Science.gov

Sample records for acute metabolic effects

  1. Effect of acute heat stress on plant nutrient metabolism proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abrupt heating decreased the levels (per unit total root protein) of all but one of the nutrient metabolism proteins examined, and for most of the proteins, effects were greater for severe vs. moderate heat stress. For many of the nutrient metabolism proteins, initial effects of heat (1 d) were r...

  2. Acute Ozone-Induced Pulmonary and Systemic Metabolic Effects are Diminished in Adrenalectomized Rats#

    EPA Science Inventory

    Acute ozone exposure increases circulating stress hormones and induces metabolic alterations in animals and humans. We hypothesized that the increase of adrenal-derived stress hormones is necessary for both ozone-induced metabolic effects and lung injury. Male Wistar-Kyoto rats ...

  3. Acute Ozone-Induced Pulmonary and Systemic Metabolic Effects are Diminished in Adrenalectomized Rats

    EPA Science Inventory

    Acute ozone exposure increases circulating stress hormones and induces peripheral metabolic alterations in animals and humans. We hypothesized that the increase of adrenal-derived stress hormones is necessary for ozone-induced systemic metabolic effects and lung injury. Male Wis...

  4. Effect of acute thioacetamide administration on rat brain phospholipid metabolism

    SciTech Connect

    Osada, J.; Aylagas, H.; Miro-Obradors, M.J.; Arce, C.; Palacios-Alaiz, E.; Cascales, M. )

    1990-09-01

    Brain phospholipid composition and the ({sup 32}P)orthophosphate incorporation into brain phospholipids of control and rats treated for 3 days with thioacetamide were studied. Brain phospholipid content, phosphatidylcholine, phosphatidylethanolamine, lysolecithin and phosphatidic acid did not show any significant change by the effect of thioacetamide. In contrast, thioacetamide induced a significant decrease in the levels of phosphatidylserine, sphingomyelin, phosphatidylinositol and diphosphatidylglycerol. After 75 minutes of intraperitoneal label injection, specific radioactivity of all the above phospholipids with the exception of phosphatidylethanolamine and phosphatidylcholine significantly increased. After 13 hours of isotope administration the specific radioactivity of almost all studied phospholipid classes was elevated, except for phosphatidic acid, the specific radioactivity of which did not change and for diphosphatidylglycerol which showed a decrease in specific radioactivity. These results suggest that under thioacetamide treatment brain phospholipids undergo metabolic transformations that may contribute to the hepatic encephalopathy induced by thioacetamide.

  5. Acute metabolic effects of ammonia on the enzymes of glutamate metabolism in isolated astroglial cells.

    PubMed

    Subbalakshmi, G Y; Murthy, C R

    1983-01-01

    Enzymes of glutamate metabolism were studied in the astrocytes isolated from rats injected with a large dose of ammonium acetate and compared with those isolated from controls. The activities of glutamate dehydrogenase (GDH) and glutaminase decreased while those of glutamine synthetase (GS) and aspartate aminotransferase (AAT) increased both in convulsive and comatose states. The activity of alanine aminotransferase (A1AT) increased only in convulsive state. The results suggested that glutamate required for the formation of glutamine in astrocytes might have its origin in nerve endings and the depletion of citric acid cycle intermediates might occur in nerve endings at least in acute ammonia toxicity.

  6. Effect of the acute crowding stress on the rat brown adipose tissue metabolic function.

    PubMed

    Djordjevic, Jelena; Cvijic, Gordana; Petrovic, Natasa; Davidovic, Vukosava

    2005-12-01

    Our previous results have shown that metabolic and thermal stressors influence interscapular brown adipose tissue (IBAT) metabolic activity by increasing oxygen consumption and, consequently, altering the toxic reactive oxygen species (ROS) production and the antioxidative system activity. Since there is not enough evidence about the effect of psychosocial stressors on these processes, we studied the effect of acute crowding stress on the IBAT and hypothalamic monoamine oxidase (MAO) activity as well as IBAT antioxidative enzymes, manganese (MnSOD), copper-zinc superoxide dismutase (CuZnSOD) and catalase (CAT), as the relevant indicators of IBAT metabolic alternations under the stress exposure and the returning of animals to control conditions. The results indicated that acute crowding stress did not change the hypothalamic and IBAT MAO activities, the generation of ROS and, consequently, the IBAT CuZnSOD and CAT activities. However, all three antioxidative enzymes were affected only after the recovery period. It seems that peripheral overheating of rats during acute crowding changes the stress nature, by becoming more thermal than psychosocial and by suppression the hypothalamic efferent pathways involved in the IBAT thermogenesis regulation. However, it seems that returning of the animals to the control conditions after the stress termination causes the reactivation of IBAT thermogenesis with tendency to normalise the body temperature.

  7. Acute effects of concentric and eccentric exercise on glucose metabolism and interleukin-6 concentration in healthy males

    PubMed Central

    Krüsmann, PJ; Mersa, L; Eder, EM; Gatterer, H; Melmer, A; Ebenbichler, C; Burtscher, M

    2016-01-01

    Acute muscle-damaging eccentric exercise (EE) negatively affects glucose metabolism. On the other hand, long-term eccentric endurance exercise seems to result in equal or superior positive effects on glucose metabolism compared to concentric endurance exercise. However, it is not known if acute non-muscle-damaging EE will have the same positive effects on glucose metabolism as acute concentric exercise (CE). Interleukin-6 (IL-6) released from the exercising muscles may be involved in the acute adaptations of glucose metabolism after CE and non-muscle-damaging EE. The aim of this study was to assess acute effects of uphill walking (CE) and non-muscle-damaging downhill walking (EE) on glucose metabolism and IL-6 secretion. Seven sedentary non-smoking, healthy males participated in a crossover trial consisting of a 1 h uphill (CE) and a 1 h downhill (EE) walking block on a treadmill. Venous blood samples were drawn before (pre), directly after (acute) and 24 h after (post) exercise. An oral glucose tolerance test (OGTT) was performed before and 24 h after exercise. Glucose tolerance after 1 and 2 hours significantly improved 24 hours after CE (-10.12±3.22%: P=0.039; -13.40±8.24%: P=0.028). After EE only the 1-hour value was improved (-5.03±5.48%: P=0.043). Acute IL-6 concentration rose significantly after CE but not after EE. We conclude that both a single bout of CE and a single bout of non-muscle-damaging EE elicit positive changes in glucose tolerance even in young, healthy subjects. Our experiment indicates that the overall metabolic cost is a major trigger for acute adaptations of glucose tolerance after exercise, but only the IL-6 production during EE was closely related to changes in glycaemic control. PMID:27274108

  8. Effects of acute and chronic systemic methamphetamine on respiratory, cardiovascular and metabolic function, and cardiorespiratory reflexes

    PubMed Central

    Hassan, Sarah F.; Wearne, Travis A.; Cornish, Jennifer L.

    2016-01-01

    Key points Methamphetamine (METH) abuse is escalating worldwide, with the most common cause of death resulting from cardiovascular failure and hyperthermia; however, the underlying physiological mechanisms are poorly understood.Systemic administration of METH in anaesthetised rats reduced the effectiveness of some protective cardiorespiratory reflexes, increased central respiratory activity independently of metabolic function, and increased heart rate, metabolism and respiration in a pattern indicating that non‐shivering thermogenesis contributes to the well‐described hyperthermia.In animals that showed METH‐induced behavioural sensitisation following chronic METH treatment, no changes were evident in baseline cardiovascular, respiratory and metabolic measures and the METH‐evoked effects in these parameters were similar to those seen in saline‐treated or drug naïve animals.Physiological effects evoked by METH were retained but were neither facilitated nor depressed following chronic treatment with METH.These data highlight and identify potential mechanisms for targeted intervention in patients vulnerable to METH overdose. Abstract Methamphetamine (METH) is known to promote cardiovascular failure or life‐threatening hyperthermia; however, there is still limited understanding of the mechanisms responsible for evoking the physiological changes. In this study, we systematically determined the effects on both autonomic and respiratory outflows, as well as reflex function, following acute and repeated administration of METH, which enhances behavioural responses. Arterial pressure, heart rate, phrenic nerve discharge amplitude and frequency, lumbar and splanchnic sympathetic nerve discharge, interscapular brown adipose tissue and core temperatures, and expired CO2 were measured in urethane‐anaesthetised male Sprague‐Dawley rats. Novel findings include potent increases in central inspiratory drive and frequency that are not dependent on METH

  9. Chronic treatment with olanzapine increases adiposity by changing fuel substrate and causes desensitization of the acute metabolic side effects.

    PubMed

    Girault, Elodie M; Guigas, Bruno; Alkemade, Anneke; Foppen, Ewout; Ackermans, Mariëtte T; la Fleur, Susanne E; Fliers, Eric; Kalsbeek, Andries

    2014-02-01

    Atypical antipsychotic drugs such as olanzapine induce weight gain and metabolic changes associated with the development of type 2 diabetes. The mechanisms underlying these metabolic side-effects are unknown at the moment. In this study, we investigated the metabolic changes induced by a chronic treatment, as well as the influence of a preceding chronic treatment on the acute effects of olanzapine on glucose metabolism. The effect of chronic olanzapine treatment (±6.5 mg/kg/day, administered via drinking water) on body weight, locomotor activity, body temperature, fat distribution and energy expenditure was investigated in male rats. After 5 weeks, the animals received an acute olanzapine challenge (intragastric, IG) at 3 mg/kg/h during 160 min to investigate the acute effects of olanzapine on glucose metabolism. Chronic olanzapine-treated animals showed a slight decrease in nocturnal body temperature, and increased perirenal fat pad weights as well as plasma leptin. In addition, chronic olanzapine-treated animals showed hyperinsulinaemia with unchanged blood glucose concentrations. The acute challenge with IG olanzapine elevated blood glucose levels and endogenous glucose production in control animals, but not in chronic olanzapine-pre-treated rats. Chronic olanzapine-treated animals also showed reduced locomotor activity and a higher respiratory exchange ratio. Thus, chronic treatment with olanzapine in rats causes desensitization to its acute effects on glucose metabolism but promotes adiposity probably due to a shift from lipids to carbohydrates as an energy source. Chronic exposure to olanzapine changes body fat distribution and insulin sensitivity in an unfavourable direction, but it is still unclear what the primary mechanism is.

  10. Effects of Acute Exposure to Moderate Altitude on Vascular Function, Metabolism and Systemic Inflammation

    PubMed Central

    Stöwhas, Anne-Christin; Latshang, Tsogyal D.; Lo Cascio, Christian M.; Lautwein, Sina; Stadelmann, Katrin; Tesler, Noemi; Ayers, Lisa; Berneis, Kaspar; Gerber, Philipp A.; Huber, Reto; Achermann, Peter; Bloch, Konrad E.; Kohler, Malcolm

    2013-01-01

    Background Travel to mountain areas is popular. However, the effects of acute exposure to moderate altitude on the cardiovascular system and metabolism are largely unknown. Objectives To investigate the effects of acute exposure to moderate altitude on vascular function, metabolism and systemic inflammation. Methods In 51 healthy male subjects with a mean (SD) age of 26.9 (9.3) years, oxygen saturation, blood pressure, heart rate, arterial stiffness, lipid profiles, low density lipoprotein (LDL) particle size, insulin resistance (HOMA-index), highly-sensitive C-reactive protein and pro-inflammatory cytokines were measured at 490 m (Zurich) and during two days at 2590 m, (Davos Jakobshorn, Switzerland) in randomized order. The largest differences in outcomes between the two altitudes are reported. Results Mean (SD) oxygen saturation was significantly lower at 2590 m, 91.0 (2.0)%, compared to 490 m, 96.0 (1.0)%, p<0.001. Mean blood pressure (mean difference +4.8 mmHg, p<0.001) and heart rate (mean difference +3.3 bpm, p<0.001) were significantly higher at 2590 m, compared to 490 m, but this was not associated with increased arterial stiffness. At 2590 m, lipid profiles improved (median difference triglycerides −0.14 mmol/l, p = 0.012, HDL +0.08 mmol/l, p<0.001, total cholesterol/HDL-ratio −0.25, p = 0.001), LDL particle size increased (median difference +0.45 nm, p = 0.048) and hsCRP decreased (median difference −0.18 mg/l, p = 0.024) compared to 490 m. No significant change in pro-inflammatory cytokines or insulin resistance was observed upon ascent to 2590 m. Conclusions Short-term stay at moderate altitude is associated with increased blood pressure and heart rate likely due to augmented sympathetic activity. Exposure to moderate altitude improves the lipid profile and systemic inflammation, but seems to have no significant effect on glucose metabolism. Trial Registration ClinicalTrials.gov NCT01130948 PMID:23936377

  11. Acute Ozone-Induced Pulmonary and Systemic Metabolic Effects Are Diminished in Adrenalectomized Rats.

    PubMed

    Miller, Desinia B; Snow, Samantha J; Schladweiler, Mette C; Richards, Judy E; Ghio, Andrew J; Ledbetter, Allen D; Kodavanti, Urmila P

    2016-04-01

    Acute ozone exposure increases circulating stress hormones and induces metabolic alterations in animals. We hypothesized that the increase of adrenal-derived stress hormones is necessary for both ozone-induced metabolic effects and lung injury. Male Wistar-Kyoto rats underwent bilateral adrenal demedullation (DEMED), total bilateral adrenalectomy (ADREX), or sham surgery (SHAM). After a 4 day recovery, rats were exposed to air or ozone (1 ppm), 4 h/day for 1 or 2 days and responses assessed immediately postexposure. Circulating adrenaline levels dropped to nearly zero in DEMED and ADREX rats relative to SHAM. Corticosterone tended to be low in DEMED rats and dropped to nearly zero in ADREX rats. Adrenalectomy in air-exposed rats caused modest changes in metabolites and lung toxicity parameters. Ozone-induced hyperglycemia and glucose intolerance were markedly attenuated in DEMED rats with nearly complete reversal in ADREX rats. Ozone increased circulating epinephrine and corticosterone in SHAM but not in DEMED or ADREX rats. Free fatty acids (P = .15) and branched-chain amino acids increased after ozone exposure in SHAM but not in DEMED or ADREX rats. Lung minute volume was not affected by surgery or ozone but ozone-induced labored breathing was less pronounced in ADREX rats. Ozone-induced increases in lung protein leakage and neutrophilic inflammation were markedly reduced in DEMED and ADREX rats (ADREX > DEMED). Ozone-mediated decreases in circulating white blood cells in SHAM were not observed in DEMED and ADREX rats. We demonstrate that ozone-induced peripheral metabolic effects and lung injury/inflammation are mediated through adrenal-derived stress hormones likely via the activation of stress response pathway.

  12. The acute effects of time-of-day-dependent high fat feeding on whole body metabolic flexibility in mice

    PubMed Central

    Joo, J; Cox, C C; Kindred, E D; Lashinger, L M; Young, M E; Bray, M S

    2016-01-01

    Background: Both circadian disruption and timing of feeding have important roles in the development of metabolic disease. Despite growing acceptance that the timing of food consumption has long-term impact on metabolic homeostasis, little is known regarding the immediate influence on whole body metabolism, or the mechanisms involved. We aimed to examine the acute effects of time-of-day-dependent high fat feeding on whole body substrate metabolism and metabolic plasticity, and to determine the potential contribution of the adipocyte circadian clock. Methods: Mice were fed a regimen of 4-h meal at the beginning and end of the dark (waking) cycle, separated by 4 h of fasting. Daily experimental conditions consisted of either an early very high fat or high fat (EVHF or EHF, 60 or 45% kcals from fat, respectively) or late (LVHF or LHF) meal, paired with a low fat (LF, 10% kcals from fat) meal. Metabolic parameters, glucose tolerance, body fat composition and weight were assessed. To determine the role of the adipocyte circadian clock, an aP2-CLOCK mutant (ACM) mouse model was used. Results: Mice in the EVHF or EHF groups showed a 13.2 or 8.84 higher percentage of caloric intake from fat and had a 0.013 or 0.026 lower daily average respiratory exchange ratio, respectively, compared with mice eating the opposite feeding regime. Changes in glucose tolerance, body fat composition and weight were not significant at the end of the 9-day restricted feeding period. ACM mice did not exhibit different metabolic responses to the feeding regimes compared with wild-type littermates. Circadian clock disruption did not influence the short-term response to timed feeding. Conclusions: Both the total fat composition of diet and the timing of fat intake may differentially mediate the effect of timed feeding on substrate metabolism, but may not induce acute changes in metabolic flexibility. PMID:27133618

  13. Effects of Rest Interval Length on Acute Battling Rope Exercise Metabolism.

    PubMed

    Ratamess, Nicholas A; Smith, Charles R; Beller, Noah A; Kang, Jie; Faigenbaum, Avery D; Bush, Jill A

    2015-09-01

    The purpose of this study was to quantify and compare the acute metabolic responses to battling rope (BR) exercise using 2 different rest intervals. Twelve men and 10 women (age = 20.8 ± 1.3 years) performed a control protocol and 2 BR exercise protocols on separate days (48-72 hours) in random order while connected to a metabolic system. The BR protocol consisted of 8 sets of 30-second intervals (15 seconds of single-arm waves and 15 seconds of double-arm waves) using either a 1-minute (1RI) or 2-minute (2RI) rest interval length. A metronome was used to standardize repetition number/frequency for each exercise, that is, 15 waves for each arm for single-arm waves and 15 repetitions of double-arm waves. The mean oxygen consumption (VO2) values for the entire protocol were significantly higher during the 1RI than 2RI protocol, and values in men were 11.1% (1RI) and 13.5% (2RI) higher than women, respectively, and equated to 52.8 ± 5.5% (men) and 50.0 ± 11.2% (women) of VO2max during 1RI and 40.5 ± 4.5% (men) and 37.7 ± 11.0% (women) of VO2max during 2RI. Energy expenditure values were significantly higher during the 1RI than the 2RI protocol in men (11.93 ± 1.4 vs. 8.78 ± 1.4 kcal·min) and women (7.69 ± 1.3 vs. 5.04 ± 1.7 kcal·min) with values in men statistically higher than women. Blood lactate, mean protocol minute ventilation, and heart rate were significantly higher during the 1RI protocol than the 2RI protocol, and these data were significantly higher in men compared with women. These data demonstrate that BR exercise poses a significant cardiovascular and metabolic stimulus with the mean effects augmented with the use of a short rest interval.

  14. Acute and long-term renal and metabolic effects of piretanide in congestive cardiac failure.

    PubMed Central

    McNabb, W R; Noormohamed, F H; Lant, A F

    1988-01-01

    1. The renal and metabolic effects of the sulphamoylbenzoic acid diuretic, piretanide, have been studied, under controlled dietary conditions, in 39 patients with congestive cardiac failure. 2. In acute studies, peak saluresis occurred within 4 h of oral piretanide administration; saluresis was complete within 6 h, after which a significant antidiuretic effect was observed. Addition of triamterene, 50 mg, blunted the 0-6 h kaliuretic effect of piretanide. Over 24 h, piretanide, alone, caused insignificant urinary losses of potassium when compared with control. 3. In comparative studies, the piretanide dose-response curve was found to be parallel to that of frusemide over the dose range studied. The 0-6 h saluretic responses of piretanide, 6, 12 and 18 mg, were found to be equivalent to frusemide, 40, 80 and 120 mg respectively. The collective mean ratios of all the saluretic responses to each dose of piretanide with the corresponding dose of frusemide was observed to be 0.99 +/- 0.12, over 0-6 h period, and 0.86 +/- 0.09 over the 24 h period. The relative potency of piretanide, when compared with frusemide was found to be 6.18 (95% confidence limits 4.87-8.33), over the 0-6 h period, and 4.73 (95% confidence limits 3.65-6.14), over 24 h period. 4. In 15 patients in severe cardiac failure, urinary recovery of piretanide, over first 6 h, at the start of treatment was 21.2 +/- 2.1% while efficiency of the diuretic (mmol Na/mg drug) was 47.3 +/- 4.1. Long-term piretanide therapy was continued in the same group for up to and in some cases over 3 years. No other diuretics or potassium supplements were given. Piretanide dosage ranged from 6 to 24 mg day-1 according to clinical need. Plasma potassium fell significantly at 12 and 24 months, though remaining within the normal range. At these same times, significant elevations in both plasma urate and total fasting cholesterol were observed. Two patients developed overt gout on high dose piretanide therapy (24 mg day-1

  15. The differential effects of acute right- vs. left-sided vestibular failure on brain metabolism.

    PubMed

    Becker-Bense, Sandra; Dieterich, Marianne; Buchholz, Hans-Georg; Bartenstein, Peter; Schreckenberger, Mathias; Brandt, Thomas

    2014-07-01

    The human vestibular system is represented in the brain bilaterally, but it has functional asymmetries, i.e., a dominance of ipsilateral pathways and of the right hemisphere in right-handers. To determine if acute right- or left-sided unilateral vestibular neuritis (VN) is associated with differential patterns of brain metabolism in areas representing the vestibular network and the visual-vestibular interaction, patients with acute VN (right n = 9; left n = 13) underwent resting state (18)F-FDG PET once in the acute phase and once 3 months later after central vestibular compensation. The contrast acute vs. chronic phase showed signal differences in contralateral vestibular areas and the inverse contrast in visual cortex areas, both more pronounced in VN right. In VN left additional regions were found in the cerebellar hemispheres and vermis bilaterally, accentuated in severe cases. In general, signal changes appeared more pronounced in patients with more severe vestibular deficits. Acute phase PET data of patients compared to that of age-matched healthy controls disclosed similarities to these patterns, thus permitting the interpretation that the signal changes in vestibular temporo-parietal areas reflect signal increases, and in visual areas, signal decreases. These data imply that brain activity in the acute phase of right- and left-sided VN exhibits different compensatory patterns, i.e., the dominant ascending input is shifted from the ipsilateral to the contralateral pathways, presumably due to the missing ipsilateral vestibular input. The visual-vestibular interaction patterns were preserved, but were of different prominence in each hemisphere and more pronounced in patients with right-sided failure and more severe vestibular deficits.

  16. Does amifostine reduce metabolic rate? Effect of the drug on gas exchange and acute ventilatory hypoxic response in humans.

    PubMed

    Pandit, Jaideep J; Allen, Caroline; Little, Evelyn; Formenti, Federico; Harris, Adrian L; Robbins, Peter A

    2015-04-16

    Amifostine is added to chemoradiation regimens in the treatment of many cancers on the basis that, by reducing the metabolic rate, it protects normal cells from toxic effects of therapy. We tested this hypothesis by measuring the metabolic rate (by gas exchange) over 255 min in 6 healthy subjects, at two doses (500 mg and 1000 mg) of amifostine infused over 15 min at the start of the protocol. We also assessed the ventilatory response to six 1 min exposures to isocapnic hypoxia mid-protocol. There was no change in metabolic rate with amifostine as measured by oxygen uptake (p = 0.113). However in carbon dioxide output and respiratory quotient, we detected a small decline over time in control and drug protocols, consistent with a gradual change from carbohydrate to fat metabolism over the course of the relatively long study protocol. A novel result was that amifostine (1000 mg) increased the mean ± SD acute hypoxic ventilatory response from 12.4 ± 5.1 L/min to 20.3 ± 11.9 L/min (p = 0.045). In conclusion, any cellular protective effects of amifostine are unlikely due to metabolic effects. The stimulatory effect on hypoxic ventilatory responses may be due to increased levels of hypoxia inducible factor, either peripherally in the carotid body, or centrally in the brain.

  17. Effects of acute lipid overload on skeletal muscle insulin resistance, metabolic flexibility, and mitochondrial performance

    PubMed Central

    Coen, Paul M.; DiStefano, Giovanna; Chacon, Alexander C.; Helbling, Nicole L.; Desimone, Marisa E.; Stafanovic-Racic, Maja; Hames, Kazanna C.; Despines, Alex A.; Toledo, Frederico G. S.; Goodpaster, Bret H.

    2014-01-01

    We hypothesized that acute lipid-induced insulin resistance would be attenuated in high-oxidative muscle of lean trained (LT) endurance athletes due to their enhanced metabolic flexibility and mitochondrial capacity. Lean sedentary (LS), obese sedentary (OS), and LT participants completed two hyperinsulinemic euglycemic clamp studies with and without (glycerol control) the coinfusion of Intralipid. Metabolic flexibility was measured by indirect calorimetry as the oxidation of fatty acids and glucose during fasted and insulin-stimulated conditions, the latter with and without lipid oversupply. Muscle biopsies were obtained for mitochondrial and insulin-signaling studies. During hyperinsulinemia without lipid, glucose infusion rate (GIR) was lowest in OS due to lower rates of nonoxidative glucose disposal (NOGD), whereas state 4 respiration was increased in all groups. Lipid infusion reduced GIR similarly in all subjects and reduced state 4 respiration. However, in LT subjects, fat oxidation was higher with lipid oversupply, and although glucose oxidation was reduced, NOGD was better preserved compared with LS and OS subjects. Mitochondrial performance was positively associated with better NOGD and insulin sensitivity in both conditions. We conclude that enhanced mitochondrial performance with exercise is related to better metabolic flexibility and insulin sensitivity in response to lipid overload. PMID:25352435

  18. Gene polymorphisms in folate metabolizing enzymes in adult acute lymphoblastic leukemia: effects on methotrexate-related toxicity and survival

    PubMed Central

    Ongaro, Alessia; De Mattei, Monica; Della Porta, Matteo Giovanni; Rigolin, GianMatteo; Ambrosio, Cristina; Di Raimondo, Francesco; Pellati, Agnese; Masieri, Federica Francesca; Caruso, Angelo; Catozzi, Linda; Gemmati, Donato

    2009-01-01

    Background The antifolate agent methotrexate is an important component of maintenance therapy in acute lymphoblastic leukemia, although methotrexate-related toxicity is often a reason for interruption of chemotherapy. Prediction of toxicity is difficult because of inter-individual variability susceptibility to antileukemic agents. Methotrexate interferes with folate metabolism leading to depletion of reduced folates. Design and Methods The aim of this study was to investigate the influence of polymorphisms for folate metabolizing enzymes with respect to toxicity and survival in adult patients with acute lymphoblastic leukemia treated with methotrexate maintenance therapy. To this purpose, we evaluated possible associations between genotype and hematologic and non-hematologic toxicity and effects on survival at 2 years of follow-up in patients with acute lymphoblastic leukemia. Results Polymorphisms in the genes encoding for methylenetetrahydrofolate reductase (MTHFR 677C>T) and in dihydrofolate reductase (DHFR 19 bp deletion) significantly increased the risk of hepatotoxicity in single (odds ratio 5.23, 95% confidence interval 1.13–21.95 and odds ratio 4.57, 95% confidence interval 1.01–20.77, respectively) and in combined analysis (odds ratio 6.82, 95% confidence interval 1.38–33.59). MTHFR 677C>T also increased the risk of leukopenia and gastrointestinal toxicity, whilst thymidylate synthase 28 bp repeat polymorphism increased the risk of anemia (odds ratio 8.48, 95% confidence interval 2.00–36.09). Finally, patients with MTHFR 677TT had a decreased overall survival rate (hazard ratio 2.37, 95% confidence interval 1.46–8.45). Conclusions Genotyping of folate polymorphisms might be useful in adult acute lymphoblastic leukemia to optimize methotrexate therapy, reducing the associated toxicity with possible effects on survival. PMID:19648163

  19. Acute porcine renal metabolic effect of endogastric soft drink administration assessed with hyperpolarized [1‐13c]pyruvate

    PubMed Central

    Hansen, Esben Søvsø Szocska; Kjærgaard, Uffe; Bertelsen, Lotte Bonde; Ringgaard, Steffen; Stødkilde‐Jørgensen, Hans

    2015-01-01

    Purpose Our aim was to determine the quantitative reproducibility of metabolic breakdown products in the kidney following intravenous injection of hyperpolarized [1‐13C]pyruvate and secondly to investigate the metabolic effect on the pyruvate metabolism of oral sucrose load using dissolution dynamic nuclear polarization. By this technique, metabolic alterations in several different metabolic related diseases and their metabolic treatment responses can be accessed. Methods In four healthy pigs the lactate‐to‐pyruvate, alanine‐to‐pyruvate and bicarbonate‐to‐pyruvate ratio was measured following administration of regular cola and consecutive injections of hyperpolarized [1‐13C]pyruvate four times within an hour. Results The overall lactate‐to‐pyruvate metabolic profile changed significantly over one hour following an acute sucrose load leading to a significant rise in blood glucose. Conclusion The reproducibility of hyperpolarized magnetic resonance spectroscopy in the healthy pig kidney demonstrated a repeatability of more than 94% for all metabolites and, furthermore, that the pyruvate to lactate conversion and the blood glucose level is elevated following endogastric sucrose administration. Magn Reson Med 74:558–563, 2015. © 2015 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. PMID:26014387

  20. Endocrine, metabolic, and behavioral effects of and recovery from acute stress in a free-ranging bird.

    PubMed

    Deviche, Pierre; Bittner, Stephanie; Davies, Scott; Valle, Shelley; Gao, Sisi; Carpentier, Elodie

    2016-08-01

    Acute stress in vertebrates generally stimulates the hypothalamo-pituitary-adrenal axis and is often associated with multiple metabolic changes, such as increased gluconeogenesis, and with behavioral alterations. Little information is available, especially in free-ranging organisms, on the duration of these reversible effects once animals are no longer exposed to the stressor. To investigate this question, we exposed free-ranging adult male Rufous-winged Sparrows, Peucaea carpalis, in breeding condition to a standard protocol consisting of a social challenge (conspecific song playback) followed with capture and restraint for 30min, after which birds were released on site. Capture and restraint increased plasma corticosterone (CORT) and decreased plasma testosterone (T), glucose (GLU), and uric acid (UA). In birds that we recaptured the next day after exposure to conspecific song playback, plasma CORT and UA levels no longer differed from levels immediately after capture the preceding day. However, plasma T was similar to that measured after stress exposure the preceding day, and plasma GLU was markedly elevated. Thus, exposure to social challenge and acute stress resulted in persistent (⩾24h) parameter-specific effects. In recaptured sparrows, the territorial aggressive response to conspecific song playback, as measured by song rate and the number of flights over the song-broadcasting speakers, did not, however, differ between the first capture and the recapture, suggesting no proximate functional association between plasma T and conspecific territorial aggression. The study is the first in free-ranging birds to report the endocrine, metabolic, and behavioral recovery from the effects of combined social challenge and acute stress.

  1. Exercise-mediated vasodilation in human obesity and metabolic syndrome: effect of acute ascorbic acid infusion.

    PubMed

    Limberg, Jacqueline K; Kellawan, J Mikhail; Harrell, John W; Johansson, Rebecca E; Eldridge, Marlowe W; Proctor, Lester T; Sebranek, Joshua J; Schrage, William G

    2014-09-15

    We tested the hypothesis that infusion of ascorbic acid (AA), a potent antioxidant, would alter vasodilator responses to exercise in human obesity and metabolic syndrome (MetSyn). Forearm blood flow (FBF, Doppler ultrasound) was measured in lean, obese, and MetSyn adults (n = 39, 32 ± 2 yr). A brachial artery catheter was inserted for blood pressure monitoring and local infusion of AA. FBF was measured during dynamic handgrip exercise (15% maximal effort) with and without AA infusion. To account for group differences in blood pressure and forearm size, and to assess vasodilation, forearm vascular conductance (FVC = FBF/mean arterial blood pressure/lean forearm mass) was calculated. We examined the time to achieve steady-state FVC (mean response time, MRT) and the rise in FVC from rest to steady-state exercise (Δ, exercise - rest) before and during acute AA infusion. The MRT (P = 0.26) and steady-state vasodilator responses to exercise (ΔFVC, P = 0.31) were not different between groups. Intra-arterial infusion of AA resulted in a significant increase in plasma total antioxidant capacity (174 ± 37%). AA infusion did not alter MRT or steady-state FVC in any group (P = 0.90 and P = 0.85, respectively). Interestingly, higher levels of C-reactive protein predicted longer MRT (r = 0.52, P < 0.01) and a greater reduction in MRT with AA infusion (r = -0.43, P = 0.02). We concluded that AA infusion during moderate-intensity, rhythmic forearm exercise does not alter the time course or magnitude of exercise-mediated vasodilation in groups of young lean, obese, or MetSyn adults. However, systemic inflammation may limit the MRT to exercise, which can be improved with AA.

  2. Acute effects of walking in forest environments on cardiovascular and metabolic parameters.

    PubMed

    Li, Qing; Otsuka, Toshiaki; Kobayashi, Maiko; Wakayama, Yoko; Inagaki, Hirofumi; Katsumata, Masao; Hirata, Yukiyo; Li, YingJi; Hirata, Kimiko; Shimizu, Takako; Suzuki, Hiroko; Kawada, Tomoyuki; Kagawa, Takahide

    2011-11-01

    We previously found that forest environments reduced stress hormones such as adrenaline and noradrenaline and showed the relaxing effect both in male and female subjects. In the present study, we investigated the effects of walking under forest environments on cardiovascular and metabolic parameters. Sixteen healthy male subjects (mean age 57.4 ± 11.6 years) were selected after obtaining informed consent. The subjects took day trips to a forest park in the suburbs of Tokyo and to an urban area of Tokyo as a control in September 2010. On both trips, they walked for 2 h in the morning and afternoon on a Sunday. Blood and urine were sampled on the morning before each trip and after each trip. Blood pressure was measured on the morning (0800) before each trip, at noon (1300), in the afternoon (1600) during each trip, and on the morning (0800) after each trip. The day trip to the forest park significantly reduced blood pressure and urinary noradrenaline and dopamine levels and significantly increased serum adiponectin and dehydroepiandrosterone sulfate (DHEA-S) levels. Walking exercise also reduced the levels of serum N-terminal pro-B-type natriuretic peptide (NT-proBNP) and urinary dopamine. Taken together, habitual walking in forest environments may lower blood pressure by reducing sympathetic nerve activity and have beneficial effects on blood adiponectin and DHEA-S levels, and habitual walking exercise may have beneficial effects on blood NT-proBNP levels.

  3. Acute but not chronic metabolic acidosis potentiates the acetylcholine-induced reduction in blood pressure: an endothelium-dependent effect.

    PubMed

    Celotto, A C; Ferreira, L G; Capellini, V K; Albuquerque, A A S; Rodrigues, A J; Evora, P R B

    2016-02-01

    Metabolic acidosis has profound effects on vascular tone. This study investigated the in vivo effects of acute metabolic acidosis (AMA) and chronic metabolic acidosis (CMA) on hemodynamic parameters and endothelial function. CMA was induced by ad libitum intake of 1% NH4Cl for 7 days, and AMA was induced by a 3-h infusion of 6 M NH4Cl (1 mL/kg, diluted 1:10). Phenylephrine (Phe) and acetylcholine (Ach) dose-response curves were performed by venous infusion with simultaneous venous and arterial blood pressure monitoring. Plasma nitrite/nitrate (NOx) was measured by chemiluminescence. The CMA group had a blood pH of 7.15±0.03, which was associated with reduced bicarbonate (13.8±0.98 mmol/L) and no change in the partial pressure of arterial carbon dioxide (PaCO2). The AMA group had a pH of 7.20±0.01, which was associated with decreases in bicarbonate (10.8±0.54 mmol/L) and PaCO2 (47.8±2.54 to 23.2±0.74 mmHg) and accompanied by hyperventilation. Phe or ACh infusion did not affect arterial or venous blood pressure in the CMA group. However, the ACh infusion decreased the arterial blood pressure (ΔBP: -28.0±2.35 mm Hg [AMA] to -4.5±2.89 mmHg [control]) in the AMA group. Plasma NOx was normal after CMA but increased after AMA (25.3±0.88 to 31.3±0.54 μM). These results indicate that AMA, but not CMA, potentiated the Ach-induced decrease in blood pressure and led to an increase in plasma NOx, reinforcing the effect of pH imbalance on vascular tone and blood pressure control.

  4. Acute and chronic effects of sprint interval exercise on postprandial lipemia in women at-risk for the metabolic syndrome.

    PubMed

    Freese, Eric C; Gist, Nicholas H; Acitelli, Rachelle M; McConnell, Whitni J; Beck, Catherine D; Hausman, Dorothy B; Murrow, Jonathan R; Cureton, Kirk J; Evans, Ellen M

    2015-04-01

    Individuals diagnosed with the metabolic syndrome (MetS) exhibit elevated postprandial lipemia (PPL). The aims of this investigation were to determine 1) if an acute bout of sprint interval training (SIT) attenuates PPL; and 2) if the attenuation of PPL following 6 wk of SIT is magnified compared with a single session of SIT prior to training in women at-risk for MetS (n = 45; 30-65 yr). Women were randomized to SIT (n = 22) or a nonexercise control (n = 23; CON) for 6 wk. Postprandial responses to a high-fat meal challenge (HFMC) were assessed in the CON group before (B-HFMC) and after (Post-HFMC) without prior exercise and in the SIT group at baseline (B-HFMC) without prior exercise, after an acute bout of SIT (four 30-s all-out sprints with 4-min recovery) prior to (Pre-HFMC), and after the 6-wk intervention (Post-HFMC). Responses to the HFMC were assessed by collecting venous blood samples in the fasted state and at 0, 30, 60, 120, and 180 min postprandial. Compared with baseline, an acute bout of SIT before (Pre-HFMC) and after the 6-wk intervention (Post-HFMC) significantly attenuated fasted TG (P < 0.05; 16.6% and 12.3%, respectively) and postprandial area under the curve (13.1% and 9.7%, respectively; tAUC) TG responses. There was no difference in fasted or tAUC TG responses between Pre-HFMC and Post-HFMC. SIT is an effective mode of exercise to reduce fasted and postprandial TG concentrations in women at-risk for MetS. Six weeks of SIT does not magnify the attenuation of PPL in response to a single session of SIT.

  5. The Acute Effects of Simple Sugar Ingestion on Appetite, Gut-Derived Hormone Response, and Metabolic Markers in Men

    PubMed Central

    Yau, Adora M. W.; McLaughlin, John; Gilmore, William; Maughan, Ronald J.; Evans, Gethin H.

    2017-01-01

    This pilot study aimed to investigate the effect of simple sugar ingestion, in amounts typical of common ingestion, on appetite and the gut-derived hormone response. Seven healthy men ingested water (W) and equicaloric solutions containing 39.6 g glucose monohydrate (G), 36 g fructose (F), 36 g sucrose (S), and 19.8 g glucose monohydrate + 18 g fructose (C), in a randomised order. Serum concentrations of ghrelin, glucose dependent insulinotropic polypeptide (GIP), glucagon like peptide-1 (GLP-1), insulin, lactate, triglycerides, non-esterified fatty acids (NEFA), and d-3 hydroxybutyrate, were measured for 60 min. Appetite was measured using visual analogue scales (VAS). The ingestion of F and S resulted in a lower GIP incremental area under the curve (iAUC) compared to the ingestion of G (p < 0.05). No differences in the iAUC for GLP-1 or ghrelin were present between the trials, nor for insulin between the sugars. No differences in appetite ratings or hepatic metabolism measures were found, except for lactate, which was greater following the ingestion of F, S, and C, when compared to W and G (p < 0.05). The acute ingestion of typical amounts of fructose, in a variety of forms, results in marked differences in circulating GIP and lactate concentration, but no differences in appetite ratings, triglyceride concentration, indicative lipolysis, or NEFA metabolism, when compared to glucose. PMID:28216550

  6. Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming.

    PubMed

    Magozzi, Sarah; Calosi, Piero

    2015-01-01

    Predicting species vulnerability to global warming requires a comprehensive, mechanistic understanding of sublethal and lethal thermal tolerances. To date, however, most studies investigating species physiological responses to increasing temperature have focused on the underlying physiological traits of either acute or chronic tolerance in isolation. Here we propose an integrative, synthetic approach including the investigation of multiple physiological traits (metabolic performance and thermal tolerance), and their plasticity, to provide more accurate and balanced predictions on species and assemblage vulnerability to both acute and chronic effects of global warming. We applied this approach to more accurately elucidate relative species vulnerability to warming within an assemblage of six caridean prawns occurring in the same geographic, hence macroclimatic, region, but living in different thermal habitats. Prawns were exposed to four incubation temperatures (10, 15, 20 and 25 °C) for 7 days, their metabolic rates and upper thermal limits were measured, and plasticity was calculated according to the concept of Reaction Norms, as well as Q10 for metabolism. Compared to species occupying narrower/more stable thermal niches, species inhabiting broader/more variable thermal environments (including the invasive Palaemon macrodactylus) are likely to be less vulnerable to extreme acute thermal events as a result of their higher upper thermal limits. Nevertheless, they may be at greater risk from chronic exposure to warming due to the greater metabolic costs they incur. Indeed, a trade-off between acute and chronic tolerance was apparent in the assemblage investigated. However, the invasive species P. macrodactylus represents an exception to this pattern, showing elevated thermal limits and plasticity of these limits, as well as a high metabolic control. In general, integrating multiple proxies for species physiological acute and chronic responses to increasing

  7. Acute neuromuscular and metabolic responses to combined strength and endurance loadings: the "order effect" in recreationally endurance trained runners.

    PubMed

    Taipale, Ritva S; Schumann, Moritz; Mikkola, Jussi; Nyman, Kai; Kyröläinen, Heikki; Nummela, Ari; Häkkinen, Keijo

    2014-01-01

    The study examined the acute neuromuscular and metabolic responses and recovery (24 and 48 h) to combined strength and endurance sessions (SEs). Recreationally endurance trained men (n = 12) and women (n = 10) performed: endurance running followed immediately by a strength loading (combined endurance and strength session (ES)) and the reverse order (SE). Maximal strength (MVC), countermovement jump height (CMJ), and creatine kinase activity were measured pre-, mid-, post-loading and at 24 and 48 h of recovery. MVC and CMJ were decreased (P < 0.05) at post-ES and SE sessions in men. Only MVC decreased in ES and SE women (P < 0.05). During recovery, no order differences in MVC were observed between sessions in men, but MVC and CMJ remained decreased. During recovery in women, a delayed decrease in CMJ was observed in ES but not in SE (P < 0.01), while MVC returned to baseline at 24 h. Creatine kinase increased (P < 0.05) during both ES and SE and peaked in all groups at 24 h. The present combined ES and SE sessions induced greater neuromuscular fatigue at post in men than in women. The delayed fatigue response in ES women may be an order effect related to muscle damage.

  8. Investigation into the acute effects of total and partial energy restriction on postprandial metabolism among overweight/obese participants.

    PubMed

    Antoni, Rona; Johnston, Kelly L; Collins, Adam L; Robertson, M Denise

    2016-03-28

    The intermittent energy restriction (IER) approach to weight loss involves short periods of substantial (75-100 %) energy restriction (ER) interspersed with normal eating. This study aimed to characterise the early metabolic response to these varying degrees of ER, which occurs acutely and prior to weight loss. Ten (three female) healthy, overweight/obese participants (36 (SEM 5) years; 29·0 (sem 1·1) kg/m2) took part in this acute three-way cross-over study. Participants completed three 1-d dietary interventions in a randomised order with a 1-week washout period: isoenergetic intake, partial 75 % ER and total 100 % ER. Fasting and postprandial (6-h) metabolic responses to a liquid test meal were assessed the following morning via serial blood sampling and indirect calorimetry. Food intake was also recorded for two subsequent days of ad libitum intake. Relative to the isoenergetic control, postprandial glucose responses were increased following total ER (+142 %; P=0·015) and to a lesser extent after partial ER (+76 %; P=0·051). There was also a delay in the glucose time to peak after total ER only (P=0·024). Both total and partial ER interventions produced comparable reductions in postprandial TAG responses (-75 and -59 %, respectively; both P<0·05) and 3-d energy intake deficits of approximately 30 % (both P=0·015). Resting and meal-induced thermogenesis were not significantly affected by either ER intervention. In conclusion, our data demonstrate the ability of substantial ER to acutely alter postprandial glucose-lipid metabolism (with partial ER producing the more favourable overall response), as well as incomplete energy-intake compensation amongst overweight/obese participants. Further investigations are required to establish how metabolism adapts over time to the repeated perturbations experienced during IER, as well as the implications for long-term health.

  9. Effect of acupuncture on rats with acute gouty arthritis inflammation: a metabonomic method for profiling of both urine and plasma metabolic perturbation.

    PubMed

    Wen, Si-Lan; Liu, Yu-Jie; Yin, Hai-Lin; Zhang, Liu; Xiao, Jin; Zhu, Hong-Yuan; Xue, Jin-Tao; Ye, Li-Ming

    2011-01-01

    Acute gouty arthritis is a common inflammation model with multiple pathogenic mechanisms seen in clinical practice, for which acupuncture may potentially be an alternative therapy. To investigate the effect of acupuncture on acute gouty arthritis and search for its mechanism, a metabonomic method was developed in this investigation. Acute gouty arthritis model rats were induced by monosodium urate (MSU) crystals. The urine and plasma samples were collected at several time points and the endogenous metabolites were analyzed by an ultra-performance liquid chromatography coupled with a mass spectrometry (UPLC-MS). Data were analyzed using principal components analysis (PCA) and partial least squares (PLS) analysis to compare metabolic profiles of MSU crystal-induced acute gouty arthritis rats with MSU crystal-induced acute gouty arthritis, treated with acupuncture rats. The results showed that acupuncture could restore the metabolite network that disturbed by MSU administration. Our study indicates that UPLC-MS-based metabonomics can be used as a potential tool for the investigation of biological effect of acupuncture on acute gouty arthritis.

  10. Effects of high-fructose corn syrup and sucrose on the pharmacokinetics of fructose and acute metabolic and hemodynamic responses in healthy subjects.

    PubMed

    Le, Myphuong T; Frye, Reginald F; Rivard, Christopher J; Cheng, Jing; McFann, Kim K; Segal, Mark S; Johnson, Richard J; Johnson, Julie A

    2012-05-01

    It is unclear whether high-fructose corn syrup (HFCS), which contains a higher amount of fructose and provides an immediate source of free fructose, induces greater systemic concentrations of fructose as compared with sucrose. It is also unclear whether exposure to higher levels of fructose leads to increased fructose-induced adverse effects. The objective was to prospectively compare the effects of HFCS- vs sucrose-sweetened soft drinks on acute metabolic and hemodynamic effects. Forty men and women consumed 24 oz of HFCS- or sucrose-sweetened beverages in a randomized crossover design study. Blood and urine samples were collected over 6 hours. Blood pressure, heart rate, fructose, and a variety of other metabolic biomarkers were measured. Fructose area under the curve and maximum concentration, dose-normalized glucose area under the curve and maximum concentration, relative bioavailability of glucose, changes in postprandial concentrations of serum uric acid, and systolic blood pressure maximum levels were higher when HFCS-sweetened beverages were consumed as compared with sucrose-sweetened beverages. Compared with sucrose, HFCS leads to greater fructose systemic exposure and significantly different acute metabolic effects.

  11. PREDICTING THE ACUTE BEHAVIORAL EFFECTS OF TOLUENE INHALED FOR 24 HRS IN RATS: DOSE METRICS, METABOLISM AND BEHAVIORAL TOLERANCE

    EPA Science Inventory

    Purpose: Recent research on the acute effects of volatile organic compounds (VOCs) suggests that extrapolation from short (~ 1 h) to long durations (up to 4 h) is improved by using estimates of brain toluene concentration ( Br[ToI)] instead of cumulative inhaled dose (C x t) as a...

  12. Dietary polyunsaturated fats of the W-6 and W-3 series reduce postprandial lipoprotein levels. Chronic and acute effects of fat saturation on postprandial lipoprotein metabolism.

    PubMed Central

    Weintraub, M S; Zechner, R; Brown, A; Eisenberg, S; Breslow, J L

    1988-01-01

    The chronic and acute effects of different types of dietary fat on postprandial lipoprotein metabolism were studied in eight normolipidemic subjects. Each person was placed for 25 d on each of three isocaloric diets: a saturated fat (SFA), a w-6 polyunsaturated fat (w-6 PUFA) and a w-3 polyunsaturated fat (w-3 PUFA) diet. Two vitamin A-fat loading tests were done on each diet. The concentrations in total plasma and chylomicron (Sf greater than 1,000) and nonchylomicron (Sf less than 1,000) fractions of retinyl palmitate (RP) were measured for 12 h postprandially. Compared with the SFA diet, the w-6 PUFA diet reduced chylomicron and nonchylomicron RP levels 56 and 38%, respectively, and the w-3 PUFA diet reduced these levels 67 and 53%, respectively. On further analysis, the main determinant of postprandial lipoprotein levels was the type of fat that was chronically fed, which appeared to mediate its effect by changing the concentration of the endogenous competitor for the system that catabolizes triglyeride-rich lipoproteins. However, there was a significant effect of the acute dietary fat load, which appeared to be due to a differential susceptibility to lipolysis of chylomicrons produced by SFA as opposed to PUFA fat loads. The levels of postprandial lipoproteins are determined by the interaction of these chronic and acute effects. PMID:3058748

  13. Exogenous Sphingosine-1-Phosphate Boosts Acclimatization in Rats Exposed to Acute Hypobaric Hypoxia: Assessment of Haematological and Metabolic Effects

    PubMed Central

    Chawla, Sonam; Rahar, Babita; Singh, Mrinalini; Bansal, Anju; Saraswat, Deepika; Saxena, Shweta

    2014-01-01

    Background The physiological challenges posed by hypobaric hypoxia warrant exploration of pharmacological entities to improve acclimatization to hypoxia. The present study investigates the preclinical efficacy of sphingosine-1-phosphate (S1P) to improve acclimatization to simulated hypobaric hypoxia. Experimental Approach Efficacy of intravenously administered S1P in improving haematological and metabolic acclimatization was evaluated in rats exposed to simulated acute hypobaric hypoxia (7620m for 6 hours) following S1P pre-treatment for three days. Major Findings Altitude exposure of the control rats caused systemic hypoxia, hypocapnia (plausible sign of hyperventilation) and respiratory alkalosis due to suboptimal renal compensation indicated by an overt alkaline pH of the mixed venous blood. This was associated with pronounced energy deficit in the hepatic tissue along with systemic oxidative stress and inflammation. S1P pre-treatment improved blood oxygen-carrying-capacity by increasing haemoglobin, haematocrit, and RBC count, probably as an outcome of hypoxia inducible factor-1α mediated erythropoiesis and renal S1P receptor 1 mediated haemoconcentation. The improved partial pressure of oxygen in the blood could further restore aerobic respiration and increase ATP content in the hepatic tissue of S1P treated animals. S1P could also protect the animals from hypoxia mediated oxidative stress and inflammation. Conclusion The study findings highlight S1P’s merits as a preconditioning agent for improving acclimatization to acute hypobaric hypoxia exposure. The results may have long term clinical application for improving physiological acclimatization of subjects venturing into high altitude for occupational or recreational purposes. PMID:24887065

  14. Metabolic effects of hypergravity on experimental animals

    NASA Technical Reports Server (NTRS)

    Oyama, J.

    1982-01-01

    Several experiments concerned with the exposure of animals to acute or chronic centrifugation are described. The effects of hypergravity particularly discussed include the decreased growth rate and body weight, increased metabolic rate, skeletal deformation, and loss of body fat.

  15. Identification of HIF-1 signaling pathway in Pelteobagrus vachelli using RNA-Seq: effects of acute hypoxia and reoxygenation on oxygen sensors, respiratory metabolism, and hematology indices.

    PubMed

    Zhang, Guosong; Zhao, Cheng; Wang, Qintao; Gu, Yichun; Li, Zecheng; Tao, Panfeng; Chen, Jiawei; Yin, Shaowu

    2017-03-28

    Oxygen is a vital element in aquatic environments. The concentration of oxygen to which aquatic organisms are exposed is influenced by salinity, water temperature, weather, and surface water runoff. Hypoxia has a serious effect on fish populations, and can lead to the loss of habitat and die-offs. Therefore, in the present study we used next-generation sequencing technology to characterize the transcriptomes of Pelteobagrus vachelli and identified 70 candidate genes in the HIF-1 signaling pathway that are important for the hypoxic response in all metazoan species. For the first time, the present study reported the effects of acute hypoxia and reoxygenation on oxygen sensors, respiratory metabolism, and hematology indices in P. vachelli. The predicted physiological adjustments show that P. vachelli's blood oxygen-carrying capacity was increased through increased RBC, HB, and SI after hypoxia exposure. Glycolysis-related enzyme activities (PFK, HK, and PK) and LDH in the brain and liver also increased, indicating a rise in anaerobic metabolism. The observed reduction in oxidative enzyme level (CS) in the liver during hypoxia suggests a concomitant depression in aerobic metabolism. There were significant increases in oxygen sensor mRNA expression and HIF-1α protein expression during hypoxia and reoxygenation exposure, suggesting that the HIF-1 signaling pathway was activated in the liver and brain of P. vachelli in response to acute hypoxia and reoxygenation. Our findings suggest that oxygen sensors (e.g., HIF-1α) of P. vachelli are potentially useful biomarkers of environmental hypoxic exposure. These data contribute to a better understanding of the molecular mechanisms of the hypoxia signaling pathway in fish under hypoxia and reoxygenation.

  16. Lack of effect of acute enteral arginine infusion on whole-body and intestinal protein metabolism in humans.

    PubMed

    Claeyssens, Sophie; Lecleire, Stéphane; Leblond, Jonathan; Marion, Rachel; Hecketsweiler, Bernadette; Lavoinne, Alain; Ducrotté, Philippe; Déchelotte, Pierre; Coëffier, Moïse

    2007-08-01

    Arginine is a conditionally essential amino acid and exerts anabolic effects. We studied the effects of enteral arginine on whole-body and duodenal protein metabolism. Eight healthy fasted volunteers received randomly a 5-hr enteral infusion of either arginine (Arg; 20 g) or an isonitrogenous amino acid mixture (AA) and an IV infusion of [13C]leucine. Duodenal biopsies were performed. Whole-body protein turnover and duodenal protein synthesis (FSR) were calculated from GC/MS-assessed enrichment. The mRNA levels for major components of proteolytic pathways, ubiquitin, cathepsin D, and m-calpain, were evaluated by RT-PCR. Results were compared using paired Wilcoxon test. Endogenous, oxidative, and nonoxidative leucine fluxes were not different after Arg and AA infusions, respectively. Duodenal mucosal protein FSR (71% +/- 26% vs 81% +/- 30%/day) and mRNA levels of ubiquitin, cathepsin D, and m-calpain were also similar after Arg and AA infusions. We conclude that in healthy subjects, arginine infusion exerts no effect on whole-body and duodenal protein metabolism. Whether arginine might specifically affect these parameters in catabolic or inflammatory situations remains to be determined.

  17. Regulation of oxidative phosphorylation complex activity: effects of tissue-specific metabolic stress within an allometric series and acute changes in workload.

    PubMed

    Phillips, Darci; Covian, Raul; Aponte, Angel M; Glancy, Brian; Taylor, Joni F; Chess, David; Balaban, Robert S

    2012-05-01

    The concentration of mitochondrial oxidative phosphorylation complexes (MOPCs) is tuned to the maximum energy conversion requirements of a given tissue; however, whether the activity of MOPCs is altered in response to acute changes in energy conversion demand is unclear. We hypothesized that MOPCs activity is modulated by tissue metabolic stress to maintain the energy-metabolism homeostasis. Metabolic stress was defined as the observed energy conversion rate/maximum energy conversion rate. The maximum energy conversion rate was assumed to be proportional to the concentration of MOPCs, as determined with optical spectroscopy, gel electrophoresis, and mass spectrometry. The resting metabolic stress of the heart and liver across the range of resting metabolic rates within an allometric series (mouse, rabbit, and pig) was determined from MPOCs content and literature respiratory values. The metabolic stress of the liver was high and nearly constant across the allometric series due to the proportional increase in MOPCs content with resting metabolic rate. In contrast, the MOPCs content of the heart was essentially constant in the allometric series, resulting in an increasing metabolic stress with decreasing animal size. The MOPCs activity was determined in native gels, with an emphasis on Complex V. Extracted MOPCs enzyme activity was proportional to resting metabolic stress across tissues and species. Complex V activity was also shown to be acutely modulated by changes in metabolic stress in the heart, in vivo and in vitro. The modulation of extracted MOPCs activity suggests that persistent posttranslational modifications (PTMs) alter MOPCs activity both chronically and acutely, specifically in the heart. Protein phosphorylation of Complex V was correlated with activity inhibition under several conditions, suggesting that protein phosphorylation may contribute to activity modulation with energy metabolic stress. These data are consistent with the notion that metabolic

  18. Acute effects of calcium carbonate, calcium citrate and potassium citrate on markers of calcium and bone metabolism in young women.

    PubMed

    Karp, Heini J; Ketola, Maarit E; Lamberg-Allardt, Christel J E

    2009-11-01

    Both K and Ca supplementation may have beneficial effects on bone through separate mechanisms. K in the form of citrate or bicarbonate affects bone by neutralising the acid load caused by a high protein intake or a low intake of alkalising foods, i.e. fruits and vegetables. Ca is known to decrease serum parathyroid hormone (S-PTH) concentration and bone resorption. We compared the effects of calcium carbonate, calcium citrate and potassium citrate on markers of Ca and bone metabolism in young women. Twelve healthy women aged 22-30 years were randomised into four controlled 24 h study sessions, each subject serving as her own control. At the beginning of each session, subjects received a single dose of calcium carbonate, calcium citrate, potassium citrate or a placebo in randomised order. The diet during each session was identical, containing 300 mg Ca. Both the calcium carbonate and calcium citrate supplement contained 1000 mg Ca; the potassium citrate supplement contained 2250 mg K. Markers of Ca and bone metabolism were followed. Potassium citrate decreased the bone resorption marker (N-terminal telopeptide of type I collagen) and increased Ca retention relative to the control session. Both Ca supplements decreased S-PTH concentration. Ca supplements also decreased bone resorption relative to the control session, but this was significant only for calcium carbonate. No differences in bone formation marker (bone-specific alkaline phosphatase) were seen among the study sessions. The results suggest that potassium citrate has a positive effect on the resorption marker despite low Ca intake. Both Ca supplements were absorbed well and decreased S-PTH efficiently.

  19. Acute effects of an arginine-based supplement on neuromuscular, ventilatory, and metabolic fatigue thresholds during cycle ergometry.

    PubMed

    Zak, Roksana B; Camic, Clayton L; Hill, Ethan C; Monaghan, Molly M; Kovacs, Attila J; Wright, Glenn A

    2015-04-01

    The purpose of the present study was to examine the effects of an acute dose of an arginine-based supplement on the physical working capacity at the fatigue threshold (PWCFT), lactate threshold (LT), ventilatory threshold (VT), and peak oxygen uptake during incremental cycle ergometry. This study used a double-blinded, placebo-controlled, within-subjects crossover design. Nineteen untrained men (mean age ± SD = 22.0 ± 1.7 years) were randomly assigned to ingest either the supplement (3.0 g of arginine, 300 mg of grape seed extract, and 300 mg of polyethylene glycol) or placebo (microcrystalline cellulose) and performed an incremental test on a cycle ergometer for determination of PWCFT, LT, VT, and peak oxygen uptake. Following a 1-week period, the subjects returned to the laboratory and ingested the opposite substance (either supplement or placebo) prior to completing another incremental test to be reassessed for PWCFT, LT, VT, and peak oxygen uptake. The paired-samples t tests indicated there were significant (P < 0.05) mean differences between the arginine and placebo conditions for the PWCFT (192 ± 42 vs. 168 ± 53 W, respectively) and VT (2546 ± 313 vs. 2452 ± 342 mL·min(-1)), but not the LT (135 ± 26 vs. 138 ± 22 W), absolute peak oxygen uptake (3663 ± 445 vs. 3645 ± 438 mL·min(-1)), or relative peak oxygen uptake (46.5 ± 6.0 vs. 46.2 ± 5.0 mL·kg(-1)·min(-1)). These findings suggested that the arginine-based supplement may be used on an acute basis for delaying the onset of neuromuscular fatigue (i.e., PWCFT) and improving the VT in untrained individuals.

  20. Acute and sustained effects of methylphenidate on cognition and presynaptic dopamine metabolism: an [18F]FDOPA PET study.

    PubMed

    Schabram, Ina; Henkel, Karsten; Mohammadkhani Shali, Siamak; Dietrich, Claudia; Schmaljohann, Jörn; Winz, Oliver; Prinz, Susanne; Rademacher, Lena; Neumaier, Bernd; Felzen, Marc; Kumakura, Yoshitaka; Cumming, Paul; Mottaghy, Felix M; Gründer, Gerhard; Vernaleken, Ingo

    2014-10-29

    Methylphenidate (MPH) inhibits the reuptake of dopamine and noradrenaline. PET studies with MPH challenge show increased competition at postsynaptic D2/3-receptors, thus indirectly revealing presynaptic dopamine release. We used [(18)F]fluorodopamine ([(18)F]FDOPA)-PET in conjunction with the inlet-outlet model (IOM) of Kumakura et al. (2007) to investigate acute and long-term changes in dopamine synthesis capacity and turnover in nigrostriatal fibers of healthy subjects with MPH challenge. Twenty healthy human females underwent two dynamic [(18)F]FDOPA PET scans (124 min; slow bolus-injection; arterial blood sampling), with one scan in untreated baseline condition and the other after MPH administration (0.5 mg/kg, p.o.), in randomized order. Subjects underwent cognitive testing at each PET session. Time activity curves were obtained for ventral putamen and caudate and were analyzed according to the IOM to obtain the regional net-uptake of [(18)F]FDOPA (K; dopamine synthesis capacity) as well as the [(18)F]fluorodopamine washout rate (kloss, index of dopamine turnover). MPH substantially decreased kloss in putamen (-22%; p = 0.003). In the reversed treatment order group (MPH/no drug), K was increased by 18% at no drug follow-up. The magnitude of K at the no drug baseline correlated with cognitive parameters. Furthermore, individual kloss changes correlated with altered cognitive performance under MPH. [(18)F]FDOPA PET in combination with the IOM detects an MPH-evoked decrease in striatal dopamine turnover, in accordance with the known acute pharmacodynamics of MPH. Furthermore, the scan-ordering effect on K suggested that a single MPH challenge persistently increased striatal dopamine synthesis capacity. Attenuation of dopamine turnover by MPH is linked to enhanced cognitive performance in healthy females.

  1. Effects of acute and chronic clozapine on dopamine release and metabolism in the striatum and nucleus accumbens of conscious rats.

    PubMed

    Invernizzi, R; Morali, F; Pozzi, L; Samanin, R

    1990-08-01

    1. The effect of single and repeated (once daily for 23 days) oral doses of 20 and 60 mg kg-1 clozapine on dopamine release and metabolism were studied by intracerebral dialysis in the striatum and nucleus accumbens of conscious rats. 2. The basal output of dopamine, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the striatum and nucleus accumbens of rats given clozapine 20 or 60 mg kg-1 chronically, measured one day after the last drug dose, was not significantly different from that of vehicle-treated animals. 3. Challenge doses of 20 or 60 mg kg-1 clozapine produced similar increases in dopamine levels in the striatum and nucleus accumbens of animals which had received vehicle or clozapine 20 or 60 mg kg-1 once daily for 23 days, except that 1 h after administration 60 mg kg-1 clozapine had a greater effect in the nucleus accumbens. 4. In animals treated chronically with clozapine 20 and 60 mg kg-1 or vehicle, DOPAC levels in the striatum and nucleus accumbens were increased to the same extent by challenge doses of clozapine (20 or 60 mg kg-1). In animals treated chronically with clozapine, a challenge dose of 60 mg kg-1 had significantly greater effect on HVA only in the nucleus accumbens. 5. When DOPAC and HVA were measured post mortem in the striatum and nucleus accumbens 2 h after various oral doses of clozapine, it was found that 10 mg kg-1 significantly increased dopamine metabolites only in the nucleus accumbens whereas 100 mg kg-1 had this effect in both regions. Clozapine, 30mgkg-' significantly raised DOPAC levels in both regions but HVA was elevated only in the nucleus accumbens. 6. There appeared to be no appreciable changes in dopamine release and metabolism nor any reduction in the effect of clozapine in the nucleus accumbens after chronic drug treatment. In fact the effect was greater in chronically treated rats, particularly in the nucleus accumbens of animals given 60mgkg' clozapine. 7. It was confirmed that measurement of

  2. No effect of acute beetroot juice ingestion on oxygen consumption, glucose kinetics, or skeletal muscle metabolism during submaximal exercise in males.

    PubMed

    Betteridge, Scott; Bescós, Raúl; Martorell, Miquel; Pons, Antoni; Garnham, Andrew P; Stathis, Christos C; McConell, Glenn K

    2016-02-15

    Beetroot juice, which is rich in nitrate (NO3 (-)), has been shown in some studies to decrease oxygen consumption (V̇o2) for a given exercise workload, i.e., increasing efficiency and exercise tolerance. Few studies have examined the effect of beetroot juice or nitrate supplementation on exercise metabolism. Eight healthy recreationally active males participated in three trials involving ingestion of either beetroot juice (Beet; ∼8 mmol NO3 (-)), Placebo (nitrate-depleted Beet), or Beet + mouthwash (Beet+MW), all of which were performed in a randomized single-blind crossover design. Two-and-a-half hours later, participants cycled for 60 min on an ergometer at 65% of V̇o2 peak. [6,6-(2)H]glucose was infused to determine glucose kinetics, blood samples obtained throughout exercise, and skeletal muscle biopsies that were obtained pre- and postexercise. Plasma nitrite [NO2 (-)] increased significantly (∼130%) with Beet, and this was attenuated in MW+Beet. Beet and Beet+MW had no significant effect on oxygen consumption, blood glucose, blood lactate, plasma nonesterified fatty acids, or plasma insulin during exercise. Beet and Beet+MW also had no significant effect on the increase in glucose disposal during exercise. In addition, Beet and Beet+MW had no significant effect on the decrease in muscle glycogen and phosphocreatine and the increase in muscle creatine, lactate, and phosphorylated acetyl CoA carboxylase during exercise. In conclusion, at the dose used, acute ingestion of beetroot juice had little effect on skeletal muscle metabolism during exercise.

  3. Acute Effects of Muscarinic M1 Receptor Modulation on AβPP Metabolism and Amyloid-β Levels in vivo: A Microdialysis Study.

    PubMed

    Welt, Tobias; Kulic, Luka; Hoey, Sarah E; McAfoose, Jordan; Späni, Claudia; Chadha, Antonella Santuccione; Fisher, Abraham; Nitsch, Roger M

    2015-01-01

    Indirect modulation of cholinergic activity by cholinesterase inhibition is currently a widely established symptomatic treatment for Alzheimer's disease (AD). Selective activation of certain muscarinic receptor subtypes has emerged as an alternative cholinergic-based amyloid-lowering strategy for AD, as selective muscarinic M1 receptor agonists can reduce amyloid-β (Aβ) production by shifting endoproteolytic amyloid-β protein precursor (AβPP) processing toward non-amyloidogenic pathways. In this study, we addressed the hypothesis that acute stimulation of muscarinic M1 receptors can inhibit Aβ production in awake and freely moving AβPP transgenic mice. By combining intracerebral microdialysis with retrodialysis, we determined hippocampal Aβ concentrations during simultaneous pharmacological modulation of brain M1 receptor function. Infusion with a M1 receptor agonist AF102B resulted in a rapid reduction of interstitial fluid (ISF) Aβ levels while treatment with the M1 antagonist dicyclomine increased ISF Aβ levels reaching significance within 120 minutes of treatment. The reduction in Aβ levels was associated with PKCα and ERK activation resulting in increased levels of the α-secretase ADAM17 and a shift in AβPP processing toward the non-amyloidogenic processing pathway. In contrast, treatment with the M1 receptor antagonist dicyclomine caused a decrease in levels of phosphorylated ERK that was independent of PKCα, and led to an elevation of β-secretase levels associated with increased amyloidogenic AβPP processing. The results of this study demonstrate rapid effects of in vivo M1 receptor modulation on the ISF pool of Aβ and suggest that intracerebral microdialysis with retrodialysis is a useful technical approach for monitoring acute treatment effects of muscarinic receptor modulators on AβPP/Aβ metabolism.

  4. Effect of reducing milk production using a prolactin-release inhibitor or a glucocorticoid on metabolism and immune functions in cows subjected to acute nutritional stress.

    PubMed

    Ollier, S; Beaudoin, F; Vanacker, N; Lacasse, P

    2016-12-01

    When cows are unable to consume enough feed to support milk production, they often fall into severe negative energy balance. This leads to a weakened immune system and increases their susceptibility to infectious diseases. Reducing the milk production of cows subjected to acute nutritional stress decreases their energy deficit. The aim of this study was to compare the effects on metabolism and immune function of reducing milk production using quinagolide (a prolactin-release inhibitor) or dexamethasone in feed-restricted cows. A total of 23 cows in early/mid-lactation were fed for 5 d at 55.9% of their previous dry matter intake to subject them to acute nutritional stress. After 1 d of feed restriction and for 4 d afterward (d 2 to 5), cows received twice-daily i.m. injections of water (control group; n=8), 2mg of quinagolide (QN group; n=7), or water after a first injection of 20mg of dexamethasone (DEX group; n=8). Feed restriction decreased milk production, but the decrease was greater in the QN and DEX cows than in the control cows on d 2 and 3. As expected, feed restriction reduced the energy balance, but the reduction was lower in the QN cows than in the control cows. Feed restriction decreased plasma glucose concentration and increased plasma nonesterified fatty acid (NEFA) and β-hydroxybutyrate (BHB) concentrations. The QN cows had higher glucose concentration and lower BHB concentration than the control cows. The NEFA concentration was also lower in the QN cows than in the control cows on d 2. Dexamethasone injection induced transient hyperglycemia concomitant with a reduction in milk lactose concentration; it also decreased BHB concentration and decreased NEFA initially but increased it later. Feed restriction and quinagolide injections did not affect the blood concentration or activity of polymorphonuclear leukocytes (PMN), whereas dexamethasone injection increased PMN blood concentration but decreased the proportion of PMN capable of inducing oxidative

  5. Acute effects of an oral supplement of (−)-epicatechin on postprandial fat and carbohydrate metabolism in normal and overweight subjects

    PubMed Central

    Gutiérrez-Salmeán, Gabriela; Ortiz-Vilchis, Pilar; Vacaseydel, Claudia M.; Rubio-Gayosso, Ivan; Meaney, Eduardo; Villarreal, Francisco; Ramírez-Sánchez, Israel; Ceballos, Guillermo

    2014-01-01

    Postprandial hyperglycemia, in particular when accompanied by excessive hypertriglyceridemia, is associated with increased cardiovascular risk, mainly in overweight or obese subjects, as it favors oxidative stress, systemic inflammation and endothelial dysfunction. Thus, treatments that favorably modulate metabolism by reducing steep increases in postprandial serum glucose and triglycerides, are of considerable interest. Evidence suggests that (−)-epicatechin (EPI) is responsible for reductions in cardiometabolic risk associated with chocolate consumption these effects may be associated with favorable effects of EPI on postprandial metabolism. The aims of this study were to assess the effects of EPI on postprandial metabolism in normal-weight and overweight/obese subjects. Twenty adult volunteers (normal and overweight) underwent oral metabolic tolerance tests in the absence and presence of oral EPI (1 mg/kg). Metabolic responses were examined using indirect calorimetry and determining blood glucose and triglycerides at 0, 2 and 4 hours after metabolic load ingestion. Results show that EPI increased postprandial lipid catabolism, as evidenced by a significant decrease in the respiratory quotient, which implies an increase in fat oxidation. The effect was associated with significantly lower postprandial plasma glucose and triglycerides concentrations. The effects were more prominent in overweight subjects. In conclusion, EPI modulates postprandial metabolism by enhancing lipid oxidation accompanied by reductions in glycemia and triglyceridemia. PMID:24458104

  6. Acute nutritional ketosis: implications for exercise performance and metabolism.

    PubMed

    Cox, Pete J; Clarke, Kieran

    2014-01-01

    Ketone bodies acetoacetate (AcAc) and D-β-hydroxybutyrate (βHB) may provide an alternative carbon source to fuel exercise when delivered acutely in nutritional form. The metabolic actions of ketone bodies are based on sound evolutionary principles to prolong survival during caloric deprivation. By harnessing the potential of these metabolic actions during exercise, athletic performance could be influenced, providing a useful model for the application of ketosis in therapeutic conditions. This article examines the energetic implications of ketone body utilisation with particular reference to exercise metabolism and substrate energetics.

  7. Acute nutritional ketosis: implications for exercise performance and metabolism

    PubMed Central

    2014-01-01

    Ketone bodies acetoacetate (AcAc) and D-β-hydroxybutyrate (βHB) may provide an alternative carbon source to fuel exercise when delivered acutely in nutritional form. The metabolic actions of ketone bodies are based on sound evolutionary principles to prolong survival during caloric deprivation. By harnessing the potential of these metabolic actions during exercise, athletic performance could be influenced, providing a useful model for the application of ketosis in therapeutic conditions. This article examines the energetic implications of ketone body utilisation with particular reference to exercise metabolism and substrate energetics. PMID:25379174

  8. Acute Ozone-Induced Pulmonary and Systemic Metabolic ...

    EPA Pesticide Factsheets

    Acute ozone exposure increases circulating stress hormones and induces metabolic alterations in animals and humans. We hypothesized that the increase of adrenal-derived stress hormones is necessary for both ozone-induced metabolic effects and lung injury. Male Wistar-Kyoto rats underwent adrenal demedullation (DEMED), total bilateral adrenalectomy (ADREX), or sham surgery (SHAM). After a 4 day recovery, rats were exposed to air or ozone (1ppm), 4h/day for 1 or 2 days. Circulating adrenaline levels dropped to nearly zero in DEMED and ADREX rats relative to air-exposed SHAM. Corticosterone levels tended to be low in DEMED rats and dropped to nearly zero in ADREX rats. Adrenalectomy in air-exposed rats caused modest changes in metabolites and lung toxicity parameters. Ozone-induced hyperglycemia and glucose intolerance were markedly attenuated in DEMED rats with nearly complete reversal in ADREX rats. Ozone increased circulating epinephrine and corticosterone in SHAM but not in DEMED or ADREX rats. Free fatty acids (p=0.15) and branched-chain amino acids increased after ozone exposure in SHAM but not in DEMED or ADREX rats. Lung minute volume was not affected by surgery or ozone but ozone-induced labored breathing was less pronounced in ADREX rats. Ozone-induced increases in lung protein leakage and neutrophilic inflammation were markedly reduced in DEMED and ADREX rats (ADREX>DMED). Ozone-mediated decreases in circulating white blood cells in SHAM were not obser

  9. Acute Ozone-Induced Pulmonary and Systemic Metabolic ...

    EPA Pesticide Factsheets

    Acute ozone exposure increases circulating stress hormones and induces peripheral metabolic alterations in animals and humans. We hypothesized that the increase of adrenal-derived stress hormones is necessary for ozone-induced systemic metabolic effects and lung injury. Male Wistar-Kyoto rats (12 week-old) underwent total bilateral adrenalectomy (ADREX), adrenal demedullation (DEMED) or sham surgery (SHEM). After 4 day recovery, rats were exposed to air or ozone (1ppm), 4h/day for 1 or 2 days. Circulating adrenaline levels dropped to nearly zero in DEMED and ADREX rats relative to air-exposed SHAM. Corticosterone levels tended to be low in DEMED rats and dropped to nearly zero in ADREX rats. Adrenalectomy in air-exposed rats caused modest changes in metabolites and lung toxicity parameters. Ozone-induced hyperglycemia and glucose intolerance were markedly attenuated in DEMED with nearly complete reversal in ADREX rats. Ozone increased circulating epinephrine and corticosterone in SHAM but not in DEMED or ADREX rats. Free fatty acids and branched-chain amino acids tended to increase after ozone exposure in SHAM but not in DEMED or ADREX rats. Lung minute volume was not affected by surgery or ozone but ozone-induced labored breathing was less pronounced in ADREX rats. Ozone-induced increases in lung protein leakage and neutrophilic inflammation were markedly reduced in DEMED and ADREX rats (ADREX>DMED). Ozone-mediated decrease in circulating WBC in SHAM was not

  10. Acute Activation of Metabolic Syndrome Components in Pediatric Acute Lymphoblastic Leukemia Patients Treated with Dexamethasone

    PubMed Central

    Warris, Lidewij T.; van den Akker, Erica L. T.; Bierings, Marc B.; van den Bos, Cor; Zwaan, Christian M.; Sassen, Sebastiaan D. T.; Tissing, Wim J. E.; Veening, Margreet A.; Pieters, Rob; van den Heuvel-Eibrink, Marry M.

    2016-01-01

    Although dexamethasone is highly effective in the treatment of pediatric acute lymphoblastic leukemia (ALL), it can cause serious metabolic side effects. Because studies regarding the effects of dexamethasone are limited by their small scale, we prospectively studied the direct effects of treating pediatric ALL with dexamethasone administration with respect to activation of components of metabolic syndrome (MetS); in addition, we investigated whether these side effects were correlated with the level of dexamethasone. Fifty pediatric patients (3–16 years of age) with ALL were studied during a 5-day dexamethasone course during the maintenance phase of the Dutch Childhood Oncology Group ALL-10 and ALL-11 protocols. Fasting insulin, glucose, total cholesterol, HDL, LDL, and triglycerides levels were measured at baseline (before the start of dexamethasone; T1) and on the fifth day of treatment (T2). Dexamethasone trough levels were measured at T2. We found that dexamethasone treatment significantly increased the following fasting serum levels (P<0.05): HDL, LDL, total cholesterol, triglycerides, glucose, and insulin. In addition, dexamethasone increased insulin resistance (HOMA-IR>3.4) from 8% to 85% (P<0.01). Dexamethasone treatment also significantly increased the diastolic and systolic blood pressure. Lastly, dexamethasone trough levels (N = 24) were directly correlated with high glucose levels at T2, but not with other parameters. These results indicate that dexamethasone treatment acutely induces three components of the MetS. Together with the weight gain typically associated with dexamethasone treatment, these factors may contribute to the higher prevalence of MetS and cardiovascular risk among survivors of childhood leukemia who received dexamethasone treatment. PMID:27362350

  11. Effect of Resveratrol Administration on the Element Metabolism in the Blood and Brain Tissues of Rats Subjected to Acute Swimming Exercise.

    PubMed

    Baltaci, Abdulkerim Kasim; Arslangil, Dilek; Mogulkoc, Rasim; Patlar, Suleyman

    2017-02-01

    The aim of the present study is to examine how resveratrol administration affects the element metabolism in the blood and brain cortex tissues of rats subjected to an acute swimming exercise. The study was carried out on Wistar-Albino-type adult male rats supplied by the Center. Group 1 is the control group. Group 2 is the swimming control group. Group 3 is the resveratrol (10 mg/kg/day) + swimming group. Group 4 is the resveratrol (10 mg/kg/day) group. Blood and brain cortex tissues were analyzed for some elements. The acute swimming exercise led to increases in the rats' serum iron, selenium, lead, cobalt, and boron levels, while the resveratrol-swimming group has increases in copper, phosphorus, and calcium values. The brain cortex tissue of the resveratrol-swimming group had significantly higher molybdenum levels than others. The results obtained in the study indicate that acute swimming exercise altered the distribution of elements in the serum to a considerable extent; however, resveratrol's affect is limited. Especially, resveratrol supplementation may have a regulatory affect on serum iron and magnesium levels.

  12. Extrapolating the Acute Behavioral Effects of Toluene from 1-Hour to 24-Hour Exposures in Rats: Roles of Dose Metric, and Metabolic and Behavioral Tolerance.

    EPA Science Inventory

    Recent research on the acute effects of volatile organic compounds (VQCs) suggests that extrapolation from short (~ 1 h) to long durations (up to 4 h) may be improved by using estimates of brain toluene concentration (Br[Tol]) instead of cumulative inhaled dose (C x t) as a metri...

  13. Metabolic status, gonadotropin secretion, and ovarian function during acute nutrient restriction of beef heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of acute nutritional restriction on metabolic status, gonadotropin secretion, and ovarian function of heifers was determined in 2 experiments. In Exp. 1, 14-mo-old heifers were fed a diet supplying 1.2 × maintenance energy requirements (1.2M). After 10 d, heifers were fed 1.2M or were res...

  14. Glucose metabolism and gene expression in juvenile zebrafish (Danio rerio) challenged with a high carbohydrate diet: effects of an acute glucose stimulus during late embryonic life.

    PubMed

    Rocha, Filipa; Dias, Jorge; Engrola, Sofia; Gavaia, Paulo; Geurden, Inge; Dinis, Maria Teresa; Panserat, Stephane

    2015-02-14

    Knowledge on the role of early nutritional stimuli as triggers of metabolic pathways in fish is extremely scarce. The objective of the present study was to assess the long-term effects of glucose injection in the yolk (early stimulus) on carbohydrate metabolism and gene regulation in zebrafish juveniles challenged with a high-carbohydrate low-protein (HC) diet. Eggs were microinjected at 1 d post-fertilisation (dpf) with either glucose (2 M) or saline solutions. Up to 25 dpf, fish were fed a low-carbohydrate high-protein (LC) control diet, which was followed by a challenge with the HC diet. Survival and growth of 35 dpf juveniles were not affected by injection or the HC diet. Glucose stimulus induced some long-term metabolic changes in the juveniles, as shown by the altered expression of genes involved in glucose metabolism. On glycolysis, the expression levels of hexokinase 1 (HK1) and phosphofructokinase-6 (6PFK) were up-regulated in the visceral and muscle tissues, respectively, of juveniles exposed to the glucose stimulus, indicating a possible improvement in glucose oxidation. On gluconeogenesis, the inhibition of the expression levels of PEPCK in fish injected with glucose suggested lower production of hepatic glucose. Unexpectedly, fructose-1,6-bisphosphatase (FBP) expression was induced and 6PFK expression reduced by glucose stimulus, leaving the possibility of a specific regulation of the FBP-6PFK metabolic cycle. Glucose metabolism in juveniles was estimated using a [¹⁴C]glucose tracer; fish previously exposed to the stimulus showed lower retention of [¹⁴C]glucose in visceral tissue (but not in muscle tissue) and, accordingly, higher glucose catabolism, in comparison with the saline group. Globally, our data suggest that glucose stimulus at embryo stage has the potential to alter particular steps of glucose metabolism in zebrafish juveniles.

  15. METABOLIC EFFECTS OF NON-NUTRITIVE SWEETENERS

    PubMed Central

    Pepino, M. Yanina

    2015-01-01

    Until recently, the general belief was that non-nutritive sweeteners (NNS) were healthy sugar substitutes because they provide sweet taste without calories or glycemic effects. However, data from several epidemiological studies have found that consumption of NNS, mainly in diet sodas, is associated with increased risk to develop obesity, metabolic syndrome, and type 2 diabetes. The main purpose of this article is to review recent scientific evidence supporting potential mechanisms that explain how “metabolically inactive” NNS, which have few, if any, calories, might promote metabolic dysregulation. Three potential mechanisms, which are not mutually exclusive, are presented: 1) NNS interfere with learned responses that contribute to control glucose and energy homeostasis, 2) NNS interfere with gut microbiota and induce glucose intolerance, and 3) NNS interact with sweet-taste receptors expressed throughout the digestive system that play a role in glucose absorption and trigger insulin secretion. In addition, recent findings from our laboratory showing an association between individual taste sensitivity to detect sucralose and sucralose’s acute effects on metabolic response to an oral glucose load are reported. Taken as a whole, data support the notion that NNS have metabolic effects. More research is needed to elucidate the mechanisms by which NNS may drive metabolic dysregulation and better understand potential effects of these commonly used food additives. PMID:26095119

  16. Metabolic effects of non-nutritive sweeteners.

    PubMed

    Pepino, M Yanina

    2015-12-01

    Until recently, the general belief was that non-nutritive sweeteners (NNSs) were healthy sugar substitutes because they provide sweet taste without calories or glycemic effects. However, data from several epidemiological studies have found that consumption of NNSs, mainly in diet sodas, is associated with increased risk to develop obesity, metabolic syndrome, and type 2 diabetes. The main purpose of this article is to review recent scientific evidence supporting potential mechanisms that explain how "metabolically inactive" NNSs, which have few, if any, calories, might promote metabolic dysregulation. Three potential mechanisms, which are not mutually exclusive, are presented: 1) NNSs interfere with learned responses that contribute to control glucose and energy homeostasis, 2) NNSs interfere with gut microbiota and induce glucose intolerance, and 3) NNSs interact with sweet-taste receptors expressed throughout the digestive system that play a role in glucose absorption and trigger insulin secretion. In addition, recent findings from our laboratory showing an association between individual taste sensitivity to detect sucralose and sucralose's acute effects on metabolic response to an oral glucose load are reported. Taken as a whole, data support the notion that NNSs have metabolic effects. More research is needed to elucidate the mechanisms by which NNSs may drive metabolic dysregulation and better understand potential effects of these commonly used food additives.

  17. Metabolic Cost of the Activation of Immune Response in the Fish-Eating Myotis (Myotis vivesi): The Effects of Inflammation and the Acute Phase Response.

    PubMed

    Otálora-Ardila, Aída; Herrera M, L Gerardo; Flores-Martínez, José Juan; Welch, Kenneth C

    2016-01-01

    Inflammation and activation of the acute phase response (APR) are energetically demanding processes that protect against pathogens. Phytohaemagglutinin (PHA) and lipopolysaccharide (LPS) are antigens commonly used to stimulate inflammation and the APR, respectively. We tested the hypothesis that the APR after an LPS challenge was energetically more costly than the inflammatory response after a PHA challenge in the fish-eating Myotis bat (Myotis vivesi). We measured resting metabolic rate (RMR) after bats were administered PHA and LPS. We also measured skin temperature (Tskin) after the LPS challenge and skin swelling after the PHA challenge. Injection of PHA elicited swelling that lasted for several days but changes in RMR and body mass were not significant. LPS injection produced a significant increase in Tskin and in RMR, and significant body mass loss. RMR after LPS injection increased by 140-185% and the total cost of the response was 6.50 kJ. Inflammation was an energetically low-cost process but the APR entailed a significant energetic investment. Examination of APR in other bats suggests that the way in which bats deal with infections might not be uniform.

  18. Metabolic Cost of the Activation of Immune Response in the Fish-Eating Myotis (Myotis vivesi): The Effects of Inflammation and the Acute Phase Response

    PubMed Central

    Otálora-Ardila, Aída; Herrera M., L. Gerardo; Flores-Martínez, José Juan; Welch, Kenneth C.

    2016-01-01

    Inflammation and activation of the acute phase response (APR) are energetically demanding processes that protect against pathogens. Phytohaemagglutinin (PHA) and lipopolysaccharide (LPS) are antigens commonly used to stimulate inflammation and the APR, respectively. We tested the hypothesis that the APR after an LPS challenge was energetically more costly than the inflammatory response after a PHA challenge in the fish-eating Myotis bat (Myotis vivesi). We measured resting metabolic rate (RMR) after bats were administered PHA and LPS. We also measured skin temperature (Tskin) after the LPS challenge and skin swelling after the PHA challenge. Injection of PHA elicited swelling that lasted for several days but changes in RMR and body mass were not significant. LPS injection produced a significant increase in Tskin and in RMR, and significant body mass loss. RMR after LPS injection increased by 140–185% and the total cost of the response was 6.50 kJ. Inflammation was an energetically low-cost process but the APR entailed a significant energetic investment. Examination of APR in other bats suggests that the way in which bats deal with infections might not be uniform. PMID:27792729

  19. [Comparative characteristics of glucose metabolism in the liver of rats under acute alcohol and morphine intoxication].

    PubMed

    Lelevich, S V

    2011-01-01

    The comparative analysis effect of acute alcohol and morphine intoxications on rats on hepatic glycolysis and pentose phosphate pathway was done. The dose-dependent inhibitory effect of ethanol on activity of limiting enzymes of these metabolic ways, as well as anaerobic reorientation of glucose metabolism was recognised with the increase of the dose of the intake alcohol. Morfine (10 mg/kg) activated enymes of glycolysis and pentose phosphate pathway, but in contrast to ethanol it did not influence these parameters at the dose 20 or 40 mg/kg.

  20. Acute hypoxia increases the cerebral metabolic rate – a magnetic resonance imaging study

    PubMed Central

    Lindberg, Ulrich; Aachmann-Andersen, Niels Jacob; Lisbjerg, Kristian; Christensen, Søren Just; Law, Ian; Rasmussen, Peter; Olsen, Niels V; Larsson, Henrik BW

    2015-01-01

    The aim of the present study was to examine changes in cerebral metabolism by magnetic resonance imaging of healthy subjects during inhalation of 10% O2 hypoxic air. Hypoxic exposure elevates cerebral perfusion, but its effect on energy metabolism has been less investigated. Magnetic resonance imaging techniques were used to measure global cerebral blood flow and the venous oxygen saturation in the sagittal sinus. Global cerebral metabolic rate of oxygen was quantified from cerebral blood flow and arteriovenous oxygen saturation difference. Concentrations of lactate, glutamate, N-acetylaspartate, creatine and phosphocreatine were measured in the visual cortex by magnetic resonance spectroscopy. Twenty-three young healthy males were scanned for 60 min during normoxia, followed by 40 min of breathing hypoxic air. Inhalation of hypoxic air resulted in an increase in cerebral blood flow of 15.5% (p = 0.058), and an increase in cerebral metabolic rate of oxygen of 8.5% (p = 0.035). Cerebral lactate concentration increased by 180.3% (p<10-6), glutamate increased by 4.7% (p<10-4) and creatine and phosphocreatine decreased by 15.2% (p<10-3). The N-acetylaspartate concentration was unchanged (p = 0.36). In conclusion, acute hypoxia in healthy subjects increased perfusion and metabolic rate, which could represent an increase in neuronal activity. We conclude that marked changes in brain homeostasis occur in the healthy human brain during exposure to acute hypoxia. PMID:26661163

  1. Dioscin relieves endotoxemia induced acute neuro-inflammation and protect neurogenesis via improving 5-HT metabolism

    PubMed Central

    Yang, Rui; Chen, Wei; Lu, Ye; Li, Yingke; Du, Hongli; Gao, Songyan; Dong, Xin; Yuan, Hongbin

    2017-01-01

    Sepsis, in addition to causing fatality, is an independent risk factor for cognitive impairment among sepsis survivors. The pathologic mechanism of endotoxemia induced acute neuro-inflammation still has not been fully understood. For the first time, we found the disruption of neurotransmitters 5-HT, impaired neurogenesis and activation of astrocytes coupled with concomitant neuro-inflammation were the potential pathogenesis of endotoxemia induced acute neuro-inflammation in sepsis survivors. In addition, dioscin a natural steroidal saponin isolated from Chinese medicinal herbs, enhanced the serotonergic system and produced anti-depressant effect by enhancing 5-HT levels in hippocampus. What is more, this finding was verified by metabolic analyses of hippocampus, indicating 5-HT related metabolic pathway was involved in the pathogenesis of endotoxemia induced acute neuro-inflammation. Moreover, neuro-inflammation and neurogenesis within hippocampus were indexed using quantitative immunofluorescence analysis of GFAP DCX and Ki67, as well as real-time RT-PCR analysis of some gene expression levels in hippocampus. Our in vivo and in vitro studies show dioscin protects hippocampus from endotoxemia induced cascade neuro-inflammation through neurotransmitter 5-HT and HMGB-1/TLR4 signaling pathway, which accounts for the dioscin therapeutic effect in behavioral tests. Therefore, the current findings suggest that dioscin could be a potential approach for the therapy of endotoxemia induced acute neuro-inflammation. PMID:28059131

  2. Metabolic changes in rat urine after acute paraquat poisoning and discriminated by support vector machine.

    PubMed

    Wen, Congcong; Wang, Zhiyi; Zhang, Meiling; Wang, Shuanghu; Geng, Peiwu; Sun, Fa; Chen, Mengchun; Lin, Guanyang; Hu, Lufeng; Ma, Jianshe; Wang, Xianqin

    2016-01-01

    Paraquat is quick-acting and non-selective, killing green plant tissue on contact; it is also toxic to human beings and animals. In this study, we developed a urine metabonomic method by gas chromatography-mass spectrometry to evaluate the effect of acute paraquat poisoning on rats. Pattern recognition analysis, including both partial least squares discriminate analysis and principal component analysis revealed that acute paraquat poisoning induced metabolic perturbations. Compared with the control group, the levels of benzeneacetic acid and hexadecanoic acid of the acute paraquat poisoning group (intragastric administration 36 mg/kg) increased, while the levels of butanedioic acid, pentanedioic acid, altronic acid decreased. Based on these urinary metabolomics data, support vector machine was applied to discriminate the metabolomic change of paraquat groups from the control group, which achieved 100% classification accuracy. In conclusion, metabonomic method combined with support vector machine can be used as a useful diagnostic tool in paraquat-poisoned rats.

  3. Proteomic analysis of Arabidopsis thaliana leaves in response to acute boron deficiency and toxicity reveals effects on photosynthesis, carbohydrate metabolism, and protein synthesis.

    PubMed

    Chen, Mei; Mishra, Sasmita; Heckathorn, Scott A; Frantz, Jonathan M; Krause, Charles

    2014-02-15

    Boron (B) stress (deficiency and toxicity) is common in plants, but as the functions of this essential micronutrient are incompletely understood, so too are the effects of B stress. To investigate mechanisms underlying B stress, we examined protein profiles in leaves of Arabidopsis thaliana plants grown under normal B (30 μM), compared to plants transferred for 60 and 84 h (i.e., before and after initial visible symptoms) in deficient (0 μM) or toxic (3 mM) levels of B. B-responsive polypeptides were sequenced by mass spectrometry, following 2D gel electrophoresis, and 1D gels and immunoblotting were used to confirm the B-responsiveness of some of these proteins. Fourteen B-responsive proteins were identified, including: 9 chloroplast proteins, 6 proteins of photosynthetic/carbohydrate metabolism (rubisco activase, OEC23, photosystem I reaction center subunit II-1, ATPase δ-subunit, glycolate oxidase, fructose bisphosphate aldolase), 6 stress proteins, and 3 proteins involved in protein synthesis (note that the 14 proteins may fall into multiple categories). Most (8) of the B-responsive proteins decreased under both B deficiency and toxicity; only 3 increased with B stress. Boron stress decreased, or had no effect on, 3 of 4 oxidative stress proteins examined, and did not affect total protein. Hence, our results indicate relatively early specific effects of B stress on chloroplasts and protein synthesis.

  4. Acute effect of antidiabetic 1,4-dihydropyridine compound cerebrocrast on cardiac function and glucose metabolism in the isolated, perfused normal rat heart.

    PubMed

    Briede, Janina; Stivrina, Mara; Vigante, Brigita; Stoldere, Dzintra; Duburs, Gunars

    2008-01-01

    Diabetes mellitus (DM) is an important cardiovascular risk factor and is associated with abnormalities in endothelial and vascular smooth muscle cell function, evoked by chronic hyperglycemia and hyperlipidemia. Chronic insulin deficiency or resistance is marked by decreases in the intensity of glucose transport, glucose phosphorylation, and glucose oxidation, plus decreases in ATP levels in cardiac myocytes. It is important to search for new agents that promote glucose consumption in the heart and partially inhibit extensive fatty acid beta-oxidation observed in diabetic, ischemia. When the oxygen supply for myocardium is decreased, the heart accumulates potentially toxic intermediates of fatty acid beta-oxidation, that is, long-chain acylcarnitine and long-chain acyl-CoA metabolites. Exogenous glucose and heart glycogen become an important compensatory source of energy. Therefore we studied the effect of the antidiabetic 1,4-dihydropyridine compound cerebrocrast at concentrations from 10(-10) M to 10(-7) M on isolated rat hearts using the method of Langendorff, on physiological parameters and energy metabolism. Cerebrocrast at concentrations from 10(-10) M to 10(-7) M has a negative inotropic effect on the rat heart. It inhibits L-type Ca(2+)channels thereby diminishing the cellular Ca(2+) supply, reducing contractile activity, and oxygen consumption, that normally favors enhanced glucose uptake, metabolism, and production of high-energy phosphates (ATP content) in myocardium. Cerebrocrast decreases heart rate and left ventricular (LV) systolic pressure; at concentrations of 10(-10) M and 10(-9) M it evokes short-term vasodilatation of coronary arteries. Increase of ATP content in the myocytes induced by cerebrocrast has a ubiquitous role. It can preserve the integrity of the cell plasma membranes, maintain normal cellular function, and inhibit release of lactate dehydrogenase (LDH) from cells that is associated with diabetes and heart ischemia. Administration of

  5. Metabolic effects of renal denervation.

    PubMed

    Thomopoulos, Costas; Spanoudi, Filio; Kyriazis, Ioannis; Anastasopoulos, Ioannis; Ioannidis, Ioannis

    2013-08-01

    In the present review article we address the issue of the potential effect of renal sympathetic denervation (RSD) on metabolic states associated with resistant hypertension. So far, there is an established pathophysiological background denoting that abnormalities in glucose metabolism especially in obese patients and in those with sleep apnea are constantly accompanied by increased sympathetic firing, as assessed by markers of sympathetic activity. Since resistant hypertension is also characterized by enhanced sympathetic activity, it seems logical and biologically plausible, that RSD might favorably influence impaired glucose metabolism, sleep disorders and increased body adiposity beyond BP lowering. Despite the limited evidence from clinical trials, there are promising data suggesting that RSD indeed ameliorates glucose metabolism-related measures in resistant hypertension. Well-designed randomized trials recruiting a larger number of patients with hypertension, and focused on metabolic parameters, may refine the role of RSD as a potential intervention to treat dysmetabolic states associated with hypertension.

  6. The effect of metformin treatment in vivo on acute and long-term energy metabolism and progesterone production in vitro by granulosa cells from women with polycystic ovary syndrome

    PubMed Central

    Maruthini, D.; Harris, S.E.; Barth, J.H.; Balen, A.H.; Campbell, B.K.; Picton, H.M.

    2014-01-01

    enzyme-linked immunosorbent assay. Viable GC number was quantified after 144 h of culture by the vital dye Neutral Red uptake assay. MAIN RESULTS AND THE ROLE OF CHANCE Granulosa cells from women with PCOS pathology revealed reduced pyruvate production and preferential lactate production in addition to their reduced glucose uptake during cultures (P < 0.05). Metformin pretreatment alleviated this metabolic lesion (P < 0.05) and enhanced cell proliferation in vitro (P < 0.05), but cells retained a significantly reduced capacity for progesterone synthesis compared with controls (P < 0.05). LIMITATIONS, REASONS FOR CAUTION Although significant treatment effects were detected in this small cohort, further studies are required to underpin the molecular mechanisms of the effect of metformin on GCs. WIDER IMPLICATIONS OF THE FINDINGS The individual patient culture strategy combined with multifactorial experimental design strengthens the biological interpretation of the data. Collectively, these results support the notion that there is an inherent impairment in progesterone biosynthetic capacity of the GCs from women with PCOS. The positive, acute metabolic effect and the negative long-term steroidogenic effect on GCs following metformin exposure in vivo may have important implications for follicular development and luteinized GC function when the drug is used in clinical practice. STUDY FUNDING/COMPETING INTEREST(S) No competing interests. This work was supported by the UK Medical Research Council Grant Reference number G0800250. PMID:25139174

  7. Metabolic effects of artificial environments

    NASA Technical Reports Server (NTRS)

    Jordan, J. P.

    1973-01-01

    Effects of diluent gases on the metabolism of animals breathing nitrogen-oxygen, argon-oxygen, and helium-oxygen mixtures were studied. Results show that helium actually affected the mean free path of oxygen across the alveoli and increased metabolic rate. It is speculated that it might be necessary to keep an astronaut in a depressed metabolic state during prolonged space flight by using an argon-oxygen or a xenon-nitrogen mixture for breathing. Replacement of the depressant gases during periods requiring critical spacecraft maneuvers by neon-oxygen mixtures would insure maximal performance.

  8. Energetic metabolism during acute stretch-related atrial fibrillation Shortened title: atrial fibrillation and metabolism

    PubMed Central

    Kalifa, J; Maixent, JM; Chalvidan, T; Dalmasso, C; Colin, D; Cozma, D; Laurent, P; Deharo, JC; Djiane, P; Cozzone, P; Bernard, M

    2010-01-01

    Background and methods Perturbations in energetic metabolism and impaired atrial contractility may play an important role in the pathogenesis of atrial fibrillation (AF). Besides, atrial stretch is commonly associated with AF. However, the atrial energetics of stretch-related AF are poorly understood. Here, we measured indicators of energy metabolism during acute-stretch related AF. PCr, adenine nucleotides and derivatives concentrations as well as the activity of the F0F1-ATPase and Na,K-ATPase were obtained after one hour of stretch and/or AF in isolated rabbit hearts and compared to control hearts without stretch and AF. Results After one hour of stretch-related AF, the total adenine nucleotides pool was significantly lower (42.2±2.6 versus 63.7±8.3 µmol/g protein in control group, p<0.05) and the PCr/ATP ratio significantly higher (2.3±0.3 vs 1.1± 0.1 in control group p<0.05), because of ATP, ADP and AMP decrease and PCr increase. The sum of high energy phosphate compounds did not change. There were no significant differences in F0F1-ATPase nor Na,K-ATPase activity between the groups. Conclusions Results show that in this experimental model, acute-stretch related AF induces specific modifications of atrial myocytes energetics that may play a pivotal role in the perpetuation of the arrhythmia. PMID:18553177

  9. Metabolic effects of CO2 anaesthesia in Drosophila melanogaster

    PubMed Central

    Colinet, H.; Renault, D.

    2012-01-01

    Immobilization of insects is necessary for various experimental purposes, and CO2 exposure remains the most popular anaesthetic method in entomological research. A number of negative side effects of CO2 anaesthesia have been reported, but CO2 probably brings about metabolic modifications that are poorly known. In this work, we used GC/MS-based metabolic fingerprinting to assess the effect of CO2 anaesthesia in Drosophila melanogaster adults. We analysed metabolic variation of flies submitted to acute CO2 exposure and assessed the temporal metabolic changes during short- and long-term recovery. We found that D. melanogaster metabotypes were significantly affected by the anaesthetic treatment. Metabolic changes caused by acute CO2 exposure were still manifested after 14 h of recovery. However, we found no evidence of metabolic alterations when a long recovery period was allowed (more than 24 h). This study points to some metabolic pathways altered during CO2 anaesthesia (e.g. energetic metabolism). Evidence of short-term metabolic changes indicates that CO2 anaesthesia should be used with utmost caution in physiological studies when a short recovery is allowed. In spite of this, CO2 treatment seems to be an acceptable anaesthetic method provided that a long recovery period is allowed (more than 24 h). PMID:22915627

  10. Metabolic responses to the acute ingestion of two commercially available carbonated beverages: A pilot study

    PubMed Central

    Mendel, Ron W; Hofheins, Jennifer E

    2007-01-01

    Background The purpose of this placebo-controlled, double-blind cross-over study was to compare the effects of two commercially available soft drinks on metabolic rate. Methods After giving informed consent, twenty healthy men and women were randomly assigned to ingest 12 ounces of Celsius™ and, on a separate day, 12 ounces of Diet Coke®. All subjects completed both trials using a randomized, counterbalanced design. Metabolic rate (via indirect calorimetry) and substrate oxidation (via respiratory exchange ratio) were measured at baseline (pre-ingestion) and at the end of each hour for 3 hours post-ingestion. Results Two-way ANOVA revealed a significant interaction (p < 0.001) between trials in metabolic rate. Scheffe post-hoc testing indicated that metabolic rate increased by 13.8% (+ 0.6 L/min, p < 0.001) 1 hr post, 14.4% (+0.63 L/min, p < 0.001) 2 hr post, and 8.5% (+0.37 L/min, p < 0.004) 3 hr post Celsius™ ingestion. In contrast, small (~4–6%) but statistically insignificant increases in metabolic rate were noted following Diet Coke® ingestion. No differences in respiratory exchange ratio were noted between trials. Conclusion These preliminary findings indicate Celsius™ has thermogenic properties when ingested acutely. The effects of repeated, chronic ingestion of Celsius™ on body composition are unknown at this time. PMID:17908290

  11. Modulation of the metabolic response to vaccination in naive beef steers using an acute versus chronic stress model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Available energy plays a critical role in the initiation and maintenance of an immune response to a pathogen a process that is further altered by activation of stress system. This study was designed to determine the effect of an acute versus chronic stress model on the metabolic response to vaccinat...

  12. Maternal and offspring xenobiotic metabolism haplotypes and the risk of childhood acute lymphoblastic leukemia

    PubMed Central

    Nousome, Darryl; Lupo, Philip J.; Okcu, M. Fatih; Scheurer, Michael E.

    2013-01-01

    Discovering genetic predictors of childhood acute lymphoblastic leukemia (ALL) necessitates the evaluation of novel factors including maternal genetic effects, which are a proxy for the intrauterine environment, and robust epidemiologic study designs. Therefore, we evaluated five maternal and offspring xenobiotic metabolism haplotypes and the risk of childhood ALL among 120 case-parent triads. Two of the five haplotypes were significantly associated with risk: GSTM3/GSTM4 (P=0.01) and GSTP1 (P=0.02). The EPHX1 haplotype was marginally associated with risk (P=0.05), whereas haplotypes in CYP1B1 and GSTA4 were not. Our results suggest genetic variation in xenobiotic metabolism is important in childhood ALL etiology. PMID:23433810

  13. Acute metabolic response to fasted and postprandial exercise

    PubMed Central

    de Lima, Filipe Dinato; Correia, Ana Luiza Matias; Teixeira, Denilson da Silva; da Silva Neto, Domingos Vasco; Fernandes, Ítalo Sávio Gonçalves; Viana, Mário Boratto Xavier; Petitto, Mateus; da Silva Sampaio, Rodney Antônio; Chaves, Sandro Nobre; Alves, Simone Teixeira; Dantas, Renata Aparecida Elias; Mota, Márcio Rabelo

    2015-01-01

    The aim of this study was to analyze the acute metabolic response to exercise in fasting and postprandial. For this, ten individuals were submitted to an incremental treadmill test, with an initial speed of 5 and 1 km/h increments every minute, with no inclination, and a body composition assessment. After this 1st day, all volunteers were submitted to two experimental procedures (fasting and postprandial), with an aerobic exercise performed for 36 minutes at 65% of maximal oxygen consumption. At postprandial procedure, all subjects ingested a breakfast containing 59.3 g of carbohydrate (76.73%), 9.97 g of protein (12.90%), 8.01 g of lipids (10.37%), with a total energy intake of 349.17 kcal. An analysis of plasma concentration of triglycerides, lactate, and glucose was performed in two stages: before and after exercise. The Shapiro–Wilk test was used to verify the normality of the data. For analysis of glucose concentration, plasma lactate, and triglycerides, we used a repeated measures analysis of variance factorial 2×2, with Bonferroni multiple comparison test. The significance level of P<0.05 was adopted. The results indicated a maintenance level of glucose at fasting and a decrease in glucose concentration at postprandial exercise. Both conditions increase plasma lactate. Triglycerides also increased in the two experimental conditions; however, after exercise fasting, the increase was significantly higher than in the postprandial exercise. These data suggest that both exercises could increase plasma lactate and triglycerides. However, exercise performed in fasting condition decreases glucose concentration and increases triglycerides, even more than postprandial exercise. PMID:26316800

  14. Pharmacological Effects of Niacin on Acute Hyperlipemia.

    PubMed

    la Paz, Sergio Montserrat-de; Bermudez, Beatriz; Naranjo, M Carmen; Lopez, Sergio; Abia, Rocio; Muriana, Francisco J G

    2016-01-01

    The well-known changes in modern lifestyle habits including over nutrition and physical inactivity have led to striking adverse effects on public health (e.g., obesity, diabetes, and metabolic syndrome) over recent decades. One noticeable consequence is exaggerated and prolonged state of postprandial hyperlipemia due to the ingestion of multiple fat-enriched meals during the course of a day. Postprandial (non-fasting) hyperlipemia is characterized by increased blood levels of exogenous triglycerides (TG) in the form of apolipoprotein (apo) B48-containing TG-rich lipoproteins (TRL), which have a causal role in the pathogenesis and progression of cardiovascular disease (CVD). The cardiovascular benefits of lifestyle modification (healthy diet and exercise) and conventional lipid-lowering therapies (e.g., statins, fibrates, and niacin) could involve their favourable effects on postprandial metabolism. Pharmacologically, niacin has been used as an athero-protective drug for five decades. Studies have since shown that niacin may decrease fasting levels of plasma verylow- density lipoproteins (VLDL), low-density lipoprotein cholesterol (LDL-C), and lipoprotein [a] (Lp[a]), while may increase high-density lipoprotein cholesterol (HDL-C). Herein, the purpose of this review was to provide an update on effects and mechanisms related to the pharmacological actions of niacin on acute hyperlipemia.

  15. Distinct Metabolic Profile of Inhaled Budesonide and Salbutamol in Asthmatic Children during Acute Exacerbation.

    PubMed

    Quan-Jun, Yang; Jian-Ping, Zhang; Jian-Hua, Zhang; Yong-Long, Han; Bo, Xin; Jing-Xian, Zhang; Bona, Dai; Yuan, Zhang; Cheng, Guo

    2017-03-01

    Inhaled budesonide and salbutamol represent the most important and frequently used drugs in asthmatic children during acute exacerbation. However, there is still no consensus about their resulting metabolic derangements; thus, this study was conducted to determine the distinct metabolic profiles of these two drugs. A total of 69 children with asthma during acute exacerbation were included, and their serum and urine were investigated using high-resolution nuclear magnetic resonance (NMR). A metabolomics analysis was performed using a principal component analysis and orthogonal signal correction-partial least squares using SIMCA-P. The different metabolites were identified, and the distinct metabolic profiles were analysed using MetPA. A high-resolution NMR-based serum and urine metabolomics approach was established to study the overall metabolic changes after inhaled budesonide and salbutamol in asthmatic children during acute exacerbation. The perturbed metabolites included 22 different metabolites in the serum and 21 metabolites in the urine. Based on an integrated analysis, the changed metabolites included the following: increased 4-hydroxybutyrate, lactate, cis-aconitate, 5-hydroxyindoleacetate, taurine, trans-4-hydroxy-l-proline, tiglylglycine, 3-hydroxybutyrate, 3-methylhistidine, glucose, cis-aconitate, 2-deoxyinosine and 2-aminoadipate; and decreased alanine, glycerol, arginine, glycylproline, 2-hydroxy-3-methylvalerate, creatine, citrulline, glutamate, asparagine, 2-hydroxyvalerate, citrate, homoserine, histamine, sn-glycero-3-phosphocholine, sarcosine, ornithine, creatinine, glycine, isoleucine and trimethylamine N-oxide. The MetPA analysis revealed seven involved metabolic pathways: arginine and proline metabolism; taurine and hypotaurine metabolism; glycine, serine and threonine metabolism; glyoxylate and dicarboxylate metabolism; methane metabolism; citrate cycle; and pyruvate metabolism. The perturbed metabolic profiles suggest potential metabolic

  16. Acute neurobehavioural effects of toluene.

    PubMed Central

    Echeverria, D; Fine, L; Langolf, G; Schork, A; Sampaio, C

    1989-01-01

    An acute inhalation chamber study of 42 college students was performed to investigate the relation between exposure to 0, 75, and 150 ppm of toluene and changes in central nervous system function and symptoms. Paid subjects were exposed for seven hours over three days. Verbal and visual short term memory (Sternberg, digit span, Benton, pattern memory); perception (pattern recognition); psychomotor skill (simple reaction time, continuous performance, digit symbol, hand-eye coordination, finger tapping, and critical tracking); manual dexterity (one hole); mood (profile of mood scales (POMS]; fatigue (fatigue checklist); and verbal ability were evaluated at 0800, 1200, and 1600 hours. Voluntary symptoms and observations of sleep were collected daily. An analysis of variance and test for trend was performed on the difference and score for each concentration reflecting an eight hour workday where each subject was their own control. A 3 x 3 Latin square study design evaluated toluene effects simultaneously, controlling for learning across the three days and the solvent order. Intersubject variation in solvent uptake was monitored in breath and urine. A 5-10% decrement in performance was considered significant if it was consistent with a linear trend at p less than 0.05. Adverse performance at 150 ppm toluene was found at 6.0% for digit span, 12.1% for pattern recognition (latency), 5.0% for pattern memory (number correct), 6.5% for one hole, and 3.0% for critical tracking. The number of headaches and eye irritation also increased in a dose response manner. The greatest effect was found for an increasing number of observations of sleep. Overall, no clear pattern of neurobehavioural effects was found consistent with the type 1 central nervous system as classified by the World Health Organisation. Subtle acute effects, however, were found just below and above the ACGIH TLV of 100 ppm toluene, supporting the position that the guideline be lowered since the biological

  17. Acute metabolic and physiologic response of goats to narcosis

    NASA Technical Reports Server (NTRS)

    Schatte, C. L.; Bennett, P. B.

    1973-01-01

    Assessment of the metabolic consequences of exposure to elevated partial pressures of nitrogen and helium under normobaric and hyperbaric conditions in goats. The results include the finding that hyperbaric nitrogen causes and increase in metabolic rate and a general decrease in blood constituent levels which is interpreted as reflecting a shift toward fatty acid metabolism at the expense of carbohydrates. A similar but more pronounced pattern was observed with hyperbaric helium.

  18. Motor recovery after acute ischaemic stroke: a metabolic study.

    PubMed Central

    Di Piero, V; Chollet, F M; MacCarthy, P; Lenzi, G L; Frackowiak, R S

    1992-01-01

    The metabolic changes occurring after ischaemic stroke were measured to investigate the functional anatomy of clinical motor recovery. Positron emission tomography (PET) and the steady-state 15O technique was used to compare resting relative metabolic distributions at the onset of functional deficit with those following recovery. Ten patients were studied with repeat scans. Motor recovery was associated in some patients with an increase of relative oxygen metabolism in anatomical structures normally involved in motor function in the affected hemisphere, particularly in the cortical motor areas. In those patients without such metabolic changes in the cortex of the diseased hemisphere, relative increases in cortical metabolism in the contralateral hemisphere were associated with better motor recovery than in patients with no relative cortical metabolic increase in either hemisphere. There was no correlation between the degree of improvement in motor function and the severity of motor deficit at onset, the size and site of the lesion and the metabolic changes in the infarcted zone. No particular pattern of global metabolic changes was observed after recovery. Thus different relative patterns of metabolic recovery were seen in patients with different lesions and evidence was found for the participation of contralateral structures in the recovery process in some patients. Images PMID:1469418

  19. Computational modeling to predict nitrogen balance during acute metabolic decompensation in patients with urea cycle disorders.

    PubMed

    MacLeod, Erin L; Hall, Kevin D; McGuire, Peter J

    2016-01-01

    Nutritional management of acute metabolic decompensation in amino acid inborn errors of metabolism (AA IEM) aims to restore nitrogen balance. While nutritional recommendations have been published, they have never been rigorously evaluated. Furthermore, despite these recommendations, there is a wide variation in the nutritional strategies employed amongst providers, particularly regarding the inclusion of parenteral lipids for protein-free caloric support. Since randomized clinical trials during acute metabolic decompensation are difficult and potentially dangerous, mathematical modeling of metabolism can serve as a surrogate for the preclinical evaluation of nutritional interventions aimed at restoring nitrogen balance during acute decompensation in AA IEM. A validated computational model of human macronutrient metabolism was adapted to predict nitrogen balance in response to various nutritional interventions in a simulated patient with a urea cycle disorder (UCD) during acute metabolic decompensation due to dietary non-adherence or infection. The nutritional interventions were constructed from published recommendations as well as clinical anecdotes. Overall, dextrose alone (DEX) was predicted to be better at restoring nitrogen balance and limiting nitrogen excretion during dietary non-adherence and infection scenarios, suggesting that the published recommended nutritional strategy involving dextrose and parenteral lipids (ISO) may be suboptimal. The implications for patients with AA IEM are that the medical course during acute metabolic decompensation may be influenced by the choice of protein-free caloric support. These results are also applicable to intensive care patients undergoing catabolism (postoperative phase or sepsis), where parenteral nutritional support aimed at restoring nitrogen balance may be more tailored regarding metabolic fuel selection.

  20. Redox state and energy metabolism during liver regeneration: alterations produced by acute ethanol administration.

    PubMed

    Gutiérrez-Salinas, J; Miranda-Garduño, L; Trejo-Izquierdo, E; Díaz-Muñoz, M; Vidrio, S; Morales-González, J A; Hernández-Muñoz, R

    1999-12-01

    Ethanol metabolism can induce modifications in liver metabolic pathways that are tightly regulated through the availability of cellular energy and through the redox state. Since partial hepatectomy (PH)-induced liver proliferation requires an oversupply of energy for enhanced syntheses of DNA and proteins, the present study was aimed at evaluating the effect of acute ethanol administration on the PH-induced changes in cellular redox and energy potentials. Ethanol (5 g/kg body weight) was administered to control rats and to two-thirds hepatectomized rats. Quantitation of the liver content of lactate, pyruvate, beta-hydroxybutyrate, acetoacetate, and adenine nucleotides led us to estimate the cytosolic and mitochondrial redox potentials and energy parameters. Specific activities in the liver of alcohol-metabolizing enzymes also were measured in these animals. Liver regeneration had no effect on cellular energy availability, but induced a more reduced cytosolic redox state accompanied by an oxidized mitochondrial redox state during the first 48 hr of treatment; the redox state normalized thereafter. Administration of ethanol did not modify energy parameters in PH rats, but this hepatotoxin readily blocked the PH-induced changes in the cellular redox state. In addition, proliferating liver promoted decreases in the activity of alcohol dehydrogenase (ADH) and of cytochrome P4502E1 (CYP2E1); ethanol treatment prevented the PH-induced diminution of ADH activity. In summary, our data suggest that ethanol could minimize the PH-promoted metabolic adjustments mediated by redox reactions, probably leading to an ineffective preparatory event that culminates in compensatory liver growth after PH in the rat.

  1. Presence of acute phase changes in zinc, iron, and copper metabolism in turkey embryos

    SciTech Connect

    Klasing, K.C.; Richards, M.P.; Darcey, S.E.; Laurin, D.E.

    1987-01-01

    Acute phase changes in trace mineral metabolism were examined in turkey embryos. An endotoxin injection resulted in increased concentrations of serum copper and liver zinc and decreased concentrations of serum zinc in embryos incubated either in ovo or ex ovo. Changes in zinc and copper metabolism occurred when endotoxin either was injected intramuscularly, into the amnionic fluid, or administered onto the chorioallantoic membrane. Unlike poults, embryos did not respond to an inflammatory challenge with decreased serum iron concentrations. Acute phase changes in embryo serum zinc and copper as well as liver zinc concentrations were similar to those in poults. Increased liver zinc concentrations were associated with increased zinc in metallothionein (MT). An injection of a crude interleukin 1 preparation into embryos resulted in similar increases in hepatic zinc and MT concentrations as an endotoxin injection, suggesting a role for this cytokine in mediating the acute phase changes in embryonic zinc metabolism.

  2. Combined administration of hyperbaric oxygen and hydroxocobalamin improves cerebral metabolism after acute cyanide poisoning in rats.

    PubMed

    Hansen, M B; Olsen, N V; Hyldegaard, O

    2013-11-01

    Hyperbaric oxygen therapy (HBOT) or intravenous hydroxocobalamin (OHCob) both abolish cyanide (CN)-induced surges in interstitial brain lactate and glucose concentrations. HBOT has been shown to induce a delayed increase in whole blood CN concentrations, whereas OHCob may act as an intravascular CN scavenger. Additionally, HBOT may prevent respiratory distress and restore blood pressure during CN intoxication, an effect not seen with OHCob administration. In this report, we evaluated the combined effects of HBOT and OHCob on interstitial lactate, glucose, and glycerol concentrations as well as lactate-to-pyruvate ratio in rat brain by means of microdialysis during acute CN poisoning. Anesthetized rats were allocated to three groups: 1) vehicle (1.2 ml isotonic NaCl intra-arterially); 2) potassium CN (5.4 mg/kg intra-arterially); 3) potassium CN, OHCob (100 mg/kg intra-arterially) and subsequent HBOT (284 kPa in 90 min). OHCob and HBOT significantly attenuated the acute surges in interstitial cerebral lactate, glucose, and glycerol concentrations compared with the intoxicated rats given no treatment. Furthermore, the combined treatment resulted in consistent low lactate, glucose, and glycerol concentrations, as well as in low lactate-to-pyruvate ratios compared with CN intoxicated controls. In rats receiving OHCob and HBOT, respiration improved and cyanosis disappeared, with subsequent stabilization of mean arterial blood pressure. The present findings indicate that a combined administration of OHCob and HBOT has a beneficial and persistent effect on the cerebral metabolism during CN intoxication.

  3. Nutrition in the spotlight: metabolic effects of environmental light.

    PubMed

    Versteeg, Ruth I; Stenvers, Dirk J; Kalsbeek, Andries; Bisschop, Peter H; Serlie, Mireille J; la Fleur, Susanne E

    2016-11-01

    Use of artificial light resulted in relative independence from the natural light-dark (LD) cycle, allowing human subjects to shift the timing of food intake and work to convenient times. However, the increase in artificial light exposure parallels the increase in obesity prevalence. Light is the dominant Zeitgeber for the central circadian clock, which resides within the hypothalamic suprachiasmatic nucleus, and coordinates daily rhythm in feeding behaviour and metabolism. Eating during inappropriate light conditions may result in metabolic disease via changes in the biological clock. In this review, we describe the physiological role of light in the circadian timing system and explore the interaction between the circadian timing system and metabolism. Furthermore, we discuss the acute and chronic effects of artificial light exposure on food intake and energy metabolism in animals and human subjects. We propose that living in synchrony with the natural daily LD cycle promotes metabolic health and increased exposure to artificial light at inappropriate times of day has adverse effects on metabolism, feeding behaviour and body weight regulation. Reducing the negative side effects of the extensive use of artificial light in human subjects might be useful in the prevention of metabolic disease.

  4. Acute metabolic decompensation due to influenza in a mouse model of ornithine transcarbamylase deficiency.

    PubMed

    McGuire, Peter J; Tarasenko, Tatiana N; Wang, Tony; Levy, Ezra; Zerfas, Patricia M; Moran, Thomas; Lee, Hye Seung; Bequette, Brian J; Diaz, George A

    2014-02-01

    The urea cycle functions to incorporate ammonia, generated by normal metabolism, into urea. Urea cycle disorders (UCDs) are caused by loss of function in any of the enzymes responsible for ureagenesis, and are characterized by life-threatening episodes of acute metabolic decompensation with hyperammonemia (HA). A prospective analysis of interim HA events in a cohort of individuals with ornithine transcarbamylase (OTC) deficiency, the most common UCD, revealed that intercurrent infection was the most common precipitant of acute HA and was associated with markers of increased morbidity when compared with other precipitants. To further understand these clinical observations, we developed a model system of metabolic decompensation with HA triggered by viral infection (PR8 influenza) using spf-ash mice, a model of OTC deficiency. Both wild-type (WT) and spf-ash mice displayed similar cytokine profiles and lung viral titers in response to PR8 influenza infection. During infection, spf-ash mice displayed an increase in liver transaminases, suggesting a hepatic sensitivity to the inflammatory response and an altered hepatic immune response. Despite having no visible pathological changes by histology, WT and spf-ash mice had reduced CPS1 and OTC enzyme activities, and, unlike WT, spf-ash mice failed to increase ureagenesis. Depression of urea cycle function was seen in liver amino acid analysis, with reductions seen in aspartate, ornithine and arginine during infection. In conclusion, we developed a model system of acute metabolic decompensation due to infection in a mouse model of a UCD. In addition, we have identified metabolic perturbations during infection in the spf-ash mice, including a reduction of urea cycle intermediates. This model of acute metabolic decompensation with HA due to infection in UCD serves as a platform for exploring biochemical perturbations and the efficacy of treatments, and could be adapted to explore acute decompensation in other types of inborn

  5. Metabolic effects of smoking cessation

    PubMed Central

    Harris, Kindred K.; Zopey, Mohan; Friedman, Theodore C.

    2016-01-01

    Smoking continues to be the leading cause of preventable death in the USA, despite the vast and widely publicized knowledge about the negative health effects of tobacco smoking. Data show that smoking cessation is often accompanied by weight gain and an improvement in insulin sensitivity over time. However, paradoxically, post-cessation-related obesity might contribute to insulin resistance. Furthermore, post-cessation weight gain is reportedly the number one reason why smokers, especially women, fail to initiate smoking cessation or relapse after initiating smoking cessation. In this Review, we discuss the metabolic effects of stopping smoking and highlight future considerations for smoking cessation programs and therapies to be designed with an emphasis on reducing post-cessation weight gain. PMID:26939981

  6. Effects of acute ingestion of salbutamol during submaximal exercise.

    PubMed

    Collomp, K; Candau, R; Collomp, R; Carra, J; Lasne, F; Préfaut, C; De Ceaurriz, J

    2000-10-01

    To assess the eventual effects of acute oral salbutamol intake on performance and metabolism during submaximal exercise, nine healthy volunteers completed two cycling trials at a power corresponding to 80-85% VO2max, after either placebo (Pla) or salbutamol (Sal, 6 mg) treatment, according to a double-blind randomized protocol. Blood samples were collected both at rest and during exercise (5 min-, 10 min-, 15 min-exhaustion) for C-peptide, FFA, lactate and blood glucose measurements. Cycling performance was significantly improved in the Sal vs. Pla trials (p < 0.05). After Sal intake, resting C-peptide, lactate, FFA and blood glucose values were higher whereas exercise lactate and free fatty acid concentrations were greater during and at the conclusion of the exercise period (p < 0.05). These results suggest that acute salbutamol ingestion improved performance during submaximal exercise probably through an enhancement of the overall contribution to energy production from both aerobic and anaerobic metabolisms.

  7. Citric acid as the last therapeutic approach in an acute life-threatening metabolic decompensation of propionic acidaemia.

    PubMed

    Siekmeyer, Manuela; Petzold-Quinque, Stefanie; Terpe, Friederike; Beblo, Skadi; Gebhardt, Rolf; Schlensog-Schuster, Franziska; Kiess, Wieland; Siekmeyer, Werner

    2013-01-01

    The tricarboxylic acid (TCA) cycle represents the key enzymatic steps in cellular energy metabolism. Once the TCA cycle is impaired in case of inherited metabolic disorders, life-threatening episodes of metabolic decompensation and severe organ failure can arise. We present the case of a 6 ½-year-old girl with propionic acidaemia during an episode of acute life-threatening metabolic decompensation and severe lactic acidosis. Citric acid given as an oral formulation showed the potential to sustain the TCA cycle flux. This therapeutic approach may become a treatment option in a situation of acute metabolic crisis, possibly preventing severe disturbance of energy metabolism.

  8. The Effects of Breakfast Consumption and Composition on Metabolic Wellness with a Focus on Carbohydrate Metabolism.

    PubMed

    Maki, Kevin C; Phillips-Eakley, Alyssa K; Smith, Kristen N

    2016-05-01

    Findings from epidemiologic studies indicate that there are associations between breakfast consumption and a lower risk of type 2 diabetes mellitus (T2DM) and metabolic syndrome, prompting interest in the influence of breakfast on carbohydrate metabolism and indicators of T2DM risk. The objective of this review was to summarize the available evidence from randomized controlled trials assessing the impact of breakfast on variables related to carbohydrate metabolism and metabolic wellness. Consuming compared with skipping breakfast appeared to improve glucose and insulin responses throughout the day. Breakfast composition may also be important. Dietary patterns high in rapidly available carbohydrate were associated with elevated T2DM risk. Therefore, partial replacement of rapidly available carbohydrate with other dietary components, such as whole grains and cereal fibers, proteins, and unsaturated fatty acids (UFAs), at breakfast may be a useful strategy for producing favorable metabolic outcomes. Consumption of fermentable and viscous dietary fibers at breakfast lowers glycemia and insulinemia. Fermentable fibers likely act through enhancing insulin sensitivity later in the day, and viscous fibers have an acute effect to slow the rate of carbohydrate absorption. Partially substituting protein for rapidly available carbohydrate enhances satiety and diet-induced thermogenesis, and also favorably affects lipoprotein lipids and blood pressure. Partially substituting UFA for carbohydrate has been associated with improved insulin sensitivity, lipoprotein lipids, and blood pressure. Overall, the available evidence suggests that consuming breakfast foods high in whole grains and cereal fiber, while limiting rapidly available carbohydrate, is a promising strategy for metabolic health promotion.

  9. Tumor Necrosis Factor, but Not Neutrophils, Alters the Metabolic Profile in Acute Experimental Arthritis

    PubMed Central

    Oliveira, Marina C.; Tavares, Luciana P.; Vago, Juliana P.; Batista, Nathália V.; Queiroz-Junior, Celso M.; Vieira, Angelica T.; Menezes, Gustavo B.; Sousa, Lirlândia P.; van de Loo, Fons A. J.; Teixeira, Mauro M.; Amaral, Flávio A.; Ferreira, Adaliene V. M.

    2016-01-01

    Metabolic alterations are associated with arthritis apart from obesity. However, it is still unclear which is the underlying process behind these metabolic changes. Here, we investigate the role of tumor necrosis factor (TNF) in this process in an acute model of antigen-induced arthritis (AIA). Immunized male BALB/c mice received an intra-articular injection of PBS (control) or methylated bovine serum albumin (mBSA) into their knees, and were also pre-treated with different drugs: Etanercept, an anti-TNF drug, DF2156A, a CXCR1/2 receptor antagonist, or a monoclonal antibody RB6-8C5 to deplete neutrophils. Local challenge with mBSA evoked an acute neutrophil influx into the knee joint, and enhanced the joint nociception, along with a transient systemic metabolic alteration (higher levels of glucose and lipids, and altered adipocytokines). Pre-treatment with the conventional biological Etanercept, an inhibitor of TNF action, ameliorated the nociception and the acute joint inflammation dominated by neutrophils, and markedly improved many of the altered systemic metabolites (glucose and lipids), adipocytokines and PTX3. However, the lessening of metabolic changes was not due to diminished accumulation of neutrophils in the joint by Etanercept. Reduction of neutrophil recruitment by pre-treating AIA mice with DF2156A, or even the depletion of these cells by using RB6-8C5 reduced all of the inflammatory parameters and hypernociception developed after AIA challenge, but could not prevent the metabolic changes. Therefore, the induction of joint inflammation provoked acute metabolic alterations which were involved with TNF. We suggest that the role of TNF in arthritis-associated metabolic changes is not due to local neutrophils, which are the major cells present in this model, but rather due to cytokines. PMID:26742100

  10. Tumor Necrosis Factor, but Not Neutrophils, Alters the Metabolic Profile in Acute Experimental Arthritis.

    PubMed

    Oliveira, Marina C; Tavares, Luciana P; Vago, Juliana P; Batista, Nathália V; Queiroz-Junior, Celso M; Vieira, Angelica T; Menezes, Gustavo B; Sousa, Lirlândia P; van de Loo, Fons A J; Teixeira, Mauro M; Amaral, Flávio A; Ferreira, Adaliene V M

    2016-01-01

    Metabolic alterations are associated with arthritis apart from obesity. However, it is still unclear which is the underlying process behind these metabolic changes. Here, we investigate the role of tumor necrosis factor (TNF) in this process in an acute model of antigen-induced arthritis (AIA). Immunized male BALB/c mice received an intra-articular injection of PBS (control) or methylated bovine serum albumin (mBSA) into their knees, and were also pre-treated with different drugs: Etanercept, an anti-TNF drug, DF2156A, a CXCR1/2 receptor antagonist, or a monoclonal antibody RB6-8C5 to deplete neutrophils. Local challenge with mBSA evoked an acute neutrophil influx into the knee joint, and enhanced the joint nociception, along with a transient systemic metabolic alteration (higher levels of glucose and lipids, and altered adipocytokines). Pre-treatment with the conventional biological Etanercept, an inhibitor of TNF action, ameliorated the nociception and the acute joint inflammation dominated by neutrophils, and markedly improved many of the altered systemic metabolites (glucose and lipids), adipocytokines and PTX3. However, the lessening of metabolic changes was not due to diminished accumulation of neutrophils in the joint by Etanercept. Reduction of neutrophil recruitment by pre-treating AIA mice with DF2156A, or even the depletion of these cells by using RB6-8C5 reduced all of the inflammatory parameters and hypernociception developed after AIA challenge, but could not prevent the metabolic changes. Therefore, the induction of joint inflammation provoked acute metabolic alterations which were involved with TNF. We suggest that the role of TNF in arthritis-associated metabolic changes is not due to local neutrophils, which are the major cells present in this model, but rather due to cytokines.

  11. Acute phase response, inflammation and metabolic syndrome biomarkers of Libby asbestos exposure

    SciTech Connect

    Shannahan, Jonathan H.; Alzate, Oscar; Winnik, Witold M.; Andrews, Debora; Schladweiler, Mette C.; Ghio, Andrew J.; Gavett, Stephen H.; Kodavanti, Urmila P.

    2012-04-15

    Identification of biomarkers assists in the diagnosis of disease and the assessment of health risks from environmental exposures. We hypothesized that rats exposed to Libby amphibole (LA) would present with a unique serum proteomic profile which could help elucidate epidemiologically-relevant biomarkers. In four experiments spanning varied protocols and temporality, healthy (Wistar Kyoto, WKY; and F344) and cardiovascular compromised (CVD) rat models (spontaneously hypertensive, SH; and SH heart failure, SHHF) were intratracheally instilled with saline (control) or LA. Serum biomarkers of cancer, inflammation, metabolic syndrome (MetS), and the acute phase response (APR) were analyzed. All rat strains exhibited acute increases in α-2-macroglobulin, and α1-acid glycoprotein. Among markers of inflammation, lipocalin-2 was induced in WKY, SH and SHHF and osteopontin only in WKY after LA exposure. While rat strain- and age-related changes were apparent in MetS biomarkers, no LA effects were evident. The cancer marker mesothelin was increased only slightly at 1 month in WKY in one of the studies. Quantitative Intact Proteomic profiling of WKY serum at 1 day or 4 weeks after 4 weekly LA instillations indicated no oxidative protein modifications, however APR proteins were significantly increased. Those included serine protease inhibitor, apolipoprotein E, α-2-HS-glycoprotein, t-kininogen 1 and 2, ceruloplasmin, vitamin D binding protein, serum amyloid P, and more 1 day after last LA exposure. All changes were reversible after a short recovery regardless of the acute or long-term exposures. Thus, LA exposure induces an APR and systemic inflammatory biomarkers that could have implications in systemic and pulmonary disease in individuals exposed to LA. -- Highlights: ► Biomarkers of asbestos exposure are required for disease diagnosis. ► Libby amphibole exposure is associated with increased human mortality. ► Libby amphibole increases circulating proteins involved

  12. Soymilk products affect ethanol absorption and metabolism in rats during acute and chronic ethanol intake.

    PubMed

    Kano, M; Ishikawa, F; Matsubara, S; Kikuchi-Hayakawa, H; Shimakawa, Y

    2002-02-01

    In this study we evaluated the effects of soy products on ethanol metabolism during periods of acute and chronic consumption in rats. Gastric ethanol content and blood ethanol and acetaldehyde concentrations were investigated after the oral administration of ethanol (34 mmol/kg) plus soy products such as soymilk (SM) or fermented soymilk (FSM). The gastric ethanol concentration of the FSM group was greater than that of the control group, whereas portal and aortal blood ethanol concentrations of the FSM group were lower than in controls. The aortal acetaldehyde concentration in the FSM group was lower than that of the control group. The direct effect of isoflavones on liver function was investigated by using hepatocytes isolated from untreated rats. Genistein (5 micromol/L) decreased ethanol (P = 0.045) and tended to decrease acetaldehyde (P = 0.10) concentrations in the culture filtrate. Some variables of ethanol metabolism in the liver were investigated after chronic ethanol exposure for 25 d. Rats consumed a 5% ethanol fluid plus the SM diet, the FSM diet or a control diet. Microsomal ethanol oxidizing activity was significantly lower in the FSM group than the control group. Furthermore, cytosolic glutathione S-transferase activity was higher in the SM and FSM groups than in the control group. Acetaldehyde dehydrogenase activity (low K(m)) in the FSM group (P = 0.15), but not in the SM group (P = 0.31), tended to be greater than in the control group. The amount of thiobarbituric acid reacting substances in the liver of the SM and FSM groups tended to be less than that of the control group (P = 0.18 and 0.10, respectively). These results demonstrate that soymilk products inhibit ethanol absorption and enhance ethanol metabolism in rats.

  13. AGE-DEPENDENT HEAPATIC AND PLASMA METABOLISM OF DELTAMETHRIN IN VITRO: ROLE IN ACUTE NEUROTOXICITY.

    EPA Science Inventory

    Deltamethrin (DLM) is a relatively potent and a widely used pyrethroid insecticide. Inefficient metabolism is proposed to be the reason for the greater sensitivity of immature rats to DLM acute neurotoxicity. The aim of this study was to test this hypothesis by characterizing the...

  14. Acute phase response, inflammation and metabolic syndrome biomarkers of Libby asbestos exposure.

    PubMed

    Shannahan, Jonathan H; Alzate, Oscar; Winnik, Witold M; Andrews, Debora; Schladweiler, Mette C; Ghio, Andrew J; Gavett, Stephen H; Kodavanti, Urmila P

    2012-04-15

    Identification of biomarkers assists in the diagnosis of disease and the assessment of health risks from environmental exposures. We hypothesized that rats exposed to Libby amphibole (LA) would present with a unique serum proteomic profile which could help elucidate epidemiologically-relevant biomarkers. In four experiments spanning varied protocols and temporality, healthy (Wistar Kyoto, WKY; and F344) and cardiovascular compromised (CVD) rat models (spontaneously hypertensive, SH; and SH heart failure, SHHF) were intratracheally instilled with saline (control) or LA. Serum biomarkers of cancer, inflammation, metabolic syndrome (MetS), and the acute phase response (APR) were analyzed. All rat strains exhibited acute increases in α-2-macroglobulin, and α1-acid glycoprotein. Among markers of inflammation, lipocalin-2 was induced in WKY, SH and SHHF and osteopontin only in WKY after LA exposure. While rat strain- and age-related changes were apparent in MetS biomarkers, no LA effects were evident. The cancer marker mesothelin was increased only slightly at 1 month in WKY in one of the studies. Quantitative Intact Proteomic profiling of WKY serum at 1 day or 4 weeks after 4 weekly LA instillations indicated no oxidative protein modifications, however APR proteins were significantly increased. Those included serine protease inhibitor, apolipoprotein E, α-2-HS-glycoprotein, t-kininogen 1 and 2, ceruloplasmin, vitamin D binding protein, serum amyloid P, and more 1 day after last LA exposure. All changes were reversible after a short recovery regardless of the acute or long-term exposures. Thus, LA exposure induces an APR and systemic inflammatory biomarkers that could have implications in systemic and pulmonary disease in individuals exposed to LA.

  15. A Comparative Metabolomics Approach Reveals Early Biomarkers for Metabolic Response to Acute Myocardial Infarction

    PubMed Central

    Ali, Sara E.; Farag, Mohamed A.; Holvoet, Paul; Hanafi, Rasha S.; Gad, Mohamed Z.

    2016-01-01

    Discovery of novel biomarkers is critical for early diagnosis of acute coronary syndrome (ACS). Serum metabolite profiling of ST-elevation myocardial infarction (STEMI), unstable angina (UA) and healthy controls was performed using gas chromatography mass spectrometry (GC/MS), solid-phase microextraction coupled to gas chromatography mass spectrometry (SPME-GC/MS) and nuclear magnetic resonance (1H-NMR). Multivariate data analysis revealed a metabolic signature that could robustly discriminate STEMI patients from both healthy controls and UA patients. This panel of biomarkers consisted of 19 metabolites identified in the serum of STEMI patients. One of the most intriguing biomarkers among these metabolites is hydrogen sulfide (H2S), an endogenous gasotransmitter with profound effect on the heart. Serum H2S absolute levels were further investigated using a quantitative double-antibody sandwich enzyme-linked immunosorbent assay (ELISA). This highly sensitive immunoassay confirmed the elevation of serum H2S in STEMI patients. H2S level discriminated between UA and STEMI groups, providing an initial insight into serum-free H2S bioavailability during ACS. In conclusion, the current study provides a detailed map illustrating the most predominant altered metabolic pathways and the biochemical linkages among the biomarker metabolites identified in STEMI patients. Metabolomics analysis may yield novel predictive biomarkers that will potentially allow for an earlier medical intervention. PMID:27821850

  16. Acute renal failure and metabolic acidosis due to oxalic acid intoxication: a case report.

    PubMed

    Yamamoto, Rie; Morita, Seiji; Aoki, Hiromichi; Nakagawa, Yoshihide; Yamamoto, Isotoshi; Inokuchi, Sadaki

    2011-12-20

    Most of the reports of oxalic acid intoxication are in cases of ethylene glycol intoxication. These symptoms are known to be central nerve system manifestations, cardiopulmonary manifestations and acute renal failure. There have been only a few reports of direct oxalic acid intoxication. However, there have been a few recent reports of oxalic acid intoxication due to the ingestion of star fruit and ascorbic acid. We herein report the case of a patient with acute renal failure and metabolic acidosis caused directly by consumption of oxalic acid. During the initial examination by the physician at our hospital, the patient presented with tachypnea, a precordinal burning sensation, nausea and metabolic acidosis. After admission, the patient developed renal failure and anion gap high metabolic acidosis, but did not develop any CNS or cardio-pulmonary manifestations in the clinical course. The patient benefitted symptomatically from hemodialysis.

  17. Acute alcohol exposure during mouse gastrulation alters lipid metabolism in placental and heart development: Folate prevention

    PubMed Central

    Han, Mingda

    2016-01-01

    Background Embryonic acute exposure to ethanol (EtOH), lithium, and homocysteine (HCy) induces cardiac defects at the time of exposure; folic acid (FA) supplementation protects normal cardiogenesis (Han et al., 2009, 2012; Serrano et al., 2010). Our hypothesis is that EtOH exposure and FA protection relate to lipid and FA metabolism during mouse cardiogenesis and placentation. Methods On the morning of conception, pregnant C57BL/6J mice were placed on either of two FA‐containing diets: a 3.3 mg health maintenance diet or a high FA diet of 10.5 mg/kg. Mice were injected a binge level of EtOH, HCy, or saline on embryonic day (E) 6.75, targeting gastrulation. On E15.5, cardiac and umbilical blood flow were examined by ultrasound. Embryonic cardiac tissues were processed for gene expression of lipid and FA metabolism; the placenta and heart tissues for neutral lipid droplets, or for medium chain acyl‐dehydrogenase (MCAD) protein. Results EtOH exposure altered lipid‐related gene expression on E7.5 in comparison to control or FA‐supplemented groups and remained altered on E15.5 similarly to changes with HCy, signifying FA deficiency. In comparison to control tissues, the lipid‐related acyl CoA dehydrogenase medium length chain gene and its protein MCAD were altered with EtOH exposure, as were neutral lipid droplet localization in the heart and placenta. Conclusion EtOH altered gene expression associated with lipid and folate metabolism, as well as neutral lipids, in the E15.5 abnormally functioning heart and placenta. In comparison to controls, the high FA diet protected the embryo and placenta from these effects allowing normal development. Birth Defects Research (Part A) 106:749–760, 2016. © 2016 The Authors Birth Defects Research Part A: Clinical and Molecular Teratology Published by Wiley Periodicals, Inc. PMID:27296863

  18. The acute impact of polyphenols from Hibiscus sabdariffa in metabolic homeostasis: an approach combining metabolomics and gene-expression analyses.

    PubMed

    Beltrán-Debón, Raúl; Rodríguez-Gallego, Esther; Fernández-Arroyo, Salvador; Senan-Campos, Oriol; Massucci, Francesco A; Hernández-Aguilera, Anna; Sales-Pardo, Marta; Guimerà, Roger; Camps, Jordi; Menendez, Javier A; Joven, Jorge

    2015-09-01

    We explored the acute multifunctional effects of polyphenols from Hibiscus sabdariffa in humans to assess possible consequences on the host's health. The expected dynamic response was studied using a combination of transcriptomics and metabolomics to integrate specific functional pathways through network-based methods and to generate hypotheses established by acute metabolic effects and/or modifications in the expression of relevant genes. Data were obtained from healthy male volunteers after 3 hours of ingestion of an aqueous Hibiscus sabdariffa extract. The data were compared with data obtained prior to the ingestion, and the overall findings suggest that these particular polyphenols had a simultaneous role in mitochondrial function, energy homeostasis and protection of the cardiovascular system. These findings suggest beneficial actions in inflammation, endothelial dysfunction, and oxidation, which are interrelated mechanisms. Among other effects, the activation of the heme oxygenase-biliverdin reductase axis, the systemic inhibition of the renin-angiotensin system, the inhibition of the angiotensin-converting enzyme, and several actions mirroring those of the peroxisome proliferator-activated receptor agonists further support this notion. We also found concordant findings in the serum of the participants, which include a decrease in cortisol levels and a significant increase in the active vasodilator metabolite of bradykinin (des-Arg(9)-bradykinin). Therefore, our data support the view that polyphenols from Hibiscus sabdariffa play a regulatory role in metabolic health and in the maintenance of blood pressure, thus implying a multi-faceted impact in metabolic and cardiovascular diseases.

  19. Acute doxorubicin cardiotoxicity alters cardiac cytochrome P450 expression and arachidonic acid metabolism in rats

    SciTech Connect

    Zordoky, Beshay N.M.; Anwar-Mohamed, Anwar; Aboutabl, Mona E.

    2010-01-01

    Doxorubicin (DOX) is a potent anti-neoplastic antibiotic used to treat a variety of malignancies; however, its use is limited by dose-dependent cardiotoxicity. Moreover, there is a strong correlation between cytochrome P450 (CYP)-mediated arachidonic acid metabolites and the pathogenesis of many cardiovascular diseases. Therefore, in the current study, we have investigated the effect of acute DOX toxicity on the expression of several CYP enzymes and their associated arachidonic acid metabolites in the heart of male Sprague-Dawley rats. Acute DOX toxicity was induced by a single intraperitoneal injection of 15 mg/kg of the drug. Our results showed that DOX treatment for 24 h caused a significant induction of CYP1A1, CYP1B1, CYP2C11, CYP2J3, CYP4A1, CYP4A3, CYP4F1, CYP4F4, and EPHX2 gene expression in the heart of DOX-treated rats as compared to the control. Similarly, there was a significant induction of CYP1A1, CYP1B1, CYP2C11, CYP2J3, CYP4A, and sEH proteins after 24 h of DOX administration. In the heart microsomes, acute DOX toxicity significantly increased the formation of 20-HETE which is consistent with the induction of the major CYP omega-hydroxylases: CYP4A1, CYP4A3, CYP4F1, and CYP4F4. On the other hand, the formation of 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs) was significantly reduced, whereas the formation of their corresponding dihydroxyeicosatrienoic acids was significantly increased. The decrease in the cardioprotective EETs can be attributed to the increase of sEH activity parallel to the induction of the EPHX2 gene expression in the heart of DOX-treated rats. In conclusion, acute DOX toxicity alters the expression of several CYP and sEH enzymes with a consequent alteration in arachidonic acid metabolism. These results may represent a novel mechanism by which this drug causes progressive cardiotoxicity.

  20. Cysteine Metabolism and Oxidative Processes in the Rat Liver and Kidney after Acute and Repeated Cocaine Treatment

    PubMed Central

    Kowalczyk-Pachel, Danuta; Iciek, Małgorzata; Wydra, Karolina; Nowak, Ewa; Górny, Magdalena; Filip, Małgorzata; Włodek, Lidia; Lorenc-Koci, Elżbieta

    2016-01-01

    The role of cocaine in modulating the metabolism of sulfur-containing compounds in the peripheral tissues is poorly understood. In the present study we addressed the question about the effects of acute and repeated (5 days) cocaine (10 mg/kg i.p.) administration on the total cysteine (Cys) metabolism and on the oxidative processes in the rat liver and kidney. The whole pool of sulfane sulfur, its bound fraction and hydrogen sulfide (H2S) were considered as markers of anaerobic Cys metabolism while the sulfate as a measure of its aerobic metabolism. The total-, non-protein- and protein- SH group levels were assayed as indicators of the redox status of thiols. Additionally, the activities of enzymes involved in H2S formation (cystathionine γ-lyase, CSE; 3-mercaptopyruvate sulfurtransferase, 3-MST) and GSH metabolism (γ-glutamyl transpeptidase, γ-GT; glutathione S-transferase, GST) were determined. Finally, we assayed the concentrations of reactive oxygen species (ROS) and malondialdehyde (MDA) as markers of oxidative stress and lipid peroxidation, respectively. In the liver, acute cocaine treatment, did not change concentrations of the whole pool of sulfane sulfur, its bound fraction, H2S or sulfate but markedly decreased levels of non-protein SH groups (NPSH), ROS and GST activity while γ-GT was unaffected. In the kidney, acute cocaine significantly increased concentration of the whole pool of sulfane sulfur, reduced the content of its bound fraction but H2S, sulfate and NPSH levels were unchanged while ROS and activities of GST and γ-GT were reduced. Acute cocaine enhanced activity of the CSE and 3-MST in the liver and kidney, respectively. Repeatedly administered cocaine enhanced the whole pool of sulfane sulfur and reduced H2S level simultaneously increasing sulfate content both in the liver and kidney. After repeated cocaine, a significant decrease in ROS was still observed in the liver while in the kidney, despite unchanged ROS content, a marked increase

  1. Cysteine Metabolism and Oxidative Processes in the Rat Liver and Kidney after Acute and Repeated Cocaine Treatment.

    PubMed

    Kowalczyk-Pachel, Danuta; Iciek, Małgorzata; Wydra, Karolina; Nowak, Ewa; Górny, Magdalena; Filip, Małgorzata; Włodek, Lidia; Lorenc-Koci, Elżbieta

    2016-01-01

    The role of cocaine in modulating the metabolism of sulfur-containing compounds in the peripheral tissues is poorly understood. In the present study we addressed the question about the effects of acute and repeated (5 days) cocaine (10 mg/kg i.p.) administration on the total cysteine (Cys) metabolism and on the oxidative processes in the rat liver and kidney. The whole pool of sulfane sulfur, its bound fraction and hydrogen sulfide (H2S) were considered as markers of anaerobic Cys metabolism while the sulfate as a measure of its aerobic metabolism. The total-, non-protein- and protein- SH group levels were assayed as indicators of the redox status of thiols. Additionally, the activities of enzymes involved in H2S formation (cystathionine γ-lyase, CSE; 3-mercaptopyruvate sulfurtransferase, 3-MST) and GSH metabolism (γ-glutamyl transpeptidase, γ-GT; glutathione S-transferase, GST) were determined. Finally, we assayed the concentrations of reactive oxygen species (ROS) and malondialdehyde (MDA) as markers of oxidative stress and lipid peroxidation, respectively. In the liver, acute cocaine treatment, did not change concentrations of the whole pool of sulfane sulfur, its bound fraction, H2S or sulfate but markedly decreased levels of non-protein SH groups (NPSH), ROS and GST activity while γ-GT was unaffected. In the kidney, acute cocaine significantly increased concentration of the whole pool of sulfane sulfur, reduced the content of its bound fraction but H2S, sulfate and NPSH levels were unchanged while ROS and activities of GST and γ-GT were reduced. Acute cocaine enhanced activity of the CSE and 3-MST in the liver and kidney, respectively. Repeatedly administered cocaine enhanced the whole pool of sulfane sulfur and reduced H2S level simultaneously increasing sulfate content both in the liver and kidney. After repeated cocaine, a significant decrease in ROS was still observed in the liver while in the kidney, despite unchanged ROS content, a marked increase

  2. The Protective Effects of Buzui on Acute Alcoholism in Mice

    PubMed Central

    Wen, Da-Chao; Gao, Shu-di; Hu, Xiao-yu; Yi, Cheng

    2016-01-01

    This study was designed to investigate the role of a traditional buzui recipe in anti-inebriation treatment. Buzui consists of Fructus Schisandrae Chinensis, Fructus Chebulae, Fructus Mume, Fructus Crataegi, Endothelium Corneum Gigeriae Galli, and Excrementum Bombycis. The buzui mixture was delivered by gavage, and ethanol was delivered subsequent to the final treatment. The effects of buzui on the righting reflex, inebriation rates, and the survival curve are depicted. Blood alcohol concentrations, alanine aminotransferase (ALT) levels, aspartate aminotransferase (AST) levels, and alkaline phosphatase (ALP) levels were recorded. The activities of alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), and superoxide dismutase (SOD), as well as malonaldehyde (MDA) levels, were also measured. Our results demonstrated that a traditional buzui recipe showed significant effects on promoting wakefulness and the prevention of acute alcohol intoxication, accelerating the metabolism of alcohol in the liver and reducing the oxidative damage caused by acute alcoholism. PMID:26884793

  3. Effects of Intracerebroventricular Administration of Neuropeptide Y on Metabolic Gene Expression and Energy Metabolism in Male Rats.

    PubMed

    Su, Yan; Foppen, Ewout; Fliers, Eric; Kalsbeek, Andries

    2016-08-01

    Neuropeptide Y (NPY) is an important neurotransmitter in the control of energy metabolism. Several studies have shown that obesity is associated with increased levels of NPY in the hypothalamus. We hypothesized that the central release of NPY has coordinated and integrated effects on energy metabolism in different tissues, resulting in increased energy storage and decreased energy expenditure (EE). We first investigated the acute effects of an intracerebroventricular (ICV) infusion of NPY on gene expression in liver, brown adipose tissue, soleus muscle, and sc and epididymal white adipose tissue (WAT). We found increased expression of genes involved in gluconeogenesis and triglyceride secretion in the liver already 2-hour after the start of the NPY administration. In brown adipose tissue, the expression of thermogenic genes was decreased. In sc WAT, the expression of genes involved in lipogenesis was increased, whereas in soleus muscle, the expression of lipolytic genes was decreased after ICV NPY. These findings indicate that the ICV infusion of NPY acutely and simultaneously increases lipogenesis and decreases lipolysis in different tissues. Subsequently, we investigated the acute effects of ICV NPY on locomotor activity, respiratory exchange ratio, EE, and body temperature. The ICV infusion of NPY increased locomotor activity, body temperature, and EE as well as respiratory exchange ratio. Together, these results show that an acutely increased central availability of NPY results in a shift of metabolism towards lipid storage and an increased use of carbohydrates, while at the same time increasing activity, EE, and body temperature.

  4. Burkholderia pseudomallei Colony Morphotypes Show a Synchronized Metabolic Pattern after Acute Infection

    PubMed Central

    Steinmetz, Ivo; Lalk, Michael

    2016-01-01

    Background Burkholderia pseudomallei is a water and soil bacterium and the causative agent of melioidosis. A characteristic feature of this bacterium is the formation of different colony morphologies which can be isolated from environmental samples as well as from clinical samples, but can also be induced in vitro. Previous studies indicate that morphotypes can differ in a number of characteristics such as resistance to oxidative stress, cellular adhesion and intracellular replication. Yet the metabolic features of B. pseudomallei and its different morphotypes have not been examined in detail so far. Therefore, this study aimed to characterize the exometabolome of B. pseudomallei morphotypes and the impact of acute infection on their metabolic characteristics. Methods and Principal Findings We applied nuclear magnetic resonance spectroscopy (1H-NMR) in a metabolic footprint approach to compare nutrition uptake and metabolite secretion of starvation induced morphotypes of the B. pseudomallei strains K96243 and E8. We observed gluconate production and uptake in all morphotype cultures. Our study also revealed that among all morphotypes amino acids could be classified with regard to their fast and slow consumption. In addition to these shared metabolic features, the morphotypes varied highly in amino acid uptake profiles, secretion of branched chain amino acid metabolites and carbon utilization. After intracellular passage in vitro or murine acute infection in vivo, we observed a switch of the various morphotypes towards a single morphotype and a synchronization of nutrient uptake and metabolite secretion. Conclusion To our knowledge, this study provides first insights into the basic metabolism of B. pseudomallei and its colony morphotypes. Furthermore, our data suggest, that acute infection leads to the synchronization of B. pseudomallei colony morphology and metabolism through yet unknown host signals and bacterial mechanisms. PMID:26943908

  5. The effect of inducers and inhibitors of urethane metabolism on its in vitro and in vivo metabolism in rats.

    PubMed

    Carlson, G P

    1994-12-09

    The activation of urethane (ethyl carbamate) is important in its exerting its carcinogenic effect. Rats were treated with inducers and inhibitors of urethane metabolism, and the conversion of [carbonyl-14C]urethane to 14CO2 in vivo was measured. The cytochrome P-450 inducers, phenobarbital and beta-naphthoflavone, and esterase inhibitor, paraoxon, were without effect while the CYP2E1 inhibitor, diethyldithiocarbamate, decreased metabolism to about 3% of control. Ethanol administered acutely inhibited urethane metabolism. Pyridine, shown previously to enhance this metabolism in microsomal preparations, greatly inhibited it in vivo. The discordant results between the in vitro and in vivo studies may be related to the presence of pyridine acting as an inhibitor in whole animals and suggest that caution is needed in extrapolating from in vitro results to in vivo implications.

  6. Evaluation of the antidepressant-like effects of acute and sub-acute administration of crocin and crocetin in mice

    PubMed Central

    Amin, Bahareh; Nakhsaz, Alireza; Hosseinzadeh, Hossein

    2015-01-01

    Objective: The present study was designed to investigate the putative antidepressant effects of crocin and crocetin, two major active ingredients of Crocus sativus L. (saffron) using mice in two different regimens of acute and sub-acute administration. Material and Methods: In acute treatment, antidepressant-like activities of crocin and crocetin (10, 20 and 40 mg/kg, i.p.) were evaluated using forced swim test (FST). In sub-acute study (21 times with 24-h intervals), antidepressant-like effects of oral administration of drugs were examined using FST and tail suspension test (TST). Locomotor activity and motor coordination were studied using open field and rotarod tests, respectively. Results: Acute treatment with crocin (40 mg/kg) and crocetin (20 and 40 mg/kg) produced antidepressant-like effect in FST without affecting the baseline locomotion in mice. Sub-acute oral administration of crocin significantly decreased immobility time only at the highest dose (100 mg/kg). Crocetin (12.5, 25 and 50 mg/kg) was able to decrease immobility time in FST and TST. Locomotor activity and coordination of mice were not affected by crocin or crocetin. Conclusion: Since higher doses of crocin was required to show antidepressant effects, more efficacy of crocetin may be concluded. This observation provides further support for metabolism of crocin to crocetin following oral administration. PMID:26468466

  7. Resistance to chemotherapy is associated with altered glucose metabolism in acute myeloid leukemia

    PubMed Central

    SONG, KUI; LI, MIN; XU, XIAOJUN; XUAN, LI; HUANG, GUINIAN; LIU, QIFA

    2016-01-01

    Altered glucose metabolism has been described as a cause of chemoresistance in multiple tumor types. The present study aimed to identify the expression profile of glucose metabolism in drug-resistant acute myeloid leukemia (AML) cells and provide potential strategies for the treatment of drug-resistant AML. Bone marrow and serum samples were obtained from patients with AML that were newly diagnosed or had relapsed. The messenger RNA expression of hypoxia inducible factor (HIF)-1α, glucose transporter (GLUT)1, and hexokinase-II was measured by quantitative polymerase chain reaction. The levels of LDH and β subunit of human F1-F0 adenosine triphosphate synthase (β-F1-ATPase) were detected by enzyme-linked immunosorbent and western blot assays. The HL-60 and HL-60/ADR cell lines were used to evaluate glycolytic activity and effect of glycolysis inhibition on cellular proliferation and apoptosis. Drug-resistant HL-60/ADR cells exhibited a significantly increased level of glycolysis compared with the drug-sensitive HL-60 cell line. The expression of HIF-1α, hexokinase-II, GLUT1 and LDH were increased in AML patients with no remission (NR), compared to healthy control individuals and patients with complete remission (CR) and partial remission. The expression of β-F1-ATPase in patients with NR was decreased compared with the expression in the CR group. Treatment of HL-60/ADR cells with 2-deoxy-D-glucose or 3-bromopyruvate increased in vitro sensitivity to Adriamycin (ADR), while treatment of HL-60 cells did not affect drug cytotoxicity. Subsequent to treatment for 24 h, apoptosis in these two cell lines showed no significant difference. However, glycolytic inhibitors in combination with ADR increased cellular necrosis. These findings indicate that increased glycolysis and low efficiency of oxidative phosphorylation may contribute to drug resistance. Targeting glycolysis is a viable strategy for modulating chemoresistance in AML. PMID:27347147

  8. Hepatic alteration of tryptophan metabolism in an acute porphyria model Its relation with gluconeogenic blockage.

    PubMed

    Lelli, Sandra M; Mazzetti, Marta B; San Martín de Viale, Leonor C

    2008-02-01

    This study focuses on the alterations suffered by the serotoninergic and kinurenergic routes of tryptophan (TRP) metabolism in liver, and their relation with gluconeogenic phosphoenolpyruvate-carboxykinase (PEPCK) blockage in experimental acute porphyria. This porphyria was induced in rats by a combined treatment of 2-allyl-2-isopropylacetamide (100, 250, 500 mg/kg bw) and 3,5-dietoxicarbonil 1,4-dihydrocollidine (constant 50 mg/kg bw dose). Results showed a marked dose-dependent increase of all TRP pyrrolase (TRPp) forms, active (holo, total) and inactive (apo), and a decrease in the degree of enzyme saturation by heme. Increases for holo, total, and apo-TRPp were 90, 150, and 230%, respectively, at the highest dose assayed (H). The treatment also impaired the serotoninergic route of TRP metabolism in liver, causing a decrease in serotonin level (H, 38%), and a concomitant enhancement in TRP content (H, 23%). The porphyrinogenic treatment promoted a blockage in PEPCK activity (H, 30%). This occurred in correlation to the development of porphyria, to TRPp alterations and to the production of hepatic microsomal thiobarbituric acid reactive substances. Porphyria was estimated through increases in 5-aminolevulinic acid-synthase (ALA-S) activity, ALA and porphobilinogen contents, and a decrease in ferrochelatase activity. Thus, the TRP kynurenine route was augmented whereas the serotoninergic route was reduced. PEPCK blockage could be partly attributed to quinolinate generated from TRP by the increase of TRPp activity, which would be due to the effect of porphyrinogenic drugs on TRP. The contribution of ROS to PEPCK blockage is analyzed. Likewise, the implication of these results in the control of porphyrias by glucose is discussed.

  9. Acute Liver Injury Induces Nucleocytoplasmic Redistribution of Hepatic Methionine Metabolism Enzymes

    PubMed Central

    Delgado, Miguel; Garrido, Francisco; Pérez-Miguelsanz, Juliana; Pacheco, María; Partearroyo, Teresa; Pérez-Sala, Dolores

    2014-01-01

    Abstract Aims: The discovery of methionine metabolism enzymes in the cell nucleus, together with their association with key nuclear processes, suggested a putative relationship between alterations in their subcellular distribution and disease. Results: Using the rat model of d-galactosamine intoxication, severe changes in hepatic steady-state mRNA levels were found; the largest decreases corresponded to enzymes exhibiting the highest expression in normal tissue. Cytoplasmic protein levels, activities, and metabolite concentrations suffered more moderate changes following a similar trend. Interestingly, galactosamine treatment induced hepatic nuclear accumulation of methionine adenosyltransferase (MAT) α1 and S-adenosylhomocysteine hydrolase tetramers, their active assemblies. In fact, galactosamine-treated livers showed enhanced nuclear MAT activity. Acetaminophen (APAP) intoxication mimicked most galactosamine effects on hepatic MATα1, including accumulation of nuclear tetramers. H35 cells that overexpress tagged-MATα1 reproduced the subcellular distribution observed in liver, and the changes induced by galactosamine and APAP that were also observed upon glutathione depletion by buthionine sulfoximine. The H35 nuclear accumulation of tagged-MATα1 induced by these agents correlated with decreased glutathione reduced form/glutathione oxidized form ratios and was prevented by N-acetylcysteine (NAC) and glutathione ethyl ester. However, the changes in epigenetic modifications associated with tagged-MATα1 nuclear accumulation were only prevented by NAC in galactosamine-treated cells. Innovation: Cytoplasmic and nuclear changes in proteins that regulate the methylation index follow opposite trends in acute liver injury, their nuclear accumulation showing potential as disease marker. Conclusion: Altogether these results demonstrate galactosamine- and APAP-induced nuclear accumulation of methionine metabolism enzymes as active oligomers and unveil the implication of

  10. Iron metabolism and oxidative profile of dogs naturally infected by Ehrlichia canis: Acute and subclinical disease.

    PubMed

    Bottari, Nathieli B; Crivellenti, Leandro Z; Borin-Crivellenti, Sofia; Oliveira, Jéssica R; Coelho, Stefanie B; Contin, Catarina M; Tatsch, Etiane; Moresco, Rafael N; Santana, Aureo E; Tonin, Alexandre A; Tinucci-Costa, Mirela; Da Silva, Aleksandro S

    2016-03-01

    The aim of this study was to evaluate the oxidant profile and iron metabolism in serum of dogs infected by Ehrlichia canis. Banked sera samples of dogs were divided into two groups: negative control (n = 17) and infected by E. canis on acute (n = 24), and subclinical (n = 18) phases of the disease. The eritrogram, leucogram, and platelet counts were evaluate as well as iron, ferritin, and transferrin levels, latent iron binding capacity (LIBC), and transferrin saturation index (TSI) concentration. In addition, the advanced oxidation protein products (AOPP) and ferric reducing ability of plasma (FRAP) in sera were also analyzed. Blood samples were examined for the presence of E. canis by PCR techniques. History and clinical signals were recorded for each dog. During the acute phase of the disease, infected animals showed thrombocytopenia and anemia when compared to healthy animals (P < 0.05) as a consequence of lower iron levels. Ferritin and transferrin levels were higher in both phases (acute and subclinical) of the disease. The AOPP and FRAP levels increased in infected animals on the acute phase; however, the opposite occurred in the subclinical phase. We concluded that dogs naturally infected by E. canis showed changes in the iron metabolism and developed an oxidant status in consequence of disease pathophysiology.

  11. Successful Treatment of Severe Metabolic Acidosis Due to Acute Aluminum Phosphide Poisoning With Peritoneal Dialysis: a Report of 2 Cases.

    PubMed

    Bashardoust, Bahman; Farzaneh, Esmaeil; Habibzadeh, Afshin; Seyyed Sadeghi, Mir Salim

    2017-03-01

    Aluminum phosphide poisoning is common in our region. It can cause severe metabolic acidosis and persistent hypotension, which lead to cardiogenic shock and subsequently mortality. Oliguric or anuric acute kidney injury is seen in almost all patients with aluminum phosphide poisoning. Renal replacement therapies are recommended in these patients to improve metabolic acidosis and increase the rate of survival. We report 2 cases of severe acute aluminum phosphide poisoning treated successfully with peritoneal dialysis.

  12. Relation between acute and long-term cognitive decline after surgery: Influence of metabolic syndrome☆

    PubMed Central

    Gambús, P.L; Trocóniz, I.F.; Feng, X.; Gimenez-Milá, M.; Mellado, R.; Degos, V.; Vacas, S.; Maze, M.

    2015-01-01

    Introduction The relationship between persistent postoperative cognitive decline and the more common acute variety remains unknown; using data acquired in preclinical studies of postoperative cognitive decline we attempted to characterize this relationship. Methods Low capacity runner (LCR) rats, which have all the features of the metabolic syndrome, were compared postoperatively with high capacity runner (HCR) rats for memory, assessed by trace fear conditioning (TFC) on the 7th postoperative day, and learning and memory (probe trial [PT]) assessed by the Morris water-maze (MWM) at three months postoperatively. Rate of learning (AL) data from the MWM test, were estimated by non-linear mixed effects modeling. The individual rat's TFC result at postoperative day (POD) 7 was correlated with its AL and PT from the MWM data sets at postoperative day POD 90. Results A single exponential decay model best described AL in the MWM with LCR and surgery (LCR–SURG) being the only significant covariates; first order AL rate constant was 0.07 s−1 in LCR–SURG and 0.16 s−1 in the remaining groups (p<0.05). TFC was significantly correlated with both AL (R = 0.74; p < 0.0001) and PT (R = 0.49; p < 0.01). Conclusion Severity of memory decline at 1 week after surgery presaged long-lasting deteriorations in learning and memory. PMID:26164200

  13. Genetic and metabolic determinants of methotrexate-induced mucositis in pediatric acute lymphoblastic leukemia.

    PubMed

    den Hoed, M A H; Lopez-Lopez, E; te Winkel, M L; Tissing, W; de Rooij, J D E; Gutierrez-Camino, A; Garcia-Orad, A; den Boer, E; Pieters, R; Pluijm, S M F; de Jonge, R; van den Heuvel-Eibrink, M M

    2015-06-01

    Methotrexate (MTX) is an effective and toxic chemotherapeutic drug in the treatment of pediatric acute lymphoblastic leukemia(ALL). In this prospective study, we aimed to identify metabolic and genetic determinants of MTX toxicity. One hundred and thirty-four Dutch pediatric ALL patients were treated with four high infusions MTX (HD-MTX: 5 g m(-2)) every other week according to the DCOG-ALL-10 protocol. Mucositis (National Cancer Institute grade ⩾ 3) was the most frequent occurring toxicity during the HD-MTX phase (20%) and occurred especially after the first MTX course. Mucositis was not associated with plasma MTX, plasma folate or plasma homocysteine levels. Patients with mucositis had higher erythrocyte folate levels at the start of protocol M than patients without mucositis (median 1.4 vs 1.2 μmol l(-1), P<0.008), this could reflect an increased MTX uptake in mucosal cells of patients with mucositis. From 17 single-nucleotide polymorphisms in the MTX pathway, only patients with the wild-type variant of rs7317112 SNP in the ABCC4 gene had more mucositis (AA (39%) vs AG/GG (15%), P=0.016). We found no evidence that erythrocyte folate levels mediate in the association between the rs7317112 and mucositis.

  14. Hypothalamic effects of thyroid hormones on metabolism.

    PubMed

    Martínez-Sánchez, Noelia; Alvarez, Clara V; Fernø, Johan; Nogueiras, Rubén; Diéguez, Carlos; López, Miguel

    2014-10-01

    Over the past few decades, obesity and its related metabolic disorders have increased at an epidemic rate in the developed and developing world. New signals and factors involved in the modulation of energy balance and metabolism are continuously being discovered, providing potential novel drug targets for the treatment of metabolic disease. A parallel strategy is to better understand how hormonal signals, with an already established role in energy metabolism, work, and how manipulation of the pathways involved may lead to amelioration of metabolic dysfunction. The thyroid hormones belong to the latter category, with dysregulation of the thyroid axis leading to marked alterations in energy balance. The potential of thyroid hormones in the treatment of obesity has been known for decades, but their therapeutic use has been hampered because of side-effects. Data gleaned over the past few years, however, have uncovered new features at the mechanisms of action involved in thyroid hormones. Sophisticated neurobiological approaches have allowed the identification of specific energy sensors, such as AMP-activated protein kinase and mechanistic target of rapamycin, acting in specific groups of hypothalamic neurons, mediating many of the effects of thyroid hormones on food intake, energy expenditure, glucose, lipid metabolism, and cardiovascular function. More extensive knowledge about these molecular mechanisms will be of great relevance for the treatment of obesity and metabolic syndrome.

  15. Pharmacokinetics and metabolism of digoxin- and beta-methyl-digoxin-12aplha-3 H in patients with acute hepatitis.

    PubMed

    Zilly, W; Richter, E; Rietbrock, N

    1975-03-01

    Pharmocokinetics and metabolism of digoxin and beta-methyldigoxin have been studied in patients with acute hepatits after intravenous administration of both H-labeled glycosides. In contrast to digoxin, the rate of decline of radioactivity after administration of beta-methyldigoxin was significantly retarded in patients with acute hepatitis. The increase in plasma concentration after beta-methyldigoxin to patients with acute hepatitis is probably related to decreased demethylation.

  16. Pioglitazone acutely reduces insulin secretion and causes metabolic deceleration of the pancreatic beta-cell at submaximal glucose concentrations.

    PubMed

    Lamontagne, Julien; Pepin, Emilie; Peyot, Marie-Line; Joly, Erik; Ruderman, Neil B; Poitout, Vincent; Madiraju, S R Murthy; Nolan, Christopher J; Prentki, Marc

    2009-08-01

    Thiazolidinediones (TZDs) have beneficial effects on glucose homeostasis via enhancement of insulin sensitivity and preservation of beta-cell function. How TZDs preserve beta-cells is uncertain, but it might involve direct effects via both peroxisome proliferator-activated receptor-gamma-dependent and -independent pathways. To gain insight into the independent pathway(s), we assessed the effects of short-term (metabolism in INS 832/13 beta-cells and rat islets. Pio caused a right shift in the dose-dependence of GIIS, such that insulin release was reduced at intermediate glucose but unaffected at either basal or maximal glucose concentrations. This was associated in INS 832/13 cells with alterations in energy metabolism, characterized by reduced glucose oxidation, mitochondrial membrane polarization, and ATP levels. Pio caused AMPK phosphorylation and its action on GIIS was reversed by the AMPK inhibitor compound C. Pio also reduced palmitate esterification into complex lipids and inhibited lipolysis. As for insulin secretion, the alterations in beta-cell metabolic processes were mostly alleviated at elevated glucose. Similarly, the antidiabetic agents and AMPK activators metformin and berberine caused a right shift in the dose dependence of GIIS. In conclusion, Pio acutely reduces glucose oxidation, energy metabolism, and glycerolipid/fatty acid cycling of the beta-cell at intermediate glucose concentrations. We suggest that AMPK activation and the metabolic deceleration of the beta-cell caused by Pio contribute to its known effects to reduce hyperinsulinemia and preserve beta-cell function and act as an antidiabetic agent.

  17. Palmitate acutely raises glycogen synthesis in rat soleus muscle by a mechanism that requires its metabolization (Randle cycle).

    PubMed

    Massao Hirabara, Sandro; de Oliveira Carvalho, Carla Roberta; Mendonça, José Roberto; Piltcher Haber, Esther; Fernandes, Luiz Claudio; Curi, Rui

    2003-04-24

    The acute effect of palmitate on glucose metabolism in rat skeletal muscle was examined. Soleus muscles from Wistar male rats were incubated in Krebs-Ringer bicarbonate buffer, for 1 h, in the absence or presence of 10 mU/ml insulin and 0, 50 or 100 microM palmitate. Palmitate increased the insulin-stimulated [(14)C]glycogen synthesis, decreased lactate production, and did not alter D-[U-(14)C]glucose decarboxylation and 2-deoxy-D-[2,6-(3)H]glucose uptake. This fatty acid decreased the conversion of pyruvate to lactate and [1-(14)C]pyruvate decarboxylation and increased (14)CO(2) produced from [2-(14)C]pyruvate. Palmitate reduced insulin-stimulated phosphorylation of insulin receptor substrate-1/2, Akt, and p44/42 mitogen-activated protein kinases. Bromopalmitate, a non-metabolizable analogue of palmitate, reduced [(14)C]glycogen synthesis. A strong correlation was found between [U-(14)C]palmitate decarboxylation and [(14)C]glycogen synthesis (r=0.99). Also, palmitate increased intracellular content of glucose 6-phosphate in the presence of insulin. These results led us to postulate that palmitate acutely potentiates insulin-stimulated glycogen synthesis by a mechanism that requires its metabolization (Randle cycle). The inhibitory effect of palmitate on insulin-stimulated protein phosphorylation might play an important role for the development of insulin resistance in conditions of chronic exposure to high levels of fatty acids.

  18. Women with metabolic syndrome present different autonomic modulation and blood pressure response to an acute resistance exercise session compared with women without metabolic syndrome.

    PubMed

    Tibana, Ramires A; Boullosa, Daniel A; Leicht, Anthony S; Prestes, Jonato

    2013-09-01

    Metabolic syndrome (MetS) is a cluster of risk factors in individuals with high risk of diabetes and heart disease. Resistance training (RT) has been proposed to be a safe, effective and worthwhile method for the prevention and treatment of metabolic and cardiovascular diseases. However, no study has analysed the acute response of blood pressure (BP) and autonomic control of heart rate (HR) after a RT session in female patients with MetS. The aim of the present study was to analyse the response of laboratory assessed and ambulatory BP and cardiac autonomic modulation after a RT session in women with MetS. Nine women without MetS (35.0 ± 6.7 years) and 10 women with MetS (34.1 ± 9.4 years) completed one experimental exercise session and a control session. Laboratory BP, heart rate variability (HRV) and ambulatory BP of each subject were measured at rest, over 60 min, and for 24 h after the end of the sessions, respectively. There was a significant reduction in systolic blood pressure (SBP), night time diastolic blood pressure (DBP) and mean blood pressure (MBP) only for women with MetS, for all periods after the RT session when compared with the control session (P<0.05). Significantly lower laboratory values of SBP and DBP (10, 30 and 40 min postexercise) and MBP (10, 40 and 50 min postexercise) were observed in women with MetS (P<0.05). Patients with MetS exhibited significant lower basal HRV and a lower autonomic responsiveness during the 60 min of acute recovery. These results confirmed that an acute session of resistance exercise induced a lower BP during day time and sleeping hours in women with MetS that may offer a cardio-protective effect. Women with MetS exhibited an impaired autonomic modulation at rest and a lower acute autonomic responsiveness to a RT session. The dissociation between BP and HRV responses suggests that other factors than autonomic control could be involved in the hypotensive effect of a RT session in MetS patients.

  19. Clinical review: Drug metabolism and nonrenal clearance in acute kidney injury

    PubMed Central

    Vilay, A Mary; Churchwell, Mariann D; Mueller, Bruce A

    2008-01-01

    Decreased renal drug clearance is an obvious consequence of acute kidney injury (AKI). However, there is growing evidence to suggest that nonrenal drug clearance is also affected. Data derived from human and animal studies suggest that hepatic drug metabolism and transporter function are components of nonrenal clearance affected by AKI. Acute kidney injury may also impair the clearance of formed metabolites. The fact that AKI does not solely influence kidney function may have important implications for drug dosing, not only of renally eliminated drugs but also of those that are hepatically cleared. A review of the literature addressing the topic of drug metabolism and clearance alterations in AKI reveals that changes in nonrenal clearance are highly complicated and poorly studied, but they may be quite common. At present, our understanding of how AKI affects drug metabolism and nonrenal clearance is limited. However, based on the available evidence, clinicians should be cognizant that even hepatically eliminated drugs and formed drug metabolites may accumulate during AKI, and renal replacement therapy may affect nonrenal clearance as well as drug metabolite clearance. PMID:19040780

  20. Targeting Cancer Metabolism - Revisiting the Warburg Effects

    PubMed Central

    Tran, Quangdon; Lee, Hyunji; Park, Jisoo; Kim, Seon-Hwan; Park, Jongsun

    2016-01-01

    After more than half of century since the Warburg effect was described, this atypical metabolism has been standing true for almost every type of cancer, exhibiting higher glycolysis and lactate metabolism and defective mitochondrial ATP production. This phenomenon had attracted many scientists to the problem of elucidating the mechanism of, and reason for, this effect. Several models based on oncogenic studies have been proposed, such as the accumulation of mitochondrial gene mutations, the switch from oxidative phosphorylation respiration to glycolysis, the enhancement of lactate metabolism, and the alteration of glycolytic genes. Whether the Warburg phenomenon is the consequence of genetic dysregulation in cancer or the cause of cancer remains unknown. Moreover, the exact reasons and physiological values of this peculiar metabolism in cancer remain unclear. Although there are some pharmacological compounds, such as 2-deoxy-D-glucose, dichloroacetic acid, and 3-bromopyruvate, therapeutic strategies, including diet, have been developed based on targeting the Warburg effect. In this review, we will revisit the Warburg effect to determine how much scientists currently understand about this phenomenon and how we can treat the cancer based on targeting metabolism. PMID:27437085

  1. Emerging evidence of ozone metabolic effects and potential mechanisms

    EPA Science Inventory

    SOT 2014 Abstract: Invitational Emerging evidence of ozone metabolic effects and potential mechanisms U.P. Kodavanti NHEERL, USEPA, Research Triangle Park, NC Recent evidence suggests that air pollutants are linked to metabolic syndrome and impact several key metabolic proce...

  2. Alcohol Acute Effects in Aircrew

    DTIC Science & Technology

    1990-06-01

    we derive the name "whiskey." In the Elizabethan era the physiological effects were known to Shakespeare , who in Hamlet noted that alcohol provoked...the Elizabethan era the physiological effects were alluded to by Porter in Hamlet , who noted alcohol provoked only "nose-painting, sleep and urine" (8...atlas of wine. London: Mitchell Beazley Pub, 1985. 7. Lord T. The World Guide to Spirits. pp. 6-27, 1979. 8. Shakespeare W. Macbeth. Act II, Scene 3

  3. Metabolic Changes in Masseter Muscle of Rats Submitted to Acute Stress Associated with Exodontia

    PubMed Central

    Iyomasa, Mamie Mizusaki; Fernandes, Fernanda Silva; Iyomasa, Daniela Mizusaki; Pereira, Yamba Carla Lara; Fernández, Rodrigo Alberto Restrepo; Calzzani, Ricardo Alexandre; Nascimento, Glauce Crivelaro; Leite-Panissi, Christie Ramos Andrade; Issa, João Paulo Mardegan

    2015-01-01

    Clinical evidence has shown that stress may be associated with alterations in masticatory muscle functions. Morphological changes in masticatory muscles induced by occlusal alterations and associated with emotional stress are still lacking in the literature. The objective of this study was to evaluate the influence of acute stress on metabolic activity and oxidative stress of masseter muscles of rats subjected to occlusal modification through morphological and histochemical analyses. In this study, adult Wistar rats were divided into 4 groups: a group with extraction and acute stress (E+A); group with extraction and without stress (E+C); group without extraction and with acute stress (NO+A); and control group without both extraction and stress (NO+C). Masseter muscles were analyzed by Succinate Dehydrogenase (SDH), Nicotinamide Adenine Dinucleotide Diaphorase (NADH) and Reactive Oxygen Species (ROS) techniques. Statistical analyses and two-way ANOVA were applied, followed by Tukey-Kramer tests. In the SDH test, the E+C, E+A and NO+A groups showed a decrease in high desidrogenase activities fibers (P < 0.05), compared to the NO+C group. In the NADH test, there was no difference among the different groups. In the ROS test, in contrast, E+A, E+C and NO+A groups showed a decrease in ROS expression, compared to NO+C groups (P < 0.05). Modified dental occlusion and acute stress - which are important and prevalent problems that affect the general population - are important etiologic factors in metabolic plasticity and ROS levels of masseter muscles. PMID:26053038

  4. Impact of the Metabolic Syndrome on the Clinical Outcome of Patients with Acute ST-Elevation Myocardial Infarction

    PubMed Central

    Lee, Min Goo; Ahn, Youngkeun; Chae, Shung Chull; Hur, Seung Ho; Hong, Taek Jong; Kim, Young Jo; Seong, In Whan; Chae, Jei Keon; Rhew, Jay Young; Chae, In Ho; Cho, Myeong Chan; Bae, Jang Ho; Rha, Seung Woon; Kim, Chong Jin; Choi, Donghoon; Jang, Yang Soo; Yoon, Junghan; Chung, Wook Sung; Cho, Jeong Gwan; Seung, Ki Bae; Park, Seung Jung

    2010-01-01

    We sought to determine the prevalence of metabolic syndrome (MS) in patients with acute myocardial infarction and its effect on clinical outcomes. Employing data from the Korea Acute Myocardial Infarction Registry, a total of 1,990 patients suffered from acute ST-elevation myocardial infarction (STEMI) between November 2005 and December 2006 were categorized according to the National Cholesterol Education Program-Adult Treatment Panel III criteria of MS. Primary study outcomes included major adverse cardiac events (MACE) during one-year follow-up. Patients were grouped based on existence of MS: group I: MS (n=1,182, 777 men, 62.8±12.3 yr); group II: Non-MS (n=808, 675 men, 64.2±13.1 yr). Group I showed lower left ventricular ejection fraction (LVEF) (P=0.005). There were no differences between two groups in the coronary angiographic findings except for multivessel involvement (P=0.01). The incidence of in-hospital death was higher in group I than in group II (P=0.047), but the rates of composite MACE during one-year clinical follow-up showed no significant differences. Multivariate analysis showed that low LVEF, old age, MS, low high density lipoprotein cholesterol and multivessel involvement were associated with high in-hospital death rate. In conclusion, MS is an important predictor for in-hospital death in patients with STEMI. PMID:20890426

  5. Acute Biphasic Effects of Ayahuasca.

    PubMed

    Schenberg, Eduardo Ekman; Alexandre, João Felipe Morel; Filev, Renato; Cravo, Andre Mascioli; Sato, João Ricardo; Muthukumaraswamy, Suresh D; Yonamine, Maurício; Waguespack, Marian; Lomnicka, Izabela; Barker, Steven A; da Silveira, Dartiu Xavier

    2015-01-01

    Ritual use of ayahuasca, an amazonian Amerindian medicine turned sacrament in syncretic religions in Brazil, is rapidly growing around the world. Because of this internationalization, a comprehensive understanding of the pharmacological mechanisms of action of the brew and the neural correlates of the modified states of consciousness it induces is important. Employing a combination of electroencephalogram (EEG) recordings and quantification of ayahuasca's compounds and their metabolites in the systemic circulation we found ayahuasca to induce a biphasic effect in the brain. This effect was composed of reduced power in the alpha band (8-13 Hz) after 50 minutes from ingestion of the brew and increased slow- and fast-gamma power (30-50 and 50-100 Hz, respectively) between 75 and 125 minutes. Alpha power reductions were mostly located at left parieto-occipital cortex, slow-gamma power increase was observed at left centro-parieto-occipital, left fronto-temporal and right frontal cortices while fast-gamma increases were significant at left centro-parieto-occipital, left fronto-temporal, right frontal and right parieto-occipital cortices. These effects were significantly associated with circulating levels of ayahuasca's chemical compounds, mostly N,N-dimethyltryptamine (DMT), harmine, harmaline and tetrahydroharmine and some of their metabolites. An interpretation based on a cognitive and emotional framework relevant to the ritual use of ayahuasca, as well as it's potential therapeutic effects is offered.

  6. Acute Biphasic Effects of Ayahuasca

    PubMed Central

    Schenberg, Eduardo Ekman; Alexandre, João Felipe Morel; Filev, Renato; Cravo, Andre Mascioli; Sato, João Ricardo; Muthukumaraswamy, Suresh D.; Yonamine, Maurício; Waguespack, Marian; Lomnicka, Izabela; Barker, Steven A.; da Silveira, Dartiu Xavier

    2015-01-01

    Ritual use of ayahuasca, an amazonian Amerindian medicine turned sacrament in syncretic religions in Brazil, is rapidly growing around the world. Because of this internationalization, a comprehensive understanding of the pharmacological mechanisms of action of the brew and the neural correlates of the modified states of consciousness it induces is important. Employing a combination of electroencephalogram (EEG) recordings and quantification of ayahuasca's compounds and their metabolites in the systemic circulation we found ayahuasca to induce a biphasic effect in the brain. This effect was composed of reduced power in the alpha band (8–13 Hz) after 50 minutes from ingestion of the brew and increased slow- and fast-gamma power (30–50 and 50–100 Hz, respectively) between 75 and 125 minutes. Alpha power reductions were mostly located at left parieto-occipital cortex, slow-gamma power increase was observed at left centro-parieto-occipital, left fronto-temporal and right frontal cortices while fast-gamma increases were significant at left centro-parieto-occipital, left fronto-temporal, right frontal and right parieto-occipital cortices. These effects were significantly associated with circulating levels of ayahuasca’s chemical compounds, mostly N,N-dimethyltryptamine (DMT), harmine, harmaline and tetrahydroharmine and some of their metabolites. An interpretation based on a cognitive and emotional framework relevant to the ritual use of ayahuasca, as well as it's potential therapeutic effects is offered. PMID:26421727

  7. Acute and Developmental Behavioral Effects of Flame ...

    EPA Pesticide Factsheets

    As polybrominated diphenyl ethers are phased out, numerous compounds are emerging as potential replacement flame retardants for use in consumer and electronic products. Little is known, however, about the neurobehavioral toxicity of these replacements. This study evaluated the neurobehavioral effects of acute or developmental exposure to t-butylphenyl diphenyl phosphate (BPDP), 2-ethylhexyl diphenyl phosphate (EHDP), isodecyl diphenyl phosphate (IDDP), isopropylated phenyl phosphate (IPP), tricresyl phosphate (TMPP; also abbreviated TCP), triphenyl phosphate (TPHP; also abbreviated TPP), tetrabromobisphenol A (TBBPA), tris (2-chloroethyl) phosphate (TCEP), tris (1,3-dichloroisopropyl) phosphate (TDCIPP; also abbreviated TDCPP), tri-o-cresyl phosphate (TOCP), and 2,2-,4,4’-tetrabromodiphenyl ether (BDE-47) in zebrafish (Danio rerio) larvae. Larvae (n≈24 per dose per compound) were exposed to test compounds (0.4 - 120 µM) at sub-teratogenic concentrations either developmentally or acutely, and locomotor activity was assessed at 6 days post fertilization. When given developmentally, all chemicals except BPDP, IDDP and TBBPA produced behavioral effects. When given acutely, all chemicals produced behavioral effects, with TPHP, TBBPA, EHDP, IPP, and BPDP eliciting the most effects at the most concentrations. The results indicate that these replacement flame retardants may have developmental or pharmacological effects on the vertebrate nervous system. This study

  8. Effects of acute caffeine administration on adolescents.

    PubMed

    Temple, Jennifer L; Dewey, Amber M; Briatico, Laura N

    2010-12-01

    Acute caffeine administration has physiological, behavioral, and subjective effects. Despite its widespread use, few studies have described the impact of caffeine consumption in children and adolescents. The purpose of this study was to investigate the effects of acute caffeine administration in adolescents. We measured cardiovascular responses and snack food intake after acute administration of 0 mg, 50 mg, 100 mg, and 200 mg of caffeine. We also compared usual food intake and subjective effects of caffeine between high- and low-caffeine consumers. Finally, we conducted a detailed analysis of caffeine sources and consumption levels. We found main effects of caffeine dose on heart rate (HR) and diastolic blood pressure (DBP), with HR decreasing and DBP increasing with increasing caffeine dose. There were significant interactions among gender, caffeine use, and time on DBP. High caffeine consumers (>50 mg/day) reported using caffeine to stay awake and drinking coffee, tea, soda, and energy drinks more than low consumers (<50 mg/day). Boys were more likely than girls to report using getting a rush, more energy, or improved athletic performance from caffeine. Finally, when we examined energy and macronutrient intake, we found that caffeine consumption was positively associated with laboratory energy intake, specifically from high-sugar, low-fat foods and also positively associated with protein and fat consumption outside of the laboratory. When taken together, these data suggest that acute caffeine administration has a broad range of effects in adolescents and that the magnitude of these effects is moderated by gender and chronic caffeine consumption.

  9. Metabolic and behavior changes in surubim acutely exposed to a glyphosate-based herbicide.

    PubMed

    Sinhorin, Valéria D G; Sinhorin, Adilson P; Teixeira, Jhonnes Marcos S; Miléski, Kelly Márcia L; Hansen, Paula Carine; Moeller, Paulo Rafael; Moreira, Paula Sueli A; Baviera, Amanda M; Loro, Vânia L

    2014-11-01

    This study examined the effect of glyphosate-based herbicide (Roundup Original), the major herbicide used in soybean crops in Mato Grosso state, at concentrations of 0, 2.25, 4.5, 7.5, and 15 mg L(-1) on metabolic and behavior parameters of the hybrid fish surubim in an acute exposure lasting 96 h. Glycogen content, glucose, lactate, and protein levels were measured in different tissues. Plasma levels of cholesterol, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were also determined. Ventilatory frequency (VF) and swimming activity (SA) were considered behavior parameters. Results showed that herbicide exposure decreased plasma glucose levels and increased it in surubim liver. Lactate increased in both plasma and liver but decreased in muscle. Protein levels decreased in plasma and muscle but increased in liver. After herbicide exposure, liver and muscle glycogen was decreased. Cholesterol levels decreased in plasma at all concentrations tested. Plasma ALT increased, and no alterations were recorded for AST levels. VF increased after glyphosate exposure (5 min) and decreased after 96 h. SA showed differences among all groups (5 min). At the end of 96 h, SA was altered by the 7.5 mg L(-1) concentration. Fish used anaerobic glycolysis as indicated by generally decreased glycogen levels and decreased lactate levels in muscle but increased ones in plasma and liver. We suggest that the studied parameters could be used as indicators of herbicide toxicity in surubim and may provide extremely important information for understanding the biology of the animal and its responsiveness to external stimuli (stressors).

  10. Effects of thirty elements on bone metabolism.

    PubMed

    Dermience, Michael; Lognay, Georges; Mathieu, Françoise; Goyens, Philippe

    2015-10-01

    The human skeleton, made of 206 bones, plays vital roles including supporting the body, protecting organs, enabling movement, and storing minerals. Bones are made of organic structures, intimately connected with an inorganic matrix produced by bone cells. Many elements are ubiquitous in our environment, and many impact bone metabolism. Most elements have antagonistic actions depending on concentration. Indeed, some elements are essential, others are deleterious, and many can be both. Several pathways mediate effects of element deficiencies or excesses on bone metabolism. This paper aims to identify all elements that impact bone health and explore the mechanisms by which they act. To date, this is the first time that the effects of thirty minerals on bone metabolism have been summarized.

  11. Impacts of acute imipramine treatment on plasma and brain amino acid metabolism in mice given graded levels of dietary chicken protein.

    PubMed

    Nagasawa, Mao; Murakami, Tatsuro; Tomonaga, Shozo; Sato, Mikako; Takahata, Yoshihisa; Morimatsu, Fumiki; Furuse, Mitsuhiro

    2012-12-01

    Several studies have shown a relationship between depression and animal protein intake. To evaluate whether the difference of dietary chicken protein levels induces an antidepressant-like effect and potentiates acute antidepressant effects, three levels of dietary chicken protein were used as the representative animal protein with imipramine used as the antidepressant. In addition, the effects of dietary chicken protein on brain metabolism were evaluated. Open field test (OFT) and forced swimming test (FST) were conducted on the 27th and 28th days, respectively. OFT and FST were not influenced by both imipramine and dietary protein levels. However, characteristic effects of imipramine treatment on brain monoamine metabolism were observed in the cerebral cortex and hypothalamus. In addition, dietary protein significantly increased taurine and L-ornithine levels even though these amino acids were not contained in the diets. In conclusion, the metabolism of several amino acids in the plasma and brain were altered by dietary chicken protein.

  12. Proton magnetic resonance spectroscopy of brain metabolic shifts induced by acute administration of 2-deoxy-d-glucose and lipopolysaccharides.

    PubMed

    Moshkin, Mikhail P; Akulov, Andrey E; Petrovski, Dmitriy V; Saik, Olga V; Petrovskiy, Evgeny D; Savelov, Andrey A; Koptyug, Igor V

    2014-04-01

    In vivo proton magnetic resonance spectroscopy ((1) H MRS) of outbred stock ICR male mice (originating from the Institute of Cancer Research) was used to study the brain (hippocampus) metabolic response to the pro-inflammatory stimulus and to the acute deficiency of the available energy, which was confirmed by measuring the maximum oxygen consumption. Inhibition of glycolysis by means of an injection with 2-deoxy-d-glucose (2DG) reduced the levels of gamma-aminobutyric acid (GABA, p < 0.05, in comparison with control, least significant difference (LSD) test), N-acetylaspartate (NAA, p < 0.05, LSD test) and choline compounds, and at the same time increased the levels of glutamate and glutamine. An opposite effect was found after injection with bacterial lipopolysaccharide (LPS) - a very common pro-inflammatory inducer. An increase in the amounts of GABA, NAA and choline compounds in the brain occurred in mice treated with LPS. Different metabolic responses to the energy deficiency and the pro-inflammatory stimuli can explain the contradictory results of the brain (1) H MRS studies under neurodegenerative pathology, which is accompanied by both mitochondrial dysfunction and inflammation. The prevalence of the excitatory metabolites such as glutamate and glutamine in 2DG treated mice is in good agreement with excitation observed during temporary reduction of the available energy under acute hypoxia or starvation. In turn, LPS, as an inducer of the sickness behavior, which was manifested as depression, sleepiness, loss of appetite etc., shifts the brain metabolic pattern toward the prevalence of the inhibitory neurotransmitter GABA.

  13. Metabolic acidosis.

    PubMed

    Lim, Salim

    2007-01-01

    Acute metabolic acidosis is frequently encountered in critically ill patients. Metabolic acidosis can occur as a result of either the accumulation of endogenous acids that consumes bicarbonate (high anion gap metabolic acidosis) or loss of bicarbonate from the gastrointestinal tract or the kidney (hyperchloremic or normal anion gap metabolic acidosis). The cause of high anion gap metabolic acidosis includes lactic acidosis, ketoacidosis, renal failure and intoxication with ethylene glycol, methanol, salicylate and less commonly with pyroglutamic acid (5-oxoproline), propylene glycole or djenkol bean (gjenkolism). The most common causes of hyperchloremic metabolic acidosis are gastrointestinal bicarbonate loss, renal tubular acidosis, drugs-induced hyperkalemia, early renal failure and administration of acids. The appropriate treatment of acute metabolic acidosis, in particular organic form of acidosis such as lactic acidosis, has been very controversial. The only effective treatment for organic acidosis is cessation of acid production via improvement of tissue oxygenation. Treatment of acute organic acidosis with sodium bicarbonate failed to reduce the morbidity and mortality despite improvement in acid-base parameters. Further studies are required to determine the optimal treatment strategies for acute metabolic acidosis.

  14. Integrating a prospective pilot trial and patient-derived xenografts to trace metabolic changes associated with acute myeloid leukemia.

    PubMed

    Carrabba, Matteo G; Tavel, Laurette; Oliveira, Giacomo; Forcina, Alessandra; Quilici, Giacomo; Nardelli, Francesca; Tresoldi, Cristina; Ambrosi, Alessandro; Ciceri, Fabio; Bernardi, Massimo; Vago, Luca; Musco, Giovanna

    2016-10-28

    Despite the considerable progress in understanding the molecular bases of acute myeloid leukemia (AML), new tools to link disease biology to the unpredictable patient clinical course are still needed. Herein, high-throughput metabolomics, combined with the other "-omics" disciplines, holds promise in identifying disease-specific and clinically relevant features.In this study, we took advantage of nuclear magnetic resonance (NMR) to trace AML-associated metabolic trajectory employing two complementary strategies. On the one hand, we performed a prospective observational clinical trial to identify metabolic changes associated with blast clearance during the first two cycles of intensive chemotherapy in nine adult patients. On the other hand, to reduce the intrinsic variability associated with human samples and AML genetic heterogeneity, we analyzed the metabolic changes in the plasma of immunocompromised mice upon engraftment of primary human AML blasts.Combining the two longitudinal approaches, we narrowed our screen to seven common metabolites, for which we observed a mirror-like trajectory in mice and humans, tracing AML progression and remission, respectively. We interpreted this set of metabolites as a dynamic fingerprint of AML evolution.Overall, these NMR-based metabolomic data, to be consolidated in larger cohorts and integrated in more comprehensive system biology approaches, hold promise for providing valuable and non-redundant information on the systemic effects of leukemia.

  15. Ozone induces glucose intolerance and systemic metabolic effects in young and aged brown Norway rats

    SciTech Connect

    Bass, V.; Gordon, C.J.; Jarema, K.A.; MacPhail, R.C.; Cascio, W.E.; Phillips, P.M.; Ledbetter, A.D.; Schladweiler, M.C.; Andrews, D.; Miller, D.; Doerfler, D.L.; Kodavanti, U.P.

    2013-12-15

    Air pollutants have been associated with increased diabetes in humans. We hypothesized that ozone would impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular (ER) stress in young and aged rats. One, 4, 12, and 24 month old Brown Norway (BN) rats were exposed to air or ozone, 0.25 or 1.0 ppm, 6 h/day for 2 days (acute) or 2 d/week for 13 weeks (subchronic). Additionally, 4 month old rats were exposed to air or 1.0 ppm ozone, 6 h/day for 1 or 2 days (time-course). Glucose tolerance tests (GTT) were performed immediately after exposure. Serum and tissue biomarkers were analyzed 18 h after final ozone for acute and subchronic studies, and immediately after each day of exposure in the time-course study. Age-related glucose intolerance and increases in metabolic biomarkers were apparent at baseline. Acute ozone caused hyperglycemia and glucose intolerance in rats of all ages. Ozone-induced glucose intolerance was reduced in rats exposed for 13 weeks. Acute, but not subchronic ozone increased α{sub 2}-macroglobulin, adiponectin and osteopontin. Time-course analysis indicated glucose intolerance at days 1 and 2 (2 > 1), and a recovery 18 h post ozone. Leptin increased day 1 and epinephrine at all times after ozone. Ozone tended to decrease phosphorylated insulin receptor substrate-1 in liver and adipose tissues. ER stress appeared to be the consequence of ozone induced acute metabolic impairment since transcriptional markers of ER stress increased only after 2 days of ozone. In conclusion, acute ozone exposure induces marked systemic metabolic impairments in BN rats of all ages, likely through sympathetic stimulation. - Highlights: • Air pollutants have been associated with increased diabetes in humans. • Acute ozone exposure produces profound metabolic alterations in rats. • Age influences metabolic risk factors in aging BN rats. • Acute metabolic effects are reversible and repeated exposure reduces these effects. • Ozone

  16. Linking Arsenic Metabolism and Toxic Effects

    EPA Science Inventory

    Although arsenic has been long recognized as a toxicant and a carcinogen, the molecular basis for few of its adverse effects are well understood. Like other metalloids, arsenic undergoes extensive metabolism involving oxidation state changes and formation of methyl-arsenic bonds ...

  17. Metabolic aspects of acute cerebral hypoxia during extracorporeal circulation and their modification induced by acetyl-carnitine treatment.

    PubMed

    Corbucci, G G; Menichetti, A; Cogliatti, A; Nicoli, P; Arduini, A; Damonti, W; Marchionni, A; Calvani, M

    1992-01-01

    Following their previous research experiences in human tissue hypoxia, in the present study the authors. investigated the metabolic effects of acute brain hypoxia in a group of patients in course of extracorporeal circulation for aorto-pulmonary bypass. One hundred subjects were treated, half with a placebo and half with acetyl-carnitine to evaluate the effects of oxidative stress in some brain plasmatic metabolites and to verify the effect of acetyl-carnitine on the tissue energy capacity. The levels of lactate, pyruvate, succinate and fumarate showed a significant imbalance due to hypoxia, while the acetyl-carnitine treatment confined the metabolic gradients within physiological limits. This means that during the course of extracorporeal circulation brain hypoxia plays a pathological role assuming the typical picture of cellular oxidative damage and the acetyl-carnitine antagonizes these deleterious effects of hypoxia by a protective mechanism on the energy processes and then on the cellular enzymic activities. In this regard, the d-tyrosine levels, considered as a proteolytic index, confirm the action of acetyl-carnitine on the cell morpho-functional integrity.

  18. Sex differences in Δ(9)-tetrahydrocannabinol metabolism and in vivo pharmacology following acute and repeated dosing in adolescent rats.

    PubMed

    Wiley, Jenny L; Burston, James J

    2014-07-25

    Mechanisms that may underlie age and sex differences in the pharmacological effects of cannabinoids are relatively unexplored. The purpose of the present study was to determine whether sex differences in metabolism of Δ(9)-tetrahydrocannabinol (THC), similar to those observed previously in adult rats, also occurred in adolescent rats and might contribute to age and sex differences in its in vivo pharmacology. Male and female adolescent rats were exposed to THC acutely or repeatedly for 10 days. Subsequently, some of the rats were sacrificed and blood and brain levels of THC and one of its metabolites, 11-hydroxy-Δ(9)-THC (11-OH-THC), were measured. Other rats were evaluated in a battery of in vivo tests that are sensitive to cannabinoids. Concentrations of 11-OH-THC in the brains of female adult and adolescent rats exceeded those observed in male conspecifics, particularly after repeated THC administration. In contrast, brain levels of THC did not differ between the sexes. In vivo, acute THC produced dose-related hypothermia, catalepsy and suppression of locomotion in adolescent rats of both sexes, with tolerance developing after repeated administration. With a minor exception, sex differences in THC's effects in the in vivo assays were not apparent. Together with previous findings, the present results suggest that sex differences in pharmacokinetics cannot fully explain the patterns of sex differences (and lack of sex differences) in cannabinoid effects across behaviors. Hormonal and/or pharmacodynamic factors are also likely to play a role.

  19. Acute Ethanol Causes Hepatic Mitochondrial Depolarization in Mice: Role of Ethanol Metabolism

    PubMed Central

    Zhong, Zhi; Ramshesh, Venkat K.; Rehman, Hasibur; Liu, Qinlong; Theruvath, Tom P.; Krishnasamy, Yasodha; Lemasters, John J.

    2014-01-01

    Background/Aims An increase of ethanol metabolism and hepatic mitochondrial respiration occurs in vivo after a single binge of alcohol. Here, our aim was to determine how ethanol intake affects hepatic mitochondrial polarization status in vivo in relation to ethanol metabolism and steatosis. Methods Hepatic mitochondrial polarization, permeability transition (MPT), and reduce pyridine nucleotides, and steatosis in mice were monitored by intravital confocal/multiphoton microscopy of the fluorescence of rhodamine 123 (Rh123), calcein, NAD(P)H, and BODIPY493/503, respectively, after gavage with ethanol (1–6 g/kg). Results Mitochondria depolarized in an all-or-nothing fashion in individual hepatocytes as early as 1 h after alcohol. Depolarization was dose- and time-dependent, peaked after 6 to 12 h and maximally affected 94% of hepatocytes. This mitochondrial depolarization was not due to onset of the MPT. After 24 h, mitochondria of most hepatocytes recovered normal polarization and were indistinguishable from untreated after 7 days. Cell death monitored by propidium iodide staining, histology and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was low throughout. After alcohol, mitochondrial NAD(P)H autofluorescence increased and decreased, respectively, in hepatocytes with polarized and depolarized mitochondria. Ethanol also caused steatosis mainly in hepatocytes with depolarized mitochondria. Depolarization was linked to ethanol metabolism, since deficiency of alcohol dehydrogenase and cytochrome-P450 2E1 (CYP2E1), the major ethanol-metabolizing enzymes, decreased mitochondrial depolarization by ∼70% and ∼20%, respectively. Activation of aldehyde dehydrogenase decreased depolarization, whereas inhibition of aldehyde dehydrogenase enhanced depolarization. Activation of aldehyde dehydrogenase also markedly decreased steatosis. Conclusions Acute ethanol causes reversible hepatic mitochondrial depolarization in vivo that may contribute to

  20. Targeting Aberrant Glutathione Metabolism to Eradicate Human Acute Myelogenous Leukemia Cells*

    PubMed Central

    Pei, Shanshan; Minhajuddin, Mohammad; Callahan, Kevin P.; Balys, Marlene; Ashton, John M.; Neering, Sarah J.; Lagadinou, Eleni D.; Corbett, Cheryl; Ye, Haobin; Liesveld, Jane L.; O'Dwyer, Kristen M.; Li, Zheng; Shi, Lei; Greninger, Patricia; Settleman, Jeffrey; Benes, Cyril; Hagen, Fred K.; Munger, Joshua; Crooks, Peter A.; Becker, Michael W.; Jordan, Craig T.

    2013-01-01

    The development of strategies to eradicate primary human acute myelogenous leukemia (AML) cells is a major challenge to the leukemia research field. In particular, primitive leukemia cells, often termed leukemia stem cells, are typically refractory to many forms of therapy. To investigate improved strategies for targeting of human AML cells we compared the molecular mechanisms regulating oxidative state in primitive (CD34+) leukemic versus normal specimens. Our data indicate that CD34+ AML cells have elevated expression of multiple glutathione pathway regulatory proteins, presumably as a mechanism to compensate for increased oxidative stress in leukemic cells. Consistent with this observation, CD34+ AML cells have lower levels of reduced glutathione and increased levels of oxidized glutathione compared with normal CD34+ cells. These findings led us to hypothesize that AML cells will be hypersensitive to inhibition of glutathione metabolism. To test this premise, we identified compounds such as parthenolide (PTL) or piperlongumine that induce almost complete glutathione depletion and severe cell death in CD34+ AML cells. Importantly, these compounds only induce limited and transient glutathione depletion as well as significantly less toxicity in normal CD34+ cells. We further determined that PTL perturbs glutathione homeostasis by a multifactorial mechanism, which includes inhibiting key glutathione metabolic enzymes (GCLC and GPX1), as well as direct depletion of glutathione. These findings demonstrate that primitive leukemia cells are uniquely sensitive to agents that target aberrant glutathione metabolism, an intrinsic property of primary human AML cells. PMID:24089526

  1. Metabolic aspects of acute tissue hypoxia during extracorporeal circulation and their modification induced by L-carnitine treatment.

    PubMed

    Corbucci, G G; Menichetti, A; Cogliatti, A; Nicoli, P; Ruvolo, C

    1992-01-01

    In this study the authors examine the effects of acute hypoxia due to extracorporeal circulation (ECC) and the role played by L-carnitine treatment on some plasmatic metabolites linked to glycolytic cellular metabolism. To obtain biochemical data, 120 patients in extracorporeal circulation during aortopulmonary bypass surgery were evaluated. The patients received either sodium bicarbonate (40 patients), or L-carnitine during ECC (40 patients) or before and during ECC (40 patients), and plasma samples were collected before ECC, during ECC and after ECC. The levels of lactate and pyruvate showed significant alterations in sodium bicarbonate-treated patients, and there was also a considerable imbalance in the succinate/fumarate ratio. This means that tissue hypoxia due to ECC leads to cellular oxidative damage and to a considerable decrease in the intracellular energy pools. The use of L-carnitine antagonizes the oxidative stress, as is well documented by the levels of plasmatic metabolites which remain confined to normal amounts.

  2. Role of the endocrine pancreas in the kalemic response to acute metabolic acidosis in conscious dogs.

    PubMed

    Adrogué, H J; Chap, Z; Ishida, T; Field, J B

    1985-03-01

    Metabolic acidosis due to organic acids infusion fails to elicit hyperkalemia. Although plasma potassium levels may rise, the increase is smaller than in mineral acid acidosis. The mechanisms responsible for the different effects of organic acid acidosis and mineral acid acidosis remain undefined, although dissimilar hormonal responses by the pancreas may explain dissimilar hormonal responses by the pancreas may explain the phenomena. To test this hypothesis, beta-hydroxybutyric acid (7 meq/kg) or hydrochloric acid (3 meq/kg) was infused over 30 min into conscious dogs (n = 12) with chronically implanted catheters in the portal, hepatic, and systemic circulation, and flow probes were placed around the portal vein and hepatic artery. Acid infusion studies in two groups of anesthetized dogs were also done to assess the urinary excretion of potassium (n = 14), and to evaluate the effects of acute suppression of renal electrolyte excretion on plasma potassium and on the release/uptake of potassium in peripheral tissues of the hindleg (n = 17). Ketoacid infusion caused hypokalemia and a significant increase in portal vein plasma insulin, from the basal level of 27 +/- 4 microU/ml to a maximum of 84 +/- 22 microU/ml at 10 min, without changes in glucagon levels. By contrast, mineral acid acidosis of similar severity resulted in hyperkalemia and did not increase portal insulin levels but enhanced portal glucagon concentration from control values of 132 +/- 25 pg/ml to 251 +/- 39 pg/ml at 40 min. A significant decrease in plasma glucose levels due to suppression of hepatic release was observed during ketoacid infusion, while no changes were observed with mineral acid infusion. Plasma flows in the portal vein and hepatic artery remained unchanged from control values in both acid infusion studies. Differences in renal potassium excretion were ruled out as determinants of the disparate kalemic responses to organic acid infusion compared with HCl acidosis. Evaluation of the

  3. Acute metabolic, hormonal, and psychological responses to different endurance training protocols.

    PubMed

    Wahl, P; Mathes, S; Köhler, K; Achtzehn, S; Bloch, W; Mester, J

    2013-10-01

    In the last years, mainly 2 high-intensity-training (HIT) protocols became common: first, a Wingate-based "all-out" protocol and second, a 4×4 min protocol. However, no direct comparison between these protocols exists, and also a comparison with high-volume-training (HVT) is missing. Therefore, the aim of the present study was to compare these 3 endurance training protocols on metabolic, hormonal, and psychological responses. Twelve subjects performed: 1) HVT [130 min at 55% peak power output (PPO)]; 2) 4×4 min at 95% PPO; 3) 4×30 s all-out. Human growth hormone (hGH), testosterone, and cortisol were determined before (pre) and 0', 30', 60', 180' after each intervention. Metabolic stimuli and perturbations were characterized by lactate, blood gas (pH, BE, HCO₃⁻, pO₂, PCO₂), and spirometric analysis. Furthermore, changes of the person's perceived physical state were determined. The 4×30 s training caused the highest increases in cortisol and hGH, followed by 4 × 4 min and HVT. Testosterone levels were significantly increased by all 3 exercise protocols. Metabolic stress was highest during and after 4×30 s, followed by 4×4 min and HVT. The 4×30 s training was also the most demanding intervention from an athlete's point of view. In conclusion, the results suggest that 4×30 s and 4×4 min promote anabolic processes more than HVT, due to higher increases of hGH, testosterone, and the T/C ratio. It can be speculated that the acute hormonal increase and the metabolic perturbations might play a positive role in optimizing training adaptation and in eliciting health benefits as it has been shown by previous long term training studies using similar exercise protocols.

  4. Elevated plasma cholecystokinin at high altitude: metabolic implications for the anorexia of acute mountain sickness.

    PubMed

    Bailey, D M; Davies, B; Milledge, J S; Richards, M; Williams, S R; Jordinson, M; Calam, J

    2000-01-01

    The aims of the present study were to measure the satiety neuropeptide cholecystokinin (CCK) in humans at terrestrial high altitude to investigate its possible role in the pathophysiology of anorexia, cachexia, and acute mountain sickness (AMS). Nineteen male mountaineers aged 38 +/- 12 years participated in a 20 +/- 5 day trek to Mt. Kanchenjunga basecamp (BC) located at 5,100 m, where they remained for 7 +/- 5 days. Subjects were examined at rest and during a maximal exercise test at sea-level before/after the expedition (SL1/SL2) and during the BC sojourn. There was a mild increase in Lake Louise AMS score from 1.1 +/- 1.2 points at SL1 to 2.3 +/- 2.3 points by the end of the first day at BC (P < 0.05). A marked increase in resting plasma CCK was observed on the morning of the second day at BC relative to sea-level control values (62.9 +/- 42.2 pmol/L(-1) vs. SL1: 4.3 +/- 8.3 pmol/L(-1), P < 0.05 vs. SL2: 26.5 +/- 25.2 pmol/L(-1), P < 0.05). Maximal exercise increased CCK by 78.5 +/- 24.8 pmol/L(-1), (P < 0.05 vs. resting value) during the SL1 test and increased the plasma concentration of non-esterified fatty acids and glycerol at BC (P < 0.05 vs. SL1/SL2). The CCK response was not different in five subjects who presented with anorexia on Day 2 compared with those with a normal appetite. While there was no relationship between the increase in CCK and AMS score at BC, a more pronounced increase in resting CCK was observed in subjects with AMS (> or =3 points at the end of Day 1 at BC) compared with those without (+98.9 +/- 1.4 pmol/L(-1) vs. +67.6 +/- 37.2 pmol/L(-1), P < 0.05). Caloric intake remained remarkably low during the stay at BC (8.9 +/- 1.4 MJ.d(-1)) despite a progressive decrease in total body mass (-4.5 +/- 2.1 kg after 31 +/- 13 h at BC, P < 0.05 vs. SL1/SL2), which appeared to be due to a selective loss of torso adipose tissue. These findings suggest that the satiogenic effects of CCK may have contributed to the observed caloric deficit and

  5. Postoperative metabolic alkalosis and acute renal failure: rationale for the use of hydrochloric acid.

    PubMed

    Shavelle, H S; Parke, R

    1975-10-01

    Metabolic alkalosis secondary to chloride depletion, especially following gastrointestinal surgery and associated with acute renal failure, is a frequent clinical occurrence. Management of the resultant acid-base disturbance mandates chloride replacement. The presence of oliguria limits the choice of accompanying cation. The use of intravenous hydrochloric acid to correct and maintain proper chloride balance, secondary to external gastric fluid losses, is recommended as a straightforward approach. Two brief case synopses are presented. Both patients, florid examples of profound chloride depletion, required large amounts of intravenous hydrochloric acid. The options regarding the choice of chloride solution, hazards involved, and a simplified schema of replacement therapy are presented. Combined gastrointestinal and renal dysfunction create unusual biochemical and clinical alterations and may result in a complex management problem.

  6. Acute toxicity testing of some herbicides-, alkaloids-, and antibiotics-metabolizing soil bacteria in the rat.

    PubMed

    Kaiser, A; Classen, H G; Eberspächer, J; Lingens, F

    1981-01-01

    Seven strains of soil bacteria with the ability to metabolize herbicides, alkaloids or antibiotics were tested in rats for acute toxicity. 1. Upon oral administration of 9.0 x 10(8) to 6.6 x 10(10) cells daily during 7 d no adverse reactions were observed. 2. Exposure by air did not lead to specific pulmonary changes. 3. Intracutaneous injection of 7.5 x 10(6) to 1.4 x 10(8) cells did not lead to adverse skin reactions. 4. Intraperitoneal injections up to 10(8) cells per animal did not kill rats although bacteria entered blood. At higher concentrations some mortality occurred partly due to unspecific stress reactions. 5. Animal data and observations on 20 humans being exposed to these strains for 2 months up to 15 years support the view that the bacteria tested are essentially harmless for health.

  7. Calcium flux and metabolism in the pigeon heart following doxorubicin treatment: an acute study

    SciTech Connect

    Revis, N.

    1981-01-01

    The present studies were performed to determine in vivo the initial and secondary acute effects of doxorubicin on the influx of calcium into myocardial cells. Studies are also described showing the effect of doxorubicin on a calcium-activated neutral protease from cardiac tissue. These latter studies were performed in an attempt to explain the loss of myofibrilular structures in myocardial cells following doxorubicin treatment.

  8. Peripheral metabolic effects of endocannabinoids and cannabinoid receptor blockade.

    PubMed

    Engeli, Stefan

    2008-01-01

    The endocannabinoid system consists of endogenous arachidonic acid derivates that activate cannabinoid receptors. The two most prominent endocannabinoids are anandamide and 2-arachidonoyl glycerol. In obesity, increased concentrations of circulating and tissue endocannabinoid levels have been described, suggesting increased activity of the endocannabinoid system. Increased availability of endocannabinoids in obesity may over-stimulate cannabinoid receptors. Blockade of cannabinoid type 1 (CB1) receptors was the only successful clinical development of an anti-obesity drug during the last decade. Whereas blockade of CB1 receptors acutely reduces food intake, the long-term effects on metabolic regulation are more likely mediated by peripheral actions in liver, skeletal muscle, adipose tissue, and the pancreas. Lipogenic effects of CB1 receptor signalling in liver and adipose tissue may contribute to regional adipose tissue expansion and insulin resistance in the fatty liver. The association of circulating 2-arachidonoyl glycerol levels with decreased insulin sensitivity strongly suggests further exploration of the role of endocannabinoid signalling for insulin sensitivity in skeletal muscle, liver, and adipose tissue. A few studies have suggested a specific role for the regulation of adiponectin secretion from adipocytes by endocannabinoids, but that has to be confirmed by more experiments. Also, the potential role of CB1 receptor blockade for the stimulation of energy expenditure needs to be studied in the future. Despite the current discussion of safety issues of cannabinoid receptor blockade, these findings open a new and exciting perspective on endocannabinoids as regulators of body weight and metabolism.

  9. Effects of cigarette smoking on metabolic events in the lung

    SciTech Connect

    Kitamura, S.

    1987-06-01

    Nicotine and cigarette smoke extract show acute physiological effects: increasing tracheal pressure (P/sub TR/), pulmonary artery pressure (P/sub PA/), systemic blood pressure (P/sub SYST/), and left atrium pressure (P/sub LA/); and decreasing cardiac output (Q/sub AORTA/) and blood flow to the left lower lobe (Q/sub LLL/). In addition, cigarette smoking induces bronchoconstriction, thus decreasing peak flow, FVC, and FEV/sub 1.0/ in healthy subjects. It has also been demonstrated that cigarette smoking caused temporary slowing of mucociliary clearance in the lung and that cigarette smoke increases the activity of aryl hydrocarbon hydroxylase which metabolizes benzo(..cap alpha..)pyrene. The authors demonstrated that serum angiotensin I converting enzyme (ACE) activity showed a significant increase immediately after smoking and returned to the control level 20 min after smoking. They also demonstrated that plasma histamine levels showed a marked decrease after smoking. Furthermore, the effects of cigarette smoke and related substances on prostaglandin, thromboxane, testosterone, cyclic nucleotides metabolism, and protein synthesis were also investigated.

  10. The Role of Gut–brain Axis in Regulating Glucose Metabolism After Acute Pancreatitis

    PubMed Central

    Pendharkar, Sayali A; Asrani, Varsha M; Murphy, Rinki; Cutfield, Richard; Windsor, John A; Petrov, Maxim S

    2017-01-01

    Objectives: Diabetes has become an epidemic in developed and developing countries alike, with an increased demand for new efficacious treatments. A large body of pre-clinical evidence suggests that the gut–brain axis may be exploited as a potential therapeutic target for defective glucose homeostasis. This clinical study aimed to investigate a comprehensive panel of glucoregulatory peptides, released by both the gut and brain, in individuals after acute pancreatitis. Methods: Fasting levels of glucagon-like peptide-1 (GLP-1), glicentin, oxyntomodulin, peptide YY, ghrelin, cholecystokinin, vasoactive intestinal peptide (VIP), and secretin were studied. Modified Poisson and multivariable linear regression analyses were conducted. Pre-determined concentration ranges were used to categorize each peptide into quartiles. Results: A total of 83 individuals were included, of who 30 (36%) developed abnormal glucose metabolism (AGM) after acute pancreatitis. In individuals with AGM, the highest quartile of oxyntomodulin differed most significantly from the lowest quartile with a prevalence ratio (PR; 95% confidence interval) of 0.50 (0.21, 1.20; P=0.005); of glicentin with a PR of 0.26 (0.13, 0.54; P<0.001); and of VIP with a PR of 0.34 (0.13, 0.89; P=0.043). Peptide YY, GLP-1, cholecystokinin, ghrelin, and secretin were not significantly associated with AGM. Conclusions: Fasting circulating oxyntomodulin, glicentin, and VIP levels are significantly decreased in patients with defective glucose homeostasis after acute pancreatitis. Oxyntomodulin appears to be a promising therapeutic target for future clinical studies on diabetes associated with diseases of the exocrine pancreas. PMID:28055028

  11. Acclimation and acute temperature effects on population differences in oxidative phosphorylation.

    PubMed

    Baris, Tara Z; Crawford, Douglas L; Oleksiak, Marjorie F

    2016-01-15

    Temperature changes affect metabolism on acute, acclamatory, and evolutionary time scales. To better understand temperature's affect on metabolism at these different time scales, we quantified cardiac oxidative phosphorylation (OxPhos) in three Fundulus taxa acclimated to 12 and 28°C and measured at three acute temperatures (12, 20, and 28°C). The Fundulus taxa (northern Maine and southern Georgia F. heteroclitus, and a sister taxa, F. grandis) were used to identify evolved changes in OxPhos. Cardiac OxPhos metabolism was quantified by measuring six traits: state 3 (ADP and substrate-dependent mitochondrial respiration); E state (uncoupled mitochondrial activity); complex I, II, and IV activities; and LEAK ratio. Acute temperature affected all OxPhos traits. Acclimation only significantly affected state 3 and LEAK ratio. Populations were significantly different for state 3. In addition to direct effects, there were significant interactions between acclimation and population for complex I and between population and acute temperature for state 3. Further analyses suggest that acclimation alters the acute temperature response for state 3, E state, and complexes I and II: at the low acclimation temperature, the acute response was dampened at low assay temperatures, and at the high acclimation temperature, the acute response was dampened at high assay temperatures. Closer examination of the data also suggests that differences in state 3 respiration and complex I activity between populations were greatest between fish acclimated to low temperatures when assayed at high temperatures, suggesting that differences between the populations become more apparent at the edges of their thermal range.

  12. Acclimation and acute temperature effects on population differences in oxidative phosphorylation

    PubMed Central

    Baris, Tara Z.; Oleksiak, Marjorie F.

    2015-01-01

    Temperature changes affect metabolism on acute, acclamatory, and evolutionary time scales. To better understand temperature's affect on metabolism at these different time scales, we quantified cardiac oxidative phosphorylation (OxPhos) in three Fundulus taxa acclimated to 12 and 28°C and measured at three acute temperatures (12, 20, and 28°C). The Fundulus taxa (northern Maine and southern Georgia F. heteroclitus, and a sister taxa, F. grandis) were used to identify evolved changes in OxPhos. Cardiac OxPhos metabolism was quantified by measuring six traits: state 3 (ADP and substrate-dependent mitochondrial respiration); E state (uncoupled mitochondrial activity); complex I, II, and IV activities; and LEAK ratio. Acute temperature affected all OxPhos traits. Acclimation only significantly affected state 3 and LEAK ratio. Populations were significantly different for state 3. In addition to direct effects, there were significant interactions between acclimation and population for complex I and between population and acute temperature for state 3. Further analyses suggest that acclimation alters the acute temperature response for state 3, E state, and complexes I and II: at the low acclimation temperature, the acute response was dampened at low assay temperatures, and at the high acclimation temperature, the acute response was dampened at high assay temperatures. Closer examination of the data also suggests that differences in state 3 respiration and complex I activity between populations were greatest between fish acclimated to low temperatures when assayed at high temperatures, suggesting that differences between the populations become more apparent at the edges of their thermal range. PMID:26582639

  13. Effect of artificial gravity on thermoregulation, respiratory metabolism and intermediary metabolism of animals

    NASA Technical Reports Server (NTRS)

    Oyama, J.

    1973-01-01

    Metabolic alterations in animals exposed to radial acceleration are reported. Temperatures in acutely stressed animals dropped profoundly in correlation with decreased food consumption. Repeated exposure of the acutely stressed animal caused a decrease in hypothermic response whereas deceleration or reduction of G load did not significantly change body temperatures. Adrenal corticosteroids affected significantly the animal's recovery rate. No changes occured in body temperature patterns of chronically centrifuged animals after full adaptation; their respiratory rate increased very significantly in terms of CO2 output as did their glucose uptake by muscle tissues and their insulin responsiveness or sensitivity.

  14. Systemic Metabolic Responses of Broiler Chickens and Piglets to Acute T-2 Toxin Intravenous Exposure.

    PubMed

    Wan, Qianfen; He, Qinghua; Deng, Xianbai; Hao, Fuhua; Tang, Huiru; Wang, Yulan

    2016-01-27

    The aim of this study is to thoroughly investigate the toxicity mechanism of mycotoxin T-2 toxin and to further understand the endogenous metabolic alterations induced by T-2 toxin. To achieve this, a nuclear magnetic resonance (NMR)-based metabonomics approach was used to analyze the metabolic alterations induced by a single intravenous injection of T-2 toxin (0.5 mg/kg of body weight) in piglets and broiler chickens. A range of metabolites in the plasma, liver, kidney, and spleen of broiler chickens and plasma of piglets was changed following T-2 toxin injection. For example, a rapid increase of amino acids together with a significant reduction of glucose and lipid occurred in the plasma of broiler chickens and piglets following T-2 toxin treatment. A significant accumulation of amino acids and modulated nucleotides were detected in the liver, kidney, and spleen of T-2 toxin-treated broiler chickens. These data indicated that T-2 toxin caused endogenous metabolic changes in multiple organs and perturbed various metabolic pathways, including energy, amino acid, and nucleotide metabolism, as well as oxidative stress. We also observed elevated levels of tryptophan in the T-2 toxin-treated broiler chickens, which may explain the reported neurotoxic effects of T-2 toxin. These findings provide important information on the toxicity of T-2 toxin and demonstrate the power of the NMR-based metabonomics approach in exploring the toxicity mechanism of xenobiotics.

  15. Acute Alcohol Intoxication Decreases Glucose Metabolism but Increases Acetate Uptake in the Human Brain

    PubMed Central

    Volkow, Nora D.; Kim, Sung Won; Wang, Gene-Jack; Alexoff, David; Logan, Jean; Muench, Lisa; Shea, Colleen; Telang, Frank; Fowler, Joanna S.; Wong, Christopher; Benveniste, Helene; Tomasi, Dardo

    2012-01-01

    Alcohol intoxication results in marked reductions in brain glucose metabolism, which we hypothesized reflect not just its GABAergic enhancing effects but also metabolism of acetate as an alternative brain energy source. To test this hypothesis we separately assessed the effects of alcohol intoxication on brain glucose and acetate metabolism using Positron Emission Tomography (PET). We found that alcohol intoxication significantly decreased whole brain glucose metabolism (measured with FDG) with the largest decrements in cerebellum and occipital cortex and the smallest in thalamus. In contrast, alcohol intoxication caused a significant increase in [1-11C]acetate brain uptake (measured as standard uptake value, SUV), with the largest increases occurring in cerebellum and the smallest in thalamus. In heavy alcohol drinkers [1-11C]acetate brain uptake during alcohol challenge trended to be higher than in occasional drinkers (p <0.06) and the increases in [1-11C]acetate uptake in cerebellum with alcohol were positively associated with the reported amount of alcohol consumed (r=0.66, p<0.01). Our findings corroborate a reduction of brain glucose metabolism during intoxication and document an increase in brain acetate uptake. The opposite changes observed between regional brain metabolic decrements and regional increases in [1-11C]acetate uptake support the hypothesis that during alcohol intoxication the brain may rely on acetate as an alternative brain energy source and provides preliminary evidence that heavy alcohol exposures may facilitate the use of acetate as an energy substrate. These findings raise the question of the potential therapeutic benefits that increasing plasma acetate concentration (ie ketogenic diets) may have in alcoholics undergoing alcohol detoxification. PMID:22947541

  16. Oxygen-inducible glutamate oxaloacetate transaminase as protective switch transforming neurotoxic glutamate to metabolic fuel during acute ischemic stroke.

    PubMed

    Rink, Cameron; Gnyawali, Surya; Peterson, Laura; Khanna, Savita

    2011-05-15

    This work rests on our previous report (J Cereb Blood Flow Metab 30: 1275-1287, 2010) recognizing that glutamate (Glu) oxaloacetate transaminase (GOT) is induced when brain tissue hypoxia is corrected during acute ischemic stroke (AIS). GOT can metabolize Glu into tricarboxylic acid cycle intermediates and may therefore be useful to harness excess neurotoxic extracellular Glu during AIS as a metabolic substrate. We report that in cultured neural cells challenged with hypoglycemia, extracellular Glu can support cell survival as long as there is sufficient oxygenation. This effect is abrogated by GOT knockdown. In a rodent model of AIS, supplemental oxygen (100% O(2) inhaled) during ischemia significantly increased GOT expression and activity in the stroke-affected brain tissue and prevented loss of ATP. Biochemical analyses and in vivo magnetic resonance spectroscopy during stroke demonstrated that such elevated GOT decreased Glu levels at the stroke-affected site. In vivo lentiviral gene delivery of GOT minimized lesion volume, whereas GOT knockdown worsened stroke outcomes. Thus, brain tissue GOT emerges as a novel target in managing stroke outcomes. This work demonstrates that correction of hypoxia during AIS can help clear extracellular neurotoxic Glu by enabling utilization of this amino acid as a metabolic fuel to support survival of the hypoglycemic brain tissue. Strategies to mitigate extracellular Glu-mediated neurodegeneration via blocking receptor-mediated excitotoxicity have failed in clinical trials. We introduce the concept that under hypoglycemic conditions extracellular Glu can be transformed from a neurotoxin to a survival factor by GOT, provided there is sufficient oxygen to sustain cellular respiration.

  17. Metabolic and adverse effects of diuretics.

    PubMed

    Wilcox, C S

    1999-11-01

    Diuretics are among the most frequently prescribed drugs. They enjoy a very high clinical reputation for safety and efficacy. However, more than 3 decades of clinical investigation have disclosed a number of abnormalities in fluid electrolyte handling, metabolism, and other adverse effects that can complicate therapy with diuretic drugs. Some of these complications are a direct extension of the wanted action of the drug. These include extracellular fluid volume depletion, associated orthostatic hypotension, and prerenal azotemia. Others are not a direct action of the diuretic, but can be explained as an intranephronal compensation to the diuretic action. These include hypokalemia, in part to increased potassium secretion secondary to the enhanced tubular fluid flow and aldosterone secretion induced by diuretic administration. Metabolic abnormalities are usually mild. Hyperglycemia and carbohydrate intolerance have been related to diuretic-induced hypokalemia, which inhibits insulin secretion by the beta cells, and reductions in extracellular fluid volume and cardiac output. This is compounded by increases in catecholamines from sympathetic nerve activity which decrease peripheral glucose utilization. A mild increase in serum cholesterol concentration is seen frequently during initiation of diuretic therapy, but during steady state therapy after 6 to 12 months, values usually return to baseline. Knowledge of the more common adverse effects induced by diuretics helps the physician in predicting patients at risk and taking effective steps to anticipate or treat adverse responses.

  18. Selective alterations in cerebral metabolism within the mesocorticolimbic dopaminergic system produced by acute cocaine administration in rats

    SciTech Connect

    Porrino, L.J.; Domer, F.R.; Crane, A.M.; Sokoloff, L.

    1988-05-01

    The 2-(/sup 14/C)deoxyglucose method was used to examine the effects of acute intravenous administration of cocaine on local cerebral glucose utilization in rats. These effects were correlated with the effects of cocaine on locomotor activity assessed simultaneously in the same animals. At the lowest dose of cocaine, 0.5 mg/kg (1.47 mumol/kg), alterations in glucose utilization were restricted to the medial prefrontal cortex and nucleus accumbens. Metabolic activity at 1.0 mg/kg (2.9 mumol/kg) was altered in these structures, but in the substantia nigra reticulata and lateral habenula as well. The selectivity of cocaine's effects at low doses demonstrates the particular sensitivity of these structures to cocaine's actions in the brain. In contrast, 5.0 mg/kg (14.7 mumol/kg) produced widespread changes in glucose utilization, particularly in the extrapyramidal system. Only this dose significantly increased locomotor activity above levels in vehicle-treated controls. Rates of glucose utilization were positively correlated with locomotor activity in the globus pallidus, substantia nigra reticulata, and subthalamic nucleus, and negatively correlated in the lateral habenula.

  19. Quantum therapy in correction of the lipidic metabolism at acute pancreatitis

    NASA Astrophysics Data System (ADS)

    Anaskin, S. G.; Vlasov, A. P.; Spirina, M. A.; Vlasova, T. I.; Muratova, T. A.; Korniletsky, I. D.; Geraskin, V. S.

    2017-01-01

    Attempt to establish efficiency of laser therapy in correction of a lipid metabolism at patients with acute pancreatitis was the purpose of work. There were clinical laboratory researches of 48 patients with acute heavy pancreatitis. To the first clinical group (comparison) standard therapy was carried out. To patients of the second clinical group (main) in addition to basic therapy within 10 days daily sessions of laser therapy by the device "Matrix" were held later. Radiation with the wavelength of 635 nanometers, 2 MW was used. Percutaneous laser radiation of blood was carried out to projections of a cubital vein within 30 minutes daily. Inclusion of laser therapy in complex treatment of patients with pancreatitis led to more significant positive dynamics. Reduction of weight of endotoxemia in the main group is set that was verified by decrease in level of both hydrophilic, and hydrophobic toxins. The analysis of the data obtained as a result of research in the main group revealed decrease in concentration of products of free radical oxidation of lipids in comparison with group of comparison for 12,1 – 17,3% of % (p. <. 0,05). Laser radiation of blood as a part of complex treatment led to reliable inhibition of activity of enzymes of phospholipase system in blood plasma, in particular activity of a phospholipase of A2 fell for 13,2 – 34,4% (p <0,05). Thus, inclusion of laser therapy in structure of complex treatment of sharp pancreatitis allowed to reduce significantly expressiveness of endogenous intoxication, intensity of processes of free radical oxidation of membrane lipids and activity of phospholipase systems.

  20. Acute Exposure to Pacific Ciguatoxin Reduces Electroencephalogram Activity and Disrupts Neurotransmitter Metabolic Pathways in Motor Cortex.

    PubMed

    Kumar, Gajendra; Au, Ngan Pan Bennett; Lei, Elva Ngai Yu; Mak, Yim Ling; Chan, Leanne Lai Hang; Lam, Michael Hon Wah; Chan, Leo Lai; Lam, Paul Kwan Sing; Ma, Chi Him Eddie

    2016-09-10

    Ciguatera fish poisoning (CFP) is a common human food poisoning caused by consumption of ciguatoxin (CTX)-contaminated fish affecting over 50,000 people worldwide each year. CTXs are classified depending on their origin from the Pacific (P-CTXs), Indian Ocean (I-CTXs), and Caribbean (C-CTXs). P-CTX-1 is the most toxic CTX known and the major source of CFP causing an array of neurological symptoms. Neurological symptoms in some CFP patients last for several months or years; however, the underlying electrophysiological properties of acute exposure to CTXs remain unknown. Here, we used CTX purified from ciguatera fish sourced in the Pacific Ocean (P-CTX-1). Delta and theta electroencephalography (EEG) activity was reduced remarkably in 2 h and returned to normal in 6 h after a single exposure. However, second exposure to P-CTX-1 induced not only a further reduction in EEG activities but also a 2-week delay in returning to baseline EEG values. Ciguatoxicity was detected in the brain hours after the first and second exposure by mouse neuroblastoma assay. The spontaneous firing rate of single motor cortex neuron was reduced significantly measured by single-unit recording with high spatial resolution. Expression profile study of neurotransmitters using targeted profiling approach based on liquid chromatography-tandem mass spectrometry revealed an imbalance between excitatory and inhibitory neurotransmitters in the motor cortex. Our study provides a possible link between the brain oscillations and neurotransmitter release after acute exposure to P-CTX-1. Identification of EEG signatures and major metabolic pathways affected by P-CTX-1 provides new insight into potential biomarker development and therapeutic interventions.

  1. Role of hormonal factors in plasma K alterations in acute respiratory and metabolic alkalosis in dogs.

    PubMed

    Suzuki, H; Hishida, A; Ohishi, K; Kimura, M; Honda, N

    1990-02-01

    Studies were performed on previously nephrectomized dogs to examine roles of hormonal factors in plasma potassium alterations in acute alkalosis. Respiratory and metabolic alkalosis were induced by hyperventilation and intravenous NaHCO3 or tris(hydroxymethyl)aminomethane (Tris) infusion, respectively. Respiratory and NaHCO3-induced alkalosis provoked decreases in plasma potassium from the control value of 5.12 +/- 0.68 (SE) to 4.21 +/- 0.55 meq/l (P less than 0.01) and from 4.65 +/- 0.26 to 3.91 +/- 0.16 meq/l (P less than 0.01) within 180 min, respectively. In contrast, Tris-induced alkalosis elicited an increase in plasma potassium from the control value of 4.56 +/- 0.30 to 5.31 +/- 0.30 meq/l (P less than 0.01). Hypokalemia in respiratory alkalosis was associated with a decrease in the plasma norepinephrine concentration from the control level of 377 +/- 104 to 155 +/- 41 pg/ml (P less than 0.05) but not with changes in plasma levels of epinephrine, insulin, glucagon, cortisol, and aldosterone. However, this hypokalemia was not affected by phentolamine. Also, somatostatin did not modify the hypokalemic response. NaHCO3-induced hypokalemia was associated with a decline in the plasma aldosterone and norepinephrine concentrations. The decline in plasma norepinephrine in NaHCO3-induced alkalosis followed the decrease in plasma potassium. In Tris-induced alkalosis, plasma insulin increased but norepinephrine decreased. The findings do not suggest fundamental roles of the hormonal factors in the plasma potassium alterations in bilaterally nephrectomized dogs with acute alkalosis.

  2. SIMULATING METABOLISM TO ENHANCE EFFECTS MODELING

    EPA Science Inventory

    A major uncertainty that has long been recognized in evaluating chemical toxicity is accounting for metabolic activation of chemicals resulting in increased toxicity. The proposed research will develop a capability for forecasting the metabolism of xenobiotic chemicals of EPA int...

  3. Comparison of the acute metabolic responses to traditional resistance, body-weight, and battling rope exercises.

    PubMed

    Ratamess, Nicholas A; Rosenberg, Joseph G; Klei, Samantha; Dougherty, Brian M; Kang, Jie; Smith, Charles R; Ross, Ryan E; Faigenbaum, Avery D

    2015-01-01

    The purpose of this study was to quantify and compare the acute metabolic responses to resistance exercise protocols comprising free-weight, body-weight, and battling rope (BR) exercises. Ten resistance-trained men (age = 20.6 ± 1.3 years) performed 13 resistance exercise protocols on separate days in random order consisting of only one exercise per session. For free-weight exercise protocols, subjects performed 3 sets of up to 10 repetitions with 75% of their 1 repetition maximum. For the push-up (PU) and push-up on a BOSU ball protocols, subjects performed 3 sets of 20 repetitions. For the burpee and PU with lateral crawl protocols, subjects performed 3 sets of 10 repetitions. For the plank and BR circuit protocols, subjects performed 3 sets of 30-second bouts. A standard 2-minute rest interval (RI) was used in between all sets for each exercise. Data were averaged for the entire protocol including work and RIs. Mean oxygen consumption was significantly greatest during the BR (24.6 ± 2.6 ml·kg·min) and burpee (22.9 ± 2.1 ml·kg·min) protocols. For the free-weight exercises, highest mean values were seen in the squat (19.6 ± 1.8 ml·kg·min), deadlift (18.9 ± 3.0 ml·kg·min), and lunge (17.3 ± 2.6 ml·kg·min). No differences were observed between PUs performed on the floor vs. on a BOSU ball. However, adding a lateral crawl to the PU significantly increased mean oxygen consumption (19.5 ± 2.9 ml·kg·min). The lowest mean value was seen during the plank exercise (7.9 ± 0.7 ml·kg·min). These data indicate performance of exercises with BRs and a body-weight burpee exercise elicit relatively higher acute metabolic demands than traditional resistance exercises performed with moderately heavy loading.

  4. Metabolism and possible health effects of aluminum.

    PubMed Central

    Ganrot, P O

    1986-01-01

    Literature regarding the biochemistry of aluminum and eight similar ions is reviewed. Close and hitherto unknown similarities were found. A hypothetical model is presented for the metabolism, based on documented direct observations of Al3+ and analogies from other ions. Main characteristics are low intestinal absorption, rapid urinary excretion, and slow tissue uptake, mostly in skeleton and reticuloendothelial cells. Intracellular Al3+ is probably first confined in the lysosomes but then slowly accumulates in the cell nucleus and chromatin. Large, long-lived cells, e.g., neurons, may be the most liable to this accumulation. In heterochromatin, Al3+ levels can be found comparable to those used in leather tannage. It is proposed that an accumulation may take place at a subcellular level without any significant increase in the corresponding tissue concentration. The possible effects of this accumulation are discussed. As Al3+ is neurotoxic, the brain metabolism is most interesting. The normal and the lethally toxic brain levels of Al3+ are well documented and differ only by a factor of 3-10. The normal brain uptake of Al3+ is estimated from data on intestinal uptake of Al3+ and brain uptake of radionuclides of similar ions administered intravenously. The uptake is very slow, 1 mg in 36 years, and is consistent with an assumption that Al3+ taken up by the brain cannot be eliminated and is therefore accumulated. The possibility that Al3+ may cause or contribute to some specific diseases, most of them related to aging, is discussed with the proposed metabolic picture in mind. PMID:2940082

  5. Ketone ester effects on metabolism and transcription.

    PubMed

    Veech, Richard L

    2014-10-01

    Ketosis induced by starvation or feeding a ketogenic diet has widespread and often contradictory effects due to the simultaneous elevation of both ketone bodies and free fatty acids. The elevation of ketone bodies increases the energy of ATP hydrolysis by reducing the mitochondrial NAD couple and oxidizing the coenzyme Q couple, thus increasing the redox span between site I and site II. In contrast, metabolism of fatty acids leads to a reduction of both mitochondrial NAD and mitochondrial coenzyme Q causing a decrease in the ΔG of ATP hydrolysis. In contrast, feeding ketone body esters leads to pure ketosis, unaccompanied by elevation of free fatty acids, producing a physiological state not previously seen in nature. The effects of pure ketosis on transcription and upon certain neurodegenerative diseases make approach not only interesting, but of potential therapeutic value.

  6. Ketone ester effects on metabolism and transcription

    PubMed Central

    Veech, Richard L.

    2014-01-01

    Ketosis induced by starvation or feeding a ketogenic diet has widespread and often contradictory effects due to the simultaneous elevation of both ketone bodies and free fatty acids. The elevation of ketone bodies increases the energy of ATP hydrolysis by reducing the mitochondrial NAD couple and oxidizing the coenzyme Q couple, thus increasing the redox span between site I and site II. In contrast, metabolism of fatty acids leads to a reduction of both mitochondrial NAD and mitochondrial coenzyme Q causing a decrease in the ΔG of ATP hydrolysis. In contrast, feeding ketone body esters leads to pure ketosis, unaccompanied by elevation of free fatty acids, producing a physiological state not previously seen in nature. The effects of pure ketosis on transcription and upon certain neurodegenerative diseases make approach not only interesting, but of potential therapeutic value. PMID:24714648

  7. METABOLIC EFFECTS OF MARIJUANA USE AMONG BLACKS

    PubMed Central

    Racine, C.; Vincent, M.; Rogers, A.; Donat, M.; Ojike, N. I.; Necola, O.; Yousef, E.; Masters-Israilov, A.; Jean-Louis, G.; McFarlane, S. I.

    2015-01-01

    Background Increased legalization of marijuana has resulted in renewed interest in its effects on body weight and cardiometabolic risk. Conflicting data exist regarding marijuana effects on body weight, waist circumference as well as lipid profiles, blood pressure and cardiovascular disease. Furthermore, there is a dearth of data available on this effect in the black population. Objective To assess the metabolic profile and cardiovascular risk factors as well as body weight and waist circumference among urban black marijuana users. Methods A cross sectional study design involving 100 patients seen in a Family Practice clinic at University hospital of Brooklyn, NY, USA, over a period of 3 months from January 2014 to March 2014. Participants were administered a questionnaire regarding marijuana use, and other associated behaviors. Socio-demographic, laboratory, and clinical data were collected. We report measures of central tendencies, and dispersion for continuous variables and the frequency of distribution for categorical variables. Results Of the 100 patients surveyed, 57% were females. The mean (±SEM) age of the entire cohort was 46.3 years±1.5; range, 19–78 years. The mean body mass index (BMI) was 29.6 kg/m2±0.73; SBP=128.0 mmHg±1.69; DBP=76.1 mmHg±1.17. Current marijuana users had the lowest waist circumference compared to former or never users respectively (32.9±0.66 vs. 35.9±0.88 vs. 33.4±0.74), p<0.01. Diastolic blood pressure in mmHg was significantly higher among former marijuana users compared to current or never users, (80.0±2.1 vs. 73.3±2.3 vs. 73.4±1.6), p<0.01. Current marijuana users showed a tendency (not statistically significant) towards lower total cholesterol, Triglycerides (TG), High Density Lipoprotein (HDL)-cholesterol, Low Density Lipoprotein (LDL)-cholesterol, body mass index (BMI) and systolic blood pressure, compared to former users or never users. Conclusion Current marijuana use is associated with significantly lower waist

  8. Inhibiting glutaminase in acute myeloid leukemia: metabolic dependency of selected AML subtypes.

    PubMed

    Matre, Polina; Velez, Juliana; Jacamo, Rodrigo; Qi, Yuan; Su, Xiaoping; Cai, Tianyu; Chan, Steven M; Lodi, Alessia; Sweeney, Shannon R; Ma, Helen; Davis, Richard Eric; Baran, Natalia; Haferlach, Torsten; Su, Xiaohua; Flores, Elsa Renee; Gonzalez, Doriann; Konoplev, Sergej; Samudio, Ismael; DiNardo, Courtney; Majeti, Ravi; Schimmer, Aaron D; Li, Weiqun; Wang, Taotao; Tiziani, Stefano; Konopleva, Marina

    2016-11-29

    Metabolic reprogramming has been described as a hallmark of transformed cancer cells. In this study, we examined the role of the glutamine (Gln) utilization pathway in acute myeloid leukemia (AML) cell lines and primary AML samples. Our results indicate that a subset of AML cell lines is sensitive to Gln deprivation. Glutaminase (GLS) is a mitochondrial enzyme that catalyzes the conversion of Gln to glutamate. One of the two GLS isoenzymes, GLS1 is highly expressed in cancer and encodes two different isoforms: kidney (KGA) and glutaminase C (GAC). We analyzed mRNA expression of GLS1 splicing variants, GAC and KGA, in several large AML datasets and identified increased levels of expression in AML patients with complex cytogenetics and within specific molecular subsets. Inhibition of glutaminase by allosteric GLS inhibitor bis-2-(5-phenylacetamido-1, 2, 4-thiadiazol-2-yl) ethyl sulfide or by novel, potent, orally bioavailable GLS inhibitor CB-839 reduced intracellular glutamate levels and inhibited growth of AML cells. In cell lines and patient samples harboring IDH1/IDH2 (Isocitrate dehydrogenase 1 and 2) mutations, CB-839 reduced production of oncometabolite 2-hydroxyglutarate, inducing differentiation. These findings indicate potential utility of glutaminase inhibitors in AML therapy, which can inhibit cell growth, induce apoptosis and/or differentiation in specific leukemia subtypes.

  9. Characterisation of metabolic acidosis in Kenyan children admitted to hospital for acute non-surgical conditions.

    PubMed

    Sasi, P; English, M; Berkley, J; Lowe, B; Shebe, M; Mwakesi, R; Kokwaro, G

    2006-05-01

    Metabolic acidosis is associated with most severe malaria deaths in African children, and most deaths occur before maximum antimalarial action is achieved. Thus, specific acidosis treatment may reduce mortality. However, the underlying mechanisms remain poorly understood and no specific interventions have been developed. A detailed characterisation of this acidosis is critical in treatment development. We used the traditional and Stewart's approach to characterise acidosis in consecutive paediatric admissions for malaria and other acute non-surgical conditions to Kilifi District Hospital in Kenya. The overall acidosis prevalence was 21%. Gastroenteritis had the highest prevalence (61%). Both the mean albumin-corrected anion gap and the strong ion gap were high (>13 mmol/l and >0 mmol/l, respectively) in malaria, gastroenteritis, lower respiratory tract infection and malnutrition. Presence of salicylate in plasma was not associated with acidosis but was associated with signs of severe illness (odds ratio 2.11, 95% CI 1.1-4.2). In malaria, mean (95% CI) strong ion gap was 15 (14-7) mmol/l, and lactate, creatinine and inorganic phosphorous explained only approximately 40% of the variability in base excess (adjusted R2 = 0.397). Acidosis may be more common than previously recognised amongst paediatric admissions in Africa and is characterised by the presence of currently unidentified strong anions. In malaria, lactate and ketones, but not salicylate, are associated with acidosis. However, unidentified anions may be more important.

  10. Acute nephropathy induced by gold sodium thiomalate: alterations in renal heme metabolism and morphology.

    PubMed

    Eiseman, J L; Ribas, J L; Knight, E; Alvares, A P

    1987-11-01

    Gold compounds are used clinically in rheumatoid arthritis therapy. Acute renal toxicity is observed in some patients receiving chrysotherapy. The present study addresses morphofunctional and biochemical changes in rat kidneys during the first 8 days following a single ip injection of gold sodium thiomalate (AuTM), one of the gold compounds presently in clinical use. Compared to controls, AuTM pretreatment resulted in increased urine output and elevated serum creatinine and urea nitrogen concentrations. Also, by Day 8, treated rats had decreased body weights and increased kidney weights. Postmortem examination on Day 1 showed pale and mottled kidneys and diffusely pale inner cortex. Microscopically, there was severe coagulative necrosis of the proximal tubular epithelium. Epithelial regeneration was prominent by Day 4 and was nearly complete by Day 8. The regenerating epithelium was hyperplastic with basophilic cytoplasm and pleomorphic nuclei. Alterations in renal heme biosynthesis and drug metabolism paralleled the morphologic changes. The activity of delta-aminolevulinic acid dehydratase and benzo[a]pyrene hydroxylase were inhibited on Days 1, 2, and 4 following AuTM administration. Decreases in monooxygenase activity were accompanied by decreases in renal cytochrome P-450 levels. In contrast, renal microsomal heme oxygenase activity was elevated 9.5-fold on Day 1 and 2.5-fold on Day 2. By Day 8, all renal enzymatic activities assayed for were similar to those obtained with untreated rats.

  11. Inhibiting glutaminase in acute myeloid leukemia: metabolic dependency of selected AML subtypes

    PubMed Central

    Jacamo, Rodrigo; Qi, Yuan; Su, Xiaoping; Cai, Tianyu; Chan, Steven M.; Lodi, Alessia; Sweeney, Shannon R.; Ma, Helen; Davis, Richard Eric; Baran, Natalia; Haferlach, Torsten; Su, Xiaohua; Flores, Elsa Renee; Gonzalez, Doriann; Konoplev, Sergej; Samudio, Ismael; DiNardo, Courtney; Majeti, Ravi; Schimmer, Aaron D.; Li, Weiqun; Wang, Taotao; Tiziani, Stefano; Konopleva, Marina

    2016-01-01

    Metabolic reprogramming has been described as a hallmark of transformed cancer cells. In this study, we examined the role of the glutamine (Gln) utilization pathway in acute myeloid leukemia (AML) cell lines and primary AML samples. Our results indicate that a subset of AML cell lines is sensitive to Gln deprivation. Glutaminase (GLS) is a mitochondrial enzyme that catalyzes the conversion of Gln to glutamate. One of the two GLS isoenzymes, GLS1 is highly expressed in cancer and encodes two different isoforms: kidney (KGA) and glutaminase C (GAC). We analyzed mRNA expression of GLS1 splicing variants, GAC and KGA, in several large AML datasets and identified increased levels of expression in AML patients with complex cytogenetics and within specific molecular subsets. Inhibition of glutaminase by allosteric GLS inhibitor bis-2-(5-phenylacetamido-1, 2, 4-thiadiazol-2-yl) ethyl sulfide or by novel, potent, orally bioavailable GLS inhibitor CB-839 reduced intracellular glutamate levels and inhibited growth of AML cells. In cell lines and patient samples harboring IDH1/IDH2 (Isocitrate dehydrogenase 1 and 2) mutations, CB-839 reduced production of oncometabolite 2-hydroxyglutarate, inducing differentiation. These findings indicate potential utility of glutaminase inhibitors in AML therapy, which can inhibit cell growth, induce apoptosis and/or differentiation in specific leukemia subtypes. PMID:27806325

  12. [The effect of space flight on metabolism: the results of biochemical research in rat experiments on the Kosmos biosatellites].

    PubMed

    Popova, I A; Grigor'ev, A I

    1992-01-01

    Cosmos biosatellites research program was the unique possibility to study the metabolic features influenced by space flight factors. Based on the existing ideas about relationships between some metabolic responses, the state of metabolism and the systems of its control in the rats flown in space was evaluated to differentiate the processes occurred in microgravity, possibly under effect of this factor and during first postflight hours. The biochemical results of studying the rats exposed to space environments during 7, 14, 18.5 and 19.5 days and sacrificed 4-11 h after landing (Cosmos-782, -936, -1129, -1667, -2044 flight) are used. The major portion of data are in line with understanding that after landing when the microgravity-adapted rats again return to 1-g environments they display an acute stress reaction. A postflight stress reaction is manifested itself in a specific way as compared to adequate and well studied model of acute and chronic stress and dictates subsequent metabolic changes. Postflight together with the acute stressful and progressing readaptation shifts the metabolic signs of previous adaptation to microgravity are shown up. In the absence of engineering feasibility to control or record the state of metabolism inflight it can only presupposed what metabolic status is typical of the animals in space environments and that its development is triggered by a decreased secretion of the biologically active growth hormone. This concept is confirmed by the postflight data.

  13. Exaggerated Acute Lung Injury and Impaired Antibacterial Defenses During Staphylococcus aureus Infection in Rats with the Metabolic Syndrome

    PubMed Central

    Feng, Xiaomei; Maze, Mervyn; Koch, Lauren G.; Britton, Steven L.; Hellman, Judith

    2015-01-01

    Rats with Metabolic Syndrome (MetaS) have a dysregulated immune response to the aseptic trauma of surgery. We hypothesized that rats with MetaS would have dysregulated inflammation, increased lung injury, and less effective antibacterial defenses during Staphylococcus (S.) aureus sepsis as compared to rats without MetaS. Low capacity runner (LCR; a model of MetaS) and high capacity runner (HCR) rats were challenged intravenously with S. aureus bacteria. After 48 h, inflammatory mediators and bacteria were quantified in the blood, bronchoalveolar lavage fluid (BALF), and lung homogenates. Lungs were analyzed histologically. BALF protein and lung wet-dry ratios were quantified to assess for vascular leak. Endpoints were compared in infected LCR vs HCR rats. LCR rats had higher blood and lung S. aureus counts, as well as higher levels of IL-6 in plasma, lungs and BALF, MIP-2 in plasma and lung, and IL-17A in lungs. Conversely, LCR rats had lower levels of IL-10 in plasma and lungs. Although lactate levels, and liver and renal function tests were similar between groups, LCR rats had higher BALF protein and lung wet-dry ratios, and more pronounced acute lung injury histologically. During S. aureus bacteremia, as compared with HCR rats, LCR (MetaS) rats have heightened pro-inflammatory responses, accompanied by increased acute lung injury and vascular leak. Notably, despite an augmented pro-inflammatory phenotype, LCR rats have higher bacterial levels in their blood and lungs. The MetaS state may exacerbate lung injury and vascular leak by attenuating the inflammation-resolving response, and by weakening antimicrobial defenses. PMID:25978669

  14. Exaggerated Acute Lung Injury and Impaired Antibacterial Defenses During Staphylococcus aureus Infection in Rats with the Metabolic Syndrome.

    PubMed

    Feng, Xiaomei; Maze, Mervyn; Koch, Lauren G; Britton, Steven L; Hellman, Judith

    2015-01-01

    Rats with Metabolic Syndrome (MetaS) have a dysregulated immune response to the aseptic trauma of surgery. We hypothesized that rats with MetaS would have dysregulated inflammation, increased lung injury, and less effective antibacterial defenses during Staphylococcus (S.) aureus sepsis as compared to rats without MetaS. Low capacity runner (LCR; a model of MetaS) and high capacity runner (HCR) rats were challenged intravenously with S. aureus bacteria. After 48 h, inflammatory mediators and bacteria were quantified in the blood, bronchoalveolar lavage fluid (BALF), and lung homogenates. Lungs were analyzed histologically. BALF protein and lung wet-dry ratios were quantified to assess for vascular leak. Endpoints were compared in infected LCR vs HCR rats. LCR rats had higher blood and lung S. aureus counts, as well as higher levels of IL-6 in plasma, lungs and BALF, MIP-2 in plasma and lung, and IL-17A in lungs. Conversely, LCR rats had lower levels of IL-10 in plasma and lungs. Although lactate levels, and liver and renal function tests were similar between groups, LCR rats had higher BALF protein and lung wet-dry ratios, and more pronounced acute lung injury histologically. During S. aureus bacteremia, as compared with HCR rats, LCR (MetaS) rats have heightened pro-inflammatory responses, accompanied by increased acute lung injury and vascular leak. Notably, despite an augmented pro-inflammatory phenotype, LCR rats have higher bacterial levels in their blood and lungs. The MetaS state may exacerbate lung injury and vascular leak by attenuating the inflammation-resolving response, and by weakening antimicrobial defenses.

  15. 1H NMR spectroscopic analysis detects metabolic disturbances in rat urine on acute exposure to heavy metal tungsten alloy based metals salt.

    PubMed

    Tyagi, Ritu; Rana, Poonam; Gupta, Mamta; Bhatnagar, Deepak; Srivastava, Shatakshi; Roy, Raja; Khushu, Subash

    2014-03-25

    Heavy metal tungsten alloys (HMTAs) have been found to be safer alternatives for making military munitions. Recently, some studies demonstrating the toxic potential of HMTAs have raised concern over the safety issues, and further propose that HMTAs exposure may lead to physiological disturbances as well. To look for the systemic effect of acute toxicity of HMTA based metals salt, (1)H nuclear magnetic resonance ((1)H NMR) spectroscopic profiling of rat urine was carried out. Male Sprague Dawley rats were administered (intraperitoneal) low and high dose of mixture of HMTA based metals salt and NMR spectroscopy was carried out in urine samples collected at 8, 24, 72 and 120 h post dosing (p.d.). Serum biochemical parameters and liver histopathology were also conducted. The (1)H NMR spectra were analysed using multivariate analysis techniques to show the time- and dose-dependent biochemical variations in post HMTA based metals salt exposure. Urine metabolomic analysis showed changes associated with energy metabolism, amino acids, N-methyl nicotinamide, membrane and gut flora metabolites. Multivariate analysis showed maximum variation with best classification of control and treated groups at 24h p.d. At the end of the study, for the low dose group most of the changes at metabolite level reverted to control except for the energy metabolites; whereas, in the high dose group some of the changes still persisted. The observations were well correlated with histopathological and serum biochemical parameters. Further, metabolic pathway analysis clarified that amongst all the metabolic pathways analysed, tricarboxylic acid cycle was most affected at all the time points indicating a switchover in energy metabolism from aerobic to anaerobic. These results suggest that exposure of rats to acute doses of HMTA based metals salt disrupts physiological metabolism with moderate injury to the liver, which might indirectly result from heavy metals induced oxidative stress.

  16. Characterization of phase I metabolism of resibufogenin and evaluation of the metabolic effects on its antitumor activity and toxicity.

    PubMed

    Ning, Jing; Yu, Zhen-Long; Hu, Liang-Hai; Wang, Chao; Huo, Xiao-Kui; Deng, Sa; Hou, Jie; Wu, Jing-Jing; Ge, Guang-Bo; Ma, Xiao-Chi; Yang, Ling

    2015-03-01

    Resibufogenin (RB), one of the major active compounds of the traditional Chinese medicine Chansu, has displayed great potential as a chemotherapeutic agent in oncology. However, it is a digoxin-like compound that also exhibits extremely cardiotoxic effects. The present study aimed to characterize the metabolic behaviors of RB in humans as well as to evaluate the metabolic effects on its bioactivity and toxicity. The phase I metabolic profile in human liver microsomes was characterized systemically, and the major metabolite was identified as marinobufagenin (5β-hydroxylresibufogenin, 5-HRB) by liquid chromatography-mass spectrometry and nuclear magnetic imaging techniques. Both cytochrome P450 (P450) reaction phenotyping and inhibition assays using P450-selective chemical inhibitors demonstrated that CYP3A4 was mainly involved in RB 5β-hydroxylation with much higher selectivity than CYP3A5. Kinetic characterization demonstrated that RB 5β-hydroxylation in both human liver microsomes and human recombinant CYP3A4 obeyed biphasic kinetics and displayed similar apparent kinetic parameters. Furthermore, 5-HRB could significantly induce cell growth inhibition and apoptosis in A549 and H1299 by facilitating apoptosome assembly and caspase activation. Meanwhile, 5-HRB displayed very weak cytotoxicity of human embryonic lung fibroblasts, and in mice there was a greater tolerance to acute toxicity. In summary, CYP3A4 dominantly mediated 5β-hydroxylation and was found to be a major metabolic pathway of RB in the human liver, whereas its major metabolite (5-HRB) displayed better druglikeness than its parent compound RB. Our findings lay a solid foundation for RB metabolism studies in humans and encourage further research on the bioactive metabolite of RB.

  17. Metabolic Effects of Sucralose on Environmental Bacteria

    PubMed Central

    2013-01-01

    Sucralose was developed as a low cost artificial sweetener that is nonmetabolizable in humans. Sucralose can withstand changes in pH and temperature and is not degraded by the wastewater treatment process. Since the molecule can withstand heat, acidification, and microbial degradation, it is accumulating in the environment and has been found in wastewater, estuaries, rivers, and the Gulf Stream. Environmental isolates were cultured in the presence of sucralose looking for potential sucralose metabolism or growth acceleration responses. Sucralose was found to be nonnutritive and demonstrated bacteriostatic effects on all six isolates. This growth inhibition was directly proportional to the concentration of sucralose exposure, and the amount of the growth inhibition appeared to be species-specific. The bacteriostatic effect may be due to a decrease in sucrose uptake by bacteria exposed to sucralose. We have determined that sucralose inhibits invertase and sucrose permease. These enzymes cannot catalyze hydrolysis or be effective in transmembrane transport of the sugar substitute. Current environmental concentrations should not have much of an effect on environmental bacteria since the bacteriostatic effect seems to be consecration based; however, as sucralose accumulates in the environment, we must consider it a contaminant, especially for microenvironments. PMID:24368913

  18. Emerging therapeutic targets for the treatment of human acute myeloid leukemia (part 1) - gene transcription, cell cycle regulation, metabolism and intercellular communication.

    PubMed

    Reikvam, Håkon; Hauge, Michelle; Brenner, Annette K; Hatfield, Kimberley Joanne; Bruserud, Øystein

    2015-06-01

    Human acute myeloid leukemia is a heterogeneous disease and the effect of therapeutic targeting of specific molecular mechanisms will probably vary between patient subsets. Cell cycle regulators are among the emerging targets (e.g., aurora and polo-like kinases, cyclin-dependent kinases). Inhibition of communication between acute myeloid leukemia and stromal cells is also considered; among the most promising of these strategies are inhibition of hedgehog-initiated, CXCR4-CXCL12 and Axl-Gas6 signaling. Finally, targeting of energy and protein metabolism is considered, the most promising strategy being inhibition of isocitrate dehydrogenase in patients with IDH mutations. Thus, several strategies are now considered, and a major common challenge for all of them is to clarify how they should be combined with each other or with conventional chemotherapy, and whether their use should be limited to certain subsets of patients.

  19. Acute effects of solar particle event radiation

    PubMed Central

    Kennedy, Ann R.; Weissman, Drew; Sanzari, Jenine K.; Krigsfeld, Gabriel S.; Wan, X. Steven; Romero-Weaver, Ana L.; Diffenderfer, Eric S.; Lin, L.; Cengel, K.

    2014-01-01

    A major solar particle event (SPE) may place astronauts at significant risk for the acute radiation syndrome (ARS), which may be exacerbated when combined with other space flight stressors, such that the mission or crew health may be compromised. The National Space Biomedical Research Institute (NSBRI) Center of Acute Radiation Research (CARR) is focused on the assessment of risks of adverse biological effects related to the ARS in animals exposed to space flight stressors combined with the types of radiation expected during an SPE. The CARR studies are focused on the adverse biological effects resulting from exposure to the types of radiation, at the appropriate energies, doses and dose-rates, present during an SPE (and standard reference radiations: gamma rays or electrons). All animal studies described have been approved by the University of PA IACUC. Some conclusions from recent CARR investigations are as follows: (i) the relative biological effectiveness (RBE) values for SPE-like protons compared with standard reference radiations (gammas or electrons) for white blood cells (WBCs) vary greatly between mice, ferrets and pigs, with the RBE values being greater in ferrets than those in mice, and considerably greater in pigs compared with those in ferrets or mice [1, 2]. This trend for the data suggests that the RBE values for WBCs in humans could be considerably greater than those observed in small mammals, and SPE proton radiation may be far more hazardous to humans than previously estimated from small animal studies. (ii) Very low doses of SPE proton radiation (25 cGy) increase blood clotting times in ferrets, and the low SPE-like dose rate has more severe effects than high dose rate radiation [3]. (iii) Results from pig and ferret studies suggest that disseminated intravascular coagulation is a major cause of death at doses near the LD50 level for SPE-like proton and gamma radiation. (iv) Exposure to SPE-like proton or gamma radiation, in combination with

  20. Alterations in cancer cell metabolism: the Warburg effect and metabolic adaptation.

    PubMed

    Asgari, Yazdan; Zabihinpour, Zahra; Salehzadeh-Yazdi, Ali; Schreiber, Falk; Masoudi-Nejad, Ali

    2015-05-01

    The Warburg effect means higher glucose uptake of cancer cells compared to normal tissues, whereas a smaller fraction of this glucose is employed for oxidative phosphorylation. With the advent of high throughput technologies and computational systems biology, cancer cell metabolism has been reinvestigated over the last decades toward identifying various events underlying "how" and "why" a cancer cell employs aerobic glycolysis. Significant progress has been shaped to revise the Warburg effect. In this study, we have integrated the gene expression of 13 different cancer cells with the genome-scale metabolic network of human (Recon1) based on the E-Flux method, and analyzed them based on constraint-based modeling. Results show that regardless of significant up- and down-regulated metabolic genes, the distribution of metabolic changes is similar in different cancer types. These findings support the theory that the Warburg effect is a consequence of metabolic adaptation in cancer cells.

  1. Effects of obesity on bone metabolism.

    PubMed

    Cao, Jay J

    2011-06-15

    Obesity is traditionally viewed to be beneficial to bone health because of well-established positive effect of mechanical loading conferred by body weight on bone formation, despite being a risk factor for many other chronic health disorders. Although body mass has a positive effect on bone formation, whether the mass derived from an obesity condition or excessive fat accumulation is beneficial to bone remains controversial. The underline pathophysiological relationship between obesity and bone is complex and continues to be an active research area. Recent data from epidemiological and animal studies strongly support that fat accumulation is detrimental to bone mass. To our knowledge, obesity possibly affects bone metabolism through several mechanisms. Because both adipocytes and osteoblasts are derived from a common multipotential mesenchymal stem cell, obesity may increase adipocyte differentiation and fat accumulation while decrease osteoblast differentiation and bone formation. Obesity is associated with chronic inflammation. The increased circulating and tissue proinflammatory cytokines in obesity may promote osteoclast activity and bone resorption through modifying the receptor activator of NF-κB (RANK)/RANK ligand/osteoprotegerin pathway. Furthermore, the excessive secretion of leptin and/or decreased production of adiponectin by adipocytes in obesity may either directly affect bone formation or indirectly affect bone resorption through up-regulated proinflammatory cytokine production. Finally, high-fat intake may interfere with intestinal calcium absorption and therefore decrease calcium availability for bone formation. Unraveling the relationship between fat and bone metabolism at molecular level may help us to develop therapeutic agents to prevent or treat both obesity and osteoporosis. Obesity, defined as having a body mass index ≥ 30 kg/m2, is a condition in which excessive body fat accumulates to a degree that adversely affects health. The rates of

  2. Plasma reactive oxygen metabolites and non-enzymatic antioxidant capacity are not affected by an acute increase of metabolic rate in zebra finches.

    PubMed

    Beamonte-Barrientos, Rene; Verhulst, Simon

    2013-07-01

    Understanding the sources of variation in oxidative stress level is a challenging issue due to the implications of oxidative stress for late age diseases, longevity and life-history trade-offs. Reactive oxygen species that cause oxidative stress are mostly a by-product of energy metabolism and it is therefore often assumed that oxidative stress is proportional to energy consumption. In mammals, an increased metabolic rate induced by cold exposure generally increases oxidative stress. However, compared to mammals, birds generate fewer free radicals per ATP produced and hence it is not obvious that, in birds, a cold-induced increase of metabolic rate increase oxidative stress. We tested whether cold-induced increase in metabolic rate increased oxidative stress in zebra finches by exposing individuals to cold and warm overnight temperatures. We registered metabolic rate and plasma levels of non-enzymatic antioxidants and reactive oxygen metabolites (ROMs), a measure of oxidative damage. Metabolic rate was on average 88 % higher in cold compared to warm temperature, with females being stronger affected than males. However, temperature had no effect on plasma antioxidants or our measure of oxidative damage. Middle-age birds had higher levels of plasma antioxidants than younger and older birds, but age was unrelated to ROMs. Birds showed repeatability of plasma ROMs across temperatures but not of non-enzymatic antioxidants. In contrast to similar studies in mammals, our results do not show evidence of increased oxidative stress in plasma after an acute cold-induced increase of metabolic rate but research in more bird species is needed to assess the generality of this pattern.

  3. Acute-phase protein concentration and metabolic status affect the outcome of treatment in cows with clinical and subclinical endometritis.

    PubMed

    Heidarpour, M; Mohri, M; Fallah-Rad, A H; Dehghan Shahreza, F; Mohammadi, M

    2012-09-01

    The aim of this study was to investigate the role of acute-phase protein concentration and metabolic status in the establishment and resistance of clinical endometritis (CE) and subclinical endometritis (SE) in dairy cows. We also characterised the treatment-related changes in the concentration of acute-phase proteins and metabolic variables in dairy cows affected by CE and SE. Cows of the SE and CE groups presented a significantly higher β-hydroxybutyrate (BHB), haptoglobin and total sialic acid (TSA) concentrations compared with a healthy group of animals. A significantly lower serum calcium concentration, and a significantly higher serum aspartate aminotransferase activity in the CE group, were observed when compared with SE and healthy groups. The comparison of parameters before treatment indicated that cows suffering from CE or SE with lower concentrations of hepatic and inflammatory markers showed a better response to further treatment, and endometritis was not detected in the second examination. Moreover, decreased concentrations of BHB, acute-phase proteins and hepatic markers were observed after successful treatment for endometritis in CE and SE cows. The results obtained in this study suggest that improved liver function and a decrease in the acute-phase protein concentration might favour the resolution of endometritis after treatment.

  4. Deciphering the biological effects of acupuncture treatment modulating multiple metabolism pathways.

    PubMed

    Zhang, Aihua; Yan, Guangli; Sun, Hui; Cheng, Weiping; Meng, Xiangcai; Liu, Li; Xie, Ning; Wang, Xijun

    2016-02-16

    Acupuncture is an alternative therapy that is widely used to treat various diseases. However, detailed biological interpretation of the acupuncture stimulations is limited. We here used metabolomics and proteomics technology, thereby identifying the serum small molecular metabolites into the effect and mechanism pathways of standardized acupuncture treatments at 'Zusanli' acupoint which was the most often used acupoint in previous reports. Comprehensive overview of serum metabolic profiles during acupuncture stimulation was investigated. Thirty-four differential metabolites were identified in serum metabolome and associated with ten metabolism pathways. Importantly, we have found that high impact glycerophospholipid metabolism, fatty acid metabolism, ether lipid metabolism were acutely perturbed by acupuncture stimulation. As such, these alterations may be useful to clarify the biological mechanism of acupuncture stimulation. A series of differentially expressed proteins were identified and such effects of acupuncture stimulation were found to play a role in transport, enzymatic activity, signaling pathway or receptor interaction. Pathway analysis further revealed that most of these proteins were found to play a pivotal role in the regulation of multiple metabolism pathways. It demonstrated that the metabolomics coupled with proteomics as a powerful approach for potential applications in understanding the biological effects of acupuncture stimulation.

  5. Effects of Interferons and Viruses on Metabolism

    PubMed Central

    Fritsch, Stephanie Deborah; Weichhart, Thomas

    2016-01-01

    Interferons (IFNs) are potent pleiotropic cytokines that broadly alter cellular functions in response to viral and other infections. These alterations include changes in protein synthesis, proliferation, membrane composition, and the nutritional microenvironment. Recent evidence suggests that antiviral responses are supported by an IFN-induced rewiring of the cellular metabolism. In this review, we discuss the roles of type I and type II IFNs in regulating the cellular metabolism and biosynthetic reactions. Furthermore, we give an overview of how viruses themselves affect these metabolic activities to promote their replication. In addition, we focus on the lipid as well as amino acid metabolisms, through which IFNs exert potent antiviral and immunomodulatory activities. Conversely, the expression of IFNs is controlled by the nutrient sensor mammalian target of rapamycin or by direct reprograming of lipid metabolic pathways. These findings establish a mutual relationship between IFN production and metabolic core processes. PMID:28066439

  6. Some metabolic effects of overeating in man.

    PubMed

    Welle, S L; Seaton, T B; Campbell, R G

    1986-12-01

    Metabolic responses to 20 days of overeating were examined in five healthy volunteers. Overfeeding caused a variable increase (1-18%) in basal metabolic rate but no change in metabolic rate during light exercise. Postprandial resting metabolic rate was 8-40% higher (mean 18%) during overeating. The increase in oxygen consumption during a norepinephrine infusion was the same before (20 +/- 2%) and after (17 +/- 3%) overfeeding. Overfeeding elevated basal insulin concentrations in all subjects and increased the insulin response to intravenous glucose in four of five subjects. Overfeeding did not significantly alter mean serum T3 concentrations or erythrocyte 86Rb uptake (an index of Na+,K+-ATPase activity). These data do not confirm reports that overfeeding increases metabolic rate more during exercise than during rest. They also suggest that the increase in resting metabolic rate during overfeeding is not caused by increased responsiveness to norepinephrine or increased serum T3 concentrations.

  7. Glucose Effect in the Acute Porphyrias

    MedlinePlus

    ... 2017 Apr 05, 2017 National Porphyria Awareness Week! Mar 23, 2017 National Porphyria Awareness Week is ONE ... 2017 National Porphyria Awareness Week (NPAW) 2017 date: Mar 1, 2017 FDA Meeting for Acute Porphyrias is ...

  8. Gene-gene interactions in the folate metabolic pathway influence the risk for acute lymphoblastic leukemia in children.

    PubMed

    Petra, Bohanec Grabar; Janez, Jazbec; Vita, Dolzan

    2007-04-01

    Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer. Genetic polymorphisms in the folate metabolic pathway may contribute to the susceptibility to childhood ALL because they affect the DNA synthesis, methylation and repair. We analysed common genetic polymorphisms of 5,10-methylenetetrahydrofolate reductase (MTHFR), thymidylate synthase (TS), methionine synthase (MS) and methionine synthase reductase (MTRR) in 68 children with ALL and 258 healthy controls to investigate their influence on the risk for ALL. No significant differences in frequencies of separate polymorphisms were observed between both groups. Combined MTHFR 677CT/TT and MS 2756AG/GG genotypes showed a nonsignificant tendency to reduce the risk for ALL 2.24-fold (CI: 0.191 - 1.037, P: 0.061). The risk was significantly reduced in carriers of combined MTHFR 677CT/TT, MS 2756AG/GG and MTRR 66AG/GG genotypes (OR: 0.312; CI: 0.107 - 0.907; P: 0.032). Our results suggest that gene - gene interactions that may decrease the methylation capacity might have a protective effect on the risk for childhood ALL.

  9. Short-term time course of liver metabolic response to acute handling stress in rainbow trout, Oncorhynchus mykiss.

    PubMed

    López-Patiño, Marcos A; Hernández-Pérez, Juan; Gesto, Manuel; Librán-Pérez, Marta; Míguez, Jesús M; Soengas, José L

    2014-02-01

    To elucidate the short-term time-course of liver metabolic response in rainbow trout to acute handling stress we subjected rainbow trout to 5min chasing and obtained samples 0 to 480min post-stress. Levels of cortisol, glucose and lactate were measured in plasma, whereas metabolite levels, enzyme activities, mRNA abundance of parameters related to energy metabolism, and glucocorticoid receptors were assessed in liver. Acute stress affected many parameters related to energy metabolism, with most of them turning back to normal levels after 480min. In general, the present results support the existence of two stages in the short-term time-course of metabolic response to handling stress. A first stage occurring few minutes post-stress (15-45min), was characterized by increased mobilization of liver glycogen resulting in increased production of endogenous glucose, reduced use of exogenous glucose and reduced lipogenic potential. A second stage, occurring 60-120min post-stress onwards was characterized by the recovery of liver glycogen levels, the increased capacity of liver for releasing glucose, and the recovery of lipogenic capacity whereas no changes were noted in gluconeogenic potential, which probably needs longer time periods to become enhanced.

  10. Cellular metabolic, stress, and histological response on exposure to acute toxicity of endosulfan in tilapia (Oreochromis mossambicus).

    PubMed

    Kumar, Neeraj; Sharma, Rupam; Tripathi, Gayatri; Kumar, Kundan; Dalvi, Rishikesh S; Krishna, Gopal

    2016-01-01

    Endosulfan is one of the most hazardous organochlorines pesticides responsible for environmental pollution, as it is very persistent and shows bio-magnification. This study evaluated the impact of acute endosulfan toxicity on metabolic enzymes, lysozyme activities, heat shock protein (Hsp) 70 expression, and histopathology in Tilapia (Oreochromis mossambicus). Among the indicators that were induced in dose dependent manner were the enzymes of amino acid metabolism (serum alanine aminotransferase and aspartate aminotransferase), carbohydrate metabolism (serum lactate dehydrogenase), pentose phosphate pathway (Glucose-6-phosphate dehydrogenase) as well as lysozyme and Hsp70 in liver and gill, while liver and gill Isocitrate dehydrogenase (TCA cycle enzyme) and marker of general energetics (Total adenosine triphosphatase) were inhibited. Histopathological alterations in gill were clubbing of secondary gill lamellae, marked hyperplasia, complete loss of secondary lamellae and atrophy of primary gill filaments. Whereas in liver, swollen hepatocyte, and degeneration with loss of cellular boundaries were distinctly noticed. Overall results clearly demonstrated the unbalanced metabolism and damage of the vital organs like liver and gill in Tilapia due to acute endosulfan exposure.

  11. Effects of Cell Phone Radiofrequency Signal Exposure on Brain Glucos Metabolism

    SciTech Connect

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Tomasi, D.; Wang, G.-J.; Vaska, P.; Fowler, J.S.; Telang, F.; Alexoff, D.; Logan, J.; Wong, C.

    2011-03-01

    The dramatic increase in use of cellular telephones has generated concern about possible negative effects of radiofrequency signals delivered to the brain. However, whether acute cell phone exposure affects the human brain is unclear. To evaluate if acute cell phone exposure affects brain glucose metabolism, a marker of brain activity. Randomized crossover study conducted between January 1 and December 31, 2009, at a single US laboratory among 47 healthy participants recruited from the community. Cell phones were placed on the left and right ears and positron emission tomography with ({sup 18}F)fluorodeoxyglucose injection was used to measure brain glucose metabolism twice, once with the right cell phone activated (sound muted) for 50 minutes ('on' condition) and once with both cell phones deactivated ('off' condition). Statistical parametric mapping was used to compare metabolism between on and off conditions using paired t tests, and Pearson linear correlations were used to verify the association of metabolism and estimated amplitude of radiofrequency-modulated electromagnetic waves emitted by the cell phone. Clusters with at least 1000 voxels (volume >8 cm{sup 3}) and P < .05 (corrected for multiple comparisons) were considered significant. Brain glucose metabolism computed as absolute metabolism ({micro}mol/100 g per minute) and as normalized metabolism (region/whole brain). Whole-brain metabolism did not differ between on and off conditions. In contrast, metabolism in the region closest to the antenna (orbitofrontal cortex and temporal pole) was significantly higher for on than off conditions (35.7 vs 33.3 {micro}mol/100 g per minute; mean difference, 2.4 [95% confidence interval, 0.67-4.2]; P = .004). The increases were significantly correlated with the estimated electromagnetic field amplitudes both for absolute metabolism (R = 0.95, P < .001) and normalized metabolism (R = 0.89; P < .001). In healthy participants and compared with no exposure, 50-minute

  12. Compound danshen dripping pills modulate the perturbed energy metabolism in a rat model of acute myocardial ischemia.

    PubMed

    Guo, Jiahua; Yong, Yonghong; Aa, Jiye; Cao, Bei; Sun, Runbin; Yu, Xiaoyi; Huang, Jingqiu; Yang, Na; Yan, Lulu; Li, Xinxin; Cao, Jing; Aa, Nan; Yang, Zhijian; Kong, Xiangqing; Wang, Liansheng; Zhu, Xuanxuan; Ma, Xiaohui; Guo, Zhixin; Zhou, Shuiping; Sun, He; Wang, Guangji

    2016-12-01

    The continuous administration of compound danshen dripping pills (CDDP) showed good efficacy in relieving myocardial ischemia clinically. To probe the underlying mechanism, metabolic features were evaluated in a rat model of acute myocardial ischemia induced by isoproterenol (ISO) and administrated with CDDP using a metabolomics platform. Our data revealed that the ISO-induced animal model showed obvious myocardial injury, decreased energy production, and a marked change in metabolomic patterns in plasma and heart tissue. CDDP pretreatment increased energy production, ameliorated biochemical indices, modulated the changes and metabolomic pattern induced by ISO, especially in heart tissue. For the first time, we found that ISO induced myocardial ischemia was accomplished with a reduced fatty acids metabolism and an elevated glycolysis for energy supply upon the ischemic stress; while CDDP pretreatment prevented the tendency induced by ISO and enhanced a metabolic shift towards fatty acids metabolism that conventionally dominates energy supply to cardiac muscle cells. These data suggested that the underlying mechanism of CDDP involved regulating the dominant energy production mode and enhancing a metabolic shift toward fatty acids metabolism in ischemic heart. It was further indicated that CDDP had the potential to prevent myocardial ischemia in clinic.

  13. Compound danshen dripping pills modulate the perturbed energy metabolism in a rat model of acute myocardial ischemia

    PubMed Central

    Guo, Jiahua; Yong, Yonghong; Aa, Jiye; Cao, Bei; Sun, Runbin; Yu, Xiaoyi; Huang, Jingqiu; Yang, Na; Yan, Lulu; Li, Xinxin; Cao, Jing; Aa, Nan; Yang, Zhijian; Kong, Xiangqing; Wang, Liansheng; Zhu, Xuanxuan; Ma, Xiaohui; Guo, Zhixin; Zhou, Shuiping; Sun, He; Wang, Guangji

    2016-01-01

    The continuous administration of compound danshen dripping pills (CDDP) showed good efficacy in relieving myocardial ischemia clinically. To probe the underlying mechanism, metabolic features were evaluated in a rat model of acute myocardial ischemia induced by isoproterenol (ISO) and administrated with CDDP using a metabolomics platform. Our data revealed that the ISO-induced animal model showed obvious myocardial injury, decreased energy production, and a marked change in metabolomic patterns in plasma and heart tissue. CDDP pretreatment increased energy production, ameliorated biochemical indices, modulated the changes and metabolomic pattern induced by ISO, especially in heart tissue. For the first time, we found that ISO induced myocardial ischemia was accomplished with a reduced fatty acids metabolism and an elevated glycolysis for energy supply upon the ischemic stress; while CDDP pretreatment prevented the tendency induced by ISO and enhanced a metabolic shift towards fatty acids metabolism that conventionally dominates energy supply to cardiac muscle cells. These data suggested that the underlying mechanism of CDDP involved regulating the dominant energy production mode and enhancing a metabolic shift toward fatty acids metabolism in ischemic heart. It was further indicated that CDDP had the potential to prevent myocardial ischemia in clinic. PMID:27905409

  14. Inhalation of diethylamine--acute nasal effects and subjective response

    SciTech Connect

    Lundqvist, G.R.; Yamagiwa, M.; Pedersen, O.F.; Nielsen, G.D. )

    1992-03-01

    Adult volunteers were exposed to 25 ppm (75 mg/m3) diethylamine in a climate chamber for 15 min in order to study the acute nasal reactions to an exposure equivalent to the present threshold limit value-short-term exposure limit. Changes in nasal volume and nasal resistance were measured by acoustic rhinometry and by rhinomanometry. Acute change in nasal volume, usually seen as acute nasal mucosa response to thermal stimuli, was not observed, nor was an acute change in nasal airway resistance. In a subsequent experiment, the aim was to measure acute sensory effects. Exposure to a concentration increasing from 0 to 12 ppm took place for 60 min, equal to an average concentration of 10 ppm (30 mg/m3). A moderate to strong olfactory response and distinct nasal and eye irritation were observed. In spite of considerable individual variation, the results were in agreement with sensory effect estimates obtained from animal studies.

  15. Effects of resistance training on testosterone metabolism in younger and older men.

    PubMed

    Ahtiainen, Juha P; Nyman, Kai; Huhtaniemi, Ilpo; Parviainen, Tapani; Helste, Mika; Rannikko, Antti; Kraemer, William J; Häkkinen, Keijo

    2015-09-01

    This study investigated the effects of resistance training (RT) on the metabolism of testosterone (T) in younger (n=5, 28±3yrs.) and older (n=8, 70±2yrs.) men. Experimental heavy resistance exercises (5×10RM leg presses) were performed before and after a 12-month of RT. No age differences were found in the production or metabolic clearance rate of T (determined by stable isotope dilution method), skeletal muscle androgen receptor content or serum LH concentrations due to acute or chronic RT. The T production capacity response to gonadotropin stimulation and the concentrations of the urinary T metabolites (androsterone and etiocholanolone) were lower in the older compared to younger men (p<0.05-0.01). This study further showed that RT may have acute effect on T production and clearance rates, while the exercise-induced increases in serum T appeared to be induced by decreased metabolic clearance rate of T. Attenuated T production capacity and urinary excretion of T metabolites in older men may reflect the known reduction in testicular steroidogenesis upon aging. No changes were observed in T metabolism due to RT indicating a homeostatic stability for this hormone in men of different ages.

  16. Disopyramide pharmacokinetics and metabolism: effect of inducers.

    PubMed Central

    Kapil, R P; Axelson, J E; Mansfield, I L; Edwards, D J; McErlane, B; Mason, M A; Lalka, D; Kerr, C R

    1987-01-01

    1. The disposition of orally administered disopyramide was studied in a population of smokers (n = 6) and non-smokers (n = 8) before and during phenobarbitone treatment (100 mg daily for 21 days; Cp 21st day = 13.9 +/- 2.0 micrograms ml-1). The comparative inducibility of these populations by phenobarbitone was assessed as was the inductive effect of cigarette smoking, per se. Furthermore, the determinants of the intensity of the inductive effect were examined, as well as the effect of the barbiturate on the binding of disopyramide to alpha 1-acid glycoprotein (AGP). 2. Smokers and non-smokers exhibited similar half-lives (6.48 +/- 1.49 vs 6.66 +/- 1.02 h), apparent total body clearances (0.100 +/- 0.020 vs 0.117 +/- 0.034 l h-1 kg-1), mean renal clearances (0.043 +/- 0.0093 vs 0.057 +/- 0.013 l h-1 kg-1) and apparent intrinsic metabolic clearances (0.057 +/- 0.015 vs 0.060 +/- 0.024 l h-1 kg-1) before phenobarbitone treatment. 3. Both populations responded comparably to barbiturate exposure in that apparent intrinsic metabolic clearance more than doubled. Interestingly, the magnitude of this increase was highly dependent on the observed baseline apparent intrinsic metabolic clearance, (r' = 0.81; P less than 0.001). 4. Phenobarbitone treatment of non-smokers resulted in an increase in the AUC of the active metabolite N-despropyl disopyramide (MND), but not significantly (3.8 +/- 1.6 vs 4.1 +/- 2.3 micrograms ml-1 h). Similar results were observed in smokers (3.5 +/- 1.4 vs 3.9 +/- 2.0 micrograms ml-1 h, respectively). 5. The percent of administered dose recovered in urine as disopyramide in non-smokers was significantly decreased upon phenobarbitone treatment (43 +/- 6% vs 25 +/- 5%), whereas the percent of dose recovered as MND increased significantly in this group (25 +/- 6% vs 31 +/- 5%). The population of smokers responded similarly. 6. At doses typically used to achieve hepatic microsomal enzyme induction in man, phenobarbitone treatment caused no significant

  17. The effect of acute stress and long-term corticosteroid administration on plasma metabolites in an urban and desert songbird.

    PubMed

    Davies, Scott; Rodriguez, Natalie S; Sweazea, Karen L; Deviche, Pierre

    2013-01-01

    In response to stressful stimuli, animals activate the hypothalamic-pituitary-adrenal axis, which can result in transition to the "emergency life history stage." A key adaptive characteristic of this life history stage is the mobilization of energy stores. However, few data are available on the metabolic response to acute stress in wild-caught, free-ranging birds. We quantified the effect of acute capture and restraint stress on plasma glucose, free fatty acid, and uric acid in free-ranging Abert's towhees Melozone aberti. Furthermore, birds were caught from urban and desert localities of Phoenix, Arizona, to investigate potential effects of urban versus desert habitats on the corticosterone (CORT) and metabolic response to acute stress. Complementing work on free-ranging birds, captive towhees received CORT-filled Silastic capsules to investigate the response of urban and desert conspecifics to long-term CORT administration. We quantified the effect of CORT administration on baseline plasma glucose and uric acid, liver and pectoralis muscle glycogen stores, kidney phosphoenolpyruvate carboxykinase (PEPCK-C, a key gluconeogenic enzyme), and body mass. Acute stress increased plasma CORT and glucose and decreased plasma uric acid but had no effect on plasma free fatty acid. There was no difference between urban and desert localities in body mass, fat scores, and the response to acute stress. CORT administration decreased body mass but had no effect on glucose and uric acid, pectoral muscle glycogen, or kidney PEPCK-C. However, liver glycogen of CORT-treated urban birds increased compared with corresponding controls, whereas glycogen decreased in CORT-treated desert birds. This study suggests that Abert's towhees principally mobilize glucose during acute stress but urban and desert towhees do not differ in their CORT and metabolic response to acute stress or long-term CORT administration.

  18. Effect of cytochrome P450 inhibitors and anticonvulsants on the acute toxicity of acrylonitrile.

    PubMed

    Benz, Frederick W; Nerland, Donald E

    2005-10-01

    Some of the more striking expressions of toxicity are the tremors and seizures observed approximately 100 min after exposure of rats to an acutely toxic dose of acrylonitrile (AN). These early events are followed by a second wave of severe clonic convulsions that occur just prior to death at about 3-4 h. For AN, at least two chemical entities could produce these toxic effects, namely the parent AN molecule, the metabolically-released cyanide, or both. Which of these two agents is responsible for each of the symptoms of acute intoxication is not known. To help dissect the toxicity, it was anticipated that an effective inhibitor of the oxidative metabolism of AN to cyanide could help us to understand which toxic symptoms might be associated with each agent. Three inhibitors of oxidative metabolism were tested, namely SKF-525A, 1-benzylimidazole and metyrapone and one alternative substrate, ethanol. As compared to SKF-525A and metyrapone, both 1-benzylimidazole and ethanol were highly effective in reducing blood cyanide levels to insignificant levels in rats treated with an LD90 dose of AN. In addition, both agents abolished the early seizure activity, suggesting that this first phase of seizures is due to cyanide and not the parent molecule. 1-Benzylimidazole did not prevent the severe clonic convulsive phase preceding death, suggesting that these terminal convulsions are due to the toxic effects of the parent AN molecule. The CNS depressant ethanol was only partially effective in attenuating the terminal convulsions. None of these agents affected the incidence of AN-induced mortality, clearly establishing that, even in the absence of cyanide, the parent AN molecule is acutely toxic. The partial effectiveness of ethanol suggested that anticonvulsants might be of benefit. Both phenobarbital and phenytoin protected rats from both the early and terminal convulsions, while valproic acid was ineffective. These effects were not related to a reduction in blood cyanide

  19. Effect of a synbiotic on infantile acute gastroenteritis.

    PubMed

    Gundogdu, Z

    2013-09-01

    Acute gastroenteritis is still a common disease worldwide. Synbiotics are being used to alleviate the effects of acute gastroenteritis-related diarrhoea. The objective of this study was to determine the efficacy of a synbiotic in reducing the duration of diarrhoea in children with acute gastroenteritis. The study has been carried out on data gathered from children with acute gastroenteritis between the age of three months and 14 years seen in paediatric polyclinics between August 2009 and April 2010. While synbiotic group patients got a sachet containing Bifidobacterium lactis 2211 with a minimum of 5×10⁶ cfu active bacteria and 900 mg chicory inulin twice daily for five days together with an oral rehydration solution, the control group only received an oral rehydration solution. Therapy with synbiotic plus an oral rehydration solution shortened the duration of acute diarrhoea in children by approximately one day compared to oral rehydration solution only.

  20. Sprague-Dawley rats display metabolism-mediated sex differences in the acute toxicity of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy)

    SciTech Connect

    Fonsart, Julien ||; Menet, Marie-Claude |; Decleves, Xavier ||; Galons, Herve |; Crete, Dominique; Debray, Marcel; Scherrmann, Jean-Michel ||; Noble, Florence ||

    2008-07-01

    The use of the amphetamine derivative 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) has been associated with unexplained deaths. Male humans and rodents are more sensitive to acute toxicity than are females, including a potentially lethal hyperthermia. MDMA is highly metabolized to five main metabolites, by the enzymes CYP1A2 and CYP2D. The major metabolite in rats, 3,4-methylenedioxyamphetamine (MDA), also causes hyperthermia. We postulated that the reported sex difference in rats is due to a sexual dimorphism(s). We therefore determined (1) the LD50 of MDMA and MDA, (2) their hyperthermic effects, (3) the activities of liver CYP1A2 and CYP2D, (4) the liver microsomal metabolism of MDMA and MDA, (5) and the plasma concentrations of MDMA and its metabolites 3 h after giving male and female Sprague-Dawley (SD) rats MDMA (5 mg.kg{sup -1} sc). The LD50 of MDMA was 2.4-times lower in males than in females. MDMA induced greater hyperthermia (0.9 deg. C) in males. The plasma MDA concentration was 1.3-fold higher in males, as were CYP1A2 activity (twice) and N-demethylation to MDA (3.3-fold), but the plasma MDMA concentration (1.4-fold) and CYP2D activity (1.3-fold) were higher in females. These results suggest that male SD rats are more sensitive to MDMA acute toxicity than are females, probably because their CYP1A2 is more active, leading to higher N-demethylation and plasma MDA concentration. This metabolic pathway could be responsible for the lethality of MDMA, as the LD50 of MDA is the same in both sexes. These data strongly suggest that the toxicity of amphetamine-related drugs largely depends on metabolic differences.

  1. Acute and chronic systemic CB1 cannabinoid receptor blockade improves blood pressure regulation and metabolic profile in hypertensive (mRen2)27 rats.

    PubMed

    Schaich, Chris L; Shaltout, Hossam A; Brosnihan, K Bridget; Howlett, Allyn C; Diz, Debra I

    2014-08-01

    We investigated acute and chronic effects of CB1 cannabinoid receptor blockade in renin-angiotensin system-dependent hypertension using rimonabant (SR141716A), an orally active antagonist with central and peripheral actions. In transgenic (mRen2)27 rats, a model of angiotensin II-dependent hypertension with increased body mass and insulin resistance, acute systemic blockade of CB1 receptors significantly reduced blood pressure within 90 min but had no effect in Sprague-Dawley rats. No changes in metabolic hormones occurred with the acute treatment. During chronic CB1 receptor blockade, (mRen2)27 rats received daily oral administration of SR141716A (10 mg/kg/day) for 28 days. Systolic blood pressure was significantly reduced within 24 h, and at Day 21 of treatment values were 173 mmHg in vehicle versus 149 mmHg in drug-treated rats (P < 0.01). This accompanied lower cumulative weight gain (22 vs. 42 g vehicle; P < 0.001), fat mass (2.0 vs. 2.9% of body weight; P < 0.05), and serum leptin (2.8 vs. 6.0 ng/mL; P < 0.05) and insulin (1.0 vs. 1.9 ng/mL; P < 0.01), following an initial transient decrease in food consumption. Conscious hemodynamic recordings indicate twofold increases occurred in spontaneous baroreflex sensitivity (P < 0.05) and heart rate variability (P < 0.01), measures of cardiac vagal tone. The beneficial actions of CB1 receptor blockade in (mRen2)27 rats support the interpretation that an upregulated endocannabinoid system contributes to hypertension and impaired autonomic function in this angiotensin II-dependent model. We conclude that systemic CB1 receptor blockade may be an effective therapy for angiotensin II-dependent hypertension and associated metabolic syndrome.

  2. Hepatic cytochrome P450 3A drug metabolism is reduced in cancer patients who have an acute-phase response

    PubMed Central

    Rivory, L P; Slaviero, K A; Clarke, S J

    2002-01-01

    Inflammatory disease states (infection, arthritis) are associated with reduced drug oxidation by the cytochrome P450 3A system. Many chemotherapy agents are metabolised through this pathway, and disease may therefore influence inter-individual differences in drug pharmacokinetics. The purpose of this study was to assess cytochrome P450 3A function in patients with advanced cancer, and its relation to the acute-phase response. We evaluated hepatic cytochrome P450 3A function in 40 patients with advanced cancer using the erythromycin breath test. Both the traditional C20min measure and the recently proposed 1/TMAX values were estimated. The marker of acute-phase response, C-reactive protein and the pro-inflammatory cytokines IL-6, IL-1β, TNFα and IL-8 were measured in serum or plasma at baseline. Cancer patients with an acute phase response (C-reactive protein >10 mg l−1, n=26) had reduced metabolism as measured with the erythromycin breath test 1/TMAX (Kruskal–Wallis Anova, P=0.0062) as compared to controls (C-reactive protein ⩽10 mg l−1, n=14). Indeed, metabolism was significantly associated with C-reactive protein over the whole concentration range of this acute-phase marker (r=−0.64, Spearman Rank Correlation, P<0.00001). C-reactive protein serum levels were significantly correlated with those of IL-6 (Spearman coefficient=0.58, P<0.0003). The reduction in cytochrome P450 3A function with acute-phase reaction was independent of the tumour type and C-reactive protein elevation was associated with poor performance status. This indicates that the sub-group of cancer patients with significant acute-phase response have compromised drug metabolism, which may have implications for the safety of chemotherapy in this population. British Journal of Cancer (2002) 87, 277–280. doi:10.1038/sj.bjc.6600448 www.bjcancer.com © 2002 Cancer Research UK PMID:12177794

  3. Hemodynamic effects of acute digitalization several months after acute myocardial infarction.

    PubMed

    Ressl, J; Jandová, R; Jebavý, P; Kasalický, J; Widimský, J

    1975-01-01

    Left ventricular function was investigated at rest and during exercise by heart catheterization in 15 patients 3-5 months after acute myocardial infarction. The effect of 1 mg digoxin i.v. in ten patients was correlated to placebo (saline solution) in five patients. A significant decrease of the left ventricular enddiastolic pressure, increase of left ventricular systolic ejection fraction and a shift of the left ventricular function curve to left upwards was found after digoxin with no changes in the placebo group. This beneficial effect of acute digitalization in patients convalescing from uncomplicated myocardial infarction without clinical signs of manifest heart failure could have therapeutic implication.

  4. Protective effect of resveratrol in endotoxemia-induced acute phase response in rats.

    PubMed

    Sebai, Hichem; Ben-Attia, Mossadok; Sani, Mamane; Aouani, Ezzedine; Ghanem-Boughanmi, Néziha

    2009-04-01

    Lipopolysaccharide (LPS), a glycolipid component of the cell wall of gram-negative bacteria can elicit a systemic inflammatory process leading to septic shock and death. Acute phase response is characterized by fever, leucocytosis, thrombocytopenia, altered metabolic responses and redox balance by inducing excessive reactive oxygen species (ROS) generation. Resveratrol (trans-3,5,4' trihydroxystilbene) is a natural polyphenol exhibiting antioxidant and anti-inflammatory properties. We investigated the protective effect of resveratrol on endotoxemia-induced acute phase response in rats. When acutely administered by i.p. route, resveratrol (40 mg/kg b.w.) counteracted the effect of a single injection of LPS (4 mg/kg b.w.) which induced fever, a decrease in white blood cells (WBC) and platelets (PLT) counts. When i.p. administered during 7 days at 20 mg/kg per day (subacute treatment), resveratrol abrogated LPS-induced erythrocytes lipoperoxidation and catalase (CAT) activity depression to control levels. In the plasma compartment, LPS increased malondialdehyde (MDA) via nitric monoxide (NO) elevation and decreased iron level. All these deleterious LPS effects were reversed by a subacute resveratrol pre-treatment via a NO independent way. Resveratrol exhibited potent protective effect on LPS-induced acute phase response in rats.

  5. Metabolism

    MedlinePlus

    Metabolism refers to all the physical and chemical processes in the body that convert or use energy, ... Tortora GJ, Derrickson BH. Metabolism. In: Tortora GJ, Derrickson ... Physiology . 14th ed. Hoboken, NJ: John Wiley & Sons; 2014:chap ...

  6. Metabolism

    MedlinePlus

    ... El metabolismo Metabolism Basics Our bodies get the energy they need from food through metabolism, the chemical ... that convert the fuel from food into the energy needed to do everything from moving to thinking ...

  7. Effect of Short-Term Thyroxine Administration on Energy Metabolism and Mitochondrial Efficiency in Humans

    PubMed Central

    Johannsen, Darcy L.; Galgani, Jose E.; Johannsen, Neil M.; Zhang, Zhengyu; Covington, Jeffrey D.; Ravussin, Eric

    2012-01-01

    The physiologic effects of triiodothyronine (T3) on metabolic rate are well-documented; however, the effects of thyroxine (T4) are less clear despite its wide-spread use to treat thyroid-related disorders and other non-thyroidal conditions. Here, we investigated the effects of acute (3-day) T4 supplementation on energy expenditure at rest and during incremental exercise. Furthermore, we used a combination of in situ and in vitro approaches to measure skeletal muscle metabolism before and after T4 treatment. Ten healthy, euthyroid males were given 200 µg T4 (levothyroxine) per day for 3 days. Energy expenditure was measured at rest and during exercise by indirect calorimetry, and skeletal muscle mitochondrial function was assessed by in situ ATP flux (31P MRS) and in vitro respiratory control ratio (RCR, state 3/state 4 rate of oxygen uptake using a Clark-type electrode) before and after acute T4 treatment. Thyroxine had a subtle effect on resting metabolic rate, increasing it by 4% (p = 0.059) without a change in resting ATP demand (i.e., ATP flux) of the vastus lateralis. Exercise efficiency did not change with T4 treatment. The maximal capacity to produce ATP (state 3 respiration) and the coupled state of the mitochondria (RCR) were reduced by approximately 30% with T4 (p = 0.057 and p = 0.04, respectively). Together, the results suggest that T4, although less metabolically active than T3, reduces skeletal muscle efficiency and modestly increases resting metabolism even after short-term supplementation. Our findings may be clinically relevant given the expanding application of T4 to treat non-thyroidal conditions such as obesity and weight loss. PMID:22844412

  8. Metabolic activity, experiment M171. [space flight effects on human metabolism

    NASA Technical Reports Server (NTRS)

    Michel, E. L.; Rummel, J. A.

    1973-01-01

    The Skylab metabolic activity experiment determines if man's metabolic effectiveness in doing mechanical work is progressively altered by a simulated Skylab environment, including environmental factors such as slightly increased pCO2. This test identified several hardware/procedural anomalies. The most important of these were: (1) the metabolic analyzer measured carbon dioxide production and expired water too high; (2) the ergometer load module failed under continuous high workload conditions; (3) a higher than desirable number of erroneous blood pressure measurements were recorded; (4) vital capacity measurements were unreliable; and (5) anticipated crew personal exercise needs to be more structured.

  9. Acute and long term health effects of radiation

    SciTech Connect

    Voelz, G.L.

    1986-11-19

    This paper covers selected aspects of the acute and long term health effects excluding acute radiation syndrome and carcinogenesis, resulting from exposure to ionizing radiation. The changes addressed in this paper are those witnessed within an organ or whole body rather than at the molecular or even cellular level. They include acute and late health effects. Some of these effects are threshold effects, meaning that the dose must exceed a certain threshold before one sees these effects. Less than the threshold dose results in no observable organ or whole body effect. The severity of the effects correlate directly with the amount of cell damage or cell death that has occurred. 15 refs., 4 figs., 8 tabs.

  10. Recent Advances in Understanding and Mitigating Adipogenic and Metabolic Effects of Antipsychotic Drugs

    PubMed Central

    Gohlke, Julia M.; Dhurandhar, Emily J.; Correll, Christoph U.; Morrato, Elaine H.; Newcomer, John W.; Remington, Gary; Nasrallah, Henry A.; Crystal, Stephen; Nicol, Ginger; Allison, David B.

    2012-01-01

    Although offering many benefits for several psychiatric disorders, antipsychotic drugs (APDs) as a class have a major liability in their tendency to promote adiposity, obesity, and metabolic dysregulation in an already metabolically vulnerable population. The past decade has witnessed substantial research aimed at investigating the mechanisms of these adverse effects and mitigating them. On July 11 and 12, 2011, with support from 2 NIH institutes, leading experts convened to discuss current research findings and to consider future research strategies. Five areas where significant advances are being made emerged from the conference: (1) methodological issues in the study of APD effects; (2) unique characteristics and needs of pediatric patients; (3) genetic components underlying susceptibility to APD-induced metabolic effects; (4) APD effects on weight gain and adiposity in relation to their acute effects on glucose regulation and diabetes risk; and (5) the utility of behavioral, dietary, and pharmacological interventions in mitigating APD-induced metabolic side effects. This paper summarizes the major conclusions and important supporting data from the meeting. PMID:22754543

  11. Metabolic and endocrine consequences of acute suppression of FFAs by acipimox in polycystic ovary syndrome.

    PubMed

    Ciampelli, M; Muzj, G; Leoni, F; Romualdi, D; Belosi, C; Cento, R M; Lanzone, A

    2001-11-01

    To evaluate the effects of acute lowering of FFAs on glucose-induced insulin secretion and GH response to GHRH in polycystic ovary syndrome (PCOS), 27 PCOS subjects (11 lean and 16 obese) and 17 body mass index-matched controls (8 lean and 9 obese) were investigated. Patients underwent an oral glucose tolerance test and a GHRH test before and after administration of the antilipolytic drug acipimox (250 mg orally 3 h and 1 h before the starting of the tests). Blood samples were collected for 2 h after GHRH bolus and for 4 h after the oral glucose tolerance test. Serum concentrations of GH, insulin, glucose, and c-peptide were assayed in each sample, and the results were expressed as area under the curve (AUC). No significant differences were found as to glucose, insulin, and c-peptide AUC before and after acute FFA plasma reduction in any of the investigated groups. Basally, lower GH-AUC was found in lean PCOS compared with body mass index-matched controls and in obese vs. lean controls; no significant differences were found as to the same variable between the two obese groups. The acipimox induced FFA suppression elicited in the four groups a sustained increase in the GH response to its trophic hormone; indeed, the GH-AUC nearly doubled with respect to basal evaluation in all the studied groups. However, the antilipolytic drug was not able to abolish the differences found between lean groups in basal conditions. In conclusion, the presented data confirm that FFAs have a main role in regulating GH secretion at the pituitary level; however, it does not seem that they could explain the GH as well as insulin dysfunction of PCOS.

  12. Genetic and metabolic signals during acute enteric bacterial infection alter the microbiota and drive progression to chronic inflammatory disease

    SciTech Connect

    Kamdar, Karishma; Khakpour, Samira; Chen, Jingyu; Leone, Vanessa; Brulc, Jennifer; Mangatu, Thomas; Antonopoulos, Dionysios A.; Chang, Eugene B; Kahn, Stacy A.; Kirschner, Barbara S; Young, Glenn; DePaolo, R. William

    2016-01-13

    Chronic inflammatory disorders are thought to arise due to an interplay between predisposing host genetics and environmental factors. For example, the onset of inflammatory bowel disease is associated with enteric proteobacterial infection, yet the mechanistic basis for this association is unclear. We have shown previously that genetic defiency in TLR1 promotes acute enteric infection by the proteobacteria Yersinia enterocolitica. Examining that model further, we uncovered an altered cellular immune response that promotes the recruitment of neutrophils which in turn increases metabolism of the respiratory electron acceptor tetrathionate by Yersinia. These events drive permanent alterations in anti-commensal immunity, microbiota composition, and chronic inflammation, which persist long after Yersinia clearence. Deletion of the bacterial genes involved in tetrathionate respiration or treatment using targeted probiotics could prevent microbiota alterations and inflammation. Thus, acute infection can drive long term immune and microbiota alterations leading to chronic inflammatory disease in genetically predisposed individuals.

  13. Longer-Term Physiological and Metabolic Effects of Gastric Bypass Surgery

    PubMed Central

    Mosinski, J. David; Kirwan, John P.

    2016-01-01

    Obesity is closely associated with the development of type 2 diabetes. Many strategies have been used in the past to combat these two conditions, but very few provide for stable and durable glycemic control. Bariatric surgery has emerged as a powerful tool for treating obesity and in over 70 % of cases provides a short-term cure for diabetes. While the acute metabolic effects of surgery are striking, it remains important for us to also consider the long-term effects. This review aims to summarize the chronic or long-term metabolic and physiological effects of Roux-en-Y gastric bypass (RYGB) surgery on pancreatic function, skeletal muscle and hepatic insulin sensitivity, and gastrointestinal remodeling. An increased understanding of the current state of research in these areas can provide the basis for stimulating further research that would contribute to new treatment and management strategies for obesity and diabetes. PMID:27091444

  14. Effects of smoking cessation on weight gain, metabolic rate, caloric consumption, and blood lipids.

    PubMed

    Stamford, B A; Matter, S; Fell, R D; Papanek, P

    1986-04-01

    Thirteen sedentary adult females successfully quit smoking cigarettes for 48 days. Mean daily caloric consumption increased 227 kcal and mean weight gain was 2.2 kg. There were no measurable acute effects of smoke inhalation and no chronic net effects of smoking cessation on resting metabolic rate, as determined by oxygen consumption and respiratory exchange ratio. After 1 yr, subjects who continued to abstain gained an average of 8.2 kg. HDL-cholesterol increased 7 mg/dl in 48 days; however, this effect was lost in those who returned to smoking. Increased caloric consumption accounted for 69% of weight gained immediately following smoking cessation. Factors other than changes in caloric consumption and metabolic rate may be responsible for a significant proportion (31%) of the weight gained in individuals who quit smoking.

  15. Pioglitazone Attenuates Acute Cocaine Toxicity in Rat Isolated Heart: Potential Protection by Metabolic Modulation

    PubMed Central

    Weinberg, Guy L.; Ripper, Richard; Bern, Sarah; Lin, Bocheng; Edelman, Lucas; DiGregorio, Guido; Piano, Mariann; Feinstein, Douglas L.

    2013-01-01

    Background The authors test whether cocaine depresses mitochondrial acylcarnitine exchange and if a drug that enhances glucose metabolism could protect against cocaine-induced cardiac dysfunction. Methods Oxygen consumption with and without cocaine was compared in rat cardiac mitochondria using either octanoylcarnitine (lipid) or pyruvate (non-lipid) substrates. Isolated hearts from rats with or without pioglitazone-supplemented diet were exposed to cocaine. Results Cocaine 0.5mM inhibited respiration supported by octanoylcarnitine (82 +/− 10.4 and 45.7 +/− 4.24 ngatomO min −1 mg −1 protein +/− SEM, for control and cocaine treatment, respectively; p < 0.02) but not pyruvate-supported respiration (281 +/− 12.5 and 267 +/− 12.7 ngatomO min −1 mg −1 protein +/− SEM; p = 0.45). Cocaine altered contractility, lusitropy, coronary resistance and lactate production in isolated heart. These effects were each blunted in pioglitazone-treated hearts. Pioglitazone diet attenuated the drop in rate-pressure product (p = 0.002), cocaine-induced diastolic dysfunction (p = 0.04) and myocardial vascular resistance (p = 0.05) compared to controls. Lactate production was higher in pretreated hearts (p = 0.008) and in ventricular myocytes cultured with pioglitazone (p = 0.0001). Conclusions Cocaine inhibited octanoylcarnitine-supported mitochondrial respiration. Pioglitazone diet significantly attenuated the effects of cocaine on isolated heart. The authors postulate that inhibition of acylcarnitine exchange could contribute to cocaine-induced cardiac dysfunction and that metabolic modulation warrants further study a potential treatment for such toxicity. PMID:21487283

  16. Arsenic Toxicity: The Effects on Plant Metabolism

    PubMed Central

    Finnegan, Patrick M.; Chen, Weihua

    2012-01-01

    The two forms of inorganic arsenic, arsenate (AsV) and arsenite (AsIII), are easily taken up by the cells of the plant root. Once in the cell, AsV can be readily converted to AsIII, the more toxic of the two forms. AsV and AsIII both disrupt plant metabolism, but through distinct mechanisms. AsV is a chemical analog of phosphate that can disrupt at least some phosphate-dependent aspects of metabolism. AsV can be translocated across cellular membranes by phosphate transport proteins, leading to imbalances in phosphate supply. It can compete with phosphate during phosphorylation reactions, leading to the formation of AsV adducts that are often unstable and short-lived. As an example, the formation and rapid autohydrolysis of AsV-ADP sets in place a futile cycle that uncouples photophosphorylation and oxidative phosphorylation, decreasing the ability of cells to produce ATP and carry out normal metabolism. AsIII is a dithiol reactive compound that binds to and potentially inactivates enzymes containing closely spaced cysteine residues or dithiol co-factors. Arsenic exposure generally induces the production of reactive oxygen species that can lead to the production of antioxidant metabolites and numerous enzymes involved in antioxidant defense. Oxidative carbon metabolism, amino acid and protein relationships, and nitrogen and sulfur assimilation pathways are also impacted by As exposure. Readjustment of several metabolic pathways, such as glutathione production, has been shown to lead to increased arsenic tolerance in plants. Species- and cultivar-dependent variation in arsenic sensitivity and the remodeling of metabolite pools that occurs in response to As exposure gives hope that additional metabolic pathways associated with As tolerance will be identified. PMID:22685440

  17. Prebiotic effects: metabolic and health benefits.

    PubMed

    Roberfroid, Marcel; Gibson, Glenn R; Hoyles, Lesley; McCartney, Anne L; Rastall, Robert; Rowland, Ian; Wolvers, Danielle; Watzl, Bernhard; Szajewska, Hania; Stahl, Bernd; Guarner, Francisco; Respondek, Frederique; Whelan, Kevin; Coxam, Veronique; Davicco, Marie-Jeanne; Léotoing, Laurent; Wittrant, Yohann; Delzenne, Nathalie M; Cani, Patrice D; Neyrinck, Audrey M; Meheust, Agnes

    2010-08-01

    mineral density. Recent data, both from experimental models and from human studies, support the beneficial effects of particular food products with prebiotic properties on energy homaeostasis, satiety regulation and body weight gain. Together, with data in obese animals and patients, these studies support the hypothesis that gut microbiota composition (especially the number of bifidobacteria) may contribute to modulate metabolic processes associated with syndrome X, especially obesity and diabetes type 2. It is plausible, even though not exclusive, that these effects are linked to the microbiota-induced changes and it is feasible to conclude that their mechanisms fit into the prebiotic effect. However, the role of such changes in these health benefits remains to be definitively proven. As a result of the research activity that followed the publication of the prebiotic concept 15 years ago, it has become clear that products that cause a selective modification in the gut microbiota's composition and/or activity(ies) and thus strengthens normobiosis could either induce beneficial physiological effects in the colon and also in extra-intestinal compartments or contribute towards reducing the risk of dysbiosis and associated intestinal and systemic pathologies.

  18. Acute dim light at night increases body mass, alters metabolism, and shifts core body temperature circadian rhythms.

    PubMed

    Borniger, Jeremy C; Maurya, Santosh K; Periasamy, Muthu; Nelson, Randy J

    2014-10-01

    The circadian system is primarily entrained by the ambient light environment and is fundamentally linked to metabolism. Mounting evidence suggests a causal relationship among aberrant light exposure, shift work, and metabolic disease. Previous research has demonstrated deleterious metabolic phenotypes elicited by chronic (>4 weeks) exposure to dim light at night (DLAN) (∼ 5 lux). However, the metabolic effects of short-term (<2 weeks) exposure to DLAN are unspecified. We hypothesized that metabolic alterations would arise in response to just 2 weeks of DLAN. Specifically, we predicted that mice exposed to dim light would gain more body mass, alter whole body metabolism, and display altered body temperature (Tb) and activity rhythms compared to mice maintained in dark nights. Our data largely support these predictions; DLAN mice gained significantly more mass, reduced whole body energy expenditure, increased carbohydrate over fat oxidation, and altered temperature circadian rhythms. Importantly, these alterations occurred despite similar activity locomotor levels (and rhythms) and total food intake between groups. Peripheral clocks are potently entrained by body temperature rhythms, and the deregulation of body temperature we observed may contribute to metabolic problems due to "internal desynchrony" between the central circadian oscillator and temperature sensitive peripheral clocks. We conclude that even relatively short-term exposure to low levels of nighttime light can influence metabolism to increase mass gain.

  19. High phosphorus intakes acutely and negatively affect Ca and bone metabolism in a dose-dependent manner in healthy young females.

    PubMed

    Kemi, Virpi E; Kärkkäinen, Merja U M; Lamberg-Allardt, Christel J E

    2006-09-01

    Ca and P are both essential nutrients for bone and are known to affect one of the most important regulators of bone metabolism, parathyroid hormone (PTH). Too ample a P intake, typical of Western diets, could be deleterious to bone through the increased PTH secretion. Few controlled dose-response studies are available on the effects of high P intake in man. We studied the short-term effects of four P doses on Ca and bone metabolism in fourteen healthy women, 20-28 years of age, who were randomized to four controlled study days; thus each study subject served as her own control. P supplement doses of 0 (placebo), 250, 750 or 1500 mg were taken, divided into three doses during the study day. The meals served were exactly the same during each study day and provided 495 mg P and 250 mg Ca. The P doses affected the serum PTH (S-PTH) in a dose-dependent manner (P=0.0005). There was a decrease in serum ionized Ca concentration only in the highest P dose (P=0.004). The marker of bone formation, bone-specific alkaline phosphatase, decreased (P=0.05) and the bone resorption marker, N-terminal telopeptide of collagen type I, increased in response to the P doses (P=0.05). This controlled dose-response study showed that P has a dose-dependent effect on S-PTH and increases PTH secretion significantly when Ca intake is low. Acutely high P intake adversely affects bone metabolism by decreasing bone formation and increasing bone resorption, as indicated by the bone metabolism markers.

  20. Cancer proliferation and therapy: the Warburg effect and quantum metabolism

    PubMed Central

    2010-01-01

    Background Most cancer cells, in contrast to normal differentiated cells, rely on aerobic glycolysis instead of oxidative phosphorylation to generate metabolic energy, a phenomenon called the Warburg effect. Model Quantum metabolism is an analytic theory of metabolic regulation which exploits the methodology of quantum mechanics to derive allometric rules relating cellular metabolic rate and cell size. This theory explains differences in the metabolic rates of cells utilizing OxPhos and cells utilizing glycolysis. This article appeals to an analytic relation between metabolic rate and evolutionary entropy - a demographic measure of Darwinian fitness - to: (a) provide an evolutionary rationale for the Warburg effect, and (b) propose methods based on entropic principles of natural selection for regulating the incidence of OxPhos and glycolysis in cancer cells. Conclusion The regulatory interventions proposed on the basis of quantum metabolism have applications in therapeutic strategies to combat cancer. These procedures, based on metabolic regulation, are non-invasive, and complement the standard therapeutic methods involving radiation and chemotherapy PMID:20085650

  1. [Neuroprotective effect of cerebrocurin in a model of acute cerebral stroke].

    PubMed

    Belenichev, I F; Pavlov, S V; Dunaev, V V

    2010-02-01

    Chronic administration of cerebrocurin and cerebrolysin to Mongolian jirds with acute cerebral stroke model led to a decrease in the mitochondrial dysfunction on the 4th day, which was manifested by their ability to inhibit the mitochondrial permeability transition pore opening, normalize the energy metabolism, and enhance c-fos gene expression. In addition, cerebrocurin restored the morphofunctional state of neurons and favored the cell loss mechanism switching from necrosis to apoptosis. With respect to all characteristics under consideration, the effect of cerebrocurin exceeded with statistical confidence that of cerebrolysin.

  2. Artificial sweeteners: a systematic review of metabolic effects in youth.

    PubMed

    Brown, Rebecca J; de Banate, Mary Ann; Rother, Kristina I

    2010-08-01

    Epidemiological data have demonstrated an association between artificial sweetener use and weight gain. Evidence of a causal relationship linking artificial sweetener use to weight gain and other metabolic health effects is limited. However, recent animal studies provide intriguing information that supports an active metabolic role of artificial sweeteners. This systematic review examines the current literature on artificial sweetener consumption in children and its health effects. Eighteen studies were identified. Data from large, epidemiologic studies support the existence of an association between artificially-sweetened beverage consumption and weight gain in children. Randomized controlled trials in children are very limited, and do not clearly demonstrate either beneficial or adverse metabolic effects of artificial sweeteners. Presently, there is no strong clinical evidence for causality regarding artificial sweetener use and metabolic health effects, but it is important to examine possible contributions of these common food additives to the global rise in pediatric obesity and diabetes.

  3. Search of a solution correction of a lipidic metabolism at acute pancreatitis

    NASA Astrophysics Data System (ADS)

    Anaskin, S. G.; Vlasov, A. P.; Korniletsky, I. D.

    2017-01-01

    Following the results of a pilot study on studying of influence of an emoksipin, verapamil and a reamberin at acute pancreatitis it is possible to say that under the influence of these drugs in fabric structures of the inflamed pancreas there is a decrease in intensity of free radical processes of a lipopereokisleniye, activity of phospholipases, hypoxia phenomena. Level of antioxidant protection of fabric of body increases. In the first three days of supervision the accurate tendency to normalization of the transformed lipidic structure of fabric structures of a pancreas is revealed. At the same time these positive effects are noted in all experienced groups. It demonstrates that though pharmacological drugs are used multidirectional action (antioxidant emoksipin, an antigipoksant reamberin, inhibitor of calcium channels verapamil), they in a varying degree influence on studied pathological (membranodestruktivny, hypoxemic) processes, leading finally to reduction of their expressiveness. So, emoksipin found big ability to increase stability of membranes of pankreatotsit to pathological influence of molecular products the FLOOR, verapamil – to stopping of the activated phospholipases, reamberin – to a hypoxia. The question solution on the key (prevailing) mechanism in trigger processes of sharp pancreatitis of a definite answer has no. Undoubtedly only the fact that efficiency of antioxidant and inhibitor of calcic channels was rather higher. It suggests that free radical processes of a lipopereokisleniye and activity of fosfolipazny systems predetermine the level and nature of defeat of a cellular biomembrane of pankreatotsit already on the earliest terms of inflammatory process.

  4. Effects of an Acute Seizure on Associative Learning and Memory

    PubMed Central

    Holley, Andrew J.; Lugo, Joaquin N.

    2015-01-01

    Past studies have demonstrated that inducing several seizures or continuous seizures in neonatal or adult rats results in impairments in learning and memory. The impact of a single acute seizure on learning and memory has not been investigated in mice. In this study, we exposed an adult 129SvEvTac mouse to the inhalant flurothyl until a behavioral seizure was induced. Our study consisted of 4 experiments where we examined the effect of one seizure before or after delay fear conditioning. We also included a separate cohort of animals that was tested in the open field after a seizure to rule out changes in locomotor activity influencing the results of memory tests. Mice that had experienced a single seizure 1 hour, but not 6 hours, prior to training showed a significant impairment in associative conditioning to the conditioned stimulus when compared to controls 24 hours later. There were no differences in freezing one day later for animals that experienced a single seizure 1 hour after associative learning. We also found that an acute seizure reduced activity levels in an open field test 2 hours but not 24 hours later. These findings suggest that an acute seizure occurring immediately before learning can have an effect on the recall of events occurring shortly after that seizure. In contrast, an acute seizure occurring shortly after learning appears to have little or no effect on long-term memory. These findings have implications for understanding the acute effects of seizures on the acquisition of new knowledge. PMID:26655449

  5. Effects of Wound Bacteria on Postburn Energy Metabolism

    DTIC Science & Technology

    1988-08-01

    bacterial products (enzymes, toxins , etc.) or cytokines produced by host inflammatory cells in response to bacteria /’ products. Endotoxin is a prime...Best Available Copy ~~ ~ADyj ) EFFECTS OF WOUND BACTERIA ON POSTBURN ENERGY METABOLISM ANNUAL REPORT DT!C ,’ ELECTE 7 Louis H. Aulick, Ph.D. % NOV3...62772A874 AD 134 II. TITLE (Include Secuity Classification) Effects of Wound Bacteria on Postburn Energy Metabolism 12. PERSONAL AUTHOR(S) Louis H

  6. Effect of acute maximal exercise on lymphocyte subgroups in type 1 diabetes.

    PubMed

    Salman, F; Erten, G; Unal, M; Kiran, B; Salman, S; Deniz, G; Yilmaz, M T; Kayserilioglu, A; Dinccag, N

    2008-03-01

    The essential therapy of diabetes mellitus includes medical nutrition therapy (MNT), exercise and medical therapy. Exercise, besides its metabolic effects, has positive influence on the immune system, but some forms of exercise may cause trauma for muscle and skeletal systems, they may also support negative effects on the immune system. Nineteen type 1 diabetic patients (mean age 22.1 +/- 2.8 yrs), followed by Diabetes Outpatient Clinic and twenty age matched male control subjects were included into the study, to demonstrate the effects of maximal, acute exercise on the immune system. The exercise test was performed according to Bruce protocol on treadmill. In diabetic subjects, increased CD19 and CD23 expressions were observed before exercise. In both groups (diabetic/control) CD3, CD4 expressions and CD4/CD8 ratio were decreased following the exercise, however expression of natural killer (NK) cells increased. Compared to type 1 diabetic patients healthy subjects had longer acute exercise that caused the increased level of CD8 expression, however type 1 diabetic patients did not show any difference. These results indicate that submaximal aerobic exercise might be recommended for type 1 diabetics without any complications because of its positive reflection on metabolic control and no negative effects on the immune system.

  7. High incidence of abnormal glucose metabolism in acute coronary syndrome patients at a moderate altitude: A sub-Himalayan study

    PubMed Central

    Mokta, Jitender; Kumar, Subash; Ganju, Neeraj; Mokta, Kiran; Panda, Prashant Kumar; Gupta, Swatantra

    2017-01-01

    Background: Abnormal glucose metabolic status at admission is an important marker of future cardiovascular events and long-term mortality after acute coronary syndrome (ACS), whether or not they are known diabetics. Objective: The aims were to study the prevalence of abnormal glucose metabolism in ACS patients and to compare the different methods of diagnosing diabetes in ACS patients. Methods: We did a prospective study. About 250 consecutive nondiabetic patients (200 men and 50 women) with ACS admitted to a tertiary care institute of Himachal Pradesh in 1 year were enrolled. Admission plasma glucose, next morning fasting plasma glucose (FPG), A1C, and a standardized 75-g oral glucose tolerance test (OGTT) 72 h after admission were done. Glucose metabolism was categorized as normal glucose metabolism, impaired glucose metabolism (impaired fasting glucose or impaired glucose tolerance [IGT]), and diabetes. Diabetes was arbitrarily classified further as undiagnosed (HBA1c ≥6.5%) or possibly stress diabetes (HBA1c <6.5%). A repeat OGTT after 3 months in objects with IGT and stress hyperglycemia at a time of admission was done. Results: The mean age was 54 ± 12.46 years. The mean plasma glucose at admission was 124 ± 53.96 mg/dL, and the mean FPG was 102 ± 27.07 mg/dL. The mean 2-h postglucose load concentration was 159.5 ± 56.58 mg/dL. At baseline, 95 (38%) had normal glucose metabolism, 95 (38%) had impaired glucose metabolism (IGT and or IGT) and 60 (24%) had diabetes; 48 (19.2%) were undiagnosed diabetes and 12 (4.8%) had stress hyperglycemia. At follow up 58.66% and 55.55% of patients with impaired glucose tolerance and stress hyperglycemia continued to have impaired glucose tolerance respectively. About 75 gm OGTT has highest sensitivity and specificity to diagnose diabetes, whereas A1C most specific to rule out stress hyperglycemia. Conclusions: In this small hilly state of India, abnormal glucose metabolism (previously undiagnosed diabetes and IGT) is

  8. A monoclonal antibody specific for 6-monoacetylmorphine reduces acute heroin effects in mice.

    PubMed

    Bogen, Inger Lise; Boix, Fernando; Nerem, Elisabeth; Mørland, Jørg; Andersen, Jannike Mørch

    2014-06-01

    Immunotherapy against drugs of abuse is being studied as an alternative treatment option in addiction medicine and is based on antibodies sequestering the drug in the bloodstream and blocking its entry into the brain. Producing an efficient vaccine against heroin has been considered particularly challenging because of the rapid metabolism of heroin to multiple psychoactive molecules. We have previously reported that heroin's first metabolite, 6-monoacetylmorphine (6-MAM), is the predominant mediator for heroin's acute behavioral effects and that heroin is metabolized to 6-MAM primarily prior to brain entry. On this basis, we hypothesized that antibody sequestration of 6-MAM is sufficient to impair heroin-induced effects and therefore examined the effects of a monoclonal antibody (mAb) specific for 6-MAM. In vitro experiments in human and rat blood revealed that the antibody was able to bind 6-MAM and block the metabolism to morphine almost completely, whereas the conversion of heroin to 6-MAM remained unaffected. Mice pretreated with the mAb toward 6-MAM displayed a reduction in heroin-induced locomotor activity that corresponded closely to the reduction in brain 6-MAM levels. Intraperitoneal and intravenous administration of the anti-6-MAM mAb gave equivalent protection against heroin effects, and the mAb was estimated to have a functional half-life of 8 to 9 days in mice. Our study implies that an antibody against 6-MAM is effective in counteracting heroin effects.

  9. Update on the metabolic effects of steroidal contraceptives.

    PubMed

    Sondheimer, S J

    1991-12-01

    Modern oral contraceptive pills are safe and show minimal metabolic effects that have little clinical significance to smoking and reproductive age (even up to menopause). Multiphasic and 30 to 35 micrograms EE fixed combination pills are preferable to higher dose EE pills. Triphasic pills with norgestrel or norethindrone, monophasic norethindrone pills, and combination pills with the newer progestins are all probably metabolically comparable. The levonorgestrel implant is convenient, reversible, and effective and eliminates estrogenic metabolic effects. Metabolic benefits of the pill may include less acne, better preservation of bone mass, and less blood loss. Women who smoke should be encouraged to stop. Women with risk factors for atherosclerosis such as smoking, lipid abnormalities, diabetes, or hypertension should avoid combination pills. Women with a history of pregnancy, steroid-related thrombophlebitis, or thromboembolic disease should not use estrogen-containing pills.

  10. The Protective Effects of Cobra Venom from Naja naja atra on Acute and Chronic Nephropathy.

    PubMed

    Wang, Shu-Zhi; He, He; Han, Rong; Zhu, Jia-Li; Kou, Jian-Qun; Ding, Xiao-Lan; Qin, Zheng-Hong

    2013-01-01

    This study investigated the effects of Naja naja atra venom (NNAV) on acute and chronic nephropathy in rats. Rats received 6 mg/kg adriamycin (ADR) once to evoke the chronic nephropathy or 8 ml/kg 50% v/v glycerol to produce acute renal failure (ARF). The NNAV was given orally once a day starting five days prior to ADR or glycerol injection and continued to the end of experiments. The animals were placed in metabolic cages for 24 h for urine collection for urinary protein determination. The kidney function-related biochemical changes and index of oxidative stress were determined with automatic biochemistry analyzer or colorimetric enzyme assay kits. The pathomorphological changes were observed using light and transmission electron microcopies. The levels of inflammatory cytokines and NF- κ B activation were determined using ELISA kits, Western blot analysis, or immunofluorescence. The results showed that NNAV relieved ADR-induced chronic nephropathy and glycerol-triggered acute renal failure syndromes including proteinuria, hypoalbuminemia, hyperlipidemia, serum electrolyte unbalance, renal oxidative stress, and pathological damages. NNAV reduced kidney levels of TNF- α and IL-1 β , but it increased the levels of I κ B- α and inhibited NF- κ B p65 nuclear localization. These findings suggest that NNAV may be a valuable therapeutic drug for acute and chronic kidney diseases.

  11. Acute Cardiorespiratory and Metabolic Responses During Exoskeleton-Assisted Walking Overground Among Persons with Chronic Spinal Cord Injury

    PubMed Central

    Hartigan, Clare; Kandilakis, Casey; Pharo, Elizabeth; Clesson, Ismari

    2015-01-01

    Background: Lower extremity robotic exoskeleton technology is being developed with the promise of affording people with spinal cord injury (SCI) the opportunity to stand and walk. The mobility benefits of exoskeleton-assisted walking can be realized immediately, however the cardiorespiratory and metabolic benefits of this technology have not been thoroughly investigated. Objective: The purpose of this pilot study was to evaluate the acute cardiorespiratory and metabolic responses associated with exoskeleton-assisted walking overground and to determine the degree to which these responses change at differing walking speeds. Methods: Five subjects (4 male, 1 female) with chronic SCI (AIS A) volunteered for the study. Expired gases were collected during maximal graded exercise testing and two, 6-minute bouts of exoskeleton-assisted walking overground. Outcome measures included peak oxygen consumption (V̇O2peak), average oxygen consumption (V̇O2avg), peak heart rate (HRpeak), walking economy, metabolic equivalent of tasks for SCI (METssci), walk speed, and walk distance. Results: Significant differences were observed between walk-1 and walk-2 for walk speed, total walk distance, V̇O2avg, and METssci. Exoskeleton-assisted walking resulted in %V̇O2peak range of 51.5% to 63.2%. The metabolic cost of exoskeleton-assisted walking ranged from 3.5 to 4.3 METssci. Conclusion: Persons with motor-complete SCI may be limited in their capacity to perform physical exercise to the extent needed to improve health and fitness. Based on preliminary data, cardiorespiratory and metabolic demands of exoskeleton-assisted walking are consistent with activities performed at a moderate intensity. PMID:26364281

  12. Relation between blood pH and ionized calcium during acute metabolic alteration of the acid-base balance in vivo.

    PubMed

    Gaiter, A M; Bonfant, G; Manes, M; Belfanti, P; Alloatti, S

    1997-07-01

    We induced metabolic alkalosis and acidosis in 10 healthy volunteers in order to analyse in vivo relation between pH and ionized calcium (cCa2+). In the alkalinization test, 2.7 mol/kg NaHCO3 was injected. In the acidification test, volunteers took 4 mmol/kg NH4Cl. Blood pH and cCa2+ (mmol/l) mean values (SD) baseline, after alkalinization and acidification tests, were: 7.363 (0.018), 7.456 (0.031), 7.244 (0.031), 1.27 (0.03), 1.14 (0.03) and 1.38 (0.04). Mean slope of regression log cCa2+/pH was -0.39 (SD 0.11). Such a slope differs after in vivo or in vitro changes, due to the in vivo rapid restoration of equilibrium between the plasmatic and interstitial compartments following changes in water and electrolyte concentrations. The type of acid-base alteration-respiratory or metabolic-influences pH changes, and consequently the regression slope. The in vivo slope for log cCa2+/pH in normal subjects (-0.21) is much the same as in acute respiratory alterations (-0.17), whereas it differs in acute metabolic alterations (present study). Bicarbonates play different roles: the same changes in pH cause greater changes in cCa2+ after acute metabolic rather than respiratory alterations. Ca2+ homeostasis is maintained in acute respiratory acid-base imbalance, despite wide shifts in pH, whereas in acute metabolic alterations even small pH changes have striking repercussions on cCa2+. The experimental angular coefficient for in vivo acute metabolic acid-base alterations differs from the theoretical one calculated by Thode's differential equation (-0.25).

  13. Caffeine and ephedrine: physiological, metabolic and performance-enhancing effects.

    PubMed

    Magkos, Faidon; Kavouras, Stavros A

    2004-01-01

    exertion and this seems to be independent of the type of activity being performed. In general, our knowledge and understanding of the physiological, metabolic and performance-enhancing effects of caffeine-ephedrine mixtures are still in their infancy. Research in this field is probably hampered by sound ethical concerns that preclude administration of potentially hazardous substances to human volunteers. In contrast, while it is certainly true that caffeine and especially ephedrine have been associated with several acute adverse effects on health, athletes do not seem to be concerned with these, as long as they perceive that their performance will improve. In light of the fact that caffeine and ephedra alkaloids, but not ephedrine itself, have been removed from the list of banned substances, their use in sports can be expected to rise considerably in the foreseeable future. Caffeine-ephedra mixtures may thus become one of most popular ergogenic aids in the years to come and while they may indeed prove to be one of the most effective ones, and probably one of the few legal ones, whether they also turn out to be one of the most dangerous ones awaits to be witnessed.

  14. The metabolic syndrome in survivors of childhood acute lymphoblastic leukemia in Isfahan, Iran

    PubMed Central

    Reisi, Nahid; Azhir, Afshin; Hashemipour, Mahin; Raeissi, Pouran; Amini, Abasgholi; Moafi, Alireza

    2009-01-01

    BACKGROUND: To determine the prevalence of metabolic syndrome in survivors of childhood leukemia in Isfahan, Iran. METHODS: During a 4-year period (2003 to 2007), 55 children (33 male and 22 female) diagnosed with ALL at Unit of Hematology/ Oncology, Department of Pediatrics, Isfahan University of Medical Science, were enrolled in this cross-sectional study. Metabolic syndrome was defined using the modified version of Adult Treatment Panel (ATP III) crite-ria. Insulin resistance was defined based on the homeostasis model assessment index (HOMA-IR). RESULTS: The mean age of participates was 10.4 years (range 6-19 years) and the mean interval since completion of chemotherapy was 35 months. Twenty percent (11/55) of survivors (10 male, 1 female) met criteria for diagnosis of metabolic syndrome. Obesity was observed in one forth of patients and nearly 3/4 of obese patients had metabolic syndrome. High serum insulin levels were found in 16% of participants and in 63% of obese survivors. The mean insulin levels in survivors with metabolic syndrome was three-times more than those without (28.3 mu/l vs. 9.57 mu/l, p = 0.004). Insulin resistance was detected in 72.7% of survivors with metabolic syndrome and it was positively correlated with serum triglycerides (0.543, p ≤ 0.001), systolic and diastolic BP (0.348, p = 0.01 and 0.368, p = 006 respectively), insulin levels (0.914, p < 0.001) and blood sugar (0.398, p = 003). CONCLUSIONS: The prevalence of metabolic syndrome in survivors of childhood leukemia in Iran is higher than developed countries. Nearly all of the obese patients had metabolic syndrome. Weight control and regular physical exercise are recommended to the survivors. PMID:21772869

  15. Changes in autophagy, proteasome activity and metabolism to determine a specific signature for acute and chronic senescent mesenchymal stromal cells.

    PubMed

    Capasso, Stefania; Alessio, Nicola; Squillaro, Tiziana; Di Bernardo, Giovanni; Melone, Mariarosa A; Cipollaro, Marilena; Peluso, Gianfranco; Galderisi, Umberto

    2015-11-24

    A sharp definition of what a senescent cell is still lacking since we do not have in depth understanding of mechanisms that induce cellular senescence. In addition, senescent cells are heterogeneous, in that not all of them express the same genes and present the same phenotype. To further clarify the classification of senescent cells, hints may be derived by the study of cellular metabolism, autophagy and proteasome activity. In this scenario, we decided to study these biological features in senescence of Mesenchymal Stromal Cells (MSC). These cells contain a subpopulation of stem cells that are able to differentiate in mesodermal derivatives (adipocytes, chondrocytes, osteocytes). In addition, they can also contribute to the homeostatic maintenance of many organs, hence, their senescence could be very deleterious for human body functions. We induced MSC senescence by oxidative stress, doxorubicin treatment, X-ray irradiation and replicative exhaustion. The first three are considered inducers of acute senescence while extensive proliferation triggers replicative senescence also named as chronic senescence. In all conditions, but replicative and high IR dose senescence, we detected a reduction of the autophagic flux, while proteasome activity was impaired in peroxide-treated and irradiated cells. Differences were observed also in metabolic status. In general, all senescent cells evidenced metabolic inflexibility and prefer to use glucose as energy fuel. Irradiated cells with low dose of X-ray and replicative senescent cells show a residual capacity to use fatty acids and glutamine as alternative fuels, respectively. Our study may be useful to discriminate among different senescent phenotypes.

  16. Salinity effects on viability, metabolic activity and proliferation of three Perkinsus species

    USGS Publications Warehouse

    La, Peyre M.; Casas, S.; La, Peyre J.

    2006-01-01

    Little is known regarding the range of conditions in which many Perkinsus species may proliferate, making it difficult to predict conditions favorable for their expansion, to identify conditions inducing mortality, or to identify instances of potential cross-infectivity among sympatric host species. In this study, the effects of salinity on viability, metabolic activity and proliferation of P. marinus, P. olseni and P. chesapeaki were determined. Specifically, this research examined the effects of 5 salinities (7, 11, 15, 25, 35???), (1) without acclimation, on the viability and metabolic activity of 2 isolates of each Perkinsus species, and (2) with acclimation, on the viability, metabolic activity, size and number of 1 isolate of each species. P. chesapeaki showed the widest range of salinity tolerance of the 3 species, with high viability and cell proliferation at all salinities tested. Although P. chesapeaki originated from low salinity areas (i.e. <15???), several measures (i.e. cell number and metabolic activity) indicated that higher salinities (15, 25???) were more favorable for its growth. P. olseni, originating from high salinity areas, had better viability and proliferation at the higher salinities (15, 25, 35???). Distinct differences in acute salinity response of the 2 P. olseni isolates at lower salinities (7, 11???), however, suggest the need for a more expansive comparison of isolates to better define the lower salinity tolerance. Lastly, P. marinus was more tolerant of the lower salinities (7 and 11???) than P. olseni, but exhibited reduced viability at 7???, even after acclimation. ?? Inter-Research 2006.

  17. Effect of Mediterranean diet with and without weight loss on apolipoprotein B100 metabolism in men with metabolic syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to assess the effect of a Mediterranean diet (MedDiet) with and without weight loss (WL) on apolipoprotein B100 (apoB100) metabolism in men with metabolic syndrome. The diet of 19 men with metabolic syndrome (age, 24–62 years) was first standardized to a North America...

  18. Metabolism

    MedlinePlus

    ... and intestines. Several of the hormones of the endocrine system are involved in controlling the rate and direction ... For Kids For Parents MORE ON THIS TOPIC Endocrine System What Can I Do About My High Metabolism? ...

  19. Metabolism

    MedlinePlus

    ... symptoms. Metabolic diseases and conditions include: Hyperthyroidism (pronounced: hi-per-THIGH-roy-dih-zum). Hyperthyroidism is caused ... or through surgery or radiation treatments. Hypothyroidism (pronounced: hi-po-THIGH-roy-dih-zum). Hypothyroidism is caused ...

  20. Clinicians' recognition of the metabolic adverse effects of antipsychotic medications.

    PubMed

    Buckley, Peter F; Miller, Del D; Singer, Beth; Arena, John; Stirewalt, Edna M

    2005-11-15

    There is a growing concern regarding the propensity of second generation antipsychotics (SGAs) to induce weight gain and metabolic adverse effects. Recent consensus guidelines have recommended assessment and monitoring procedures to appropriately detect and manage these adverse effects. This study addresses the appreciation and readiness of clinicians to implement management guidelines for these adverse effects. Respondents indicated awareness of the risks of treatment with SGAs. The extent of monitoring for metabolic adverse effects was low and inconsistent across measures and in frequency of evaluation. Ongoing efforts are needed to support and encourage change in clinician practice.

  1. Acute effects of polychlorinated biphenyl-containing and -free transformer fluids on rat testicular steroidogenesis.

    PubMed

    Andric, S A; Kostic, T S; Dragisic, S M; Andric, N L; Stojilkovic, S S; Kovacevic, R Z

    2000-10-01

    Polychlorinated biphenyl (PCB)-based transformer fluids belong to a class of environmentally persistent mixtures with known toxic effects. Here, we studied the acute effects of Askarel (which contains Aroclor 1260) and two substitute transformer fluids (the silicone oil-based DC561 and the mineral oil-based ENOL C) on rat testicular steroidogenesis. Single intraperitoneal (ip; 10 mg/kg body weight) or bilateral intratesticular (itt; 25 microg/testis) injections of Askarel markedly decreased serum androgen levels 24 hr after administration. In acute testicular cultures from these animals, chorionic gonadotropin-stimulated progesterone and androgen productions were severely attenuated. When itt was injected or added in vitro, Askarel inhibited 3ss-hydroxysteroid dehydrogenase (3ssHSD), stimulated 17[alpha]-hydroxylase/lyase (P450c17), and did not affect 17ss-hydroxysteroid dehydrogenase in testicular postmitochondrial fractions. The ip-injected Askarel did not affect 3ssHSD, but inhibited P450c17, suggesting that a more intensive metabolism of peripherally injected Askarel reduces the circulating levels of active ingredients below the threshold needed for inhibition of 3ssHSD and generates a derivative that inhibits P450c17. In contrast to Askarel, itt-injection (25 microg/testis) of DC561 and ENOL C did not affect in vivo and in vitro steroidogenesis. These findings show the acute effects of Askarel, but not silicone and mineral oils, on testicular steroidogenesis.

  2. Effects of intermittent fasting on metabolism in men.

    PubMed

    Azevedo, Fernanda Reis de; Ikeoka, Dimas; Caramelli, Bruno

    2013-01-01

    This review analyzes the available literature on the impact of intermittent fasting (IF), a nutritional intervention, on different aspects of metabolism. The epidemic of metabolic disturbances, such as obesity, metabolic syndrome (MS), and diabetes mellitus type 2 has led to an increase in the prevalence of cardiovascular diseases, and affected patients might significantly benefit from modifications in nutritional habits. Recent experimental studies have elucidated some of the metabolic mechanisms involved with IF. Animal models have shown positive changes in glucose (lower plasma glucose and insulin levels) and in lipid metabolism (reduced visceral fat tissue and increased plasma adiponectin level), and an increased resistance to stress. Despite the limited number of samples studied, positive results have been reported on the impact of IF for human health. IF is reported to improve the lipid profile; to decrease inflammatory responses, reflected by changes in serum adipokine levels; and to change the expression of genes related to inflammatory response and other factors. Studies on obese individuals have shown that patient compliance was greater for IF than other traditional nutritional approaches (calorie restriction), and IF was found to be associated with low oxidative stress. Recent reports suggest that IF exerts a positive impact on the metabolic derangements commonly associated with cardiovascular diseases, and that it may be a viable and accessible intervention for most individuals. Therefore, further clinical studies are essential to test the effectiveness of IF in preventing and controlling metabolic and cardiovascular diseases.

  3. Effect of acute ethanol and acute allopregnanolone on spatial memory in adolescent and adult rats.

    PubMed

    Chin, Vivien S; Van Skike, Candice E; Berry, Raymond B; Kirk, Roger E; Diaz-Granados, Jamie; Matthews, Douglas B

    2011-08-01

    The effects of ethanol differ in adolescent and adult rats on a number of measures. The evidence of the effects of ethanol on spatial memory in adolescents and adults is equivocal. Whether adolescents are more or less sensitive to ethanol-induced impairment of spatial memory acquisition remains unclear; with regard to the effects of acute ethanol on spatial memory retrieval there is almost no research looking into any age difference. Thus, we examined the effects of acute ethanol on spatial memory in the Morris Watermaze in adolescents and adults. Allopregnanolone (ALLO) is a modulator of the GABA(A) receptor and has similar behavioral effects as ethanol. We sought to also determine the effects of allopreganolone on spatial memory in adolescent and adults. Male adolescent (post natal [PN]28-30) and adult (PN70-72) rats were trained in the Morris Watermaze for 6 days and acute doses of ethanol (saline, 1.5 and 2.0 g/kg) or ALLO (vehicle, 9 and 18 mg/kg) were administered on Day 7. A probe trial followed on Day 8. As expected, there were dose effects; higher doses of both ethanol and ALLO impaired spatial memory. However, in both the ethanol and ALLO conditions adolescents and adults had similar spatial memory impairments. The current results suggest that ethanol and ALLO both impair hippocampal-dependent spatial memory regardless of age in that once learning has occurred, ethanol or ALLO does not differentially impair the retrieval of spatial memory in adolescents and adults. Given the mixed results on the effect of ethanol on cognition in adolescent rats, additional research is needed to ascertain the factors critical for the reported differential results.

  4. [Pathophysiology of hormonal, immune, metabolic changes in acute and chronic pancreatitis. Experimental and clinical studies].

    PubMed

    Trubitsyna, I E; Chikunova, B Z; Tkachenko, E V; Tsaregorodtseva, T M; Vinokurova, L V; Varvanina, G G

    2008-01-01

    There is literature review of the acute and chronic pancreatitis experimental models. Patogenetic necrosis mechanisms with fibrosis progress in pancreas were revealed. The stimulation of the proteolytic enzymes synthesis and secretion, that was examined in experiments were compared with clinical examinations. The patients with chronic pancreatitis were investigated in the Central Research Institute of Gastroenterology.

  5. Influences of methamphetamine-induced acute intoxication on urinary and plasma metabolic profiles in the rat.

    PubMed

    Shima, Noriaki; Miyawaki, Izuru; Bando, Kiyoko; Horie, Hiroshi; Zaitsu, Kei; Katagi, Munehiro; Bamba, Takeshi; Tsuchihashi, Hitoshi; Fukusaki, Eiichiro

    2011-09-05

    Methamphetamine (MA) is an illicit psychostimulant, and its abuse has become an international public health problem. MA intoxication can cause life-threatening hyperthermia, renal and liver failure, cardiac arrhythmias, and neurological damage. To investigate the relationship between the underlying mechanism of such intoxication and metabolic networks, mass spectrometry-based metabolomics experiments were performed on Sprague-Dawley rats treated with MA at 10mgkg(-1)h(-1) for 4h. Using a combination of gas chromatography-time-of-flight mass spectrometry and capillary electrophoresis-tandem mass spectrometry, global and targeted analyses were performed on biological samples collected during 0-24 and 72-96h (for urine), and at 24 and 96h (for plasma) after the last drug administration. Body temperature and plasma biochemical parameters were also measured to detect abnormal reactions in neuronal and other several tissues. 5-Oxoproline, saccharic acid, uracil, 3-hydroxybutyrate (3-HB), adipic acid, glucose, glucose 6-phosphate, fructose 1,6-bisphosphate, and tricarboxylic acid (TCA) cycle intermediates, such as fumarate, were proposed as potential biomarkers related to MA-induced intoxications. In particular, the observation of decreased TCA cycle intermediates and 3-HB and increased glucose suggested that high doses of MA inhibit biogenic energy production by glycolysis, oxidative phosphorylation via the TCA cycle, and the beta-oxidation of fatty acids. These results may provide not only a clue to clarify the underlying mechanism of diverse intoxication effects, but also biological fluid-based diagnostic and forensic methods with which to objectively demonstrate intoxication without directly determining the drug.

  6. Urinary metabolic signatures and early triage of acute radiation exposure in rat model.

    PubMed

    Zhao, Mingxiao; Lau, Kim Kt; Zhou, Xian; Wu, Jianfang; Yang, Jun; Wang, Chang

    2017-03-28

    After a large-scale radiological accident, early-response biomarkers to assess radiation exposure over a broad dose range are not only the basis of rapid radiation triage, but are also the key to the rational use of limited medical resources and to the improvement of treatment efficiency. Because of its high throughput, rapid assays and minimally invasive sample collection, metabolomics has been applied to research into radiation exposure biomarkers in recent years. Due to the complexity of radiobiological effects, most of the potential biomarkers are both dose-dependent and time-dependent. In reality, it is very difficult to find a single biomarker that is both sensitive and specific in a given radiation exposure scenario. Therefore, a multi-parameters approach for radiation exposure assessment is more realistic in real nuclear accidents. In this study, untargeted metabolomic profiling based on gas chromatography-mass spectrometry (GC-MS) and targeted amino acid profiling based on LC-MS/MS were combined to investigate early urinary metabolite responses within 48 h post-exposure in a rat model. A few of the key early-response metabolites for radiation exposure were identified, which revealed the most relevant metabolic pathways. Furthermore, a panel of potential urinary biomarkers was selected through a multi-criteria approach and applied to early triage following irradiation. Our study suggests that it is feasible to use a multi-parameters approach to triage radiation damage, and the urinary excretion levels of the relevant metabolites provide insights into radiation damage and repair.

  7. Acute and Long-Term Effects of Hyperthermia in B16-F10 Melanoma Cells

    PubMed Central

    Garcia, Mónica Pereira; Cavalheiro, José Roberto Tinoco; Fernandes, Maria Helena

    2012-01-01

    Objective Hyperthermia uses exogenous heat induction as a cancer therapy. This work addresses the acute and long-term effects of hyperthermia in the highly metastatic melanoma cell line B16-F10. Materials and Methods Melanoma cells were submitted to one heat treatment, 45°C for 30 min, and thereafter were kept at 37°C for an additional period of 14 days. Cultures maintained at 37°C were used as control. Cultures were assessed for the heat shock reaction. Results Immediately after the heat shock, cells began a process of fast degradation, and, in the first 24 h, cultures showed decreased viability, alterations in cell morphology and F-actin cytoskeleton organization, significant reduction in the number of adherent cells, most of them in a process of late apoptosis, and an altered gene expression profile. A follow-up of two weeks after heat exposure showed that viability and number of adherent cells remained very low, with a high percentage of early apoptotic cells. Still, heat-treated cultures maintained a low but relatively constant population of cells in S and G2/M phases for a long period after heat exposure, evidencing the presence of metabolically active cells. Conclusion The melanoma cell line B16-F10 is susceptible to one hyperthermia treatment at 45°C, with significant induced acute and long-term effects. However, a low but apparently stable percentage of metabolically active cells survived long after heat exposure. PMID:22532856

  8. Acute Stressor Effects on Goal-Directed Action in Rats

    ERIC Educational Resources Information Center

    Braun, Stephanie; Hauber, Wolfgang

    2013-01-01

    Here we examined effects of acute stressors that involve either systemic coadministration of corticosterone/yohimbine (3 mg/kg each) to increase glucocorticoid/noradrenaline activity (denoted as "pharmacological" stressor) or one or several distinct restraint stressors (denoted as "single" vs. "multiple" stressor) on…

  9. Effects of Acute Exercise on Long-Term Memory

    ERIC Educational Resources Information Center

    Labban, Jeffrey D.; Etnier, Jennifer L.

    2011-01-01

    In this study, we tested the effect of acute exercise on long-term memory, specifically the timing of exercise relative to the memory challenge. We assessed memory via paragraph recall, in which participants listened to two paragraphs (exposure) and recounted them following a 35-min delay. Participants (n = 48) were randomly assigned to one of…

  10. Salecan protected against concanavalin A-induced acute liver injury by modulating T cell immune responses and NMR-based metabolic profiles.

    PubMed

    Sun, Qi; Xu, Xi; Yang, Xiao; Weng, Dan; Wang, Junsong; Zhang, Jianfa

    2017-02-15

    Salecan, a water-soluble extracellular β-glucan produced by Agrobacterium sp. ZX09, has been reported to exhibit a wide range of biological effects. The aims of the present study were to investigate the protective effect of salecan against Concanavalin A (ConA)-induced hepatitis, a well-established animal model of immune-mediated liver injury, and to search for possible mechanisms. C57BL/6 mice were pretreated with salecan followed by ConA injection. Salecan treatment significantly reduced ConA-induced acute liver injury, and suppressed the expression and secretion of inflammatory cytokines including interferon (IFN)-γ, interleukin (IL)-6 and IL-1β in ConA-induced liver injury model. The high expression levels of chemokines and adhesion molecules such as MIP-1α, MIP-1β, ICAM-1, MCP-1 and RANTES in the liver induced by ConA were also down-regulated after salecan treatment. Salecan inhibited the infiltration and activation of inflammatory cells, especially T cells, in the liver induced by ConA. Moreover, salecan reversed the metabolic profiles of ConA-treated mice towards the control group by partly recovering the metabolic perturbations induced by ConA. Our results suggest the preventive and therapeutic potential of salecan in immune-mediated hepatitis.

  11. Effects of melatonin on gallbladder neuromuscular function in acute cholecystitis.

    PubMed

    Gomez-Pinilla, Pedro J; Camello, Pedro J; Pozo, María J

    2007-10-01

    Gallbladder stasis is associated to experimental acute cholecystitis. Impaired contractility could be, at least in part, the result of inflammation-induced alterations in the neuromuscular function. This study was designed to determine the changes in gallbladder neurotransmission evoked by acute inflammation and to evaluate the protective and therapeutic effects of melatonin. Experimental acute cholecystitis was induced in guinea pigs by common bile duct ligation for 2 days, and then the neuromuscular function was evaluated using electrical field stimulation (EFS; 5-40 Hz). In a group of animals with the bile duct ligated for 2 days, a deligation of the duct was performed, and after 2 days, the neuromuscular function was studied. The EFS-evoked isometric gallbladder contraction was significantly lower in cholecystitic tissue. In addition, inflammation changed the pharmacological profile of these contractions that were insensitive to tetrodotoxin but sensitive to atropine and omega-conotoxin, indicating that acute cholecystitis affects action potential propagation in the intrinsic nerves. Nitric oxide (NO)-mediated neurotransmission was reduced by inflammation, which also increased the reactivity of sensitive fibers. Melatonin treatment prevented qualitative changes in gallbladder neurotransmission, but it did not improve EFS-induced contractility. The hormone recovered gallbladder neuromuscular function once the biliary obstruction was resolved, even when the treatment was started after the onset of gallbladder inflammation. These findings show for the first time the therapeutic potential of melatonin in the recovery of gallbladder neuromuscular function during acute cholecystitis.

  12. Response of AMP-activated protein kinase and energy metabolism to acute nitrite exposure in the Nile tilapia Oreochromis niloticus.

    PubMed

    Xu, Zhixin; Li, Erchao; Xu, Chang; Gan, Lei; Qin, Jian G; Chen, Liqiao

    2016-08-01

    Adenosine monophosphate-activated protein kinase (AMPK) is a prevalent mammalian energy metabolism sensor, but little is known about its role as an energy sensor in fish experiencing stress. We aimed to study AMPK in Oreochromis niloticus on both the molecular and the physical level. We found that the cDNAs encoding the AMPKα1 and AMPKα2 variants of the O. niloticus catalytic α subunit were 1753bp and 2563 bp long and encoded 571 and 557 amino acids, respectively. Both the AMPKα1 and the AMPKα2 isoform possess structural features similar to mammalian AMPKα, including a phosphorylation site at Thr172 in the N-terminus, and exhibit high homology with other fish and vertebrate AMPKα sequences (81.3%-98.1%). mRNA encoding the AMPKα isoforms was widely expressed in various tissues with distinctive patterns. AMPKα1 and AMPKα2 were primarily expressed in the intestines and brain, respectively. Under acute nitrite challenge, the mRNA encoding the AMPKα isoforms, as well as AMPK activity, changed over time. Its recovery period in freshwater, combined with the fact that it is highly conserved, suggests that fish AMPK, like its mammalian orthologues, acts as an energy metabolism sensor. Furthermore, subsequent decreases in AMPK mRNA levels and activity suggested that its action was transient but efficient. Physically, glucose, lactic acid and TGs in plasma, as well as energy materials in the hepatopancreas and muscle, were significantly altered over time, indicating changes in energy metabolism during the experimental period. These data have enabled us to characterize energy utilization in O. niloticus and further illustrate the role of fish AMPK as an energy sensor. This study provides new insight into energy metabolism and sensing by AMPK in teleost and necessitates further study of the multiple physiologic roles of AMPK in fish.

  13. Is racecadotril effective for acute diarrhea in children? -First update.

    PubMed

    Sáez, Josefina; Cifuentes, Lorena

    2016-05-06

    This article updates the December 2015 Living FRISBEE (Living FRISBEE: Living FRIendly Summary of the Body of Evidence using Epistemonikos), based on the detection of two systematic reviews not identified in the previous version. Gastroenteritis or acute watery diarrhea is usually a self-limited disease, but it is still associated to substantial healthcare costs and remains a frequent demand for medical care. Racecadotril, an intestinal enkephalinase inhibitor, has been used as treatment because it would decrease the duration of acute diarrhea and fluid loss. However there is still no evidence supporting its routine use. Searching in Epistemonikos database, which is maintained by screening 30 databases, we identified five systematic reviews including nine randomized trials relevant for our question. We combined the evidence using meta-analysis and generated a summary of findings table following the GRADE approach. We concluded racecadotril probably reduces the duration of acute diarrhea in pediatric patients, without increasing adverse effects.

  14. Long-term effects of nanoparticles on nutrition and metabolism.

    PubMed

    Chen, Nan; Wang, Hui; Huang, Qing; Li, Jiang; Yan, Juan; He, Dannong; Fan, Chunhai; Song, Haiyun

    2014-09-24

    Nanoparticles have shown great potential in biological and biomedical applications due to their distinct physical and chemical properties. In the meanwhile, the biosafety of nanoparticles has also raised intense concerns worldwide. To address such concerns, great efforts have been made to examine short-term effects of nanoparticles on cell survival and proliferation. More recently, exploration of long-term effects of nanomaterials, particularly those with promising biomedical applications in vivo, has aroused significant interest. For example, gold nanoparticles (AuNPs) are generally considered non-toxic to cell growth, whereas recent studies suggest that AuNPs might have long-term effects on cellular metabolism and energy homeostasis. In this Review, recent advances in this direction are summarized. Further, possible mechanisms under which nanoparticles regulate metabolic signaling pathways, potential long-term effects on cellular anabolic or catabolic processes, and their implications in human health and metabolic disorders are discussed.

  15. Effect of exercise on fluoride metabolism in adult humans: a pilot study.

    PubMed

    V Zohoori, Fatemeh; Innerd, Alison; Azevedo, Liane B; Whitford, Gary M; Maguire, Anne

    2015-11-19

    An understanding of all aspects of fluoride metabolism is critical to identify its biological effects and avoid fluoride toxicity in humans. Fluoride metabolism and subsequently its body retention may be affected by physiological responses to acute exercise. This pilot study investigated the effect of exercise on plasma fluoride concentration, urinary fluoride excretion and fluoride renal clearance following no exercise and three exercise intensity conditions in nine healthy adults after taking a 1-mg Fluoride tablet. After no, light, moderate and vigorous exercise, respectively, the mean (SD) baseline-adjusted i) plasma fluoride concentration was 9.6(6.3), 11.4(6.3), 15.6(7.7) and 14.9(10.0) ng/ml; ii) rate of urinary fluoride excretion over 0-8 h was 46(15), 44(22), 34(17) and 36(17) μg/h; and iii) rate of fluoride renal clearance was 26.5(9.0), 27.2(30.4), 13.1(20.4) and 18.3(34.9) ml/min. The observed trend of a rise in plasma fluoride concentration and decline in rate of fluoride renal clearance with increasing exercise intensity needs to be investigated in a larger trial. This study, which provides the first data on the effect of exercise with different intensities on fluoride metabolism in humans, informs sample size planning for any subsequent definitive trial, by providing a robust estimate of the variability of the effect.

  16. Effect of exercise on fluoride metabolism in adult humans: a pilot study

    PubMed Central

    V. Zohoori, Fatemeh; Innerd, Alison; Azevedo, Liane B.; Whitford, Gary M.; Maguire, Anne

    2015-01-01

    An understanding of all aspects of fluoride metabolism is critical to identify its biological effects and avoid fluoride toxicity in humans. Fluoride metabolism and subsequently its body retention may be affected by physiological responses to acute exercise. This pilot study investigated the effect of exercise on plasma fluoride concentration, urinary fluoride excretion and fluoride renal clearance following no exercise and three exercise intensity conditions in nine healthy adults after taking a 1-mg Fluoride tablet. After no, light, moderate and vigorous exercise, respectively, the mean (SD) baseline-adjusted i) plasma fluoride concentration was 9.6(6.3), 11.4(6.3), 15.6(7.7) and 14.9(10.0) ng/ml; ii) rate of urinary fluoride excretion over 0–8 h was 46(15), 44(22), 34(17) and 36(17) μg/h; and iii) rate of fluoride renal clearance was 26.5(9.0), 27.2(30.4), 13.1(20.4) and 18.3(34.9) ml/min. The observed trend of a rise in plasma fluoride concentration and decline in rate of fluoride renal clearance with increasing exercise intensity needs to be investigated in a larger trial. This study, which provides the first data on the effect of exercise with different intensities on fluoride metabolism in humans, informs sample size planning for any subsequent definitive trial, by providing a robust estimate of the variability of the effect. PMID:26581340

  17. Beyond Warburg effect – dual metabolic nature of cancer cells

    PubMed Central

    Xie, Jiansheng; Wu, Hao; Dai, Chunyan; Pan, Qiangrong; Ding, Zonghui; Hu, Danqing; Ji, Bingyan; Luo, Yan; Hu, Xun

    2014-01-01

    Warburg effect is a dominant phenotype of most cancer cells. Here we show that this phenotype depends on its environment. When cancer cells are under regular culture condition, they show Warburg effect; whereas under lactic acidosis, they show a nonglycolytic phenotype, characterized by a high ratio of oxygen consumption rate over glycolytic rate, negligible lactate production and efficient incorporation of glucose carbon(s) into cellular mass. These two metabolic modes are intimately interrelated, for Warburg effect generates lactic acidosis that promotes a transition to a nonglycolytic mode. This dual metabolic nature confers growth advantage to cancer cells adapting to ever changing microenvironment. PMID:24820099

  18. Effects of acute hypoxia on cerebrovascular responses to carbon dioxide.

    PubMed

    Ogoh, Shigehiko; Nakahara, Hidehiro; Ueda, Shinya; Okazaki, Kazunobu; Shibasaki, Manabu; Subudhi, Andrew W; Miyamoto, Tadayoshi

    2014-06-01

    In normoxic conditions, a reduction in arterial carbon dioxide tension causes cerebral vasoconstriction, thereby reducing cerebral blood flow and modifying dynamic cerebral autoregulation (dCA). It is unclear to what extent these effects are altered by acute hypoxia and the associated hypoxic ventilatory response (respiratory chemoreflex). This study tested the hypothesis that acute hypoxia attenuates arterial CO2 tension-mediated regulation of cerebral blood flow to help maintain cerebral O2 homeostasis. Eight subjects performed three randomly assigned respiratory interventions following a resting baseline period, as follows: (1) normoxia (21% O2); (2) hypoxia (12% O2); and (3) hypoxia with wilful restraint of the respiratory chemoreflex. During each intervention, 0, 2.0, 3.5 or 5.0% CO2 was sequentially added (8 min stages) to inspired gas mixtures to assess changes in steady-state cerebrovascular CO2 reactivity and dCA. During normoxia, the addition of CO2 increased internal carotid artery blood flow and middle cerebral artery mean blood velocity (MCA Vmean), while reducing dCA (change in phase = -0.73 ± 0.22 rad, P = 0.005). During acute hypoxia, internal carotid artery blood flow and MCA Vmean remained unchanged, but cerebrovascular CO2 reactivity (internal carotid artery, P = 0.003; MCA Vmean, P = 0.031) and CO2-mediated effects on dCA (P = 0.008) were attenuated. The effects of hypoxia were not further altered when the respiratory chemoreflex was restrained. These findings support the hypothesis that arterial CO2 tension-mediated effects on the cerebral vasculature are reduced during acute hypoxia. These effects could limit the degree of hypocapnic vasoconstriction and may help to regulate cerebral blood flow and cerebral O2 homeostasis during acute periods of hypoxia.

  19. Hyper-gravitational effects on metabolism and thermoregulation

    NASA Technical Reports Server (NTRS)

    Oyama, J.

    1984-01-01

    Animal hypergravitational effects on metabolism and thermoregulation was studied. The two major problem areas investigated are: initial and short-term exposure effects, and chronic, long-term exposure effects involving developmental and adaptational effects. Investigations focused on: (1) quantifying changes in thermoregulation with graded G-intensities in rats; (2) further delineating the effects of duration on gluconeogenesis, gluconeogenic hormones and substrates, and glucose homeostasis; and (3) reproduction and neonatal survival rates under different G-intensities.

  20. Metabolic Profiling Reveals Effects of Age, Sexual Development and Neutering in Plasma of Young Male Cats

    PubMed Central

    Allaway, David; Gilham, Matthew S.; Colyer, Alison; Jönsson, Thomas J.; Swanson, Kelly S.; Morris, Penelope J.

    2016-01-01

    Neutering is a significant risk factor for obesity in cats. The mechanisms that promote neuter-associated weight gain are not well understood but following neutering, acute changes in energy expenditure and energy consumption have been observed. Metabolic profiling (GC-MS and UHPLC-MS-MS) was used in a longitudinal study to identify changes associated with age, sexual development and neutering in male cats fed a nutritionally-complete dry diet to maintain an ideal body condition score. At eight time points, between 19 and 52 weeks of age, fasted blood samples were taken from kittens neutered at either 19 weeks of age (Early Neuter (EN), n = 8) or at 31 weeks of age (Conventional Neuter (CN), n = 7). Univariate and multivariate analyses were used to compare plasma metabolites (n = 370) from EN and CN cats. Age was the primary driver of variance in the plasma metabolome, including a developmental change independent of neuter group between 19 and 21 weeks in lysolipids and fatty acid amides. Changes associated with sexual development and its subsequent loss were also observed, with differences at some time points observed between EN and CN cats for 45 metabolites (FDR p<0.05). Pathway Enrichment Analysis also identified significant effects in 20 pathways, dominated by amino acid, sterol and fatty acid metabolism. Most changes were interpretable within the context of male sexual development, and changed following neutering in the CN group. Felinine metabolism in CN cats was the most significantly altered pathway, increasing during sexual development and decreasing acutely following neutering. Felinine is a testosterone-regulated, felid-specific glutathione derivative secreted in urine. Alterations in tryptophan, histidine and tocopherol metabolism observed in peripubertal cats may be to support physiological functions of glutathione following diversion of S-amino acids for urinary felinine secretion. PMID:27942045

  1. Englerin A induces an acute inflammatory response and reveals lipid metabolism and ER stress as targetable vulnerabilities in renal cell carcinoma

    PubMed Central

    Batova, Ayse; Altomare, Diego; Creek, Kim E.; Naviaux, Robert K.; Wang, Lin; Li, Kefeng; Green, Erica; Williams, Richard; Naviaux, Jane C.; Diccianni, Mitchell; Yu, Alice L.

    2017-01-01

    Renal cell carcinoma (RCC) is among the top ten most common forms of cancer and is the most common malignancy of the kidney. Clear cell renal carcinoma (cc-RCC), the most common type of RCC, is one of the most refractory cancers with an incidence that is on the rise. Screening of plant extracts in search of new anti-cancer agents resulted in the discovery of englerin A, a guaiane sesquiterpene with potent cytotoxicity against renal cancer cells and a small subset of other cancer cells. Though a few cellular targets have been identified for englerin A, it is still not clear what mechanisms account for the cytotoxicity of englerin A in RCC, which occurs at concentrations well below those used to engage the targets previously identified. Unlike any prior study, the current study used a systems biology approach to explore the mechanism(s) of action of englerin A. Metabolomics analyses indicated that englerin A profoundly altered lipid metabolism by 24 h in cc-RCC cell lines and generated significant levels of ceramides that were highly toxic to these cells. Microarray analyses determined that englerin A induced ER stress signaling and an acute inflammatory response, which was confirmed by quantitative PCR and Western Blot analyses. Additionally, fluorescence confocal microscopy revealed that englerin A at 25 nM disrupted the morphology of the ER confirming the deleterious effect of englerin A on the ER. Collectively, our findings suggest that cc-RCC is highly sensitive to disruptions in lipid metabolism and ER stress and that these vulnerabilities can be targeted for the treatment of cc-RCC and possibly other lipid storing cancers. Furthermore, our results suggest that ceramides may be a mediator of some of the actions of englerin A. Lastly, the acute inflammatory response induced by englerin A may mediate anti-tumor immunity. PMID:28296891

  2. Englerin A induces an acute inflammatory response and reveals lipid metabolism and ER stress as targetable vulnerabilities in renal cell carcinoma.

    PubMed

    Batova, Ayse; Altomare, Diego; Creek, Kim E; Naviaux, Robert K; Wang, Lin; Li, Kefeng; Green, Erica; Williams, Richard; Naviaux, Jane C; Diccianni, Mitchell; Yu, Alice L

    2017-01-01

    Renal cell carcinoma (RCC) is among the top ten most common forms of cancer and is the most common malignancy of the kidney. Clear cell renal carcinoma (cc-RCC), the most common type of RCC, is one of the most refractory cancers with an incidence that is on the rise. Screening of plant extracts in search of new anti-cancer agents resulted in the discovery of englerin A, a guaiane sesquiterpene with potent cytotoxicity against renal cancer cells and a small subset of other cancer cells. Though a few cellular targets have been identified for englerin A, it is still not clear what mechanisms account for the cytotoxicity of englerin A in RCC, which occurs at concentrations well below those used to engage the targets previously identified. Unlike any prior study, the current study used a systems biology approach to explore the mechanism(s) of action of englerin A. Metabolomics analyses indicated that englerin A profoundly altered lipid metabolism by 24 h in cc-RCC cell lines and generated significant levels of ceramides that were highly toxic to these cells. Microarray analyses determined that englerin A induced ER stress signaling and an acute inflammatory response, which was confirmed by quantitative PCR and Western Blot analyses. Additionally, fluorescence confocal microscopy revealed that englerin A at 25 nM disrupted the morphology of the ER confirming the deleterious effect of englerin A on the ER. Collectively, our findings suggest that cc-RCC is highly sensitive to disruptions in lipid metabolism and ER stress and that these vulnerabilities can be targeted for the treatment of cc-RCC and possibly other lipid storing cancers. Furthermore, our results suggest that ceramides may be a mediator of some of the actions of englerin A. Lastly, the acute inflammatory response induced by englerin A may mediate anti-tumor immunity.

  3. Acute upregulation of neuronal mitochondrial type-1 cannabinoid receptor and it's role in metabolic defects and neuronal apoptosis after TBI.

    PubMed

    Xu, Zhen; Lv, Xiao-Ai; Dai, Qun; Ge, Yu-Qing; Xu, Jie

    2016-08-02

    Metabolic defects and neuronal apoptosis initiated by traumatic brain injury (TBI) contribute to subsequent neurodegeneration. They are all regulated by mechanisms centered around mitochondrion. Type-1 cannabinoid receptor (CB1) is a G-protein coupled receptor (GPCR) enriched on neuronal plasma membrane. Recent evidences point to the substantial presence of CB1 receptors on neuronal mitochondrial outer membranes (mtCB1) and the activation of mtCB1 influences aerobic respiration via inhibiting mitochondrial cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/complex I pathway. The expression and role of neuronal mtCB1 under TBI are unknown. Using TBI models of cultured neurons, wild type and CB1 knockout mice, we found mtCB1 quickly upregulated after TBI. Activation of mtCB1 promoted metabolic defects accompanied with ATP shortage but protected neurons from apoptosis. Selective activation of plasma membrane CB1 showed no effects on neuronal metabolism and apoptosis. Activation of mtCB1 receptors inhibited mitochondrial cAMP/PKA/complex I and resulted in exacerbated metabolic defects accompanied with a higher ratio of ATP reduction to oxygen consumption decrease as well as neuronal apoptosis. Further research found the remarkable accumulation of protein kinase B (AKT) on neuronal mitochondria following TBI and the activation of mtCB1 upregulated mitochondrial AKT/complex V activity. Upregulation of mitochondrial AKT/complex V activity showed anti-apoptosis effects and alleviated ATP shortage in metabolic defects. Taken together, we have identified mtCB1 quickly upregulate after TBI and a dual role the mtCB1 might play in metabolic defects and neuronal apoptosis initiated by TBI: the inhibition of mitochondrial cAMP/PKA/complex I aggravates metabolic defects, energy insufficiency as well as neuronal apoptosis, but the coactivation of mitochondrial AKT/complex V mitigates energy insufficiency and neuronal apoptosis.

  4. Metabolic effects of fructose and the worldwide increase in obesity.

    PubMed

    Tappy, Luc; Lê, Kim-Anne

    2010-01-01

    While virtually absent in our diet a few hundred years ago, fructose has now become a major constituent of our modern diet. Our main sources of fructose are sucrose from beet or cane, high fructose corn syrup, fruits, and honey. Fructose has the same chemical formula as glucose (C(6)H(12)O(6)), but its metabolism differs markedly from that of glucose due to its almost complete hepatic extraction and rapid hepatic conversion into glucose, glycogen, lactate, and fat. Fructose was initially thought to be advisable for patients with diabetes due to its low glycemic index. However, chronically high consumption of fructose in rodents leads to hepatic and extrahepatic insulin resistance, obesity, type 2 diabetes mellitus, and high blood pressure. The evidence is less compelling in humans, but high fructose intake has indeed been shown to cause dyslipidemia and to impair hepatic insulin sensitivity. Hepatic de novo lipogenesis and lipotoxicity, oxidative stress, and hyperuricemia have all been proposed as mechanisms responsible for these adverse metabolic effects of fructose. Although there is compelling evidence that very high fructose intake can have deleterious metabolic effects in humans as in rodents, the role of fructose in the development of the current epidemic of metabolic disorders remains controversial. Epidemiological studies show growing evidence that consumption of sweetened beverages (containing either sucrose or a mixture of glucose and fructose) is associated with a high energy intake, increased body weight, and the occurrence of metabolic and cardiovascular disorders. There is, however, no unequivocal evidence that fructose intake at moderate doses is directly related with adverse metabolic effects. There has also been much concern that consumption of free fructose, as provided in high fructose corn syrup, may cause more adverse effects than consumption of fructose consumed with sucrose. There is, however, no direct evidence for more serious metabolic

  5. METABOLISM AS A DETERMINING FACTOR IN ACUTE AND CHRONIC TOXICITY OF INORGANIC ARSENIC

    EPA Science Inventory

    The metabolism of inorganic arsenic (iAs) in humans involves reduction of As(V)-species to trivalency and oxidative methylation of As(III)-species. In this pathway, iAs is converted to methylarsenic (MAs) and dimethyl arsenic (DMAs) metabolites that contain As(III) or As(V). Rec...

  6. Cerebral acetylcholine and energy metabolism changes in acute ammonia intoxication in the lower primate Tupaia glis.

    PubMed

    McCandless, D W; Looney, G A; Modak, A T; Stavinoha, W B

    1985-08-01

    Ammonia levels are elevated in many patients with hepatic encephalopathy. This observation, coupled with animal studies showing an encephalogenic role for ammonia, has led to the concept that ammonia is an important toxin in the production of neurologic symptoms. Studies in rodents have shown that ammonia alters cerebral energy metabolism in the reticular formation, an area important in the modulation of consciousness. Our study was undertaken to extend these observations to the lower primate Tupaia glis, the tree shrew. The energy metabolites glucose, glycogen, lactate, adenosine triphosphate, and phosphocreatine were measured in the reticular formation by microanalytic techniques and enzymatic cycling. Acetylcholine was measured in brain regions by gas chromatography. Acetylcholine levels were increased significantly only in the medulla-pons and diencephalon in the coma stage. The energy metabolites glucose, glycogen, and phosphocreatine were decreased in reticular formation cells during the coma, whereas lactate was increased. During the precoma, glycogen and phosphocreatine were decreased. It appears, therefore, that the tree shrew has a metabolic response to ammonia similar to that of mice. A lowering of energy metabolism in the area of brain-regulating consciousness may act to place the animal in a coma. This coma in turn acts to decrease overall metabolic demand, which allows the animal an opportunity to conserve its threatened energy reserves.

  7. Effects of activation of endocannabinoid system on myocardial metabolism.

    PubMed

    Polak, Agnieszka; Harasim, Ewa; Chabowski, Adrian

    2016-05-21

    Endocannabinoids exert their effect on the regulation of energy homeostasis via activation of specific receptors. They control food intake, secretion of insulin, lipids and glucose metabolism, lipid storage. Long chain fatty acids are the main myocardial energy substrate. However, the heart exerts enormous metabolic flexibility emphasized by its ability to utilzation not only fatty acids, but also glucose, lactate and ketone bodies. Endocannabinoids can directly act on the cardiomyocytes through the CB1 and CB2 receptors present in cardiomyocytes. It appears that direct activation of CB1 receptors promotes increased lipogenesis, pericardial steatosis and bioelectrical dysfunction of the heart. In contrast, stimulation of CB2 receptors exhibits cardioprotective properties, helping to maintain appropriate amount of ATP in cardiomyocytes. Furthermore, the effects of endocannabinoids at both the central nervous system and peripheral tissues, such as liver, pancreas, or adipose tissue, resulting indirectly in plasma availability of energy substrates and affects myocardial metabolism. To date, there is little evidence that describes effects of activation of the endocannabinoid system in the cardiovascular system under physiological conditions. In the present paper the impact of metabolic diseases, i. e. obesity and diabetes, as well as the cardiovascular diseases - hypertension, myocardial ischemia and myocardial infarction on the deregulation of the endocannabinoid system and its effect on the metabolism are described.

  8. Relation between the kinetics of thallium-201 in myocardial scintigraphy and myocardial metabolism in patients with acute myocardial infarction

    PubMed Central

    Yamagishi, H; Akioka, K; Takagi, M; Tanaka, A; Takeuchi, K; Yoshikawa, J; Ochi, H

    1998-01-01

    Objective—To investigate the relations between myocardial metabolism and the kinetics of thallium-201 in myocardial scintigraphy.
Methods—46 patients within six weeks after the onset of acute myocardial infarction underwent resting myocardial dual isotope, single acquisition, single photon emission computed tomography (SPECT) using radioiodinated 15-iodophenyl 3-methyl pentadecaenoic acid (BMIPP) and thallium-201, exercise thallium-201 SPECT, and positron emission tomography (PET) using nitrogen-13 ammonia (NH3) and [F18]fluorodeoxyglucose (FDG) under fasting conditions. The left ventricle was divided into nine segments, and the severity of defects was assessed visually.
Results—In the resting SPECT, less BMIPP uptake than thallium-201 uptake was observed in all of 40 segments with reverse redistribution of thallium-201, and in 21 of 88 segments with a fixed defect of thallium-201 (p < 0.0001); and more FDG uptake than NH3 uptake (NH3-FDG mismatch) was observed in 35 of 40 segments with reverse redistribution and in 38 of 88 segments with fixed defect (p < 0.0001). Less BMIPP uptake in the resting SPECT was observed in 49 of 54 segments with slow stress redistribution in exercise SPECT, and in nine of 17 segments with rapid stress redistribution (p < 0.0005); NH3-FDG mismatch was observed in 42 of 54 segments with slow stress redistribution and in five of 17 segments with rapid stress redistribution (p < 0.0005).
Conclusions—Thallium-201 myocardial scintigraphy provides information about not only myocardial perfusion and viability but also about myocardial metabolism in patients with acute myocardial infarction.

 Keywords: thallium-201 SPECT;  BMIPP SPECT;  FDG PET;  myocardial infarction;  redistribution PMID:9764055

  9. Metabolic causes and prevention of ventricular fibrillation during acute coronary syndromes.

    PubMed

    Oliver, Michael F

    2002-03-01

    The mechanisms leading to ventricular fibrillation that occur during acute myocardial ischemia are ill understood. Whether primary ventricular fibrillation is due to a transient imbalance of electrolytes, an alteration of membrane permeability, electrical re-entry phenomena, or other factors, one overriding influence is the development of regional myocardial energy crises. Acute alteration in the balance of substrate supply may lead, during greatly reduced blood flow, to instability of myocardial electrical conduction with the development of re-entry circuits. An immediate response to the angor animi and initial symptoms of an acute coronary syndrome is a rapid and marked increase in catecholamine release, which leads to adipose tissue lipolysis with an acute increase in plasma free fatty acid concentrations, suppression of insulin activity, and a reduction in glucose uptake by the myocardium. The utilization of free fatty acids instead of glucose by the ischemic myocardium could precipitate regional oxygen or energy crises. Prevention therefore should focus on minimizing the catecholamine response and providing the myocardium with an optimum supply of energy substrates. Since catecholamines are inotropic, the aim should be to redress the imbalance of substrate availability by controlling adipose lipolysis with reduction of plasma free fatty acid concentrations, increasing the availability of glucose, or both. Other approaches include inhibition of acylcarnitine transport and manipulation of fatty acid intermediaries. To combat primary ventricular fibrillation, preventive treatment must be established within 6 to 10 hours of the onset of ischemia. There is already experimental and clinical evidence that antilipolytic drugs decrease the incidence of ventricular fibrillation, but their potential has not been explored extensively.

  10. Acute effects of tea consumption on attention and mood.

    PubMed

    Einöther, Suzanne J; Martens, Vanessa E

    2013-12-01

    Tea has historically been associated with mood and performance benefits, such as relaxation and concentration. This review summarizes the research on the acute effects of tea, and its ingredients theanine and caffeine, on attention and mood. Consistent with abundant research on the benefits of caffeine, the performance benefits of tea were identified in a number of studies, with particularly consistent evidence for improved attention. Tea consumption also consistently improved self-reported alertness and arousal, whereas effects on pleasure or relaxation were less consistent. In addition to the research on caffeine in real-life performance, 2 recent studies have provided a broader perspective on tea's effects on psychological function in that they showed beneficial effects in related areas such as work performance and creativity. These studies showed the validity of laboratory findings by supporting the idea that tea consumption has acute benefits on both mood and performance in real-life situations.

  11. The effects of citicoline on acute ischemic stroke: a review.

    PubMed

    Overgaard, Karsten

    2014-08-01

    Early reopening of the occluded artery is, thus, important in ischemic stroke, and it has been calculated that 2 million neurons die every minute in an ischemic stroke if no effective therapy is given; therefore, "Time is Brain." In massive hemispheric infarction and edema, surgical decompression lowers the risk of death or severe disability defined as a modified Rankin Scale score greater than 4 in selected patients. The majority, around 80%-85% of all ischemic stroke victims, does not fulfill the criteria for revascularization therapy, and also for these patients, there is no effective acute therapy. Also there is no established effective acute treatment of spontaneous intracerebral bleeding. Therefore, an effective therapy applicable to all stroke victims is needed. The neuroprotective drug citicoline has been extensively studied in clinical trials with volunteers and more than 11,000 patients with various neurologic disorders, including acute ischemic stroke (AIS). The conclusion is that citicoline is safe to use and may have a beneficial effect in AIS patients and most beneficial in less severe stroke in older patients not treated with recombinant tissue plasminogen activator. No other neuroprotective agent had any beneficial effect in confirmative clinical trials or had any positive effect in the subgroup analysis. Citicoline is the only drug that in a number of different clinical stroke trials continuously had some neuroprotective benefit.

  12. [Metabolism of hexobarbital in patients with acute hepatitis and cirrhosis (author's transl)].

    PubMed

    Richter, E; Gallenkamp, H; Keller, B; Brachtel, D; Zilly, W; Breimer, D D

    1977-06-01

    16 patients with acute hepatitis, 18 patients with cirrhosis and a total of 21 volunteers and patients with normal liver function received 7.32 mg/kg hexobarbital by linear intravenous infusion within 60 min. Hexobarbital was determined gaschromatographically in serial blood samples and the hexobarbital-clearance was calculated from the plasma concentration curve versus time. Additional experiments were performed in rats suffering from so called "galactosamine hepatitis". In half of the patients with acute hepatitis a normal hexobarbital clearance could be found. In the other patients this was distinctly reduced but not correlation was found to other liver function tests. Patients with cirrhosis were subdivided into two groups. The patients in group 1 were well compensated. The patients in group 2 had a decompensated state with ascites and oesophageal varices. In nearly all patients with cirrhosis the hexobarbital-clearance was diminished. This was more pronounced in group 2. Ketohexobarbital excretion in healthy subjects was in the range of 40-60% of dose. Patients with acute hepatitis excreted only 10-20% of dose and patients with liver cirrhosis only about 5% of dose. In rats with "galactosamine hepatitis" hexobarbital clearance in vivo was distinctly reduced and this could be explained by diminished microsomal cytochrome p 45- and hexobarbital oxidation rate.

  13. The Acute and Chronic Biochemical and Behavioral Effects of Cyclotrimethylenetrinitramine

    DTIC Science & Technology

    1975-03-31

    Behavioral Studies - Barbiturate slieptimes were determined using hexabar- bital according to the standard technique used in our labora- tory, in which rats...the in vitro study (Table 4 D). - These results show that CMT does not produce an acute effect on Ouptake of duration over 6 hours. Nor does chronic...results of a study of the toxic effects of cyclomethylenetrinitramine on the brain after chronic admin.istration to male rats. In 1973 the Department

  14. High Prevalence of Obesity in Acute Promyelocytic Leukemia (APL): Implications for Differentiating Agents in APL and Metabolic Syndrome

    PubMed Central

    Tedesco, Jason; Qualtieri, Julianne; Head, David; Savani, Bipin N.; Reddy, Nishitha

    2011-01-01

    Background: Between January 1999 and December 2008, 469 patients treated for acute myeloid leukemia (AML) were included in this single-institution study. Methods: We performed a case-control analysis to study the rate of obesity among patients with acute promyelocytic leukemia (APL) and non-APL AML. Results: A total of 81% of APL patients analyzed were obese compared with 41.7% in the non-APL group (p < 0.001). Body mass index (BMI) >30 was seen in 57% of APL patients compared with 31% for the non-APL group (p = 0.01). Neither obesity nor the chemotherapy dosing based on ideal body weight affected survival. Conclusions: Our findings generate the hypothesis that APL and metabolic syndromes may share a common pathogenic pathway via retinoic acid receptors (RARs), the ligand-controlled transcription factors that function as heterodimers with retinoid X receptors (RXRs) to regulate cell growth and survival. If this link is confirmed in larger studies, our data will instigate further studies using RXR and RAR modulators as a preventive strategy among obese individuals. PMID:23556085

  15. [Lymphocyte metabolism in patients with acute pancreatitis with different genotypes of GSTM1 and GSTT1 genes].

    PubMed

    Markova, E V; Zotova, N V; Savchenko, A A; Titova, N M; Slepov, E V; Cherdantsev, D V; Konovalenko, A N

    2006-01-01

    In this study, we have investigated correlation between enzymatic activity of NAD(P)-dependent dehydrogenases of lymphocytes and polymorphic variants of glutathione S-transferase M1 (GSTM1) and T1 (GSTT1) genes in the group of unrelated patients with acute pancreatitis in comparison with healthy Russians from Krasnoyarsk. Thus, genotype GSTM1 0/0 is the marker of predisposition to the acute pancreatitis, wheras polymorphism of the GSTT1 gene is not involved in the development of the pancreatitis, at least in our group. The bioluminescence analysis showed statistically significant decrease of the levels of G3PD, NAD(+)MDH and the increase of NADH(+)LDH, NAD(+)GDH, NADH(+)GDH in lymphocytes of pancreatic group. Development of pancreatitis in patients with different genotypes GSTM1 and GSTT1 genes showed the rearrangement of the basic intracellular processes: dominance of a plastic metabolism in the patients with GSTM1--deletions and predominance of energetic processes at GSTT1 0 - pancreatitis.

  16. Contaminant effect on cellular metabolic differential pressure curves.

    PubMed

    Milani, Marziale; Ballerini, Monica; Ferraro, L; Zabeo, M; Barberis, M; Cannone, M; Faraone, V

    2004-01-01

    The possibility of a pressure monitoring system by differential pressure sensors to detect contaminant effects on cellular cultures metabolic activity is discussed using Saccharomyces cerevisiae, lymphocyte, and AHH1 cell cultures. Metabolic (aerobic and anaerobic) processes in cells are accompanied by CO(2) production that induces changes in pressure values when cells are cultured in sealed vessels. These values are subsequently converted in voltage units and plotted pressure dynamics versus time. This procedure leads to a standard curve, typical of the cellular line, which characterizes cellular metabolism when all parameters are controlled, such as temperature and nutrients. Different phases appear in the S. cerevisiae differential pressure curve: an initial growth up to a maximum, followed by a decrement that leads to a typical "depression" (pressure values inside the test-tubes are lower than the initial one) after about 35 h from the beginning. The S. cerevisiae differential pressure curve is successfully used to test the effects of chemical (Amuchina, trieline) and physical (UV radiation, blue light, magnetic fields) contaminants. The same technique is applied to lymphocytes and AHH1 cultures to investigate the effects generated by a 72-h exposure to a 50-Hz, 60-microT electromagnetic field. Lymphocyte samples, cultured in a PHA medium, grow less than control ones, but exhibit a greater metabolic activity: changes in the exposure system configuration influence neither sample growth differences nor metabolic response variations between control and irradiated samples, while all the other irradiation parameters remain constant. Control and irradiated lymphocyte samples, without PHA in culture medium, show the same behavior both during irradiation and metabolic test. AHH1 control and irradiated samples show no difference both in growth percentage during irradiation and in metabolic activity. Different cell cultures respond to the same stimulus in different

  17. Valdecoxib provides effective pain relief following acute ankle sprain.

    PubMed

    Diaz, J A; Cuervo, C; Valderrama, A M; Kohles, J

    2006-01-01

    We sought to determine whether valdecoxib is as effective as diclofenac in treating acute ankle sprain. Patients (n=202) with acute first- and second-degree ankle sprain were randomized to valdecoxib (40 mg twice daily on day 1 followed by 40 mg once daily on days 2-7) or diclofenac (75 mg twice daily). The primary efficacy end-point was the Patient's Assessment of Ankle Pain visual analogue scale (VAS, 0-100 mm) value on day 4. Valdecoxib was as efficacious as diclofenac in treating the signs and symptoms of acute ankle sprain. The mean VAS reduction in ankle pain on day 4 was not different between groups; the two-sided 95% confidence interval for the between-group difference was within the prespecified limit for non-inferiority (10 mm). There were no significant differences between groups for all secondary efficacy end-points. The two treatments were similarly effective and well tolerated for treatment of acute ankle sprain.

  18. Effects of Mangifera indica (Careless) on Microcirculation and Glucose Metabolism in Healthy Volunteers.

    PubMed

    Buchwald-Werner, Sybille; Schön, Christiane; Frank, Sonja; Reule, Claudia

    2017-02-10

    A commercial Mangifera indica fruit powder (Careless) showed beneficial acute effects on microcirculation in a randomized, double-blind, crossover pilot study. Here, long-term effects on microcirculation and glucose metabolism were investigated in a double-blind, randomized, placebo-controlled, 3-arm parallel-design study in healthy individuals. A daily dose of 100 mg or 300 mg of the fruit powder was compared to placebo after supplementation for 4 weeks. Microcirculation and endothelial function were assessed by the Oxygen-to-see System and pulse amplitude tonometry, respectively. Glucose metabolism was assessed under fasting and postprandial conditions by capillary glucose and HbA1c values.Microcirculatory reactive hyperemia flow increased, especially in the 100 mg group (p = 0.025). The 300 mg of the M. indica fruit preparation reduced postprandial glucose levels by trend if compared to placebo (p = 0.0535) accompanied by significantly lower HbA1c values compared to baseline. Furthermore, 300 mg intake significantly improved postprandial endothelial function in individuals with decreased endothelial function after high-dose glucose intake (p = 0.0408; n = 11).In conclusion, the study suggests moderate beneficial effects of M. indica fruit preparation on microcirculation, endothelial function, and glucose metabolism.

  19. Similarities in acute phase protein response during hibernation in black bears and major depression in humans: A response to underlying metabolic depression?

    USGS Publications Warehouse

    Tsiouris, J.A.; Chauhan, V.P.S.; Sheikh, A.M.; Chauhan, A.; Malik, M.; Vaughan, M.R.

    2004-01-01

    This study investigated the effects of hibernation with mild hypothermia and the stress of captivity on levels of six acute-phase proteins (APPs) in serial samples of serum from 11 wild and 6 captive black bears (Ursus americanus Pallas, 1780) during active and hibernating states. We hypothesize that during hibernation with mild hypothermia, bears would show an APP response similar to that observed in major depression. Enzyme-linked immunoabsorbent assay was used to measure alpha2-macroglobulin and C-reactive protein, and a nephelometer to measure alpha1-antitrypsin, haptoglobin, ceruloplasmin, and transferrin. Levels of all other proteins except ceruloplasmin were significantly elevated during hibernation in both wild and captive bears at the p < 0.05 to p < 0.001 level. Alpha 2-macroglobulin and C-reactive-protein levels were increased in captive versus wild bears in both active and hibernating states at the p < 0.01 to p < 0.0001 level. During hibernation with mild hypothermia, black bears do not show immunosuppression, but show an increased APP response similar to that in patients with major depression. This APP response is explained as an adaptive response to the underlying metabolic depression in both conditions. Metabolic depression in hibernating bears is suggested as a natural model for research to explain the neurobiology of depression.

  20. Antimitogenic effect of Larrea divaricata Cav.: participation in arachidonate metabolism.

    PubMed

    Anesini, C; Genaro, A; Cremaschi, G; Sterin Borda, L; Borda, E

    1999-02-01

    Aqueous extracts of the leaves of Larrea divaricata Cav. exert antimitogenic effects on tumor cells (BW 5147 murine immature T-lymphoma) and normal, stimulated lymphocytes. The effective concentration was four times smaller in the case of tumor cells than in the case of normal, stimulated lymphocytes. Inhibitor studies of arachidonate pathway suggest that the proliferative effect of the extract is due to the activation of lipoxygenase metabolism, while the inhibitory action could be a direct effect.

  1. Metabolism and biochemical effects of nicotine for primary care providers.

    PubMed

    Metz, Christine N; Gregersen, Peter K; Malhotra, Anil K

    2004-11-01

    Nicotine is a colorless and volatile liquid alkaloid naturally occurring in the leaves and stems of Nicotiana tabacum and Nicotiana rustica. Nicotine, the primary component of tobacco, is responsible for both tobacco product addiction (with chronic exposure) and the odor associated with tobacco. In addition to cigarettes, nicotine is found in chewing gum, transdermal patches, nasal spray, and sublingual tablets. Following its inhalation and absorption, nicotine and its metabolic products exert diverse physiologic and pharmacologic effects. This article covers the absorption and metabolism of nicotine, nicotine toxicity, pharmacologic effects of nicotine, nicotine-drug interactions, and the use of nicotine for the treatment of disease.

  2. Effects of acute salbutamol intake during a Wingate test.

    PubMed

    Collomp, K; Le Panse, B; Portier, H; Lecoq, A-M; Jaffre, C; Beaupied, H; Richard, O; Benhamou, L; Courteix, D; De Ceaurriz, J

    2005-09-01

    To investigate the impact of acute salbutamol intake on performance and selected hormonal and metabolic variables during supramaximal exercise, 13 recreational male athletes performed two 30-second Wingate tests after either placebo (PLA, lactose) or salbutamol (SAL, 4 mg) oral administration, according to a double-blind and randomized protocol. Blood samples collected at rest, end of the Wingate test, recovery (5, 10, 15 min) were tested for growth hormone (GH), insulin (INS), blood glucose (GLU), and lactate determination. We found the peak and mean power performed significantly increased after SAL vs. PLA (PPSAL: 896 +/- 46; PPPLA: 819 +/- 57 W; MPSAL: 585 +/- 27; MPPLA: 534 +/- 35 W, p < 0.05), whereas no change was observed in the fatigue index. Blood glucose and INS were significantly increased by SAL at rest, at the end of the Wingate test, and during the 5 first minutes of recovery (p < 0.05). Plasma GH was significantly decreased by SAL (p < 0.05) during the recovery whereas end-exercise and recovery blood lactate tended but were not significantly increased after SAL vs. PLA. From these data, acute salbutamol intake at therapeutical dosage did appear to improve peak power and mean power during a supramaximal exercise, but the mechanisms involved need further investigation.

  3. Endocrine and metabolic aspects of the acute toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)

    SciTech Connect

    Gorski, J.R.

    1988-01-01

    Toxic responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) were characterized in male Sprague-Dawley rats in order to elucidate the mechanism of acute toxicity of this potent halogenated hydrocarbon. Studies in TCDD-treated, pair-fed control and ad libitum-fed control rates, as well as in thyroidectomized, adrenalectomized and hypophysectomized, revealed differential hormonal, toxicologic and histophathologic responses suggesting that these manifestations of TCDD exposure are the results of an insult to intermediary metabolism. Tissue specific alterations in de novo fatty acid synthesis were directly related to differential changes observed in thyroid hormone homeostasis. The increased hepatic de novo fatty acid synthesis provided a likely mechanism for the documented fact that TCDD-treated rats lose more body weight than corresponding pair-fed controls because de novo fatty acid synthesis represents an energy inefficient metabolic process. Experiments in adrenalectomized and hypophysectomized rats led to the hypothesis that severe hypoglycemia due to inhibition of gluconeogenesis is the cause of TCDD-induced death. A subsequent characterization of gluconeogenesis in TCDD-treated rats confirmed this hypothesis.

  4. The effects of capsaicin and capsaicinoid analogs on metabolic molecular targets in highly energetic tissues and cell types.

    PubMed

    Gannon, Nicholas P; Lambalot, Emily L; Vaughan, Roger A

    2016-05-01

    There is increasing interest in dietary chemicals that may provide benefits for pathologies such as diabetes and obesity. Capsaicinoids found in chili peppers and pepper extracts, are responsible for the "hot" or "spicy" sensation associated with these foods. Capsaicinoid consumption is also associated with enhanced metabolism, making them potentially therapeutic for metabolic disease by promoting weight loss. This review summarizes much of the current experimental evidence (ranging from basic to applied investigations) of the biochemical and molecular metabolic effects of capsaicinoids in metabolically significant cell types. Along with influencing metabolic rate, findings demonstrate capsaicinoids appear to alter molecular metabolic signaling, regulate hunger and satiety, blood metabolites, and catecholamine release. Notably, the majority of the experiments summarized herein utilized isolated supplemental or research grade capsaicinoids rather than natural food sources for experimental interventions. Additional work should be conducted using primary food sources of capsaicin to explore pharmacological, physiological, and metabolic benefits of both chronic and acute capsaicin consumption. © 2016 BioFactors, 42(3):229-246, 2016.

  5. Changes in metabolic profiles during acute kidney injury and recovery following ischemia/reperfusion.

    PubMed

    Wei, Qingqing; Xiao, Xiao; Fogle, Paul; Dong, Zheng

    2014-01-01

    Changes of metabolism have been implicated in renal ischemia/reperfusion injury (IRI). However, a global analysis of the metabolic changes in renal IRI is lacking and the association of the changes with ischemic kidney injury and subsequent recovery are unclear. In this study, mice were subjected to 25 minutes of bilateral renal IRI followed by 2 hours to 7 days of reperfusion. Kidney injury and subsequent recovery was verified by serum creatinine and blood urea nitrogen measurements. The metabolome of plasma, kidney cortex, and medulla were profiled by the newly developed global metabolomics analysis. Renal IRI induced overall changes of the metabolome in plasma and kidney tissues. The changes started in renal cortex, followed by medulla and plasma. In addition, we identified specific metabolites that may contribute to early renal injury response, perturbed energy metabolism, impaired purine metabolism, impacted osmotic regulation and the induction of inflammation. Some metabolites, such as 3-indoxyl sulfate, were induced at the earliest time point of renal IRI, suggesting the potential of being used as diagnostic biomarkers. There was a notable switch of energy source from glucose to lipids, implicating the importance of appropriate nutrition supply during treatment. In addition, we detected the depressed polyols for osmotic regulation which may contribute to the loss of kidney function. Several pathways involved in inflammation regulation were also induced. Finally, there was a late induction of prostaglandins, suggesting their possible involvement in kidney recovery. In conclusion, this study demonstrates significant changes of metabolome kidney tissues and plasma in renal IRI. The changes in specific metabolites are associated with and may contribute to early injury, shift of energy source, inflammation, and late phase kidney recovery.

  6. Bile Acids, FXR, and Metabolic Effects of Bariatric Surgery

    PubMed Central

    Noel, Olivier F.; Still, Christopher D.; Argyropoulos, George; Edwards, Michael; Gerhard, Glenn S.

    2016-01-01

    Overweight and obesity represent major risk factors for diabetes and related metabolic diseases. Obesity is associated with a chronic and progressive inflammatory response leading to the development of insulin resistance and type 2 diabetes (T2D) mellitus, although the precise mechanism mediating this inflammatory process remains poorly understood. The most effective intervention for the treatment of obesity, bariatric surgery, leads to glucose normalization and remission of T2D. Recent work in both clinical studies and animal models supports bile acids (BAs) as key mediators of these effects. BAs are involved in lipid and glucose homeostasis primarily via the farnesoid X receptor (FXR) transcription factor. BAs are also involved in regulating genes involved in inflammation, obesity, and lipid metabolism. Here, we review the novel role of BAs in bariatric surgery and the intersection between BAs and immune, obesity, weight loss, and lipid metabolism genes. PMID:27006824

  7. L-theanine, unique amino acid of tea, and its metabolism, health effects, and safety.

    PubMed

    Türközü, Duygu; Şanlier, Nevin

    2017-05-24

    Tea has been a very popular beverage around the world for centuries. The reason that it is delicious, enabling hydration, showing warming and relaxing effect can be mentioned why it is consumed so much in addition to its prominent health effects. Although the catechins and caffeine are the primary bioactive components that are related with the health effects of the tea, the health effects of theanine amino acid, which is a nonproteinic amino acid special to tea, has become prominent in recent years. It has been known that the theanine amino acid in tea has positive effects especially on relaxing, cognitive performance, emotional status, sleep quality, cancer, cardiovascular diseases, obesity, and common cold. The results of acute and chronic toxicity tests conducted on the safety of theanine express that L-theanine is reliable in general even if it is consumed too much with diet. However, it has not revealed a clear evidence-based result yet regarding theanine metabolism, health effects, and its safety. Within this frame, chemical structure of theanine, its biosynthesis, dietary sources, metabolism, health effects, and safety are discussed in present study.

  8. Acute effects of cannabis on breath-holding duration.

    PubMed

    Farris, Samantha G; Metrik, Jane

    2016-08-01

    Distress intolerance (an individual's perceived or actual inability to tolerate distressing psychological or physiological states) is associated with cannabis use. It is unknown whether a biobehavioral index of distress intolerance, breath-holding duration, is acutely influenced (increased or decreased) by cannabis. Such information may further inform understanding of the expression of psychological or physiological distress postcannabis use. This within-subjects study examined whether smoked marijuana with 2.7%-3.0% delta-9-tetrahydrocannabinol (THC), relative to placebo, acutely changed duration of breath holding. Participants (n = 88; 65.9% male) were nontreatment-seeking frequent cannabis users who smoked placebo or active THC cigarette on two separate study days and completed a breath-holding task postsmoking. Controlling for baseline breath-holding duration and participant sex, THC produced significantly shorter breath-holding durations relative to placebo. There was a significant interaction of drug administration × frequency of cannabis use, such that THC decreased breath-holding time among less frequent but not among more frequent users. Findings indicate that cannabis may exacerbate distress intolerance (via shorter breath-holding durations). As compared to less frequent cannabis users, frequent users display tolerance to cannabis' acute effects including increased ability to tolerate respiratory distress when holding breath. Objective measures of distress intolerance are sensitive to contextual factors such as acute drug intoxication, and may inform the link between cannabis use and the expression of psychological distress. (PsycINFO Database Record

  9. Effect of solcoseryl on antitumour action and acute toxicity of some antineoplastic drugs.

    PubMed

    Danysz, A; Sołtysiak-Pawluczuk, D; Czyzewska-Szafran, H; Jedrych, A; Jastrzebski, Z

    1991-01-01

    The in vivo effect of Solcoseryl on the antitumour activity and acute toxicity of some antineoplastic drugs was examined. It was found that Solcoseryl does not inhibit the antineoplastic effectiveness of the drugs against transplantable P 388 leukaemia in mice. Studies of the effect of Solcoseryl on acute toxicity of selected antineoplastic drugs in mice revealed that the biostimulator could exert a modifying influence. The prior administration of Solcoseryl significantly decreases the acute toxicity of methotrexate but has no effect on acute toxicity of 5-fluorouracil, increases the acute toxicity of bleomycin and vinblastine and has no effect on acute toxicity of methotrexate and mitoxantron. On the other hand, Solcoseryl administered simultaneously with the antineoplastic drugs increases acute toxicity of 5-fluorouracil, bleomycin and mitoxantron. The protective effect of the biostimulator noted exclusively against acute toxicity of 5-fluorouracil was also observed after multiple administration of this anticancer drug.

  10. Feed restriction enhances the depressive effects of erythromycin on equine hindgut microbial metabolism in vitro.

    PubMed

    Kuhn, Manuela; Guschlbauer, Maria; Feige, Karsten; Schluesener, Michael; Bester, Kai; Beyerbach, Martin; Breves, Gerhard

    2012-01-01

    Equine typholocolitis is a sporadic diarrheal disease causing high mortality rates. One of the risk factors responsible for this is the oral application of the macrolide antibiotic erythromycin. The aim of the present in vitro study was to investigate whether erythromycin in combination with feed restriction provokes changes in microbial hindgut metabolism and could therefore be involved in the pathogenesis of equine typhlocolitis. As application of erythromycin and feed restriction are risk factors for equine typhlocolitis, both factors were chosen to investigate their individual and combined effects on hindgut microbial metabolism. The colon simulation technique (Cositec) was used to evaluate biochemical parameters of microbial metabolism. Production rates of the acetate, proprionate and butyrate were measured as quantitative parameters of microbial fermentation. Application of erythromycin (10 mg/d) predominantly decreased the production rates of propionate. Reducing the fermentable substrate to 30% induced an even more pronounced impairment. The detrimental effects of feed restriction on the production rates of short-chain fatty acids (SCFA) were enhanced when feed restriction was combined with the application of erythromycin. Irrespective of erytrhomycin, the butyrate fermentation rate was completely inhibited by feed restriction within two days after start of restriction. The reduction in butyrate fermentation rate has to be discussed as a pathophysiological factor for the onset of acute typhlocolitis.

  11. Perceived Control Alters the Effect of Acute Stress on Persistence

    PubMed Central

    Bhanji, Jamil P.; Kim, Eunbin S.; Delgado, Mauricio R.

    2015-01-01

    We often encounter setbacks while pursuing our goals. Success requires that we cope with these negative outcomes and choose to persist in spite of them. For example, learners may be more likely to continue a course after failing an assessment if they control their emotional reactions to the setback and study harder. However, the ability to effectively cope with the negative emotion inherent in such setbacks can be compromised by acute stress present in daily life (e.g., struggles in the household), which can subsequently lead to problems with persisting with a goal. The present study examined whether increasing the perception of control over setbacks (e.g., belief that a setback was caused by a correctable mistake rather than uncontrollable factors) can guard against the influence of a prior acute stressor on reactions to setbacks. Participants underwent a socially-evaluated cold water stress or a non-stress control procedure. Afterwards, they performed a behavioral task designed to measure persistence through controllable and uncontrollable setbacks. We observed that exposure to an acute stressor led to a detrimental effect on decision making by decreasing persistence behavior. Importantly, we also observed that the perception of control protected against the effect of preexisting stress and helped promote persistence. That is, stress impaired persistence through uncontrollable setbacks, but the impairment was alleviated by presenting setbacks as controllable. The findings demonstrate a potential avenue for improving the maintenance of goals aimed at behavior change, which can be susceptible to effects of stress. PMID:26726915

  12. Acute effects of aerobic exercise promote learning.

    PubMed

    Perini, Renza; Bortoletto, Marta; Capogrosso, Michela; Fertonani, Anna; Miniussi, Carlo

    2016-05-05

    The benefits that physical exercise confers on cardiovascular health are well known, whereas the notion that physical exercise can also improve cognitive performance has only recently begun to be explored and has thus far yielded only controversial results. In the present study, we used a sample of young male subjects to test the effects that a single bout of aerobic exercise has on learning. Two tasks were run: the first was an orientation discrimination task involving the primary visual cortex, and the second was a simple thumb abduction motor task that relies on the primary motor cortex. Forty-four and forty volunteers participated in the first and second experiments, respectively. We found that a single bout of aerobic exercise can significantly facilitate learning mechanisms within visual and motor domains and that these positive effects can persist for at least 30 minutes following exercise. This finding suggests that physical activity, at least of moderate intensity, might promote brain plasticity. By combining physical activity-induced plasticity with specific cognitive training-induced plasticity, we favour a gradual up-regulation of a functional network due to a steady increase in synaptic strength, promoting associative Hebbian-like plasticity.

  13. Effects of acute exercise on long-term memory.

    PubMed

    Labban, Jeffrey D; Etnier, Jennifer L

    2011-12-01

    In this study, we tested the effect of acute exercise on long-term memory, specifically the timing of exercise relative to the memory challenge. We assessed memory via paragraph recall, in which participants listened to two paragraphs (exposure) and recounted them following a 35-min delay. Participants (n = 48) were randomly assigned to one of three groups: exercise prior to exposure, exercise after exposure, or no-exercise. Exercise consisted of 30 min on a cycle ergometer including 20 min at moderate intensity. Only the exercise prior group recalled significantly more than the control group (p < .05). Differences among the exercise groups failed to reach significance (p = .09). Results indicated that acute exercise positively influenced recall and that exercise timing relative to memory task may have an impact on this effect.

  14. The effect of menthol on acute experimental colitis in rats.

    PubMed

    Ghasemi-Pirbaluti, Masoumeh; Motaghi, Ehsan; Bozorgi, Homan

    2017-03-18

    Menthol is an aromatic compound with high antiinflammatory activity. The purpose of the current research is to investigate the effectiveness of menthol on acetic acid induced acute colitis in rats. Animals were injected with menthol (20 and 50 and 80mg/kg, i.p.) 24h prior to induction of colitis for 3 consecutive days. Menthol at medium and higher doses similar to dexamethasone as a reference drug significantly reduced body weight loss, macroscopic damage score, ulcer area, colon weight, colon length and improved hematocrit in rats with colitis. The histopathological examination also confirmed anti-colitic effects of menthol. Menthol also reduced significantly the colonic levels of tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), interleukin 6 (IL-6) and myeloperoxidase (MPO) activity in inflamed colons. Thus, the findings of the current study provide evidence that menthol may be beneficial in patients suffering from acute ulcerative colitis.

  15. Modeling the Autonomic and Metabolic Effects of Obstructive Sleep Apnea: A Simulation Study

    PubMed Central

    Cheng, Limei; Khoo, Michael C. K.

    2012-01-01

    Long-term exposure to intermittent hypoxia and sleep fragmentation introduced by recurring obstructive sleep apnea (OSA) has been linked to subsequent cardiovascular disease and Type 2 diabetes. The underlying mechanisms remain unclear, but impairment of the normal interactions among the systems that regulate autonomic and metabolic function is likely involved. We have extended an existing integrative model of respiratory, cardiovascular, and sleep–wake state control, to incorporate a sub-model of glucose–insulin–fatty acid regulation. This computational model is capable of simulating the complex dynamics of cardiorespiratory control, chemoreflex and state-related control of breath-to-breath ventilation, state-related and chemoreflex control of upper airway potency, respiratory and circulatory mechanics, as well as the metabolic control of glucose–insulin dynamics and its interactions with the autonomic control. The interactions between autonomic and metabolic control include the circadian regulation of epinephrine secretion, epinephrine regulation on dynamic fluctuations in glucose and free-fatty acid in plasma, metabolic coupling among tissues and organs provided by insulin and epinephrine, as well as the effect of insulin on peripheral vascular sympathetic activity. These model simulations provide insight into the relative importance of the various mechanisms that determine the acute and chronic physiological effects of sleep-disordered breathing. The model can also be used to investigate the effects of a variety of interventions, such as different glucose clamps, the intravenous glucose tolerance test, and the application of continuous positive airway pressure on OSA subjects. As such, this model provides the foundation on which future efforts to simulate disease progression and the long-term effects of pharmacological intervention can be based. PMID:22291654

  16. How porphyrinogenic drugs modeling acute porphyria impair the hormonal status that regulates glucose metabolism. Their relevance in the onset of this disease.

    PubMed

    Matkovic, Laura B; D'Andrea, Florencia; Fornes, Daiana; San Martín de Viale, Leonor C; Mazzetti, Marta B

    2011-11-28

    This work deals with the study of how porphyrinogenic drugs modeling acute porphyrias interfere with the status of carbohydrate-regulating hormones in relation to key glucose enzymes and to porphyria, considering that glucose modulates the development of the disease. Female Wistar rats were treated with 2-allyl-2-isopropylacetamide (AIA) and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) using different doses of AIA (100, 250 and 500mg/kg body weight) and a single dose of DDC (50mg DDC/kg body weight). Rats were sacrificed 16h after AIA/DDC administration. In the group treated with the highest dose of AIA (group H), hepatic 5-aminolevulinic acid synthase (ALA-S) increased more than 300%, phosphoenolpyruvate carboxykinase (PEPCK) and glycogen phosphorylase (GP) activities were 43% and 46% lower than the controls, respectively, plasmatic insulin levels exceeded normal values by 617%, and plasmatic glucocorticoids (GC) decreased 20%. GC results are related to a decrease in corticosterone (CORT) adrenal production (33%) and a significant reduction in its metabolization by UDP-glucuronosyltransferase (UGT) (62%). Adrenocorticotropic hormone (ACTH) stimulated adrenal production 3-fold and drugs did not alter this process. Thus, porphyria-inducing drugs AIA and DDC dramatically altered the status of hormones that regulate carbohydrate metabolism increasing insulin levels and reducing GC production, metabolization and plasmatic levels. In this acute porphyria model, gluconeogenic and glycogenolytic blockages caused by PEPCK and GP depressed activities, respectively, would be mainly a consequence of the negative regulatory action of insulin on these enzymes. GC could also contribute to PEPCK blockage both because they were depressed by the treatment and because they are positive effectors on PEPCK. These disturbances in carbohydrates and their regulation, through ALA-S de-repression, would enhance the porphyria state promoted by the drugs on heme synthesis and destruction

  17. Secondary hypoxia exacerbates acute disruptions of energy metabolism in rats resulting from fluid percussion injury.

    PubMed

    Bauman, Richard A; Widholm, John; Long, Joseph B

    2005-05-07

    The purpose of these experiments was to determine whether secondary hypoxia exacerbates the metabolic consequences of fluid percussion injury (FPI). In Experiment I, rats were trained to press a lever for their entire daily ration of food at any time during a 12-h light/dark cycle and run in an activity wheel. After food intake and body weight stabilized, rats were surgically prepared, assigned to one of four groups [FPI+Hypoxia (IH), FPI+Normoxia (IN), Sham Injury+Hypoxia (SH), Sham Injury+Normoxia (SN)] and, after recovery from surgery, anesthetized with halothane delivered by a 21% O2 source. Immediately after injury or sham injury, the O2 source was switched to 13% for rats in Groups IH and SH for 30 min. Post-traumatic hypoxemia exacerbated the ensuing FPI-induced reductions of food intake and body weight, but did not change FPI-induced reduction in wheel running. In Experiment II, rats were assigned to one of three groups (SH, IN, or IH) and subjected to sham injury and 13% O2 or FPI and either 13 or 21% O2. Immediately after 30 min of hypoxia or normoxia, rats were confined to metabolism cages that were used to quantify rates of oxygen consumption (VO2), carbon dioxide production (VCO2), and heat production (H). Post-traumatic hypoxia exacerbated the FPI-induced increases in VO2, VCO2, and H. The results of Experiments I and II provide convergent confirmation that secondary hypoxemia exacerbates the FPI-induced hypermetabolic state in rats and therefore might significantly exacerbate the brain injury-induced disruptions of energy metabolism in humans.

  18. Spaceflight Sensorimotor Analogs: Simulating Acute and Adaptive Effects

    NASA Technical Reports Server (NTRS)

    Taylor, Laura C.; Harm, Deborah L.; Kozlovskaya, Inessa; Reschke, Millard F.; Wood, Scott J.

    2009-01-01

    Adaptive changes in sensorimotor function during spaceflight are reflected by spatial disorientation, motion sickness, gaze destabilization and decrements in balance, locomotion and eye-hand coordination that occur during and following transitions between different gravitational states. The purpose of this study was to conduct a meta-synthesis of data from spaceflight analogs to evaluate their effectiveness in simulating adaptive changes in sensorimotor function. METHODS. The analogs under review were categorized as either acute analogs used to simulate performance decrements accompanied with transient changes, or adaptive analogs used to drive sensorimotor learning to altered sensory feedback. The effectiveness of each analog was evaluated in terms of mechanisms of action, magnitude and time course of observed deficits compared to spaceflight data, and the effects of amplitude and exposure duration. RESULTS. Parabolic flight has been used extensively to examine effects of acute variation in gravitational loads, ranging from hypergravity to microgravity. More recently, galvanic vestibular stimulation has been used to elicit acute postural, locomotor and gaze dysfunction by disrupting vestibular afferents. Patient populations, e.g., with bilateral vestibular loss or cerebellar dysfunction, have been proposed to model acute sensorimotor dysfunction. Early research sponsored by NASA involved living onboard rotating rooms, which appeared to approximate the time course of adaptation and post-exposure recovery observed in astronauts following spaceflight. Exposure to different bed-rest paradigms (6 deg head down, dry immersion) result in similar motor deficits to that observed following spaceflight. Shorter adaptive analogs have incorporated virtual reality environments, visual distortion paradigms, exposure to conflicting tilt-translation cues, and exposure to 3Gx centrifugation. As with spaceflight, there is considerable variability in responses to most of the analogs

  19. The acute (cerebro)vascular effects of statins.

    PubMed

    Prinz, Vincent; Endres, Matthias

    2009-08-01

    The introduction of 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, i.e., statins, constitutes a milestone in the prevention of cardio- and cerebrovascular disease. The effects of statins extend far beyond their effects on cholesterol levels: pleiotropic effects include vasoprotective mechanisms, comprising improved endothelial function, increased bioavailability of nitric oxide, immunomodulatory and antiinflammatory properties, stabilization of atherosclerotic plaques, as well as antioxidant and stem cell-regulating capacities. Large clinical trials have clearly demonstrated that statins reduce the risk of myocardial infarction and stroke. Recent experimental and clinical data have demonstrated that in addition to risk reduction, statins may also improve outcome after stroke and myocardial infarction, even when statins were administered after the event. Moreover, abrupt discontinuation of statin therapy after acute cardio- or cerebrovascular events may impair vascular function and increase morbidity and mortality. Beyond stroke, statin treatment also has been shown to provide protective effects in critically ill patients, e.g., after major surgery, sepsis, or in patients at high-vascular risk. However, although large randomized controlled trials are missing, ongoing trials will clarify the impact of acute statin treatment in these conditions. Although evidence is presently limited, acute statin therapy is emerging as a new therapeutic avenue for the treatment of the critically ill. Until now, statins were only available as oral drugs. An IV formulation may be warranted for acute treatment of severely ill patients, for example, those who are unable to swallow or scheduled for surgery. Hydrophilic statins would be suitable for an IV formulation and have been safely tested in healthy volunteers.

  20. Effect of roxithromycin on acute toxoplasmosis in mice.

    PubMed Central

    Chang, H R; Pechere, J C

    1987-01-01

    Roxithromycin effectively treated acute peritoneal murine toxoplasmosis. After five doses, starting 24 h after challenge, the 100 and 50% survival doses were 540 and 336 mg/kg per day, respectively. After 14 doses, starting 3 h after challenge, the 50% survival dose was 360 mg/kg per day. Toxoplasma gondii was recovered from the brain in 59 and 28% of surviving mice treated with 5 and 14 doses, respectively. PMID:3662475

  1. Effects of obesity on bone metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite being a risk factor for many chronic health disorders, obesity is thought to promote bone formation and protect against osteoporosis in humans. Although body mass has a positive effect on bone health, whether mass derived from an obesity condition or excessive fat accumulation is beneficial ...

  2. Adjunctive aripiprazole decreased metabolic side effects of clozapine treatment.

    PubMed

    Masopust, Jirí; Tůma, Ivan; Libiger, Jan

    2008-08-01

    Clozapine is an atypical antipsychotic indicated for the treatment of refractory schizophrenia. Clozapine treatment is associated with the metabolic side effects. Weight gain, hyperlipidemia and hyperglycemia are the risk factors for onset of diabetes and cardiovascular disorders. We report a case vignette of a patient in whom the decrease in negative and general psychopathology after adjunctive aripiprazole appeared simultaneously with a reduction of clozapine-induced increase in weight and metabolic measures. Combined application of clozapine and aripiprazole is in accordance with a neurobiological rationale and appears to be a safe and well tolerated.

  3. Effects of Acute Stress on Decision Making.

    PubMed

    Wemm, Stephanie E; Wulfert, Edelgard

    2017-03-01

    The study examined the effects of a social stressor (Trier Social Stress Test) on 24 male and 32 female college students' affective and physiological reactivity and their subsequent performance on a decision-making task (Iowa Gambling Task). The 56 participants were randomly assigned to a social stressor or a control condition. Compared to controls, participants in the stress condition responded with higher heart rates and skin conductance responses, reported more negative affect, and on the decision-making task made less advantageous choices. An exploratory regression analysis revealed that among men higher levels of heart rate were positively correlated with riskier choices on the Iowa Gambling Task, whereas for women this relationship was curvilinear. Exploratory correlational analyses showed that lower levels of skin conductance within the stress condition were associated with greater levels of substance use and gambling. The results suggest that the presence of a stressor may generally result in failure to attend to the full range of possible consequences of a decision. The relationship pattern between the degree of stress responding and successful decision making may be different for men and women.

  4. Glucocorticoid therapy-induced memory deficits: acute versus chronic effects.

    PubMed

    Coluccia, Daniel; Wolf, Oliver T; Kollias, Spyros; Roozendaal, Benno; Forster, Adrian; de Quervain, Dominique J-F

    2008-03-26

    Conditions with chronically elevated glucocorticoid levels are usually associated with declarative memory deficits. Considerable evidence suggests that long-term glucocorticoid exposure may cause cognitive impairment via cumulative and long-lasting influences on hippocampal function and morphology. However, because elevated glucocorticoid levels at the time of retention testing are also known to have direct impairing effects on memory retrieval, it is possible that such acute hormonal influences on retrieval processes contribute to the memory deficits found with chronic glucocorticoid exposure. To investigate this issue, we examined memory functions and hippocampal volume in 24 patients with rheumatoid arthritis who were treated either chronically (5.3 +/- 1.0 years, mean +/- SE) with low to moderate doses of prednisone (7.5 +/- 0.8 mg, mean +/- SE) or without glucocorticoids. In both groups, delayed recall of words learned 24 h earlier was assessed under conditions of either elevated or basal glucocorticoid levels in a double-blind, placebo-controlled crossover design. Although the findings in this patient population did not provide evidence for harmful effects of a history of chronic prednisone treatment on memory performance or hippocampal volume per se, acute prednisone administration 1 h before retention testing to either the steroid or nonsteroid group impaired word recall. Thus, these findings indicate that memory deficits observed under chronically elevated glucocorticoid levels result, at least in part, from acute and reversible glucocorticoid effects on memory retrieval.

  5. Antibiotic effects on gut microbiota and metabolism are host dependent

    PubMed Central

    Fujisaka, Shiho; Ussar, Siegfried; Devkota, Suzanne; Dreyfuss, Jonathan M.; Sakaguchi, Masaji; Soto, Marion; Konishi, Masahiro; Softic, Samir; Altindis, Emrah; Li, Ning; Bry, Lynn

    2016-01-01

    Interactions of diet, gut microbiota, and host genetics play important roles in the development of obesity and insulin resistance. Here, we have investigated the molecular links between gut microbiota, insulin resistance, and glucose metabolism in 3 inbred mouse strains with differing susceptibilities to metabolic syndrome using diet and antibiotic treatment. Antibiotic treatment altered intestinal microbiota, decreased tissue inflammation, improved insulin signaling in basal and stimulated states, and improved glucose metabolism in obesity- and diabetes-prone C57BL/6J mice on a high-fat diet (HFD). Many of these changes were reproduced by the transfer of gut microbiota from antibiotic-treated donors to germ-free or germ-depleted mice. These physiological changes closely correlated with changes in serum bile acids and levels of the antiinflammatory bile acid receptor Takeda G protein–coupled receptor 5 (TGR5) and were partially recapitulated by treatment with a TGR5 agonist. In contrast, antibiotic treatment of HFD-fed, obesity-resistant 129S1 and obesity-prone 129S6 mice did not improve metabolism, despite changes in microbiota and bile acids. These mice also failed to show a reduction in inflammatory gene expression in response to the TGR5 agonist. Thus, changes in bile acid and inflammatory signaling, insulin resistance, and glucose metabolism driven by an HFD can be modified by antibiotic-induced changes in gut microbiota; however, these effects depend on important interactions with the host’s genetic background and inflammatory potential. PMID:27775551

  6. Akkermansia muciniphila mediates negative effects of IFNγ on glucose metabolism

    PubMed Central

    Greer, Renee L.; Dong, Xiaoxi; Moraes, Ana Carolina F.; Zielke, Ryszard A.; Fernandes, Gabriel R.; Peremyslova, Ekaterina; Vasquez-Perez, Stephany; Schoenborn, Alexi A.; Gomes, Everton P.; Pereira, Alexandre C.; Ferreira, Sandra R. G.; Yao, Michael; Fuss, Ivan J.; Strober, Warren; Sikora, Aleksandra E.; Taylor, Gregory A.; Gulati, Ajay S.; Morgun, Andrey; Shulzhenko, Natalia

    2016-01-01

    Cross-talk between the gut microbiota and the host immune system regulates host metabolism, and its dysregulation can cause metabolic disease. Here, we show that the gut microbe Akkermansia muciniphila can mediate negative effects of IFNγ on glucose tolerance. In IFNγ-deficient mice, A. muciniphila is significantly increased and restoration of IFNγ levels reduces A. muciniphila abundance. We further show that IFNγ-knockout mice whose microbiota does not contain A. muciniphila do not show improvement in glucose tolerance and adding back A. muciniphila promoted enhanced glucose tolerance. We go on to identify Irgm1 as an IFNγ-regulated gene in the mouse ileum that controls gut A. muciniphila levels. A. muciniphila is also linked to IFNγ-regulated gene expression in the intestine and glucose parameters in humans, suggesting that this trialogue between IFNγ, A. muciniphila and glucose tolerance might be an evolutionally conserved mechanism regulating metabolic health in mice and humans. PMID:27841267

  7. Subchronic effects of valproic acid on gene expression profiles for lipid metabolism in mouse liver

    SciTech Connect

    Lee, Min-Ho |; Kim, Mingoo |; Lee, Byung-Hoon |; Kim, Ju-Han |; Kang, Kyung-Sun |; Kim, Hyung-Lae |; Yoon, Byung-Il |; Chung, Heekyoung; Kong, Gu |; Lee, Mi-Ock ||

    2008-02-01

    Valproic acid (VPA) is used clinically to treat epilepsy, however it induces hepatotoxicity such as microvesicular steatosis. Acute hepatotoxicity of VPA has been well documented by biochemical studies and microarray analysis, but little is known about the chronic effects of VPA in the liver. In the present investigation, we profiled gene expression patterns in the mouse liver after subchronic treatment with VPA. VPA was administered orally at a dose of 100 mg/kg/day or 500 mg/kg/day to ICR mice, and the livers were obtained after 1, 2, or 4 weeks. The activities of serum liver enzymes did not change, whereas triglyceride concentration increased significantly. Microarray analysis revealed that 1325 genes of a set of 32,996 individual genes were VPA responsive when examined by two-way ANOVA (P < 0.05) and fold change (> 1.5). Consistent with our previous results obtained using an acute VPA exposure model (Lee et al., Toxicol Appl Pharmacol. 220:45-59, 2007), the most significantly over-represented biological terms for these genes included lipid, fatty acid, and steroid metabolism. Biological pathway analysis suggests that the genes responsible for increased biosynthesis of cholesterol and triglyceride, and for decreased fatty acid {beta}-oxidation contribute to the abnormalities in lipid metabolism induced by subchronic VPA treatment. A comparison of the VPA-responsive genes in the acute and subchronic models extracted 15 commonly altered genes, such as Cyp4a14 and Adpn, which may have predictive power to distinguish the mode of action of hepatotoxicants. Our data provide a better understanding of the molecular mechanisms of VPA-induced hepatotoxicity and useful information to predict steatogenic hepatotoxicity.

  8. Effects of acute hippocampal stimulation on EEG dynamics.

    PubMed

    Nair, Sandeep P; Sackellares, J Chris; Shiau, Deng-Shan; Norman, Wendy M; Dance, Linda K; Pardalos, Panos M; Principe, Jose C; Carney, Paul R

    2006-01-01

    Progressive preictal dynamical convergence and postictal divergence of dynamical EEG descriptors among brain regions has been reported in human temporal lobe epilepsy (TLE) and in a rodent model of TLE. There are also reports of anticonvulsant effects of high frequency stimulation of the hippocampus in humans. We postulate that this anticonvulsant effect is due to dynamical resetting by the electrical stimulation. The following study investigated the effects of acute hippocampal electrical stimulation on dynamical transitions in the brain of a spontaneously seizing animal model of TLE to test the hypothesis of divergence in dynamical values by electrical stimulation of the hippocampus.

  9. Identification of a metabolic biomarker panel in rats for prediction of acute and idiosyncratic hepatotoxicity

    PubMed Central

    Sun, Jinchun; Slavov, Svetoslav; Schnackenberg, Laura K.; Ando, Yosuke; Greenhaw, James; Yang, Xi; Salminen, William; Mendrick, Donna L.; Beger, Richard

    2014-01-01

    It has been estimated that 10% of acute liver failure is due to “idiosyncratic hepatotoxicity”. The inability to identify such compounds with classical preclinical markers of hepatotoxicity has driven the need to discover a mechanism-based biomarker panel for hepatotoxicity. Seven compounds were included in this study: two overt hepatotoxicants (acetaminophen and carbon tetrachloride), two idiosyncratic hepatotoxicants (felbamate and dantrolene), and three non-hepatotoxicants (meloxicam, penicillin and metformin). Male Sprague–Dawley rats were orally gavaged with a single dose of vehicle, low dose or high dose of the compounds. At 6 h and 24 h post-dosing, blood was collected for metabolomics and clinical chemistry analyses, while organs were collected for histopathology analysis. Forty-one metabolites from previous hepatotoxicity studies were semi-quantified and were used to build models to predict hepatotoxicity. The selected metabolites were involved in various pathways, which have been noted to be linked to the underlying mechanisms of hepatotoxicity. PLS models based on all 41 metabolite or smaller subsets of 6 (6 h), 7 (24 h) and 20 (6 h and 24 h) metabolites resulted in models with an accuracy of at least 97.4% for the hold-out test set and 100% for training sets. When applied to the external test sets, the PLS models predicted that 1 of 9 rats at both 6 h and 24 h treated with idiosyncratic liver toxicants was exposed to a hepatotoxic chemical. In conclusion, the biomarker panel might provide information that along with other endpoint data (e.g., transcriptomics and proteomics) may diagnose acute and idiosyncratic hepatotoxicity in a clinical setting. PMID:25379137

  10. Disrupted Nitric Oxide Metabolism from Type II Diabetes and Acute Exposure to Particulate Air Pollution.

    PubMed

    Pettit, Ashley P; Kipen, Howard; Laumbach, Robert; Ohman-Strickland, Pamela; Kelly-McNeill, Kathleen; Cepeda, Clarimel; Fan, Zhi-Hua; Amorosa, Louis; Lubitz, Sara; Schneider, Stephen; Gow, Andrew

    2015-01-01

    Type II diabetes is an established cause of vascular impairment. Particulate air pollution is known to exacerbate cardiovascular and respiratory conditions, particularly in susceptible populations. This study set out to determine the impact of exposure to traffic pollution, with and without particle filtration, on vascular endothelial function in Type II diabetes. Endothelial production of nitric oxide (NO) has previously been linked to vascular health. Reactive hyperemia induces a significant increase in plasma nitrite, the proximal metabolite of NO, in healthy subjects, while diabetics have a lower and more variable level of response. Twenty type II diabetics and 20 controls (ages 46-70 years) were taken on a 1.5 hr roadway traffic air pollution exposure as passengers. We analyzed plasma nitrite, as a measure of vascular function, using forearm ischemia to elicit a reactive hyperemic response before and after exposure to one ride with and one without filtration of the particle components of pollution. Control subjects displayed a significant increase in plasma nitrite levels during reactive hyperemia. This response was no longer present following exposure to traffic air pollution, but did not vary with whether or not the particle phase was filtered out. Diabetics did not display an increase in nitrite levels following reactive hyperemia. This response was not altered following pollution exposure. These data suggest that components of acute traffic pollution exposure diminish vascular reactivity in non-diabetic individuals. It also confirms that type II diabetics have a preexisting diminished ability to appropriately respond to a vascular challenge, and that traffic pollution exposure does not cause a further measureable acute change in plasma nitrite levels in Type II diabetics.

  11. Disrupted Nitric Oxide Metabolism from Type II Diabetes and Acute Exposure to Particulate Air Pollution

    PubMed Central

    Pettit, Ashley P.; Kipen, Howard; Laumbach, Robert; Ohman-Strickland, Pamela; Kelly-McNeill, Kathleen; Cepeda, Clarimel; Fan, Zhi-Hua; Amorosa, Louis; Lubitz, Sara; Schneider, Stephen; Gow, Andrew

    2015-01-01

    Type II diabetes is an established cause of vascular impairment. Particulate air pollution is known to exacerbate cardiovascular and respiratory conditions, particularly in susceptible populations. This study set out to determine the impact of exposure to traffic pollution, with and without particle filtration, on vascular endothelial function in Type II diabetes. Endothelial production of nitric oxide (NO) has previously been linked to vascular health. Reactive hyperemia induces a significant increase in plasma nitrite, the proximal metabolite of NO, in healthy subjects, while diabetics have a lower and more variable level of response. Twenty type II diabetics and 20 controls (ages 46–70 years) were taken on a 1.5hr roadway traffic air pollution exposure as passengers. We analyzed plasma nitrite, as a measure of vascular function, using forearm ischemia to elicit a reactive hyperemic response before and after exposure to one ride with and one without filtration of the particle components of pollution. Control subjects displayed a significant increase in plasma nitrite levels during reactive hyperemia. This response was no longer present following exposure to traffic air pollution, but did not vary with whether or not the particle phase was filtered out. Diabetics did not display an increase in nitrite levels following reactive hyperemia. This response was not altered following pollution exposure. These data suggest that components of acute traffic pollution exposure diminish vascular reactivity in non-diabetic individuals. It also confirms that type II diabetics have a preexisting diminished ability to appropriately respond to a vascular challenge, and that traffic pollution exposure does not cause a further measureable acute change in plasma nitrite levels in Type II diabetics. PMID:26656561

  12. Behavioral and metabolic effects of central injections of orexins/hypocretins in pigeons (Columba livia).

    PubMed

    da Silva, Eduardo Simão; dos Santos, Thiago Viçoso; Hoeller, Alexandre Ademar; dos Santos, Tiago Souza; Pereira, Gustavo Vieira; Meneghelli, Cristiane; Penzlin, Ana Isabel; Pezlin, Ana Isabel; dos Santos, Murilo Marcos; Faria, Moacir Serralvo; Paschoalini, Marta Aparecida; Marino-Neto, José

    2008-04-10

    In the present study, the acute behavioral and ingestive effects of ICV injections of mammalian orexin-A (ORXA; vehicle, 0.2, 0.6 or 2 nmol) and of orexin-B (ORXB; vehicle, 0.2, 0.6 or 2 nmol), as well as possible long-term effects (through 24 h of continuous intake monitoring after 0.6 nmol of ORXA or ORXB) of these treatments in food/water intake and in blood levels of metabolic fuels (free fatty acids and glucose, after 0.2 or 0.6 nmol of ORXA) were examined in adult male pigeons. Both ORXA and ORXB treatments failed to produce acute (1-3 h) or long-term effects on feeding and drinking behaviors, and did not change blood free fatty acids and glucose 15 and 30 min after treatments, as compared to vehicle-treated animals. However, ORXA (but not ORXB) treatments evoked a dose-related, intense increase in exploratory behaviors, associated to reduced time spent in alert immobility and sleep-typical postures. These data substantiate the lack of orexigenic effects of ORXs in avian species, and suggest that an important role in vigilance control may represent a conserved functional attribute of orexinergic circuits in vertebrates.

  13. The effects of acute sleep deprivation during residency training.

    PubMed

    Bartle, E J; Sun, J H; Thompson, L; Light, A I; McCool, C; Heaton, S

    1988-08-01

    Verbal and symbol concentration, learning, problem solving, clear thinking, manual skills, and memory were tested in 42 surgical residents to assess the effects of acute sleep deprivation on specific neuropsychological parameters. A series of eight neuropsychological tests--digit symbols, digit vigilance, story memory, trail making, PASAT, Raven matrices, delayed story, and pegboard--and a questionnaire on mood states were completed by the residents both when fatigued (less than 4 hours of sleep: mean, 2.0 +/- 1.5 hours) and when rested (more than 4 hours of sleep: mean, 6.5 +/- 1.0 hours), with at least 7 days between tests. In order to eliminate the effects of learning from the first test series, randomization of residents was performed so that one half were first evaluated when rested and one half when fatigued. ANOVA, multiple regression analysis, and the Student t test were used to assess differences. In the acute sleep-deprived state, residents were less vigorous and more fatigued, depressed, tense, confused, and angry (p less than 0.05) than they were in rested state. Despite these changes in mood, however, the responses on all of the functional tests were no different statistically in those who were rested and those who were fatigued (even in those with less than 2 hours' sleep). We conclude that acute sleep deprivation of less than 4 hours alters mood state but does not change performance in test situations in which concentration, clear thinking, and problem solving are important.

  14. Effects of endotoxin on monoamine metabolism in the rat.

    NASA Technical Reports Server (NTRS)

    Pohorecky, L. A.; Wurtman, R. J.; Taam, D.; Fine, J.

    1972-01-01

    Examination of effects of administered endotoxin on catecholamine metabolism in the rat brain, sympathetic neurons, and adrenal medulla. It is found that endotoxin, administered intraperitoneally, lowers the norepinephrine content in peripheral sympathetic neurons and the brain, and the catecholamine content in the adrenal medulla. It also accelerates the disappearance of H3-norepinephrine from all these tissues. It is therefore suggested that the effects of endotoxin on body temperature may be mediated in part by central non-adrenergic neurons.

  15. Association between Metabolic Syndrome and Cognitive Impairment after Acute Ischemic Stroke: A Cross-Sectional Study in a Chinese Population

    PubMed Central

    Li, Pan; Quan, Wei; Lu, Da; Wang, Yan; Zhang, Hui-Hong; Liu, Shuai; Jiang, Rong-Cai; Zhou, Yu-Ying

    2016-01-01

    Background and Objectives Metabolic syndrome (MetS), a risk factor for many vascular conditions, is associated with vascular cognitive disorders. The objective of the present study was to explore the associations of MetS and its individual components with the risks of cognitive impairment and neurological dysfunction in patients after acute stroke. Methods This cross-sectional study enrolled 840 patients ranging in age from 53 to 89 years from the Tianjin area of North China. Cognitive function was evaluated using the Montreal Cognitive Assessment (MoCA) and Mini-Mental State Examination. Neuropsychiatric behavior was assessed using the Neuropsychiatric Inventory Questionnaire. Emotional state was examined according to the Hamilton Depression Rating Scale, and neuromotor function was evaluated using the National Institutes of Health Stroke Scale, Barthel index, and the Activity of Daily Living test. After overnight fasting, blood samples were obtained to measure biochemistry indicators. Results MetS and its individual components were closely correlated with MoCA score. MetS patients had high levels of inflammation and a 3.542-fold increased odds ratio (OR) for cognitive impairment [95% confidence interval (CI): 1.972–6.361]. Of the individual MetS components, central obesity (OR 3.039; 95% CI: 1.839–5.023), high fasting plasma glucose (OR 1.915; 95% CI: 1.016–3.607), and type 2 diabetes (OR 2.241; 95% CI: 1.630–3.081) were associated with an increased incidence of cognitive impairment. Consistent and significant worsening in different neurological domains was observed with greater numbers of MetS components. Conclusions MetS was associated with worse cognitive function, neuromotor dysfunction, and neuropsychological symptoms among Chinese acute stroke patients. PMID:27936074

  16. Detecting drug targets with minimum side effects in metabolic networks.

    PubMed

    Li, Z; Wang, R-S; Zhang, X-S; Chen, L

    2009-11-01

    High-throughput techniques produce massive data on a genome-wide scale which facilitate pharmaceutical research. Drug target discovery is a crucial step in the drug discovery process and also plays a vital role in therapeutics. In this study, the problem of detecting drug targets was addressed, which finds a set of enzymes whose inhibition stops the production of a given set of target compounds and meanwhile minimally eliminates non-target compounds in the context of metabolic networks. The model aims to make the side effects of drugs as small as possible and thus has practical significance of potential pharmaceutical applications. Specifically, by exploiting special features of metabolic systems, a novel approach was proposed to exactly formulate this drug target detection problem as an integer linear programming model, which ensures that optimal solutions can be found efficiently without any heuristic manipulations. To verify the effectiveness of our approach, computational experiments on both Escherichia coli and Homo sapiens metabolic pathways were conducted. The results show that our approach can identify the optimal drug targets in an exact and efficient manner. In particular, it can be applied to large-scale networks including the whole metabolic networks from most organisms.

  17. The Adverse Effects of Alcohol on Vitamin A Metabolism

    PubMed Central

    Clugston, Robin D.; Blaner, William S.

    2012-01-01

    The objective of this review is to explore the relationship between alcohol and the metabolism of the essential micronutrient, vitamin A; as well as the impact this interaction has on alcohol-induced disease in adults. Depleted hepatic vitamin A content has been reported in human alcoholics, an observation that has been confirmed in animal models of chronic alcohol consumption. Indeed, alcohol consumption has been associated with declines in hepatic levels of retinol (vitamin A), as well as retinyl ester and retinoic acid; collectively referred to as retinoids. Through the use of animal models, the complex interplay between alcohol metabolism and vitamin A homeostasis has been studied; the reviewed research supports the notion that chronic alcohol consumption precipitates a decline in hepatic retinoid levels through increased breakdown, as well as increased export to extra-hepatic tissues. While the precise biochemical mechanisms governing alcohol’s effect remain to be elucidated, its profound effect on hepatic retinoid status is irrefutable. In addition to a review of the literature related to studies on tissue retinoid levels and the metabolic interactions between alcohol and retinoids, the significance of altered hepatic retinoid metabolism in the context of alcoholic liver disease is also considered. PMID:22690322

  18. Effect of Slow Wave Sleep Disruption on Metabolic Parameters in Adolescents

    PubMed Central

    Shaw, Natalie D.; McHill, Andrew W.; Schiavon, Michele; Kangarloo, Tairmae; Mankowski, Piotr W.; Cobelli, Claudio; Klerman, Elizabeth B.; Hall, Janet E.

    2016-01-01

    Study Objectives: Cross-sectional studies report a correlation between slow wave sleep (SWS) duration and insulin sensitivity (SI) in children and adults. Suppression of SWS causes insulin resistance in adults but effects in children are unknown. This study was designed to determine the effect of SWS fragmentation on SI in children. Methods: Fourteen pubertal children (11.3–14.1 y, body mass index 29th to 97th percentile) were randomized to sleep studies and mixed meal (MM) tolerance tests with and without SWS disruption. Beta-cell responsiveness (Φ) and SI were determined using oral minimal modeling. Results: During the disruption night, auditory stimuli (68.1 ± 10.7/night; mean ± standard error) decreased SWS by 40.0 ± 8.0%. SWS fragmentation did not affect fasting glucose (non-disrupted 76.9 ± 2.3 versus disrupted 80.6 ± 2.1 mg/dL), insulin (9.2 ± 1.6 versus 10.4 ± 2.0 μIU/mL), or C-peptide (1.9 ± 0.2 versus 1.9 ± 0.1 ng/mL) levels and did not impair SI (12.9 ± 2.3 versus 10.1 ± 1.6 10−4 dL/kg/min per μIU/mL) or Φ (73.4 ± 7.8 versus 74.4 ± 8.4 10−9 min−1) to a MM challenge. Only the subjects in the most insulin-sensitive tertile demonstrated a consistent decrease in SI after SWS disruption. Conclusion: Pubertal children across a range of body mass indices may be resistant to the adverse metabolic effects of acute SWS disruption. Only those subjects with high SI (i.e., having the greatest “metabolic reserve”) demonstrated a consistent decrease in SI. These results suggest that adolescents may have a unique ability to adapt to metabolic stressors, such as acute SWS disruption, to maintain euglycemia. Additional studies are necessary to confirm that this resiliency is maintained in settings of chronic SWS disruption. Citation: Shaw ND, McHill AW, Schiavon M, Kangarloo T, Mankowski PW, Cobelli C, Klerman EB, Hall JE. Effect of slow wave sleep disruption on metabolic parameters in adolescents. SLEEP 2016;39(8):1591–1599. PMID:27166229

  19. Acute effects of electroconvulsive therapy on regional cerebral blood flow (rCBF) in psychiatric disorders

    SciTech Connect

    Prohovnik, I.; Alderson, P.O.; Sackheim, H.A.; Decina, P.; Kahn, D.

    1984-01-01

    Electroconvulsive therapy (ECT) is frequently used in the treatment of major depression and other psychiatric disorders; its mechanism of action is not established, but previous evidence suggests that it is associated with postictal metabolic suppression. The authors have used measurements of rCBF as an index of cortical metabolic activity to study the acute effects of ECT. Measurements of rCBF were made in 32 cortical regions in 10 patients (pts) following one minute breathing of Xe-133 (5mCi/L); the measurements were performed 30min before and 50min after ECT. Bilateral ECT was administered to six pts (five diagnosed as major depressives and one schizophrenic) and unilateral ECT to four (all diagnosed as unipolar or bipolar affective disorder). The total rCBF material consists of 52 measurements in these pts, made before and after 16 bilateral and 10 unilateral treatments. ECT was found to cause significant reduction of rCBF. Mean hemispheric flows (using the Initial Slope Index to measure grey-matter flow) were reduced by about 5% in both hemispheres following bilateral treatment. Unilateral treatment caused a 9% reduction of flow in the treated hemisphere, but only 2% contralaterally. Regional patterns of flow decreases also differed between the two treatment modes: bilateral frontal reductions were found after bilateral treatment, whereas unilateral ECT caused a widespread flow reduction in the treated hemisphere, and almost no effect contralaterally. These results suggest that rCBF studies are useful for assessing ECT, and indicate that the acute cerebral effects of ECT vary with the mode of treatment.

  20. Effects of acute bouts of exercise on cognition.

    PubMed

    Tomporowski, Phillip D

    2003-03-01

    A review was conducted of studies that assessed the effects of acute bouts of physical activity on adults' cognitive performance. Three groups of studies were constituted on the basis of the type of exercise protocol employed. Each group was then evaluated in terms of information-processing theory. It was concluded that submaximal aerobic exercise performed for periods up to 60 min facilitate specific aspects of information processing; however, extended exercise that leads to dehydration compromises both information processing and memory functions. The selective effects of exercise on cognitive performance are explained in terms of Sanders' [Acta Psychol. 53 (1983) 61] cognitive-energetic model.

  1. Effect of dipeptidyl peptidase 4 inhibitors on acute and subacute models of inflammation in male Wistar rats: An experimental study

    PubMed Central

    Kagal, Urmila Anil; Angadi, Netravathi Basavaraj; Matule, Somnath Mallikarjun

    2017-01-01

    Introduction: The prevalence of Type 2 diabetes mellitus (T2DM) has reached alarming proportions due to the rapidly increasing rates of this disease worldwide. Preclinical and clinical studies have revealed elevated levels of inflammatory markers in a vast number of illnesses such as T2DM, obesity, and atherothrombosis collectively called metabolic syndrome leading to adverse cardiovascular events. Dipeptidyl peptidase 4 (DPP-4) inhibitors which are the enhancers of glucagon-like peptide 1 (GLP -1), could have anti-inflammatory potential which could help in reducing cardiovascular complications of diabetes and benefit patients suffering from the metabolic syndrome. Objective: The objective of this study was to analyze the effect of DPP-4 inhibitors, namely vildagliptin and saxagliptin on acute and subacute models of inflammation. Materials and Methods: Male Wistar rats were randomly divided into control, standard, and two treatment groups (6 animals in each group, total 24 animals). The animals received the drugs orally. The effects of vildagliptin and saxagliptin on inflammation were tested in acute (carrageenan-induced paw edema method) and subacute (grass pith and cotton pellet implantation method) models of inflammation. Results: Vildagliptin and saxagliptin used in the present study showed a significant anti-inflammatory activity in acute and subacute models of inflammation. Conclusion: The present study suggests that vildagliptin and saxagliptin have significant anti-inflammatory potential. Based on the findings of the present study and the available literature, it can be concluded that the anti-inflammatory potential of DPP-4 inhibitors could help to reduce the cardiovascular complications of Type 2 diabetes and the related cluster of metabolic disorders collectively called the metabolic syndrome. PMID:28251104

  2. Metabolic Effects of Chronic T3 Administration in the Hypothalamic Paraventricular and Ventromedial Nucleus in Male Rats.

    PubMed

    Zhang, Zhi; Foppen, Ewout; Su, Yan; Bisschop, Peter H; Kalsbeek, Andries; Fliers, Eric; Boelen, Anita

    2016-10-01

    Thyroid hormone is a key regulator of energy metabolism. Apart from its direct effects on peripheral metabolism, thyroid hormone exerts acute metabolic effects via distinct nuclei within the hypothalamus. Recently we developed a method for chronic and local intrahypothalamic T3 administration in rats. The present study evaluated the metabolic effects of T3 delivered during either 7 or 28 days to the paraventricular or ventromedial nucleus of the hypothalamus (PVN or VMH). T3 administration for 7 days in the PVN decreased only plasma T3. There were no effects on body weight, food intake, plasma glucose concentrations, energy expenditure, locomotor activity, and respiratory exchange rate. In the liver and brown adipose tissue (BAT), there were no changes in mRNA expression of genes involved in glucose metabolism and thermogenesis. T3 administration for 7 days in the VMH did not change any of these parameters. T3 administration for 28 days in the PVN decreased food intake without affecting body weight, glucose concentrations, and body temperature. Liver and BAT gene expression was unaltered, except for decreased liver Dio1 mRNA. T3 administration for 28 days in the VMH did not affect liver and BAT mRNA expression, body weight, food intake, and body temperature, whereas blood glucose concentrations were slightly lower. In conclusion, we showed that chronic T3 administration to the PVN or VMH does not affect energy metabolism in a major way. Our results imply that the effects of intrahypothalamic T3 administration on metabolism largely depend on the duration of treatment.

  3. Effects of Acute Exposures to Carbon Dioxide upon Cognitive Functions

    NASA Technical Reports Server (NTRS)

    Ryder, V. E.; Scully, R. R.; Alexander, D. J.; Lam, C. W.; Young, M.; Satish, U.; Basner, M.

    2017-01-01

    Carbon dioxide (CO2) originates from human metabolism and typically remains about 10-fold higher in concentration on the International Space Station (ISS) than at the earth's surface. There have been recurring complaints by crew members of episodes of "mental viscosity" adversely affecting their performance, and there is evidence from the ISS that associates CO2 levels with reports of headaches by crewmembers. Consequently, flight rules have been employed to control CO2 below 3 mm Hg, which is well below the existing Spacecraft Maximum Allowable Concentration (SMAC) of 10 mm Hg for 24-hour exposures, and 5.3 mm Hg for exposures of 7 to 180 days. Headaches, while sometime debilitating themselves, are also symptoms that can provide evidence that physiological defense mechanisms have been breached, and there is evidence that CO2 has effects at levels below the threshold for headaches. This concern appears to be substantiated in reports that CO2 at concentrations below 2 mm Hg substantially reduced some cognitive functions that are associated with the ability to make complex decisions in conditions that are characterized by volatility, uncertainty, complexity, ambiguity, and delayed feedback. These are conditions that could be encountered by crews in off-nominal situations or during the first missions beyond low earth orbit. Therefore, we set out to determine if decision-making under volatile, uncertain, confusing and ambiguous circumstances, where feedback is delayed or absent, is correlated with low levels of CO2 during acute exposures (several hours) in crew-like subjects and to determine if additional cognitive domains are sensitive to concentrations of CO2 at, or below, current ISS levels by using a test battery that is currently available onboard ISS. We enrolled 22 volunteers (8 females, 14 males) between the ages of 30-55 (38.8 +/- 7.0) years whose training and professional experience reflect that of the astronaut corps. Subjects were divided among 4 study

  4. Online monitoring of cell metabolism for studying pharmacodynamic effects

    SciTech Connect

    Thedinga, Elke . E-mail: elke.thedinga@bionas.de; Kob, Axel; Holst, Heiko; Keuer, Andreas; Drechsler, Sabine; Niendorf, Ricarda; Baumann, Werner; Freund, Ingo; Lehmann, Mirko; Ehret, Ralf

    2007-04-01

    To characterize modes of action of substances and their cytotoxic effects Bionas GmbH has developed a new screening system to allow the continuous recording of how an active substance can act (Bionas (registered) 2500 analyzing system). In the pharmaceutical industry it is important to acquire as much information as possible about the metabolic effects of an active substance. Most classical pre-clinical studies are very expensive and time-consuming. Often they are so-called end-point tests which require many individual tests before approximate statements can be made about how an effect takes its course. With the Bionas (registered) 2500 analyzing system metabolically relevant data including oxygen consumption, acidification rate and the adhesion (cell impedance) of cells can be measured in parallel, online and label-free. Using e.g. ion-sensitive field effect-transistors (ISFET) and electrode structures it is possible to observe metabolic parameters non-invasively and continuously over longer periods of time. The system has already been established for several cell models, cell lines as well as primary cells. It also offers the advantage that regenerative effects can be observed during the same test run.

  5. Online monitoring of cell metabolism for studying pharmacodynamic effects.

    PubMed

    Thedinga, Elke; Kob, Axel; Holst, Heiko; Keuer, Andreas; Drechsler, Sabine; Niendorf, Ricarda; Baumann, Werner; Freund, Ingo; Lehmann, Mirko; Ehret, Ralf

    2007-04-01

    To characterize modes of action of substances and their cytotoxic effects Bionas GmbH has developed a new screening system to allow the continuous recording of how an active substance can act (Bionas 2500 analyzing system). In the pharmaceutical industry it is important to acquire as much information as possible about the metabolic effects of an active substance. Most classical pre-clinical studies are very expensive and time-consuming. Often they are so-called end-point tests which require many individual tests before approximate statements can be made about how an effect takes its course. With the Bionas 2500 analyzing system metabolically relevant data including oxygen consumption, acidification rate and the adhesion (cell impedance) of cells can be measured in parallel, online and label-free. Using e.g. ion-sensitive field effect-transistors (ISFET) and electrode structures it is possible to observe metabolic parameters non-invasively and continuously over longer periods of time. The system has already been established for several cell models, cell lines as well as primary cells. It also offers the advantage that regenerative effects can be observed during the same test run.

  6. Remote effects of acute kidney injury in a porcine model.

    PubMed

    Gardner, David S; De Brot, Simone; Dunford, Louise J; Grau-Roma, Llorenc; Welham, Simon J M; Fallman, Rebecca; O'Sullivan, Saoirse E; Oh, Weng; Devonald, Mark A J

    2016-02-15

    Acute kidney injury (AKI) is a common and serious condition with no specific treatment. An episode of AKI may affect organs distant from the kidney, further increasing the morbidity associated with AKI. The mechanism of organ cross talk after AKI is unclear. The renal and immune systems of pigs and humans are alike. Using a preclinical animal (porcine) model, we tested the hypothesis that early effects of AKI on distant organs is by immune cell infiltration, leading to inflammatory cytokine production, extravasation, and edema. In 29 pigs exposed to either sham surgery or renal ischemia-reperfusion (control, n = 12; AKI, n = 17), we assessed remote organ (liver, lung, brain) effects in the short (from 2- to 48-h reperfusion) and longer term (5 wk later) using immunofluorescence (for leukocyte infiltration, apoptosis), a cytokine array, tissue elemental analysis (e.g., electrolytes), blood hematology and chemistry (e.g., liver enzymes), and PCR (for inflammatory markers). AKI elicited significant, short-term (∼24 h) increments in enzymes indicative of acute liver damage (e.g. , AST: ALT ratio; P = 0.02) and influenced tissue biochemistry in some remote organs (e.g., lung tissue [Ca(2+)] increased; P = 0.04). These effects largely resolved after 48 h, and no further histopathology, edema, apoptosis, or immune cell infiltration was noted in the liver, lung, or hippocampus in the short and longer term. AKI has subtle biochemical effects on remote organs in the short term, including a transient increment in markers of acute liver damage. These effects resolved by 48 h, and no further remote organ histopathology, apoptosis, edema, or immune cell infiltration was noted.

  7. Paradoxical glucose-sensitizing yet proinflammatory effects of acute ASP administration in mice.

    PubMed

    Fisette, Alexandre; Poursharifi, Pegah; Oikonomopoulou, Katerina; Munkonda, Mercedes N; Lapointe, Marc; Cianflone, Katherine

    2013-01-01

    Acylation stimulating protein (ASP) is an adipokine derived from the immune complement system, which stimulates fat storage and is typically increased in obesity, type 2 diabetes, and cardiovascular disease. Using a diet-induced obesity (DIO) mouse model, the acute effects of ASP on energy metabolism and inflammatory processes in vivo were evaluated. We hypothesized that ASP would specifically exert proinflammatory effects. C57Bl/6 wild-type mice were put on a high-fat-high-sucrose diet for 12 weeks. Mice were then subjected to both glucose and insulin tolerance tests, each manipulation being preceded by recombinant ASP or vehicle (control) bolus injection. ASP supplementation increased whole-body glucose excursion, and this was accomplished with reduced concomitant insulin levels. However, ASP did not directly alter insulin sensitivity. ASP supplementation induced a proinflammatory phenotype, with higher levels of cytokines including IL-6 and TNF-α in plasma and in adipose tissue, liver, and skeletal muscle mRNA. Additionally, ASP increased M1 macrophage content of these tissues. ASP exerted a direct concentration-dependent role in the migration and M1 activation of cultured macrophages. Altogether, the in vivo and in vitro experiments demonstrate that ASP plays a role in both energy metabolism and inflammation, with paradoxical whole-body glucose-sensitizing yet proinflammatory effects.

  8. Maximizing acute fat utilization: effects of exercise, food, and individual characteristics.

    PubMed

    Bennard, Patrick; Imbeault, Pascal; Doucet, Eric

    2005-08-01

    In discussion of the physiological mechanisms that regulate fat metabolism, and with consideration of the metabolic stimuli that modulate substrate metabolism, the issue of how an acute state of negative lipid balance can be maximized is addressed. The regulation of lipolysis by catecholamines and insulin is reviewed, and the mechanisms of fatty acid mobilization and uptake by muscle are also briefly discussed. The implications of substrate availability and the hormonal response during physiological states such as fasting, exercise, and after food intake are also addressed, with particular regard to the influences on fatty acid mobilization and/or oxidation from eliciting these stimuli conjointly. Finally, a brief discussion is given of both the nature of exercise and the exercising individual, and how these factors influence fat metabolism during exercise. It is also a primary thrust of this paper to underline gaps in the existing literature with regard to exercise timing concerning food ingestion for maximizing acute lipid utilization.

  9. Effects of diazoxide in experimental acute necrotizing pancreatitis

    PubMed Central

    de Oliveira Andrade, Roberta; Kunitake, Tiago; Koike, Marcia Kiyomi; Machado, Marcel C C; Souza, Heraldo Possolo

    2017-01-01

    OBJECTIVE: We aimed to assess the effects of diazoxide on the mortality, pancreatic injury, and inflammatory response in an experimental model of acute pancreatitis. METHODS: Male Wistar rats (200–400 g) were divided randomly into two groups. Fifteen minutes before surgery, animals received physiological (0.9%) saline (3 mL/kg) (control group) or 45 mg/kg diazoxide (treatment group) via the intravenous route. Acute pancreatitis was induced by injection of 2.5% sodium taurocholate via the biliopancreatic duct. Mortality (n=38) was observed for 72 h and analyzed by the Mantel–Cox Log-rank test. To study pancreatic lesions and systemic inflammation, rats (10 from each group) were killed 3 h after acute pancreatitis induction; ascites volume was measured and blood as well as pancreases were collected. Pancreatic injury was assessed according to Schmidt’s scale. Cytokine expression in plasma was evaluated by the multiplex method. RESULTS: Mortality at 72 h was 33% in the control group and 60% in the treatment group (p=0.07). Ascites volumes and plasma levels of cytokines between groups were similar. No difference was observed in edema or infiltration of inflammatory cells in pancreatic tissues from either group. However, necrosis of acinar cells was lower in the treatment group compared to the control group (3.5 vs. 3.75, p=0.015). CONCLUSIONS: Treatment with diazoxide can reduce necrosis of acinar cells in an experimental model of acute pancreatitis, but does not affect the inflammatory response or mortality after 72 h. PMID:28273237

  10. Acute effects of ethanol on renal folate clearance in rats

    SciTech Connect

    Eisenga, B.H.; McMartin, K.E.

    1986-03-05

    Studies of the renal clearance of folic acid in primates demonstrate net reabsorption of folate by a saturable system. The acute administration of ethanol to rats causes a significant increase in urinary folate excretion. The mechanism for this effect is unknown and thus the effect of acute administration of ethanol on the renal absorption and urinary clearance of folate was studied in rats. Folic acid was administered to male Sprague-Dawley rats via continuous intravenous infusion in doses ranging from 3-75 micromoles/kg and renal clearance relative to inulin was determined. The effects of various dose levels of ethanol on these parameters were then determined. At a dose of 15 micromoles/kg, the renal clearance of folate relative to that of inulin was about 0.65 mg/min. At a plasma ethanol level about 100 mg/dl, the renal clearance of folate was not markedly altered. These results suggests that there is net reabsorption of folate in the rat kidney and that moderate doses of ethanol have little effect on renal effect on renal folate reabsorption.

  11. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress

    PubMed Central

    Picard, Martin; McManus, Meagan J.; Gray, Jason D.; Nasca, Carla; Moffat, Cynthia; Kopinski, Piotr K.; Seifert, Erin L.; McEwen, Bruce S.; Wallace, Douglas C.

    2015-01-01

    The experience of psychological stress triggers neuroendocrine, inflammatory, metabolic, and transcriptional perturbations that ultimately predispose to disease. However, the subcellular determinants of this integrated, multisystemic stress response have not been defined. Central to stress adaptation is cellular energetics, involving mitochondrial energy production and oxidative stress. We therefore hypothesized that abnormal mitochondrial functions would differentially modulate the organism’s multisystemic response to psychological stress. By mutating or deleting mitochondrial genes encoded in the mtDNA [NADH dehydrogenase 6 (ND6) and cytochrome c oxidase subunit I (COI)] or nuclear DNA [adenine nucleotide translocator 1 (ANT1) and nicotinamide nucleotide transhydrogenase (NNT)], we selectively impaired mitochondrial respiratory chain function, energy exchange, and mitochondrial redox balance in mice. The resulting impact on physiological reactivity and recovery from restraint stress were then characterized. We show that mitochondrial dysfunctions altered the hypothalamic–pituitary–adrenal axis, sympathetic adrenal–medullary activation and catecholamine levels, the inflammatory cytokine IL-6, circulating metabolites, and hippocampal gene expression responses to stress. Each mitochondrial defect generated a distinct whole-body stress-response signature. These results demonstrate the role of mitochondrial energetics and redox balance as modulators of key pathophysiological perturbations previously linked to disease. This work establishes mitochondria as stress-response modulators, with implications for understanding the mechanisms of stress pathophysiology and mitochondrial diseases. PMID:26627253

  12. Metabolic Effects of Berries with Structurally Diverse Anthocyanins

    PubMed Central

    Overall, John; Bonney, Sierra A.; Wilson, Mickey; Beermann, Arnold; Grace, Mary H.; Esposito, Debora; Lila, Mary Ann; Komarnytsky, Slavko

    2017-01-01

    Overconsumption of energy dense foods and sedentary lifestyle are considered as major causes of obesity-associated insulin resistance and abnormal glucose metabolism. Results from both cohort studies and randomized trials suggested that anthocyanins from berries may lower metabolic risks, however these reports are equivocal. The present study was designed to examine effects of six berries with structurally diverse anthocyanin profiles (normalized to 400 µg/g total anthocyanin content) on development of metabolic risk factors in the C57BL/6 mouse model of polygenic obesity. Diets supplemented with blackberry (mono-glycosylated cyanidins), black raspberry (acylated mono-glycosylated cyanidins), blackcurrant (mono- and di-glycosylated cyanidins and delphinidins), maqui berry (di-glycosylated delphinidins), Concord grape (acylated mono-glycosylated delphinidins and petunidins), and blueberry (mono-glycosylated delphinidins, malvidins, and petunidins) showed a prominent discrepancy between biological activities of delphinidin/malvidin-versus cyanidin-type anthocyanins that could be explained by differences in their structure and metabolism in the gut. Consumption of berries also resulted in a strong shift in the gastrointestinal bacterial communities towards obligate anaerobes that correlated with decrease in the gastrointestinal luminal oxygen and oxidative stress. Further work is needed to understand mechanisms that lead to nearly anoxic conditions in the gut lumens, including the relative contributions of host, diet and/or microbial oxidative activity, and their implication to human health. PMID:28212306

  13. Eating and shift work - effects on habits, metabolism and performance.

    PubMed

    Lowden, Arne; Moreno, Claudia; Holmbäck, Ulf; Lennernäs, Maria; Tucker, Philip

    2010-03-01

    Compared to individuals who work during the day, shift workers are at higher risk of a range of metabolic disorders and diseases (eg, obesity, cardiovascular disease, peptic ulcers, gastrointestinal problems, failure to control blood sugar levels, and metabolic syndrome). At least some of these complaints may be linked to the quality of the diet and irregular timing of eating, however other factors that affect metabolism are likely to play a part, including psychosocial stress, disrupted circadian rhythms, sleep debt, physical inactivity, and insufficient time for rest and revitalization. In this overview, we examine studies on food and nutrition among shift workers [ie, dietary assessment (designs, methods, variables) and the factors that might influence eating habits and metabolic parameters]. The discussion focuses on the quality of existing dietary assessment data, nutritional status parameters (particularly in obesity), the effect of circadian disruptions, and the possible implications for performance at work. We conclude with some dietary guidelines as a basis for managing the nutrition of shift workers.

  14. Effect of benidipine on simvastatin metabolism in human liver microsomes.

    PubMed

    Sugiyama, Yuka; Mimura, Nobuhito; Kuwabara, Takashi; Kobayashi, Hiroyuki; Ushiki, Junko; Fuse, Eiichi

    2007-06-01

    Benidipine, which is a calcium channel blocker that has clinical advantages in the treatment of hypertension, is metabolized by CYP3A4 in humans. The effect of benidipine on the metabolism of simvastatin by human liver microsomes was investigated in order to predict the potential of in vivo drug-drug interactions between benidipine and other substrates of CYP3A4. The results were compared with data generated with azelnidipine, which is also metabolized by CYP3A4. Both benidipine and azelnidipine inhibited simvastatin metabolism in vitro in a concentration-dependent manner. Assuming competitive inhibition, the K(i) values based on the unbound concentrations, were calculated to be 0.846 and 0.0181 microM for benidipine and azelnidipine, respectively. If simvastatin (10 mg) and benidipine (8 mg, the clinically recommended highest dose) were to be administered concomitantly, the ratio of the areas under the concentration-time curves of simvastatin with and without benidipine (AUC((+I))/AUC) was predicted to be 1.01. On the other hand, if simvastatin (10 mg) and azelnidipine (8 mg) were co-administered, the AUC((+I))/AUC for simvastatin was predicted to be 1.72, which is close to the observed value (1.9) in healthy volunteers. These data suggest that benidipine is unlikely to cause a drug interaction by inhibiting CYP3A4 activity in the liver.

  15. Management of the metabolic effects of HIV and HIV drugs

    PubMed Central

    Brown, Todd T.; Glesby, Marshall J.

    2012-01-01

    Morphologic and metabolic abnormalities, including subcutaneous adipose tissue wasting, central adipose tissue accumulation, dyslipidemia and disorders of glucose metabolism are common among HIV-infected patients receiving highly active antiretroviral therapy (HAART) and contribute to the risk of cardiovascular disease in this population. The pathogenesis of these disorders is due to complicated interactions between effects of chronic HIV infection, HAART medications, and patient factors, including genetic susceptibility. HAART has transformed HIV into a chronic condition for many patients and as a result the majority of HIV-infected patients in many areas of the developed world are ≥50 years. Since metabolic and cardiovascular diseases increase with aging, knowledge of the optimal management of these conditions is essential for practitioners caring for HIV-infected patients, including endocrine subspecialists. This Review highlights the clinical management of these disorders, focusing on the most recent evidence regarding the efficacy of treatment strategies, newly available medications and potential interactions between HAART medications and medications used to treat metabolic disorders. PMID:21931374

  16. Differential Acute and Chronic Effects of Leptin on Hypothalamic Astrocyte Morphology and Synaptic Protein Levels

    PubMed Central

    García-Cáceres, Cristina; Fuente-Martín, Esther; Burgos-Ramos, Emma; Granado, Miriam; Frago, Laura M.; Barrios, Vicente; Horvath, Tamas

    2011-01-01

    Astrocytes participate in neuroendocrine functions partially through modulation of synaptic input density in the hypothalamus. Indeed, glial ensheathing of neurons is modified by specific hormones, thus determining the availability of neuronal membrane space for synaptic inputs, with the loss of this plasticity possibly being involved in pathological processes. Leptin modulates synaptic inputs in the hypothalamus, but whether astrocytes participate in this action is unknown. Here we report that astrocyte structural proteins, such as glial fibrillary acidic protein (GFAP) and vimentin, are induced and astrocyte morphology modified by chronic leptin administration (intracerebroventricular, 2 wk), with these changes being inversely related to modifications in synaptic protein densities. Similar changes in glial structural proteins were observed in adult male rats that had increased body weight and circulating leptin levels due to neonatal overnutrition (overnutrition: four pups/litter vs. control: 12 pups/litter). However, acute leptin treatment reduced hypothalamic GFAP levels and induced synaptic protein levels 1 h after administration, with no effect on vimentin. In primary hypothalamic astrocyte cultures leptin also reduced GFAP levels at 1 h, with an induction at 24 h, indicating a possible direct effect of leptin. Hence, one mechanism by which leptin may affect metabolism is by modifying hypothalamic astrocyte morphology, which in turn could alter synaptic inputs to hypothalamic neurons. Furthermore, the responses to acute and chronic leptin exposure are inverse, raising the possibility that increased glial activation in response to chronic leptin exposure could be involved in central leptin resistance. PMID:21343257

  17. Differential gene expression and lipid metabolism in fatty liver induced by acute ethanol treatment in mice

    SciTech Connect

    Yin Huquan; Kim, Mingoo; Kim, Ju-Han; Kong, Gu; Kang, Kyung-Sun; Kim, Hyung-Lae; Yoon, Byung-IL; Lee, Mi-Ock; Lee, Byung-Hoon

    2007-09-15

    Ethanol induces cumulative liver damage including steatosis, steatohepatitis and cirrhosis. The aim of this study is to investigate the global intrahepatic gene expression profile in the mouse liver treated with ethanol. A single oral dose of 0.5 or 5 g/kg ethanol was administered to male ICR mice, and liver samples were obtained after 6, 24 and 72 h. Histopathological evaluation showed typical fatty livers in the high-dose group at 24 h. Microarray analysis identified 28 genes as being ethanol responsive (two-way ANOVA; p < 0.05), after adjustment by the Benjamini-Hochberg multiple testing correction; these genes displayed {>=} 2-fold induction or repression. The expression of genes that are known to be involved in fatty acid synthesis was examined. The transcript for lipogenic transcription factor, sterol regulatory element (SRE)-binding factor 1 (Srebf1), was upregulated by acute ethanol exposure. Of the genes known to contain SRE or SRE-like sequences and to be regulated by SRE-binding protein 1 (SREBP1), those encoding malic enzyme (Mod1), ATP-citrate lyase (Acly), fatty acid synthase (Fasn) and stearyl-CoA desaturase (Scd1) were induced by ethanol. Quantitative real-time PCR confirmed the changes in the expression levels of the selected genes. The change in the Srebf1 mRNA level correlates well with that of the SREBP1 protein expression as well as its binding to the promoters of the target genes. The present study identifies differentially expressed genes that can be applied to the biomarkers for alcohol-binge-induced fatty liver. These results support the hypothesis by which ethanol-induced steatosis in mice is mediated by the fatty acid synthetic pathway regulated by SREBP1.

  18. Antibiotics Increase Gut Metabolism and Antioxidant Proteins and Decrease Acute Phase Response and Necrotizing Enterocolitis in Preterm Neonates

    PubMed Central

    Jiang, Pingping; Jensen, Michael Ladegaard; Cilieborg, Malene Skovsted; Thymann, Thomas; Wan, Jennifer Man-Fan; Sit, Wai-Hung; Tipoe, George L.; Sangild, Per Torp

    2012-01-01

    Background The appropriate use of antibiotics for preterm infants, which are highly susceptible to develop necrotizing enterocolitis (NEC), is not clear. While antibiotic therapy is commonly used in neonates with NEC symptoms and sepsis, it remains unknown how antibiotics may affect the intestine and NEC sensitivity. We hypothesized that broad-spectrum antibiotics, given immediately after preterm birth, would reduce NEC sensitivity and support intestinal protective mechanisms. Methodology/Principal Findings Preterm pigs were treated with antibiotics for 5 d (oral and systemic doses of gentamycin, ampicillin and metrodinazole; AB group) and compared with untreated pigs. Only the untreated pigs showed evidence of NEC lesions and reduced digestive function, as indicated by lowered villus height and activity of brush border enzymes. In addition, 53 intestinal and 22 plasma proteins differed in expression between AB and untreated pigs. AB treatment increased the abundance of intestinal proteins related to carbohydrate and protein metabolism, actin filaments, iron homeostasis and antioxidants. Further, heat shock proteins and the complement system were affected suggesting that all these proteins were involved in the colonization-dependent early onset of NEC. In plasma, acute phase proteins (haptoglobin, complement proteins) decreased, while albumin, cleaved C3, ficolin and transferrin increased. Conclusions/Significance Depressed bacterial colonization following AB treatment increases mucosal integrity and reduces bacteria-associated inflammatory responses in preterm neonates. The plasma proteins C3, ficolin, and transferrin are potential biomarkers of the colonization-dependent NEC progression in preterm neonates. PMID:23028687

  19. Breeding status affects the hormonal and metabolic response to acute stress in a long-lived seabird, the king penguin.

    PubMed

    Viblanc, Vincent A; Gineste, Benoit; Robin, Jean-Patrice; Groscolas, René

    2016-09-15

    Stress responses are suggested to physiologically underlie parental decisions promoting the redirection of behaviour away from offspring care when survival is jeopardized (e.g., when facing a predator). Besides this classical view, the "brood-value hypothesis" suggests that parents' stress responses may be adaptively attenuated to increase fitness, ensuring continued breeding when the relative value of the brood is high. Here, we test the brood-value hypothesis in breeding king penguins (Aptenodytes patagonicus), long-lived seabirds for which the energy commitment to reproduction is high. We subjected birds at different breeding stages (courtship, incubation and chick brooding) to an acute 30-min capture stress and measured their hormonal (corticosterone, CORT) and metabolic (non-esterified fatty acid, NEFA) responses to stress. We found that CORT responses were markedly attenuated in chick-brooding birds when compared to earlier stages of breeding (courtship and incubation). In addition, NEFA responses appeared to be rapidly attenuated in incubating and brooding birds, but a progressive increase in NEFA plasma levels in courting birds suggested energy mobilization to deal with the threat. Our results support the idea that stress responses may constitute an important life-history mechanism mediating parental reproductive decisions in relation to their expected fitness outcome.

  20. Homeostatic effects of exercise and sleep on metabolic processes in mice with an overexpressed skeletal muscle clock.

    PubMed

    Brager, Allison J; Heemstra, Lydia; Bhambra, Raman; Ehlen, J Christopher; Esser, Karyn A; Paul, Ketema N; Novak, Colleen M

    2017-01-01

    Brain and muscle-ARNT-like factor (Bmal1/BMAL1) is an essential transcriptional/translational factor of circadian clocks. Loss of function of Bmal1/BMAL1 is highly disruptive to physiological and behavioral processes. In light of these previous findings, we examined if transgenic overexpression of Bmal1/BMAL1 in skeletal muscle could alter metabolic processes. First, we characterized in vivo and ex vivo metabolic phenotypes of muscle overexpressed mice (male and female) compared to wild-type littermates (WT). Second, we examined in vivo and ex vivo metabolic processes in the presence of positive and negative homeostatic challenges: high-intensity treadmill running (positive) and acute sleep deprivation (negative). In vivo measures of metabolic processes included body composition, respiratory exchange ratio (RER; VCO2/VO2), energy expenditure, total activity counts, and food intake collected from small animal indirect calorimetry. Ex vivo measure of insulin sensitivity in skeletal muscle was determined from radioassays. RER was lower for muscle overexpressed females compared to female WTs. There were no genotype-dependent differences in metabolic phenotypes for males. With homeostatic challenges, muscle overexpressed mice had lower energy expenditure after high-intensity treadmill running. Acute sleep deprivation reduced insulin sensitivity in skeletal muscle in overexpressed male mice, but not male WTs. The present study contributes to a body of evidence showing pleiotropic, non-circadian, and homeostatic effects of altered Bmal1/BMAL1 expression on metabolic processes, demonstrating a critical need to further investigate the broad and complex actions of Bmal1/BMAL1 on physiology and behavior.

  1. Damaging effects of hyperglycemia on cardiovascular function: spotlight on glucose metabolic pathways.

    PubMed

    Mapanga, Rudo F; Essop, M Faadiel

    2016-01-15

    The incidence of cardiovascular complications associated with hyperglycemia is a growing global health problem. This review discusses the link between hyperglycemia and cardiovascular diseases onset, focusing on the role of recently emerging downstream mediators, namely, oxidative stress and glucose metabolic pathway perturbations. The role of hyperglycemia-mediated activation of nonoxidative glucose pathways (NOGPs) [i.e., the polyol pathway, hexosamine biosynthetic pathway, advanced glycation end products (AGEs), and protein kinase C] in this process is extensively reviewed. The proposal is made that there is a unique interplay between NOGPs and a downstream convergence of detrimental effects that especially affect cardiac endothelial cells, thereby contributing to contractile dysfunction. In this process the AGE pathway emerges as a crucial mediator of hyperglycemia-mediated detrimental effects. In addition, a vicious metabolic cycle is established whereby hyperglycemia-induced NOGPs further fuel their own activation by generating even more oxidative stress, thereby exacerbating damaging effects on cardiac function. Thus NOGP inhibition, and particularly that of the AGE pathway, emerges as a novel therapeutic intervention for the treatment of cardiovascular complications such as acute myocardial infarction in the presence hyperglycemia.

  2. Effect of Centella asiatica on Oxidative Stress and Lipid Metabolism in Hyperlipidemic Animal Models

    PubMed Central

    Zhao, Yun; Shu, Ping; Zhang, Youzhi; Lin, Limin; Zhou, Haihong; Xu, Zhentian; Suo, Daqin; Xie, Anzhi; Jin, Xin

    2014-01-01

    Hyperlipidemia and many other metabolic diseases are related to oxidative stress. Centella asiatica is a traditional Chinese medicine whose antioxidant effect in vitro has been reported. We are interested in whether it possesses this effect in vivo and hence modulates lipid metabolism. Therefore, experiments were carried out on mice and golden hamsters regarding its antioxidant and hypolipidemic effect. We observed that a fraction (CAF3) of the ethanol extract (CAE) of Centella asiatica had a cholesterol decrease of 79% and a triglyceride decrease of 95% in acute mice model, so CAF3 was further investigated in high-fat-fed hamster model. It was shown that CAF3 increased SOD and GSH-Px activities and decreased MDA level, and it also improved TC, TG, LDL-C, HDL-C, AST, and ALT levels. L-CAT and SR-BI gene expression in hamsters were increased. Taken together, our data suggest that the CAF3 fraction of Centella asiatica has antioxidant and hypolipidemic properties. PMID:24829618

  3. Effects of acute diabetes on rat cutaneous wound healing.

    PubMed

    Komesu, Marilena Chinali; Tanga, Marcelo Benetti; Buttros, Kemli Raquel; Nakao, Cristiano

    2004-10-01

    INTRODUCTION:: Diabetes mellitus is a chronic hyperglycaemic disorder. Complicated metabolic mechanisms and increased incidence of infections are clinical hallmarks, mostly associated with its chronicity. There is little information about the early pathological processes in diabetes. The objective of our study was to evaluate the healing process during early phases of experimental diabetes on rat skin. METHODS:: Alloxan induced diabetic rats were used. Non-injected animals were used as control. Punch byopsies on dorsal skin had histopathological evaluation of the healing areas made on days 1, 3 and 7 post-surgery. RESULTS:: The results showed that: (1) in diabetics, the inflammation, the initial healing phase, has a slow beginning and tends to last longer; and (2) diabetic animals showed lower density of neutrophils in healing areas up to 3 days after surgery, and in addition, after day 3, when the neutrophils should leave the healing area, and be replaced by macrophages, compared to controls, diabetic animals showed higher numbers of neutrophils. PRINCIPAL CONCLUSION:: Although diabetes is a chronic progressive disease, acute diabetes can be associated to subclinical alterations, and responsible for deficiencies in defense cells and in repair tissue failures.

  4. Metabolism and aging: effects of cold exposure on metabolic rate, body composition, and longevity in mice.

    PubMed

    Vaanholt, Lobke M; Daan, Serge; Schubert, Kristin A; Visser, G Henk

    2009-01-01

    The proposition that increased energy expenditure shortens life has a long history. The rate-of-living theory (Pearl 1928 ) states that life span and average mass-specific metabolic rate are inversely proportional. Originally based on interspecific allometric comparisons between species of mammals, the theory was later rejected on the basis of comparisons between taxa (e.g., birds have higher metabolic rates than mammals of the same size and yet live longer). It has rarely been experimentally tested within species. Here, we investigated the effects of increased energy expenditure, induced by cold exposure, on longevity in mice. Longevity was measured in groups of 60 male mice maintained at either 22 degrees C (WW) or 10 degrees C (CC) throughout adult life. Forty additional mice were maintained at both of these temperatures to determine metabolic rate (by stable isotope turnover, gas exchange, and food intake) as well as the mass of body and organs of subsets of animals at four different ages. Because energy expenditure might affect longevity by either accumulating damage or by instantaneously affecting mortality rate, we included a third group of mice exposed to 10 degrees C early in life and to 22 degrees C afterward (CW). Exposure to cold increased mean daily energy expenditure by ca. 48% (from 47.8 kJ d(-1) in WW to 70.6 kJ d(-1) in CC mice, with CW intermediate at 59.9 kJ d(-1)). However, we observed no significant differences in median life span among the groups (WW, 832 d; CC, 834 d; CW, 751 d). CC mice had reduced body mass (lifetime mean 30.7 g) compared with WW mice (33.8 g), and hence their lifetime energy potential (LEP) per gram whole-body mass had an even larger excess than per individual. Greenberg ( 1999 ) has pointed out that the size of the energetically costly organs, rather than that of the whole body, may be relevant for the rate-of-living idea. We therefore expressed LEP also in terms of energy expenditure per gram dry lean mass or per gram

  5. Acute metabolic responses to a 24-h ultra-marathon race in male amateur runners.

    PubMed

    Waśkiewicz, Zbigniew; Kłapcińska, Barbara; Sadowska-Krępa, Ewa; Czuba, Milosz; Kempa, Katarzyna; Kimsa, Elżbieta; Gerasimuk, Dagmara

    2012-05-01

    The study was conducted to evaluate the metabolic responses to a 24 h ultra-endurance race in male runners. Paired venous and capillary blood samples from 14 athletes (mean age 43.0 ± 10.8 years, body weight 64.3 ± 7.2 kg, VO(2max) 57.8 ± 6.1 ml kg(-1) min(-1)), taken 3 h before the run, after completing the marathon distance (42.195 km), after 12 h, and at the finish of the race, were analyzed for blood morphology, acid-base balance and electrolytes, lipid profile, interleukin-6 (IL-6), high-sensitivity C-reactive protein (hsCRP), and serum enzyme activities. Mean distance covered during the race was 168.5 ± 23.1 km (range 125.2-218.5 km). Prolonged ultra-endurance exercise triggered immune and inflammatory responses, as evidenced by a twofold increase in total leukocyte count with neutrophils and monocytes as main contributors, nearly 30-fold increase in serum IL-6 and over 20-fold rise in hsCRP. A progressive exponential increase in mean creatine kinase activity up to the level 70-fold higher than the respective pre-race value, a several fold rise in serum activities of aspartate aminotransferase and alanine aminotransferase, and a fairly stable serum γ-glutamyl transferase level, were indicative of muscle, but not of liver damage. With duration of exercise, there was a progressive development of hyperventilation-induced hypocapnic alkalosis, and a marked alteration in substrate utilization towards fat oxidation to maintain blood glucose homeostasis. The results of this study may imply that progressive decline in partial CO(2) pressure (hypocapnia) that develops during prolonged exercise may contribute to increased interleukin-6 production.

  6. Some metabolic effects of bacterial endotoxins in salmonid fishes

    USGS Publications Warehouse

    Wedemeyer, G.A.; Ross, A.J.; Smith, L.

    1968-01-01

    Coho salmon (Oncorhynchus kisutch) and rainbow trout (Salmo gairdneri) were highly resistant to endotoxins from both Escherichia coli and Aeromonas salmonicida (a fish pathogen) at 14 and 18 C.This resistance was investigated with liver tryptophan pyrrolase, liver glycogen depletion in vitro, and the arterial blood pressure as indicators. Liver glycogen depletion was accelerated by both endotoxins, but there was no significant cardiovascular response or effect on liver tryptophan pyrrolase activity. Since the cardiovascular effects of histamine were also limited, it was concluded that the metabolic effects of bacterial endotoxins in salmonids are qualitatively different from those of the higher vertebrates.

  7. Temperature stress effects in Quercus suber leaf metabolism.

    PubMed

    Chaves, Inês; Passarinho, José António P; Capitão, Cláudio; Chaves, Maria Manuela; Fevereiro, Pedro; Ricardo, Cândido P P

    2011-10-15

    Based on projections that climate changes are will intensify in the near future, it is important to understand how plants respond to climate. Consequently, we have been studying the effect of contrasting temperatures on leaf metabolism of Quercus suber, an important Mediterranean oak. Potted plants were grown under controlled conditions for 53 days at 28°C or 10°C. The accumulation of major soluble metabolites was analyzed by NMR. The relative levels of transcripts of genes encoding key enzymes of the shikimate and phenylpropanoid pathway (CS, PAL, CAD and ChS) were examined by means of quantitative, real-time RT-PCR. At 10°C, in the pre-existing leaves, the concentrations of sucrose, quercitol and catechin were higher, as were PAL and ChS transcripts. At 28°C, however, it was the concentration of quinic acid that was higher, as were the concentrations of CS and CAD transcripts. We conclude that contrasting temperatures greatly influence Q. suber metabolism and that a deeper analysis of the effects of more extreme temperatures is needed to understand the possible effects of temperature changes on Q. suber metabolism and physiology.

  8. Effects of intermittent fasting on glucose and lipid metabolism.

    PubMed

    Antoni, Rona; Johnston, Kelly L; Collins, Adam L; Robertson, M Denise

    2017-01-16

    Two intermittent fasting variants, intermittent energy restriction (IER) and time-restricted feeding (TRF), have received considerable interest as strategies for weight-management and/or improving metabolic health. With these strategies, the pattern of energy restriction and/or timing of food intake are altered so that individuals undergo frequently repeated periods of fasting. This review provides a commentary on the rodent and human literature, specifically focusing on the effects of IER and TRF on glucose and lipid metabolism. For IER, there is a growing evidence demonstrating its benefits on glucose and lipid homeostasis in the short-to-medium term; however, more long-term safety studies are required. Whilst the metabolic benefits of TRF appear quite profound in rodents, findings from the few human studies have been mixed. There is some suggestion that the metabolic changes elicited by these approaches can occur in the absence of energy restriction, and in the context of IER, may be distinct from those observed following similar weight-loss achieved via modest continuous energy restriction. Mechanistically, the frequently repeated prolonged fasting intervals may favour preferential reduction of ectopic fat, beneficially modulate aspects of adipose tissue physiology/morphology, and may also impinge on circadian clock regulation. However, mechanistic evidence is largely limited to findings from rodent studies, thus necessitating focused human studies, which also incorporate more dynamic assessments of glucose and lipid metabolism. Ultimately, much remains to be learned about intermittent fasting (in its various forms); however, the findings to date serve to highlight promising avenues for future research.

  9. Effects of Soil Salinity on Sucrose Metabolism in Cotton Fiber

    PubMed Central

    Liu, Jingran; Luo, Junyu; Zhao, Xinhua; Dong, Helin; Ma, Yan; Sui, Ning; Zhou, Zhiguo; Meng, Yali

    2016-01-01

    Cotton (Gosspium hirsutum L.) is classified as a salt tolerant crop. However, its yield and fiber quality are negatively affected by soil salinity. Studies on the enzymatic differences in sucrose metabolism under different soil salinity levels are lacking. Therefore, field experiments, using two cotton cultivars, CCRI-79 (salt-tolerant) and Simian 3 (salt-sensitive), were conducted in 2013 and 2014 at three different salinity levels (1.15 dS m-1 [low soil salinity], 6.00 dS m-1 [medium soil salinity], and 11.46 dS m-1 [high soil salinity]). The objective was to elucidate the effects of soil salinity on sucrose content and the activity of key enzymes that are related to sucrose metabolism in cotton fiber. Results showed that as the soil salinity increased, cellulose content, sucrose content, and sucrose transformation rate declined; the decreases in cellulose content and sucrose transformation rate caused by the increase in soil salinity were more in Simian 3 than those in CCRI-79. With increase in soil salinity, activities of sucrose metabolism enzymes sucrose phophate synthase (SPS), acidic invertase, and alkaline invertase were decreased, whereas sucrose synthase (SuSy) activity increased. However, the changes displayed in the SuSy and SPS activities in response to increase in soil salinity were different and the differences were large between the two cotton cultivars. These results illustrated that suppressed cellulose synthesis and sucrose metabolism under high soil salinity were mainly due to the change in SPS, SuSy, and invertase activities, and the difference in cellulose synthesis and sucrose metabolism in fiber for the two cotton cultivars in response to soil salinity was determined mainly by both SuSy and SPS activities. PMID:27227773

  10. Effects of ultraviolet radiation on saccharomyces uvarum metabolism

    SciTech Connect

    Luciano, J.Z.; Hix, C.

    1987-04-01

    The objective of this study was to measure the effect of UV radiation on the metabolism of Saccharomcyes uvarum in wort used in beer production. Pure yeast cultures were exposed to a Westinghouse G8T5 germicidal lamp for 10, 20, 30 and 40 minutes and added to fresh wort. The cultures were allowed to ferment for 96 hours at 130 C and fermentation products were assayed at 24 hour intervals and analyzed on a SCABA BEER ANALYZER. Metabolic parameters measured were balling, alcohol and cell count. Percent alcohol (V/V %) increased significantly at all exposures, but as the UV dosage increased, alcohol levels showed a significant decline with longer exposures. The assimilation of sugars or balling levels dropped at each exposure level among samples. The ability for the yeast to assimilate sugars decreased as UV exposure was increased although pitching rates fluctuated. (Pitching rates are the cell count readings at inoculation). None of the samples showed a logarithmic growth pattern, except for the controls which did not exhibit a lag phase. All other samples decreased cell counts as exposure levels increased, without peaks. Substrate availability was not a factor in the metabolism of Saccharomyces uvarum. Cell count levels at each exposure could have possibly affected the metabolic parameters because of excessive cell killing. Viabilities at the exposure levels studied show that the number of live cells available for nutrient uptake was lower at each level. However, the peak levels of the parameters measured were very close to the controls. Although the availability of cells was low, metabolic rates could have been altered by the UV light.

  11. Understanding the metabolic basis of drug resistance: therapeutic induction of the Warburg effect kills cancer cells.

    PubMed

    Martinez-Outschoorn, Ubaldo E; Lin, Zhao; Ko, Ying-Hui; Goldberg, Allison F; Flomenberg, Neal; Wang, Chenguang; Pavlides, Stephanos; Pestell, Richard G; Howell, Anthony; Sotgia, Federica; Lisanti, Michael P

    2011-08-01

    Previously, we identified a form of epithelial-stromal metabolic coupling, in which cancer cells induce aerobic glycolysis in adjacent stromal fibroblasts, via oxidative stress, driving autophagy and mitophagy. In turn, these cancer-associated fibroblasts provide recycled nutrients to epithelial cancer cells, "fueling" oxidative mitochondrial metabolism and anabolic growth. An additional consequence is that these glycolytic fibroblasts protect cancer cells against apoptosis, by providing a steady nutrient stream of to mitochondria in cancer cells. Here, we investigated whether these interactions might be the basis of tamoxifen-resistance in ER(+) breast cancer cells. We show that MCF7 cells alone are Tamoxifen-sensitive, but become resistant when co-cultured with hTERT-immortalized human fibroblasts. Next, we searched for a drug combination (Tamoxifen + Dasatinib) that could over-come fibroblast-induced Tamoxifen-resistance. Importantly, we show that this drug combination acutely induces the Warburg effect (aerobic glycolysis) in MCF7 cancer cells, abruptly cutting off their ability to use their fuel supply, effectively killing these cancer cells. Thus, we believe that the Warburg effect in tumor cells is not the "root cause" of cancer, but rather it may provide the necessary clues to preventing chemo-resistance in cancer cells. Finally, we observed that this drug combination (Tamoxifen + Dasatinib) also had a generalized anti-oxidant effect, on both co-cultured fibroblasts and cancer cells alike, potentially reducing tumor-stroma co-evolution. Our results are consistent with the idea that chemo-resistance may be both a metabolic and stromal phenomenon that can be overcome by targeting mitochondrial function in epithelial cancer cells. Thus, simultaneously targeting both (1) the tumor stroma and (2) the epithelial cancer cells, with combination therapies, may be the most successful approach to anti-cancer therapy. This general strategy of combination therapy for

  12. Effect of fasting versus feeding on the bone metabolic response to running.

    PubMed

    Scott, Jonathan P R; Sale, Craig; Greeves, Julie P; Casey, Anna; Dutton, John; Fraser, William D

    2012-12-01

    Individuals often perform exercise in the fasted state, but the effects on bone metabolism are not currently known. We compared the effect of an overnight fast with feeding a mixed meal on the bone metabolic response to treadmill running. Ten, physically-active males aged 28 ± 4y (mean ±SD) completed two, counterbalanced, 8d trials. After 3d on a standardised diet, participants performed 60 min of treadmill running at 65% VO(2max) on Day 4 following an overnight fast (FAST) or a standardised breakfast (FED). Blood samples were collected at baseline, before and during exercise, for 3h after exercise, and on four consecutive follow-up days (FU1-FU4). Plasma/serum were analysed for the c-terminal telopeptide region of collagen type 1 (β-CTX), n-terminal propeptides of procollagen type 1 (P1NP), osteocalcin (OC), bone alkaline phosphatase (bone ALP), parathyroid hormone (PTH), albumin-adjusted calcium, phosphate, osteoprotegerin (OPG), cortisol, leptin and ghrelin. Only the β-CTX response was significantly affected by feeding. Pre-exercise concentrations decreased more in FED compared with FAST (47% vs 26%, P<0.001) but increased during exercise in both groups and were not significantly different from baseline at 1h post-exercise. At 3h post-exercise, concentrations were decreased (33%, P<0.001) from baseline in FAST and significantly lower (P<0.001) than in FED. P1NP and PTH increased, and OC decreased during exercise. Bone markers were not significantly different from baseline on FU1-FU4. Fasting had only a minor effect on the bone metabolic response to subsequent acute, endurance exercise, reducing the duration of the increase in β-CTX during early recovery, but having no effect on changes in bone formation markers. The reduced duration of the β-CTX response with fasting was not fully explained by changes in PTH, OPG, leptin or ghrelin.

  13. Effects of ambient and preceding temperatures and metabolic genes on flight metabolism in the Glanville fritillary butterfly.

    PubMed

    Wong, Swee Chong; Oksanen, Alma; Mattila, Anniina L K; Lehtonen, Rainer; Niitepõld, Kristjan; Hanski, Ilkka

    2016-02-01

    Flight is essential for foraging, mate searching and dispersal in many insects, but flight metabolism in ectotherms is strongly constrained by temperature. Thermal conditions vary greatly in natural populations and may hence restrict fitness-related activities. Working on the Glanville fritillary butterfly (Melitaea cinxia), we studied the effects of temperature experienced during the first 2 days of adult life on flight metabolism, genetic associations between flight metabolic rate and variation in candidate metabolic genes, and genotype-temperature interactions. The maximal flight performance was reduced by 17% by 2 days of low ambient temperature (15 °C) prior to the flight trial, mimicking conditions that butterflies commonly encounter in nature. A SNP in phosphoglucose isomerase (Pgi) had a significant association on flight metabolic rate in males and a SNP in triosephosphate isomerase (Tpi) was significantly associated with flight metabolic rate in females. In the Pgi SNP, AC heterozygotes had higher flight metabolic rate than AA homozygotes following low preceding temperature, but the trend was reversed following high preceding temperature, consistent with previous results on genotype-temperature interaction for this SNP. We suggest that these results on 2-day old butterflies reflect thermal effect on the maturation of flight muscles. These results highlight the consequences of variation in thermal conditions on the time scale of days, and they contribute to a better understanding of the complex dynamics of flight metabolism and flight-related activities under conditions that are relevant for natural populations living under variable thermal conditions.

  14. Growth hormone transgenesis and polyploidy increase metabolic rate, alter the cardiorespiratory response and influence HSP expression in response to acute hypoxia in Atlantic salmon (Salmo salar) yolk-sac alevins.

    PubMed

    Polymeropoulos, Elias T; Plouffe, Debbie; LeBlanc, Sacha; Elliott, Nick G; Currie, Suzie; Frappell, Peter B

    2014-07-01

    Growth hormone (GH)-transgenic Atlantic salmon display accelerated growth rates compared with non-transgenics. GH-transgenic fish also display cardiorespiratory and metabolic modifications that accompany the increased growth rate. An elevated routine metabolic rate has been described for pre- and post-smolt GH-transgenic salmon that also display improvements in oxygen delivery to support the increased aerobic demand. The early ontogenic effects of GH transgenesis on the respiratory and cellular physiology of fish, especially during adverse environmental conditions, and the effect of polyploidy are unclear. Here, we investigated the effects of GH transgenesis and polyploidy on metabolic, heart and ventilation rates and heat shock protein (HSP) levels after exposure to acute hypoxia in post-hatch Atlantic salmon yolk-sac alevins. Metabolic rate decreased with decreasing partial pressures of oxygen in all genotypes. In normoxia, triploid transgenics displayed the highest mass-specific metabolic rates in comparison to diploid transgenics and non-transgenic triploids, which, in contrast, had higher rates than diploid non-transgenics. In hypoxia, we observed a lower mass-specific metabolic rate in diploid non-transgenics compared with all other genotypes. However, no evidence for improved O2 uptake through heart or ventilation rate was found. Heart rate decreased in diploid non-transgenics while ventilation rate decreased in both diploid non-transgenics and triploid transgenics in severe hypoxia. Regardless of genotype or treatment, inducible HSP70 was not expressed in alevins. Following hypoxia, the constitutive isoform of HSP70, HSC70, decreased in transgenics and HSP90 expression decreased in all genotypes. These data suggest that physiological changes through GH transgenesis and polyploidy are manifested during early ontogeny in Atlantic salmon.

  15. Exercise Effects on White Adipose Tissue: Beiging and Metabolic Adaptations.

    PubMed

    Stanford, Kristin I; Middelbeek, Roeland J W; Goodyear, Laurie J

    2015-07-01

    Regular physical activity and exercise training have long been known to cause adaptations to white adipose tissue (WAT), including decreases in cell size and lipid content and increases in mitochondrial proteins. In this article, we discuss recent studies that have investigated the effects of exercise training on mitochondrial function, the "beiging" of WAT, regulation of adipokines, metabolic effects of trained adipose tissue on systemic metabolism, and depot-specific responses to exercise training. The major WAT depots in the body are found in the visceral cavity (vWAT) and subcutaneously (scWAT). In rodent models, exercise training increases mitochondrial biogenesis and activity in both these adipose tissue depots. Exercise training also increases expression of the brown adipocyte marker uncoupling protein 1 (UCP1) in both adipose tissue depots, although these effects are much more pronounced in scWAT. Consistent with the increase in UCP1, exercise training increases the presence of brown-like adipocytes in scWAT, also known as browning or beiging. Training results in changes in the gene expression of thousands of scWAT genes and an altered adipokine profile in both scWAT and vWAT. Transplantation of trained scWAT in sedentary recipient mice results in striking improvements in skeletal muscle glucose uptake and whole-body metabolic homeostasis. Human and rodent exercise studies have indicated that exercise training can alter circulating adipokine concentration as well as adipokine expression in adipose tissue. Thus, the profound changes to WAT in response to exercise training may be part of the mechanism by which exercise improves whole-body metabolic health.

  16. Exercise Effects on White Adipose Tissue: Beiging and Metabolic Adaptations

    PubMed Central

    Stanford, Kristin I.; Middelbeek, Roeland J.W.

    2015-01-01

    Regular physical activity and exercise training have long been known to cause adaptations to white adipose tissue (WAT), including decreases in cell size and lipid content and increases in mitochondrial proteins. In this article, we discuss recent studies that have investigated the effects of exercise training on mitochondrial function, the “beiging” of WAT, regulation of adipokines, metabolic effects of trained adipose tissue on systemic metabolism, and depot-specific responses to exercise training. The major WAT depots in the body are found in the visceral cavity (vWAT) and subcutaneously (scWAT). In rodent models, exercise training increases mitochondrial biogenesis and activity in both these adipose tissue depots. Exercise training also increases expression of the brown adipocyte marker uncoupling protein 1 (UCP1) in both adipose tissue depots, although these effects are much more pronounced in scWAT. Consistent with the increase in UCP1, exercise training increases the presence of brown-like adipocytes in scWAT, also known as browning or beiging. Training results in changes in the gene expression of thousands of scWAT genes and an altered adipokine profile in both scWAT and vWAT. Transplantation of trained scWAT in sedentary recipient mice results in striking improvements in skeletal muscle glucose uptake and whole-body metabolic homeostasis. Human and rodent exercise studies have indicated that exercise training can alter circulating adipokine concentration as well as adipokine expression in adipose tissue. Thus, the profound changes to WAT in response to exercise training may be part of the mechanism by which exercise improves whole-body metabolic health. PMID:26050668

  17. The effects of acute nicotine on contextual safety discrimination.

    PubMed

    Kutlu, Munir G; Oliver, Chicora; Gould, Thomas J

    2014-11-01

    Anxiety disorders, such as post-traumatic stress disorder (PTSD), may be related to an inability to distinguish safe versus threatening environments and to extinguish fear memories. Given the high rate of cigarette smoking in patients with PTSD, as well as the recent finding that an acute dose of nicotine impairs extinction of contextual fear memory, we conducted a series of experiments to investigate the effect of acute nicotine in an animal model of contextual safety discrimination. Following saline or nicotine (at 0.0275, 0.045, 0.09 and 0.18 mg/kg) administration, C57BL/6J mice were trained in a contextual discrimination paradigm, in which the subjects received presentations of conditioned stimuli (CS) that co-terminated with a foot-shock in one context (context A (CXA)) and only CS presentations without foot-shock in a different context (context B (CXB)). Therefore, CXA was designated as the 'dangerous context', whereas CXB was designated as the 'safe context'. Our results suggested that saline-treated animals showed a strong discrimination between dangerous and safe contexts, while acute nicotine dose-dependently impaired contextual safety discrimination (Experiment 1). Furthermore, our results demonstrate that nicotine-induced impairment of contextual safety discrimination learning was not a result of increased generalized freezing (Experiment 2) or contingent on the common CS presentations in both contexts (Experiment 3). Finally, our results show that increasing the temporal gap between CXA and CXB during training abolished the impairing effects of nicotine (Experiment 4). The findings of this study may help link nicotine exposure to the safety learning deficits seen in anxiety disorder and PTSD patients.

  18. Metabolic effects of exercise on childhood obesity: a current view

    PubMed Central

    Paes, Santiago Tavares; Marins, João Carlos Bouzas; Andreazzi, Ana Eliza

    2015-01-01

    OBJECTIVE: To review the current literature concerning the effects of physical exercise on several metabolic variables related to childhood obesity. DATA SOURCE: A search was performed in Pubmed/MEDLINE and Web of Science databases. The keywords used were as follows: Obesity, Children Obesity, Childhood Obesity, Exercise and Physical Activity. The online search was based on studies published in English, from April 2010 to December 2013. DATA SYNTHESIS: Search queries returned 88,393 studies based on the aforementioned keywords; 4,561 studies were selected by crossing chosen keywords. After applying inclusion criteria, four studies were selected from 182 eligible titles. Most studies found that aerobic and resistance training improves body composition, lipid profile and metabolic and inflammatory status of obese children and adolescents; however, the magnitude of these effects is associated with the type, intensity and duration of practice. CONCLUSIONS: Regardless of the type, physical exercise promotes positive adaptations to childhood obesity, mainly acting to restore cellular and cardiovascular homeostasis, to improve body composition, and to activate metabolism; therefore, physical exercise acts as a co-factor in fighting obesity. PMID:25662015

  19. Probiotics and their Effects on Metabolic Diseases: An Update

    PubMed Central

    Aggarwal, Juhi; Swami, Gaurav; Kumar, Mayur

    2013-01-01

    Probiotics are lactic acid bacteria which are used extensively in therapeutic preparations and added to foods. There are many studies which have demonstrated the effects of probiotics on metabolic diseases. One study has shown the effect of fermented dairy products on the serum cholesterol, especially with selected strains of lactic acid bacteria. It has been found that a minute quantity of the dry culture of Lactobacillus fermentum KC4b, for example, can remove 14.8 mg of cholesterol from the culture medium. Lactobacilli also play an important role in deconjugating the bile salts in the intestine to form bile acids and thereby inhibiting the micelle formation. Probiotics reduce the lipid peroxidation and improve the lipid metabolism in vivo. The addition of probiotics to the diet for weeks improved the immune response without the release of inflammatory cytokines, thereby reducing the onset of systemic inflammatory induced diabetes. There are evidences that the differences in the composition of the gut microbiota may precede the development of obesity in children. This review has illustrated the potential of probiotics in mediating metabolic diseases via the positive modulation of several different physiological systems, apart from its conventional benefits for the gastrointestinal health. PMID:23449881

  20. Inhibitory Effects and Metabolism of 5-Fluoropyrimidine Derivatives in Pneumococcus

    PubMed Central

    Bean, Barry; Tomasz, Alexander

    1971-01-01

    5-Fluorouracil (FU), 5-fluorocytosine, and the riboside and deoxyriboside derivatives of these fluoropyrimidines each exhibit a different spectrum of inhibitory effects in pneumococci. The biochemical basis of this finding seems to be the extremely low level of nucleoside phosphorylase (hydrolase) and N-trans-deoxyribosylase activity in pneumococcus and the consequent, relatively limited metabolic interconversion of the different fluoropyrimidines, which can therefore selectively affect one or the other of the several drug-sensitive biochemical reactions in this bacterium. Special attention was paid to the effect of fluoropyrimidines on the metabolism of cytosine and thymidine. In spite of the fact that FU is converted to both fluorouridine triphosphate and fluorocytidine triphosphate, only fluorouridylate but no fluorocytidylate can be detected in the ribonucleic acid Exogenous FU and fluorouridine also inhibit the synthesis of cytosine nucleotides from supplied uridine in a pyrimidine auxotroph. Thymidine was found to be a poor reversing agent for any of the fluoropyrimidine inhibitions. In both the wild type and in a thymidine-requiring (thymidylate-synthetase deficient) mutant, growing with supplied thymidine in the medium, fluorodeoxyuridine (FUdR) treatment caused cell death and inhibition of the incorporation of radioactive thymidine, adenosine, or uracil into deoxyribonucleic acid. It is suggested that FUdR (or a metabolic derivative) inhibits the transport of phosphorylation of thymidine in this microorganism. Images PMID:4396791

  1. The effect of acute exercise on GLUT4 levels in peripheral blood mononuclear cells of sled dogs.

    PubMed

    Schnurr, Theresia M; Reynolds, Arleigh J; Komac, Alyssa M; Duffy, Lawrence K; Dunlap, Kriya L

    2015-07-01

    Using sled dogs as exercise model, our objectives of this study were to 1) assess the effects of one acute bout of high-intensity exercise on surface GLUT4 concentrations on easily accessible peripheral blood mononuclear cells (PBMC) and 2) compare our findings with published research on exercise induced GLUT4 in skeletal muscle. During the exercise bout, dogs ran 5 miles at approximately 90% of VO2 max. PMBC were collected before exercise (baseline), immediately after exercise and after 24h recovery.GLUT4 was measured via ELISA. Acute exercise resulted in a significant increase on surface GLUT4 content on PBMC. GLUT4 was increased significantly immediately after exercise (~ 50%; p<0.05) and reduced slightly by 24h post-exercise as compared to baseline (~ 22%; p>0.05). An effect of acute exercise on GLUT4 levels translocated to the cell membrane was observed, with GLUT4 levels not yet returned to baseline after 24h post-exercise. In conclusion, the present investigation demonstrated that acute high-intensity exercise increased GLUT4 content at the surface of PBMC of sled dogs as it has been reported in skeletal muscle in other species. Our findings underline the potential use of peripheral blood mononuclear cell GLUT4 protein content as minimally invasive proxy to investigate relationships between insulin sensitivity, insulin resistance, GLUT4 expression and glucose metabolism.

  2. Glucose transporter 1-mediated glucose uptake is limiting for B-cell acute lymphoblastic leukemia anabolic metabolism and resistance to apoptosis.

    PubMed

    Liu, T; Kishton, R J; Macintyre, A N; Gerriets, V A; Xiang, H; Liu, X; Abel, E D; Rizzieri, D; Locasale, J W; Rathmell, J C

    2014-10-16

    The metabolic profiles of cancer cells have long been acknowledged to be altered and to provide new therapeutic opportunities. In particular, a wide range of both solid and liquid tumors use aerobic glycolysis to supply energy and support cell growth. This metabolic program leads to high rates of glucose consumption through glycolysis with secretion of lactate even in the presence of oxygen. Identifying the limiting events in aerobic glycolysis and the response of cancer cells to metabolic inhibition is now essential to exploit this potential metabolic dependency. Here, we examine the role of glucose uptake and the glucose transporter Glut1 in the metabolism and metabolic stress response of BCR-Abl+ B-cell acute lymphoblastic leukemia cells (B-ALL). B-ALL cells were highly glycolytic and primary human B-ALL samples were dependent on glycolysis. We show B-ALL cells express multiple glucose transporters and conditional genetic deletion of Glut1 led to a partial loss of glucose uptake. This reduced glucose transport capacity, however, was sufficient to metabolically reprogram B-ALL cells to decrease anabolic and increase catabolic flux. Cell proliferation decreased and a limited degree of apoptosis was also observed. Importantly, Glut1-deficient B-ALL cells failed to accumulate in vivo and leukemic progression was suppressed by Glut1 deletion. Similarly, pharmacologic inhibition of aerobic glycolysis with moderate doses of 2-deoxyglucose (2-DG) slowed B-ALL cell proliferation, but extensive apoptosis only occurred at high doses. Nevertheless, 2-DG induced the pro-apoptotic protein Bim and sensitized B-ALL cells to the tyrosine kinase inhibitor Dasatinib in vivo. Together, these data show that despite expression of multiple glucose transporters, B-ALL cells are reliant on Glut1 to maintain aerobic glycolysis and anabolic metabolism. Further, partial inhibition of glucose metabolism is sufficient to sensitize cancer cells to specifically targeted therapies, suggesting

  3. Glucose transporter 1-mediated glucose uptake is limiting for B-cell acute lymphoblastic leukemia anabolic metabolism and resistance to apoptosis

    PubMed Central

    Liu, T; Kishton, R J; Macintyre, A N; Gerriets, V A; Xiang, H; Liu, X; Abel, E D; Rizzieri, D; Locasale, J W; Rathmell, J C

    2014-01-01

    The metabolic profiles of cancer cells have long been acknowledged to be altered and to provide new therapeutic opportunities. In particular, a wide range of both solid and liquid tumors use aerobic glycolysis to supply energy and support cell growth. This metabolic program leads to high rates of glucose consumption through glycolysis with secretion of lactate even in the presence of oxygen. Identifying the limiting events in aerobic glycolysis and the response of cancer cells to metabolic inhibition is now essential to exploit this potential metabolic dependency. Here, we examine the role of glucose uptake and the glucose transporter Glut1 in the metabolism and metabolic stress response of BCR-Abl+ B-cell acute lymphoblastic leukemia cells (B-ALL). B-ALL cells were highly glycolytic and primary human B-ALL samples were dependent on glycolysis. We show B-ALL cells express multiple glucose transporters and conditional genetic deletion of Glut1 led to a partial loss of glucose uptake. This reduced glucose transport capacity, however, was sufficient to metabolically reprogram B-ALL cells to decrease anabolic and increase catabolic flux. Cell proliferation decreased and a limited degree of apoptosis was also observed. Importantly, Glut1-deficient B-ALL cells failed to accumulate in vivo and leukemic progression was suppressed by Glut1 deletion. Similarly, pharmacologic inhibition of aerobic glycolysis with moderate doses of 2-deoxyglucose (2-DG) slowed B-ALL cell proliferation, but extensive apoptosis only occurred at high doses. Nevertheless, 2-DG induced the pro-apoptotic protein Bim and sensitized B-ALL cells to the tyrosine kinase inhibitor Dasatinib in vivo. Together, these data show that despite expression of multiple glucose transporters, B-ALL cells are reliant on Glut1 to maintain aerobic glycolysis and anabolic metabolism. Further, partial inhibition of glucose metabolism is sufficient to sensitize cancer cells to specifically targeted therapies, suggesting

  4. [Effect of carcinogenic nitrogen-containing compounds on cell metabolism].

    PubMed

    Antropov, V I; Samoĭlov, V O; Slepian, É I

    2012-01-01

    The brown frog (Rana temporaria) skin cells respiration, calcium metabolism and glycolysis, the tree frog (Hyla arborea) skin cells respiration and calcium metabolism were studied under short-term (first hours) and long-term (first days) exposure to nitrogenous compounds [N-nitroso-N-methyl urea (NMU) and thiourea (TU)]. The first direct effect of nitrogenous compounds exposure was cell breathing inhibition occurring in Rana temporaria skin cells after 28 days of exposure, and in Hyla arborea skin cells after 8 days of exposure. These changes were precided by decrease of lactate dehydrogenase (LDH) activity in Rana temporaria skin cells starting 16 days after NMU and TU introduction. The increase of intracellular calcium level was noted in tree frog skin cells 4-8 days after NMU and TU introduction, in brown frogs skin cells this parameter was unchanged.

  5. Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements.

    PubMed

    Swithers, Susan E

    2013-09-01

    The negative impact of consuming sugar-sweetened beverages on weight and other health outcomes has been increasingly recognized; therefore, many people have turned to high-intensity sweeteners like aspartame, sucralose, and saccharin as a way to reduce the risk of these consequences. However, accumulating evidence suggests that frequent consumers of these sugar substitutes may also be at increased risk of excessive weight gain, metabolic syndrome, type 2 diabetes, and cardiovascular disease. This paper discusses these findings and considers the hypothesis that consuming sweet-tasting but noncaloric or reduced-calorie food and beverages interferes with learned responses that normally contribute to glucose and energy homeostasis. Because of this interference, frequent consumption of high-intensity sweeteners may have the counterintuitive effect of inducing metabolic derangements.

  6. Effect of phosphorus and calcium on zinc metabolism in man

    SciTech Connect

    Spencer, H.; Kramer, L.; Lesniak, M.; Norris, C.; Coffey, J.

    1981-06-01

    The effect of phosphorus on zinc metabolism was studied in adult men receiving different calcium intakes ranging from 200 to 2000 mg/day. The diet and urinary and fecal excretions were analyzed for Zn, P and Ca. Metabolic balances of these elements were determined for several weeks in each study phase. In control studies the dietary intake was 800 mg/day and in the experimental studies it was increased to 2000 mg/day by adding sodium glycerophosphate to the constant diet. The dietary Zn intake averaged 14.5 mg/day in the different studies. These studies have shown that increasing the P intake by a factor of 2.5, from 800 to 2000 mg/day, did not affect urinary or fecal Zn excretions nor the Zn balance. Similar results were obtained on increasing the Ca intake from 200 to 2000 mg/day.

  7. Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements

    PubMed Central

    Swithers, Susan E.

    2013-01-01

    The negative impact of consuming sugar-sweetened beverages on weight and other health outcomes has been increasingly recognized; therefore, many people have turned to high-intensity sweeteners like aspartame, sucralose, and saccharin as a way to reduce the risk of these consequences. However, accumulating evidence suggests that frequent consumers of these sugar substitutes may also be at increased risk of excessive weight gain, metabolic syndrome, type 2 diabetes, and cardiovascular disease. This paper discusses these findings and considers the hypothesis that consuming sweet-tasting but noncaloric or reduced-calorie food and beverages interferes with learned responses that normally contribute to glucose and energy homeostasis. Because of this interference, frequent consumption of high-intensity sweeteners may have the counterintuitive effect of inducing metabolic derangements. PMID:23850261

  8. The interleukin-6 and noradrenaline mediated inflammation-stress feedback mechanism is dysregulated in metabolic syndrome: Effect of exercise

    PubMed Central

    2011-01-01

    Background Metabolic syndrome (MS) is a metabolic disorder associated with obesity, type-II diabetes, and "low grade inflammation", with the concomitant increased risk of cardiovascular events. Removal of the inflammatory mediator signals is a promising strategy to protect against insulin resistance, obesity, and other problems associated with MS such as cardiovascular disease. The aim of the present investigation was to determine the "inflammatory and stress status" in an experimental model of MS, and to evaluate the effect of a program of habitual exercise and the resulting training-induced adaptation to the effects of a single bout of acute exercise. Methods Obese Zucker rats (fa/fa) were used as the experimental model of MS, and lean Zucker rats (Fa/fa) were used for reference values. The habitual exercise (performed by the obese rats) consisted of treadmill running: 5 days/week for 14 weeks, at 35 cm/s for 35 min in the last month. The acute exercise consisted of a single session of 25-35 min at 35 cm/s. Circulating concentrations of IL-6 (a cytokine that regulates the inflammatory and metabolic responses), CRP (a systemic inflammatory marker), and corticosterone (CTC) (the main glucocorticoid in rats) were determined by ELISA, and that of noradrenaline (NA) was determined by HPLC. Glucose was determined by standard methods. Results The genetically obese animals showed higher circulating levels of glucose, IL-6, PCR, and NA compared with the control lean animals. The habitual exercise program increased the concentration of IL-6, PCR, NA, and glucose, but decreased that of CTC. Acute exercise increased IL-6, CRP, and NA in the sedentary obese animals, but not in the trained obese animals. CTC was increased after the acute exercise in the trained animals only. Conclusion Animals with MS present a dysregulation in the feedback mechanism between IL-6 and NA which can contribute to the systemic low-grade inflammation and/or hyperglycaemia of MS. An inappropriate

  9. Effects of Dietary Protein Source and Quantity during Weight Loss on Appetite, Energy Expenditure, and Cardio-Metabolic Responses.

    PubMed

    Li, Jia; Armstrong, Cheryl L H; Campbell, Wayne W

    2016-01-26

    Higher protein meals increase satiety and the thermic effect of feeding (TEF) in acute settings, but it is unclear whether these effects remain after a person becomes acclimated to energy restriction or a given protein intake. This study assessed the effects of predominant protein source (omnivorous, beef/pork vs. lacto-ovo vegetarian, soy/legume) and quantity (10%, 20%, or 30% of energy from protein) on appetite, energy expenditure, and cardio-metabolic indices during energy restriction (ER) in overweight and obese adults. Subjects were randomly assigned to one protein source and then consumed diets with different quantities of protein (4 weeks each) in a randomized crossover manner. Perceived appetite ratings (free-living and in-lab), TEF, and fasting cardio-metabolic indices were assessed at the end of each 4-week period. Protein source and quantity did not affect TEF, hunger, or desire to eat, other than a modestly higher daily composite fullness rating with 30% vs. 10% protein diet (p = 0.03). While the 20% and 30% protein diets reduced cholesterol, triacylglycerol, and APO-B vs. 10% protein (p < 0.05), protein source did not affect cardio-metabolic indices. In conclusion, diets varying in protein quantity with either beef/pork or soy/legume as the predominant source have minimal effects on appetite control, energy expenditure and cardio-metabolic risk factors during ER-induced weight loss.

  10. [Acute and long-term effects of ecstasy].

    PubMed

    Salzmann, Julie; Marie-Claire, Cynthia; Noble, Florence

    2004-10-23

    Side effects in the short term Recreational use of Ecstasy (3,4-methylenedioxymethamphetamine or MDMA), a synthetic drug, has considerably increased over the last decade. Since its appearance it is associated with the rave culture, but its use has spread to other social settings. The drug produces euphoria and empathy, but can lead to side effects, notably acute, potentially lethal, toxicity (malignant hyperthermia and/or hepatitis). Neurotoxicity in the long-term Moreover, MDMA has been shown to induce long-term deleterious effects and provoke neurotoxic affecting the serotoninergic system. However, the psychopathological consequences of such neurotoxicity are still controversial, particularly since many ecstasy consumers are multi-drug users. A complex pharmacological profile The mechanism of action of MDMA involves various neurobiological systems (serotonin, dopamine, noradrenalin), that may all interact.

  11. Pill formulations and their effect on lipid and carbohydrate metabolism.

    PubMed

    Brooks, P G

    1984-07-01

    Recent data on oral contraceptives (OCs) employing new low-dose formulations appear to indicate that most of the previously reported metabolic effects are minimized, particularly when a product is neigher ovverly estrogenic nor progestational. Evidence suggests that elevated levels of cholesterol and triglycerides in the plasma are correlated with the risk of cardiovascular disease. Epidemiologic students have indicated a correlation between elevation of low denisty lipoprotein (LDL) cholesterol and coronary heart disease, and a correlation between decreases in high density lipoprotein (HDL) cholesterol and arterial disease. Epidemiologic evidence seems to suggest that combination OCs are associated with increased cardiovascular risk, especially risks of venous thrombosis, myocardial infarction, and stroke. There is some debate as to whether OCs themselves are an independent risk factor or whether they increase the effects of other risk factors. Women using combination OCs have been reported to have higher total serum triglyceride and cholesterol concentrations, related primarily to the estrogen dose. While most of the earlier literature associated estrogens with a higher risk of cardiovascular disease, recent studies have increasingly implicated the progestin component. Increasing potencies of progestin have been found to proportionally lower the HDL-cholesterol level. There is a positive association between the estrogen dose and HDL-cholesterol level. Among combination pill users, HDL levels gevverally depend on the relative amounts and potencies of both components. It is generally agreed that there are some high-risk women who should be carefully monitored while using the pill or who should not use it at all. Steroid type and dosage both play a role in affecting carbohydrate metabolism. Ethinyl estradiol (EE), the estrogen component in most OCs, does not seem to have the same biphasic effect on carbohydrate metaolism as most other estrogens. Most of the recent

  12. [Cerebroprotective effect of 3-oxypyridine and succinic acid derivatives in acute phase of alloxan-induced diabetes mellitus in rats].

    PubMed

    Volchegorskiĭ, I A; Rassokhina, L M; Miroshnichenko, I Iu

    2011-01-01

    The effects of original domestic derivatives of 3-oxypyridine and succinic acid (emoxipine, reamberin, and mexidol) on cellular composition of cortical and diencephalic structures in rat brain were studied in parallel with monitoring of behavioral, conditional learning, and metabolic disorders in acute phase of alloxan-induced diabetes in rats. The efficiency of 3-oxypyridine derivatives was compared to the results of alpha-lipoic acid administration. Single administration of emoxipine, reamberin, and mexidol in optimal doses prevented lipofuscin deposition in CA1 field neurocytes in hippocampus and/or increased the amount of terminally differentiated cells ofneuroectodermal lineage (oligodendrocytes, pyramid and basket cells) in this zone ofpaleocortex. Concurrently conditional learning capacity in morbid animals was restored. The cerebroprotective and nootropic effects of emoxipine and reamberin were associated with increased exploration motivation in the open field and were independent of their effects on carbohydrate and lipid metabolism dysfunction. On the contrary, the neuroprotective and nootropic effects of mexidol were associated with additional inhibition of morbid rat activity in the open field and a decrease in the level of circulating products of lipid peroxidation. It is established that 3-oxypyridine and succinic acid derivatives significantly exceed alpha-lipoic acid in terms of neuroprotective effects but exhibit significantly lower hypolipdemic activity in acute phase of alloxan diabetes.

  13. Protective effects of endothelin-1 on acute pancreatitis in rats.

    PubMed

    Kogire, M; Inoue, K; Higashide, S; Takaori, K; Echigo, Y; Gu, Y J; Sumi, S; Uchida, K; Imamura, M

    1995-06-01

    Endothelin-1, a 21-residue peptide isolated from vascular endothelial cells, has a broad spectrum of actions. To clarify the involvement of endothelin-1 in acute pancreatitis, we examined the effects of endothelin-1 and its receptor antagonist BQ-123 on cerulein-induced pancreatitis in rats. Rats were infused intravenously with heparin-saline (control), endothelin-1 (100 pmol/kg/hr), cerulein (5 micrograms/kg/hr), or cerulein plus endothelin-1 for 3.5 hr. In another experiment, cerulein or cerulein plus BQ-123 (3 mg/kg/hr) was infused. Infusion of cerulein caused hyperamylasemia and pancreatic edema. Endothelin-1, when infused with cerulein, decreased the extent of pancreatic edema with a significant increase in the pancreatic dry- to wet-weight ratio. Histological changes induced by cerulein were markedly attenuated when endothelin-1 was given with cerulein. In contrast, endothelin-receptor blockade with BQ-123 further augmented pancreatic edema caused by cerulein. The extent of inflammatory cell infiltration was greater than BQ-123 was given with cerulein. Endothelin-1 or BQ-123 had no influence on hyperamylasemia. This study suggests that endothelin-1 has protective effects on experimental acute pancreatitis.

  14. Acute effects of a glucose energy drink on behavioral control.

    PubMed

    Howard, Meagan A; Marczinski, Cecile A

    2010-12-01

    There has been a dramatic rise in the consumption of glucose energy drinks (e.g., Amp, Monster, and Red Bull) in the past decade, particularly among high school and college students. However, little laboratory research has examined the acute objective and subjective effects of energy drinks. The purpose of this study was to investigate the acute effects of a glucose energy drink (Red Bull) on cognitive functioning. Participants (N = 80) were randomly assigned to one of five conditions: 1.8 ml/kg energy drink, 3.6 ml/kg energy drink, 5.4 ml/kg energy drink, placebo beverage, or no drink. Participants completed a well-validated behavioral control task (the cued go/no-go task) and subjective measures of stimulation, sedation, and mental fatigue both before and 30 minutes following beverage administration. The results indicated that compared with the placebo and no drink conditions, the energy drink doses decreased reaction times on the behavioral control task, increased subjective ratings of stimulation and decreased ratings of mental fatigue. Greatest improvements in reaction times and subjective measures were observed with the lowest dose and improvements diminished as the dose increased. The findings suggest that energy drink consumption can improve cognitive performance on a behavioral control task, potentially explaining the dramatic rise in popularity of these controversial new beverages.

  15. Mineral balance, experiment M071. [space flight effects on human mineral metabolism

    NASA Technical Reports Server (NTRS)

    Whedon, G. D.; Rambaut, P. C.; Smith, M. C., Jr.

    1973-01-01

    Concern for the long term metabolic consequences of weightless flight was the basis for the conception of the Skylab medical experiment to measure mineral balance. Proper interpretation of obtained data that diminished atmospheric pressure has no appreciable effect, or at least no protective effect, on calcium metabolism. The absence of changes in calcium metabolism indicates that a stable baseline observation has been made for Skylab as far as the effects of atmosphere or calcium metabolism are concerned.

  16. Side effects of using nitrates to treat heart failure and the acute coronary syndromes, unstable angina and acute myocardial infarction.

    PubMed

    Thadani, Udho; Ripley, Toni L

    2007-07-01

    Nitrates are potent venous dilators and anti-ischemic agents. They are widely used for the relief of chest pain and pulmonary congestion in patients with acute coronary syndromes and heart failure. Nitrates, however, do not reduce mortality in patients with acute coronary syndromes. Combination of nitrates and hydralazine when given in addition to beta-blockers and angiotensin-converting enzyme (ACE) inhibitors reduce mortality and heart failure hospitalizations in patients with heart failure due to left ventricular systolic dysfunction who are of African-American origin. Side effects during nitrate therapy are common but are less well described in the literature compared with the reported side effects in patients with stable angina pectoris. The reported incidence of side effects varies highly among different studies and among various disease states. Headache is the most commonly reported side effect with an incidence of 12% in acute heart failure, 41-73% in chronic heart failure, 3-19% in unstable angina and 2-26% in acute myocardial infarction. The reported incidence of hypotension also differs: 5-10% in acute heart failure, 20% in chronic heart failure, 9% in unstable angina and < 1-48% in acute myocardial infarction, with the incidence being much higher with concomitant nitrate therapy plus angiotensin-converting enzyme inhibitors. Reported incidence of dizziness is as low as 1% in patients with acute myocardial infarction to as high as 29% in patients with heart failure. Severe headaches and/or symptomatic hypotension may necessitate discontinuation of nitrate therapy. Severe life threatening hypotension or even death may occur when nitrates are used in patients with acute inferior myocardial infarction associated with right ventricular dysfunction or infarction, or with concomitant use of phosphodiesterase-5 inhibitors or N-acetylcysteine. Despite the disturbing observational reports in the literature that continuous and prolonged use of nitrates may lead to

  17. Differential Metabolic Effects of Beta-Blockers: an Updated Systematic Review of Nebivolol.

    PubMed

    Marketou, Maria; Gupta, Yashaswi; Jain, Shashank; Vardas, Panos

    2017-03-01

    Blood pressure management in hypertensive patients with metabolic abnormalities is challenging, since many of the antihypertensive drugs adversely affect metabolism. Besides effective control of blood pressure in patients with hypertension, third-generation beta-blockers such as nebivolol offer additional benefits for central hemodynamics and neutral or beneficial effects on metabolism. Emerging clinical data suggest that nebivolol also has similar effects on metabolism in obese hypertensive and hypertensive diabetic patients. The present article will provide a systematic analysis of the pathophysiological links among hypertension, insulin resistance, and metabolic syndrome. We will also summarize the available clinical evidence regarding the metabolic effects of beta-blockers in hypertensive patients, with an emphasis on nebivolol. Nebivolol exerts neutral or beneficial effects on insulin sensitivity and lipid metabolism in hypertensive patients, owing to its nitric oxide-mediated vasodilatory and antioxidative properties. Thus, nebivolol could be a favorable therapeutic option for the treatment of hypertension in patients with impaired glucose and lipid metabolism.

  18. Effect of age increase on metabolism and toxicity of ethanol in female rats.

    PubMed

    Kim, Young C; Kim, Sung Y; Sohn, Young R

    2003-12-12

    Age-dependent change in the effects of acute ethanol administration on female rat liver was investigated. Female Sprague-Dawley rats, each aged 4, 12, or 50 weeks, received ethanol (2 g/kg) via a catheter inserted into a jugular vein. Ethanol elimination rate (EER), most rapid in the 4 weeks old rats, was decreased as the age advanced. Hepatic alcohol dehydrogenase activity was not altered by age, but microsomal p-nitrophenol hydroxylase activity was significantly greater in the 4 weeks old rats. Relative liver weight decreased with age increase in proportion to reduction of EER. Hepatic triglyceride and malondialdehyde concentrations increased spontaneously in the 50 weeks old nai;ve rats. Ethanol administration (3 g/kg, ip) elevated malondialdehyde and triglyceride contents only in the 4 and the 12 weeks old rats. Hepatic glutathione concentration was increasingly reduced by ethanol with age increase. Ethanol decreased cysteine concentration in the 4 weeks old rats, but elevated it significantly in the older rats. Inhibition of gamma-glutamylcysteine synthetase activity by ethanol was greater with age increase, which appeared to be responsible for the increase in hepatic cysteine. The results indicate that age does not affect the ethanol metabolizing capacity of female rat liver, but the overall ethanol metabolism is decreased in accordance with the reduction of relative liver size. Accordingly induction of acute alcoholic fatty liver is less significant in the old rats. However, progressively greater depletion of glutathione by ethanol in older rats suggests that susceptibility of liver to oxidative damage would be increased as animals grow old.

  19. Protective effect of L-theanine on carbon tetrachloride-induced acute liver injury in mice.

    PubMed

    Jiang, Wei; Gao, Min; Sun, Shuai; Bi, Aijing; Xin, Yinqiang; Han, Xiaodong; Wang, Liangbin; Yin, Zhimin; Luo, Lan

    2012-06-01

    We studied effects of L-theanine, a unique amino acid in tea, on carbon tetrachloride (CCl(4))-induced liver injury in mice. The mice were pre-treated orally with L-theanine (50, 100 or 200 mg/kg) once daily for seven days before CCl(4) (10 ml/kg of 0.2% CCl(4) solution in olive oil) injection. L-theanine dose-dependently suppressed the increase of serum activity of ALT and AST and bilirubin level as well as liver histopathological changes induced by CCl(4) in mice. L-theanine significantly prevented CCl(4)-induced production of lipid peroxidation and decrease of hepatic GSH content and antioxidant enzymes activities. Our further studies demonstrated that L-theanine inhibited metabolic activation of CCl(4) through down-regulating cytochrome P450 2E1 (CYP2E1). As a consequence, L-theanine inhibited oxidative stress-mediated inflammatory response which included the increase of TNF-α and IL-1β in sera, and expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in livers. CCl(4)-induced activation of apoptotic related proteins including caspase-3 and PARP in mouse livers was also prevented by L-theanine treatment. In summary, L-theanine protects mice against CCl(4)-induced acute liver injury through inhibiting metabolic activation of CCl(4) and preventing CCl(4)-induced reduction of anti-oxidant capacity in mouse livers to relieve inflammatory response and hepatocyte apoptosis.

  20. Effects of exercise on tumor physiology and metabolism.

    PubMed

    Pedersen, Line; Christensen, Jesper Frank; Hojman, Pernille

    2015-01-01

    Exercise is a potent regulator of a range of physiological processes in most tissues. Solid epidemiological data show that exercise training can reduce disease risk and mortality for several cancer diagnoses, suggesting that exercise training may directly regulate tumor physiology and metabolism. Here, we review the body of literature describing exercise intervention studies performed in rodent tumor models and elaborate on potential mechanistic effects of exercise on tumor physiology. Exercise has been shown to reduce tumor incidence, tumor multiplicity, and tumor growth across numerous different transplantable, chemically induced or genetic tumor models. We propose 4 emerging mechanistic effects of exercise, including (1) vascularization and blood perfusion, (2) immune function, (3) tumor metabolism, and (4) muscle-to-cancer cross-talk, and discuss these in details. In conclusion, exercise training has the potential to be a beneficial and integrated component of cancer management, but has yet to fully elucidate its potential. Understanding the mechanistic effects of exercise on tumor physiology is warranted. Insight into these mechanistic effects is emerging, but experimental intervention studies are still needed to verify the cause-effect relationship between these mechanisms and the control of tumor growth.

  1. The effects of fasting on metabolism and performance.

    PubMed

    Maughan, R J; Fallah, J; Coyle, E F

    2010-06-01

    An overnight fast of 8-10 h is normal for most people. Fasting is characterised by a coordinated set of metabolic changes designed to spare carbohydrate and increase reliance on fat as a substrate for energy supply. As well as sparing the limited endogenous carbohydrate, and increased rate of gluconeogenesis from amino acids, glycerol and ketone bodies help maintain the supply of carbohydrate. Many individuals undergo periodic fasts for health, religious or cultural reasons. Ramadan fasting, involving 1 month of abstention from food and fluid intake during daylight hours, is practised by a large part of the world population. This period involves a shift in the pattern of intake from daytime to the hours of darkness. There seems to be little effect on overall daily dietary intake and only small metabolic effects, but there may be implications for both physical and cognitive function. The limited evidence suggests that effects of Ramadan-style fasting on exercise performance are generally small. This needs to be balanced, however, against the observation that small differences in performance are critical in determining the outcomes of sporting events. Studies involving challenging sporting events (prolonged sustained or intermittent high-intensity events, hot and humid environments) are needed. Increases in subjective sensations of fatigue may be the result of loss of sleep or disruption of normal sleep patterns. Modifications to the competition timetable may minimise or even eliminate any effect on performance in sport, but there may be negative effects on performance in some events.

  2. Acute and neuropathic orofacial antinociceptive effect of eucalyptol.

    PubMed

    Melo Júnior, José de Maria de Albuquerque de; Damasceno, Marina de Barros Mamede Vidal; Santos, Sacha Aubrey Alves Rodrigues; Barbosa, Talita Matias; Araújo, João Ronielly Campêlo; Vieira-Neto, Antonio Eufrásio; Wong, Deysi Viviana Tenazoa; Lima-Júnior, Roberto César Pereira; Campos, Adriana Rolim

    2017-04-01

    Terpenes have a wide range of pharmacological properties, including antinociceptive action. The anti-inflammatory and antinociceptive effects of eucalyptol are well established. The purpose of this study was to evaluate the antinociceptive effect of eucalyptol on acute and neuropathic orofacial pain in rodent models. Acute orofacial and corneal nociception was induced with formalin, capsaicin, glutamate and hypertonic saline in mice. In another series, animals were pretreated with capsazepine or ruthenium red to evaluate the involvement of TRPV1 receptors in the effect of eucalyptol. In a separate experiment, perinasal tissue levels of IL-1β, TNF-α and IFN-γ were measured. Rats were pretreated with eucalyptol before induction of temporomandibular joint pain with formalin or mustard oil. In another experiment, rats were submitted to infraorbital nerve transection (IONX) to induce chronic pain, followed by induction of mechanical hypersensitivity using Von Frey hairs. Locomotor performance was evaluated with the open-field test, and molecular docking was conducted on the TRPV1 channel. Pretreatment with eucalyptol significantly reduced formalin-induced nociceptive behaviors in all mouse strains, but response was more homogenous in the Swiss strain. Eucalyptol produced antinociceptive effects in all tests. The effect was sensitive to capsazepine but not to ruthenium red. Moreover, eucalyptol significantly reduced IFN-γ levels. Matching the results of the experiment in vivo, the docking study indicated an interaction between eucalyptol and TRPV1. No locomotor activity changes were observed. Our study shows that eucalyptol may be a clinically relevant aid in the treatment of orofacial pain, possibly by acting as a TRPV1 channel antagonist.

  3. Effect of alprazolam on rat serum metabolic profiles.

    PubMed

    Li, Yan; Lin, Gaotong; Chen, Bingbao; Zhang, Jing; Wang, Lingtian; Li, Zixia; Cao, Yungang; Wen, Congcong; Yang, Xuezhi; Cao, Gaozhong; Wang, Xianqin; Cao, Guoquan

    2017-02-10

    We developed a serum metabolomic method by gas chromatography-mass spectrometry (GC-MS) to evaluate the effect of alprazolam in rats. The GC-MS with HP-5MS (0.25 µm × 30 m × 0.25 mm), mass was conducted in EI mode with electron energy of 70 eV, full-scan mode with m/z 50-550. The rats were randomly divided to four group, three alprazolam treated group and control group. The alprazolam treated group rats were given 5, 10, 20 mg/kg (Low, Medium, High) of alprazolam by intragastric administration each day for 14 days, the serum samples were corrected on the seventh and fourteenth day for metabolomic study. The blood was collected for biochemical tests. Then liver and brain were rapidly isolated and immersed for pathological study. Compared to the control group on seventh and fourteen days, the level of d-glucose, 9,12-octadecadienoic acid, butanoic acid, L-proline, d-mannose and malic acid changed, indicating that alprazolam treated rats induced energy metabolism, fatty acid metabolism, amino acid metabolism perturbations in rats. There is no significant difference for alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), urea and uric acid (UA) between control and alprazolam group. According to the pathological results, alprazolam is not hepatotoxic. Metabolomics could distinguish different alprazolam dose in rats.

  4. Magnesium degradation products: effects on tissue and human metabolism.

    PubMed

    Seitz, J-M; Eifler, R; Bach, Fr-W; Maier, H J

    2014-10-01

    Owing to their mechanical properties, metallic materials present a promising solution in the field of resorbable implants. The magnesium metabolism in humans differs depending on its introduction. The natural, oral administration of magnesium via, for example, food, essentially leads to an intracellular enrichment of Mg(2+) . In contrast, introducing magnesium-rich substances or implants into the tissue results in a different decomposition behavior. Here, exposing magnesium to artificial body electrolytes resulted in the formation of the following products: magnesium hydroxide, magnesium oxide, and magnesium chloride, as well as calcium and magnesium apatites. Moreover, it can be assumed that Mg(2+) , OH(-) ions, and gaseous hydrogen are also present and result from the reaction for magnesium in an aqueous environment. With the aid of physiological metabolic processes, the organism succeeds in either excreting the above mentioned products or integrating them into the natural metabolic process. Only a burst release of these products is to be considered a problem. A multitude of general tissue effects and responses from the Mg's degradation products is considered within this review, which is not targeting specific implant classes. Furthermore, common alloying elements of magnesium and their hazardous potential in vivo are taken into account.

  5. Deep Sequencing Reveals Novel Genetic Variants in Children with Acute Liver Failure and Tissue Evidence of Impaired Energy Metabolism

    PubMed Central

    Valencia, C. Alexander; Wang, Xinjian; Wang, Jin; Peters, Anna; Simmons, Julia R.; Moran, Molly C.; Mathur, Abhinav; Husami, Ammar; Qian, Yaping; Sheridan, Rachel; Bove, Kevin E.; Witte, David; Huang, Taosheng; Miethke, Alexander G.

    2016-01-01

    Background & Aims The etiology of acute liver failure (ALF) remains elusive in almost half of affected children. We hypothesized that inherited mitochondrial and fatty acid oxidation disorders were occult etiological factors in patients with idiopathic ALF and impaired energy metabolism. Methods Twelve patients with elevated blood molar lactate/pyruvate ratio and indeterminate etiology were selected from a retrospective cohort of 74 subjects with ALF because their fixed and frozen liver samples were available for histological, ultrastructural, molecular and biochemical analysis. Results A customized next-generation sequencing panel for 26 genes associated with mitochondrial and fatty acid oxidation defects revealed mutations and sequence variants in five subjects. Variants involved the genes ACAD9, POLG, POLG2, DGUOK, and RRM2B; the latter not previously reported in subjects with ALF. The explanted livers of the patients with heterozygous, truncating insertion mutations in RRM2B showed patchy micro- and macrovesicular steatosis, decreased mitochondrial DNA (mtDNA) content <30% of controls, and reduced respiratory chain complex activity; both patients had good post-transplant outcome. One infant with severe lactic acidosis was found to carry two heterozygous variants in ACAD9, which was associated with isolated complex I deficiency and diffuse hypergranular hepatocytes. The two subjects with heterozygous variants of unknown clinical significance in POLG and DGUOK developed ALF following drug exposure. Their hepatocytes displayed abnormal mitochondria by electron microscopy. Conclusion Targeted next generation sequencing and correlation with histological, ultrastructural and functional studies on liver tissue in children with elevated lactate/pyruvate ratio expand the spectrum of genes associated with pediatric ALF. PMID:27483465

  6. Examination of the influence of leptin and acute metabolic challenge on RFRP-3 neurons of mice in development and adulthood

    PubMed Central

    Poling, Matthew C.; Shieh, Morris P.; Munaganuru, Nagambika; Luo, Elena; Kauffman, Alexander S.

    2014-01-01

    Background The neuropeptide RFamide-related peptide-3 (RFRP-3; mammalian ortholog to GnIH) can inhibit LH release and increases feeding, but the regulation and development of RFRP-3 neurons remains poorly characterized, especially in mice. Methods and Results We first confirmed that peripheral injections of murine RFRP-3 peptide could markedly suppress luteinizing hormone secretion in adult mice, as in other species. Second, given RFRP-3′s reported orexigenic properties, we performed double-label in situ hybridization for metabolic genes in Rfrp neurons of mice. While Rfrp neurons did not readily co-express NPY, TRH, or MC4R, a small subset of Rfrp neurons did express leptin receptor in both sexes. Surprisingly, we identified no changes in Rfrp expression or neuronal activation in adult mice after acute fasting. However, we determined that Rfrp mRNA levels in the DMN were significantly reduced in adult Obese (Ob) mice of both sexes. Given the lower Rfrp levels observed in adult Ob mice, we asked whether leptin might also regulate RFRP-3 neuron development. Rfrp gene expression changed markedly over juvenile development, correlating with the timing of the juvenile “leptin surge” known to govern hypothalamic feeding circuit development. However, the dramatic developmental changes in juvenile Rfrp expression did not appear to be leptin-driven, as the pattern and timing of Rfrp neuron development were unaltered in Ob juveniles. Conclusion Leptin status modulates RFRP-3 expression in adulthood, but is not required for normal development of the RFRP-3 system. Leptin's regulation of adult RFRP-3 neurons likely occurs via primarily indirect signaling, and may be secondary to obesity, as only a small subset of RFRP-3 neurons express LepRb. PMID:25378037

  7. Ceramide metabolism analysis in a model of binge drinking reveals both neuroprotective and toxic effects of ethanol

    PubMed Central

    Bae, Mihyun; Bandaru, Veera Venkata Ratnam; Patel, Neha; Haughey, Norman J.

    2014-01-01

    Binge drinking is a common form of alcohol abuse that involves repeated rounds of intoxication followed by withdrawal. The episodic effects of binge drinking and withdrawal on brain resident cells are thought to contribute to neural remodeling and neurological damage. However, the molecular mechanisms for these neurodegenerative effects are not understood. Ethanol (EtOH) regulates the metabolism of ceramide, a highly bioactive lipid that is enriched in brain. We used a mouse model of binge drinking to determine the effects of EtOH intoxication and withdrawal on brain ceramide metabolism. Intoxication and acute alcohol withdrawal were each associated with distinct changes in ceramide regulatory genes and metabolic products. EtOH intoxication was accompanied by decreased concentrations of multiple ceramides, coincident with reductions in the expression of enzymes involved in the production of ceramides, and increased expression of ceramide degrading enzymes. EtOH withdrawal was associated with specific increases in ceramide C16:0, C18:0 and C20:0 and increased expression of enzymes involved with ceramide production. These data suggest that EtOH intoxication may evoke a ceramide phenotype that is neuroprotective, while EtOH withdrawal results in a metabolic shift that increases the production of potentially toxic ceramide species. PMID:25060779

  8. [Effect of a new derivative of glutamic and apovincaminic acids on brain metabolism in post-ischemic period].

    PubMed

    Makarova, L M; Prikhod'ko, M A; Pogorelyĭ, V E; Skachilova, S Ia; Mirzoian, R S

    2014-01-01

    Neuroprotective properties of the new derivative of glutamic and apovincaminic acids, ethyl -(3-alpha,16-alpha)-eburnamenin-14-carbopxylate of 2-aminopentadionic acid (LHT 1-02) were studied on a model of acute brain ischemia in cats. LHT 1-02 has proved to be more effective than the reference drugs vinpocetin and glycine in preventing the reperfusive damage, which was manifested by decreased postischemic hyperglycemia, activated utilization of oxygen in the brain, and suppressed postischemic metabolic lactate acidosis. Thus, the results of this comparative study show expediency of further investigations of LHT 1 - 02 as a potential neuroprotective drug.

  9. Acute off-target effects of neural circuit manipulations.

    PubMed

    Otchy, Timothy M; Wolff, Steffen B E; Rhee, Juliana Y; Pehlevan, Cengiz; Kawai, Risa; Kempf, Alexandre; Gobes, Sharon M H; Ölveczky, Bence P

    2015-12-17

    Rapid and reversible manipulations of neural activity in behaving animals are transforming our understanding of brain function. An important assumption underlying much of this work is that evoked behavioural changes reflect the function of the manipulated circuits. We show that this assumption is problematic because it disregards indirect effects on the independent functions of downstream circuits. Transient inactivations of motor cortex in rats and nucleus interface (Nif) in songbirds severely degraded task-specific movement patterns and courtship songs, respectively, which are learned skills that recover spontaneously after permanent lesions of the same areas. We resolve this discrepancy in songbirds, showing that Nif silencing acutely affects the function of HVC, a downstream song control nucleus. Paralleling song recovery, the off-target effects resolved within days of Nif lesions, a recovery consistent with homeostatic regulation of neural activity in HVC. These results have implications for interpreting transient circuit manipulations and for understanding recovery after brain lesions.

  10. Metabolic Effects of Nicotine Gum and Cigarette Smoking: Potential Implications for Postcessation Weight Gain?

    ERIC Educational Resources Information Center

    Klesges, Robert C.; And Others

    1991-01-01

    Twenty smoking women participated in nicotine gum and smoking administration, after which resting energy expenditures (REEs) were measured. Results indicated acute increase in REE for both nicotine gum and cigarettes. Metabolic rates for nicotine gum slowly returned to baseline; rates for cigarettes quickly fell significantly below baseline.…

  11. Systemic Metabolic Derangement, Pulmonary Effects, and Insulin Insufficiency following subchronic ozone exposure in rats

    EPA Science Inventory

    Acute ozone exposure induces a classical stress response with elevated circulating stress hormones along with changes in glucose, protein and lipid metabolism in rats, with similar alterations in ozone-exposed humans. These stress-mediated changes over time have been linked to in...

  12. Effect of swimming on bone metabolism in adolescents.

    PubMed

    Derman, Orhan; Cinemre, Alphan; Kanbur, Nuray; Doğan, Muhsin; Kiliç, Mustafa; Karaduman, Erdem

    2008-01-01

    Physical activity has been shown to have a positive effect on bone metabolism among adolescents. The objective of this study was to determine the effect of swimming on bone metabolism during adolescence. Swimming, as a non-weight-bearing sport, has been considered to be insignificant in the maintenance of bone mass. We studied whether swimming is associated with a higher peak bone mass. Forty swimmers (males aged 10-17 years and females aged 9-16 years) were studied. The control group consisted of the same number of adolescents aged between 10-16 years who did not swim; distribution of male and female gender was similar in the non-swimming control group compared to the swimming group. Adolescents were matched for age, gender and pubertal stages based on Tanner staging. All subjects underwent combined measurement of bone mineral metabolism by dual-energy X-ray absorptiometry of total body calcium content, and specific biochemical markers of turnover including osteocalcin, calcium, phosphorus and alkaline phosphatase. Bone age (determined by Greulich and Pyle's Radiographic Atlas of Skeletal Development of the Hand and Wrist), weight, height, ideal body weight, ideal body weight ratio, body mass index, Tanner classification (rated by examiner), diet, history of tobacco and alcohol exposure, exercise, socioeconomic status and history of chronic illness and medications were recorded to evaluate potential mediators that would affect bone metabolism. Tanner staging was used to assess puberty, and diet was evaluated based on reported consumption of milk, yogurt and cheese and cola/caffeine beverage consumption daily. There was significant difference in bone mineral content between adolescent male swimmers and the control group males. Consumption of cola beverages were significantly higher among the control group compared with the swimmer group. Ideal body weight ratio was significantly high among the female control group compared with female swimmers. Milk consumption was

  13. Age-related differences in pulmonary effects of acute and ...

    EPA Pesticide Factsheets

    Ozone (O3) is known to induce adverse pulmonary and systemic health effects. Importantly, children and older persons are considered at-risk populations for O3-induced dysfunction, yet the mechanisms accounting for the age-related pulmonary responses to O3 are uncertain. In this study, we examined age-related susceptibility to O3 using 1 mo (adolescent), 4 mo (young adult), 12 mo (adult) and 24 mo (senescent) male Brown Norway rats exposed to filtered air or O3 (0.25and 1.00 ppm), 6 h/day, two days/week for 1 week (acute) or 13 weeks (subchronic). Ventilatory function, assessed by whole-body plethysmography, and bronchoalveolar lavage fluid (BALF) biomarkers of injury and inflammation were used to examine O3-induced pulmonary effects.Relaxation time declined in all ages following the weekly exposures; however, this effect persisted only in the 24 mo rats following a five days recovery, demonstrating an inability to induce adaptation commonly seen with repeated O3 exposures. PenH was increased in all groups with an augmented response in the 4 mo rats following the subchronic O3 exposures. O3 led to increased breathing frequency and minute volume in the 1 and 4 mo animals. Markers ofpulmonary permeability were increased in all age groups. Elevations in BALF γ-glutamyl transferase activity and lung inflammation following an acute O3 exposure were noted in only the 1 and 4 mo rats, which likely received an increased effective O3 dose. These data demonstrate that ado

  14. Inhibitory effect of anethole in nonimmune acute inflammation.

    PubMed

    Domiciano, Talita Perdigão; Dalalio, Márcia Machado de Oliveira; Silva, Expedito Leite; Ritter, Alessandra Mileni Versuti; Estevão-Silva, Camila Fernanda; Ramos, Fernando Seara; Caparroz-Assef, Silvana Martins; Cuman, Roberto Kenji Nakamura; Bersani-Amado, Ciomar Aparecida

    2013-04-01

    Anethole [1-methoxy-4-(1-propenyl)benzene] occurs naturally as a major component of the essential oil of star anise (Illicium verum Hook.f., family Illiciaceae), comprising more than 90 % of its volatile components. Studies showed that this substance has antioxidant, antibacterial, antifungal, and anesthetic properties. In this study, the anti-inflammatory properties of anethole in animal models of nonimmune acute inflammation such as croton oil-induced ear edema and carrageenan-induced pleurisy were investigated. The investigated parameters were edema formation, leukocyte migration, and inflammatory mediators involved. Oral administration of anethole at a dose of 250 and 500 mg/kg reduced both the volume of pleural exudates and the number of migrated leukocytes. Levels of nitric oxide (NO) and prostaglandins (PGE2) in the inflammatory exudate were reduced by treatment with anethole, but levels of tumor necrosis factor-α and interleukin-1β were not significantly altered. In ear edema, the oral treatment with anethole inhibited the formation of exudate and the activity of myeloperoxidase, but not after topical administration. These results suggest that the anethole may be effective in controlling some nonimmune acute inflammation-related disease, probably by an inhibitory action on production and/or release of PGE2 and NO.

  15. Effect of dexamethasone on brain oedema following acute ischemic stroke.

    PubMed

    Shaikh, A K; Mohammad, Q D; Ullah, M A; Ahsan, M M; Rahman, A; Shakoor, M A

    2011-07-01

    A randomized clinical trial was conducted to asses the effects of dexamethasone on brain oedema following acute ischemic stroke in the departments of Medicine of different hospitals from July, 2003 to December, 2006. A total of 60 patients were included in the study. They were divided into two groups keeping the similarity regarding the age, sex and severity of the stroke between two groups. There were 30 patients in experimental group and 30 in control group. The level of consciousness was compared by Glasgow Coma Scale (GCS) on 3rd, 7th and 10th day of intervention and improvement was found in both the groups, but the improvement of level of consciousness was statistically significant in Dexamethasone treated group. The volume of hypodense area did not differ significantly in two groups in CT scans before and after treatment (p=0.74). The study results demonstrate that Dexamethasone improves the level of consciousness in acute ischemic stroke associated with brain oedema but did not reduce volume of hypodense area.

  16. Effects of clotrimazol on the acute necrotizing pancreatitis in rats.

    PubMed

    Cekic, Arif Burak; Alhan, Etem; Usta, Arif; Türkyılmaz, Serdar; Kural, Birgül Vanizor; Erçin, Cengiz

    2013-12-01

    This study aims to investigate the influence of clotrimazol (CLTZ) on acute necrotizing pancreatitis (ANP) induced by glycodeoxycholic acid in rats. Rats were divided into five groups as sham + saline, sham + CLTZ, sham + polyethylene glycol, ANP + saline, and ANP + CLTZ. ANP in rats was induced by glycodeoxycholic acid. The extent of acinar cell injury, mortality, systemic cardiorespiratory variables, functional capillary density (FCD), renal/hepatic functions, and changes in some enzyme markers for pancreatic and lung tissue were investigated during ANP in rats. The use of CLTZ after the induction of ANP resulted in a significant decrease in the mortality rate, pancreatic necrosis, and serum activity of amylase, alanine aminotransferase, interleukin-6, lactate dehydrogenase in bronchoalveolar lavage fluid, serum concentration of urea, and tissue activity of myeloperoxidase, and malondialdehyde in the pancreas and lung and a significant increase in concentrations of calcium, blood pressure, urine output, pO2, and FCD. This study showed that CLTZ demonstrated beneficial effect on the course of ANP in rats. Therefore, it may be used in the treatment of acute pancreatitis.

  17. Effect of a short-term infusion of glutamine on muscle protein metabolism postoperatively.

    PubMed

    Januszkiewicz, A; Essén, P; McNurlan, M A; Calder, G A; Andersson, K; Wernerman, J; Garlick, P J

    1996-10-01

    The acute effect of a short-term postoperative infusion of glucose supplemented with glutamine (0.285 g/kg body weight), on muscle protein metabolism, was studied by analyses of free amino acid concentrations and determinations of protein synthesis. A glutamine-glucose infusion was given for 5.5 h to 6 patients 2-3 days after elective surgery for colon cancer. The free glutamine concentration was 5.72 +/- 0.96 mmol/kg wet weight (ww) before and 6.14 +/- 1.10 mmol/kg ww 4 h after the glutamine infusion. The rate of protein synthesis was 1.26 +/- 0.15%/24 h before the infusion and 1.12 +/- 0.16%/24 h during its latter part. The percentage of polyribosomes was 42.2 +/- 3.4% before and 40.9 +/- 1.3% after the infusion. The results showed no difference in these biochemical parameters, indicating that a short-term infusion of glutamine given postoperatively is insufficient to affect protein metabolism in human skeletal muscle.

  18. Effects of salbutamol and caffeine ingestion on exercise metabolism and performance.

    PubMed

    Collomp, K; Candau, R; Millet, G; Mucci, P; Borrani, F; Préfaut, C; De Ceaurriz, J

    2002-11-01

    This study was designed to assess the effects of acute oral salbutamol and caffeine intake on performance and metabolism during short-term endurance exercise. Eight healthy volunteers participated in the double-blind placebo-controlled randomized cross-over study. Two 10 min cycling trials were performed at a power corresponding to 90 % VO 2 max for the first and a mock test for the second, separated by 10 min of passive recovery after ingestion of placebo (Pla), salbutamol (Sal, 6 mg) and caffeine (Caf, 250 mg). Performance (mean power during the mock test) was not statistically significant between the 3 treatments. Blood lactate was significantly increased after Sal compared to Pla at rest and until the end of the mock test whereas it appeared significantly increased after Caf compared to Pla at the end of the two exercises. Sal increased basal blood glucose and both Sal and Caf induced significant higher plasma insulin concentrations at rest, at the end of the mock test and during the recovery compared to Pla. No significant changes were found in these three variables between the Sal and the Caf treatments. Plasma growth hormone was significantly decreased after Sal after the mock test compared to the two other treatments. In conclusion, under the conditions of this study, neither oral salbutamol nor caffeine intake produce enhancement of short-term performance in non-specific trained subjects despite the substantial shifts in metabolic and hormonal parameters which were found.

  19. Effect of Diet on Metabolism of Laboratory Rats

    NASA Technical Reports Server (NTRS)

    Harrison, P. C.; Riskowski, G. L.; McKee, J. S.

    1996-01-01

    In previous studies when rats were fed a processed, semipurified, extruded rodent food bar (RFB) developed for space science research, we noted a difference in the appearance of gastrointestinal tissue (GI); therefore the following study evaluated GI characteristics and growth and metabolic rates of rats fed chow (C) or RFB. Two hundred and twenty-four rats (78 g mean body weight) were randomly assigned to 28 cages and provided C or RFB. Each cage was considered the experimental unit and a 95 percent level of significance, indicated by ANOVA, was used for inference. After each 30-, 60-, and 90-day period, eight cages were shifted from the C to RFB diet and housing density was reduced by two rats per cage. The two rats removed from each cage were sacrificed and used for GI evaluation. Metabolic rates of the rats in each cage were determined by indirect calorimetry. No differences in body weight were detected at 0, 30, 60 or 90 days between C and RFB. Heat production (kcal/hr/kg), CO2 production (L/hr/kg) and O2 consumption (L/hr/kg) were different by light:dark and age with no effect of diet. Respiratory quotient was different by age with no effect of light:dark or diet. Rats on the C diet ate less food and drank more water than those on RFB. C rats produced more fecal and waste materials than the RFB. GI lengths increased with age but were less in RFB than C. GI full and empty weights increased with age but weighed less in RFB than C. Gut-associated lymphoid tissue (GALT) numbers increased with age with no effect of diet. No differences in ileum-associated GALT area were detected between C and RFB. Switching C to RFB decreased GI length, GI full and empty weights, with no changes in GALT number or area. We concluded RFB decreased GI mass without affecting metabolic rate or general body growth.

  20. Effects of alcohol on human carboxylesterase drug metabolism

    PubMed Central

    Parker, Robert B.; Hu, Zhe-Yi; Meibohm, Bernd; Laizure, S. Casey

    2015-01-01

    Background and Objective Human carboxylesterase-1 (CES1) and human carboxylesterase-2 (CES2) play an important role in metabolizing many medications. Alcohol is a known inhibitor of these enzymes but the relative effect on CES1 and CES2 is unknown. The aim of this study is to determine the impact of alcohol on the metabolism of specific probes for CES1 (oseltamivir) and CES2 (aspirin). Methods The effect of alcohol on CES1- and CES2-mediated probe drug hydrolysis was determined in vitro using recombinant human carboxylesterase. To characterize the in vivo effects of alcohol, healthy volunteers received each probe drug alone and in combination with alcohol followed by blood sample collection and determination of oseltamivir, aspirin, and respective metabolite pharmacokinetics. Results Alcohol significantly inhibited oseltamivir hydrolysis by CES1 in vitro but did not affect aspirin metabolism by CES2. Alcohol increased the oseltamivir area under the plasma concentration-time curve (AUC) from 0-6 h by 27% (range 11-46%, p=0.011) and decreased the metabolite/oseltamivir AUC 0-6 h ratio by 34% (range 25-41%, p<0.001). Aspirin pharmacokinetics were not affected by alcohol. Conclusions Alcohol significantly inhibited the hydrolysis of oseltamivir by CES1 both in vitro and in humans, but did not affect the hydrolysis of aspirin to salicylic acid by CES2. These results suggest that alcohol's inhibition of CES1 could potentially result in clinically significant drug interactions with other CES1-substrate drugs, but it is unlikely to significantly affect CES2-substrate drug hydrolysis. PMID:25511794

  1. Investigation of acute effects of graphene oxide on wastewater microbial community: a case study.

    PubMed

    Ahmed, Farid; Rodrigues, Debora F

    2013-07-15

    The market for graphene-based products, such as graphene oxide (GO), is projected to reach nearly $675 million by 2020, hence it is expected that large quantities of graphene-based wastes will be generated by then. Wastewater treatment plants will be one of the ultimate repositories for these wastes. Efficient waste treatment relies heavily on the functions of diverse microbial communities. Therefore, systematic investigation of any potential toxic effects of GO in wastewater microbial communities is essential to determine the potential adverse effects and the fate of these nanomaterials in the environment. In the present study, we investigate the acute toxicity, i.e. short-term and high load, effect of GO on the microbial functions related to the biological wastewater treatment process. The results showed that toxic effects of GO on microbial communities were dose dependent, especially in concentrations between 50 and 300mg/L. Bacterial metabolic activity, bacterial viability, and biological removal of nutrients, such as organics, nitrogen and phosphorus, were significantly impacted by the presence of GO in the activated sludge. Furthermore, the presence of GO deteriorated the final effluent quality by increasing the water turbidity and reducing the sludge dewaterability. Microscopic techniques confirmed penetration and accumulation of GO inside the activated sludge floc matrix. Results demonstrated that the interaction of GO with wastewater produced significant amount of reactive oxygen species (ROS), which could be one of the responsible mechanisms for the toxic effect of GO.

  2. Low dose of the gamma acute radiation syndrome (1.5 Gy) does not significantly alter either cognitive behavior or dopaminergic and serotoninergic metabolism.

    PubMed

    Martin, C; Martin, S; Viret, R; Denis, J; Mirguet, F; Diserbo, M; Multon, E; Lamproglou, I

    2001-05-01

    The aim of this study was to evaluate the early-delayed effects of a low dose of the gamma acute radiation syndrome (1.5 Gy) on memory and on dopaminergic and serotoninergic metabolism in Swiss albino CD1 mice, of various ages (6, 10 and 20 weeks). At different times after irradiation (from 24 hr to three months), the mice were trained in a single-trial passive avoidance task and tested for retention either 24 hr or 5 days later. Their performance was compared to that of mice that were sham-irradiated. At the end of the behavioral test (days 3, 9, 30 and 93), the concentrations of dopamine (DA) and serotonin (5HT) and their metabolites were determined in hippocampus, anterior cortex and striatum of mice irradiated at the age of six weeks. No significant behavioral effect was observed whichever the age of the animals or the delay of observation. On the contrary at the moderate dose of 4.5 Gy we observed a significant memory deficit 9 days after the exposure. Considering the neurochemical study, in the striatum or in the frontal cortex, no significant modification was observed whichever the delay or the molecule. In the hippocampus slight modifications were noted: an increase (+144%, p = 0.002) in DA level on day 3 after exposure, and a decrease (-27%, p = 0.028) of 5HT level on day 30 post-irradiation. These modifications were only transient and not associated to modifications of the catabolites. This study demonstrates that total-body exposure to gamma radiation at low dose seems to induce only slight effects on the central nervous system.

  3. Diurnal Spectral Sensitivity of the Acute Alerting Effects of Light

    PubMed Central

    Rahman, Shadab A.; Flynn-Evans, Erin E.; Aeschbach, Daniel; Brainard, George C.; Czeisler, Charles A.; Lockley, Steven W.

    2014-01-01

    Study Objectives: Previous studies have demonstrated short-wavelength sensitivity for the acute alerting response to nocturnal light exposure. We assessed daytime spectral sensitivity in alertness, performance, and waking electroencephalogram (EEG). Design: Between-subjects (n = 8 per group). Setting: Inpatient intensive physiologic monitoring unit. Participants: Sixteen healthy young adults (mean age ± standard deviation = 23.8 ± 2.7 y). Interventions: Equal photon density exposure (2.8 × 1013 photons/cm2/s) to monochromatic 460 nm (blue) or 555 nm (green) light for 6.5 h centered in the middle of the 16-h episode of wakefulness during the biological day. Results were compared retrospectively to 16 individuals who were administered the same light exposure during the night. Measurements and Results: Daytime and nighttime 460-nm light exposure significantly improved auditory reaction time (P < 0.01 and P < 0.05, respectively) and reduced attentional lapses (P < 0.05), and improved EEG correlates of alertness compared to 555-nm exposure. Whereas subjective sleepiness ratings did not differ between the two spectral conditions during the daytime (P > 0.05), 460-nm light exposure at night significantly reduced subjective sleepiness compared to 555-nm light exposure at night (P < 0.05). Moreover, nighttime 460-nm exposure improved alertness to near-daytime levels. Conclusions: The alerting effects of short-wavelength 460-nm light are mediated by counteracting both the circadian drive for sleepiness and homeostatic sleep pressure at night, but only via reducing the effects of homeostatic sleep pressure during the day. Citation: Rahman SA; Flynn-Evans EE; Aeschbach D; Brainard GC; Czeisler CA; Lockley SW. Diurnal spectral sensitivity of the acute alerting effects of light. SLEEP 2014;37(2):271-281. PMID:24501435

  4. Protective effects of rhubarb on experimental severe acute pancreatitis

    PubMed Central

    Zhao, Yu-Qing; Liu, Xiao-Hong; Ito, Tetsuhide; Qian, Jia-Ming

    2004-01-01

    AIM: To investigate the effects of rhubarb on severe acute pancreatitis (SAP) in rats. METHODS: Severe acute pancreatitis was induced by two intraperitoneal injections of cerulein (40 μg/kg body weight) plus 5-h restraint water-immersion stress. Rhubarb (75-150 mg/kg) was orally fed before the first cerulein injection. The degree of pancreatic edema, serum amylase level, local pancreatic blood flow (PBF), and histological alterations were investigated. The effects of rhubarb on pancreatic exocrine secretion in this model were evaluated by comparing with those of somatostatin. RESULTS: In the Cerulein + Stress group, severe edema and diffuse hemorrhage in the pancreas were observed, the pancreatic wet weight (11.60 ± 0.61 g/Kg) and serum amylase (458 490 ± 43 100 U/L) were markedly increased (P < 0.01 vs control). In the rhubarb (150 mg/kg) treated rats, necrosis and polymorphonuclear neutrophil (PMN) infiltration in the pancreas were significantly reduced (P < 0.01), and a marked decrease (50%) in serum amylase levels was also observed (P < 0.01). PBF dropped to 38% (93 ± 5 mL/min per 100 g) of the control in the Cerulein + Stress group and partly recovered in the Cerulein + Stress + Rhubarb 150 mg group (135 ± 12 mL/min per 100 g) (P < 0.01). The pancreatic exocrine function was impaired in the SAP rats. The amylase levels of pancreatic juice were reduced in the rats treated with rhubarb or somatostatin, comparing with that of untreated SAP group. The bicarbonate concentration of pancreatic juice was markedly elevated only in the rhubarb-treated group (P < 0.01). CONCLUSION: Rhubarb can exert protective effects on SAP, probably by inhibiting the inflammation of pancreas, improving pancreatic microcirculation, and altering exocrine secretion. PMID:15052683

  5. Intensity-dependent and sex-specific alterations in hepatic triglyceride metabolism in mice following acute exercise.

    PubMed

    Tuazon, Marc A; McConnell, Taylor R; Wilson, Gabriel J; Anthony, Tracy G; Henderson, Gregory C

    2015-01-01

    Precise regulation of hepatic triglyceride (TG) metabolism and secretion is critical for health, and exercise could play a significant role. We compared one session of high-intensity interval exercise (HIIE) vs. continuous exercise (CE) on hepatic TG metabolism. Female and male mice were assigned to CE, HIIE, or sedentary control (CON). HIIE was a 30-min session of 30-s running intervals (30 m/min) interspersed with 60-s walking periods (5 m/min). CE was a distance- and duration-matched run at 13.8 m/min. Hepatic content of TG and TG secretion rates, as well as expression of relevant genes/proteins, were measured at 3 h (day 1) and 28 h (day 2) postexercise. On day 1, hepatic [TG] in CE and HIIE were both elevated vs. CON in both sexes with an approximately twofold greater elevation in HIIE vs. CE in females. In both sexes, hepatic perilipin 2 (PLIN2) protein on day 1 was increased significantly by both exercise types with a significantly greater increase with HIIE than CE, whereas the increase in mRNA reached significance only after HIIE. On day 2 in both sexes the increases in hepatic TG and PLIN2 with exercise declined toward CON levels. Only HIIE on day 2 resulted in reduced hepatic TG secretion by ∼20% in females with no effect in males. Neither exercise modality altered AMPK signaling or microsomal triglyceride transfer protein expression. Females exhibited higher hepatic TG secretion than males in association with different expression levels of related metabolic enzymes. These intensity-dependent and sex-specific alterations following exercise may have implications for sex-based exercise prescription.

  6. Genome-Wide Expression Analysis Reveals Diverse Effects of Acute Nicotine Exposure on Neuronal Function-Related Genes and Pathways

    PubMed Central

    Wang, Ju; Cui, Wenyan; Wei, Jinxue; Sun, Dongxiao; Gutala, Ramana; Gu, Jun; Li, Ming D.

    2011-01-01

    Previous human and animal studies demonstrate that acute nicotine exposure has complicated influences on the function of the nervous system, which may lead to long-lasting effects on the behavior and physiology of the subject. To determine the genes and pathways that might account for long-term changes after acute nicotine exposure, a pathway-focused oligoarray specifically designed for drug addiction research was used to assess acute nicotine effect on gene expression in the neuron-like SH-SY5Y cells. Our results showed that 295 genes involved in various biological functions were differentially regulated by 1 h of nicotine treatment. Among these genes, the expression changes of 221 were blocked by mecamylamine, indicating that the majority of nicotine-modulated genes were altered through the nicotinic acetylcholine receptors (nAChRs)-mediated signaling process. We further identified 14 biochemical pathways enriched among the nicotine-modulated genes, among which were those involved in neural development/synaptic plasticity, neuronal survival/death, immune response, or cellular metabolism. In the genes significantly regulated by nicotine but blocked by mecamylamine, 13 enriched pathways were detected. Nine of these pathways were shared with those enriched in the genes regulated by nicotine, including neuronal function-related pathways such as glucocorticoid receptor signaling, p38 MAPK signaling, PI3K/AKT signaling, and PTEN signaling, implying that nAChRs play important roles in the regulation of these biological processes. Together, our results not only provide insights into the mechanism underlying the acute response of neuronal cells to nicotine but also provide clues to how acute nicotine exposure exerts long-term effects on the nervous system. PMID:21556275

  7. Cerebrovascular and ventilatory responses to acute isocapnic hypoxia in healthy aging and lung disease: effect of vitamin C.

    PubMed

    Hartmann, Sara E; Waltz, Xavier; Kissel, Christine K; Szabo, Lian; Walker, Brandie L; Leigh, Richard; Anderson, Todd J; Poulin, Marc J

    2015-08-15

    Acute hypoxia increases cerebral blood flow (CBF) and ventilation (V̇e). It is unknown if these responses are impacted with normal aging, or in patients with enhanced oxidative stress, such as (COPD). The purpose of the study was to 1) investigate the effects of aging and COPD on the cerebrovascular and ventilatory responses to acute hypoxia, and 2) to assess the effect of vitamin C on these responses during hypoxia. In 12 Younger, 14 Older, and 12 COPD, we measured peak cerebral blood flow velocity (V̄p; index of CBF), and V̇e during two 5-min periods of acute isocapnic hypoxia, under conditions of 1) saline-sham; and 2) intravenous vitamin C. Antioxidants [vitamin C, superoxide dismutase (SOD), glutathione peroxidase, and catalase], oxidative stress [malondialdehyde (MDA) and advanced protein oxidation product], and nitric oxide metabolism end products (NOx) were measured in plasma. Following the administration of vitamin C, vitamin C, SOD, catalase, and MDA increased, while NOx decreased. V̄p and V̇e sensitivity to hypoxia was reduced in Older by ∼60% (P < 0.02). COPD patients exhibited similar V̄p and V̇e responses to Older (P > 0.05). Vitamin C did not have an effect on the hypoxic V̇e response but selectively decreased the V̄p sensitivity in Younger only. These findings suggest a reduced integrative reflex (i.e., cerebrovascular and ventilatory) during acute hypoxemia in healthy older adults. Vitamin C does not appear to have a large influence on the cerebrovascular or ventilatory responses during acute hypoxia.

  8. An Investigation of the Interaction Effects of Acute Self-Esteem and Perceived Competence on Conformity.

    DTIC Science & Technology

    1978-12-22

    On the basis of previous research on conformity it was predicted that subjects who were subjected to acute self - esteem manipulations and perceived...a demonstration of the interaction effects of acute self - esteem and perceived competence. Acute self - esteem manipulations (high, low or no) were...role in conformity. The main effect of self - esteem and the interaction of self - esteem and perceived competence did not prove significant. Results were

  9. Effect of ammonia stress on nitrogen metabolism of Ceratophyllum demersum.

    PubMed

    Gao, Jingqing; Li, Linshuai; Hu, Zhiyuan; Yue, Hui; Zhang, Ruiqin; Xiong, Zhiting

    2016-01-01

    The objective of the present study was to determine the effect of total ammonia N concentration and pH on N metabolism of Ceratophyllum demersum and to evaluate stress as a result of inorganic N enrichment in the water column on submerged macrophytes. Carefully controlled pH values distinguished between the effects of un-ionized NH3 and ionized NH4(+). The results showed that the most obvious consequence of ammonia addition was an overall increase in ammonia content and decrease in nitrate content in all tissues of fertilized plants. The activities of nitrate reductase and glutamine synthetase were inhibited by long-term ammonia addition. At the same time, ammonia addition significantly decreased soluble protein content and increased free amino acid content in all treatments. Another clear effect of ammonia addition was a decrease in carbon reserves. Therefore, the authors concluded that increased ammonia availability could affect plant survival and lead to a decline in C. demersum proliferation through a decrease in their carbon reserves. This interaction between N and C metabolism helps to explain changes in benthic vegetation as a result of steadily increasing coastal water eutrophication.

  10. Osteoblasts mediate the adverse effects of glucocorticoids on fuel metabolism

    PubMed Central

    Brennan-Speranza, Tara C.; Henneicke, Holger; Gasparini, Sylvia J.; Blankenstein, Katharina I.; Heinevetter, Uta; Cogger, Victoria C.; Svistounov, Dmitri; Zhang, Yaqing; Cooney, Gregory J.; Buttgereit, Frank; Dunstan, Colin R.; Gundberg, Caren; Zhou, Hong; Seibel, Markus J.

    2012-01-01

    Long-term glucocorticoid treatment is associated with numerous adverse outcomes, including weight gain, insulin resistance, and diabetes; however, the pathogenesis of these side effects remains obscure. Glucocorticoids also suppress osteoblast function, including osteocalcin synthesis. Osteocalcin is an osteoblast-specific peptide that is reported to be involved in normal murine fuel metabolism. We now demonstrate that osteoblasts play a pivotal role in the pathogenesis of glucocorticoid-induced dysmetabolism. Osteoblast-targeted disruption of glucocorticoid signaling significantly attenuated the suppression of osteocalcin synthesis and prevented the development of insulin resistance, glucose intolerance, and abnormal weight gain in corticosterone-treated mice. Nearly identical effects were observed in glucocorticoid-treated animals following heterotopic (hepatic) expression of both carboxylated and uncarboxylated osteocalcin through gene therapy, which additionally led to a reduction in hepatic lipid deposition and improved phosphorylation of the insulin receptor. These data suggest that the effects of exogenous high-dose glucocorticoids on insulin target tissues and systemic energy metabolism are mediated, at least in part, through the skeleton. PMID:23093779

  11. Ethanol, not detectably metabolized in brain, significantly reduces brain metabolism, probably via action at specific GABA(A) receptors and has measureable metabolic effects at very low concentrations.

    PubMed

    Rae, Caroline D; Davidson, Joanne E; Maher, Anthony D; Rowlands, Benjamin D; Kashem, Mohammed A; Nasrallah, Fatima A; Rallapalli, Sundari K; Cook, James M; Balcar, Vladimir J

    2014-04-01

    Ethanol is a known neuromodulatory agent with reported actions at a range of neurotransmitter receptors. Here, we measured the effect of alcohol on metabolism of [3-¹³C]pyruvate in the adult Guinea pig brain cortical tissue slice and compared the outcomes to those from a library of ligands active in the GABAergic system as well as studying the metabolic fate of [1,2-¹³C]ethanol. Analyses of metabolic profile clusters suggest that the significant reductions in metabolism induced by ethanol (10, 30 and 60 mM) are via action at neurotransmitter receptors, particularly α4β3δ receptors, whereas very low concentrations of ethanol may produce metabolic responses owing to release of GABA via GABA transporter 1 (GAT1) and the subsequent interaction of this GABA with local α5- or α1-containing GABA(A)R. There was no measureable metabolism of [1,2-¹³C]ethanol with no significant incorporation of ¹³C from [1,2-¹³C]ethanol into any measured metabolite above natural abundance, although there were measurable effects on total metabolite sizes similar to those seen with unlabelled ethanol.

  12. Critical issues in benzene toxicity and metabolism: The effect of interactions with other organic chemicals on risk assessment

    SciTech Connect

    Medinsky, M.A.; Schlosser, P.M.; Bond, J.A.

    1994-11-01

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene are well documented and include aplastic anemia and pancytopenia. Some individuals exposed repeatedly to cytotoxic concentrations of benzene develop acute myeloblastic anemia. It has been hypothesized that metabolism of benzene is required for its toxicity, although administration of no single benzene metabolite duplicates the toxicity of benzene. Several investigators have demonstrated that a combination of metabolites (hydroquinone and phenol, for example) is necessary to duplicate the hematotoxic effect of benzene. Enzymes implicated in the metabolic activation of benzene and its metabolites include the cytochrome P450 monooxygenases and myeloperoxidase. Since benzene and its hydroxylated metabolites (phenol, hydroquinone, and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. Other organic molecules that are substrates for cytochrome P450 can inhibit the metabolism of benzene. For example, toluene has been shown to inhibit the oxidation of benzene in a noncompetitive manner. Enzyme inducers, such as ethanol, can alter the target tissue dosimetry of benzene metabolites by inducing enzymes responsible for oxidation reactions involved in benzene metabolism. 24 refs., 6 figs., 2 tabs.

  13. Effects of cigarette smoking and its cessation on lipid metabolism and energy expenditure in heavy smokers.

    PubMed Central

    Hellerstein, M K; Benowitz, N L; Neese, R A; Schwartz, J M; Hoh, R; Jacob, P; Hsieh, J; Faix, D

    1994-01-01

    The relationship between thermogenic and potentially atherogenic effects of cigarette smoking (CS) and its cessation was investigated. Heavy smokers (n = 7, serum cotinine > 200 ng/ml, > 20 cigarettes/d) were maintained on isoenergetic, constant diets for 2 wk, 1 wk with and 1 wk without CS. Stable isotope infusions with indirect calorimetry were performed on day 7 of each phase, after an overnight fast. CS after overnight abstention increased resting energy expenditure by 5% (not significant vs. non-CS phase; P = 0.18). CS increased the flux of FFA by 77%, flux of glycerol by 82%, and serum FFA concentrations by 73% (P < 0.02 for each), but did not significantly affect fat oxidation. Hepatic reesterification of FFA increased more than threefold (P < 0.03) and adipocyte recycling increased nonsignificantly (P = 0.10). CS-induced lipid substrate cycles represented only 15% (estimated 11 kcal/d) of observed changes in energy expenditure. De novo hepatic lipogenesis was low (< 1-2 g/d) and unaffected by either acute CS or its chronic cessation. Hepatic glucose production was not affected by CS, despite increased serum glycerol and FFA fluxes. Cessation of CS caused no rebound effects on basal metabolic fluxes. In conclusion, a metabolic mechanism for the atherogenic effects of CS on serum lipids (increased hepatic reesterification of FFA) has been documented. Increased entry of FFA accounts for CS-induced increases in serum FFA concentrations. The thermogenic effect of CS is small or absent in heavy smokers while the potentially atherogenic effect is maintained, and cessation of CS does not induce a rebound lipogenic milieu that specifically favors accrual of body fat in the absence of increased food intake. Images PMID:8282797

  14. The effect of food temperature on postprandial metabolism in albatrosses.

    PubMed

    Battam, H; Chappell, M A; Buttemer, W A

    2008-04-01

    Heat generated by the specific dynamic action (SDA) associated with feeding is known to substitute for the thermoregulatory costs of cold-exposed endotherms; however, the effectiveness of this depends on food temperature. When food is cooler than core body temperature, it is warmed by body heat and, consequently, imposes a thermoregulatory challenge to the animal. The degree to which this cost might be ;paid' by SDA depends on the relative timing of food heating and the SDA response. We investigated this phenomenon in two genera of endotherms, Diomedea and Thalassarche albatrosses, by measuring postprandial metabolic rate following ingestion of food at body temperature (40 degrees C) and cooler (0 and 20 degrees C). This permitted us to estimate potential contributions to food warming by SDA-derived heat, and to observe the effect of cold food on metabolic rate. For meal sizes that were approximately 20% of body mass, SDA was 4.22+/-0.37% of assimilated food energy, and potentially contributed 17.9+/-1.0% and 13.2+/-2.2% of the required heating energy of food at 0 degrees C for Diomedea and Thalassarche albatrosses, respectively, and proportionately greater quantities at higher food temperatures. Cold food increased the rate at which postprandial metabolic rate increased to 3.2-4.5 times that associated with food ingested at body temperature. We also found that albatrosses generated heat in excess by more than 50% of the estimated thermostatic heating demand of cold food, a probable consequence of time delays in physiological responses to afferent signals.

  15. Effect of acute smoke exposure on hepatic protein synthesis.

    PubMed

    Garrett, R J; Jackson, M A

    1979-05-01

    In vivo hepatic protein synthesis was monitored in female rats under control and smoke-exposed conditions. During the 15 min period after i.v. administration of [3H]proline protein synthesis was 206 +/- 35 nmol of proline per mg of DNA for sham-control animals. When animals were subjected to acute exposure to cigarette smoke, protein synthesis was inhibited and the extent of inhibition was positively correlated with the dosage of smoke (32%, 15 puffs; 66%, 60 puffs). The inhibitory effect of whole smoke on protein synthesis was unaltered by passing the smoke through either charcoal or cambridge filters. Carbon monoxide in smoke is not removed by either type of filter. At a level comparable to that in cigarette smoke carbon monoxide depressed hepatic protein synthesis to the same extent as did whole or filtered smoke.

  16. Investigation of acute stroke: what is the most effective strategy?

    PubMed Central

    Dunbabin, D. W.; Sandercock, P. A.

    1991-01-01

    Techniques of investigation of acute stroke syndromes have progressed rapidly in recent years, outpacing developments in effective stroke treatment. The clinician is thus faced with a variety of tests, each with different cost implications and each altering management to a greater or lesser extent. This review will concentrate on the basic tests which should be performed for all strokes (full blood count, ESR, biochemical screen, blood glucose, cholesterol, syphilis serology, chest X-ray and electrocardiogram). Additional tests may be required in selected cases: CT scan to diagnose 'non-stroke' lesions, to exclude cerebral haemorrhage if anti-haemostatic therapy is planned, and to detect strokes which may require emergency intervention (such as cerebellar stroke with hydrocephalus); echocardiography to detect cardiac sources of emboli; and in a few cases lumbar puncture and specialized haematological tests. Other tests, which are currently research tools, may be suitable for widespread use in the future including NMR, SPECT and PET scanning. PMID:2062773

  17. [Effect of rehabilitation after myocardial infarction on muscular metabolism. Contribution of phosphorus 31 NMR spectroscopy].

    PubMed

    Cottin, Y; Marcer, I; Walker, P; Verges, B; Caillaux, B X; Louis, P; Didier, J P; Casillas, J M; Brunotte, F; Wolf, J E

    1994-06-01

    P 31 NMR spectroscopy is a recent technique which allows a non-invasive and direct analysis of oxidative metabolism and pH changes, an indicator of acidosis due to lactic acid accumulation in the skeletal muscles. The authors investigated oxidative muscular metabolism of the sural triceps in 10 patients after myocardial infarction by performing a study after the acute phase and repeating the study after a programme of physical training. At rest, there were no significant differences. On the other hand, for the same level of maximal effort, the depletion in phosphocreatinine (PCr) and the accumulation of inorganic phosphate (Pi) were significantly lower after physical training: the PCr/PCr + Pi increased from 0.467 +/- 0.179 to 0.538 +/- 0.20 (p < 0.02) and the Pi/PCr ratio decreased from 1.570 +/- 1.440 to 1.181 +/- 1.069 (p < 0.05). The pH at the same level of maximal exercise did not change significantly between the two periods: 6.85 +/- 0.16 vs 6.88 +/- 0.15 (NS). The peak oxygen consumption (VO2) measured during bicycle ergometry increased significantly from 23.4 +/- 10.5 to 28.3 +/- 12.14 ml/min/kg after exercise training (p < 0.01). In addition, a correlation was observed between the improvement of the peripheral parameters (PCr/PCr + Pi) and the increase in VO2 max (r = 0.757, p < 0.01). The authors results confirm the effects of physical training on oxidative metabolisms of the peripheral muscles and its influence on improvement of global performance of coronary patients.

  18. The pleiotropic effects of paricalcitol: Beyond bone-mineral metabolism.

    PubMed

    Egido, Jesús; Martínez-Castelao, Alberto; Bover, Jordi; Praga, Manuel; Torregrosa, José Vicente; Fernández-Giráldez, Elvira; Solozábal, Carlos

    2016-01-01

    Secondary hyperparathyroidism (SHPT) is a common complication in patients with chronic kidney disease (CKD) that is characterised by elevated parathyroid hormone (PTH) levels and a series of bone-mineral metabolism anomalies. In patients with SHPT, treatment with paricalcitol, a selective vitamin D receptor activator, has been shown to reduce PTH levels with minimal serum calcium and phosphorus variations. The classic effect of paricalcitol is that of a mediator in mineral and bone homeostasis. However, recent studies have suggested that the benefits of treatment with paricalcitol go beyond PTH reduction and, for instance, it has a positive effect on cardiovascular disease and survival. The objective of this study is to review the most significant studies on the so-called pleiotropic effects of paricalcitol treatment in patients with CKD.

  19. Acute Effects of Carbohydrate Supplementation on Intermittent Sports Performance

    PubMed Central

    Baker, Lindsay B.; Rollo, Ian; Stein, Kimberly W.; Jeukendrup, Asker E.

    2015-01-01

    Intermittent sports (e.g., team sports) are diverse in their rules and regulations but similar in the pattern of play; that is, intermittent high-intensity movements and the execution of sport-specific skills over a prolonged period of time (~1–2 h). Performance during intermittent sports is dependent upon a combination of anaerobic and aerobic energy systems, both of which rely on muscle glycogen and/or blood glucose as an important substrate for energy production. The aims of this paper are to review: (1) potential biological mechanisms by which carbohydrate may impact intermittent sport performance; (2) the acute effects of carbohydrate ingestion on intermittent sport performance, including intermittent high-intensity exercise capacity, sprinting, jumping, skill, change of direction speed, and cognition; and (3) what recommendations can be derived for carbohydrate intake before/during exercise in intermittent sports based on the available evidence. The most researched intermittent sport is soccer but some sport-specific studies have also been conducted in other sports (e.g., rugby, field hockey, basketball, American football, and racquet sports). Carbohydrate ingestion before/during exercise has been shown in most studies to enhance intermittent high-intensity exercise capacity. However, studies have shown mixed results with regards to the acute effects of carbohydrate intake on sprinting, jumping, skill, change of direction speed, and cognition. In most of these studies the amount of carbohydrate consumed was ~30–60 g/h in the form of a 6%–7% carbohydrate solution comprised of sucrose, glucose, and/or maltodextrin. The magnitude of the impact that carbohydrate ingestion has on intermittent sport performance is likely dependent on the carbohydrate status of the individual; that is, carbohydrate ingestion has the greatest impact on performance under circumstances eliciting fatigue and/or hypoglycemia. Accordingly, carbohydrate ingestion before and during a

  20. Acute effects of coffee on QT interval in healthy subjects

    PubMed Central

    2011-01-01

    The coronary endothelial function is recognized to have an important role in the physiology of the diastolic ventricular relaxation, a phase of the heart cycle that influences the electrocardiographic QT interval. Endothelial function is investigated in vivo by flow mediated dilation (FMD) in the brachial artery and has proven to be a strong predictor of both coronary endothelial function and cardiovascular events. It has been reported that coffee acutely induces FMD changes. In particular, the brachial artery FMD seems to decrease after caffeinated coffee (CC) and to increase after decaffeinated coffee (DC) ingestion. Since the cardiovascular effects of coffee are still a debated matter, this study aimed at investigating with a randomized, double-blind crossover design, if the QT interval of adult healthy subjects (19 males and 21 females) changes in the hour following CC or DC ingestion. Both systolic and diastolic blood pressure were higher in the hour following the ingestion of CC; the heart rate significantly increased 30 minutes after CC ingestion. A significant increase of the QT duration was observed one hour after DC ingestion (398.9 ± 3.8 vs 405.3 ± 3.7 msec; P < 0.05), not after CC. The QT interval corrected for heart rate did not significantly change following CC or DC ingestion. In conclusion, despite CC and DC previously demonstrated to influence the FMD they do not seem to induce a significant unfavourable acute change of the left ventricular repolarization. Further investigations are required to elucidate the effects of coffee in subjects with cardiovascular diseases. PMID:21288364

  1. Acute Effects of Carbohydrate Supplementation on Intermittent Sports Performance.

    PubMed

    Baker, Lindsay B; Rollo, Ian; Stein, Kimberly W; Jeukendrup, Asker E

    2015-07-14

    Intermittent sports (e.g., team sports) are diverse in their rules and regulations but similar in the pattern of play; that is, intermittent high-intensity movements and the execution of sport-specific skills over a prolonged period of time (~1-2 h). Performance during intermittent sports is dependent upon a combination of anaerobic and aerobic energy systems, both of which rely on muscle glycogen and/or blood glucose as an important substrate for energy production. The aims of this paper are to review: (1) potential biological mechanisms by which carbohydrate may impact intermittent sport performance; (2) the acute effects of carbohydrate ingestion on intermittent sport performance, including intermittent high-intensity exercise capacity, sprinting, jumping, skill, change of direction speed, and cognition; and (3) what recommendations can be derived for carbohydrate intake before/during exercise in intermittent sports based on the available evidence. The most researched intermittent sport is soccer but some sport-specific studies have also been conducted in other sports (e.g., rugby, field hockey, basketball, American football, and racquet sports). Carbohydrate ingestion before/during exercise has been shown in most studies to enhance intermittent high-intensity exercise capacity. However, studies have shown mixed results with regards to the acute effects of carbohydrate intake on sprinting, jumping, skill, change of direction speed, and cognition. In most of these studies the amount of carbohydrate consumed was ~30-60 g/h in the form of a 6%-7% carbohydrate solution comprised of sucrose, glucose, and/or maltodextrin. The magnitude of the impact that carbohydrate ingestion has on intermittent sport performance is likely dependent on the carbohydrate status of the individual; that is, carbohydrate ingestion has the greatest impact on performance under circumstances eliciting fatigue and/or hypoglycemia. Accordingly, carbohydrate ingestion before and during a game

  2. Transcriptional and metabolic effects of glucose on Streptococcus pneumoniae sugar metabolism

    PubMed Central

    Paixão, Laura; Caldas, José; Kloosterman, Tomas G.; Kuipers, Oscar P.; Vinga, Susana; Neves, Ana R.

    2015-01-01

    Streptococcus pneumoniae is a strictly fermentative human pathogen that relies on carbohydrate metabolism to generate energy for growth. The nasopharynx colonized by the bacterium is poor in free sugars, but mucosa lining glycans can provide a source of sugar. In blood and inflamed tissues glucose is the prevailing sugar. As a result during progression from colonization to disease S. pneumoniae has to cope with a pronounced shift in carbohydrate nature and availability. Thus, we set out to assess the pneumococcal response to sugars found in glycans and the influence of glucose (Glc) on this response at the transcriptional, physiological, and metabolic levels. Galactose (Gal), N-acetylglucosamine (GlcNAc), and mannose (Man) affected the expression of 8 to 14% of the genes covering cellular functions including central carbon metabolism and virulence. The pattern of end-products as monitored by in vivo 13C-NMR is in good agreement with the fermentation profiles during growth, while the pools of phosphorylated metabolites are consistent with the type of fermentation observed (homolactic vs. mixed) and regulation at the metabolic level. Furthermore, the accumulation of α-Gal6P and Man6P indicate metabolic bottlenecks in the metabolism of Gal and Man, respectively. Glc added to cells actively metabolizing other sugar(s) was readily consumed and elicited a metabolic shift toward a homolactic profile. The transcriptional response to Glc was large (over 5% of the genome). In central carbon metabolism (most represented category), Glc exerted mostly negative regulation. The smallest response to Glc was observed on a sugar mix, suggesting that exposure to varied sugars improves the fitness of S. pneumoniae. The expression of virulence factors was negatively controlled by Glc in a sugar-dependent manner. Overall, our results shed new light on the link between carbohydrate metabolism, adaptation to host niches and virulence. PMID:26500614

  3. Effects of dietary fiber and its components on metabolic health.

    PubMed

    Lattimer, James M; Haub, Mark D

    2010-12-01

    Dietary fiber and whole grains contain a unique blend of bioactive components including resistant starches, vitamins, minerals, phytochemicals and antioxidants. As a result, research regarding their potential health benefits has received considerable attention in the last several decades. Epidemiological and clinical studies demonstrate that intake of dietary fiber and whole grain is inversely related to obesity, type two diabetes, cancer and cardiovascular disease (CVD). Defining dietary fiber is a divergent process and is dependent on both nutrition and analytical concepts. The most common and accepted definition is based on nutritional physiology. Generally speaking, dietary fiber is the edible parts of plants, or similar carbohydrates, that are resistant to digestion and absorption in the small intestine. Dietary fiber can be separated into many different fractions. Recent research has begun to isolate these components and determine if increasing their levels in a diet is beneficial to human health. These fractions include arabinoxylan, inulin, pectin, bran, cellulose, β-glucan and resistant starch. The study of these components may give us a better understanding of how and why dietary fiber may decrease the risk for certain diseases. The mechanisms behind the reported effects of dietary fiber on metabolic health are not well established. It is speculated to be a result of changes in intestinal viscosity, nutrient absorption, rate of passage, production of short chain fatty acids and production of gut hormones. Given the inconsistencies reported between studies this review will examine the most up to date data concerning dietary fiber and its effects on metabolic health.

  4. Multistress effects on goldfish (Carassius auratus) behavior and metabolism.

    PubMed

    Gandar, Allison; Jean, Séverine; Canal, Julie; Marty-Gasset, Nathalie; Gilbert, Franck; Laffaille, Pascal

    2016-02-01

    Crossed effects between climate change and chemical pollutions were identified on community structure and ecosystem functioning. Temperature rising affects the toxic properties of pollutants and the sensitiveness of organisms to chemicals stress. Inversely, chemical exposure may decrease the capacity of organisms to respond to environmental changes. The aim of our study was to assess the individual and crossed effects of temperature rising and pesticide contamination on fish. Goldfish, Carassius auratus, were exposed during 96 h at two temperatures (22 and 32 °C) to a mixture of common pesticides (S-metolachlor, isoproturon, linuron, atrazine-desethyl, aclonifen, pendimethalin, and tebuconazol) at two environmentally relevant concentrations (total concentrations MIX1 = 8.4 μg L(-1) and MIX2 = 42 μg L(-1)). We investigated the sediment reworking behavior, which has a major ecological functional role. We also focused on three physiological traits from the cellular up to the whole individual level showing metabolic status of fish (protein concentration in liver and muscle, hepatosomatic index, and Fulton's condition factor). Individual thermal stress and low concentrations of pesticides decreased the sediment reworking activity of fish and entrained metabolic compensation with global depletion in energy stores. We found that combined chemical and thermal stresses impaired the capacity of fish to set up an efficient adaptive response. Our results strongly suggest that temperature will make fish more sensitive to water contamination by pesticides, raising concerns about wild fish conservation submitted to global changes.

  5. Effects of xylitol on metabolic parameters and visceral fat accumulation

    PubMed Central

    Amo, Kikuko; Arai, Hidekazu; Uebanso, Takashi; Fukaya, Makiko; Koganei, Megumi; Sasaki, Hajime; Yamamoto, Hironori; Taketani, Yutaka; Takeda, Eiji

    2011-01-01

    Xylitol is widely used as a sweetener in foods and medications. Xylitol ingestion causes a small blood glucose rise, and it is commonly used as an alternative to high-energy supplements in diabetics. In previous studies, a xylitol metabolite, xylulose-5-phosphate, was shown to activate carbohydrate response element binding protein, and to promote lipogenic enzyme gene transcription in vitro; however, the effects of xylitol in vivo are not understood. Here we investigated the effects of dietary xylitol on lipid metabolism and visceral fat accumulation in rats fed a high-fat diet. Sprague-Dawley rats were fed a high-fat diet containing 0 g (control), 1.0 g/100 kcal (X1) or 2.0 g/100 kcal (X2) of xylitol. After the 8-week feeding period, visceral fat mass and plasma insulin and lipid concentrations were significantly lower in xylitol-fed rats than those in high-fat diet rats. Gene expression levels of ChREBP and lipogenic enzymes were higher, whereas the expression of sterol regulatory-element binding protein 1c was lower and fatty acid oxidation-related genes were significantly higher in the liver of xylitol-fed rats as compared with high-fat diet rats. In conclusion, intake of xylitol may be beneficial in preventing the development of obesity and metabolic abnormalities in rats with diet-induced obesity. PMID:21765599

  6. The effects of spaceflight on mammary metabolism in pregnant rats

    NASA Technical Reports Server (NTRS)

    Plaut, K.; Maple, R.; Vyas, C.; Munaim, S.; Darling, A.; Casey, T.; Alberts, J. R.

    1999-01-01

    The effects of spaceflight on mammary metabolism of 10 pregnant rats was measured on Day 20 of pregnancy and after parturition. Rats were flown on the space shuttle from Day 11 through Day 20 of pregnancy. After their return to earth, glucose oxidation to carbon dioxide increased 43% (P < 0.05), and incorporation into fatty acids increased 300% (P < 0.005) compared to controls. It is unclear whether the enhanced glucose use is due to spaceflight or a response to landing. Casein mRNA and gross histology were not altered at Day 20 of pregnancy. Six rats gave birth (on Day 22 to 23 of pregnancy) and mammary metabolic activity was measured immediately postpartum. The earlier effects of spaceflight were no longer apparent. There was also no difference in expression of beta-casein mRNA. It is clear from these studies that spaceflight does not impair the normal development of the mammary gland, its ability to use glucose, nor the ability to express mRNA for a major milk protein.

  7. Effects of Dietary Fiber and Its Components on Metabolic Health

    PubMed Central

    Lattimer, James M.; Haub, Mark D.

    2010-01-01

    Dietary fiber and whole grains contain a unique blend of bioactive components including resistant starches, vitamins, minerals, phytochemicals and antioxidants. As a result, research regarding their potential health benefits has received considerable attention in the last several decades. Epidemiological and clinical studies demonstrate that intake of dietary fiber and whole grain is inversely related to obesity, type two diabetes, cancer and cardiovascular disease (CVD). Defining dietary fiber is a divergent process and is dependent on both nutrition and analytical concepts. The most common and accepted definition is based on nutritional physiology. Generally speaking, dietary fiber is the edible parts of plants, or similar carbohydrates, that are resistant to digestion and absorption in the small intestine. Dietary fiber can be separated into many different fractions. Recent research has begun to isolate these components and determine if increasing their levels in a diet is beneficial to human health. These fractions include arabinoxylan, inulin, pectin, bran, cellulose, β-glucan and resistant starch. The study of these components may give us a better understanding of how and why dietary fiber may decrease the risk for certain diseases. The mechanisms behind the reported effects of dietary fiber on metabolic health are not well established. It is speculated to be a result of changes in intestinal viscosity, nutrient absorption, rate of passage, production of short chain fatty acids and production of gut hormones. Given the inconsistencies reported between studies this review will examine the most up to date data concerning dietary fiber and its effects on metabolic health. PMID:22254008

  8. Gene expression changes in mononuclear cells in patients with metabolic syndrome after acute intake of phenol-rich virgin olive oil

    PubMed Central

    2010-01-01

    Background Previous studies have shown that acute intake of high-phenol virgin olive oil reduces pro-inflammatory, pro-oxidant and pro-thrombotic markers compared with low phenols virgin olive oil, but it still remains unclear whether effects attributed to its phenolic fraction are exerted at transcriptional level in vivo. To achieve this goal, we aimed at identifying expression changes in genes which could be mediated by virgin olive oil phenol compounds in the human. Results Postprandial gene expression microarray analysis was performed on peripheral blood mononuclear cells during postprandial period. Two virgin olive oil-based breakfasts with high (398 ppm) and low (70 ppm) content of phenolic compounds were administered to 20 patients suffering from metabolic syndrome following a double-blinded, randomized, crossover design. To eliminate the potential effect that might exist in their usual dietary habits, all subjects followed a similar low-fat, carbohydrate rich diet during the study period. Microarray analysis identified 98 differentially expressed genes (79 underexpressed and 19 overexpressed) when comparing the intake of phenol-rich olive oil with low-phenol olive oil. Many of these genes seem linked to obesity, dyslipemia and type 2 diabetes mellitus. Among these, several genes seem involved in inflammatory processes mediated by transcription factor NF-κB, activator protein-1 transcription factor complex AP-1, cytokines, mitogen-activated protein kinases MAPKs or arachidonic acid pathways. Conclusion This study shows that intake of virgin olive oil based breakfast, which is rich in phenol compounds is able to repress in vivo expression of several pro-inflammatory genes, thereby switching activity of peripheral blood mononuclear cells to a less deleterious inflammatory profile. These results provide at least a partial molecular basis for reduced risk of cardiovascular disease observed in Mediterranean countries, where virgin olive oil represents a main

  9. Modification of sphingolipid metabolism by tamoxifen and N-desmethyltamoxifen in acute myelogenous leukemia--Impact on enzyme activity and response to cytotoxics.

    PubMed

    Morad, Samy A F; Tan, Su-Fern; Feith, David J; Kester, Mark; Claxton, David F; Loughran, Thomas P; Barth, Brian M; Fox, Todd E; Cabot, Myles C

    2015-07-01

    The triphenylethylene antiestrogen, tamoxifen, can be an effective inhibitor of sphingolipid metabolism. This off-target activity makes tamoxifen an interesting ancillary for boosting the apoptosis-inducing properties of ceramide, a sphingolipid with valuable tumor censoring activity. Here we show for the first time that tamoxifen and metabolite, N-desmethyltamoxifen (DMT), block ceramide glycosylation and inhibit ceramide hydrolysis (by acid ceramidase, AC) in human acute myelogenous leukemia (AML) cell lines and in AML cells derived from patients. Tamoxifen (1-10 μM) inhibition of AC in AML cells was accompanied by decreases in AC protein expression. Tamoxifen also depressed expression and activity of sphingosine kinase 1 (SphK1), the enzyme-catalyzing production of mitogenic sphingosine 1-phosphate (S1-P). Results from mass spectroscopy showed that tamoxifen and DMT (i) increased the levels of endogenous C16:0 and C24:1 ceramide molecular species, (ii) nearly totally halted production of respective glucosylceramide (GC) molecular species, (iii) drastically reduced levels of sphingosine (to 9% of control), and (iv) reduced levels of S1-P by 85%, in vincristine-resistant HL-60/VCR cells. The co-administration of tamoxifen with either N-(4-hydroxyphenyl)retinamide (4-HPR), a ceramide-generating retinoid, or a cell-deliverable form of ceramide, C6-ceramide, resulted in marked decreases in HL-60/VCR cell viability that far exceeded single agent potency. Combination treatments resulted in synergistic apoptotic cell death as gauged by increased Annexin V binding and DNA fragmentation and activation of caspase-3. These results show the versatility of adjuvant triphenylethylene with ceramide-centric therapies for magnifying therapeutic potential in AML. Such drug regimens could serve as effective strategies, even in the multidrug-resistant setting.

  10. Modification of sphingolipid metabolism by tamoxifen and N-desmethyltamoxifen in acute myelogenous leukemia – Impact on enzyme activity and response to cytotoxics

    PubMed Central

    Morad, Samy A. F.; Tan, Su-Fern; Feith, David J.; Kester, Mark; Claxton, David F.; Loughran, Thomas P.; Barth, Brian M.; Fox, Todd E.; Cabot, Myles C.

    2015-01-01

    The triphenylethylene antiestrogen, tamoxifen, can be an effective inhibitor of sphingolipid metabolism. This off-target activity makes tamoxifen an interesting ancillary for boosting the apoptosis-inducing properties of ceramide, a sphingolipid with valuable tumor censoring activity. Here we show for the first time that tamoxifen and metabolite, N –desmethyltamoxifen (DMT) block ceramide glycosylation and inhibit ceramide hydrolysis (by acid ceramidase, AC) in human acute myelogenous leukemia (AML) cell lines and in AML cells derived from patients. Tamoxifen (1-10 μM) inhibition of AC in AML cells was accompanied by decreases in AC protein expression. Tamoxifen also depressed expression and activity of sphingosine kinase 1 (SphK1), the enzyme catalyzing production of mitogenic sphingosine 1-phosphate (S1-P). Results from mass spectroscopy showed that tamoxifen and DMT, i ) increased the levels of endogenous C16:0- and C24:1 ceramide molecular species, ii) nearly totally halted production of respective glucosylceramide (GC) molecular species, iii ) drastically reduced levels of sphingosine ( to 9% of control), and iv ) reduced levels of S1-P by 85%, in vincristine-resistant HL-60/VCR cells. Co-administration of tamoxifen with either N-(4-hydroxyphenyl)retinamide (4-HPR), a ceramide-generating retinoid, or a cell-deliverable form of ceramide, C6-ceramide, resulted in marked decreases in HL-60/VCR cell viability that far exceeded single agent potency. Combination treatments resulted in synergistic apoptotic cell death as gauged by increased Annexin V binding and DNA fragmentation and activation of caspase-3. These results show the versatility of adjuvant triphenylethylene with ceramide-centric therapies for magnifying therapeutic potential in AML. Such drug regimens could serve as effective strategies, even in the multidrug resistant setting. PMID:25769964

  11. Conjugated linoleic acid isomers: differences in metabolism and biological effects.

    PubMed

    Churruca, Itziar; Fernández-Quintela, Alfredo; Portillo, Maria Puy

    2009-01-01

    The term conjugated linoleic acid (CLA) refers to a mixture of linoleic acid positional and geometric isomers, characterized by having conjugated double bonds, not separated by a methylene group as in linoleic acid. CLA isomers appear as a minor component of the lipid fraction, found mainly in meat and dairy products from cows and sheep. The most abundant isomer is cis-9,trans-11, which represents up to 80% of total CLA in food. These isomers are metabolized in the body through different metabolic pathways, but important differences, that can have physiological consequences, are observed between the two main isomers. The trans-10,cis-12 isomer is more efficiently oxidized than the cis-9,trans-11 isomer, due to the position of its double bounds. Interest in CLA arose in its anticarcinogenic action but there is an increasing amount of specific scientific literature concerning the biological effects and properties of CLA. Numerous biological effects of CLA are due to the separate action of the most studied isomers, cis-9,trans-11 and trans-10,cis-12. It is also likely that some effects are induced and/or enhanced by these isomers acting synergistically. Although the cis-9,trans-11 isomer is mainly responsible for the anticarcinogenic effect, the trans-10,cis-12 isomer reduces body fat and it is referred as the most effective isomer affecting blood lipids. As far as insulin function is concerned, both isomers seem to be responsible for insulin resistance in humans. Finally, with regard to the immune system it is not clear whether individual isomers of CLA could act similarly or differently.

  12. WHY DO THE ACUTE BEHAVIORAL EFFECTS OT TOLUENE IN RATS DEPEND ON THE ROUTE OF EXPOSURE?

    EPA Science Inventory

    Despite evidence suggesting that the acute effects of organic solvents are related to their concentration in the brain, we have observed route-dependent differences in the acute behavioral effects of toluene. Whereas inhaled toluene disrupts the performance of rats on a visual si...

  13. Acute and Chronic Effects of Cocaine on the Spontaneous Behavior of Pigeons

    ERIC Educational Resources Information Center

    Pinkston, Jonathan W.; Branch, Marc N.

    2010-01-01

    The present experiment examined the effects of acute and daily cocaine on spontaneous behavior patterns of pigeons. After determining the acute effects of a range of doses, 9 pigeons were divided into three groups that received one of three doses of cocaine daily, either 1.0, 3.0, or 10.0 mg/kg cocaine. Measures were taken of spontaneous…

  14. Effect of copper on liver and bone metabolism in malnutrition.

    PubMed

    Güler, A H; Sapan, N; Ediz, B; Genç, Z; Ozkan, K

    1994-01-01

    This study was planned to investigate the effects of copper (Cu) deficiency on liver and bone metabolism in malnourished children. Serum total calcium (Ca), inorganic phosphorus (P), Ca/P, Cu/Ca, Cu/P ratios and alkaline phosphatase (ALP) activity values were analyzed. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma glutamyltransferase (GGT) enzyme activities and the ALT/AST (De Ritis) ratio as well as their correlations with Cu were tested to determine liver function. The results of the study showed that Cu deficiency directly affects the organic matrix formation, and by the suppression of ALP activity, indirectly causes decalcification. In the liver, however, no direct effect of Cu deficiency was seen. Deterioration in liver function and Cu deficiency increased parallel with the severity of malnutrition. Thus we concluded that a correlation exists between Cu and the parameters that indicate liver function.

  15. [Caloric restriction: about its positive metabolic effects and cellular impact].

    PubMed

    Ortiz-Bautista, Raúl Julián; Aguilar-Salinas, Carlos Alberto; Monroy-Guzmán, Adriana

    2013-01-01

    Caloric restriction, as a 30 to 60% decrease of ad libitum balanced caloric intake, without malnutrition, is the non-genetic strategy that has consistently extended the average and maximum lifespan of most living beings, and it has been tested from unicellular organisms like yeast Saccharomyces cerevisiae to Rhesus primates. In addition, various genetic and pharmacological caloric restriction models have shown to protect against cancer, cardiovascular and neurodegenerative diseases. Primate studies suggest that this intervention delays the onset of age-related diseases; in humans, it has physiological, biochemical and metabolic effects decreasing diabetes and cardiovascular disease risk factor. Although currently the mechanism by which caloric restriction has its positive effects at the cellular level is unknown, it has been reported to decrease oxidative stress and increase in mitochondrial biogenesis.

  16. [Lipoprotein metabolism in menopause. Effect of hormonal substitution therapy].

    PubMed

    Heckers, H; Platt, D

    1991-06-20

    Oral administration of conjugated estrogens, estradiol valerate and micronized estradiol--but not the percutaneous application--in the postmenopause modifies the plasmic lipoprotein profile by lowering, dose-dependently, LDL and elevating HDL (HDL2). In parallel, the cardiovascular mortality is decreased by 50-66%, with smokers also benefiting to the same extent. On account of the increased risk for endometrial carcinoma associated with postmenopausal estrogen monotherapy, combination with a lowest-dose gestagen is imperative. However, the very numerous synthetic gestagens can antagonize the favorable effects of the estrogen on lipoprotein metabolism. This applies in particular to the gestagens of the 19-nortestosterone type, such as norethisterone acetate and, in particular, levonorgestrel, but less so the 17-hydroxyprogesterone derivatives medroxyprogesterone acetate and medrogestone with their very low androgenic effect.

  17. Effects of acute restraint stress on set-shifting and reversal learning in male rats.

    PubMed

    Thai, Chester A; Zhang, Ying; Howland, John G

    2013-03-01

    Exposure to acute stress alters cognition; however, few studies have examined the effects of acute stress on executive functions such as behavioral flexibility. The goal of the present experiments was to determine the effects of acute periods of stress on two distinct forms of behavioral flexibility: set-shifting and reversal learning. Male Sprague-Dawley rats were trained and tested in an operant-chamber-based task. Some of the rats were exposed to acute restraint stress (30 min) immediately before either the set-shifting test day or the reversal learning test day. Acute stress had no effect on set-shifting, but it significantly facilitated reversal learning, as assessed by both trials to criterion and total errors. In a second experiment, the roles of glucocorticoid (GR) and mineralocorticoid receptors (MR) in the acute-stress-induced facilitation of reversal learning were examined. Systemic administration of the GR-selective antagonist RU38486 (10 mg/kg) or the MR-selective antagonist spironolactone (50 mg/kg) 30 min prior to acute stress failed to block the facilitation on reversal learning. The present results demonstrate a dissociable effect of acute stress on set-shifting and reversal learning and suggest that the facilitation of reversal learning by acute stress may be mediated by factors other than corticosterone.

  18. Effects of Acute Vaporized Nicotine in Non-Tobacco Users at Rest and during Exercise

    <