interquartile range (IQR) for blood leptin level were significantly higher for obese patients than other patients (885, 1120 vs. 246, 494 pg/ml), (P=0.030). The median and IQR were also significantly higher in females than in males (861, 969 vs. 204, 267 pg/ml), (P=0.006). Conclusion Obesity is a complication of ALL treatment. It is associated with elevated blood leptin level. Hypothalamus leptin resistance in obese patients should be considered. In each visit, clinicians should weight and their patient’s BMI take into account. PMID:26705449

  15. Suppressed spontaneous secretion of growth hormone in girls after treatment for acute lymphoblastic leukaemia.

    PubMed Central

    Moëll, C; Garwicz, S; Westgren, U; Wiebe, T; Albertsson-Wikland, K

    1989-01-01

    The spontaneous secretion of growth hormone during a 24 hour period and the response of growth hormone to growth hormone releasing hormone was studied in 13 girls who had received treatment for acute lymphoblastic leukemia that included cranial irradiation with 20-24 Gy in 12-14 fractions. At the time of investigation the girls were at varying stages of puberty and had normal concentrations of thyroid hormones. The mean interval between the end of treatment and investigation was 4.6 years. The mean age at onset of the disease was 3.2 years and at investigation 10.7 years. The average attained height equalled -0.3 SD at onset, and -1.0 SD at the time of investigation. Secretion of growth hormone was substantially reduced compared with controls and did not increase during puberty. A prompt rise in growth hormone secretion was seen after injection of growth hormone releasing hormone, but the mean maximum growth hormone concentration was, however, only 25 mU/l. There was no correlation between the 24 hour secretion and growth hormone response to growth hormone releasing hormone, or the time since irradiation. These results confirm earlier work that suggested that girls who had received treatment for acute lymphoblastic leukaemia, that included cranial irradiation, have a comparative growth hormone insufficiency characterised by normal prepubertal growth and slow growth during puberty because of an inability to respond to the increased demands for growth hormone at that time. PMID:2494952

  16. High incidence of obesity in young adults after treatment of acute lymphoblastic leukemia in childhood.

    PubMed

    Didi, M; Didcock, E; Davies, H A; Ogilvy-Stuart, A L; Wales, J K; Shalet, S M

    1995-07-01

    To determine whether obesity complicated the treatment of childhood acute lymphoblastic leukemia, we studied the body mass index (BMI) of 63 female when and 51 male patients from the time of diagnosis of acute lymphoblastic leukemia to the time when final height was attained. The BMI z score was calculated for each patient at diagnosis, at end of treatment, and at attainment of final height. Obesity at attainment of final height was defined as a BMI greater than the 85th percentile of the normal reference population. At final height 23 of 51 male (45%) and 30 of 63 female patients (47%) were obese. Girls became obese between diagnosis and the end of chemotherapy (p = 0.02), after which they had no further increase, indicating that chemotherapy may have played a role in their obesity. Boys had a progressive and gradual increase in BMI z score through to attainment of final height. Obesity did not appear to be associated with growth hormone insufficiency, disproportionate growth, or abnormal timing of puberty. We conclude that approximately half the survivors of leukemia in childhood become obese young adults. Many of those treated with the more recent regimens studied are still only in their mid or preteen years and should be advised regarding a more active lifestyle and a healthy diet in an attempt to reduce the incidence of obesity. PMID:7608813

  17. Intragenic ERG Deletions Do Not Explain the Biology of ERG-Related Acute Lymphoblastic Leukemia

    PubMed Central

    Potuckova, Eliska; Zuna, Jan; Hovorkova, Lenka; Starkova, Julia; Stary, Jan; Trka, Jan; Zaliova, Marketa

    2016-01-01

    Intragenic ERG deletions occur in 3–5% of B-cell precursor acute lymphoblastic leukemia, specifically in B-other subtype lacking the classifying genetic lesions. They represent the only genetic lesion described so far present in the majority of cases clustering into a subgroup of B-other subtype characterized by a unique gene expression profile, probably sharing a common, however, not yet fully described, biological background. We aimed to elucidate whether ERG deletions could drive the specific biology of this ERG-related leukemia subgroup through expression of aberrant or decreased expression of wild type ERG isoforms. We showed that leukemic cells with endogenous ERG deletion express an aberrant transcript translated into two proteins in transfected cell lines and that one of these proteins colocalizes with wild type ERG. However, we did not confirm expression of the proteins in acute lymphoblastic leukemia cases with endogenous ERG deletion. ERG deletions resulted in significantly lower expression of wild type ERG transcripts compared to B-other cases without ERG deletion. However, cases with subclonal ERG deletion, clustering to the same ERG deletion associated subgroup, presented similar levels of wild type ERG as cases without ERG deletion. In conclusion, our data suggest that neither the expression of aberrant proteins from internally deleted allele nor the reduced expression of wild type ERG seem to provide a plausible explanation of the specific biology of ERG -related leukemia subgroup. PMID:27494621

  18. Effects of Race/Ethnicity and Socioeconomic Status on Outcome in Childhood Acute Lymphoblastic Leukemia.

    PubMed

    Acharya, Sahaja; Hsieh, Samantha; Shinohara, Eric T; DeWees, Todd; Frangoul, Haydar; Perkins, Stephanie M

    2016-07-01

    With modern therapy, overall survival (OS) for children with acute lymphoblastic leukemia approaches 90%. However, inferior outcomes for minority children have been reported. Data on the effects of ethnicity/race as it relates to socioeconomic status are limited. Using state cancer registry data from Texas and Florida, we evaluated the impact of neighborhood-level poverty rate and race/ethnicity on OS for 4719 children with acute lymphoblastic leukemia. On multivariable analysis, patients residing in neighborhoods with the highest poverty rate had a 1.8-fold increase in mortality compared with patients residing in neighborhoods with the lowest poverty rate (hazard ratio [HR], 1.8; 95% confidence interval [CI], 1.41-2.30). Hispanic and non-Hispanic black patients also had increased risk of mortality compared with non-Hispanic white patients (Hispanic: HR, 1.18; 95% CI, 1.01-1.39; non-Hispanic black: HR, 1.31; 95% CI, 1.03-1.66). On subgroup analysis, there was a 21.7% difference in 5-year OS when comparing non-Hispanic white children living in the lowest poverty neighborhoods (5-year OS, 91.2%; 95% CI, 88.6-93.2) to non-Hispanic black children living in the highest poverty neighborhoods (5-year OS, 69.5%; 95% CI, 61.5-76.1). To address such disparities in survival, further work is needed to identify barriers to cancer care in this pediatric population. PMID:27177145

  19. CCI-779 in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Myelodysplastic Syndromes, or Chronic Myelogenous Leukemia in Blastic Phase

    ClinicalTrials.gov

    2013-01-22

    Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Myelodysplastic Syndromes

  20. Alisertib in Combination With Vorinostat in Treating Patients With Relapsed or Recurrent Hodgkin Lymphoma, B-Cell Non-Hodgkin Lymphoma, or Peripheral T-Cell Lymphoma

    ClinicalTrials.gov

    2016-07-12

    Adult B Acute Lymphoblastic Leukemia; Adult T Acute Lymphoblastic Leukemia; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-Cell Lymphoma; Chronic Lymphocytic Leukemia; Cutaneous B-Cell Non-Hodgkin Lymphoma; Extranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid Tissue; Hepatosplenic T-Cell Lymphoma; Intraocular Lymphoma; Lymphomatous Involvement of Non-Cutaneous Extranodal Site; Mature T-Cell and NK-Cell Non-Hodgkin Lymphoma; Nodal Marginal Zone Lymphoma; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-Cell Leukemia/Lymphoma; Recurrent Cutaneous T-Cell Non-Hodgkin Lymphoma; Recurrent Grade 1 Follicular Lymphoma; Recurrent Grade 2 Follicular Lymphoma; Recurrent Grade 3 Follicular Lymphoma; Recurrent Mantle Cell Lymphoma; Recurrent Marginal Zone Lymphoma; Recurrent Mycosis Fungoides and Sezary Syndrome; Recurrent Small Lymphocytic Lymphoma; Refractory Chronic Lymphocytic Leukemia; Refractory Hairy Cell Leukemia; Small Intestinal Lymphoma; Splenic Marginal Zone Lymphoma; T-Cell Large Granular Lymphocyte Leukemia; Testicular Lymphoma; Waldenstrom Macroglobulinemia

  1. Germline ETV6 Mutations Confer Susceptibility to Acute Lymphoblastic Leukemia and Thrombocytopenia

    PubMed Central

    Jacobs, Lauren; Maria, Ann; Villano, Danylo; Gaddam, Pragna; Wu, Gang; McGee, Rose B.; Quinn, Emily; Inaba, Hiroto; Hartford, Christine; Pui, Ching-hon; Pappo, Alberto; Edmonson, Michael; Zhang, Michael Y.; Stepensky, Polina; Steinherz, Peter; Schrader, Kasmintan; Lincoln, Anne; Bussel, James; Lipkin, Steve M.; Goldgur, Yehuda; Harit, Mira; Stadler, Zsofia K.; Mullighan, Charles; Weintraub, Michael; Shimamura, Akiko; Zhang, Jinghui; Downing, James R.; Nichols, Kim E.; Offit, Kenneth

    2015-01-01

    Somatic mutations affecting ETV6 often occur in acute lymphoblastic leukemia (ALL), the most common childhood malignancy. The genetic factors that predispose to ALL remain poorly understood. Here we identify a novel germline ETV6 p. L349P mutation in a kindred affected by thrombocytopenia and ALL. A second ETV6 p. N385fs mutation was identified in an unrelated kindred characterized by thrombocytopenia, ALL and secondary myelodysplasia/acute myeloid leukemia. Leukemic cells from the proband in the second kindred showed deletion of wild type ETV6 with retention of the ETV6 p. N385fs. Enforced expression of the ETV6 mutants revealed normal transcript and protein levels, but impaired nuclear localization. Accordingly, these mutants exhibited significantly reduced ability to regulate the transcription of ETV6 target genes. Our findings highlight a novel role for ETV6 in leukemia predisposition. PMID:26102509

  2. Laparoscopic cholecystectomy for acalculous cholecystitis in a neutropenic patient after chemotherapy for acute lymphoblastic leukemia

    PubMed Central

    Ejduk, Anna; Wróblewski, Tadeusz; Szczepanik, Andrzej B.

    2014-01-01

    Acute acalculous cholecystitis (ACC) is most frequently reported in critically ill patients following sepsis, extensive injury or surgery. It is rather uncommon as a chemotherapy-induced complication, which is usually life-threatening in neutropenic patients subjected to myelosuppressive therapy. A 23-year-old patient with acute lymphoblastic leukemia was subjected to myelosuppressive chemotherapy (cyclophosphamide, cytarabine, pegaspargase). After the first chemotherapy cycle the patient was neutropenic and feverish; she presented with vomiting and pain in the right epigastrium. Ultrasound demonstrated an acalculous gallbladder with wall thickening up to 14 mm. The ACC was diagnosed. Medical therapy included a broad spectrum antibiotic regimen and granulocyte-colony stimulating factors. On the second day after ACC diagnosis the patient's general condition worsened. Laparoscopic cholecystectomy was performed. The resected gallbladder showed no signs of bacterial or leukemic infiltrates. The postoperative course was uneventful. In the management of neutropenic patients with ACC surgical treatment is as important as pharmacological therapy. PMID:25337176

  3. Pathologic rupture of the spleen as the initial manifestation in acute lymphoblastic leukemia.

    PubMed

    Bernat, S; García Boyero, R; Guinot, M; López, F; Gozalbo, T; Cañigral, G

    1998-08-01

    Pathologic splenic rupture is a rare and life-threatening complication of acute leukemia. It is even more uncommon as the initial manifestation, and only a few cases has been reported in the literature. Early recognition of this complication is vital because the prognosis is fatal without immediate treatment by splenectomy. We report the case of a spontaneous spleen rupture irreversibly complicating the onset of acute lymphoblastic leukemia in a 19-year-old man, in spite of splenectomy. In our case abdominal ultrasound was a good, non-invasive diagnostic test. Therefore, we believe that the course of the underlying disease and the physical condition of the patient dramatically influenced the disease evolution. PMID:9793269

  4. Acute lymphoblastic leukemia in a patient with MonoMAC syndrome/GATA2 haploinsufficiency.

    PubMed

    Koegel, Ashley K; Hofmann, Inga; Moffitt, Kristin; Degar, Barbara; Duncan, Christine; Tubman, Venée N

    2016-10-01

    Patients with GATA2 haploinsufficiency have a significant predisposition to developing cytopenias, unique infectious manifestations, and myelodysplastic syndrome/acute myeloid leukemia (MDS/AML). We report a unique case of a patient who presented with B-cell acute lymphoblastic leukemia (B-ALL) and was subsequently diagnosed with monocytopenia and mycobacterium avium complex (MonoMAC) syndrome/GATA2 haploinsufficiency. The development of MDS/AML in patients with GATA2 haploinsufficiency is well described, however, the development of ALL has not been reported in the literature. ALL may be associated with GATA2 haploinsufficiency. Clinicians should be attuned to the features of the MonoMAC syndrome in patients with ALL that would prompt additional testing and alter treatment. PMID:27232273

  5. Pharmacogenetics predictive of response and toxicity in acute lymphoblastic leukemia therapy.

    PubMed

    Mei, Lin; Ontiveros, Evelena P; Griffiths, Elizabeth A; Thompson, James E; Wang, Eunice S; Wetzler, Meir

    2015-07-01

    Acute lymphoblastic leukemia (ALL) is a relatively rare disease in adults accounting for no more than 20% of all cases of acute leukemia. By contrast with the pediatric population, in whom significant improvements in long term survival and even cure have been achieved over the last 30years, adult ALL remains a significant challenge. Overall survival in this group remains a relatively poor 20-40%. Modern research has focused on improved pharmacokinetics, novel pharmacogenetics and personalized principles to optimize the efficacy of the treatment while reducing toxicity. Here we review the pharmacogenetics of medications used in the management of patients with ALL, including l-asparaginase, glucocorticoids, 6-mercaptopurine, methotrexate, vincristine and tyrosine kinase inhibitors. Incorporating recent pharmacogenetic data, mainly from pediatric ALL, will provide novel perspective of predicting response and toxicity in both pediatric and adult ALL therapies. PMID:25614322

  6. Comprehensive longitudinal analysis of hepatitis C virus (HCV)-specific T cell responses during acute HCV infection in the presence of existing HIV-1 infection.

    PubMed

    van den Berg, C H S B; Ruys, T A; Nanlohy, N M; Geerlings, S E; van der Meer, J T; Mulder, J-W; Lange, J A; van Baarle, D

    2009-04-01

    The aim of this study was to study the development of HCV-specific T cell immunity during acute HCV infection in the presence of an existing HIV-1 infection in four HIV-1 infected men having sex with men. A comprehensive analysis of HCV-specific T cell responses was performed at two time points during acute HCV infection using a T cell expansion assay with overlapping peptide pools spanning the entire HCV genome Three patients with (near) normal CD4+ T cell counts (range 400-970 x 10(6)/L) either resolved (n=1) or temporary suppressed HCV RNA. In contrast, one patient with low CD4+ T cell counts (330 x 10(6)/L), had sustained high HCV RNA levels. All four patients had low HCV-specific CD8+ T cell responses, and similar magnitudes of CD4+ T cell responses. Interestingly, individuals with resolved infection or temporary suppression of HCV-RNA had HCV-specific CD4+ T cell responses predominantly against nonstructural (NS) proteins. While the individual with high HCV RNA plasma concentrations had CD4+ T cell responses predominantly directed against Core. Our data show that an acute HCV infection in an HIV-1 infected person can be suppressed in the presence of HCV-specific CD4+ T cell response targeting non-structural proteins. However further research is needed in a larger group of patients to evaluate the role of HIV-1 on HCV-specific T cell responses in relation to outcome of acute HCV infection. PMID:19222746

  7. Donor T Cells After Donor Stem Cell Transplant in Treating Patients With Hematologic Malignancies

    ClinicalTrials.gov

    2016-07-20

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Del(5q); Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(15;17)(q22;q12); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Nasal Type Extranodal NK/T-cell Lymphoma; Anaplastic Large Cell Lymphoma; Angioimmunoblastic T-cell Lymphoma; Blastic Phase Chronic Myelogenous Leukemia; Childhood Burkitt Lymphoma; Childhood Chronic Myelogenous Leukemia; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Myelodysplastic Syndromes; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Chronic Phase Chronic Myelogenous Leukemia; Cutaneous B-cell Non-Hodgkin Lymphoma; de Novo Myelodysplastic Syndromes; Extranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid Tissue; Hepatosplenic T-cell Lymphoma; Intraocular Lymphoma; Nodal Marginal Zone B-cell Lymphoma; Noncutaneous Extranodal Lymphoma; Peripheral T-cell Lymphoma; Post-transplant Lymphoproliferative Disorder; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Adult Burkitt Lymphoma; Recurrent Adult Diffuse Large Cell Lymphoma; Recurrent Adult Diffuse Mixed Cell Lymphoma; Recurrent Adult Diffuse Small Cleaved Cell Lymphoma; Recurrent Adult Grade III Lymphomatoid Granulomatosis; Recurrent Adult Hodgkin Lymphoma; Recurrent Adult Immunoblastic Large Cell Lymphoma; Recurrent Adult Lymphoblastic Lymphoma; Recurrent Adult T-cell Leukemia/Lymphoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood

  8. Epstein-Barr Virus-positive T-cell Lymphoproliferative Disease Following Umbilical Cord Blood Transplantation for Acute Myeloid Leukemia.

    PubMed

    Yui, Shunsuke; Yamaguchi, Hiroki; Imadome, Ken-Ichi; Arai, Ayako; Takahashi, Mikiko; Ohashi, Ryuji; Tamai, Hayato; Moriya, Keiichi; Nakayama, Kazutaka; Shimizu, Akira; Inokuchi, Koiti

    2016-01-01

    We report a case of the extremely rare condition Epstein-Barr virus (EBV)-positive T-cell lymphoproliferative disease (LPD) which occurred after umbilical cord blood transplantation. A 25-year-old Japanese man underwent cord blood transplantation from a male human leukocyte antigen 4/6-matched donor due to acute myeloid leukemia with trisomy 8. Bone marrow examination on day 30 showed chimerism with at least 90% donor cells and complete hematological response. Chronic symptoms of graft-versus-host disease appeared only on the skin and were successfully treated with cyclosporine alone. Three years later, however, the patient experienced repeated cold-like symptoms and was hospitalized with liver dysfunction. A high fever developed and was followed by significant edema of the right side of the face. The EBV DNA copy number in whole peripheral blood was 2×10(4)/mL. Liver biopsy showed invasion of EBV-infected CD8-positive T cells. Southern blotting analysis of the whole peripheral blood showed that the T-cell receptor Cβ1 rearrangement was positive. On the basis of these results, EBV-positive T-cell LPD was diagnosed and treated with prednisolone, cyclosporine, and etoposide, followed by cyclophosphamide, doxorubicin, vincristine, and prednisone. However, the patient died of cardiac function failure, pneumonia, and pulmonary hemorrhage, all of unidentified cause. Most cases of EBV-related LPD after hematopoietic stem cell transplantation consist of EBV-positive B-cell LPD, and, to our knowledge, de novo EBV-positive T-cell LPD subsequent to transplantation has not been previously reported. PMID:26960588

  9. Genome-Wide Single-Nucleotide Polymorphism Array Analysis Improves Prognostication of Acute Lymphoblastic Leukemia/Lymphoma.

    PubMed

    Wang, Yunhong; Miller, Sue; Roulston, Diane; Bixby, Dale; Shao, Lina

    2016-07-01

    Chromosomal abnormalities are important for the risk stratification of acute lymphoblastic leukemia/lymphoma (ALL). However, approximately 30% of pediatric and 50% of adult patients lack abnormalities with clinical relevance by traditional cytogenetic analysis. We integrated cytogenetic, fluorescence in situ hybridization, and whole-genome single-nucleotide polymorphism array results from 60 consecutive clinical ALL cases. By cytogenetic and/or fluorescence in situ hybridization analyses, recurring abnormalities with clinical relevance were observed in 33 B-cell ALL (B-ALL), including t(9;22), hyperdiploidy, KMT2A translocation, ETV6-RUNX1, intrachromosomal amplification of chromosome 21, near haploidy or low hypodiploidy, and t(8;22). Single-nucleotide polymorphism array analysis found additional aberrations with prognostic or therapeutic implication in 21 B-ALL and two T-cell ALL, including IKZF1 deletion, intrachromosomal amplification of chromosome 21 (one case with a normal karyotype), low hypodiploidy (two cases with a normal karyotype), and one case each with fusion genes ETV6-NTRK3, CRLF2-P2RY8, NUP214-ABL1, and SET-NUP214. IKZF1 deletion was noted in nine B-ALL with t(9;22), one B-ALL with t(4;11), five B-ALL with a normal karyotype, and three B-ALL with nonrecurring karyotypic abnormalities. Combining single-nucleotide polymorphism array with chromosome and fluorescence in situ hybridization assays, the detection rate for clinically significant abnormal results increased from 56% to 75%. Whole-genome single-nucleotide polymorphism array analysis detects cytogenetically undetectable clinically significant aberrations and should be routinely applied at diagnosis of ALL. PMID:27161658

  10. High concordance of subtypes of childhood acute lymphoblastic leukemia within families: lessons from sibships with multiple cases of leukemia.

    PubMed

    Schmiegelow, K; Lausten Thomsen, U; Baruchel, A; Pacheco, C E; Pieters, Rob; Pombo-de-Oliveira, M S; Andersen, E W; Rostgaard, K; Hjalgrim, H; Pui, C-H

    2012-04-01

    Polymorphic genes have been linked to the risk of acute lymphoblastic leukemia (ALL). Surrogate markers for a low burden of early childhood infections are also related to increased risk for developing childhood ALL. It remains uncertain, whether siblings of children with ALL have an increased risk of developing ALL. This international collaboration identified 54 sibships with two (N = 51) or more (N = 3) cases of childhood ALL (ages <18 years). The 5-year event-free survival for 61 patients diagnosed after 1 January 1990 was 0.83 ± 0.05. Ages at diagnosis (Spearman correlation coefficient, r(S) = 0.41, P = 0.002) were significantly correlated, but not WBCs (r(S) = 0.23, P = 0.11). In 18 sibships with successful karyotyping in both cases, six were concordant for high-hyperdiploidy (N = 3), t(12;21) [ETV6/RUNX1] (N = 1), MLL rearrangement (N = 1) or t(1;19)(q23/p13) (N = 1). Eleven sibships were ALL-subtype concordant, being T-cell ALL (T-ALL) (N = 5, of a total of six sibships, where the first-born had T-ALL) or B-lineage ALL belonging to the same cytogenetic subset (N = 6), a finding that differs significantly from the expected chance distribution (κ: 0.58; P < 0.0001). These data indicate strong genetic and/or environmental risk factors for childhood ALL that are restricted to specific ALL subtypes, which must be taken into account, when performing epidemiological studies to reveal etiological factors. PMID:22005784

  11. Elevated common acute lymphoblastic leukemia antigen expression in pediatric immune thrombocytopenic purpura.

    PubMed

    Cornelius, A S; Campbell, D; Schwartz, E; Poncz, M

    1991-01-01

    Bone marrow examination is often performed in thrombocytopenic children to distinguish immune thrombocytopenic purpura (ITP) from acute leukemia. We describe a patient with thrombocytopenia and 50% common acute lymphoblastic leukemia antigen (CALLA) positivity in his marrow who was subsequently shown to have ITP. CALLA (CD10) is a surface antigen found in early B-lymphocytes and is elevated in most cases of childhood acute lymphoblastic leukemia (ALL). This case prompted us to prospectively study the frequency of immature lymphocyte populations in children with ITP. Fourteen patients with acute ITP and five with other conditions were studied. The two groups were comparable with respect to age: ITP mean, 4.3 (range 0.3-15.5) years; control mean, 5.8 (0.6-13.8) years. The ITP group had a significantly higher percentage of CD10 positive bone marrow lymphocytes (p = 0.007). Five of the 10 patients younger than 4 years of age in the ITP group had CD10 levels of greater than 30%, which is in the leukemic range, whereas none of the control patients had a CD10 levels of greater than 17% (p = 0.003). There was good correlation between CD10 positivity and B4 positivity indicating that both of these markers arise from the same population of immature B-lymphocytes. None of the ITP patients who were older than 4 years had a CD10 level of greater than 30%. We conclude that it is common to have an increase in the proportion of immature lymphocytes in the marrow of young children with ITP. The cause of this increase in CD10 positive cells is unknown.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1827572

  12. Novel in vivo model of inducible multidrug resistance in acute lymphoblastic leukemia with chromosomal translocation t(4;11)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acute lymphoblastic leukemia (ALL) with translocation t(4;11) is found in 60-85% of infants with ALL and is classified as high-risk due to the generally poor prognosis for survival. Using the SEM cell line established from a patient with t(4;11) ALL, we evaluated the resistance of these cells to the...

  13. Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia | Office of Cancer Genomics

    Cancer.gov

    There is incomplete understanding of genetic heterogeneity and clonal evolution during cancer progression. Here we use deep whole-exome sequencing to describe the clonal architecture and evolution of 20 pediatric B-acute lymphoblastic leukaemias from diagnosis to relapse. We show that clonal diversity is comparable at diagnosis and relapse and clonal survival from diagnosis to relapse is not associated with mutation burden.

  14. mTOR inhibition by everolimus in childhood acute lymphoblastic leukemia induces caspase-independent cell death.

    PubMed

    Baraz, Rana; Cisterne, Adam; Saunders, Philip O; Hewson, John; Thien, Marilyn; Weiss, Jocelyn; Basnett, Jordan; Bradstock, Kenneth F; Bendall, Linda J

    2014-01-01

    Increasingly, anti-cancer medications are being reported to induce cell death mechanisms other than apoptosis. Activating alternate death mechanisms introduces the potential to kill cells that have defects in their apoptotic machinery, as is commonly observed in cancer cells, including in hematological malignancies. We, and others, have previously reported that the mTOR inhibitor everolimus has pre-clinical efficacy and induces caspase-independent cell death in acute lymphoblastic leukemia cells. Furthermore, everolimus is currently in clinical trial for acute lymphoblastic leukemia. Here we characterize the death mechanism activated by everolimus in acute lymphoblastic leukemia cells. We find that cell death is caspase-independent and lacks the morphology associated with apoptosis. Although mitochondrial depolarization is an early event, permeabilization of the outer mitochondrial membrane only occurs after cell death has occurred. While morphological and biochemical evidence shows that autophagy is clearly present it is not responsible for the observed cell death. There are a number of features consistent with paraptosis including morphology, caspase-independence, and the requirement for new protein synthesis. However in contrast to some reports of paraptosis, the activation of JNK signaling was not required for everolimus-induced cell death. Overall in acute lymphoblastic leukemia cells everolimus induces a cell death that resembles paraptosis. PMID:25014496

  15. mTOR Inhibition by Everolimus in Childhood Acute Lymphoblastic Leukemia Induces Caspase-Independent Cell Death

    PubMed Central

    Baraz, Rana; Cisterne, Adam; Saunders, Philip O.; Hewson, John; Thien, Marilyn; Weiss, Jocelyn; Basnett, Jordan; Bradstock, Kenneth F.; Bendall, Linda J.

    2014-01-01

    Increasingly, anti-cancer medications are being reported to induce cell death mechanisms other than apoptosis. Activating alternate death mechanisms introduces the potential to kill cells that have defects in their apoptotic machinery, as is commonly observed in cancer cells, including in hematological malignancies. We, and others, have previously reported that the mTOR inhibitor everolimus has pre-clinical efficacy and induces caspase-independent cell death in acute lymphoblastic leukemia cells. Furthermore, everolimus is currently in clinical trial for acute lymphoblastic leukemia. Here we characterize the death mechanism activated by everolimus in acute lymphoblastic leukemia cells. We find that cell death is caspase-independent and lacks the morphology associated with apoptosis. Although mitochondrial depolarization is an early event, permeabilization of the outer mitochondrial membrane only occurs after cell death has occurred. While morphological and biochemical evidence shows that autophagy is clearly present it is not responsible for the observed cell death. There are a number of features consistent with paraptosis including morphology, caspase-independence, and the requirement for new protein synthesis. However in contrast to some reports of paraptosis, the activation of JNK signaling was not required for everolimus-induced cell death. Overall in acute lymphoblastic leukemia cells everolimus induces a cell death that resembles paraptosis. PMID:25014496

  16. Corrigendum: The Associations Between Maternal Factors During Pregnancy and the Risk of Childhood Acute Lymphoblastic Leukemia: A Meta-Analysis.

    PubMed

    Yan, Kangkang; Xu, Xuejing; Liu, Xiaodong; Wang, Xikui; Hua, Shucheng; Wang, Chunpeng; Liu, Xin

    2016-05-01

    Because of the erroneous application of multiple publications, the conclusions of our recent paper (Pediatr Blood Cancer 2015;62:1162-70) were not reliable. The corrected results show that coffee drinking during pregnancy was risk factor for childhood acute lymphoblastic leukemia (OR = 1.44, 95% confidence interval = 1.07-1.92). PMID:26999072

  17. Recognition of Acute Lymphoblastic Leukemia Cells in Microscopic Images Using K-Means Clustering and Support Vector Machine Classifier

    PubMed Central

    Amin, Morteza Moradi; Kermani, Saeed; Talebi, Ardeshir; Oghli, Mostafa Ghelich

    2015-01-01

    Acute lymphoblastic leukemia is the most common form of pediatric cancer which is categorized into three L1, L2, and L3 and could be detected through screening of blood and bone marrow smears by pathologists. Due to being time-consuming and tediousness of the procedure, a computer-based system is acquired for convenient detection of Acute lymphoblastic leukemia. Microscopic images are acquired from blood and bone marrow smears of patients with Acute lymphoblastic leukemia and normal cases. After applying image preprocessing, cells nuclei are segmented by k-means algorithm. Then geometric and statistical features are extracted from nuclei and finally these cells are classified to cancerous and noncancerous cells by means of support vector machine classifier with 10-fold cross validation. These cells are also classified into their sub-types by multi-Support vector machine classifier. Classifier is evaluated by these parameters: Sensitivity, specificity, and accuracy which values for cancerous and noncancerous cells 98%, 95%, and 97%, respectively. These parameters are also used for evaluation of cell sub-types which values in mean 84.3%, 97.3%, and 95.6%, respectively. The results show that proposed algorithm could achieve an acceptable performance for the diagnosis of Acute lymphoblastic leukemia and its sub-types and can be used as an assistant diagnostic tool for pathologists. PMID:25709941

  18. Placing Ion Channels into a Signaling Network of T Cells: From Maturing Thymocytes to Healthy T Lymphocytes or Leukemic T Lymphoblasts

    PubMed Central

    Delgado-Enciso, Iván; Best-Aguilera, Carlos; Rojas-Sotelo, Rocío Monserrat; Pottosin, Igor

    2015-01-01

    T leukemogenesis is a multistep process, where the genetic errors during T cell maturation cause the healthy progenitor to convert into the leukemic precursor that lost its ability to differentiate but possesses high potential for proliferation, self-renewal, and migration. A new misdirecting “leukemogenic” signaling network appears, composed by three types of participants which are encoded by (1) genes implicated in determined stages of T cell development but deregulated by translocations or mutations, (2) genes which normally do not participate in T cell development but are upregulated, and (3) nondifferentially expressed genes which become highly interconnected with genes expressed differentially. It appears that each of three groups may contain genes coding ion channels. In T cells, ion channels are implicated in regulation of cell cycle progression, differentiation, activation, migration, and cell death. In the present review we are going to reveal a relationship between different genetic defects, which drive the T cell neoplasias, with calcium signaling and ion channels. We suggest that changes in regulation of various ion channels in different types of the T leukemias may provide the intracellular ion microenvironment favorable to maintain self-renewal capacity, arrest differentiation, induce proliferation, and enhance motility. PMID:25866806

  19. Inhibiting Polo-like kinase 1 causes growth reduction and apoptosis in pediatric acute lymphoblastic leukemia cells

    PubMed Central

    Hartsink-Segers, Stefanie A.; Exalto, Carla; Allen, Matthew; Williamson, Daniel; Clifford, Steven C.; Horstmann, Martin; Caron, Huib N.; Pieters, Rob; Den Boer, Monique L.

    2013-01-01

    This study investigated Polo-like kinase 1, a mitotic regulator often over-expressed in solid tumors and adult hematopoietic malignancies, as a potential new target in the treatment of pediatric acute lymphoblastic leukemia. Polo-like kinase 1 protein and Thr210 phosphorylation levels were higher in pediatric acute lymphoblastic leukemia (n=172) than in normal bone marrow mononuclear cells (n=10) (P<0.0001). High Polo-like kinase 1 protein phosphorylation, but not expression, was associated with a lower probability of event-free survival (P=0.042) and was a borderline significant prognostic factor (P=0.065) in a multivariate analysis including age and initial white blood cell count. Polo-like kinase 1 was necessary for leukemic cell survival, since short hairpin-mediated Polo-like kinase 1 knockdown in acute lymphoblastic leukemia cell lines inhibited cell proliferation by G2/M cell cycle arrest and induced apoptosis through caspase-3 and poly (ADP-ribose) polymerase cleavage. Primary patient cells with a high Polo-like kinase 1 protein expression were sensitive to the Polo-like kinase 1-specific inhibitor NMS-P937 in vitro, whereas cells with a low expression and normal bone marrow cells were resistant. This sensitivity was likely not caused by Polo-like kinase 1 mutations, since only one new mutation (Ser335Arg) was found by 454-sequencing of 38 pediatric acute lymphoblastic leukemia cases. This mutation did not affect Polo-like kinase 1 expression or NMS-P937 sensitivity. Together, these results indicate a pivotal role for Polo-like kinase 1 in pediatric acute lymphoblastic leukemia and show potential for Polo-like kinase 1-inhibiting drugs as an addition to current treatment strategies for cases expressing high Polo-like kinase 1 levels. PMID:23753023

  20. [Development of aseptic osteonecrosis during the treatment of acute lymphoblastic leukemia: review of the literature and author's own data].

    PubMed

    Baranova, O Iu; Shirin, A D; Falaleeva, N A; Osmanov, D Sh

    2011-01-01

    We report a case of aceptic osteonecrosis (AON) of the left hymerus epiphysis in programmed treatment of a male patient with lymphoblastic lymphoma to illustrate clinical, laboratory, epidemiological, pathogenetic, diagnostic and therapeutic aspects of AON in programmed therapy of acute lymphoblastic leukemia (ALL). We believe that AON is a rather frequent but often missed for early diagnosis complication of ALL treatment. Even a weak pain in bones and joints under mechanical load in patients on long-term treatment with glucocorticosteroids is an alarming symptom which may indicate a risk of an osteodestructive process and relevant diagnostic and therapeutic measures may be needed. PMID:21894748

  1. Donor Umbilical Cord Blood Transplant With or Without Ex-vivo Expanded Cord Blood Progenitor Cells in Treating Patients With Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Chronic Myelogenous Leukemia, or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2016-08-10

    Acute Biphenotypic Leukemia; Acute Lymphoblastic Leukemia in Remission; Acute Myeloid Leukemia Arising From Previous Myelodysplastic Syndrome; Acute Myeloid Leukemia in Remission; Chronic Myelogenous Leukemia, BCR-ABL1 Positive; Mixed Phenotype Acute Leukemia; Myelodysplastic Syndrome; Pancytopenia; Refractory Anemia; Refractory Anemia With Excess Blasts; Refractory Anemia With Excess Blasts in Transformation; Secondary Acute Myeloid Leukemia

  2. The BCL2 rheostat in glucocorticoid-induced apoptosis of acute lymphoblastic leukemia

    PubMed Central

    Ploner, C; Rainer, J; Niederegger, H; Eduardoff, M; Villunger, A; Geley, S; Kofler, R

    2016-01-01

    Glucocorticoid (GC)-induced apoptosis is essential in the treatment of acute lymphoblastic leukemia (ALL) and related malignancies. Pro- and anti-apoptotic members of the BCL2 family control many forms of apoptotic cell death, but the extent to which this survival ‘rheostat’ is involved in the beneficial effects of GC therapy is not understood. We performed systematic analyses of expression, GC regulation and function of BCL2 molecules in primary ALL lymphoblasts and a corresponding in vitro model. Affymetrix-based expression profiling revealed that the response included regulations of pro-apoptotic and, surprisingly, anti-apoptotic BCL2 family members, and varied among patients, but was dominated by induction of the BH3-only molecules BMF and BCL2L11/Bim and repression of PMAIP1/Noxa. Conditional lentiviral gene overexpression and knock-down by RNA interference in the CCRF-CEM model revealed that induction of Bim, and to a lesser extent that of BMF, was required and sufficient for apoptosis. Although anti-apoptotic BCL2 members were not regulated consistently by GC in the various systems, their overexpression delayed, whereas their knock-down accelerated, GC-induced cell death. Thus, the combined clinical and experimental data suggest that GCs induce both pro- and anti-apoptotic BCL2 family member-dependent pathways, with the outcome depending on cellular context and additional signals feeding into the BCL2 rheostat. PMID:18046449

  3. Sulforaphane Induces Cell Cycle Arrest and Apoptosis in Acute Lymphoblastic Leukemia Cells

    PubMed Central

    Suppipat, Koramit; Park, Chun Shik; Shen, Ye; Zhu, Xiao; Lacorazza, H. Daniel

    2012-01-01

    Acute lymphoblastic leukemia (ALL) is the most common hematological cancer in children. Although risk-adaptive therapy, CNS-directed chemotherapy, and supportive care have improved the survival of ALL patients, disease relapse is still the leading cause of cancer-related death in children. Therefore, new drugs are needed as frontline treatments in high-risk disease and as salvage agents in relapsed ALL. In this study, we report that purified sulforaphane, a natural isothiocyanate found in cruciferous vegetables, has anti-leukemic properties in a broad range of ALL cell lines and primary lymphoblasts from pediatric T-ALL and pre-B ALL patients. The treatment of ALL leukemic cells with sulforaphane resulted in dose-dependent apoptosis and G2/M cell cycle arrest, which was associated with the activation of caspases (3, 8, and 9), inactivation of PARP, p53-independent upregulation of p21CIP1/WAF1, and inhibition of the Cdc2/Cyclin B1 complex. Interestingly, sulforaphane also inhibited the AKT and mTOR survival pathways in most of the tested cell lines by lowering the levels of both total and phosphorylated proteins. Finally, the administration of sulforaphane to the ALL xenograft models resulted in a reduction of tumor burden, particularly following oral administration, suggesting a potential role as an adjunctive agent to improve the therapeutic response in high-risk ALL patients with activated AKT signaling. PMID:23251470

  4. Pax5 loss imposes a reversible differentiation block in B-progenitor acute lymphoblastic leukemia

    PubMed Central

    Liu, Grace J.; Cimmino, Luisa; Jude, Julian G.; Hu, Yifang; Witkowski, Matthew T.; McKenzie, Mark D.; Kartal-Kaess, Mutlu; Best, Sarah A.; Tuohey, Laura; Liao, Yang; Shi, Wei; Mullighan, Charles G.; Farrar, Michael A.; Nutt, Stephen L.; Smyth, Gordon K.; Zuber, Johannes; Dickins, Ross A.

    2014-01-01

    Loss-of-function mutations in hematopoietic transcription factors including PAX5 occur in most cases of B-progenitor acute lymphoblastic leukemia (B-ALL), a disease characterized by the accumulation of undifferentiated lymphoblasts. Although PAX5 mutation is a critical driver of B-ALL development in mice and humans, it remains unclear how its loss contributes to leukemogenesis and whether ongoing PAX5 deficiency is required for B-ALL maintenance. Here we used transgenic RNAi to reversibly suppress endogenous Pax5 expression in the hematopoietic compartment of mice, which cooperates with activated signal transducer and activator of transcription 5 (STAT5) to induce B-ALL. In this model, restoring endogenous Pax5 expression in established B-ALL triggers immunophenotypic maturation and durable disease remission by engaging a transcriptional program reminiscent of normal B-cell differentiation. Notably, even brief Pax5 restoration in B-ALL cells causes rapid cell cycle exit and disables their leukemia-initiating capacity. These and similar findings in human B-ALL cell lines establish that Pax5 hypomorphism promotes B-ALL self-renewal by impairing a differentiation program that can be re-engaged despite the presence of additional oncogenic lesions. Our results establish a causal relationship between the hallmark genetic and phenotypic features of B-ALL and suggest that engaging the latent differentiation potential of B-ALL cells may provide new therapeutic entry points. PMID:24939936

  5. Cannabis extract treatment for terminal acute lymphoblastic leukemia with a Philadelphia chromosome mutation.

    PubMed

    Singh, Yadvinder; Bali, Chamandeep

    2013-09-01

    Acute lymphoblastic leukemia (ALL) is a cancer of the white blood cells and is typically well treated with combination chemotherapy, with a remission state after 5 years of 94% in children and 30-40% in adults. To establish how aggressive the disease is, further chromosome testing is required to determine whether the cancer is myeloblastic and involves neutrophils, eosinophils or basophils, or lymphoblastic involving B or T lymphocytes. This case study is on a 14-year-old patient diagnosed with a very aggressive form of ALL (positive for the Philadelphia chromosome mutation). A standard bone marrow transplant, aggressive chemotherapy and radiation therapy were revoked, with treatment being deemed a failure after 34 months. Without any other solutions provided by conventional approaches aside from palliation, the family administered cannabinoid extracts orally to the patient. Cannabinoid resin extract is used as an effective treatment for ALL with a positive Philadelphia chromosome mutation and indications of dose-dependent disease control. The clinical observation in this study revealed a rapid dose-dependent correlation. PMID:24474921

  6. Glucocorticoid-induced alterations in mitochondrial membrane properties and respiration in childhood acute lymphoblastic leukemia.

    PubMed

    Eberhart, Karin; Rainer, Johannes; Bindreither, Daniel; Ritter, Ireen; Gnaiger, Erich; Kofler, Reinhard; Oefner, Peter J; Renner, Kathrin

    2011-06-01

    Mitochondria are signal-integrating organelles involved in cell death induction. Mitochondrial alterations and reduction in energy metabolism have been previously reported in the context of glucocorticoid (GC)-triggered apoptosis, although the mechanism is not yet clarified. We analyzed mitochondrial function in a GC-sensitive precursor B-cell acute lymphoblastic leukemia (ALL) model as well as in GC-sensitive and GC-resistant T-ALL model systems. Respiratory activity was preserved in intact GC-sensitive cells up to 24h under treatment with 100 nM dexamethasone before depression of mitochondrial respiration occurred. Severe repression of mitochondrial respiratory function was observed after permeabilization of the cell membrane and provision of exogenous substrates. Several mitochondrial metabolite and protein transporters and two subunits of the ATP synthase were downregulated in the T-ALL and in the precursor B-ALL model at the gene expression level under dexamethasone treatment. These data could partly be confirmed in ALL lymphoblasts from patients, dependent on the molecular abnormality in the ALL cells. GC-resistant cell lines did not show any of these defects after dexamethasone treatment. In conclusion, in GC-sensitive ALL cells, dexamethasone induces changes in membrane properties that together with the reduced expression of mitochondrial transporters of substrates and proteins may lead to repressed mitochondrial respiratory activity and lower ATP levels that contribute to GC-induced apoptosis. PMID:21237131

  7. Mer receptor tyrosine kinase is a therapeutic target in pre–B-cell acute lymphoblastic leukemia

    PubMed Central

    Linger, Rachel M. A.; Lee-Sherick, Alisa B.; DeRyckere, Deborah; Cohen, Rebecca A.; Jacobsen, Kristen M.; McGranahan, Amy; Brandão, Luis N.; Winges, Amanda; Sawczyn, Kelly K.; Liang, Xiayuan; Keating, Amy K.; Tan, Aik Choon; Earp, H. Shelton

    2013-01-01

    Acute lymphoblastic leukemia (ALL) is currently treated with an intense regimen of chemotherapy yielding cure rates near 85%. However, alterations to treatment strategies using available drugs are unlikely to provide significant improvement in survival or decrease therapy-associated toxicities. Here, we report ectopic expression of the Mer receptor tyrosine kinase in pre–B-cell ALL (B-ALL) cell lines and pediatric patient samples. Inhibition of Mer in B-ALL cell lines decreased activation of AKT and MAPKs and led to transcriptional changes, including decreased expression of antiapoptotic PRKCB gene and increase in proapoptotic BAX and BBC3 genes. Further, Mer inhibition promoted chemosensitization, decreased colony-forming potential in clonogenic assays, and delayed disease onset in a mouse xenograft model of leukemia. Our results identify Mer as a potential therapeutic target in B-ALL and suggest that inhibitors of Mer may potentiate lymphoblast killing when used in combination with chemotherapy. This strategy could reduce minimal residual disease and/or allow for chemotherapy dose reduction, thereby leading to improved event-free survival and reduced therapy-associated toxicity for patients with B-ALL. Additionally, Mer is aberrantly expressed in numerous other malignancies suggesting that this approach may have broad applications. PMID:23861246

  8. Mer receptor tyrosine kinase is a therapeutic target in pre-B-cell acute lymphoblastic leukemia.

    PubMed

    Linger, Rachel M A; Lee-Sherick, Alisa B; DeRyckere, Deborah; Cohen, Rebecca A; Jacobsen, Kristen M; McGranahan, Amy; Brandão, Luis N; Winges, Amanda; Sawczyn, Kelly K; Liang, Xiayuan; Keating, Amy K; Tan, Aik Choon; Earp, H Shelton; Graham, Douglas K

    2013-08-29

    Acute lymphoblastic leukemia (ALL) is currently treated with an intense regimen of chemotherapy yielding cure rates near 85%. However, alterations to treatment strategies using available drugs are unlikely to provide significant improvement in survival or decrease therapy-associated toxicities. Here, we report ectopic expression of the Mer receptor tyrosine kinase in pre-B-cell ALL (B-ALL) cell lines and pediatric patient samples. Inhibition of Mer in B-ALL cell lines decreased activation of AKT and MAPKs and led to transcriptional changes, including decreased expression of antiapoptotic PRKCB gene and increase in proapoptotic BAX and BBC3 genes. Further, Mer inhibition promoted chemosensitization, decreased colony-forming potential in clonogenic assays, and delayed disease onset in a mouse xenograft model of leukemia. Our results identify Mer as a potential therapeutic target in B-ALL and suggest that inhibitors of Mer may potentiate lymphoblast killing when used in combination with chemotherapy. This strategy could reduce minimal residual disease and/or allow for chemotherapy dose reduction, thereby leading to improved event-free survival and reduced therapy-associated toxicity for patients with B-ALL. Additionally, Mer is aberrantly expressed in numerous other malignancies suggesting that this approach may have broad applications. PMID:23861246

  9. CCR7 Deficiency Exacerbates Injury in Acute Nephritis Due to Aberrant Localization of Regulatory T Cells

    PubMed Central

    Eller, Kathrin; Weber, Tobias; Pruenster, Monika; Wolf, Anna M.; Mayer, Gert

    2010-01-01

    The homing of dendritic cells and T cells to secondary lymphoid organs requires chemokine receptor 7 (CCR7) expression on these cells. T cells mediate the pathogenesis of experimental accelerated nephrotoxic serum nephritis (NTS), including its suppression by regulatory T cells (Tregs), but the contribution of CCR7 to this disease is unknown. Here, we compared the development of NTS in CCR7-knockout (KO) and wild-type (WT) mice. Compared with WT mice, CCR7KO mice developed more severe disease with significantly more inflammatory cells infiltrating the kidney. These cells included FoxP3+ Tregs, which were virtually absent from WT kidneys. The adoptive transfer of WT Tregs into CCR7KO mice at the time of immunization protected the recipients from disease; these cells homed to secondary lymphoid organs but not to kidneys. Conversely, adoptive transfer of CCR7KO Tregs into WT mice did not inhibit development of NTS. These data suggest that NTS can develop without CCR7 expression, but Treg-mediated disease suppression, which seems to occur in secondary lymphoid organs, requires CCR7. PMID:19917782

  10. Rifaximin for preventing acute graft-versus-host disease: impact on plasma markers of inflammation and T-cell activation.

    PubMed

    Qayed, Muna; Langston, Amelia; Chiang, Kuang-Yueh; August, Keith; Hilinski, Joseph A; Cole, Conrad R; Rogatko, Andre; Bostick, Roberd M; Horan, John T

    2013-05-01

    In murine allogeneic hematopoietic cell transplantation models, inhibiting bacterial translocation stemming from conditioning-induced damage to the gut mucosa abrogates inflammatory stimulation of donor T cells, preventing acute graft-versus-host disease (AGVHD). We conducted a phase I trial to begin testing the hypothesis that rifaximin, a broadly acting oral antibiotic, would reduce systemic inflammation and T-cell activation. We administered rifaximin to 20 adolescents and younger adults (day -10 through day +30) receiving intensive conditioning. We measured the plasma level of interleukin-6, as a marker of conditioning-induced inflammation, and the levels of soluble tumor necrosis factor receptor-1 and soluble interleukin-2 receptor, as surrogate markers of AGVHD. We formed a historical control group (n=24), from a previous study of biomarkers in AGVHD. The increase in the treatment group's mean interleukin-6 level from baseline to day 0 was 73% less than that in the control group (P=0.006). The increase from baseline to day 15 in the treatment group's mean soluble tumor necrosis factor-1 and soluble interleukin-2 receptor levels was similar to the control group. Incidences of grade 2 to 4 AGVHD also did not differ. This suggests that rifaximin may abrogate bacterial translocation and resultant inflammation, but in alternative donor transplants this does not prevent downstream activation of donor T cells. PMID:23274384

  11. Biological, functional and genetic characterization of bone marrow-derived mesenchymal stromal cells from pediatric patients affected by acute lymphoblastic leukemia.

    PubMed

    Conforti, Antonella; Biagini, Simone; Del Bufalo, Francesca; Sirleto, Pietro; Angioni, Adriano; Starc, Nadia; Li Pira, Giuseppina; Moretta, Francesca; Proia, Alessandra; Contoli, Benedetta; Genovese, Silvia; Ciardi, Claudia; Avanzini, Maria Antonietta; Rosti, Vittorio; Lo-Coco, Francesco; Locatelli, Franco; Bernardo, Maria Ester

    2013-01-01

    Alterations in hematopoietic microenvironment of acute lymphoblastic leukemia patients have been claimed to occur, but little is known about the components of marrow stroma in these patients. In this study, we characterized mesenchymal stromal cells (MSCs) isolated from bone marrow (BM) of 45 pediatric patients with acute lymphoblastic leukemia (ALL-MSCs) at diagnosis (day+0) and during chemotherapy treatment (days: +15; +33; +78), the time points being chosen according to the schedule of BM aspirates required by the AIEOP-BFM ALL 2009 treatment protocol. Morphology, proliferative capacity, immunophenotype, differentiation potential, immunomodulatory properties and ability to support long-term hematopoiesis of ALL-MSCs were analysed and compared with those from 41 healthy donors (HD-MSCs). ALL-MSCs were also genetically characterized through array-CGH, conventional karyotyping and FISH analysis. Moreover, we compared ALL-MSCs generated at day+0 with those isolated during chemotherapy. Morphology, immunophenotype, differentiation potential and in vitro life-span did not differ between ALL-MSCs and HD-MSCs. ALL-MSCs showed significantly lower proliferative capacity (p<0.001) and ability to support in vitro hematopoiesis (p = 0.04) as compared with HD-MSCs, while they had similar capacity to inhibit in vitro mitogen-induced T-cell proliferation (p = N.S.). ALL-MSCs showed neither the typical translocations carried by the leukemic clone (when present), nor other genetic abnormalities acquired during ex vivo culture. Our findings indicate that ALL-MSCs display reduced ability to proliferate and to support long-term hematopoiesis in vitro. ALL-MSCs isolated at diagnosis do not differ from those obtained during treatment. PMID:24244271

  12. Biological, Functional and Genetic Characterization of Bone Marrow-Derived Mesenchymal Stromal Cells from Pediatric Patients Affected by Acute Lymphoblastic Leukemia

    PubMed Central

    Conforti, Antonella; Biagini, Simone; Del Bufalo, Francesca; Sirleto, Pietro; Angioni, Adriano; Starc, Nadia; Li Pira, Giuseppina; Moretta, Francesca; Proia, Alessandra; Contoli, Benedetta; Genovese, Silvia; Ciardi, Claudia; Avanzini, Maria Antonietta; Rosti, Vittorio; Lo-Coco, Francesco; Locatelli, Franco; Bernardo, Maria Ester

    2013-01-01

    Alterations in hematopoietic microenvironment of acute lymphoblastic leukemia patients have been claimed to occur, but little is known about the components of marrow stroma in these patients. In this study, we characterized mesenchymal stromal cells (MSCs) isolated from bone marrow (BM) of 45 pediatric patients with acute lymphoblastic leukemia (ALL-MSCs) at diagnosis (day+0) and during chemotherapy treatment (days: +15; +33; +78), the time points being chosen according to the schedule of BM aspirates required by the AIEOP-BFM ALL 2009 treatment protocol. Morphology, proliferative capacity, immunophenotype, differentiation potential, immunomodulatory properties and ability to support long-term hematopoiesis of ALL-MSCs were analysed and compared with those from 41 healthy donors (HD-MSCs). ALL-MSCs were also genetically characterized through array-CGH, conventional karyotyping and FISH analysis. Moreover, we compared ALL-MSCs generated at day+0 with those isolated during chemotherapy. Morphology, immunophenotype, differentiation potential and in vitro life-span did not differ between ALL-MSCs and HD-MSCs. ALL-MSCs showed significantly lower proliferative capacity (p<0.001) and ability to support in vitro hematopoiesis (p = 0.04) as compared with HD-MSCs, while they had similar capacity to inhibit in vitro mitogen-induced T-cell proliferation (p = N.S.). ALL-MSCs showed neither the typical translocations carried by the leukemic clone (when present), nor other genetic abnormalities acquired during ex vivo culture. Our findings indicate that ALL-MSCs display reduced ability to proliferate and to support long-term hematopoiesis in vitro. ALL-MSCs isolated at diagnosis do not differ from those obtained during treatment. PMID:24244271

  13. Cutaneous B-lymphoblastic lymphoma with IL3/IgH translocation presenting with hypereosinophilia and acute endocarditis.

    PubMed

    Bomken, Simon; Haigh, Shaun; Bown, Nick; Carey, Peter; Wood, Katrina; Windebank, Kevin

    2015-06-01

    Hypereosinophilia is a rare phenomenon associated with childhood malignancy, predominantly acute lymphoblastic leukaemia. Causation is unclear and likely to have multiple mechanisms. We report a six year old boy presenting with hypereosinophilia and associated Loeffler endocarditis. Three months following his initial hypereosinophilia he developed cutaneous B-lymphoblastic lymphoma. Re-analysis of apparently uninvolved bone marrow, taken at initial presentation, revealed a single, previously unidentified, t(5;14)(q31;q32) positive cell. Using fluorescent in situ hybridisation, we demonstrate IL3/IgH@ fusion in cutaneous lymphoma cells. Our case confirms the association of hypereosinophilia and B-lymphoblastic lymphoma and strengthens the association between IL3 hypersecretion and hypereosinophilia. PMID:25382309

  14. Increased Numbers of Circulating CD8 Effector Memory T Cells before Transplantation Enhance the Risk of Acute Rejection in Lung Transplant Recipients

    PubMed Central

    San Segundo, David; Ballesteros, María Ángeles; Naranjo, Sara; Zurbano, Felipe; Miñambres, Eduardo; López-Hoyos, Marcos

    2013-01-01

    The effector and regulatory T cell subpopulations involved in the development of acute rejection episodes in lung transplantation remain to be elucidated. Twenty-seven lung transplant candidates were prospectively monitored before transplantation and within the first year post-transplantation. Regulatory, Th17, memory and naïve T cells were measured in peripheral blood of lung transplant recipients by flow cytometry. No association of acute rejection with number of peripheral regulatory T cells and Th17 cells was found. However, effector memory subsets in acute rejection patients were increased during the first two months post-transplant. Interestingly, patients waiting for lung transplant with levels of CD8+ effector memory T cells over 185 cells/mm3 had a significant increased risk of rejection [OR: 5.62 (95% CI: 1.08-29.37), p=0.04]. In multivariate analysis adjusted for age and gender the odds ratio for rejection was: OR: 5.89 (95% CI: 1.08-32.24), p=0.04. These data suggest a correlation between acute rejection and effector memory T cells in lung transplant recipients. The measurement of peripheral blood CD8+ effector memory T cells prior to lung transplant may define patients at high risk of acute lung rejection. PMID:24236187

  15. Natural killer cell (NK) subsets and NK-like T-cell populations in acute myeloid leukemias and myelodysplastic syndromes.

    PubMed

    Aggarwal, N; Swerdlow, S H; TenEyck, S P; Boyiadzis, M; Felgar, R E

    2016-07-01

    The impact of the immune microenvironment on the behavior and therapeutic strategies for hematopoietic and lymphoid neoplasms is being increasingly recognized. Many functional studies of natural killer (NK) cell cytotoxic responses in myelodysplasia (MDS) and acute myeloid leukemia (AML) exist, but with limited data on these lymphocyte proportions and related T-cell subsets. The proportions of these cells and their prognostic implications were therefore investigated in 89 AML, 51 MDS, and 20 control marrows by flow cytometry. The median proportion of NK cells (relative to the total lymphocytes) was lower in AML versus controls (P = 0.01). Among AML, a lower proportion of NK cells predicted better survival, whereas a higher NK cell proportion was associated with the poor prognostic AML category (P = 0.002). NK cell proportions were similar in MDS, MDS subgroups, and control marrows. The relative proportion of the mature NK cell subset (CD56(dim) CD16/57(bright) ) was lower in AML and MDS versus controls (P = 0.006, P = 0.0002, respectively). The proportion of mature NK cells was not a prognostic indicator although fewer were seen in poor prognosis AML. In contrast, a lower proportion of mature NK cells correlated with worse survival in MDS (P = 0.027). A higher proportion of NK-like T-cells (of total lymphoid cells) was found in MDS compared to controls (P = 0.01). A lower proportion of NK-like T-cells predicted better survival in AML but not in MDS. Thus, the proportions of NK, NK-cell subsets, and NK-like T-cells vary in myeloid neoplasms, may potentially impact immunomodulatory therapies, and may impact outcome. © 2016 International Clinical Cytometry Society. PMID:26648320

  16. MTHFR polymorphisms' influence on outcome and toxicity in acute lymphoblastic leukemia patients.

    PubMed

    Chiusolo, Patrizia; Reddiconto, Giovanni; Farina, Giuliana; Mannocci, Alice; Fiorini, Alessia; Palladino, Mariangela; La Torre, Giuseppe; Fianchi, Luana; Sorà, Federica; Laurenti, Luca; Leone, Giuseppe; Sica, Simona

    2007-12-01

    Recently the influence of polymorphisms of different genes involved in metabolism of chemoterapic agents have been studied especially in childhood acute lymphoblastic leukemia (ALL). We evaluated the influence of C677T and A1298C methylenetetrahydrofolate reductase (MTHFR) polymorphisms on time to relapse and survival and on methotrexate (MTX) toxicity in 82 ALL adult patients. Relapse free survival and event free survival between homozygous wild-type and variant patients in both polymorphisms were not significantly different. However, we observed an association between 677TT variant and survival in a subset of ALL patients homogenously treated with MTX-based maintenance (p=0.02). In the same subgroup we confirmed the role of 677TT variant on toxicity during MTX treatment (p=0.003). PMID:17512587

  17. [Pregnancy outcome in five women after autologous bone marrow transplantation for acute lymphoblastic leukaemia].

    PubMed

    Hołowiecka, Aleksandra; Zielińska, Monika; Rozmus, Wioletta; Krzemień, Sławomira; Hołowiecki, Jerzy

    2005-10-01

    There are reports of successful pregnancies in women with haematological malignancies after either autologous or allogeneic bone marrow transplantation (BMT). We report six cases of uncomplicated pregnancies in five women treated with high-dose chemotherapy, radiotherapy and autologous bone marrow transplantation (ABMT) for acute lymphoblastic leukaemia. One patient was diagnosed as having leukaemia during pregnancy. The pregnancy ended with medical termination. Each woman received conditioning regimens without total body irradiation (TBI). Of five women, who received AMBT, all resumed spontaneous cyclical menstruation post transplantation. All of them conceived naturally between 15-52 months following ABMT. We noted one miscarriage in our 29-year-old patient. Six pregnancies went to term and each resulted in the successful delivery of a full-term baby. We did not notice any case of relapse of leukaemia in pregnancy. PMID:16417095

  18. Developmental timing of mutations revealed by whole-genome sequencing of twins with acute lymphoblastic leukemia.

    PubMed

    Ma, Yussanne; Dobbins, Sara E; Sherborne, Amy L; Chubb, Daniel; Galbiati, Marta; Cazzaniga, Giovanni; Micalizzi, Concetta; Tearle, Rick; Lloyd, Amy L; Hain, Richard; Greaves, Mel; Houlston, Richard S

    2013-04-30

    Acute lymphoblastic leukemia (ALL) is the major pediatric cancer. At diagnosis, the developmental timing of mutations contributing critically to clonal diversification and selection can be buried in the leukemia's covert natural history. Concordance of ALL in monozygotic, monochorionic twins is a consequence of intraplacental spread of an initiated preleukemic clone. Studying monozygotic twins with ALL provides a unique means of uncovering the timeline of mutations contributing to clonal evolution, pre- and postnatally. We sequenced the whole genomes of leukemic cells from two twin pairs with ALL to comprehensively characterize acquired somatic mutations in ALL, elucidating the developmental timing of all genetic lesions. Shared, prenatal, coding-region single-nucleotide variants were limited to the putative initiating lesions. All other nonsynonymous single-nucleotide variants were distinct between tumors and, therefore, secondary and postnatal. These changes occurred in a background of noncoding mutational changes that were almost entirely discordant in twin pairs and likely passenger mutations acquired during leukemic cell proliferation. PMID:23569245

  19. Bone Marrow Cells in Acute Lymphoblastic Leukemia Create a Proinflammatory Microenvironment Influencing Normal Hematopoietic Differentiation Fates

    PubMed Central

    Vilchis-Ordoñez, Armando; Contreras-Quiroz, Adriana; Dorantes-Acosta, Elisa; Reyes-López, Alfonso; Quintela-Nuñez del Prado, Henry Martin; Venegas-Vázquez, Jorge; Mayani, Hector; Ortiz-Navarrete, Vianney; López-Martínez, Briceida; Pelayo, Rosana

    2015-01-01

    B-cell acute lymphoblastic leukemia (B-ALL) is a serious public health problem in the pediatric population worldwide, contributing to 85% of deaths from childhood cancers. Understanding the biology of the disease is crucial for its clinical management and the development of therapeutic strategies. In line with that observed in other malignancies, chronic inflammation may contribute to a tumor microenvironment resulting in the damage of normal processes, concomitant to development and maintenance of neoplastic cells. We report here that hematopoietic cells from bone marrow B-ALL have the ability to produce proinflammatory and growth factors, including TNFα, IL-1β, IL-12, and GM-CSF that stimulate proliferation and differentiation of normal stem and progenitor cells. Our findings suggest an apparently distinct CD13+CD33+ population of leukemic cells contributing to a proinflammatory microenvironment that may be detrimental to long-term normal hematopoiesis within B-ALL bone marrow. PMID:26090405

  20. Genetic loss of SH2B3 in acute lymphoblastic leukemia

    PubMed Central

    Perez-Garcia, Arianne; Ambesi-Impiombato, Alberto; Hadler, Michael; Rigo, Isaura; LeDuc, Charles A.; Kelly, Kara; Jalas, Chaim; Paietta, Elisabeth; Racevskis, Janis; Rowe, Jacob M.; Tallman, Martin S.; Paganin, Maddalena; Basso, Giuseppe; Tong, Wei; Chung, Wendy K.

    2013-01-01

    The SH2B adaptor protein 3 (SH2B3) gene encodes a negative regulator of cytokine signaling with a critical role in the homeostasis of hematopoietic stem cells and lymphoid progenitors. Here, we report the identification of germline homozygous SH2B3 mutations in 2 siblings affected with developmental delay and autoimmunity, one in whom B-precursor acute lymphoblastic leukemia (ALL) developed. Mechanistically, loss of SH2B3 increases Janus kinase-signal transducer and activator of transcription signaling, promotes lymphoid cell proliferation, and accelerates leukemia development in a mouse model of NOTCH1-induced ALL. Moreover, extended mutation analysis showed homozygous somatic mutations in SH2B3 in 2 of 167 ALLs analyzed. Overall, these results demonstrate a Knudson tumor suppressor role for SH2B3 in the pathogenesis of ALL and highlight a possible link between genetic predisposition factors in the pathogenesis of autoimmunity and leukemogenesis. PMID:23908464

  1. RBP2 Promotes Adult Acute Lymphoblastic Leukemia by Upregulating BCL2

    PubMed Central

    Wang, Xiaoming; Zhou, Minran; Fu, Yue; Sun, Ting; Chen, Jin; Qin, Xuemei; Yu, Yuan; Jia, Jihui; Chen, Chunyan

    2016-01-01

    Despite recent increases in the cure rate of acute lymphoblastic leukemia (ALL), adult ALL remains a high-risk disease that exhibits a high relapse rate. In this study, we found that the histone demethylase retinoblastoma binding protein-2 (RBP2) was overexpressed in both on-going and relapse cases of adult ALL, which revealed that RBP2 overexpression was not only involved in the pathogenesis of ALL but that its overexpression might also be related to relapse of the disease. RBP2 knockdown induced apoptosis and attenuated leukemic cell viability. Our results demonstrated that BCL2 is a novel target of RBP2 and supported the notion of RBP2 being a regulator of BCL2 expression via directly binding to its promoter. As the role of RBP2 in regulating apoptosis was confirmed, RBP2 overexpression and activation of BCL2 might play important roles in ALL development and progression. PMID:27008505

  2. Molecular Analysis of Central Nervous System Disease Spectrum in Childhood Acute Lymphoblastic Leukemia

    PubMed Central

    Hicks, Chindo; Sitthi-Amorn, Jitsuda; Douglas, Jessica; Ramani, Ritika; Miele, Lucio; Vijayakumar, Vani; Karlson, Cynthia; Chipeta, James; Megason, Gail

    2016-01-01

    Treatment of the central nervous system (CNS) is an essential therapeutic component in childhood acute lymphoblastic leukemia (ALL). The goal of this study was to identify molecular signatures distinguishing patients with CNS disease from those without the disease in pediatric patients with ALL. We analyzed gene expression data from 207 pediatric patients with ALL. Patients without CNS were classified as CNS1, while those with mild and advanced CNS disease were classified as CNS2 and CNS3, respectively. We compared gene expression levels among the three disease classes. We identified gene signatures distinguishing the three disease classes. Pathway analysis revealed molecular networks and biological pathways dysregulated in response to CNS disease involvement. The identified pathways included the ILK, WNT, B-cell receptor, AMPK, ERK5, and JAK signaling pathways. The results demonstrate that transcription profiling could be used to stratify patients to guide therapeutic decision-making in pediatric ALL. PMID:26997880

  3. Generation of human acute lymphoblastic leukemia xenografts for use in oncology drug discovery.

    PubMed

    Holmfeldt, Linda; Mullighan, Charles G

    2015-01-01

    The establishment of reproducible mouse models of acute lymphoblastic leukemia (ALL) is necessary to provide in vivo therapeutic test systems that recapitulate human ALL, and for amplification of limited amounts of primary tumor material. A popular assay is the primary xenograft model that utilizes immunocompromised mice. The protocol includes injection of primary patient tumor specimens into mice with subsequent serial passaging of the tumors by retransplants of cells harvested from the mouse bone marrow and spleen. The tumors generated are then used for genomic profiling, ex vivo compound testing, mechanistic studies and retransplantation. Detailed in this unit are procedures for the establishment and maintenance of primary ALL xenograft panels for use in basic research and translational studies. PMID:25737157

  4. CYLD Regulates Noscapine Activity in Acute Lymphoblastic Leukemia via a Microtubule-Dependent Mechanism

    PubMed Central

    Yang, Yunfan; Ran, Jie; Sun, Lei; Sun, Xiaodong; Luo, Youguang; Yan, Bing; Tala; Liu, Min; Li, Dengwen; Zhang, Lei; Bao, Gang; Zhou, Jun

    2015-01-01

    Noscapine is an orally administrable drug used worldwide for cough suppression and has recently been demonstrated to disrupt microtubule dynamics and possess anticancer activity. However, the molecular mechanisms regulating noscapine activity remain poorly defined. Here we demonstrate that cylindromatosis (CYLD), a microtubule-associated tumor suppressor protein, modulates the activity of noscapine both in cell lines and in primary cells of acute lymphoblastic leukemia (ALL). Flow cytometry and immunofluorescence microscopy reveal that CYLD increases the ability of noscapine to induce mitotic arrest and apoptosis. Examination of cellular microtubules as well as in vitro assembled microtubules shows that CYLD enhances the effect of noscapine on microtubule polymerization. Microtubule cosedimentation and fluorescence titration assays further reveal that CYLD interacts with microtubule outer surface and promotes noscapine binding to microtubules. These findings thus demonstrate CYLD as a critical regulator of noscapine activity and have important implications for ALL treatment. PMID:25897332

  5. X-linked agammaglobulinemia associated with B-precursor acute lymphoblastic leukemia.

    PubMed

    Hoshino, Akihiro; Okuno, Yusuke; Migita, Masahiro; Ban, Hideki; Yang, Xi; Kiyokawa, Nobutaka; Adachi, Yuichi; Kojima, Seiji; Ohara, Osamu; Kanegane, Hirokazu

    2015-02-01

    X-linked agammaglobulinemia (XLA) is clinically characterized by reduced number of peripheral B cells and diminished levels of serum immunoglobulins, and caused by a mutation in the Bruton's tyrosine kinase (BTK) gene, which play a pivotal role in signal transduction of pre-B-cell receptor (BCR) and BCR. B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most common malignancy in children, and it may be associated with gene alterations that regulate B-cell development. Here we described a first case of XLA associated BCP-ALL. The whole-exome sequencing revealed a somatic mutation in MLL2 in the sample from the onset of BCP-ALL. This study suggests that the alterations of BTK and MLL2 synergistically function as leukemogenesis. PMID:25591849

  6. Acute lymphoblastic leukemia in pregnancy: a case report with literature review

    PubMed Central

    Oberoi, Shilpa; Friend, Sarah; Busowski, John; Langenstroer, Mary; Baidas, Said

    2013-01-01

    The management of acute lymphoblastic leukemia (ALL) during pregnancy requires treatment with high-dose chemotherapy that can pose risks to both the mother and fetus. Special consideration to chemotherapy regimen and its doses and to fetal gestational age at the time of chemotherapy administration should be taken in order to limit fetal exposure while still providing optimal therapy to the mother. Here we describe a 22-year-old patient who was diagnosed at 26 weeks gestation with ALL and was treated in the third trimester with HyperCVAD (cytoxan, vincristine, adriamycin, dexamethasone) combination chemotherapy giving birth via Caesarean section to a healthy baby girl 4 weeks after induction chemotherapy. PMID:24082992

  7. CYLD Regulates Noscapine Activity in Acute Lymphoblastic Leukemia via a Microtubule-Dependent Mechanism.

    PubMed

    Yang, Yunfan; Ran, Jie; Sun, Lei; Sun, Xiaodong; Luo, Youguang; Yan, Bing; Tala; Liu, Min; Li, Dengwen; Zhang, Lei; Bao, Gang; Zhou, Jun

    2015-01-01

    Noscapine is an orally administrable drug used worldwide for cough suppression and has recently been demonstrated to disrupt microtubule dynamics and possess anticancer activity. However, the molecular mechanisms regulating noscapine activity remain poorly defined. Here we demonstrate that cylindromatosis (CYLD), a microtubule-associated tumor suppressor protein, modulates the activity of noscapine both in cell lines and in primary cells of acute lymphoblastic leukemia (ALL). Flow cytometry and immunofluorescence microscopy reveal that CYLD increases the ability of noscapine to induce mitotic arrest and apoptosis. Examination of cellular microtubules as well as in vitro assembled microtubules shows that CYLD enhances the effect of noscapine on microtubule polymerization. Microtubule cosedimentation and fluorescence titration assays further reveal that CYLD interacts with microtubule outer surface and promotes noscapine binding to microtubules. These findings thus demonstrate CYLD as a critical regulator of noscapine activity and have important implications for ALL treatment. PMID:25897332

  8. Executive Function Late Effects in Survivors of Pediatric Brain Tumors and Acute Lymphoblastic Leukemia

    PubMed Central

    Winter, Amanda L.; Conklin, Heather M.; Tyc, Vida L.; Stancel, Heather; Hinds, Pamela S.; Hudson, Melissa M.; Kahalley, Lisa S.

    2014-01-01

    BACKGROUND Survivors of pediatric brain tumors (BT) and acute lymphoblastic leukemia (ALL) are at risk for neurocognitive late effects related to executive function. PROCEDURE Survivors of BT (48) and ALL (50) completed neurocognitive assessment. Executive function was compared to estimated IQ and population norms by diagnostic group. RESULTS Both BT and ALL demonstrated relative executive function weaknesses. As a group, BT survivors demonstrated weaker executive functioning than expected for age. Those BT survivors with deficits exhibited a profile suggestive of global executive dysfunction, while affected ALL survivors tended to demonstrate specific rapid naming deficits. CONCLUSION Findings suggest that pediatric BT and ALL survivors may exhibit different profiles of executive function late effects, which may necessitate distinct intervention plans. PMID:25126830

  9. Immunology of infusion reactions in the treatment of patients with acute lymphoblastic leukemia.

    PubMed

    Asselin, Barbara

    2016-07-01

    Infusion reactions are potentially dose-limiting adverse events associated with intravenous administration of several common agents used to treat patients with acute lymphoblastic leukemia. True clinical hypersensitivity reactions are antibody-mediated and can occur only after repeated exposure to an antigen. Conversely, anaphylactoid infusion reactions are nonantibody-mediated and often occur on the initial exposure to a drug. Cytokine-release syndrome comprises a subset of nonantibody-mediated infusion reactions associated with the use of monoclonal antibodies and immune therapies. Clinical symptoms of hypersensitivity reactions and nonantibody-mediated infusion reactions heavily overlap and can be difficult to distinguish in practice. Regardless of the underlying mechanism, any infusion reaction can negatively affect treatment efficacy and patient safety. These events require prompt response, and potentially, modification of subsequent therapy. PMID:27086555

  10. A rare type of secondary cancer in a child with acute lymphoblastic leukemia: malignant fibrous histiocytoma.

    PubMed

    Incesoy Özdemir, Sonay; Balkaya, Eda; Ören, Ayşe C; Bozkurt, Ceyhun; Sahin, Gürses; Ünlü, Ramazan E; Ertem, Ayşe U

    2014-03-01

    Secondary cancers which are related with treatment of childhood acute lymphoblastic leukemia (ALL) is a significant problem with longer term. For development of secondary cancer after treatment, the latency period varies between 5 and 10 years. In this case, a 13 year-old-boy diagnosed as high-risk ALL was treated with chemotherapy and prophylactic cranial radiotherapy at a dose of 1800 cGy. Six years after the end of treatment he developed a 5 × 5 × 4 cm mass at the right temporal region of the cranium. The mass was excised totally with clear surgical margin. Pathology of mass has been diagnosed as malignant fibrous histiocytoma (MFH), recently referred to as an undifferentiated pleomorphic sarcoma (UPS). After treatment of childhood ALL, reported cases of secondary MFH is extremely rare in the literature. Herein we present a case of MFH/UPS that developed as a secondary cancer 6 years after the end of ALL treatment. PMID:24096378

  11. Leukemia Cutis: An Unusual Presentation of Acute Lymphoblastic Leukemia in a Child

    PubMed Central

    Jiang, Xia; Wang, Weixia; Zhang, Min

    2015-01-01

    Leukemia cutis (LC) is a nonspecific word used for cutaneous infiltration of leukemia, which is a rare presentation of acute lymphoblastic leukemia (ALL), and always a harbinger of poor prognosis. We report a case of LC in a 5-year-old boy with a past medical history of ALL (L1) presented with multiple asymptomatic oval or annular red patches and plaques on his thighs, buttocks and back waist, and part of them were scaling lesions. A biopsy was performed and histopathological examination showed that medium-sized atypical cells with round to oval contours, scant cytoplasm, and finely dispersed chromatin infiltrated into the dermis and subcutis, and the perivascular and periadnexal areas were involved. Immunophenotyping showed that the atypical cells were positive for CD45, CD3ε, CD99, and Ki67 (about 70%). Considering the patient's medical history and the histopathology, the patient was diagnosed with LC. PMID:26677299

  12. Refractory chronic immune thrombocytopenic purpura in a child with acute lymphoblastic leukemia.

    PubMed

    Horino, Satoshi; Rikiishi, Takeshi; Niizuma, Hidetaka; Abe, Hiroshi; Watanabe, Yuko; Onuma, Masaei; Hoshi, Yoshiyuki; Sasahara, Yoji; Yoshinari, Miyako; Kazama, Takuro; Hayashi, Yutaka; Kumaki, Satoru; Tsuchiya, Shigeru

    2009-11-01

    Immune thrombocytopenic purpura (ITP) has been associated with several hematologic malignancies such as Hodgkin and non-Hodgkin lymphomas and chronic lymphocytic leukemia, but it is rare in children with acute lymphoblastic leukemia (ALL). Here, we report a 7-year-old girl with chronic ITP during early intensive phase of chemotherapy for ALL. She underwent splenectomy because thrombocytopenia had persisted even after treatment with intravenous immunoglobulin (IVIG), steroids, vincristine, rituximab, and anti-D antibody. After splenectomy, her platelet count had recovered, and maintenance therapy could be resumed with a support of IVIG. To our knowledge, this is the first child case of chronic ITP during chemotherapy for ALL and splenectomy was effective in this patient. PMID:19816666

  13. Initial presentation of CNS-restricted acute lymphoblastic B cell leukaemia as peripheral polyneuropathy.

    PubMed

    Piovezani Ramos, Guilherme; Villasboas Bisneto, Jose C; Chen, Dong; Pardanani, Animesh

    2016-01-01

    We report a case of a 58-year-old woman who presented with a 1-month course of progressive lower and upper extremity weakness in addition to binocular diplopia. Diagnostic lumbar puncture revealed atypical lymphoid cells with 28% blasts. Immunophenotype was consistent with B cell acute lymphoblastic leukaemia (B-ALL). Further work up showed no systemic involvement but extensive thoracolumbar-sacral leptomeningeal disease. The patient was treated with several courses of intrathecal and systemic chemotherapy followed by craniospinal irradiation for consolidation. There was initial steady improvement in neurological symptoms and leptomeningeal disease, the latter being ascertained through radiological studies and cerebrospinal fluid examination. After 10 months of response, the patient relapsed with central nervous system (CNS) and systemic disease. B-ALL is a rare precursor lymphoid neoplasm that generally presents with systemic disease. While CNS involvement is not uncommon, isolated involvement of this compartment without systemic disease is exceedingly rare. PMID:27095809

  14. Generation of human acute lymphoblastic leukemia xenografts for use in oncology drug discovery

    PubMed Central

    Holmfeldt, Linda

    2015-01-01

    The establishment of reproducible mouse models of acute lymphoblastic leukemia (ALL) is necessary to provide in vivo therapeutic models that recapitulate human ALL, and for amplification of limiting amounts of primary tumor material. A frequently used model is the primary xenograft model that utilizes immunocompromised mice and involves injection of primary patient tumor specimens into mice, and subsequent serial passaging of the tumors by retransplants of cells harvested from the mouse bone marrow and spleen. The tumors generated can then be used for genomic profiling, ex vivo compound testing, mechanistic studies and retransplantation. This unit describes detailed procedures for the establishment and maintenance of primary ALL xenograft panels for potential use in basic research or translational studies. PMID:25737157

  15. Impact of clinical and subclinical hypersensitivity to asparaginase in acute lymphoblastic leukemia.

    PubMed

    Asselin, Barbara L; Fisher, Vicki

    2014-12-01

    Asparaginase is an essential element of acute lymphoblastic leukemia treatment. It depletes serum asparagine (an amino acid necessary for synthesis of cellular proteins), deprives leukemic blast cells of asparagine, and eventually results in cell death. To gain benefit from asparaginase, asparagine depletion must be ensured by giving intensive therapy and completing the full course of treatment. Three formulations of asparaginase exist; two are derived from Escherichia coli, a native form and pegylated form, and one is derived from Erwinia chrysanthemi (Erwinia asparaginase). Like many large proteins, asparaginases are immunogenic, and some patients develop antibodies to asparaginase. Antibodies may result in clinical hypersensitivity or subclinical hypersensitivity without symptoms, and both can result in a reduction in asparaginase activity and may affect therapeutic benefit. Clinical hypersensitivity is the most common reason for patients to stop asparaginase treatment. Subclinical hypersensitivity can only be identified by laboratory testing; therapeutic monitoring of asparaginase activity is used as a surrogate measure for asparagine depletion. PMID:25427712

  16. Acute lymphoblastic leukemia as second primary tumor in a patient with retinoblastoma

    PubMed Central

    Ganguly, Anasua; Kaliki, Swathi; Mohammad, Faraz Ali; Mishra, Dilip K.; Vanajakshi, S.; Reddy, Vijay Anand

    2016-01-01

    Second primary tumor (SPT) is defined as a second tumor that presents either simultaneously or after the diagnosis of an index tumor. Second primary malignancies are the leading cause of death in patients with heritable retinoblastoma (RB). Acute lymphoblastic leukemia (ALL), as SPT in RB patients, is extremely rare. To the best of our knowledge, only five cases of ALL as SPT in patients with RB has been documented in the literature. Herein, we report a case of a 6-year-old girl with bilateral RB, who developed ALL during the course of treatment of RB. This case highlights the importance of reviewing blood investigations regularly to diagnose leukemia as SPT in RB and also the necessity for proper counseling and lifelong follow-up in these patients. PMID:27433042

  17. Genetic heterogeneity of RPMI-8402, a T-acute lymphoblastic leukemia cell line

    PubMed Central

    STOCZYNSKA-FIDELUS, EWELINA; PIASKOWSKI, SYLWESTER; PAWLOWSKA, ROZA; SZYBKA, MALGORZATA; PECIAK, JOANNA; HULAS-BIGOSZEWSKA, KRYSTYNA; WINIECKA-KLIMEK, MARTA; RIESKE, PIOTR

    2016-01-01

    Thorough examination of genetic heterogeneity of cell lines is uncommon. In order to address this issue, the present study analyzed the genetic heterogeneity of RPMI-8402, a T-acute lymphoblastic leukemia (T-ALL) cell line. For this purpose, traditional techniques such as fluorescence in situ hybridization and immunocytochemistry were used, in addition to more advanced techniques, including cell sorting, Sanger sequencing and massive parallel sequencing. The results indicated that the RPMI-8402 cell line consists of several genetically different cell subpopulations. Furthermore, massive parallel sequencing of RPMI-8402 provided insight into the evolution of T-ALL carcinogenesis, since this cell line exhibited the genetic heterogeneity typical of T-ALL. Therefore, the use of cell lines for drug testing in future studies may aid the progress of anticancer drug research. PMID:26870252

  18. Non-tumour bone marrow lymphocytes correlate with improved overall survival in childhood acute lymphoblastic leukaemia.

    PubMed

    Edwin, Claire; Dean, Joanne; Bonnett, Laura; Phillips, Kate; Keenan, Russell

    2016-10-01

    Composition of tumour immune cell infiltrates correlates with response to treatment and overall survival (OS) in several cancer settings. We retrospectively examined immune cells present in diagnostic bone marrow aspirates from paediatric patients with B-cell acute lymphoblastic leukaemia. Our analysis identified a sub-group (∼30% of patients) with >2.37% CD20 and >6.05% CD7 expression, which had 100% OS, and a sub-group (∼30% of patients) with ≤2.37% CD20 and ≤6.05% CD7 expression at increased risk of treatment failure (66.7% OS, P < 0.05). Immune cell infiltrate at diagnosis may predict treatment response and could provide a means to enhance immediate treatment risk stratification. PMID:27348401

  19. Acute lymphoblastic leukemia as second primary tumor in a patient with retinoblastoma.

    PubMed

    Ganguly, Anasua; Kaliki, Swathi; Mohammad, Faraz Ali; Mishra, Dilip K; Vanajakshi, S; Reddy, Vijay Anand

    2016-01-01

    Second primary tumor (SPT) is defined as a second tumor that presents either simultaneously or after the diagnosis of an index tumor. Second primary malignancies are the leading cause of death in patients with heritable retinoblastoma (RB). Acute lymphoblastic leukemia (ALL), as SPT in RB patients, is extremely rare. To the best of our knowledge, only five cases of ALL as SPT in patients with RB has been documented in the literature. Herein, we report a case of a 6-year-old girl with bilateral RB, who developed ALL during the course of treatment of RB. This case highlights the importance of reviewing blood investigations regularly to diagnose leukemia as SPT in RB and also the necessity for proper counseling and lifelong follow-up in these patients. PMID:27433042

  20. [Automated kinetic assay of plasmatic L-asparaginase activity undergoing therapy for acute lymphoblastic leukemia].

    PubMed

    Orsonneau, J-L; Brassart, E A; Lecame, M; Thomare, P; Delaroche, O; Dudouet, D

    2004-01-01

    The L-asparaginase is a critical drug for the treatment of acute lymphoblastic leukaemia, that achieves blood L-asparagin depletion. However, such a therapy is associated with a high rate of negative side effects, particularly antibody synthesis against L-asparaginase. This therefore decreases therapy efficiency requiring the monitoring of L-asparaginase activity since L-asparagin determination is not easy. We compared here the results obtained with an automated kinetic enzymatic method to those obtained with the most commonly used Nessler reagent method. The correlation coefficient, r = 0,992, obtained was very good, and the allometric regression line was y = 1,038x - 0,37 microkat/L. We also showed that the specificity and the precision were better with the enzymatic method than the Nessler one. Moreover, the enzymatic method was easier and required less time to perform. Finally, the method appears able to perform real time monitoring of the therapy. PMID:15355807

  1. Geographical distribution of acute lymphoblastic leukaemia subtypes: second report of the collaborative group study.

    PubMed

    Greaves, M F; Colman, S M; Beard, M E; Bradstock, K; Cabrera, M E; Chen, P M; Jacobs, P; Lam-Po-Tang, P R; MacDougall, L G; Williams, C K

    1993-01-01

    Childhood acute lymphoblastic leukemia (ALL) T and B precursor subtypes have been identified by standardised immunophenotyping in different geographic and ethnic settings. Comparison of the relative frequencies and estimated incidence rates of the major subtypes indicates very similar values, with the striking exception of black childhood populations in Africa in which there appears to be a significant and selective deficit in the incidence of the common (B-cell precursor) subset of ALL. There is suggestive evidence for a similar bias in ALL subtypes in South Africans of mixed ethnic origin and in Mapuche Indians from Chile. Several interpretations of these data are possible but the one favoured attributes these differences primarily to socio-economic factors and patterns of infection in infancy. PMID:8418376

  2. Leydig-cell function in children after direct testicular irradiation for acute lymphoblastic leukemia

    SciTech Connect

    Brauner, R.; Czernichow, P.; Cramer, P.; Schaison, G.; Rappaport, R.

    1983-07-07

    To assess the effect of testicular irradiation on testicular endocrine function, we studied 12 boys with acute lymphoblastic leukemia who had been treated with direct testicular irradiation 10 months to 8 1/2 years earlier. Insufficient Leydig-cell function, manifested by a low response of plasma testosterone to chorionic gonadotropin or an increased basal level of plasma luteinizing hormone (or both), was observed in 10 patients, 7 of whom were pubertal. Two of these patients had a compensated testicular endocrine insufficiency with only high plasma concentrations of luteinizing hormone. Testosterone secretion was severely impaired in three pubertal boys studied more than four years after testicular irradiation. A diminished testicular volume indicating tubular atrophy was found in all pubertal patients, including three who had not received cyclophosphamide or cytarabine. These data indicate that testosterone insufficiency is a frequent complication of testicular irradiation, although some patients continue to have Leydig-cell activity for several years after therapy.

  3. Significance of CD66c expression in childhood acute lymphoblastic leukemia.

    PubMed

    Kiyokawa, Nobutaka; Iijima, Kazutoshi; Tomita, Osamu; Miharu, Masashi; Hasegawa, Daisuke; Kobayashi, Kenichiro; Okita, Hajime; Kajiwara, Michiko; Shimada, Hiroyuki; Inukai, Takeshi; Makimoto, Atsushi; Fukushima, Takashi; Nanmoku, Toru; Koh, Katsuyoshi; Manabe, Atsushi; Kikuchi, Akira; Sugita, Kanji; Fujimoto, Junichiro; Hayashi, Yasuhide; Ohara, Akira

    2014-01-01

    Upon analyzing 696 childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cases, we identified the characteristics of CD66c expression. In addition to the confirmation of strong correlation with BCR-ABL positivity and hyperdiploid, we further observed that CD66c is frequently expressed in CRLF2-positive (11/15, p<0.01 against chimeric gene-negative) as well as hypodiploid cases (3/4), whereas it is never expressed in ETV6-RUNX1, MLL-AF4, MLL-AF9, MLL-ENL, and E2A-PBX1-positive cases. Although the expression of CD66c itself is not directly linked to the prognosis, the accompanying genetic abnormalities are important prognostic factors for BCP-ALL, indicating the importance of CD66c expression in the initial diagnosis of BCP-ALL. PMID:24231528

  4. Genetic Aberrations in Childhood Acute Lymphoblastic Leukaemia: Application of High-Density Single Nucleotide Polymorphism Array

    PubMed Central

    Sulong, Sarina

    2010-01-01

    Screening of the entire human genome using high-density single nucleotide polymorphism array (SNPA) has become a powerful technique used in cancer genetics and population genetics studies. The GeneChip® Mapping Array, introduced by Affymetrix, is one SNPA platform utilised for genotyping studies. This GeneChip system allows researchers to gain a comprehensive view of cancer biology on a single platform for the quantification of chromosomal amplifications, deletions, and loss of heterozygosity or for allelic imbalance studies. Importantly, this array analysis has the potential to reveal novel genetic findings involved in the multistep development of cancer. Given the importance of genetic factors in leukaemogenesis and the usefulness of screening the whole genome, SNPA analysis has been utilised in many studies to characterise genetic aberrations in childhood acute lymphoblastic leukaemia. PMID:22135543

  5. Two pairs of monozygotic twins with concordant acute lymphoblastic leukemia (ALL): case report.

    PubMed

    Li, Xue; Sun, Nianzheng; Huang, Xiaoyang; Ju, Xiuli

    2014-07-01

    The occurrence of leukemia in twins is rare but has a crucial implication in the genetic research of leukemia. This report presents 2 pairs of monozygotic twins with precursor B-cell acute lymphoblastic leukemia. Mixed lineage leukemia (MLL)-AF4 fusion genes were found in the twin sisters. This study is the first to report on infant ALL harboring the 46,XY, -4, +10, -13, del(14)(q24), -15, +2mar[4 cells] complex chromosome abnormality. Our report showed that the unified cytogenetic features in monozygotic twins and MLL-AF4 fusion gene may be necessary but insufficient for the clinical development and prognosis of identical twins with leukemia. PMID:24807006

  6. Fatal disseminated fusarium infection in acute lymphoblastic leukaemia in complete remission

    PubMed Central

    Austen, B; McCarthy, H; Wilkins, B; Smith, A; Duncombe, A

    2001-01-01

    Fusarium species are increasingly recognised as serious pathogens in the immunocompromised. The outcome in the context of persistent severe neutropenia has been almost universally fatal. However, there have been several case reports of successful treatment if neutrophil recovery can be achieved. This report presents the case of a fatality that occurred despite neutrophil recovery. A 67 year old man developed disseminated fusariosis during the neutropenic phase of induction chemotherapy for acute lymphoblastic leukaemia. Fusarium dimerum was isolated from blood cultures. This species is highly unusual and very few case reports exist in the literature. An initial response to amphotericin treatment coincided with neutrophil recovery but a subsequent relapse occurred, despite adequate neutrophil counts, which proved fatal. It is postulated that reseeding of the blood from an occult site, namely the right vitreum in this case, led to this secondary relapse despite achieving complete leukaemic remission. Key Words: fusarium • disseminated • neutropenia • remission PMID:11376027

  7. Body composition and phase angle in Russian children in remission from acute lymphoblastic leukemia

    NASA Astrophysics Data System (ADS)

    Tseytlin, G. Ja; Khomyakova, I. A.; Nikolaev, D. V.; Konovalova, M. V.; Vashura, A. Yu; Tretyak, A. V.; Godina, E. Z.; Rudnev, S. G.

    2010-04-01

    Elevated degree of body fatness and changes in other body composition parameters are known to be common effects of treatment for acute lymphoblastic leukemia (ALL) in children. In order to study peculiarities of somatic growth and development in ALL survivors, we describe the results of BIA body composition analysis of 112 boys and 108 girls aged 5-18 years in remission from ALL (remission time range 1-13 years) compared to data from the same number of age- and sex-matched healthy controls (n=220). Detrimental effect on height in ALL boys was observed, whereas girls experienced additional weight gain compared to healthy subjects. In ALL patients, resistance, body fat, and percent body fat were significantly increased. The reactance, phase angle, absolute and relative values of skeletal muscle and body cell mass were significantly decreased. Principal component analysis revealed an early prevalence of adiposity traits in the somatic growth and development of ALL girls compared to healthy controls.

  8. Eosinophil-Rich Acute Febrile Neutrophilic Dermatosis in a Patient With Enteropathy-Associated T-cell Lymphoma, Type 1.

    PubMed

    Soon, Christopher W; Kirsch, Ilan R; Connolly, Andrew J; Kwong, Bernice Y; Kim, Jinah

    2016-09-01

    The presence of eosinophils within the neutrophilic infiltrates of acute febrile neutrophilic dermatosis (Sweet syndrome) is documented in the literature. Here, the authors describe a case of eosinophil-rich acute febrile neutrophilic dermatosis in the setting of new onset enteropathy-associated T-cell lymphoma (EATL), type 1. Histopathologic evaluation of the skin biopsies demonstrated a mixed superficial perivascular and inflammatory infiltrate composed of neutrophils, lymphocytes, and abundant eosinophils. EATL, type 1 is an aggressive although rare primary intestinal lymphoma that may be associated with celiac disease. This lymphoma is associated with a poor prognosis due to treatment resistance or bowel perforation. To the authors' knowledge, Sweet syndrome has not been reported in a patient with EATL. PMID:27097333

  9. T-cell/myeloid mixed-phenotype acute leukemia with monocytic differentiation and isolated 17p deletion

    PubMed Central

    Lopes, Germison Silva; Leitão, João Paulo de Vasconcelos; Kaufman, Jacques; Duarte, Fernando Barroso; Matos, Daniel Mazza

    2014-01-01

    Mixed phenotype acute leukemia is a rare subtype of leukemia that probably arises from a hematopoietic pluripotent stem cell. The co-expression of two of myeloid, B- or T-lymphoid antigens is the hallmark of this disease. Herein, the case of a 28-year-old female patient is reported who presented with hemoglobin of 5.8 g/dL, white blood cell count of 138 × 109/L and platelet count of 12 × 109/L. The differential count of peripheral blood revealed 96% of blasts. Moreover, the patient presented with lymphadenopathy, splenomegaly and bone marrow infiltration by monocytoid blasts characterized as 7% positivity by Sudan Black cytochemical staining. Immunophenotyping revealed the involvement of blasts of both T- and monocytic lineages. The cytogenetic analysis showed an isolated 17p deletion. Thus, the diagnosis of T-cell/myeloid mixed phenotype acute leukemia was made with two particular rare features, that is, the monocytic differentiation and the 17p deletion as unique cytogenetic abnormalities. The possibility of concomitant expressions of T-cell and monocytic differentiation antigens in the same blast population is hard to explain using the classical model of hematopoiesis. However, recent studies have suggested that myeloid potential persists even when the lineage branches segregate toward B- and T-cells. The role of an isolated 17p deletion in the pathogenesis of this condition is unclear. At present, the patient is in complete remission after an allogeneic stem cell transplantation procedure. PMID:25031170

  10. Febrile neutropenia in children with acute lymphoblastic leukemia: single center experience

    PubMed Central

    Özdemir, Nihal; Tüysüz, Gülen; Çelik, Nigar; Yantri, Leman; Erginöz, Ethem; Apak, Hilmi; Özkan, Alp; Yıldız, İnci; Celkan, Tiraje

    2016-01-01

    Aim: An important life-threatening complication of intensive chemotherapy administered in children with leukemia is febrile neutropenia. The objective of this study was to evaluate the clinical features and consequences of febrile neutropenia attacks in children who were treated for acute lymphoblastic leukemia. Material and Methods: Nighty-six children who received chemotherapy for acute lymphoblastic leukemia in our center between January 1995 and December 2010 were included in the study. The data related to demographic characteristics, treatment features, relapse and febrile neutropenia incidences, risk factors, culture results and prognosis were retrospectively evaluated from the patients’ files. Results: A total of two hundred-ninety nine febrile neutropenia attacks observed in the patients during initial treatment and relapse treatment were evaluated. When the incidence of febrile neutropenia was evaluated by years, it was observed that the patients treated after year 2000 had statistically significantly more febrile neutopenia attacks compared to the patients treated before year 2000. When the incidences of febrile neutropenia during initial treatment and during relapse treatment were compared, it was observed that more febrile neutropenia attacks occured during relapse treatment. Fifty-nine percent of all febrile neutropenia attacks were fever of unknown origin. Eighty microorganisms grew in cultures during febrile neutropenia throughout treatment in 75 patients; 86% were bacterial infections (50% gram positive and 50% gram negative), 8% were viral infections and 6% were fungal infections. Coagulase negative staphylococcus (n=17) was the most frequent gram positive pathogen; E. Coli (n=17) was the most commonly grown gram negative pathogen. Conclusions: In this study, it was found that an increase in the incidence of febrile neutropenia occured in years. Increments in treatment intensities increase the incidence of febrile neutropenia while improving

  11. Predicting the neurobehavioral side effects of dexamethasone in pediatric acute lymphoblastic leukemia.

    PubMed

    Warris, Lidewij T; van den Akker, Erica L T; Aarsen, Femke K; Bierings, Marc B; van den Bos, Cor; Tissing, Wim J E; Sassen, Sebastiaan D T; Veening, Margreet A; Zwaan, Christian M; Pieters, Rob; van den Heuvel-Eibrink, Marry M

    2016-10-01

    Although dexamethasone is an effective treatment for acute lymphoblastic leukemia (ALL), it can induce a variety of serious neurobehavioral side effects. We hypothesized that these side effects are influenced by glucocorticoid sensitivity at the tissue level. We therefore prospectively studied whether we could predict the occurrence of these side effects using the very low-dose dexamethasone suppression test (DST) or by measuring trough levels of dexamethasone. Fifty pediatric patients (3-16 years of age) with acute lymphoblastic leukemia (ALL) were initially included during the maintenance phase (with dexamethasone) of the Dutch ALL treatment protocol. As a marker of glucocorticoid sensitivity, the salivary very low-dose DST was used. A post-dexamethasone cortisol level <2.0nmol/L was considered a hypersensitive response. The neurobehavioral endpoints consisted of questionnaires regarding psychosocial and sleeping problems administered before and during the course of dexamethasone (6mg/m(2)), and dexamethasone trough levels were measured during dexamethasone treatment. Patients with a hypersensitive response to dexamethasone had more behavioral problems (N=11), sleeping problems, and/or somnolence (N=12) (P<0.05 for all three endpoints). The positive predictive values of the DST for psychosocial problems and sleeping problems were 50% and 30%, respectively. Dexamethasone levels were not associated with neurobehavioral side effects. We conclude that neither the very low-dose DST nor measuring dexamethasone trough levels can accurately predict dexamethasone-induced neurobehavioral side effects. However, patients with glucocorticoid hypersensitivity experienced significantly more symptoms associated with dexamethasone-induced depression. Future studies should elucidate further the mechanisms by which neurobehavioral side effects are influenced by glucocorticoid sensitivity. PMID:27448086

  12. Soluble Fas and Fas ligand and prognosis in children with acute lymphoblastic leukemia.

    PubMed

    Fathi, Mina; Amirghofran, Zahra; Shahriari, Mehdi

    2012-09-01

    The soluble forms of Fas and its ligand (sFas and sFasL) correlate with disease progression in various malignancies. We compared serum levels of sFas and sFasL in children with acute lymphoblastic leukemia and healthy children to determine the prognostic significance of these molecules. Serum levels of sFas and sFasL were measured with an enzyme-linked immunosorbent assay in 48 patients with newly diagnosed childhood acute lymphoblastic leukemia and 38 healthy children. Cut-off values of sFas and sFasL levels were based on their levels in controls. Clinical and laboratory characteristics were recorded on admission. The mean serum concentration of sFas was 243 ± 40 pg/mL in patients and 238 ± 29 pg/mL in controls. Serum levels of sFasL were 4.33 ± 0.25 ng/mL in patients and 4.27 ± 0.11 ng/mL in controls. Neither difference was significant. Based on the cut-off value, 12.5% of the patients were positive for sFas, and 16.6% were positive for sFasL. Survival was significantly longer in sFasL-positive patients (394 ± 69.6 vs. 254 ± 24.3 days) and the duration of complete remission was also longer (380 ± 65.0 vs. 246 ± 26.0 days) than in sFasL-negative patients (P < 0.02), indicating the important role of this molecule in the response to therapy. Higher sFas levels were associated with hepatosplenomegaly (P < 0.047). In conclusion, sFasL positivity was associated with a favorable outcome in ALL patients. PMID:21528407

  13. [Markers of metabolic syndrome and peptides regulating metabolism in survivors of childhood acute lymphoblastic leukemia].

    PubMed

    Skoczeń, Szymon; Tomasik, Przemysław; Balwierz, Walentyna; Surmiak, Marcin; Sztefko, Krystyna; Galicka-Latała, Danuta

    2011-01-01

    Along with the growing epidemic of overweight the risk of atherosclerosis, cardiovascular disease morbidity and mortality are increasing markedly. Metabolic syndrome (MS) is a condition clustering together several risk factors of those complications such as visceral obesity, glucose intolerance, arterial hypertension and dislipidemia. The risk of obesity in acute lymphoblastic leukemia (ALL) survivors is higher than in general population. We aimed to assess (1) the relationships between chosen adipokines and neuropeptides, chemotherapy, CRT, and body fatness and (2) evaluate adipokines and neuropeptides concentrations as a new markers of MS in children. We conducted cross-sectional evaluation of 82 ALL survivors (median age: 13.2 years; range: 4,8-26,2; median time from treatment: 3.2 years), including fasting laboratory testing: peptides (leptin, GLP-1, orexin, PYY, apelin), total cholesterol and its fractions, triglycerides; anthropometric measurements (weight, height), systolic and diastolic blood pressure. We estimated percentiles of body mass index and percentiles of blood pressure. Between 82 survivors overweight and diastolic hypertension was diagnosed in 31% of patients (35% in CRT group) and 15% respectively. At least one abnormality in lipids concentrations was found in 43%. Girls were more affected than boys. Statistically significant increased in leptin and apelin concentrations and decreased in soluble leptin receptor concentrations in the overweight group were observed compared to the non overweight subjects. Significant increase in orexin levels in females who had received CRT compared to those who had not received CRT was found. CRT is the main risk factor of elevated of body mass among survivors of childhood leukemia. Dyslipidemia and hypertension, along with increased adiposity indicate higher risk of MS development. Girls are more affected than boys. Leptin, orexin and apelin seem to be good markers of increased adiposity especially after CRT

  14. Environment-mediated drug resistance in Bcr/Abl-positive acute lymphoblastic leukemia

    PubMed Central

    Feldhahn, Niklas; Arutyunyan, Anna; Stoddart, Sonia; Zhang, Bin; Schmidhuber, Sabine; Yi, Sun-Ju; Kim, Yong-mi; Groffen, John; Heisterkamp, Nora

    2012-01-01

    Although cure rates for acute lymphoblastic leukemia (ALL) have increased, development of resistance to drugs and patient relapse are common. The environment in which the leukemia cells are present during the drug treatment is known to provide significant survival benefit. Here, we have modeled this process by culturing murine Bcr/Abl-positive acute lymphoblastic leukemia cells in the presence of stroma while treating them with a moderate dose of two unrelated drugs, the farnesyltransferase inhibitor lonafarnib and the tyrosine kinase inhibitor nilotinib. This results in an initial large reduction in cell viability of the culture and inhibition of cell proliferation. However, after a number of days, cell death ceases and the culture becomes drug-tolerant, enabling cell division to resume. Using gene expression profiling, we found that the development of drug resistance was accompanied by massive transcriptional upregulation of genes that are associated with general inflammatory responses such as the metalloproteinase MMP9. MMP9 protein levels and enzymatic activity were also increased in ALL cells that had become nilotinib-tolerant. Activation of p38, Akt and Erk correlated with the development of environment-mediated drug resistance (EMDR), and inhibitors of Akt and Erk in combination with nilotinib reduced the ability of the cells to develop resistance. However, inhibition of p38 promoted increased resistance to nilotinib. We conclude that development of EMDR by ALL cells involves changes in numerous intracellular pathways. Development of tolerance to drugs such as nilotinib may therefore be circumvented by simultaneous treatment with other drugs having divergent targets. PMID:22934254

  15. TLR ligand induced IL-6 counter-regulates the anti-viral CD8+ T cell response during an acute retrovirus infection

    PubMed Central

    Wu, Weimin; Dietze, Kirsten K.; Gibbert, Kathrin; Lang, Karl S.; Trilling, Mirko; Yan, Huimin; Wu, Jun; Yang, Dongliang; Lu, Mengji; Roggendorf, Michael; Dittmer, Ulf; Liu, Jia

    2015-01-01

    We have previously shown that Toll-like receptor (TLR) agonists contribute to the control of viral infection by augmenting virus-specific CD8+ T-cell responses. It is also well established that signaling by TLRs results in the production of pro-inflammatory cytokines such as interleukin 6 (IL-6). However, how these pro-inflammatory cytokines influence the virus-specific CD8+ T-cell response during the TLR agonist stimulation remained largely unknown. Here, we investigated the role of TLR-induced IL-6 in shaping virus-specific CD8+ T-cell responses in the Friend retrovirus (FV) mouse model. We show that the TLR agonist induced IL-6 counter-regulates effector CD8+ T-cell responses. IL-6 potently inhibited activation and cytokine production of CD8+ T cells in vitro. This effect was mediated by a direct stimulation of CD8+ T cells by IL-6, which induced upregulation of STAT3 phosphorylation and SOCS3 and downregulated STAT4 phosphorylation and T-bet. Moreover, combining TLR stimulation and IL-6 blockade during an acute FV infection resulted in enhanced virus-specific CD8+ T-cell immunity and better control of viral replication. These results have implications for our understanding of the role of TLR induced pro-inflammatory cytokines in regulating effector T cell responses and for the development of therapeutic strategies to overcome T cell dysfunction in chronic viral infections. PMID:25994622

  16. TLR ligand induced IL-6 counter-regulates the anti-viral CD8(+) T cell response during an acute retrovirus infection.

    PubMed

    Wu, Weimin; Dietze, Kirsten K; Gibbert, Kathrin; Lang, Karl S; Trilling, Mirko; Yan, Huimin; Wu, Jun; Yang, Dongliang; Lu, Mengji; Roggendorf, Michael; Dittmer, Ulf; Liu, Jia

    2015-01-01

    We have previously shown that Toll-like receptor (TLR) agonists contribute to the control of viral infection by augmenting virus-specific CD8(+) T-cell responses. It is also well established that signaling by TLRs results in the production of pro-inflammatory cytokines such as interleukin 6 (IL-6). However, how these pro-inflammatory cytokines influence the virus-specific CD8(+) T-cell response during the TLR agonist stimulation remained largely unknown. Here, we investigated the role of TLR-induced IL-6 in shaping virus-specific CD8(+) T-cell responses in the Friend retrovirus (FV) mouse model. We show that the TLR agonist induced IL-6 counter-regulates effector CD8(+) T-cell responses. IL-6 potently inhibited activation and cytokine production of CD8(+) T cells in vitro. This effect was mediated by a direct stimulation of CD8(+) T cells by IL-6, which induced upregulation of STAT3 phosphorylation and SOCS3 and downregulated STAT4 phosphorylation and T-bet. Moreover, combining TLR stimulation and IL-6 blockade during an acute FV infection resulted in enhanced virus-specific CD8(+) T-cell immunity and better control of viral replication. These results have implications for our understanding of the role of TLR induced pro-inflammatory cytokines in regulating effector T cell responses and for the development of therapeutic strategies to overcome T cell dysfunction in chronic viral infections. PMID:25994622

  17. Bacillus cereus bacteremia and multiple brain abscesses during acute lymphoblastic leukemia induction therapy.

    PubMed

    Hansford, Jordan R; Phillips, Marianne; Cole, Catherine; Francis, Joshua; Blyth, Christopher C; Gottardo, Nicholas G

    2014-04-01

    Bacillus cereus can cause serious infections in immunosuppressed patients. This population may be susceptible to B. cereus pneumonia, bacteremia, cellulitis, and rarely cerebral abscess. Here we report an 8-year-old boy undergoing induction therapy for acute lymphoblastic leukemia who developed multifocal B. cereus cerebral abscesses, highlighting the propensity for B. cereus to develop cerebral abscesses. A review of the literature over the past 25 years identified another 11 cases (3 children and 8 adults) of B. cereus cerebral abscess in patients undergoing cancer therapy. B. cereus cerebral abscesses were associated with a high mortality rate (42%) and significant morbidity. Notably, B. cereus bacteremia with concomitant cerebral abscess was associated with induction chemotherapy for acute leukemia in both children and adults (10 of 12 case reports). Our case report and review of the literature highlights the propensity for B. cereus to develop cerebral abscess(es). Therefore, early consideration for neuroimaging should be given for any neutropenic cancer patient identified with B. cereus bacteremia, in particular those with acute leukemia during induction therapy. PMID:23619116

  18. CXCL9 and CXCL10 accelerate acute transplant rejection mediated by alloreactive memory T cells in a mouse retransplantation model

    PubMed Central

    ZHUANG, JIAWEI; SHAN, ZHONGGUI; MA, TENG; LI, CHUN; QIU, SHUIWEI; ZHOU, XIAOBIAO; LIN, LIANFENG; QI, ZHONGQUAN

    2014-01-01

    C-X-C motif chemokine ligand (CXCL) 9 and CXCL10 play key roles in the initiation and development of acute transplant rejection. Previously, higher levels of RANTES expression and secretion were demonstrated in retransplantation or T-cell memory-transfer models. In the present study, the effect of the chemokines, CXCL9 and CXCL10, were investigated in a mouse retransplantation model. BALB/c mice were used as donors, while C57BL/6 mice were used as recipients. In the experimental groups, a heterotopic heart transplantation was performed six weeks following skin grafting. In the control groups, a heterotopic heart transplantation was performed without skin grafting. Untreated mice served as blank controls. The mean graft survival time of the heterotopic heart transplantations was 7.7 days in the experimental group (n=6), as compared with 3.25 days in the control group (n=6; P<0.001). On day three following cardiac transplantation, histological evaluation of the grafts revealed a higher International Society for Heart & Lung Transplantation grade in the experimental group as compared with the control group. In addition, gene expression and serum concentrations of CXCL9, CXCL10, interferon-γ, and interleukin-2 were markedly higher in the experimental group when compared with the control group. Differences between the levels of CXCL9 and CXCL10 in the pre- and post-transplant mice indicated that the chemokines may serve as possible biomarkers to predict acute rejection. The results of the present study demonstrated that CXCL9 and CXCL10 play a critical role in transplantation and retransplantation. High levels of these cytokines during the pre-transplant period may lead to extensive acute rejection. Thus, the observations enhance the understanding of the mechanism underlying the increased expression and secretion of CXCL9 and CXCL10 by alloreactive memory T cells. PMID:24944628

  19. Lack of variant specific CD8+ T-cell response against mutant and pre-existing variants leads to outgrowth of particular clones in acute hepatitis C

    PubMed Central

    2013-01-01

    Background CTL escape mutations have been described during acute hepatitis C in patients who developed chronic disease later on. Our aim was to investigate the mutual relationship between HCV specific CD8+ T cells and evolution of the viral sequence during early acute HCV infection. Results We sequenced multiple clones of NS3 1406 epitope in 4 HLA-A*02 patients with acute hepatitis C genotype 1b infection. Pentamers specific for the variants were used to monitor the corresponding CD8+ T cell response. We observed outgrowth of mutations, which induced only a weak and thus potentially insufficient CD8+ T cell response. In one patient we observed outgrowth of variant epitopes with similarities to a different genotype rather than de novo mutations most probably due to a lack of responsiveness to these likely pre-existing variants. We could show that in acute hepatitis C CTL escape mutations occur much earlier than demonstrated in previous studies. Conclusions The adaption of the virus to a new host is characterized by a high and rapid variability in epitopes under CD8+ T cell immune pressure. This adaption takes place during the very early phase of acute infection and strikingly some sequences were reduced below the limit of detection at some time points but were detected at high frequency again at later time points. Independent of the observed variability, HCV-specific CD8+ T cell responses decline and no adaption to different or new antigens during the course of infection could be detected. PMID:24073713

  20. CD8 T-cell responses to Wilms tumor gene product WT1 and proteinase 3 in patients with acute myeloid leukemia.

    PubMed

    Scheibenbogen, Carmen; Letsch, Anne; Thiel, Eckhard; Schmittel, Alexander; Mailaender, Volker; Baerwolf, Steffi; Nagorsen, Dirk; Keilholz, Ulrich

    2002-09-15

    Wilms tumor gene product WT1 and proteinase 3 are overexpressed antigens in acute myeloid leukemia (AML), against which cytotoxic T lymphocytes can be elicited in vitro and in murine models. We performed this study to investigate whether WT1- and proteinase 3-specific CD8 T cells spontaneously occur in AML patients. T cells recognizing HLA-A2.1-binding epitopes from WT1 or proteinase 3 could be detected ex vivo in 5 of 15 HLA-A2-positive AML patients by interferon-gamma (IFN-gamma) ELISPOT assay and flow cytometry for intracellular IFN-gamma and in 3 additional patients by flow cytometry only. T cells producing IFN-gamma in response to proteinase 3 were further characterized in one patient by 4-color flow cytometry, identifying them as CD3(+)CD8(+)CD45RA(+) CCR7(-) T cells, resembling cytotoxic effector T cells. In line with this phenotype, most of the WT1- and proteinase-reactive T cells were granzyme B(+). These results provide for the first time evidence for spontaneous T-cell reactivity against defined antigens in AML patients. These data therefore support the immunogenicity of WT1 and proteinase 3 in acute leukemia patients and the potential usefulness of these antigens for leukemia vaccines. PMID:12200377

  1. RUNX1 amplification in lineage conversion of childhood B-cell acute lymphoblastic leukemia to acute myelogenous leukemia.

    PubMed

    Podgornik, Helena; Debeljak, Marusa; Zontar, Darja; Cernelc, Peter; Prestor, Veronika Velensek; Jazbec, Janez

    2007-10-01

    Amplification of RUNX1 (alias AML1) is a recurrent karyotypic abnormality in childhood acute lymphoblastic leukemia (ALL) that is generally associated with a poor outcome. It does not occur with other primary chromosomal abnormalities in acute ALL. AML1 amplification in acute myelogenous leukemia (AML) is a rare secondary event described mainly in therapy-related cases. AML1 amplification was found in a 13-year-old patient with AML M4/M5 leukemia that occurred 5 years after she had been diagnosed with common B-cell ALL. Conventional cytogenetic, fluorescent in situ hybridization (FISH), and polymerase chain reaction methods revealed no other chromosomal change expected to occur in a disease that we assumed to be a secondary leukemia. Due to the lack of cytogenetic data from the diagnostic sample, we developed a new approach to analyze the archived bone marrow smear, which had been stained previously with May-Grünwald-Geimsa by the FISH method. This analysis confirmed that in addition to t(12;21), AML1 amplification and overexpression existed already at the time the diagnosis was made. The chromosomal changes, however, were found in different clones of bone marrow cells. While the first course of chemotherapy successfully eradicated the cell line with the t(12;21), the second cell line with AML1 amplification remained latent during the time of complete remission and reappeared with a different immunophenotype. PMID:17889714

  2. Clofarabine for the treatment of adult acute lymphoid leukemia: the Group for Research on Adult Acute Lymphoblastic Leukemia intergroup.

    PubMed

    Huguet, Françoise; Leguay, Thibaut; Raffoux, Emmanuel; Rousselot, Philippe; Vey, Norbert; Pigneux, Arnaud; Ifrah, Norbert; Dombret, Hervé

    2015-04-01

    Clofarabine, a second-generation purine analog displaying potent inhibition of DNA synthesis and favorable pharmacologic profile, is approved for the treatment of acute lymphoblastic leukemia (ALL) after failure of at least two previous regimens in patients up to 21 years of age at diagnosis. Good neurologic tolerance, synergy with alkylating agents, management guidelines defined through pediatric ALL and adult acute myeloid leukemia, have also prompted its administration in more than 100 adults with Philadelphia chromosome-positive and negative B lineage and T lineage ALL, as single agent (40 mg/m(2)/ day for 5 days), or in combination. In a Group for Research on Adult Acute Lympho- blastic Leukemia (GRAALL) retrospective study of two regimens (clofarabine ± cyclophosphamide + / - etoposide (ENDEVOL) ± mitoxantrone ± asparaginase ± dexamethasone (VANDEVOL)), remission was achieved in 50% of 55 relapsed/refractory patients, and 17-35% could proceed to allogeneic stem cell. Clofarabine warrants further exploration in advanced ALL treatment and bridge-to-transplant. PMID:24996442

  3. Multiple Inhibitory Pathways Contribute to Lung CD8+ T Cell Impairment and Protect against Immunopathology during Acute Viral Respiratory Infection.

    PubMed

    Erickson, John J; Rogers, Meredith C; Tollefson, Sharon J; Boyd, Kelli L; Williams, John V

    2016-07-01

    Viruses are frequent causes of lower respiratory infection (LRI). Programmed cell death-1 (PD-1) signaling contributes to pulmonary CD8(+) T cell (TCD8) functional impairment during acute viral LRI, but the role of TCD8 impairment in viral clearance and immunopathology is unclear. We now find that human metapneumovirus infection induces virus-specific lung TCD8 that fail to produce effector cytokines or degranulate late postinfection, with minimally increased function even in the absence of PD-1 signaling. Impaired lung TCD8 upregulated multiple inhibitory receptors, including PD-1, lymphocyte activation gene 3 (LAG-3), T cell Ig mucin 3, and 2B4. Moreover, coexpression of these receptors continued to increase even after viral clearance, with most virus-specific lung TCD8 expressing three or more inhibitory receptors on day 14 postinfection. Viral infection also increased expression of inhibitory ligands by both airway epithelial cells and APCs, further establishing an inhibitory environment. In vitro Ab blockade revealed that multiple inhibitory receptors contribute to TCD8 impairment induced by either human metapneumovirus or influenza virus infection. In vivo blockade of T cell Ig mucin 3 signaling failed to enhance TCD8 function or reduce viral titers. However, blockade of LAG-3 in PD-1-deficient mice restored TCD8 effector functions but increased lung pathology, indicating that LAG-3 mediates lung TCD8 impairment in vivo and contributes to protection from immunopathology during viral clearance. These results demonstrate that an orchestrated network of pathways modifies lung TCD8 functionality during viral LRI, with PD-1 and LAG-3 serving prominent roles. Lung TCD8 impairment may prevent immunopathology but also contributes to recurrent lung infections. PMID:27259857

  4. Invasive fungal infection caused by geotrichum capitatum in patients with acute lymphoblastic leukemia: a case study and literature review

    PubMed Central

    Gao, Guang-Xun; Tang, Hai-Long; Zhang, Xuan; Xin, Xiao-Li; Feng, Juan; Chen, Xie-Qun

    2015-01-01

    Geotrichum capitatum infection has a very low incidence rate with atypical clinical symptoms, making diagnosis difficult, and it has a poor prognosis. The incidence is even more rare in China. This paper reports the first case of infection caused by G. capitatum during bone marrow suppression after chemotherapy in a Chinese patient with acute lymphoblastic leukemia. In addition, it reports a systematic literature review of diagnosis and treatment. The patient with acute lymphoblastic leukemia was confirmed to be infected with G. capitatum, involving lung, liver and skin, through a blood culture test. Caspofungin, amphotericin B loposome, and a combination therapy of amphotericin B liposome and voriconazole were used in succession for treatment. Despite normal body temperature and a slight improvement of clinical symptoms with the combination therapy treatment, the patient died 40 days after chemotherapy due to heart and lung failure. PMID:26550401

  5. Plasmacytoid Dendritic Cells Die by the CD8 T Cell-Dependent Perforin Pathway during Acute Nonviral Inflammation.

    PubMed

    Mossu, Adrien; Daoui, Anna; Bonnefoy, Francis; Aubergeon, Lucie; Saas, Philippe; Perruche, Sylvain

    2016-09-01

    Regulation of the inflammatory response involves the control of dendritic cell survival. To our knowledge, nothing is known about the survival of plasmacytoid dendritic cells (pDC) in such situation. pDC are specialized in type I IFN (IFN-I) secretion to control viral infections, and IFN-I also negatively regulate pDC survival during the course of viral infections. In this study, we asked about pDC behavior in the setting of virus-free inflammation. We report that pDC survival was profoundly reduced during different nonviral inflammatory situations in the mouse, through a mechanism independent of IFN-I and TLR signaling. Indeed, we demonstrated that during inflammation, CD8(+) T cells induced pDC apoptosis through the perforin pathway. The data suggest, therefore, that pDC have to be turned down during ongoing acute inflammation to not initiate autoimmunity. Manipulating CD8(+) T cell response may therefore represent a new therapeutic opportunity for the treatment of pDC-associated autoimmune diseases, such as lupus or psoriasis. PMID:27448589

  6. CD137 costimulatory T cell receptor engagement reverses acute disease in lupus-prone NZB × NZW F1 mice

    PubMed Central

    Foell, Juergen; Strahotin, Simona; O’Neil, Shawn P.; McCausland, Megan M.; Suwyn, Carolyn; Haber, Michael; Chander, Praveen N.; Bapat, Abhijit S.; Yan, Xiao-Jie; Chiorazzi, Nicholas; Hoffmann, Michael K.; Mittler, Robert S.

    2003-01-01

    Systemic lupus erythematosus (SLE) is a CD4+ T cell–dependent, immune complex–mediated, autoimmune disease that primarily affects women of childbearing age. Generation of high-titer affinity-matured IgG autoantibodies, specific for double-stranded DNA and other nuclear antigens, coincides with disease progression. Current forms of treatment of SLE including glucocorticosteroids are often inadequate and induce severe side effects. Immunological approaches for treating SLE in mice using anti-CD4 mAb’s or CTLA4-Ig and anti-CD154 mAb’s have proven to be effective. However, like steroid treatment, these regimens induce global immunosuppression, and their withdrawal allows for disease progression. In this report we show that lupus-prone NZB × NZW F1 mice given three injections of anti-CD137 (4-1BB) mAb’s between 26 and 35 weeks of age reversed acute disease, blocked chronic disease, and extended the mice’s lifespan from 10 months to more than 2 years. Autoantibody production in recipients was rapidly suppressed without inducing immunosuppression. Successful treatment could be traced to the fact that NZB × NZW F1 mice, regardless of their age or disease status, could not maintain pathogenic IgG autoantibody production in the absence of continuous CD4+ T cell help. Our data support the hypothesis that CD137-mediated signaling anergized CD4+ T cells during priming at the DC interface. PMID:12750400

  7. T cell receptor gamma and delta rearrangements in hematologic malignancies. Relationship to lymphoid differentiation.

    PubMed Central

    Griesinger, F; Greenberg, J M; Kersey, J H

    1989-01-01

    We have studied recombinatorial events of the T cell receptor delta and gamma chain genes in hematopoietic malignancies and related these to normal stages of lymphoid differentiation. T cell receptor delta gene recombinatorial events were found in 91% of acute T cell lymphoblastic leukemia, 68% of non-T, non-B lymphoid precursor acute lymphoblastic leukemia (ALL) and 80% of mixed lineage acute leukemias. Mature B-lineage leukemias and acute nonlymphocytic leukemias retained the T-cell receptor delta gene in the germline configuration. The incidence of T cell receptor gamma and delta was particularly high in CD10+CD19+ non-T, non-B lymphoid precursor ALL. In lymphoid precursor ALL, T cell receptor delta was frequently rearranged while T cell receptor gamma was in the germline configuration. This suggests that TCR delta rearrangements may precede TCR gamma rearrangements in lymphoid ontogeny. In T-ALL, only concordant T cell receptor delta and gamma rearrangements were observed. Several distinct rearrangements were defined using a panel of restriction enzymes. Most of the rearrangements observed in T-ALL represented joining events of J delta 1 to upstream regions. In contrast, the majority of rearrangements in lymphoid precursor ALL most likely represented D-D or V-D rearrangements, which have been found to be early recombinatorial events of the TCR delta locus. We next analyzed TCR delta rearrangements in five CD3+TCR gamma/delta+ ALL and cell lines. One T-ALL, which demonstrated a different staining pattern with monoclonal antibodies against the products of the TCR gamma/delta genes than the PEER cell line, rearranges J delta 1 to a currently unidentified variable region. Images PMID:2547833

  8. ZEB2 drives immature T-cell lymphoblastic leukaemia development via enhanced tumour-initiating potential and IL-7 receptor signalling

    PubMed Central

    Goossens, Steven; Radaelli, Enrico; Blanchet, Odile; Durinck, Kaat; Van der Meulen, Joni; Peirs, Sofie; Taghon, Tom; Tremblay, Cedric S.; Costa, Magdaline; Ghahremani, Morvarid Farhang; De Medts, Jelle; Bartunkova, Sonia; Haigh, Katharina; Schwab, Claire; Farla, Natalie; Pieters, Tim; Matthijssens, Filip; Van Roy, Nadine; Best, J. Adam; Deswarte, Kim; Bogaert, Pieter; Carmichael, Catherine; Rickard, Adam; Suryani, Santi; Bracken, Lauryn S.; Alserihi, Raed; Canté-Barrett, Kirsten; Haenebalcke, Lieven; Clappier, Emmanuelle; Rondou, Pieter; Slowicka, Karolina; Huylebroeck, Danny; Goldrath, Ananda W.; Janzen, Viktor; McCormack, Matthew P.; Lock, Richard B.; Curtis, David J.; Harrison, Christine; Berx, Geert; Speleman, Frank; Meijerink, Jules P. P.; Soulier, Jean; Van Vlierberghe, Pieter; Haigh, Jody J.

    2015-01-01

    Early T-cell precursor leukaemia (ETP-ALL) is a high-risk subtype of human leukaemia that is poorly understood at the molecular level. Here we report translocations targeting the zinc finger E-box-binding transcription factor ZEB2 as a recurrent genetic lesion in immature/ETP-ALL. Using a conditional gain-of-function mouse model, we demonstrate that sustained Zeb2 expression initiates T-cell leukaemia. Moreover, Zeb2-driven mouse leukaemia exhibit some features of the human immature/ETP-ALL gene expression signature, as well as an enhanced leukaemia-initiation potential and activated Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signalling through transcriptional activation of IL7R. This study reveals ZEB2 as an oncogene in the biology of immature/ETP-ALL and paves the way towards pre-clinical studies of novel compounds for the treatment of this aggressive subtype of human T-ALL using our Zeb2-driven mouse model. PMID:25565005

  9. ZEB2 drives immature T-cell lymphoblastic leukaemia development via enhanced tumour-initiating potential and IL-7 receptor signalling.

    PubMed

    Goossens, Steven; Radaelli, Enrico; Blanchet, Odile; Durinck, Kaat; Van der Meulen, Joni; Peirs, Sofie; Taghon, Tom; Tremblay, Cedric S; Costa, Magdaline; Farhang Ghahremani, Morvarid; De Medts, Jelle; Bartunkova, Sonia; Haigh, Katharina; Schwab, Claire; Farla, Natalie; Pieters, Tim; Matthijssens, Filip; Van Roy, Nadine; Best, J Adam; Deswarte, Kim; Bogaert, Pieter; Carmichael, Catherine; Rickard, Adam; Suryani, Santi; Bracken, Lauryn S; Alserihi, Raed; Canté-Barrett, Kirsten; Haenebalcke, Lieven; Clappier, Emmanuelle; Rondou, Pieter; Slowicka, Karolina; Huylebroeck, Danny; Goldrath, Ananda W; Janzen, Viktor; McCormack, Matthew P; Lock, Richard B; Curtis, David J; Harrison, Christine; Berx, Geert; Speleman, Frank; Meijerink, Jules P P; Soulier, Jean; Van Vlierberghe, Pieter; Haigh, Jody J

    2015-01-01

    Early T-cell precursor leukaemia (ETP-ALL) is a high-risk subtype of human leukaemia that is poorly understood at the molecular level. Here we report translocations targeting the zinc finger E-box-binding transcription factor ZEB2 as a recurrent genetic lesion in immature/ETP-ALL. Using a conditional gain-of-function mouse model, we demonstrate that sustained Zeb2 expression initiates T-cell leukaemia. Moreover, Zeb2-driven mouse leukaemia exhibit some features of the human immature/ETP-ALL gene expression signature, as well as an enhanced leukaemia-initiation potential and activated Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signalling through transcriptional activation of IL7R. This study reveals ZEB2 as an oncogene in the biology of immature/ETP-ALL and paves the way towards pre-clinical studies of novel compounds for the treatment of this aggressive subtype of human T-ALL using our Zeb2-driven mouse model. PMID:25565005

  10. REDUCED INTENSITY CONDITIONING REGIMENS FOR ALLOGENEIC TRANSPLANTATION IN CHILDREN WITH ACUTE LYMPHOBLASTIC LEUKEMIA

    PubMed Central

    Verneris, Michael R.; Eapen, Mary; Duerst, Reggie; Carpenter, Paul A.; Burke, Michael J.; Afanasyev, B.V.; Cowan, Morton J.; He, Wensheng; Krance, Robert; Li, Chi-Kong; Tan, Poh-Lin; Wagner, John E.; Davies, Stella M.

    2010-01-01

    Reduced intensity conditioning (RIC) regimens have been used extensively in adults with hematological malignancies. To address whether this is a feasible approach for children with acute lymphoblastic leukemia (ALL), we evaluated transplant outcomes in 38 recipients transplanted from 1995–2005 for whom this was their first transplant. The median age at transplant was 12 years and 47% had performance scores <90%. Disease status was first complete remission (CR) in 13%, ≥CR2 in 60% of patients and 22% had active disease at transplantation. Matched related donors were available for a third of patients and about half of whom received bone marrow (BM) and the others, peripheral blood progenitor cells (PBPC). Sixty percent of unrelated donor transplant recipients received PBPC. The day-100 probability of grade 2–4 acute GVHD was 37% and the 3-year probability of chronic GVHD, 26%. At 3-years, the probability of transplant related mortality was 40%, relapse, 37% and disease-free survival (DFS), 30%. These data indicate long-term DFS can be achieved using RIC regimens in children with ALL. Given the relatively small cohort, these findings must be validated in a larger population. PMID:20302960

  11. Novel Cryptic Rearrangements in Adult B-Cell Precursor Acute Lymphoblastic Leukemia Involving the MLL Gene.

    PubMed

    Othman, Moneeb A K; Grygalewicz, Beata; Pienkowska-Grela, Barbara; Rincic, Martina; Rittscher, Katharina; Melo, Joana B; Carreira, Isabel M; Meyer, Britta; Marzena, Watek; Liehr, Thomas

    2015-05-01

    MLL (mixed-lineage-leukemia) gene rearrangements are typical for acute leukemia and are associated with an aggressive course of disease, with a worse outcome than comparable case, and thus require intensified treatment. Here we describe a 69-year-old female with adult B cell precursor acute lymphoblastic leukemia (BCP-ALL) with hyperleukocytosis and immunophenotype CD10- and CD19+ with cryptic MLL rearrangements. G-banding at the time of diagnosis showed a normal karyotype: 46,XX. Molecular cytogenetics using multitude multicolor banding (mMCB) revealed a complex rearrangement of the two copies of chromosome 11. However, a locus-specific probe additionally identified that the MLL gene at 11q23.3 was disrupted, and that the 5' region was inserted into the chromosomal sub-band 4q21; thus the aberration involved three chromosomes and five break events. Unfortunately, the patient died six months after the initial diagnosis from serious infections and severe complications. Overall, the present findings confirm that, by far not all MLL aberrations are seen by routine chromosome banding techniques and that fluorescence in situ hybridization (FISH) should be regarded as standard tool to access MLL rearrangements in patients with BCP-ALL. PMID:25699572

  12. Successful cord blood transplantation in an adult acute lymphoblastic leukemia patient with congenital heart disease.

    PubMed

    Kowata, Shugo; Fujishima, Yukiteru; Suzuki, Yuzo; Tsukushi, Yasuhiko; Oyake, Tatsuo; Togawa, Ryou; Oyama, Kotaro; Ikai, Akio; Ito, Shigeki; Ishida, Yoji

    2016-08-01

    Recent advances in surgical corrections and supportive care for congenital heart disease have resulted in increasing numbers of adult survivors who may develop hematological malignancies. Treatments including chemotherapy for such patients may cause serious hemodynamic or cardiac complications, especially in those receiving stem cell transplantation. We present a 29-year-old woman with acute lymphoblastic leukemia and congenital heart disease. She had been diagnosed with pulmonary atresia with an intact ventricular septum at birth, and the anomaly was surgically corrected according to the Fontan technique at age 9 years. Her induction chemotherapy required modifications due to poor cardiac status with Fontan circulation. However, after surgical procedures including total cavopulmonary connection and aortic valve replacement at first complete remission, her cardiac status was significantly improved. Subsequently, she underwent cord blood stem cell transplantation at the third complete remission. She required intensive supportive care for circulatory failure as a pre-engraftment immune reaction and stage III acute graft versus host disease of the gut, but recovered from these complications. She was discharged on day 239, and remained in complete remission at 1-year post-transplantation. PMID:27599417

  13. Medical neglect death due to acute lymphoblastic leukaemia: an autopsy case report.

    PubMed

    Usumoto, Yosuke; Sameshima, Naomi; Tsuji, Akiko; Kudo, Keiko; Nishida, Naoki; Ikeda, Noriaki

    2014-12-01

    We report the case of 2-year-old girl who died of precursor B-cell acute lymphoblastic leukaemia (ALL), the most common cancer in children. She had no remarkable medical history. She was transferred to a hospital because of respiratory distress and died 4 hours after arrival. Two weeks before death, she had a fever of 39 degrees C, which subsided after the administration of a naturopathic herbal remedy. She developed jaundice 1 week before death, and her condition worsened on the day of death. Laboratory test results on admission showed a markedly elevated white blood cell count. Accordingly, the cause of death was suspected to be acute leukaemia. Forensic autopsy revealed the cause of death to be precursor B-cell ALL. With advancements in medical technology, the 5-year survival rate of children with ALL is nearly 90%. However, in this case, the deceased's parents preferred complementary and alternative medicine (i.e., naturopathy) to evidence-based medicine and had not taken her to a hospital for a medical check-up or immunisation since she was an infant. Thus, if she had received routine medical care, she would have a more than 60% chance of being alive 5 years after diagnosis. Therefore, we conclude that the parents should be accused of medical neglect regardless of their motives. PMID:25895240

  14. Asparaginase-associated pancreatitis in children with acute lymphoblastic leukaemia in the NOPHO ALL2008 protocol.

    PubMed

    Raja, Raheel A; Schmiegelow, Kjeld; Albertsen, Birgitte K; Prunsild, Kaie; Zeller, Bernward; Vaitkeviciene, Goda; Abrahamsson, Jonas; Heyman, Mats; Taskinen, Mervi; Harila-Saari, Arja; Kanerva, Jukka; Frandsen, Thomas L

    2014-04-01

    L-asparaginase is an important drug in the treatment of childhood acute lymphoblastic leukaemia (ALL). Treatment is associated with several toxicities, including acute pancreatitis. Clinical course, presentation, re-exposure to L-asparginase after pancreatitis and risk of recurrent pancreatitis within an asparaginase-intensive protocol has been poorly reported. Children (1-17 years) on the ongoing Nordic Society of Paediatric Haematology and Oncology (NOPHO) ALL2008 protocol with asparaginase-associated pancreatitis (AAP) diagnosed between 2008 and 2012 were identified through the online NOPHO ALL toxicity registry. NOPHO ALL2008 includes eight or 15 doses of intramuscular pegylated L-asparginase (PEG-asparaginase) 1000 iu/m(2) /dose at 2-6 weeks intervals, with a total of 30 weeks of exposure to PEG-asparaginase (clinicaltrials.gov no: NCT00819351). Of 786 children, 45 were diagnosed with AAP with a cumulative risk of AAP of 5·9%. AAP occurred after a median of five doses (range 1-13), and 11 d (median) from the latest administration of PEG-Asparaginase. Thirteen patients developed pseudocysts (30%) and 11 patients developed necrosis (25%). One patient died from pancreatitis. Twelve AAP patients were re-exposed to L-asparginase, two of whom developed mild AAP once more, after four and six doses respectively. In conclusion, re-exposure to PEG-asparaginase in ALL patients with mild AAP seems safe. PMID:24428625

  15. Hepatosplenic T-Cell Lymphoma: A Clinicopathologic Review With an Emphasis on Diagnostic Differentiation From Other T-Cell/Natural Killer-Cell Neoplasms.

    PubMed

    Shi, Yang; Wang, Endi

    2015-09-01

    Hepatosplenic T-cell lymphoma is a rare, aggressive T-cell lymphoma, characterized by hepatosplenic sinusoidal infiltration of monotonous, medium-sized, nonactivated cytotoxic T cells, usually of γ/δ T-cell receptor type. Hepatosplenic T-cell lymphoma occurs more frequently in immunocompromised patients, especially in those receiving long-term immunosuppressive therapy. Patients usually manifest hepatosplenomegaly without lymphadenopathy. The bone marrow is also involved in two-thirds of cases and is often accompanied by circulating lymphoma cells, which, along with anemia and thrombocytopenia, may raise suspicion for acute leukemia. The differential diagnosis includes aggressive natural killer-cell leukemia, T-large granular lymphocytic leukemia, T-lymphoblastic leukemia, enteropathy-associated T-cell lymphoma type II, primary cutaneous γ/δ T-cell lymphoma, other peripheral T-cell lymphomas, myelodysplastic syndrome, and infectious mononucleosis. The diagnosis is usually established from the combination of clinical findings, histologic features, and immunophenotype, although cytogenetic/molecular studies are occasionally needed. Hepatosplenic T-cell lymphoma exhibits a dismal clinical course with a poor response to currently available therapies. PMID:26317456

  16. Reproducible selection of high avidity CD8+ T-cell clones following secondary acute virus infection

    PubMed Central

    Cukalac, Tania; Chadderton, Jesseka; Handel, Andreas; Doherty, Peter C.; Turner, Stephen J.; Thomas, Paul G.; La Gruta, Nicole L.

    2014-01-01

    The recall of memory CD8+ cytotoxic T lymphocytes (CTLs), elicited by prior virus infection or vaccination, is critical for immune protection. The extent to which this arises as a consequence of stochastic clonal expansion vs. active selection of particular clones remains unclear. Using a parallel adoptive transfer protocol in combination with single cell analysis to define the complementarity determining region (CDR) 3α and CDR3β regions of individual T-cell receptor (TCR) heterodimers, we characterized the antigen-driven recall of the same memory CTL population in three individual recipients. This high-resolution analysis showed reproducible enrichment (or diminution) of particular TCR clonotypes across all challenged animals. These changes in clonal composition were TCRα− and β chain–dependent and were directly related to the avidity of the TCR for the virus-derived peptide (p) + major histocompatibility complex class I molecule. Despite this shift in clonotype representation indicative of differential selection, there was no evidence of overall repertoire narrowing, suggesting a strategy to optimize CTL responses while safeguarding TCR diversity. PMID:24474775

  17. Reproducible selection of high avidity CD8+ T-cell clones following secondary acute virus infection.

    PubMed

    Cukalac, Tania; Chadderton, Jesseka; Handel, Andreas; Doherty, Peter C; Turner, Stephen J; Thomas, Paul G; La Gruta, Nicole L

    2014-01-28

    The recall of memory CD8(+) cytotoxic T lymphocytes (CTLs), elicited by prior virus infection or vaccination, is critical for immune protection. The extent to which this arises as a consequence of stochastic clonal expansion vs. active selection of particular clones remains unclear. Using a parallel adoptive transfer protocol in combination with single cell analysis to define the complementarity determining region (CDR) 3α and CDR3β regions of individual T-cell receptor (TCR) heterodimers, we characterized the antigen-driven recall of the same memory CTL population in three individual recipients. This high-resolution analysis showed reproducible enrichment (or diminution) of particular TCR clonotypes across all challenged animals. These changes in clonal composition were TCRα- and β chain-dependent and were directly related to the avidity of the TCR for the virus-derived peptide (p) + major histocompatibility complex class I molecule. Despite this shift in clonotype representation indicative of differential selection, there was no evidence of overall repertoire narrowing, suggesting a strategy to optimize CTL responses while safeguarding TCR diversity. PMID:24474775

  18. Adhesion- and Degranulation-Promoting Adapter Protein Promotes CD8 T Cell Differentiation and Resident Memory Formation and Function during an Acute Infection.

    PubMed

    Fiege, Jessica K; Beura, Lalit K; Burbach, Brandon J; Shimizu, Yoji

    2016-09-15

    During acute infections, naive Ag-specific CD8 T cells are activated and differentiate into effector T cells, most of which undergo contraction after pathogen clearance. A small population of CD8 T cells persists as memory to protect against future infections. We investigated the role of adhesion- and degranulation-promoting adapter protein (ADAP) in promoting CD8 T cell responses to a systemic infection. Naive Ag-specific CD8 T cells lacking ADAP exhibited a modest expansion defect early after Listeria monocytogenes or vesicular stomatitis virus infection but comparable cytolytic function at the peak of response. However, reduced numbers of ADAP-deficient CD8 T cells were present in the spleen after the peak of the response. ADAP deficiency resulted in a greater frequency of CD127(+) CD8 memory precursors in secondary lymphoid organs during the contraction phase. Reduced numbers of ADAP-deficient killer cell lectin-like receptor G1(-) CD8 resident memory T (TRM) cell precursors were present in a variety of nonlymphoid tissues at the peak of the immune response, and consequently the total numbers of ADAP-deficient TRM cells were reduced at memory time points. TRM cells that did form in the absence of ADAP were defective in effector molecule expression. ADAP-deficient TRM cells exhibited impaired effector function after Ag rechallenge, correlating with defects in their ability to form T cell-APC conjugates. However, ADAP-deficient TRM cells responded to TGF-β signals and recruited circulating memory CD8 T cells. Thus, ADAP regulates CD8 T cell differentiation events following acute pathogen challenge that are critical for the formation and selected functions of TRM cells in nonlymphoid tissues. PMID:27521337

  19. Candidate gene association study in pediatric acute lymphoblastic leukemia evaluated by Bayesian network based Bayesian multilevel analysis of relevance

    PubMed Central

    2012-01-01

    Background We carried out a candidate gene association study in pediatric acute lymphoblastic leukemia (ALL) to identify possible genetic risk factors in a Hungarian population. Methods The results were evaluated with traditional statistical methods and with our newly developed Bayesian network based Bayesian multilevel analysis of relevance (BN-BMLA) method. We collected genomic DNA and clinical data from 543 children, who underwent chemotherapy due to ALL, and 529 healthy controls. Altogether 66 single nucleotide polymorphisms (SNPs) in 19 candidate genes were genotyped. Results With logistic regression, we identified 6 SNPs in the ARID5B and IKZF1 genes associated with increased risk to B-cell ALL, and two SNPs in the STAT3 gene, which decreased the risk to hyperdiploid ALL. Because the associated SNPs were in linkage in each gene, these associations corresponded to one signal per gene. The odds ratio (OR) associated with the tag SNPs were: OR = 1.69, P = 2.22x10-7 for rs4132601 (IKZF1), OR = 1.53, P = 1.95x10-5 for rs10821936 (ARID5B) and OR = 0.64, P = 2.32x10-4 for rs12949918 (STAT3). With the BN-BMLA we confirmed the findings of the frequentist-based method and received additional information about the nature of the relations between the SNPs and the disease. E.g. the rs10821936 in ARID5B and rs17405722 in STAT3 showed a weak interaction, and in case of T-cell lineage sample group, the gender showed a weak interaction with three SNPs in three genes. In the hyperdiploid patient group the BN-BMLA detected a strong interaction among SNPs in the NOTCH1, STAT1, STAT3 and BCL2 genes. Evaluating the survival rate of the patients with ALL, the BN-BMLA showed that besides risk groups and subtypes, genetic variations in the BAX and CEBPA genes might also influence the probability of survival of the patients. Conclusions In the present study we confirmed the roles of genetic variations in ARID5B and IKZF1 in the susceptibility to B-cell ALL

  20. High Throughput Drug Sensitivity Assay and Genomics- Guided Treatment of Patients With Relapsed or Refractory Acute Leukemia

    ClinicalTrials.gov

    2016-05-19

    Acute Leukemia of Ambiguous Lineage; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Refractory Adult Acute Lymphoblastic Leukemia; Refractory Childhood Acute Lymphoblastic Leukemia

  1. Residential Levels of Polybrominated Diphenyl Ethers and Risk of Childhood Acute Lymphoblastic Leukemia in California

    PubMed Central

    Colt, Joanne S.; Deziel, Nicole C.; Whitehead, Todd P.; Reynolds, Peggy; Gunier, Robert B.; Nishioka, Marcia; Dahl, Gary V.; Rappaport, Stephen M.; Buffler, Patricia A.; Metayer, Catherine

    2014-01-01

    Background: House dust is a major source of exposure to polybrominated diphenyl ethers (PBDEs), which are found at high levels in U.S. homes. Methods: We studied 167 acute lymphoblastic leukemia (ALL) cases 0–7 years of age and 214 birth certificate controls matched on date of birth, sex, and race/ethnicity from the Northern California Childhood Leukemia Study. In 2001–2007, we sampled carpets in the room where the child spent the most time while awake; we used a high-volume small-surface sampler or we took dust from the home vacuum. We measured concentrations of 14 PBDE congeners including penta (28, 47, 99, 100, 153, 154), octa (183, 196, 197, 203), and decaBDEs (206–209). Odds ratios (ORs) were calculated using logistic regression, adjusting for demographics, income, year of dust collection, and sampling method. Results: BDE-47, BDE-99, and BDE-209 were found at the highest concentrations (medians, 1,173, 1,579, and 938 ng/g, respectively). Comparing the highest to lowest quartile, we found no association with ALL for summed pentaBDEs (OR = 0.7; 95% CI: 0.4, 1.3), octaBDEs (OR = 1.3; 95% CI: 0.7, 2.3), or decaBDEs (OR = 1.0; 95% CI: 0.6, 1.8). Comparing homes in the highest concentration (nanograms per gram) tertile to those with no detections, we observed significantly increased ALL risk for BDE-196 (OR = 2.1; 95% CI: 1.1, 3.8), BDE-203 (OR = 2.0; 95% CI: 1.1, 3.6), BDE-206 (OR = 2.1; 95% CI: 1.1, 3.9), and BDE-207 (OR = 2.0; 95% CI: 1.03, 3.8). Conclusion: We found no association with ALL for common PBDEs, but we observed positive associations for specific octa and nonaBDEs. Additional studies with repeated sampling and biological measures would be informative. Citation: Ward MH, Colt JS, Deziel NC, Whitehead TP, Reynolds P, Gunier RB, Nishioka M, Dahl GV, Rappaport SM, Buffler PA, Metayer C. 2014. Residential levels of polybrominated diphenyl ethers and risk of childhood acute lymphoblastic leukemia in California. Environ Health Perspect 122:1110–1116

  2. Tanespimycin and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Chronic Myelogenous Leukemia, Chronic Myelomonocytic Leukemia, or Myelodysplastic Syndromes

    ClinicalTrials.gov

    2013-09-27

    Accelerated Phase Chronic Myelogenous Leukemia; Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; Chronic Myelomonocytic Leukemia; de Novo Myelodysplastic Syndromes; Previously Treated Myelodysplastic Syndromes; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Refractory Anemia With Excess Blasts in Transformation; Relapsing Chronic Myelogenous Leukemia; Secondary Acute Myeloid Leukemia; Secondary Myelodysplastic Syndromes

  3. Bacillus cereus septicemia in a patient with acute lymphoblastic leukemia: A case report and review of the literature.

    PubMed

    Chou, Ya-Ling; Cheng, Shin-Nan; Hsieh, Kao-Hsian; Wang, Chih-Chien; Chen, Shyi-Jou; Lo, Wen-Tsung

    2016-06-01

    Bacillus cereus is an aerobic Gram-positive, spore-forming, rod-shaped bacterium that is responsible for foodborne illnesses. We report on a 15-year-old girl with B-cell acute lymphoblastic leukemia, who fell into a somnolent state after presenting with a 12-hour history of fever, muscle soreness, myalgia in both calves, sore throat, and vomiting. Fulminant septicemic syndrome caused by B. cereus was finally identified. The aim of this work is the introduction of B. cereus as a differential diagnosis of sepsis in patients with acute leukemia in induction chemotherapy, to prevent delayed treatment. PMID:23927823

  4. Phase II study of methotrexate, vincristine, pegylated-asparaginase, and dexamethasone (MOpAD) in patients with relapsed/refractory acute lymphoblastic leukemia

    PubMed Central

    Kadia, Tapan M.; Kantarjian, Hagop M.; Thomas, Deborah A.; O’Brien, Susan; Estrov, Zeev; Ravandi, Farhad; Jabbour, Elias; Pemmaraju, Naveen; Daver, Naval; Wang, Xuemei; Jain, Preetesh; Pierce, Sherry; Brandt, Mark; Garcia-Manero, Guillermo; Cortes, Jorge; Borthakur, Gautam

    2015-01-01

    Newer approaches are needed for the treatment of relapsed and refractory acute lymphoblastic leukemia (ALL). Asparaginase-based regimens are active in the treatment of pediatric ALL and may be important in salvage therapy for adult patients. We conducted a pilot trial combining methotrexate, vincristine, PEGylated-asparaginase, and dexamethasone (MOpAD) in adults with relapsed or refractory ALL. We added tyrosine kinase inhibitors in patients with Philadelphia chromosome positive (Ph+) ALL and rituximab in patients with CD20 positive B-cell ALL. Among 37 patients treated (median age 42 years; median 2 prior therapies), the complete remission (CR) rate was 28% and an overall response rate (ORR) was 39%. The median CR duration was 4.3 months. Patients with Ph+ ALL had CR and ORR of 50% and 67%, respectively and the CR and ORR in patients with T-cell leukemia were 45% and 56%, respectively. The median survival in patients with CR/CRp was 10.4 versus 3.4 months in nonresponders (P =0.02). The most common grade 3 or 4 nonhematologic toxicities were elevations in bilirubin and transaminases, nausea, peripheral neuropathy, and hyperglycemia, which were managed with supportive care, dose adjustments, and interruptions. PMID:25368968

  5. MAR binding protein SMAR1 favors IL-10 mediated regulatory T cell function in acute colitis.

    PubMed

    Mirlekar, Bhalchandra; Patil, Sachin; Bopanna, Ramanamurthy; Chattopadhyay, Samit

    2015-08-21

    Treg cells are not only crucial for controlling immune responses to autoantigens but also prevent those directed towards commensal pathogens. Control of effector immune responses by Treg cells depend on their capacity to accumulate at inflammatory site and accordingly accommodate to inflammatory environment. Till date, the factors associated with maintaining these aspects of Treg phenotype is not understood properly. Here we have shown that a known nuclear matrix binding protein SMAR1 is selectively expressed more in colonic Treg cells and is required for their ability to accumulate at inflammatory site and to sustain high levels of Foxp3 and IL-10 expression during acute colitis. Elimination of anti-inflammatory subsets revealed a protective role for IL-10 producing Treg cells in SMAR1(-/-) mice. Moreover, a combined action of Foxp3 and SMAR1 restricts effector cytokine production and enhance the production of IL-10 by colonic Treg cells that controls acute colitis. This data highlights a critical role of SMAR1 in maintaining Treg physiology during inflammatory disorders. PMID:26168735

  6. Dominant CD4-dependent RNA-dependent RNA polymerase-specific T-cell responses in children acutely infected with human enterovirus 71 and healthy adult controls

    PubMed Central

    Dang, Shuangsuo; Gao, Ning; Li, Yaping; Li, Mei; Wang, Xiufang; Jia, Xiaoli; Zhai, Song; Zhang, Xin; Liu, Jingkun; Deng, Huiling; Dong, Tao

    2014-01-01

    Human enterovirus 71 (EV71) is one of the major causes of hand, foot and mouth disease (HFMD), which leads to significant mortality in infected children. A prophylactic vaccine is urgently needed. However, little is known about the protective T-cell immunity in individuals infected with the EV71 virus. In this study, we performed a comprehensive ex vivo interferon-γ ELISPOT analysis in 31 children infected with EV71 as well as in 40 healthy adult controls of the CD4+ and CD8+ T-cell responses to overlapping peptides spanning the VP1 structural protein and RNA-dependent RNA polymerase (RdRp) non-structural protein. EV71-specific CD4 T-cell responses were detected in most of the acute patients and were mostly CD4-dependent RdRp-specific responses. CD8-dependent VP1 and RdRp-specific responses were also detected in a small proportion of recently infected children. There was no significant association between the strength of the T-cell responses and disease severity observed during the acute EV71 infection phase. Interestingly, an RdRp-specific, but no VP1-specific, CD4-dependent T-cell response was detected in 30% of the adult controls, and no T-cell responses were detected in healthy children. In addition, 24 individual peptides containing potential T-cell epitope regions were identified. The data suggest that CD4-dependent RdRp-specific T-cell responses may play an important role in protective immunity, and the epitopes identified in this study should provide valuable information for future therapeutic and prophylactic vaccine design as well as basic research. PMID:24329688

  7. PARC/CCL18 Is a Plasma CC Chemokine with Increased Levels in Childhood Acute Lymphoblastic Leukemia

    PubMed Central

    Struyf, Sofie; Schutyser, Evemie; Gouwy, Mieke; Gijsbers, Klara; Proost, Paul; Benoit, Yves; Opdenakker, Ghislain; Van Damme, Jo; Laureys, Geneviève

    2003-01-01

    Chemokines play an important role in leukocyte mobilization, hematopoiesis, and angiogenesis. Tissue-specific expression of particular chemokines also influences tumor growth and metastasis. Here, the CC chemokine pulmonary and activation-regulated chemokine (PARC)/CCL18 was measured in pediatric patients with acute lymphoblastic leukemia (ALL) or acute myeloid leukemia (AML). Surprisingly, PARC immunoreactivity was consistently detected in plasma from healthy donors. After purification to homogeneity, the presence of intact PARC (1–69) and processed PARC (1–68) in normal human plasma was confirmed by sequence and mass spectrometry analysis. Furthermore, PARC serum levels were significantly increased in children with T-ALL and prepreB-ALL compared to control serum samples, whereas serum levels in AML and preB-ALL patients were not significantly different from controls. In contrast, the hemofiltrate CC chemokine-1 (HCC-1)/CCL14 was not found to be a biomarker in any of these patients’ strata, whereas the cytokine interleukin-6 (IL-6) was significantly decreased in AML and prepreB-ALL. Stimulated leukocytic cell lines or lymphoblasts from patients produced IL-8/CXCL8 or macrophage inflammatory protein-1α (MIP-1α/CCL3) but not PARC, not even after IL-4 or IL-10 treatment. However, PARC was produced by superantigen or IL-4 stimulated monocytes co-cultured with lymphocytes or lymphoblastic cells. Serum PARC levels thus constitute a novel leukemia marker, possibly reflecting tumor/host cell interactions in the circulation. PMID:14578205

  8. MAR binding protein SMAR1 favors IL-10 mediated regulatory T cell function in acute colitis

    SciTech Connect

    Mirlekar, Bhalchandra; Patil, Sachin; Bopanna, Ramanamurthy; Chattopadhyay, Samit

    2015-08-21

    T{sub reg} cells are not only crucial for controlling immune responses to autoantigens but also prevent those directed towards commensal pathogens. Control of effector immune responses by T{sub reg} cells depend on their capacity to accumulate at inflammatory site and accordingly accommodate to inflammatory environment. Till date, the factors associated with maintaining these aspects of T{sub reg} phenotype is not understood properly. Here we have shown that a known nuclear matrix binding protein SMAR1 is selectively expressed more in colonic T{sub reg} cells and is required for their ability to accumulate at inflammatory site and to sustain high levels of Foxp3 and IL-10 expression during acute colitis. Elimination of anti-inflammatory subsets revealed a protective role for IL-10 producing T{sub reg} cells in SMAR1{sup −/−} mice. Moreover, a combined action of Foxp3 and SMAR1 restricts effector cytokine production and enhance the production of IL-10 by colonic T{sub reg} cells that controls acute colitis. This data highlights a critical role of SMAR1 in maintaining T{sub reg} physiology during inflammatory disorders. - Highlights: • SMAR1 is essential to sustain high level of Foxp3 and IL-10 in T{sub reg} cells. • SMAR1{sup −/−} T{sub reg} cells produce pro-inflammatory cytokine IL-17 leads to inflammation. • IL-10 administration can control the inflammation in SMAR1{sup −/−} mice. • Both Foxp3 and SMAR1 maintain T{sub reg} phenotype that controls colitis.