Sample records for acute morphine treatment

  1. [Morphine in the treatment of acute pulmonary oedema].

    PubMed

    Ellingsrud, Christoffer; Agewall, Stefan

    2014-12-09

    Morphine is still used in Norway and the rest of Europe as part of the treatment for pulmonary oedema, but the scientific basis for this is tenuous. In this article we assess the literature that supports and challenges the use of morphine in cases of pulmonary oedema. The article is based on a literature search in Medline and EMBASE and on the articles which form the basis of Norwegian and international guidelines. Morphine has been used for several decades in cases of pulmonary oedema due to the anxiolytic and vasodilatory properties of the drug. Vasodilation caused by morphine has been described in other patient groups, but there is little evidence in the literature to suggest that morphine causes vasodilation in patients with pulmonary oedema. Non-specific depression of the central nervous system is probably the most significant factor for the changes in haemodynamics in pulmonary oedema. Retrospective studies have shown both negative and neutral effects in acute decompensated heart failure. There are no reliable clinical studies that document better prognosis from the use of morphine. Based on the available studies, the possibility cannot be excluded that the use of morphine results in increased mortality among patients with acute pulmonary oedema. In addition, there is little evidence that the vasodilatory properties of morphine are of any significance for this condition. The benefits and risks of using morphine in cases of acute pulmonary oedema are still unclear, but so far there is little evidence to support the beneficial use of the drug.

  2. An enriched environment reduces the stress level and locomotor activity induced by acute morphine treatment and by saline after chronic morphine treatment in mice.

    PubMed

    Xu, Jia; Sun, Jinling; Xue, Zhaoxia; Li, Xinwang

    2014-06-18

    This study investigated the relationships among an enriched environment, stress levels, and drug addiction. Mice were divided randomly into four treatment groups (n=12 each): enriched environment without restraint stress (EN), standard environment without restraint stress (SN), enriched environment with restraint stress (ES), and standard environment with restraint stress (SS). Mice were reared in the respective environment for 45 days. Then, the ES and SS groups were subjected to restraint stress daily (2 h/day) for 14 days, whereas the EN and SN groups were not subjected to restraint stress during this stage. The stress levels of all mice were tested in the elevated plus maze immediately after exposure to restraint stress. After the 2-week stress testing period, mice were administered acute or chronic morphine (5 mg/kg) treatment for 7 days. Then, after a 7-day withdrawal period, the mice were injected with saline (1 ml/kg) or morphine (5 mg/kg) daily for 2 days to observe locomotor activity. The results indicated that the enriched environment reduced the stress and locomotor activity induced by acute morphine administration or saline after chronic morphine treatment. However, the enriched environment did not significantly inhibit locomotor activity induced by morphine challenge. In addition, the stress level did not mediate the effect of the enriched environment on drug-induced locomotor activity after acute or chronic morphine treatment.

  3. Acute tolerance to spinally administered morphine compares mechanistically with chronically induced morphine tolerance.

    PubMed

    Fairbanks, C A; Wilcox, G L

    1997-09-01

    The mechanistic similarity between acutely and chronically induced morphine tolerance has been previously proposed but remains largely unexplored. Our experiments examined the modulation of acutely induced tolerance to spinally administered morphine by agonists that affect the N-methyl-D-aspartate receptor and nitric oxide synthase systems. Antinociception was detected via the hot water (52.5 degrees C) tail flick test in mice. Intrathecal pretreatment with morphine (40 nmol) produced a 9.6-fold rightward shift in the morphine dose-response curve. This shift confirmed the induction of acute spinal morphine tolerance. Intrathecal copretreatment with the receptor antagonists (competitive and noncompetitive, respectively) dizolcipine (MK801, 3 nmol) or LY235959 (4 pmol) and morphine [40 nmol, intrathecally (i.t.)] attenuated acute tolerance to morphine measured 8 hr later. A 60-min pretreatment of 7-nitroindazole (6 nmol, i.t.), a selective neuronal NOS inhibitor, followed by administration of morphine (40 nmol, i.t.) blocked the induction of morphine tolerance. Intrathecal copretreatment with morphine (40 nmol, i.t.) and agmatine (4 nmol, i.t.), an imidazoline, receptor agonist and putative nitric oxide synthase inhibitor, almost completely abolished acute spinal morphine tolerance. The results of these experiments agree with previous reports using models of chronically induced morphine tolerance. This evidence supports the proposal that the mechanisms responsible for acute morphine tolerance parallel those underlying chronic morphine tolerance. This study attests to the powerful predictive value of acute induction as a model for morphine tolerance.

  4. Effect of morphine and methadone acute treatment on immunological activity in mice: pharmacokinetic and pharmacodynamic correlates.

    PubMed

    Pacifici, R; Patrini, G; Venier, I; Parolaro, D; Zuccaro, P; Gori, E

    1994-06-01

    This report describes the 24-hr time course of the immunomodulatory effects of an acute s.c. injection of morphine in C57BL6 mice, and correlates these effects with the drug's analgesic properties and serum levels. Acute morphine treatment had a biphasic effect on various immune parameters: there was an increase in in vitro phagocytosis and the killing of Candida Albican cells by peritoneal polymorphonuclear leukocytes 20 and 40 min after the injection of morphine, 20 mg/kg, when analgesia and serum morphine concentrations were at their peak. Interestingly, 24 hr after morphine administration (when antinociception and morphine blood levels were no longer detectable) these parameters underwent a marked reduction. Similarly, macrophage-mediated inhibition of tumor cells proliferation was first stimulated (at 20 and 40 min) and then depressed (at 24 hr). Splenic natural killer cell cytotoxicity, determined by standard 51Cr release from YAC-1 target cells, also was evaluated. No differences in natural killer activity was observed at any of the monitored time points. In addition, we evaluated the immunomodulatory effects of an acute injection of methadone (a synthetic narcotic compound) at a dose inducing the same degree of analgesia as morphine. None of the tested immunoparameters were affected by the administration of methadone, which indicates the different drug-sensitivity of immunological correlates in vivo.

  5. Memantine and dizocilpine interactions with antinociceptive or discriminative stimulus effects of morphine in rats after acute or chronic treatment with morphine

    PubMed Central

    Chen, Yukun; Evola, Marianne

    2013-01-01

    Rationale Memantine is a N-methyl-d-aspartic acid receptor (NMDAR) channel blocker that binds to dizocilpine sites and appears well tolerated during chronic use. Published studies suggest NMDAR antagonists prevent development of tolerance to effects of morphine by blocking NMDAR hyperactivation. Objectives We sought to compare effects of memantine to those of the more frequently studied dizocilpine and to evaluate memantine as a potential adjunct to modify tolerance to mu-opioid receptor agonists. Methods Sprague–Dawley rats were trained to discriminate morphine (3.2 mg/kg) and saline under fixed ratio 15 schedules of food delivery. Potency and maximal stimulus or rate-altering effects of cumulative doses of morphine were examined 30 min after pretreatment with dizocilpine (0.032–0.1 mg/kg) or memantine (5–10 mg/kg) and after chronic treatment with combinations of dizocilpine or memantine and morphine, 10 mg/kg twice daily, for 6 to 14 days. Effects of dizocilpine or memantine on morphine antinociception were examined in a 55 °C water tail-withdrawal assay with drug treatments parallel to those in discrimination studies. Results Acutely, memantine attenuated while dizocilpine potentiated the stimulus and antinociceptive effects of morphine. Neither chronic dizocilpine nor memantine blocked tolerance to the stimulus effects of morphine. In contrast, combined-treatment with dizocilpine (0.1 mg/kg) blocked tolerance to antinociceptive effects of lower (0.1∼3.2 mg/kg) but not higher doses of morphine, whereas memantine did not block tolerance. Conclusions Memantine and dizocilpine interacted differently with morphine, possibly due to different NMDAR binding profiles. The lack of memantine-induced changes in morphine tolerance suggests memantine may not be a useful adjunct in chronic pain management. PMID:22864944

  6. Acute Morphine, Chronic Morphine, and Morphine Withdrawal Differently Affect Pleiotrophin, Midkine, and Receptor Protein Tyrosine Phosphatase β/ζ Regulation in the Ventral Tegmental Area.

    PubMed

    García-Pérez, Daniel; Laorden, M Luisa; Milanés, M Victoria

    2017-01-01

    Pleiotrophin (PTN) and midkine (MK) are secreted growth factors and cytokines, proposed to be significant neuromodulators with multiple neuronal functions. PTN and MK are generally related with cell proliferation, growth, and differentiation by acting through different receptors. PTN or MK, signaling through receptor protein tyrosine phosphatase β/ζ (RPTPβ/ζ), lead to the activation of extracellular signal-regulated kinases (ERKs) and thymoma viral proto-oncogene (Akt), which induce morphological changes and modulate addictive behaviors. Besides, there is increasing evidence that during the development of drug addiction, astrocytes contribute to the synaptic plasticity by synthesizing and releasing substances such as cytokines. In the present work, we studied the effect of acute morphine, chronic morphine, and morphine withdrawal on PTN, MK, and RPTPβ/ζ expression and on their signaling pathways in the ventral tegmental area (VTA). Present results indicated that PTN, MK, and RPTPβ/ζ levels increased after acute morphine injection, returned to basal levels during chronic opioid treatment, and were upregulated again during morphine withdrawal. We also observed an activation of astrocytes after acute morphine injection and during opiate dependence and withdrawal. In addition, immunofluorescence analysis revealed that PTN, but not MK, was overexpressed in astrocytes and that dopaminergic neurons expressed RPTPβ/ζ. Interestingly, p-ERK 1/2 levels during chronic morphine and morphine withdrawal correlated RPTPβ/ζ expression. All these observations suggest that the neuroprotective and behavioral adaptations that occur during opiate addiction could be, at least partly, mediated by these cytokines.

  7. Recovery from Mu-opioid Receptor Desensitization following Chronic Treatment with Morphine and Methadone

    PubMed Central

    Quillinan, Nidia; Lau, Elaine; Virk, Michael; von Zastrow, Mark; Williams, John T

    2011-01-01

    Chronic treatment with morphine results in a decrease in mu-opioid receptor sensitivity, an increase in acute desensitization and a reduction in the recovery from acute desensitization in locus coeruleus neurons. With acute administration, morphine is unlike many other opioid agonists in that it does not mediate robust acute desensitization or induce receptor trafficking. This study compares mu-opioid receptor desensitization and trafficking in brain slices taken from rats treated for 6–7 days with a range of doses of morphine (60, 30, 15 mg/kg/day) and methadone (60, 30, 5 mg/kg/day) applied by subcutaneous implantation of osmotic mini pumps. Mice were treated with 45 mg/kg/day. In morphine treated animals, recovery from acute [Met]5enkephalin-induced desensitization and receptor recycling was diminished. In contrast, recovery and recycling were unchanged in slices from methadone treated animals. Remarkably the reduced recovery from desensitization and receptor recycling found in slices from morphine treated animals were not observed in animals lacking β-arrestin2. Further, pharmacological inhibition of GRK2, while not affecting the ability of [Met]5enkephalin to induce desensitization, acutely reversed the delay in recovery from desensitization produced by chronic morphine treatment. These results characterize a previously unidentified function of the GRK/arrestin system in mediating opioid regulation in response to chronic morphine administration. They also suggest that the GRK/arrestin system, rather then serving as a primary mediator of acute desensitization, controls recovery from desensitization by regulating receptor reinsertion to the plasma membrane after chronic treatment with morphine. The sustained GRK/arrestin dependent desensitization is another way in which morphine and methadone are distinguished. PMID:21430144

  8. Prolonged morphine treatment alters δ opioid receptor post-internalization trafficking

    PubMed Central

    Ong, E W; Xue, L; Olmstead, M C; Cahill, C M

    2015-01-01

    BACKGROUND AND PURPOSE The δ opioid receptor (DOP receptor) undergoes internalization both constitutively and in response to agonists. Previous work has shown that DOP receptors traffic from intracellular compartments to neuronal cell membranes following prolonged morphine treatment. Here, we examined the effects of prolonged morphine treatment on the post-internalization trafficking of DOP receptors. EXPERIMENTAL APPROACH Using primary cultures of dorsal root ganglia neurons, we measured the co-localization of endogenous DOP receptors with post-endocytic compartments following both prolonged and acute agonist treatments. KEY RESULTS A departure from the constitutive trafficking pathway was observed following acute DOP receptor agonist-induced internalization by deltorphin II. That is, the DOP receptor underwent distinct agonist-induced post-endocytic sorting. Following prolonged morphine treatment, constitutive DOP receptor trafficking was augmented. SNC80 following prolonged morphine treatment also caused non-constitutive DOP receptor agonist-induced post-endocytic sorting. The μ opioid receptor (MOP receptor) agonist DAMGO induced DOP receptor internalization and trafficking following prolonged morphine treatment. Finally, all of the alterations to DOP receptor trafficking induced by both DOP and MOP receptor agonists were inhibited or absent when those agonists were co-administered with a DOP receptor antagonist, SDM-25N. CONCLUSIONS AND IMPLICATIONS The results support the hypothesis that prolonged morphine treatment induces the formation of MOP–DOP receptor interactions and subsequent augmentation of the available cell surface DOP receptors, at least some of which are in the form of a MOP/DOP receptor species. The pharmacology and trafficking of this species appear to be unique compared to those of its individual constituents. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other

  9. Prolonged morphine treatment alters δ opioid receptor post-internalization trafficking.

    PubMed

    Ong, E W; Xue, L; Olmstead, M C; Cahill, C M

    2015-01-01

    The δ opioid receptor (DOP receptor) undergoes internalization both constitutively and in response to agonists. Previous work has shown that DOP receptors traffic from intracellular compartments to neuronal cell membranes following prolonged morphine treatment. Here, we examined the effects of prolonged morphine treatment on the post-internalization trafficking of DOP receptors. Using primary cultures of dorsal root ganglia neurons, we measured the co-localization of endogenous DOP receptors with post-endocytic compartments following both prolonged and acute agonist treatments. A departure from the constitutive trafficking pathway was observed following acute DOP receptor agonist-induced internalization by deltorphin II. That is, the DOP receptor underwent distinct agonist-induced post-endocytic sorting. Following prolonged morphine treatment, constitutive DOP receptor trafficking was augmented. SNC80 following prolonged morphine treatment also caused non-constitutive DOP receptor agonist-induced post-endocytic sorting. The μ opioid receptor (MOP receptor) agonist DAMGO induced DOP receptor internalization and trafficking following prolonged morphine treatment. Finally, all of the alterations to DOP receptor trafficking induced by both DOP and MOP receptor agonists were inhibited or absent when those agonists were co-administered with a DOP receptor antagonist, SDM-25N. The results support the hypothesis that prolonged morphine treatment induces the formation of MOP-DOP receptor interactions and subsequent augmentation of the available cell surface DOP receptors, at least some of which are in the form of a MOP/DOP receptor species. The pharmacology and trafficking of this species appear to be unique compared to those of its individual constituents. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2014 The Authors. British

  10. Chronic Morphine Treatment Reduces Recovery from Opioid Desensitization

    PubMed Central

    Dang, Vu C.; Williams, John T.

    2013-01-01

    Tolerance and dependence result from long-term exposure to opioids, and there is growing evidence linking acute receptor desensitization to these more long-term processes. Receptor desensitization encompasses a series of events leading to the loss of receptor function and internalization. This study examines the onset and recovery from desensitization in locus ceruleus neurons recorded in brain slices taken from animals that have been chronically treated with morphine. After chronic morphine treatment, desensitization was altered as follows. First, the rate of desensitization was increased. Second, recovery from desensitization was always incomplete, even after a brief (1–2 min) exposure to agonist. This contrasts with experiments in controls in which recovery from desensitization, after a brief exposure to agonist, was complete within 25 min. Finally, morphine-6-β-D-glucuronide, a metabolite of morphine that was ineffective at causing desensitization in controls, induced significant desensitization in slices from morphine-treated animals. When brain slices from controls were treated with inhibitors of PKC or monensin, agents known to compromise G-protein-coupled receptor resensitization, desensitization was increased, and recovery was significantly reduced. These results indicate that receptor resensitization maintains signaling during periods of intense and sustained stimulation. After chronic morphine treatment, desensitization is potentiated, and receptor resensitization is compromised. PMID:15342737

  11. Chronic morphine treatment reduces recovery from opioid desensitization.

    PubMed

    Dang, Vu C; Williams, John T

    2004-09-01

    Tolerance and dependence result from long-term exposure to opioids, and there is growing evidence linking acute receptor desensitization to these more long-term processes. Receptor desensitization encompasses a series of events leading to the loss of receptor function and internalization. This study examines the onset and recovery from desensitization in locus ceruleus neurons recorded in brain slices taken from animals that have been chronically treated with morphine. After chronic morphine treatment, desensitization was altered as follows. First, the rate of desensitization was increased. Second, recovery from desensitization was always incomplete, even after a brief (1-2 min) exposure to agonist. This contrasts with experiments in controls in which recovery from desensitization, after a brief exposure to agonist, was complete within 25 min. Finally, morphine-6-beta-D-glucuronide, a metabolite of morphine that was ineffective at causing desensitization in controls, induced significant desensitization in slices from morphine-treated animals. When brain slices from controls were treated with inhibitors of PKC or monensin, agents known to compromise G-protein-coupled receptor resensitization, desensitization was increased, and recovery was significantly reduced. These results indicate that receptor resensitization maintains signaling during periods of intense and sustained stimulation. After chronic morphine treatment, desensitization is potentiated, and receptor resensitization is compromised.

  12. Examination of Acute Sensitivity to Morphine and Morphine Self-Administration Following Physical and Environmental Stressors in Fischer-344 and Lewis Female Rats

    DTIC Science & Technology

    1997-01-16

    Administration Following Physical and Environmental Stressors in Fischer-344 and Lewis Female Rats" Name of Candidate: Kelly Brown Doctor...Title ofDissertation: Examination ofAcute Sensitivity to Morphine and Morphine Self- Administration Following Physical and Environmental Stressors in...to tolerance, toxicity, or addiction liability. IV Examination ofAcute Sensitivity to Morphine and Morphine Self-Administration Following Physical and

  13. Morphine and outcomes in acute decompensated heart failure: an ADHERE analysis.

    PubMed

    Peacock, W F; Hollander, J E; Diercks, D B; Lopatin, M; Fonarow, G; Emerman, C L

    2008-04-01

    Morphine is a long-standing therapy in acute decompensated heart failure (ADHF), despite few supporting data. A study was undertaken to compare the outcomes of patients who did and did not receive morphine for ADHF. The study was a retrospective analysis of the Acute Decompensated Heart Failure National Registry (ADHERE) which enrols hospitalised patients with treatment for, or a primary discharge diagnosis of, ADHF. Patients were stratified into cohorts based on whether or not they received intravenous morphine. ANOVA, Wilcoxon and chi(2) tests were used in univariate analysis, followed by multivariate analysis controlling for parameters previously associated with mortality. Analyses were repeated for ejection fraction subgroups and in patients not on mechanical ventilation. There were 147 362 hospitalisations in ADHERE at December 2004, 20 782 of whom (14.1%) received morphine and 126 580 (85.9%) did not. There were no clinically relevant differences between the groups in the initial age, heart rate, blood pressure, blood urea nitrogen, creatinine, haemoglobin, ejection fraction or atrial fibrillation. A higher prevalence of rest dyspnoea, congestion on chest radiography, rales and raised troponin occurred in the morphine group. Patients on morphine received more inotropes and vasodilators, were more likely to require mechanical ventilation (15.4% vs 2.8%), had a longer median hospitalisation (5.6 vs 4.2 days), more ICU admissions (38.7% vs 14.4%), and had greater mortality (13.0% vs 2.4%) (all p<0.001). Even after risk adjustment and exclusion of ventilated patients, morphine was an independent predictor of mortality (OR 4.84 (95% CI 4.52 to 5.18), p<0.001). Morphine is associated with increased adverse events in ADHF which includes a greater frequency of mechanical ventilation, prolonged hospitalisation, more ICU admissions and higher mortality.

  14. Treatment of the acute sickle cell vaso-occlusive crisis in the Emergency Department: a Brazilian method of switching from intravenous to oral morphine.

    PubMed

    Campos, Jessica; Lobo, Clarisse; Queiroz, Ana Maria Mach; do Nascimento, Emilia Matos; Lima, Carlos Bernardo; Cardoso, Gilberto; Ballas, Samir K

    2014-07-01

    Describe the treatment of patients with vaso-occlusive crises (VOC) in a Brazilian emergency department (ED) and the successful switch from intravenous to oral morphine. We analyzed records of 315 patients with sickle cell disease using two different protocols for pain: one in March 2010 prescribing intravenous morphine every 4 h throughout their stay, and another in March 2011 and 2012 prescribing one initial dose of intravenous morphine followed by equianalgesic doses of oral morphine every 4 h. Patients were triaged into three groups: mild, moderate, and severe VOC. The mild group was treated within 1 h after triage, the moderate within 30 min and the severe was treated immediately. Patients whose pain was not relieved within 6 h after the first dose of morphine were transferred into a different holding area of the ED where they continued to receive the same treatment for 48 h after which they were hospitalized if still in pain. The number of patients who stayed <24 h in the ED increased significantly from 63 in 2010 to 87 in 2012, and the number of admissions decreased from 26 in 2010 to 10 in 2012. The incidence of acute chest syndrome decreased from 8.5% in 2010 to 1.9% in 2012. Patients treated with oral morphine stayed a shorter time in the ED, had more pain relief, were admitted less frequently, and had less acute chest syndrome. These differences may be due to environmental, cultural, psychological, and pharmacogenetic factors. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Effects of acute and long-term typical or atypical neuroleptics on morphine-induced behavioural effects in mice.

    PubMed

    Hollais, André W; Patti, Camilla L; Zanin, Karina A; Fukushiro, Daniela F; Berro, Laís F; Carvalho, Rita C; Kameda, Sonia R; Frussa-Filho, Roberto

    2014-03-01

    1. It has been suggested that the high prevalence of drug abuse in schizophrenics is related to chronic treatment with typical neuroleptics and dopaminergic supersensitivity that develops as a consequence. Within this context, atypical neuroleptics do not seem to induce this phenomenon. In the present study, we investigated the effects of acute administration or withdrawal from long-term administration of haloperidol and/or ziprasidone on morphine-induced open-field behaviour in mice. 2. In the first experiment, mice were given a single injection of haloperidol (1 mg/kg, i.p.) or several doses of ziprasidone (2, 4 or 6 mg/kg, i.p.) and motor activity was quantified by the open-field test. The aim of the second experiment was to verify the effects of an acute injection of haloperidol (1 mg/kg) or ziprasidone (6 mg/kg) on 20 mg/kg morphine-induced behaviours in the open-field test. In the third experiment, mice were treated with 1 mg/kg haloperidol and/or 2, 4 or 6 mg/kg ziprasidone for 20 days. Seventy-two hours after the last injection, mice were injected with 20 mg/kg, i.p., morphine and then subjected to the open-field test. Acute haloperidol or ziprasidone decreased spontaneous general activity and abolished morphine-induced locomotor stimulation. 3. Withdrawal from haloperidol or ziprasidone did not modify morphine-elicited behaviours in the open-field test. The results suggest that withdrawal from neuroleptic treatments does not contribute to the acute effect of morphine in schizophrenic patients. © 2014 Wiley Publishing Asia Pty Ltd.

  16. Amnesia induced by morphine in spatial memory retrieval inhibited in morphine-sensitized rats.

    PubMed

    Farahmandfar, Maryam; Naghdi, Nasser; Karimian, Seyed Morteza; Kadivar, Mehdi; Zarrindast, Mohammad-Reza

    2012-05-15

    The present study investigated the effect of morphine sensitization on the impairment of spatial memory retrieval induced by acute morphine in adult male rats. Spatial memory was assessed by 2-day Morris water maze task which included training and test day. On the training day, rats were trained by a single training session of 8 trials. On the test day, a probe trial consisting of 60s free swim period without a platform and the visible test were administered. Morphine sensitization was induced by subcutaneous (s.c.) injection of morphine, once daily for 3 days followed by 5 days without drug treatment before training. The results indicated that acute administration of morphine (7.5mg/kg, s.c.) before testing impaired spatial memory on the test day. Pre-test morphine-induced amnesia decreased in morphine-sensitized (15 and 20mg/kg, s.c.) rats. Improvement in spatial memory retrieval in morphine-sensitized rats was inhibited by once daily administration of naloxone (1 and 2mg/kg, s.c.) 30 min prior to the injection of morphine for three days. The results suggest that morphine sensitization reverses the impairment of spatial memory retrieval induced by acute morphine and it is implied that mu-opioid receptors may play an important role in this effect. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Differential modulatory effects of morphine on acute and chronic stress induced neurobehavioral and cellular markers in rats.

    PubMed

    Joshi, Jagdish C; Ray, Arunabha; Gulati, Kavita

    2014-04-15

    The present study evaluated the effects of morphine treatments on elevated plus maze test parameters, oxidative stress markers and Hsp70 expression in normal and stressed rats. Acute and chronic stress caused neurobehavioral suppression, altered prooxidant-antioxidant balance and increased Hsp70 expression in brain homogenates in a differential manner. Morphine (1 and 5mg/kg) attenuated RS induced anxiogenesis, changes in MDA and GSH but further enhanced Hsp70 expression. Similar anxiolytic and Hsp70 enhancing effects were seen after morphine in normal rats (no RS). Exposure to chronic RS did not elicit any appreciable neurobehavioral response in EPM but enhanced MDA, lowered GSH and exaggerated the Hsp70 expression. Pretreatment with morphine did not affect the neurobehavioral response to chronic RS, but reverted the GSH and Hsp70 expression. The results suggest that morphine differentially influences acute and chronic stress induced changes in anxiety behavior and complex interactions between oxidative stress markers and Hsp70 expression which may contribute to these effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. The effects of intrathecal morphine encapsulated in L- and D-dipalmitoylphosphatidyl choline liposomes on acute nociception in rats.

    PubMed

    Nishiyama, T; Ho, R J; Shen, D D; Yaksh, T L

    2000-08-01

    Liposomes can serve as a sustained-release carrier system, permitting the spinal delivery of large opioid doses restricting the dose for acute systemic uptake. We evaluated the antinociceptive effects of morphine encapsulated in liposomes of two isomeric phospholipids, L-dipalmitoylphosphatidyl choline (L-DPPC) and D-dipalmitoylphosphatidyl choline (D-DPPC), in comparison with morphine in saline. Sprague-Dawley rats with chronic lumbar intrathecal catheters were tested for their acute nociceptive response using a hindpaw thermal escape test. Their general behavior, motor function, pinna reflex, and corneal reflex were also examined. The duration of antinociception was longer in both liposomal morphine groups than in the free morphine group. The peak antinociceptive effects were observed within 30 min after intrathecal morphine, L-DPPC or D-DPPC morphine injection. The rank order of the area under the effect-time curve for antinociception was L-DPPC morphine > D-DPPC morphine > morphine. The 50% effective dose was: 2.7 microg (morphine), 4.6 microg (L-DPPC morphine), and 6.4 microg (D-DPPC morphine). D-DPPC morphine had less side effects for a given antinociceptive AUC than morphine. In conclusion, L-DPPC and D-DPPC liposome encapsulation of morphine prolonged the antinociceptive effect on acute thermal stimulation and could decrease side effects, compared with morphine alone. Two isomers of liposome (L-dipalmitoylphosphatidyl choline and D-dipalmitoylphosphatidyl choline) encapsulation of morphine prolonged the analgesic effect on acute thermal-induced pain when administered intrathecally and could decrease side effects, compared with morphine alone.

  19. Effect of agmatine on long-term potentiation in morphine-treated rats.

    PubMed

    Lu, Wei; Dong, Hua-Jin; Bi, Guo-Hua; Zhao, Yong-Qi; Yang, Zheng; Su, Rui-Bin; Li, Jin

    2010-08-01

    Agmatine is an endogenous amine derived from l-arginine that potentiates morphine analgesia and inhibits naloxone precipitated abstinent symptoms in morphine dependent rats. In this study, the effects of agmatine on long-term potentiation (LTP) in the lateral perforant path (LPP)-granule cell synapse of the rat dentate gyrus (DG) on saline or morphine-treated rats were investigated. Population spikes (PS), evoked by stimulation of the LPP, was recorded from DG region. Acute agmatine (2.5-10mg/kg, s.c.) treatment facilitated hippocampal LTP. Acute morphine (30mg/kg, s.c.) treatment significantly attenuated hippocampal LTP and agmatine (10mg/kg, s.c.) restored the amplitude of PS that was attenuated by morphine. Chronic morphine treatment resulted in the enhancement of hippocampal LTP, agmatine co-administered with morphine significantly attenuated the enhancement of morphine on hippocampal LTP. Imidazoline receptor antagonist idazoxan (5mg/kg, i.p.) reversed the effect of agmatine. These results suggest that agmatine attenuated the effect of morphine on hippocampal LTP, possibly through activation of imidazoline receptor. Crown Copyright 2010. Published by Elsevier Inc. All rights reserved.

  20. AMPA receptor positive allosteric modulators attenuate morphine tolerance and dependence.

    PubMed

    Hu, Xiaoyu; Tian, Xuebi; Guo, Xiao; He, Ying; Chen, Haijun; Zhou, Jia; Wang, Zaijie Jim

    2018-04-25

    Development of opioid tolerance and dependence hinders the use of opioids for the treatment of chronic pain. In searching for the mechanism and potential intervention for opioid tolerance and dependence, we studied the action of two positive allosteric modulators of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR PAMs). In mice treated with morphine (100 mg/kg, s.c.), acute morphine tolerance and dependence developed in 4-6 h. Treatment with aniracetam, a well-established AMPAR PAM, was able to completely prevent and reverse the development of acute antinociceptive tolerance to morphine. Partial, but significant, effects of aniracetam on acute morphine induced-physical dependence were also observed. Moreover, aniracetam significantly reversed the established morphine tolerance and dependence in a chronic model of morphine tolerance and dependence produced by intermittent morphine (10 mg/kg, s.c. for 5d). In addition, HJC0122, a new AMPAR PAM was found to have similar effects as aniracetam but with a higher potency. These previously undisclosed actions of AMPAR PAMs are intriguing and may shed lights on understanding the APMA signaling pathway in opioid addiction. Moreover, these data suggest that AMPAR PAMs may have utility in preventing and treating morphine tolerance and dependence. Copyright © 2018. Published by Elsevier Ltd.

  1. Acute Morphine Administration Reduces Cell-Mediated Immunity and Induces Reactivation of Latent Herpes Simplex Virus Type 1 in BALB/c Mice

    PubMed Central

    Mojadadi, Shafi; Jamali, Abbas; Khansarinejad, Behzad; Soleimanjahi, Hoorieh; Bamdad, Taravat

    2009-01-01

    Acute morphine administration is known to alter the course of herpes simplex virus infection. In this study, the effect of acute morphine administration on the reactivation of latent herpes was investigated in a mouse model. Because of the important role of cytolytic T lymphocyte (CTL) activity in the inhibition of herpes simplex virus type 1 (HSV-1) reactivation, the effect of acute morphine administration on CTL responses was also evaluated. Furthermore, lymphocyte proliferation and IFN-γ production were evaluated for their roles in the induction of the CTL response. The findings showed that acute morphine administration significantly reduced CTL responses, lymphocyte proliferation, and IFN-γ production. Furthermore, acute morphine administration has been shown to reactivate latent HSV-1. Previous studies have shown that cellular immune responses have important roles in the inhibition of HSV reactivation. These findings suggest that suppression of a portion of the cellular immune response after acute morphine administration may constitute one part of the mechanism that induces HSV reactivation. PMID:19403060

  2. Effect and Safety of Morphine Use in Acute Anterior ST-Segment Elevation Myocardial Infarction.

    PubMed

    Bonin, Mickael; Mewton, Nathan; Roubille, Francois; Morel, Olivier; Cayla, Guillaume; Angoulvant, Denis; Elbaz, Meyer; Claeys, Marc J; Garcia-Dorado, David; Giraud, Céline; Rioufol, Gilles; Jossan, Claire; Ovize, Michel; Guerin, Patrice

    2018-02-10

    Morphine is commonly used to treat chest pain during myocardial infarction, but its effect on cardiovascular outcome has never been directly evaluated. The aim of this study was to examine the effect and safety of morphine in patients with acute anterior ST-segment elevation myocardial infarction followed up for 1 year. We used the database of the CIRCUS (Does Cyclosporine Improve Outcome in ST Elevation Myocardial Infarction Patients) trial, which included 969 patients with anterior ST-segment elevation myocardial infarction, admitted for primary percutaneous coronary intervention. Two groups were defined according to use of morphine preceding coronary angiography. The composite primary outcome was the combined incidence of major adverse cardiovascular events, including cardiovascular death, heart failure, cardiogenic shock, myocardial infarction, unstable angina, and stroke during 1 year. A total of 554 (57.1%) patients received morphine at first medical contact. Both groups, with and without morphine treatment, were comparable with respect to demographic and periprocedural characteristics. There was no significant difference in major adverse cardiovascular events between patients who received morphine compared with those who did not (26.2% versus 22.0%, respectively; P =0.15). The all-cause mortality was 5.3% in the morphine group versus 5.8% in the no-morphine group ( P =0.89). There was no difference between groups in infarct size as assessed by the creatine kinase peak after primary percutaneous coronary intervention (4023±118 versus 3903±149 IU/L; P =0.52). In anterior ST-segment elevation myocardial infarction patients treated by primary percutaneous coronary intervention, morphine was used in half of patients during initial management and was not associated with a significant increase in major adverse cardiovascular events at 1 year. © 2018 The Authors and Hospices Civils de Lyon. Published on behalf of the American Heart Association, Inc., by Wiley.

  3. Acute food deprivation reverses morphine-induced locomotion deficits in M5 muscarinic receptor knockout mice.

    PubMed

    Steidl, Stephan; Lee, Esther; Wasserman, David; Yeomans, John S

    2013-09-01

    Lesions of the pedunculopontine tegmental nucleus (PPT), one of two sources of cholinergic input to the ventral tegmental area (VTA), block conditioned place preference (CPP) for morphine in drug-naïve rats. M5 muscarinic cholinergic receptors, expressed by midbrain dopamine neurons, are critical for the ability of morphine to increase nucleus accumbens dopamine levels and locomotion, and for morphine CPP. This suggests that M5-mediated PPT cholinergic inputs to VTA dopamine neurons critically contribute to morphine-induced dopamine activation, reward and locomotion. In the current study we tested whether food deprivation, which reduces PPT contribution to morphine CPP in rats, could also reduce M5 contributions to morphine-induced locomotion in mice. Acute 18-h food deprivation reversed the phenotypic differences usually seen between non-deprived wild-type and M5 knockout mice. That is, food deprivation increased morphine-induced locomotion in M5 knockout mice but reduced morphine-induced locomotion in wild-type mice. Food deprivation increased saline-induced locomotion equally in wild-type and M5 knockout mice. Based on these findings, we suggest that food deprivation reduces the contribution of M5-mediated PPT cholinergic inputs to the VTA in morphine-induced locomotion and increases the contribution of a PPT-independent pathway. The contributions of cholinergic, dopaminergic and GABAergic neurons to the effects of acute food deprivation are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. PolyMorphine: an innovative biodegradable polymer drug for extended pain relief.

    PubMed

    Rosario-Meléndez, Roselin; Harris, Carolyn L; Delgado-Rivera, Roberto; Yu, Lei; Uhrich, Kathryn E

    2012-09-28

    Morphine, a potent narcotic analgesic used for the treatment of acute and chronic pain, was chemically incorporated into a poly(anhydride-ester) backbone. The polymer termed "PolyMorphine", was designed to degrade hydrolytically releasing morphine in a controlled manner to ultimately provide analgesia for an extended time period. PolyMorphine was synthesized via melt-condensation polymerization and its structure was characterized using proton and carbon nuclear magnetic resonance spectroscopies, and infrared spectroscopy. The weight-average molecular weight and the thermal properties were determined. The hydrolytic degradation pathway of the polymer was determined by in vitro studies, showing that free morphine is released. In vitro cytocompatibility studies demonstrated that PolyMorphine is non-cytotoxic towards fibroblasts. In vivo studies using mice showed that PolyMorphine provides analgesia for 3 days, 20 times the analgesic window of free morphine. The animals retained full responsiveness to morphine after being subjected to an acute morphine challenge. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Study Design and Rationale of "A Multicenter, Open-Labeled, Randomized Controlled Trial Comparing MIdazolam Versus MOrphine in Acute Pulmonary Edema": MIMO Trial.

    PubMed

    Dominguez-Rodriguez, Alberto; Burillo-Putze, Guillermo; Garcia-Saiz, Maria Del Mar; Aldea-Perona, Ana; Harmand, Magali González-Colaço; Mirò, Oscar; Abreu-Gonzalez, Pedro

    2017-04-01

    Morphine has been used for several decades in cases of acute pulmonary edema (APE) due to the anxiolytic and vasodilatory properties of the drug. The non-specific depression of the central nervous system is probably the most significant factor for the changes in hemodynamics in APE. Retrospective studies have shown both negative and neutral effects in patients with APE and therefore some authors have suggested benzodiazepines as an alternative treatment. The use of intravenous morphine in the treatment of APE remains controversial. The MIdazolan versus MOrphine in APE trial (MIMO) is a multicenter, prospective, open-label, randomized study designed to evaluate the efficacy and safety of morphine in patients with APE. The MIMO trial will evaluate as a primary endpoint whether intravenous morphine administration improves clinical outcomes defined as in-hospital mortality. Secondary endpoint evaluation will be mechanical ventilation, cardiopulmonary resuscitation, intensive care unit admission rate, intensive care unit length of stay, and hospitalization length. In the emergency department, morphine is still used for APE in spite of poor scientific background data. The data from the MIMO trial will establish the effect-and especially the risk-when using morphine for APE.

  6. Effect of acute and continuous morphine treatment on transcription factor expression in subregions of the rat caudate putamen. Marked modulation by D4 receptor activation.

    PubMed

    Gago, Belén; Suárez-Boomgaard, Diana; Fuxe, Kjell; Brené, Stefan; Reina-Sánchez, María Dolores; Rodríguez-Pérez, Luis M; Agnati, Luigi F; de la Calle, Adelaida; Rivera, Alicia

    2011-08-17

    Acute administration of the dopamine D(4) receptor (D(4)R) agonist PD168,077 induces a down-regulation of the μ opioid receptor (MOR) in the striosomal compartment of the rat caudate putamen (CPu), suggesting a striosomal D(4)R/MOR receptor interaction in line with their high co-distribution in this brain subregion. The present work was designed to explore if a D(4)R/MOR receptor interaction also occurs in the modulation of the expression pattern of several transcription factors in striatal subregions that play a central role in drug addiction. Thus, c-Fos, FosB/ΔFosB and P-CREB immunoreactive profiles were quantified in the rat CPu after either acute or continuous (6-day) administration of morphine and/or PD168,077. Acute and continuous administration of morphine induced different patterns of expression of these transcription factors, effects that were time-course and region dependent and fully blocked by PD168,077 co-administration. Moreover, this effect of the D(4)R agonist was counteracted by the D(4)R antagonist L745,870. Interestingly, at some time-points, combined treatment with morphine and PD168,077 substantially increased c-Fos, FosB/ΔFosB and P-CREB expression. The results of this study give indications for a general antagonistic D(4)R/MOR receptor interaction at the level of transcription factors. The change in the transcription factor expression by D(4)R/MOR interactions in turn suggests a modulation of neuronal activity in the CPu that could be of relevance for drug addiction. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Down-regulation of MAO-B activity and imidazoline receptors in rat brain following chronic treatment of morphine.

    PubMed

    Su, R B; Li, J; Li, X; Qin, B Y

    2001-07-01

    To study the regulation of monoamine oxidase-B (MAO-B) activity and imidazoline receptors (I-R) during long term treatment of morphine. MAO-B activity was detected by high performance liquid chromatography; I-R was detected by [3H]idazoxan binding test. Idazoxan and morphine inhibited whole brain homogenate MAO-B activity in a dose-dependent manner, while agmatine, an endogenous imidazoline ligand, didn't affect the activity of MAO-B, and it had no effect on the inhibition of MAO-B activity by idazoxan or morphine. MAO-B activity of rats decreased markedly in all five brain regions detected (cerebral cortex, hippocampus, thalamus, cerebellum, and striatum) after chronic administration of morphine for 16 d (P < 0.01). Acute challenge with naloxone or idazoxan did not influence MAO-B activity in morphine chronically treated rats. Although agmatine itself did not affect MAO-B activity, co-administration of agmatine with morphine could reverse the effect of morphine on MAO-B activity. Chronic administration of morphine significantly decreased the density of [3H]idazoxan binding sites and increased the binding affinity in cerebral cortex and cerebellum (P < 0.05 or P < 0.01). MAO-B activity was relevant to the abstinent syndrome of morphine dependent rats, but not related to the effect of agmatine on morphine analgesia; influence of agmatine on the pharmacological effects of morphine was based on its activation of imidazoline receptors.

  8. Adult responses to an ischemic stroke in a rat model of neonatal stress and morphine treatment.

    PubMed

    Hays, Sarah L; Valieva, Olga A; McPherson, Ronald J; Juul, Sandra E; Gleason, Christine A

    2013-02-01

    Critically ill newborn infants experience stressors that may alter brain development. Using a rodent model, we previously showed that neonatal stress, morphine, and stress plus morphine treatments each influence early gene expression and may impair neurodevelopment and learning behavior. We hypothesized that the combination of neonatal stress with morphine may alter neonatal angiogenesis and/or adult cerebral blood vessel density and thus increase injury after cerebral ischemia in adulthood. To test this, neonatal Lewis rats underwent 8 h/d maternal separation, plus morning/afternoon hypoxia exposure and either saline or morphine treatment (2 mg/kg s.c.) from postnatal day 3-7. A subset received bromodeoxyuridine to track angiogenesis. Adult brains were stained with collagen IV to quantify cerebral blood vessel density. To examine vulnerability to brain injury, postnatal day 80 adult rats underwent right middle cerebral artery occlusion (MCAO) to produce unilateral ischemic lesions. Brains were removed and processed for histology 48 h after injury. Brain injury was assessed by histological evaluation of hematoxylin and eosin, and silver staining. In contrast to our hypothesis, neither neonatal morphine, stress, nor the combination affected cerebral vessel density or MCAO-induced brain injury. Neonatal angiogenesis was not detected in adult rats possibly due to turnover of endothelial cells. Although unrelated to angiogenesis, hippocampal granule cell neurogenesis was detected and there was a trend (P = 0.073) toward increased bromodeoxyuridine incorporation in rats that underwent neonatal stress. These findings are discussed in contrast to other data concerning the effects of morphine on cerebrovascular function, and acute effects of morphine on hippocampal neurogenesis. Copyright © 2012 ISDN. Published by Elsevier Ltd. All rights reserved.

  9. Acute Noxious Stimulation Modifies Morphine Effect in Serotonergic but not Dopaminergic Midbrain Areas

    PubMed Central

    Bajic, Dusica; Commons, Kathryn G.

    2010-01-01

    It is poorly understood if and how pain may modify the effect of opioids on neural systems that contribute to reward and addictive behavior. We hypothesized that the activation of ascending dopaminergic and serotonergic nuclei by morphine is modified by the presence of noxious stimulation. Immunohistochemical double-labeling technique with Fos was used to examine if an intraplantar formalin injection, an acute noxious input, changed the effect of morphine on dopaminergic neurons of the ventral tegmental area (VTA), and serotonergic neurons of the dorsal raphe nucleus (DR). Four groups of rats were analyzed: (1) CONTROL injected with normal saline subcutaneously, (2) rats treated with FORMALIN into the hind paw 30 minutes after normal saline injection, (3) rats injected with MORPHINE sulfate subcutaneously, and (4) rats treated with formalin into the hind paw 30 minutes after morphine injection (MORPHINE/FORMALIN). Following morphine injection, there was an increase in the number of dopaminergic neurons in the VTA with Fos immunolabeling. However, noxious stimulation did not detectably change morphine's effect on Fos expression in VTA dopamine neurons. In contrast, the number of serotonergic neurons containing Fos was increased in the morphine/formalin group compared to all other groups and this effect was topographically selective for the dorsal area of the DR at mid rostro-caudal levels. Therefore, morphine's activation of the VTA, which is associated with motivated behavior and reward seeking, appears similar in the context of pain. However, activation of the ascending serotonin system, which influences mood and has the capacity to modify reward pathways, appears different. In addition, these findings reveal interactions between nociceptive signaling and opioids that contrasts with the notion that opioids simply block access of nociceptive signaling to supraspinal structures. PMID:20026253

  10. Administration of intravenous morphine for acute pain in the emergency department inflicts an economic burden in Europe

    PubMed Central

    Casamayor, Montserrat; Hennebert, Marc; Brazzi, Luca; Prosen, Gregor

    2018-01-01

    Background Acute pain is among the leading causes of referral to the emergency department (ED) in industrialized countries. Its management mainly depends on intensity. Moderate-to-severe pain is treated with intravenous (IV) administered opioids, of which morphine is the most commonly used in the ED. We have estimated the burden of IV administration of morphine in the five key European countries (EU5) using a micro-costing approach. Scope A structured literature review was conducted to identify clinical guidelines for acute pain management in EU5 and clinical studies conducted in the ED setting. The data identified in this literature review constituted the source for all model input parameters, which were clustered as analgesic (morphine), material used for IV morphine administration, nurse workforce time and management of morphine-related adverse events and IV-related complications. Findings The cost per patient of IV morphine administration in the ED ranges between €18.31 in Spain and €28.38 in Germany. If costs associated with the management of morphine-related adverse events and IV-related complications are also considered, the total costs amount to €121.13–€132.43. The main driver of those total costs is the management of IV-related complications (phlebitis, extravasation and IV prescription errors; 73% of all costs) followed by workforce time (14%). Conclusions IV morphine provides effective pain relief in the ED, but the costs associated with the IV administration inflict an economic burden on the respective national health services in EU5. An equally rapid-onset and efficacious analgesic that does not require IV administration could reduce this burden. PMID:29675049

  11. The new kisspeptin derivative - kissorphin (KSO) - attenuates acute hyperlocomotion and sensitization induced by ethanol and morphine in mice.

    PubMed

    Gibula-Bruzda, Ewa; Marszalek-Grabska, Marta; Gawel, Kinga; Trzcinska, Roza; Silberring, Jerzy; Kotlinska, Jolanta H

    2017-11-01

    Kissorphin (KSO) is a new peptide derived from kisspeptin-10. This peptide possesses neuropeptide FF (NPFF)-like biological activity in vitro; NPFF, in many cases, inhibits opioid and ethanol effects in rodents. Therefore, the current study explored the influence of KSO on acute ethanol- and morphine-induced hyperactivity, and on the development and expression of locomotor sensitization induced by these drugs. In the present study, sensitization to locomotor effects was induced by repeated exposure to ethanol (2.4 g/kg, intraperitoneally [i.p.], 1 × 4 days) or morphine (10 mg/kg, subcutaneously [s.c.], 1 × 7 days). We found that KSO (1-10 nmol/300 μL, intravenously [i.v.]) did not have an impact on locomotor activity of naïve mice. However, it reduced both acute ethanol- (10 nmol/300 μL) and morphine-induced hyperactivity (3 and 10 nmol/300 μL). Pretreatment of animals with KSO (10 nmol/300 μL), before every ethanol or morphine injection during development of sensitization or before the ethanol or morphine challenge, attenuated the development, as well as the expression of locomotor sensitization to both substances. Moreover, prior administration of the NPFF receptor antagonist RF9 (10 nmol/300 μL, i.v.) inhibited the ability of KSO (10 nmol/300 μL) to reduce the expression of ethanol and morphine sensitization. KSO given alone, at all used doses, did not influence the motor coordination measured via the rotarod test. The results from this study show that KSO effectively attenuated acute and repeated effects of ethanol and morphine. Thus, KSO possesses NPFF-like anti-opioid activity in these behavioral studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Low-dose Ketamine Versus Morphine for Acute Pain In the ED: A Randomized Controlled Trial

    DTIC Science & Technology

    2015-03-01

    fibromyalgia or other chronic pain condition requiring the use of opioids or tramadol as an outpatient, ischemic heart disease, heart failure or unstable...dysrhythmias, use of an opioid or tramadol within 4 hours prior to enrollment, an allergy to morphine or ketamine, required pain medication immediately...Original Contribution Low-dose ketamine vs morphine for acute pain in the ED: a randomized controlled trial☆,☆☆ Joshua P. Miller, MD a,b,⁎, Steven G

  13. Treadmill exercise attenuates the severity of physical dependence, anxiety, depressive-like behavior and voluntary morphine consumption in morphine withdrawn rats receiving methadone maintenance treatment.

    PubMed

    Alizadeh, Maryam; Zahedi-Khorasani, Mahdi; Miladi-Gorji, Hossein

    2018-05-30

    This study was designed to examine whether treadmill exercise would attenuate the severity of physical dependence, methadone-induced anxiety, depression and voluntary morphine consumption in morphine withdrawn rats receiving methadone maintenance treatment (MMT). The rats were chronically treated with bi-daily doses (10 mg/kg, at 12 h intervals) of morphine for 14 days. The exercising rats receiving MMT were forced to run on a motorized treadmill for 30 days during morphine withdrawal. Then, rats were tested for the severity of morphine dependence, the elevated plus-maze (EPM), sucrose preference test (SPT) and voluntary morphine consumption using a two-bottle choice (TBC) paradigm. The results showed that naloxone- precipitated opioid withdrawal signs were decreased in exercising morphine-dependent rats receiving MMT than sedentary rats. Also, the exercising morphine-dependent rats receiving MMT exhibited an increased time on open arms, preference for sucrose and a lower morphine preference ratio than sedentary rats. We conclude that treadmill exercise decreased the severity of physical dependence, anxiety/depressive-like behaviors and also the voluntary morphine consumption in morphine withdrawn rats receiving MMT. Thus, exercise may benefit in the treatment of addicts during MMT. Copyright © 2018. Published by Elsevier B.V.

  14. Characterisation of tramadol, morphine and tapentadol in an acute pain model in Beagle dogs.

    PubMed

    Kögel, Babette; Terlinden, Rolf; Schneider, Johannes

    2014-05-01

    To evaluate the analgesic potential of the centrally acting analgesics tramadol, morphine and the novel analgesic tapentadol in a pre-clinical research model of acute nociceptive pain, the tail-flick model in dogs. Prospective part-randomized pre-clinical research trial. Fifteen male Beagle dogs (HsdCpb:DOBE), aged 12-15 months. On different occasions separated by at least 1 week, dogs received intravenous (IV) administrations of tramadol (6.81, 10.0 mg kg(-1) ), tapentadol (2.15, 4.64, 6.81 mg kg(-1) ) or morphine (0.464, 0.681, 1.0 mg kg(-1) ) with subsequent measurement of tail withdrawal latencies from a thermal stimulus (for each treatment n = 5). Blood samples were collected immediately after the pharmacodynamic measurements of tramadol to determine pharmacokinetics and the active metabolite O-demethyltramadol (M1). Tapentadol and morphine induced dose-dependent antinociception with ED50-values of 4.3 mg kg(-1) and 0.71 mg kg(-1) , respectively. In contrast, tramadol did not induce antinociception at any dose tested. Measurements of the serum levels of tramadol and the M1 metabolite revealed only marginal amounts of the M1 metabolite, which explains the absence of the antinociceptive effect of tramadol in this experimental pain model in dogs. Different breeds of dogs might not or only poorly respond to treatment with tramadol due to low metabolism of the drug. Tapentadol and morphine which act directly on μ-opioid receptors without the need for metabolic activation are demonstrated to induce potent antinociception in the experimental model used and should also provide a reliable pain management in the clinical situation. The non-opioid mechanisms of tramadol do not provide antinociception in this experimental setting. This contrasts to many clinical situations described in the literature, where tramadol appears to provide useful analgesia in dogs for post-operative pain relief and in more chronically pain states. © 2014 Association of Veterinary

  15. Endogenous Cholinergic Neurotransmission Contributes to Behavioral Sensitization to Morphine

    PubMed Central

    Bajic, Dusica; Soiza-Reilly, Mariano; Spalding, Allegra L.; Berde, Charles B.; Commons, Kathryn G.

    2015-01-01

    Neuroplasticity in the mesolimbic dopaminergic system is critical for behavioral adaptations associated with opioid reward and addiction. These processes may be influenced by cholinergic transmission arising from the laterodorsal tegmental nucleus (LDTg), a main source of acetylcholine to mesolimbic dopaminergic neurons. To examine this possibility we asked if chronic systemic morphine administration affects expression of genes in ventral and ventrolateral periaqueductal gray at the level of the LDTg using rtPCR. Specifically, we examined gene expression changes in the area of interest using Neurotransmitters and Receptors PCR array between chronic morphine and saline control groups. Analysis suggested that chronic morphine administration led to changes in expression of genes associated, in part, with cholinergic neurotransmission. Furthermore, using a quantitative immunofluorescent technique, we found that chronic morphine treatment produced a significant increase in immunolabeling of the cholinergic marker (vesicular acetylcholine transporter) in neurons of the LDTg. Finally, systemic administration of the nonselective and noncompetitive neuronal nicotinic antagonist mecamylamine (0.5 or 2 mg/kg) dose-dependently blocked the expression, and to a lesser extent the development, of locomotor sensitization. The same treatment had no effect on acute morphine antinociception, antinociceptive tolerance or dependence to chronic morphine. Taken together, the results suggest that endogenous nicotinic cholinergic neurotransmission selectively contributes to behavioral sensitization to morphine and this process may, in part, involve cholinergic neurons within the LDTg. PMID:25647082

  16. Morphine treatment enhances glutamatergic input onto neurons of the nucleus accumbens via both disinhibitory and stimulating effect.

    PubMed

    Yuan, Kejing; Sheng, Huan; Song, Jiaojiao; Yang, Li; Cui, Dongyang; Ma, Qianqian; Zhang, Wen; Lai, Bin; Chen, Ming; Zheng, Ping

    2017-11-01

    Drug addiction is a chronic brain disorder characterized by the compulsive repeated use of drugs. The reinforcing effect of repeated use of drugs on reward plays an important role in morphine-induced addictive behaviors. The nucleus accumbens (NAc) is an important site where morphine treatment produces its reinforcing effect on reward. However, how morphine treatment produces its reinforcing effect on reward in the NAc remains to be clarified. In the present study, we studied the influence of morphine treatment on the effects of DA and observed whether morphine treatment could directly change glutamatergic synaptic transmission in the NAc. We also explored the functional significance of morphine-induced potentiation of glutamatergic synaptic transmission in the NAc at behavioral level. Our results show that (1) morphine treatment removes the inhibitory effect of DA on glutamatergic input onto NAc neurons; (2) morphine treatment potentiates glutamatergic input onto NAc neurons, especially the one from the basolateral amygdala (BLA) to the NAc; (3) blockade of glutamatergic synaptic transmission in the NAc or ablation of projection neurons from BLA to NAc significantly decreases morphine treatment-induced increase in locomotor activity. These results suggest that morphine treatment enhances glutamatergic input onto neurons of the NAc via both disinhibitory and stimulating effect and therefore increases locomotor activity. © 2016 Society for the Study of Addiction.

  17. Tolerance to the antinociceptive effects of chronic morphine requires c-Jun N-terminal kinase.

    PubMed

    Marcus, David J; Zee, Michael; Hughes, Alex; Yuill, Matthew B; Hohmann, Andrea G; Mackie, Ken; Guindon, Josée; Morgan, Daniel J

    2015-06-12

    Morphine and fentanyl are opioid analgesics in wide clinical use that act through the μ-opioid receptor (MOR). However, one limitation of their long-term effectiveness is the development of tolerance. Receptor desensitization has been proposed as a putative mechanism driving tolerance to G protein-coupled receptor (GPCR) agonists. Recent studies have found that tolerance to morphine is mediated by the c-Jun N-terminal Kinase (JNK) signaling pathway. The goal of the present study was to test the hypotheses that: 1) JNK inhibition will be antinociceptive on its own; 2) JNK inhibition will augment morphine antinociception and; 3) JNK mediates chronic tolerance for the antinociceptive effects of morphine using acute (hotplate and tail-flick), inflammatory (10 μl of formalin 2.5%) and chemotherapy (cisplatin 5 mg/kg ip once weekly)-induced neuropathic pain assays. We found that JNK inhibition by SP600125 (3 mg/kg) produces a greater antinociceptive effect than morphine (6 mg/kg) alone in the formalin test. Moreover, co-administration of morphine (6 mg/kg) with SP600125 (3 mg/kg) produced a sub-additive antinociceptive effect in the formalin test. We also show that pre-treatment with SP600125 (3 or 10 mg/kg), attenuates tolerance to the antinociceptive effects of morphine (10 mg/kg), but not fentanyl (0.3 mg/kg), in the tail-flick and hotplate tests. Pre-treatment with SP600125 also attenuates tolerance to the hypothermic effects of both morphine and fentanyl. We also examined the role of JNK in morphine tolerance in a cisplatin-induced model of neuropathic pain. Interestingly, treatment with SP600125 (3 mg/kg) alone attenuated mechanical and cold allodynia in a chemotherapy-induced pain model using cisplatin. Strikingly, SP600125 (3 mg/kg) pre-treatment prolonged the anti-allodynic effect of morphine by several days (5 and 7 days for mechanical and cold, respectively). These results demonstrate that JNK signaling plays a crucial role in mediating antinociception as

  18. Modest increase in risk of acute coronary syndrome associated with morphine use in cancer patients: a population-based nested case-control study.

    PubMed

    Lee, Cynthia Wei-Sheng; Muo, Chih-Hsin; Liang, Ji-An; Sung, Fung-Chang; Kao, Chia-Hung

    2014-06-01

    Morphine is widely used for pain management in cancer patients. Use of heroin, a morphine derivative, is a risk factor for acute coronary syndrome (ACS). This study investigates the risk of ACS associated with morphine use by comparing the incidence of ACS in cancer patients treated with and without morphine. This is a population-based nested case-control study using the Longitudinal Health Insurance Database 2000 in Taiwan. In total, 31,384 patients on the database were diagnosed with cancer without prior history of ACS during 1998-2010. In this cohort, 499 patients subsequently developed ACS and 30,885 patients did not. The 499 patients were designated as the ACS group; controls were selected from the remaining 30,885 patients and matched 3:1 to each case for age, sex, year of cancer diagnosis, and index year. Logistic regression was used to estimate the odds ratios and 95% confidence intervals, and the multivariable model was applied to control for age, sex, and Charlson comorbidity score. Cancer patients who received morphine had a 32% higher risk of developing ACS than non-morphine users. This increase in risk was significant when evaluating the overall cancer patients, but non-significant when evaluating any specific cancer type. The risk of ACS increased significantly with increasing morphine dosage (to ≥65 mg/y). Morphine treatment is associated with a modest increase in risk of ACS in patients with malignancy, but this association displays low significance in specific cancer types. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Comparison of (+)- and (−)-Naloxone on the Acute Psychomotor-Stimulating Effects of Heroin, 6-Acetylmorphine, and Morphine in Mice

    PubMed Central

    Andersen, Jannike Mørch; Boix, Fernando; Bergh, Marianne Skov-Skov; Vindenes, Vigdis; Rice, Kenner C.; Huestis, Marilyn A.; Mørland, Jørg

    2016-01-01

    Toll-like receptor 4 (TLR4) signaling is implied in opioid reinforcement, reward, and withdrawal. Here, we explored whether TLR4 signaling is involved in the acute psychomotor-stimulating effects of heroin, 6-acetylmorphine (6-AM), and morphine as well as whether there are differences between the three opioids regarding TLR4 signaling. To address this, we examined how pretreatment with (+)-naloxone, a TLR4 active but opioid receptor (OR) inactive antagonist, affected the acute increase in locomotor activity induced by heroin, 6-AM, or morphine in mice. We also assessed the effect of pretreatment with (−)-naloxone, a TLR4 and OR active antagonist, as well as the pharmacokinetic profiles of (+) and (−)-naloxone in the blood and brain. We found that (−)-naloxone reduced acute opioid-induced locomotor activity in a dose-dependent manner. By contrast, (+)-naloxone, administered in doses assumed to antagonize TLR4 but not ORs, did not affect acute locomotor activity induced by heroin, 6-AM, or morphine. Both naloxone isomers exhibited similar concentration versus time profiles in the blood and brain, but the brain concentrations of (−)-naloxone reached higher levels than those of (+)-naloxone. However, the discrepancies in their pharmacokinetic properties did not explain the marked difference between the two isomers’ ability to affect opioid-induced locomotor activity. Our results underpin the importance of OR activation and do not indicate an apparent role of TLR4 signaling in acute opioid-induced psychomotor stimulation in mice. Furthermore, there were no marked differences between heroin, 6-AM, and morphine regarding involvement of OR or TLR4 signaling. PMID:27278234

  20. [Continuous subcutaneous morphine--treatment of pain in patients with terminal cancer].

    PubMed

    Nielsen, F B; Clemensen, S E; Olesen, A S; Hole, P

    1990-06-11

    Nine patients with terminal cancer were treated for pain with continuous subcutaneous injection of morphine via a portable battery-driven injection pump. Treatment was instituted on account of failure of other forms of treatment with oral or epidural morphine derivatives or on account of severe nausea and vomiting which necessitated parenteral administration. Treatment proved reasonably effective and no side effects of significance occurred. Two of the patients could be treated in their homes. The method is thus considered as suitable for treatment of pain in patients with terminal cancer.

  1. Intravenous parecoxib sodium as an analgesic alternative to morphine in acute trauma pain in the emergency department.

    PubMed

    Baharuddin, Kamarul Aryffin; Rahman, Nik Hisamuddin Na; Wahab, Shaik Farid Abdull; Halim, Nurkhairulnizam A; Ahmad, Rashidi

    2014-01-03

    Parecoxib sodium is the first parenteral COX-2 inhibitor used for pain management licensed for postoperative pain. However, no study has assessed the usage of parecoxib for acute traumatic pain in the emergency department (ED). The objective of this study was to investigate a potential alternative analgesic agent in the ED by determining the mean reduction of pain score between acute traumatic pain patients who were administered with intravenous (IV) parecoxib sodium versus IV morphine sulfate. The onset of perceptible analgesic effect and side effects were also evaluated. A randomized, double-blinded study comparing IV parecoxib 40 mg versus IV morphine at 0.10 mg/kg was conducted in adult patients presented with acute traumatic pain with numeric rating scale (NRS) of 6 or more within 6 hours of injury. Patients were randomized using a computer-generated randomization plan. Drug preparation and dispensing were performed by a pharmacist. Periodic assessment of blood pressure, pulse rate, oxygen saturation, and NRS were taken at 0, 5, 15, and 30 minute intervals after the administration of the study drug. The primary outcome was the reduction of NRS. Side effect and drug evaluation was conducted within 30 minutes of drug administration. There was no statistically significant difference in the reduction of mean NRS between patients in the IV parecoxib group or IV morphine group (P = 0.095). The mean NRS for patients treated with IV morphine were 7.1 at 0 minutes, 4.5 at 5 minutes, 3.1 at 15 minutes, and 2.0 at 30 minutes. Whereas mean NRS for patients who received IV parecoxib were 7.8 at 0 minutes, 5.7 at 5 minutes, 4.7 at 15 minutes, and 3.9 at 30 minutes. The onset of perceptible analgesic effects could be seen as early as 5 minutes. Dizziness was experienced in 42.9% of patients who received IV morphine compared to none in the parecoxib group. There was non-significant trend toward superiority of IV morphine over IV parecoxib. Looking at its effectiveness

  2. Intravenous parecoxib sodium as an analgesic alternative to morphine in acute trauma pain in the emergency department

    PubMed Central

    2014-01-01

    Background Parecoxib sodium is the first parenteral COX-2 inhibitor used for pain management licensed for postoperative pain. However, no study has assessed the usage of parecoxib for acute traumatic pain in the emergency department (ED). The objective of this study was to investigate a potential alternative analgesic agent in the ED by determining the mean reduction of pain score between acute traumatic pain patients who were administered with intravenous (IV) parecoxib sodium versus IV morphine sulfate. The onset of perceptible analgesic effect and side effects were also evaluated. Methods A randomized, double-blinded study comparing IV parecoxib 40 mg versus IV morphine at 0.10 mg/kg was conducted in adult patients presented with acute traumatic pain with numeric rating scale (NRS) of 6 or more within 6 hours of injury. Patients were randomized using a computer-generated randomization plan. Drug preparation and dispensing were performed by a pharmacist. Periodic assessment of blood pressure, pulse rate, oxygen saturation, and NRS were taken at 0, 5, 15, and 30 minute intervals after the administration of the study drug. The primary outcome was the reduction of NRS. Side effect and drug evaluation was conducted within 30 minutes of drug administration. Results There was no statistically significant difference in the reduction of mean NRS between patients in the IV parecoxib group or IV morphine group (P = 0.095). The mean NRS for patients treated with IV morphine were 7.1 at 0 minutes, 4.5 at 5 minutes, 3.1 at 15 minutes, and 2.0 at 30 minutes. Whereas mean NRS for patients who received IV parecoxib were 7.8 at 0 minutes, 5.7 at 5 minutes, 4.7 at 15 minutes, and 3.9 at 30 minutes. The onset of perceptible analgesic effects could be seen as early as 5 minutes. Dizziness was experienced in 42.9% of patients who received IV morphine compared to none in the parecoxib group. Conclusions There was non-significant trend toward superiority of IV morphine over IV

  3. OPRM1 c.118A>G Polymorphism and Duration of Morphine Treatment Associated with Morphine Doses and Quality-of-Life in Palliative Cancer Pain Settings

    PubMed Central

    Hajj, Aline; Halepian, Lucine; Osta, Nada El; Chahine, Georges; Kattan, Joseph; Rabbaa Khabbaz, Lydia

    2017-01-01

    Despite increased attention on assessment and management, pain remains the most persistent symptom in patients with cancer, in particular in end-of-life settings, with detrimental impact on their quality-of-life (QOL). We conducted this study to evaluate the added value of determining some genetic and non-genetic factors to optimize cancer pain treatment. Eighty-nine patients were included in the study for the evaluation of palliative cancer pain management. The regression analysis showed that age, OPRM1 single nucleotide polymorphism (SNP), as well as the duration of morphine treatment were significantly associated with morphine doses at 24 h (given by infusion pump; p = 0.043, 0.029, and <0.001, respectively). The mean doses of morphine decreased with age but increased with the duration of morphine treatment. In addition, patients with AG genotype c.118A>G OPRM1 needed a higher dose of morphine than AA patients. Moreover, metastases, OPRM1 SNP, age, and gender were significantly associated with the QOL in our population. In particular, AA patients for OPRM1 SNP had significantly lower cognitive function than AG patients, a result not previously reported in the literature. These findings could help increase the effectiveness of morphine treatment and enhance the QOL of patients in regards to personalized medicine. PMID:28346387

  4. A test of the opponent-process theory of motivation using lesions that selectively block morphine reward.

    PubMed

    Vargas-Perez, Hector; Ting-A-Kee, Ryan A; Heinmiller, Andrew; Sturgess, Jessica E; van der Kooy, Derek

    2007-06-01

    The opponent-process theory of motivation postulates that motivational stimuli activate a rewarding process that is followed by an opposed aversive process in a homeostatic control mechanism. Thus, an acute injection of morphine in nondependent animals should evoke an acute rewarding response, followed by a later aversive response. Indeed, the tegmental pedunculopontine nucleus (TPP) mediates the rewarding effects of opiates in previously morphine-naive animals, but not other unconditioned effects of opiates, or learning ability. The aversive opponent process for acute morphine reward was revealed using a place-conditioning paradigm. The conditioned place aversion induced by 16-h spontaneous morphine withdrawal from an acute morphine injection in nondependent rats was abolished by TPP lesions performed prior to drug experience. However, TPP-lesioned rats did show conditioned aversions for an environment paired with the acute administration of the opioid antagonist naloxone, which blocks endogenous opioids. The results show that blocking the rewarding effects of morphine with TPP lesions also blocked the opponent aversive effects of acute morphine withdrawal in nondependent animals. Thus, this spontaneous withdrawal aversion (the opponent process) is induced by the acute rewarding effects of morphine and not by other unconditioned effects of morphine, the pharmacological effects of morphine or endogenous opioids being displaced from opiate receptors.

  5. [Behavioural studies during the gestational-lactation period in morphine treated rats].

    PubMed

    Sobor, Melinda; Timár, Júlia; Riba, Pál; Király, Kornél P; Al-Khrasani, Mahmoud; Gyarmati, Zsuzsanna; Fürst, Zsuzsanna

    2013-12-01

    Opioids impair the maternal behaviour of experimental animals. The effect of morphine on maternal behaviour in rat dams treated chronically with morphine during the whole pregnancy and lactation has not been yet analysed systematically. The aim of our work was to investigate the behavioural effects of moderate dose morphine administered constantly in the whole perinatal period in rats. Nulliparous female rats were treated with 10 mg/kg morphine s.c. once daily, from the day of mating. Maternal behaviour was observed, the effects of acute morphine treatment on the maternal behaviour and whether this effect could be antagonised by naloxone were also investigated. Physical and other behavioural (anxiety-like signals in elevated plus maze, changes in locomotor activity) withdrawal signs precipitated by naloxone were registered. After weaning sensitivity to the rewarding effect of morphine was measured by conditioned place preference and to the aversive effect of naloxone by conditioned place aversion tests. Antinociceptive test on tail-flick apparatus was performed to investigate the changes in morphine antinociceptive effects due to chronic morphine treatment. Maternal behaviour was significantly impaired in morphine-treated dams. This effect of morphine lasted c.a. 2-3 hours a day, it showed dose-dependency and was enhanced in MO-treated group (sensitisation). Only weak physical and no other behavioural (anxiety-like behaviour or hypolocomotion) withdrawal signs were precipitated by naloxone. The positive reinforcing effect of morphine and aversive effect of naloxone were markedly increased on conditioned place paradigm. Significant antinociceptive tolerance was not seen. Although human drug abuse can be hardly modelling under experimental circumstances, our constant, relatively moderate dose morphine treatment administered once daily during the whole pregnancy and lactation resulted in several subtle behavioural changes in dams. In perinatally opioid

  6. Supraspinally administered agmatine prevents the development of supraspinal morphine analgesic tolerance.

    PubMed

    Kitto, Kelley F; Fairbanks, Carolyn A

    2006-04-24

    We have determined the effect of intracerebroventricularly (i.c.v.) administered decarboxylated arginine (agmatine) on supraspinally induced chronic morphine analgesic tolerance. Mice pre-treated with a schedule of chronic i.c.v administration of morphine (10 nmol, b.i.d. 3 days) show a 12-fold reduction in the potency of acutely administered i.c.v morphine compared to saline injected controls. Co-administration of agmatine (10 nmol) with one of the two daily morphine injections completely prevents the reduction in i.c.v morphine analgesia. Mice injected with agmatine once daily (but no morphine) do not show a increase in morphine analgesic potency relative to saline controls, indicating that a mere potentiation of acute morphine analgesia cannot account for the agmatine-mediated anti-tolerance effect in those mice subjected to the morphine tolerance induction schedule. These observations agree with previous reports that systemically and intrathecally administered agmatine prevent opioid tolerance, and extend these results to include a supraspinal site of action.

  7. The use-dependent, nicotinic antagonist BTMPS reduces the adverse consequences of morphine self-administration in rats in an abstinence model of drug seeking

    PubMed Central

    Hall, Brandon J.; Pearson, Laura S.; Terry, Alvin V.; Buccafusco, Jerry J.

    2011-01-01

    In this study, the use-dependent, nicotinic receptor antagonist bis (2, 2, 6, 6-tetramethyl-4-piperidinyl) sebacate (BTMPS) was evaluated for its ability to attenuate the adverse consequences associated with morphine in rats in all three phases of an abstinence model of drug seeking: self-administration, acute withdrawal, and delayed test of drug seeking. Rats were allowed to self-administer morphine (FR1 schedule) with an active response lever, on a 24hr basis inside operant chambers, for 14 days. Each rat was subsequently evaluated for stereotypical behaviors associated with spontaneous morphine withdrawal. Rats were then placed in standard housing cages for a six week period of protracted abstinence from morphine. After this period, each rat was placed back into its respective operant chamber for a 14 day assessment of unrewarded drug seeking responses. BTMPS was administered to the animals in all three clinically relevant phases in three separate sets of experiments. BTMPS treatment during the self-administration phase resulted in up to a 34% reduction of lever responses to morphine when compared to vehicle treated control animals, as well as a 32% reduction in the dose of morphine self-administered. When given during self-administration and acute withdrawal, BTMPS treatment decreased acute withdrawal symptoms (up to 64%) of morphine use and reduced (up to 45%) drug seeking responses after six weeks of protracted withdrawal compared to control animals. BTMPS treatment after six weeks of abstinence from morphine had no effect. These results offer insight into the role of central cholinergic receptors in the onset and maintenance of drug addiction. PMID:21651919

  8. Pre-conditioned place preference treatment of chloral hydrate interrupts the rewarding effect of morphine.

    PubMed

    Sun, YongMei; Zong, Wei; Zhou, MuRu; Ma, YuanYe; Wang, JianHong

    2015-08-01

    The medical use of morphine as a pain killer is hindered by its side effects including dependence and further addiction. As the prototypical μ receptor agonist, morphine's rewarding effect can be measured by conditioned place preference (CPP) paradigms in animals. Chloral hydrate is a clinical sedative. Using a morphine CPP paradigm that mainly contains somatosensory cues, we found that pre-CPP treatment in rats using chloral hydrate for 6 consecutive days could disrupt the establishment of CPP in a U shape. Chloral hydrate had no effect on the body weight of rats. Our results indicate that prior treatment with chloral hydrate can interrupt the rewarding effect of morphine. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Involvement of neuropeptide FF receptors in neuroadaptive responses to acute and chronic opiate treatments.

    PubMed

    Elhabazi, K; Trigo, J M; Mollereau, C; Moulédous, L; Zajac, J-M; Bihel, F; Schmitt, M; Bourguignon, J J; Meziane, H; Petit-demoulière, B; Bockel, F; Maldonado, R; Simonin, F

    2012-01-01

    BACKGROUND AND PURPOSE Opiates remain the most effective compounds for alleviating severe pain across a wide range of conditions. However, their use is associated with significant side effects. Neuropeptide FF (NPFF) receptors have been implicated in several opiate-induced neuroadaptive changes including the development of tolerance. In this study, we investigated the consequences of NPFF receptor blockade on acute and chronic stimulation of opioid receptors in mice by using RF9, a potent and selective antagonist of NPFF receptors that can be administered systemically. EXPERIMENTAL APPROACH The effects of RF9 were investigated on opioid pharmacological responses including locomotor activity, antinociception, opioid-induced hyperalgesia, rewarding properties and physical dependence. KEY RESULTS RF9 had no effect on morphine-induced horizontal hyperlocomotion and slightly attenuated the decrease induced in vertical activity. Furthermore, RF9 dose-dependently blocked the long-lasting hyperalgesia produced by either acute fentanyl or chronic morphine administration. RF9 also potentiated opiate early analgesic effects and prevented the development of morphine tolerance. Finally, RF9 increased morphine-induced conditioned place preference without producing any rewarding effect by itself and decreased naltrexone-precipitated withdrawal syndrome following chronic morphine treatment. CONCLUSION AND IMPLICATIONS The NPFF system is involved in the development of two major undesirable effects: tolerance and dependence, which are clinically associated with prolonged exposure to opiates. Our findings suggest that NPFF receptors are interesting therapeutic targets to improve the analgesic efficacy of opiates by limiting the development of tolerance, and for the treatment of opioid dependence. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  10. Involvement of neuropeptide FF receptors in neuroadaptive responses to acute and chronic opiate treatments

    PubMed Central

    Elhabazi, K; Trigo, JM; Mollereau, C; Moulédous, L; Zajac, J-M; Bihel, F; Schmitt, M; Bourguignon, JJ; Meziane, H; Petit-demoulière, B; Bockel, F; Maldonado, R; Simonin, F

    2012-01-01

    BACKGROUND AND PURPOSE Opiates remain the most effective compounds for alleviating severe pain across a wide range of conditions. However, their use is associated with significant side effects. Neuropeptide FF (NPFF) receptors have been implicated in several opiate-induced neuroadaptive changes including the development of tolerance. In this study, we investigated the consequences of NPFF receptor blockade on acute and chronic stimulation of opioid receptors in mice by using RF9, a potent and selective antagonist of NPFF receptors that can be administered systemically. EXPERIMENTAL APPROACH The effects of RF9 were investigated on opioid pharmacological responses including locomotor activity, antinociception, opioid-induced hyperalgesia, rewarding properties and physical dependence. KEY RESULTS RF9 had no effect on morphine-induced horizontal hyperlocomotion and slightly attenuated the decrease induced in vertical activity. Furthermore, RF9 dose-dependently blocked the long-lasting hyperalgesia produced by either acute fentanyl or chronic morphine administration. RF9 also potentiated opiate early analgesic effects and prevented the development of morphine tolerance. Finally, RF9 increased morphine-induced conditioned place preference without producing any rewarding effect by itself and decreased naltrexone-precipitated withdrawal syndrome following chronic morphine treatment. CONCLUSION AND IMPLICATIONS The NPFF system is involved in the development of two major undesirable effects: tolerance and dependence, which are clinically associated with prolonged exposure to opiates. Our findings suggest that NPFF receptors are interesting therapeutic targets to improve the analgesic efficacy of opiates by limiting the development of tolerance, and for the treatment of opioid dependence. PMID:21718302

  11. The Acute Administration of the Selective Dopamine D3 Receptor Antagonist SB-277011A Reverses Conditioned Place Aversion Produced by Naloxone Precipitated Withdrawal From Acute Morphine Administration in Rats

    PubMed Central

    RICE, ONARAE V.; GARDNER, ELIOT L.; HEIDBREDER, CHRISTIAN A.; ASHBY, CHARLES R.

    2014-01-01

    We examined the effect of SB-277011A, a selective D3 receptor antagonist, on the conditioned place aversion (CPA) response associated with naloxone-induced withdrawal from acute morphine administration in male Sprague-Dawley rats. Morphine (5.6 mg/kg i.p.) was given, followed 4 hrs later by naloxone (0.3 mg/kg i.p.) and prior to placing the animals in one specific chamber of the test apparatus. All animals were subjected to 2 of these trials. A significant CPA occurred in animals that received an i.p. injection of vehicle 30 minutes prior to the measurement of chamber preference. The pretreatment of animals (30 minutes prior to testing) with 3 mg/kg i.p. of SB-277011A did not significantly alter the CPA compared to animals treated with vehicle (1 ml/kg i.p. of deionized distilled water). In contrast, the acute pretreatment of animals with 6, 12 or 24 mg/kg i.p. of SB-277011A significantly decreased the CPA compared to vehicle-treated animals. In fact, the 12 and 24 mg/kg doses of SB-277011A significantly increased the time spent in the chamber where animals were paired with morphine and naloxone. These results suggest that the selective antagonism of D3 receptors attenuates the CPA produced by a model of naloxone-induced withdrawal from acute morphine dependence. PMID:21905128

  12. Treatment of severe cancer pain by low-dose continuous subcutaneous morphine.

    PubMed

    Drexel, H; Dzien, A; Spiegel, R W; Lang, A H; Breier, C; Abbrederis, K; Patsch, J R; Braunsteiner, H

    1989-02-01

    In a prospective and intraindividually controlled trial, we have compared the efficacy and safety of a continuous subcutaneous morphine infusion with conventional intermittent oral or subcutaneous morphine application. Twenty-eight in-patients with cancer pain received a short-term infusion lasting 2-42 days, and 8 out-patients underwent long-term infusion from 49 to 197 days during the terminal stage of their disease. Continuous subcutaneous morphine infusion significantly (P less than 0.001) improved both pain and quality of life when compared to conventional morphine application. With continuous infusion, 5-48 mg (median 19 mg) of morphine was required daily, significantly (P less than 0.001) less than the 10-90 mg (median 50 mg) necessary with conventional use. As a result of lower dosage, side effects under continuous infusion were infrequent and mild. Constipation occurred in 3 of the 36 patients and was always controlled by the addition of laxatives; no nausea, sedation or respiratory depression were observed. Signs of tolerance developed in 2 patients on long-term infusion, but the use of continuous subcutaneous methadone for 2 weeks reversed the tolerance. The study presented indicates that low-dose continuous subcutaneous morphine provides a valuable treatment modality for severe terminal cancer pain exhibiting a high degree of both efficacy and safety.

  13. Intrathecal Morphine Attenuates Recovery of Function after a Spinal Cord Injury

    PubMed Central

    Moreno, Georgina; Woller, Sarah; Puga, Denise; Hoy, Kevin; Balden, Robyn; Grau, James W.

    2009-01-01

    Abstract Prior work has shown that a high dose (20 mg/kg) of systemic morphine, required to produce significant analgesia in the acute phase of a contusion injury, undermines the long-term health of treated subjects and increases lesion size. Moreover, a single dose of systemic morphine in the early stage of injury (24 h post-injury) led to symptoms of neuropathic pain 3 weeks later, in the chronic phase. The present study examines the locus of the effects using intrathecal morphine administration. Subjects were treated with one of three doses (0, 30, or 90 μg) of intrathecal morphine 24 h after a moderate contusion injury. The 90-μg dose produced significant analgesia when subjects were exposed to noxious stimuli (thermal and incremented shock) below the level of injury. Yet, despite analgesic efficacy, intrathecal morphine significantly attenuated the recovery of locomotor function and increased lesion size rostral to the injury site. A single dose of 30 or 90 μg of intrathecal morphine also decreased weight gain, and more than doubled the incidence of mortality and autophagia when compared to vehicle-treated controls. Morphine is one of the most effective pharmacological agents for the treatment of neuropathic pain and, therefore, is indispensable for the spinally injured. Treatment can, however, adversely affect the recovery process. A morphine-induced attenuation of recovery may result from increases in immune cell activation and, subsequently, pro-inflammatory cytokine concentrations in the contused spinal cord. PMID:19388818

  14. Acute morphine effects on respiratory activity in mice with target deletion of the tachykinin 1 gene (Tac1-/-).

    PubMed

    Shvarev, Yuri; Berner, Jonas; Bilkei-Gorzo, Andras; Lagercrantz, Hugo; Wickström, Ronny

    2010-01-01

    Search for physiological mechanisms which could antagonize the opioid-induced respiratory depression is of important clinical value. In this study, we investigated the acute effects of morphine on respiratory activity in genetically modified newborn (P2) mice with target deletion of the (Tac1 -/-) gene lacking substance P (SP) and neurokinin A (NKA). In vivo, as shown with whole-body flow barometric plethysmography technique, morphine induced significantly attenuated minute ventilation during intermittent hypoxia in control animals. In contrast, knockout mice revealed significant increase in minute ventilation. In vitro, in brainstem preparation, knockout mice demonstrated greater changes in burst frequency during intermittent anoxia challenge. The data suggest that hereditary deficiency in tachykinins, SP and NKA results in more robust hypoxic response in newborn Tac1-/- mice during respiratory depression induced by morphine.

  15. Systemic synergism between codeine and morphine in three pain models in mice.

    PubMed

    Miranda, Hugo F; Noriega, Viviana; Zepeda, Ramiro J; Sierralta, Fernando; Prieto, Juan C

    2013-01-01

    The combination of two analgesic agents offers advantages in pain treatment. Codeine and morphine analgesia is due to activation of opioid receptor subtypes. This study, performed in mice using isobolographic analysis, evaluated the type of interaction in intraperitoneal (ip) or intrathecal (it) coadministration of codeine and morphine, in three nociceptive behavioral models. Intrathecal morphine resulted to be 7.5 times more potent than ip morphine in the writhing test, 55.6 times in the tail flick test and 1.7 times in phase II of the orofacial formalin test; however, in phase I of the same test ip was 1.2 times more potent than it morphine. Intrathecal codeine resulted being 3.4 times more potent than ip codeine in the writhing test, 1.6 times in the tail flick test, 2.5 times in phase I and 6.7 times in phase II of the orofacial formalin test. Opioid coadministration had a synergistic effect in the acute tonic pain (acetic acid writhing test), acute phasic pain (tail flick test) and inflammatory pain (orofacial formalin test). The interaction index ranged between 0.284 (writhing ip) and 0.440 (orofacial formalin phase II ip). This synergy may relate to the different pathways of pain transmission and to the different intracellular signal transduction. The present findings also raise the possibility of potential clinical advantages in combining opioids in pain management.

  16. Neurobiological Effects of Morphine after Spinal Cord Injury

    PubMed Central

    Woller, Sarah A.; Bancroft, Eric; Aceves, Miriam; Funk, Mary Katherine; Hartman, John; Garraway, Sandra M.

    2017-01-01

    Abstract Opioids and non-steroidal anti-inflammatory drugs are used commonly to manage pain in the early phase of spinal cord injury (SCI). Despite its analgesic efficacy, however, our studies suggest that intrathecal morphine undermines locomotor recovery and increases lesion size in a rodent model of SCI. Similarly, intravenous (IV) morphine attenuates locomotor recovery. The current study explores whether IV morphine also increases lesion size after a spinal contusion (T12) injury and quantifies the cell types that are affected by early opioid administration. Using an experimenter-administered escalating dose of IV morphine across the first seven days post-injury, we quantified the expression of neuron, astrocyte, and microglial markers at the injury site. SCI decreased NeuN expression relative to shams. In subjects with SCI treated with IV morphine, virtually no NeuN+ cells remained across the rostral-caudal extent of the lesion. Further, whereas SCI per se increased the expression of astrocyte and microglial markers (glial fibrillary acidic protein and OX-42, respectively), morphine treatment decreased the expression of these markers. These cellular changes were accompanied by attenuation of locomotor recovery (Basso, Beattie, Bresnahan scores), decreased weight gain, and the development of opioid-induced hyperalgesia (increased tactile reactivity) in morphine-treated subjects. These data suggest that morphine use is contraindicated in the acute phase of a spinal injury. Faced with a lifetime of intractable pain, however, simply removing any effective analgesic for the management of SCI pain is not an ideal option. Instead, these data underscore the critical need for further understanding of the molecular pathways engaged by conventional medications within the pathophysiological context of an injury. PMID:27762659

  17. Ethanol Reversal of Cellular Tolerance to Morphine in Rat Locus Coeruleus Neurons

    PubMed Central

    Llorente, Javier; Withey, Sarah; Rivero, Guadalupe; Cunningham, Margaret; Cooke, Alex; Saxena, Kunal; McPherson, Jamie; Oldfield, Sue; Dewey, William L.; Bailey, Chris P.; Kelly, Eamonn; Henderson, Graeme

    2013-01-01

    Consumption of ethanol is a considerable risk factor for death in heroin overdose. We sought to determine whether a mildly intoxicating concentration of ethanol could alter morphine tolerance at the cellular level. In rat locus coeruleus (LC) neurons, tolerance to morphine was reversed by acute exposure of the brain slice to ethanol (20 mM). Tolerance to the opioid peptide [d-Ala2,N-MePhe4,Gly-ol]-enkephalin was not reversed by ethanol. Previous studies in LC neurons have revealed a role for protein kinase C (PKC)α in μ-opioid receptor (MOPr) desensitization by morphine and in the induction and maintenance of morphine tolerance, but we have been unable to demonstrate that 20 mM ethanol produces significant inhibition of PKCα. The ability of ethanol to reverse cellular tolerance to morphine in LC neurons was absent in the presence of the phosphatase inhibitor okadaic acid, indicating that dephosphorylation is involved. In human embryonic kidney 293 cells expressing the MOPr, ethanol reduced the level of MOPr phosphorylation induced by morphine. Ethanol reversal of tolerance did not appear to result from a direct effect on MOPr since acute exposure to ethanol (20 mM) did not modify the affinity of binding of morphine to the MOPr or the efficacy of morphine for G-protein activation as measured by guanosine 5′-O-(3-[35S]thio)triphosphate binding. Similarly, ethanol did not affect MOPr trafficking. We conclude that acute exposure to ethanol enhances the effects of morphine by reversing the processes underlying morphine cellular tolerance. PMID:23716621

  18. Human Abuse Potential of an Abuse-Deterrent (AD), Extended-Release (ER) Morphine Product Candidate (Morphine-ADER Injection-Molded Tablets) versus Extended-Release Morphine Administered Orally in Nondependent Recreational Opioid Users

    PubMed Central

    Webster, Lynn R.; Lawler, John; Lindhardt, Karsten; Dayno, Jeffrey M.

    2017-01-01

    Objective. To compare the relative human abuse potential of intact and manipulated morphine abuse-deterrent, extended-release injection-molded tablets (morphine-ADER-IMT) with that of marketed morphine sulfate ER tablets Methods. This randomized, double-blind, triple-dummy, active- and placebo-controlled, 4-way crossover, single-center study included adult volunteers who were experienced, nondependent, recreational opioid users. Participants were randomized 1:1:1:1 to placebo, morphine-ADER-IMT (60 mg, intact), morphine-ADER-IMT (60 mg, manipulated), and morphine ER (60 mg, manipulated) and received 1 dose of each oral agent in crossover fashion, separated by ≥5 days. Pharmacodynamic and pharmacokinetic endpoints were assessed, including the primary endpoint of peak effect of Drug Liking (Emax) via Drug Liking Visual Analog Scale (VAS) score and the secondary endpoints of time to Emax (TEmax) and mean abuse quotient (AQ; a pharmacokinetic parameter associated with drug liking). Results. Thirty-eight participants completed the study. Median Drug Liking VAS Emax was significantly lower after treatment with manipulated morphine-ADER-IMT (67) compared with manipulated morphine ER (74; P = 0.007). TEmax was significantly shorter after treatment with manipulated morphine ER compared with intact (P < 0.0001) or manipulated (P = 0.004) morphine-ADER-IMT. Mean AQ was lower after treatment with intact (5.7) or manipulated (16.4) morphine-ADER-IMT compared with manipulated morphine ER (45.9). Conclusions. Manipulated morphine-ADER-IMT demonstrated significantly lower Drug Liking Emax compared with manipulated morphine ER when administered orally. Morphine-ADER-IMT would be an important new AD, ER morphine product with lower potential for unintentional misuse by chewing or intentional manipulation for oral abuse than currently available non-AD morphine ER products. PMID:27633773

  19. Acute stress worsens the deficits in appetitive behaviors for social and sexual stimuli displayed by rats after long-term withdrawal from morphine.

    PubMed

    Bai, Yunjing; Belin, David; Zheng, Xigeng; Liu, Zhengkui; Zhang, Yue

    2017-06-01

    Negative affective states, e.g., anhedonia, are suggested to be involved in the long-lasting motivational processes associated with relapse. Here, we investigated whether anhedonic behaviors could be elicited by an acute stress after protracted abstinence from morphine. The behavioral responses to natural stimuli following exposure to an acute stress were examined after 14 days of withdrawal from morphine. Male rats were pretreated with either a binge-like morphine regimen or daily saline injections for 5 days. The motivation for two natural stimuli, i.e., a social stimulus (male rat) and a sexual stimulus (estrous female rat), was measured, following exposure to an acute stress (intermittent foot shock, 0.5 mA * 0.5 s * 10 min; mean inter-shock interval 40 s), under three conditions: free approach and effort- and conflict-based approaches. Foot-shock-induced stress did not influence free-approach behavior (sniffing time) towards the social or sexual stimulus. However, in the effort-based approach task, the stressed morphine-withdrawn rats demonstrated an attenuated motivation to climb over a partition to approach the social stimulus while the stressed saline-pretreated rats showed an increased motivation to approach the social stimulus. When an aversive stimulus (pins) was introduced in order to induce an approach-avoidance conflict, both drug-withdrawn and drug-naïve groups exhibited a bimodal distribution of approach behavior towards the sexual stimulus after the stress was introduced, i.e., the majority of rats had low risky appetitive behaviors but a minority of them showed rather highly "risky" approach behavior. The acute stress induces differential motivational deficits for social and sexual rewards in protracted drug-abstinent rats.

  20. The effect of nimodipine on memory impairment during spontaneous morphine withdrawal in mice: Corticosterone interaction.

    PubMed

    Vaseghi, Golnaz; Rabbani, Mohammed; Hajhashemi, Valiollah

    2012-11-15

    Effects of the nimodipine, L-type calcium channel antagonist, has been studied on memory loss caused by spontaneous morphine withdrawal in mice. Mice were made dependent by increasing doses of morphine over three days. Memory was evaluated using object recognition task, which is based on tendency of rodents to exploration of new objects. The test was comprised of three sections: 15 min habitation, 12 min first trial and 5 min test trial. Recognition index was evaluated 4h after the last dose of morphine. Nimodipine was administrated either in chronic form (1, 5 and 10mg/kg) with daily doses of morphine or it was given as a single injection (5 and 10mg/kg) on the last day. Nimodipine in both treatment forms prevented the memory impairment following spontaneous morphine withdrawal. Corticosterone concentration was increased in brain and blood of mice during abstinence phase and pretreatment with nimodipine prevented the increase in brain and blood corticosterone concentration. The results show that blockade of L-type calcium channels improves memory deficits caused by morphine withdrawal. This indicates that some kind of treatments, such as nimodipine, administrated over the acute withdrawal phase, can prevent memory deficit during withdrawal. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Changes in the levels of p-ERK, p-CREB, and c-fos in rat mesocorticolimbic dopaminergic system after morphine-induced conditioned place preference: the role of acute and subchronic stress.

    PubMed

    Haghparast, Abbas; Fatahi, Zahra; Alamdary, Shabnam Zeighamy; Reisi, Zahra; Khodagholi, Fariba

    2014-03-01

    ERK pathway plays a critical role in the cellular adaptive responses to environmental changes. Stressful conditions can induce the activation of activate ERK, and its downstream targets, CREB and c-fos, in neural cells. Exposure to opioids has the same effect. In this study, we investigated the effects of morphine-induced conditioned place preference (CPP) on p-ERK/ERK ratio, p-CREB/CREB ratio and c-fos level in the mesocorticolimbic dopaminergic system including the nucleus accumbens (NAc), amygdala (AMY), striatum (Str), and prefrontal cortex (PFC).Our aim was to determine if acute and subchronic stress would affect these alterations. Male Wistar rats were divided into two saline- and morphine-treated groups. Each group contained of control, acute stress, and subchronic stress subgroups. The CPP procedure was performed for all of the rats. We dissected out the NAc, AMY, Str, and PFC regions and measured the mentioned ratios and c-fos level by Western blot analysis. The results revealed that in saline-treated animals, all factors enhanced significantly after performing acute and subchronic stress while there was an exception in p-ERK/ERK ratio in the Str and PFC; the changes were not significant during acute stress. Conditioning score decreased after applying the subchronic but not acute stress. In morphine-treated animals, all factors were increased after application of acute and subchronic stress, and conditioning scores also decreased after stress. Our findings suggest that in saline- or morphine-treated animals, acute and subchronic stress increases p-ERK, p-CREB, and c-fos levels in the mesocorticolimbic system. It has been shown that morphine induces the enhancement of the mentioned factors; on the other hand, our result demonstrates that stress can amplify these changes.

  2. Morphine regulates Argonaute 2 and TH expression and activity but not miR-133b in midbrain dopaminergic neurons.

    PubMed

    García-Pérez, Daniel; López-Bellido, Roger; Hidalgo, Juana M; Rodríguez, Raquel E; Laorden, Maria Luisa; Núñez, Cristina; Milanés, Maria Victoria

    2015-01-01

    Epigenetic changes such as microRNAs (miRs)/Ago2-induced gene silencing represent complex molecular signature that regulate cellular plasticity. Recent studies showed involvement of miRs and Ago2 in drug addiction. In this study, we show that changes in gene expression induced by morphine and morphine withdrawal occur with concomitant epigenetic modifications in the mesolimbic dopaminergic (DA) pathway [ventral tegmental area (VTA)/nucleus accumbens (NAc) shell], which is critically involved in drug-induced dependence. We found that acute or chronic morphine administration as well as morphine withdrawal did not modify miR-133b messenger RNA (mRNA) expression in the VTA, whereas Ago2 protein levels were decreased and increased in morphine-dependent rats and after morphine withdrawal, respectively. These changes were paralleled with enhanced and decreased NAc tyrosine hydroxylase (TH) protein (an early DA marker) in morphine-dependent rats and after withdrawal, respectively. We also observed changes in TH mRNA expression in the VTA that could be related to Ago2-induced translational repression of TH mRNA during morphine withdrawal. However, the VTA number of TH-positive neurons suffered no alterations after the different treatment. Acute morphine administration produced a marked increase in TH activity and DA turnover in the NAc (shell). In contrast, precipitated morphine withdrawal decreased TH activation and did not change DA turnover. These findings provide new information into the possible correlation between Ago2/miRs complex regulation and DA neurons plasticity during opiate addiction. © 2013 Society for the Study of Addiction.

  3. AN IL-1 RECEPTOR ANTAGONIST BLOCKS A MORPHINE-INDUCED ATTENUATION OF LOCOMOTOR RECOVERY AFTER SPINAL CORD INJURY

    PubMed Central

    Hook, Michelle A.; Washburn, Stephanie N.; Moreno, Georgina; Woller, Sarah A.; Puga, Denise; Lee, Kuan H.; Grau, James W.

    2010-01-01

    Morphine is one of the most commonly prescribed medications for the treatment of chronic pain after a spinal cord injury (SCI). Despite widespread use, however, little is known about the secondary consequences of morphine use after SCI. Unfortunately, our previous studies show that administration of a single dose of morphine, in the acute phase of a moderate spinal contusion injury, significantly attenuates locomotor function, reduces weight gain, and produces symptoms of paradoxical pain (Hook et al., 2009). The current study focused on the cellular mechanisms that mediate these effects. Based on data from other models, we hypothesized that pro-inflammatory cytokines might play a role in the morphine-induced attenuation of function. Experiment 1 confirmed that systemic morphine (20 mg/kg) administered one day after a contusion injury significantly increased expression levels of spinal IL-1β 24 hrs later. Experiment 2 extended these findings, demonstrating that a single dose of morphine (90 µg, i.t.) applied directly onto the spinal cord increased expression levels of spinal IL-1β at both 30 min and 24 hrs after administration. Experiment 3 showed that administration of an interleukin-1 receptor antagonist (IL-1ra, i.t.) prior to intrathecal morphine (90 µg), blocked the adverse effects of morphine on locomotor recovery. Further, pre-treatment with 3 µg IL-1ra prevented the increased expression of at-level neuropathic pain symptoms that was observed 28 days later in the group treated with morphine-alone. However, the IL-1ra also had adverse effects that were independent of morphine. Treatment with the IL-1ra alone undermined recovery of locomotor function, potentiated weight loss and significantly increased tissue loss at the injury site. Overall, these data suggest that morphine disrupts a critical balance in concentrations of pro-inflammatory cytokines in the spinal cord, and this undermines recovery of function. PMID:20974246

  4. siRNA capsulated brain-targeted nanoparticles specifically knock down OATP2B1 in mice: a mechanism for acute morphine tolerance suppression.

    PubMed

    Yang, Zi-Zhao; Li, Li; Wang, Lu; Xu, Ming-Cheng; An, Sai; Jiang, Chen; Gu, Jing-Kai; Wang, Zai-Jie Jim; Yu, Lu-Shan; Zeng, Su

    2016-09-15

    Regulating main brain-uptake transporter of morphine may restrict its tolerance generation, then modify its antinociception. In this study, more than 2 fold higher intracellular uptake concentrations for morphine and morphine-6-glucuronide (M6G) were observed in stable expression cells, HEK293-hOATP2B1 than HEK293-MOCK. Specifically, the Km value of morphine to OATP2B1 (57.58 ± 8.90 μM) is 1.4-time more than that of M6G (80.31 ± 21.75 μM); Cyclosporine A (CsA), an inhibitor of OATP2B1, can inhibit their intracellular accumulations with IC50 = 3.90 ± 0.50 μM for morphine and IC50 = 6.04 ± 0.86 μM for M6G, respectively. To further investigate the role of OATP2B1 in morphine brain transport and tolerance, the novel nanoparticles of DGL-PEG/dermorphin capsulated siRNA (OATP2B1) were applied to deliver siRNA into mouse brain. Along with OATP2B1 depressed, a main reduction was found for each of morphine or M6G in cerebrums or epencephalons of acute morphine tolerance mice. Furthermore, calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) in mouse prefrontal cortex (mPFC) underwent dephosphorylation at Thr286. In conclusion, OATP2B1 downregulation in mouse brain can suppress tolerance via blocking morphine and M6G brain transport. These findings might help to improve the pharmacological effects of morphine.

  5. siRNA capsulated brain-targeted nanoparticles specifically knock down OATP2B1 in mice: a mechanism for acute morphine tolerance suppression

    PubMed Central

    Yang, Zi-Zhao; Li, Li; Wang, Lu; Xu, Ming-Cheng; An, Sai; Jiang, Chen; Gu, Jing-Kai; Wang, Zai-Jie Jim; Yu, Lu-Shan; Zeng, Su

    2016-01-01

    Regulating main brain-uptake transporter of morphine may restrict its tolerance generation, then modify its antinociception. In this study, more than 2 fold higher intracellular uptake concentrations for morphine and morphine-6-glucuronide (M6G) were observed in stable expression cells, HEK293-hOATP2B1 than HEK293-MOCK. Specifically, the Km value of morphine to OATP2B1 (57.58 ± 8.90 μM) is 1.4-time more than that of M6G (80.31 ± 21.75 μM); Cyclosporine A (CsA), an inhibitor of OATP2B1, can inhibit their intracellular accumulations with IC50 = 3.90 ± 0.50 μM for morphine and IC50 = 6.04 ± 0.86 μM for M6G, respectively. To further investigate the role of OATP2B1 in morphine brain transport and tolerance, the novel nanoparticles of DGL-PEG/dermorphin capsulated siRNA (OATP2B1) were applied to deliver siRNA into mouse brain. Along with OATP2B1 depressed, a main reduction was found for each of morphine or M6G in cerebrums or epencephalons of acute morphine tolerance mice. Furthermore, calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) in mouse prefrontal cortex (mPFC) underwent dephosphorylation at Thr286. In conclusion, OATP2B1 downregulation in mouse brain can suppress tolerance via blocking morphine and M6G brain transport. These findings might help to improve the pharmacological effects of morphine. PMID:27629937

  6. Effect of Bacopasides on acquisition and expression of morphine tolerance.

    PubMed

    Rauf, Khalid; Subhan, Fazal; Abbas, Muzaffar; Badshah, Amir; Ullah, Ihsan; Ullah, Sami

    2011-07-15

    Opioids are extensively used for the management of both chronic malignant and non malignant pains. One major serious limitation associated with chronic use of opioids is the development of tolerance to its analgesic effect. The effect of Bacopa monnieri, a renowned ayurvedic medicine for acquisition and expression of morphine tolerance in mice, was investigated. Bacopa monnieri, n-Butanol fraction was analyzed on High performance liquid chromatography (HPLC), for Bacopaside A major components i.e. Bacoside A(3), Bacopaside ll and Bacosaponin C. Antinociceptive effect of n-Butanol extract of Bacopa monnieri (n Bt-ext BM) (5, 10 and 15 mg/kg) was assessed on hot plate. Effect of different doses of n Bt-ext BM on morphine antinociception was also assessed. n Bt-ext BM was also screened for development of tolerance to antinociceptive effect of Bacopa monnieri by administering 15 mg/kg n Bt-ext BM for seven days. Tolerance to morphine analgesia was induced in mice by administering intraperitoneally (I.P.) 20 mg/kg morphine twice daily for five days. Acute and Chronic administration of 5, 10 and 15 mg/kg n Bt-ext BM significantly reduced both expression and development of tolerance to morphine analgesia in mice. Additionally, Bacopa monnieri was found to enhance antinociceptive effect of morphine in intolerant animals. However, no tolerance to Bacopa monnieri antinociceptive effect was observed in seven days treatment schedule. These findings indicate effectiveness of Bacopa monnieri for management of morphine tolerance. Copyright © 2011 Elsevier GmbH. All rights reserved.

  7. Social housing conditions influence morphine dependence and the extinction of morphine place preference in adolescent mice.

    PubMed

    Bates, M L Shawn; Emery, Michael A; Wellman, Paul J; Eitan, Shoshana

    2014-09-01

    Adolescent opioid abuse is on the rise, and current treatments are not effective in reducing rates of relapse. Our previous studies demonstrated that social housing conditions alter the acquisition rate of morphine conditioned place preference (CPP) in adolescent mice. Specifically, the acquisition rate of morphine CPP is slower in morphine-treated animals housed with drug-naïve animals. Thus, here we tested the effect of social housing conditions on the development of morphine dependence and the extinction rate of an acquired morphine CPP. Adolescent male mice were group-housed in one of two housing conditions. They were injected for 6 days (PND 28-33) with 20 mg/kg morphine. Morphine only mice are animals where all four mice in the cage received morphine. Morphine cage-mate mice are morphine-injected animals housed with drug-naïve animals. Mice were individually tested for spontaneous withdrawal signs by quantifying jumping behavior 4, 8, 24, and 48 h after the final morphine injection. Then, mice were conditioned to acquire morphine CPP and were tested for the rate of extinction. Morphine cage-mates express less jumping behavior during morphine withdrawal as compared to morphine only mice. As expected, morphine cage-mate animals acquired morphine CPP more slowly than the morphine only animals. Additionally, morphine cage-mates extinguished morphine CPP more readily than morphine only mice. Social housing conditions modulate morphine dependence and the extinction rate of morphine CPP. Extinction testing is relevant to human addiction because rehabilitations like extinction therapy may be used to aid human addicts in maintaining abstinence from drug use. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Evaluation of Analgesia, Tolerance, and the Mechanism of Action of Morphine-6-O-Sulfate Across Multiple Pain Modalities in Sprague-Dawley Rats.

    PubMed

    Yadlapalli, Jai Shankar K; Dogra, Navdeep; Walbaum, Anqi W; Wessinger, William D; Prather, Paul L; Crooks, Peter A; Dobretsov, Maxim

    2017-09-01

    Morphine-6-O-sulfate (M6S) is a mixed μ/δ-opioid receptor (OR) agonist and potential alternative to morphine for treatment of chronic multimodal pain. To provide more support for this hypothesis, the antinociceptive effects of M6S and morphine were compared in tests that access a range of pain modalities, including hot plate threshold (HPT), pinprick sensitivity threshold (PST) and paw pressure threshold tests. Acutely, M6S was 2- to 3-fold more potent than morphine in HPT and PST tests, specifically, derived from best-fit analysis of dose-response relationships of morphine/M6S half-effective dose (ED50) ratios (lower, upper 95% confidence interval [CI]) were 2.8 (2.0-5.8) in HPT and 2.2 (2.1, 2.4) in PST tests. No differences in analgesic drug potencies were detected in the PPT test (morphine/M6S ED50 ratio 1.2 (95% CI, 0.8-1.4). After 7 to 9 days of chronic treatment, tolerance developed to the antinociceptive effects of morphine, but not to M6S, in all 3 pain tests. Morphine-tolerant rats were not crosstolerant to M6S. The antinociceptive effects of M6S were not sensitive to κ-OR antagonists. However, the δ-OR antagonist, naltrindole, blocked M6S-induced antinociception by 55% ± 4% (95% CI, 39-75) in the HPT test, 94% ± 4% (95% CI, 84-105) in the PST test, and 5% ± 17% (95% CI, -47 to 59) or 51% ± 14% (95% CI, 14-84; 6 rats per each group) in the paw pressure threshold test when examined acutely or after 7 days of chronic treatment, respectively. Activity via δ-ORs thus appears to be an important determinant of M6S action. M6S also exhibited favorable antinociceptive and tolerance profiles compared with morphine in 3 different antinociceptive assays, indicating that M6S may serve as a useful alternative for rotation in morphine-tolerant subjects.

  9. Comparison of Morphine, Morphine-Lidocaine, and Morphine-Lidocaine-Ketamine Infusions in Dogs Using an Incision-Induced Pain Model.

    PubMed

    Chiavaccini, Ludovica; Claude, Andrew K; Meyer, Robert E

    We aimed to compare antinociceptive effects of IV infusions of morphine (M), morphine-lidocaine (ML), or morphine-lidocaine-ketamine (MLK) combined, in a mild-to-moderate pain model in dogs. Eighteen adult hounds were heavily sedated with IV morphine (0.2 mg/kg) and dexmedetomidine to undergo thoracic skin incisions. After reversal, dogs were randomly assigned to receive loading doses of lidocaine and ketamine (MLK), lidocaine and saline (ML), or equivalent volume of saline (M), followed by 18 hr constant infusions of morphine (0.12 mg/kg/hr), lidocaine (3 mg/kg/hr) and ketamine (0.6 mg/kg/hr); morphine (0.12 mg/kg/hr) and lidocaine (3 mg/kg/hr); or morphine (0.12 mg/kg/hr), respectively. Pain was assessed with Short Form Glasgow Composite Measure Pain Scale and mechanical nociception with von Frey filaments (VFFS). Data were analyzed with linear mixed model on ranks. Independently of treatment, Short Form Glasgow Composite Measure Pain Scale was significantly higher than baseline for 24 hr (p < .0001), while VFFS was significantly lower than baseline for 48 hr post-recovery (p < .0001), with no difference between MLK and M groups. The ML group recorded significantly lower VFFS (p = .02) than the M group for the entire study. In conclusion, there was no significant analgesic difference between MLK and M alone.

  10. PERIAQUEDUCTAL GRAY NEUROPLASTICITY FOLLOWING CHRONIC MORPHINE VARIES WITH AGE: ROLE OF OXIDATIVE STRESS

    PubMed Central

    Bajic, Dusica; Berde, Charles B.; Commons, Kathryn G.

    2012-01-01

    The development of tolerance to the antinociceptive effects of morphine has been associated with networks within ventrolateral periaqueductal gray (vlPAG) and separately, nitric oxide signaling. Furthermore, it is known that the mechanisms that underlie tolerance differ with age. In this study, we used a rat model of antinociceptive tolerance to morphine at two ages, postnatal day (PD) 7 and adult, to determine if changes in the vlPAG related to nitric oxide signaling produced by chronic morphine exposure were age-dependent. Three pharmacological groups were analyzed: control, acute morphine, and chronic morphine group. Either morphine (10 mg/kg) or equal volume of normal saline was given subcutaneously twice daily for 6 ½ days. Animals were analyzed for morphine dose-response using Hot Plate test, and for the expression of several genes associated with nitric oxide metabolism was evaluated using rtPCR. In addition, the effect of morphine exposure on immunohistochemistry for Fos, and nNOS as well as nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) reaction at the vlPAG were measured. In both age groups acute morphine activated Fos in the vlPAG, and this effect was attenuated by chronic morphine, specifically in the vlPAG at the level of the laterodorsal tegmental nucleus (LDTg). In adults, but not PD7 rats, chronic morphine administration was associated with activation of nitric oxide function. In contrast, changes in the gene expression of PD7 rats suggested superoxide and peroxide metabolisms may be engaged. These data indicate that there is supraspinal neuroplasticity following morphine administration as early as PD7. Furthermore, oxidative stress pathways associated with chronic morphine exposure appear age-specific. PMID:22999971

  11. [Acute severe colitis with recto-vaginal fistula during treatment with non-steroidal anti-inflammatory agents].

    PubMed

    Tissot, B; Lamy, A; Perraudeau, F; Manouvrier, J L; Imbert, Y

    2002-07-13

    We report the case of severe colitis occurring during treatment with non-steroid anti-inflammatories (NSAI). A 57 year-old woman was hospitalized for lumbar pain that had not been relieved by AINS, tramadol and then morphine. The patient presented with septic shock and peritonitis by rectal perforation, followed by acute rectorrhagia. The endoscopic aspect evoked Crohn's disease with a recto-vaginal fistula. Progression was further complicated by two episodes of collapse because of acute rectorrhagia, requiring hemostasis colectomy and abdominal-perineal amputation. The diagnosis retained was AINS-induced colitis complicated by acute colectasia on a fecaloma with recto-vaginal fistula.

  12. Analgesia or addiction?: implications for morphine use after spinal cord injury.

    PubMed

    Woller, Sarah A; Moreno, Georgina L; Hart, Nigel; Wellman, Paul J; Grau, James W; Hook, Michelle A

    2012-05-20

    Opioid analgesics are among the most effective agents for treatment of moderate to severe pain. However, the use of morphine after a spinal cord injury (SCI) can potentiate the development of paradoxical pain symptoms, and continuous administration can lead to dependence, tolerance, and addiction. Although some studies suggest that the addictive potential of morphine decreases when it is used to treat neuropathic pain, this has not been studied in a SCI model. Accordingly, the present studies investigated the addictive potential of morphine in a rodent model of SCI using conditioned place preference (CPP) and intravenous self-administration paradigms. A contusion injury significantly increased the expression of a CPP relative to sham and intact controls in the acute phase of injury. However, contused animals self-administered significantly less morphine than sham and intact controls, but this was dose-dependent; at a high concentration, injured rats exhibited an increase in drug-reinforced responses over time. Exposure to a high concentration of morphine impeded weight gain and locomotor recovery. We suggest that the increased preference observed in injured rats reflects a motivational effect linked in part to the drug's anti-nociceptive effect. Further, although injured rats exhibited a suppression of opiate self-administration, when given access to a high concentration, addictive-like behavior emerged and was associated with poor recovery.

  13. Midazolam Exacerbates Morphine Tolerance and Morphine-induced Hyperactive Behaviors in Young Rats with Burn Injury

    PubMed Central

    Song, Li; Wang, Shuxing; Zuo, Yunxia; Chen, Lucy; Martyn, Jeevendra A.; Mao, Jianren

    2014-01-01

    Midazolam and morphine are often used in pediatric intensive care unit (ICU) for analgesia and sedation. However, how these two drugs interact behaviorally remains unclear. Here, we examined whether 1) co-administration of midazolam with morphine would exacerbate morphine tolerance and morphine-induced hyperactive behaviors, and 2) protein kinase C (PKC) would contribute to these behavioral changes. Male rats of 3 to 4 weeks old were exposed to a hindpaw burn injury. In Experiment 1, burn-injured young rats received once daily saline or morphine (10 mg/kg, subcutaneous, s.c.), followed 30 min later by either saline or midazolam (2 mg/kg, intraperitoneal, i.p.), for 14 days beginning 3 days after burn injury. In Experiment 2, young rats with burn injury were administered with morphine (10 mg/kg, s.c.), midazolam (2 mg/kg, i.p.), and chelerythrine chloride (a non-specific PKC inhibitor 10 nmol, intrathecal) for 14 days. For both experiments, cumulative morphine anti-nociceptive dose-response (ED50) was tested and hyperactive behaviors such as jumping and scratching were recorded. Following 2 weeks of each treatment, ED50 dose was significantly increased in rats receiving morphine alone as compared with rats receiving saline or midazolam alone. The ED50 dose was further increased in rats receiving both morphine and midazolam. Co-administration of morphine and midazolam also exacerbated morphine-induced hyperactive behaviors. Expression of the NR1 subunit of the N-methyl-D-aspartate (NMDA) receptor and PKCγ in the spinal cord dorsal horn (immunohistochemistry; Western blot) was upregulated in burn-injured young rats receiving morphine alone or in combination with midazolam, and chelerythrine prevented the development of morphine tolerance. These results indicate that midazolam exacerbated morphine tolerance through a spinal NMDA/PKC-mediated mechanism. PMID:24713351

  14. Methadone Reverses Analgesic Tolerance Induced by Morphine Pretreatment

    PubMed Central

    Posa, Luca; Accarie, Alison; Marie, Nicolas

    2016-01-01

    Background: Opiates such as morphine are the most powerful analgesics, but their protracted use is restrained by the development of tolerance to analgesic effects. Recent works suggest that tolerance to morphine might be due to its inability to promote mu opioid receptor endocytosis, and the co-injection of morphine with a mu opioid receptor internalizing agonist like [D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin reduces tolerance to morphine. So far, no studies have been conducted to evaluate the ability of methadone to reduce morphine tolerance in morphine-pretreated animals, a treatment sequence that could be encountered in opiate rotation protocol. We investigated the ability of methadone (a mu opioid receptor internalizing agonist used in therapy) to reverse morphine tolerance and the associated cellular mechanisms in the periaqueductal gray matter, a region involved in pain control. Methods: We measured analgesic response following a challenge dose of morphine in the hot plate test and investigated regulation of mu opioid receptor (coupling and endocytosis) and some cellular mechanisms involved in tolerance such as adenylate cyclase superactivation and changes in N-methyl-d-aspartate receptor subunits expression and phosphorylation state. Results: A chronic treatment with morphine promoted tolerance to its analgesic effects and was associated with a lack of mu opioid receptor endocytosis, adenylate cyclase overshoot, NR2A and NR2B downregulation, and phosphorylation of NR1. We reported that a methadone treatment in morphine-treated mice reversed morphine tolerance to analgesia by promoting mu opioid receptor endocytosis and blocking cellular mechanisms of tolerance. Conclusions: Our data might lead to rational strategies to tackle opiate tolerance in the frame of opiate rotation. PMID:26390873

  15. Enhancement of the contact hypersensitivity reaction by acute morphine administration at the elicitation phase.

    PubMed

    Nelson, C J; How, T; Lysle, D T

    1999-11-01

    The present study investigated the effects of morphine on the irritant contact sensitivity (ICS) and contact hypersensitivity (CHS) reaction. ICS was induced by croton oil application on the pinnae of naïve rats. Morphine injected prior to croton oil application did not affect the ICS response when assessed by measurements of pinnae thickness. CHS was induced by applying the antigen 2,4-dinitro-1-fluorobenzene (DNFB) to the pinnae of rats sensitized to DNFB. Rats received an injection of morphine prior to either initial antigen exposure (sensitization) or antigen reexposure (challenge). Morphine prior to challenge, but not sensitization, resulted in a pronounced enhancement of the CHS response as measured by pinna thickness. Quantitative PCR also showed increased IFN-gamma mRNA levels in the inflamed tissue of morphine-treated rats. Naltrexone blocked the morphine-induced enhancement of the CHS response. The differential effects of morphine suggest that opioids have a more pronounced effect on in vivo immune responses that involve immunological memory. Copyright 1999 Academic Press.

  16. Endogenous Opioid Inhibition of Chronic Low Back Pain Influences Degree of Back Pain Relief Following Morphine Administration

    PubMed Central

    Bruehl, Stephen; Burns, John W.; Gupta, Rajnish; Buvanendran, Asokumar; Chont, Melissa; Schuster, Erik; France, Christopher R.

    2014-01-01

    Background and Objectives Factors underlying differential responsiveness to opioid analgesic medications used in chronic pain management are poorly understood. We tested whether individual differences in endogenous opioid inhibition of chronic low back pain were associated with magnitude of acute reductions in back pain ratings following morphine administration. Methods In randomized, counterbalanced order over three sessions, 50 chronic low back pain patients received intravenous naloxone (8mg), morphine (0.08 mg/kg), or placebo. Back pain intensity was rated pre-drug and again after peak drug activity was achieved using the McGill Pain Questionnaire-Short Form (Sensory and Affective subscales, VAS intensity measure). Opioid blockade effect measures to index degree of endogenous opioid inhibition of back pain intensity were derived as the difference between pre-to post-drug changes in pain intensity across placebo and naloxone conditions, with similar morphine responsiveness measures derived across placebo and morphine conditions. Results Morphine significantly reduced back pain compared to placebo (MPQ-Sensory, VAS; P < .01). There were no overall effects of opioid blockade on back pain intensity. However, individual differences in opioid blockade effects were significantly associated with degree of acute morphine-related reductions in back pain on all measures, even after controlling for effects of age, sex, and chronic pain duration (P < .03). Individuals exhibiting greater endogenous opioid inhibition of chronic back pain intensity reported less acute relief of back pain with morphine. Conclusions Morphine appears to provide better acute relief of chronic back pain in individuals with lower natural opioidergic inhibition of chronic pain intensity. Possible implications for personalized medicine are discussed. PMID:24553304

  17. Minocycline suppresses morphine-induced respiratory depression, suppresses morphine-induced reward, and enhances systemic morphine-induced analgesia

    PubMed Central

    Hutchinson, Mark R.; Northcutt, Alexis L.; Chao, Lindsey W.; Kearney, Jeffrey J.; Zhang, Yingning; Berkelhammer, Debra L.; Loram, Lisa C.; Rozeske, Robert R.; Bland, Sondra T.; Maier, Steven F.; Gleeson, Todd T.; Watkins, Linda R.

    2008-01-01

    Recent data suggest that opioids can activate immune-like cells of the central nervous system (glia). This opioid-induced glial activation is associated with decreased analgesia, owing to the release of proinflammatory mediators. Here we examine in rats whether the putative microglial inhibitor, minocycline, may affect morphine-induced respiratory depression and/or morphine-induced reward (conditioned place preference). Systemic co-administration of minocycline significantly attenuated morphine-induced reductions in tidal volume, minute volume, inspiratory force and expiratory force, but did not affect morphine-induced reductions in respiratory rate. Minocycline attenuation of respiratory depression was also paralleled with significant attenuation by minocycline of morphine-induced reductions in blood oxygen saturation. Minocycline also attenuated morphine conditioned place preference. Minocycline did not simply reduce all actions of morphine, as morphine analgesia was significantly potentiated by minocycline co-administration. Lastly, morphine dose-dependently increased cyclooxygenase-1 gene expression in a rat microglial cell line, an effect that was dose-dependently blocked by minocycline. Together, these data support that morphine can directly activate microglia in a minocycline-suppressible manner and suggest a pivotal role for minocycline-sensitive processes in the mechanisms of morphine-induced respiration depression, reward, and pain modulation. PMID:18706994

  18. Single-sweep spectral analysis of contact heat evoked potentials: a novel approach to identify altered cortical processing after morphine treatment

    PubMed Central

    Hansen, Tine M; Graversen, Carina; Frøkjær, Jens B; Olesen, Anne E; Valeriani, Massimiliano; Drewes, Asbjørn M

    2015-01-01

    Aims The cortical response to nociceptive thermal stimuli recorded as contact heat evoked potentials (CHEPs) may be altered by morphine. However, previous studies have averaged CHEPs over multiple stimuli, which are confounded by jitter between sweeps. Thus, the aim was to assess single-sweep characteristics to identify alterations induced by morphine. Methods In a crossover study 15 single-sweep CHEPs were analyzed from 62 electroencephalography electrodes in 26 healthy volunteers before and after administration of morphine or placebo. Each sweep was decomposed by a continuous wavelet transform to obtain normalized spectral indices in the delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–32 Hz) and gamma (32–80 Hz) bands. The average distribution over all sweeps and channels was calculated for the four recordings for each volunteer, and the two recordings before treatments were assessed for reproducibility. Baseline corrected spectral indices after morphine and placebo treatments were compared to identify alterations induced by morphine. Results Reproducibility between baseline CHEPs was demonstrated. As compared with placebo, morphine decreased the spectral indices in the delta and theta bands by 13% (P = 0.04) and 9% (P = 0.007), while the beta and gamma bands were increased by 10% (P = 0.006) and 24% (P = 0.04). Conclusion The decreases in the delta and theta band are suggested to represent a decrease in the pain specific morphology of the CHEPs, which indicates a diminished pain response after morphine administration. Hence, assessment of spectral indices in single-sweep CHEPs can be used to study cortical mechanisms induced by morphine treatment. PMID:25556985

  19. Treatment with Sulforaphane Produces Antinociception and Improves Morphine Effects during Inflammatory Pain in Mice.

    PubMed

    Redondo, Alejandro; Chamorro, Pablo Aníbal Ferreira; Riego, Gabriela; Leánez, Sergi; Pol, Olga

    2017-12-01

    The activation of nuclear factor erythroid 2-related factor 2 (Nrf2) exerts potent antioxidative and anti-inflammatory effects; however, its participation in the modulation of chronic inflammatory pain and on the antinociceptive effects of μ -opioid receptor (MOR) agonists has not been evaluated. We investigated whether the induction of Nrf2 could alleviate chronic inflammatory pain and augment the analgesic effects of morphine and mechanisms implicated. In male C57BL/6 mice with inflammatory pain induced by complete Freund's adjuvant (CFA) subplantarly administered, we assessed: 1) antinociceptive actions of the administration of 5 and 10 mg/kg of a Nrf2 activator, sulforaphane (SFN); and 2) effects of SFN on the antinociceptive actions of morphine and on protein levels of Nrf2, heme oxygenase 1 (HO-1), and NAD(P)H: quinone oxidoreductase 1 (NQO1) enzymes, microglial activation and inducible nitric oxide synthase (NOS2) overexpression, as well as on mitogen-activated protein kinase (MAPK) and MOR expression in the spinal cord and paw of animals with inflammatory pain. Results showed that treatment with SFN inhibited allodynia and hyperalgesia induced by CFA and increased the local antinociceptive actions of morphine. This treatment also augmented the expression of Nrf2, HO-1, NQO1, and MOR, and inhibited NOS2 and CD11b/c overexpression and MAPK phosphorylation induced by inflammation. Thus, this study shows that the induction of Nrf2 might inhibit inflammatory pain and enhance the analgesic effects of morphine by inhibiting oxidative stress and inflammatory responses induced by peripheral inflammation. This study suggests the administration of SFN alone and in combination with morphine are potential new ways of treating chronic inflammatory pain. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  20. Antagonism of the morphine-induced locomotor activation of mice by fructose: comparison with other opiates and sugars, and sugar effects on brain morphine.

    PubMed

    Brase, D A; Ward, C R; Bey, P S; Dewey, W L

    1991-01-01

    The mouse locomotor activation test of opiate action in a 2+2 dose parallel line assay was used in a repeated testing paradigm to determine the test, opiate and hexose specificities of a previously reported antagonism of morphine-induced antinocociception by hyperglycemia. In opiate specificity studies, fructose (5 g/kg, i.p.) significantly reduced the potency ratio for morphine and methadone, but not for levorphanol, meperidine or phenazocine when intragroup comparisons were made. In intergroup comparisons, fructose significantly reduced the potencies of levorphanol and phenazocine, but not methadone or meperidine. In hexose/polyol specificity studies, tagatose and fructose significantly reduced the potency ratio for morphine, whereas glucose, galactose, mannose and the polyols, sorbitol and xylitol, caused no significant decrease in potency. Fructose, tagatose, glucose and mannose (5 g/kg, i.p.) were tested for effects on brain morphine levels 30 min after morphine (60 min after sugar), and all four sugars significantly increased brain morphine relative to saline-pretreated controls. It is concluded that the antagonism of morphine by acute sugar administration shows specificity for certain sugars and occurs despite sugar-induced increases in the distribution of morphine to the brain. Furthermore, the effects of fructose show an opiate specificity similar to that of glucose on antinociception observed previously in our laboratory, except that methadone was also significantly inhibited in the present study, when a repeated-testing experimental design was used.

  1. Ketamine coadministration attenuates morphine tolerance and leads to increased brain concentrations of both drugs in the rat

    PubMed Central

    Lilius, T O; Jokinen, V; Neuvonen, M S; Niemi, M; Kalso, E A; Rauhala, P V

    2015-01-01

    Background and Purpose The effects of ketamine in attenuating morphine tolerance have been suggested to result from a pharmacodynamic interaction. We studied whether ketamine might increase brain morphine concentrations in acute coadministration, in morphine tolerance and morphine withdrawal. Experimental Approach Morphine minipumps (6 mg·day–1) induced tolerance during 5 days in Sprague–Dawley rats, after which s.c. ketamine (10 mg·kg–1) was administered. Tail flick, hot plate and rotarod tests were used for behavioural testing. Serum levels and whole tissue brain and liver concentrations of morphine, morphine-3-glucuronide, ketamine and norketamine were measured using HPLC-tandem mass spectrometry. Key Results In morphine-naïve rats, ketamine caused no antinociception whereas in morphine-tolerant rats there was significant antinociception (57% maximum possible effect in the tail flick test 90 min after administration) lasting up to 150 min. In the brain of morphine-tolerant ketamine-treated rats, the morphine, ketamine and norketamine concentrations were 2.1-, 1.4- and 3.4-fold, respectively, compared with the rats treated with morphine or ketamine only. In the liver of morphine-tolerant ketamine-treated rats, ketamine concentration was sixfold compared with morphine-naïve rats. After a 2 day morphine withdrawal period, smaller but parallel concentration changes were observed. In acute coadministration, ketamine increased the brain morphine concentration by 20%, but no increase in ketamine concentrations or increased antinociception was observed. Conclusions and Implications The ability of ketamine to induce antinociception in rats made tolerant to morphine may also be due to increased brain concentrations of morphine, ketamine and norketamine. The relevance of these findings needs to be assessed in humans. PMID:25297798

  2. Morphine administration during low ovarian hormone stage results in transient over expression of fear memories in females.

    PubMed

    Perez-Torres, Emily M; Ramos-Ortolaza, Dinah L; Morales, Roberto; Santini, Edwin; Rios-Ruiz, Efrain J; Torres-Reveron, Annelyn

    2015-01-01

    Acute exposure to morphine after a traumatic event reduces trauma related symptoms in humans and conditioned fear expression in male rats. We aimed to determine whether acute administration of morphine alters consolidation of fear learning and extinction. Male and female rats in proestrus and metaestrus (high and low ovarian hormones respectively) underwent fear conditioning and received saline or morphine (2.5 mg/kg s.c.). The next day they underwent extinction. Results showed increased freezing during extinction only in the morphine metaestrus group while morphine did not affect males or proestrus females. Recall of extinction was similar on all groups. On a second experiment, a subset of rats conditioned during metaestrus was administered morphine prior to extinction producing no effects. We then measured mu opioid receptor (MOR) expression in the amygdala and periaqueductal gray (PAG) at the end of extinction (day 2). In males and proestrus females, morphine caused an increase in MOR in the amygdala but no in the PAG. In metaestrus females, morphine did not change MOR expression in either structure. These data suggests that ovarian hormones may interact with MORs in the amygdala to transiently alter memory consolidation. Morphine given after trauma to females with low ovarian hormones might increase the recall of fear responses, making recovery harder.

  3. Pharmacological evidence for the role of nitric oxide in the modulation of stress-induced anxiety by morphine in rats.

    PubMed

    Anand, Rashmi; Gulati, Kavita; Ray, Arunabha

    2012-02-15

    The present study evaluated the effects of the opioid agonist, morphine on stress induced anxiogenesis and the possible involvement of nitric oxide (NO) in such effects in rats. Acute restraint stress consistently induced an anxiety-like response in the elevated plus maze test, i.e. reduced number of open arm entries and time spent in the open arms as compared to controls. Pretreatment with morphine (1 and 5mg/kg), attenuated the restraint stress induced anxiogenic response in a dose related manner. Restraint stress induced neurobehavioral suppression was associated with reductions in brain NO oxidation products (NOx) levels, which were also reversed with morphine. Interaction studies showed that sub-effective doses of morphine and l-arginine (a NO precursor) had synergistic effects on stress induced elevated plus maze activity and brain NOx, whereas, l-NAME (a NO synthase inhibitor) neutralized these effects of morphine. Repeated restraint stress (×5) induced adaptative changes as evidenced by normalization of behavioral suppression and elevations in brain NOx, as compared to acute stress. Pretreatment with morphine in combination with repeated stress (×5) showed potentiating effects in the induction of behavioral adaptation in the elevated plus maze and elevations in brain NOx, as compared to repeated stress alone. Further, l-NAME, when administered prior to morphine, blocked this effect of morphine on stress adaptation. These results suggest differential morphine-NO interactions during acute and repeated restraint stress. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. The Impact of Morphine After a Spinal Cord Injury

    PubMed Central

    Hook, Michelle A.; Liu, Grace T.; Washburn, Stephanie N.; Ferguson, Adam R.; Bopp, Anne C.; Huie, John R.; Grau, James W.

    2007-01-01

    Nociceptive stimulation, at an intensity that elicits pain-related behavior, attenuates recovery of locomotor and bladder functions, and increases tissue loss after a contusion injury. These data imply that nociceptive input (e.g., from tissue damage) can enhance the loss of function after injury, and that potential clinical treatments, such pretreatment with an analgesic, may protect the damaged system from further secondary injury. The current study examined this hypothesis and showed that a potential treatment (morphine) did not have a protective effect. In fact, morphine appeared to exacerbate the effects of nociceptive stimulation. Experiment 1 showed that after spinal cord injury 20 mg/kg of systemic morphine was necessary to induce strong antinociception and block behavioral reactivity to shock treatment, a dose that was much higher than that needed for sham controls. In Experiment 2, contused rats were given one of three doses of morphine (Vehicle, 10, 20 mg/kg) prior to exposure to uncontrollable electrical stimulation or restraint alone. Despite decreasing nociceptive reactivity, morphine did not attenuate the long-term consequences of shock. Rats treated with morphine and shock had higher mortality rates, and displayed allodynic responses to innocuous sensory stimuli three weeks later. Independent of shock, morphine per se undermined recovery of sensory function. Rats treated with morphine alone also had significantly larger lesions than those treated with saline. These results suggest that nociceptive stimulation affects recovery despite a blockade of pain-elicited behavior. The results are clinically important because they suggest that opiate treatment may adversely affect the recovery of function after injury. PMID:17383022

  5. Stereoselective action of (+)-morphine over (-)-morphine in attenuating the (-)-morphine-produced antinociception via the naloxone-sensitive sigma receptor in the mouse.

    PubMed

    Wu, Hsiang-en; Hong, Jau-Shyong; Tseng, Leon F

    2007-10-01

    We have previously demonstrated that (+)-morphine and (-)-morphine given spinally stereoselectively attenuate the spinally-administered (-)-morphine-produced tail-flick inhibition in the mouse. The phenomenon has been defined as antianalgesia. Present studies were then undertaken to determine if the systemic administration of (+)-morphine and (-)-morphine also stereoselectively attenuates the systemic (-)-morphine-produced tail-flick inhibition and the effects of (+)-morphine and (-)-morphine are mediated by the naloxone-sensitive sigma receptor activation in male CD-1 mice. Pretreatment with (+)-morphine at a dose of 0.01-10 ng/kg given subcutaneously dose-dependently attenuated the tail-flick inhibition produced by subcutaneously-administered (-)-morphine (5 mg/kg). Pretreatment with (-)-morphine (0.01-1.0 mg/kg) given subcutaneously also attenuates the (-)-morphine-produced tail-flick inhibition. The ED50 values for (+)-morphine and (-)-morphine for inhibiting the (-)-morphine-produced tail-flick inhibition were estimated to be 30.6 pg/kg and 97.5 microg/kg, respectively. The attenuation of the (-)-morphine-produced tail-flick inhibition induced by (+)-morphine or (-)-morphine pretreatment was reversed by the pretreatment with (+)-naloxone or by the sigma receptor antagonist BD1047 (N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine dihydrobromide) given subcutaneously. Pretreatment with (+)-pentazocine, a selective sigma receptor agonist, (1-10 mg/kg) given subcutaneously also attenuates (-)-morphine-produced tail-flick inhibition, which was restored by (+)-naloxone (4 mg/kg) or BD1047 (10 mg/kg) pretreated subcutaneously. It is concluded that (+)-morphine exhibits extremely high stereoselective action over (-)-morphine given systemically in attenuating the systemic (-)-morphine-produced antinociception and the antianalgesic effect of (+)-morphine and (-)-morphine is mediated by activation of the naloxone-sensitive sigma receptor.

  6. Narp regulates long-term aversive effects of morphine withdrawal

    PubMed Central

    Reti, Irving M.; Crombag, Hans S.; Takamiya, Kogo; Sutton, Jeffrey M.; Guo, Ning; Dinenna, Megan L.; Huganir, Richard L.; Holland, Peter C.; Baraban, Jay M.

    2008-01-01

    Although long-lasting effects of drug withdrawal are thought to play a key role in motivating continued drug use, the mechanisms mediating this type of drug-induced plasticity are unclear. As Narp is an immediate early gene product that is secreted at synaptic sites and binds to AMPA receptors, it has been implicated in mediating enduring forms of synaptic plasticity. In previous studies, we found that Narp is selectively induced by morphine withdrawal in the extended amygdala, a group of limbic nuclei that mediate aversive behavioral responses. Accordingly, in this study, we evaluated whether long-term aversive effects of morphine withdrawal are altered in Narp KO mice. We found that acute physical signs of morphine withdrawal are unaffected by Narp deletion. However, Narp KO mice acquire and sustain more aversive responses to the environment conditioned with morphine withdrawal than WT controls. Paradoxically, Narp KO mice undergo accelerated extinction of this heightened aversive response. Taken together, these studies suggest that Narp modulates both acquisition and extinction of aversive responses to morphine withdrawal and, therefore, may regulate plasticity processes underlying drug addiction. PMID:18729628

  7. Ghrelin receptor antagonism of morphine-induced conditioned place preference and behavioral and accumbens dopaminergic sensitization in rats.

    PubMed

    Jerabek, Pavel; Havlickova, Tereza; Puskina, Nina; Charalambous, Chrysostomos; Lapka, Marek; Kacer, Petr; Sustkova-Fiserova, Magdalena

    2017-11-01

    An increasing number of studies over the past few years have demonstrated ghrelin's role in alcohol, cocaine and nicotine abuse. However, the role of ghrelin in opioid effects has rarely been examined. Recently we substantiated in rats that ghrelin growth hormone secretagogue receptors (GHS-R1A) appear to be involved in acute opioid-induced changes in the mesolimbic dopaminergic system associated with the reward processing. The aim of the present study was to ascertain whether a ghrelin antagonist (JMV2959) was able to inhibit morphine-induced biased conditioned place preference and challenge-morphine-induced accumbens dopaminergic sensitization and behavioral sensitization in adult male rats. In the place preference model, the rats were conditioned for 8 days with morphine (10 mg/kg s.c.). On the experimental day, JMV2959 (3 and 6 mg/kg i.p.) or saline were administered before testing. We used in vivo microdialysis to determine changes of dopamine and its metabolites in the nucleus accumbens in rats following challenge-morphine dose (5 mg/kg s.c.) with or without JMV2959 (3 and 6 mg/kg i.p.) pretreatment, administered on the 12th day of spontaneous abstinence from morphine repeated treatment (5 days, 10-40 mg/kg). Induced behavioral changes were simultaneously monitored. Pretreatment with JMV2959 significantly and dose dependently reduced the morphine-induced conditioned place preference and significantly and dose dependently reduced the challenge-morphine-induced dopaminergic sensitization and affected concentration of by-products associated with dopamine metabolism in the nucleus accumbens. JMV2959 pretreatment also significantly reduced challenge-morphine-induced behavioral sensitization. Our present data suggest that GHS-R1A antagonists deserve to be further investigated as a novel treatment strategy for opioid addiction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Attenuation of morphine-induced delirium in palliative care by substitution with infusion of oxycodone.

    PubMed

    Maddocks, I; Somogyi, A; Abbott, F; Hayball, P; Parker, D

    1996-09-01

    We have observed among patients of the Southern Community Hospice Programme that up to 25% experience acute delirium when treated with morphine and improve when the opioid is changed to oxycodone or fentanyl. This study aimed to confirm by a prospective trial that oxycodone produces less delirium than morphine in such patients. Oxycodone was administered by a continuous subcutaneous infusion, as this allowed more flexible and reliable dosing, and patients were monitored for any adverse reactions to the drug. Thirteen patients completed the study. Statistically significant improvements in mental state and nausea and vomiting occurred following a change from morphine to oxycodone. Pain scores improved but did not reach a level of statistical significance. The phenotype status of the patients was tested to establish their capacity to metabolize oxycodone. One patient who did not achieve adequate pain control proved to be a poor metabolizer. These results show that oxycodone administered by the subcutaneous route can provide effective analgesia without significant side effects in patients with morphine-induced delirium. This treatment allows patients to remain more comfortable and lucid in their final days. A small proportion of patients who do not metabolize oxycodone effectively may not receive this benefit.

  9. Nebulized fentanyl vs intravenous morphine for ED patients with acute abdominal pain: a randomized double-blinded, placebo-controlled clinical trial.

    PubMed

    Deaton, Travis; Auten, Jonathan D; Darracq, Michael A

    2015-06-01

    Patients with acute abdominal pain commonly present to emergency departments. The safe and effective relief of discomfort is a concern to patients and physicians. Intravenous opioids are the traditional method used to provide pain relief in this setting, but intravenous access is time consuming and not always achievable. Alternative methods of pain control may therefore be necessary for the acute management of painful conditions without adding to the overall physical or psychological discomfort. The purpose of this study was to evaluate the feasibility of nebulized fentanyl (NF) in the alleviation of acute and undifferentiated abdominal pain. We also sought to compare NF with intravenous morphine (IVM) and to assess patient and provider satisfaction with NF. Nebulized fentanyl (2 μg/kg) was compared to IVM (0.1 mg/kg) at 10, 20, 30, and 40 minutes; and patient and physician satisfaction was recorded. The NF group experienced more rapid pain relief and more sustained and clinically significant pain relief over the 40-minute study interval. There were no adverse effects noted in the NF group. Both patient and physician satisfaction scores were higher in the NF group. Fentanyl citrate at a dose of 2 μg/kg through a breath-actuated nebulizer appears to be a feasible and safe alternative to IVM (0.1 mg/kg) in the treatment of acute abdominal pain. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Social influences on morphine conditioned place preference in adolescent mice.

    PubMed

    Cole, Shannon L; Hofford, Rebecca S; Evert, Daniel J; Wellman, Paul J; Eitan, Shoshana

    2013-03-01

    Social/peer influences are among the strongest predictors of adolescent drug use. However, this important subject does not get much attention in pre-clinical studies. We recently observed that exposure to different social partners modulates morphine locomotor sensitization. Sensitivity to the hyper-locomotor response of drugs of abuse is a predictor of sensitivity to other drug-induced behaviors. Thus, this study examined how exposure to different social partners affected the rewarding properties of morphine. All animals were group-housed four per cage in one of two conditions referred to as 'only' and 'cage-mates'. In the mixed treatment condition, morphine- and saline-treated mice were housed together. These groups are referred to as 'morphine cage-mates' and 'saline cage-mates', respectively. In the separated treatment conditions, all mice in the cage received morphine (i.e. 'morphine only') or saline (i.e. 'saline only'), and cages were visually separated from each other. All animals were subsequently individually tested for the acquisition of morphine conditioned place preference (CPP) following one conditioning session with 10, 20 or 40 mg/kg morphine or saline. As expected, one conditioning session established morphine CPP in the morphine only animals, but not in the saline only animals. Notably, morphine CPP was not acquired by the morphine cage-mate animals. Additionally, 40 mg/kg morphine was sufficient to establish morphine CPP in the saline cage-mate animals. These results indicate that social environment has an effect on the rewarding properties of morphine. It suggests that exposure to different peers can alter the abuse potential of opioids and potentially other illicit drugs. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.

  11. Spinal Ceramide and Neuronal Apoptosis in Morphine Antinociceptive Tolerance

    PubMed Central

    Bryant, Leesa; Doyle, Tim; Chen, Zhoumo; Cuzzocrea, Salvatore; Masini, Emanuela; Vinci, M. Cristina; Esposito, Emanuela; Mazzon, Emanuela; Petrusca, Daniela Nicoleta; Petrache, Irina; Salvemini, Daniela

    2009-01-01

    Opiates, like morphine, are the most effective analgesics for treating acute and chronic severe pain, but their use is limited by the development of analgesic tolerance and hypersensitivity to innocuous and noxious stimuli. Because opioids are a mainstay of pain management, restoring their efficacy has great clinical importance. We have recently demonstrated that spinal ceramide, a sphingolipid signaling molecule plays a central role in the development of morphine antinociceptive tolerance. We now report that ceramide up-regulation in dorsal horn tissues in response to chronic morphine administration is associated with significant neuronal apoptosis. Inhibition of ceramide biosynthesis attenuated both the increase in neuronal apoptosis and the development of antinociceptive tolerance. These findings indicate that spinal ceramide upregulation is a key pro-apoptotic event that occurs upstream of the development of morphine antinociceptive tolerance and support the rationale for development of inhibitors of ceramide biosynthesis as adjuncts to opiates for the management of chronic pain. PMID:19631718

  12. Attenuation of tolerance to opioid-induced antinociception and protection against morphine-induced decrease of neurofilament proteins by idazoxan and other I2-imidazoline ligands.

    PubMed

    Boronat, M A; Olmos, G; García-Sevilla, J A

    1998-09-01

    1. Agmatine, the proposed endogenous ligand for imidazoline receptors, has been shown to attenuate tolerance to morphine-induced antinociception (Kolesnikov el al., 1996). The main aim of this study was to assess if idazoxan, an alpha2-adrenoceptor antagonist that also interacts with imidazoline receptors, could also modulate opioid tolerance in rats and to establish which type of imidazoline receptors (or other receptors) are involved. 2. Antinociceptive responses to opioid drugs were determined by the tail-flick test. The acute administration of morphine (10 mg kg(-1), i.p., 30 min) or pentazocine (10 mg kg(-1), i.p., 30 min) resulted in marked increases in tail-flick latencies (TFLs). As expected, the initial antinociceptive response to the opiates was lost after chronic (13 days) treatment (tolerance). When idazoxan (10 mg kg(-1), i.p.) was given chronically 30 min before the opiates it completely prevented morphine tolerance and markedly attenuated tolerance to pentazocine (TFLs increased by 71-143% at day 13). Idazoxan alone did not modify TFLs. 3. The concurrent chronic administration (10 mg kg(-1), i.p., 13 days) of 2-BFI, LSL 60101, and LSL 61122 (valldemossine), selective and potent I2-imidazoline receptor ligands, and morphine (10 mg kg(-1), i.p.), also prevented or attenuated morphine tolerance (TFLs increased by 64 172% at day 13). This attenuation of morphine tolerance was still apparent six days after discontinuation of the chronic treatment with LSL 60101-morphine. The acute treatment with these drugs did not potentiate morphine-induced antinociception. These drugs alone did not modify TFLs. Together, these results indicated the specific involvement of I2-imidazoline receptors in the modulation of opioid tolerance. 4. The concurrent chronic (13 days) administration of RX821002 (10 mg kg(-1), i.p.) and RS-15385-197 (1 mg kg(-1), i.p.), selective alpha2-adrenoceptor antagonists, and morphine (10 mg kg(-1), i.p.), did not attenuate morphine tolerance

  13. Immunomodulatory effect of morphine: therapeutic implications.

    PubMed

    Dinda, Amit; Gitman, Michael; Singhal, Pravin C

    2005-07-01

    The immunosuppressive as well as modulatory effects of morphine have been known in clinical medicine for > 100 years. Recent developments in molecular immunology, including experiments in mu (mu) opioid receptor knockout mice has led to a better understanding of central and peripheral mechanisms involved in this process. Though there is a large volume of literature documenting adverse effects of immunosupression following the use of morphine, several reports confirm its potential usefulness as an immunomodulator. In vitro and in vivo animal experiments have demonstrated wide-spectrum effects of morphine, including anti-inflammatory, antifibrotic, antitumour, cardioprotective and renoprotective. Immunomodulation is an important field in modern medicine with rapid advancement in recent years. Though a final statement regarding the clinical relevance of morphine-induced immunomodulation cannot be made at this juncture, nevertheless, it is worthwhile to review current developments. It may encourage further clinical studies to elucidate the influence of morphine treatment on immune regulation in different specialties of medicine.

  14. Morphine hyposensitivity in streptozotocin-diabetic rats: Reversal by dietary l-arginine treatment.

    PubMed

    Lotfipour, Shahrdad; Smith, Maree T

    2018-01-01

    Painful diabetic neuropathy (PDN) is a long-term complication of diabetes. Defining symptoms include mechanical allodynia (pain due to light pressure or touch) and morphine hyposensitivity. In our previous work using the streptozotocin (STZ)-diabetic rat model of PDN, morphine hyposensitivity developed in a temporal manner with efficacy abolished at 3 months post-STZ and maintained for 6 months post-STZ. As this time course mimicked that for the temporal development of hyposensitivity to the pain-relieving effects of the furoxan nitric oxide (NO) donor, PRG150 (3-methylfuroxan-4-carbaldehyde) in STZ-diabetic rats, we hypothesized that progressive depletion of endogenous NO bioactivity may underpin the temporal loss of morphine sensitivity in STZ-diabetic rats. Furthermore, we hypothesized that replenishment of NO bioactivity may restore morphine sensitivity in these animals. Diabetes was induced in male Dark Agouti rats by intravenous injection of STZ (85 mg/kg). Diabetes was confirmed on day 7 if blood glucose concentrations were ≥15 mmol/L. Mechanical allodynia was fully developed in the bilateral hindpaws by 3 weeks of STZ-diabetes in rats and this was maintained for the study duration. Morphine hyposensitivity developed in a temporal manner with efficacy abolished by 3 months post-STZ. Administration of dietary l-arginine (NO precursor) at 1 g/d to STZ-diabetic rats according to a 15-week prevention protocol initiated at 9 weeks post-STZ prevented abolition of morphine efficacy. When given as an 8-week intervention protocol in rats where morphine efficacy was abolished, dietary l-arginine at 1 g/d progressively rescued morphine efficacy and potency. Our findings implicate NO depletion in the development of morphine hyposensitivity in STZ-diabetic rats. © 2017 John Wiley & Sons Australia, Ltd.

  15. Narp regulates long-term aversive effects of morphine withdrawal.

    PubMed

    Reti, Irving M; Crombag, Hans S; Takamiya, Kogo; Sutton, Jeffrey M; Guo, Ning; Dinenna, Megan L; Huganir, Richard L; Holland, Peter C; Baraban, Jay M

    2008-08-01

    Although long-lasting effects of drug withdrawal are thought to play a key role in motivating continued drug use, the mechanisms mediating this type of drug-induced plasticity are unclear. Because Narp is an immediate early gene product that is secreted at synaptic sites and binds to alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, it has been implicated in mediating enduring forms of synaptic plasticity. In previous studies, the authors found that Narp is selectively induced by morphine withdrawal in the extended amygdala, a group of limbic nuclei that mediate aversive behavioral responses. Accordingly, in this study, the authors evaluate whether long-term aversive effects of morphine withdrawal are altered in Narp knockout (KO) mice. The authors found that acute physical signs of morphine withdrawal are unaffected by Narp deletion. However, Narp KO mice acquire and sustain more aversive responses to the environment conditioned with morphine withdrawal than do wild type (WT) controls. Paradoxically, Narp KO mice undergo accelerated extinction of this heightened aversive response. Taken together, these studies suggest that Narp modulates both acquisition and extinction of aversive responses to morphine withdrawal and, therefore, may regulate plasticity processes underlying drug addiction.

  16. Effects of ketoconazole on the pharmacokinetics and pharmacodynamics of morphine in healthy Greyhounds.

    PubMed

    Kukanich, Butch; Borum, Stacy L

    2008-05-01

    To assess pharmacokinetics and pharmacodynamics of morphine and the effects of ketoconazole on the pharmacokinetics and pharmacodynamics of morphine in healthy Greyhounds. 6 healthy Greyhounds, 3 male and 3 female. Morphine sulfate (0.5 mg/kg. IV) was administered to Greyhounds prior to and after 5 days of ketoconazole (12.7 +/- 0.6 mg/kg, PO) treatment. Plasma samples were obtained from blood samples that were collected at predetermined time points for measurement of morphine and ketoconazole concentrations by mass spectrometry. Pharmacokinetics of morphine were estimated by use of computer software. Pharmacodynamic effects of morphine in Greyhounds were similar to those of other studies in dogs and were similar between treatment groups. Morphine was rapidly eliminated with a half-life of 1.28 hours and a plasma clearance of 32.55 mL/min/kg. The volume of distribution was 3.6 L/kg. No significant differences in the pharmacokinetics of morphine were found after treatment with ketoconazole. Plasma concentrations of ketoconazole were high and persisted longer than expected in Greyhounds. Ketoconazole had no significant effect on morphine pharmacokinetics, and the pharmacodynamics were similar between treatment groups. Plasma concentrations of ketoconazole were higher than expected and persisted longer than expected in Greyhounds.

  17. Effects of intramuscular morphine in men and women with temporomandibular disorder with myofascial pain.

    PubMed

    Kang, Soo-Kyung; Lee, Yeon-Hee; Park, Hyeji; Ro, Jin Y; Auh, Q-Schick

    2018-06-19

    This placebo-controlled randomized double-blinded clinical study assessed the analgesic efficacy of intramuscular morphine in TMD patients with myofascial pain and sex dependent responses of the morphine treatment. Men and women with TMD were treated with morphine (1.5 or 5 mg), lidocaine or saline in the masseter muscle. VAS of pain intensity, PPT and PPtol were compared between treatment groups and gender. An additional group was treated with morphine in the trapezius muscle to evaluate the systemic effect of morphine that may reduce pain in the masseter muscle. There was a significant difference in VAS scores between the morphine 5 mg group and the saline group favoring morphine, but not between the morphine 5 mg and lidocaine. Morphine 1.5 mg and 5 mg treatments led to consistently and significantly elevated PPT and PPtol measures in men, but not in women. Morphine administered in the trapezius muscle did not affect the outcome measures. A single dose intramuscular morphine produced analgesic effects up to 48 hrs in patients with myofascial pain. Intramuscular morphine elevated mechanical pain threshold and tolerance in the masseter only in male patients, suggesting sex differences in local morphine effects. No systemic effect of intramuscular morphine was detected. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Effect of environmental enrichment on physical and psychological dependence signs and voluntary morphine consumption in morphine-dependent and morphine-withdrawn rats.

    PubMed

    Hammami-Abrand Abadi, Arezoo; Miladi-Gorji, Hossein; Bigdeli, Imanollah

    2016-04-01

    This study was designed to examine the effect of environmental enrichment during morphine dependency and withdrawal on the severity of naloxone-precipitated withdrawal signs, anxiety, and depressive-like behaviors and voluntary morphine consumption in morphine-dependent rats. The rats were injected with bi-daily doses (10 mg/kg, 12 h intervals) of morphine for 14 days following rearing in a standard environment (SE) or enriched environment (EE) during the development of morphine dependence and withdrawal. Then, rats were tested for withdrawal signs after naloxone injection, anxiety (the elevated plus maze) and depression-related behavior (sucrose preference test), and voluntary consumption of morphine using a two-bottle choice paradigm, in morphine-dependent and morphine-withdrawn rats. The results showed that EE decreased naloxone-precipitated withdrawal signs, but not anxiety or sucrose preference during dependence on morphine. The EE-withdrawn rats showed an increase in the elevated plus maze open arm time and entries and higher levels of sucrose preference than SE rats. Voluntary consumption of morphine was lower in the EE-withdrawn rats than in the SE groups in the second period of drug intake. Thus, exposure to EE reduced the severity of morphine dependence and voluntary consumption of morphine, alongside reductions in anxiety and depression-related behavior in morphine-withdrawn rats.

  19. Effects of morphine on circadian rhythms of motor activity and body temperature in pig-tailed macaques.

    PubMed

    Weed, Michael R; Hienz, Robert D

    2006-07-01

    Previous studies of the effects of opiates on motor activity and body temperature in nonhuman primates have been limited in scope and typically only conducted with restrained animals. The present study used radio-telemetry devices to continuously measure activity and temperature in unrestrained pig-tailed macaques for 24 h following morphine administration. Two dose-response functions (0.56 to 5.6 mg/kg, i.m.) were determined, one with morphine administered at 9 a.m. and one with morphine administrated at 3 p.m. Under both the 9 a.m. or 3 p.m. administration schedules, body temperature and activity were increased acutely. Activity was also reduced the following morning after morphine administered at either time. In other regards, morphine's effects on both temperature and activity differed between 9 a.m. and 3 p.m. injection, including periods of decreased activity immediately after the acute increases after 9 a.m. but not 3 p.m. administration. Surprisingly, motor activity also increased 9-12 h post-injection following morphine administered at 9 a.m., but not at 3 p.m. These results clearly show an interaction between timing of morphine administration and effects on temperature and activity. These results also underscore the fact that single injections of drugs may have multiple and delayed effects on circadian rhythms in macaques.

  20. Nucleus Accumbens AMPA Receptors Are Necessary for Morphine-Withdrawal-Induced Negative-Affective States in Rats

    PubMed Central

    Russell, Shayla E.; Puttick, Daniel J.; Sawyer, Allison M.; Potter, David N.; Mague, Stephen; Carlezon, William A.

    2016-01-01

    Dependence is a hallmark feature of opiate addiction and is defined by the emergence of somatic and affective withdrawal signs. The nucleus accumbens (NAc) integrates dopaminergic and glutamatergic inputs to mediate rewarding and aversive properties of opiates. Evidence suggests that AMPA glutamate-receptor-dependent synaptic plasticity within the NAc underlies aspects of addiction. However, the degree to which NAc AMPA receptors (AMPARs) contribute to somatic and affective signs of opiate withdrawal is not fully understood. Here, we show that microinjection of the AMPAR antagonist NBQX into the NAc shell of morphine-dependent rats prevented naloxone-induced conditioned place aversions and decreases in sensitivity to brain stimulation reward, but had no effect on somatic withdrawal signs. Using a protein cross-linking approach, we found that the surface/intracellular ratio of NAc GluA1, but not GluA2, increased with morphine treatment, suggesting postsynaptic insertion of GluA2-lacking AMPARs. Consistent with this, 1-naphthylacetyl spermine trihydrochloride (NASPM), an antagonist of GluA2-lacking AMPARs, attenuated naloxone-induced decreases in sensitivity to brain stimulation reward. Naloxone decreased the surface/intracellular ratio and synaptosomal membrane levels of NAc GluA1 in morphine-dependent rats, suggesting a compensatory removal of AMPARs from synaptic zones. Together, these findings indicate that chronic morphine increases synaptic availability of GluA1-containing AMPARs in the NAc, which is necessary for triggering negative-affective states in response to naloxone. This is broadly consistent with the hypothesis that activation of NAc neurons produces acute aversive states and raises the possibility that inhibiting AMPA transmission selectively in the NAc may have therapeutic value in the treatment of addiction. SIGNIFICANCE STATEMENT Morphine dependence and withdrawal result in profound negative-affective states that play a major role in the

  1. Pharmacodynamic effect of morphine-6-glucuronide versus morphine on hypoxic and hypercapnic breathing in healthy volunteers.

    PubMed

    Romberg, Raymonda; Olofsen, Erik; Sarton, Elise; Teppema, Luc; Dahan, Albert

    2003-10-01

    Morphine-6-glucuronide (M6G) is an active metabolite of morphine that is generally associated with less respiratory depression than morphine. Because M6G will be on the market in the near future, the authors assessed the time profile and relative potency of M6G's effect versus morphine's effect on carbon dioxide-driven and hypoxic breathing. In nine healthy female volunteers, the effects of 0.2 mg/kg intravenous M6G, 0.13 mg/kg intravenous morphine, and intravenous placebo were tested on ventilation at a fixed end-tidal pressure of carbon dioxide (Petco2) of 45 mmHg (Vi45) and on the acute hypoxic ventilatory response (AHR). All subjects participated in all three arms of the study. Respiratory studies were performed at 1-h intervals for 7 h after drug infusion. The data were analyzed using a population dose-driven approach, which uses a dose rate in function of time as input function driving the pharmacodynamics, and a population pharmacokinetic-pharmacodynamic (PK/PD) approach in which fixed pharmacokinetic parameter values from the literature were used as input function to the respiratory model. From the latter analysis, the authors obtained the blood effect-site equilibration half-life (t1/2ke0) and the effect-site concentration producing 25% depression of Vi45 and AHR (C25). Values reported are mean +/- SE. Placebo had no effect on Vi45 or AHR over time. Both analysis approaches yielded good descriptions of the data with comparable model parameters. M6G PK/PD model parameters for Vi45 were t1/2ke0 2.1 +/- 0.2 h and C25 528 +/- 88 nm and for AHR were t1/2ke0 1.0 +/- 0.1 h and C25 873 +/- 81 nm. Morphine PK/PD model parameters for Vi45 were t1/2ke0 3.8 +/- 0.9 h and C25 28 +/- 6 nm and for AHR were t1/2ke0 4.3 +/- 0.6 h and C25 16 +/- 2 nm. Morphine is more potent in affecting hypoxic ventilatory control than M6G, with a potency ratio ranging from 1:19 for Vi45 to 1:50 for AHR. At drug concentrations causing 25% depression of Vi45, M6G caused only 15% depression

  2. Morphine-induced changes in acetylcholine release in the interpeduncular nucleus and relationship to changes in motor behavior in rats

    PubMed Central

    Taraschenko, Olga D.; Rubbinaccio, Heather Y.; Shulan, Joseph M.; Glick, Stanley D.; Maisonneuve, Isabelle M.

    2007-01-01

    Owing to multiple anatomical connections and functional interactions between the habenulo-interpeduncular and the mesolimbic pathways, it has been proposed that these systems could together mediate the reinforcing properties of addictive drugs. 18-Methoxycoronaridine, an agent that reduces morphine self-administration and attenuates dopamine sensitization in the nucleus accumbens in response to repeated morphine, has been shown to produce these effects by acting in the medial habenula and interpeduncular nucleus. Acetylcholine, one of the predominant neurotransmitters in the interpeduncular nucleus, may be a major determinant of these interactions. To determine if and how morphine acts in the interpeduncular nucleus, the effects of acute and repeated administration of morphine on extracellular acetylcholine levels in this brain area were assessed. In addition, the motor behavior of rats receiving repeated morphine administration was monitored during microdialysis sessions. Acutely, morphine produced a biphasic effect on extracellular acetylcholine levels in the interpeduncular nucleus such that low and high doses of morphine (i.e., 5 and 20 mg/kg i.p.) significantly increased and decreased acetylcholine levels, respectively. Repeated administration of the same doses of morphine resulted in tolerance to the inhibitory but not to the stimulatory effects; tolerance was accompanied by sensitization to morphine-induced changes in locomotor activity and stereotypic behavior. The latter results suggest that tolerance to morphine's effect on the cholinergic habenulo-interpeduncular pathway is related to its sensitizing effects on the mesostriatal dopaminergic pathways. PMID:17544456

  3. Inhibition of Morphine Tolerance and Dependence by the NMDA Receptor Antagonist MK-801

    NASA Astrophysics Data System (ADS)

    Trujillo, Keith A.; Akil, Huda

    1991-01-01

    The N-methyl-D-aspartate (NMDA) subtype of the glutamate receptor is an important mediator of several forms of neural and behavioral plasticity. The present studies examined whether NMDA receptors might be involved in the development of opiate tolerance and dependence, two examples of behavioral plasticity. The noncompetitive NMDA receptor antagonist MK-801 attenuated the development of tolerance to the analgesic effect of morphine without affecting acute morphine analgesia. In addition, MK-801 attenuated the development of morphine dependence as assessed by naloxone-precipitated withdrawal. These results suggest that NMDA receptors may be important in the development of opiate tolerance and dependence.

  4. Implication of mGlu5 receptor in the enhancement of morphine-induced hyperlocomotion under chronic treatment with zolpidem.

    PubMed

    Shibasaki, Masahiro; Ishii, Kazunori; Masukawa, Daiki; Ando, Koji; Ikekubo, Yuiko; Ishikawa, Yutori; Shibasaki, Yumiko; Mori, Tomohisa; Suzuki, Tsutomu

    2014-09-05

    Long-term exposure to zolpidem induces drug dependence, and it is well known that the balance between the GABAergic and glutamatergic systems plays a critical role in maintaining the neuronal network. In the present study, we investigated the interaction between GABAA receptor α1 subunit and mGlu5 receptor in the limbic forebrain including the N.Acc. after treatment with zolpidem for 7 days. mGlu5 receptor protein levels were significantly increased after treatment with zolpidem for 7 days, and this change was accompanied by the up-regulation of phospholipase Cβ1 and calcium/calmodulin-dependent protein kinase IIα, which are downstream of mGlu5 receptor in the limbic forebrain. To confirm that mGlu5 receptor is directly involved in dopamine-related behavior in mice following chronic treatment with zolpidem, we measured morphine-induced hyperlocomotion after chronic treatment with zolpidem in the presence or absence of an mGlu5 receptor antagonist. Although chronic treatment with zolpidem significantly enhanced morphine-induced hyperlocomotion, this enhancement of morphine-induced hyperlocomotion was suppressed by treating it with the mGlu5 receptor antagonist MPEP. These results suggest that chronic treatment with zolpidem caused neural plasticity in response to activation of the mesolimbic dopaminergic system accompanied by an increase in mGlu5 receptor. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Comparison of epidural morphine versus intramuscular morphine for postoperative analgesia.

    PubMed

    Baftiu, Nehat; Hadri, Burhan; Mustafa, Aziz

    2010-01-01

    To compare effects and side effects or complications of epidural versus intramuscularly administered morphine for relieve of postoperative pain. In the first group (epidural) analgesia is achieved by application of morphine through epidural catheter. To the amount of morphine is added physiological solution until 10 ml of total volume of the mixture is achieved. This mixture is given to 150 patients, by epidural route before the exit from the operation room. Epidural catheter is removed after 48 hours. Second group (intramuscular) analgesia is realized by application of 10 mg of morphine by intramuscular route. Morphine is injected at the end of surgery. Pain is assessed with combination of verbal categorical scale and visual analog scale. Verbal categorical scale used is 8 points scale and contains words of Tursky: 0 no pain, 1 very low pain, 2 week pain, 3 mild pain, 4 moderate pain, 5 strong pain, 6 severe pain, 7 untolerated pain. Awareness is assed during first 24 hours. For this Reynolds 4 points scale is used: awaked 1, somnolent 2, sleepy 3, deep sleep 4. Pain assessed by visual analog scale (VAS) is 15.17-29.62 in the epidural group patients versus 26.39-70.83 in intramuscular group. Variation of respiration rate in both groups is not significant 22.21 +/- 4.23 and 23.98 +/- 2.72 in minute, in epidural and intramuscular morphine groups, respectively. PaCO2 and PaO2 values are similar without significant variation 35.34 +/- 4.72 mmHg in the epidural morphine group and 31.3 +/- 3.21 mmHg in intramuscular morphine group. Epidural administration of morphine provides better analgesia in quality, since it is deeper, longer in duration and with less inhibitory supra-spinal actions when compared to intramuscular administered morphine.

  6. Melatonin reverses morphine tolerance by inhibiting microglia activation and HSP27 expression.

    PubMed

    Lin, Sheng-Hsiung; Huang, Ya-Ni; Kao, Jen-Hsin; Tien, Lu-Tai; Tsai, Ru-Yin; Wong, Chih-Shung

    2016-05-01

    Melatonin has been reported to attenuate opioid tolerance. In this study, we explored the possible mechanism of melatonin in diminishing morphine tolerance. Two intrathecal (i.t.) catheters were implanted in male Wistar rats for drug delivery. One was linked to a mini-osmotic pump for morphine or saline infusion. On the seventh day, 50μg of melatonin or vehicle was injected through the other catheter instantly after discontinuation of morphine or saline infusion; 3h later, 15μg of morphine or saline was injected. The antinociceptive response was then measured using the tail-flick test every 30min for 120min. The results showed that chronic morphine infusion elicited antinociceptive tolerance and upregulated heat shock protein 27 (HSP27) expression in the dorsal horn of the rat spinal cord. Melatonin pretreatment partially restored morphine's antinociceptive effect in morphine-tolerant rats and reversed morphine-induced HSP27 upregulation. In addition, chronic morphine infusion induced microglial cell activation and was reversed by melatonin treatment. The present study provides evidence that melatonin, acting via inhibiting morphine-induced neuroinflammation, can be useful as a therapeutic adjuvant for patients under long-term opioid treatment for pain relief. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Long-Term Antihyperalgesic and Opioid-Sparing Effects of 5-Day Ketamine and Morphine Infusion ("Burst Ketamine") in Diabetic Neuropathic Rats.

    PubMed

    Mak, Plato; Broadbear, Jillian H; Kolosov, Anton; Goodchild, Colin S

    2015-09-01

    "Burst ketamine" (BK) is the long-term infusion of subanesthetic ketamine in combination with an opioid. It is used clinically with mixed success to provide long-term pain relief and improve opioid response in patients. BK has not been simulated preclinically, therefore, its effectiveness was investigated in an animal model of neuropathic pain--streptozotocin-induced diabetic neuropathy. Diabetic neuropathic rats were randomized to receive a subcutaneous infusion of ketamine 20 mg/kg/day plus morphine 20 mg/kg/day (BK), either drug alone at the same dose, or sham treatment. Drugs were administered continuously over 5 days via osmotic minipump. Antihyperalgesic effects and antinociceptive responsiveness to morphine (0.625-10 mg/kg, i.p.) were assessed at 2, 4, 6, and 12 weeks post-treatment using paw withdrawal latency (PWL) from noxious heat (thermal hyperalgesia) and mechanical touch (tactile allodynia). Antihyperalgesic effects with significant increases in PWL from noxious heat occurred following BK and ketamine-only infusion, persisting 12 and 4 weeks, respectively. Opioid-sparing effects from noxious heat with increased sensitivity to morphine analgesia also occurred for 6 weeks after BK and 2 weeks after ketamine treatment; acute treatment with the maximum nonsedating dose of morphine (5 mg/kg) produced an antinociceptive effect in these two groups, but not in sham-treated rats. In morphine-only infusion rats, hyperalgesia and opioid insensitivity were both increased. This is the first preclinical study to use a model of neuropathic pain to demonstrate the utility of the BK procedure for delivering a long-lasting reduction in hyperalgesia and improved antinociceptive responsiveness to opioids. Wiley Periodicals, Inc.

  8. Modulation of opiate-related signaling molecules in morphine-dependent conditioned behavior: conditioned place preference to morphine induces CREB phosphorylation.

    PubMed

    Morón, José A; Gullapalli, Srinivas; Taylor, Chirisse; Gupta, Achla; Gomes, Ivone; Devi, Lakshmi A

    2010-03-01

    Opiate addiction is a chronic, relapsing behavioral disorder where learned associations that develop between the abused opiate and the environment in which it is consumed are brought about through Pavlovian (classical) conditioning processes. However, the signaling mechanisms/pathways regulating the mechanisms that underlie the responses to opiate-associated cues or the development of sensitization as a consequence of repeated context-independent administration of opiates are unknown. In this study we examined the phosphorylation levels of various classic signaling molecules in brain regions implicated in addictive behaviors after acute and repeated morphine administration. An unbiased place conditioning protocol was used to examine changes in phosphorylation that are associated with (1) the expression of the rewarding effects of morphine and (2) the sensitization that develops to this effect. We also examined the effects of a delta-receptor antagonist on morphine-induced conditioned behavior and on the phosphorylation of classic signaling molecules in view of data showing that blockade of delta-opioid receptor (deltaOR) prevents the development of sensitization to the rewarding effects of morphine. We find that CREB phosphorylation is specifically induced upon the expression of a sensitized response to morphine-induced conditioned behavior in brain areas related to memory consolidation, such as the hippocampus and cortex. A similar effect is also observed, albeit to a lesser extent, in the case of the GluR1 subunit of AMPA glutamate receptor. These increases in the phosphorylation levels of CREB and pGluR1 are significantly blocked by pretreatment with a deltaOR antagonist. These results indicate a critical role for phospho-CREB, AMPA, and deltaOR activities in mediating the expression of a sensitized response to morphine-dependent conditioned behavior.

  9. Reduction of opioid withdrawal and potentiation of acute opioid analgesia by systemic AV411 (ibudilast)

    PubMed Central

    Hutchinson, Mark R.; Lewis, Susannah S.; Coats, Benjamen D.; Skyba, David A.; Crysdale, Nicole Y.; Berkelhammer, Debra L.; Brzeski, Anita; Northcutt, Alexis; Vietz, Christine M.; Judd, Charles M.; Maier, Steven F.; Watkins, Linda R.; Johnson, Kirk W.

    2009-01-01

    Morphine-induced glial proinflammatory responses have been documented to contribute to tolerance to opioid analgesia. Here, we examined whether drugs previously shown to suppress glial proinflammatory responses can alter other clinically relevant opioid effects; namely, withdrawal or acute analgesia. AV411 (ibudilast) and minocycline, drugs with distinct mechanisms of action that result in attenuation of glial proinflammatory responses, each reduced naloxone-precipitated withdrawal. Analysis of brain nuclei associated with opioid withdrawal revealed that morphine altered expression of glial activation markers, cytokines, chemokines, and a neurotrophic factor. AV411 attenuated many of these morphine-induced effects. AV411 also protected against spontaneous withdrawal-induced hyperactivity and weight loss recorded across a 12-day timecourse. Notably, in the spontaneous withdrawal study, AV411 treatment was delayed relative to the start of the morphine regimen so to also test whether AV411 could still be effective in the face of established morphine dependence, which it was. AV411 did not simply attenuate all opioid effects, as co-administering AV411 with morphine or oxycodone caused 3-to-5-fold increases in acute analgesic potency, as revealed by leftward shifts in the analgesic dose response curves. Timecourse analyses revealed that plasma morphine levels were not altered by AV411, suggestive that potentiated analgesia was not simply due to prolongation of morphine exposure or increased plasma concentrations. These data support and extend similar potentiation of acute opioid analgesia by minocycline, again providing converging lines of evidence of glial involvement. Hence, suppression of glial proinflammatory responses can significantly reduce opioid withdrawal, whilst improving analgesia. PMID:18938237

  10. Modulation of morphine antinociceptive tolerance and physical dependence by co-administration of simvastatin.

    PubMed

    Mansouri, Mohammad Taghi; Khodayar, Mohammad Javad; Tabatabaee, Amirhossein; Ghorbanzadeh, Behnam; Naghizadeh, Bahareh

    2015-10-01

    Statins, 3-hydroxy-3-methylglutaryl co-enzyme A (HMG-CoA) reductase inhibitors, are widely used in the management of different diseases beyond their primary indication for lowering cholesterol. Previous studies have demonstrated the neuroprotective effects of simvastatin in different animal models. In the present study, we examined the effects of simvastatin (30, 60, 100 and 300mg/kg, p.o.) on the development and expression of morphine-induced tolerance and dependence in mice. For the induction of morphine tolerance and dependence, mice were twice daily treated with morphine (10mg/kg, s.c.) for 5 consecutive days. Tolerance was evaluated by the hot-plate test and physical dependence by naloxone challenge, on the sixth day. The results showed that oral administration of simvastatin produced antinociceptive activity in a dose-dependent way. Co-administration of simvastatin with morphine did not affect the acute morphine-induced analgesia (10mg/kg, s.c.). However, repeated co-administration of simvastatin with morphine significantly attenuated the development of tolerance to the analgesic effect of morphine and inhibited the naloxone (5mg/kg, s.c.)-precipitated withdrawal signs (jumping and body weight loss). Also, simvastatin at doses of 100 and 300mg/kg attenuated the expression of morphine-induced tolerance and dependence. These data indicated that, while simvastatin can alleviate both development and expression of morphine-induced tolerance, it cannot enhance morphine-induced antinociception. Taken together, simvastatin may be used as an adjutant therapeutic agent in combination with morphine and or other opioids in patients with severe chronic pain. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Effects of morphine on stress induced anxiety in rats: role of nitric oxide and Hsp70.

    PubMed

    Joshi, Jagdish C; Ray, Arunabha; Gulati, Kavita

    2015-02-01

    The present study evaluated the effects of morphine on acute and chronic restraint stress (RS) induced anxiety modulation and the possible involvement of nitric oxide (NO) and heat shock proteins (Hsp70) during such effects. Acute RS (×1) induced anxiogenesis in the elevated plus maze (EPM) test which was associated with lowered brain NO metabolites (NOx) and elevated Hsp70 levels. Pretreatment with morphine (1 and 5 mg/kg) and L-arginine (500 mg/kg) attenuated the RS effects on EPM activity and brain NOx, whereas, Hsp70 levels were further augmented. Co-administration of both agents showed synergistic effects. By contrast, repeated RS (×15) did not induce any significant changes in EPM activity or brain NOx, but brain Hsp70 levels stayed elevated. Administration of morphine or L-arginine prior to chronic RS did not influence such chronic stress induced changes in behavioral and biochemical markers, but appreciably attenuated chronic RS induced elevation in Hsp70 levels. These results suggest that acute and chronic RS induced anxiety modulations were differentially influenced by morphine and L-arginine and that complex interactions involving brain NO and unregulated Hsp70 could regulate such effects. Copyright © 2014. Published by Elsevier Inc.

  12. Glial activation and midkine and pleiotrophin transcription in the ventral tegmental area are modulated by morphine administration.

    PubMed

    García-Pérez, Daniel; Luisa Laorden, M; Núñez, Cristina; Victoria Milanés, M

    2014-09-15

    Opiates cause persistent restructuring in the mesolimbic reward system. Although a possible role for midkine and pleiotrophin cytokines in the field of synaptic plasticity has been proposed, it has not been assessed whether morphine administration regulates astrogliosis and midkine and pleiotrophin transcription. We observed that single morphine injection and chronic morphine increased glial fibrillary acidic protein expression in the ventral tegmental area (VTA). Interestingly, single morphine injection and chronic morphine increased VTA midkine and pleiotrophin mRNA expression. Given these results, we hypothesize a role for these cytokines in mediating, at least in part, acute neuroprotective effects and chronic neurotrophic adaptations that contribute to drug dependence. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Ligand-induced μ opioid receptor internalization in enteric neurons following chronic treatment with the opiate fentanyl.

    PubMed

    Anselmi, Laura; Jaramillo, Ingrid; Palacios, Michelle; Huynh, Jennifer; Sternini, Catia

    2013-06-01

    Morphine differs from most opiates its poor ability to internalize μ opioid receptors (μORs). However, chronic treatment with morphine produces adaptational changes at the dynamin level, which enhance the efficiency of acute morphine stimulation to promote μOR internalization in enteric neurons. This study tested the effect of chronic treatment with fentanyl, a μOR-internalizing agonist, on ligand-induced endocytosis and the expression of the intracellular trafficking proteins, dynamin and β-arrestin, in enteric neurons using organotypic cultures of the guinea pig ileum. In enteric neurons from guinea pigs chronically treated with fentanyl, μOR immunoreactivity was predominantly at the cell surface after acute exposure to morphine with a low level of μOR translocation, slightly higher than in neurons from naïve animals. This internalization was not due to morphine's direct effect, because it was also observed in neurons exposed to medium alone. By contrast, D-Ala2-N-Me-Phe4-Gly-ol5-enkephalin (DAMGO), a potent μOR-internalizing agonist, induced pronounced and rapid μOR endocytosis in enteric neurons from animals chronically treated with fentanyl or from naïve animals. Chronic fentanyl treatment did not alter dynamin or β-arrestin expression. These findings indicate that prolonged activation of μORs with an internalizing agonist such as fentanyl does not enhance the ability of acute morphine to trigger μOR endocytosis or induce changes in intracellular trafficking proteins, as observed with prolonged activation of μORs with a poorly internalizing agonist such as morphine. Cellular adaptations induced by chronic opiate treatment might be ligand dependent and vary with the agonist efficiency to induce receptor internalization. Copyright © 2013 Wiley Periodicals, Inc.

  14. Early modulation by the dopamine D4 receptor of morphine-induced changes in the opioid peptide systems in the rat caudate putamen.

    PubMed

    Gago, Belén; Fuxe, Kjell; Brené, Stefan; Díaz-Cabiale, Zaida; Reina-Sánchez, María Dolores; Suárez-Boomgaard, Diana; Roales-Buján, Ruth; Valderrama-Carvajal, Alejandra; de la Calle, Adelaida; Rivera, Alicia

    2013-12-01

    The peptides dynorphin and enkephalin modulate many physiological processes, such as motor activity and the control of mood and motivation. Their expression in the caudate putamen (CPu) is regulated by dopamine and opioid receptors. The current work was designed to explore the early effects of the acute activation of D4 and/or μ opioid receptors by the agonists PD168,077 and morphine, respectively, on the regulation of the expression of these opioid peptides in the rat CPu, on transcription factors linked to them, and on the expression of μ opioid receptors. In situ hybridization experiments showed that acute treatment with morphine (10 mg/kg) decreased both enkephalin and dynorphin mRNA levels in the CPu after 30 min, but PD168,077 (1 mg/kg) did not modify their expression. Coadministration of the two agonists demonstrated that PD168,077 counteracted the morphine-induced changes and even increased enkephalin mRNA levels. The immunohistochemistry studies showed that morphine administration also increased striatal μ opioid receptor immunoreactivity but reduced P-CREB expression, effects that were blocked by the PD168,077-induced activation of D4 receptors. The current results present evidence of functional D4 -μ opioid receptor interactions, with consequences for the opioid peptide mRNA levels in the rat CPu, contributing to the integration of DA and opioid peptide signaling. Copyright © 2013 Wiley Periodicals, Inc.

  15. Simultaneous measurement and integrated analysis of analgesia and respiration after an intravenous morphine infusion.

    PubMed

    Dahan, Albert; Romberg, Raymonda; Teppema, Luc; Sarton, Elise; Bijl, Hans; Olofsen, Erik

    2004-11-01

    To study the influence of morphine on chemical control of breathing relative to the analgesic properties of morphine, the authors quantified morphine-induced analgesia and respiratory depression in a single group of healthy volunteers. Both respiratory and pain measurements were performed over single 24-h time spans. Eight subjects (four men, four women) received a 90-s intravenous morphine infusion; eight others (four men, four women) received a 90-s placebo infusion. At regular time intervals, respiratory variables (breathing at a fixed end-tidal partial pressure of carbon dioxide of 50 mmHg and the isocapnic acute hypoxic response), pain tolerance (derived from a transcutaneous electrical acute pain model), and arterial blood samples were obtained. Data acquisition continued for 24 h. Population pharmacokinetic (sigmoid Emax)-pharmacodynamic models were applied to the respiratory and pain data. The models are characterized by potency parameters, shape parameters (gamma), and blood-effect site equilibration half-lives. All collected data were analyzed simultaneously using the statistical program NONMEM. Placebo had no systematic effect on analgesic or respiratory variables. Morphine potency parameter and blood-effect site equilibration half-life did not differ significantly among the three measured effect parameters (P > 0.01). The integrated NONMEM analysis yielded a potency parameter of 32 +/- 1.4 nm (typical value +/- SE) and a blood-effect site equilibration half-life of 4.4 +/- 0.3 h. Parameter gamma was 1 for hypercapnic and hypoxic breathing but 2.4 +/- 0.7 for analgesia (P < 0.01). Our data indicate that systems involved in morphine-induced analgesia and respiratory depression share important pharmacodynamic characteristics. This suggests similarities in central mu-opioid analgesic and respiratory pathways (e.g., similarities in mu-opioid receptors and G proteins). The clinical implication of this study is that after morphine administration, despite lack

  16. Ultra-low dose naltrexone attenuates chronic morphine-induced gliosis in rats.

    PubMed

    Mattioli, Theresa-Alexandra M; Milne, Brian; Cahill, Catherine M

    2010-04-16

    The development of analgesic tolerance following chronic morphine administration can be a significant clinical problem. Preclinical studies demonstrate that chronic morphine administration induces spinal gliosis and that inhibition of gliosis prevents the development of analgesic tolerance to opioids. Many studies have also demonstrated that ultra-low doses of naltrexone inhibit the development of spinal morphine antinociceptive tolerance and clinical studies demonstrate that it has opioid sparing effects. In this study we demonstrate that ultra-low dose naltrexone attenuates glial activation, which may contribute to its effects on attenuating tolerance. Spinal cord sections from rats administered chronic morphine showed significantly increased immuno-labelling of astrocytes and microglia compared to saline controls, consistent with activation. 3-D images of astrocytes from animals administered chronic morphine had significantly larger volumes compared to saline controls. Co-injection of ultra-low dose naltrexone attenuated this increase in volume, but the mean volume differed from saline-treated and naltrexone-treated controls. Astrocyte and microglial immuno-labelling was attenuated in rats co-administered ultra-low dose naltrexone compared to morphine-treated rats and did not differ from controls. Glial activation, as characterized by immunohistochemical labelling and cell size, was positively correlated with the extent of tolerance developed. Morphine-induced glial activation was not due to cell proliferation as there was no difference observed in the total number of glial cells following chronic morphine treatment compared to controls. Furthermore, using 5-bromo-2-deoxyuridine, no increase in spinal cord cell proliferation was observed following chronic morphine administration. Taken together, we demonstrate a positive correlation between the prevention of analgesic tolerance and the inhibition of spinal gliosis by treatment with ultra-low dose naltrexone

  17. Effectiveness of prehospital morphine, fentanyl, and methoxyflurane in pediatric patients.

    PubMed

    Bendall, Jason C; Simpson, Paul M; Middleton, Paul M

    2011-01-01

    To compare the effectiveness of intravenous morphine, intranasal (IN) fentanyl, and inhaled methoxyflurane for managing moderate to severe pain in pediatric patients in the out-of-hospital setting. We conducted a retrospective comparative study of 3,312 pediatric patients aged between 5 and 15 years who had moderate to severe pain (pain score ≥ 5) and who received intravenous morphine, IN fentanyl, or inhaled methoxyflurane, either alone or in combination, between January 1, 2004, and November 30, 2006. Multivariate logistic regression was used to analyze data extracted from a clinical database containing routinely entered information from patient health care records. The primary outcome measure was effective analgesia, defined as a reduction in pain severity of ≥ 30% of initial pain score using an 11-point verbal numeric rating scale. Effective analgesia was achieved in 82.5% of cases overall. All analgesic agents were effective in the majority of patients (87.5%, 89.5%, and 78.3% for morphine, fentanyl, and methoxyflurane, respectively). There was evidence that methoxyflurane was less effective than both morphine (odds ratio [OR] 0.52; 95% confidence interval [CI] 0.36-0.74) and fentanyl (OR 0.43; 95% CI 0.29-0.62; p < 0.0001). There was no clinical or statistical evidence of difference in the effectiveness of fentanyl and morphine in this population (OR 1.22; 95% CI 0.74-2.01). There was no evidence that combination analgesia was better than either fentanyl or morphine alone. Intranasal fentanyl and intravenous morphine are equally effective analgesic agents in pediatric patients with moderate to severe acute pain in the out-of-hospital setting. Methoxyflurane is less effective in comparison with both morphine and fentanyl, but is an effective analgesic in the majority of children.

  18. Detection and identification of 2-nitro-morphine and 2-nitro-morphine-6-glucuronide in nitrite adulterated urine specimens containing morphine and its glucuronides.

    PubMed

    Luong, Susan; Fu, Shanlin

    2014-03-01

    In vitro urine adulteration is a well-documented practice adopted by individuals aiming to evade detection of drug use, when required to undergo mandatory sports and workplace drug testing. Potassium nitrite is an effective urine adulterant due to its oxidizing potential, and has been shown to mask the presence of many drugs of abuse. However, limited research has been conducted to understand its mechanism of action, and to explore the possibility of the drugs undergoing direct oxidation to form stable reaction products. In this study, opiates including morphine, codeine, morphine-3-glucuronide and morphine-6-glucuronide were exposed to potassium nitrite in water and urine to mimic the process of nitrite adulteration. It was found that two stable reaction products were detected by liquid chromatography-mass spectrometry (LC-MS) when morphine and morphine-6-glucuronide were exposed to nitrite. Isolation and elucidation using spectrometric and spectroscopic techniques revealed that they were 2-nitro-morphine and 2-nitro-morphine-6-glucuronide, respectively. These reaction products were also formed when an authentic morphine-positive urine specimen was fortified with nitrite. 2-Nitro-morphine was found to be stable enough to undergo the enzymatic hydrolysis procedure and also detectable by gas chromatography-mass spectrometry (GC-MS) after forming a trimethylsilyl derivative. On the contrary, morphine-3-glucuronide did not appear to be chemically manipulated when exposed to potassium nitrite in urine. These reaction products are not endogenously produced, are relatively stable and can be monitored with both LC-MS and GC-MS confirmatory techniques. As a result, these findings have revealed the possibility for the use of 2-nitro-morphine and 2-nitro-morphine-6-glucuronide as markers for the indirect monitoring of morphine and morphine-6-glucuronide in urine specimens adulterated with nitrite. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Blockade of neuronal dopamine D2 receptor attenuates morphine tolerance in mice spinal cord.

    PubMed

    Dai, Wen-Ling; Xiong, Feng; Yan, Bing; Cao, Zheng-Yu; Liu, Wen-Tao; Liu, Ji-Hua; Yu, Bo-Yang

    2016-12-22

    Tolerance induced by morphine remains a major unresolved problem and significantly limits its clinical use. Recent evidences have indicated that dopamine D2 receptor (D2DR) is likely to be involved in morphine-induced antinociceptive tolerance. However, its exact effect and molecular mechanism remain unknown. In this study we examined the effect of D2DR on morphine antinociceptive tolerance in mice spinal cord. Chronic morphine treatment significantly increased levels of D2DR in mice spinal dorsal horn. And the immunoreactivity of D2DR was newly expressed in neurons rather than astrocytes or microglia both in vivo and in vitro. Blockade of D2DR with its antagonist (sulpiride and L-741,626, i.t.) attenuated morphine antinociceptive tolerance without affecting basal pain perception. Sulpiride (i.t.) also down-regulated the expression of phosphorylation of NR1, PKC, MAPKs and suppressed the activation of astrocytes and microglia induced by chronic morphine administration. Particularly, D2DR was found to interact with μ opioid receptor (MOR) in neurons, and chronic morphine treatment enhanced the MOR/D2DR interactions. Sulpiride (i.t.) could disrupt the MOR/D2DR interactions and attenuate morphine tolerance, indicating that neuronal D2DR in the spinal cord may be involved in morphine tolerance possibly by interacting with MOR. These results may present new opportunities for the treatment and management of morphine-induced antinociceptive tolerance which often observed in clinic.

  20. Olive (Olea europaea L.) leaf extract elicits antinociceptive activity, potentiates morphine analgesia and suppresses morphine hyperalgesia in rats.

    PubMed

    Esmaeili-Mahani, Saeed; Rezaeezadeh-Roukerd, Maryam; Esmaeilpour, Khadije; Abbasnejad, Mehdi; Rasoulian, Bahram; Sheibani, Vahid; Kaeidi, Ayat; Hajializadeh, Zahra

    2010-10-28

    Olive (Olea europaea) leaves are used as anti-rheumatic, anti-inflammatory, antinociceptive, antipyretic, vasodilatory, hypotensive, antidiuretic and hypoglycemic agents in traditional medicine. Recently, it has been shown that olive leaf extract (OLE) has calcium channel blocker property; however, its influences on nociceptive threshold and morphine effects have not yet been clarified. All experiments were carried out on male Wistar rats. The tail-flick, hot-plate and formalin tests were used to assess the effect of OLE on nociceptive threshold. To determine the effect of OLE on analgesic and hyperalgesic effects of morphine, OLE (6, 12 and 25 mg/kg i.p.) that had no significant nociceptive effect, was injected concomitant with morphine (5 mg/kg and 1 μg/kg i.p., respectively). The tail-flick test was used to assess the effect of OLE on anti- and pro-nociceptive effects of morphine. The data showed that OLE (50-200 mg/kg i.p.) could produce dose-dependent analgesic effect on tail-flick and hot-plate tests. Administration of 200 mg/kg OLE (i.p.) caused significant decrease in pain responses in the first and the second phases of formalin test. In addition, OLE could potentiate the antinociceptive effect of 5 mg/kg morphine and block low-dose morphine-induced hyperalgesia. Our results indicate that olive leaf extract has analgesic property in several models of pain and useful influence on morphine analgesia in rats. Therefore, it can be used for the treatment and/or management of painful conditions. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  1. STEP signaling pathway mediates psychomotor stimulation and morphine withdrawal symptoms, but not for reward, analgesia and tolerance

    PubMed Central

    Kim, Yoon-Jung; Kang, Young; Park, Hye-Yeon; Lee, Jae-Ran; Yu, Dae-Yeul; Murata, Takuya; Gondo, Yoichi; Hwang, Jung Hwan; Kim, Yong-Hoon; Lee, Chul-Ho; Rhee, Myungchull; Han, Pyung-Lim; Chung, Bong-Hyun; Lee, Hyun-Jun; Kim, Kyoung-Shim

    2016-01-01

    Striatal-enriched protein tyrosine phosphatase (STEP) is abundantly expressed in the striatum, which strongly expresses dopamine and opioid receptors and mediates the effects of many drugs of abuse. However, little is known about the role of STEP in opioid receptor function. In the present study, we generated STEP-targeted mice carrying a nonsense mutation (C230X) in the kinase interaction domain of STEP by screening the N-ethyl-N-nitrosourea (ENU)-driven mutant mouse genomic DNA library and subsequent in vitro fertilization. It was confirmed that the C230X nonsense mutation completely abolished functional STEP protein expression in the brain. STEPC230X−/− mice showed attenuated acute morphine-induced psychomotor activity and withdrawal symptoms, whereas morphine-induced analgesia, tolerance and reward behaviors were unaffected. STEPC230X−/− mice displayed reduced hyperlocomotion in response to intrastriatal injection of the μ-opioid receptor agonist DAMGO, but the behavioral responses to δ- and κ-opioid receptor agonists remained intact. These results suggest that STEP has a key role in the regulation of psychomotor action and physical dependency to morphine. These data suggest that STEP inhibition may be a critical target for the treatment of withdrawal symptoms associated with morphine. PMID:26915673

  2. Morphine-induced kinetic alterations of choline acetyltransferase of the rat caudate nucleus

    PubMed Central

    Datta, K.; Wajda, I. J.

    1972-01-01

    1. In order to explain the decrease of choline acetyltransferase (2.3.1.6.) activity observed in the caudate nucleus of morphine-treated rats, partially purified preparations of the enzyme were used in kinetic studies, with choline as substrate. 2. The apparent Michaelis constant for the enzyme obtained from normal rats was found to be 0·9 mM choline; this value doubled when the animals were killed one hour after a single injection of morphine (30 mg/kg). When the rats were injected daily for 4 or 15 days, and killed one hour after the last injection, the apparent Km value was 2·1 mM in each case. Prolonged daily treatment with morphine, followed by 48 h withdrawal, or by administration of 4 mg/kg of naloxone (given half an hour after the last injection of morphine) resulted in apparent Km values of 1·3-1·5 mM of choline, suggesting a gradual return to the lower, normal substrate requirement. Vmax changes were insignificant. 3. The effect of morphine added in vitro to different enzyme preparations was also studied. The Km values of 0·9 mM, in the enzyme isolated from normal rats, increased to 2·0 after incubation in vitro with 12·5 mM morphine. Similar increases were found in enzymes obtained from rats 48 h after the withdrawal of morphine or from rats injected with naloxone after prolonged morphine treatment. The high apparent Km values, found in enzyme obtained from animals killed one hour after the last dose of morphine, did not change upon incubation with 12·5 mM morphine. A similar pattern of Km changes was noticed after incubation with 25 mM acetylcholine. 4. An increase of 32% in acetylcholine (ACh) level was found in the caudate nucleus one hour after subcutaneous injection of 30 mg/kg of morphine. Return to normal values was observed when morphine was administered daily. After two to three weeks of daily treatment and subsequent withdrawal from morphine for 48 h, the levels of ACh were normal. If the daily treated rats were given naloxone within

  3. Morphine prevents the development of stress-enhanced fear learning.

    PubMed

    Szczytkowski-Thomson, Jennifer L; Lebonville, Christina L; Lysle, Donald T

    2013-01-01

    The current study investigates the pharmacotherapeutic use of morphine as a preventative treatment for stress-enhanced fear learning, an animal model that closely mimics symptoms of post-traumatic stress disorder (PTSD). PTSD is a chronic and debilitating anxiety disorder characterized by exaggerated fear and/or anxiety that may develop as a result of exposure to a traumatic event. In this model, rats are exposed to a severe stressor (15 foot shocks) in one environment (Context A) and then subsequently exposed to a milder form of the same stressor (single foot shock) in a different environment (Context B). Animals that did not receive prior shock treatment exhibit fear responsiveness to Context B in line with the severity of the single shock given in this context. Animals that had received prior shock treatment in Context A exhibit an exaggerated learned fear response to Context B. Furthermore, animals receiving a single dose of morphine immediately following the severe stressor in Context A continue to show an enhanced fear response in Context B. However, animals receiving repeated morphine administration (three injections) after exposure to the severe stressor in Context A or a single dose of morphine at 48 h after the severe stressor no longer exhibit an enhancement in fear learning to Context B. These results are consistent with clinical studies suggesting that morphine treatment following a severe stressor may be useful in preventing or reducing the severity of PTSD in at-risk populations. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Agmatine reduces only peripheral-related behavioral signs, not the central signs, of morphine withdrawal in nNOS deficient transgenic mice.

    PubMed

    Aricioglu, Feyza; Paul, Ian A; Regunathan, Soundar

    2004-01-09

    Agmatine inhibits morphine tolerance/dependence and potentiates morphine analgesia. This study was designed to investigate whether neuronal nitric oxide mediates the actions of agmatine in morphine dependence by using mice lacking a functional form of this enzyme. Mice received agmatine just after the morphine pellet implantation for 3 days twice daily or single injection 30 min before naloxone. In both genotypes treated for 3 days with morphine pellets, naloxone administration precipitated clear signs of withdrawal. Both acute and chronic administration of agmatine reduced withdrawal signs in wild type mice and reduced only peripheral signs of morphine dependence in neuronal nitric oxide synthase knockout mice. Withdrawal signs, that are related to central nervous system activity were not affected. These findings indicate that neuronal nitric oxide synthase partly mediates the effects of agmatine in morphine physical dependence.

  5. Region-specific expression of brain-derived neurotrophic factor splice variants in morphine conditioned place preference in mice.

    PubMed

    Meng, Min; Zhao, Xinhan; Dang, Yonghui; Ma, Jingyuan; Li, Lixu; Gu, Shanzhi

    2013-06-26

    It is well established that brain-derived neurotrophic factor (BDNF) plays a pivotal role in brain plasticity-related processes, such as learning, memory and drug addiction. However, changes in expression of BDNF splice variants after acquisition, extinction and reinstatement of cue-elicited morphine seeking behavior have not yet been investigated. Real-time PCR was used to assess BDNF splice variants (I, II, IV and VI) in various brain regions during acquisition, extinction and reinstatement of morphine-conditioned place preference (CPP) in mice. Repeated morphine injections (10mg/kg, i.p.) increased expression of BDNF splice variants II, IV and VI in the hippocampus, caudate putamen (CPu) and nucleus accumbens (NAcc). Levels of BDNF splice variants decreased after extinction training and continued to decrease during reinstatement induced by a morphine priming injection (10mg/kg, i.p.). However, after reinstatement induced by exposure to 6 min of forced swimming (FS), expression of BDNF splice variants II, IV and VI was increased in the hippocampus, CPu, NAcc and prefrontal cortex (PFC). After reinstatement induced by 40 min of restraint, expression of BDNF splice variants was increased in PFC. These results show that exposure to either morphine or acute stress can induce reinstatement of drug-seeking, but expression of BDNF splice variants is differentially affected by chronic morphine and acute stress. Furthermore, BDNF splice variants II, IV and VI may play a role in learning and memory for morphine addiction in the hippocampus, CPu and NAcc. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  6. Morphine tolerance as a function of ratio schedule: response requirement or unit price?

    PubMed

    Hughes, Christine E; Sigmon, Stacey C; Pitts, Raymond C; Dykstra, Linda A

    2005-05-01

    Key pecking by 3 pigeons was maintained by a multiple fixed-ratio 10, fixed-ratio 30, fixed-ratio 90 schedule of food presentation. Components differed with respect to amount of reinforcement, such that the unit price was 10 responses per 1-s access to food. Acute administration of morphine, l-methadone, and cocaine dose-dependently decreased overall response rates in each of the components. When a rate decreasing dose of morphine was administered daily, tolerance, as measured by an increase in the dose that reduced response rates to 50% of control (i.e., the ED50 value), developed in each of the components; however, the degree of tolerance was smallest in the fixed-ratio 90 component (i.e., the ED50 value increased the least). When the l-methadone dose-effect curve was redetermined during the chronic morphine phase, the degree of cross-tolerance conferred to l-methadone was similar across components, suggesting that behavioral variables may not influence the degree of cross-tolerance between opioids. During the chronic phase, the cocaine dose-effect curve shifted to the right for 2 pigeons and to the left for 1 pigeon, which is consistent with predictions based on the lack of pharmacological similarity between morphine and cocaine. When the morphine, l-methadone, and cocaine dose-effect curves were redetermined after chronic morphine administration ended, the morphine and l-methadone ED50s replicated those obtained prior to chronic morphine administration. The morphine data suggest that the fixed-ratio value (i.e., the absolute output) determines the degree of tolerance and not the unit price.

  7. Pregabalin role in inhibition of morphine analgesic tolerance and physical dependency in rats.

    PubMed

    Hasanein, Parisa; Shakeri, Saeed

    2014-11-05

    Pregabalin is recently proposed as analgesic or adjuvant in pain management. While previous preclinical investigations have evaluated pregabalin-opioid interactions, the effect of pregabalin on opioid tolerance and dependency has not yet been studied. Here we evaluated the effects of different doses of pregabalin (50, 100 and 200mg/kg, s.c.) on morphine-induced tolerance and dependency in rats. Adult male Wistar rats were rendered tolerant to analgesic effect of morphine by injection of morphine (10mg/kg, s.c.) twice daily for 7 days. To develop morphine dependence, rats were given escalating doses of morphine. To determine the effect of pregabalin on the development of morphine tolerance and dependence, different doses of pregabalin were administrated before morphine. The tail-flick and naloxone precipitation withdrawal tests were used to evaluate the degree of tolerance and dependence, respectively. Chronic morphine-injected rats showed significant decrements in the percentage maximum possible effect (%MPE) of morphine on the days 5 and 7 (32.5%±3.5, 21.5%±4, respectively) compared to the first day (100%) which showed morphine tolerance. Pregabalin 200mg/kg completely prevented the development of morphine tolerance. In addition, concomitant treatment of morphine with pregabalin attenuated almost all of the naloxone-induced withdrawal signs which include weight loss, jumping, penis licking, teeth chattering, wet dog shakes, rearing, standing, sniffing, face grooming and paw tremor. These data show that pregabaline has a potential anti-tolerant/anti-dependence property against chronic usage of morphine. Therefore, pregabalin appears to be a promising candidate for the treatment of opioid addiction after confirming by future clinical studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Effect of agmatine on the development of morphine dependence in rats: potential role of cAMP system

    PubMed Central

    Aricioglu, Feyza; Means, Andrea; Regunathan, Soundar

    2010-01-01

    Agmatine is an endogenous amine derived from arginine that potentiates morphine analgesia and blocks symptoms of naloxone-precipitated morphine withdrawal in rats. In this study, we sought to determine whether treatment with agmatine during the development of morphine dependence inhibits the withdrawal symptoms and that the effect is mediated by cAMP system. Exposure of rats to morphine for 7 days resulted in marked naloxone-induced withdrawal symptoms and agmatine treatment along with morphine significantly decreasing the withdrawal symptoms. The levels of cAMP were markedly increased in morphine-treated rat brain slices when incubated with naloxone and this increase was significantly reduced in rats treated with morphine and agmatine. The induction of tyrosine hydroxylase after morphine exposure was also reduced in locus coeruleus when agmatine was administered along with morphine. We conclude that agmatine reduces the development of dependence to morphine and that this effect is probably mediated by the inhibition of cAMP signaling pathway during chronic morphine exposure. PMID:15541421

  9. Preincisional and postoperative epidural morphine, ropivacaine, ketamine, and naloxone treatment for postoperative pain management in upper abdominal surgery.

    PubMed

    Lai, Hou-Chuan; Hsieh, Chung-Bao; Wong, Chih-Shung; Yeh, Chun-Chang; Wu, Zhi-Fu

    2016-09-01

    Previous studies have shown that preincisional epidural morphine, bupivacaine, and ketamine combined with epidural anesthesia (EA) and general anesthesia (GA) provided pre-emptive analgesia for upper abdominal surgery. Recent studies reported that ultralow-dose naloxone enhanced the antinociceptive effect of morphine in rats. This study investigated the benefits of preincisional and postoperative epidural morphine + ropivacaine + ketamine + naloxone (M + R + K + N) treatment for achieving postoperative pain relief in upper abdominal surgery. Eighty American Society of Anesthesiology I-II patients scheduled for major upper abdominal surgery were allocated to four groups in a randomized, single-blinded study. All patients received combined GA and EA with a continuous epidural infusion of 2% lidocaine (6-8 mL/h) 30 minutes after pain regimen. After GA induction, in Group I, an epidural pain control regimen (total 10 mL) was administered using 1% lidocaine (8 mL) + morphine (2 mg) + ropivacaine (20 mg; M + R); in Group II, 1% lidocaine 8 (mL) + morphine (2 mg) + ropivacaine (20 mg) + ketamine (20 mg; M + R + K); in Group III, 1% lidocaine (8 mL) + morphine (2 mg) + ropivacaine (20 mg) + naloxone (2 μg; M + R + N); and in Group IV, 1% lidocaine (8 mL) + morphine (2 mg) + ropivacaine (20 mg) + ketamine (20 mg) + naloxone (2 μg; M + R + K + N), respectively. All patients received patient-controlled epidural analgesia (PCEA) with different pain regimens to control subsequent postoperative pain for 3 days following surgery. During the 3-day period following surgery, PCEA consumption (mL), numerical rating scale (NRS) score while cough/moving, and analgesic-related adverse effects were recorded. Total PCEA consumption for the 3-day observation period was 161.5±17.8 mL, 103.2±21.7 mL, 152.4±25.6 mL, and 74.1±16.9 mL for Groups I, II, III, and IV, respectively. (p < 0.05). The cough/moving NRS

  10. Additive effect of combined application of magnesium and MK-801 on analgesic action of morphine.

    PubMed

    Bujalska-Zadrożny, Magdalena; Duda, Kamila

    2014-01-01

    As previously reported, magnesium ions (Mg(2+)) administered in relatively low doses markedly potentiated opioid analgesia in neuropathic pain, in which the effectiveness of opioids is limited. Considering that Mg(2+) behaves like an N-methyl-D-aspartate receptor antagonist, the effect of this ion on the analgesic action of morphine was compared with that of MK-801. Acute pain was evoked by mechanical or thermal stimuli, whereas neuropathic hyperalgesia was induced by streptozotocin (STZ) administration. Magnesium sulphate (40 mg/kg i.p.) or MK-801 (0.05 mg/kg s.c.) administered alone did not modify the nociceptive threshold to acute stimuli or the streptozotocin hyperalgesia but significantly augmented the analgesic action of morphine (5 mg/kg i.p.). Furthermore, if these drugs (i.e. magnesium sulphate and MK-801) were applied concomitantly, a clear additive effect on the analgesic action of morphine occurred in both models of pain. Possible explanations of these observations are discussed. © 2014 S. Karger AG, Basel.

  11. Effects of paclitaxel on mechanical sensitivity and morphine reward in male and female C57Bl6 mice

    PubMed Central

    Neelakantan, Harshini; Ward, Sara Jane; Walker, Ellen Ann

    2016-01-01

    This study evaluated the hypothesis that a paclitaxel treatment regimen sufficient to produce mechanical allodynia would alter sensitivities of male and female mice to the conditioned rewarding and reinforcing effects of morphine. Saline or paclitaxel were administered on days 1, 3, 5, and 7 in male and female C57Bl/6 mice to induce morphine-reversible mechanical allodynia as measured by the Von Frey filament test. Paclitaxel treatment did not change sensitivity to morphine conditioned place preference (CPP) relative to saline treatment in either male or female mice. Morphine produced peak self-administration under a fixed ratio-1 schedule of reinforcement for 0.03 mg/kg morphine per infusion in female mice and 0.1 mg/kg morphine per infusion in male mice. During the progressive ratio experiments, saline treatment in male mice decreased the number of morphine infusions for 12 days whereas the paclitaxel-treated male mice maintained responding for morphine similar to baseline levels during the same time period. However, paclitaxel did not have an overall effect on the reinforcing efficacy of morphine assessed over a limited dose range during the course of the repeated self-administration. These results suggest that the reward-related behavioral effects of morphine are overall not robustly altered by the presence of paclitaxel treatment under the current dosing regimen, with the exception of maintaining a small yet significant higher baseline than saline treatment during the development of allodynia in male mice. PMID:27929349

  12. Metformin reduces morphine tolerance by inhibiting microglial-mediated neuroinflammation.

    PubMed

    Pan, Yinbing; Sun, Xiaodi; Jiang, Lai; Hu, Liang; Kong, Hong; Han, Yuan; Qian, Cheng; Song, Chao; Qian, Yanning; Liu, Wentao

    2016-11-17

    Tolerance seriously impedes the application of morphine in clinical medicine. Thus, it is necessary to investigate the exact mechanisms and efficient treatment. Microglial activation and neuroinflammation in the spinal cord are thought to play pivotal roles on the genesis and maintaining of morphine tolerance. Activation of adenosine monophosphate-activated kinase (AMPK) has been associated with the inhibition of inflammatory nociception. Metformin, a biguanide class of antidiabetic drugs and activator of AMPK, has a potential anti-inflammatory effect. The present study evaluated the effects and potential mechanisms of metformin in inhibiting microglial activation and alleviating the antinociceptive tolerance of morphine. The microglial cell line BV-2 cells and mouse brain-derived endothelial cell line bEnd3 cells were used. Cytokine expression was measured using quantitative polymerase chain reaction. Cell signaling was assayed by western blot and immunohistochemistry. The antinociception and morphine tolerance were assessed in CD-1 mice using tail-flick tests. We found that morphine-activated BV-2 cells, including the upregulation of p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation, pro-inflammatory cytokines, and Toll-like receptor-4 (TLR-4) mRNA expression, which was inhibited by metformin. Metformin suppressed morphine-induced BV-2 cells activation through increasing AMPK phosphorylation, which was reversed by the AMPK inhibitor compound C. Additionally, in BV-2 cells, morphine did not affect the cell viability and the mRNA expression of anti-inflammatory cytokines. In bEnd3 cells, morphine did not affect the mRNA expression of interleukin-1β (IL-1β), but increased IL-6 and tumor necrosis factor-α (TNF-α) mRNA expression; the effect was inhibited by metformin. Morphine also did not affect the mRNA expression of TLR-4 and chemokine ligand 2 (CCL2). Furthermore, systemic administration of metformin significantly blocked morphine

  13. Effects of morphine on brain plasticity.

    PubMed

    Beltrán-Campos, V; Silva-Vera, M; García-Campos, M L; Díaz-Cintra, S

    2015-04-01

    Morphine shares with other opiates and drugs of abuse the ability to modify the plasticity of brain areas that regulate the morphology of dendrites and spines, which are the primary sites of excitatory synapses in regions of the brain involved in incentive motivation, rewards, and learning. In this review we discuss the impact of morphine use during the prenatal period of brain development and its long-term consequences in murines, and then link those consequences to similar effects occurring in human neonates and adults. Repeated exposure to morphine as treatment for pain in terminally ill patients produces long-term changes in the density of postsynaptic sites (dendrites and spines) in sensitive areas of the brain, such as the prefrontal cortex, the limbic system (hippocampus, amygdala), and caudate nuclei and nucleus accumbens. This article reviews the cellular mechanisms and receptors involved, primarily dopaminergic and glutamatergic receptors, as well as synaptic plasticity brought about by changes in dendritic spines in these areas. The actions of morphine on both developing and adult brains produce alterations in the plasticity of excitatory postsynaptic sites of the brain areas involved in limbic system functions (reward and learning). Doctors need further studies on plasticity in dendrites and spines and on signaling molecules, such as calcium, in order to improve treatments for addiction. Copyright © 2014 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  14. Hospital morphine preparation for abstinence syndrome in newborns exposed to buprenorphine or methadone.

    PubMed

    Colombini, Nathalie; Elias, Riad; Busuttil, Muriel; Dubuc, Myriam; Einaudi, Marie-Ange; Bues-Charbit, Martine

    2008-06-01

    This study was undertaken to evaluate the adequacy of a hospital formulated oral morphine preparation for management of neonatal abstinence syndrome (NAS) and to compare clinical features in infants exposed to methadone or buprenorphine in utero. Between October 1998 and October 2004 all infants born to mothers treated with buprenorphine or methadone during pregnancy were enrolled into this prospective study. Morphine hydrochloride solution (0.2 mg/ml) was prepared without preservatives under a flow laminar air box (class 100). Morphine solution: quantitative and qualitative HPLC analysis and microbiological study at regular intervals during storage at 4 degrees C for 6 months. Maternal characteristics: age, opiate dose during pregnancy. Neonatal characteristics: gestational age at delivery, birth weight, Lipsitz scores. Morphine dose: daily morphine dose, maximum morphine dose, duration of NAS, and duration of treatment required to achieve stable Lipsitz scores below 4. Kruskal-Wallis test for comparison of median values. Microbiological and HPLC analysis showed that the morphine preparation remained stable for 6 months at 4 degrees C. Nine methadone-exposed infants and 13 buprenorphine-exposed infants were included in the study. All infants presented NAS requiring treatment with the morphine solution. Lipsitz scores at birth were significantly different in the methadone and buprenorphine groups (P < 0.05). The methadone group required significantly higher doses of morphine preparation than the buprenorphine group during the first 38 days of treatment (P < 0.05): 0.435 +/- 0.150 mg/kg/day vs. 0.257 +/- 0.083 mg/kg/day. This hospital morphine solution is adequate for management of NAS. Preparations showed good stability and doses could be adjusted with a margin of 0.02 mg. The onset of NAS occurred within 24 h after birth in methadone-exposed infants (range 6-24 h) and within 48 h after birth in buprenorphine-exposed infants (range 24-168 h). Due to the possibility

  15. Ibogaine interferes with motivational and somatic effects of naloxone-precipitated withdrawal from acutely administered morphine.

    PubMed

    Parke, Linda A; Burton, Page; McDonald, Robert V; Kim, Joseph A; Siegel, Shepard

    2002-02-01

    It has been reported that ibogaine interferes with somatic withdrawal reactions in rats chronically treated with morphine. The present experiments demonstrated that ibogaine also interferes with motivational withdrawal reactions and somatic withdrawal reactions in rats treated with morphine on only two occasions. On each of two conditioning trials, naloxone was administered 24 h following an injection of morphine. Four hours prior to each naloxone administration, rats were injected with either ibogaine or saline. In two experiments, ibogaine interfered with naloxone-precipitated withdrawal. In Experiment 1, ibogaine-treated rats displayed a weaker aversion to the withdrawal-paired chamber, and in Experiment 2, ibogaine-treated rats displayed fewer somatic withdrawal reactions than did saline treated rats.

  16. Morphine- and CaMKII dependent enhancement of GIRK channel signaling in hippocampal neurons

    PubMed Central

    Nassirpour, Rounak; Bahima, Laia; Lalive, Arnaud L.; Lüscher, Christian; Luján, Rafael; Slesinger, Paul A.

    2010-01-01

    G protein-gated inwardly rectifying potassium (GIRK) channels, which help control neuronal excitability, are important for the response to drugs of abuse. Here, we describe a novel pathway for morphine-dependent enhancement of GIRK channel signaling in hippocampal neurons. Morphine treatment for ~20 h increased the colocalization of GIRK2 with PSD95, a dendritic spine marker. Western blot analysis and quantitative immuno-electron microscopy revealed an increase in GIRK2 protein and targeting to dendritic spines. In vivo administration of morphine also produced an upregulation of GIRK2 protein in the hippocampus. The mechanism engaged by morphine required elevated intracellular Ca2+ and was insensitive to pertussis toxin, implicating opioid receptors that may couple to Gq G proteins. met-enkephalin, but not the μ-selective (DAMGO) and δ-selective (DPDPE) opioid receptor agonists, mimicked the effect of morphine suggesting involvement of a heterodimeric opioid receptor complex. Peptide (KN-93) inhibition of CaMKII prevented the morphine-dependent change in GIRK localization while expression of a constitutively activated form of CaMKII mimicked the effects of morphine. Coincident with an increase in GIRK2 surface expression, functional analyses revealed that morphine-treatment increased the size of serotonin-activated GIRK currents and Ba2+-sensitive basal K+ currents in neurons. These results demonstrate plasticity in neuronal GIRK signaling that may contribute to the abusive effects of morphine. PMID:20926668

  17. Pleiotrophin modulates morphine withdrawal but has no effects on morphine-conditioned place preference.

    PubMed

    Gramage, Esther; Vicente-Rodríguez, Marta; Herradón, Gonzalo

    2015-09-14

    Pleiotrophin (PTN) is a neurotrophic factor with important functions in addiction and neurodegenerative disorders. Morphine administration induces an increase in the expression of PTN and Midkine (MK), the only other member of this family of cytokines, in brain areas related with the addictive effects of drug of abuse, like the Ventral Tegmental Area or the hippocampus. In spite of previous studies showing that PTN modulates amphetamine and ethanol rewarding effects, and that PTN is involved in morphine-induced analgesia, it was still unknown if the rewarding effects of morphine may be regulated by endogenous PTN. Thus, we aim to study the role of PTN in the reward and physical dependence induced by morphine. We used the Conditioned Place Preference (CPP) paradigm in PTN genetically deficient (PTN-/-) and wild type (WT) mice to assess the rewarding effects of morphine in absence of endogenous PTN. Second, to study if PTN may be involved in morphine physical dependence, naloxone-precipitated withdrawal syndrome was induced in PTN-/- and WT morphine dependent mice. Although the increase in the time spent in the morphine-paired compartment after conditioning tended to be more pronounced in PTN-/- mice, statistical significance was not achieved. The data suggest that PTN does not exert an important role in morphine reward. However, our results clearly indicate that PTN-/- mice develop a more severe withdrawal syndrome than WT mice, characterized as a significant increase in the time standing and in the total incidences of forepaw licking, forepaw tremors, wet dog shake and writhing. The data presented here suggest that PTN is a novel genetic factor that plays a role in morphine withdrawal syndrome. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Daily morphine administration increases impulsivity in rats responding under a 5‐choice serial reaction time task

    PubMed Central

    Maguire, DR; Henson, C

    2016-01-01

    Background and Purpose Repeated administration of a μ opioid receptor agonist can enhance some forms of impulsivity, such as delay discounting. However, it is unclear whether repeated administration alters motor impulsivity. Experimental Approach We examined the effects of acute administration of morphine and amphetamine prior to and during daily morphine administration in rats responding under a five‐choice serial reaction time task. Rats (n = 5) were trained to detect a brief flash of light presented randomly in one of five response holes; responding in the target hole delivered food, whereas responding in the wrong hole or responding prior to illumination of the target stimulus (premature response) initiated a timeout. Premature responding served as an index of motor impulsivity. Key Results Administered acutely, morphine (0.1–10 mg·kg−1, i.p.) increased omissions and modestly, although not significantly, premature responding without affecting response accuracy; amphetamine (0.1–1.78 mg·kg−1, i.p.) increased premature responding without changing omissions or response accuracy. After 3 weeks of 10 mg·kg−1·day−1 morphine, tolerance developed to its effects on omissions whereas premature responding increased approximately fourfold, compared with baseline. Effects of amphetamine were not significantly affected by daily morphine administration. Conclusions and Implications These data suggest that repeated administration of morphine increased effects of morphine on motor impulsivity, although tolerance developed to other effects, such as omissions. To the extent that impulsivity is a risk factor for drug abuse, repeated administration of μ opioid receptor agonists, for recreational or therapeutic purposes, might increase impulsivity and thus the risk for drug abuse. PMID:26776751

  19. Voluntary wheel running produces resistance to inescapable stress-induced potentiation of morphine conditioned place preference.

    PubMed

    Rozeske, Robert R; Greenwood, Benjamin N; Fleshner, Monika; Watkins, Linda R; Maier, Steven F

    2011-06-01

    In rodents, exposure to acute inescapable, but not escapable, stress potentiates morphine conditioned place preference (CPP), an effect that is dependent upon hyperactivation of serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN). Six weeks of voluntary wheel running constrains activation of DRN 5-HT neurons during exposure to inescapable stress. Six weeks of voluntary wheel running before inescapable stress blocked stress-induced potentiation of morphine CPP. Published by Elsevier B.V.

  20. Swimming reduces the severity of physical and psychological dependence and voluntary morphine consumption in morphine dependent rats.

    PubMed

    Fadaei, Atefeh; Gorji, Hossein Miladi; Hosseini, Shahrokh Makvand

    2015-01-15

    Previous studies have indicated that voluntary exercise decreases the severity of the anxiogenic-like behaviors in both morphine-dependent and withdrawn rats. This study examined the effects of regular swimming exercise during the development of dependency and spontaneous morphine withdrawal on the anxiety-depression profile and voluntary morphine consumption in morphine dependent rats. The rats were chronically treated with bi-daily doses (10 mg/kg, at 12h intervals) of morphine over a period of 14 days. The exercising rats were allowed to swim (45 min/d, five days per a week, for 14 or 21 days) during the development of morphine dependence and withdrawal. Then, rats were tested for the severity of morphine dependence, the elevated plus-maze (EPM), sucrose preference test (SPT) and voluntary morphine consumption using a two-bottle choice paradigm in animal models of craving. The results showed that withdrawal signs were decreased in swimmer morphine dependent rats than sedentary rats (P<0.05). Also, the swimmer morphine-dependent and withdrawn rats exhibited an increase in EPM open arm time and entries (P<0.05), higher levels of sucrose preference (P<0.001) than sedentary rats. Voluntary consumption of oral morphine was less in the swimmer morphine-withdrawn rats than the sedentary groups during four periods of the intake of drug (P<0.01). We conclude that regular swimming exercise reduces the severity of morphine dependence and voluntary morphine consumption with reducing anxiety and depression in morphine-dependent and withdrawn rats. Thus, swimming exercise may be a potential method to ameliorate some of the deleterious behavioral consequences of morphine dependence. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Effects of Repeated Morphine on Intracranial Self-Stimulation in Male Rats In the Absence or Presence of a Noxious Pain Stimulus

    PubMed Central

    Miller, Laurence L.; Altarifi, Ahmad A.; Negus, S. Stevens

    2015-01-01

    Research on opioid analgesics such as morphine suggests that expression of abuse-related effects increases with repeated exposure. Repeated exposure to opioids often occurs clinically in the context of pain management, and a major concern for clinicians is the risk of iatrogenic addiction and dependence in patients receiving opioids for treatment of pain. This study compared abuse-related morphine effects in male rats in an intracranial self-stimulation (ICSS) procedure after repeated treatment either with morphine alone or with morphine in combination with a repeated noxious stimulus (intraperitoneal administration of dilute acid). The study also permitted comparison of morphine potency and effectiveness to block acid-induced depression of ICSS (antinociception) and to produce enhanced facilitation of ICSS (abuse-related effect). There were three main findings. First, initial morphine exposure to drug naïve rats did not produce abuse-related ICSS facilitation. Second, repeated daily treatment with 3.2 mg/kg/day morphine for six days increased expression of ICSS facilitation. This occurred whether morphine was administered in the absence or presence of the noxious stimulus. Finally, a lower dose of 1.0 mg/kg/day morphine was sufficient to produce antinociception during repeated acid treatment, but this lower dose did not reliably increase abuse-related morphine effects. Taken together, these results suggest that prior morphine exposure can increase abuse liability of subsequent morphine treatments even when that morphine exposure occurs in the context of a pain state. However, it may be possible to relieve pain with relatively low morphine doses that do not produce increases in abuse-related morphine effects. PMID:26375515

  2. Morphine, but not Trauma, Sensitizes to Systemic Acinetobacter baumannii Infection

    PubMed Central

    Breslow, Jessica M.; Monroy, M. Alexandra; Daly, John M.; Meissler, Joseph J.; Gaughan, John; Adler, Martin W.; Eisenstein, Toby K.

    2014-01-01

    Acinetobacter baumannii is an important nosocomial pathogen in civilian intensive care units. Recently the incidence has increased in wounded military personnel. Morphine is documented in numerous animal studies to be immunosuppressive and to sensitize to infection. The hypotheses were tested that morphine, administered for analgesia in the battlefield, predisposes to Acinetobacter infection, and that the opioid may have an additive or synergistic effect with trauma. To test these hypotheses, an intraperitoneal infection model was established in mice using several Acinetobacter strains. Morphine administered for 48 hr by implantation of a slow-release morphine pellet increased mortality compared to animals receiving a placebo pellet, an effect that was blocked by the mu-opioid receptor antagonist, naltrexone. Acinetobacter burdens in the blood, spleens, livers, and lungs of morphine-treated mice, were significantly higher than those in placebo-treated animals, confirming that mortality was due to potentiated growth of the bacteria. There were also elevated levels of pro-inflammatory cytokines in morphine-treated versus placebo-treated mice. Morphine caused a reduction in the total number of cells in the peritoneal cavity, a decrease in the percentage and total numbers of neutrophils, and a decrease in the total number of macrophages. Morphine treatment also suppressed levels of the neutrophil-inducing molecules, IL-17A and KC/CXCL1. However, IL-17A−/− mice given morphine were not sensitized to Acintobacter infection to a greater degree than similarly treated wild-type mice. Trauma alone did not sensitize to Acinetobacter infection, and there was no additive effect between morphine and trauma. These results support the hypothesis that morphine potentiates Acinetobacter infection. PMID:21826405

  3. Morphine, but not trauma, sensitizes to systemic Acinetobacter baumannii infection.

    PubMed

    Breslow, Jessica M; Monroy, M Alexandra; Daly, John M; Meissler, Joseph J; Gaughan, John; Adler, Martin W; Eisenstein, Toby K

    2011-12-01

    Acinetobacter baumannii is an important nosocomial pathogen in civilian intensive care units. Recently the incidence has increased in wounded military personnel. Morphine is documented in numerous animal studies to be immunosuppressive and to sensitize to infection. The hypotheses were tested that morphine, administered for analgesia in the battlefield, predisposes to Acinetobacter infection, and that the opioid may have an additive or synergistic effect with trauma. To test these hypotheses, an intraperitoneal infection model was established in mice using several Acinetobacter strains. Morphine administered for 48 h by implantation of a slow-release morphine pellet increased mortality compared to animals receiving a placebo pellet, an effect that was blocked by the mu-opioid receptor antagonist, naltrexone. Acinetobacter burdens in the blood, spleens, livers, and lungs of morphine-treated mice, were significantly higher than those in placebo-treated animals, confirming that mortality was due to potentiated growth of the bacteria. There were also elevated levels of pro-inflammatory cytokines in morphine-treated versus placebo-treated mice. Morphine caused a reduction in the total number of cells in the peritoneal cavity, a decrease in the percentage and total numbers of neutrophils, and a decrease in the total number of macrophages. Morphine treatment also suppressed levels of the neutrophil-inducing molecules, IL-17A and KC/CXCL1. However, IL-17A(-/-) mice given morphine were not sensitized to Acintobacter infection to a greater degree than similarly treated wild-type mice. Trauma alone did not sensitize to Acinetobacter infection, and there was no additive effect between morphine and trauma. These results support the hypothesis that morphine potentiates Acinetobacter infection.

  4. Improvement of Morphine-Mediated Analgesia by Inhibition of β-Arrestin 2 Expression in Mice Periaqueductal Gray Matter

    PubMed Central

    Li, Yuting; Liu, Xing; Liu, Chang; Kang, Jiuhong; Yang, Jingyu; Pei, Gang; Wu, Chunfu

    2009-01-01

    Morphine is a well-known μ-opioid receptor (MOR) agonist and an efficient analgesic, but its long-term use inevitably leads to drug addiction and tolerance. Here, we show that specific inhibition of β-arrestin2 with its siRNA lentivirus microinjected in mice periaqueductal gray matter (PAG) significantly improved both acute and chronic morphine analgesia and delayed the tolerance in the hotplate test. The specific effect of β-arrestin2 was proven by overexpression or knockdown of its homology β-arrestin1 in PAG, which showed no significant effects on morphine analgesia. These findings suggest that specific siRNA targeting β-arrestin2 may constitute a new approach to morphine therapy and other MOR agonist-mediated analgesia and tolerance. PMID:19399231

  5. Effects of chronic morphine and morphine withdrawal on gene expression in rat peripheral blood mononuclear cells.

    PubMed

    Desjardins, Stephane; Belkai, Emilie; Crete, Dominique; Cordonnier, Laurie; Scherrmann, Jean-Michel; Noble, Florence; Marie-Claire, Cynthia

    2008-12-01

    Chronic morphine treatment alters gene expression in brain structures. There are increasing evidences showing a correlation, in gene expression modulation, between blood cells and brain in psychological troubles. To test whether gene expression regulation in blood cells could be found in drug addiction, we investigated gene expression profiles in peripheral blood mononuclear (PBMC) cells of saline and morphine-treated rats. In rats chronically treated with morphine, the behavioral signs of spontaneous withdrawal were observed and a withdrawal score was determined. This score enabled to select the time points at which the animals displayed the mildest and strongest withdrawal signs (12 h and 36 h after the last injection). Oligonucleotide arrays were used to assess differential gene expression in the PBMCs and quantitative real-time RT-PCR to validate the modulation of several candidate genes 12 h and 36 h after the last injection. Among the 812 differentially expressed candidates, several genes (Adcy5, Htr2a) and pathways (Map kinases, G-proteins, integrins) have already been described as modulated in the brain of morphine-treated rats. Sixteen out of the twenty-four tested candidates were validated at 12 h, some of them showed a sustained modulation at 36 h while for most of them the modulation evolved as the withdrawal score increased. This study suggests similarities between the gene expression profile in PBMCs and brain of morphine-treated rats. Thus, the searching of correlations between the severity of the withdrawal and the PBMCs gene expression pattern by transcriptional analysis of blood cells could be promising for the study of the mechanisms of addiction.

  6. Modulation by alpha-difluoromethyl-ornithine and aminoguanidine of pain threshold, morphine analgesia and tolerance.

    PubMed

    Lu, Gang; Su, Rui-Bin; Li, Jin; Qin, Bo-Yi

    2003-10-08

    The effects of alpha-difluoromethyl-ornithine (DFMO) and aminoguanidine, which might influence the metabolism of endogenous agmatine, on pain threshold, morphine analgesia and tolerance were investigated in mice. In the mouse acetic acid writhing test, intracerebroventricular (i.c.v.) injection of DFMO or aminoguanidine significantly elevated the pain threshold as indicated by a decrease in the number of writhings. DFMO or aminoguanidine obviously increased the analgesic effect of morphine in the mouse acetic acid writhing test and the mouse heat radiation tail-flick assay. These effects of DFMO and aminoguanidine were antagonized by idazoxan (3 mg/kg, i.p.), which is a selective antagonist of the imidazoline receptor. In the mouse heat radiation tail-flick assay, aminoguanidine significantly prolonged the tail-flick latency of animals, suggesting that the pain threshold was elevated. Furthermore, both DFMO and aminoguanidine enhanced morphine analgesia and inhibited acute morphine tolerance in the mouse heat radiation tail-flick assay. Neither DFMO nor aminoguanidine inhibited the activity of nitric oxide synthase in different brain areas in mice in vivo. These results indicate that the substances involved in the metabolism of endogenous agmatine could modulate the pain threshold, morphine analgesia and tolerance, indicating the possible role of endogenous agmatine in the pharmacological effects of morphine.

  7. Effects of repeated morphine on intracranial self-stimulation in male rats in the absence or presence of a noxious pain stimulus.

    PubMed

    Miller, Laurence L; Altarifi, Ahmad A; Negus, S Stevens

    2015-10-01

    Research on opioid analgesics such as morphine suggests that expression of abuse-related effects increases with repeated exposure. Repeated exposure to opioids often occurs clinically in the context of pain management, and a major concern for clinicians is the risk of iatrogenic addiction and dependence in patients receiving opioids for treatment of pain. This study compared abuse-related morphine effects in male rats in an intracranial self-stimulation (ICSS) procedure after repeated treatment either with morphine alone or with morphine in combination with a repeated noxious stimulus (intraperitoneal administration of dilute acid). The study also permitted comparison of morphine potency and effectiveness to block acid-induced depression of ICSS (antinociception) and to produce enhanced facilitation of ICSS (abuse-related effect). There were 3 main findings. First, initial morphine exposure to drug naïve rats did not produce abuse-related ICSS facilitation. Second, repeated daily treatment with 3.2 mg/kg/day morphine for 6 days increased expression of ICSS facilitation. This occurred whether morphine was administered in the absence or presence of the noxious stimulus. Finally, a lower dose of 1.0 mg/kg/day morphine was sufficient to produce antinociception during repeated acid treatment, but this lower dose did not reliably increase abuse-related morphine effects. Taken together, these results suggest that prior morphine exposure can increase abuse liability of subsequent morphine treatments even when that morphine exposure occurs in the context of a pain state. However, it may be possible to relieve pain with relatively low morphine doses that do not produce increases in abuse-related morphine effects. (c) 2015 APA, all rights reserved).

  8. The effect of post-conditioning exposure to morphine on the retention of a morphine-induced conditioned taste aversion.

    PubMed

    Jacobs, W J; Zellner, D A; LoLordo, V M; Riley, A L

    1981-06-01

    In the following experiment, multiple injections of morphine sulfate following the acquisition of a morphine-induced taste aversion had no effect on the retention of the previously acquired aversion. Post-conditioning injections of morphine resulted in the development of physical dependence to morphine and led to a decrement in the ability of morphine to induce a subsequent aversion to a second novel taste. This failure of post-conditioning exposures to morphine to affect a previously acquired morphine-induced taste aversion even though tolerance to morphine had occurred was discussed in the context of Rescorla's event-memory model of conditioning.

  9. Inhibition of phosphodiesterase10A attenuates morphine-induced conditioned place preference.

    PubMed

    Mu, Ying; Ren, Zhaoxiang; Jia, Jia; Gao, Bo; Zheng, Longtai; Wang, Guanghui; Friedman, Eitan; Zhen, Xuechu

    2014-09-25

    Phosphodiesterase (PDE) 10A is selectively expressed in medium spiny neurons of the striatum. Nucleus accumbens (NAc) is a key region that mediates drug reward and addiction-related behaviors. To investigate the potential role of PDE10A in the reinforcement properties of morphine, we tested the effect of MP-10, a selective inhibitor of PDE10A, on acquisition, expression, and extinction of morphine-induced conditioned place preference (CPP). The results show that 2.5 mg/kg MP-10, administered subcutaneously, significantly inhibited the acquisition of morphine-induced CPP. The same dose of MP-10 alone did not result in the CPP. Moreover, MP-10 did not alter the expression of morphine-induced CPP, but did accelerate the extinction of morphine-induced CPP. Additionally, chronic treatment with 2.5 mg/kg MP-10 decreased expression of phosphorylated CREB (pCREB), activated cAMP response element binding protein, in dorsomedial striatum, in shell of NAc, and in anterior cingulate cortex (ACC) as well as decreased expression of ΔFosB in the shell of NAc and ACC. The results suggest that inhibition of PDE10A may have therapeutic potential in the treatment of opioid addiction.

  10. Human Abuse Potential of an Abuse-Deterrent (AD), Extended-Release (ER) Morphine Product Candidate (Morphine-ADER Injection-Molded Tablets) vs Extended-Release Morphine Administered Intranasally in Nondependent Recreational Opioid Users

    PubMed Central

    Webster, Lynn R.; Smith, Michael D.; Lawler, John; Lindhardt, Karsten; Dayno, Jeffrey M.

    2017-01-01

    Abstract Objective. To compare the relative human abuse potential after insufflation of manipulated morphine abuse-deterrent, extended-release injection-molded tablets (morphine-ADER-IMT) with that of marketed morphine ER tablets. Methods. A randomized, double-blind, double-dummy, active- and placebo-controlled five-way crossover study was performed with adult volunteers who were experienced, nondependent, recreational opioid users. After intranasal (IN) administration of manipulated high-volume (HV) morphine-ADER-IMT (60 mg), participants were randomized (1:1:1:1) to receive IN manipulated low-volume (LV) morphine ER (60 mg), IN manipulated LV morphine-ADER-IMT, intact oral morphine-ADER-IMT (60 mg), and placebo in crossover fashion. Pharmacodynamic and pharmacokinetic assessments included peak effect of drug liking (Emax; primary endpoint) using drug liking visual analog scale (VAS) score, Emax using overall drug liking, and take drug again (TDA) VASs scores, and mean abuse quotient (AQ), a pharmacokinetic parameter associated with drug liking. Results. Forty-six participants completed the study. After insufflation of HV morphine-ADER-IMT and LV morphine-ADER-IMT, drug liking Emax was significantly lower (P < 0.0001) compared with IN morphine ER. Overall drug liking and TDA Emax values were significantly lower (P < 0.0001) after insufflation of HV morphine-ADER-IMT and LV morphine-ADER-IMT compared with IN morphine ER. Mean AQ was lower after insufflation of HV (9.2) and LV (2.3) morphine-ADER-IMT or ingestion of oral morphine-ADER-IMT (5.5) compared with insufflation of LV morphine ER (37.2). Conclusions. All drug liking, take drug again, and abuse quotient endpoints support a significantly lower abuse potential with insufflation of manipulated morphine-ADER-IMT compared with manipulated and insufflated non-AD ER morphine. PMID:27651510

  11. Food deprivation facilitates reinstatement of morphine-induced conditioned place preference: Role of intra-accumbal dopamine D2-like receptors in associating reinstatement of morphine CPP with stress.

    PubMed

    Sadeghzadeh, Fatemeh; Babapour, Vahab; Haghparast, Abbas

    2017-04-01

    The high rate of relapse to drug use is one of the main problems in the treatment of addiction. Stress plays the essential role in drug abuse and relapse; nevertheless, little is known about the mechanisms underlying stress and relapse. Accordingly, the effects of intra-accumbal administration of Sulpiride, as a dopamine D2-like receptor antagonist, on an ineffective morphine dose + food deprivation(FD)- and morphine priming-induced reinstatement of conditioned place preference (CPP). About 104 adult male albino Wistar rats weighing 200-280 g were bilaterally implanted by cannula into the nucleus accumbens (NAc). Subcutaneous (sc) injection of morphine (5 mg kg -1 ) was used daily during a 3-day conditioning phase. After a 24-hr "off" period following achievement of extinction criterion, rats were tested for FD- and priming-induced reinstatement of morphine CPP by an ineffective (0.5 mg kg -1 , sc) and priming (1 mg kg -1 , sc) dose of morphine, respectively. In the next experiments, animals received different doses of intra-accumbal Sulpiride (0.25, 1, and 4 µg/0.5 µL saline) bilaterally and were subsequently tested for morphine reinstatement. Our findings indicated that the 24-hr FD facilitated reinstatement of morphine CPP. Furthermore, the D2-like receptor antagonist attenuated the ineffective morphine dose+ FD- and priming-induced reinstatement of morphine CPP dose-dependently. Also, contribution of D2-like receptors in mediation of the ineffective morphine dose+ FD-induced reinstatement of CPP was greater than morphine priming-induced reinstatement of CPP. The role of dopaminergic system in morphine reinstatement through a neural pathway in the NAc provides the evidence that D2-like receptor antagonist can be useful therapeutic targets for reinstatement of morphine CPP. © 2016 Wiley Periodicals, Inc.

  12. Involvement of peripheral mechanism in the verapamil-induced potentiation of morphine analgesia in mice.

    PubMed

    Shimizu, Norifumi; Kishioka, Shiroh; Maeda, Takehiko; Fukazawa, Yohji; Dake, Yoshihiro; Yamamoto, Chizuko; Ozaki, Masanobu; Yamamoto, Hiroyuki

    2004-08-01

    Morphine's analgesic actions are thought to be mediated through both the central and peripheral nervous systems. L-type calcium channel blockers have been reported to potentiate the analgesic effects of morphine, but the locus of this interaction is not known. In this experiment, we examined the site of verapamil-induced potentiation of morphine analgesia in mice using the quaternary opioid receptor antagonist naloxone-methiodide (NLX-M). Subcutaneous injections of morphine increased locomotor activity and serum corticosterone level, which are mediated by the central nervous system. These central effects were not antagonized by 0.1 mg/kg of NLX-M, whereas this dose of NLX-M partially antagonized the analgesic effect of morphine. Treatment with verapamil potentiated morphine analgesia in a dose-dependent manner. The verapamil-induced potentiation of morphine analgesia was abolished by pretreatment with NLX-M (0.1 and 1 mg/kg). These findings suggest that peripheral mechanisms partially contribute to morphine analgesia and mediate the potentiation of morphine analgesia by verapamil.

  13. Analgesic activity of ZC88, a novel N-type voltage-dependent calcium channel blocker, and its modulation of morphine analgesia, tolerance and dependence.

    PubMed

    Meng, Ge; Wu, Ning; Zhang, Cheng; Su, Rui-Bin; Lu, Xin-Qiang; Liu, Yin; Yun, Liu-Hong; Zheng, Jian-Quan; Li, Jin

    2008-05-31

    ZC88 is a novel non-peptide N-type voltage-sensitive calcium channel blocker synthesized by our institute. In the present study, the oral analgesic activity of ZC88 in animal models of acute and neuropathic pain, and functional interactions between ZC88 and morphine in terms of analgesia, tolerance and dependence were investigated. In mice acetic acid writhing tests, ZC88 (10-80 mg/kg) administered by oral route showed significant antinociceptive effects in a dose-dependent manner. The ED50 values of ZC88 were 14.5 and 14.3 mg/kg in male and female mice, respectively. In sciatic nerve chronic constriction injury rats, mechanical allodynia was ameliorated by oral administration of ZC88 at doses of 14, 28 and 56 mg/kg, suggesting ZC88 relieved allodynic response of neuropathic pain. When concurrently administered with morphine, ZC88 (20-80 mg/kg) dose-dependently potentiated morphine analgesia and attenuated morphine analgesic tolerance in hot-plate tests. ZC88 also prevented chronic exposure to morphine-induced physical dependence and withdrawal, but not morphine-induced psychological dependence in conditioned place preference model. These results suggested that ZC88, a new non-peptide N-type calcium channel blocker, had notable oral analgesia and anti-allodynia for acute and neuropathic pain. ZC88 might be used in pain relief by either application alone or in combination with opioids because it enhanced morphine analgesia while prevented morphine-induced tolerance and physical dependence.

  14. Role of dorsal hippocampal orexin-1 receptors in memory restoration induced by morphine sensitization phenomenon.

    PubMed

    Alijanpour, S; Tirgar, F; Zarrindast, M-R

    2016-01-15

    The present study was examined the blockade of CA1 orexin-1 receptors (OX1Rs) of the dorsal hippocampus in the induction or expression phase on morphine sensitization-induced memory restoration using the Morris water maze (MWM) apparatus. Results showed that pre-training administration of morphine (5mg/kg, s.c.) increases escape latency and traveled distance, while does not alter swimming speed. This supports the impairing effect of morphine on the spatial memory acquisition in male adult rats. Also, in the retrieval session (probe trial) this treatment decreased the time spent in the target quadrant. Moreover, morphine-induced sensitization (15 or 20mg/kg, s.c.; once daily for 3days and followed by 5days no drug treatment) restored the memory acquisition/retrieval deficit which had been induced by pre-training administration of morphine (5mg/kg, s.c.). Intra-CA1 microinjection of subthreshold doses of SB-334867 (OX1Rs antagonist; 10, 20 and 40nmol/rat), 5min before morphine (20mg/kg/day×3days, s.c.; induction phase for morphine sensitization) did not alter restoration of memory acquisition/retrieval produced by the morphine sensitization phenomenon. In contrast, microinjection of subthreshold doses of SB-334867 (10, 20 and 40nmol/rat) into the CA1 region in the training session, 5min prior to morphine (5mg/kg, s.c.; expression phase for morphine sensitization) blocked the spatial memory acquisition/retrieval in morphine-sensitized rats. In conclusion, these findings show that morphine sensitization reverses morphine-induced amnesia. Furthermore, the blockade of CA1 OX1Rs in the expression phase, but not in the induction phase, disrupts memory restoration induced by morphine sensitization. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Phenobarbital versus morphine in the management of neonatal abstinence syndrome, a randomized control trial.

    PubMed

    Nayeri, Fatemeh; Sheikh, Mahdi; Kalani, Majid; Niknafs, Pedram; Shariat, Mamak; Dalili, Hosein; Dehpour, Ahmad-Reza

    2015-05-15

    Evaluating the efficacy of the loading and tapering dose of Phenobarbital versus oral Morphine in the management of NAS. This randomized, open-label, controlled trial was conducted on 60 neonates born to illicit drugs dependent mothers at Vali-Asr and Akbar-Abadi hospitals, Tehran, Iran, who exhibited NAS requiring medical therapy. The neonates were randomized to receive either: Oral Morphine Sulfate or a loading dose of Phenobarbital followed by a tapering dose. The duration of treatment required for NAS resolution, the total hospital stay and the requirement for additional second line treatment were compared between the treatment groups. The Mean ± Standard Deviation for the duration of treatment required for the resolution of NAS was 8.5 ± 5 days in the Morphine group and 8.5 ± 4 days in the Phenobarbital group (P = 0.9). The duration of total hospital stay was 12.6 ± 5.6 days in the Morphine group and 12.5 ± 5.3 days in the Phenobarbital group (P = 0.7). 3.3 % in the Morphine group versus 6.6 % in the Phenobarbital group required adjunctive treatment (P = 0.5). There were no significant differences in the duration of treatment, duration of hospital stay, and the requirement for adjunctive treatment, between the neonates with NAS who received Morphine Sulfate and neonates who received a loading and tapering dose of Phenobarbital. This study is registered at the Iranian Registry of Clinical Trials ( www.irct.ir ) which is a Primary Registry in the WHO Registry Network. (Registration Number =  IRCT201406239568N8 ).

  16. Agmatine inhibits chronic morphine exposure-induced impairment of hippocampal neural progenitor proliferation in adult rats.

    PubMed

    Liu, Ying; Lu, Guan-Yi; Chen, Wen-Qiang; Li, Yun-Feng; Wu, Ning; Li, Jin

    2018-01-05

    Our previous studies have shown that agmatine inhibited opioid dependence, yet the neural mechanism remains unclear. Growing evidence showed that opioids decrease neurogenesis in the adult hippocampal subgranular zone by inhibiting neural progenitor proliferation. However, whether agmatine affects chronic opioid exposure-induced impairment to hippocampal neural progenitor cell proliferation remains unknown. In the present study, we investigated the role of agmatine in hippocampal neural progenitors in morphine dependence rats. We found that chronic administration of morphine for 12 days induced morphine dependence in rats. This treatment not only decreased the proliferation of hippocampal neural progenitors in the granule cell layer, but also decreased the levels of hippocampal cAMP, pCREB and BDNF. However, these alterations can be restored to normal levels by co-treatment of agmatine (10mg/kg, s.c.). In vitro treatment with agmatine (10µM) for two days significantly increased proliferation of the cultured hippocampal neural progenitors. Concurrent treatment of agmatine (10µM) with morphine (10 or 50µM) reversed the supression of morphine-induced neural progenitor proliferation. In conclusion, we found that agmatine abolished chronic morphine-induced decrease in proliferation of hippocampal progenitors in vivo and in vitro, which may be due to the increase in cAMP-CREB-BDNF signaling. The enhancement of agmatine to proliferation of hippocampal progenitors may be one of the important mechanisms involved in the inhibition of morphine dependence by agmatine. Copyright © 2017. Published by Elsevier B.V.

  17. Systemic morphine treatment induces changes in firing patterns and responses of nociceptive afferent fibers in mouse glabrous skin

    PubMed Central

    Hogan, Dale; Baker, Alyssa L.; Morón, Jose A.; Carlton, Susan M.

    2013-01-01

    Patients receiving opioids for pain may experience decreased effectiveness of the drug and even abnormal pain sensitivity – either hyperalgesia and/or allodynia. We hypothesize that peripheral nociceptor hyperexcitability contributes to opioid-induced hyperalgesia and test this using an in vitro mouse glabrous skin-nerve preparation. Mice were injected i.p. with escalating doses of morphine (5, 8, 10, 15 mg/kg) or saline every 12 h for 48 h and sacrificed ~12 h following the last injection. Receptive fields of nociceptors were tested for mechanical, heat, and cold sensitivity. Activity was also measured during an initial 2 min period and during 5 min periods between stimuli. Aberrant activity was common in fibers from morphine-treated mice but rare in salinetreated mice. Resting background activity was elevated in C-fibers from morphinetreated mice. Both C- and Aδ -fibers had afterdischarge in response to mechanical, heat and/or cold stimulation of the skin as well as spontaneous, unevoked activity. Compared to saline, morphine treatment increased the proportion of fibers displaying polymodal rather than mechanical-only responses. A significant increase in Aδ-mechanoreceptive fibers responding to cold accounted for most of this change. In agreement with this, morphine-treated mice showed increased sensitivity in the cold tail flick test. In morphine-treated mice, aberrant activity and hyperexcitability of nociceptors could contribute to increased pain sensitivity. Importantly, this activity is likely driving central sensitization, a phenomenon contributing to abnormal sensory processing and chronic pain. If similar changes occur in human patients, aberrant nociceptor activity is likely to be interpreted as pain, and could contribute to opioid-induced hyperalgesia. PMID:23711478

  18. Phosphoproteomics and Bioinformatics Analyses of Spinal Cord Proteins in Rats with Morphine Tolerance

    PubMed Central

    Liaw, Wen-Jinn; Tsao, Cheng-Ming; Huang, Go-Shine; Wu, Chin-Chen; Ho, Shung-Tai; Wang, Jhi-Joung; Tao, Yuan-Xiang; Shui, Hao-Ai

    2014-01-01

    Introduction Morphine is the most effective pain-relieving drug, but it can cause unwanted side effects. Direct neuraxial administration of morphine to spinal cord not only can provide effective, reliable pain relief but also can prevent the development of supraspinal side effects. However, repeated neuraxial administration of morphine may still lead to morphine tolerance. Methods To better understand the mechanism that causes morphine tolerance, we induced tolerance in rats at the spinal cord level by giving them twice-daily injections of morphine (20 µg/10 µL) for 4 days. We confirmed tolerance by measuring paw withdrawal latencies and maximal possible analgesic effect of morphine on day 5. We then carried out phosphoproteomic analysis to investigate the global phosphorylation of spinal proteins associated with morphine tolerance. Finally, pull-down assays were used to identify phosphorylated types and sites of 14-3-3 proteins, and bioinformatics was applied to predict biological networks impacted by the morphine-regulated proteins. Results Our proteomics data showed that repeated morphine treatment altered phosphorylation of 10 proteins in the spinal cord. Pull-down assays identified 2 serine/threonine phosphorylated sites in 14-3-3 proteins. Bioinformatics further revealed that morphine impacted on cytoskeletal reorganization, neuroplasticity, protein folding and modulation, signal transduction and biomolecular metabolism. Conclusions Repeated morphine administration may affect multiple biological networks by altering protein phosphorylation. These data may provide insight into the mechanism that underlies the development of morphine tolerance. PMID:24392096

  19. Brief early handling increases morphine dependence in adult rats.

    PubMed

    Vazquez, Vincent; Penit-Soria, Jacqueline; Durand, Claudette; Besson, Marie-Jo; Giros, Bruno; Daugé, Valérie

    2006-06-30

    Short early manipulations of rodent postnatal environment may trigger long-term effects on neurobiological and behavioural phenotypes in adulthood. However, little is known about such effects of handling on the vulnerability to develop drug dependence. The present study aimed to analyze the long-term effects of a brief handling (1 min) on morphine and ethanol dependence and on the preproenkephalin (PPE) mRNA and mu opioid receptor levels. Handled rats showed a significant increase in morphine (25mg/l) but not ethanol (10%) consumption and preference after 7 weeks and no difference in morphine (2 and 5mg/kg) conditioned place preference. No difference of preproenkephalin mRNA and mu opioid receptor levels was detected in the mesolimbic system between both groups. These data emphasize that human brief handling, which can lead to morphine dependence development, constitutes in itself an experimental treatment and not a control condition.

  20. Similar decrease in spontaneous morphine abstinence by methadone and RB 101, an inhibitor of enkephalin catabolism.

    PubMed

    Ruiz, F; Fournié-Zaluski, M C; Roques, B P; Maldonado, R

    1996-09-01

    1. The dual inhibitor of enkephalin degrading enzymes, RB 101, is able to block endogenous enkephalin metabolism completely, leading to potent antinociceptive responses potentiated by blockade of CCKB receptors. In this study we have investigated the effects induced by RB 101 given alone, or with the CCKB antagonist, PD-134,308, on a model of spontaneous morphine withdrawal and substitutive maintenance in rats. 2. Animals were chronically treated with morphine for 7 days followed, 36 h after the interruption of drug administration, by a maintenance treatment for 5 days with methadone (2 mg kg-1, i.p.), clonidine (0.025 mg kg-1, i.p.), RB 101 (40 mg kg-1, i.p.), PD-134,308 (3 mg kg-1, i.p.) or a combination of RB 101 plus PD-134,308. Several behavioural observations were made during this period in order to evaluate the acute effects as well as the consequence of chronic maintenance induced on spontaneous withdrawal by the different treatments. 3. Methadone was the most effective compound in decreasing the spontaneous withdrawal syndrome after acute administration. Both, methadone and RB 101 had similar effectiveness in reducing opiate abstinence during the period of substitutive treatment. PD-134,308 did not show any effect when administered alone and did not modify the effect of RB 101. 4. Naloxone (1 mg kg-1, s.c.) failed to precipitate any sign of withdrawal when injected at the end of the chronic maintenance treatment suggesting that, under the present conditions, methadone and RB 101 did not induce significant physical opiate-dependence. 5. The mildness of the side effects induced by chronic RB 101, suggests that systemically active inhibitors of enkephalin catabolism could represent a promising treatment in the maintenance of opiate addicts.

  1. Similar decrease in spontaneous morphine abstinence by methadone and RB 101, an inhibitor of enkephalin catabolism.

    PubMed Central

    Ruiz, F.; Fournié-Zaluski, M. C.; Roques, B. P.; Maldonado, R.

    1996-01-01

    1. The dual inhibitor of enkephalin degrading enzymes, RB 101, is able to block endogenous enkephalin metabolism completely, leading to potent antinociceptive responses potentiated by blockade of CCKB receptors. In this study we have investigated the effects induced by RB 101 given alone, or with the CCKB antagonist, PD-134,308, on a model of spontaneous morphine withdrawal and substitutive maintenance in rats. 2. Animals were chronically treated with morphine for 7 days followed, 36 h after the interruption of drug administration, by a maintenance treatment for 5 days with methadone (2 mg kg-1, i.p.), clonidine (0.025 mg kg-1, i.p.), RB 101 (40 mg kg-1, i.p.), PD-134,308 (3 mg kg-1, i.p.) or a combination of RB 101 plus PD-134,308. Several behavioural observations were made during this period in order to evaluate the acute effects as well as the consequence of chronic maintenance induced on spontaneous withdrawal by the different treatments. 3. Methadone was the most effective compound in decreasing the spontaneous withdrawal syndrome after acute administration. Both, methadone and RB 101 had similar effectiveness in reducing opiate abstinence during the period of substitutive treatment. PD-134,308 did not show any effect when administered alone and did not modify the effect of RB 101. 4. Naloxone (1 mg kg-1, s.c.) failed to precipitate any sign of withdrawal when injected at the end of the chronic maintenance treatment suggesting that, under the present conditions, methadone and RB 101 did not induce significant physical opiate-dependence. 5. The mildness of the side effects induced by chronic RB 101, suggests that systemically active inhibitors of enkephalin catabolism could represent a promising treatment in the maintenance of opiate addicts. Images Figure 4 PMID:8872371

  2. Initial Dosing and Taper Complexity of Methadone and Morphine for Treatment of Neonatal Abstinence Syndrome

    PubMed Central

    Ibach, Bethany W.; Johnson, Peter N.; Ernst, Kimberly D.; Harrison, Donald; Miller, Jamie L.

    2016-01-01

    Background: Methadone and morphine are commonly used to treat neonatal abstinence syndrome (NAS). Limited data exist to describe the most appropriate initial doses and taper regimens of these agents. Objectives: Describe the median initial dose and frequency of methadone and morphine for NAS. Compare dose adjustments, time to symptom relief, and taper complexity between groups. Methods: Retrospective study of neonates receiving enteral methadone or morphine for NAS over a 4-year period. Data collection included medication regimen, abstinence scores based on the Modified Finnegan Neonatal Abstinence Scoring Tool, and adverse events. Planned home taper complexity was assessed using the Medication Taper Complexity Score–Revised (MTCS-R). The primary outcome was initial opioid dose. Secondary outcomes included number of dose adjustments, time to symptom relief, and MTCS-R score. Results: Fifty neonates were initially treated for NAS with methadone (n = 36) or morphine (n = 14). The median initial dose was 0.09 mg/kg (range = 0.03-0.2) for methadone and 0.04 mg/kg (range = 0.03-0.4) for morphine. The most common initial dosing interval was q8h for methadone versus q3h for morphine. Number of dose adjustments and time to symptom relief were similar between groups. Median MTCS-R scores were similar between groups. There was no difference in adverse events between groups. Limitations included small sample size, preference toward methadone use, and variability of initial opioid dosing and titration. Conclusions: There was significant variability in initial doses of both agents. Neonates receiving methadone required less frequent dosing than morphine, which may result in easier administration and may allow for safer outpatient administration.

  3. Dentate gyrus neurogenesis ablation via cranial irradiation enhances morphine self-administration and locomotor sensitization.

    PubMed

    Bulin, Sarah E; Mendoza, Matthew L; Richardson, Devon R; Song, Kwang H; Solberg, Timothy D; Yun, Sanghee; Eisch, Amelia J

    2018-03-01

    Adult dentate gyrus (DG) neurogenesis is important for hippocampal-dependent learning and memory, but the role of new neurons in addiction-relevant learning and memory is unclear. To test the hypothesis that neurogenesis is involved in the vulnerability to morphine addiction, we ablated adult DG neurogenesis and examined morphine self-administration (MSA) and locomotor sensitization. Male Sprague-Dawley rats underwent hippocampal-focused, image-guided X-ray irradiation (IRR) to eliminate new DG neurons or sham treatment (Sham). Six weeks later, rats underwent either MSA (Sham = 16, IRR = 15) or locomotor sensitization (Sham = 12, IRR = 12). Over 21 days of MSA, IRR rats self-administered ~70 percent more morphine than Sham rats. After 28 days of withdrawal, IRR rats pressed the active lever 40 percent more than Sham during extinction. This was not a general enhancement of learning or locomotion, as IRR and Sham groups had similar operant learning and inactive lever presses. For locomotor sensitization, both IRR and Sham rats sensitized, but IRR rats sensitized faster and to a greater extent. Furthermore, dose-response revealed that IRR rats were more sensitive at a lower dose. Importantly, these increases in locomotor activity were not apparent after acute morphine administration and were not a byproduct of irradiation or post-irradiation recovery time. Therefore, these data, along with other previously published data, indicate that reduced hippocampal neurogenesis confers vulnerability for multiple classes of drugs. Thus, therapeutics to specifically increase or stabilize hippocampal neurogenesis could aid in preventing initial addiction as well as future relapse. © 2017 Society for the Study of Addiction.

  4. Withdrawal of repeated morphine enhances histamine-induced scratching responses in mice.

    PubMed

    Abe, Kenji; Kobayashi, Kanayo; Yoshino, Saori; Taguchi, Kyoji; Nojima, Hiroshi

    2015-04-01

    An itch is experientially well known that the scratching response of conditions such as atopic dermatitis is enhanced under psychological stress. Morphine is typical narcotic drug that induces a scratching response upon local application as an adverse drug reaction. Although long-term treatment with morphine will cause tolerance and dependence, morphine withdrawal can cause psychologically and physiologically stressful changes in humans. In this study, we evaluated the effects of morphine withdrawal on histamine-induced scratching behavior in mice. Administration of morphine with progressively increasing doses (10-50 mg/kg, i.p.) was performed for 5 consecutive days. At 3, 24, 48, and 72 hr after spontaneous withdrawal from the final morphine dose, histamine was intradermally injected into the rostral part of the back and then the number of bouts of scratching in 60 min was recorded and summed. We found that at 24 hr after morphine withdrawal there was a significant increase in histamine-induced scratching behavior. The spinal c-Fos positive cells were also significantly increased. The relative adrenal weight increased and the relative thymus weight decreased, both significantly. Moreover, the plasma corticosterone levels changed in parallel with the number of scratching bouts. These results suggest that morphine withdrawal induces a stressed state and enhances in histamine-induced scratching behavior. Increased reaction against histamine in the cervical vertebrae will participate in this stress-induced itch enhancement.

  5. Ultra-low dose (+)-naloxone restores the thermal threshold of morphine tolerant rats.

    PubMed

    Chou, Kuang-Yi; Tsai, Ru-Yin; Tsai, Wei-Yuan; Wu, Ching-Tang; Yeh, Chun-Chang; Cherng, Chen-Hwan; Wong, Chih-Shung

    2013-12-01

    As known, long-term morphine infusion leads to tolerance. We previously demonstrated that both co-infusion and post-administration of ultra-low dose (±)-naloxone restores the antinociceptive effect of morphine in morphine-tolerant rats. However, whether the mechanism of the action of ultra-low dose (±)-naloxone is through opioid receptors or not. Therefore, in the present study, we further investigated the effect of ultra-low dose (+)-naloxone, it does not bind to opioid receptors, on the antinociceptive effect of morphine. Male Wistar rats were implanted with one or two intrathecal (i.t.) catheters; one catheter was connected to a mini-osmotic pump, used for morphine (15 μg/h), ultra-low dose (+)-naloxone (15 pg/h), morphine plus ultra-low dose (+)-naloxone (15 pg/h) or saline (1 μl/h) infusion for 5 days. On day 5, either ultra-low dose (+)-naloxone (15 pg) or saline (5 μl) was injected via the other catheter immediately after discontinued morphine or saline infusion. Three hours later, morphine (15 μg in 5 μl saline) or saline were given intrathecally. All rats received nociceptive tail-flick test every 30 minutes for 120 minutes after morphine challenge at different temperature (45-52°C, respective). Our results showed that, both co-infusion and post-treatment of ultra-low dose (+)-naloxone with morphine preserves the antinociceptive effect of morphine. Moreover, in the post administration rats, ultra-low dose (+)-naloxone further enhances the antinociceptive effect of morphine. This study provides an evidence for ultra-low dose (+)-naloxone as a therapeutic adjuvant for patients who need long-term opioid administration for pain management. Copyright © 2013. Published by Elsevier B.V.

  6. Comparison of Intravenous Morphine Versus Paracetamol in Sciatica: A Randomized Placebo Controlled Trial.

    PubMed

    Serinken, Mustafa; Eken, Cenker; Gungor, Faruk; Emet, Mucahit; Al, Behcet

    2016-06-01

    The objective was to compare intravenous morphine and intravenous acetaminophen (paracetamol) for pain treatment in patients presenting to the emergency department with sciatica. Patients, between the ages of 21 and 65 years, suffering from pain in the sciatic nerve distribution and a positive straight leg-raise test composed the study population. Study patients were assigned to one of three intravenous interventions: morphine (0.1 mg/kg), acetaminophen (1 g), or placebo. Physicians, nurses, and patients were blinded to the study drug. Changes in pain intensity were measured at 15 and 30 minutes using a visual analog scale. Rescue drug (fentanyl) use and adverse effects were also recorded. Three-hundred patients were randomized. The median change in pain intensity between treatment arms at 30 minutes were as follows: morphine versus acetaminophen 25 mm (95% confidence interval [CI] = 20 to 29 mm), morphine versus placebo 41 mm (95% CI = 37 to 45 mm), and acetaminophen versus placebo 16 mm (95% CI = 12 to 20 mm). Eighty percent of the patients in the placebo group (95% CI = 63.0% to 99%), 18% of the patients in the acetaminophen group (95% CI = 10.7% to 28.5%), and 6% of those in the morphine group (95% CI = 2.0% to 13.2%) required a rescue drug. Adverse effects were similar between the morphine and acetaminophen groups. Morphine and acetaminophen are both effective for treating sciatica at 30 minutes. However, morphine is superior to acetaminophen. © 2016 by the Society for Academic Emergency Medicine.

  7. Inhibitory effect of bacopasides on spontaneous morphine withdrawal induced depression in mice.

    PubMed

    Rauf, Khalid; Subhan, Fazal; Abbas, Muzaffar; Ali, Syed Mobasher; Ali, Gowhar; Ashfaq, Muhammad; Abbas, Ghulam

    2014-06-01

    Bacopa monnieri is a perennial herb with a world known image as a nootropic. We investigated the effect of Bacopa monnieri methanolic extract (Mt Ext BM) 10, 20, and 30 mg/kg body weight (b.w) on acquisition and expression of morphine withdrawal induced depression in mice. Locally available Bacopa monnieri (BM) was screened for contents of Bacoside A3, Bacopasaponin C, and Bacopaside II using HPLC with UV. Morphine dependence was induced in mice using twice daily escalating chronic morphine treatments (20-65 mg/kg b.w) for eight consecutive days. Morphine withdrawal induced depression was assayed in animals using forced swimming test (FST), three days after last morphine injection. The HPLC analysis revealed that Mt-ext BM contained Bacoside A3 as major component, i.e. 4 µg in each mg of extract. The chronic treatment with Met Ext BM 10, 20, and 30 mg/kg b.w. dosing significantly inhibited opioid withdrawal induced depression in mice. These findings imply a newer potential role of Bacopa monnieri in the clinical management of opioid withdrawal induced depression which can be attributed to Bacoside A3. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Time Dependent Antinociceptive Effects of Morphine and Tramadol in the Hot Plate Test: Using Different Methods of Drug Administration in Female Rats

    PubMed Central

    Gholami, Morteza; Saboory, Ehsan; Mehraban, Sogol; Niakani, Afsaneh; Banihabib, Nafiseh; Azad, Mohamad-Reza; Fereidoni, Javid

    2015-01-01

    Morphine and tramadol which have analgesic effects can be administered acutely or chronically. This study tried to investigate the effect of these drugs at various times by using different methods of administration (intraperitoneal, oral, acute and chronic). Sixty adult female rats were divided into six groups. They received saline, morphine or tramadol (20 to 125 mg/Kg) daily for 15 days. A hot plate test was performed for the rats at the 1st, 8th and 15th days. After drug withdrawal, the hot plate test was repeated at the 17th, 19th, and 22nd days. There was a significant correlation between the day, drug, group, and their interaction (P<0.001). At 1st day (d1), both morphine, and tramadol caused an increase in the hot plate time comparing to the saline groups (P<0.001), while there was no correlation between drug administration methods of morphine and/or tramadol. At the 8th day (d8), morphine and tramadol led to the most powerful analgesic effect comparing to the other experimental days (P<0.001). At the 15th day (d15), their effects diminished comparing to the d8. After drug withdrawal, analgesic effect of morphine, and tramadol disappeared. It can be concluded that the analgesic effect of morphine and tramadol increases with the repeated use of them. Thereafter, it may gradually decrease and reach to a level compatible to d1. The present data also indicated that although the analgesic effect of morphine and tramadol is dose-and-time dependent, but chronic exposure to them may not lead to altered nociceptive responses later in life. PMID:25561936

  9. Role of protein kinase C and μ-opioid receptor (MOPr) desensitization in tolerance to morphine in rat locus coeruleus neurons

    PubMed Central

    Bailey, C P; Llorente, J; Gabra, B H; Smith, F L; Dewey, W L; Kelly, E; Henderson, G

    2009-01-01

    In morphine tolerance a key question that remains to be answered is whether μ-opioid receptor (MOPr) desensitization contributes to morphine tolerance, and if so by what cellular mechanisms. Here we demonstrate that MOPr desensitization can be observed in single rat brainstem locus coeruleus (LC) neurons following either prolonged (> 4 h) exposure to morphine in vitro or following treatment of animals with morphine in vivo for 3 days. Analysis of receptor function by an operational model indicated that with either treatment morphine could induce a profound degree (70–80%) of loss of receptor function. Ongoing PKC activity in the MOPr-expressing neurons themselves, primarily by PKCα, was required to maintain morphine-induced MOPr desensitization, because exposure to PKC inhibitors for only the last 30–50 min of exposure to morphine reduced the MOPr desensitization that was induced both in vitro and in vivo. The presence of morphine was also required for maintenance of desensitization, as washout of morphine for > 2 h reversed MOPr desensitization. MOPr desensitization was homologous, as there was no change in α2-adrenoceptor or ORL1 receptor function. These results demonstrate that prolonged morphine treatment induces extensive homologous desensitization of MOPrs in mature neurons, that this desensitization has a significant PKC-dependent component and that this desensitization underlies the maintenance of morphine tolerance. PMID:19200236

  10. Morphine, Nortriptyline and their Combination vs. Placebo in Patients with Chronic Lumbar Root Pain

    PubMed Central

    Khoromi, Suzan; Cui, Lihong; Nackers, Lisa; Max, Mitchell B.

    2007-01-01

    Although lumbar radicular pain is the most common chronic neuropathic pain syndrome, there have been few randomized studies of drug treatments. We compared the efficacy of morphine (15–90 mg), nortriptyline (25 –100 mg), their combination, and a benztropine “active placebo” (0.25-1 mg) in patients with chronic sciatica. Each period consisted of 5 weeks of dose escalation, 2 weeks of maintenance at the highest tolerated doses, and 2 weeks of dose tapering. The primary outcome was the mean daily leg pain score on a 0–10 scale during the maintenance period. Secondary outcomes included a 6-point ordinal global pain relief scale, the Beck Depression Inventory (BDI), the Oswestry Back Pain Disability Index (ODI) and the SF-36. In the 28 out of 61 patients who completed the study, none of the treatments produced significant reductions in average leg pain or other leg or back pain scores. Pain reduction, relative to placebo treatment was 14% for nortriptyline (95% CI= [−2%, 30%]), 7% for morphine (95% CI= [−8%, 22%]), and 7% for the combination treatment (95% CI= [−4%, 18%]). Mean doses were: nortriptyline alone, 84 +/− 24.44 (SD)mg/day; morphine alone, 62 +/−29mg/day; and combination, morphine, 49 +/−27 mg/day plus nortriptyline, 55 mg+/− 33.18 mg/day. Over half of the study completers reported some adverse effect with morphine, nortriptyline or their combination. Within the limitations of the modest sample size and high dropout rate, these results suggest that nortriptyline, morphine and their combination may have limited effectiveness in the treatment of chronic sciatica. PMID:17182183

  11. Extended-release, once-daily morphine (Avinza) for the treatment of chronic nonmalignant pain: effect on pain, depressive symptoms, and cognition.

    PubMed

    Panjabi, Sumeet S; Panjabi, Ravi S; Shepherd, Marvin D; Lawson, Kenneth A; Johnsrud, Michael; Barner, Jamie

    2008-11-01

    To evaluate the impact of an extended-release, once-daily morphine sulfate formulation on depressive symptoms and neurocognition in patients with chronic nonmalignant pain. Prospective, open-label, one-group trial with a pretest-posttest design. Outpatient pain management clinic. Chronic nonmalignant pain patients inadequately controlled with short-acting opioid analgesics and eligible for treatment with once-daily morphine sulfate were initiated on a dose at or near the morphine-equivalent dose of the short-acting regimen. The following assessments were made at baseline and 4 weeks after initiating intervention: pain intensity, pain unpleasantness, pain suffering, pain behaviors, Beck Depression Inventory, and cognitive function. Eighty-four patients provided usable data. Pain intensity, unpleasantness, and suffering scores were significantly reduced at follow-up (P = 0.001). The mean Beck Depression Inventory scores were significantly lower at follow-up (P = 0.001). Significant improvements were seen in scores at follow-up on the three validated neurocognitive tests: the digit span test, the digit symbol substitution test, and the paced auditory serial addition test (P = 0.001). Achieving adequate pain control with once-daily morphine was associated with a reduction in pain and improvements in depressive symptoms and cognitive functioning in the short term.

  12. Maintenance treatment for opioid dependence with slow-release oral morphine: a randomized cross-over, non-inferiority study versus methadone

    PubMed Central

    Beck, Thilo; Haasen, Christian; Verthein, Uwe; Walcher, Stephan; Schuler, Christoph; Backmund, Markus; Ruckes, Christian; Reimer, Jens

    2014-01-01

    Aims To compare the efficacy of slow-release oral morphine (SROM) and methadone as maintenance medication for opioid dependence in patients previously treated with methadone. Design Prospective, multiple-dose, open label, randomized, non-inferiority, cross-over study over two 11-week periods. Methadone treatment was switched to SROM with flexible dosing and vice versa according to period and sequence of treatment. Setting Fourteen out-patient addiction treatment centres in Switzerland and Germany. Participants Adults with opioid dependence in methadone maintenance programmes (dose ≥50 mg/day) for ≥26 weeks. Measurements The efficacy end-point was the proportion of heroin-positive urine samples per patient and period of treatment. Each week, two urine samples were collected, randomly selected and analysed for 6-monoacetyl-morphine and 6-acetylcodeine. Non-inferiority was concluded if the two-sided 95% confidence interval (CI) in the difference of proportions of positive urine samples was below the predefined boundary of 10%. Findings One hundred and fifty-seven patients fulfilled criteria to form the per protocol population. The proportion of heroin-positive urine samples under SROM treatment (0.20) was non-inferior to the proportion under methadone treatment (0.15) (least-squares mean difference 0.05; 95% CI = 0.02, 0.08; P > 0.01). The 95% CI fell within the 10% non-inferiority margin, confirming the non-inferiority of SROM to methadone. A dose-dependent effect was shown for SROM (i.e. decreasing proportions of heroin-positive urine samples with increasing SROM doses). Retention in treatment showed no significant differences between treatments (period 1/period 2: SROM: 88.7%/82.1%, methadone: 91.1%/88.0%; period 1: P = 0.50, period 2: P = 0.19). Overall, safety outcomes were similar between the two groups. Conclusions Slow-release oral morphine appears to be at least as effective as methadone in treating people with opioid use disorder. PMID:24304412

  13. Differential analgesic effects of a mu-opioid peptide, [Dmt(1)]DALDA, and morphine.

    PubMed

    Shimoyama, Megumi; Szeto, Hazel H; Schiller, Peter W; Tagaito, Yugo; Tokairin, Hideyuki; Eun, Chong moon; Shimoyama, Naohito

    2009-01-01

    H-Dmt-D-Arg-Phe-Lys-NH(2) ([Dmt(1)]DALDA), a highly selective micro-opioid peptide, is potently analgesic after systemic and intrathecal administration but is less potent given intracerebroventricularly. This study was performed to further characterize the analgesic effects of [Dmt(1)]DALDA. We compared the effects of [Dmt(1)]DALDA and morphine after systemic administration in two different acute pain tests, the tail flick test and the paw withdrawal test, and examined how antagonizing the spinal opioid actions would affect their analgesic effects. [Dmt(1)]DALDA was markedly more potent in the tail flick test than in the hot plate test, while the potencies of morphine were similar in the two tests. Intrathecal naloxone completely blocked the effect of systemic [Dmt(1)]DALDA in the tail flick test, while it only partially blocked the effect of morphine. At higher doses that produced analgesia in the hot plate test, the effect of [Dmt(1)]DALDA in this test was only partially blocked by naloxone. Systemic [Dmt(1)]DALDA has a unique analgesic property clearly different from that of morphine and it has a propensity to produce spinal analgesia.

  14. Comparative analgesic efficacy of morphine sulfate and butorphanol tartrate in koi (Cyprinus carpio) undergoing unilateral gonadectomy

    PubMed Central

    Baker, Tracie R.; Baker, Bridget B.; Johnson, Stephen M.; Sladky, Kurt K.

    2016-01-01

    Objective To identify pain-related behaviors and assess the effects of butorphanol tartrate and morphine sulfate in koi (Cyprinus carpio) undergoing unilateral gonadectomy. Design Prospective study. Animals 90 adult male and female koi. Procedures Each fish received saline (0.9% NaCl) solution (which is physiologically compatible with fish) IM, butorphanol (10 mg/kg [4.5 mg/lb], IM), or morphine (5 mg/kg [2.3 mg/lb], IM) as an injection only (6 fish/treatment); an injection with anesthesia and surgery (12 fish/treatment); or an injection with anesthesia but without surgery (12 fish/treatment). Physiologic and behavioral data were recorded 12 hours before and at intervals after treatment. Results Compared with baseline values, the saline solution–surgery group had significantly decreased respiratory rates (at 12 to 24 hours), food consumption assessed as a percentage of floating pellets consumed (at 0 to 36 hours), and activity score (at 0 to 48 hours). Respiratory rate decreased in all butorphanol-treated fish; significant decreases were detected at fewer time points following morphine administration. In the butorphanol-surgery group, the value for food consumption initially decreased but returned to baseline values within 3 hours after treatment; food consumption did not change in the morphine-surgery group. Surgery resulted in decreased activity, regardless of treatment, with the most pronounced effect in the saline solution–surgery group. Changes in location in water column, interactive behavior, and hiding behavior were not significantly different among groups. Butorphanol and morphine administration was associated with temporary buoyancy problems and temporary bouts of excessive activity, respectively. Conclusions and Clinical Relevance Butorphanol and morphine appeared to have an analgesic effect in koi, but morphine administration caused fewer deleterious adverse effects. Food consumption appeared to be a reliable indicator of pain in koi. PMID:24004238

  15. Comparative analgesic efficacy of morphine sulfate and butorphanol tartrate in koi (Cyprinus carpio) undergoing unilateral gonadectomy.

    PubMed

    Baker, Tracie R; Baker, Bridget B; Johnson, Stephen M; Sladky, Kurt K

    2013-09-15

    To identify pain-related behaviors and assess the effects of butorphanol tartrate and morphine sulfate in koi (Cyprinus carpio) undergoing unilateral gonadectomy. Design-Prospective study. 90 adult male and female koi. Each fish received saline (0.9% NaCl) solution (which is physiologically compatible with fish) IM, butorphanol (10 mg/kg [4.5 mg/lb], IM), or morphine (5 mg/kg [2.3 mg/lb], IM) as an injection only (6 fish/treatment); an injection with anesthesia and surgery (12 fish/treatment); or an injection with anesthesia but without surgery (12 fish/treatment). Physiologic and behavioral data were recorded 12 hours before and at intervals after treatment. Compared with baseline values, the saline solution-surgery group had significantly decreased respiratory rates (at 12 to 24 hours), food consumption assessed as a percentage of floating pellets consumed (at 0 to 36 hours), and activity score (at 0 to 48 hours). Respiratory rate decreased in all butorphanol-treated fish; significant decreases were detected at fewer time points following morphine administration. In the butorphanol-surgery group, the value for food consumption initially decreased but returned to baseline values within 3 hours after treatment; food consumption did not change in the morphine-surgery group. Surgery resulted in decreased activity, regardless of treatment, with the most pronounced effect in the saline solution-surgery group. Changes in location in water column, interactive behavior, and hiding behavior were not significantly different among groups. Butorphanol and morphine administration was associated with temporary buoyancy problems and temporary bouts of excessive activity, respectively. Butorphanol and morphine appeared to have an analgesic effect in koi, but morphine administration caused fewer deleterious adverse effects. Food consumption appeared to be a reliable indicator of pain in koi.

  16. Lubiprostone reverses the inhibitory action of morphine on mucosal secretion in human small intestine.

    PubMed

    Sun, Xiaohong; Wang, Xiyu; Wang, Guo-Du; Xia, Yun; Liu, Sumei; Qu, Meihua; Needleman, Bradley J; Mikami, Dean J; Melvin, W Scott; Bohn, Laura M; Ueno, Ryuji; Wood, Jackie D

    2011-02-01

    Treatments with morphine or opioid agonists cause constipation. Lubiprostone is approved for treatment of adult idiopathic constipation and constipation-predominant IBS in adult women. We tested whether lubiprostone can reverse morphine-suppression of mucosal secretion in human intestine and explored the mechanism of action. Fresh segments of jejunum discarded during Roux-En-Y gastric bypass surgeries were used. Changes in short-circuit current (ΔIsc) were recorded in Ussing flux chambers as a marker for electrogenic chloride secretion during pharmacological interactions between morphine, prostaglandin receptor antagonists, chloride channel blockers and lubiprostone. Morphine suppressed basal Isc. Lubiprostone reversed morphine suppression of basal Isc. Lubiprostone, applied to the mucosa in concentrations ranging from 3 nM to 30 μM, evoked increases in Isc in concentration-dependent manner when applied to the mucosal side of muscle-stripped preparations. Blockade of enteric nerves did not change stimulation of Isc by lubiprostone. Removal of chloride or application of bumetanide or NPPB suppressed or abolished responses to lubiprostone. Antagonists acting at CFTR channels and prostaglandin EP(4) receptors, but not at E(1), EP(1-3) receptors, partially suppressed stimulation of Isc by lubiprostone. Antisecretory action of morphine results from suppression of excitability of secretomotor neurons in the enteric nervous system. Lubiprostone, which does not affect enteric neurons directly, bypasses the action of morphine by directly opening mucosal chloride channels.

  17. Buprenorphine, methadone, and morphine treatment during pregnancy: behavioral effects on the offspring in rats.

    PubMed

    Chen, Hwei-Hsien; Chiang, Yao-Chang; Yuan, Zung Fan; Kuo, Chung-Chih; Lai, Mei-Dan; Hung, Tsai-Wei; Ho, Ing-Kang; Chen, Shao-Tsu

    2015-01-01

    Methadone and buprenorphine are widely used for treating people with opioid dependence, including pregnant women. Prenatal exposure to opioids has devastating effects on the development of human fetuses and may induce long-term physical and neurobehavioral changes during postnatal maturation. This study aimed at comparing the behavioral outcomes of young rats prenatally exposed to buprenorphine, methadone, and morphine. Pregnant Sprague-Dawley rats were administered saline, morphine, methadone, and buprenorphine during embryonic days 3-20. The cognitive function, social interaction, anxiety-like behaviors, and locomotor activity of offsprings were examined by novel object recognition test, social interaction test, light-dark transition test, elevated plus-maze, and open-field test between 6 weeks and 10 weeks of age. Prenatal exposure to methadone and buprenorphine did not affect locomotor activity, but significantly impaired novel object recognition and social interaction in both male and female offsprings in the same manner as morphine. Although prenatal exposure to methadone or buprenorphine increased anxiety-like behaviors in the light-dark transition in both male and female offsprings, the effects were less pronounced as compared to that of morphine. Methadone affected elevated plus-maze in both sex, but buprenorphine only affected the female offsprings. These findings suggest that buprenorphine and methadone maintenance therapy for pregnant women, like morphine, produced detrimental effects on cognitive function and social behaviors, whereas the offsprings of such women might have a lower risk of developing anxiety disorders.

  18. Buprenorphine, methadone, and morphine treatment during pregnancy: behavioral effects on the offspring in rats

    PubMed Central

    Chen, Hwei-Hsien; Chiang, Yao-Chang; Yuan, Zung Fan; Kuo, Chung-Chih; Lai, Mei-Dan; Hung, Tsai-Wei; Ho, Ing-kang; Chen, Shao-Tsu

    2015-01-01

    Methadone and buprenorphine are widely used for treating people with opioid dependence, including pregnant women. Prenatal exposure to opioids has devastating effects on the development of human fetuses and may induce long-term physical and neurobehavioral changes during postnatal maturation. This study aimed at comparing the behavioral outcomes of young rats prenatally exposed to buprenorphine, methadone, and morphine. Pregnant Sprague-Dawley rats were administered saline, morphine, methadone, and buprenorphine during embryonic days 3–20. The cognitive function, social interaction, anxiety-like behaviors, and locomotor activity of offsprings were examined by novel object recognition test, social interaction test, light–dark transition test, elevated plus-maze, and open-field test between 6 weeks and 10 weeks of age. Prenatal exposure to methadone and buprenorphine did not affect locomotor activity, but significantly impaired novel object recognition and social interaction in both male and female offsprings in the same manner as morphine. Although prenatal exposure to methadone or buprenorphine increased anxiety-like behaviors in the light–dark transition in both male and female offsprings, the effects were less pronounced as compared to that of morphine. Methadone affected elevated plus-maze in both sex, but buprenorphine only affected the female offsprings. These findings suggest that buprenorphine and methadone maintenance therapy for pregnant women, like morphine, produced detrimental effects on cognitive function and social behaviors, whereas the offsprings of such women might have a lower risk of developing anxiety disorders. PMID:25834439

  19. Involvement of the K+-Cl- co-transporter KCC2 in the sensitization to morphine-induced hyperlocomotion under chronic treatment with zolpidem in the mesolimbic system.

    PubMed

    Shibasaki, Masahiro; Masukawa, Daiki; Ishii, Kazunori; Yamagishi, Yui; Mori, Tomohisa; Suzuki, Tsutomu

    2013-06-01

    Benzodiazepines are commonly used as sedatives, sleeping aids, and anti-anxiety drugs. However, chronic treatment with benzodiazepines is known to induce dependence, which is considered related to neuroplastic changes in the mesolimbic system. This study investigated the involvement of K(+) -Cl(-) co-transporter 2 (KCC2) in the sensitization to morphine-induced hyperlocomotion after chronic treatment with zolpidem [a selective agonist of γ-aminobutyric acid A-type receptor (GABAA R) α1 subunit]. In this study, chronic treatment with zolpidem enhanced morphine-induced hyperlocomotion, which is accompanied by the up-regulation of KCC2 in the limbic forebrain. We also found that chronic treatment with zolpidem induced the down-regulation of protein phosphatase-1 (PP-1) as well as the up-regulation of phosphorylated protein kinase C γ (pPKCγ). Furthermore, PP-1 directly associated with KCC2 and pPKCγ, whereas pPKCγ did not associate with KCC2. On the other hand, pre-treatment with furosemide (a KCC2 inhibitor) suppressed the enhancing effects of zolpidem on morphine-induced hyperlocomotion. These results suggest that the mesolimbic dopaminergic system could be amenable to neuroplastic change through a pPKCγ-PP-1-KCC2 pathway by chronic treatment with zolpidem. © 2013 International Society for Neurochemistry.

  20. Morphine induces albuminuria by compromising podocyte integrity.

    PubMed

    Lan, Xiqian; Rai, Partab; Chandel, Nirupama; Cheng, Kang; Lederman, Rivka; Saleem, Moin A; Mathieson, Peter W; Husain, Mohammad; Crosson, John T; Gupta, Kalpna; Malhotra, Ashwani; Singhal, Pravin C

    2013-01-01

    Morphine has been reported to accelerate the progression of chronic kidney disease. However, whether morphine affects slit diaphragm (SD), the major constituent of glomerular filtration barrier, is still unclear. In the present study, we examined the effect of morphine on glomerular filtration barrier in general and podocyte integrity in particular. Mice were administered either normal saline or morphine for 72 h, then urine samples were collected and kidneys were subsequently isolated for immunohistochemical studies and Western blot. For in vitro studies, human podocytes were treated with morphine and then probed for the molecular markers of slit diaphragm. Morphine-receiving mice displayed a significant increase in albuminuria and showed effacement of podocyte foot processes. In both in vivo and in vitro studies, the expression of synaptopodin, a molecular marker for podocyte integrity, and the slit diaphragm constituting molecules (SDCM), such as nephrin, podocin, and CD2-associated protein (CD2AP), were decreased in morphine-treated podocytes. In vitro studies indicated that morphine modulated podocyte expression of SDCM through opiate mu (MOR) and kappa (KOR) receptors. Since morphine also enhanced podocyte oxidative stress, the latter seems to contribute to decreased SDCM expression. In addition, AKT, p38, and JNK pathways were involved in morphine-induced down regulation of SDCM in human podocytes. These findings demonstrate that morphine has the potential to alter the glomerular filtration barrier by compromising the integrity of podocytes.

  1. Acute morphine and cocaine related death after trimethoprim-adultered cocaine abuse.

    PubMed

    Fucci, Nadia; Pascali, Vincenzo L

    2014-01-01

    Over the last few decades, cocaine and morphine (heroin) have been among the primary causes of deaths related to drug abuse. Cocaine is frequently altered by dilution, substitution, contamination, and adulteration. Trimethoprim has never been identified in the powders of cocaine, making this the first post-mortem case report in which the presence of this compound is described. The case reported here is that of a 46-year-old woman with a history of cocaine and morphine abuse who was found dead inside her bathroom. The police found the corpse next to a syringe, with a telephone card containing trace of cocaine on the sink. Toxicological analysis was performed, and drug levels were measured by means of gas chromatography/mass spectrometry. In addition to the presence of cocaine and smaller alkaloids, trimethoprim was also detected on the syringe and telephone card and in the woman's nasal mucosa. Trimethoprim analysis is very quick and easy and can be added to the routine analysis of drugs of abuse seized on the illicit market to obtain more information. © 2014 by the Association of Clinical Scientists, Inc.

  2. Effect of rat parental morphine exposure on passive avoidance memory and morphine conditioned place preference in male offspring.

    PubMed

    Akbarabadi, Ardeshir; Niknamfar, Saba; Vousooghi, Nasim; Sadat-Shirazi, Mitra-Sadat; Toolee, Heidar; Zarrindast, Mohammad-Reza

    2018-02-01

    Drug addiction is a chronic disorder resulted from complex interaction of genetic, environmental, and developmental factors. Epigenetic mechanisms play an important role in the development and maintenance of addiction and also memory formation in the brain. We have examined passive avoidance memory and morphine conditioned place preference (CPP) in the offspring of male and/or female rats with a history of adulthood morphine consumption. Adult male and female animals received chronic oral morphine for 21days and then were maintained drug free for 10days. After that, they were let to mate with either an abstinent or control rat. Male offspring's memory was evaluated by step through test. Besides, rewarding effects of morphine were checked with CCP paradigm. Offspring of abstinent animals showed significant memory impairment compared to the control group which was more prominent in the offspring of abstinent females. Conditioning results showed that administration of a high dose of morphine (10mg/kg) that could significantly induce CPP in control rats, was not able to induce similar results in the offspring of morphine abstinent parents; and CPP was much more prominent when it was induced in the offspring of morphine exposed females compared to the progeny of morphine exposed males. It is concluded that parental morphine consumption in adulthood even before mating has destructive effects on memory state of the male offspring and also leads to tolerance to the rewarding effects of morphine. These effects are greater when the morphine consumer parent is the female one. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Spinal glucocorticoid receptor‑regulated chronic morphine tolerance may be through extracellular signal‑regulated kinase 1/2.

    PubMed

    Zhai, Mei-Li; Chen, Yi; Liu, Chong; Wang, Jian-Bo; Yu, Yong-Hao

    2018-05-23

    Opioid use has been limited in the treatment of chronic pain due to their side effects, including analgesic tolerance. Previous studies demonstrated that glucocorticoid receptors (GRs) may be involved in the development of chronic morphine tolerance; however, the mechanism remains unknown. It was hypothesized that the expression of spinal phosphorylated mitogen‑activated protein kinase [MAPK; phosphorylated extracellular signal‑regulated kinase (ERK)] is regulated through the spinal GRs, following chronic treatment with morphine. In the first experiment, the experimental rats were randomly divided into four groups: Control, morphine, morphine+GR antagonist mifepristone (RU38486) and morphine+GR agonist dexamethasone (Dex). Each group was treated with continuous intrathecal (IT) injection of the drugs for 6 days. The expression of GRs and MAPK 3/1 (p‑ERK 1/2) in the spinal dorsal horn was detected by western blot analysis and immunofluorescence staining. In the second experiment, the MAPK inhibitor PD98059 was added and the rats were randomly divided into four groups: Control, morphine, PD98059+morphine and PD98059+morphine+Dex. The continuous IT injection lasted for 7 days in each group. For all experiments, the tail flick test was conducted 30 min following administration every day to assess the thermal hyperalgesia of the rats. The experimental results demonstrated that there was a co‑existence of GRs and p‑ERK 1/2 in the spinal cord dorsal horn by double immunofluorescence staining. The GR antagonist RU38486 attenuated the morphine analgesia tolerance by inhibiting the expression of GR and increasing the expression of p‑ERK. The MAPK inhibitor PD98059 increased the effect of morphine tolerance and prolonged the duration of morphine tolerance. The present results suggest that spinal GRs may serve an important role in the development of morphine tolerance through the ERK signaling pathway.

  4. Morphine-induced antinociception in the rat: supra-additive interactions with imidazoline I₂ receptor ligands.

    PubMed

    Li, Jun-Xu; Zhang, Yanan; Winter, Jerrold C

    2011-11-01

    Pain remains a significant clinical challenge and currently available analgesics are not adequate to meet clinical needs. Emerging evidence suggests the role of imidazoline I(2) receptors in pain modulation primarily from studies of the non-selective imidazoline receptor ligand, agmatine. However, little is known of the generality of the effect to selective I(2) receptor ligands. This study examined the antinociceptive effects of two selective I(2) receptor ligands 2-BFI and BU224 (>2000-fold selectivity for I(2) receptors over α(2) adrenoceptors) in a hypertonic (5%) saline-induced writhing test and analyzed their interaction with morphine using a dose-addition analysis. Morphine, 2-BFI and BU224 but not agmatine produced a dose-dependent antinociceptive effect. Both composite additive curve analyses and isobolographical plots revealed a supra-additive interaction between morphine and 2-BFI or BU224, whereas the interaction between 2-BFI and BU224 was additive. The antinociceptive effect of 2-BFI and BU224 was attenuated by the I(2) receptor antagonist/α(2) adrenoceptor antagonist idazoxan but not by the selective α(2) adrenoceptor antagonist yohimbine, suggesting an I(2) receptor-mediated mechanism. Agmatine enhanced the antinociceptive effect of morphine, 2-BFI and BU224 and the enhancement was prevented by yohimbine, suggesting that the effect was mediated by α(2) adrenoceptors. Taken together, these data represent the first report that selective I(2) receptor ligands have substantial antinociceptive activity and produce antinociceptive synergy with opioids in a rat model of acute pain. These data suggest that drugs acting on imidazoline I(2) receptors may be useful either alone or in combination with opioids for the treatment of pain. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Intranasal fentanyl versus intravenous morphine in the emergency department treatment of severe painful sickle cell crises in children: Study protocol for a randomised controlled trial

    PubMed Central

    2012-01-01

    Background Children with sickle cell disease (SCD) frequently and unpredictably present to the emergency department (ED) with pain. The painful event is the hallmark acute clinical manifestation of SCD, characterised by sudden onset and is usually bony in origin. This study aims to establish if 1.5mcg/kg of intranasal fentanyl (INF; administered via a Mucosal Atomiser Device, MAD™) is non-inferior to intravenous morphine 0.1 mg/kg in severe SCD-associated pain. Methods/design This study is a randomised,double-blind, double-dummy active control trial of children (weighing more than 10 kg) between 1 year and 21 years of age with severe painful sickle cell crisis. Severe pain is defined as rated seven or greater on a 0 to 10 age-appropriate numeric pain scale or equivalent. The trial will be conducted in a single tertiary urban paediatric ED in Dublin, Ireland. Each patient will receive a single active agent and a single placebo via the intravenous and intranasal routes. All clinical and research staff, patients and parents will be blinded to the treatment allocation. The primary endpoint is severity of pain scored at 10 min from administration of the study medications. Secondary endpoints include pain severity measured at 0, 5, 15, 20, 30, 60 and 120 min after the administration of analgesia, proportion of patients requiring rescue analgesia and incidence of adverse events. The trial ends at 120 min after the administration of the study drugs. A clinically meaningful difference in validated pain scores has been defined as 13 mm. Setting the permitted threshold to 50% of this limit (6 mm) and assuming both treatments are on average equal, a sample size of 30 patients (15 per group) will provide at least 80% power to demonstrate that INF is non-inferior to IV morphine with a level of significance of 0.05. Discussion This clinical trial will inform of the role of INF 1.5mcg/kg via MAD in the acute treatment of severe painful sickle cell crisis in

  6. Atg5- and Atg7-dependent autophagy in dopaminergic neurons regulates cellular and behavioral responses to morphine.

    PubMed

    Su, Ling-Yan; Luo, Rongcan; Liu, Qianjin; Su, Jing-Ran; Yang, Lu-Xiu; Ding, Yu-Qiang; Xu, Lin; Yao, Yong-Gang

    2017-09-02

    The molecular basis of chronic morphine exposure remains unknown. In this study, we hypothesized that macroautophagy/autophagy of dopaminergic neurons would mediate the alterations of neuronal dendritic morphology and behavioral responses induced by morphine. Chronic morphine exposure caused Atg5 (autophagy-related 5)- and Atg7 (autophagy-related 7)-dependent and dopaminergic neuron-specific autophagy resulting in decreased neuron dendritic spines and the onset of addictive behaviors. In cultured primary midbrain neurons, morphine treatment significantly reduced total dendritic length and complexity, and this effect could be reversed by knockdown of Atg5 or Atg7. Mice deficient for Atg5 or Atg7 specifically in the dopaminergic neurons were less sensitive to developing a morphine reward response, behavioral sensitization, analgesic tolerance and physical dependence compared to wild-type mice. Taken together, our findings suggested that the Atg5- and Atg7-dependent autophagy of dopaminergic neurons contributed to cellular and behavioral responses to morphine and may have implications for the future treatment of drug addiction.

  7. Opioid tolerance in periaqueductal gray neurons isolated from mice chronically treated with morphine

    PubMed Central

    Bagley, Elena E; Chieng, Billy C H; Christie, MacDonald J; Connor, Mark

    2005-01-01

    The midbrain periaqueductal gray (PAG) is a major site of opioid analgesic action, and a significant site of cellular adaptations to chronic morphine treatment (CMT). We examined μ-opioid receptor (MOP) regulation of voltage-gated calcium channel currents (ICa) and G-protein-activated K channel currents (GIRK) in PAG neurons from CMT mice. Mice were injected s.c. with 300 mg kg−1 of morphine base in a slow release emulsion three times over 5 days, or with emulsion alone (vehicles). This protocol produced significant tolerance to the antinociceptive effects of morphine in a test of thermal nociception. Voltage clamp recordings were made of ICa in acutely isolated PAG neurons and GIRK in PAG slices. The MOP agonist DAMGO (Tyr-D-Ala-Gly-N-Me-Phe-Gly-ol enkephalin) inhibited ICa in neurons from CMT mice (230 nM) with a similar potency to vehicle (150 nM), but with a reduced maximal effectiveness (37% inhibition in vehicle neurons, 27% in CMT neurons). Inhibition of ICa by the GABAB agonist baclofen was not altered by CMT. Met-enkephalin-activated GIRK currents recorded in PAG slices were significantly smaller in neurons from CMT mice than vehicles, while GIRK currents activated by baclofen were unaltered. These data demonstrate that CMT-induced antinociceptive tolerance is accompanied by homologous reduction in the effectiveness of MOP agonists to inhibit ICa and activate GIRK. Thus, a reduction in MOP number and/or functional coupling to G proteins accompanies the characteristic cellular adaptations to CMT previously described in PAG neurons. PMID:15980868

  8. Opioid tolerance in periaqueductal gray neurons isolated from mice chronically treated with morphine.

    PubMed

    Bagley, Elena E; Chieng, Billy C H; Christie, MacDonald J; Connor, Mark

    2005-09-01

    The midbrain periaqueductal gray (PAG) is a major site of opioid analgesic action, and a significant site of cellular adaptations to chronic morphine treatment (CMT). We examined mu-opioid receptor (MOP) regulation of voltage-gated calcium channel currents (I(Ca)) and G-protein-activated K channel currents (GIRK) in PAG neurons from CMT mice. Mice were injected s.c. with 300 mg kg(-1) of morphine base in a slow release emulsion three times over 5 days, or with emulsion alone (vehicles). This protocol produced significant tolerance to the antinociceptive effects of morphine in a test of thermal nociception. Voltage clamp recordings were made of I(Ca) in acutely isolated PAG neurons and GIRK in PAG slices. The MOP agonist DAMGO (Tyr-D-Ala-Gly-N-Me-Phe-Gly-ol enkephalin) inhibited I(Ca) in neurons from CMT mice (230 nM) with a similar potency to vehicle (150 nM), but with a reduced maximal effectiveness (37% inhibition in vehicle neurons, 27% in CMT neurons). Inhibition of I(Ca) by the GABA(B) agonist baclofen was not altered by CMT. Met-enkephalin-activated GIRK currents recorded in PAG slices were significantly smaller in neurons from CMT mice than vehicles, while GIRK currents activated by baclofen were unaltered. These data demonstrate that CMT-induced antinociceptive tolerance is accompanied by homologous reduction in the effectiveness of MOP agonists to inhibit I(Ca) and activate GIRK. Thus, a reduction in MOP number and/or functional coupling to G proteins accompanies the characteristic cellular adaptations to CMT previously described in PAG neurons.

  9. Lubiprostone reverses the inhibitory action of morphine on intestinal secretion in guinea pig and mouse.

    PubMed

    Fei, Guijun; Raehal, Kirsten; Liu, Sumei; Qu, Mei-Hua; Sun, Xiaohong; Wang, Guo-Du; Wang, Xi-Yu; Xia, Yun; Schmid, Cullen L; Bohn, Laura M; Wood, Jackie D

    2010-07-01

    Lubiprostone activates ClC-2 chloride channels in epithelia. It is approved for treatment of chronic idiopathic constipation in adults and constipation-predominate irritable bowel syndrome in women. We tested a hypothesis that lubiprostone can reverse the constipating action of morphine and investigated the mechanism of action. Short-circuit current (Isc) was recorded in Ussing chambers as a marker for chloride secretion during pharmacological interactions between morphine and lubiprostone. Measurements of fecal wet weight were used to obtain information on morphine-lubiprostone interactions in conscious mice. Morphine decreased basal Isc, with an IC(50) of 96.1 nM. The action of dimethylphenylpiperazinium (DMPP), a nicotinic receptor agonist that stimulates neurogenic Isc, was suppressed by morphine. Lubiprostone applied after pretreatment with morphine reversed morphine suppression of both basal Isc and DMPP-evoked chloride secretion. Electrical field stimulation (EFS) of submucosal neurons evoked biphasic increases in Isc. Morphine abolished the first phase and marginally suppressed the second phase. Lubiprostone reversed, in concentration-dependent manner, the action of morphine on the first and second phases of the EFS-evoked responses. Subcutaneous lubiprostone increased fecal wet weight and numbers of pellets expelled. Morphine significantly reduced fecal wet weight and number of pellets. Injection of lubiprostone, 30-min after morphine, reversed morphine-induced suppression of fecal wet weight. We conclude that inhibitory action of morphine on chloride secretion reflects suppression of excitability of cholinergic secretomotor neurons in the enteric nervous system. Lubiprostone, which does not directly affect enteric neurons, bypasses the neurogenic constipating effects of morphine by directly opening chloride channels in the mucosal epithelium.

  10. Lubiprostone Reverses the Inhibitory Action of Morphine on Intestinal Secretion in Guinea Pig and Mouse

    PubMed Central

    Fei, Guijun; Raehal, Kirsten; Liu, Sumei; Qu, Mei-Hua; Sun, Xiaohong; Wang, Guo-Du; Wang, Xi-Yu; Xia, Yun; Schmid, Cullen L.; Bohn, Laura M.

    2010-01-01

    Lubiprostone activates ClC-2 chloride channels in epithelia. It is approved for treatment of chronic idiopathic constipation in adults and constipation-predominate irritable bowel syndrome in women. We tested a hypothesis that lubiprostone can reverse the constipating action of morphine and investigated the mechanism of action. Short-circuit current (Isc) was recorded in Ussing chambers as a marker for chloride secretion during pharmacological interactions between morphine and lubiprostone. Measurements of fecal wet weight were used to obtain information on morphine-lubiprostone interactions in conscious mice. Morphine decreased basal Isc, with an IC50 of 96.1 nM. The action of dimethylphenylpiperazinium (DMPP), a nicotinic receptor agonist that stimulates neurogenic Isc, was suppressed by morphine. Lubiprostone applied after pretreatment with morphine reversed morphine suppression of both basal Isc and DMPP-evoked chloride secretion. Electrical field stimulation (EFS) of submucosal neurons evoked biphasic increases in Isc. Morphine abolished the first phase and marginally suppressed the second phase. Lubiprostone reversed, in concentration-dependent manner, the action of morphine on the first and second phases of the EFS-evoked responses. Subcutaneous lubiprostone increased fecal wet weight and numbers of pellets expelled. Morphine significantly reduced fecal wet weight and number of pellets. Injection of lubiprostone, 30-min after morphine, reversed morphine-induced suppression of fecal wet weight. We conclude that inhibitory action of morphine on chloride secretion reflects suppression of excitability of cholinergic secretomotor neurons in the enteric nervous system. Lubiprostone, which does not directly affect enteric neurons, bypasses the neurogenic constipating effects of morphine by directly opening chloride channels in the mucosal epithelium. PMID:20406855

  11. Lubiprostone Reverses the Inhibitory Action of Morphine on Mucosal Secretion in Human Small Intestine

    PubMed Central

    Sun, Xiaohong; Wang, Xiyu; Wang, Guo-Du; Xia, Yun; Liu, Sumei; Qu, Meihua; Needleman, Bradley J.; Mikami, Dean J.; Melvin, W. Scott; Bohn, Laura M.; Ueno, Ryuji; Wood, Jackie D.

    2016-01-01

    Background and Aims Treatments with morphine or opioid agonists cause constipation. Lubiprostone is approved for treatment of adult idiopathic constipation and constipation-predominant IBS in adult women. We tested whether lubiprostone can reverse morphine-suppression of mucosal secretion in human intestine and explored the mechanism of action. Methods Fresh segments of jejunum discarded during Roux-En-Y gastric bypass surgeries were used. Changes in short-circuit current (ΔIsc) were recorded in Ussing flux chambers as a marker for electrogenic chloride secretion during pharmacological interactions between morphine, prostaglandin receptor antagonists, chloride channel blockers and lubiprostone. Results Morphine suppressed basal Isc. Lubiprostone reversed morphine suppression of basal Isc. Lubiprostone, applied to the mucosa in concentrations ranging from 3 nM to 30 μM, evoked increases in Isc in concentration-dependent manner when applied to the mucosal side of muscle-stripped preparations. Blockade of enteric nerves did not change stimulation of Isc by lubiprostone. Removal of chloride or application of bumetanide or NPPB suppressed or abolished responses to lubiprostone. Antagonists acting at CFTR channels and prostaglandin EP4 receptors, but not at E1, EP1-3 receptors, partially suppressed stimulation of Isc by lubiprostone. Conclusions Antisecretory action of morphine results from suppression of excitability of secretomotor neurons in the enteric nervous system. Lubiprostone, which does not affect enteric neurons directly, bypasses the action of morphine by directly opening mucosal chloride channels. PMID:21181441

  12. Lesion of olfactory epithelium attenuates expression of morphine-induced behavioral sensitization and reinstatement of drug-primed conditioned place preference in mice.

    PubMed

    Niu, Haichen; Zheng, Yingwei; Huma, Tanzeel; Rizak, Joshua D; Li, Ling; Wang, Guimei; Ren, He; Xu, Liqi; Yang, Jianzhen; Ma, Yuanye; Lei, Hao

    2013-01-01

    Previous studies have shown that olfactory impairment by disrupting the olfactory epithelium prior to morphine administration attenuated the development addiction-related behaviors. However, it is unclear whether olfactory impairment will affect the expression of already established addiction-related behaviors. To address this issue, mice were conditioned with morphine to induce behavioral sensitization and condition placed preference (CPP). After an abstinence period, the animals were subjected to either an intranasal ZnSO(4) effusion (ZnE) or sham treatment with saline. Behavioral sensitization and CPP reinstatement were evaluated 24h later, as well as the expression of c-Fos protein, a marker of activated neural sites, in brain regions of interest. It was found that ZnE treatment attenuated morphine-induced behavioral sensitization and reinstatement of CPP. Compared to the saline-treated ones, the ZnE-treated animals showed reduced c-Fos expression in the nucleus accumbens (NAc) associated with behavioral sensitization, and in the NAc, cingulate cortex, dentate gyrus, amygdala, lateral hypothalamus and ventral tegmental area associated with CPP reinstatement. Together, these results demonstrated that acute olfactory impairment could attenuate already established addiction-related behaviors and expression of c-Fos in drug addiction related brain regions, perhaps by affecting the coordination between reward and motivational systems in the brain. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Acupuncture suppresses reinstatement of morphine-seeking behavior induced by a complex cue in rats.

    PubMed

    Lee, Bong Hyo; Lim, Sung Chul; Jeon, Hyeon Jeong; Kim, Jae Su; Lee, Yun Kyu; Lee, Hyun Jong; In, Sunghyun; Kim, Hee Young; Yoon, Seong Shoon; Yang, Chae Ha

    2013-08-26

    Morphine causes physical and psychological dependence for individuals after repeated-use. Above all, our previous study showed that acupuncture attenuated reinstatement of morphine-seeking behavior induced by pharmacological cue. In this study, we investigated whether acupuncture could suppress the reinstatement of morphine-seeking behavior induced by the combination of environmental and pharmacological cues and the possible neuronal involvement. Male Sprague-Dawley rats were trained to self-administer morphine (1.0 mg/kg) for 3 weeks. Following the withdrawal phase (7 days), the effects of acupuncture on reinstatement of morphine-seeking behavior were investigated. For the investigation of neuronal involvement, the GABAA receptor antagonist bicuculline and the GABAB receptor antagonist SCH 50911 were pre-treated. Morphine-seeking behavior induced by combination of re-exposure to the operant chamber and morphine injection was suppressed perfectly by acupuncture at SI5, but not at the control acupoint LI5 and this effect was blocked by pre-treatment with the GABA receptor antagonists. This study suggests that acupuncture at SI5 can be considered as a predominant therapy for the reinstatement of morphine-seeking behavior in humans. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Comparison of Electroacupuncture and Morphine-Mediated Analgesic Patterns in a Plantar Incision-Induced Pain Model

    PubMed Central

    Tsai, Shih-Ying; Chen, Kuen-Bao; Hsu, Sheng-Feng; Chen, Julia Yi-Ru

    2014-01-01

    Electroacupuncture (EA) is a complementary therapy to improve morphine analgesia for postoperative pain, but underlying mechanism is not well-known. Herein, we investigated EA-induced analgesic effect in a plantar incision (PI) model in male Sprague-Dawley rats. PI was performed at the left hind paw. EA of 4 Hz and high intensity or sham needling was conducted at right ST36 prior to PI and repeated for another 2 days. Behavioral responses to mechanical and thermal stimuli, spinal phospho-ERK, and Fos expression were all analyzed. In additional groups, naloxone and morphine were administered to elucidate involvement of opioid receptors and for comparison with EA. EA pretreatment significantly reduced post-PI tactile allodynia for over 1 day; repeated treatments maintained analgesic effect. Intraperitoneal naloxone could reverse EA analgesia. Low-dose subcutaneous morphine (1 mg/kg) had stronger inhibitory effect on PI-induced allodynia than EA for 1 h. However, analgesic tolerance appeared after repeated morphine injections. Both EA and morphine could equally inhibit PI-induced p-ERK and Fos inductions. We conclude that though EA and morphine attenuate postincision pain through opioid receptor activations, daily EA treatments result in analgesic accumulation whereas daily morphine injections develop analgesic tolerance. Discrepant pathways and mechanisms underlying two analgesic means may account for the results. PMID:25530786

  15. The Selective D3 Receptor Antagonist SB277011A Attenuates Morphine-Triggered Reactivation of Expression of Cocaine-Induced Conditioned Place Preference

    PubMed Central

    Rice, Onarae V.; Heidbreder, Christian A.; Gardner, Eliot L.; Schonhar, Charles D.; Ashby, Charles R.

    2014-01-01

    We examined the effect of acute administration of the selective D3 receptor antagonist SB277011A on morphine-triggered reactivation of cocaine-induced conditioned place preference (CPP) in adult male Sprague-Dawley rats. Repeated pairing of animals with 15 mg/kg i.p. of cocaine HCl or vehicle to cue-specific CPP chambers produced a significant CPP response compared to animals paired only with vehicle in both chambers. Expression of the CPP response to cocaine was then extinguished by repeatedly giving the animals vehicle injections in the cocaine-paired chambers. The magnitude of the CPP response after extinction was not significantly different from that of animals paired only with vehicle. Expression of the extinguished CPP response was reactivated by acute administration of 5 mg/kg i.p. of morphine but not by vehicle. Acute administration of 6 or 12 mg/kg i.p. (but not 3 mg/kg) of SB277011A significantly attenuated morphine-triggered reactivation of the cocaine-induced CPP. SB277011A itself (12 mg/kg i.p.) did not reactivate the extinguished CPP response. Overall, SB277011 decreases the incentive motivational actions of morphine. The present findings suggest that central D3 dopamine receptors are involved in relapse to cocaine-seeking behavior that a final common neural mechanism exists to mediate the incentive motivational effects of psychostimulants and opiates, and that selective dopamine D3 receptor antagonists constitute promising compounds for treating addiction. PMID:23404528

  16. Comparison between the analgesic effects of morphine and tramadol delivered epidurally in cats receiving a standardized noxious stimulation.

    PubMed

    Castro, Douglas S; Silva, Marta F A; Shih, Andre C; Motta, Pedro P A; Pires, Marcos V M; Scherer, Paulo O

    2009-12-01

    This study compared the analgesic effects of epidural tramadol versus morphine in six healthy cats. Under general anesthesia, each cat received an epidural injection of saline 0.22 ml/kg (control treatment, CT), tramadol 1mg/kg (tramadol treatment, TT), or morphine 0.1mg/kg (morphine treatment, MT). After cats had recovered from anesthesia a simple descriptive scale (SDS), visual analog scale (VAS) and physiological parameters (respiratory and heart rate) were used to assess analgesia level to a noxious stimulus (base of the tail skin fold clamping) at 1, 2, 3, 4, 6, 8, 10, and 12h post-epidural. Group TT had a higher SDS and VAS score when compared to MT at 8, 10 and 12h post-epidural. CT had higher SDS and VAS score at all time points when compared to TT and MT. In conclusion both morphine and tramadol provided analgesia in this model for the first 6h; with epidural morphine resulting in longer lasting analgesia when compared to tramadol.

  17. Effects of maropitant, acepromazine, and electroacupuncture on vomiting associated with administration of morphine in dogs.

    PubMed

    Koh, Ronald B; Isaza, Natalie; Xie, Huisheng; Cooke, Kirsten; Robertson, Sheilah A

    2014-04-01

    To evaluate effects of maropitant, acepromazine, and electroacupuncture on morphine-related signs of nausea and vomiting in dogs and assess sedative effects of the treatments. Randomized controlled clinical trial. 222 dogs. Dogs received 1 of 6 treatments: injection of saline (0.9% NaCl) solution, maropitant citrate, or acepromazine maleate or electroacupuncture treatment at 1 acupoint, 5 acupoints, or a sham acupoint. Morphine was administered after 20 minutes of electroacupuncture treatment or 20 minutes after injectable treatment. Vomiting and retching events and signs of nausea and sedation were recorded. Incidence of vomiting and retching was significantly lower in the maropitant (14/37 [37.8%]) group than in the saline solution (28/37 [75.7%]) and sham-acupoint electroacupuncture (32/37 [86.5%]) groups. The number of vomiting and retching events in the maropitant (21), acepromazine (38), 1-acupoint (35), and 5-acupoint (34) groups was significantly lower than in the saline solution (88) and sham-acupoint electroacupuncture (109) groups. Incidence of signs of nausea was significantly lower in the acepromazine group (3/37 [8.1%]) than in the sham-acupoint group (15/37 [40.5%]). Mean nausea scores for the saline solution, maropitant, and sham-acupoint electroacupuncture groups increased significantly after morphine administration, whereas those for the acepromazine, 1-acupoint electroacupuncture, and 5-acupoint electroacupuncture groups did not. Mean sedation scores after morphine administration were significantly higher in dogs that received acepromazine than in dogs that received saline solution, maropitant, and sham-acupoint electroacupuncture treatment. Maropitant treatment was associated with a lower incidence of vomiting and retching, compared with control treatments, and acepromazine and electroacupuncture appeared to prevent an increase in severity of nausea following morphine administration in dogs.

  18. Brain Reward Circuits in Morphine Addiction

    PubMed Central

    Kim, Juhwan; Ham, Suji; Hong, Heeok; Moon, Changjong; Im, Heh-In

    2016-01-01

    Morphine is the most potent analgesic for chronic pain, but its clinical use has been limited by the opiate’s innate tendency to produce tolerance, severe withdrawal symptoms and rewarding properties with a high risk of relapse. To understand the addictive properties of morphine, past studies have focused on relevant molecular and cellular changes in the brain, highlighting the functional roles of reward-related brain regions. Given the accumulated findings, a recent, emerging trend in morphine research is that of examining the dynamics of neuronal interactions in brain reward circuits under the influence of morphine action. In this review, we highlight recent findings on the roles of several reward circuits involved in morphine addiction based on pharmacological, molecular and physiological evidences. PMID:27506251

  19. Chorionic morphine, naltrexone and pentoxifylline effect on hypophyso-gonadal hormones of male rats.

    PubMed

    Moradi, M; Mahmoodi, M; Raoofi, A; Ghanbari, A

    2015-01-01

    Knowledge about harmful effects of morphine on hormone secretion seems to be necessary. The aim of the present study was to evaluate the effect of pentoxifylline on side effects derived by morphine on hypophyso-gonadal hormones of male rats. 32 male rats were divided into the 4 groups of OSS: control (received 40 g Sucrose/l drinking water and intraperitoneal injection of 1 l/kg normal saline), OMS: morphine group (received 0.4 mg/l + 40 g Sucrose/l in drinking water and intraperitoneal injection of 1 l/kg normal saline), NMS: morphine+naltrexane group (received 0.4 mg/l + 40 g Sucrose/l in drinking water and IP injection dose of 10 mg/kg/ml/day Naltrexane) and PMS: morphine + pentoxifylline group (received 0.4 mg/dl + 40 g Sucrose/l in drinking water and IP injection dose of 12 mg/kg/ml/day Pentoxifylline) for 56 days, respectively. Serum levels of testosterone, LH, FSH hormones were measured. Pentoxifylline increased serum levels of testosterone, LH, FSH hormones compared to control, morphine and morphine-naltrexane groups. Pentoxifylline has a significant efficacy for increasing serum levels of sexual hormones. Considering that Pentoxifylline is safe and cheap, with easy application, we suggest for the usage of this drug for improving semen parameter's quality before performing ART for the treatment of morphine addicts (Fig. 1, Ref. 31).

  20. Modeling the Effects of Morphine on Simian Immunodeficiency Virus Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaidya, Naveen K.; Ribeiro, Ruy M.; Perelson, Alan S.

    Complications of HIV-1 infection in individuals who utilize drugs of abuse is a significant problem, because these drugs have been associated with higher virus replication and accelerated disease progression as well as severe neuropathogenesis. To gain further insight it is important to quantify the effects of drugs of abuse on HIV-1 infection dynamics. Here, we develop a mathematical model that incorporates experimentally observed effects of morphine on inducing HIV-1 co-receptor expression. For comparison we also considered viral dynamic models with cytolytic or noncytolytic effector cell responses. Based on the small sample size Akaike information criterion, these models were inferior tomore » the new model based on changes in co-receptor expression. The model with morphine affecting co-receptor expression agrees well with the experimental data from simian immunodeficiency virus infections in morphine-addicted macaques. Our results show that morphine promotes a target cell subpopulation switch from a lower level of susceptibility to a state that is about 2-orders of magnitude higher in susceptibility to SIV infection. As a result, the proportion of target cells with higher susceptibility remains extremely high in morphine conditioning. Such a morphine-induced population switch not only has adverse effects on the replication rate, but also results in a higher steady state viral load and larger CD4 count drops. Moreover, morphine conditioning may pose extra obstacles to controlling viral load during antiretroviral therapy, such as pre-exposure prophylaxis and post infection treatments. In conclusion, this study provides, for the first time, a viral dynamics model, viral dynamics parameters, and related analytical and simulation results for SIV dynamics under drugs of abuse.« less

  1. Modeling the Effects of Morphine on Simian Immunodeficiency Virus Dynamics

    DOE PAGES

    Vaidya, Naveen K.; Ribeiro, Ruy M.; Perelson, Alan S.; ...

    2016-09-26

    Complications of HIV-1 infection in individuals who utilize drugs of abuse is a significant problem, because these drugs have been associated with higher virus replication and accelerated disease progression as well as severe neuropathogenesis. To gain further insight it is important to quantify the effects of drugs of abuse on HIV-1 infection dynamics. Here, we develop a mathematical model that incorporates experimentally observed effects of morphine on inducing HIV-1 co-receptor expression. For comparison we also considered viral dynamic models with cytolytic or noncytolytic effector cell responses. Based on the small sample size Akaike information criterion, these models were inferior tomore » the new model based on changes in co-receptor expression. The model with morphine affecting co-receptor expression agrees well with the experimental data from simian immunodeficiency virus infections in morphine-addicted macaques. Our results show that morphine promotes a target cell subpopulation switch from a lower level of susceptibility to a state that is about 2-orders of magnitude higher in susceptibility to SIV infection. As a result, the proportion of target cells with higher susceptibility remains extremely high in morphine conditioning. Such a morphine-induced population switch not only has adverse effects on the replication rate, but also results in a higher steady state viral load and larger CD4 count drops. Moreover, morphine conditioning may pose extra obstacles to controlling viral load during antiretroviral therapy, such as pre-exposure prophylaxis and post infection treatments. In conclusion, this study provides, for the first time, a viral dynamics model, viral dynamics parameters, and related analytical and simulation results for SIV dynamics under drugs of abuse.« less

  2. A role for heterodimerization of mu and delta opiate receptors in enhancing morphine analgesia.

    PubMed

    Gomes, Ivone; Gupta, Achla; Filipovska, Julija; Szeto, Hazel H; Pintar, John E; Devi, Lakshmi A

    2004-04-06

    Opiates such as morphine are the choice analgesic in the treatment of chronic pain. However their long-term use is limited because of the development of tolerance and dependence. Due to its importance in therapy, different strategies have been considered for making opiates such as morphine more effective, while curbing its liability to be abused. One such strategy has been to use a combination of drugs to improve the effectiveness of morphine. In particular, delta opioid receptor ligands have been useful in enhancing morphine's potency. The underlying molecular basis for these observations is not understood. We propose the modulation of receptor function by physical association between mu and delta opioid receptors as a potential mechanism. In support of this hypothesis, we show that mu-delta interacting complexes exist in live cells and native membranes and that the occupancy of delta receptors (by antagonists) is sufficient to enhance mu opioid receptor binding and signaling activity. Furthermore, delta receptor antagonists enhance morphine-mediated intrathecal analgesia. Thus, heterodimeric associations between mu-delta opioid receptors can be used as a model for the development of novel combination therapies for the treatment of chronic pain and other pathologies.

  3. Critical role of toll-like receptor 9 in morphine and Mycobacterium tuberculosis-Induced apoptosis in mice.

    PubMed

    Chen, Lin; Shi, Wanliang; Li, Hui; Sun, Xiuli; Fan, Xionglin; Lesage, Gene; Li, Hui; Li, Yi; Zhang, Yi; Zhang, Xiumei; Zhang, Ying; Yin, Deling

    2010-02-19

    Although it is established that opioid and Mycobacterium tuberculosis are both public health problems, the mechanisms by which they affect lung functions remain elusive. We report here that mice subjected to chronic morphine administration and M. tuberculosis infection exhibited significant apoptosis in the lung in wild type mice as demonstrated by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling assay. Morphine and M. tuberculosis significantly induced the expression of Toll-like receptor 9 (TLR9), a key mediator of innate immunity and inflammation. Interestingly, deficiency in TLR9 significantly inhibited the morphine and M. tuberculosis induced apoptosis in the lung. In addition, chronic morphine treatment and M. tuberculosis infection enhanced the levels of cytokines (TNF-alpha, IL-1beta, and IL-6) in wild type mice, but not in TLR9 knockout (KO) mice. The bacterial load was much lower in TLR9 KO mice compared with that in wild type mice following morphine and M. tuberculosis treatment. Morphine alone did not alter the bacterial load in either wild type or TLR9 KO mice. Moreover, administration of morphine and M. tuberculosis decreased the levels of phosphorylation of Akt and GSK3beta in the wild type mice, but not in TLR9 KO mice, suggesting an involvement of Akt/GSK3beta in morphine and M. tuberculosis-mediated TLR9 signaling. Furthermore, administration of morphine and M. tuberculosis caused a dramatic decrease in Bcl-2 level but increase in Bax level in wild type mice, but not in TLR9 KO mice, indicating a role of Bcl-2 family in TLR9-mediated apoptosis in the lung following morphine and M. tuberculosis administration. These data reveal a role for TLR9 in the immune response to opioids during M. tuberculosis infection.

  4. The gamma-aminobutyric acid type B (GABAB) receptor agonist baclofen inhibits morphine sensitization by decreasing the dopamine level in rat nucleus accumbens

    PubMed Central

    2012-01-01

    Background Repeated morphine exposure can induce behavioral sensitization. There are evidences have shown that central gamma-aminobutyric acid (GABA) system is involved in morphine dependence. However, the effect of a GABAB receptor agonist baclofen on morphine-induced behavioral sensitization in rats is unclear. Methods We used morphine-induced behavioral sensitization model in rat to investigate the effects of baclofen on behavioral sensitization. Moreover, dopamine release in the shell of the nucleus accumbens was evaluated using microdialysis assay in vivo. Results The present study demonstrated that morphine challenge (3 mg/kg, s.c.) obviously enhanced the locomotor activity following 4-day consecutive morphine administration and 3-day withdrawal period, which indicated the expression of morphine sensitization. In addition, chronic treatment with baclofen (2.5, 5 mg/kg) significantly inhibited the development of morphine sensitization. It was also found that morphine challenge 3 days after repeated morphine administration produced a significant increase of extracellular dopamine release in nucleus accumbens. Furthermore, chronic treatment with baclofen decreased the dopamine release induced by morphine challenge. Conclusions Our results indicated that gamma-aminobutyric acid system plays an important role in the morphine sensitization in rat and suggested that behavioral sensitization is a promising model to study the mechanism underlying drug abuse. PMID:22559224

  5. The γ-aminobutyric acid type B (GABAB) receptor agonist baclofen inhibits morphine sensitization by decreasing the dopamine level in rat nucleus accumbens.

    PubMed

    Fu, Zhenyu; Yang, Hongfa; Xiao, Yuqiang; Zhao, Gang; Huang, Haiyan

    2012-07-10

    Repeated morphine exposure can induce behavioral sensitization. There are evidences have shown that central gamma-aminobutyric acid (GABA) system is involved in morphine dependence. However, the effect of a GABAB receptor agonist baclofen on morphine-induced behavioral sensitization in rats is unclear. We used morphine-induced behavioral sensitization model in rat to investigate the effects of baclofen on behavioral sensitization. Moreover, dopamine release in the shell of the nucleus accumbens was evaluated using microdialysis assay in vivo. The present study demonstrated that morphine challenge (3 mg/kg, s.c.) obviously enhanced the locomotor activity following 4-day consecutive morphine administration and 3-day withdrawal period, which indicated the expression of morphine sensitization. In addition, chronic treatment with baclofen (2.5, 5 mg/kg) significantly inhibited the development of morphine sensitization. It was also found that morphine challenge 3 days after repeated morphine administration produced a significant increase of extracellular dopamine release in nucleus accumbens. Furthermore, chronic treatment with baclofen decreased the dopamine release induced by morphine challenge. Our results indicated that gamma-aminobutyric acid system plays an important role in the morphine sensitization in rat and suggested that behavioral sensitization is a promising model to study the mechanism underlying drug abuse.

  6. Effects of environmental enrichment during abstinence in morphine dependent parents on anxiety, depressive-like behaviors and voluntary morphine consumption in rat offspring.

    PubMed

    Pooriamehr, Alireza; Sabahi, Parviz; Miladi-Gorji, Hossein

    2017-08-24

    Chronic morphine exposure during puberty increased morphine-induced rewarding effects and sensitization in the next generation. Given the well-known beneficial effects of environmental enrichment on the severity of physical and psychological dependence on morphine, we examined effects of enriched environment during morphine abstinence in morphine dependent parental rats before mating on the anxiety and depressive-like behaviors, and voluntary morphine consumption in their offspring. Paternal and/or maternal rats were injected with bi-daily doses (10mg/kg, 12h intervals) of morphine for 14days followed by rearing in a standard environment (SE) or enriched environment (EE) during 30days of morphine abstinence before mating. The pubertal male and female rat offspring were tested for anxiety (the elevated plus maze- EPM) and depression (sucrose preference test-SPT), and voluntary morphine consumption using a two-bottle choice (TBC) paradigm. The results showed that EE experience in morphine-dependent both parents result in an increase in the percentage of time spent into open arms/time spent on both arms using EPM in male offspring, higher levels of sucrose preference in female offspring and lower levels of voluntary morphine consumption in male and female offspring. Thus, EE experience in morphine-dependent both parents reduced anxiety, depressive-like behavior and also the voluntary morphine consumption in their offspring during puberty which may prevent the vulnerability of the next generation to drug abuse. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Effect of Thymoquinone on Reproductive Parameter in Morphine-treated Male Mice

    PubMed Central

    Salahshoor, Mohammad Reza; Haghjoo, Mojdeh; Roshankhah, Shiva; Makalani, Fatemeh; Jalili, Cyrus

    2018-01-01

    Background: Thymoquinone as the main active component of Nigella sativa might have a various pharmacological effects such as antiapoptotic and antioxidant. Morphine is commonly used for the treatment of severe pain that can increase the generation of free radicals and affects the spermatogenesis. This study was designed to evaluate protective effects of thymoquinone against morphine-induced damages, sperm viability, count, motility, morphology and testis histology, and nitric oxide and testosterone hormone of the mice. Materials and Methods: In this experimental study, we divided 48 mice into eight groups (n = 6); various doses of thymoquinone (2, 10, and 20 mg/kg) and morphine (20 mg/kg) plus thymoquinone (2, 10, and 20 mg/kg) were administered intraperitoneally to 48 male mice for 30 consequent days. Male reproductive parameters including testis weight, testosterone hormone, serum nitric oxide, germinal thickness, sperm morphology, count, viability, and motility were analyzed and compared. Results: The results indicated that morphine administration significantly decreased germinal thickness, testis weight, testosterone level, viability, morphology, count, and motility of sperm and increased nitric oxide as compared to saline group (P < 0.05). However, increasing the dose of thymoquinone in the thymoquinone and thymoquinone plus morphine groups significantly decreases nitric oxide level (P < 0.05) while significantly boosted motility, morphology, count, viability of sperm cells, germinal thickness, and testosterone hormone in all groups as compared to morphine group (P < 0.05). Conclusion: It seems that thymoquinone administration could increase the quality some of spermatozoa and improves morphine-induced adverse effects on reproductive parameters in male mice PMID:29456989

  8. [Morphine-antiemetics mixtures for continuous subcutaneous infusion in terminal cancer].

    PubMed

    Ottesen, S; Monrad, L

    1992-05-30

    Simultaneous pain, nausea and vomiting are not uncommon in terminal suffering requiring treatment with various compounds of analgesics and antiemetics. At Baerum Hospital the pump reservoirs for continuous, subcutaneous drug delivery are routinely filled by the hospital pharmacist. We examined the physico-chemical stability of various concentrations of mixtures of morphine-metoclopramide and morphine-metoclopramide-haloperidol at 25 degrees C. We found good stability for at least seven days. Addition of haloperidol seems to reduce stability. Plain morphine-haloperidol solutions are unstable. Split products were not found in any of the mixtures. We also examined the osmolality of current clinical compounds, focusing on local irritant effect at the infusion site. All solutions except for one with a high concentration of haloperidol were found to be close to isoosmolarl.

  9. Stress and opioids: role of opioids in modulating stress-related behavior and effect of stress on morphine conditioned place preference.

    PubMed

    Bali, Anjana; Randhawa, Puneet Kaur; Jaggi, Amteshwar Singh

    2015-04-01

    Research studies have defined the important role of endogenous opioids in modulating stress-associated behavior. The release of β-endorphins in the amygdala in response to stress helps to cope with a stressor by inhibiting the over-activation of HPA axis. Administration of mu opioid agonists reduces the risk of developing post-traumatic stress disorder (PTSD) following a traumatic event by inhibiting fear-related memory consolidation. Similarly, the release of endogenous enkephalin and nociceptin in the basolateral amygdala and the nucleus accumbens tends to produce the anti-stress effects. An increase in dynorphin levels during prolonged exposure to stress may produce learned helplessness, dysphoria and depression. Stress also influences morphine-induced conditioned place preference (CPP) depending upon the intensity and duration of the stressor. Acute stress inhibits morphine CPP, while chronic stress potentiates CPP. The development of dysphoria due to increased dynorphin levels may contribute to chronic stress-induced potentiation of morphine CPP. The activation of ERK/cyclic AMP responsive element-binding (CREB) signaling in the mesocorticolimbic area, glucocorticoid receptors in the basolateral amygdala, and norepinephrine and galanin system in the nucleus accumbens may decrease the acute stress-induced inhibition of morphine CPP. The increase in dopamine levels in the nucleus accumbens and augmentation of GABAergic transmission in the median prefrontal cortex may contribute in potentiating morphine CPP. Stress exposure reinstates the extinct morphine CPP by activating the orexin receptors in the nucleus accumbens, decreasing the oxytocin levels in the lateral septum and amygdala, and altering the GABAergic transmission (activation of GABAA and inactivation of GABAB receptors). The present review describes these varied interactions between opioids and stress along with the possible mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The role of injection cues in the production of the morphine preexposure effect in taste aversion learning.

    PubMed

    Davis, Catherine M; de Brugada, Isabel; Riley, Anthony L

    2010-05-01

    The attenuation of an LiCl-induced conditioned taste aversion (CTA) by LiCl preexposure is mediated primarily by associative blocking via injection-related cues. Given that preexposure to morphine attenuates morphine-induced CTAs, it was of interest to determine whether injection cues also mediate this effect. Certain morphine-induced behaviors such as analgesic tolerance are controlled associatively, via injection-related cues. Accordingly, animals in the present experiments were preexposed to morphine (or vehicle) every other day for five total exposures, followed by an extinction phase, in which the subjects were given saline injections (or no treatment) for 8 (Experiment 1) or 16 (Experiment 2) consecutive days. All of the animals then received five CTA trials with morphine (or vehicle). The morphine-preexposed animals in Experiment 1 displayed an attenuation of the morphine CTA that was unaffected by extinction saline injections, suggesting that blocking by injection cues during morphine preexposure does not mediate this effect. All of the morphine-preexposed subjects in Experiment 2 displayed a weakened preexposure effect, an effect inconsistent with a selective extinction of drug-associated stimuli. The attenuating effects of morphine preexposure in aversion learning are most likely controlled by nonassociative mechanisms, like drug tolerance.

  11. Entanglement between thermoregulation and nociception in the rat: the case of morphine

    PubMed Central

    El Bitar, Nabil; Pollin, Bernard; Karroum, Elias; Pincedé, Ivanne

    2016-01-01

    In thermoneutral conditions, rats display cyclic variations of the vasomotion of the tail and paws, the most widely used target organs in current acute or chronic animal models of pain. Systemic morphine elicits their vasoconstriction followed by hyperthermia in a naloxone-reversible and dose-dependent fashion. The dose-response curves were steep with ED50 in the 0.5–1 mg/kg range. Given the pivotal functional role of the rostral ventromedial medulla (RVM) in nociception and the rostral medullary raphe (rMR) in thermoregulation, two largely overlapping brain regions, the RVM/rMR was blocked by muscimol: it suppressed the effects of morphine. “On-” and “off-” neurons recorded in the RVM/rMR are activated and inhibited by thermal nociceptive stimuli, respectively. They are also implicated in regulating the cyclic variations of the vasomotion of the tail and paws seen in thermoneutral conditions. Morphine elicited abrupt inhibition and activation of the firing of on- and off-cells recorded in the RVM/rMR. By using a model that takes into account the power of the radiant heat source, initial skin temperature, core body temperature, and peripheral nerve conduction distance, one can argue that the morphine-induced increase of reaction time is mainly related to the morphine-induced vasoconstriction. This statement was confirmed by analyzing in psychophysical terms the tail-flick response to random variations of noxious radiant heat. Although the increase of a reaction time to radiant heat is generally interpreted in terms of analgesia, the present data question the validity of using such an approach to build a pain index. PMID:27605533

  12. Spinal antinociception of synthetic omega-conotoxin SO-3, a selective N-type neuronal voltage-sensitive calcium channel blocker, and its effects on morphine analgesia in chemical stimulus tests in rodent.

    PubMed

    Yan, Ling-Di; Liu, Yan-Li; Zhang, Lei; Dong, Hua-Jin; Zhou, Pei-Lan; Su, Rui-Bin; Gong, Ze-Hui; Huang, Pei-Tang

    2010-06-25

    SO-3, a novel Omega-superfamily conotoxin derived from Conus striatus, selectively inhibits N-type neuronal voltage-sensitive calcium channels. In current study, antinociception of SO-3 compared with MVIIA or morphine and its effects on morphine analgesia were investigated in rodent chemical stimulus tests after acute or repeated intrathecal administration. In mice acetic acid writhing test, similar to MVIIA, SO-3 caused dose- and time-dependent spinal antinociception with ED(50) of 0.25 microg/kg and t(1/2) of 4h, which was more potent and longer-acting than morphine. In rat formalin test after intrathecal bolus injection, SO-3 produced dose- and time-dependent antinociception by suppressing acute (ED(50), 1.79 microg/kg) and tonic phases (ED(50), 0.41 microg/kg), which was similar to MVIIA and approximately 10-fold potency and twice longer-acting of morphine in blocking tonic phase responses. After repeated intrathecal injections twice daily for 5 consecutive days, SO-3 produced analgesia without loss of potency whereas morphine produced analgesia tolerance in rat formalin test; further, SO-3 still produced potent analgesia in morphine-tolerant rats. SO-3 co-administered with morphine left-shift the dose-response curve of morphine in mice acetic acid writhing test and significantly potentiated morphine analgesia in rat formalin test. No changes in motor function were seen in mice or rats receiving antinociceptive doses of SO-3 whereas MVIIA caused motor dysfunction at doses of 1.0-2.0 microg/kg in rats. This study showed that (1) novel SO-3 produced potent and long-acting spinal antinociception without observable motor dysfunction, (2) SO-3 significantly potentiated morphine analgesia, (3) After repeated intrathecal administration, SO-3 produced neither tolerance nor cross-tolerance to morphine analgesia. (c) 2010 Elsevier B.V. All rights reserved.

  13. Morphine Tolerance as a Function of Ratio Schedule: Response Requirement or Unit Price?

    ERIC Educational Resources Information Center

    Hughes, Christine; Sigmon, Stacey C.; Pitts, Raymond C.; Dykstra, Linda A.

    2005-01-01

    Key pecking by 3 pigeons was maintained by a multiple fixed-ratio 10, fixed-ratio 30, fixed-ratio 90 schedule of food presentation. Components differed with respect to amount of reinforcement, such that the unit price was 10 responses per 1-s access to food. Acute administration of morphine, "l"-methadone, and cocaine dose-dependently decreased…

  14. Effects of perinatal exposure to delta 9-tetrahydrocannabinol on operant morphine-reinforced behavior.

    PubMed

    González, Begoña; de Miguel, Rosario; Martín, Sonsoles; Pérez-Rosado, Alberto; Romero, Julián; García-Lecumberri, Carmen; Fernández-Ruiz, Javier; Ramos, José Antonio; Ambrosio, Emilio

    2003-06-01

    The present study examined the effects of Delta(9)-tetrahydrocannabinol (Delta(9)-THC) when administered during the perinatal period on morphine self-administration in adulthood. To this end, pregnant Wistar rats were daily exposed to Delta(9)-THC from the fifth day of gestation up to pup weaning, when they were separated by gender and left to mature to be used for analyses of operant food- and morphine-reinforced behavior in a progressive ratio (PR) schedule. We also analyzed dopaminergic activity (DOPAC/DA) in reward-related structures during specific phases of the behavioral study. In both reinforcement paradigms, food and morphine, females always reached higher patterns of self-administration than males, but this occurred for the two treatment groups, Delta(9)-THC or vehicle. These higher patterns measured in females corresponded with a higher DOPAC/DA in the nucleus accumbens prior to the onset of morphine self-administration in comparison to males. Interestingly, DOPAC/DA was lower in Delta(9)-THC-exposed females compared to oil-exposed females and similar to oil- and Delta(9)-THC-exposed males. In addition, Delta(9)-THC-exposed females also exhibited a reduction in DOPAC/DA in the ventral tegmental area, which did not exist in males. All these changes, however, disappeared after 15 days of morphine self-administration and they did not reappear after 15 additional days of extinction of this response. Our data suggest that females are more vulnerable than males in a PR schedule for operant food and morphine self-administration; perinatal Delta(9)-THC exposure is not a factor influencing this vulnerability. The neurochemical analysis revealed that the activity of limbic dopaminergic neurons prior to morphine self-administration was higher in females than males, as well as that the perinatal Delta(9)-THC treatment reduced the activity of these neurons only in females, although this had no influence on morphine vulnerability in these animals.

  15. Review of Prescribing Practices for Intermittent Bolus Administration of Morphine

    PubMed Central

    Sine, Keith; Vaillancourt, Régis; Pascuet, Elena; Martelli, Brenda; Lamontagne, Christine; Ellis, Jacqueline; Wong, Elaine; Gaboury, Isabelle

    2011-01-01

    Background: Several changes to medication safety practices were proposed in a pediatric hospital, including changing the period of patient observation after administration of opioids and limiting the availability of various concentrations of morphine in the patient care unit. Objective: To document and review postoperative pain management for children on a surgical ward, specifically with regard to intermittent IV bolus administration of morphine, to help in assessing the impact of the proposed nursing practice changes. Methods: Data were collected from records for narcotics and controlled drugs for the surgical ward over a 3-month period (April to June 2006). For each patient, data had been recorded for up to 7 consecutive days after surgery. A patient’s data were included in the review if he or she had received at least 2 doses of morphine by IV bolus, except for the review of weight-based dosing pattern (mg/kg), for which all patients who had received at least one dose of IV morphine were included. Results: Charts for 193 patients were audited. Of these, 163 patients (84.5%) had recieved up to 0.1 mg/kg per dose, and 53 (27.5%) had received only one dose of morphine. Among patients who received more than one dose, the median dose was 0.080 mg/kg on day 1, with a decrease by day 5 to 0.065 mg/kg. Most patients received morphine over the first 2 days after surgery. The median time elapsed between doses was 4.3 h on day 1 and 6.2 h on day 2. Of the 1020 doses included in the analysis, most (801 [78.5%]) were 4 mg or less. Conclusion: The intermittent administration of IV bolus doses of morphine at the study hospital followed common standards for the treatment of postoperative pain. Most doses were no more than 4 mg. On the basis of this information, only 2-mg vials of morphine are now stocked on the ward. The hospital’s change in monitoring practices will increase the surveillance of patients receiving IV bolus doses of morphine. PMID:22479025

  16. Cholinergic mechanisms of analgesia produced by physostigmine, morphine and cold water swimming.

    PubMed

    Romano, J A; Shih, T M

    1983-07-01

    This study concerns the cholinergic involvement in three experimental procedures which produce analgesia. Rats were given one of seven treatments: saline (1.0 ml/kg, i.p.); morphine sulfate (3.5, 6.0 or 9.0 mg/kg, i.p.); physostigmine salicylate (0.65 mg/kg, i.p.); warm water swim (3.5 min at 28 degrees C); and cold water swim (3.5 min at 2 degrees C). Each rat was tested on a hot plate (59.1 degrees C) once prior to and 30 min after treatment. Immediately after the last test the rats were killed with focussed microwave radiation. Levels of acetylcholine (ACh) and choline (Ch) in six brain areas (brain stem, cerebral cortex, hippocampus, midbrain, cerebellum and striatum) were analyzed by gas chromatograph-mass spectrometer. Morphine (9.0 mg/kg), physostigmine and cold water swimming caused significant analgesia. Morphine elevated the levels of ACh in the cerebellum and striatum, cold water swimming--in the cerebellum, striatum and cortex, and physostigmine--in the striatum and hippocampus. Levels of choline were elevated by morphine in the cerebellum, cortex and hippocampus, while cold water swimming elevated levels of choline in the cerebellum, cortex, striatum and hippocampus. Physostigmine did not change levels of choline in any of the brain areas studied. These data suggest that the analgetic effects of morphine or cold water swimming may be mediated by components of the cholinergic system that differ from those involved in the analgetic effects of physostigmine.

  17. Total morphine stability in urine specimens stored under various conditions.

    PubMed

    Chang, B L; Huang, M K; Tsai, Y Y

    2000-09-01

    The stability of total morphine in urine stored under various conditions was studied using control and experimental specimens. Samples in the control group were prepared using drug-free urine spiked with morphine at three concentration levels (300, 1000, and 2500 ng/mL), each with the pH adjusted to 5.5, 6.5, and 7.5. Samples in the experimental group came from 20 alleged heroin addicts (provided by Taipei Municipal Psychiatric Hospital). Samples in both groups were divided into two categories--one with and one without the precipitate (formed at 0 degrees C) removed. Samples in each of these two categories were further divided into two sub-groups--one with and one without sodium azide (0.05%) added. Total morphine contents in these samples were first determined by gas chromatography-mass spectrometry prior to storage and at 6, 12, 18, and 24 months following storage at -20, 4, 25, and 35 degrees C. Effects of sample treatment (azide addition and precipitate removal), pH, and storage temperature and length were evaluated by examining the percentage of total morphine remaining at the four time intervals following the initial determination. Major findings were as follows: (1) total morphine decomposition was minimal when stored for 12 months at -20 degrees C, which is a common current practice; (2) samples with lower initial sample pH had slower total morphine decomposition rates; and (3) azide addition appeared to have no detectable effect, whereas precipitate removal appeared to marginally reduce the decomposition rate, especially for samples with lower pH.

  18. Morphine induces μ opioid receptor endocytosis in guinea pig enteric neurons following prolonged receptor activation

    PubMed Central

    Patierno, Simona; Anselmi, Laura; Jaramillo, Ingrid; Scott, David; Garcia, Rachel; Sternini, Catia

    2010-01-01

    Background & Aims The μ opioid receptor (μOR) undergoes rapid endocytosis following acute stimulation with opioids and most opiates, but not with morphine. We investigated whether prolonged activation of μOR affects morphine’s ability to induce receptor endocytosis in enteric neurons. Methods We compared the effects of morphine, a poor μOR-internalizing opiate, and [D-Ala2, MePhe4,Gly-ol5] enkephalin (DAMGO), a potent μOR-internalizing agonist, on μOR trafficking in enteric neurons and on the expression of dynamin and β-arrestin immunoreactivity in the ileum of guinea pigs rendered tolerant by chronic administration of morphine. Results Morphine (100 µM) strongly induced endocytosis of μOR in tolerant but not naïve neurons (55.7%±9.3% vs. 24.2%±7.3%, P<0.001) whereas DAMGO (10 µM) strongly induced internalization of μOR in neurons from tolerant and naïve animals (63.6%±8.4% and 66.5%±3.6%). Morphine- or DAMGO-induced μOR endocytosis resulted from direct interactions between the ligand and the μOR, because endocytosis was not affected by tetrodotoxin, a blocker of endogenous neurotransmitter release. Ligand-induced μOR internalization was inhibited by pretreatment with the dynamin inhibitor, dynasore. Chronic morphine administration resulted in a significant increase in dynamin and translocation of dynamin immunoreactivity from the intracellular pool to the plasma membrane, but did not affect β arrestin immunoreactivity. Conclusion Chronic activation of μORs increases the ability of morphine to induce μOR endocytosis in enteric neurons, which depends on the level and cellular localization of dynamin, a regulatory protein that has an important role in receptor-mediated signal transduction in cells. PMID:21070774

  19. Suppression of transmission of nociceptive impulses by morphine

    PubMed Central

    Duggan, A.W.; Hall, J.G.; Headley, P.M.

    1977-01-01

    1 In spinal cats anaesthetized with α-chloralose, a study was made of the effects of morphine and naloxone, administered electrophoretically from micropipettes, on the responses of dorsal horn neurones to noxious (raising of skin temperature above 45°C) and innocuous (deflection of hairs) peripheral stimuli. 2 Administered near cell bodies, morphine reduced the nociceptive responses of only 2 of 37 cells. Excitation occurred more commonly than depression and abnormalities in action potentials were commonly observed following ejection of morphine. None of these effects of morphine was antagonized by electrophoretically applied naloxone. 3 Administered in the substantia gelatinosa from one micropipette while recording responses of deeper neurones with a second micropipette, morphine reduced the nociceptive responses of 15 of 19 neurones. Firing in response to deflection of hairs was not reduced by morphine. Depression of nociceptive responses by morphine was long lasting (>20 minutes). Naloxone ejected into the substantia gelatinosa or given intravenously in doses as low as 0.1 mg/kg antagonized the effects of morphine. The effectiveness of this dose of intravenous naloxone suggests that the concentrations of morphine in the substantia gelatinosa which reduced nociceptive responses were not unlike those present after analgesic doses of systemic morphine. Naloxone alone, and excitant and depressant amino acids ejected into the substantia gelatinosa had little effect on cell firing. 4 Both the selective action of morphine on nociceptive responses and the reversal of this action by intravenous naloxone suggest that the opiate receptor present in the substantia gelatinosa is relevant to analgesia produced by opiates given systemically. PMID:199311

  20. Effect of baclofen on morphine-induced conditioned place preference, extinction, and stress-induced reinstatement in chronically stressed mice.

    PubMed

    Meng, Shanshan; Quan, Wuxing; Qi, Xu; Su, Zhiqiang; Yang, Shanshan

    2014-01-01

    A stress-induced increase in excitability can result from a reduction in inhibitory neurotransmission. Modulation of gamma-aminobutyric acid (GABA)ergic transmission is an effective treatment for drug seeking and relapse. This study investigated whether baclofen, a GABA(B) receptor agonist, had an impact on morphine-induced conditioned place preference (CPP), extinction, and stress-induced relapse in chronically stressed mice. Chronic stress was induced by restraining mice for 2 h for seven consecutive days. We first investigated whether chronic stress influenced morphine-induced CPP, extinction, and stress-induced relapse in the stressed mice. Next, we investigated whether three different doses of baclofen influenced chronic stress as measured by the expression of morphine-induced CPP. We chose the most effective dose for subsequent extinction and reinstatement experiments. Reinstatement of morphine-induced CPP was induced by a 6-min forced swim stress. Locomotor activity was also measured for each test. Chronic stress facilitated the expression of morphine-induced CPP and prolonged extinction time. Forced swim stress primed the reinstatement of morphine-induced CPP in mice. Baclofen treatment affected the impact of chronic stress on different phases of morphine-induced CPP. Our results showed that baclofen antagonized the effects of chronic stress on morphine-induced CPP. These findings suggest the potential clinical utility of GABA(B) receptor-positive modulators as an anti-addiction agent in people suffering from chronic stress.

  1. Persistent Pain Maintains Morphine-Seeking Behavior after Morphine Withdrawal through Reduced MeCP2 Repression of Glua1 in Rat Central Amygdala

    PubMed Central

    Hou, Yuan-Yuan; Cai, You-Qing

    2015-01-01

    As long-term opioids are increasingly used for control of chronic pain, how pain affects the rewarding effect of opioids and hence risk of prescription opioid misuse and abuse remains a healthcare concern and a challenging issue in current pain management. In this study, using a rat model of morphine self-administration, we investigated the molecular mechanisms underlying the impact of pain on operant behavior of morphine intake and morphine seeking before and after morphine withdrawal. We found that rats with persistent pain consumed a similar amount of daily morphine to that in control rats without pain, but maintained their level-pressing behavior of morphine seeking after abstinence of morphine at 0.2 mg/kg, whereas this behavior was gradually diminished in control rats. In the central nucleus of amygdala (CeA), a limbic structure critically involved in the affective dimension of pain, proteins of GluA1 subunits of glutamate AMPA receptors were upregulated during morphine withdrawal, and viral knockdown of CeA GluA1 eliminated the morphine-seeking behavior in withdrawn rats of the pain group. Chromatin immunoprecipitation analysis revealed that the methyl CpG-binding protein 2 (MeCP2) was enriched in the promoter region of Gria1 encoding GluA1 and this enrichment was significantly attenuated in withdrawn rats of the pain group. Furthermore, viral overexpression of CeA MeCP2 repressed the GluA1 level and eliminated the maintenance of morphine-seeking behavior after morphine withdrawal. These results suggest direct MeCp2 repression of GluA1 function as a likely mechanism for morphine-seeking behavior maintained by long-lasting affective pain after morphine withdrawal. PMID:25716866

  2. The Cardiovascular Effects of Morphine THE PERIPHERAL CAPACITANCE AND RESISTANCE VESSELS IN HUMAN SUBJECTS

    PubMed Central

    Zelis, Robert; Mansour, Edward J.; Capone, Robert J.; Mason, Dean T.

    1974-01-01

    To evaluate the effects of morphine on the peripheral venous and arterial beds, 69 normal subjects were evaluated before and after the intravenous administration of 15 mg morphine. Venous tone was determined by three independent techniques in 22 subjects. The venous pressure measured in a hand vein during temporary circulatory arrest (isolated hand vein technique) fell from 20.2±1.4 to 13.4±0.9 mm Hg (P < 0.01) 10 min after morphine, indicating that a significant venodilation had occurred. With the acute occlusion technique, morphine induced a reduction in forearm venous tone from 12.8±1.1 to 7.9±2.3 mm Hg/ml/100 ml (P < 0.01). Although forearm venous volume at a pressure of 30 mm Hg (VV[30]) was increased from 2.26±0.17 to 2.55±0.26 ml/100 ml, measured by the equilibration technique, the change was not significant (P > 0.1). Of note is that the initial reaction to morphine was a pronounced venoconstriction, demonstrated during the first 1-2 min after the drug. (Isolated hand vein pressure increased to 37.2±5.4 mm Hg, P < 0.01). This rapidly subsided, and by 5 min a venodilation was evident. Morphine did not attenuate the venoconstrictor response to a single deep breath, mental arithmetic, or the application of ice to the forehead when measured by either the isolated hand vein technique or the equilibration technique. To evaluate the effects of morphine on the peripheral resistance vessels in 47 normal subjects, forearm blood flow was measured plethysmographically before and 10-15 min after the intravenous administration of 15 mg of morphine. Although mean systemic arterial pressure was unchanged, forearm blood flow increased from 2.92±0.28 to 3.96±0.46 ml/min/100 ml (P < 0.01), and calculated vascular resistance fell from 42.4±5.2 to 31.6±3.2 mm Hg/ml/min/100 ml (P < 0.01). When subjects were tilted to the 45° head-up position, morphine did not block the increase in total peripheral vascular resistance that occurs; however, it did significantly

  3. Dopamine D4 Receptor Counteracts Morphine-Induced Changes in μ Opioid Receptor Signaling in the Striosomes of the Rat Caudate Putamen

    PubMed Central

    Suárez-Boomgaard, Diana; Gago, Belén; Valderrama-Carvajal, Alejandra; Roales-Buján, Ruth; Van Craenenbroeck, Kathleen; Duchou, Jolien; Borroto-Escuela, Dasiel O.; Medina-Luque, José; de la Calle, Adelaida; Fuxe, Kjell; Rivera, Alicia

    2014-01-01

    The mu opioid receptor (MOR) is critical in mediating morphine analgesia. However, prolonged exposure to morphine induces adaptive changes in this receptor leading to the development of tolerance and addiction. In the present work we have studied whether the continuous administration of morphine induces changes in MOR protein levels, its pharmacological profile, and MOR-mediated G-protein activation in the striosomal compartment of the rat CPu, by using immunohistochemistry and receptor and DAMGO-stimulated [35S]GTPγS autoradiography. MOR immunoreactivity, agonist binding density and its coupling to G proteins are up-regulated in the striosomes by continuous morphine treatment in the absence of changes in enkephalin and dynorphin mRNA levels. In addition, co-treatment of morphine with the dopamine D4 receptor (D4R) agonist PD168,077 fully counteracts these adaptive changes in MOR, in spite of the fact that continuous PD168,077 treatment increases the [3H]DAMGO Bmax values to the same degree as seen after continuous morphine treatment. Thus, in spite of the fact that both receptors can be coupled to Gi/0 protein, the present results give support for the existence of antagonistic functional D4R-MOR receptor-receptor interactions in the adaptive changes occurring in MOR of striosomes on continuous administration of morphine. PMID:24451133

  4. Pavlovian conditioning analysis of morphine tolerance.

    PubMed

    Siegel, S

    1978-01-01

    It has been demonstrated that many conditional responses to a variety of drugs are opposite in direction to the unconditional effects of the drug, and the conditioning analysis of morphine tolerance emphasizes the fact that subjects with a history of morphine administration display morphine-compensatory conditional responses when confronted with the usual administration procedure but without the drug. Thus, when the drug is presented in the context of the usual administration cues, these conditional morphine-compensatory responses would be expected to attenuate the drug-induced unconditional responses, thereby decreasing the observed response to the drug. Research has been summarized which supports this compensatory conditioning model of tolerance by demonstrating that the display of tolerance is specific to the environment in which the drug has been previously administered. Further evidence supporting this theory of tolerance has been provided by studies establishing that extinction, partial reinforcement, and latent inhibition--non-pharmacological manipulations known to be effective in generally affecting the display of conditional responses--similarly affect the display of morphine tolerance. Additional research has suggested many parallels between learning and morphine tolerance: Both processes exhibit great retention, both are disrupted by electroconvulsive shock and frontal cortical stimulation, both are retarded by inhibitors of protein synthesis, and both are facilitated by antagonists of these metabolic inhibitors.

  5. Administration of the glial cell modulator, minocycline, in the nucleus accumbens attenuated the maintenance and reinstatement of morphine-seeking behavior.

    PubMed

    Arezoomandan, Reza; Haghparast, Abbas

    2016-03-01

    Relapse to drug use is one of the most difficult clinical problems in treating addiction. Glial activation has been linked with the drug abuse, and the glia modulators such as minocycline can modulate the drug abuse effects. The aim of the present study was to determine whether minocycline could attenuate the maintenance and reinstatement of morphine. Conditioned place preference (CPP) was induced by subcutaneous injection of morphine (5 mg/kg) for 3 days. Following the acquisition of the CPP, the rats were given daily bilateral intra-NAc injections of either minocycline (1, 5, and 10 μg/0.5 μL) or saline (0.5 μL). The animals were tested for conditioning score 60 min after each injection. To induce the reinstatement, a priming dose of morphine (1 mg/kg) was injected 1 day after the final extinction day. The morphine-induced CPP lasted for 7 days after cessation of morphine treatment. Our data revealed that a priming dose of morphine could reinstate the extinguished morphine-induced CPP. Daily intra-accumbal injection of minocycline during the extinction period blocked the maintenance of morphine CPP and also attenuated the priming-induced reinstatement. Our findings indicated that minocycline could facilitate the extinction and attenuate the reinstatement of morphine. These results provided new evidence that minocycline might be considered as a promising therapeutic agent for the treatment of several symptoms associated with morphine abuse.

  6. Aloe vera Aqueous Extract Effect on Morphine Withdrawal Syndrome in Morphine-Dependent Female Rats.

    PubMed

    Shahraki, Mohammad Reza; Mirshekari, Hamideh; Sabri, Azame

    2014-09-01

    Aloe vera is a medicinal herb used as an anti-inflammatory and sedative agent. The current study aimed to evaluate the effect of Aloe vera aqueous extract on morphine withdrawal symptoms in morphine-dependent female rats. The current research was performed on 40 female Wista-Albino rats which were made dependent on morphine using Houshyar protocol and were randomly divided into five groups (A, B, C, D, and E). Group A did not receive any agent in the period of handling but other groups (B, C, D and E) received 5, 10, 20 and 40 mg/kg of Aloe vera aqueous extract by gavage, three times daily for a week, respectively. Withdrawal symptoms, stool form, agitation, disparity, floppy eyelids, and body mass variations were checked for 10 days. The obtained data were analyzed using SPSS v.11 software, and Friedman, Kruskal-Wallis, and Mann-Whitney statistical tests. Statistical difference was considered significant (P < 0.05). The results of the present study showed that agitation, disparity, and floppy eyelids in group E were significantly higher than those of others groups; however, these symptoms in group C were significantly lower than those of the other groups. The results of the present study revealed that the Aloe vera aqueous extract had various effects on morphine withdrawal syndrome in morphine-dependent female rats .

  7. Aloe vera Aqueous Extract Effect on Morphine Withdrawal Syndrome in Morphine-Dependent Female Rats

    PubMed Central

    Shahraki, Mohammad Reza; Mirshekari, Hamideh; Sabri, Azame

    2014-01-01

    Background: Aloe vera is a medicinal herb used as an anti-inflammatory and sedative agent. Objectives: The current study aimed to evaluate the effect of Aloe vera aqueous extract on morphine withdrawal symptoms in morphine-dependent female rats. Patients and Methods: The current research was performed on 40 female Wista-Albino rats which were made dependent on morphine using Houshyar protocol and were randomly divided into five groups (A, B, C, D, and E). Group A did not receive any agent in the period of handling but other groups (B, C, D and E) received 5, 10, 20 and 40 mg/kg of Aloe vera aqueous extract by gavage, three times daily for a week, respectively. Withdrawal symptoms, stool form, agitation, disparity, floppy eyelids, and body mass variations were checked for 10 days. The obtained data were analyzed using SPSS v.11 software, and Friedman, Kruskal-Wallis, and Mann-Whitney statistical tests. Statistical difference was considered significant (P < 0.05). Results: The results of the present study showed that agitation, disparity, and floppy eyelids in group E were significantly higher than those of others groups; however, these symptoms in group C were significantly lower than those of the other groups. Conclusions: The results of the present study revealed that the Aloe vera aqueous extract had various effects on morphine withdrawal syndrome in morphine-dependent female rats . PMID:25593890

  8. Effects of D-cycloserine on extinction and reinstatement of morphine-induced conditioned place preference.

    PubMed

    Lu, Guan-Yi; Wu, Ning; Zhang, Zhao-Long; Ai, Jing; Li, Jin

    2011-10-10

    d-Cycloserine (DCS), a partial agonist at the strychnine-insensitive glycine recognition site on the N-methyl-d-aspartate (NMDA) receptor complex, has been shown to facilitate the extinction and prevent the relapse of cocaine-induced conditioned place preference (CPP) when administered before or after each extinction trail. However, some studies have suggested that DCS does not influence or even enhance relapse of seeking behavior on cocaine self-administration (SA) in rats or cocaine-dependent individuals undergoing clinical exposure treatment. Furthermore, there are no reports on the effects of DCS and the extinction of morphine-conditioned behaviors in mice. The present study investigated the effects of DCS on extinction by exposing mice to drug-paired cues and the subsequent reinstatement of morphine-primed CPP. Our results showed that DCS at doses of 7.5, 15, and 30mg/kg did not induce conditioned appetitive or aversive effects and DCS combined with morphine conditioning failed to affect the acquisition of morphine-induced CPP. Moreover, pretreatment with DCS (7.5, 15, and 30mg/kg, i.p.) prior to extinction training had no significant effects on the extinction and subsequent morphine-primed reinstatement of morphine-induced CPP. These results suggested that DCS may not be a powerful adjunct for cue exposure therapy of opioid addiction. In view of differing outcomes in both preclinical and clinical studies, the potential of DCS in exposure treatment of drug-seeking behaviors should be carefully evaluated. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Pharmacological Consequence of the A118G Mu Opioid Receptor Polymorphism on Morphine- and Fentanyl-mediated Modulation of Ca2+ Channels in Humanized Mouse Sensory Neurons

    PubMed Central

    Mahmoud, Saifeldin; Thorsell, Annika; Sommer, Wolfgang H.; Heilig, Markus; Holgate, Joan K.; Bartlett, Selena E.; Ruiz-Velasco, Victor

    2011-01-01

    Background The most common functional single nucleotide polymorphism of the human OPRM1 gene, A118G, has been shown to be associated with inter-individual differences in opioid analgesic requirements, particularly with morphine, in patients with acute postoperative pain. The purpose of the present study was to examine whether this polymorphism would modulate the morphine and fentanyl pharmacological profile of sensory neurons isolated from a humanized mouse model homozygous for either the 118A or 118G allele. Methods The coupling of wild-type and mutant mu opioid receptors to voltage-gated Ca2+ channels after exposure to either ligand was examined by employing the whole-cell variant of the patch-clamp technique in acutely dissociated trigeminal ganglion neurons. Morphine-mediated antinociception was measured in mice carrying either the 118AA or 118GG allele. Results The biophysical parameters (cell size, current density, and peak current amplitude potential) measured from both groups of sensory neurons were not significantly different. In 118GG neurons, morphine was approximately 5-fold less potent and 26% less efficacious than that observed in 118AA neurons. On the other hand, the potency and efficacy of fentanyl were similar for both groups of neurons. Morphine-mediated analgesia in 118GG mice was significantly reduced compared to the 118AA mice. Conclusions This study provides evidence to suggest that the diminished clinical effect observed with morphine in 118G carriers results from an alteration of the receptor’s pharmacology in sensory neurons. Additionally, the impaired analgesic response with morphine may explain why carriers of this receptor variant have an increased susceptibility to become addicted to opioids. PMID:21926562

  10. Implication of cyclin-dependent kinase 5 in the development of psychological dependence on and behavioral sensitization to morphine.

    PubMed

    Narita, Minoru; Shibasaki, Masahiro; Nagumo, Yasuyuki; Narita, Michiko; Yajima, Yoshinori; Suzuki, Tsutomu

    2005-06-01

    In the present study, we investigated the role of cyclin-dependent kinase 5 (cdk5) in the brain dynamics changed by repeated in vivo treatment with morphine. The level of phosphorylated-cdk5 was significantly increased in the cingulate cortex of mice showing the morphine-induced rewarding effect. Under these conditions, roscovitine, a cdk5 inhibitor, given intracerebroventricularly (i.c.v.) caused a dose-dependent and significant inhibition of the morphine-induced rewarding effect. In addition, the dose-response effect of the morphine-induced rewarding effect was dramatically attenuated in cdk5 heterozygous (+/-) knockout mice. Furthermore, the development of behavioral sensitization by intermittent administration of morphine was virtually abolished in cdk5 (+/-) mice. These findings suggest that the induction and/or activation of cdk5 are implicated in the development of psychological dependence on morphine.

  11. Efficacy of clonidine versus phenobarbital in reducing neonatal morphine sulfate therapy days for neonatal abstinence syndrome. A prospective randomized clinical trial.

    PubMed

    Surran, B; Visintainer, P; Chamberlain, S; Kopcza, K; Shah, B; Singh, R

    2013-12-01

    To compare the efficacy of clonidine versus phenobarbital in reducing morphine sulfate treatment days for neonatal abstinence syndrome (NAS). Prospective, non-blinded, block randomized trial at a single level III NICU (Neonatal Intensive Care Unit). Eligible infants were treated with a combination of medications as per protocol. Primary outcome was treatment days with morphine sulfate. Secondary outcomes were the mean total morphine sulfate dose, outpatient phenobarbital days, adverse events and treatment failures. A total of 82 infants were eligible, of which 68 were randomized with 34 infants in each study group. Adjusting for covariates phenobarbital as compared with clonidine had shorter morphine sulfate treatment days (-4.6, 95% confidence interval (CI): -0.3, -8.9; P=0.037) with no difference in average morphine sulfate total dose (1.1 mg kg(-1), 95% CI: -0.1, 2.4; P=0.069). Post-discharge phenobarbital was continued for an average of 3.8 months (range 1 to 8 months). No other significant differences were noted. Phenobarbital as adjunct had clinically nonsignificant shorter inpatient but significant overall longer therapy time as compared with clonidine.

  12. Dose-dependent effects of morphine exposure on mRNA and microRNA (miR) expression in hippocampus of stressed neonatal mice.

    PubMed

    McAdams, Ryan M; McPherson, Ronald J; Beyer, Richard P; Bammler, Theo K; Farin, Frederico M; Juul, Sandra E

    2015-01-01

    Morphine is used to sedate critically ill infants to treat painful or stressful conditions associated with intensive care. Whether neonatal morphine exposure affects microRNA (miR) expression and thereby alters mRNA regulation is unknown. We tested the hypothesis that repeated morphine treatment in stress-exposed neonatal mice alters hippocampal mRNA and miR expression. C57BL/6 male mice were treated from postnatal day (P) 5 to P9 with morphine sulfate at 2 or 5 mg/kg ip twice daily and then exposed to stress consisting of hypoxia (100% N2 1 min and 100% O2 5 min) followed by 2h maternal separation. Control mice were untreated and dam-reared. mRNA and miR expression profiling was performed on hippocampal tissues at P9. Overall, 2 and 5 mg/kg morphine treatment altered expression of a total of 150 transcripts (>1.5 fold change, P<0.05) from which 100 unique mRNAs were recognized (21 genes were up- and 79 genes were down-regulated), and 5 mg/kg morphine affected 63 mRNAs exclusively. The most upregulated mRNAs were fidgetin, arginine vasopressin, and resistin-like alpha, and the most down-regulated were defensin beta 11, aquaporin 1, calmodulin-like 4, chloride intracellular channel 6, and claudin 2. Gene Set Enrichment Analysis revealed that morphine treatment affected pathways related to cell cycle, membrane function, signaling, metabolism, cell death, transcriptional regulation, and immune response. Morphine decreased expression of miR-204-5p, miR-455-3p, miR-448-5p, and miR-574-3p. Nine morphine-responsive mRNAs that are involved in neurodevelopment, neurotransmission, and inflammation are predicted targets of the aforementioned differentially expressed miRs. These data establish that morphine produces dose-dependent changes in both hippocampal mRNA and miR expression in stressed neonatal mice. If permanent, morphine-mediated neuroepigenetic effects may affect long-term hippocampal function, and this provides a mechanism for the neonatal morphine

  13. Comparison of Morphine and Tramadol in Transforaminal Epidural Injections for Lumbar Radicular Pain

    PubMed Central

    2013-01-01

    Background Transforaminal epidural steroid injections are known to reduce inflammation by inhibiting synthesis of various proinflammatory mediators and have been used increasingly. The anti-inflammatory properties of opioids are not as fully understood but apparently involve antagonism sensory neuron excitability and pro-inflammatory neuropeptide release. To date, no studies have addressed the efficacy of transforaminal epidural morphine in patients with radicular pain, and none have directly compared morphine with a tramadol for this indication. The aim of this study was to compare morphine and tramadol analgesia when administered via epidural injection to patients with lumbar radicular pain. Methods A total of 59 patients were randomly allocated to 1 of 2 treatment groups and followed for 3 months after procedure. Each patient was subjected to C-arm guided transforaminal epidural injection (TFEI) of an affected nerve root. As assigned, patients received either morphine sulfate (2.5 mg/2.5 ml) or tramadol (25 mg/0.5 ml) in combination with 0.2% ropivacaine (1 ml). Using numeric rating scale was subsequently rates at 2 weeks and 3 months following injection for comparison with baseline. Results Both groups had significantly lower mean pain scores at 2 weeks and at 3 months after treatment, but outcomes did not differ significantly between groups. Conclusions TFEI of an opioid plus local anesthetic proved effective in treating radicular pain. Although morphine surpassed tramadol in pain relief scores, the difference was not statistically significant. PMID:23862000

  14. Morphine is associated with a delayed activity of oral antiplatelet agents in patients with ST-elevation acute myocardial infarction undergoing primary percutaneous coronary intervention.

    PubMed

    Parodi, Guido; Bellandi, Benedetta; Xanthopoulou, Ioanna; Capranzano, Piera; Capodanno, Davide; Valenti, Renato; Stavrou, Katerina; Migliorini, Angela; Antoniucci, David; Tamburino, Corrado; Alexopoulos, Dimitrios

    2015-01-01

    Morphine is recommended in patients with ST-segment-elevation myocardial infarction, including those undergoing primary percutaneous coronary intervention. Suboptimal antiplatelet effect during and after primary percutaneous coronary intervention is associated with increased thrombotic complications. It was hypothesized a potential drug-drug interaction between morphine and antiplatelet agents. We sought to assess platelet inhibition after a loading dose of the currently recommended antiplatelet agents in ST-segment-elevation myocardial infarction patients according to morphine use. Three hundred patients undergoing primary percutaneous coronary intervention receiving either prasugrel (n = 95) or ticagrelor (n = 205) loading dose had platelet reactivity assessed by VerifyNow 1, 2, and 4 hours after loading dose. Patients treated with morphine (n = 95; 32%) had a higher incidence of vomit (15% versus 2%; P = 0.001). P2Y12 reactivity units 2 hours after the loading dose was 187 (153-221) and 133 (102-165) in patient with and without morphine (P < 0.001); the difference persisted after excluding patients with vomit (P < 0.0001). High residual platelet reactivity (P2Y12 reactivity units ≥ 208) at 2 hours was found in 53% and 29% patients with and without morphine (P < 0.001) and without difference between prasugrel and ticagrelor patients. The independent predictors of high residual platelet reactivity at 2 hours were morphine use (odds ratio, 2.91 [1.71-4.97]; P < 0.0001) and age (odds ratio, 1.03 [1.01-1.05]; P = 0.010). Morphine remained associated with high residual platelet reactivity after propensity score adjustment (c-statistic, 0.68; 95% confidence interval, 0.66-0.70; P = 0.879 for Hosmer-Lemeshow test). In patients with ST-segment-elevation myocardial infarction, morphine use is associated with a delayed onset of action of the oral antiplatelet agents. This association persisted after adjusting for the propensity to receive morphine and after excluding

  15. Increased glutamate synaptic transmission in the nucleus raphe magnus neurons from morphine-tolerant rats.

    PubMed

    Bie, Bihua; Pan, Zhizhong Z

    2005-02-09

    Currently, opioid-based drugs are the most effective pain relievers that are widely used in the treatment of pain. However, the analgesic efficacy of opioids is significantly limited by the development of tolerance after repeated opioid administration. Glutamate receptors have been reported to critically participate in the development and maintenance of opioid tolerance, but the underlying mechanisms remain unclear. Using whole-cell voltage-clamp recordings in brainstem slices, the present study investigated chronic morphine-induced adaptations in glutamatergic synaptic transmission in neurons of the nucleus raphe magnus (NRM), a key supraspinal relay for pain modulation and opioid analgesia. Chronic morphine significantly increased glutamate synaptic transmission exclusively in one class of NRM cells that contains mu-opioid receptors in a morphine-tolerant state. The adenylyl cyclase activator forskolin and the cAMP analog 8-bromo-cAMP mimicked the chronic morphine effect in control neurons and their potency in enhancing the glutamate synaptic current was significantly increased in neurons from morphine-tolerant rats. MDL12330a, an adenylyl cyclase inhibitor, and H89, a protein kinase A (PKA) inhibitor, reversed the increase in glutamate synaptic transmission induced by chronic morphine. In addition, PMA, a phorbol ester activator of protein kinase C (PKC), also showed an increased potency in enhancing the glutamate synaptic current in these morphine-tolerant cells. The PKC inhibitor GF109203X attenuated the chronic morphine effect. Taken together, these results suggest that chronic morphine increases presynaptic glutamate release in mu receptor-containing NRM neurons in a morphine-tolerant state, and that the increased glutamate synaptic transmission appears to involve an upregulation of both the cAMP/PKA pathway and the PKC pathway. This glutamate-mediated activation of these NRM neurons that are thought to facilitate spinal pain transmission may contribute to

  16. Morphine clearance in children: does race or genetics matter?

    PubMed

    Sadhasivam, Senthilkumar; Krekels, Elke H J; Chidambaran, Vidya; Esslinger, Hope R; Ngamprasertwong, Pornswan; Zhang, Kejian; Fukuda, Tsuyoshi; Vinks, Alexander A

    2012-01-01

    Interindividual variability in analgesic response and adverse effects of opioids because of narrow therapeutic indices are major clinical problems. Morphine is an opioid commonly used in children to manage perioperative pain. Al-though size and age often are considered primary covariates for morphine pharmacokinetic models, the impact of other factors important in personalizing care such as race and genetic variations on morphine disposition is not well documented. Genotype blinded clinical observational pharmacokinetic study. One hundred forty-six African American and Caucasian children scheduled for elective outpatient adenotonsillectomy were enrolled in our prospective genotype blinded observational study with standard perioperative clinical care. Tertiary care pediatric institution. Morphine bolus for intraoperative analgesia in children and pharmacokinetic analyses in different races. Pharmacokinetics and pharmacogenetics of intravenous morphine in a homogeneous pediatric outpatient surgical pain population were evaluated. The authors observed that African American children have higher morphine clearance than Caucasian children. The increased clearance is directed toward the formation of morphine-3-glucuronide formation, rather than the formation of morphine-6-glucuronide. Common uridine diphosphate glucuronosyl transferase (UGT) 2B7 genetic variations (2161C>T and 802C>T) were not associated with observed racial differences in morphine's clearance although the wild type of the UGT2B7 isozyme is more prevalent in the African Americans. Race of the child is an important factor in perioperative intravenous morphine's clearance and its potential role in personalizing analgesia with morphine needs further investigation.

  17. Morphine induced exacerbation of sepsis is mediated by tempering endotoxin tolerance through modulation of miR-146a

    PubMed Central

    Banerjee, Santanu; Meng, Jingjing; Das, Subhas; Krishnan, Anitha; Haworth, Justin; Charboneau, Richard; Zeng, Yan; Ramakrishnan, Sundaram; Roy, Sabita

    2013-01-01

    Development of tolerance to endotoxin prevents sustained hyper inflammation during systemic infections. Here we report for the first time that chronic morphine treatment tempers endotoxin tolerance resulting in persistent inflammation, septicemia and septic shock. Morphine was found to down-regulate endotoxin/LPS induced miR-146a and 155 in macrophages. However, only miR-146a over expression, but not miR-155 abrogates morphine mediated hyper-inflammation. Conversely, antagonizing miR-146a (but not miR-155) heightened the severity of morphine-mediated hyper-inflammation. These results suggest that miR-146a acts as a molecular switch controlling hyper-inflammation in clinical and/or recreational use of morphine. PMID:23756365

  18. Effect of morphine on the growth rate of Calliphora stygia (Fabricius) (Diptera: Calliphoridae) and possible implications for forensic entomology.

    PubMed

    George, Kelly A; Archer, Melanie S; Green, Lauren M; Conlan, Xavier A; Toop, Tes

    2009-12-15

    Insect specimens collected from decomposing bodies enable forensic entomologists to estimate the minimum post-mortem interval (PMI). Drugs and toxins within a corpse may affect the development rate of insects that feed on them and it is vital to quantify these effects to accurately calculate minimum PMI. This study investigated the effects of morphine on growth rates of the native Australian blowfly, Calliphora stygia (Fabricius) (Diptera: Calliphoridae). Several morphine concentrations were incorporated into pet mince to simulate post-mortem concentrations in morphine, codeine and/or heroin-dosed corpses. There were four treatments for feeding larvae; T 1: control (no morphine); T 2: 2 microg/g morphine; T 3: 10 microg/g morphine; and T 4: 20 microg/g morphine. Ten replicates of 50 larvae were grown at 22 degrees C for each treatment and their development was compared at four comparison intervals; CI 1: 4-day-old larvae; CI 2: 7-day-old larvae; CI 3: pupae; and CI 4: adults. Length and width were measured for larvae and pupae, and costae and tibiae were measured for adults. Additionally, day of pupariation, day of adult eclosion, and survivorship were calculated for each replicate. The continued presence of morphine in meat was qualitatively verified using high-performance liquid chromatography with acidic potassium permanganate chemiluminescence detection. Growth rates of C. stygia fed on morphine-spiked mince did not differ significantly from those fed on control mince for any comparison interval or parameter measured. This suggests that C. stygia is a reliable model to use to accurately age a corpse containing morphine at any of the concentrations investigated.

  19. Proinflammatory cytokines oppose opioid induced acute and chronic analgesia

    PubMed Central

    Hutchinson, Mark R.; Coats, Benjamen D.; Lewis, Susannah S.; Zhang, Yingning; Sprunger, David B.; Rezvani, Niloofar; Baker, Eric M.; Jekich, Brian M.; Wieseler, Julie L.; Somogyi, Andrew A.; Martin, David; Poole, Stephen; Judd, Charles M.; Maier, Steven F.; Watkins, Linda R.

    2008-01-01

    Spinal proinflammatory cytokines are powerful pain-enhancing signals that contribute to pain following peripheral nerve injury (neuropathic pain). Recently, one proinflammatory cytokine, interleukin-1, was also implicated in the loss of analgesia upon repeated morphine exposure (tolerance). In contrast to prior literature, we demonstrate that the action of several spinal proinflammatory cytokines oppose systemic and intrathecal opioid analgesia, causing reduced pain suppression. In vitro morphine exposure of lumbar dorsal spinal cord caused significant increases in proinflammatory cytokine and chemokine release. Opposition of analgesia by proinflammatory cytokines is rapid, occurring ≤5 minutes after intrathecal (perispinal) opioid administration. We document that opposition of analgesia by proinflammatory cytokines cannot be accounted for by an alteration in spinal morphine concentrations. The acute anti-analgesic effects of proinflammatory cytokines occur in a p38 mitogen-activated protein kinase and nitric oxide dependent fashion. Chronic intrathecal morphine or methadone significantly increased spinal glial activation (toll-like receptor 4 mRNA and protein) and the expression of multiple chemokines and cytokines, combined with development of analgesic tolerance and pain enhancement (hyperalgesia, allodynia). Statistical analysis demonstrated that a cluster of cytokines and chemokines was linked with pain-related behavioral changes. Moreover, blockade of spinal proinflammatory cytokines during a stringent morphine regimen previously associated with altered neuronal function also attenuated enhanced pain, supportive that proinflammatory cytokines are importantly involved in tolerance induced by such regimens. These data implicate multiple opioid-induced spinal proinflammatory cytokines in opposing both acute and chronic opioid analgesia, and provide a novel mechanism for the opposition of acute opioid analgesia. PMID:18599265

  20. Cancer inpatients morphine usage: a new England area survey.

    PubMed

    Trollor, John

    2003-08-01

    This is a one year study of the use of morphine in cancer patients in 10 inpatient facilities in the New England Area Health Service in the north-west of New South Wales. The study explored 170 admissions relating to 122 patients, most of whom were cared for by their general practitioners. The use of morphine in these cancer patients was compared with the recommendations made by the expert working group of the European Association of Palliative Care.1 Those items which matched the recommendations included the initial doses for new users of morphine and the subcutaneous route being the preferred parenteral route. The data in this study differed from the recommendations in that only half of the patients received the immediate release morphine when first given oral morphine, only 43% had orders for immediate release oral morphine for breakthrough pain (with a variable frequency) and a significant number of orders for parenteral and immediate release oral morphine for breakthrough pain were outside the recommended doses (100% and 86.2%, respectively). Written orders for immediate release oral and parenteral morphine involved a dose range in significant numbers while only 30% of patients had orders for parenteral morphine for breakthrough pain. There was a low use of fixed interval variable dose (FIVD) morphine charts despite these being available in most facilities.

  1. Differential development of antinociceptive tolerance to morphine and fentanyl is not linked to efficacy in the ventrolateral periaqueductal gray of the rat

    PubMed Central

    Bobeck, Erin N.; Haseman, Rachel A.; Hong, Dana; Ingram, Susan L.; Morgan, Michael M.

    2012-01-01

    Systemic administration of morphine typically produces greater tolerance than higher efficacy mu-opioid receptor (MOPr) agonists, such as fentanyl. The objective of the present study was to test this relationship by measuring antinociceptive efficacy and tolerance to morphine and fentanyl microinjected into the ventrolateral periaqueductal gray (vlPAG). MOPr agonist efficacy was evaluated by microinjecting the irreversible opioid receptor antagonist β-funaltrexamine hydrochloride (β-FNA) into the vlPAG prior to a dose-response analysis of morphine and fentanyl antinociception. In contrast to systemic administration of morphine and fentanyl, microinjection of these drugs into the vlPAG had similar efficacy as measured by similar reductions in maximal antinociception following β-FNA administration. Analysis of tolerance revealed a rightward shift in the dose-response curve to a single pretreatment with morphine, but not fentanyl. Moreover, the magnitude of tolerance to morphine was comparable following one, four, or eight pretreatments. Tolerance to fentanyl also was evident following four or eight microinjections. These data are surprising in that antinociceptive efficacy appears to vary depending on the site of administration. Moreover, the similar efficacy following microinjection of morphine and fentanyl into the vlPAG was associated with comparable tolerance, with the one exception of no tolerance to acute administration of fentanyl. Perspective These data reveal that antinociceptive tolerance following vlPAG administration of opioids develops rapidly, is evident with both morphine and fentanyl, and the magnitude is relatively consistent regardless of the number of pretreatments. PMID:22766006

  2. The extinction of morphine-induced conditioned place preference by histone deacetylase inhibition.

    PubMed

    Wang, Ru; Zhang, Yan; Qing, Hua; Liu, Mei; Yang, Peng

    2010-10-11

    Recent evidence suggests that epigenetic mechanisms have an important role in the development of addictive behavior. However, little is known about the role of epigenetic mechanisms in the extinction of morphine-induced behavioral changes. In this study, we will examine the effect of histone deacetylase (HDAC) inhibitors on extinction of morphine-induced conditioned place preference (CPP). To facilitate extinction, rats will be administered an HDAC inhibitor (HDACi) following nonreinforced exposure to the conditioned context. To measure persistence, rats were subject to a reinstatement test using 3 mg/kg dose of morphine. To exclude the effect of repeated NaBut injections themselves on morphine-CPP in the absence of extinction session, rats received injection of either NaBut or vehicle for 8 days. We found that HDAC inhibition during nonconfined extinction or confined extinction consolidation can facilitate extinction of morphine-induced CPP. We also showed that the extinction of drug seeking via HDAC inhibition modulates extinction learning such that reinstatement behavior is significantly attenuated. There is no effect of repeated NaBut injections themselves on morphine-CPP in the absence of extinction session. In conclusion, our results extend earlier reports on the ability of HDACi to modify the behavioral effects of drugs of abuse. Our increasing understanding of these epigenetic mechanisms will provide key answers to basic processes in drug addiction and hopefully provide insight into designing improved treatments for drug addiction. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Laccase catalyzed elimination of morphine from aqueous systems.

    PubMed

    Huber, Daniela; Bleymaier, Klaus; Pellis, Alessandro; Vielnascher, Robert; Daxbacher, Andreas; Greimel, Katrin J; Guebitz, Georg M

    2018-05-25

    Pharmaceuticals contaminate the environment for several reasons, including metabolic excretion after intake, industrial waste and improper disposal. The narcotic drug morphine is commonly utilized for chronic pain management, and the distribution of morphine in aqueous systems and in waste waters is of high concern. Here, the removal of morphine by a laccase from Myceliophthora thermophila both in its free form as well as immobilized on Accurel MP1000 beads was investigated. Complete morphine elimination was achieved within 30 min for the free and the immobilized enzyme (70% bound protein) for concentrations between 1 and 1,000 mg L -1 according to LC-TOF mass spectrometry analysis. Higher morphine concentrations up to 60 g L -1 were also tested and total elimination was achieved within 6 h. Therefore, laccases are ideal candidates for removing morphine from aqueous systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Flurbiprofen improves dysfunction of T-lymphocyte subsets and natural killer cells in cancer patients receiving post-operative morphine analgesia.

    PubMed

    Shen, Jin-Chun; Sun, He-Liang; Zhang, Ming-Qiang; Liu, Xiao-Yu; Wang, Zhong- Yun; Yang, Jian-Jun

    2014-08-01

    Acute pain can lead to immune dysfunction, which can be partly ameliorated by successful pain management. Opioids, which are widely used for analgesia, can result in the deterioration of immune function. This study aimed to investigate the influence of morphine with or without flurbiprofen as post-operative analgesics on the immune systems of patients undergoing gastric cancer surgery. 60 patients undergoing gastric cancer surgery were equally randomized into two groups. They received post-operative patient-controlled intravenous (IV) analgesia using morphine either with or without flurbiprofen. Visual analogue scale (VAS) scores, Bruggemann comfort scale (BCS) scores, morphine consumption, time of first flatus, incidence of nausea/vomiting, and T-lymphocyte subsets (CD3⁺, CD4⁺, and CD8⁺) and natural killer cells (CD3⁻CD16⁺CD56⁺) were evaluated. No significant difference was observed in the VAS scores, BCS scores, and nausea/vomiting incidence between groups. Less morphine was consumed and the time of first flatus was earlier in patients receiving morphine with flurbiprofen than morphine alone. The expression of CD3⁺, CD4⁺, CD4⁺/CD8⁺, and CD3⁻CD16⁺CD56⁺ decreased at 2 hours after incision and, except for CD3⁻CD16⁺CD56⁺, returned to baseline at 120 hours after surgery. Moreover, the expression of CD3⁻CD16⁺CD56⁺ at 2 hours after incision and the expression of CD3⁺, CD4⁺, CD4⁺/CD8⁺, and CD3⁻CD16⁺CD56⁺ at 24 hours after surgery were higher in patients receiving morphine with flurbiprofen than morphine alone. The combination of morphine and flurbiprofen ameliorates the immune depression in Tlymphocyte subsets and natural killer cells and provides a similar analgesic efficacy to morphine alone in patients undergoing gastric cancer surgery.

  5. Effects of voluntary exercise on anxiety-like behavior and voluntary morphine consumption in rat pups borne from morphine-dependent mothers during pregnancy.

    PubMed

    Haydari, Sakineh; Miladi-Gorji, Hossein; Mokhtari, Amin; Safari, Manouchehr

    2014-08-22

    Exposure to morphine during pregnancy produced long-term effects in offspring behaviors. Recent studies have shown that voluntary exercise decreases the severity of anxiety behaviors in both morphine-dependent and withdrawn rats. Thus, the aims of the present study were to examine whether maternal exercise decreases prenatal dependence-induced anxiety and also, voluntary consumption of morphine in animal models of craving in rat pups. Pregnant rats were made dependent by chronic administration of morphine in drinking water simultaneously with access to a running wheel that lasted at least 21 days. Then, anxiety-like behaviors using the elevated plus-maze (EPM) and voluntary consumption of morphine using a two-bottle choice paradigm (TBC) were tested in male rat pups. The results showed that the rat pups borne from exercising morphine-dependent mothers exhibited an increase in EPM open arm time (P<0.0001) and entries (P<0.05) as compared with the sedentary groups. In animal models of craving showed that voluntary consumption of morphine in the rat pups borne from exercising morphine-dependent mothers was less in the second (P<0.032) and third (P<0.014) periods of intake as compared with the sedentary group. This study showed that maternal exercise decreases the severity of the anxiogenic-like behaviors and voluntary consumption of morphine in rat pups. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Dose-Dependent Effects of Morphine Exposure on mRNA and microRNA (miR) Expression in Hippocampus of Stressed Neonatal Mice

    PubMed Central

    McAdams, Ryan M.; McPherson, Ronald J.; Beyer, Richard P.; Bammler, Theo K.; Farin, Frederico M.; Juul, Sandra E.

    2015-01-01

    Morphine is used to sedate critically ill infants to treat painful or stressful conditions associated with intensive care. Whether neonatal morphine exposure affects microRNA (miR) expression and thereby alters mRNA regulation is unknown. We tested the hypothesis that repeated morphine treatment in stress-exposed neonatal mice alters hippocampal mRNA and miR expression. C57BL/6 male mice were treated from postnatal day (P) 5 to P9 with morphine sulfate at 2 or 5 mg/kg ip twice daily and then exposed to stress consisting of hypoxia (100% N2 1 min and 100% O2 5 min) followed by 2h maternal separation. Control mice were untreated and dam-reared. mRNA and miR expression profiling was performed on hippocampal tissues at P9. Overall, 2 and 5 mg/kg morphine treatment altered expression of a total of 150 transcripts (>1.5 fold change, P<0.05) from which 100 unique mRNAs were recognized (21 genes were up- and 79 genes were down-regulated), and 5 mg/kg morphine affected 63 mRNAs exclusively. The most upregulated mRNAs were fidgetin, arginine vasopressin, and resistin-like alpha, and the most down-regulated were defensin beta 11, aquaporin 1, calmodulin-like 4, chloride intracellular channel 6, and claudin 2. Gene Set Enrichment Analysis revealed that morphine treatment affected pathways related to cell cycle, membrane function, signaling, metabolism, cell death, transcriptional regulation, and immune response. Morphine decreased expression of miR-204-5p, miR-455-3p, miR-448-5p, and miR-574-3p. Nine morphine-responsive mRNAs that are involved in neurodevelopment, neurotransmission, and inflammation are predicted targets of the aforementioned differentially expressed miRs. These data establish that morphine produces dose-dependent changes in both hippocampal mRNA and miR expression in stressed neonatal mice. If permanent, morphine–mediated neuroepigenetic effects may affect long-term hippocampal function, and this provides a mechanism for the neonatal morphine

  7. Analgesic plasma concentrations of morphine in children with terminal malignancy receiving a continuous subcutaneous infusion of morphine sulfate to control severe pain.

    PubMed

    Nahata, M C; Miser, A W; Miser, J S; Reuning, R H

    1984-02-01

    Three children with terminal malignancy received a continuous subcutaneous infusion of morphine sulfate for the control of severe pain, the morphine dose being adjusted until the patient and/or parent reported complete freedom from pain. Analgesic plasma morphine concentrations at the steady state in these patients ranged from 12.9 to 57 ng/ml (median 19.6 ng/ml) while receiving morphine doses of 0.45-2.0 mg/h (0.034-0.06 mg/kg/h). One patient, who received 2 mg morphine per hour for 12 days demonstrated a 2-fold variation in steady-state plasma concentration during this period.

  8. Mechanisms of morphine enhancement of spontaneous seizure activity.

    PubMed

    Saboory, Ehsan; Derchansky, Miron; Ismaili, Mohammed; Jahromi, Shokrollah S; Brull, Richard; Carlen, Peter L; El Beheiry, Hossam

    2007-12-01

    High-dose opioid therapy can precipitate seizures; however, the mechanism of such a dangerous adverse effect remains poorly understood. The aim of our study was to determine whether the neuroexcitatory activity of high-dose morphine is mediated by selective stimulation of opioid receptors. Mice hippocampi were resected intact and bathed in low magnesium artificial cerebrospinal fluid to induce spontaneous seizure-like events recorded from CA1 neurons. Application of morphine had a biphasic effect on the recorded spontaneous seizure-like events. In a low concentration (10 microM), morphine depressed electrographic seizure activity. Higher morphine concentrations (30 and 100 microM) enhanced seizure activity in an apparent dose-dependent manner. Naloxone, a nonselective opiate antagonist blocked the proconvulsant action of morphine. Selective mu and kappa opiate receptor agonists and antagonists enhanced and suppressed the spontaneous seizure activity, respectively. On the contrary, delta opioid receptor ligands did not have an effect. The proseizure effect of morphine is mediated through selective stimulation of mu and kappa opiate receptors but not the activation of the delta receptor system. The observed dose-dependent mechanism of morphine neuroexcitation underscores careful adjustment and individualized opioid dosing in the clinical setting.

  9. Music therapy inhibits morphine-seeking behavior via GABA receptor and attenuates anxiety-like behavior induced by extinction from chronic morphine use.

    PubMed

    Kim, Ki Jin; Lee, Sang Nam; Lee, Bong Hyo

    2018-05-01

    Morphine is a representative pain killer. However, repeated use tends to induce addiction. Music therapy has been gaining interest as a useful type of therapy for neuropsychiatric diseases. The present study examined whether Korean traditional music (KT) could suppress morphine-seeking behavior and anxiety-like behavior induced by extinction from chronic morphine use and additionally investigated a possible neuronal mechanism. Male Sprague-Dawley rats were trained to intravenously self-administer morphine hydrochloride (1.0 mg/kg) using a fixed ratio 1 schedule in daily 2 h session during 3 weeks. After training, rats who established baseline (variation less than 20% of the mean of infusion for 3 consecutive days) underwent extinction. Music was played twice a day during extinction. In the second experiment, the selective antagonists of GABA A and GABA B receptors were treated before the last playing to investigate the neuronal mechanism focusing on the GABA receptor pathway. Another experiment of elevated plus maze was performed to investigate whether music therapy has an anxiolytic effect at the extinction phase. KT but not other music (Indian road or rock music) reduced morphine-seeking behavior induced by a priming challenge with morphine. And, this effect was blocked by the GABA receptor antagonists. In addition, KT showed anxiolytic effects against withdrawal from morphine. Results of this study suggest that KT suppresses morphine-seeking behavior via GABA receptor pathway. In addition, KT showed to have anxiolytic effects, suggesting it has bi-directional effects on morphine. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Effects of endurance, resistance, and concurrent exercise on learning and memory after morphine withdrawal in rats.

    PubMed

    Zarrinkalam, Ebrahim; Heidarianpour, Ali; Salehi, Iraj; Ranjbar, Kamal; Komaki, Alireza

    2016-07-15

    Continuous morphine consumption contributes to the development of cognitive disorders. This work investigates the impacts of different types of exercise on learning and memory in morphine-dependent rats. Forty morphine-dependent rats were randomly divided into five groups: sedentary-dependent (Sed-D), endurance exercise-dependent (En-D), strength exercise-dependent (St-D), and combined (concurrent) exercise-dependent (Co-D). Healthy rats were used as controls (Con). After 10weeks of regular exercise (endurance, strength, and concurrent; each five days per week), spatial and aversive learning and memory were assessed using the Morris water maze and shuttle box tests. The results showed that morphine addiction contributes to deficits in spatial learning and memory. Furthermore, each form of exercise training restored spatial learning and memory performance in morphine-dependent rats to levels similar to those of healthy controls. Aversive learning and memory during the acquisition phase were not affected by morphine addiction or exercise, but were significantly decreased by morphine dependence. Only concurrent training returned the time spent in the dark compartment in the shuttle box test to control levels. These findings show that different types of exercise exert similar effects on spatial learning and memory, but show distinct effects on aversive learning and memory. Further, morphine dependence-induced deficits in cognitive function were blocked by exercise. Therefore, different exercise regimens may represent practical treatment methods for cognitive and behavioral impairments associated with morphine-related disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Is Subdissociative Ketamine As Safe and Effective As Morphine for Pain Management in the Emergency Department?

    PubMed

    Howard, Patricia Kunz; Gisness, Christine M

    : Review of recent evidence with translation to practice for the advanced practice nurse (APN) role is presented using a case study module for "Intravenous Subdissociative-Dose Ketamine Versus Morphine for Analgesia in the Emergency Department: A Randomized Controlled Trial." This prospective, randomized controlled inquiry enrolled 90 patients into 2 groups (ketamine vs. morphine) for patients seeking care in an emergency department with acute pain. Data regarding pain scores were collected at baseline, 15, 30, 60, 90, and 120 min. Study subjects reporting persistent pain could receive rescue analgesia with fentanyl. Initial pain scores for the subjects in each of the groups were comparable (ketamine: 8.6; morphine: 8.5). Pain management for the 2 groups revealed similar average doses (ketamine: 21.8 mg; morphine: 7.7 mg). Although subjects in both groups reported reduction in pain scores at 15 and 30 min, no clinical significance was found. Subjects experienced greater pain relief (pain score = 0) in the ketamine group at 15 min (percentage difference 31%; 95% confidence interval [13, 49]), yet this was not sustained at the 30-min interval. There were no serious or life-threatening adverse effects in either group. This study highlights the important role of the APN in providing quality care, communication about pain management, and related follow-up care.

  12. Morphine overdose

    MedlinePlus

    ... tests Chest x-ray EKG (electrocardiogram, or heart tracing) Fluids through a vein (IV) Laxative Naloxone, a ... Toxicology Data Network. Morphine. Toxnet.nlm.nih.gov Web site. toxnet.nlm.nih.gov/cgi-bin/sis/ ...

  13. Morphine 6 glucuronide stimulates nitric oxide release in mussel neural tissues: evidence for a morphine 6 glucuronide opiate receptor subtype.

    PubMed

    Mantione, K; Zhu, W; Rialas, C; Casares, F; Cadet, P; Franklin, A L; Tonnesen, J; Stefano, G B

    2002-03-01

    We have previously demonstrated that Mytilus edulis pedal ganglia contain opiate alkaloids, i.e., morphine and morphine 6 glucuronide (M6G), as well as mu opiate receptor subtype fragments exhibiting high sequence similarity to those found in mammals. Now we demonstrate that M6G stimulates pedal ganglia constitutive nitric oxide (NO) synthase (cNOS)-derived NO release at identical concentrations and to similar peak levels as morphine. However, the classic opiate antagonist, naloxone, only blocked the ability of morphine to stimulate cNOS-derived NO release and not that of M6G. CTOP, a mu-specific antagonist, blocked the ability of M6G to induce cNOS-derived NO release as well as that of morphine, suggesting that a novel mu opiate receptor was present and selective toward M6G. In examining a receptor displacement analysis, both opiate alkaloids displaced [3H]-dihydromorphine binding to the mu opiate receptor subtype. However, morphine exhibited a twofold higher affinity, again suggesting that a novel mu opiate receptor may be present.

  14. Mitochondrial events responsible for morphine's cardioprotection against ischemia/reperfusion injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Haiyan; Department of Pharmacology, Tianjin Medical University, Tianjin 300070; Huh, Jin

    Morphine may induce cardioprotection by targeting mitochondria, but little is known about the exact mitochondrial events that mediate morphine's protection. We aimed to address the role of the mitochondrial Src tyrosine kinase in morphine's protection. Isolated rat hearts were subjected to 30 min ischemia and 2 h of reperfusion. Morphine was given before the onset of ischemia. Infarct size and troponin I release were measured to evaluate cardiac injury. Oxidative stress was evaluated by measuring mitochondrial protein carbonylation and mitochondrial ROS generation. HL-1 cells were subjected to simulated ischemia/reperfusion and LDH release and mitochondrial membrane potential (ΔΨm) were measured. Morphinemore » reduced infarct size as well as cardiac troponin I release which were aborted by the selective Src tyrosine kinase inhibitors PP2 and Src-I1. Morphine also attenuated LDH release and prevented a loss of ΔΨm at reperfusion in a Src tyrosine kinase dependent manner in HL-1 cells. However, morphine failed to reduce LDH release in HL-1 cells transfected with Src siRNA. Morphine increased mitochondrial Src phosphorylation at reperfusion and this was abrogated by PP2. Morphine attenuated mitochondrial protein carbonylation and mitochondrial superoxide generation at reperfusion through Src tyrosine kinase. The inhibitory effect of morphine on the mitochondrial complex I activity was reversed by PP2. These data suggest that morphine induces cardioprotection by preventing mitochondrial oxidative stress through mitochondrial Src tyrosine kinase. Inhibition of mitochondrial complex I at reperfusion by Src tyrosine kinase may account for the prevention of mitochondrial oxidative stress by morphine. - Highlights: • Morphine induced mito-Src phosphorylation and reduced infarct size in rat hearts. • Morphine failed to reduce I/R-induced LDH release in Src-silencing HL-1 cells. • Morphine prevented mitochondria damage caused by I/R through Src. • Morphine

  15. Inhibition of Histone Deacetylases Attenuates Morphine Tolerance and Restores MOR Expression in the DRG of BCP Rats.

    PubMed

    He, Xiao-Tao; Zhou, Kai-Xiang; Zhao, Wen-Jun; Zhang, Chen; Deng, Jian-Ping; Chen, Fa-Ming; Gu, Ze-Xu; Li, Yun-Qing; Dong, Yu-Lin

    2018-01-01

    The easily developed morphine tolerance in bone cancer pain (BCP) significantly hindered its clinical use. Increasing evidence suggests that histone deacetylases (HDACs) regulate analgesic tolerance subsequent to continuous opioid exposure. However, whether HDACs contribute to morphine tolerance in the pathogenesis of BCP is still unknown. In the current study, we explored the possible engagement of HDACs in morphine tolerance during the pathogenesis of BCP. After intra-tibia tumor cell inoculation (TCI), we found that the increased expression of HDACs was negatively correlated with the decreased expression of MOR in the DRG following TCI. The paw withdrawal threshold (PWT) and percentage maximum possible effects (MPEs) decreased rapidly in TCI rats when morphine was used alone. In contrast, the concomitant use of SAHA and morphine significantly elevated the PWT and MPEs of TCI rats compared to morphine alone. Additionally, we found that SAHA administration significantly elevated MOR expression in the DRG of TCI rats with or without morphine treatment. Moreover, the TCI-induced increase in the co-expression of MOR and HDAC1 in neurons was significantly decreased after SAHA administration. These results suggest that HDACs are correlated with the downregulation of MOR in the DRG during the pathogenesis of BCP. Inhibition of HDACs using SAHA can be used to attenuate morphine tolerance in BCP.

  16. Subcutaneous morphine infusion by syringe driver for terminally ill patients.

    PubMed

    Cools, H J; Berkhout, A M; De Bock, G H

    1996-05-01

    The study aimed to find whether subcutaneous morphine administration by syringe driver for terminally ill patients in a Dutch nursing home led to higher morphine doses and earlier death than routine morphine administration. The data comprised the files of all patients dying over a 2 year period in a 355-bed nursing home in Delft in the Netherlands. Thirty-eight per cent of the patients had been given morphine, 29% by continuous subcutaneous syringe driver. In comparing the patients given morphine with and without a syringe driver no differences emerged in mean age, sex, length of admission, type of ward, diagnosis, duration of morphine administration and mean dose. The data indicate that subcutaneous morphine administration by syringe driver decreases dose frequency problems and improves the control of pain and other symptoms in the last week before death. There was no evidence that administration of morphine in this way shortens survival.

  17. Ketamine added to morphine or hydromorphone patient-controlled analgesia for acute postoperative pain in adults: a systematic review and meta-analysis of randomized trials.

    PubMed

    Wang, Li; Johnston, Bradley; Kaushal, Alka; Cheng, Davy; Zhu, Fang; Martin, Janet

    2016-03-01

    To determine whether ketamine added to morphine or hydromorphone patient-controlled analgesia (PCA) provides clinically relevant reductions in postoperative pain, opioid requirements, and adverse events when compared with morphine or hydromorphone PCA in adults undergoing surgery. We systematically searched six databases up to June 2, 2015 for randomized controlled trials (RCTs) comparing ketamine plus morphine/hydromorphone PCA vs morphine/hydromorphone PCA for postoperative pain in adults. Thirty-six RCTs including 2,502 patients proved eligible, and 22 of these were at low risk of bias. The addition of ketamine to morphine/hydromorphone PCA decreased postoperative pain intensity at six to 72 hr when measured at rest (weighted mean difference [WMD] on a 10-cm visual analogue scale ranged from -0.4 to -1.3 cm) and during mobilization (WMD ranged from -0.4 to -0.5 cm). Adjunctive ketamine also significantly reduced cumulative morphine consumption at 24-72 hr by approximately 5-20 mg. Predefined subgroup analyses and meta-regression did not detect significant differences across subgroups, including a dose-response relationship. There was no significant difference in patient satisfaction scores at 24 and 48 hr. Nevertheless, the addition of ketamine to morphine/hydromorphone PCA significantly reduced postoperative nausea and vomiting (relative risk, 0.71; 95% confidence interval [CI], 0.60 to 0.85; absolute risk reduction, 8.9%; 95% CI, 4.6 to 12.2). Significant effects on other adverse events (e.g., hallucinations, vivid dreams) were not detected, though only a few studies reported on them. Adding ketamine to morphine/hydromorphone PCA provides a small improvement in postoperative analgesia while reducing opioid requirements. Adjunctive ketamine also reduces postoperative nausea and vomiting without a detected increase in other adverse effects; however, adverse events were probably underreported.

  18. Inhibiting social support from massage-like stroking increases morphine dependence.

    PubMed

    Bates, M L Shawn; Emery, Michael A; Wellman, Paul J; Eitan, Shoshana

    2017-12-01

    Our previous studies showed that altering solely the drug experience of the cage mates with which rodents are housed affects the development of morphine dependence. In this study, we used designer receptors exclusively activated by designer drugs to artificially increase or decrease the activity of peripheral dorsal root ganglia sensory neurons expressing the G-protein-coupled receptor MRGPRB4. This is because sensory MRGPRB4-expressing neurons were shown to specifically detect the sensation of massage-like stroking resulting from social grooming, which is an important affiliative social behavior in the rodent. Blocking the sensation of social grooming in morphine-treated mice housed with drug-naive mice (i.e. morphine cage mates) significantly increased the display of jumping behavior in morphine-withdrawn animals. Activating the sensation of social grooming in morphine-treated animals housed solely with other morphine-treated animals (i.e. morphine only) did not significantly alter the display of jumping behavior in morphine-withdrawn animals. Repetitive jumping behaviors have been shown to correlate with morphine dependence. Thus, this study showed a role of social grooming in the protective effect of being housed with drug-naive mice on the development of morphine dependence. It further confirms a role of social support in the development of substance use problems.

  19. Acupuncture at SI5 attenuates morphine seeking behavior after extinction.

    PubMed

    Lee, Bong Hyo; Ma, Jeong Hun; In, Sunghyun; Kim, Hee Young; Yoon, Seong Shoon; Jang, Eun Young; Yang, Chae Ha

    2012-10-31

    Our previous studies have shown that acupuncture attenuates morphine self-administration and sensitization behavior as well as withdrawal signs. The present study was designed to investigate the role of acupuncture in the reinstatement of morphine seeking. Male Sprague-Dawley rats weighing 270-300 g were subjected to intravenous catheterization after food training. The animals were trained to self-administer morphine (1.0mg/kg, 3 weeks), followed by extinction (1 week). Extinction conditions were introduced by substituting saline for morphine. The rats were then tested for reinstatement of morphine self-administration by a priming injection of morphine (0.25mg/kg). To see whether acupuncture can reduce morphine reinstatement, acupuncture was performed at SI5 or LI5 for 1 min immediately before a morphine injection. To further test the involvement of gamma aminobutyric acid (GABA) receptors in acupuncture effects, GABA receptor antagonists were injected before acupuncture. In the present results, acupuncture at SI5, but not at control acupoint LI5 attenuated the reinstatement of morphine seeking behavior, which was blocked by the GABA receptor antagonists. It suggests that acupuncture can reduce the reinstatement of morphine seeking, possibly due to the mediation of GABA receptor system. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Do Diuretics have Antinociceptive Actions: Studies of Spironolactone, Eplerenone, Furosemide and Chlorothiazide, Individually and with Oxycodone and Morphine.

    PubMed

    Jokinen, Viljami; Lilius, Tuomas; Laitila, Jouko; Niemi, Mikko; Kambur, Oleg; Kalso, Eija; Rauhala, Pekka

    2017-01-01

    Spironolactone, eplerenone, chlorothiazide and furosemide are diuretics that have been suggested to have antinociceptive properties, for example via mineralocorticoid receptor antagonism. In co-administration, diuretics might enhance the antinociceptive effect of opioids via pharmacodynamic and pharmacokinetic mechanisms. Effects of spironolactone (100 mg/kg, i.p.), eplerenone (100 mg/kg, i.p.), chlorothiazide (50 mg/kg, i.p.) and furosemide (100 mg/kg, i.p.) were studied on acute oxycodone (0.75 mg/kg, s.c.)- and morphine (3 mg/kg, s.c.)-induced antinociception using tail-flick and hot plate tests in male Sprague Dawley rats. The diuretics were administered 30 min. before the opioids, and behavioural tests were performed 30 and 90 min. after the opioids. Concentrations of oxycodone, morphine and their major metabolites in plasma and brain were quantified by mass spectrometry. In the hot plate test at 30 and 90 min., spironolactone significantly enhanced the antinociceptive effect (% of maximum possible effect) of oxycodone from 10% to 78% and from 0% to 50%, respectively, and that of morphine from 12% to 73% and from 4% to 83%, respectively. The brain oxycodone and morphine concentrations were significantly increased at 30 min. (oxycodone, 46%) and at 90 min. (morphine, 190%). We did not detect any independent antinociceptive effects with the diuretics. Eplerenone and chlorothiazide did not enhance the antinociceptive effect of either opioid. The results suggest that spironolactone enhances the antinociceptive effect of both oxycodone and morphine by increasing their concentrations in the central nervous system. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  1. Slow-release oral morphine for opioid maintenance treatment: a systematic review

    PubMed Central

    Jegu, Jeremie; Gallini, Adeline; Soler, Pauline; Montastruc, Jean-Louis; Lapeyre-Mestre, Maryse

    2011-01-01

    This review article summarizes the results of all available clinical trials considering the use of slow-release oral morphine (SROM) for opioid maintenance treatment (OMT). All studies published up to October 2010 and assessing SROM for OMT in adult patients are included. Three independent reviewers assessed the selected articles using a standardized checklist. Study design, study length and number of subjects included were recorded. Data about retention rate (proportion of participants remaining under maintenance treatment at the end of the study), quality of life, withdrawal symptoms, craving, additional drug consumption, driving capacity and adverse events were collected. We identified 13 articles corresponding to nine clinical trials considering the use of SROM for OMT. Among them, only one was a randomized trial and one was a controlled not randomized trial. All other studies were uncontrolled. Retention rates were good (from 80.6 to 95%) with SROM maintenance, but similar retention rates were obtained with methadone. Most of the studies showed that quality of life, withdrawal symptoms, craving and additional drug consumption improved with SROM. However, there was no comparison with other maintenance drugs. As most of the studies assessing SROM efficacy were uncontrolled, there is no definite evidence that SROM is an effective alternative to methadone for OMT. PMID:21265874

  2. Agmatine Prevents Adaptation of the Hippocampal Glutamate System in Chronic Morphine-Treated Rats.

    PubMed

    Wang, Xiao-Fei; Zhao, Tai-Yun; Su, Rui-Bin; Wu, Ning; Li, Jin

    2016-12-01

    Chronic exposure to opioids induces adaptation of glutamate neurotransmission, which plays a crucial role in addiction. Our previous studies revealed that agmatine attenuates opioid addiction and prevents the adaptation of glutamate neurotransmission in the nucleus accumbens of chronic morphine-treated rats. The hippocampus is important for drug addiction; however, whether adaptation of glutamate neurotransmission is modulated by agmatine in the hippocampus remains unknown. Here, we found that continuous pretreatment of rats with ascending doses of morphine for 5 days resulted in an increase in the hippocampal extracellular glutamate level induced by naloxone (2 mg/kg, i.p.) precipitation. Agmatine (20 mg/kg, s.c.) administered concurrently with morphine for 5 days attenuated the elevation of extracellular glutamate levels induced by naloxone precipitation. Furthermore, in the hippocampal synaptosome model, agmatine decreased the release and increased the uptake of glutamate in synaptosomes from chronic morphine-treated rats, which might contribute to the reduced elevation of glutamate levels induced by agmatine. We also found that expression of the hippocampal NR2B subunit, rather than the NR1 subunit, of N-methyl-D-aspartate receptors (NMDARs) was down-regulated after chronic morphine treatment, and agmatine inhibited this reduction. Taken together, agmatine prevented the adaptation of the hippocampal glutamate system caused by chronic exposure to morphine, including modulating extracellular glutamate concentration and NMDAR expression, which might be one of the mechanisms underlying the attenuation of opioid addiction by agmatine.

  3. Opiate and non-opiate aspects of morphine induced seizures.

    PubMed

    Frenk, H; Liban, A; Balamuth, R; Urca, G

    1982-12-16

    The intraperitoneal administration of morphine hydrochloride at doses of 300 mg/kg produced analgesia, catalepsy, and electrographic spiking in rats that developed into electrographic seizure patterns after approximately 2.5 h. Whereas naltrexone (12 mg/kg) reversed analgesia and catalepsy, and diminished electrographic spiking, it precipitated electrographic seizure activity similar to that observed following intraperitoneal morphine alone. These seizures were accompanied by behavioral convulsions. No tolerance to these seizures developed with repeated paired administration of morphine and naltrexone or in morphine tolerant rats, but rather potentiation was observed. The epileptogenic effects were found to be potentiated in amygdaloid kindled rats, as well. It was concluded that morphine at these doses activates two different epileptogenic mechanisms, one mediated by opiate receptors, the other not. The possibility of the simultaneous activation of a morphine sensitive anticonvulsant mechanism is discussed.

  4. Effect of daily morphine administration and its discontinuation on delay discounting of food in rhesus monkeys

    PubMed Central

    Maguire, David R; Gerak, Lisa R; France, Charles P

    2015-01-01

    Opioid abusers discount delayed reinforcers more rapidly than non-users; however, it is unclear whether chronic drug administration or its discontinuation impact discounting. This study examined daily morphine administration and its discontinuation on delay discounting of food in rhesus monkeys. Responding on one lever delivered 1 food pellet immediately; responding on another lever delivered 2 food pellets either immediately or after a delay (30–120 sec) that increased within the session. Monkeys (n=3) responded for the large reinforcer when both reinforcers were delivered immediately and more for the smaller, immediately available reinforcer as delay to delivery of the large reinforcer increased. When administered acutely, morphine (0.032–5.6 mg/kg) increased trial omissions and had variable effects on choice, with small doses decreasing and large doses increasing choice of the large delayed reinforcer. Chronic morphine administration (0.1 mg/kg/day to 3.2 mg/kg twice daily) reduced choice of the large delayed reinforcer in two monkeys while increasing choice in a third monkey. Despite the development of tolerance to some effects (i.e., rightward shifts in dose-effect curves for the number of trials omitted) and evidence of mild opioid dependence (e.g., decrease in the number of trials completed as well as body weight), discontinuation of treatment did not appear to systematically impact discounting. Overall, these results suggest that repeated opioid administration causes persistent effects on choice under a delay discounting procedure; however, differences in the direction of effect among individuals suggest factors other than, or in addition to, changes in discounting might play a role. PMID:26397762

  5. Oral Morphine Use in South India: A Population-Based Study

    PubMed Central

    Karim, Safiya; Booth, Christopher M.

    2017-01-01

    Purpose Access to opioids for pain control is recognized as an urgent issue in low- and middle-income countries. Here we report temporal and regional trends in morphine use in Kerala, India. Methods Oral morphine use data for the State of Kerala (2012 to 2015) was used to describe temporal trends, regional variation, and provider characteristics. Total morphine use was calculated for each district of Kerala to derive an annual per capita use rate (milligrams per capita). Each provider was classified as government, private, nongovernment organization (NGO), or NGO partnership. Results Oral morphine use for Kerala was 1.32 mg/capita and increased over the study period 27% (from 1.23 mg/capita to 1.56 mg/capita). There was substantial variation in morphine use across districts (range, 0.49 mg/capita to 2.97 mg/capita; six-fold difference). This variation increased over time (19-fold difference in 2015). In 2015, 31% of morphine providers (51 of 167) were government institutions; they delivered 48% of total morphine in Kerala. Corresponding data for other providers are private institutions, 23% of centers and 13% of morphine; NGOs, 41% of centers and 34% of morphine; and NGO partnerships, 5% of centers and 4% of morphine. From 2012 to 2015, the total number of centers increased by 35%, from 124 to 167. Conclusion Oral morphine use has increased over time in Kerala but remains substantially lower than estimated need. There is significant geographic variation of use. Efforts are needed to improve palliative care in Kerala and to reduce regional disparities in access to opioids. PMID:29244992

  6. Rapid, transient, and dose-dependent expression of Hsp70 messenger RNA in the rat brain after morphine treatment

    PubMed Central

    Ammon-Treiber, Susanne; Grecksch, Gisela; Stumm, Ralf; Riechert, Uta; Tischmeyer, Helga; Reichenauer, Anke; Höllt, Volker

    2004-01-01

    Induction of Hsp70 in the brain has been reported after intake of drugs of abuse like amphetamine and lysergic acid diethylamide. In this investigation, gene expression of Hsp70 and other heat shock genes in the rat brain was studied in response to morphine. Twenty milligrams per kilogram morphine intraperitoneally resulted in a marked induction of Hsp70 messenger RNA (mRNA) expression in the frontal cortex with a maximum increase of 13.2-fold after 2 hours. A moderate increase of Hsp27 mRNA expression (6.7-fold) could be observed after 4 hours, whereas mRNA expression of Hsp90 and of the constitutive Hsc70 did not exceed a mean factor of 1.8-fold during the 24 hours interval. The increase in Hsp70 mRNA was dose dependent, showing a significant elevation after doses ranging from 10 to 50 mg/kg morphine. In situ hybridization revealed enhanced Hsp70 mRNA expression mainly in cortical areas, in the hippocampus, in the paraventricular and supraoptic nuclei of the hypothalamus, in the locus coeruleus, as well in the pineal body. The double in situ hybridization technique revealed increased Hsp70 mRNA expression mainly in VGLUT1-positive neurons and to a lesser extent in olig1-positive oligodendroglia. Immunohistochemistry revealed a marked increase of Hsp70 protein in neuronal cells and blood vessels after 12 hours. In contrast to animal experiments, morphine did not increase Hsp70 mRNA expression in vitro in μ-opioid receptor (MOR1)–expressing human embryonic kidney 293 cells, suggesting no direct MOR1-mediated cellular effect. To exclude a body temperature–related morphine effect on Hsp70 mRNA expression, the temperature was recorded. Five to 20 mg/kg resulted in hyperthermia (maximum 40.6°), whereas a high dose (50 mg/kg) that produced the highest mRNA induction, showed a clear hypothermia (minimum 37.2°C). These findings argue against the possibility that Hsp70 induction by morphine is caused by its effect on body temperature. It may be speculated that

  7. [Perioperative managements of the patients with cancer-pain receiving morphine].

    PubMed

    Matsuda, M; Murakawa, K; Noma, K; Uemura, Y; Maeda, S; Tashiro, C

    1998-09-01

    In the patients receiving morphine preoperatively, it is preoperatively important to avoid withdrawal symptoms postoperatively and to suppress postoperative pain and to maintain an appropriate anesthetic depth during the operation. We experienced six patients who had been under preoperative pain control with oral and/or epidural morphine and undergone palliative operation for their cancer pain. Four of the patients were preoperatively administered with oral morphine ranging from 30 to 270 mg.day-1. One patient was given epidural morphine 10 mg.day-1. Another was with morphine 1800 mg.day-1 orally and 50 mg.day-1 epiduraly. In all cases, general anesthesia was maintained with inhalation anesthetics. Anesthetic supplementation and postoperative pain management were performed with continuous i.v. infusion of morphine (half dosage of daily oral dosage), or subcutaneous injection (one sixth dosage of daily oral morphine) while preoperative epidural morphine was continued throughout the perioperative period. We were able to manage these patients well and none of them developed withdrawal symptom or increased postoperative pain.

  8. Is pre-emptive administration of ketamine a significant adjunction to intravenous morphine analgesia for controlling postoperative pain? A randomized, double-blind, placebo-controlled clinical trial.

    PubMed

    Fiorelli, Alfonso; Mazzella, Antonio; Passavanti, Beatrice; Sansone, Pasquale; Chiodini, Paolo; Iannotti, Mario; Aurilio, Caterina; Santini, Mario; Pace, Maria Caterina

    2015-09-01

    To evaluate if the pre-emptive administration of ketamine would potentiate the effect of intravenous morphine analgesia in the management of post-thoracotomy pain. This was a unicentre, double-blind, placebo-controlled, parallel-group, prospective study. Patients were randomly assigned to receive 1 mg/kg ketamine (ketamine group) or an equivalent dose of normal saline (placebo group) before thoracotomy in 1:1 ratio. All patients received postoperatively intravenous morphine administration as additional analgesic regimen. Primary end-point was the pain relief measured with Visual Analogue Scale at rest. The secondary end-points were the reduction of inflammatory response expressed by plasma C-reactive protein levels, the morphine consumption and the rate of side effects. The measurements were carried out 6, 12, 24, 36 and 48 hours postoperatively. A total of 75 patients were randomized of whom 38 were allocated to ketamine group and 37 to placebo group. Baseline characteristics were comparable. Ketamine compared with placebo group showed a significant reduction of pain scores (P = 0.01), C-reactive protein (P < 0.001) and morphine consumption (P < 0.001). No acute psychological side effects related to the use of ketamine were registered. The administration of ketamine before surgery may be an effective adjunct to intravenous morphine analgesia in acute post-thoracotomy pain management. In ketamine group, satisfaction of pain relief was significantly higher with a significant reduction of inflammatory response and morphine consumption compared with placebo group. Our results, if confirmed by larger studies, may be of clinical relevance in situations where epidural analgesia or other analgesic procedures different from systemic opioid analgesia are unavailable or contraindicated. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  9. Postoperative morphine requirements of free TRAM and DIEP flaps.

    PubMed

    Kroll, S S; Sharma, S; Koutz, C; Langstein, H N; Evans GRD; Robb, G L; Chang, D W; Reece, G P

    2001-02-01

    In a review of the charts of 158 patients who had undergone breast reconstruction with free transverse rectus abdominis musculocutaneous (TRAM) or deep inferior epigastric perforator (DIEP) flaps and who were treated for postoperative pain with morphine administered by a patient-controlled analgesia pump, the total dose of morphine administered during hospitalization for the flap transfer was measured. Patients whose treatment was supplemented by other intravenous narcotics were excluded from the study. The mean amount of morphine per kilogram required by patients who had reconstruction with DIEP flaps (0.74 mg/kg, n = 26) was found to be significantly less than the amount required by patients who had reconstruction with TRAM flaps (1.65 mg/kg; n = 132; p < 0.001). DIEP flap patients also remained in the hospital less time (mean, 4.73 days) than did free TRAM flap patients (mean, 5.21 days; p = 0.026), but the difference was less than one full hospital day. It was concluded that the use of the DIEP flap does reduce the patient requirement for postoperative pain medication and therefore presumably reduces postoperative pain. It may also slightly shorten hospital stay.

  10. Importance of GluA1 Subunit-Containing AMPA Glutamate Receptors for Morphine State-Dependency

    PubMed Central

    Aitta-aho, Teemu; Möykkynen, Tommi P.; Panhelainen, Anne E.; Vekovischeva, Olga Yu.; Bäckström, Pia; Korpi, Esa R.

    2012-01-01

    In state-dependency, information retrieval is most efficient when the animal is in the same state as it was during the information acquisition. State-dependency has been implicated in a variety of learning and memory processes, but its mechanisms remain to be resolved. Here, mice deficient in AMPA-type glutamate receptor GluA1 subunits were first conditioned to morphine (10 or 20 mg/kg s.c. during eight sessions over four days) using an unbiased procedure, followed by testing for conditioned place preference at morphine states that were the same as or different from the one the mice were conditioned to. In GluA1 wildtype littermate mice the same-state morphine dose produced the greatest expression of place preference, while in the knockout mice no place preference was then detected. Both wildtype and knockout mice expressed moderate morphine-induced place preference when not at the morphine state (saline treatment at the test); in this case, place preference was weaker than that in the same-state test in wildtype mice. No correlation between place preference scores and locomotor activity during testing was found. Additionally, as compared to the controls, the knockout mice showed unchanged sensitization to morphine, morphine drug discrimination and brain regional μ-opioid receptor signal transduction at the G-protein level. However, the knockout mice failed to show increased AMPA/NMDA receptor current ratios in the ventral tegmental area dopamine neurons of midbrain slices after a single injection of morphine (10 mg/kg, s.c., sliced prepared 24 h afterwards), in contrast to the wildtype mice. The results indicate impaired drug-induced state-dependency in GluA1 knockout mice, correlating with impaired opioid-induced glutamate receptor neuroplasticity. PMID:22675452

  11. Stress antagonizes morphine-induced analgesia in rats

    NASA Technical Reports Server (NTRS)

    Vernikos, J.; Shannon, L.; Heybach, J. P.

    1981-01-01

    Exposure to restraint stress resulted in antagonism of the analgesic effect of administered morphine in adult male rats. This antagonism of morphine-induced analgesia by restraint stress was not affected by adrenalectomy one day prior to testing, suggesting that stress-induced secretion of corticosteroids is not critical to this antagonism. In addition, parenteral administration of exogenous adrenocorticotropin (ACTH) mimicked the effect of stress in antagonizing morphine's analgesic efficacy. The hypothesis that ACTH is an endogenous opiate antagonist involved in modulating pain sensitivity is supported.

  12. Pharmacokinetic evaluation of a sprinkle-dose regimen of a once-daily, extended-release morphine formulation.

    PubMed

    Eliot, Lise; Butler, Jackie; Devane, John; Loewen, Gordon

    2002-02-01

    Morphine sulfate extended-release (MSER) uses a drug-delivery technology that allows once-daily dosing. It is possible to open the MSER capsule and sprinkle the contents on soft food, a potentially useful alternative to the intact capsule in patients who have difficulty swallowing. This study compared the bioavailability of MSER and its metabolites morphine-3-glucuronide and morphine-6-glucuronide after administration of MSER in a sprinkle-dose regimen relative to an intact capsule swallowed whole. This was a randomized, open-label, single-dose, crossover study, with a 7-day washout period between the 2 dosing days. Healthy volunteers were randomized to receive an intact 60-mg MSER capsule swallowed whole or the contents of a 60-mg MSER capsule sprinkled on applesauce. Blood samples were collected and analyzed for concentrations of morphine and its active glucuronide metabolites. Pharmacokinetic (PK) parameters were calculated and bioequivalence assessed. Bioequivalence was concluded if the 90% CIs of the ratio of log-transformed values for maximum concentration (Cmax) and area under the plasma concentration-time curve (AUC) were within 80% to 125%. Of 30 subjects enrolled, 28 completed the study and were eligible for PK evaluation. Two subjects were withdrawn for reasons unrelated to study treatment. The plasma concentration-time profiles of morphine and its metabolites were superimposable after administration of the 2 regimens. Cmax and total systemic exposure-based on AUC from time 0 to the last quantifiable concentration (AUC(last)) and AUC from time 0 to infinity (AUC(infinity))-were comparable between treatments. The 90% CIs for morphine AUC(last), AUC, and Cmax ratios were 98 to 109, 96 to 106, and 95 to 117, respectively. Similar 90% CIs were obtained for the morphine metabolites. In this study in healthy volunteers, sprinkling the entire contents of an MSER capsule onto applesauce and swallowing without chewing was bioequivalent to swallowing an intact

  13. The effect of various morphine weaning regimens on the sequelae of opioid tolerance involving physical dependency, anxiety and hippocampus cell neurodegeneration in rats.

    PubMed

    Motaghinejad, Majid; Karimian, Seyed Morteza; Motaghinejad, Ozra; Shabab, Behnaz; Asadighaleni, Majid; Fatima, Sulail

    2015-06-01

    Chronic consumption of morphine induces physical dependency, anxiety, and neurodegeneration. In this study, morphine on its own has been used for the management of morphine-induced dependency, oxidative stress, and apoptosis. Forty-eight male rats were randomly divided into six groups. Rats in groups 1-5 were made morphine dependent by an increasing manner of morphine for 7 days (15-45 mg/kg). For the next 14 days, morphine was administered using the following regimen: (i) once daily 45 mg/kg (positive controls), (ii) the same dose at additional intervals (6 h longer than the previous intervals each time), (iii) 45 mg/kg of morphine at irregular intervals like of 12, 24, 36 h, (iv) decreasing dose once daily (every time 2.5 mg/kg less than the former dosage). Group 5 received 45 mg/kg of morphine and 10 mg/kg of SOD mimetic agent (M40401) injection per day. Group 6 (negative control) received saline solution only. On day 22, all animals received naloxone (3 mg/kg) and their Total Withdrawal Index (TWI) and blood cortisol levels were measured. After drug treatment, hippocampus cells were isolated, and oxidative, antioxidative, and apoptotic factors were evaluated. Various regimens of morphine reduced TWI, cortisol levels, Bax activity, caspase-3, caspase-9, TNF-α, and IL-1β and lipid peroxidation. In all treatment groups, GSH level, superoxide dismutase, glutathione peroxidase, and Bcl-2 activity were significantly increased. Furthermore, SOD mimetic agent c diminished morphine effect on SOD activity. Thus, varying the dosage regimen of morphine can reduce the severity of morphine-induced dependency and neurodegeneration. © 2015 Société Française de Pharmacologie et de Thérapeutique.

  14. Morphine-induced conditioned place preference in rhesus monkeys: Resistance to inactivation of insula and extinction.

    PubMed

    Wu, XuJun; Zhao, Ning; Bai, Fan; Li, ChuanYu; Liu, CiRong; Wei, JingKuan; Zong, Wei; Yang, LiXin; Ryabinin, Andrey E; Ma, YuanYe; Wang, JianHong

    2016-05-01

    Drug addicts experience strong craving episodes in response to drug-associated cues. Attenuating these responses using pharmacological or behavioral approaches could aid recovery from addiction. Cue-induced drug seeking can be modeled using the conditioned place preference procedure (CPP). Our previous work showed that conditioned place preference (CPP) can be induced by administration of increasing doses of morphine in rhesus monkeys. Here, we investigated whether expression of morphine-induced CPP can be attenuated by inhibiting activity of insular cortex or by repeated unreinforced exposures to the CPP test. The insula has been demonstrated to be involved in addiction to several drugs of abuse. To test its role in morphine CPP, bilateral cannulae were implanted into the insula in seven adult monkeys. The CPP was established using a biased apparatus by intramuscular injections of morphine at increasing doses (1.5, 3.0 and 4.5mg/kg) for each monkey. After the monkeys established morphine CPP, their insulae were reversibly inactivated by bilateral microinjection with 5% lidocaine (40μl) prior to the post-conditioning test (expression) of CPP using a within-subject design. The microinjections of lidocaine failed to affect CPP expression when compared to saline injections. We subsequently investigated morphine-associated memory during six episodes of CPP tests performed in these monkeys over the following 75.0±0.2months. While the preference score showed a declining trend with repeated testing, morphine-induced CPP was maintained even on the last test performed at 75months post-conditioning. This observation indicated strong resistance of morphine-induced memories to extinction in rhesus monkeys. Although these data do not confirm involvement of insula in morphine-induced CPP, our observation that drug-associated memories can be maintained over six drug-free years following initial experience with morphine has important implications for treatment of drug addiction

  15. Synthetic substances with morphine-like effect

    PubMed Central

    Braenden, Olav J.; Eddy, Nathan B.; Halbach, H.

    1955-01-01

    For morphine-, morphinan-, pethidine-, methadone-, and dithienyl-butenylamine groups of analgesic compounds a systematic survey is given of how analgesic activity is quantitatively affected by alteration of the chemical constitution. Features common to the structural formulae of substances with morphine-like analgesic effect are pointed out. ImagesFIG. 1FIG. 1(Contd.) PMID:13284565

  16. The proteins interacting with C-terminal of μ receptor are identified by bacterial two-hybrid system from brain cDNA library in morphine-dependent rats.

    PubMed

    Zhou, Peilan; Jiang, Jiebing; Dong, Zhaoqi; Yan, Hui; You, Zhendong; Su, Ruibin; Gong, Zehui

    2015-12-15

    Opioid addiction is associated with long-term adaptive changes in the brain that involve protein expression. The carboxyl-terminal of the μ opioid receptor (MOR-C) is important for receptor signal transduction under opioid treatment. However, the proteins that interact with MOR-C after chronic morphine exposure remain unknown. The brain cDNA library of chronic morphine treatment rats was screened using rat MOR-C to investigate the regulator of opioids dependence in the present study. The brain cDNA library from chronic morphine-dependent rats was constructed using the SMART (Switching Mechanism At 5' end of RNA Transcript) technique. Bacterial two-hybrid system was used to screening the rat MOR-C interacting proteins from the cDNA library. RT-qPCR and immunoblotting were used to determine the variation of MOR-C interacting proteins in rat brain after chronic morphine treatment. Column overlay assays, immunocytochemistry and coimmunoprecipitation were used to demonstrate the interaction of MOR-C and p75NTR-associated cell death executor (NADE). 21 positive proteins, including 19 known proteins were screened to interact with rat MOR-C. Expression of several of these proteins was altered in specific rat brain regions after chronic morphine treatment. Among these proteins, NADE was confirmed to interact with rat MOR-C by in vitro protein-protein binding and coimmunoprecipitation in Chinese hamster ovary (CHO) cells and rat brain with or without chronic morphine treatment. Understanding the rat MOR-C interacting proteins and the proteins variation under chronic morphine treatment may be critical for determining the pathophysiological basis of opioid tolerance and addiction. Copyright © 2015. Published by Elsevier Inc.

  17. Differential Changes in Expression of Stress- and Metabolic-Related Neuropeptides in the Rat Hypothalamus during Morphine Dependence and Withdrawal

    PubMed Central

    Núnez, Cristina; Zelei, Edina; Polyák, Ágnes; Milanés, M. Victoria

    2013-01-01

    Chronic morphine treatment and naloxone precipitated morphine withdrawal activates stress-related brain circuit and results in significant changes in food intake, body weight gain and energy metabolism. The present study aimed to reveal hypothalamic mechanisms underlying these effects. Adult male rats were made dependent on morphine by subcutaneous implantation of constant release drug pellets. Pair feeding revealed significantly smaller weight loss of morphine treated rats compared to placebo implanted animals whose food consumption was limited to that eaten by morphine implanted pairs. These results suggest reduced energy expenditure of morphine-treated animals. Chronic morphine exposure or pair feeding did not significantly affect hypothalamic expression of selected stress- and metabolic related neuropeptides - corticotropin-releasing hormone (CRH), urocortin 2 (UCN2) and proopiomelanocortin (POMC) compared to placebo implanted and pair fed animals. Naloxone precipitated morphine withdrawal resulted in a dramatic weight loss starting as early as 15–30 min after naloxone injection and increased adrenocorticotrophic hormone, prolactin and corticosterone plasma levels in morphine dependent rats. Using real-time quantitative PCR to monitor the time course of relative expression of neuropeptide mRNAs in the hypothalamus we found elevated CRH and UCN2 mRNA and dramatically reduced POMC expression. Neuropeptide Y (NPY) and arginine vasopressin (AVP) mRNA levels were transiently increased during opiate withdrawal. These data highlight that morphine withdrawal differentially affects expression of stress- and metabolic-related neuropeptides in the rat hypothalamus, while relative mRNA levels of these neuropeptides remain unchanged either in rats chronically treated with morphine or in their pair-fed controls. PMID:23805290

  18. Activation of serotonin 5-HT2C receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in morphine-dependent mice

    PubMed Central

    Zhang, Gongliang; Wu, Xian; Zhang, Yong-Mei; Liu, Huan; Jiang, Qin; Pang, Gang; Tao, Xinrong; Dong, Liuyi; Stackman, Robert W.

    2015-01-01

    Opioid abuse and dependence have evolved into an international epidemic as a significant clinical and social problem with devastating consequences. Repeated exposure to the opioid, for example morphine, can induce profound, long-lasting behavioral sensitization and physical dependence, which are thought to reflect neuroplasticity in neural circuitry. Central serotonin (5-HT) neurotransmission participates in the development of dependence on and the expression of withdrawal from morphine. Serotonin 5-HT2C receptor (5-HT2CR) agonists suppress psychostimulant nicotine or cocaine-induced behavioral sensitization and drug-seeking behavior; however, the impact of 5-HT2CR agonists on behaviors relevant to opioid abuse and dependence has not been reported. In the present study, the effects of 5-HT2CR activation on the behavioral sensitization and naloxone-precipitated withdrawal symptoms were examined in mice underwent repeated exposure to morphine. Male mice received morphine (10 mg/kg, s.c.) to develop behavioral sensitization. Lorcaserin, a 5-HT2CR agonist, prevented the induction and expression, but not the development, of morphine-induced behavioral sensitization. Another cohort of mice received increasing doses of morphine over a 7-day period to induce morphine-dependence. Pretreatment of lorcaserin, or the positive control clonidine (an alpha 2-adrenoceptor agonist), ameliorated the naloxone-precipitated withdrawal symptoms. SB 242084, a selective 5-HT2CR antagonist, prevented the lorcaserin-mediated suppression of behavioral sensitization and withdrawal. Chronic morphine treatment was associated with an increase in the expression of 5-HT2CR protein in the ventral tegmental area, locus coeruleus and nucleus accumbens. These findings suggest that 5-HT2CR can modulate behavioral sensitization and withdrawal in morphine-dependent mice, and the activation of 5-HT2CR may represent a new avenue for the treatment of opioid addiction. PMID:26432939

  19. Alcohol-induced sedation and synergistic interactions between alcohol and morphine: A key mechanistic role for Toll-Like Receptors and MyD88-dependent signalling

    PubMed Central

    Corrigan, Frances; Wu, Yue; Tuke, Jonathan; Coller, Janet K.; Rice, Kenner C.; Diener, Kerrilyn R.; Hayball, John D.; Watkins, Linda R.; Somogyi, Andrew A.; Hutchinson, Mark R.

    2015-01-01

    Increasing evidence demonstrates induction of proinflammatory Toll-like receptor (TLR) 2 and TLR4 signaling by morphine and, TLR4 signaling by alcohol; thus indicating a common site of drug action and a potential novel innate immune-dependent hypothesis for opioid and alcohol drug interactions. Hence, the current study aimed to assess the role of TLR2, TLR4, MyD88 (as a critical TLR-signalling participant), NF-κB, Interleukin-1β (IL-1β; as a downstream proinflammatory effector molecule) and the µ opioid receptor (MOR; as a classical site for morphine action) in acute alcohol-induced sedation (4.5 g/kg) and alcohol (2.5 g/kg) interaction with morphine (5 mg/kg) by assessing the loss of righting reflex (LORR) as a measure of sedation. Wild-type male Balb/c mice and matched genetically-deficient TLR2, TLR4, and MyD88 strains were utilized, together with pharmacological manipulation of MOR, NF-κB, TLR4 and Interleukin-1β. Alcohol induced significant LORR in wild-type mice; this was halved by MyD88 and TLR4 deficiency, and surprisingly nearly completely eliminated by TLR2 deficiency. In contrast, the interaction between morphine and alcohol was found to be MOR-, NF-κB-, TLR2- and MyD88-dependent, but did not involve TLR4 or Interleukin-1β. Morphine-alcohol interactions caused acute elevations in microglial cell counts and NF-κB-p65 positive cells in the motor cortex in concordance with wild-type and TLR2 deficient mouse behavioral data, implicating neuroimmunopharmacological signaling as a pivotal mechanism in this clinically problematic drug-drug interaction. PMID:25542736

  20. Historical perspective and contemporary management of acute coronary syndromes: from MONA to THROMBINS2.

    PubMed

    Kline, Kristopher P; Conti, C Richard; Winchester, David E

    2015-01-01

    Acute coronary syndrome (ACS) remains a major burden on morbidity and mortality in the United States. Medical professionals and students often use the mnemonic 'MONA' (morphine, oxygen, nitroglycerin and aspirin) to recall treatments for ACS; however, this list of therapies is outdated. We provide a historical perspective on 'MONA,' attempt to uncover its origin in the medical literature, and demonstrate the myriad changes that have occurred over the last 50 years of ACS management. We have developed a novel mnemonic, 'THROMBINS2' (thienopyridines, heparin/enoxaparin, renin-angiotensin system blockers, oxygen, morphine, beta blocker, intervention, nitroglycerin, statin/salicylate) to help bedside clinicians recall all the elements of contemporary ACS management. We demonstrate the mortality benefit for each component of contemporary ACS management, correlating the continued improvement with historical data on mortality after myocardial infarction. We encourage providers to utilize this mnemonic to explore options and guide treatments in ACS patients.

  1. Cannabinoid 1 receptor blockade in the dorsal hippocampus prevents the reinstatement but not acquisition of morphine-induced conditioned place preference in rats.

    PubMed

    Zhao, Xin; Yao, Li; Wang, Fang; Zhang, Han; Wu, Li

    2017-07-05

    The cannabinoid 1 receptors (CB1Rs) signaling is strongly linked to conditioned rewarding effects of opiates. Learned associations between environmental contexts and discrete cues and drug use play an important role in the maintenance and/or relapse of morphine addiction. Although previous studies suggest that context-dependent morphine treatment alters endocannabinoid signaling and synaptic plasticity in the hippocampus, the role of endocannabinoid in morphine conditioned place preference (CPP) and reinstatement remains unknown. In the present study, we found daily escalating doses of morphine induce significant CPP in rats. After the extinction of CPP, a priming dose of morphine was sufficient to reinstate morphine CPP and was associated with the elevated CB1R levels compared with saline control groups, suggesting upregulation of CB1R pathway in the hippocampus contribute to the reinstatement of morphine CPP. By using a pharmacological inhibitor of CB1R administered into the dorsal hippocampus, we showed that blockade of CB1R signaling did not alter the morphine CPP acquisition but inhibited the reinstatement of morphine CPP. In addition, no effects were induced upon CB1R blockade in the prefrontal cortex on reinstatement of morphine CPP. These studies reveal region-specific effects of hippocampal blockade of CB1R signaling pathway on the reinstatement of morphine CPP.

  2. The role of orexin type-1 receptors in the development of morphine tolerance in locus coeruleus neurons: An electrophysiological perspective.

    PubMed

    Abdollahi, Hakime; Ghaemi-Jandabi, Masoumeh; Azizi, Hossein; Semnanian, Saeed

    2016-09-01

    Long-term exposure to opioid agonists results in tolerance to their analgesic effects, so the effectiveness of opioid agonists in the management of pain becomes limited. The locus coeruleus (LC) nucleus has been involved in the development of tolerance to opiates. Orexin type-1 receptors (OX1Rs) are highly expressed in LC nucleus. Orexin plays a noteworthy role in the occurrence of morphine tolerance. The purpose of the present study is to investigate the role of orexin type-1 receptors in the development of morphine tolerance in LC neurons. In this study, adult male Wistar rats weighing 250-300g were utilized. Induction of morphine tolerance was obtained by single injection of morphine per day for 6 successive days. An orexin type-1 receptor antagonist (SB-334867) was injected into the lateral ventricle instantly prior to morphine injection. On day 7, the effect of morphine on the electrical activity of LC neurons was studied using in vivo extracellular single unit recording. The results demonstrate that morphine injection for 6 consecutive days led to the development of morphine-induced tolerance in LC neurons. In other words, there was a significant decrease in LC neuronal responsiveness to morphine injection. Inhibitory responses of LC neurons to intraperitoneally applied morphine can be observed with the treatment of the SB-334867 prior to morphine injection. This study showed that OX1R blockade by SB-334867 prevents the development of morphine tolerance in LC neurons. We hope that further studies will lead to considerable progress in understanding the molecular adaptations that contribute to morphine tolerance. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Maternal swimming exercise during pregnancy attenuates anxiety/depressive-like behaviors and voluntary morphine consumption in the pubertal male and female rat offspring born from morphine dependent mothers.

    PubMed

    Torabi, Masoumeh; Pooriamehr, Alireza; Bigdeli, Imanollah; Miladi-Gorji, Hossein

    2017-10-17

    This study was designed to examine whether maternal swimming exercise during pregnancy would attenuate prenatally morphine-induced anxiety, depression and voluntary consumption of morphine in the pubertal male and female rat offspring. Pregnant rats during the development of morphine dependence were allowed to swim (30-45min/d, 3days per a week) on gestational days 11-18. Then, the pubertal male and female rat offspring were tested for the elevated plus-maze (EPM), sucrose preference test (SPT) and voluntary morphine consumption using a two-bottle choice (TBC) paradigm. The results showed that male and female rat offspring born of the swimmer morphine-dependent mothers exhibited an increase in EPM open arm time and entries, higher levels of sucrose preference than their sedentary control mothers. Voluntary consumption of morphine was less in the male and female rat offspring born of the swimmer morphine-dependent mothers as compared with their sedentary control mothers during three periods of the intake of drug. Thus, swimming exercise in pregnant morphine dependent mothers decreased anxiety, depressive-like behavior and also the voluntary morphine consumption in the pubertal male and female offspring, which may prevent prenatally morphine-induced behavioral sensitization in offspring. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Abnormal functional integration of thalamic low frequency oscillation in the BOLD signal after acute heroin treatment.

    PubMed

    Denier, Niklaus; Schmidt, André; Gerber, Hana; Vogel, Marc; Huber, Christian G; Lang, Undine E; Riecher-Rossler, Anita; Wiesbeck, Gerhard A; Radue, Ernst-Wilhelm; Walter, Marc; Borgwardt, Stefan

    2015-12-01

    Heroin addiction is a severe relapsing brain disorder associated with impaired cognitive control, including deficits in attention allocation. The thalamus has a high density of opiate receptors and is critically involved in orchestrating cortical activity during cognitive control. However, there have been no studies on how acute heroin treatment modulates thalamic activity. In a cross-over, double-blind, vehicle-controlled study, 29 heroin-maintained outpatients were studied after heroin and placebo administration, while 20 healthy controls were included for the placebo condition only. Resting-state functional magnetic resonance imaging was used to analyze functional integration of the thalamus by three different resting state analysis techniques. Thalamocortical functional connectivity (FC) was analyzed by seed-based correlation, while intrinsic thalamic oscillation was assessed by analysis of regional homogeneity (ReHo) and the fractional amplitude of low frequency fluctuations (fALFF). Relative to the placebo treatment and healthy controls, acute heroin administration reduced thalamocortical FC to cortical regions, including the frontal cortex, while the reductions in FC to the mediofrontal cortex, orbitofrontal cortex, and frontal pole were positively correlated with the plasma level of morphine, the main psychoactive metabolite of heroin. Furthermore, heroin treatment was associated with increased thalamic ReHo and fALFF values, whereas fALFF following heroin exposure correlated negatively with scores of attentional control. The heroin-associated increase in fALFF was mainly dominated by slow-4 (0.027-0.073 Hz) oscillations. Our findings show that there are acute effects of heroin within the thalamocortical system and may shed new light on the role of the thalamus in cognitive control in heroin addiction. Future research is needed to determine the underlying physiological mechanisms and their role in heroin addiction. © 2015 Wiley Periodicals, Inc.

  5. Gz mediates the long-lasting desensitization of brain CB1 receptors and is essential for cross-tolerance with morphine

    PubMed Central

    Garzón, Javier; de la Torre-Madrid, Elena; Rodríguez-Muñoz, María; Vicente-Sánchez, Ana; Sánchez-Blázquez, Pilar

    2009-01-01

    Background Although the systemic administration of cannabinoids produces antinociception, their chronic use leads to analgesic tolerance as well as cross-tolerance to morphine. These effects are mediated by cannabinoids binding to peripheral, spinal and supraspinal CB1 and CB2 receptors, making it difficult to determine the relevance of each receptor type to these phenomena. However, in the brain, the CB1 receptors (CB1Rs) are expressed at high levels in neurons, whereas the expression of CB2Rs is marginal. Thus, CB1Rs mediate the effects of smoked cannabis and are also implicated in emotional behaviors. We have analyzed the production of supraspinal analgesia and the development of tolerance at CB1Rs by the direct injection of a series of cannabinoids into the brain. The influence of the activation of CB1Rs on supraspinal analgesia evoked by morphine was also evaluated. Results Intracerebroventricular (icv) administration of cannabinoid receptor agonists, WIN55,212-2, ACEA or methanandamide, generated a dose-dependent analgesia. Notably, a single administration of these compounds brought about profound analgesic tolerance that lasted for more than 14 days. This decrease in the effect of cannabinoid receptor agonists was not mediated by depletion of CB1Rs or the loss of regulated G proteins, but, nevertheless, it was accompanied by reduced morphine analgesia. On the other hand, acute morphine administration produced tolerance that lasted only 3 days and did not affect the CB1R. We found that both neural mu-opioid receptors (MORs) and CB1Rs interact with the HINT1-RGSZ module, thereby regulating pertussis toxin-insensitive Gz proteins. In mice with reduced levels of these Gz proteins, the CB1R agonists produced no such desensitization or morphine cross-tolerance. On the other hand, experimental enhancement of Gz signaling enabled an acute icv administration of morphine to produce a long-lasting tolerance at MORs that persisted for more than 2 weeks, and it also

  6. Effects of scopolamine on morphine-induced conditioned place preference in mice.

    PubMed

    Tan, Hua; Liu, Ning; Wilson, Fraser A W; Ma, Yuanye

    2007-09-01

    It is well known that the cholinergic system plays a crucial role in learning and memory. Psychopharmacological studies in humans and animals have shown that a systemic cholinergic blockade may induce deficits in learning and memory. Accumulated studies have indicated that learning and memory play an important role in drug addition. In the present study, in order to get a further understanding about the functions of the cholinergic system in drug-related learning and memory, we examined the effects of scopolamine (0.5, 1.0 and 2.0 mg/kg) on morphine-induced conditioned place preference (CPP). Two kinds of morphine exposure durations (4 days and 12 days) were used. The main finding was that all doses of scopolamine enhanced the extinction of morphine-induced CPP in mice treated with morphine for 12 days. However, in mice treated with morphine for 4 days, all doses of scopolamine did not inhibit morphine-induced CPP. The highest dose (2.0 mg/kg) of scopolamine even significantly delayed the extinction of morphine-induced CPP. Our results suggest that the effects of a systemic cholinergic blockade on morphine-induced CPP depend on the morphine exposure time.

  7. Plasma-Mediated Release of Morphine from Synthesized Prodrugs

    DTIC Science & Technology

    2013-01-01

    UPLC )9 (Waters Inc.) was utilized for measurements of morphine, PDA and PDB. UPLC has the capability to perform rapid (< 10 min) and reproducible...for UPLC versus ~30-50 µL for HPLC. The term “morphine” refers to the free morphine alkaloid base (Malinkrodt, etc.) unless otherwise stated...Baseline UPLC profiles were obtained for phosphate buffered saline (PBS), morphine and PDA in esterase de-activated plasma. Plasma was precipitated by the

  8. The role of morphine on rat neural stem cells viability, neuro-angiogenesis and neuro-steroidgenesis properties.

    PubMed

    Abdyazdani, Nima; Nourazarian, Alireza; Nozad Charoudeh, Hojjatollah; Kazemi, Masoumeh; Feizy, Navid; Akbarzade, Maryam; Mehdizadeh, Amir; Rezaie, Jafar; Rahbarghazi, Reza

    2017-01-01

    A lack of comprehensive data exists on the effect of morphine on neural stem cell neuro-steroidogenesis and neuro-angiogenesis properties. We, herein, investigated the effects of morphine (100μM), naloxone (100μM) and their combination on rat neural stem cells viability, clonogenicity and Ki-67 expression over a period of 72h. Any alterations in the total fatty acids profile under treatment protocols were elucidated by direct transesterification method. We also monitored the expression of p53, aromatase and 5-alpha reductase by real-time PCR assay. To examine angiogenic capacity, in vitro tubulogenesis and the level of VE-cadherin transcript were investigated during neural to endothelial differentiation under the experimental procedure. Cells supplemented with morphine displayed reduced survival (p<0.01) and clonogenicity (p<0.001). Flow cytometric analysis showed a decrease in Ki-67 during 72h. Naloxone potentially blunted morphine-induced all effects. The normal levels of fatty acids, including saturated and unsaturated were altered by naloxone and morphine supplements. Following 48h, the up-regulation of p53, aromatase and 5-alpha reductase genes occurred in morphine-primed cells. Using three-dimensional culture models of angiogenesis and real time PCR assay, we showed morphine impaired the tubulogenesis properties of neural stem cells (p<0.001) by the inhibition of trans-differentiation into vascular cells and led to decrease of in VE-cadherin expression. Collectively, morphine strongly impaired the healthy status of neural stem cells by inducing p53 and concurrent elevation of aromatase and 5-alpha reductase activities especially during early 48h. Also, neural stem cells-being exposed to morphine lost their potency to elicit angiogenesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. A Single-Dose Intra-Articular Morphine plus Bupivacaine versus Morphine Alone following Knee Arthroscopy: A Systematic Review and Meta-Analysis

    PubMed Central

    Wang, Yi-lun; Li, Yu-sheng; Wei, Jie; Li, Hui; Yang, Tuo; Yang, Tu-bao; Lei, Guang-hua

    2015-01-01

    Objectives The purpose of this study was to compare the efficacy and safety of a single-dose intra-articular morphine plus bupivacaine versus morphine alone in patients undergoing arthroscopic knee surgery. Methods Randomized controlled trials comparing a combination of morphine and bupivacaine with morphine alone injected intra-articularly in the management of pain after knee arthrocopic surgery were retrieved (up to August 10, 2014) from MEDLINE, the Cochrane Library and Embase databases. The weighted mean difference (WMD), relative risk (RR) and their corresponding 95% confidence intervals (CIs) were calculated using RevMan statistical software. Results Thirteen randomized controlled trials were included. Statistically significant differences were observed with regard to the VAS values during the immediate period (0-2h) (WMD -1.16; 95% CI -2.01 to -0.31; p = 0.007) and the time to first request for rescue analgesia (WMD = 2.05; 95% CI 0.19 to 3.92; p = 0.03). However, there was no significant difference in the VAS pain score during the early period (2-6h) (WMD -0.36; 95% CI -1.13 to 0.41; p = 0.35), the late period (6-48h) (WMD 0.11; 95% CI -0.40 to 0.63; p = 0.67), and the number of patients requiring supplementary analgesia (RR = 0.78; 95% CI 0.57 to 1.05; p = 0.10). In addition, systematic review showed that intra-articular morphine plus bupivacaine would not increase the incidence of adverse effects compared with morphine alone. Conclusion The present study suggested that the administration of single-dose intra-articular morphine plus bupivacaine provided better pain relief during the immediate period (0-2h), and lengthened the time interval before the first request for analgesic rescue without increasing the short-term side effects when compared with morphine alone. Level of Evidence Level I, meta-analysis of Level I studies. PMID:26474401

  10. Effect of preemptive intra-articular morphine and ketamine on pain after arthroscopic rotator cuff repair: a prospective, double-blind, randomized controlled study.

    PubMed

    Khashan, M; Dolkart, O; Amar, E; Chechik, O; Sharfman, Z; Mozes, G; Maman, E; Weinbroum, A A

    2016-02-01

    Rotator cuff tear is a leading etiology of shoulder pain and disability. Surgical treatment is indicated in patients with persistent pain who fail a trial of non-surgical treatment. Pain reduction following rotator cuff repair, particularly within the first 24-48 h, is a major concern to both doctors and patients. This study aimed to compare the postoperative antinociceptive additive effects of pre-incisional intra-articular (IA) ketamine when combined with morphine with two times the dose of morphine or saline. In this prospective, randomized, double blind, controlled trial patients undergoing arthroscopic rotator cuff tear repair (ARCR) under general anesthesia were enrolled. Patients were randomly assigned to one of the three intervention groups. Twenty minutes prior to incision, morphine (20 mg/10 ml), ketamine (50 mg + morphine 10 mg/10 ml), or saline (0.9 % 10 ml) (n = 15/group), were administered to all patients. First 24 h postoperative analgesia consisted of intravenous patient controlled analgesia (IV-PCA) morphine and oral rescue paracetamol 1000 mg or oxycodone 5 mg. 24-h, 2-week and 3-month patient rated pain numeric rating scale (NRS) and analgesics consumption were documented. Patients' demographic and perioperative data were similar among all groups. The 24-h and the 2-week NRSs were significantly (p < 0.05) lower in both treatment groups compared to placebo, but were not significantly different between the two intervention groups. PCA-morphine and oral analgesics were consumed similarly among the groups throughout the study phases. Pre-incisional intra-articular morphine reduced pain in the first 2 weeks after arthroscopic rotator cuff repair. Further research is warranted to elucidate the optimal timing and dosing of IA ketamine and morphine for postoperative analgesic effects.

  11. Increased functional connectivity in the resting-state basal ganglia network after acute heroin substitution

    PubMed Central

    Schmidt, A; Denier, N; Magon, S; Radue, E-W; Huber, C G; Riecher-Rossler, A; Wiesbeck, G A; Lang, U E; Borgwardt, S; Walter, M

    2015-01-01

    Reinforcement signals in the striatum are known to be crucial for mediating the subjective rewarding effects of acute drug intake. It is proposed that these effects may be more involved in early phases of drug addiction, whereas negative reinforcement effects may occur more in later stages of the illness. This study used resting-state functional magnetic resonance imaging to explore whether acute heroin substitution also induced positive reinforcement effects in striatal brain regions of protracted heroin-maintained patients. Using independent component analysis and a dual regression approach, we compared resting-state functional connectivity (rsFC) strengths within the basal ganglia/limbic network across a group of heroin-dependent patients receiving both an acute infusion of heroin and placebo and 20 healthy subjects who received placebo only. Subsequent correlation analyses were performed to test whether the rsFC strength under heroin exposure correlated with the subjective rewarding effect and with plasma concentrations of heroin and its main metabolites morphine. Relative to the placebo treatment in patients, heroin significantly increased rsFC of the left putamen within the basal ganglia/limbic network, the extent of which correlated positively with patients' feelings of rush and with the plasma level of morphine. Furthermore, healthy controls revealed increased rsFC of the posterior cingulate cortex/precuneus in this network relative to the placebo treatment in patients. Our results indicate that acute heroin substitution induces a subjective rewarding effect via increased striatal connectivity in heroin-dependent patients, suggesting that positive reinforcement effects in the striatum still occur after protracted maintenance therapy. PMID:25803496

  12. Morphine Pharmacokinetics in Children With Down Syndrome Following Cardiac Surgery.

    PubMed

    Goot, Benjamin H; Kaufman, Jon; Pan, Zhaoxing; Bourne, David W A; Hickey, Francis; Twite, Mark; Galinkin, Jeffrey; Christians, Uwe; Zuk, Jeannie; da Cruz, Eduardo M

    2018-05-01

    To assess if morphine pharmacokinetics are different in children with Down syndrome when compared with children without Down syndrome. Prospective single-center study including subjects with Down syndrome undergoing cardiac surgery (neonate to 18 yr old) matched by age and cardiac lesion with non-Down syndrome controls. Subjects were placed on a postoperative morphine infusion that was adjusted as clinically necessary, and blood was sampled to measure morphine and its metabolites concentrations. Morphine bolus dosing was used as needed, and total dose was tracked. Infusions were continued for 24 hours or until patients were extubated, whichever came first. Postinfusion, blood samples were continued for 24 hours for further evaluation of kinetics. If patients continued to require opioid, a nonmorphine alternative was used. Morphine concentrations were determined using a unique validated liquid chromatography tandem-mass spectrometry assay using dried blood spotting as opposed to large whole blood samples. Morphine concentration versus time data was modeled using population pharmacokinetics. A 16-bed cardiac ICU at an university-affiliated hospital. Forty-two patients (20 Down syndrome, 22 controls) were enrolled. None. The pharmacokinetics of morphine in pediatric patients with and without Down syndrome following cardiac surgery were analyzed. No significant difference was found in the patient characteristics or variables assessed including morphine total dose or time on infusion. Time mechanically ventilated was longer in children with Down syndrome, and regarding morphine pharmacokinetics, the covariates analyzed were age, weight, presence of Down syndrome, and gender. Only age was found to be significant. This study did not detect a significant difference in morphine pharmacokinetics between Down syndrome and non-Down syndrome children with congenital heart disease.

  13. Effectiveness of morphine, fentanyl, and methoxyflurane in the prehospital setting.

    PubMed

    Middleton, Paul M; Simpson, Paul M; Sinclair, Gary; Dobbins, Timothy A; Math, B; Bendall, Jason C

    2010-01-01

    To compare the effectiveness of intravenous (IV) morphine, intranasal (IN) fentanyl, and inhaled methoxyflurane when administered by paramedics to patients with moderate to severe pain. We conducted a retrospective comparative study of adult patients with moderate to severe pain treated by paramedics from the Ambulance Service of New South Wales who received IV morphine, IN fentanyl, or inhaled methoxyflurane either alone or in combination between January 1, 2004, and November 30, 2006. We used multivariate logistic regression to analyze data extracted from a clinical database containing routinely entered information from patient health care records. The primary outcome measure was effective analgesia, defined as a reduction in pain severity of > or = 30% of initial pain score using an 11-point verbal numeric rating scale (VNRS-11). The study population comprised 52,046 patients aged between 16 and 100 years with VNRS-11 scores of > or = 5. All analgesic agents were effective in the majority of patients (81.8%, 80.0%, and 59.1% for morphine, fentanyl, and methoxyflurane, respectively). There was very strong evidence that methoxyflurane was inferior to both morphine and fentanyl (p < 0.0001). There was strong evidence that morphine was more effective than fentanyl (p = 0.002). There was no evidence that combination analgesia was better than either fentanyl or morphine alone. Inhaled methoxyflurane, IN fentanyl, and IV morphine are all effective analgesic agents in the out-of-hospital setting. Morphine and fentanyl are significantly more effective analgesic agents than methoxyflurane. Morphine appears to be more effective than IN fentanyl; however, the benefit of IV morphine may be offset to some degree by the ability to administer IN fentanyl without the need for IV access.

  14. The effect of IVPCA morphine on post-hysterectomy bowel function.

    PubMed

    Chan, Kuang-Cheng; Cheng, Ya-Jung; Huang, Guang-Ta; Wen, Yuan-Jui; Lin, Chen-Jung; Chen, Li-Kuei; Sun, Wei-Zen

    2002-06-01

    Although morphine has been shown to induce bowel dysfunction in a dose-dependent fashion, in most relevant studies it was investigated in single bolus injection. Recently, intravenous morphine via patient-controlled analgesia (IVPCA) has been widely used to provide analgesia by divided bolus doses on patients' demand with satisfactory effects. This approach, by reducing the peak serum surge, largely resembles the pharmacokinetic and pharmacodynamic advantage of continuous infusion. There is yet no report on the investigation of its effect on post-operative bowel dysfunction. Fifty-one women who underwent abdominal total hysterectomy (ATH) due to uterine myoma were enrolled to investigate the association between the doses of morphine consumption by PCA and the time of first passage of flatus. In all patients morphine was administered intravenously via a PCA pump immediately after recovery from general anesthesia. We found that 49 out of 51 patients (96%) exhibited mild pain with IVPCA morphine. They had consumed an average dose of 16.9 mg morphine (range, 0-46 mg) upon the first passage of flatus which occurred 2036.4 min (average) post-operatively. There was no correlation between the dose of morphine and the time of first passage of flatus (r = 0.053, P > 0.05). The absence of suppression of bowel movement by IVPCA morphine for post-operative pain control suggests that favorable pharmacokinetic profile of IVPCA can help reduce the morphine-induced bowel dysfunction at its therapeutic level.

  15. Morphinome Database - The database of proteins altered by morphine administration - An update.

    PubMed

    Bodzon-Kulakowska, Anna; Padrtova, Tereza; Drabik, Anna; Ner-Kluza, Joanna; Antolak, Anna; Kulakowski, Konrad; Suder, Piotr

    2018-04-13

    Morphine is considered a gold standard in pain treatment. Nevertheless, its use could be associated with severe side effects, including drug addiction. Thus, it is very important to understand the molecular mechanism of morphine action in order to develop new methods of pain therapy, or at least to attenuate the side effects of opioids usage. Proteomics allows for the indication of proteins involved in certain biological processes, but the number of items identified in a single study is usually overwhelming. Thus, researchers face the difficult problem of choosing the proteins which are really important for the investigated processes and worth further studies. Therefore, based on the 29 published articles, we created a database of proteins regulated by morphine administration - The Morphinome Database (addiction-proteomics.org). This web tool allows for indicating proteins that were identified during different proteomics studies. Moreover, the collection and organization of such a vast amount of data allows us to find the same proteins that were identified in various studies and to create their ranking, based on the frequency of their identification. STRING and KEGG databases indicated metabolic pathways which those molecules are involved in. This means that those molecular pathways seem to be strongly affected by morphine administration and could be important targets for further investigations. The data about proteins identified by different proteomics studies of molecular changes caused by morphine administration (29 published articles) were gathered in the Morphinome Database. Unification of those data allowed for the identification of proteins that were indicated several times by distinct proteomics studies, which means that they seem to be very well verified and important for the entire process. Those proteins might be now considered promising aims for more detailed studies of their role in the molecular mechanism of morphine action. Copyright © 2018

  16. 3,4-Methylenedioxymethamphetamine (MDMA), but not morphine, alters APP processing in the rat brain.

    PubMed

    Kálmán, János; Bjelik, Annamária; Hugyecz, Marietta; Tímár, Júlia; Gyarmati, Zsuzsanna; Zana, Marianna; Fürst, Zsuzsanna; Janka, Zoltán; Rakonczay, Zoltán; Horváth, Zoltán; Pákáski, Magdolna

    2007-04-01

    The abuse of drugs such as opioids and 3,4-methylenedioxymethamphetamine (MDMA or 'ecstasy') can have detrimental effects on the cognitive functions, but the exact molecular mechanism whereby these drugs promote neurodegeneration remains to be elucidated. The major purpose of the present pilot study was to determine whether the chronic in-vivo administration of morphine (10 mg/kg) or MDMA (1 mg/kg) to rats can alter the expression and processing of amyloid precursor protein (APP), the central molecule in the proposed pathomechanism of Alzheimer's disease. MDMA treatment significantly decreased the production of APP in the cytosolic fraction of the brain cortex. A concomitant 25% increase was found both in the beta-secretase (BACE) and APP mRNA levels (108%). In contrast, in the applied single dosage chronic morphine treatment did not influence either the APP and BACE protein levels or the APP mRNA production. These results indicate that the chronic use of 'ecstasy', but not morphine, may be harmful via a novel mode of action, i.e. by altering the APP expression and processing in the brain.

  17. The rewarding action of acute cocaine is reduced in β-endorphin deficient but not in μ opioid receptor knockout mice.

    PubMed

    Nguyen, Alexander T; Marquez, Paul; Hamid, Abdul; Kieffer, Brigitte; Friedman, Theodore C; Lutfy, Kabirullah

    2012-07-05

    We have previously shown that β-endorphin plays a functional role in the rewarding effect of acute cocaine. Considering that β-endorphin has high affinity for the μ opioid receptor, we determined the role of this receptor in the rewarding action of acute cocaine. For comparison, we assessed the role of the μ opioid receptor in the rewarding effect of acute morphine. We also examined the effect of intracerebroventricular (i.c.v.) administration of β-funaltrexamine (β-FNA), an irreversible μ opioid receptor antagonist, on the rewarding action of acute cocaine as well as that of morphine. Using the conditioned place preference (CPP) paradigm as an animal model of reward, we first assessed the rewarding action of cocaine in mice lacking β-endorphin or the μ opioid receptor and their respective wild-type littermates/controls. Mice were tested for preconditioning place preference on day 1, conditioned once daily with saline/cocaine (30mg/kg, i.p.) or cocaine/saline on days 2 and 3, and then tested for postconditioning place preference on day 4. We next studied the rewarding action of acute morphine in μ knockout mice and their wild-type controls. The CPP was induced by single alternate-day saline/morphine (10mg/kg, s.c.) or morphine/saline conditioning. We finally determined the effect of β-FNA on CPP induced by cocaine or morphine in wild-type mice, in which mice were treated with saline or β-FNA (9ug/3μl; i.c.v.) a day prior to the preconditioning test day. Our results revealed that morphine induced a robust CPP in wild-type mice but not in mice lacking the μ opioid receptor or in wild-type mice treated with β-FNA. In contrast, cocaine induced CPP in μ knockout mice as well as in wild-type mice treated with β-FNA. On the other hand, cocaine failed to induce CPP in mice lacking β-endorphin. These results illustrate that β-endorphin is essential for the rewarding action of acute cocaine, but the μ opioid receptor may not mediate the regulatory action

  18. Using a Morphine Equivalence Metric to Quantify Opioid Consumption: Examining the Capacity to Provide Effective Treatment of Debilitating Pain at the Global, Regional, and Country Levels

    PubMed Central

    Gilson, Aaron M.; Maurer, Martha A.; Ryan, Karen M.; Cleary, James F.; Rathouz, Paul J.

    2014-01-01

    Context Morphine has been considered the gold standard for treating moderate to severe pain, although many new opioid products and formulations have been marketed in the last two decades and should be considered when examining opioid consumption. Understanding opioid consumption is improved by using an equianalgesic measure that controls for the strengths of all examined opioids. Objectives The research objective was to utilize a morphine equivalence metric to determine the extent that morphine consumption relates to the total consumption of all other study opioids. Methods A Morphine Equivalence (ME) metric was created for morphine and for the aggregate consumption of each study opioid (Total ME), adjusted for country population to allow for uniform equianalgesic comparisons. Graphical and statistical evaluations of morphine use and Total ME consumption trends (between 1980 and 2009) were made for the global and geographic regional levels, and for selected developed and developing countries. Results Global morphine consumption rose dramatically in the early 1980s but has been significantly outpaced by Total ME since 1996. As expected, the extent of morphine and Total ME consumption varied notably among regions, with the Americas, Europe, and Oceania regions accounting for the highest morphine use and Total ME in 2009. Developing and least developed countries, compared to developed countries, demonstrated lower overall Total ME consumption. Conclusion Generally, worldwide morphine use has not increased at the rate of Total ME, especially in recent years. Examining a country's ability to effectively manage moderate to severe pain should extend beyond morphine to account for all available potent opioids. PMID:23017614

  19. Buprenorphine Maintenance Subjects Are Hyperalgesic and Have No Antinociceptive Response to a Very High Morphine Dose.

    PubMed

    Athanasos, Peter; Ling, Walter; Bochner, Felix; White, Jason M; Somogyi, Andrew A

    2018-03-05

    Acute pain management in opioid-dependent persons is complicated because of tolerance and opioid-induced hyperalgesia. Very high doses of morphine are ineffective in overcoming opioid-induced hyperalgesia and providing antinociception to methadone-maintained patients in an experimental setting. Whether the same occurs in buprenorphine-maintained subjects is unknown. Randomized double-blind placebo-controlled. Subjects were tested on two occasions, at least five days apart, once with intravenous morphine and once with intravenous saline. Subjects were tested at about the time of putative trough plasma buprenorphine concentrations. Ambulatory. Twelve buprenorphine-maintained subjects: once daily sublingual dose (range = 2-22 mg); no dose change for 1.5-12 months. Ten healthy controls. Intravenous morphine bolus and infusions administered over two hours to achieve two separate pseudo-steady-state plasma concentrations one hour apart. Pain tolerance was assessed by application of nociceptive stimuli (cold pressor [seconds] and electrical stimulation [volts]). Ten blood samples were collected for assay of plasma morphine, buprenorphine, and norbuprenorphine concentrations until three hours after the end of the last infusion; pain tolerance and respiration rate were measured to coincide with blood sampling times. Cold pressor responses (seconds): baseline: control 34 ± 6 vs buprenorphine 17 ± 2 (P = 0.009); morphine infusion-end: control 52 ± 11(P = 0.04), buprenorphine 17 ± 2 (P > 0.5); electrical stimulation responses (volts): baseline: control 65 ± 6 vs buprenorphine 53 ± 5 (P = 0.13); infusion-end: control 74 ± 5 (P = 0.007), buprenorphine 53 ± 5 (P > 0.98). Respiratory rate (breaths per minute): baseline: control 17 vs buprenorphine 14 (P = 0.03); infusion-end: control 15 (P = 0.09), buprenorphine 12 (P < 0.01). Infusion-end plasma morphine concentrations (ng/mL): control 23 ± 1

  20. Effects of BDNF receptor antagonist on the severity of physical and psychological dependence, morphine-induced locomotor sensitization and the ventral tegmental area-nucleus accumbens BDNF levels in morphine- dependent and withdrawn rats.

    PubMed

    Khalil-Khalili, Masoumeh; Rashidy-Pour, Ali; Bandegi, Ahmad Reza; Yousefi, Behpoor; Jorjani, Hassan; Miladi-Gorji, Hossein

    2018-03-06

    This study examined the effects of systemic administration of the TrkB receptor antagonist (ANA-12) on the severity of physical and psychological dependence and morphine-induced locomotor sensitization, the ventral tegmental area (VTA)-nucleus accumbens (NAc) BDNF levels in morphine-dependent and withdrawn rats. Rats were injected with bi-daily doses (10 mg/kg, at 12 h intervals) of morphine for 10 days. Then, rats were tested for naloxone-precipitated morphine withdrawal signs, the anxiety (the elevated plus maze-EPM) after the last morphine injection and injection of ANA12 (ip). Also, morphine-induced locomotor sensitization was evaluated after morphine challenge followed by an injection of ANA-12 in morphine-withdrawn rats. The VTA-NAc BDNF levels were assessed in morphine-dependent and withdrawn rats. The overall Gellert-Holtzman score was significantly higher in morphine-dependent rats receiving ANA-12 than in those receiving saline. Also, the percentage of time spent in the open arms in control and morphine-dependent rats receiving ANA-12 were higher compared to the Cont/Sal and D/Sal rats, respectively. There was no significant difference in the locomotor activity and the VTA-NAc BDNF levels between D/Sal/morphine and D/ANA-12/morphine groups after morphine withdrawal. We conclude that the systemic administration of ANA-12 exacerbates the severity of physical dependence on morphine and partially attenuates the anxiety-like behavior in morphine-dependent rats. However, ANA-12 did not affect morphine-induced locomotor sensitization and the VTA-NAc BDNF levels in morphine-dependent and withdrawn rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Intrathecal morphine for analgesia in children undergoing selective dorsal rhizotomy.

    PubMed

    Dews, T E; Schubert, A; Fried, A; Ebrahim, Z; Oswalt, K; Paranandi, L

    1996-03-01

    Selective dorsal root rhizotomy is performed for relief of spasticity in children with cerebral palsy. Postoperative pain relief can be provided by intrathecal morphine administered at the time of the procedure. We sought to define an optimal dose of intrathecal morphine in children undergoing selective rhizotomy, through a randomized, double-blinded prospective trial. After institutional approval and parental written informed consent, 27 patients, ages 3-10 years, were randomized to receive 10, 20, or 30 micrograms.kg-1 (Groups A, B, and C, respectively) of preservative-free morphine administered intrathecally by the surgeon after dural closure. Postoperatively, vital signs, pulse oximetry, and pain intensity scores were recorded hourly for 24 hr. Supplemental intravenous morphine was administered postoperatively according to a predetermined schedule based on pain scores. There was considerable individual variability in the time to initial morphine dosing and cumulative supplemental morphine dose. Time to first supplemental morphine dose was not different between groups. When compared to Groups A and B, cumulative 6-hr supplemental morphine dose was significantly lower in Group C (38.6 +/- 47 micrograms versus 79.1 +/- 74 and 189.6 +/- 126 for Groups A and B, respectively). By 12 hr, cumulative supplemental morphine dose was similar in Groups A and C. Group B consistently had a higher supplemental dose requirement than Groups A and C at 6, 12, and 18 hr. By 24 hr, there was no difference in cumulative dose among groups. Postoperative pain scores and the incidence of respiratory events, nausea, vomiting and pruritus were comparable among groups. These data suggest that intrathecal morphine at 30 micrograms.kg-1 provides the most intense analgesia at 6 hr following selective dorsal root rhizotomy, but was otherwise comparable to the 10 micrograms.kg-1 dose.

  2. Mitragynine Attenuates Withdrawal Syndrome in Morphine-Withdrawn Zebrafish

    PubMed Central

    Khor, Beng-Siang; Amar Jamil, Mohd Fadzly; Adenan, Mohamad Ilham; Chong Shu-Chien, Alexander

    2011-01-01

    A major obstacle in treating drug addiction is the severity of opiate withdrawal syndrome, which can lead to unwanted relapse. Mitragynine is the major alkaloid compound found in leaves of Mitragyna speciosa, a plant widely used by opiate addicts to mitigate the harshness of drug withdrawal. A series of experiments was conducted to investigate the effect of mitragynine on anxiety behavior, cortisol level and expression of stress pathway related genes in zebrafish undergoing morphine withdrawal phase. Adult zebrafish were subjected to two weeks chronic morphine exposure at 1.5 mg/L, followed by withdrawal for 24 hours prior to tests. Using the novel tank diving tests, we first showed that morphine-withdrawn zebrafish display anxiety-related swimming behaviors such as decreased exploratory behavior and increased erratic movement. Morphine withdrawal also elevated whole-body cortisol levels, which confirms the phenotypic stress-like behaviors. Exposing morphine-withdrawn fish to mitragynine however attenuates majority of the stress-related swimming behaviors and concomitantly lower whole-body cortisol level. Using real-time PCR gene expression analysis, we also showed that mitragynine reduces the mRNA expression of corticotropin releasing factor receptors and prodynorphin in zebrafish brain during morphine withdrawal phase, revealing for the first time a possible link between mitragynine's ability to attenuate anxiety during opiate withdrawal with the stress-related corticotropin pathway. PMID:22205946

  3. Glutamate transporter type 3 participates in maintaining morphine-induced conditioned place preference.

    PubMed

    Wan, Li; Bi, Jiangjiang; Li, Jun; Zuo, Zhiyi

    2017-03-06

    Glutamate transporters (EAAT) have been implicated in the drug addiction behavior. We determined whether EAAT type 3 (EAAT3) played a role in morphine addiction. Six- to eight-week-old EAAT3 knockout (EAAT3 -/- ) mice and their wild-type littermates received 3 intraperitoneal injections of 10mg/kg morphine, each on an alternative day, to induce conditioned place preference (CPP). Two days after the place preference returned to baseline, mice received 2.5mg/kg morphine to induce reinstatement. Some mice received intraperitoneal injection of 4mg/kg riluzole, an EAAT activator, 30min before morphine or saline injection. Hippocampus, medial prefrontal cortex, nucleus accumbens and ventral tegmental area were harvested for Western analysis 24h after the last dose of morphine was injected. Morphine induced CPP in wild-type and EAAT3 -/- mice. Gender is not a statistically significant factor to influence this behavior. This conditioned behavior extinguished after morphine administration was stopped for 8-9days in wild-type mice, while this extinction occurred 6days after discontinuation of morphine injection in EAAT3 -/- mice. A small dose of morphine similarly reinstated the conditioned behavior in the wild-type and EAAT3 -/- mice. Riluzole abolished morphine-induced CPP during the initial place preference. Morphine increased EAAT3 expression in the plasma membrane of medial prefrontal cortex, nucleus accumbens and ventral tegmental area but did not affect EAAT3 expression in the hippocampus. These results suggest that EAAT3 delays the extinction of morphine-induced CPP. EAAT activation may prevent the formation of morphine-induced CPP. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Glutamate transporter type 3 participates in maintaining morphine-induced conditioned place preference

    PubMed Central

    Wan, Li; Bi, Jiangjiang; Li, Jun; Zuo, Zhiyi

    2017-01-01

    Glutamate transporters (EAAT) have been implicated in the drug addiction behavior. We determined whether EAAT type 3 (EAAT3) played a role in morphine addiction. Six- to eight-week old EAAT3 knockout (EAAT3−/−) mice and their wild-type littermates received 3 intraperitoneal injections of 10 mg/kg morphine, each on an alternative day, to induce conditioned place preference (CPP). Two days after the place preference returned to baseline, mice received 2.5 mg/kg morphine to induce reinstatement. Some mice received intraperitoneal injection of 4 mg/kg riluzole, an EAAT activator, 30 min before morphine or saline injection. Hippocampus, medial prefrontal cortex, nucleus accumbens and ventral tegmental area were harvested for Western analysis 24 h after the last dose of morphine was injected. Morphine induced CPP in wild-type and EAAT3−/− mice. Gender is not a statistically significant factor to influence this behavior. This conditioned behavior extinguished after morphine administration was stopped for 8 to 9 days in wild-type mice, while this extinction occurred 6 days after discontinuation of morphine injection in EAAT3−/− mice. A small dose of morphine similarly reinstated the conditioned behavior in the wild-type and EAAT3−/− mice. Riluzole abolished morphine-induced CPP during the initial place preference. Morphine increased EAAT3 expression in the plasma membrane of medial prefrontal cortex, nucleus accumbens and ventral tegmental area but did not affect EAAT3 expression in the hippocampus. These results suggest that EAAT3 delays the extinction of morphine-induced CPP. EAAT activation may prevent the formation of morphine-induced CPP. PMID:28049029

  5. Effect of Tamoxifen and Brain-Penetrant Protein Kinase C and c-Jun N-Terminal Kinase Inhibitors on Tolerance to Opioid-Induced Respiratory Depression in Mice.

    PubMed

    Withey, Sarah L; Hill, Rob; Lyndon, Abigail; Dewey, William L; Kelly, Eamonn; Henderson, Graeme

    2017-04-01

    Respiratory depression is the major cause of death in opioid overdose. We have previously shown that prolonged treatment of mice with morphine induces profound tolerance to the respiratory-depressant effects of the drug (Hill et al., 2016). The aim of the present study was to investigate whether tolerance to opioid-induced respiratory depression is mediated by protein kinase C (PKC) and/or c-Jun N-terminal kinase (JNK). We found that although mice treated for up to 6 days with morphine developed tolerance, as measured by the reduced responsiveness to an acute challenge dose of morphine, administration of the brain-penetrant PKC inhibitors tamoxifen and calphostin C restored the ability of acute morphine to produce respiratory depression in morphine-treated mice. Importantly, reversal of opioid tolerance was dependent on the nature of the opioid ligand used to induce tolerance, as these PKC inhibitors did not reverse tolerance induced by prolonged treatment of mice with methadone nor did they reverse the protection to acute morphine-induced respiratory depression afforded by prolonged treatment with buprenorphine. We found no evidence for the involvement of JNK in morphine-induced tolerance to respiratory depression. These results indicate that PKC represents a major mechanism underlying morphine tolerance, that the mechanism of opioid tolerance to respiratory depression is ligand-dependent, and that coadministration of drugs with PKC-inhibitory activity and morphine (as well as heroin, largely metabolized to morphine in the body) may render individuals more susceptible to overdose death by reversing tolerance to the effects of morphine. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  6. Effect of Tamoxifen and Brain-Penetrant Protein Kinase C and c-Jun N-Terminal Kinase Inhibitors on Tolerance to Opioid-Induced Respiratory Depression in Mice

    PubMed Central

    Withey, Sarah L.; Hill, Rob; Lyndon, Abigail; Dewey, William L.; Kelly, Eamonn

    2017-01-01

    Respiratory depression is the major cause of death in opioid overdose. We have previously shown that prolonged treatment of mice with morphine induces profound tolerance to the respiratory-depressant effects of the drug (Hill et al., 2016). The aim of the present study was to investigate whether tolerance to opioid-induced respiratory depression is mediated by protein kinase C (PKC) and/or c-Jun N-terminal kinase (JNK). We found that although mice treated for up to 6 days with morphine developed tolerance, as measured by the reduced responsiveness to an acute challenge dose of morphine, administration of the brain-penetrant PKC inhibitors tamoxifen and calphostin C restored the ability of acute morphine to produce respiratory depression in morphine-treated mice. Importantly, reversal of opioid tolerance was dependent on the nature of the opioid ligand used to induce tolerance, as these PKC inhibitors did not reverse tolerance induced by prolonged treatment of mice with methadone nor did they reverse the protection to acute morphine-induced respiratory depression afforded by prolonged treatment with buprenorphine. We found no evidence for the involvement of JNK in morphine-induced tolerance to respiratory depression. These results indicate that PKC represents a major mechanism underlying morphine tolerance, that the mechanism of opioid tolerance to respiratory depression is ligand-dependent, and that coadministration of drugs with PKC-inhibitory activity and morphine (as well as heroin, largely metabolized to morphine in the body) may render individuals more susceptible to overdose death by reversing tolerance to the effects of morphine. PMID:28130265

  7. Picrotoxin-induced seizures modified by morphine and opiate antagonists.

    PubMed

    Thomas, J; Nores, W L; Kenigs, V; Olson, G A; Olson, R D

    1993-07-01

    The effects of naloxone, Tyr-MIF-1, and MIF-1 on morphine-mediated changes in susceptibility to picrotoxin-induced seizures were studied. Rats were pretreated with naloxone, MIF-1, Tyr-MIF-1, or saline. At 15-min intervals, they received a second pretreatment of morphine or saline and then were tested for seizures following a convulsant dose of picrotoxin. Several parameters of specific categories of seizures were scored. Morphine increased the number of focal seizure episodes, duration of postseizure akinesis, and incidence of generalized clonic seizures. Naloxone tended to block the morphine-mediated changes in susceptibility. Tyr-MIF-1 had effects similar to naloxone on duration of postseizure immobility but tended to potentiate the effects of morphine on focal seizure episodes. The effects of morphine and the opiate antagonists on focal seizure episodes and postseizure duration suggest the general involvement of several types of opiate receptors in these picrotoxin-induced behaviors. However, the observation of antagonistic effects for Tyr-MIF-1 on immobility but agonistic effects for focal seizures suggests that the type of effect exerted by opiate agents may depend upon other neuronal variables.

  8. Acute treatment of migraine headaches.

    PubMed

    Taylor, Frederick R

    2010-04-01

    Optimum acute treatment of migraine requires prevention of headache as a top priority. Recognition of the multitude of migraine presentations, the frequency of total headache attacks, and number of days of headache disability are critical. Successful treatment requires excellent patient-clinician communication enhancing confidence and mutual trust based on patient needs and preferences. Optimum management of acute migraine nearly always requires pharmacologic treatment for rapid resolution. Migraine-specific triptans, dihydroergotamine, and several antiinflammatories have substantial empirical clinical efficacy. Older nonspecific drugs, particularly butalbital and opioids, contribute to medication overuse headache and are to be avoided. Clinicians should utilize evidence-based acute migraine-specific therapy stressing the imperative acute treatment goal of early intervention, but not too often with the correct drug, formulation, and dose. This therapy needs to provide cost-effective fast results, meaningful to the patient while minimizing the need for additional drugs. Migraine-ACT evaluates 2-hour pain freedom with return to normal function, comfort with treatment, and consistency of response. Employ a thoroughly educated patient, formulary, testimonials, stratification, and rational cotherapy against the race to central sensitization for optimum outcomes. Thieme Medical Publishers.

  9. Morphine amplifies mechanical allodynia via TLR4 in a rat model of spinal cord injury

    PubMed Central

    Ellis, Amanda; Grace, Peter M.; Wieseler, Julie; Favret, Jacob; Springer, Kendra; Skarda, Bryce; Hutchinson, Mark R.; Falci, Scott; Rice, Kenner C.; Maier, Steven F.; Watkins, Linda R.

    2016-01-01

    Central neuropathic pain (CNP) is a pervasive, debilitating problem that impacts thousands of people living with central nervous system disorders, including spinal cord injury (SCI). Current therapies for treating this type of pain are ineffective and often have dose-limiting side effects. Although opioids are one of the most commonly used CNP treatments, recent animal literature has indicated that administering opioids shortly after a traumatic injury can actually have deleterious effects on long-term health and recovery. In order to study the deleterious effects of administering morphine shortly after trauma, we employed our low thoracic (T13) dorsal root avulsion model (Spinal Neuropathic Avulsion Pain, SNAP). Administering a weeklong course of 10 mg/kg/day morphine beginning 24 hr after SNAP resulted in amplified mechanical allodynia. Co-administering the non-opioid toll-like receptor 4 (TLR4) antagonist (+)-naltrexone throughout the morphine regimen prevented morphine-induced amplification of SNAP. Exploration of changes induced by early post-trauma morphine revealed that this elevated gene expression of TLR4, TNF, IL-1β, and NLRP3, as well as IL-1β protein at the site of spinal cord injury. These data suggest that a short course of morphine administered early after spinal trauma can exacerbate CNP in the long term. TLR4 initiates this phenomenon and, as such, may be potential therapeutic targets for preventing the deleterious effects of administering opioids after traumatic injury. PMID:27519154

  10. [Effects of odor cue on morphine-induced dependence and craving in mice].

    PubMed

    Liu, Xiao-Fen; Yang, Guang; Yang, Rui; Jia, Qiang; Guan, Su-Dong

    2012-04-01

    The olfactory system may play a pivotal role in drug addiction. To clarify the issues, we investigated the morphine dependence and psychological craving in morphine addicted mice using the conditioned place preference (CPP) paradigm by taking an only odor cue as the conditioned stimulus (CS). The results showed that by pairing morphine with odor, the CPP could be induced in mice. When the morphine addicted mice were exposed to a novel environment during morphine withdrawal, they spent significantly longer time in the chamber with morphine-paired odor than in the control chamber. The effects of odor cue on the morphine CPP were blocked by the administration of dopamine D1 or D2 antagonists. The studies indicated that olfactory system plays an important role in drug addiction.

  11. Ethanol Reversal of Tolerance to the Respiratory Depressant Effects of Morphine

    PubMed Central

    Hill, Rob; Lyndon, Abi; Withey, Sarah; Roberts, Joanne; Kershaw, Yvonne; MacLachlan, John; Lingford-Hughes, Anne; Kelly, Eamonn; Bailey, Chris; Hickman, Matthew; Henderson, Graeme

    2016-01-01

    Opioids are the most common drugs associated with unintentional drug overdose. Death results from respiratory depression. Prolonged use of opioids results in the development of tolerance but the degree of tolerance is thought to vary between different effects of the drugs. Many opioid addicts regularly consume alcohol (ethanol), and post-mortem analyses of opioid overdose deaths have revealed an inverse correlation between blood morphine and ethanol levels. In the present study, we determined whether ethanol reduced tolerance to the respiratory depressant effects of opioids. Mice were treated with opioids (morphine, methadone, or buprenorphine) for up to 6 days. Respiration was measured in freely moving animals breathing 5% CO2 in air in plethysmograph chambers. Antinociception (analgesia) was measured as the latency to remove the tail from a thermal stimulus. Opioid tolerance was assessed by measuring the response to a challenge dose of morphine (10 mg/kg i.p.). Tolerance developed to the respiratory depressant effect of morphine but at a slower rate than tolerance to its antinociceptive effect. A low dose of ethanol (0.3 mg/kg) alone did not depress respiration but in prolonged morphine-treated animals respiratory depression was observed when ethanol was co-administered with the morphine challenge. Ethanol did not alter the brain levels of morphine. In contrast, in methadone- or buprenorphine-treated animals no respiratory depression was observed when ethanol was co-administered along with the morphine challenge. As heroin is converted to morphine in man, selective reversal of morphine tolerance by ethanol may be a contributory factor in heroin overdose deaths. PMID:26171718

  12. Morphine delays and attenuates ticagrelor exposure and action in patients with myocardial infarction: the randomized, double-blind, placebo-controlled IMPRESSION trial.

    PubMed

    Kubica, Jacek; Adamski, Piotr; Ostrowska, Małgorzata; Sikora, Joanna; Kubica, Julia Maria; Sroka, Wiktor Dariusz; Stankowska, Katarzyna; Buszko, Katarzyna; Navarese, Eliano Pio; Jilma, Bernd; Siller-Matula, Jolanta Maria; Marszałł, Michał Piotr; Rość, Danuta; Koziński, Marek

    2016-01-14

    The currently available data indicate a drug-drug interaction between morphine and oral P2Y12 receptor inhibitors, when administered together. The aim of this trial was to assess the influence of infused morphine on pharmacokinetics and pharmacodynamics of ticagrelor and its active metabolite (AR-C124910XX) in patients with acute myocardial infarction. In a single-centre, randomized, double-blind trial, patients were assigned in a 1:1 ratio to receive intravenously either morphine (5 mg) or placebo, followed by a 180 mg loading dose of ticagrelor. Pharmacokinetics was determined with liquid chromatography tandem mass spectrometry and ticagrelor antiplatelet effects were measured with up to three different platelet function tests: vasodilator-stimulated phosphoprotein phosphorylation assay, multiple electrode aggregometry and VerifyNow. The pharmacokinetic and pharmacodynamic assessment was performed in 70 patients (35 in each study group). Morphine lowered the total exposure to ticagrelor and its active metabolite by 36% (AUC(0-12): 6307 vs. 9791 ng h/mL; P = 0.003), and 37% (AUC(0-12): 1503 vs. 2388 ng h/mL; P = 0.008), respectively, with a concomitant delay in maximal plasma concentration of ticagrelor (4 vs. 2 h; P = 0.004). Multiple regression analysis showed that lower AUC(0-12) values for ticagrelor were independently associated with the administration of morphine (P = 0.004) and the presence of ST-segment elevation myocardial infarction (P = 0.014). All three methods of platelet reactivity assessment showed a stronger antiplatelet effect in the placebo group and a greater prevalence of high platelet reactivity in patients receiving morphine. Morphine delays and attenuates ticagrelor exposure and action in patients with myocardial infarction. ClinicalTrials.gov Identifier: NCT02217878. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Cardiology.

  13. Blocking microglial pannexin-1 channels alleviates morphine withdrawal in rodents.

    PubMed

    Burma, Nicole E; Bonin, Robert P; Leduc-Pessah, Heather; Baimel, Corey; Cairncross, Zoe F; Mousseau, Michael; Shankara, Jhenkruthi Vijaya; Stemkowski, Patrick L; Baimoukhametova, Dinara; Bains, Jaideep S; Antle, Michael C; Zamponi, Gerald W; Cahill, Catherine M; Borgland, Stephanie L; De Koninck, Yves; Trang, Tuan

    2017-03-01

    Opiates are essential for treating pain, but termination of opiate therapy can cause a debilitating withdrawal syndrome in chronic users. To alleviate or avoid the aversive symptoms of withdrawal, many of these individuals continue to use opiates. Withdrawal is therefore a key determinant of opiate use in dependent individuals, yet its underlying mechanisms are poorly understood and effective therapies are lacking. Here, we identify the pannexin-1 (Panx1) channel as a therapeutic target in opiate withdrawal. We show that withdrawal from morphine induces long-term synaptic facilitation in lamina I and II neurons within the rodent spinal dorsal horn, a principal site of action for opiate analgesia. Genetic ablation of Panx1 in microglia abolished the spinal synaptic facilitation and ameliorated the sequelae of morphine withdrawal. Panx1 is unique in its permeability to molecules up to 1 kDa in size and its release of ATP. We show that Panx1 activation drives ATP release from microglia during morphine withdrawal and that degrading endogenous spinal ATP by administering apyrase produces a reduction in withdrawal behaviors. Conversely, we found that pharmacological inhibition of ATP breakdown exacerbates withdrawal. Treatment with a Panx1-blocking peptide ( 10 panx) or the clinically used broad-spectrum Panx1 blockers, mefloquine or probenecid, suppressed ATP release and reduced withdrawal severity. Our results demonstrate that Panx1-mediated ATP release from microglia is required for morphine withdrawal in rodents and that blocking Panx1 alleviates the severity of withdrawal without affecting opiate analgesia.

  14. Social play behavior, ultrasonic vocalizations and their modulation by morphine and amphetamine in Wistar and Sprague-Dawley rats.

    PubMed

    Manduca, Antonia; Campolongo, Patrizia; Palmery, Maura; Vanderschuren, Louk J M J; Cuomo, Vincenzo; Trezza, Viviana

    2014-04-01

    Social play behavior is the most characteristic social behavior in young mammals. It is highly rewarding and crucial for proper neurobehavioral development. Despite the importance of genetic factors in normal and pathological social behaviors, little information is available about strain influences on social play. The aim of this study was to investigate differences in social play behavior, 50-kHz ultrasonic vocalizations (USVs) and their modulation by acute morphine and amphetamine administration in two rat strains widely used in behavioral pharmacology studies, i.e., Wistar and Sprague-Dawley rats. Sprague-Dawley rats showed higher levels of social play than Wistar rats. In both strains, no correlation was found between the performance of social behaviors and the emission of 50-kHz USVs. In Wistar and Sprague-Dawley rats, morphine increased and amphetamine decreased social play. The effects of morphine, however, were more pronounced in Wistar than Sprague-Dawley animals. In both strains, morphine did not affect USV emission, while amphetamine increased it during cage exploration. In Sprague-Dawley rats only, amphetamine decreased USVs during social interaction. Wistar and Sprague-Dawley rats differ in their absolute levels of social play behavior and 50-kHz USVs, and quantitative differences exist in their response to pharmacological manipulations of social play. The emission of 50-kHz USVs and the behavioral parameters thought to reflect rewarding social interactions in adolescent rats are dissociable.

  15. Antidiuretic effect of morphine in the rat: tolerance and physical dependence.

    PubMed Central

    Huidobro, F

    1978-01-01

    1 Injection of rats with morphine or methadone, before they received a water load equivalent to 5% of their body weight, produced a dose-dependent antidiuretic effect. Following the antidiuresis, urine was eliminated with kinetics similar to control untreated rats. 2 The antidiuretic effect of morphine or methadone was blocked by naloxone administered before the opiate, or reversed when given after the opiate. 3 Rats implanted with morphine pellets developed a marked degree of tolerance to the antidiuretic effect of morphine. Tolerance was also obtained on injection of three daily doses of morphine or methadone over two days. 4 Withdrawal symptoms were precipitated by naloxone in rats implanted with pellets of morphine; under these conditions the animals showed a marked reduction in urine production as compared to naive rats. PMID:568501

  16. Interaction of prenatal stress and morphine alters prolactin and seizure in rat pups.

    PubMed

    Saboory, Ehsan; Ebrahimi, Loghman; Roshan-Milani, Shiva; Hashemi, Paria

    2015-10-01

    Prenatal exposure to stress and morphine has complicated effects on epileptic seizure. In the present study, effect of prenatal forced-swim stress and morphine co-administration on pentylenetetrazol (PTZ) induced epileptic behaviors and prolactin blood level (PBL) was investigated in rat offspring. Pregnant Wistar rats were divided to four groups of control-saline, control-morphine, stressed-saline and stressed-morphine. In the stressed group, pregnant rats were placed in 25°C water on gestation days 17, 18 and 19 (GD17, GD18 and GD19) for 30 min. In the morphine/saline group, pregnant rats received morphine (10, 12 and 15 mg/kg, IP, on GD17, GD18 and GD19, respectively) or saline (1 ml, IP). In the morphine/saline-stressed group, the rats received morphine or saline and then exposed to stress. On postnatal days 6 and 15 (P6 and P15), blood samples were obtained and PBL was determined. At P15 and P25, the rest of the pups was injected with PTZ to induce seizure. Then, epileptic behaviors of each rat were observed individually. Latency of first convulsion decreased in control-morphine and stressed-saline groups while increased in stressed-morphine rats compared to control-saline group on P15 (P=0.04). Number of tonic-clonic seizures significantly increased in control-morphine and stressed-saline rats compared to control-saline group at P15 (P=0.02). PBL increased in stressed-saline, control-morphine and stress-morphine groups compared to control-saline rats. It can be concluded that prenatal exposure of rats to forced-swim stress and morphine changed their susceptibility to PTZ-induced seizure and PBL during infancy and prepubertal period. Co-administration of morphine attenuated effect of stress on epileptic behaviors. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Treatment Option Overview (Adult Acute Lymphoblastic Leukemia)

    MedlinePlus

    ... Childhood ALL Treatment Childhood AML Treatment Research Adult Acute Lymphoblastic Leukemia Treatment (PDQ®)–Patient Version General Information About Adult Acute Lymphoblastic Leukemia Go to Health Professional Version Key ...

  18. Treatment Options for Adult Acute Lymphoblastic Leukemia

    MedlinePlus

    ... Childhood ALL Treatment Childhood AML Treatment Research Adult Acute Lymphoblastic Leukemia Treatment (PDQ®)–Patient Version General Information About Adult Acute Lymphoblastic Leukemia Go to Health Professional Version Key ...

  19. The pharmacokinetics of morphine and lidocaine in nine severe trauma patients.

    PubMed

    Berkenstadt, H; Mayan, H; Segal, E; Rotenberg, M; Almog, S; Perel, A; Ezra, D

    1999-12-01

    To study the pharmacokinetic parameters of morphine and lidocaine after a single intravenous (i.v.) bolus in severe trauma patients. Clinical case study. Department of Anesthesiology and Intensive Care of a university hospital. Nine patients, ages 24 to 91 years (mean 54.4 yrs), admitted to the hospital with severe trauma (Injury Severity Score > 20) were included in the study. After initial evaluation and stabilization, a single i.v. dose of morphine 0.025 mg/kg and lidocaine 1.5 mg/kg was given separately, and blood samples were drawn for each drug serum concentration. Morphine pharmacokinetics was studied in eight patients, lidocaine pharmacokinetics in seven patients, and both drugs were studied in six patients. Morphine clearance 2.5 to 10 ml/kg/min (6 +/- 2.6, mean +/- SD) and volume of distribution 0.28 to 3.30 L/kg (1.4 +/- 1.0) were found to be lower than values described previously for healthy volunteers (33.5 +/- 9 ml/kg/min and 5.16 +/- 1.40 L/kg, respectively), and are similar to those described in trauma patients (5 +/- 2.9 ml/kg/min and 0.9 +/- 0.2 L/kg, respectively). In contrast, lidocaine clearance 4.5 to 9.4 ml/kg/min (6.7 +/- 1.7) and volume of distribution 0.39 to 1.20 L/kg (0.72 +/- 0.28) were similar to the value described in healthy volunteers (10 ml/kg/min and 1.32 L/kg, respectively). Changes in pharmacokinetics of drugs eliminated by the liver may occur in patients with severe trauma. The preserved lidocaine clearance indicates an almost normal hepatic blood flow and suggests that other mechanisms may be involved in the lower morphine clearance. The findings may have applications for the treatment of severe trauma patients and suggest that drug monitoring might be needed in some instances so as to avoid toxicity.

  20. Morphine Regulated Synaptic Networks Revealed by Integrated Proteomics and Network Analysis*

    PubMed Central

    Stockton, Steven D.; Gomes, Ivone; Liu, Tong; Moraje, Chandrakala; Hipólito, Lucia; Jones, Matthew R.; Ma'ayan, Avi; Morón, Jose A.; Li, Hong; Devi, Lakshmi A.

    2015-01-01

    Despite its efficacy, the use of morphine for the treatment of chronic pain remains limited because of the rapid development of tolerance, dependence and ultimately addiction. These undesired effects are thought to be because of alterations in synaptic transmission and neuroplasticity within the reward circuitry including the striatum. In this study we used subcellular fractionation and quantitative proteomics combined with computational approaches to investigate the morphine-induced protein profile changes at the striatal postsynaptic density. Over 2,600 proteins were identified by mass spectrometry analysis of subcellular fractions enriched in postsynaptic density associated proteins from saline or morphine-treated striata. Among these, the levels of 34 proteins were differentially altered in response to morphine. These include proteins involved in G-protein coupled receptor signaling, regulation of transcription and translation, chaperones, and protein degradation pathways. The altered expression levels of several of these proteins was validated by Western blotting analysis. Using Genes2Fans software suite we connected the differentially expressed proteins with proteins identified within the known background protein-protein interaction network. This led to the generation of a network consisting of 116 proteins with 40 significant intermediates. To validate this, we confirmed the presence of three proteins predicted to be significant intermediates: caspase-3, receptor-interacting serine/threonine protein kinase 3 and NEDD4 (an E3-ubiquitin ligase identified as a neural precursor cell expressed developmentally down-regulated protein 4). Because this morphine-regulated network predicted alterations in proteasomal degradation, we examined the global ubiquitination state of postsynaptic density proteins and found it to be substantially altered. Together, these findings suggest a role for protein degradation and for the ubiquitin/proteasomal system in the etiology of

  1. Protective role of Delphinium denudatum (Jadwar) against morphine induced tolerance and dependence in mice.

    PubMed

    Zafar, S; Ahmad, M A; Siddiqui, T A

    2001-11-01

    Chronic treatment with Delphinium denudatum (Dd) (Jadwar) (family: Ranunculaceae, 200-1600 mg/kg) suppressed morphine withdrawal jumps in a dose-dependent manner, a sign of the development of dependence to opiate as assessed by naloxone (2 mg/kg) precipitation withdrawal on day 10 of testing in mice. Repeated administration of Dd (200-1600 mg/kg) for 9 days attenuated the development of tolerance to the analgesic effect of morphine (10 mg/kg), also produces significant change in tail-flick latency from the saline pretreated group in a dose-dependent manner.

  2. Neonatal morphine exposure in very preterm infants-cerebral development and outcomes.

    PubMed

    Steinhorn, Rachel; McPherson, Christopher; Anderson, Peter J; Neil, Jeffrey; Doyle, Lex W; Inder, Terrie

    2015-05-01

    To investigate the association of morphine exposure in very preterm infants with cerebral volumes and neurodevelopmental outcome from birth through middle childhood. Observational study of very preterm infants in the Victorian Infant Brain Study cohort. A total of 230 infants born <30 weeks' gestational age or <1250 g were recruited from all admissions to the neonatal intensive care unit of the Royal Women's Hospital. Fifty-seven (25%) infants received morphine analgesia during their neonatal intensive care unit stay at the attending physician's discretion. Primary outcomes were regional brain volumes at term and 7 years; neurobehavioral performance at term; and cognitive, motor, emotional, behavioral, communication, and executive function scores at age 2 and 7 years. Linear regressions were used to compare outcomes between participants who did and did not receive morphine. At term, preterm infants who received morphine had similar rates of gray matter injury to no-morphine infants, but a trend toward smaller cortical volumes in the orbitofrontal (Pleft=.002, Pright=.01) and subgenual (Pleft=.01) regions. At 7 years, cortical volumes did not differ between groups. At 2 years, morphine-exposed children were more likely to show behavioral dysregulation (P=.007) than no-morphine children, but at 7 years no detrimental impacts of morphine on neurobehavioral outcome were observed. Low-dose morphine analgesia received during neonatal intensive care was associated with early alterations in cerebral structure and short-term neurobehavioral problems that did not persist into childhood. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Transdermal nitroglycerin as an adjuvant to patient-controlled morphine analgesia after total knee arthroplasty

    PubMed Central

    Orbach-Zinger, Sharon; Lenchinsky, Artium; Paul-Kesslin, Lesley; Velks, Steven; Salai, Moses; Eidelman, Leonid A

    2009-01-01

    BACKGROUND: Nitroglycerin (NTG) has been shown to be a useful adjunct for pain treatment without increasing adverse side effects. The effects of NTG on postoperative morphine consumption after knee replacement were evaluated. METHODS: After undergoing total knee replacement, patients receiving patient-controlled morphine analgesia were randomly assigned to receive either an NTG or a placebo patch. The blinded investigator assessed each patient using a visual analogue scale at rest and while moving, as well as the patient’s morphine requirements, sedation score, sleep quality, nausea and vomiting, vital signs and postoperative bleeding. RESULTS: Two of the patients in the NTG group suffered postoperative myocardial infarctions after removal of the patch. Because of these two serious adverse effects, the study was stopped prematurely. In the subset of patients studied, NTG conferred no advantage over placebo in pain control (visual analogue scale at rest or during movement) and in satisfaction scores. CONCLUSIONS: The use of NTG patches conferred no advantage over the use of placebo in patients receiving patient-controlled morphine analgesia after total knee replacement. Two myocardial infarcts occurred in this group. Therefore, the safety of postoperative NTG patch use for pain control must be questioned. PMID:19532851

  4. Effect of prenatal restraint stress and morphine co-administration on plasma vasopressin concentration and anxiety behaviors in adult rat offspring.

    PubMed

    Nakhjiri, Elnaz; Saboory, Ehsan; Roshan-Milani, Shiva; Rasmi, Yousef; Khalafkhani, Davod

    2017-03-01

    Stressful events and exposure to opiates during gestation have important effects on the later mental health of the offspring. Anxiety is among the most common mental disorders. The present study aimed to identify effects of prenatal restraint stress and morphine co-administration on plasma vasopressin concentration (PVC) and anxiety behaviors in rats. Pregnant rats were divided into four groups (n = 6, each): saline, morphine, stress + saline and stress + morphine treatment. The stress procedure consisted of restraint twice per day, two hours per session, for three consecutive days starting on day 15 of pregnancy. Rats in the saline and morphine groups received either 0.9% saline or morphine intraperitoneally on the same days. In the morphine/saline + stress groups, rats were exposed to restraint stress and received either morphine or saline intraperitoneally. All offspring were tested in an elevated plus maze (EPM) on postnatal day 90 (n = 6, each sex), and anxiety behaviors of each rat were recorded. Finally, blood samples were collected to determine PVC. Prenatal morphine exposure reduced anxiety-like behaviors. Co-administration of prenatal stress and morphine increased locomotor activity (LA) and PVC. PVC was significantly lower in female offspring of the morphine and morphine + stress groups compared with males in the same group, but the opposite was seen in the saline + stress group. These data emphasize the impact of prenatal stress and morphine on fetal neuroendocrine development, with long-term changes in anxiety-like behaviors and vasopressin secretion. These changes are sex specific, indicating differential impact of prenatal stress and morphine on fetal neuroendocrine system development. Lay Summary Pregnant women are sometimes exposed to stressful and painful conditions which may lead to poor outcomes for offspring. Opiates may provide pain and stress relief to these mothers. In this study, we used an experimental model of

  5. Ontogenesis of morphine-induced behavior in the cat.

    PubMed

    Burgess, J Wesley; Villablanca, Jaime R

    2007-02-23

    We analyzed the behavioral responses to a single dose of morphine in kittens at postnatal (P) ages 7, 15, 30, 60, 90, and 120 days. Each kitten received 0.5 or 3.0 mg/kg i.p. of morphine sulphate or saline vehicle. An average of 6.5 kittens were studied at each dose and age. An ethogram was constructed, based on morphine effects in adult cats, to score appropriate behaviors from direct observation and video sampling. After injection behaviors were sampled for periods of 2 min every 15-30 min for a total of 4 h. The frequency of each selected behavior was scored at 2 s intervals during each of the 2 min periods and it was expressed as a percent of all time samples scored for the 4 h period. Statistical comparisons were made with control (saline) littermates. At P7-15 the drug's main effect was behavioral depression; i.e., kittens, away from the litter, laid sprawled as if with no muscle tonus; Nursing was suppressed and Vocalization was distressed. Mainly with the higher dose, at P30, morphine-specific behaviors appeared for the first time. With the kitten in a Sitting position, these included stereotypical Head and Paw Movements and body Torsion. At P60 other drug-elicited behaviors emerged, including Spinning, Retching, and Vomiting. By P90-120 the frequency of Head (16.0%) and Paw (16.9%) Movements doubled relative to P30-60. Morphine significantly changed frequencies of newly matured behaviors (in control kittens) including Sniffing and Licking (increased), and Grooming (decreased/blocked). Retching and Vomiting increased to adult levels. Morphine-induced hyperthermia was first detected at P60 and peaked by P90-P120. The early behavioral depression shifted to a pattern of increasing activity starting at P30 and peaking at P90-120, at which time Sleep was absent and Laying was reduced, while Walking and Sitting were increased. We concluded that the maturation of the stereotypical behavioral responses to morphine in cats begins at about P30 and is completed

  6. Pharmacodynamics and Pharmacokinetics of Morphine After Cardiac Surgery in Children With and Without Down Syndrome.

    PubMed

    Valkenburg, Abraham J; Calvier, Elisa A M; van Dijk, Monique; Krekels, Elke H J; O'Hare, Brendan P; Casey, William F; Mathôt, Ron A A; Knibbe, Catherijne A J; Tibboel, Dick; Breatnach, Cormac V

    2016-10-01

    To compare the pharmacodynamics and pharmacokinetics of IV morphine after cardiac surgery in two groups of children-those with and without Down syndrome. Prospective, single-center observational trial. PICU in a university-affiliated pediatric teaching hospital. Twenty-one children with Down syndrome and 17 without, 3-36 months old, scheduled for cardiac surgery with cardiopulmonary bypass. A loading dose of morphine (100 μg/kg) was administered after coming off bypass; thereafter, morphine infusion was commenced at 40 μg/kg/hr. During intensive care, nurses regularly assessed pain and discomfort with validated observational instruments (COMFORT-Behavior scale and Numeric Rating Scale-for pain). These scores guided analgesic and sedative treatment. Plasma samples were obtained for pharmacokinetic analysis. Median COMFORT-Behavior and Numeric Rating Scale scores were not statistically significantly different between the two groups. The median morphine infusion rate during the first 24 hours after surgery was 31.3 μg/kg/hr (interquartile range, 23.4-36.4) in the Down syndrome group versus 31.7 μg/kg/hr (interquartile range, 25.1-36.1) in the control group (p = 1.00). Population pharmacokinetic analysis revealed no statistically significant differences in any of the pharmacokinetic variables of morphine between the children with and without Down syndrome. This prospective trial showed that there are no differences in pharmacokinetics or pharmacodynamics between children with and without Down syndrome if pain and distress management is titrated to effect based on outcomes of validated assessment instruments. We have no evidence to adjust morphine dosing after cardiac surgery in children with Down syndrome.

  7. Analgesic tolerance to morphine is regulated by PPARγ

    PubMed Central

    de Guglielmo, Giordano; Kallupi, Marsida; Scuppa, Giulia; Stopponi, Serena; Demopulos, Gregory; Gaitanaris, George; Ciccocioppo, Roberto

    2014-01-01

    Background and Purpose Opioid drugs are potent analgesics. However, their chronic use leads to the rapid development of tolerance to their analgesic effects and subsequent increase of significant side effects, including drug dependence and addiction. Here, we investigated the role of PPARγ in the development of analgesic tolerance to morphine in mice. Experimental Approach We monitored analgesia on alternate days using the tail immersion test. Key Results Daily administration of morphine (30 mg·kg−1, bid) resulted in the rapid development of tolerance to thermal analgesia. Co-administration of pioglitazone (10 and 30 mg·kg−1, bid) significantly attenuated the development and expression of tolerance. However, pretreatment with GW-9662 (5 mg·kg−1, bid), a selective PPARγ antagonist, completely abolished this effect. Injection of GW-9662 and a lower dose of morphine (15 mg·kg−1, bid) accelerated the development of tolerance to its antinociceptive effect. Subsequently, we found that conditional neuronal PPARγ knockout (KO) mice develop a more rapid and pronounced tolerance to morphine antinociception compared with wild-type (WT) controls. Moreover, in PPARγ KO mice, pioglitazone was no longer able to prevent the development of morphine tolerance. Conclusions and Implications Overall, our results demonstrate that PPARγ plays a tonic role in the modulation of morphine tolerance, and its pharmacological activation may help to reduce its development. These findings provide new information about the role of neuronal PPARγ and suggest that combining PPARγ agonists with opioid analgesics may reduce the development of tolerance and possibly attenuate the potential for opioid abuse. PMID:25048682

  8. Effects of Shilajit on the development of tolerance to morphine in mice.

    PubMed

    Tiwari, P; Ramarao, P; Ghosal, S

    2001-03-01

    Effects of concomitant administration of Processed Shilajit (PS, 0.1 and 1 mg/kg, i.p.), in Swiss mice were evaluated on the development of tolerance to morphine induced analgesia in the hot plate test. Chronic administration of morphine (10 mg/kg, i.p., b.i.d.) to mice over a duration of 10 days resulted in the development of tolerance to the analgesic effect of morphine. Concomitant administration of PS with morphine, from day 6 to day 10, resulted in a significant inhibition of the development of tolerance to morphine (10 mg/kg, i.p.) induced analgesia. Processed Shilajit per se, in the doses used, did not elicit any significant analgesia in mice; nor did the chronic concomitant administration of Processed Shilajit alter the morphine-induced analgesia. These findings with Processed Shilajit indicate its potential as a prospective modifier of analgesic tolerance to morphine. Copyright 2001 John Wiley & Sons, Ltd.

  9. Morphine and MK-801 administration leads to alternative NMDAR1 splicing and associated changes in reward seeking behavior and nociception on an operant orofacial assay

    PubMed Central

    Anderson, Ethan M.; Del Valle-Pinero, Arseima Y.; Suckow, Shelby K.; Nolan, Todd A.; Neubert, John K.; Caudle, Robert M.

    2012-01-01

    The NMDA receptor plays a large role in opioid-induced plastic changes in the nervous system. The expression levels of its NR1 subunit are altered dramatically by morphine but no changes in its alternative splicing have been reported. Changes in the splicing of the N1, C1, C2, and C2’ cassettes can alter the pharmacology and regulation of this receptor. Western blots run on brain tissue from rats made tolerant to morphine revealed altered splicing of the N1 cassettes in the accumbens and amygdala, and the C1 cassette in the amygdala and the dorsal hippocampus. After three days of withdrawal C2’-containing NR1 subunits were down-regulated in each of these areas. These were not due to acute doses of morphine and may represent long term alterations in drug-induced neuroplasticity. We also examined the effects of morphine tolerance on an operant orofacial nociception assay which forces an animal to endure an aversive heat stimulus in order to receive a sweet milk reward. Morphine decreased pain sensitivity as expected but also increased motivational reward seeking in this task. NMDAR antagonism potentiated this reward seeking behavior suggesting that instead of attenuating tolerance, MK-801 may actually alter the rewarding and/or motivational properties of morphine. When combined, MK-801 and morphine had an additive effect which led to altered splicing in the accumbens, amygdala, and the dorsal hippocampus. In conclusion, NR1 splicing may play a major role in the cognitive behavioral aspects especially in motivational reward seeking behaviors. PMID:22531378

  10. Morphine and Codeine in Oral Fluid after Controlled Poppy Seed Administration

    PubMed Central

    Concheiro, Marta; Newmeyer, Matthew N.; da Costa, Jose Luiz; Flegel, Ron; Gorelick, David A.; Huestis, Marilyn A.

    2014-01-01

    Opiates are an important drug class in drug testing programs. Ingestion of poppy seeds containing morphine and codeine can yield positive opiate tests and mislead result interpretation in forensic and clinical settings. Multiple publications evaluated urine opiate concentrations following poppy seed ingestion, but only 2 addressed oral fluid (OF) results; neither provided the ingested morphine and codeine dosage. We administered two 45g raw poppy seed doses, each containing 15.7mg morphine and 3.1mg codeine, 8h apart to 17 healthy adults. All OF specimens were screened by on-site OF immunoassay Draeger DrugTest 5000, and confirmed with OF collected with Oral-Eze® device and quantified by liquid chromatography tandem mass spectrometry (1μg/L morphine and codeine limits of quantification). Specimens (n=459) were collected before and up to 32h after the first dose. All specimens screened positive 0.5h after dosing and remained positive for 0.5-13h at Draeger 20μg/L morphine cutoff. Maximum OF morphine and codeine concentrations (Cmax) were 177 and 32.6μg/L, with times to Cmax (Tmax) of 0.5-1h and 0.5-2.5h post-dose, respectively. Windows of detection after the second dose extended at least 24h for morphine and to 18h for codeine. After both doses, the last morphine positive OF result was 1h with 40μg/L 2004 proposed US Substance Abuse and Mental Health Services Administration cutoff, and 0.5h with 95μg/L cutoff, recently recommended by the Driving Under the Influence of Drugs and Medicines project. Positive OF morphine results are possible 0.5-1h after ingestion of 15.7mg of morphine in raw poppy seeds, depending upon the cutoff employed. PMID:25345619

  11. Differential effects of ibogaine on local cerebral glucose utilization in drug-naive and morphine-dependent rats.

    PubMed

    Levant, Beth; Pazdernik, Thomas L

    2004-04-02

    Ibogaine, a hallucinogenic indole alkaloid, has been proposed as a treatment for addiction to opioids and other drugs of abuse. The mechanism for its putative anti-addictive effects is unknown. In this study, the effects of ibogaine on local cerebral glucose utilization (LCGU) were determined in freely moving, drug-naive, or morphine-dependent adult, male, Sprague-Dawley rats using the [(14)C]2-deoxyglucose (2-DG) method. Morphine-dependent rats were treated with increasing doses of morphine (5-25 mg/kg, s.c., b.i.d.) and then maintained at 25 mg/kg (b.i.d.) for 4-7 days. For the 2-DG procedure, rats were injected with saline or ibogaine (40 mg/kg, i.p.). 2-DG was administered 1 h after administration of ibogaine. The rate of LCGU was determined by quantitative autoradiography in 46 brain regions. In drug-naive animals, ibogaine produced significant increases in LCGU in the parietal, cingulate, and occipital cortices and cerebellum compared to controls consistent with its activity as a hallucinogen and a tremorogen. Morphine-dependent rats had only minor alterations in LCGU at the time assessed in this experiment. However, in morphine-dependent animals, ibogaine produced a global decrease in LCGU that was greatest in brain regions such as the lateral and medial preoptic areas, nucleus of the diagonal band, nucleus accumbens shell, inferior colliculus, locus coeruleus, and flocculus compared to morphine-dependent animals treated with saline. These findings indicate that ibogaine produces distinctly different effects on LCGU in drug-naive and morphine-dependent rats. This suggests that different mechanisms may underlie ibogaine's hallucinogenic and anti-addictive effects.

  12. A randomized, double-blind, placebo-controlled pilot study of IV morphine-6-glucuronide for postoperative pain relief after knee replacement surgery.

    PubMed

    Romberg, Raymonda; van Dorp, Eveline; Hollander, Justus; Kruit, Michel; Binning, Alexander; Smith, Terry; Dahan, Albert

    2007-01-01

    To determine the dose-response effect of intravenous morphine-6-glucuronide (M6G) on acute postoperative pain. Patients undergoing knee replacement surgery under spinal anesthesia were randomly assigned to 1 of 4 single intravenous M6G doses, 0 (placebo), 10, 20, or 30 mg/70 kg, administered 150 minutes after the spinal anesthetic was given. Analgesic effects were evaluated by determining the cumulative patient controlled analgesia (PCA) morphine dose, consumed over a 12 and 24 hours period, after the initial dose of M6G. For pain assessments, a 10 cm visual analog scale was used. Data from 41 patients were evaluated (n=10, 10, 10, and 11 in the 0, 10, 20, and 30 mg M6G groups). Only at the highest M6G dose (30 mg/70 kg), morphine PCA consumption was significantly less compared with placebo: over the first 12 postoperative hours mean PCA morphine consumption was 3.0+/-2.0 mg/h after placebo and 1.4+/-0.5 mg/h after 30 mg M6G (P=0.03); over the first 24 h mean PCA morphine consumption was 2.5+/-2.1 mg after placebo and 1.0+/-0.4 mg after 30 mg M6G (P=0.04) (mean+/-SD). Visual analog scale values were similar across all groups during these time periods. The analgesic effect of M6G in postoperative pain was demonstrated with 30 mg/70 kg M6G superior to placebo. At this dose, M6G has a long duration of action as determined by a reduction in the use of morphine PCA over 12 and 24 hours.

  13. Mrz 2/579, a fast kinetic NMDA channel blocker, reduces the development of morphine tolerance in awake rats.

    PubMed

    Houghton, A K; Parsons, C G; Headley, P M

    2001-04-01

    The purpose of the present study was to investigate whether uncompetitive NMDA antagonists with fast channel blocking kinetics, which show fewer side effects in man than compounds such as ketamine, affect the development of tolerance to continuous exposure to morphine. Rats were trained on the Randall--Selitto apparatus before being implanted, under halothane anaesthesia, with primed mini-osmotic pumps (240 microl/day). Six rats were implanted with a vehicle filled pump, seven with a morphine filled pump (28.8 mg/kg/day), and eight with a pair of pumps, one containing morphine and the other Mrz 2/579, a new NMDA antagonist (40 mg/kg/day). A fourth group was implanted with a morphine filled pump followed 25 h later by a Mrz 2/579 filled pump. Paw withdrawal tests were undertaken immediately before, and at 2, 4, 6, 8, 10, 12, 24, 48 and 72 h after the first pump was implanted. Before pump implantation, withdrawal thresholds were 120+/-7 g (mean+/-SEM, n=30). Vehicle infusion had no effect on withdrawal thresholds, whereas morphine infusion increased them significantly at 2 and 4 h after pump implantation (+2 h: 208+/-14 g; P<0.001 vs. control). From 6 h the antinociception elicited by morphine declined progressively; at 10 h withdrawal thresholds were significantly lower than the 2 h post-treatment value (P<0.001). In rats treated with morphine plus Mrz 2/579, thresholds remained significantly higher between 10--72 h post-implantation than with morphine alone (P<0.05). In contrast, infusion of the same level of Mrz 2/579 once tolerance had developed did not reverse tolerance. These results indicate that fast NMDA channel blockers such as Mrz 2/579 may prove to be useful in enhancing analgesia to continuous morphine administration.

  14. The effect of caudal vs intravenous morphine on early extubation and postoperative analgesic requirements for stage 2 and 3 single-ventricle palliation: a double blind randomized trial.

    PubMed

    Stuth, Eckehard A E; Berens, Richard J; Staudt, Susan R; Robertson, Frederick A; Scott, John P; Stucke, Astrid G; Hoffman, George M; Troshynski, Todd J; Tweddell, James S T; Zuperku, Edward J

    2011-04-01

    High-dose single-shot caudal morphine has been postulated to facilitate early extubation and to lower initial analgesic requirements after staged single-ventricle (SV) palliation. With Institutional Review Board approval and written informed parental consent, 64 SV children aged 75-1667 days were randomized to pre-incisional caudal morphine-bupivacaine (100 μg·kg(-1) morphine (concentration 0.1%), mixed with 0.25% bupivacaine with 1 : 200,000 epinephrine, total 1 ml·kg(-1)) and postcardiopulmonary bypass (CPB) intravenous (IV) droperidol (75 μg·kg(-1)) ('active caudal group') or pre-incisional caudal saline (1 ml·kg(-1)) and post-CPB IV morphine (150 μg·kg(-1)) with droperidol (75 μg·kg(-1)) ('active IV group'). Assignment remained concealed from families and the care teams throughout the trial. Early extubation failure rates (primary or reintubation within 24 h), time to first postoperative rescue morphine analgesia, and 12-h postoperative morphine requirements were assessed for extubated patients. Thirty-one (12 stage 2) SV patients received caudal morphine and 32 (15 stage 2) received IV morphine. Extubation failure rates were 6/31 (19%) for caudal and 5/32 (16%) for IV morphine. For successfully extubated patients (n = 54), active caudal treatment significantly delayed the need for postoperative rescue morphine in stage 3 patients (P = 0.02) but not in stage 2 patients (P = 0.189) (Kaplan-Meier survival analysis with LogRank test). The reduction in 12-h postoperative morphine requirements with active caudal treatment did not reach significance (P = 0.085) but morphine requirements were significantly higher for stage 2 compared with stage 3 patients (P < 0.001) (two-way anova in n = 50 extubated patients). High-dose caudal morphine with bupivacaine delayed the need for rescue morphine analgesia in stage 3 patients. All stage 2 patients required early rescue morphine and had significantly higher postoperative 12-h morphine requirements than stage 3

  15. Sublingual and oral morphine administration. Review and new findings.

    PubMed

    Robison, J M; Wilkie, D J; Campbell, B

    1995-12-01

    Clinical reports rave about the efficacy of sublingual morphine, but most research data suggest that sublingual morphine lacks the necessary physical characteristics to be absorbed through sublingual tissues. This article clarifies these assertions by reviewing the clinical literature that supports sublingual administration, the theories relevant to sublingual morphine administration, and the pharmacokinetic research that supports or negates the benefit of this route. Recommendations for clinical nursing practice are provided to guide decision-making in care of patients with cancer pain.

  16. Morphine disinhibits glutamatergic input to VTA dopamine neurons and promotes dopamine neuron excitation.

    PubMed

    Chen, Ming; Zhao, Yanfang; Yang, Hualan; Luan, Wenjie; Song, Jiaojiao; Cui, Dongyang; Dong, Yi; Lai, Bin; Ma, Lan; Zheng, Ping

    2015-07-24

    One reported mechanism for morphine activation of dopamine (DA) neurons of the ventral tegmental area (VTA) is the disinhibition model of VTA-DA neurons. Morphine inhibits GABA inhibitory neurons, which shifts the balance between inhibitory and excitatory input to VTA-DA neurons in favor of excitation and then leads to VTA-DA neuron excitation. However, it is not known whether morphine has an additional strengthening effect on excitatory input. Our results suggest that glutamatergic input to VTA-DA neurons is inhibited by GABAergic interneurons via GABAB receptors and that morphine promotes presynaptic glutamate release by removing this inhibition. We also studied the contribution of the morphine-induced disinhibitory effect on the presynaptic glutamate release to the overall excitatory effect of morphine on VTA-DA neurons and related behavior. Our results suggest that the disinhibitory action of morphine on presynaptic glutamate release might be the main mechanism for morphine-induced increase in VTA-DA neuron firing and related behaviors.

  17. Effects of acute administration of nicotine, amphetamine, diazepam, morphine, and ethanol on risky decision-making in rats

    PubMed Central

    Mitchell, Marci R.; Vokes, Colin M.; Blankenship, Amy L.; Simon, Nicholas W.

    2011-01-01

    Rationale Most individuals can accurately assess the risks and rewards associated with choice alternatives and decide accordingly; however, drug users often display maladaptive decision-making, such that choices are biased toward excessively risky options. Objective The purpose of this study was to investigate the effects of a range of drugs of abuse on risky decision-making. Methods Male Long–Evans rats were trained in the Risky Decision-Making Task, in which they chose between two levers, one which produced a small, “safe” food reward and the other which produced a large, “risky” food reward. The large reward was accompanied by the risk of a mild footshock, the probability of which increased over the course of each test session (0%, 25%, 50%, 75%, and 100%). Results Nicotine (0.6 mg/kg) and amphetamine (1.5 mg/kg) caused a significant decrease in choice of the large risky reward (decreased risk taking). Diazepam (1.0 mg/kg) caused a significant increase in choice of the large risky reward (increased risk taking), whereas morphine (3.0 mg/kg) caused only a trend toward increased choice of the large risky reward. Ethanol had no effect on choice behavior. Conclusions These results show that acute administration of drugs of abuse can modulate risk taking in a drug-specific manner, either increasing or decreasing preference for highly rewarding, but risky, options. PMID:21638222

  18. Action of Phα1β, a peptide from the venom of the spider Phoneutria nigriventer, on the analgesic and adverse effects caused by morphine in mice.

    PubMed

    Tonello, Raquel; Rigo, Flávia; Gewehr, Camila; Trevisan, Gabriela; Pereira, Elizete Maria Rita; Gomez, Marcus Vinicius; Ferreira, Juliano

    2014-06-01

    Opioids are standard therapy for the treatment of pain; however, adverse effects limit their use. Voltage-gated calcium channel blockers may be used to increase opioid analgesia, but their effect on opioid-induced side effects is little known. Thus, the goal of this study was to evaluate the action of the peptide Phα1β, a voltage-gated calcium channel blocker, on the antinociceptive and adverse effects produced by morphine in mice. A single administration of morphine (3-10 mg/kg) was able to reduce heat nociception as well as decrease gastrointestinal transit. The antinociception caused by a single injection of morphine was slightly increased by an intrathecal injection of Phα1β (30 pmol/site). Repeated treatment with morphine caused tolerance, hyperalgesia, withdrawal syndrome, and constipation, and the Phα1β (.1-30 pmol/site, intrathecal) was able to reverse these effects. Finally, the effects produced by the native form of Phα1β were fully mimicked by a recombinant version of this peptide. Taken together, these data show that Phα1β was effective in potentiating the analgesia caused by a single dose of morphine as well as in reducing tolerance and the adverse effects induced by repeated administration of morphine, indicating its potential use as an adjuvant drug in combination with opioids. This article presents preclinical evidence for a useful adjuvant drug in opioid treatment. Phα1β, a peptide calcium channel blocker, could be used not only to potentiate morphine analgesia but also to reduce the adverse effects caused by repeated administration of morphine. Copyright © 2014. Published by Elsevier Inc.

  19. Role of dopamine D1-like receptor within the nucleus accumbens in acute food deprivation- and drug priming-induced reinstatement of morphine seeking in rats.

    PubMed

    Sadeghzadeh, Fatemeh; Babapour, Vahab; Haghparast, Abbas

    2015-01-01

    Dopamine is a predominant neurotransmitter in the nervous system, which plays an important role in both drug priming- and cue-induced reinstatement of cocaine and heroin seeking. Therefore, in the present study, the conditioned place preference (CPP) paradigm was used to evaluate the effects of intra-accumbal administration of SCH23390 as a dopamine D1-like receptor antagonist on food deprivation (FD) and drug priming-induced reinstatement. Sixty-eight adult male albino Wistar rats weighing 200-280 g were bilaterally implanted by cannulae into the nucleus accumbens (NAc). For induction of the CPP, subcutaneous (sc) administration of morphine (5mg/kg) was used daily during a three-day conditioning phase. The conditioning score and locomotor activity were recorded by using the Ethovision software. Under extinction conditions, rats were given an 'off' period and were tested for FD-induced reinstatement following the 24-h or 48-h FD condition, and for drug priming-induced reinstatement under the sated condition following an injection of 0.5 and 1mg/kg (sc) morphine. In the next experiments, animals received different doses of intra-accumbal SCH23390 (0.25, 1 and 4 μg/0.5 μl saline) bilaterally and were subsequently tested for FD- and morphine priming-induced reinstatement. Our findings indicated that only a dose of 1mg/kg and not 0.5mg/kg of morphine induced the reinstatement of morphine. 24-h FD similar to 48-h FD induced the reinstatement of seeking behaviors facilitated by an ineffective dose of morphine (0.5mg/kg). Furthermore, the D1-like receptor antagonist attenuated FD- and drug priming-induced reinstatement dose-dependently. It is concluded that FD- and drug priming-induced reinstatement may be mediated, at least in some way, by activation of dopamine D1-like receptors in the NAc. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Electromechanical coupling in rat basilar artery in response to morphine.

    PubMed

    Waters, A; Harder, D R

    1983-12-01

    Force development, intracellular membrane potential (Em), and voltage vs. current curves were measured in rat basilar artery to help elucidate the mechanism of action of morphine sulfate and a synthetic narcotic, meperidine hydrochloride, on this preparation. Morphine sulfate caused a dose-dependent contraction of these vessels, which was reversible with naloxone. Electrical studies show that morphine may act upon this vascular smooth muscle preparation by decreasing potassium conductance (gk). This hypothesis is supported by the findings that morphine sulfate depolarized these cells and increased the input resistance (rin) determined by the application of rectangular hyperpolarizing and depolarizing current pulses through the microelectrode during impalement and recording of the associated voltage changes (delta V). Meperidine hydrochloride had significantly less effect on this preparation than morphine sulfate. Further studies show that the vehicular medium used for the commercially available preparation of naloxone (viz. the methyl and propyl esters of p-hydroxybenzoic acid in a ratio of 9:1) is, in vitro, a vasodilator of cerebral vascular smooth muscle.

  1. Morphine via nitric oxide modulates beta-amyloid metabolism: a novel protective mechanism for Alzheimer's disease.

    PubMed

    Pak, Theodore; Cadet, Patrick; Mantione, Kirk J; Stefano, George B

    2005-10-01

    The deposition of intracellular and extracellular beta-amyloid peptide (Abeta) in the brain is a pathologic feature of Alzheimer's disease (AD), a prevalent neurodegenerative disorder. However, the exact role of the Abeta peptide in causing AD's symptoms is unclear. CRL-2266 SH-SY5Y human neuroblastoma cells (ATCC, USA) and HTB-11 human neuroblastoma cells (ATCC, USA) were cultured. Reverse transcription-polymerase chain reaction (RT-PCR) was performed to analyze the effects of beta25-35, morphine, and SNAP treatments upon BACE-1 and BACE-2 mRNA expression semi-quantitative RT-PCR. The production of NO in SH-SY5Y cells was detected using the Apollo 4000 Free Radical Analyzer (World Precision Instruments). Untreated HTB-11 neuroblastoma cells constitutively express BACE-1 and BACE-2 mRNA. Morphine down regulates the expression of BACE-1 and up regulates the expression of BACE-2 in a naloxone antagonizable manner. When HTB-11 cells were treated with L-NAME, a cNOS inhibitor; the effects of morphine were blocked. SNAP (a NO donor) mimicked the effect of morphine. In SH-SY5Y cells, Abeta treated cells show a dose-dependent decrease in NO release, demonstrating that Ab is dose-dependently inhibiting the release of constitutive NO. Ab and morphine/NO each inhibit the production of the other. This suggests that a deficiency of basal NO or endogenous morphine may trigger drastically reduced levels of basal NO. The outcome is chronic vasoconstriction and brain hypoperfusion and eventual neuronal death. This novel theorized mechanism for AD supports an increasingly-accepted vascular pathological hypothesis for the disease.

  2. Simultaneous determination of morphine, codeine and 6-acetyl morphine in human urine and blood samples using direct aqueous derivatisation: validation and application to real cases.

    PubMed

    Chericoni, S; Stefanelli, F; Iannella, V; Giusiani, M

    2014-02-15

    Opiates play a relevant role in forensic toxicology and their assay in urine or blood is usually performed for example in workplace drug-testing or toxicological investigation of drug impaired driving. The present work describes two new methods for detecting morphine, codeine and 6-monoacethyl morphine in human urine or blood using a single step derivatisation in aqueous phase. Propyl chloroformate is used as the dramatizing agent followed by liquid-liquid extraction and gas-chromatography-mass spectroscopy to detect the derivatives. The methods have been validated both for hydrolysed and unhydrolysed urine. For hydrolysed urine, the LOD and LOQ were 2.5ng/ml and 8.5ng/ml for codeine, and 5.2ng/ml and 15.1ng/ml for morphine, respectively. For unhydrolysed urine, the LOD and LOQ were 3.0ng/ml and 10.1ng/ml for codeine, 2.7ng/ml and 8.1ng/ml for morphine, 0.8ng/ml and 1.5ng/ml for 6-monoacetyl morphine, respectively. In blood, the LOD and LOQ were 0.44ng/ml and 1.46ng/ml for codeine, 0.29ng/ml and 0.98ng/ml for morphine, 0.15ng/ml and 0.51ng/ml for 6-monoacetyl morphine, respectively. The validated methods have been applied to 50 urine samples and 40 blood samples (both positive and negative) and they can be used in routine analyses. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Protective Effect of Bacoside-A against Morphine-Induced Oxidative Stress in Rats.

    PubMed

    Sumathi, T; Nathiya, V C; Sakthikumar, M

    2011-07-01

    In the present study, we investigated the protective effect of bacoside-A the active principle isolated from the plant Bacopa monniera against oxidative damage induced by morphine in rat brain. Morphine intoxicated rats received 10-160 mg/kg b.w. of morphine hydrochloride intraperitoneally for 21 days. Bacoside-A pretreated rats were administered with bacoside-A (10 mg/kg b.w/day) orally, 2 h before the injection of morphine for 21 days. Pretreatment with bacoside-A has shown to possess a significant protective role against morphine induced brain oxidative damage in the antioxidant status (total reduced glutathione, superoxide dismutase, catalase, glutathione peroxidase and lipid peroxidation) and membrane bound ATP-ases(Na(+)/K(+)ATPase. Ca(2+) and Mg(2+) ATPases) activities in rat. The results of the present study indicate that bacoside-A protects the brain from oxidative stress induced by morphine.

  4. Low-dose memantine attenuated morphine addictive behavior through its anti-inflammation and neurotrophic effects in rats.

    PubMed

    Chen, Shiou-Lan; Tao, Pao-Luh; Chu, Chun-Hsien; Chen, Shih-Heng; Wu, Hsiang-En; Tseng, Leon F; Hong, Jau-Shyong; Lu, Ru-Band

    2012-06-01

    Opioid abuse and dependency are international problems. Studies have shown that neuronal inflammation and degeneration might be related to the development of opioid addiction. Thus, using neuroprotective agents might be beneficial for treating opioid addiction. Memantine, an Alzheimer's disease medication, has neuroprotective effects in vitro and in vivo. In this study, we evaluated whether a low dose of memantine prevents opioid-induced drug-seeking behavior in rats and analyzed its mechanism. A conditioned-place-preference test was used to investigate the morphine-induced drug-seeking behaviors in rats. We found that a low-dose (0.2-1 mg/kg) of subcutaneous memantine significantly attenuated the chronic morphine-induced place-preference in rats. To clarify the effects of chronic morphine and low-dose memantine, serum and brain levels of cytokines and brain-derived neurotrophic factor (BDNF) were measured. After 6 days of morphine treatment, cytokine (IL-1β, IL-6) levels had significantly increased in serum; IL-1β and IL-6 mRNA levels had significantly increased in the nucleus accumbens and medial prefrontal cortex, both addiction-related brain areas; and BDNF levels had significantly decreased, both in serum and in addiction-related brain areas. Pretreatment with low-dose memantine significantly attenuated chronic morphine-induced increases in serum and brain cytokines. Low-dose memantine also significantly potentiated serum and brain BDNF levels. We hypothesize that neuronal inflammation and BDNF downregulation are related to the progression of opioid addiction. We hypothesize that the mechanism low-dose memantine uses to attenuate morphine-induced addiction behavior is its anti-inflammatory and neurotrophic effects.

  5. Inhibition of the ubiquitin-proteasome activity prevents glutamate transporter degradation and morphine tolerance.

    PubMed

    Yang, Liling; Wang, Shuxing; Lim, Grewo; Sung, Backil; Zeng, Qing; Mao, Jianren

    2008-12-01

    Glutamate transporters play a crucial role in physiological glutamate homeostasis and neurotoxicity. Recently, we have shown that downregulation of glutamate transporters after chronic morphine exposure contributed to the development of morphine tolerance. In the present study, we examined whether regulation of the glutamate transporter expression with the proposed proteasome inhibitor MG-132 would contribute to the development of tolerance to repeated intrathecal (twice daily x 7 days) morphine administration in rats. The results showed that MG-132 (5 nmol) given intrathecally blocked morphine-induced glutamate transporter downregulation and the decrease in glutamate uptake activity within the spinal cord dorsal horn. Co-administration of morphine (15 nmol) with MG-132 (vehicle=1<2.5<5=10 nmol) also dose-dependently prevented the development of morphine tolerance in rats. These findings suggest that prevention of spinal glutamate transporter downregulation may regulate the glutamatergic function that has been implicated in the development of morphine tolerance. The possible relationship between MG-132-mediated regulation of glutamate transporters, ubiquitin-proteasome system, and the cellular mechanisms of morphine tolerance is discussed in light of these findings.

  6. Randomized and controlled prospective trials of Ultrasound-guided spinal nerve posterior ramus pulsed radiofrequency treatment for lower back post-herpetic neuralgia.

    PubMed

    Pi, Z B; Lin, H; He, G D; Cai, Z; Xu, X Z

    2015-01-01

    To evaluate the efficacy of ultrasound-guided spinal nerve posterior ramus pulsed radiofrequency treatment for lower back post-herpetic neuralgia. 128 cases of lower back or anterior abdominal wall acute post-herpetic neuralgia patients were selected. They were randomly divided into two groups. Group A: oral treatment only with gabapentin + celecoxib + amitriptyline. Group B: while taking these drugs, patients were treated with radiofrequency (RF) pulses using a portable ultrasound device using the paravertebral puncture technique. In both groups, sudden outbreaks of pain were treated with immediate release 10mg morphine tablets. Visual analogue scale (VAS) was used for pain score, Pittsburgh Sleep Quality Index scale (PSQI) was used to evaluate sleep quality and morphine consumption were recorded at different time points, before and after treatment. Treatment efficiency was calculated while the occurrence of complications was documented. At each time point after treatment, VAS scores were lower, but scores in the RF group was significantly lower than those of the oral-only group. In terms of sleep quality scores and morphine consumption between the two groups, the RF group was significantly lower than the oral-only group. During the procedure no error occurred with needle penetrating the abdominal cavity, chest, offal or blood vessels. Ultrasound-guided spinal nerve posterior ramus pulsed radiofrequency treatment of lower back or anterior abdominal wall post-herpetic neuralgia proved effective by reducing morphine use in patients and led to fewer adverse reactions.

  7. Treatment of Acute Pelvic Inflammatory Disease

    PubMed Central

    Sweet, Richard L.

    2011-01-01

    Pelvic inflammatory disease (PID), one of the most common infections in nonpregnant women of reproductive age, remains an important public health problem. It is associated with major long-term sequelae, including tubal factor infertility, ectopic pregnancy, and chronic pelvic pain. In addition, treatment of acute PID and its complications incurs substantial health care costs. Prevention of these long-term sequelae is dependent upon development of treatment strategies based on knowledge of the microbiologic etiology of acute PID. It is well accepted that acute PID is a polymicrobic infection. The sexually transmitted organisms, Neisseria gonorrhoeae and Chlamydia trachomatis, are present in many cases, and microorganisms comprising the endogenous vaginal and cervical flora are frequently associated with PID. This includes anaerobic and facultative bacteria, similar to those associated with bacterial vaginosis. Genital tract mycoplasmas, most importantly Mycoplasma genitalium, have recently also been implicated as a cause of acute PID. As a consequence, treatment regimens for acute PID should provide broad spectrum coverage that is effective against these microorganisms. PMID:22228985

  8. Out-of-hospital opioid therapy of palliative care patients with "acute dyspnoea": a retrospective multicenter investigation.

    PubMed

    Wiese, Christoph H R; Barrels, Utz E; Graf, Bernhard M; Hanekop, Gerd G

    2009-01-01

    Prehospital emergency physicians (EP) are often confronted with the acute care of palliative care patients. Dyspnoea is a frequent acute symptom and its causes often differ from the generally known emergency medical causes. Till now, there have been no relevant concepts for emergency care of palliative care patients for their specific symptoms. Over a 24-month period, the authors retrospectively investigated all out-of-hospital emergency medical services for palliative care patients with acute dyspnoea at four emergency physician support points. The evaluation of these services was followed retrospectively on the basis of the therapy carried out by the EP (Group 1: therapy with morphine and oxygen; Group 2: therapy with morphine, bronchodilator effective drugs and oxygen; Group 3: therapy with bronchodilator effective drugs and oxygen; Group 4: therapy with oxygen; Group 5: no medical treatment). Moreover, EPs were interviewed about their actions and their uncertainties in the treatment of palliative care patients. The diagnosis of acute dyspnoea in palliative care patients occurred 121 times (116 patients were integrated in the present investigation) within the defined period. In total, 116 patients were included (Group 1: 21, Group 2: 29, Group 3: 31, Group 4: 28, and Group 5: 7). Dyspnoea was satisfactorily treated in 41 percent of the patients (Group 1: 67 percent, Group 2: 52 percent, Group 3: 22 percent, Group 4: 18 percent, and Group 5: 71 percent). Most EPs (70 percent) revealed uncertainties in emergency medical therapy for patients at the end of life. The current investigation showed a significant relief of acute dyspnoea when using opioids, in contrast with the established out-of-hospital emergency medical therapy for acute dyspnoea. Therefore, opioids should be recommended for emergency medical therapy of dyspnoea in palliative care patients. Clinical studies that recommend the use of effective opioids for the treatment of dyspnoea in palliative care

  9. Blocking α4β2 and α7 nicotinic acetylcholine receptors inhibits the reinstatement of morphine-induced CPP by drug priming in mice.

    PubMed

    Feng, Bin; Xing, Jiang-hao; Jia, Dong; Liu, Shui-bing; Guo, Hong-ju; Li, Xiao-qiang; He, Xiao-sheng; Zhao, Ming-gao

    2011-06-20

    Investigating the interaction between nicotinic and opioid receptors is of great interest for both basic mechanistic and clinical reasons. Morphine and nicotine, two common drugs of abuse, share several behavioral and rewarding properties. However, little is known about the subtypes of nicotinic acetylcholine receptors (nAChR) in the reinstatement of morphine-induced conditioned place preference (CPP). In this study, we found that a non-specific nAChR agonist, nicotine (0.5mg/kg), had no effects on the reinstatement of morphine-induced CPP. However, we found that pretreatment with specific α(4)β(2) and α(7) nAChR subtype antagonists, dihydroxy-β-erithroidine (DHβE, 5mg/kg) and methyllycaconitine (MLA, 4 mg/kg), 20 min prior to administration of morphine, inhibited the reinstatement of morphine-induced CPP by drug priming in mice. Furthermore, depression of the reinstatement of morphine-induced CPP by a single DHβE or MLA treatment lasted at least three days later when the reinstatement was induced by morphine priming. The data suggest that specific nAChR subtypes, i.e., α(4)β(2) and α(7), may contribute to the reinstatement of morphine-induced CPP by drug priming in mice. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Comparison of epidural oxycodone and epidural morphine for post-caesarean section analgesia: A randomised controlled trial

    PubMed Central

    Sng, Ban Leong; Kwok, Sarah Carol; Mathur, Deepak; Ithnin, Farida; Newton-Dunn, Clare; Assam, Pryseley Nkouibert; Sultana, Rehena; Sia, Alex Tiong Heng

    2016-01-01

    Background and Aims: Epidural morphine after caesarean section may cause moderate to severe pruritus in women. Epidural oxycodone has been shown in non-obstetric trials to reduce pruritus when compared to morphine. We hypothesised that epidural oxycodone may reduce pruritus after caesarean section. Methods: A randomised controlled trial was conducted in pregnant women at term who underwent caesarean section with combined spinal-epidural technique initiated with intrathecal fentanyl 15 μg. Women received either epidural morphine 3 mg or epidural oxycodone 3 mg via the epidural catheter after delivery. The primary outcome was the incidence of pruritus at 24 h after caesarean section. The secondary outcomes were the pruritus scores, treatment for post-operative nausea and vomiting (PONV), pain scores and maternal satisfaction. Results: One hundred women were randomised (group oxycodone O = 50, morphine M = 50). There was no difference between Group O and M in the incidence of pruritus (n [%] 28 [56%] vs. 31 [62%], P = 0.68) and the worst pruritus scores (mean [standard deviation] 2.6 (2.8) vs. 3.3 [3.1], P = 0.23), respectively. Both groups had similar pain scores at rest (2.7 [2.3] vs. 2.0 [2.7], P = 0.16) and sitting up (5.0 [2.3] vs. 4.6 [2.4], P = 0.38) at 24 h. Pruritus scores were lower at 4–8, 8–12 and 12–24 h with oxycodone, but pain scores were higher. Both groups had a similar need for treatment of PONV and maternal satisfaction with analgesia. Conclusion: There was no difference in the incidence of pruritus at 24 h between epidural oxycodone and morphine. However, pruritus scores were lower with oxycodone between 4 and 24 h after surgery with higher pain scores in the same period. PMID:27053782

  11. Study on the treatment of acute thallium poisoning.

    PubMed

    Zhang, Hong-Tao; Qiao, Bao-Ping; Liu, Bao-Ping; Zhao, Xian-Guo

    2014-05-01

    Acute thallium poisoning rarely occurs but is a serious and even fatal medical condition. Currently, patients with acute thallium poisoning are usually treated with Prussian blue and blood purification therapy. However, there are few studies about these treatments for acute thallium poisoning. Nine patients with acute thallium poisoning from 1 family were treated successfully with Prussian blue and different types of blood purification therapies and analyzed. Prussian blue combined with sequential hemodialysis, hemoperfusion and/or continuous veno-venous hemofiltration were effective for the treatment of patients with acute thallium poisoning, even after delayed diagnosis. Blood purification therapies help in the clearance of thallium in those with acute thallium poisoning. Prussian blue treatment may do the benefit during this process.

  12. Combined action of MK-801 and ceftriaxone impairs the acquisition and reinstatement of morphine-induced conditioned place preference, and delays morphine extinction in rats.

    PubMed

    Fan, Yaodong; Niu, Haichen; Rizak, Joshua D; Li, Ling; Wang, Guimei; Xu, Liqi; Ren, He; Lei, Hao; Yu, Hualin

    2012-10-01

    It is well established that glutamate and its receptors, particularly the N-methyl-D-aspartate receptor (NMDAR), play a significant role in addiction and that the inhibition of glutamatergic hyperfunction reduces addictive behaviors in experimental animals. Specifically, NMDAR antagonists such as MK-801, and an inducer of the expression of glutamate transporter subtype-1 (GLT-1) (ceftriaxone) are known to inhibit addictive behavior. The purpose of this study was to determine whether the combined action of a low dose of MK-801 and a low dose of ceftriaxone provides better inhibition of the acquisition, extinction, and reinstatement of morphine-induced conditioned place preference (CPP) than either compound alone. A morphine-paired CPP experiment was used to study the effects of low doses of MK-801, ceftriaxone and a combination of both on reward-related memory (acquisition, extinction, and reinstatement of morphine preference) in rats. A low dose of neither MK-801 (0.05 mg/kg, i.p.) nor ceftriaxone (25 mg/kg, i.p.) alone effectively impaired CPP behaviors. However, when applied in combination, they reduced the acquisition of morphine-induced CPP and completely prevented morphine reinstatement. Their combination also notably impaired the extinction of morphine-induced CPP. The combined action of a low dose of an NMDAR antagonist (MK-801) and GLT-1 activation by ceftriaxone effectively changed different phases of CPP behavior.

  13. Synthetic substances with morphine-like effect

    PubMed Central

    Eddy, Nathan B.; Halbach, H.; Braenden, Olav J.

    1957-01-01

    A review of effects in man of morphine-like drugs which have been brought under international narcotics control is presented in the form of individual monographs. These are based on controlled observations with quantitative data and significant reports of results obtained in medical practice. In a summarizing section, the drugs are compared with respect to effectiveness, side-effects and addiction liability. Morphine-like drugs of natural and synthetic origin now cover a wide range of potency (analgesic, antitussive), not necessarily paralleled by incidence of side-effects or addiction liability. PMID:13511135

  14. Endogenous Morphine in SH-SY5Y Cells and the Mouse Cerebellum

    PubMed Central

    Taleb, Omar; Kemmel, Véronique; Laux, Alexis; Miehe, Monique; Delalande, François; Roussel, Guy; Van Dorsselaer, Alain; Metz-Boutigue, Marie-Hélène; Aunis, Dominique; Goumon, Yannick

    2008-01-01

    Background Morphine, the principal active agent in opium, is not restricted to plants, but is also present in different animal tissues and cell types, including the mammalian brain. In fact, its biosynthetic pathway has been elucidated in a human neural cell line. These data suggest a role for morphine in brain physiology (e.g., neurotransmission), but this hypothesis remains a matter of debate. Recently, using the adrenal neuroendocrine chromaffin cell model, we have shown the presence of morphine-6-glucuronide (M6G) in secretory granules and their secretion products, leading us to propose that these endogenous alkaloids might represent new neuroendocrine factors. Here, we investigate the potential function of endogenous alkaloids in the central nervous system. Methodology and Principal Findings Microscopy, molecular biology, electrophysiology, and proteomic tools were applied to human neuroblastoma SH-SY5Y cells (i) to characterize morphine and M6G, and (ii) to demonstrate the presence of the UDP-glucuronyltransferase 2B7 enzyme, which is responsible for the formation of M6G from morphine. We show that morphine is secreted in response to nicotine stimulation via a Ca2+-dependent mechanism involving specific storage and release mechanisms. We also show that morphine and M6G at concentrations as low as 10−10 M are able to evoke specific naloxone-reversible membrane currents, indicating possible autocrine/paracrine regulation in SH-SY5Y cells. Microscopy and proteomic approaches were employed to detect and quantify endogenous morphine in the mouse brain. Morphine is present in the hippocampus, cortex, olfactory bulb, and cerebellum at concentration ranging from 1.45 to 7.5 pmol/g. In the cerebellum, morphine immunoreactivity is localized to GABA basket cells and their termini, which form close contacts on Purkinje cell bodies. Conclusions/Significance The presence of morphine in the brain and its localization in particular areas lead us to conclude that it has a

  15. Acute Treatment of Migraine

    PubMed Central

    ÖZTÜRK, Vesile

    2013-01-01

    Migraine is one of the most frequent disabling neurological conditions with a major impact on the patient’s quality of life. Migraine has been described as a chronic disorder that characterized with attacks. Attacks are characterized by moderate–severe, often unilateral, pulsating headache attacks, typically lasting 4 to 72 hours. Migraine remains underdiagnosed and undertreated despite advances in the understanding of its pathophysiology. This article reviews management of migraine acute pharmacological treatment. Currently, for the acute treatment of migraine attacks, non-steroidal anti-inflammatory drugs (NSAIDs) and triptans (serotonin 5HT1B/1D receptor agonists) are recommended. Before intake of NSAID and triptans, metoclopramide or domperidone is useful. In very severe attacks, subcutaneous sumatriptan is first choice. The patient should be treated early in the attack, use an adequate dose and formulation of a medication. Ideally, acute therapy should be restricted to no more than 2 to 3 days per week to avoid medication overuse. PMID:28360580

  16. Protective Effect of Bacoside-A against Morphine-Induced Oxidative Stress in Rats

    PubMed Central

    Sumathi, T.; Nathiya, V. C.; Sakthikumar, M.

    2011-01-01

    In the present study, we investigated the protective effect of bacoside-A the active principle isolated from the plant Bacopa monniera against oxidative damage induced by morphine in rat brain. Morphine intoxicated rats received 10-160 mg/kg b.w. of morphine hydrochloride intraperitoneally for 21 days. Bacoside-A pretreated rats were administered with bacoside-A (10 mg/kg b.w/day) orally, 2 h before the injection of morphine for 21 days. Pretreatment with bacoside-A has shown to possess a significant protective role against morphine induced brain oxidative damage in the antioxidant status (total reduced glutathione, superoxide dismutase, catalase, glutathione peroxidase and lipid peroxidation) and membrane bound ATP-ases(Na+/K+ATPase. Ca2+ and Mg2+ ATPases) activities in rat. The results of the present study indicate that bacoside-A protects the brain from oxidative stress induced by morphine. PMID:22707825

  17. Effects of ketoprofen, morphine, and kappa opioids on pain-related depression of nesting in mice.

    PubMed

    Negus, S Stevens; Neddenriep, Bradley; Altarifi, Ahmad A; Carroll, F Ivy; Leitl, Michael D; Miller, Laurence L

    2015-06-01

    Pain-related functional impairment and behavioral depression are diagnostic indicators of pain and targets for its treatment. Nesting is an innate behavior in mice that may be sensitive to pain manipulations and responsive to analgesics. The goal of this study was to develop and validate a procedure for evaluation of pain-related depression of nesting in mice. Male ICR mice were individually housed and tested in their home cages. On test days, a 5- × 5-cm Nestlet was subdivided into 6 pieces, the pieces were evenly distributed on the cage floor, and Nestlet consolidation was quantified during 100-minute sessions. Baseline nesting was stable within and between subjects, and nesting was depressed by 2 commonly used inflammatory pain stimuli (intraperitoneal injection of dilute acid; intraplantar injection of complete Freund adjuvant). Pain-related depression of nesting was alleviated by drugs from 2 classes of clinically effective analgesics (the nonsteroidal anti-inflammatory drug ketoprofen and the μ-opioid receptor agonist morphine) but not by a drug from a class that has failed to yield effective analgesics (the centrally acting kappa opioid agonist U69,593). Neither ketoprofen nor morphine alleviated depression of nesting by U69,593, which suggests that ketoprofen and morphine effects were selective for pain-related depression of nesting. In contrast to ketoprofen and morphine, the kappa opioid receptor antagonist JDTic blocked depression of nesting by U69,593 but not by acid or complete Freund adjuvant. These results support utility of this procedure to assess expression and treatment of pain-related depression in mice.

  18. [Oral morphine in the treatment of patients with terminal disease].

    PubMed

    Manzini, J L; Somoza, E J; Fridlender, H I

    1990-01-01

    From May 1986 until July 1987, oral morphine hydrochloride in water solution was used in terminal patients, under a strict protocol of administration, and complying with the basic principles of Palliative Care. A retrospective study was carried out on the 40 patients who had received the drug for more than three consecutive days. As shown in Table 1, the average age of the treated patients was 70 years. The ambulatory patients represented 27.5% of the sample. The average initial dose was 60 mg, and the average maintenance dose was 120 mg. The median treatment time was 45 days. "Good" results were achieved in 85% of the patients, and "fairly good" in the remainder ("good" results were defined as "satisfactory symptom control, good life quality"--in this group there were some patients who obtained total suppression of the symptoms and optimal life-quality, i.e. "excellent" results; "bad" results were defined as "total absence of therapeutic effect"; and "fairly good" results, the intermediate cases). The more frequently treated symptoms were: 67.5%, pain due to tumor mass; and 20%, pain due to nerve compression-invasion, bone pain, and dyspnoea due to pulmonary metastases or primary lung cancer: total symptoms was more than a hundred per cent, because a number of patients had more than one symptom. Whenever necessary, adjuvant drugs were employed. Side effects were seen in 37% of the patients (specially nausea, vomiting, constipation, and somnolence for more than four days).(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Transitional Study of Patient-Controlled Analgesia Morphine With Ketorolac to Patient-Controlled Analgesia Morphine With Parecoxib Among Donors in Adult Living Donor Liver Transplantation: A Single-Center Experience.

    PubMed

    Lim, K-I; Liu, C-K; Chen, C-L; Wang, C-H; Huang, C-J; Cheng, K-W; Wu, S-C; Shih, T-H; Yang, S-C; Lee, Y-E; Jawan, B; Juang, S-E

    2016-05-01

    In this study, as our center transitions from using patient-controlled analgesia (PCA) morphine with intravenous (IV) ketorolac to PCA morphine with IV parecoxib, the two regimens are compared in terms of quality of pain control. Post-operative pain management sheets were collected retrospectively among the living donors of liver transplantation during this transitional period. Group parecoxib was given plain PCA morphine. A single dose of IV parecoxib 40 mg was given 30 minutes before the end of surgery. Group ketorolac was given PCA morphine pre-mixed ketorolac with a concentration of 1.87 mg/mL. Daily and total morphine consumption, Visual Analog Score (VAS), and number of rescue attempts made up to 3 post-operative days, together with satisfaction score and incidence of side effects of PCA usage, were analyzed and compared by means of the Mann-Whitney U test; a value of P < .05 was regarded as significant, and data are given as mean ± SD. Fifty patients were analyzed; group 1 comprised 21 patients and group 2 comprised 29 patients. There was no difference between group 1 and group 2 in terms of daily VAS. PCA morphine requirements were significantly lower at day 2 and day 3 in group 1. However, the total overall morphine usage and satisfactory score was not statistically different (P = .863, P = .052). A single dose of IV parecoxib 40 mg can provide satisfactory pain control when paired with PCA morphine for donors undergoing living donor liver transplantation. The use of parecoxib in the multimodal analgesia regimen has similar efficacy, with possibly less morphine consumption, when compared with ketorolac. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Disruption of δ-opioid receptor phosphorylation at threonine 161 attenuates morphine tolerance in rats with CFA-induced inflammatory hypersensitivity.

    PubMed

    Chen, Hai-Jing; Xie, Wei-Yan; Hu, Fang; Zhang, Ying; Wang, Jun; Wang, Yun

    2012-04-01

    Our previous study identified Threonine 161 (Thr-161), located in the second intracellular loop of the δ-opioid receptor (DOR), as the only consensus phosphorylation site for cyclin-dependent kinase 5 (Cdk5). The aim of this study was to assess the function of DOR phosphorylation by Cdk5 in complete Freund's adjuvant (CFA)-induced inflammatory pain and morphine tolerance. Dorsal root ganglion (DRG) neurons of rats with CFA-induced inflammatory pain were acutely dissociated and the biotinylation method was used to explore the membrane localization of phosphorylated DOR at Thr-161 (pThr-161-DOR), and paw withdrawal latency was measured after intrathecal delivery of drugs or Tat-peptide, using a radiant heat stimulator in rats with CFA-induced inflammatory pain. Both the total amount and the surface localization of pThr-161-DOR were significantly enhanced in the ipsilateral DRG following CFA injection. Intrathecal delivery of the engineered Tat fusion-interefering peptide corresponding to the second intracellular loop of DOR (Tat-DOR-2L) increased inflammatory hypersensitivity, and inhibited DOR- but not µ-opioid receptor-mediated spinal analgesia in CFA-treated rats. However, intrathecal delivery of Tat-DOR-2L postponed morphine antinociceptive tolerance in rats with CFA-induced inflammatory pain. Phosphorylation of DOR at Thr-161 by Cdk5 attenuates hypersensitivity and potentiates morphine tolerance in rats with CFA-induced inflammatory pain, while disruption of the phosphorylation of DOR at Thr-161 attenuates morphine tolerance.

  1. Extending Time Profile of Morphine-Induced Analgesia Using a Chitosan-Based Molecular Imprinted Polymer Nanogel.

    PubMed

    Hassanzadeh, Marjan; Ghaemy, Mousa; Ahmadi, Shamseddin

    2016-10-01

    Chitosan-based molecular imprinted polymer (CS-MIP) nanogel is prepared in the presence of morphine template, fully characterized and used as a new vehicle to extend duration of morphine analgesic effect in Naval Medical Research Institute mice. The CS-MIP nanogel with ≈25 nm size range exhibits 98% loading efficiency, and in vitro release studies show an initial burst followed by an extended slow release of morphine. In order to study the feasibility of CS-MIP nanogel as morphine carrier, 20 mice are divided into two groups randomly and received subcutaneous injection of morphine-loaded CS-MIP and morphine (10 mg kg -1 ) dissolved in physiologic saline. Those received injection of morphine-loaded CS-MIP show slower and long lasting release of morphine with 193 min effective time of 50% (ET50) analgesia compared to 120 min ET50 in mice received morphine dissolved in physiologic saline. These results suggest that CS-MIP nanogel can be a possible strategy as morphine carrier for controlled release and extension of its analgesic efficacy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Inhibitory effect of harmane on morphine-dependent Guinea pig ileum.

    PubMed

    Aricioglu, Feyza; Utkan, Tijen

    2003-12-01

    Studies on the occurrence and properties of b-carbolines structurally related to harmala alkaloids have gained attention since it was hypothesized that some of these compounds play a role in processes of substance abuse and dependence. This study investigates the effects of harmane on naloxone-precipitated withdrawal syndrome in morphine-dependent guinea pig ileum. Segments of ilea from starved male guinea pigs were obtained and fixed at a resting tension of 1 g in an organ bath containing 10(-6) M morphine in Tyrode solution at 37 degrees C, which was bubbled with 95% O(2) and 5% CO(2). Tissues were incubated in 10(-6) M morphine containing Tyrode solution for 4 hours before harmane was added. Naloxone and harmane had no effect on naive ilea. Naloxone (10(-6) M) contracted morphine-dependent ilea. Harmane significantly inhibited the contractile response to naloxone in a dose-dependent manner (10(-7) M = 24%; 10(-6) M = 49.3%; 10(-5) = 70%). These results suggest that harmane may have beneficial effects on morphine withdrawal syndrome.

  3. Effect of morphine on sympathetic nerve activity in humans

    NASA Technical Reports Server (NTRS)

    Carter, Jason R.; Sauder, Charity L.; Ray, Chester A.

    2002-01-01

    There are conflicting reports for the role of endogenous opioids on sympathetic and cardiovascular responses to exercise in humans. A number of studies have utilized naloxone (an opioid-receptor antagonist) to investigate the effect of opioids during exercise. In the present study, we examined the effect of morphine (an opioid-receptor agonist) on sympathetic and cardiovascular responses at rest and during isometric handgrip (IHG). Eleven subjects performed 2 min of IHG (30% maximum) followed by 2 min of postexercise muscle ischemia (PEMI) before and after systemic infusion of morphine (0.075 mg/kg loading dose + 1 mg/h maintenance) or placebo (saline) in double-blinded experiments on separate days. Morphine increased resting muscle sympathetic nerve activity (MSNA; 17 +/- 2 to 22 +/- 2 bursts/min; P < 0.01) and increased mean arterial pressure (MAP; 87 +/- 2 to 91 +/- 2 mmHg; P < 0.02), but it decreased heart rate (HR; 61 +/- 4 to 59 +/- 3; P < 0.01). However, IHG elicited similar increases for MSNA, MAP, and HR between the control and morphine trial (drug x exercise interaction = not significant). Moreover, responses to PEMI were not different. Placebo had no effect on resting, IHG, and PEMI responses. We conclude that morphine modulates cardiovascular and sympathetic responses at rest but not during isometric exercise.

  4. Effects of the NMDA receptor antagonist memantine on the expression and development of acute opiate dependence as assessed by withdrawal-potentiated startle and hyperalgesia.

    PubMed

    Harris, Andrew C; Rothwell, Patrick E; Gewirtz, Jonathan C

    2008-03-01

    While the N-methyl-D: -aspartate (NMDA) glutamate receptor has been strongly implicated in chronic opiate dependence, relatively few studies have examined the effects of NMDA receptor antagonists on withdrawal from acute opiate exposure. The current study examined the effects of memantine, a well-tolerated NMDA receptor antagonist, on acute opiate dependence as assessed by elevations in rodent startle responding (i.e., "withdrawal-potentiated startle") and increased pain sensitivity (i.e., hyperalgesia). Administration of memantine either attenuated (5 mg/kg) or blocked (10 mg/kg) the expression of withdrawal-potentiated startle during naloxone (2.5 mg/kg)-precipitated withdrawal from a single dose of morphine sulfate (10 mg/kg). Pre-treatment with the NMDA receptor antagonist also inhibited the exacerbation of withdrawal-potentiated startle across repeated acute opiate exposures. Memantine blocked the expression of acute dependence, but was less effective in inhibiting its escalation, when hyperalgesia was used as a measure of withdrawal. These doses of memantine did not affect startle responding or nociception in otherwise drug-free animals. Data from additional control groups indicated that the effects of memantine on the expression of withdrawal were not influenced by nonspecific interactions between the NMDA antagonist and either morphine or naloxone. These findings suggest that the NMDA receptor may play a key role in the earliest stages of opiate dependence and provide further evidence that memantine may be useful for the treatment of opiate withdrawal.

  5. Brain cholinergic involvement during the rapid development of tolerance to morphine

    NASA Technical Reports Server (NTRS)

    Wahba, Z. Z.; Oriaku, E. T.; Soliman, S. F. A.

    1987-01-01

    The effect of repeated administration of morphine on the activities of the cholinergic enzymes, choline acetyltransferase (ChAT) and acetylcholinesterase (AChE), in specific brain regions were studied in rats treated with 10 mg/kg morphine for one or two days. Repeated administration of morphine was associated with a decline in the degree of analgesia produced and with a significant increase of AChE activity of the medulla oblongata. A single injection of morphine resulted in a significant decline in ChAT activity in the hypothalamus, cerebellum, and medulla oblongata regions. After two consecutive injections, no decline in ChAT was observed in these regions, while in the cerebral cortex the second administration elicited a significant decline. The results suggest that the development of tolerance to morphine may be mediated through changes in ChAT activity and lend support to the involvement of the central cholinergic system in narcotic tolerance.

  6. Single-dose intra-articular bupivacaine versus morphine after arthroscopic knee surgery: a meta-analysis of randomized-controlled studies.

    PubMed

    Wei, Jie; Lei, Guang-hua; Gao, Shu-Guang; Zeng, Chao; Qin, Jia-bi; Kong, Fan-jing; Yang, Tu-bao

    2014-07-01

    This meta-analysis compared the earliest clinical effects of intra-articular bupivacaine and morphine for pain management following arthroscopic knee surgery. A comprehensive literature search was conducted using MEDLINE (1966 to 2013), the Cochrane Central Register of Controlled Trials (CENTRAL), Embase, and Google Scholar databases for identification of randomized-controlled trials that compared IA bupivacaine and morphine for postoperative pain. The relative risk, weighted mean difference (WMD), and their corresponding 95% confidence intervals (CI) were calculated using RevMan statistical software. Bupivacaine and morphine group had similar acute postoperative pain scores (WMD: 0.07; 95% CI, -0.18 to 0.32; P=0.60); number of patients requiring supplementary analgesia (relative risk: 0.74; 95% CI, 0.42 to 1.31; P=0.30) for the trials in this meta-analysis (n=13); and side effects (relative risk: 0.63; 95% CI, 0.39 to 1.02, P=0.06). Even though, the time to first analgesic request resulted in a significant difference (WMD: 66.59; 95% CI, 11.75 to 122.14, P=0.02), this result was not supported by the sensitivity analysis. On the basis of the currently available literature, this study failed to demonstrate a significant difference between single-dose intra-articular bupivacaine and morphine at the end of the arthroscopic knee surgery in terms of pain relief, need for supplementary analgesics, times interval before the first request for additional analgesic, and short-term side effects. Level II-meta-analysis of Level I and II studies.

  7. Effect of Nimodipine on Morphine-related Withdrawal Syndrome in Rat Model: An Observational Study

    PubMed Central

    Mishra, Pravash Ranjan; Barik, Mayadhar; Ray, Subrata Basu

    2017-01-01

    Objective: To observe the effect of L-type calcium channel blocker like nimodipine on morphine's withdrawal when it was administered continuously along with morphine versus a single bolus dose of nimodipine, which was administered at the end of the experiment before the precipitation of withdrawal reaction in morphine-dependent rats. Materials and Methods: Four groups of adult male Wistar rats were rendered morphine dependent by subcutaneous injections of morphine at a dose of 10 mg/kg for 10 days. Nimodipine 10 mg/kg intraperitoneally (ip) administered to one group once daily before morphine administration in the entire experimental period, and another group received nimodipine only once at the end of the experiment as a single bolus dose 2 mg/kg before the administration of naloxone. Naloxone 3 mg/kg was administered ip to all the groups to precipitate withdrawal reactions. The withdrawal reactions were evaluated and scored as per the Gellert and Holtzman global withdrawal rating scale. Results: Nimodipine when administered as a single bolus dose before naloxone administration in morphine-dependant rats reduced the features of withdrawal reactions more effectively than continuous administration of nimodipine along with morphine throughout the experimental period. Conclusion: We discovered that nimodipine helps in attenuating the severity of morphine withdrawal having potential role encountered during pharmacotherapy with morphine management of opioid dependence, well memory, impairement, cell signaling and phosphorylation of neuron. PMID:28553371

  8. Effect of Nimodipine on Morphine-related Withdrawal Syndrome in Rat Model: An Observational Study.

    PubMed

    Mishra, Pravash Ranjan; Barik, Mayadhar; Ray, Subrata Basu

    2017-01-01

    To observe the effect of L-type calcium channel blocker like nimodipine on morphine's withdrawal when it was administered continuously along with morphine versus a single bolus dose of nimodipine, which was administered at the end of the experiment before the precipitation of withdrawal reaction in morphine-dependent rats. Four groups of adult male Wistar rats were rendered morphine dependent by subcutaneous injections of morphine at a dose of 10 mg/kg for 10 days. Nimodipine 10 mg/kg intraperitoneally (ip) administered to one group once daily before morphine administration in the entire experimental period, and another group received nimodipine only once at the end of the experiment as a single bolus dose 2 mg/kg before the administration of naloxone. Naloxone 3 mg/kg was administered ip to all the groups to precipitate withdrawal reactions. The withdrawal reactions were evaluated and scored as per the Gellert and Holtzman global withdrawal rating scale. Nimodipine when administered as a single bolus dose before naloxone administration in morphine-dependant rats reduced the features of withdrawal reactions more effectively than continuous administration of nimodipine along with morphine throughout the experimental period. We discovered that nimodipine helps in attenuating the severity of morphine withdrawal having potential role encountered during pharmacotherapy with morphine management of opioid dependence, well memory, impairement, cell signaling and phosphorylation of neuron.

  9. Intrathecal substance P augments morphine-induced antinociception: possible relevance in the production of substance P N-terminal fragments.

    PubMed

    Komatsu, Takaaki; Sasaki, Mika; Sanai, Kengo; Kuwahata, Hikari; Sakurada, Chikai; Tsuzuki, Minoru; Iwata, Yohko; Sakurada, Shinobu; Sakurada, Tsukasa

    2009-09-01

    The present study sought to examine the mechanism of substance P to modulate the antinociceptive action of intrathecal (i.t.) morphine in paw-licking/biting response evoked by subcutaneous injection of capsaicin into the plantar surface of the hindpaw in mice. The i.t. injection of morphine inhibited capsaicin-induced licking/biting response in a dose-dependent manner. Substance P (25 and 50 pmol) injected i.t. alone did not alter capsaicin-induced nociception, whereas substance P at a higher dose of 100 pmol significantly reduced the capsaicin response. Western blots showed the constitutive expression of endopeptidase-24.11 in the dorsal and ventral parts of lumbar spinal cord of mice. The N-terminal fragment of substance P (1-7), which is known as a major product of substance P by endopeptidase-24.11, was more effective than substance P on capsaicin-induced nociception. Combination treatment with substance P (50 pmol) and morphine at a subthreshold dose enhanced the antinociceptive effect of morphine. The enhanced effect of the combination of substance P with morphine was reduced significantly by co-administration of phosphoramidon, an inhibitor of endopeptidase-24.11. Administration of D-isomer of substance P (1-7), [D-Pro(2), D-Phe(7)]substance P (1-7), an inhibitor of [(3)H] substance P (1-7) binding, or antisera against substance P (1-7) reversed the enhanced antinociceptive effect by co-administration of substance P and morphine. Taken together these data suggest that morphine-induced antinociception may be enhanced through substance P (1-7) formed by the enzymatic degradation of i.t. injected substance P in the spinal cord.

  10. Seizures induced by carbachol, morphine, and leucine-enkephalin: a comparison.

    PubMed

    Snead, O C

    1983-04-01

    The electrical, behavioral, and pharmacological properties of seizures induced by morphine, leucine-enkephalin, and the muscarinic cholinergic agonist carbachol were examined and compared. Low-dose carbachol given intracerebroventricularly (ICV) produced seizures similar electrically to those produced by ICV morphine and leucine-enkephalin, although there was some difference in site of subcortical origin of onset. Carbachol and morphine were similar in that they had the same anticonvulsant profile, produced similar behavioral changes, caused generalized absence seizures in low doses and generalized convulsive seizures in high doses, and were capable of chemical kindling. However, opiate-induced seizures were not overcome by cholinergic antagonists, nor were carbachol seizures blocked by opiate antagonists. These data suggest that there may be a common noncholinergic, nonopiatergic system involved in mediating carbachol- and morphine-induced seizures but not enkephalin seizures.

  11. Low doses of dextromethorphan attenuate morphine-induced rewarding via the sigma-1 receptor at ventral tegmental area in rats.

    PubMed

    Chen, Shiou-Lan; Hsu, Kuei-Ying; Huang, Eagle Yi-Kung; Lu, Ru-Band; Tao, Pao-Luh

    2011-09-01

    Chronic use of morphine causes rewarding and behavioral sensitization, which may lead to the development of psychological craving. In our previous study, we found that a widely used antitussive dextromethorphan (known as a low affinity NMDA receptor antagonist), at doses of 10-20 mg/kg (i.p.), effectively decreased morphine rewarding in rats. In this study, we further investigated the effects and mechanisms of low doses of DM (μg/kg range) on morphine rewarding and behavioral sensitization. A conditioned place preference test was used to determine the rewarding and a locomotor activity test was used to determine the behavioral sensitization induced by the drug(s) in rats. When a low dose of DM (3 or 10 μg/kg, i.p.) was co-administered with morphine (5 mg/kg, s.c.), the rewarding effect, but not behavioral sensitization, induced by morphine was inhibited. The inhibiting effect of DM could be blocked by systemically administering a sigma-1 receptor antagonist, BD1047 (3 mg/kg, i.p.). When BD1047 (5 nmole/site) was locally given at the VTA, it also blocked the effects of a low dose of DM in inhibiting morphine rewarding. Our findings suggest that the activation of the sigma-1 receptor at the VTA may be involved in the mechanism of low doses of DM in inhibiting the morphine rewarding effect and the possibility of using extremely low doses of DM in treatment of opioid addiction in clinics. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Evaluation of oral maropitant as an antiemetic in cats receiving morphine and dexmedetomidine.

    PubMed

    Martin-Flores, Manuel; Sakai, Daniel M; Mastrocco, Alicia; Learn, McKenzie M; Campoy, Luis; Kirch, Pati J; Boesch, Jordyn M; Gleed, Robin D

    2016-11-01

    Objectives The aim of the study was to evaluate the antiemetic effects of maropitant, after oral administration, in cats receiving morphine and dexmedetomidine. Methods This prospective, blinded, randomized controlled trial involved 98 healthy female domestic shorthair cats. Cats were randomly assigned to receive maropitant PO 8 mg total (group M) administered 18 h prior to sedation with intramuscular dexmedetomidine 20 µg/kg and morphine 0.1 mg/kg, or no antiemetic treatment (group C). The occurrence of signs of nausea (sialorrhea and lip-licking), retching and emesis during the 30 mins following administration of dexmedetomidine and morphine was measured for each group. Results Two cats were excluded from the investigation. Cats in group M (n = 46) received an average of 2.5 mg/kg of maropitant PO. Compared with group C (n = 50), cats in group M had lower incidences of emesis (M: 4% vs C: 40%), retching (M: 8% vs C: 40%) and lip-licking (M: 30% vs C: 52%) (all P <0.05). The incidence of sialorrhea was not different between groups (M: 21% vs C: 22%). Conclusions and relevance Maropitant 8 mg total PO was effective in reducing morphine and dexmedetomidine-induced emesis by 10-fold, when administered as early as 18 h in advance to healthy cats. Maropitant PO could be useful for administration the evening prior to a scheduled procedure requiring sedation/anesthesia to decrease the incidence of emesis.

  13. Continuous evaluation of drug withdrawal in the rat using telemetry: effects of morphine and chlordiazepoxide.

    PubMed

    Froger-Colléaux, Christelle; Rompion, Sonia; Guillaume, Philippe; Porsolt, Roger D; Castagné, Vincent; Moser, Paul

    2011-01-01

    The procedures used to assess withdrawal must be sensitive and widely applicable, i.e. not specific to any particular drug class. Furthermore, the measurements should not be affected by repeat testing. We have used implanted telemetry devices to continuously follow body temperature, locomotor activity (LMA), heart rate (HR) and mean arterial blood pressure (mean ABP) in addition to food intake and body weight gain over 20days of treatment and 8days of withdrawal. The effects of morphine (32 and 64mg/kg p.o., b.i.d.) and chlordiazepoxide (16, 32 and 64mg/kg p.o., b.i.d.) were studied in rats. The results show that during the treatment phase chronic morphine reduced food intake and body weight gain, increased body temperature, HR, mean ABP and LMA. These effects continued over the 20days of treatment. In contrast, chlordiazepoxide slightly increased food intake and body weight gain throughout the treatment period. It also decreased body temperature and LMA but increased HR and mean ABP after the first few administrations but these effects disappeared over the 20days of treatment. Following discontinuation, both morphine- and chlordiazepoxide-treated rats showed a dose-related decrease in food intake and loss of weight on days 2 and 3 of discontinuation. Morphine discontinuation also induced a nocturnal hypothermia and a diurnal hypertension (i.e. during the light phase) which lasted for 4-5days and also moderate diurnal increases in locomotor activity and heart rate over the first 3days of discontinuation. Chlordiazepoxide discontinuation induced small increases in telemetry parameters some of which, such as the effect on locomotor activity, lasted for more than 5days. The intensity and duration of effects for both substances were broadly dose-related. These data show that telemetry can increase the sensitivity of withdrawal experiments to changes that might otherwise be missed and allows a better definition of the time-course of withdrawal effects. This technique is

  14. Evaluation of the Effectiveness of Two Morphine Protocols to Treat Neonatal Abstinence Syndrome in a Level II Nursery in a Community Hospital.

    PubMed

    DeAtley, Heather N; Burton, Amanda; Fraley, Michelle DeLuca; Haltom, Joan

    2017-07-01

    The authors sought to evaluate the impact on length of hospital stay and treatment duration of morphine after implementation of a change in the institutional protocol for managing neonatal abstinence syndrome (NAS) in an effort to improve patient outcomes. A single-center, retrospective chart review was conducted at a Level II nursery in a community hospital in Kentucky. Fifty-nine neonates born between January 1, 2014, and December 31, 2015, who were diagnosed with NAS and received morphine for treatment were included. The protocol 1 group consisted of 33 neonates who received an initial dose of morphine 0.04 mg/kg/dose administered orally every 4 hours (January 1-December 31, 2014), and the protocol 2 group consisted of 26 neonates who received an initial dose of morphine 0.06 mg/kg/dose administered orally every 3 hours (January 1-November 30, 2015), after a change in the protocol for managing NAS was implemented on January 1, 2015. Data were reviewed and compared between the two protocol groups to determine the impact that the dosage change had on length of hospital stay and morphine treatment duration. The average length of stay decreased by 7 days in the protocol 2 group compared with the protocol 1 group (21 vs 28.65 days). The average duration of treatment decreased by 7 days in the protocol 2 group compared with the protocol 1 group (18.3 vs 25.4 days). These differences between groups were not statistically significant, however, because the population size was not large enough to achieve adequate power. These results indicate that protocol 2 displayed the potential to decrease length of stay and duration of treatment compared with protocol 1 at this facility; however, balancing higher starting doses with the risk of oversedation will continue to challenge the health care team. Concern for oversedation when using the higher starting dose in protocol 2 has prompted further research (e.g., protocol 3, initial morphine 0.05 mg/kg/dose every 3 hrs). Continued

  15. Epidural morphine and detomidine decreases postoperative hindlimb lameness in horses after bilateral stifle arthroscopy.

    PubMed

    Goodrich, Laurie R; Nixon, Alan J; Fubini, Susan L; Ducharme, Norm G; Fortier, Lisa A; Warnick, Lorin D; Ludders, John W

    2002-01-01

    To determine whether preoperative epidural administration of morphine and detomidine would decrease postoperative lameness after bilateral stifle arthroscopy in horses. Prospective clinical controlled study. Eight adult horses that had bilateral arthroscopic procedures, including drilling of cartilage and subchondral bone within the femoropatellar joints. Horses were randomly separated into 2 groups. Preoperatively, 4 horses were administered a combination of epidural morphine (0.2 mg/kg) and detomidine (30 microg/kg), and 4 horses were administered an equivalent volume of epidural saline (0.9% NaCl) solution. Postoperative pain was assessed using 6 video recordings made at hourly intervals of each horse at a walk. Assessments began 1 hour after recovery from anesthesia. The recordings were scrambled out of sequence and evaluated by 3 observers, unaware of treatment groups, who scored lameness from 0 to 4. Lameness scores of the 2 groups of horses were compared using a Wilcoxon's rank sum test. Heart and respiratory rates were also measured at each hourly interval and compared between groups using a repeated-measures ANOVA; statistical significance was set at P <.05. Preoperative administration of epidural morphine and detomidine significantly decreased lameness and heart rates after bilateral stifle arthroscopy. The greatest decrease was detected at hours 1 and 2 after recovery from anesthesia. We conclude that horses undergoing a painful arthroscopic procedure of the stifle joint benefit from the administration of preoperative epidural morphine and detomidine. Preoperative epidural administration of detomidine and morphine may be useful in decreasing postoperative pain after stifle arthroscopy as well as pain associated with other painful disorders involving the stifle joint, such as septic arthritis and trauma. Copyright 2002 by The American College of Veterinary Surgeons

  16. Effects of environmental enrichment on behavioral and spatial cognitive deficits in morphine-dependent and -withdrawn rats.

    PubMed

    Hammami-Abrand Abadi, Arezoo; Miladi-Gorji, Hossein

    2017-02-01

    This study was designed to examine the effect of environmental enrichment during morphine dependence and withdrawal on morphine-induced behavioral and spatial cognitive disorders in morphine-withdrawn rats. Adult male Wistar rats (190 ± 20 g) were injected with bi-daily doses (10 mg/kg, 12 h intervals) of morphine for 14 days. Rats were reared in SE or EE during the development of dependence on morphine and withdrawal. Then, rats were tested for spatial learning and memory (the water maze), spontaneous withdrawal signs, and grooming behavior. We found that the EE blocked chronic morphine-induced partial impairments of spatial memory retention. Moreover, the EE diminished the occurrence of spontaneous morphine withdrawal signs as mild and the self-grooming behavior. Our findings showed that EE ameliorates chronic morphine-induced partial deficits of spatial cognition, obsessive-like behavior, and the overall severity of the morphine withdrawal. Thus, environmental enrichment may be a potential therapeutic strategy for spatial memory and behavioral deficits in morphine-dependent individuals.

  17. Effects of Morphine on Behavioral Task Performance in SIV-Infected Rhesus Macaques.

    PubMed

    Marcario, Joanne K; Pendyala, Gurudutt; Riazi, Mariam; Fleming, Kandace; Marquis, Janet; Callen, Shannon; Lisco, Steven J; Fowler, Stephen C; Cheney, Paul D; Buch, Shilpa J

    2016-06-01

    The abuse of opiates such as morphine in synergy with HIV infection not only exacerbates neuropathogenesis but significantly impacts behavioral attributes in HIV infected subjects. Thus, the goal of the current study was to characterize behavioral perturbations in rhesus macaques subjected to chronic morphine and SIV infection. Specifically, we assessed three behavioral tasks: motor skill (MS), forelimb force (FFT) and progressive ratio (PR) tasks. After collecting baseline control data (44 weeks) and data during the morphine-only dependency period (26 weeks), a subset of animals were productively infected with neurovirulent strains of SIVmac (R71/E17) for an additional 33 weeks. A general pattern in the results is that behavioral decline occurred with high CSF viral loads but not necessarily with high plasma viral loads. Compared to saline controls, all treated animals showed significant decreases in performance on all three behavioral tasks during the morphine-only dependency period. During the post infection period, only the morphine plus SIV group showed a significant further decline and this only occurred for the MS task. Taken together, these data demonstrate a clear effect of morphine to produce behavioral deficits and also suggest that morphine can act synergistically with SIV/HIV to exacerbate behavioral deficits.

  18. Effects of morphine on behavioral task performance in SIV-infected Rhesus macaques

    PubMed Central

    Marcario, Joanne K; Pendyala, Gurudutt; Riazi, Mariam; Fleming, Kandace; Marquis, Janet; Callen, Shannon; Lisco, Steven J; Fowler, Stephen C.; Cheney, Paul D; Buch, Shilpa J

    2016-01-01

    The abuse of opiates such as morphine in synergy with HIV infection not only exacerbates neuropathogenesis but significantly impacts behavioral attributes in HIV infected subjects. Thus, the goal of the current study was to characterize behavioral perturbations in rhesus macaques subjected to chronic morphine and SIV infection. Specifically, we assessed three behavioral tasks: motor skill (MS), forelimb force (FFT) and progressive ratio (PR) tasks. After collecting baseline control data (44 weeks) and data during the morphine-only dependency period (26 weeks), a subset of animals were productively infected with neurovirulent strains of SIVmac (R71/E17) for an additional 33 weeks. A general pattern in the results is that behavioral decline occurred with high CSF viral loads but not necessarily with high plasma viral loads. Compared to saline controls, all treated animals showed significant decreases in performance on all three behavioral tasks during the morphine-only dependency period. During the post infection period, only the morphine plus SIV group showed a significant further decline and this only occurred for the MS task. Taken together, these data demonstrate a clear effect of morphine to produce behavioral deficits and also suggest that morphine can act synergistically with SIV/HIV to exacerbate behavioral deficits. PMID:27039332

  19. Reinstatement of Morphine-Induced Conditioned Place Preference in Mice by Priming Injections

    PubMed Central

    Do Couto, B. Ribeiro; Aguilar, M. A.; Manzanedo, C.; Rodríguez-Arias, M.; Miñarro, J.

    2003-01-01

    To construct a model of relapse of drug abuse in mice, the induction, we evaluated the extinction and reinstatement of morphine-induced place preference. In Experiment 1, we examined the effects of morphine (0, 2, 3, 5, 10, 20 and 40 mg/kg) in the conditioned place preference (CPP) paradigm. Mice showed CPP with 5, 10, 20 and 40 mg/kg. In Experiment 2, we evaluated the effects of two different extinction procedures. After conditioning with 40 mg/kg of morphine, the mice underwent daily extinction sessions of 60 or 15 min of duration. CPP was extinguished after seven and nine sessions, respectively. In Experiment 3, we tested the reinstating effects of several priming doses of morphine. Mice were conditioned with 40 mg/kg of morphine and underwent the daily 15 min extinction sessions until CPP was no longer evident. Then, the effects of morphine (0, 2, 3, 5, 10, 20, 40 mg/kg, i.p.) were evaluated. CPP was reinstated by doses from 5 mg/kg upward. The results show that morphine priming injections are effective in reactivating opiateseeking behavior in mice, and thus, the CPP paradigm might be useful to investigate the mechanisms underlying relapse of drug abuse. PMID:15152982

  20. Effects of carprofen and morphine on the minimum alveolar concentration of isoflurane in dogs.

    PubMed

    Ko, Jeff C H; Weil, Ann B; Inoue, Tomohito

    2009-01-01

    The minimum alveolar concentration (MAC) of isoflurane in dogs was determined following carprofen (2.2 mg/kg per os) alone, morphine (1 mg/kg intravenously) alone, carprofen and morphine, and no drug control in eight healthy adult dogs. Isoflurane MAC following administration of morphine alone (0.81%+/-0.18%) or carprofen and morphine (0.68%+/-0.31%) was significantly less than the control MAC (1.24%+/-0.15%). Isoflurane MAC after carprofen alone (1.13%+/-0.13%) was not significantly different from the control value. Results indicated that administration of morphine alone or in combination with carprofen significantly reduced the MAC of isoflurane in dogs. The isoflurane MAC reduction was additive between the effects of carprofen and morphine.

  1. Continuous intravenous morphine infusion for postoperative analgesia following posterior spinal fusion for idiopathic scoliosis.

    PubMed

    Poe-Kochert, Connie; Tripi, Paul A; Potzman, Jennifer; Son-Hing, Jochen P; Thompson, George H

    2010-04-01

    A retrospective study of postoperative pain management. Evaluate the efficacy and safety of continuous intravenous morphine infusion for postoperative pain management in patients with idiopathic scoliosis (IS) undergoing posterior spinal fusion (PSF) and segmental spinal instrumentation (SSI). Postoperative pain is a common problem following surgery for IS. There are no published reports regarding the use of a continuous intravenous morphine infusion for this patient population. We retrospectively reviewed data regarding 339 consecutive patients with IS who underwent PSF and SSI between 1992 and 2006. All patients received intrathecal morphine after the induction of general anesthesia. Following surgery, preordered morphine infusion (0.01 mg/kg/h) was started at first reported pain. The infusion rate was titrated based on vital signs, visual analog scale (VAS) pain scores (0-10), and clinical status. It was continued until patients were able to take oral analgesics. We reviewed intrathecal morphine dosage, VAS pain scores through the third postoperative day, interval to start of morphine infusion, total morphine requirements in the first 48 hours, and any adverse reactions (nausea/vomiting, pruritus, respiratory depression, and pediatric intensive care unit admission). Mean intrathecal morphine dose was 15.5 +/- 3.9 microg/kg and mean interval to start of the intravenous morphine infusion was 17.5 +/- 5 hours. Mean VAS pain scores were 3.1, 4.5, 4.5, and 4.6 at 12 hours, 1, 2, and 3 days after surgery, respectively.The total mean morphine dose in the first 48 hours postoperatively was 0.03 +/- 0.01 mg/kg/h. Total morphine received was 1.44 +/- 0.5 mg/kg. Nausea/vomiting and pruritus, related to the morphine infusion occurred in 45 patients (13.3%) and 14 patients (4.1%), respectively. No patients had respiratory depression or required Pediatric Intensive Care Unit admission. A low frequency of adverse events and a mean postoperative VAS pain score of 5 or less

  2. Effects of morphine and naloxone on feline colonic transit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krevsky, B.; Libster, B.; Maurer, A.H.

    1989-01-01

    The effects of endogenous and exogenous opioid substances on feline colonic transit were evaluated using colonic transit scintigraphy. Naloxone accelerated emptying of the cecum and ascending colon, and filling of the transverse colon. Endogenous opioid peptides thus appear to play a significant role in the regulation of colonic transit. At a moderate dose of morphine cecum and ascending colon transit was accelerated, while at a larger dose morphine had no effect. Since naloxone, a relatively nonspecific opioid antagonist, and morphine, a principally mu opioid receptor agonist, both accelerate proximal colonic transit, a decelerating role for at least one of themore » other opioid receptors is inferred.« less

  3. Acetaminophen and non-steroidal anti-inflammatory drugs interact with morphine and tramadol analgesia for the treatment of neuropathic pain in rats.

    PubMed

    Shinozaki, Tomonari; Yamada, Toshihiko; Nonaka, Takahiro; Yamamoto, Tatsuo

    2015-06-01

    Although non-steroidal anti-inflammatory drugs and acetaminophen have no proven efficacy against neuropathic pain, they are frequently prescribed for neuropathic pain patients. We examined whether the combination of opioids (tramadol and morphine) with indomethacin or acetaminophen produce favorable effects on neuropathic pain and compared the efficacy for neuropathic pain with that for inflammatory pain. The carrageenan model was used as the inflammatory pain model while the tibial neuroma transposition (TNT) model was used as the neuropathic pain model. The tibial nerve is transected in the TNT model, with the tibial nerve stump then transpositioned to the lateral aspect of the hindlimb. Neuropathic pain (mechanical allodynia and neuroma pain) is observed after TNT injury. Drugs were administered orally. In the carrageenan model, all drugs produced anti-allodynic effects and all drug combinations, but not tramadol + indomethacin combination, produced synergistic anti-allodynic effects. In the TNT model, tramadol and morphine, but not acetaminophen and indomethacin, produced anti-neuropathic pain effects. In the combination, with the exception of morphine + acetaminophen combination, both acetaminophen and indomethacin reduced the 50% effective dose (ED50) of tramadol and morphine as compared with the ED50s for the single drug study in the TNT model. The ED50s of tramadol and morphine in the carrageenan combination test were not statistically significantly different from the ED50s in the TNT model combination study. The combination of opioids with indomethacin or acetaminophen produced a synergistic analgesic effect both in inflammatory and neuropathic pain with some exceptions. The efficacy of these combinations for neuropathic pain was not different from that for inflammatory pain.

  4. Long-term effects of routine morphine infusion in mechanically ventilated neonates on children's functioning: five-year follow-up of a randomized controlled trial.

    PubMed

    de Graaf, Joke; van Lingen, Richard A; Simons, Sinno H P; Anand, Kanwaljeet J S; Duivenvoorden, Hugo J; Weisglas-Kuperus, Nynke; Roofthooft, Daniella W E; Groot Jebbink, Liesbeth J M; Veenstra, Ravian R; Tibboel, Dick; van Dijk, Monique

    2011-06-01

    Newborns on ventilatory support often receive morphine to induce analgesia. Animal experiments suggest that this may impair subsequent cognitive and behavioral development. There are sparse human data on long-term effects of neonatal morphine. We aimed to investigate the effects of continuous morphine administered in the neonatal period on the child's functioning. We conducted a follow-up study among 5-year-olds who, as mechanically ventilated neonates, had participated in a placebo-controlled trial on effects of morphine administration on pain and neurologic outcome. They were now tested on intelligence, visual motor integration, behavior, chronic pain, and health-related quality of life. Univariate analyses showed significantly lower overall intelligence quotient (IQ) scores for children who earlier had received morphine, that is, mean 94 (SD 14.5) versus 100 (SD 12.9) for those who received placebo (P = 0.049). Other between-group differences in outcomes were not found. The statistical difference disappeared after correction for treatment condition, open-label morphine consumption over the first 28 days, and a propensity score for clinically relevant co-variables in multiple regression analyses. However, scores on one IQ subtest, "visual analysis," were significantly negatively related to having received morphine and to open-label morphine consumption the first 28 days. The finding of a significant effect of morphine on the "visual analysis" IQ subtest calls for follow-up at a later age focusing on the higher-order neurocognitive functions. Morphine received in the neonatal period has negative effects on the child's cognitive functioning at the age of 5 years which warrants follow-up at a later age. Copyright © 2011 International Association for the Study of Pain. All rights reserved.

  5. Possible delayed respiratory depression following intrathecal injection of morphine and bupivacaine in an alpaca.

    PubMed

    Martínez, Miguel; Murison, Pamela J; Murrell, Jo

    2014-01-01

    To describe general anesthesia and successful treatment of an alpaca, which developed respiratory arrest 2 hours after intrathecal injection of morphine and bupivacaine. A 10-day-old female alpaca weighing 7.3 kg was presented to our hospital with a fractured right tibia. The cria was anesthetized to repair the fracture with a dynamic compression plate. Anesthesia was induced with IV propofol and maintained with sevoflurane in 100% oxygen. Prior to the start of surgery the alpaca received an unintended intrathecal injection of 0.6 mL of a solution of 0.5 mg morphine (0.068 mg/kg) and 1.5 mg bupivacaine (0.2 mg/kg), after an attempted lumbo-sacral epidural. The alpaca developed respiratory arrest 120 minutes after the intrathecal injection was administered. Adequate hemoglobin-oxygen saturation was maintained despite minimal intermittent manual ventilation, but marked hypercapnia developed (PaCO2 of 17.3 KPa [130 mm Hg]). Delayed respiratory depression resulting from cephalad migration of intrathecal morphine was suspected. Ventilation was supported until the end of surgery when sevoflurane was discontinued. The trachea remained intubated, 100% oxygen was supplied, and ventilation was supported at 2-4 breaths/min for the next 60 minutes, but no attempts to breathe spontaneously were detected. Intravenous naloxone (0.3 mg [0.04 mg/kg]) was administered slowly to effect until adequate spontaneous ventilation and full consciousness returned. The anesthetic recovery of the alpaca was rapid and uneventful after the opioid antagonist was given. Delayed respiratory depression is a potential complication after intrathecal administration of morphine. Careful dose-adjustment may reduce the risk, and close monitoring will result in early detection and treatment of this complication. © Veterinary Emergency and Critical Care Society 2014.

  6. Intra-accumbal CB1 receptor blockade reduced extinction and reinstatement of morphine.

    PubMed

    Khaleghzadeh-Ahangar, Hossein; Haghparast, Abbas

    2015-10-01

    The limbic dopaminergic reward system is the main target of morphine-like drugs which begins from the ventral tegmental area (VTA) and sends its dopaminergic projections to the nucleus accumbens (NAc), amygdala, hippocampus and prefrontal cortex. Cannabinoid receptors exist in afferent neurons from these areas to the NAc and can modulate glutamate synaptic transmission in the NAc. Cannabinoids can interact with the opiate system in reward-related behaviors; nevertheless these systems' interaction in extinction duration and reinstatement has not been shown. In the present study, the effects of bilateral intra-accumbal administration of AM251, a CB1 receptor antagonist, on the duration of the extinction phase and reinstatement to morphine were investigated by conditioned place preference (CPP) paradigm. Forty eight adult male albino Wistar rats were used. Bilateral intra-accumbal administration of AM251 (15, 45 and 90μM/0.5μl DMSO per side) was performed. Subcutaneous administration of morphine (5mg/kg) in three consecutive days was used to induce CPP. The results showed that administration of the maximal dose of AM251 during the extinction period significantly reduces duration of extinction and reinstatement to morphine. Administration of the middle dose during the extinction period significantly attenuated reinstatement to morphine. A single microinjection of the middle dose just before the reinstatement phase significantly attenuated reinstatement to morphine only, while bilateral intra-accumbal administration of neither the lowest dose nor the vehicle (DMSO) had any effects. These results for the first time indicated that CB1 receptors within the NAc are involved in the maintenance of morphine rewarding properties, and morphine seeking behaviors in extinguished morphine-induced CPP rats. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Morphine Glucuronidation and Elimination in Intensive Care Patients: A Comparison with Healthy Volunteers.

    PubMed

    Ahlers, Sabine J G M; Välitalo, Pyry A J; Peeters, Mariska Y M; Gulik, Laura van; van Dongen, Eric P A; Dahan, Albert; Tibboel, Dick; Knibbe, Catherijne A J

    2015-11-01

    Although morphine is used frequently to treat pain in the intensive care unit, its pharmacokinetics has not been adequately quantified in critically ill patients. We evaluated the glucuronidation and elimination clearance of morphine in intensive care patients compared with healthy volunteers based on the morphine and morphine-3-glucuronide (M3G) concentrations. A population pharmacokinetic model with covariate analysis was developed with the nonlinear mixed-effects modeling software (NONMEM 7.3). The analysis included 3012 morphine and M3G concentrations from 135 intensive care patients (117 cardiothoracic surgery patients and 18 critically ill patients), who received continuous morphine infusions adapted to individual pain levels, and 622 morphine and M3G concentrations from a previously published study of 20 healthy volunteers, who received an IV bolus of morphine followed by a 1-hour infusion. For morphine, a 3-compartment model best described the data, whereas for M3G, a 1-compartment model fits best. In intensive care patients with a normal creatinine concentration, a decrease of 76% was estimated in M3G clearance compared with healthy subjects, conditional on the M3G volume of distribution being the same in intensive care patients and healthy volunteers. Furthermore, serum creatinine concentration was identified as a covariate for both elimination clearance of M3G in intensive care patients and unchanged morphine clearance in all patients and healthy volunteers. Under the assumptions in the model, M3G elimination was significantly decreased in intensive care patients when compared with healthy volunteers, which resulted in substantially increased M3G concentrations. Increased M3G levels were even more pronounced in patients with increased serum creatinine levels. Model-based simulations show that, because of the reduction in morphine clearance in intensive care patients with renal failure, a 33% reduction in the maintenance dose would result in morphine

  8. Recent Advances in the Synthesis of Morphine and Related Alkaloids

    NASA Astrophysics Data System (ADS)

    Chida, Noritaka

    Morphine, an alkaloid isolated from the opium poppy, has been widely used as an analgesic, and has been a fascinating synthetic target of organic chemists. After the first total synthesis reported in 1952, a number of synthetic studies toward morphine have been reported, and findings obtained in such studies have greatly contributed to the progress of synthetic organic chemistry as well as medicinal chemistry. This review provides an overview of recent studies toward the total synthesis of morphine and related alkaloids. Work reported in the literature since 2004 will be reviewed.

  9. Changes in adaptability following perinatal morphine exposure in juvenile and adult rats.

    PubMed

    Klausz, Barbara; Pintér, Ottó; Sobor, Melinda; Gyarmati, Zsuzsa; Fürst, Zsuzsanna; Tímár, Júlia; Zelena, Dóra

    2011-03-05

    The problem of drug abuse among pregnant women causes a major concern. The aim of the present study was to examine the adaptive consequences of long term maternal morphine exposure in offspring at different postnatal ages, and to see the possibility of compensation, as well. Pregnant rats were treated daily with morphine from the day of mating (on the first two days 5mg/kgs.c. than 10mg/kg) until weaning. Male offspring of dams treated with physiological saline served as control. Behavior in the elevated plus maze (EPM; anxiety) and forced swimming test (FST; depression) as well as adrenocorticotropin and corticosterone hormone levels were measured at postpartum days 23-25 and at adult age. There was only a tendency of spending less time in the open arms of the EPM in morphine treated rats at both ages, thus, the supposed anxiogenic impact of perinatal exposure with morphine needs more focused examination. In response to 5min FST morphine exposed animals spent considerable longer time with floating and shorter time with climbing at both ages which is an expressing sign of depression-like behavior. Perinatal morphine exposure induced a hypoactivity of the stress axis (adrenocorticotropin and corticosterone elevations) to strong stimulus (FST). Our results show that perinatal morphine exposure induces long term depression-like changes. At the same time the reactivity to the stress is failed. These findings on rodents presume that the progenies of morphine users could have lifelong problems in adaptive capability and might be prone to develop psychiatric disorders. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. The effect of propofol on intrathecal morphine-induced pruritus and its mechanism.

    PubMed

    Liu, Xiulan; Zhang, Jing; Zhao, Hongyan; Mei, Hongxia; Lian, Qingquan; Shangguan, Wangning

    2014-02-01

    Previous studies have shown that a low dose of propofol IV bolus had a beneficial effect on intrathecal morphine-induced pruritus in humans. However, its exact mechanism has not been fully understood. In this study, we hypothesized that propofol relieved intrathecal morphine-induced pruritus in rats by upregulating the expression of cannabinoid-1 (CB[1]) receptors in anterior cingulate cortex (ACC). Twenty-four Sprague-Dawley rats were divided into a control group and 20, 40, 80 μg/kg morphine groups to create an intrathecal morphine-induced scratching model. The effects of propofol on intrathecal 40 μg/kg morphine-induced scratching responses were then evaluated. Sixty rats were randomly assigned to control, normal saline, intralipid, and propofol groups, with pruritus behavior observation or killed 8 minutes after venous injection of normal saline, intralipid, or propofol, and brain tissues were then collected for assay. Immunohistochemistry was then performed to identify the expression of CB (1) receptor in ACC, and the concentration of CB(1) receptor in ACC was determined by Western blot analysis. Compared with the control group, rats in the 20, 40, 80 μg/kg morphine groups had higher mean scratching response rates after intrathecal morphine injection (P =0.020, 0.005, and 0.002, respectively). There was a statistical difference between 20 and 40 μg/kg morphine groups at 10 to 15 and 15 to 20 timepoints after intrathecal morphine injection (P = 0.049 and 0.017, respectively). Propofol almost abolished the scratching response that was induced by 40 μg/kg intrathecal morphine injection (F[2, 15] = 46.87, P < 0.001; F[22, 165] = 2.37, P = 0.001). Compared with the intralipid and normal saline groups, the scratching behavior was significantly attenuated in the propofol group (P < 0.001). Compared with control, normal saline, and intralipid groups, the protein expression of CB(1) receptor in ACC (Western blot) in the propofol group increased (0.86 ± 0.21, 0

  11. Neuromodulatory effects of the dorsal hippocampal endocannabinoid system in dextromethorphan/morphine-induced amnesia.

    PubMed

    Ghasemzadeh, Zahra; Rezayof, Ameneh

    2017-01-05

    Dextromethorphan which is an active ingredient in many cough medicines has been previously shown to potentiate amnesic effect of morphine in rats. However, the effect of dextromethorphan, that is also a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, in combination with morphine on hippocampus-based long term memory has not been well characterized. The aim of the present study was to assess the possible role of endocannabinoid system of the dorsal hippocampus in dextromethorphan /morphine-induced amnesia. Our results showed that intraperitoneal (i.p.) injection of morphine (5mg/kg) or dextromethorphan (5-15mg/kg) before testing the passive avoidance learning induced amnesia. Combination of ineffective doses of dextromethorphan (7.5mg/kg, i.p.) and morphine (2mg/kg, i.p.) also produced amnesia, suggesting the enhancing effects of the drugs. To assess the effect of the activation or inhibition of the dorsal hippocampal cannabinoid CB 1 receptors on this amnesia, ACPA or AM251 as selective receptor agonists or antagonists were respectively injected into the CA1 regions before systemic injection of dextromethorphan and morphine. Interestingly, intra-CA1 microinjection of ACPA (0.5-1ng/rat) improved the amnesic effect of dextromethorphan /morphine combination. The microinjection of AM251 into the CA1 region enhanced the response of the combination of dextromethorphan /morphine in inducing amnesia. Moreover, Intra-CA1 microinjection of AM251 inhibited the improving effect of ACPA on dextromethorphan /morphine-induced amnesia. It is important to note that intra-CA1 microinjection of the same doses of the agonist or antagonist by itself had no effects on memory formation. Thus, it can be concluded that the dorsal hippocampal endocannabinoid system, via CB 1 receptor-dependent mechanism, may be involved in morphine/dextromethorphan -induced amnesia. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Morphine reduces social cohesion in rats.

    PubMed

    Panksepp, J; Najam, N; Soares, F

    1979-08-01

    The effect of low (1 mg/kg) doses of morphine on maintenance of physical proximity were evaluated in paired rats observed in a 4 square foot test arena. Morphine reliably reduced proximity maintenance time, and this was apparently not due to sedation, since the effect was unmodified by doses of amphetamine which substantially increased motor activity. The effects of naloxone were inconsistent on this measure of social motivation. In general, the results are consistent with the theoretical proposition that a brain neurochemical change which might lead to social attraction is the activation of endogenous opioid systems. When opiate activity is exogenously sustained, animals exhibit a subnormal tendency to be gregarious.

  13. Sonic hedgehog signaling in spinal cord contributes to morphine-induced hyperalgesia and tolerance through upregulating brain-derived neurotrophic factor expression

    PubMed Central

    Song, Zhi-Jing; Miao, Shuai; Zhao, Ye; Wang, Xiu-Li; Liu, Yue-Peng

    2018-01-01

    Purpose Preventing opioid-induced hyperalgesia and tolerance continues to be a major clinical challenge, and the underlying mechanisms of hyperalgesia and tolerance remain elusive. Here, we investigated the role of sonic hedgehog (Shh) signaling in opioid-induced hyperalgesia and tolerance. Methods Shh signaling expression, behavioral changes, and neurochemical alterations induced by morphine were analyzed in male adult CD-1 mice with repeated administration of morphine. To investigate the contribution of Shh to morphine-induced hyperalgesia (MIH) and tolerance, Shh signaling inhibitor cyclopamine and Shh small interfering RNA (siRNA) were used. To explore the mechanisms of Shh signaling in MIH and tolerance, brain-derived neurotrophic factor (BDNF) inhibitor K252 and anti-BDNF antibody were used. Results Repeated administration of morphine produced obvious hyperalgesia and tolerance. The behavioral changes were correlated with the upregulation and activation of morphine treatment-induced Shh signaling. Pharmacologic and genetic inhibition of Shh signaling significantly delayed the generation of MIH and tolerance and associated neurochemical changes. Chronic morphine administration also induced upregulation of BDNF. Inhibiting BDNF effectively delayed the generation of MIH and tolerance. The upregulation of BDNF induced by morphine was significantly suppressed by inhibiting Shh signaling. In naïve mice, exogenous activation of Shh signaling caused a rapid increase of BDNF expression, as well as thermal hyperalgesia. Inhibiting BDNF significantly suppressed smoothened agonist-induced hyperalgesia. Conclusion These findings suggest that Shh signaling may be a critical mediator for MIH and tolerance by regulating BDNF expression. Inhibiting Shh signaling, especially during the early phase, may effectively delay or suppress MIH and tolerance. PMID:29662325

  14. Olea Europea-derived phenolic products attenuate antinociceptive morphine tolerance: an innovative strategic approach to treat cancer pain.

    PubMed

    Muscoli, C; Lauro, F; Dagostino, C; D'Agostino, C; Ilari, S; Giancotti, L A; Gliozzi, M; Costa, N; Carresi, C; Musolino, V; Casale, F; Ventrice, D; Oliverio, M; Oliverio, E; Palma, E; Nisticò, S; Nistico', S; Procopio, A; Rizzo, M; Mollace, V

    2014-01-01

    Morphine and related opioid drugs are currently the major drugs for severe pain. Their clinical utility is limited in the management of severe cancer pain due to the rapid development of tolerance. Restoring opioid efficacy is therefore of great clinical importance. A great body of evidence suggests the key role of free radicals and posttranslational modulation in the development of tolerance to the analgesic activity of morphine. Epidemiological studies have shown a relationship between the Mediterranean diet and a reduced incidence of pathologies such as coronary heart disease and cancer. A central hallmark of this diet is the high consumption of virgin olive oil as the main source of fat which contains antioxidant components in the non-saponifiable fraction, including phenolic compounds absent in seed oils. Here, we show that in a rodent model of opiate tolerance, removal of the free radicals with phenolic compounds of olive oil such as hydroxytyrosol and oleuropein reinstates the analgesic action of morphine. Chronic injection of morphine in mice led to the development of tolerance and this was associated with increased nitrotyrosin and malondialdehyde (MDA) formation together with nitration and deactivation of MnSOD in the spinal cord. Removal of free radicals by hydroxytyrosol and oleuropein blocked morphine tolerance by inhibiting nitration and MDA formation and replacing the MnSOD activity. The phenolic fraction of virgin olive oil exerts antioxidant activities in vivo and free radicals generation occurring during chronic morphine administration play a crucial role in the development of opioid tolerance. Our data suggest novel therapeutic approach in the management of chronic cancer pain, in particular for those patients who require long-term opioid treatment for pain relief without development of tolerance.

  15. Intracerebroventricular morphine for refractory cancer pain: transitioning to the home setting.

    PubMed

    Adolph, Michael D; Stretanski, Michael F; McGregor, John M; Rawn, Bonnie L; Ross, Patrick M; Benedetti, Costantino

    2010-08-01

    Refractory cancer pain may be effectively controlled by titrating intracerebroventricular (ICV) preservative-free opioid. In this case report, a continuous infusion of ICV morphine permitted our patient with lung cancer and painful spinal metastases to be discharged to home hospice with family. The approach exploits the high potency of morphine injected into cerebrospinal fluid (CSF). Sterile, injectable, preservative-free morphine is directly infused into CSF through a subcutaneous Ommaya reservoir placed under the scalp by a neurosurgeon, with an attached catheter passed through a burr hole in the skull with its tip in a cerebral ventricle. Although investigators have described home care of patients receiving intraspinal analgesics, no report describes the process of transitioning the patient receiving continuous ICV morphine infusion to the home setting.

  16. Effects of Obesity and Leptin Deficiency on Morphine Pharmacokinetics in a Mouse Model.

    PubMed

    Dalesio, Nicholas M; Hendrix, Craig W; McMichael, Douglas Hale; Thompson, Carol B; Lee, Carlton K K; Pho, Huy; Arias, Rafael S; Lynn, Rachael Rzasa; Galinkin, Jeffrey; Yaster, Myron; Brown, Robert H; Schwartz, Alan R

    2016-12-01

    Obesity causes multiorgan dysfunction, specifically metabolic abnormalities in the liver. Obese patients are opioid-sensitive and have high rates of respiratory complications after surgery. Obesity also has been shown to cause resistance to leptin, an adipose-derived hormone that is key in regulating hunger, metabolism, and respiratory stimulation. We hypothesized that obesity and leptin deficiency impair opioid pharmacokinetics (PK) independently of one another. Morphine PK were characterized in C57BL/6J wild-type (WT), diet-induced obese (DIO), and leptin-deficient (ob/ob) mice, and in ob/ob mice given leptin-replacement (LR) therapy. WT mice received several dosing regimens of morphine. Obese mice (30 g) received one 80 mg/kg bolus of morphine. Blood was collected at fixed times after morphine injection for quantification of plasma morphine and morphine 3-glucuronide (M3G) levels. PK parameters used to evaluate morphine metabolism included area-under the curve (AUC150), maximal morphine concentration (CMAX), and M3G-to-morphine ratio, and drug elimination was determined by clearance (Cl/F), volume of distribution, and half-life (T1/2). PK parameters were compared between mouse groups by the use of 1-way analysis of variance, with P values less than .05 considered significant. DIO compared with WT mice had significantly decreased morphine metabolism with lower M3G-to-morphine ratio (mean difference [MD]: -4.9; 95% confidence interval [CI]: -8.8 to -0.9) as well as a decreased Cl/F (MD: -4.0; 95% CI: -8.9 to -0.03) Ob/ob compared with WT mice had a large increase in morphine exposure with a greater AUC150 (MD: 980.4; 95% CI: 630.1-1330.6), CMAX (MD: 6.8; 95% CI: 2.7-10.9), and longer T1/2 (MD: 23.1; 95% CI: 10.5-35.6), as well as a decreased Cl/F (MD: -7.0; 95% CI: -11.6 to -2.7). Several PK parameters were significantly greater in ob/ob compared with DIO mice, including AUC150 (MD: 636.4; 95% CI: 207.4-1065.4), CMAX (MD: 5.3; 95% CI: 3.2-10.3), and T1/2 (MD: 18

  17. Effects of the NMDA receptor antagonist, D-CPPene, on sensitization to the operant decrement produced by naloxone in morphine-treated rats.

    PubMed

    Bespalov, A Y; Medvedev, I O; Sukhotina, I A; Zvartau, E E

    2001-04-01

    Sensitization to the rate-decreasing effects of opioid antagonists induced by acute pretreatment with opioid agonists has been suggested to reflect initial changes in opioid systems that underlie physical dependence. Glutamate receptors are implicated in the development and expression of opioid dependence, and antagonists acting at the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors have been shown repeatedly to attenuate the severity of opioid withdrawal. The present study evaluated the ability of a competitive NMDA receptor antagonist, D-CPPene (SDZ EAA 494; 3-(2-carboxypiperazin-4-yl)-1-propenyl-1-phosphonic acid), to affect morphine-induced sensitization to naloxone in rats trained to lever-press on a multiple-trial, fixed-ratio 10 schedule of food reinforcement. D-CPPene (0.3-3 mg/kg) was administered either 4 h or 30 min prior to the test session. Morphine (10 mg/kg) or its vehicle was administered 4 h before naloxone challenge (0.3-3 mg/kg). D-CPPene failed to prevent morphine-induced potentiation of the naloxone-produced decrement in operant performance. Thus, these results suggest that agonist-induced sensitization to behavioral effects of opioid antagonists may be insensitive to NMDA receptor blockade.

  18. Low-dose ketamine improves pain relief in patients receiving intravenous opioids for acute pain in the emergency department: results of a randomized, double-blind, clinical trial.

    PubMed

    Beaudoin, Francesca L; Lin, Charlie; Guan, Wentao; Merchant, Roland C

    2014-11-01

    Low-dose ketamine has been used perioperatively for pain control and may be a useful adjunct to intravenous (IV) opioids in the control of acute pain in the emergency department (ED). The aim of this study was to determine the effectiveness of low-dose ketamine as an adjunct to morphine versus standard care with morphine alone for the treatment of acute moderate to severe pain among ED patients. A double-blind, randomized, placebo-controlled trial with three study groups was conducted at a large, urban academic ED over a 10-month period. Eligible patients were 18 to 65 years old with acute moderate to severe pain (score of at least 5 out of 10 on the numerical pain rating scale [NRS] and pain duration < 7 days) who were deemed by their treating physician to require IV opioids. The three study groups were: 1) morphine and normal saline placebo (standard care group), 2) morphine and 0.15 mg/kg ketamine (group 1), or 3) morphine and 0.3 mg/kg ketamine (group 2). Participants were assessed at 30, 60, and 120 minutes after study medication administration and received rescue analgesia as needed to target a 50% reduction in pain. The primary outcome measure of pain relief, or pain intensity reduction, was derived using the NRS and calculated as the summed pain-intensity (SPID) difference over 2 hours. The amount and timing of rescue opioid analgesia was evaluated as a secondary outcome. The occurrence of adverse events was also measured. Sixty patients were enrolled (n = 20 in each group). There were no differences between study groups with respect to age, sex, race/ethnicity, preenrollment analgesia, or baseline NRS. Over the 2-hour poststudy medication administration period, the SPIDs were higher (greater pain relief) for the ketamine study groups than the control group (standard care 4.0, interquartile range [IQR] = 1.8 to 6.5; group 1 7.0, IQR = 4.3 to 10.8; and group 2 7.8, IQR = 4.8 to 12.8; p < 0.02). The SPIDs for the ketamine groups were similar (p < 0.46). When

  19. Decrease in serotonin concentration in raphe magnus nucleus and attenuation of morphine analgesia in two mice models of neuropathic pain.

    PubMed

    Sounvoravong, Sourisak; Nakashima, Mihoko N; Wada, Mitsuhiro; Nakashima, Kenichiro

    2004-01-26

    The alleviation of neuropathic pain cannot be satisfactorily achieved by treatment with opioids. There is much evidence to indicate that the active site of morphine for inducing effective analgesia is in the raphe magnus nucleus, where serotonin (5-HT, 5-hydroxytryptamine) acts as a primary transmitter. Therefore, we developed the hypothesis that 5-HT released in the raphe magnus nucleus could be related to the effectiveness of morphine in two mice models of neuropathic pain, diabetic (DM)-induced neuropathy and sciatic nerve ligation (SL). Two weeks after a single administration of streptozotocin, or 10 days after sciatic nerve ligation, mice were subcutaneously (s.c.) injected with morphine at 3, 5 and 10 mg/kg. The antinociceptive effect of morphine was estimated in the tail-pinch test; 5-HT content was measured after induction of neuropathic pain by microdialysis followed by high-performance liquid chromatography with electrochemical detection (HPLC-ECD). Morphine produced as insufficient antinociceptive effect in SL mice at all doses compared with that in sham-operated mice, while in DM mice, morphine given s.c. at 5 and 10 mg/kg produced antinociceptive effects compared with those in non-diabetic mice, but not at 3 mg/kg. The 5-HT content of dialysates, expressed as AUC for 75 min, in SL and DM mice was less than that in control mice. However, morphine given s.c. at 5 mg/kg did not significantly affect 5-HT levels in both mice models compared to their controls. These results suggest that the decrease in 5-HT levels in the raphe magnus nucleus may be related to attenuation of the analgesic effect of morphine caused by the abnormal pain state found in diabetes and partial peripheral nerve injury.

  20. Dose-response of intrathecal morphine when administered with intravenous ketorolac for post-cesarean analgesia: a two-center, prospective, randomized, blinded trial.

    PubMed

    Berger, J S; Gonzalez, A; Hopkins, A; Alshaeri, T; Jeon, D; Wang, S; Amdur, R L; Smiley, R

    2016-12-01

    The appropriate dose of intrathecal morphine for post-cesarean analgesia is unclear. With the inclusion of routine non-steroidal anti-inflammatory drugs, the required dose of morphine may be significantly less than the 200-300μg common a decade ago. We performed a two-center, prospective, randomized, blinded trial comparing three doses of intrathecal morphine, combined with routine intravenous ketorolac, in 144 healthy women undergoing elective cesarean delivery. Patients received an intrathecal injection of hyperbaric bupivacaine 12mg, fentanyl 15μg and a randomized dose of 50, 100, or 150μg morphine in a volume of 2.2mL. Patients received intravenous ketorolac 30mg before leaving the operating room and 15mg intravenously every 6h for the duration of the study (24h). All received postoperative patient-controlled intravenous morphine. The primary endpoint was total intravenous morphine administered postoperatively over 24h, analyzed using mixed model regression. There were no differences between dose groups (or institutions) in intravenous morphine use over 24h. Visual analog scale scores for pain and nausea did not differ. Pruritus was greater in the 100 and 150μg groups than the 50μg group at 6h and 12h, but there was no difference between groups in nausea or pruritus treatments. Respiratory depression or significant sedation did not occur. The dose-response relationship of intrathecal morphine for multimodal post-cesarean analgesia suggests that 50μg produces analgesia similar to that produced by either 100μg or 150μg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Systemic morphine blocks the seizures induced by intracerebroventricular (i.c.v.) injections of opiates and opioid peptides.

    PubMed

    Urca, G; Frenk, H

    1982-08-19

    Intracerebroventricular (i.c.v.) injections of the endorphins and of morphine in rats produce highly characteristic, naloxone sensitive, electrographic seizures. In contrast, systemic injections of morphine have been shown to exert a marked anticonvulsant effect. The present study demonstrates that systemic morphine pretreatment can prevent the occurrence of electrographic seizures injected by i.c.v. morphine, Leu-enkephalin and beta-endorphin and that the anti-epileptic effect of morphine can be reversed by naloxone. Male albino rats, previously prepared for chronic i.c.v. injections and EEG recordings, were pretreated with 0--100 mg/kg of intraperitoneal (i.p.) morphine. Thirty five minutes later morphine (520 nmol), Leu-enkephalin (80 nmol) or beta-endorphin (5 nmol) were injected i.c.v. Pretreatment with i.p. morphine blocked the occurrence of seizures induced by morphine and both endogenous opioids. Lower doses of systemic morphine (50 mg/kg) were necessary to block i.c.v. morphine seizures than the dose (100 mg/kg) necessary to block seizures induced by i.c.v. Leu-enkephalin and beta-endorphin. Naloxone (1 mg/kg) administered 25 min following 50 mg/kg of i.p. morphine and preceding the injections of i.c.v. morphine reversed the antiepileptic effect of systemic morphine. These results demonstrate the possible existence of two opiate sensitive systems, one with excitatory-epileptogenic effects and the other possessing inhibitory-antiepileptic properties. The possible relationship between these findings and the known heterogeneity of opiate receptors and opiate actions is discussed.

  2. Role of nitric oxide in additive anticonvulsant effects of agmatine and morphine.

    PubMed

    Payandemehr, Borna; Rahimian, Reza; Bahremand, Arash; Ebrahimi, Ali; Saadat, Seyedehpariya; Moghaddas, Peiman; Fadakar, Kaveh; Derakhshanian, Hoda; Dehpour, Ahmad Reza

    2013-06-13

    The anticonvulsant effects of agmatine, an endogenous polyamine and a metabolite of l-arginine, have been shown in various experimental seizure models. Agmatine also potentiates the anti-seizure activity of morphine. The present study aimed to investigate a possible involvement of nitric oxide (NO) pathway in the protection by agmatine and morphine co-administration against pentylenetetrazole (PTZ) -induced seizure in male mice. To this end, the thresholds for the clonic seizures induced by the intravenous administration of PTZ, a GABA antagonist, were assessed. Intraperitoneal administration of morphine at lower dose (1mg/kg) increased the seizure threshold. Also intraperitoneal administration of agmatine (5 and 10mg/kg) increased the seizure threshold significantly. Combination of subeffective doses of morphine and agmatine led to potent anticonvulsant effects. Non-effective doses of morphine (0.1 and 0.5mg/kg) were able to induce anticonvulsant effects in mice pretreated with agmatine (3mg/kg). Concomitant administration of either the non-selective nitric oxide synthase (NOS) inhibitor L-NAME (1, 5mg/kg, i.p.) or the selective NOS inhibitor 7-NI (15, 30mg/kg, i.p.), with an ineffective combination of morphine (0.1mg/kg) plus agmatine (1mg/kg) produced significant anticonvulsant impacts. Moreover, the NO precursor, l-arginine (30, 60mg/kg, i.p.), inhibited the anticonvulsant action of agmatine (3mg/kg) plus morphine (0.5mg/kg) co-administration. Our results indicate that pretreatment of animals with agmatine enhances the anticonvulsant effects of morphine via a mechanism which may involve the NO pathway. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Morphine: Myths and Reality

    MedlinePlus

    ... chronic pain that is not adequately reduced by acetaminophen or ibuprofen, talk to your doctor about using opiates. Morphine (and other opiates) is NOT just for people who are dying. If you are living with untreated pain, ask your doctor what more can be done. For more information about ...

  4. Huperzine A inhibits immediate addictive behavior but not behavioral sensitization following repeated morphine administration in rats.

    PubMed

    Sun, Jinling; Tian, Lin; Cui, Ruisi; Li, Xinwang

    2017-04-01

    Acetylcholinesterase inhibitors are regarded as promising therapeutic agents to treat addiction. The current study aimed to examine the effects of huperzine A, a cholinesterase inhibitor, on behavioral sensitization induced by repeated morphine administration and relapse induced by contextual conditioning. The present study also assessed whether the state-dependency hypothesis may explain the results. Adult rats were divided into four groups (n=8) and intraperitoneally injected with 0.2, 0.3 or 0.4 mg/kg huperzine A or saline (1 ml/kg, control), for 5 days. The effect of repeated huperzine A administration alone on locomotor activity was assessed. For the experiments that analyzed the development of morphine-induced sensitization, 40 rats were divided into five groups (n=8): Saline+Saline, Saline+Morphine, 0.2, 0.3 and 0.4 mg/kg huperzine A+Morphine. Following a withdrawal period of 7 days, all animals were administered saline or morphine, as appropriate. To test the state-dependency hypothesis, the rats in the Saline+Morphine group were injected with saline and morphine, while the other three groups were administered different doses of huperzine A and morphine. To examine the effect of huperzine A on the expression of morphine-induced sensitization, the rats in huperzine A+Morphine groups were injected with appropriate concentrations of huperzine A, and morphine. The current results indicated that the administration of huperzine A alone did not affect locomotor activity, while higher doses of huperzine A inhibited the addictive behavior induced by morphine at the development phase. Additionally, huperzine A administration during the expression phase of morphine sensitization did not inhibit the relapse induced by administration of saline. Furthermore, 0.4 mg/kg huperzine A inhibited the expression of morphine-induced behavioral sensitization. Therefore, the results of the current study do not support the state-dependency hypothesis.

  5. Huperzine A inhibits immediate addictive behavior but not behavioral sensitization following repeated morphine administration in rats

    PubMed Central

    Sun, Jinling; Tian, Lin; Cui, Ruisi; Li, Xinwang

    2017-01-01

    Acetylcholinesterase inhibitors are regarded as promising therapeutic agents to treat addiction. The current study aimed to examine the effects of huperzine A, a cholinesterase inhibitor, on behavioral sensitization induced by repeated morphine administration and relapse induced by contextual conditioning. The present study also assessed whether the state-dependency hypothesis may explain the results. Adult rats were divided into four groups (n=8) and intraperitoneally injected with 0.2, 0.3 or 0.4 mg/kg huperzine A or saline (1 ml/kg, control), for 5 days. The effect of repeated huperzine A administration alone on locomotor activity was assessed. For the experiments that analyzed the development of morphine-induced sensitization, 40 rats were divided into five groups (n=8): Saline+Saline, Saline+Morphine, 0.2, 0.3 and 0.4 mg/kg huperzine A+Morphine. Following a withdrawal period of 7 days, all animals were administered saline or morphine, as appropriate. To test the state-dependency hypothesis, the rats in the Saline+Morphine group were injected with saline and morphine, while the other three groups were administered different doses of huperzine A and morphine. To examine the effect of huperzine A on the expression of morphine-induced sensitization, the rats in huperzine A+Morphine groups were injected with appropriate concentrations of huperzine A, and morphine. The current results indicated that the administration of huperzine A alone did not affect locomotor activity, while higher doses of huperzine A inhibited the addictive behavior induced by morphine at the development phase. Additionally, huperzine A administration during the expression phase of morphine sensitization did not inhibit the relapse induced by administration of saline. Furthermore, 0.4 mg/kg huperzine A inhibited the expression of morphine-induced behavioral sensitization. Therefore, the results of the current study do not support the state-dependency hypothesis. PMID:28413513

  6. A Bacoside containing Bacopa monnieri extract reduces both morphine hyperactivity plus the elevated striatal dopamine and serotonin turnover.

    PubMed

    Rauf, Khalid; Subhan, Fazal; Sewell, Robert D E

    2012-05-01

    Bacopa monnieri (BM) has been used in Ayurvedic medicine as a nootropic, anxiolytic, antiepileptic and antidepressant. An n-butanol extract of the plant (nBt-ext BM) was analysed and found to contain Bacoside A (Bacoside A3, Bacopaside II and Bacopasaponin C). The effects of the BM extract were then studied on morphine-induced hyperactivity as well as dopamine and serotonin turnover in the striatum since these parameters have a role in opioid sensitivity and dependence. Mice were pretreated with saline or nBt-ext BM (5, 10 and 15 mg/kg, orally), 60 min before morphine administration and locomotor activity was subsequently recorded. Immediately after testing, striatal tissues were analysed for dopamine (DA), serotonin (5HT) and their metabolites using HPLC coupled with electrochemical detection. The results indicated that nBt-ext BM significantly (p < 0.001) decreased locomotor activity in both the saline and morphine treated groups. Additionally, nBt-ext BM significantly lowered morphine-induced dopamine (DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindole acetic acid (5-H1AA) upsurges in the striatum but failed to affect DA, 5-HT and their metabolites in the saline treated group. These findings suggest that nBt-ext BM has an antidopaminergic/serotonergic effect and may have potential beneficial effects in the treatment of morphine dependence. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Examining the effect of the CaMKII inhibitor administration in the locus coeruleus on the naloxone-precipitated morphine withdrawal signs in rats.

    PubMed

    Navidhamidi, M; Semnanian, S; Javan, M; Goudarzvand, M; Rohampour, K; Azizi, H

    2012-01-15

    Drug addiction is an occurrence with physiological, psychological, and social outcomes. Repeated drug exposure causes neuronal adaptations and dependency. It has been shown that CaMKIIα enzyme contributes to morphine dependency. The locus coeruleus nucleus has been implied in the morphine withdrawal syndrome. This research focuses on the behavioral and molecular adaptations that occur in the locus coeruleus neurons in response to the chronic morphine exposure. Adult male Wistar rats were injected by morphine sulfate (10 mg/kg/s.c.) at an interval of 12 h for a period of nine subsequent days. On the tenth day, naloxone (1 mg/kg/i.p.) was injected 2 h after the morphine administration. Somatic withdrawal signs were investigated for 30 min. We concluded that the inhibition of CaMKIIα by administration of KN-93, the specific inhibitor of this enzyme, significantly attenuated some of the withdrawal signs. In molecular method, the expression of CaMKIIα protein has been enhanced in locus coeruleus of the morphine dependent rats. These findings indicate that CaMKIIα may be involved in the modulation of the naloxone-induced withdrawal syndrome, and treatment with KN-93 may have some effects on this system. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. [Effect of Corydalis yanhusuo and L-THP on Gastrointestinal Dopamine System in Morphine-Dependent Rats].

    PubMed

    Xu, Jing-yu; Bai, Wei-feng; Qiu, Cheng-kai; Tu, Ping; Yu, Shou-yang; Luo, Su-yuan

    2015-12-01

    To investigate the protective mechanism of Corydalis yanhuso and L-THP in morphine-dependent gastrointestinal injury rats. 180 male rats were randomly divided into nine groups, 20 rats for each group: saline group (N), model group (M), NS treatment group and three different dosage of Corydalis yanhusuo and L-THP groups (low dose group,middle dose group and high dose group). The rat CPP (conditioned place preference) model was established by injecting the rats with an increasing dosage of morphine, all groups received CPP training in a black compartments and white ones (drug-paired compartment) for ten days. At 48 h after the final training, the performance of CPP models were assessed to make sure all models were exported correctly. Then the treatment groups were administered with different concentration of Corydalis yanhuso (0.5, 1 and 2 g/kg) and L-THP (0.94, 1.88 and 3.76 mg/kg) for six days. All rats were immediately killed after finish the last CPP test. For each group, ten rats were killed to detect the contents of DA in the stomach and duodenum through the fluorescence spectrophotometer. The expression levels of D2 receptor( D2R) in different tissues (gastric cardia, gastric body, pylorus and duodenum) were checked by Western-blot in the other rats. In the NS treatment group, the time when rats stay in the white ones were significantly decreased compared with the Corydalis yanhusuo treated groups (1 and 2 g/kg) and L-THP treated groups (1.88 and 3.76 mg/kg) (P < 0.01), the high expression of DA contents in the stomach and duodenum were significantly decreased (P < 0.01). However the protein level of D2R were notably lower in gastric cardia, gastric body, pylorus and duodenum (P < 0.01). Injuries of the gastrointestinal tract followed lower DA contents and an abnormal increase of D2R in the stomach and duodenum of rats, which induced by morphine-dependent could be reversed by treatment with Corydalis yanhusuo and L-THP. This is one of mechanism underlying the

  9. Analgesic effect of the electromagnetic resonant frequencies derived from the NMR spectrum of morphine.

    PubMed

    Verginadis, Ioannis I; Simos, Yannis V; Velalopoulou, Anastasia P; Vadalouca, Athina N; Kalfakakou, Vicky P; Karkabounas, Spyridon Ch; Evangelou, Angelos M

    2012-12-01

    Exposure to various types of electromagnetic fields (EMFs) affects pain specificity (nociception) and pain inhibition (analgesia). Previous study of ours has shown that exposure to the resonant spectra derived from biologically active substances' NMR may induce to live targets the same effects as the substances themselves. The purpose of this study is to investigate the potential analgesic effect of the resonant EMFs derived from the NMR spectrum of morphine. Twenty five Wistar rats were divided into five groups: control group; intraperitoneal administration of morphine 10 mg/kg body wt; exposure of rats to resonant EMFs of morphine; exposure of rats to randomly selected non resonant EMFs; and intraperitoneal administration of naloxone and simultaneous exposure of rats to the resonant EMFs of morphine. Tail Flick and Hot Plate tests were performed for estimation of the latency time. Results showed that rats exposed to NMR spectrum of morphine induced a significant increase in latency time at time points (p < 0.05), while exposure to the non resonant random EMFs exerted no effects. Additionally, naloxone administration inhibited the analgesic effects of the NMR spectrum of morphine. Our results indicate that exposure of rats to the resonant EMFs derived from the NMR spectrum of morphine may exert on animals similar analgesic effects to morphine itself.

  10. Postoperative pain control in cats: clinical trials with pre-emptive lidocaine epidural co-administered with morphine or methadone.

    PubMed

    DeRossi, Rafael; Hermeto, Larissa Correa; Jardim, Paulo Henrique Affonseca; de Andrade Bicudo, Natalia; de Assis, Klebs Tavares

    2016-11-01

    Objectives The aim of the study was to evaluate the effectiveness of epidural lidocaine in combination with either methadone or morphine for postoperative analgesia in cats undergoing ovariohysterectomy. Methods Under general anesthesia, 24 cats that underwent ovariohysterectomy were randomly allocated into three treatment groups of eight each. Treatment 1 included 2% lidocaine (4.0 mg/kg); treatment 2 included lidocaine and methadone (4.0 mg/kg and 0.3 mg/kg, respectively); and treatment 3 included lidocaine and morphine (4.0 mg/kg and 0.1 mg/kg, respectively). All drugs were injected in a total volume of 0.25 ml/kg via the lumbosacral route in all cats. During the anesthetic and surgical periods, the physiologic variables (respiratory and heart rate, arterial blood pressure and rectal temperature) were measured at intervals of time zero, 10 mins, 20 mins, 30 mins, 60 mins and 120 mins. After cats had recovered from anesthesia, a multidimensional composite pain scale was used to assess postoperative analgesia 2, 4, 8, 12, 18 and 24 h after epidural. Results The time to first rescue analgesic was significantly ( P <0.05) prolonged in cats that received both lidocaine and methadone or lidocaine and morphine treatments compared with those that received lidocaine treatment alone. All cats that received lidocaine treatment alone required rescue analgesic within 2 h of epidural injections. All treatments produced significant cardiovascular and respiratory changes but they were within an acceptable range for healthy animals during the surgical period. Conclusions and relevance The two combinations administered via epidural allowed ovariohysterectomy with sufficient analgesia in cats, and both induced prolonged postoperative analgesia.

  11. Effect of 12-monoketocholic acid on modulation of analgesic action of morphine and tramadol.

    PubMed

    Kuhajda, Ivan; Posa, Mihalj; Jakovljević, Vida; Ivetić, Vesna; Mikov, Momir

    2009-01-01

    This work is concerned with the potential promotive action of 12-monoketocholic acid (12-MKC) on the analgesic effect of morphine and tramadol. The investigation was carried out on laboratory Wistar rats divided into five test groups, each treated with either morphine (2 mg/kg), tramadol (9.6 mg/kg), 12-MKC (2 mg/kg), morphine + 12-MKC, or tramadol + 12-MKC, the control group receiving physiological solution (2 mg/kg). The effect of 12-MKC on the analgesic action of morphine and tramadol was determined by radiation heat method. Morphine and tramadol, given in equimolar doses, did not show significant difference in the degree of analgesia. In combination with morphine, 12-MKC increased significantly the analgesic effect compared with the group treated with morphine alone. However, 12-MKC caused no change in the action of tramadol. The 5-day intravenous application of 12-MKC in combination with the two analgesics caused no changes in the biochemical parameters nor pathohistological changes in the liver parenchyma of tested animals.

  12. Effects of a Rhodiola rosea L. extract on the acquisition, expression, extinction, and reinstatement of morphine-induced conditioned place preference in mice.

    PubMed

    Mattioli, Laura; Titomanlio, Federica; Perfumi, Marina

    2012-05-01

    Opioid addiction is a chronic, recurrent brain disease that is characterised by compulsive drug seeking and a high rate of relapse even after long periods of abstinence. Prevention of relapse is the primary goal of addiction treatment and is still the major limitation in drug therapy. The present study investigated the effects of a Rhodiola rosea L. hydroalcoholic extract (RHO), a well-known traditional oriental medicine, on establishment and reinstatement of morphine-induced conditioned place preference (CPP) in mice. CPP was induced by intraperitoneal injection of morphine (10 mg/kg) as an 8-day conditioning schedule. The effects of RHO on the rewarding properties of morphine were tested in mice receiving oral administration of RHO (10, 15, and 20 mg/kg) 60 min prior to each morphine injection (acquisition) or prior to the CPP test on day 9 (expression). Once established, CPP was extinguished by repeated testing, during which conditioned mice were injected daily with different doses of RHO. Finally, the efficacy of RHO in blocking reinstatement of CPP provoked by priming injections and physical stress was also evaluated. RHO administration showed dose dependency for prevention of establishment of CPP and was effective in facilitating extinction of morphine-induced CPP. RHO suppressed both priming- and stress-induced reinstatement of CPP in a dose-dependent manner. In conclusion, as RHO was effective for reducing craving and vulnerability to relapse, it might be a very effective natural remedy for the treatment of opioid addiction.

  13. Morphine and galectin-1 modulate HIV-1 infection of human monocytes-derived macrophages

    PubMed Central

    Reynolds, Jessica L.; Law, Wing Cheung; Mahajan, Supriya D.; Aalinkeel, Ravikumar; Nair, Bindukumar; Sykes, Donald E.; Mammen, Manoj J.; Yong, Ken-Tye; Hui, Rui; Prasad, Paras N.; Schwartz, Stanley A.

    2012-01-01

    Morphine is a widely abused, addictive drug that modulates immune function. Macrophages are a primary reservoir of HIV-1; therefore, they not only play a role in the development of this disease but also impact the overall course of disease progression. Galectin-1 is a member of a family of β-galactoside-binding lectins that are soluble adhesion molecules and that mediate direct cell-pathogen interactions during HIV-1 viral adhesion. Since the drug abuse epidemic and the HIV-1 epidemic are closely interrelated we propose that increased expression of galectin-1 induced by morphine may modulate HIV-1 infection of human monocytes-derived macrophages (MDM). Here, we show that galectin-1 gene and protein expression are potentiated by incubation with morphine. Confirming previous studies, morphine alone or galectin-1 alone enhance HIV-1 infection of MDM. Concomitant incubation with exogenous galectin-1 and morphine potentiated HIV-1 infection of MDM. We utilized a nanotechnology approach that uses gold nanorod-galectin-1 siRNA complexes (nanoplexes) to inhibit gene expression for galectin-1. We found that nanoplexes silenced gene expression for galectin-1 and the nanoplexes reversed the effects of morphine on galectin-1 expression. Furthermore, the effects of morphine on HIV-1 infection were reduced in the presence of the nanoplex. PMID:22430735

  14. Morphine biosynthesis in opium poppy involves two cell types: sieve elements and laticifers.

    PubMed

    Onoyovwe, Akpevwe; Hagel, Jillian M; Chen, Xue; Khan, Morgan F; Schriemer, David C; Facchini, Peter J

    2013-10-01

    Immunofluorescence labeling and shotgun proteomics were used to establish the cell type-specific localization of morphine biosynthesis in opium poppy (Papaver somniferum). Polyclonal antibodies for each of six enzymes involved in converting (R)-reticuline to morphine detected corresponding antigens in sieve elements of the phloem, as described previously for all upstream enzymes transforming (S)-norcoclaurine to (S)-reticuline. Validated shotgun proteomics performed on whole-stem and latex total protein extracts generated 2031 and 830 distinct protein families, respectively. Proteins corresponding to nine morphine biosynthetic enzymes were represented in the whole stem, whereas only four of the final five pathway enzymes were detected in the latex. Salutaridine synthase was detected in the whole stem, but not in the latex subproteome. The final three enzymes converting thebaine to morphine were among the most abundant active latex proteins despite a limited occurrence in laticifers suggested by immunofluorescence labeling. Multiple charge isoforms of two key O-demethylases in the latex were revealed by two-dimensional immunoblot analysis. Salutaridine biosynthesis appears to occur only in sieve elements, whereas conversion of thebaine to morphine is predominant in adjacent laticifers, which contain morphine-rich latex. Complementary use of immunofluorescence labeling and shotgun proteomics has substantially resolved the cellular localization of morphine biosynthesis in opium poppy.

  15. Comparison of Intravenous Morphine with Sublingual Buprenorphine in Management of Postoperative Pain after Closed Reduction Orthopedic Surgery

    PubMed Central

    Soltani, Ghasem; Khorsand, Mahmood; Shamloo, Alireza Sepehri; Jarahi, Lida; Zirak, Nahid

    2015-01-01

    Background: Postoperative pain is a common side effect following surgery that can significantly reduce surgical quality and patient’s satisfaction. Treatment options are morphine and buprenorphine. We aimed to compare the efficacy of a single dose of intravenous morphine with sublingual buprenorphine in postoperative pain control following closed reduction surgery. Methods: This triple blind clinical trial was conducted on 90 patients referred for closed reduction orthopedic surgery. They were older than 18 years and in classes I and II of the American Society of Anesthesiologists (ASA) with an operation time of 30-90 minutes. Patients were divided into two groups of buprenorphine (4.5µg/kg sublingually) and morphine (0.2mg/kg intravenously). Baseline characteristics, vital signs, pain score, level of sedation and pharmacological side effects were recorded in the recovery room (at 0 and 30 minutes), and in the ward (at 3, 6 and 12 hours). SPSS version 19 software was used for data analysis and the significance level was set at P<0.05. Results: Ninety patients were studied, 60 males and 30 females with a mean age of 37.7±16.2 years. There was no significant difference between the two groups in terms of baseline characteristics. Pain score in the morphine group was significantly higher than the buprenorphine group with an average score of 2.5 (P<0.001). Postoperative mean heart rate in the buprenorphine group was four beats lower than the morphine group (P<0.001). Also, in the buprenorphine 48.6% and in the morphine group 86.7% of cases were conscious in recovery (P=0.001) with a higher rate of pruritus in the latter group (P=0.001). Conclusion: Sublingual buprenorphine administration before anesthesia induction in closed reduction surgery can lead to better postoperative pain control in comparison to intravenous morphine. Due to simple usage and longer postoperative sedation, sublingual buprenorphine is recommended as a suitable drug in closed reduction surgery

  16. Comparison of Intravenous Morphine with Sublingual Buprenorphine in Management of Postoperative Pain after Closed Reduction Orthopedic Surgery.

    PubMed

    Soltani, Ghasem; Khorsand, Mahmood; Shamloo, Alireza Sepehri; Jarahi, Lida; Zirak, Nahid

    2015-10-01

    Postoperative pain is a common side effect following surgery that can significantly reduce surgical quality and patient's satisfaction. Treatment options are morphine and buprenorphine. We aimed to compare the efficacy of a single dose of intravenous morphine with sublingual buprenorphine in postoperative pain control following closed reduction surgery. This triple blind clinical trial was conducted on 90 patients referred for closed reduction orthopedic surgery. They were older than 18 years and in classes I and II of the American Society of Anesthesiologists (ASA) with an operation time of 30-90 minutes. Patients were divided into two groups of buprenorphine (4.5µg/kg sublingually) and morphine (0.2mg/kg intravenously). Baseline characteristics, vital signs, pain score, level of sedation and pharmacological side effects were recorded in the recovery room (at 0 and 30 minutes), and in the ward (at 3, 6 and 12 hours). SPSS version 19 software was used for data analysis and the significance level was set at P<0.05. Ninety patients were studied, 60 males and 30 females with a mean age of 37.7±16.2 years. There was no significant difference between the two groups in terms of baseline characteristics. Pain score in the morphine group was significantly higher than the buprenorphine group with an average score of 2.5 (P<0.001). Postoperative mean heart rate in the buprenorphine group was four beats lower than the morphine group (P<0.001). Also, in the buprenorphine 48.6% and in the morphine group 86.7% of cases were conscious in recovery (P=0.001) with a higher rate of pruritus in the latter group (P=0.001). Sublingual buprenorphine administration before anesthesia induction in closed reduction surgery can lead to better postoperative pain control in comparison to intravenous morphine. Due to simple usage and longer postoperative sedation, sublingual buprenorphine is recommended as a suitable drug in closed reduction surgery.

  17. Influence of fentanyl and morphine on intestinal circulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tverskoy, M.; Gelman, S.; Fowler, K.C.

    The influence of fentanyl and morphine on the intestinal circulation was evaluated in an isolated loop preparation in 37 dogs anesthetized with pentobarbital intravenously. Selected intestinal segments were pumped with aortic blood at a constant pressure of 100 mm Hg. A mixture of /sup 86/Rb and 9-micron spheres labeled with /sup 141/Ce was injected into the arterial cannula supplying the intestinal loop, while mesenteric venous blood was collected for activity counting. A strong correlation was found between the clearances of rubidium and microspheres (r = 0.97, P less than 0.0001), suggesting that the shunting of 9-micron spheres through the intestinesmore » reflects the shunting of blood through nonnutritive vessels. Intravenous fentanyl decreased oxygen uptake (O/sub 2/up), and vascular resistance (VR), and increased blood flow (BF), rubidium and microsphere clearances (Cl-Rb, Cl-Sph, respectively), and permeability--surface area product (PS) in a dose-related fashion. Intravenous morphine in a dose of 1 mg X kg-1 increased Cl-Rb (nutritive BF) without changes in total (nutritive and nonnutritive) BF. This increase in nutritive BF is probably related to morphine-induced histamine release. Morphine in a dose of 5 mg X kg-1 was accompanied by vasoconstriction that was completely abolished by alpha-adrenoceptor blockade. The data suggest that morphine-induced intestinal vasoconstriction is mediated via a release of epinephrine, apparently from the adrenal medulla. It is concluded that changes in the intestinal circulation during anesthesia with narcotics might play a certain role in the cardiovascular homeostasis during anesthesia and surgery. An increase in oxygen content in portal venous blood, resulting from a decrease in intestinal oxygen uptake, should facilitate hepatic oxygenation.« less

  18. Biphalin preferentially recruits peripheral opioid receptors to facilitate analgesia in a mouse model of cancer pain - A comparison with morphine.

    PubMed

    Lesniak, Anna; Bochynska-Czyz, Marta; Sacharczuk, Mariusz; Benhye, Sandor; Misicka, Aleksandra; Bujalska-Zadrozny, Magdalena; Lipkowski, Andrzej W

    2016-06-30

    The search for new drugs for cancer pain management has been a long-standing goal in basic and clinical research. Classical opioid drugs exert their primary antinociceptive effect upon activating opioid receptors located in the central nervous system. A substantial body of evidence points to the relevance of peripheral opioid receptors as potential targets for cancer pain treatment. Peptides showing limited blood-brain-barrier permeability promote peripheral analgesia in many pain models. In the present study we examined the peripheral and central analgesic effect of intravenously administered biphalin - a dimeric opioid peptide in a mouse skin cancer pain model, developed by an intraplantar inoculation of B16F0 melanoma cells. The effect of biphalin was compared with morphine - a golden standard in cancer pain management. Biphalin produced profound, dose-dependent and naloxone sensitive spinal analgesia. Additionally, the effect in the tumor-bearing paw was largely mediated by peripheral opioid receptors, as it was readily attenuated by the blood-brain-barrier-restricted opioid receptor antagonist - naloxone methiodide. On the contrary, morphine facilitated its analgesic effect primarily by activating spinal opioid receptors. Both drugs induced tolerance in B16F0 - implanted paws after chronic treatment, however biphalin as opposed to morphine, showed little decrease in its activity at the spinal level. Our results indicate that biphalin may be considered a future alternative drug in cancer pain treatment due to an enhanced local analgesic activity as well as lower tolerance liability compared with morphine. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Does neonatal morphine use affect neuropsychological outcomes at 8 to 9 years of age?

    PubMed

    de Graaf, Joke; van Lingen, Richard A; Valkenburg, Abraham J; Weisglas-Kuperus, Nynke; Groot Jebbink, Liesbeth; Wijnberg-Williams, Barbara; Anand, Kanwaljeet J S; Tibboel, Dick; van Dijk, Monique

    2013-03-01

    Morphine is widely used to treat severe pain in neonatal intensive care unit patients. Animal studies suggest adverse long-term side effects of neonatal morphine, but a follow-up study of 5-year-old children who participated in a morphine-placebo controlled trial as newborns found no such effects on the child's general functioning. This study indicated that morphine may negatively affect response inhibition, a domain of executive functions. Therefore, we performed a second follow-up study in the same population at the age of 8 to 9 years, focused on the child's general functioning in terms of intelligence, visual motor integration, and behavior and on executive functions. Children in the morphine group showed significantly less externalizing problems according to the parents but more internalizing behavior according to the teachers, but only after adjustment for intelligence quotient (IQ), potential confounders using a propensity score, and additional open-label morphine. Morphine-treated children showed significantly fewer problems with executive functions in daily life as rated by parents for the subscales inhibition and organization of materials and for planning/organizing as rated by the teachers. After adjustment for IQ and the propensity score, executive functioning as rated by the parents remained statistically significantly better in the morphine-treated group. The influence of the additional morphine given was not of a significant influence for any of the outcome variables. Overall, the present study demonstrates that continuous morphine infusion of 10 μg/kg/h during the neonatal period does not harm general functioning and may even have a positive influence on executive functions at 8 to 9 years. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  20. Ajoene restored behavioral patterns and liver glutathione level in morphine treated C57BL6 mice.

    PubMed

    Yun, Jaesuk; Oliynyk, Sergiy; Lee, Yeonju; Kim, Jieun; Yun, Kyunghwa; Jeon, Raok; Ryu, Jae-Ha; Oh, Seikwan

    2017-01-01

    Oxidative stress exacerbates drug dependence induced by administration of opiate analgesics such as morphine-induced tolerance and physical dependence associated with the reduction in hepatic glutathione (GSH) level. Ajoene obtained from garlic (Allium sativum L.) has been reported for anti-tumorigenic, anti-oxidative and neuroprotective properties, however, little is known about its effect on morphine-induced dependence. Therefore, this study aimed at the effect of ajoene on physical and/or psychological dependence and liver GSH content in morphine-treated mice. Conditioned place preference (CPP) test and measurement of morphine withdrawal syndrome were performed in C57BL6 mice for behavioral experiments. Thereafter, mice were sacrificed for measurement of serum and liver GSH levels. Ajoene restored CPP and naloxone-precipitated jumping behavior in mice exposed to morphine. Moreover, the reduced level of liver GSH content in morphine treated mice was back to normal after ajoene administration. Taken together, ajoene improved behavioral patterns in mice exposed to morphine suggesting its potential therapeutic benefit against morphine-induced dependence.

  1. Morphine-Induced Preconditioning: Involvement of Protein Kinase A and Mitochondrial Permeability Transition Pore

    PubMed Central

    Dorsch, Marianne; Behmenburg, Friederike; Raible, Miriam; Blase, Dominic; Grievink, Hilbert; Hollmann, Markus W.; Heinen, André; Huhn, Ragnar

    2016-01-01

    Background Morphine induces myocardial preconditioning (M-PC) via activation of mitochondrial large conductance Ca2+-sensitive potassium (mKCa) channels. An upstream regulator of mKCa channels is protein kinase A (PKA). Furthermore, mKCa channel activation regulates mitochondrial bioenergetics and thereby prevents opening of the mitochondrial permeability transition pore (mPTP). Here, we investigated in the rat heart in vivo whether 1) M-PC is mediated by activation of PKA, and 2) pharmacological opening of the mPTP abolishes the cardioprotective effect of M-PC and 3) M-PC is critically dependent on STAT3 activation, which is located upstream of mPTP within the signalling pathway. Methods Male Wistar rats were randomised to six groups (each n = 6). All animals underwent 25 minutes of regional myocardial ischemia and 120 minutes of reperfusion. Control animals (Con) were not further treated. Morphine preconditioning was initiated by intravenous administration of 0.3 mg/kg morphine (M-PC). The PKA blocker H-89 (10 μg/kg) was investigated with and without morphine (H-89+M-PC, H-89). We determined the effect of mPTP opening with atractyloside (5 mg/kg) with and without morphine (Atr+M-PC, Atr). Furthermore, the effect of morphine on PKA activity was tested in isolated adult rat cardiomyocytes. In further experiments in isolated hearts we tested the protective properties of morphine in the presence of STAT3 inhibition, and whether pharmacological prevention of the mPTP-opening by cyclosporine A (CsA) is cardioprotective in the presence of STAT3 inhibition. Results Morphine reduced infarct size from 64±5% to 39±9% (P<0.05 vs. Con). H-89 completely blocked preconditioning by morphine (64±9%; P<0.05 vs. M-PC), but H-89 itself had not effect on infarct size (61±10%; P>0.05 vs. Con). Also, atractyloside abolished infarct size reduction of morphine completely (65±9%; P<0.05 vs. M-PC) but had no influence on infarct size itself (64±5%; P>0.05 vs. Con). In isolated

  2. Nurses' perceptions and experiences regarding Morphine usage in burn pain management.

    PubMed

    Bayuo, J; Agbenorku, P

    2015-06-01

    Morphine, a classical example of opioid has been described as one of the analgesics of choice for burn pain management but there have been reports of under utilization of the medication and subsequent poor pain management. Nurses have a pivotal role in successful burn pain management and should therefore possess positive perception as well as strong knowledge base of pain care. In light of this realization, this study sought to investigate the perception and experiences of nurses working in the burns unit possess towards the medication. Purposive sampling approach was used to select twenty (20) nurses. Descriptive and themed content analysis approaches were used to analyze data. Mean years in general nursing practice and practice in the burns unit were obtained as 7.4 and 3.4 years respectively. Results indicate that nurses have a clear understanding of the intensity of burn pain but perception towards morphine was mixed and some respondents were unsure about some of the pertinent facts of morphine and thus, would prefer other medications such as paracetamol, diclofenac and pethidine. Addiction to the medication and morphine causing death were major themes identified. The resultant effect of these perception and experiences imply and confirm the under usage of morphine. It is therefore recommended that nurses within the burn unit be taken through training modules on the suitability of morphine in burn pain management. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  3. False-positive buprenorphine EIA urine toxicology results due to high dose morphine: a case report.

    PubMed

    Tenore, Peter L

    2012-01-01

    In monitoring a patient with chronic pain who was taking high-dose morphine and oxycodone with weekly urine enzymatic immunoassay (EIA) toxicology testing, the authors noted consistent positives for buprenorphine. The patient was not taking buprenorphine, and gas chromatography/mass spectroscopy (GCMS) testing on multiple samples revealed no buprenorphine, indicating a case of false-positive buprenorphine EIAs in a high-dose opiate case. The authors discontinued oxycodone for a period of time and then discontinued morphine. Urine monitoring with EIAs and GCMS revealed false-positive buprenorphine EIAs, which remained only when the patient was taking morphine. When taking only oxycodone and no morphine, urine samples became buprenorphine negative. When morphine was reintroduced, false-positive buprenorphine results resumed. Medical practitioners should be aware that high-dose morphine (with morphine urine levels turning positive within the 15,000 to 28,000 mg/mL range) may produce false-positive buprenorphine EIAs with standard urine EIA toxicology testing.

  4. Pharmacogenomics and Patient Treatment Parameters to Opioid Treatment in Chronic Pain: A Focus on Morphine, Oxycodone, Tramadol, and Fentanyl.

    PubMed

    Lloyd, Renae A; Hotham, Elizabeth; Hall, Catherine; Williams, Marie; Suppiah, Vijayaprakash

    2017-12-01

    Opioids are one of the most commonly prescribed medicines for chronic pain. However, their use for chronic pain has been controversial. The objective of this literature review was to identify the role of genetic polymorphisms on patient treatment parameters (opioid dose requirements, response, and adverse effects) for opioids used in malignant and nonmalignant chronic pain. The opioids that this review focuses on are codeine, morphine, oxycodone, tramadol, and fentanyl. A literature search of databases Medline and Embase was carried out, and studies up to April 2016 were included in this review. Studies were included based on a combination of key words: chronic pain and related terms, pharmacogenetics and related terms, and opioids and related terms. Among the 1,408 individual papers retrieved from the search in Medline and Embase, 32 original articles were included in this review, with none related to codeine. The 32 papers reported various study designs, opioids, and polymorphisms being studied for associations with treatment outcomes. This literature review reveals that variants in ABCB1, OPRM1, and COMT have been replicated for opioid dosing and variants in ABCB1 have been replicated for both treatment response and adverse effects. Currently, there are few validated studies to form a strong evidence base to support pharmacogenomics testing when initiating opioid therapy. However, the field of pharmacogenomics in chronic pain is likely to expand over the coming years, with the increasing number of treatment options available and larger cohorts being assembled in order to identify true associations. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  5. Cardiorespiratory effects of epidural administration of morphine and fentanyl in dogs anesthetized with sevoflurane.

    PubMed

    Naganobu, Kiyokazu; Maeda, Noriaki; Miyamoto, Toru; Hagio, Mitsuyoshi; Nakamura, Tadashi; Takasaki, Mayumi

    2004-01-01

    To determine the cardiorespiratory effects of epidural administration of morphine alone and in combination with fentanyl in dogs anesthetized with sevoflurane. Prospective study. 6 dogs. Dogs were anesthetized with sevoflurane and allowed to breathe spontaneously. After a stable plane of anesthesia was achieved, morphine (0.1 mg/kg [0.045 mg/lb]) or a combination of morphine and fentanyl (10 microg/kg [4.5 microg/lb]) was administered through an epidural catheter, the tip of which was positioned at the level of L6 or L7. Cardiorespiratory variables were measured for 90 minutes. Epidural administration of morphine alone did not cause any significant changes in cardiorespiratory measurements. However, epidural administration of morphine and fentanyl induced significant decreases in diastolic and mean arterial blood pressures and total peripheral resistance. Stroke volume was unchanged, PaCO2 was significantly increased, and arterial pH and base excess were significantly decreased. Heart rate was significantly lower after epidural administration of morphine and fentanyl than after administration of morphine alone. None of the dogs had any evidence of urine retention, vomiting, or pruritus after recovery from anesthesia. Results suggest that epidural administration of morphine at a dose of 0.1 mg/kg in combination with fentanyl at a dose of 10 microg/kg can cause cardiorespiratory depression in dogs anesthetized with sevoflurane.

  6. Inducing rat brain CYP2D with nicotine increases the rate of codeine tolerance; predicting the rate of tolerance from acute analgesic response.

    PubMed

    McMillan, Douglas M; Tyndale, Rachel F

    2017-12-01

    Repeated opioid administration produces analgesic tolerance, which may lead to dose escalation. Brain CYP2D metabolizes codeine to morphine, a bioactivation step required for codeine analgesia. Higher brain, but not liver, CYP2D is found in smokers and nicotine induces rat brain, but not liver, CYP2D expression and activity. Nicotine induction of rat brain CYP2D increases acute codeine conversion to morphine, and analgesia, however the role of brain CYP2D on the effects of repeated codeine exposure and tolerance is unknown. Rats were pretreated with nicotine (brain CYP2D inducer; 1mg/kg subcutaneously) or vehicle (saline; 1ml/kg subcutaneously). Codeine (40-60mg/kg oral-gavage) or morphine (20-30mg/kg oral-gavage) was administered daily and analgesia was assessed daily using the tail-flick reflex assay. Nicotine (versus saline) pretreatment increased acute codeine analgesia (1.32-fold change in AUC 0-60 min ; p<0.05) and the rate of loss of peak analgesia (11.42%/day versus 4.20%; p<0.006) across the first four days of codeine administration (time to negligible analgesia). Inducing brain CYP2D with nicotine did not alter acute morphine analgesia (1.03-fold; p>0.8), or the rate of morphine tolerance (8.1%/day versus 7.6%; p>0.9). The rate of both codeine and morphine tolerance (loss in peak analgesia from day 1 to day 4) correlated with initial analgesic response on day 1 (R=0.97, p<001). Increasing brain CYP2D altered initial analgesia and subsequent rate of tolerance. Variation in an individual's initial response to analgesic (e.g. high initial dose, smoking) may affect the rate of tolerance, and thereby the risk for dose escalation and/or opioid dependence. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The effect of morphine on the biosynthesis of catecholamines in the rat brain.

    PubMed

    Malini, M; Kwan, T K; Perumal, R

    1994-02-01

    In vivo studies involved monitoring the effect of morphine administration on catecholamine biosynthesis by the brain while in vitro studies involved studying the effect of morphine on the uptake of tritiated tyrosine by synaptosomes and its subsequent incorporation into the catecholamines. The extremely low levels of these endogenous compounds required the use of High Performance Liquid Chromatography with electrochemical detection. Intra-peritoneal injection of morphine at a dosage of 10 mg/kg did not produce appreciable changes in the catecholamine levels but a dosage of 30 mg/kg morphine was found to elevate dihydroxy phenylacetic acid content. At a dosage of 60 mg/kg, dopamine levels were elevated while noradrenaline was depleted. Morphine, at a concentration of 1 x 10(-5)M increases the incorporation of tritiated tyrosine into dopamine and dihydroxy phenylacetic acid in synaptosomal preparations.

  8. A romifidine and morphine combination for epidural analgesia of the flank in cattle

    PubMed Central

    2004-01-01

    Abstract The objective of the study reported here was to determine the onset, duration, and degree of analgesia achieved with a combination of romifidine (50 μg/kg body weight [BW]) and morphine (0.1 mg/kg BW) administered epidurally. Ten adult Holstein Friesen cows were assigned to either a treatment group receiving the romifidine and morphine combination or a control group receiving 0.9% saline in a randomized, blinded, crossover design. Cows were assessed for degree of flank analgesia and systemic sedation at various time intervals over a period of 24 hours. The romifidine and morphine combination, compared with saline, provided significant analgesia for at least 10 minutes (P = 0.016) and up to 12 hours (P = 0.004) after epidural administration. Treated cows were sedate between 10 minutes (P = 0.016) and 6 hours (P = 0.002) after epidural administration. These results provide evidence for a potential cost-effective intra- and postoperative method of analgesia; however, the sedation seen in this study could be detrimental to patients expected return to the farm shortly after surgery. Further research into withdrawal times, systemic effects, and potential adverse effects are needed before an opiod and α2-adrenergic agonist combination can be used safely in a clinical setting PMID:15600157

  9. Pharmacokinetic drug interactions of morphine, codeine, and their derivatives: theory and clinical reality, part I.

    PubMed

    Armstrong, Scott C; Cozza, Kelly L

    2003-01-01

    Pharmacokinetic drug-drug interactions with morphine, hydromorphone, and oxymorphone are reviewed in this column. Morphine is a naturally occurring opiate that is metabolized chiefly through glucuronidation by uridine diphosphate glucuronosyl transferase (UGT) enzymes in the liver. These enzymes produce an active analgesic metabolite and a potentially toxic metabolite. In vivo drug-drug interaction studies with morphine are few, but they do suggest that inhibition or induction of UGT enzymes could alter morphine and its metabolite levels. These interactions could change analgesic efficacy. Hydromorphone and oxymorphone, close synthetic derivatives of morphine, are also metabolized primarily by UGT enzymes. Hydromorphone may have a toxic metabolite similar to morphine. In vivo drug-drug interaction studies with hydromorphone and oxymorphone have not been done, so it is difficult to make conclusions with these drugs.

  10. Analgesia induced by morphine microinjected into the nucleus raphe magnus: effects on tonic pain.

    PubMed

    Dualé, Christian; Sierralta, Fernando; Dallel, Radhouane

    2007-07-01

    One of the possible sites of action of the analgesic effect of morphine is the Nucleus Raphe Magnus, as morphine injected into this structure induces analgesia in transient pain models. In order to test if morphine in the Nucleus Raphe Magnus is also analgesic in a tonic pain model, 5 microg of morphine or saline (control) were microinjected into the Nucleus Raphe Magnus of the rat. Analgesic effects were assessed following nociceptive stimulation using transient heating of the tail (phasic pain) and subcutaneous orofacial injection of 1.5 % formalin (tonic pain). While morphine was strongly analgesic for the tail-flick response (p <0.0001 compared to control), analgesia on the response to formalin was also observed for both early (p = 0.007) and late responses (p = 0.02). However, the response to formalin was not completely blunted. These results suggest that the Nucleus Raphe Magnus is not the exclusive site of action of morphine-induced analgesia in clinical conditions.

  11. The involvement of CRF1 receptor within the basolateral amygdala and dentate gyrus in the naloxone-induced conditioned place aversion in morphine-dependent mice.

    PubMed

    Valero, E; Gómez-Milanés, I; Almela, P; Ribeiro Do Couto, B; Laorden, M L; Milanés, M V; Núñez, C

    2018-06-08

    Drug withdrawal-associated aversive memories trigger relapse to drug-seeking behavior. Corticotrophin-releasing factor (CRF) is an important mediator of the reinforcing properties of drugs of abuse. However, the involvement of CRF1 receptor (CRF1R) in aversive memory induced by opiate withdrawal has yet to be elucidated. We used the conditioned-place aversion (CPA) paradigm to evaluate the role of CRF1R on opiate withdrawal memory acquisition, along with plasticity-related processes that occur after CPA within the basolateral amygdala (BLA) and dentate gyrus (DG). Male mice were rendered dependent on morphine and injected acutely with naloxone before paired to confinement in a naloxone-associated compartment. The CPA scores as well as the number of TH-positive neurons (in the NTS-A2 noradrenergic cell group), and the expression of the transcription factors Arc and pCREB (in the BLA and DG) were measured with and without CRF1R blockade. Mice subjected to conditioned naloxone-induced morphine withdrawal robustly expressed CPA. Pre-treatment with the selective CRF1R antagonist CP-154,526 before naloxone conditioning session impaired morphine withdrawal-induced aversive memory acquisition. CP-154,526 also antagonized the enhanced number of TH-positive neurons in the NTS-A2 that was seen after CPA. Increased Arc expression and Arc-pCREB co-localization were seen in the BLA after CPA, which was not modified by CP-154,526. In the DG, CPA was accompanied by a decrease of Arc expression and no changes in Arc-pCREB co-localization, whereas pre-treatment with CP-154,526 induced an increase in both parameters. These results indicate that CRF-CRF1R pathway could be a critical factor governing opiate withdrawal memory storage and retrieval and might suggest a role for TH-NA pathway in the effects of withdrawal on memory. Our results might indicate that the blockade of CRF1R could represent a promising pharmacological treatment strategy approach for the attenuation of the relapse

  12. Does adding ketamine to morphine patient-controlled analgesia safely improve post-thoracotomy pain?

    PubMed

    Mathews, Timothy J; Churchhouse, Antonia M D; Housden, Tessa; Dunning, Joel

    2012-02-01

    A best evidence topic in thoracic surgery was written according to a structured protocol. The question addressed was 'is the addition of ketamine to morphine patient-controlled analgesia (PCA) following thoracic surgery superior to morphine alone'. Altogether 201 papers were found using the reported search, of which nine represented the best evidence to answer the clinical question. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. This consisted of one systematic review of PCA morphine with ketamine (PCA-MK) trials, one meta-analysis of PCA-MK trials, four randomized controlled trials of PCA-MK, one meta-analysis of trials using a variety of peri-operative ketamine regimes and two cohort studies of PCA-MK. Main outcomes measured included pain score rated on visual analogue scale, morphine consumption and incidence of psychotomimetic side effects/hallucination. Two papers reported the measurements of respiratory function. This evidence shows that adding ketamine to morphine PCA is safe, with a reported incidence of hallucination requiring intervention of 2.9%, and a meta-analysis finding an incidence of all central nervous system side effects of 18% compared with 15% with morphine alone, P = 0.31, RR 1.27 with 95% CI (0.8-2.01). All randomized controlled trials of its use following thoracic surgery found no hallucination or psychological side effect. All five studies in thoracic surgery (n = 243) found reduced morphine requirements with PCA-MK. Pain scores were significantly lower in PCA-MK patients in thoracic surgery papers, with one paper additionally reporting increased patient satisfaction. However, no significant improvement was found in a meta-analysis of five papers studying PCA-MK in a variety of surgical settings. Both papers reporting respiratory outcomes found improved oxygen saturations and PaCO(2) levels in PCA-MK patients following thoracic surgery

  13. S-adenosyl methionine (SAM) attenuates the development of tolerance to analgesic activity of morphine in rats.

    PubMed

    Katyal, Jatinder; Kumar, Hemant; Joshi, Dinesh; Gupta, Yogendra Kumar

    2017-04-03

    Development of tolerance to analgesic effect, on chronic administration of morphine, limits its clinical usefulness in pain management. S-adenosyl methionine (SAM) used for arthritis and approved as a supplement in many countries including United States was evaluated for reducing morphine tolerance. Male 'Wistar' rats were used. The analgesic activity was determined using tail flick analgesiometer (Columbus Instruments, USA). Rats given morphine (7mg/kg), intraperitoneally (i.p.), once daily for 5days developed tolerance to analgesic effect. To evaluate the effect of SAM on morphine tolerance, SAM 800mg/kg was administered orally (p.o.), 45min prior to each dose of morphine. The analgesic activity of SAM and opioidergic component in its activity was also evaluated. Co-administration of morphine and SAM reversed morphine tolerance. SAM exhibited analgesic effect after repeated administration which was reversed by naloxone administration. Since safety of SAM on chronic use is documented it can be a good option in morphine tolerance. Role in drug addiction and withdrawal should also be evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Physician attitudes and beliefs about use of morphine for cancer pain.

    PubMed

    Elliott, T E; Elliott, B A

    1992-04-01

    The recent literature asserts that mistaken physician beliefs and attitudes are critical barriers to adequate cancer pain relief. To determine the prevalence of 12 proposed myths or misconceptions about morphine use in cancer pain management (CPM), we surveyed all physicians engaged in direct patient care in Duluth, Minnesota (N = 243). A 62% response was obtained. Many physicians misunderstood concepts of morphine tolerance, both to analgesia (51%) and to side effects (39%). Many were unaware of the use of adjuvant analgesics (29%), efficacy of oral morphine (27%), and nonexistent risk of addiction in CPM (20%). Analysis of result by physician age and specialy groups confirmed significant levels of misunderstanding in all subsets. Strategies to change physician attitudes and beliefs regarding morphine in CPM should focus on tolerance concepts, dosing schemes, safety, efficacy, lack of addictive risk, use of drug combinations, and the fact that cancer pain can be relieved.

  15. Delay discounting of oral morphine and sweetened juice rewards in dependent and non-dependent rats.

    PubMed

    Harvey-Lewis, Colin; Perdrizet, Johnna; Franklin, Keith B J

    2014-07-01

    Opioid-dependent humans are reported to show accelerated delay discounting of opioid rewards when compared to monetary rewards. It has been suggested that this may reflect a difference in discounting of consumable and non-consumable goods not specific to dependent individuals. Here, we evaluate the discounting of similar morphine and non-morphine oral rewards in dependent and non-dependent rats We first tested the analgesic and rewarding effects of our morphine solution. In a second experiment, we assigned rats randomly to either dependent or non-dependent groups that, 30 min after daily testing, received 30 mg/kg subcutaneous dose of morphine, or saline, respectively. Delay discounting of drug-free reward was examined prior to initiation of the dosing regimen. We tested discounting of the morphine reward in half the rats and retested the discounting of the drug-free reward in the other half. All tests were run 22.5 h after the daily maintenance dose. Rats preferred the morphine cocktail to the drug-free solution and consumed enough to induce significant analgesia. The control quinine solution did not produce these effects. Dependent rats discounted morphine rewards more rapidly than before dependence and when compared to discounting drug-free rewards. In non-dependent rats both reward types were discounted similarly. These results show that morphine dependence increases impulsiveness specifically towards a drug reward while morphine experience without dependence does not.

  16. Depression of home cage wheel running is an objective measure of spontaneous morphine withdrawal in rats with and without persistent pain

    PubMed Central

    Kandasamy, Ram; Lee, Andrea T.; Morgan, Michael M.

    2017-01-01

    Opioid withdrawal in humans is often subtle and almost always spontaneous. In contrast, most preclinical studies precipitate withdrawal by administration of an opioid receptor antagonist such as naloxone. These animal studies rely on measurement of physiological symptoms (e.g., wet dog shakes) in the period immediately following naloxone administration. To more closely model the human condition, we tested the hypothesis that depression of home cage wheel running will provide an objective method to measure the magnitude and duration of spontaneous morphine withdrawal. Rats were allowed access to a running wheel in their home cage for 8 days prior to implantation of two 75 mg morphine or placebo pellets. The pellets were removed 3 or 5 days later to induce spontaneous withdrawal. In normal pain-free rats, removal of the morphine pellets depressed wheel running for 48 hours compared to rats that had placebo pellets removed. Morphine withdrawal-induced depression of wheel running was greatly enhanced in rats with persistent inflammatory pain induced by injection of Complete Freund’s Adjuvant (CFA) into the hindpaw. Removal of the morphine pellets following 3 days of treatment depressed wheel running in these rats for over 6 days. These data demonstrate that home cage wheel running provides an objective and more clinically relevant method to assess spontaneous morphine withdrawal compared to precipitated withdrawal in laboratory rats. Moreover, the enhanced withdrawal in rats with persistent inflammatory pain suggests that pain patients may be especially susceptible to opioid withdrawal. PMID:28366799

  17. Exposure to opiates in female adolescents alters mu opiate receptor expression and increases the rewarding effects of morphine in future offspring.

    PubMed

    Vassoler, Fair M; Wright, Siobhan J; Byrnes, Elizabeth M

    2016-04-01

    Prescription opiate use and abuse has increased dramatically over the past two decades, including increased use in adolescent populations. Recently, it has been proposed that use during this critical period may affect future offspring even when use is discontinued prior to conception. Here, we utilize a rodent model to examine the effects of adolescent morphine exposure on the reward functioning of the offspring. Female Sprague Dawley rats were administered morphine for 10 days during early adolescence (post-natal day 30-39) using an escalating dosing regimen. Animals then remained drug free until adulthood at which point they were mated with naïve males. Adult offspring (F1 animals) were tested for their response to morphine-induced (0, 1, 2.5, 5, and 10 mg/kg, s.c.) conditioned place preference (CPP) and context-independent morphine-induced sensitization. Naïve littermates were used to examine mu opiate receptor expression in the nucleus accumbens and ventral tegmental area. Results indicate that F1 females whose mothers were exposed to morphine during adolescence (Mor-F1) demonstrate significantly enhanced CPP to the lowest doses of morphine compared with Sal-F1 females. There were no differences in context-independent sensitization between maternal treatment groups. Protein expression analysis showed significantly increased levels of accumbal mu opiate receptor in Mor-F1 offspring and decreased levels in the VTA. Taken together, these findings demonstrate a shift in the dose response curve with regard to the rewarding effects of morphine in Mor-F1 females which may in part be due to altered mu opiate receptor expression in the nucleus accumbens and VTA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Exposure to Opiates in Female Adolescents Alters Mu Opiate Receptor Expression and Increases the Rewarding Effects of Morphine in Future Offspring

    PubMed Central

    Vassoler, Fair M.; Wright, Siobhan J.; Byrnes, Elizabeth M.

    2016-01-01

    Prescription opiate use and abuse has increased dramatically over the past two decades, including increased use in adolescent populations. Recently, it has been proposed that use during this critical period may affect future offspring even when use is discontinued prior to conception. Here, we utilize a rodent model to examine the effects of adolescent morphine exposure on the reward functioning of the offspring. Female Sprague Dawley rats were administered morphine for 10 days during early adolescence (post-natal day 30–39) using an escalating dosing regimen. Animals then remained drug free until adulthood at which point they were mated with naïve males. Adult offspring (F1 animals) were tested for their response to morphine-induced (0, 1, 2.5, 5, and 10 mg/kg, s.c.) conditioned place preference (CPP) and context-independent morphine-induced sensitization. Naïve littermates were used to examine mu opiate receptor expression in the nucleus accumbens and ventral tegmental area. Results indicate that F1 females whose mothers were exposed to morphine during adolescence (Mor-F1) demonstrate significantly enhanced CPP to the lowest doses of morphine compared with Sal-F1 females. There were no differences in context-independent sensitization between maternal treatment groups. Protein expression analysis showed significantly increased levels of accumbal mu opiate receptor in Mor-F1 offspring and decreased levels in the VTA. Taken together, these findings demonstrate a shift in the dose response curve with regard to the rewarding effects of morphine in Mor-F1 females which may in part be due to altered mu opiate receptor expression in the nucleus accumbens and VTA. PMID:26700246

  19. A Subanalgesic Dose of Morphine Eliminates Nalbuphine Anti-analgesia in Postoperative Pain

    PubMed Central

    Gear, Robert W.; Gordon, Newton C.; Hossaini-Zadeh, Mehran; Lee, Janice S.; Miaskowski, Christine; Paul, Steven M.; Levine, Jon D.

    2008-01-01

    The agonist-antagonist kappa-opioid nalbuphine administered for postoperative pain produces greater analgesia in females than in males. In fact, males administered nalbuphine (5 mg) experience pain greater than those receiving placebo, suggesting the existence of an anti-analgesic effect. These sexually dimorphic effects on postoperative pain can be eliminated by co-administration of a fixed ratio of the prototypical opioid receptor antagonist naloxone with nalbuphine, implying a role for opioid receptors in the anti-analgesic as well as analgesic effects of nalbuphine. In the present study, we further evaluated the role of opioid receptors in the sex-specific effects on pain produced by nalbuphine by co-administering a dose of morphine low enough that it does not produce analgesia. Following extraction of bony impacted third molar teeth, nalbuphine (5 mg) was administered alone or in combination with either of two low doses of morphine (2 mg or 4 mg). Both doses of morphine reversed nalbuphine-induced anti-analgesia in males, but only the lower dose (2 mg) reached statistical significance. Neither dose affected nalbuphine-induced analgesia in females, and when administered alone in either males or females, morphine (2 mg) had no analgesic effect. Though not observed in females, the effect of morphine in males argues that, like naloxone, low dose morphine may act as an anti-analgesia opioid receptor antagonist. Perspective Previously we reported that the nalbuphine produces both analgesic and anti-analgesic effects, and that the opioid antagonist naloxone can enhance nalbuphine analgesia by selectively antagonizing the anti-analgesic effect. Here we show that morphine, given in a subanalgesic dose, reverses nalbuphine-induced anti-analgesia in males, perhaps by a similar mechanism. PMID:18201935

  20. Anxiety profile in morphine-dependent and withdrawn rats: effect of voluntary exercise.

    PubMed

    Miladi-Gorji, Hossein; Rashidy-Pour, Ali; Fathollahi, Yaghoub

    2012-01-18

    Withdrawal from chronic opiates is associated with an increase in anxiogenic-like behaviours, but the anxiety profile in the morphine-dependent animals is not clear. Thus, one of the aims of the present study was to examine whether morphine-dependent rats would increase the expression of anxiogenic-like behaviours in novel and stressful conditions. Additionally, recent studies have shown that voluntary exercise can reduce anxiety levels in rodents. Therefore, another aim of this study was to examine the effect of voluntary exercise on the anxiety profile in both morphine-dependent animals and animals experiencing withdrawal. Rats were injected with bi-daily doses (10 mg/kg, at 12 h intervals) of morphine over a period of 10 days in which they were also allowed voluntary exercise. Following these injections, anxiety-like behaviours were tested in the elevated plus-maze (EPM) model and the light/dark (L/D) box. We found reductions in time spent in, and entries into, the EPM open arms and reductions in time spent in the lit side of the L/D box for both sedentary morphine-dependent and withdrawn rats as compared to the sedentary control groups. The exercising morphine-dependent and withdrawn rats exhibited an increase in EPM open arm time and entries and L/D box lit side time as compared with the sedentary control groups. We conclude that voluntary exercise decreases the severity of the anxiogenic-like behaviours in both morphine-dependent and withdrawn rats. Thus, voluntary exercise could be a potential natural method to ameliorate some of the deleterious behavioural consequences of opiate abuse. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. The Influence of Polyethylene Glycol Solution on the Dissolution Rate of Sustained Release Morphine.

    PubMed

    Hodgman, Michael; Holland, Michael G; Englich, Ulrich; Wojcik, Susan M; Grant, William D; Leitner, Erich

    2016-12-01

    Whole bowel irrigation (WBI) is a management option for overdose of medications poorly adsorbed to activated charcoal, with modified release properties, or for body packers. Polyethylene glycol (PEG) is a mixture of ethylene oxide polymers of varying molecular weight. PEG with an average molecular weight of 3350 g/mol is used for WBI. PEG electrolyte lavage solution has been shown in vitro to hasten the dissolution of acetaminophen. The impact of PEG on the pharmacokinetics of extended release pharmaceuticals is unknown. Lower average molecular weight PEG mixtures are used as solvents and excipients. We sought to investigate the impact of PEG on the release of morphine from several extended release morphine formulations. An in vitro gastric model was developed. To test the validity of our model, we first investigated the previously described interaction of ethanol and Avinza®. Once demonstrated, we then investigated the effect of PEG with several extended release morphine formulations. In the validation portion of our study, we confirmed an ethanol Avinza® interaction. Subsequently, we did not observe accelerated release of morphine from Avinza® or generic extended release morphine in the presence of PEG. The use of PEG for gastric decontamination following ingestion of these extended release morphine formulations is unlikely to accelerate morphine release and aggravate intoxication.

  2. The Use of Ketamine for Acute Treatment of Pain: A Randomized, Double-Blind, Placebo-Controlled Trial.

    PubMed

    Sin, Billy; Tatunchak, Tamara; Paryavi, Mohammad; Olivo, Maria; Mian, Usman; Ruiz, Josel; Shah, Bupendra; de Souza, Sylvie

    2017-05-01

    Pain is one of the most common reasons for emergency department (ED) visits in the United States. Ketamine is a sedative with N-methyl-D-aspartate (NMDA) receptor antagonism. Recent literature has suggested that the use of subdissociative dose ketamine (SDDK) may be safe and effective for acute pain. The objective of our study was to evaluate ketamine in subdissociative doses as an adjunct for acute pain in the ED. This was a single-center, prospective, randomized, double-blind, placebo-controlled trial that evaluated the use of SDDK in adult patients who presented to the ED with acute pain. Patients received ketamine 0.3 mg/kg via intravenous piggyback over 15 min or placebo. Morphine 0.1 mg/kg intravenous push was administered with the study interventions. The primary outcome was the patient's pain score 15 min after initiation of the intervention. Secondary outcomes included adverse events, consumption of rescue analgesia, patient's length of stay, and patient satisfaction with treatment. Thirty patients were enrolled in each group. Median pain scores in patients who received ketamine were lower than in controls at 15 min (3.5 [interquartile range {IQR} 1.0-7.3 vs. 6.0 [IQR 4.0-9.0], respectively; p = 0.018). No serious adverse events occurred. No difference was detected in the amount of rescue analgesia used or in length of stay. Patients who received ketamine reported a higher mean satisfaction score with their pain management (8.57 [standard deviation {SD} 2.1]) than patients who received placebo (6.05 [SD 2.6]; p = 0.01). When used as an adjunct, SDDK administered at 0.3 mg/kg over 15 min resulted in safe and effective analgesia for ≤30 min in patients who presented with acute pain in the ED. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Inhibitory effects of processed Aconiti tuber on morphine-induced conditioned place preference in rats.

    PubMed

    Wu, Guiyun; Huang, Wenqi; Zhang, Hui; Li, Qiaobo; Zhou, Jun; Shu, Haihua

    2011-06-14

    Our previous studies indicated that processed Aconiti tuber (PAT), a traditional Chinese herbal medicine, had antinociceptive effects and inhibitory effects on morphine tolerance by activation of kappa-opioid receptor (KOR). Preclinical studies also demonstrated that KOR agonists functionally attenuate addictive behaviors of morphine, such as conditioned place preference (CPP). Therefore, we hypothesize that PAT may inhibit morphine-induced CPP in rats. (1) Five groups of rats (n=8 for each group) were alternately subcutaneous (s.c.) injected with morphine 10mg/kg (one group receive normal saline as a control) and normal saline for 8 days and oral co-administrated with distilled water or PAT 0.3, 1.0, or 3.0 g/kg daily on days 2-9 during CPP training, respectively. (2) Other four groups of rats were randomly s.c. injected with nor-binaltorphimine (nor-BNI; 5mg/kg) or normal saline (as a control) 120 min before alternately s.c. with morphine and normal saline and oral co-administrated with distilled water or PAT 3.0 g/kg daily. Each rat was acquired pre-conditioning and post-conditioning CPP data and assayed dynorphin concentrations by radioimmunoassay in rat's nucleus accumbens (NAc) after CPP training. (1) PAT 1.0 or 3.0 g/kg dose-dependently decreased the morphine-induced increase of CPP scores. (2) Nor-BNI completely antagonized the inhibition of PAT on morphine-induced CPP. (3) PAT dose-dependently increased dynorphin content in rats' NAc after CPP training. (1) PAT dose-dependently inhibited morphine-induced CPP. (2) The inhibition of PAT on morphine-induced CPP was probably due to activation of KOR by increasing dynorphin release in rats' NAc. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Ultralow Dose of Naloxone as an Adjuvant to Intrathecal Morphine Infusion Improves Perceived Quality of Sleep but Fails to Alter Persistent Pain

    PubMed Central

    Lundborg, Christopher; Bjersing, Jan; Dahm, Peter; Hansson, Elisabeth; Biber, Björn

    2015-01-01

    Introduction: This randomized, cross-over, double-blind, controlled study of continuous intrathecal morphine administration in patients with severe, long-term pain addresses whether the supplementation of low doses of naloxone in this setting is associated with beneficial clinical effects. Methods: All of the study subjects (n=11) provided informed consent and were recruited from a subset of patients who were already undergoing long-term treatment with continuous intrathecal morphine because of difficult-to-treat pain. The patients were (in a randomized order) also given intrathecal naloxone (40 ng/24 h or 400 ng/24 h). As control, the patients’ ordinary dose of morphine without any additions was used. The pain (Numeric Rating Scale, NRS) during activity, perceived quality of sleep, level of activity, and quality of life as well as the levels of several proinflammatory and anti-inflammatory cytokines in the blood were assessed. The prestudy pain (NRS during activity) in the study group ranged from 3 to 10. Results: A total of 64% of the subjects reported improved quality of sleep during treatment with naloxone at a dose of 40 ng per 24 hours as compared with 9% with sham treatment (P=0.024). Although not statistically significant, pain was reduced by 2 NRS steps or more during supplemental treatment with naloxone in 36% of subjects when using the 40 ng per 24 hours dose and in 18% of the subjects when using naloxone 400 ng per 24 hours dose. The corresponding percentage among patients receiving unaltered treatment was 27%. Conclusions: To conclude, the addition of an ultralow dose of intrathecal naloxone (40 ng/24 h) to intrathecal morphine infusion in patients with severe, persistent pain improved perceived quality of sleep. We were not able to show any statistically significant effects of naloxone on pain relief, level of activity, or quality of life. PMID:25629634

  5. Comparison of tizanidine and morphine with regard to tolerance-developing ability to antinociceptive action.

    PubMed

    Nabeshima, T; Yamada, S; Sugimoto, A; Matsuno, K; Kameyama, T

    1986-10-01

    The antinociceptive, tolerance-developing and anti-withdrawal activities of tizanidine [5-chloro-4-(2-imidazolin-2-yl-amino)-2,1,3-benzo-thiadiazole] were investigated by comparing its effects with those of morphine and clonidine in tail-flick-, hot plate-, acetic acid-induced writhing-, and naloxone-precipitated withdrawal jumping-tests. The antinociceptive action of tizanidine was not altered by naloxone, while that of morphine was antagonized. Tolerance to the tizanidine-induced antinociceptive action and to motor incoordination was developed by successive administration of tizanidine. In the tizanidine-tolerant mice, the antinociceptive action of morphine was significantly decreased, but not sleeping time induced by pentobarbital. The action of tizanidine was not modified in the morphine-tolerant mice. Tizanidine failed to induce morphine-withdrawal jumping and to inhibit naloxone-precipitated withdrawal jumping in the morphine-dependent mice. Cross tolerance to the antinociceptive action induced by tizanidine and clonidine was developed. These results suggest that alpha 2-adrenoreceptors may be involved in the action mechanism of tizanidine, but not opioid receptors. Functional tolerance to tizanidine action may be developed by successive administration of tizanidine.

  6. Activity of adenylyl cyclase and protein kinase A contributes to morphine-induced spinal apoptosis.

    PubMed

    Lim, Grewo; Wang, Shuxing; Lim, Jeong-Ae; Mao, Jianren

    2005-12-02

    Our previous study has shown that chronic morphine exposure induces neuronal apoptosis within the spinal cord dorsal horn; however, the mechanisms of morphine-induced apoptosis remain unclear. Here we examined whether adenylyl cyclase (AC) and protein kinase A (PKA) would play a role in this process. Intrathecal morphine regimen (10 microg, twice daily x 7 days) that resulted in antinociceptive tolerance induced spinal apoptosis as revealed by in situ terminal deoxynucleotidyl transferase (TdT)-UTP-biotin nick end labeling (TUNEL). The TUNEL-positive cells were detected primarily in the superficial laminae of the spinal cord dorsal horn, which was associated with an increase in the expression of activated caspase-3 and mitogen-activated protein kinase (MAPK) within the same spinal region. Co-administration of morphine with a broad AC inhibitor (ddA), a PKA inhibitor (H89), or a MAPK inhibitor (PD98059) substantially reduced the number of TUNEL-positive cells, as compared with the morphine alone group. The results indicate that the spinal AC and PKA pathway through intracellular MAPK may be contributory to the cellular mechanisms of morphine-induced apoptosis.

  7. The effect of tramadol plus paracetamol on consumption of morphine after coronary artery bypass grafting.

    PubMed

    Altun, Dilek; Çınar, Özlem; Özker, Emre; Türköz, Ayda

    2017-02-01

    To compare the effects of oral tramadol+paracetamol combination on morphine consumption following coronary artery bypass grafting (CABG) in the patient-controlled analgesia (PCA) protocol. A prospective, double-blind, randomized, clinical study. Single-institution, tertiary hospital. Fifty cardiac surgical patients undergoing primary CABG surgery. After surgery, the patients were allocated to 1 of 2 groups. Both groups received morphine according to the PCA protocol after arrival to the coronary intensive care unit (bolus 1 mg, lockout time 15 minutes). In addition to morphine administration 2 hours before operation and postoperative 2nd, 6th, 12th, 18th, 24th, 30th, 36th, 42th, and 48th hours, group T received tramadol+paracetamol (Zaldiar; 325 mg paracetamol, 37.5 mg tramadol) and group P received placebo. Sedation levels were measured with the Ramsay Sedation Scale, whereas pain was assessed with the Pain Intensity Score during mechanical ventilation and with the Numeric Rating Scale after extubation. If the Numeric Rating Scale score was ≥3 and Pain Intensity Score was ≥3, 0.05 mg/kg morphine was administered additionally. Preoperative patient characteristics, risk assessment, and intraoperative data were similar between the groups. Cumulative morphine consumption, number of PCA demand, and boluses were higher in group P (P<.01). The amount of total morphine (in mg) used as a rescue analgesia was also higher in group P (5.06±1.0), compared with group T (2.37±0.52; P<.001). The patients who received rescue doses of morphine were 8 (32%) in group T and 18 (72%) in group P (P<.001). Duration of mechanical ventilation in group P was longer than group T (P<.01). Tramadol+paracetamol combination along with PCA morphine improves analgesia and reduces morphine requirement up to 50% after CABG, compared with morphine PCA alone. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Morphine affects HIV-induced inflammatory response without influencing viral replication in human monocyte-derived macrophages

    PubMed Central

    Dave, Rajnish S.

    2011-01-01

    Opiate-abusing individuals are in the top three risk-factor groups for HIV infection. In fact, almost 30% of HIV-infected individuals in the USA are reported to abuse opiates, highlighting the intersection of drugs of abuse with HIV/AIDS. Opiate-abusers are cognitively impaired and suffer from neurological dysfunctions that may lead to high-risk sexual behavior, poor adherence to antiretroviral regimens, and hepatitis-C virus infection. Collectively, these factors may contribute to accelerated HIV CNS disease progression. To understand the role of morphine in disease progression, we sought to determine whether morphine influences HIV-induced inflammation or viral replication in human monocyte-derived macrophages (h-mdms) and MAGI cells infected with HIV and exposed to morphine. Chronic morphine exposure of HIV-infected h-mdms led to significant alterations in secretion of IL-6 and MCP-2. Morphine enhanced IL-6 secretion and blunted MCP-2 secretion from HIV-infected h-mdms. However, exposure of HIV-infected h-mdms to morphine had no effect on TNF-α secretion. Morphine had no effect on later-stages of viral replication in HIV-infected h-mdms. Morphine had a potentially additive effect on the HIV-induced production of IL-6 and delayed HIV-induced MCP-2 production. These results suggest that in HIV-infected opiate abusers enhanced CNS inflammation might result even when HIV disease is controlled. PMID:22066570

  9. Adult Acute Myeloid Leukemia Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Acute myeloid leukemia (AML; also called acute myelogenous leukemia, acute nonlymphocytic leukemia) treatment advances have resulted in substantially improved CR rates. Cytogenetic analysis helps predict outcomes of treatment which includes chemotherapy, radiation, and stem cell transplant. Get detailed information about AML in this clinician summary.

  10. [Continuous subcutaneous morphine to patients with terminal cancer. Analgesia at home].

    PubMed

    Laursen, J O

    1994-04-04

    Since 1992 it has been possible for cancer patients in the county of Southern Jutland to receive terminal care in their own homes. An essential part of this management is effective pain relief; more than 60% of cancer patients have chronic pain. In cases where oral medication or epidural administration of morphine is insufficient or complicated by side-effects continuous subcutaneous morphine administration may be suitable. The patient may be treated in this latter manner for long periods of time. A case story is described where a cancer patient was treated with continuous subcutaneous morphine in his home for more than 257 days without complications or major side-effects.

  11. Effects of aqueous, methanolic and chloroform extracts of rhizome and aerial parts of Valeriana officinalis L. on naloxone-induced jumping in morphine-dependent mice.

    PubMed

    Sharifzadeh, Mohammad; Hadjiakhoondi, Abbas; Khanavi, Mahnaz; Susanabadi, Maryam

    2006-06-01

    In the present study, the effects of rhizomes and aerial parts extracts of Valeriana officinalis L. on morphine dependence in mice have been investigated. Animals were treated subcutaneously with morphine (50, 50 and 75 mg/kg) three times daily (10 am, 1 pm and 4 pm) for 3 days, and a last dose of morphine (50 mg/kg) was administered on the fourth day. Withdrawal syndrome (jumping) was precipitated by naloxone (5 mg/kg) which was administered intraperitoneally 2 hours after the last dose of morphine. To study the effects of the aqueous, methanolic and chloroform extracts of both aerial parts and rhizome of the V. officinalis L. on naloxone-induced jumping in morphine-dependent animals, 10 injections of morphine (three administrations each day) for dependence and a dose of 5 mg/kg of naloxone for withdrawal induction were employed. Intraperitoneal injection of different doses (1, 5, 25 and 50 mg/kg) of aqueous, methanolic and chloroform extracts of the rhizome of V. officinalis L. 60 minutes before naloxone injection decreased the jumping response dose-dependently. Pre-treatment of animals with different doses (1, 5, 25, 50 and 100 mg/kg) of aqueous and methanolic extracts of aerial parts of V. officinalis L. 60 minutes before naloxone injection caused a significant decrease on naloxone-induced jumping. The chloroform extract of the aerial parts of V. officinalis L. did not show any significant changes on jumping response in morphine-dependent animals. It is concluded that the extracts of V. officinalis L. could affect morphine withdrawal syndrome via possible interactions with inhibitory neurotransmitters in nervous system.

  12. [Effects of morphine on pupillary light reflex in monkeys].

    PubMed

    Meng, Zhi-Qiang; Zhang, Yu-Hua; Chen, Nan-Hui; Miao, Ying-Da; Hu, Xin-Tian; Ma, Yuan-Ye

    2010-06-01

    The pupil size of both human and other animals can be affected by light. Many kinds of psychiatrical and psychological disorders, such as drug abuse, associate with abnormal properties of pupillary light reflex. Thus, the properties of pupillary light reflex could serve as an indicator for drug abuse detection. However, the effect of drug abuse on pupillary light reflex is till unclear. To assess the effects of addictive drugs on pupillary light reflex quantificationally, in the present study, we examined the effects of morphine on pupil diameter and pupillary light reflex in rhesus monkeys. By measuring the pupil diameter at different timing points before and after the administration of morphine, we found that morphine administration reduced the diameter of pupil and decreased the constriction rate. Our present results provide an experimental support for applying the properties of pupillary light reflex as a reference in addicts' detection.

  13. Gastric pentadecapeptide BPC 157 counteracts morphine-induced analgesia in mice.

    PubMed

    Boban Blagaic, A; Turcic, P; Blagaic, V; Dubovecak, M; Jelovac, N; Zemba, M; Radic, B; Becejac, T; Stancic Rokotov, D; Sikiric, P

    2009-12-01

    Previously, the gastric pentadecapeptide BPC 157, (PL 14736, Pliva) has been shown to have several beneficial effects, it exert gastroprotective, anti-inflammatory actions, stimulates would healing and has therapeutic value in inflammatory bowel disease. The present study aimed to study the effect of naloxone and BPC 157 on morphine-induced antinociceptive action in hot plate test in the mouse. It was found that naloxone and BPC 157 counteracted the morphine (16 mg/kg s.c.) - analgesia. Naloxone (10 mg/kg s.c.) immediately antagonised the analgesic action and the reaction time returned to the basic values, the development of BPC 157-induced action (10 pg/kg, 10 ng/kg, 10 microg/kg i.p.) required 30 minutes. When haloperidol, a central dopamine-antagonist (1 mg/kg i.p.), enhanced morphine-analgesia, BPC 157 counteracted this enhancement and naloxone reestablished the basic values of pain reaction. BPC 157, naloxone, and haloperidol per se failed to exert analgesic action. In summary, interaction between dopamine-opioid systems was demonstrated in analgesia, BPC 157 counteracted the haloperidol-induced enhancement of the antinociceptive action of morphine, indicating that BPC acts mainly through the central dopaminergic system.

  14. [The effects of caffeine on the respiratory depression by morphine].

    PubMed

    Kasaba, T; Takeshita, M; Takasaki, M

    1997-12-01

    The effects of intravenous administration of caffeine on the discharge of the phrenic nerve were studied following vagotomy in 7 pentobarbital anesthetized mechanically ventilated rats. Morphine (0.4 mg.kg-1.min-1) was administered until the respiratory rate decreased to about half of the baseline respiratory rate. In those state, we first administered caffeine (20 mg.kg-1), intravenously and then administered naloxone (0.02 mg) intravenously. The increase of inspiratory time from 0.49 +/- 0.16 to 2.01 +/- 0.47 s by morphine recovered to 0.86 +/- 0.38 s by caffeine and 0.50 +/- 0.22 s by naloxone. Expiratory time did not change during each drug administration. The decrease of respiratory rate from 46.6 +/- 5.9 to 20.6 +/- 4.1 breaths.min-1 by morphine recovered to 39.6 +/- 6.1 breaths.min-1 by caffeine and 47.6 +/- 4.6 breaths.min-1 by naloxone. Amplitude of integrated phrenic nerve discharge increased to 117 +/- 32% by caffeine and 156 +/- 39% by naloxone compared to the baseline. These results suggest that caffeine acts as a respiratory stimulant on the respiratory depression by morphine.

  15. Locomotor activity: A distinctive index in morphine self-administration in rats

    PubMed Central

    Kong, Qingyao

    2017-01-01

    Self-administration of addictive drugs is a widely used tool for studying behavioral, neurobiological, and genetic factors in addiction. However, how locomotor activity is affected during self-administration of addictive drugs has not been extensively studied. In our present study, we tested the locomotor activity levels during acquisition, extinction and reinstatement of morphine self-administration in rats. We found that compared with saline self-administration (SA), rats that trained with morphine SA had higher locomotor activity. Rats that successfully acquired SA also showed higher locomotor activity than rats that failed in acquiring SA. Moreover, locomotor activity was correlated with the number of drug infusions but not with the number of inactive pokes. We also tested the locomotor activity in the extinction and the morphine-primed reinstatement session. Interestingly, we found that in the first extinction session, although the number of active pokes did not change, the locomotor activity was significantly lower than in the last acquisition session, and this decrease can be maintained for at least six days. Finally, morphine priming enhanced the locomotor activity during the reinstatement test, regardless of if the active pokes were significantly increased or not. Our results clearly suggest that locomotor activity, which may reflect the pharmacological effects of morphine, is different from drug seeking behavior and is a distinctive index in drug self-administration. PMID:28380023

  16. Locomotor activity: A distinctive index in morphine self-administration in rats.

    PubMed

    Zhang, Jian-Jun; Kong, Qingyao

    2017-01-01

    Self-administration of addictive drugs is a widely used tool for studying behavioral, neurobiological, and genetic factors in addiction. However, how locomotor activity is affected during self-administration of addictive drugs has not been extensively studied. In our present study, we tested the locomotor activity levels during acquisition, extinction and reinstatement of morphine self-administration in rats. We found that compared with saline self-administration (SA), rats that trained with morphine SA had higher locomotor activity. Rats that successfully acquired SA also showed higher locomotor activity than rats that failed in acquiring SA. Moreover, locomotor activity was correlated with the number of drug infusions but not with the number of inactive pokes. We also tested the locomotor activity in the extinction and the morphine-primed reinstatement session. Interestingly, we found that in the first extinction session, although the number of active pokes did not change, the locomotor activity was significantly lower than in the last acquisition session, and this decrease can be maintained for at least six days. Finally, morphine priming enhanced the locomotor activity during the reinstatement test, regardless of if the active pokes were significantly increased or not. Our results clearly suggest that locomotor activity, which may reflect the pharmacological effects of morphine, is different from drug seeking behavior and is a distinctive index in drug self-administration.

  17. Effects of chronic cocaine, morphine and methamphetamine on the mobility, immobility and stereotyped behaviors in crayfish.

    PubMed

    Imeh-Nathaniel, Adebobola; Rincon, Natalia; Orfanakos, Vasiliki Bessie; Brechtel, Leanne; Wormack, Leah; Richardson, Erika; Huber, Robert; Nathaniel, Thomas I

    2017-08-14

    The worth of crayfish as a model system for studies of addiction was not previously recognized because a drug-reward phenomenon had not been documented in this model system. In our previous experiments, we demonstrate that the crayfish natural reward pathways are sensitive to human drugs of abuse. This finding supports crayfish as a suitable model to characterize specific behaviors that are relevant in drug addiction research, and the current study builds on our previous findings. The aim of the present study was to investigate unconditioned neurobehavioral effects of repeated treatment regimens using cocaine, morphine, and methamphetamine for three consecutive days. We analyzed mobility, immobility and characterized stereotypic behaviors following intracardial infusions of 2.0μg/g or 10.0μg/g doses of cocaine, morphine, and methamphetamine for three days. The results showed that systemic cocaine, morphine, and methamphetamine increased mobility at a low dose of 2.0μg/g more effectively than a high dose of 10.0μg/g, while simultaneously showing that the high dose exerted a more prominent effect in increasing immobility. Moreover, systemic cocaine, morphine, and methamphetamine injections have discerning effects towards a group of defined unconditioned stereotyped behavioral patterns associated with each drug, rather than a shared universal behavioral effect. These findings provide insight into the behavioral and pharmacological basis responsible for the unconditioned effects of these drugs in crayfish. Copyright © 2017. Published by Elsevier B.V.

  18. α-Terpineol attenuates morphine-induced physical dependence and tolerance in mice: role of nitric oxide.

    PubMed

    Parvardeh, Siavash; Moghimi, Mahsa; Eslami, Pegah; Masoudi, Alireza

    2016-02-01

    Dependence and tolerance to opioid analgesics are major problems limiting their clinical application. α-Terpineol is a monoterpenoid alcohol with neuroprotective effects which is found in several medicinal plants such as Myrtus communis, Laurus nobilis, and Stachys byzantina. It has been shown that some of these medicinal plants such as S. byzantina attenuate dependence and tolerance to morphine. Since α-terpineol is one of the bioactive phytochemical constituent of these medicinal plants, the present study was conducted to investigate the effects of α-terpineol on morphine-induced dependence and tolerance in mice. The mice were rendered dependent or tolerant to morphine by a 3-day administration schedule. The hot-plate test and naloxone-induced withdrawal syndrome were used to evaluate tolerance and dependence on morphine, respectively. To investigate a possible role for nitric oxide (NO) in the protective effect of α-terpineol, the NO synthase inhibitor, L-N(G)-nitroarginine methyl ester (L-NAME) and NO precursor, L-arginine, were used. Administration of α-terpineol (5, 10, and 20 mg/kg, IP) significantly decreased the number of jumps in morphine dependent animals. Moreover, α-terpineol (20 and 40 mg/kg, IP) attenuated tolerance to the analgesic effect of morphine. The inhibitory effects of α-terpineol on morphine-induced dependence and tolerance were enhanced by pretreatment with L-NAME (10 mg/kg, IP). However, L-arginine (300 mg/kg, IP) antagonized the protective effects of α-terpineol on dependence and tolerance to morphine. These findings indicate that α-terpineol prevents the development of dependence and tolerance to morphine probably through the influence on NO production.

  19. Duloxetine reduces morphine requirements after knee replacement surgery.

    PubMed

    Ho, K-Y; Tay, W; Yeo, M-C; Liu, H; Yeo, S-J; Chia, S-L; Lo, N-N

    2010-09-01

    Multimodal analgesia is advocated for perioperative pain management to reduce opioid use and its associated adverse effects. Serotonin and norepinephrine are involved in the modulation of endogenous analgesic mechanisms via descending inhibitory pain pathways in the brain and spinal cord. An increase in serotonin and norepinephrine may increase inhibition of nociceptive input and improve pain relief. Duloxetine, a selective serotonin and norepinephrine reuptake inhibitor, has demonstrated efficacy in chronic pain conditions such as painful diabetic neuropathy and post-herpetic neuralgia. The objective of the study was to evaluate the efficacy of duloxetine in reducing morphine requirements in patients after knee replacement surgery. Fifty patients received either two doses of oral duloxetine 60 mg (2 h before surgery and on first postoperative day) or placebo. All patients received patient-controlled analgesia with morphine for 48 h after operation. Pain and adverse effects were assessed at 0.5, 1, 2, 6, 12, 24, and 48 h after surgery on an 11-point numeric rating scale. Twenty-three patients in the duloxetine group and 24 patients in the placebo group completed the study. Morphine requirements during the 48 h after surgery were significantly lower in the duloxetine group [19.5 mg, standard deviation (sd) 14.5 mg] compared with the placebo group (30.3 mg, sd 18.1 mg) (P=0.017). There were no statistically significant differences between the groups in pain scores (at rest and on movement) or in adverse effects. Perioperative administration of duloxetine reduced postoperative morphine requirements during the first 48 h after knee replacement surgery, without significant adverse effects.

  20. Effect of prenatal forced-swim stress and morphine co-administration on pentylentetrazol-induced epileptic behaviors in infant and prepubertal rats.

    PubMed

    Ebrahimi, Loghman; Saboory, Ehsan; Roshan-Milani, Shiva; Hashemi, Paria

    2014-09-01

    Prenatal exposure to stress and morphine has complicated effects on epileptic seizure. Many reports have shown an interaction between morphine- and stress-induced behavioral changes in adult rats. In the present study, effect of prenatal forced-swim stress and morphine co-administration on pentylentetrazole (PTZ)-induced epileptic behaviors was investigated in rat offspring to address effect of the interaction between morphine and stress. Pregnant rats were divided to four groups of control-saline, control-morphine, stressed-saline and stressed-morphine. In the stressed group, the rats were placed in 25 °C water on 17-19 days of pregnancy. In the morphine/saline group, the rats received morphine/saline on the same days. In the morphine/saline-stressed group, they were exposed to stress and received morphine/saline simultaneously. On postnatal day 15 (P15), blood samples were collected to determine corticosterone (COS) level. On P15 and P25, PTZ was injected to the rest of pups to induce seizure. Then, epileptic behaviors of each rat were individually observed. Latency of tonic-colonic seizures decreased in control-morphine and stressed-saline groups while increasing in stressed-morphine rats compared to control-saline group on P15. Duration of tonic-colonic seizures significantly increased in control-morphine and stressed-saline rats compared to stressed-morphine and control-saline rats on P15, but not P25. COS levels increased in stressed-saline group but decreased in control-morphine group compared to control-saline rats. Body weight was significantly higher in morphine groups than saline treated rats. Prenatal exposure to forced-swim stress potentiated PTZ-induced seizure in the offspring rats. Co-administration of morphine attenuated effect of stress on body weight, COS levels, and epileptic behaviors. © 2014 Wiley Periodicals, Inc.

  1. BREATHING AND TEMPERATURE CONTROL DISRUPTED BY MORPHINE AND STABILIZED BY CLONIDINE IN NEONATAL RATS

    PubMed Central

    Kesavan, Kalpashri; Ezell, Tarrah; Bierman, Alexis; Nunes, Ana Rita; Northington, Frances J.; Tankersley, Clarke G.; Gauda, Estelle B.

    2014-01-01

    Background Sedative-analgesics are often given to newborn infants and are known to affect many components of the autonomic nervous system. While morphine is most frequently used, α-2 adrenergic receptor agonists are being increasingly used in this population. Alpha-2 adrenergic receptors agonists also have anti-shivering properties which may make it a desirable drug to give to infants undergoing therapeutic hypothermia. The aim of this study was to systematically compare two different classes of sedative-analgesics, morphine, a μ-opioid receptor agonist, and clonidine an α-2 adrenergic receptor agonist on breathing, metabolism and core body temperature (CBT) in neonatal rodents. Methods Breathing parameters, oxygen consumption (VO2) and carbon dioxide production (VCO2), were measured prior to, 10 and 90 minutes after intraperitoneal (IP) administration of morphine (2, 10 or 20mg/kg), clonidine (40, 200 or 400 μg/kg), or saline in Sprague-Dawley rat pups at postnatal day 7 (p7) while continuously monitoring CBT. Results Morphine reduced the respiratory rate, VO2 and VCO2 greater than clonidine at all dosages used (p<0.05, morphine vs. clonidine, for all metabolic and respiratory parameters). Furthermore, morphine induced prolonged respiratory pauses, which were not observed in animals treated with clonidine or saline. Morphine caused hypothermia which was dose dependent, while clonidine stabilized CBT in comparison to saline treated animals (p<0.0001). Conclusion In the newborn rat, morphine causes profound respiratory depression and hypothermia while clonidine causes minimal respiratory depression and stabilizes CBT. All together, we suggest that clonidine promotes autonomic stability and may be a desirable agent to use in infants being treated with therapeutic hypothermia. PMID:25008573

  2. Breathing and temperature control disrupted by morphine and stabilized by clonidine in neonatal rats.

    PubMed

    Kesavan, Kalpashri; Ezell, Tarrah; Bierman, Alexis; Nunes, Ana Rita; Northington, Frances J; Tankersley, Clarke G; Gauda, Estelle B

    2014-09-15

    Sedative-analgesics are often given to newborn infants and are known to affect many components of the autonomic nervous system. While morphine is most frequently used, α-2 adrenergic receptor agonists are being increasingly used in this population. Alpha-2 adrenergic receptors agonists also have anti-shivering properties which may make it a desirable drug to give to infants undergoing therapeutic hypothermia. The aim of this study was to systematically compare two different classes of sedative-analgesics, morphine, a μ-opioid receptor agonist, and clonidine an α-2 adrenergic receptor agonist on breathing, metabolism and core body temperature (CBT) in neonatal rodents. Breathing parameters, oxygen consumption (VO2) and carbon dioxide production (VCO2), were measured prior to, 10 and 90 min after intraperitoneal (IP) administration of morphine (2, 10 or 20 mg/kg), clonidine (40, 200 or 400 μg/kg), or saline in Sprague-Dawley rat pups at postnatal day 7 (p7) while continuously monitoring CBT. Morphine reduced the respiratory rate, VO2 and VCO2 greater than clonidine at all dosages used (p<0.05, morphine vs. clonidine, for all metabolic and respiratory parameters). Furthermore, morphine induced prolonged respiratory pauses, which were not observed in animals treated with clonidine or saline. Morphine caused hypothermia which was dose dependent, while clonidine stabilized CBT in comparison to saline treated animals (p<0.0001). In the newborn rat, morphine causes profound respiratory depression and hypothermia while clonidine causes minimal respiratory depression and stabilizes CBT. All together, we suggest that clonidine promotes autonomic stability and may be a desirable agent to use in infants being treated with therapeutic hypothermia. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Smaller Cerebellar Growth and Poorer Neurodevelopmental Outcomes in Very Preterm Infants exposed to morphine

    PubMed Central

    Zwicker, Jill G; Miller, Steven P; Grunau, Ruth E; Chau, Vann; Brant, Rollin; Studholme, Colin; Liu, Mengyuan; Synnes, Anne; Poskitt, Kenneth J; Stiver, Mikaela L; Tam, Emily WY

    2017-01-01

    Objective To examine the relationship between morphine exposure and growth of the cerebellum and cerebrum in very preterm neonates from early in life to term-equivalent age, as well as to examine morphine exposure and brain volumes in relation to neurodevelopmental outcomes at 18 months corrected age (CA). Study design A prospective cohort of 136 very preterm neonates (24–32 weeks gestational age) was serially scanned with MRI near birth and at term-equivalent age for volumetric measurements of the cerebellum and cerebrum. Motor outcomes were assessed with the Peabody Scales of Motor Development-2 and cognitive outcomes with the Bayley-III at 18 months CA. Generalized least squares models and linear regression models were used to assess relationships between morphine exposure, brain volumes, and neurodevelopmental outcomes. Results A 10-fold increase in morphine exposure was associated with a 5.5% decrease in cerebellar volume, after adjustment for multiple clinical confounders and total brain volume (P=0.04). When infants exposed to glucocorticoids were excluded, the association of morphine was more pronounced, with an 8.2% decrease in cerebellar volume. Morphine exposure was not associated with cerebral volume (P=0.30). Greater morphine exposure also predicted poorer motor (P<0.001) and cognitive outcomes (P=0.006) at 18 months CA, an association mediated, in part, by slower brain growth. Conclusions Morphine exposure in very preterm neonates is independently associated with impaired cerebellar growth in the neonatal period and poorer neurodevelopmental outcomes in early childhood. Alternatives to better manage pain in preterm neonates that optimize brain development and functional outcomes are urgently needed. PMID:26763312

  4. Novel depots of buprenorphine have a long-acting effect for the management of physical dependence to morphine.

    PubMed

    Liu, Kuo-Sheng; Kao, Cheng-Hsiung; Liu, Shyun-Yeu; Sung, K C; Kuei, Chun-Hsiung; Wang, Jhi-Joung

    2006-03-01

    Buprenorphine is a promising new pharmacotherapy for the management of physical dependence to opioids. The aim of the study was to evaluate the duration of action of several novel depots of buprenorphine in the treatment of physical dependence to morphine in mice. Following intramuscular injection, the duration of action of several novel oil-based depots of buprenorphine base in morphine-dependent mice were evaluated. The traditional dosage form of buprenorphine hydrochloride in saline was used as control. We found that the depot of buprenorphine base in sesame oil produced a dose-related long-lasting effect. On an equimolar basis of 6 micromol kg(-1), its effect was 5.7-fold longer than that of buprenorphine hydrochloride in saline. When prepared in several other oleaginous vehicles (castor oil, cottonseed oil, peanut oil and soybean oil), buprenorphine base also produced a long-lasting effect, which was similar to buprenorphine base in sesame oil. In conclusion, buprenorphine base, when prepared in oleaginous vehicles and injected intramuscularly in mice, produced a long-lasting effect on physical dependence to morphine.

  5. Stress-induced analgesia and morphine responses are changed in catechol-O-methyltransferase-deficient male mice.

    PubMed

    Kambur, Oleg; Männistö, Pekka T; Viljakka, Kaarin; Reenilä, Ilkka; Lemberg, Kim; Kontinen, Vesa K; Karayiorgou, Maria; Gogos, Joseph A; Kalso, Eija

    2008-10-01

    Catechol-O-methyltransferase (COMT) polymorphisms modulate pain and opioid analgesia in human beings. It is not clear how the effects of COMT are mediated and only few relevant animal studies have been performed. Here, we used old male Comt gene knock-out mice as an animal model to study the effects of COMT deficiency on nociception that was assessed by the hot plate and tail flick tests. Stress-induced analgesia was achieved by forced swim. Morphine antinociception was measured after 10 mg/kg of morphine subcutaneously. Morphine tolerance was produced with subcutaneous morphine pellets and withdrawal provoked with subcutaneous naloxone. In the hot plate test, morphine-induced antinociception was significantly greater in the COMT knock-out mice, compared to the wild-type mice. This may be due to increased availability of opioid receptors as suggested by previous human studies. In the tail flick test, opioid-mediated stress-induced analgesia was absent and morphine-induced analgesia was decreased in COMT knock-out mice. In the hot plate test, stress-induced analgesia developed to all mice regardless of the COMT genotype. There were no differences between the genotypes in the baseline nociceptive thresholds, morphine tolerance and withdrawal. Our findings show, for the first time, the importance of COMT activity in stress- and morphine-induced analgesia in mice. COMT activity seems to take part in the modulation of nociception not only in the brain, as suggested earlier, but also at the spinal/peripheral level.

  6. Role of medial prefrontal cortex Narp in the extinction of morphine conditioned place preference.

    PubMed

    Blouin, Ashley M; Han, Sungho; Pearce, Anne M; Cheng, Kailun; Lee, Jongah J; Johnson, Alexander W; Wang, Chuansong; During, Matthew J; Holland, Peter C; Shaham, Yavin; Baraban, Jay M; Reti, Irving M

    2013-01-15

    Narp knockout (KO) mice demonstrate an impaired extinction of morphine conditioned place preference (CPP). Because the medial prefrontal cortex (mPFC) has been implicated in extinction learning, we tested whether Narp cells in this region play a role in the extinction of morphine CPP. We found that intracranial injections of adenoassociated virus (AAV) expressing wild-type (WT) Narp into the mPFC of Narp KO mice rescued the extinction and the injection of AAV expressing a dominant negative form of Narp (NarpN) into the mPFC of WT mice impaired the extinction of morphine CPP. These findings suggest that Narp in the mPFC mediates the extinction of morphine CPP.

  7. Fatty acid amide hydrolase-morphine interaction influences ventilatory response to hypercapnia and postoperative opioid outcomes in children.

    PubMed

    Chidambaran, Vidya; Pilipenko, Valentina; Spruance, Kristie; Venkatasubramanian, Raja; Niu, Jing; Fukuda, Tsuyoshi; Mizuno, Tomoyuki; Zhang, Kejian; Kaufman, Kenneth; Vinks, Alexander A; Martin, Lisa J; Sadhasivam, Senthilkumar

    2017-01-01

    Fatty acid amide hydrolase (FAAH) degrades anandamide, an endogenous cannabinoid. We hypothesized that FAAH variants will predict risk of morphine-related adverse outcomes due to opioid-endocannabinoid interactions. In 101 postsurgical adolescents receiving morphine analgesia, we prospectively studied ventilatory response to 5% CO 2 (HCVR), respiratory depression (RD) and vomiting. Blood was collected for genotyping and morphine pharmacokinetics. We found significant FAAH-morphine interaction for missense (rs324420) and several regulatory variants, with HCVR (p < 0.0001) and vomiting (p = 0.0339). HCVR was more depressed in patients who developed RD compared with those who did not (p = 0.0034), thus FAAH-HCVR association predicts risk of impending RD from morphine use. FAAH genotypes predict risk for morphine-related adverse outcomes.

  8. Analgesic efficacy of butorphanol and morphine in bearded dragons and corn snakes.

    PubMed

    Sladky, Kurt K; Kinney, Matthew E; Johnson, Stephen M

    2008-07-15

    To test the hypothesis that administration of butorphanol or morphine induces antinociception in bearded dragons and corn snakes. Prospective crossover study. 12 juvenile and adult bearded dragons and 13 corn snakes. Infrared heat stimuli were applied to the plantar surface of bearded dragon hind limbs or the ventral surface of corn snake tails. Thermal withdrawal latencies (TWDLs) were measured before (baseline) and after SC administration of physiologic saline (0.9% NaCl) solution (equivalent volume to opioid volumes), butorphanol tartrate (2 or 20 mg/kg [0.91 or 9.1 mg/lb]), or morphine sulfate (1, 5, 10, 20, or 40 mg/kg [0.45, 2.27, 4.5, 9.1, or 18.2 mg/lb]). For bearded dragons, butorphanol (2 or 20 mg/kg) did not alter hind limb TWDLs at 2 to 24 hours after administration. However, at 8 hours after administration, morphine (10 and 20 mg/kg) significantly increased hind limb TWDLs from baseline values (mean +/- SEM maximum increase, 2.7+/-0.4 seconds and 2.8+/-0.9 seconds, respectively). For corn snakes, butorphanol (20 mg/kg) significantly increased tail TWDLs at 8 hours after administration (maximum increase from baseline value, 3.0+/-0.8 seconds); the low dose had no effect. Morphine injections did not increase tail TWDLs at 2 to 24 hours after administration. Compared with doses used in most mammalian species, high doses of morphine (but not butorphanol) induced analgesia in bearded dragons, whereas high doses of butorphanol (but not morphine) induced analgesia in corn snakes.

  9. [Morphine self-administration by rats using a pneumatic syringe].

    PubMed

    Akiyama, Y; Takayama, S

    1988-06-01

    An apparatus for drug self-administration by rats using a pneumatic syringe was developed by Weeks. A microliter syringe operated by a pneumatic cylinder supplies an accurate volume of drug solution within one second. When coefficient of variation of infusion volume was compared among pneumatic syringe, infusion pump, and peristaltic pump, pneumatic syringe showed higher accuracy in infusion volume than the other two pumps. Since the infusion speed by a pneumatic syringe is very rapid (less than one second per infusion), the effect of infusion speed on reinforcing property of morphine was investigated. When rats self-administered 0.1, 0.3, 1.0, and 3.0 mg/kg/infusion of morphine by pneumatic syringes, the patterns of self-infusion were more stable, the number of self-infusions and the amount self-administered were larger, and a dose-response relationship was clearer in comparison with those self-infused the same doses of morphine for 5.6 seconds by infusion pumps or peristaltic pumps.

  10. Potentiation of Brain Stimulation Reward by Morphine: Effects of Neurokinin-1 Receptor Antagonism

    PubMed Central

    Robinson, J.E.; Fish, E.W.; Krouse, M.C.; Thorsell, A.; Heilig, M.; Malanga, C.J.

    2012-01-01

    Rationale The abuse potential of opioids may be due to their reinforcing and rewarding effects, which may be attenuated by neurokinin-1 receptor (NK1R) antagonists. Objective To measure the effects of opioid and neurokinin-1 (NK1R) receptor blockade on the potentiation of brain stimulation reward (BSR) by morphine using the intracranial self-stimulation (ICSS) method. Methods Adult male C57BL/6J mice (n = 15) were implanted with unipolar stimulating electrodes in the lateral hypothalamus and trained to respond for varying frequencies of rewarding electrical stimulation. The BSR threshold (θ0) and maximum response rate (MAX) were determined before and after intraperitoneal administration of saline, morphine (1.0 - 17.0 mg/kg), or the NK1R antagonists L-733,060 (1.0 - 17.0 mg/kg) and L-703,606 (1.0 - 17.0 mg/kg). In morphine antagonism experiments, naltrexone (0.1 – 1.0 mg/kg) or 10.0 mg/kg L-733,060 or L-703,606 was administered 15 minutes before morphine (1.0 - 10.0 mg/kg) or saline. Results Morphine dose-dependently decreased θ0 (maximum effect = 62% of baseline) and altered MAX when compared to saline. L-703,606 and L-733,060 altered θ0 without affecting MAX. 10.0 mg/kg L-733,060 and L-703,606, which did not affect θ0 or MAX, attenuated the effects of 3.0 and 10.0 mg/kg morphine. 1.0 and 0.3 mg/kg naltrexone blocked the effects of 10.0 mg/kg morphine. Naltrexone given before saline did not affect θ0 or MAX. Conclusions The decrease in θ0 by morphine reflects its rewarding effects, which were attenuated by NK1R and opioid receptor blockade. These results demonstrate the importance of substance P signaling during limbic reward system activation by opioids. PMID:21909635

  11. 21 CFR 862.3640 - Morphine test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Toxicology Test Systems § 862... monitoring levels of morphine and its analogs to ensure appropriate therapy. (b) Classification. Class II. ...

  12. Facilitated extinction of morphine conditioned place preference with Tat-GluA2(3Y) interference peptide.

    PubMed

    Dias, C; Wang, Y T; Phillips, A G

    2012-08-01

    Neuroplasticity including long-term depression (LTD) has been implicated in both learning processes and addiction. LTD can be blocked by intravenous administration of the interference peptide Tat-GluA2(3Y) that prevents regulated endocytosis of the alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA) receptor. In this study, Tat-GluA2(3Y) was used to assess the role of LTD in the induction, expression, extinction and reinstatement of morphine-induced conditioned place preference (CPP). CPP was established in rats by pairing morphine (5 mg/kg, i.p.) or saline with a specific environmental context using a balanced protocol. Tat-GluA2(3Y) (0; 1.5; 2.25 nmol/g; i.v.), scrambled peptide (Tat-GluA2(Sc)), or vehicle was administered during the acquisition phase or prior to the test for CPP. Tat-GluA2(3Y) had no effect on the induction or initial expression of morphine-induced CPP. Rats that received Tat-GluA2(3Y) or Tat-GluA2(Sc) during acquisition were subsequently tested for 11 consecutive days in order to extinguish morphine CPP. CPP was then reinstated by an injection of morphine (5 mg/kg, i.p.). Co-administration of morphine and Tat-GluA2(3Y) during acquisition greatly facilitated extinction of CPP without affecting morphine-induced reinstatement of CPP. Using an intermittent retest schedule with bi-weekly tests to measure the maintenance of CPP, Tat-GluA2(3Y) during the acquisition phase had no effect on the maintenance of CPP. We propose that co-administration of Tat-GluA2(3Y) with morphine during acquisition of CPP weakens the association between morphine and contextual cues leading to rapid extinction of morphine CPP with repeated daily testing. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Functionally Selective Signaling for Morphine and Fentanyl Antinociception and Tolerance Mediated by the Rat Periaqueductal Gray

    PubMed Central

    Morgan, Michael M.; Reid, Rachel A.; Saville, Kimber A.

    2014-01-01

    Functionally selective signaling appears to contribute to the variability in mechanisms that underlie tolerance to the antinociceptive effects of opioids. The present study tested this hypothesis by examining the contribution of G protein-coupled receptor kinase (GRK)/Protein kinase C (PKC) and C-Jun N-terminal kinase (JNK) activation on both the expression and development of tolerance to morphine and fentanyl microinjected into the ventrolateral periaqueductal gray of the rat. Microinjection of morphine or fentanyl into the periaqueductal gray produced a dose-dependent increase in hot plate latency. Microinjection of the non-specific GRK/PKC inhibitor Ro 32-0432 into the periaqueductal gray to block mu-opioid receptor phosphorylation enhanced the antinociceptive effect of morphine but had no effect on fentanyl antinociception. Microinjection of the JNK inhibitor SP600125 had no effect on morphine or fentanyl antinociception, but blocked the expression of tolerance to repeated morphine microinjections. In contrast, a microinjection of Ro 32-0432 blocked the expression of fentanyl, but not morphine tolerance. Repeated microinjections of Ro 32-0432 blocked the development of morphine tolerance and inhibited fentanyl antinociception whether rats were tolerant or not. Repeated microinjections of SP600125 into the periaqueductal gray blocked the development of tolerance to both morphine and fentanyl microinjections. These data demonstrate that the signaling molecules that contribute to tolerance vary depending on the opioid and methodology used to assess tolerance (expression vs. development of tolerance). This signaling difference is especially clear for the expression of tolerance in which JNK contributes to morphine tolerance and GRK/PKC contributes to fentanyl tolerance. PMID:25503060

  14. Morphine enhances nitric oxide release in the mammalian gastrointestinal tract via the micro(3) opiate receptor subtype: a hormonal role for endogenous morphine.

    PubMed

    Stefano, G B; Zhu, W; Cadet, P; Bilfinger, T V; Mantione, K

    2004-03-01

    Studies from our laboratory have revealed a novel micro opiate receptor, micro(3), which is expressed in both human vascular tissues and leukocytes. The micro(3) receptor is selective for opiate alkaloids, insensitive to opioid peptides and is coupled to constitutive nitric oxide (cNO) release. We now identify the micro(3) receptor characteristics in mammalian gut tissues. It appears that the various regions of the mouse gut release low levels of NO (0.02 to 4.6 nM ) in a pulsatile manner. We demonstrate that morphine stimulates cNO release (peak level 17 nM) in the mouse stomach, small intestine and large intestine in a naloxone and L-NAME antagonizable manner. Opioid peptides do not exhibit cNO-stimulating capabilities in these tissues. Taken together, we surmise morphine acts as a hormone to limit gut activity via micro(3) coupled to NO release since micro opiate receptors are found in the gut and endogenous morphine is not but is found in blood.

  15. Morphine Modulates Adult Neurogenesis and Contextual Memory by Impeding the Maturation of Neural Progenitors.

    PubMed

    Zhang, Yue; Xu, Chi; Zheng, Hui; Loh, Horace H; Law, Ping-Yee

    2016-01-01

    The regulation of adult neurogenesis by opiates has been implicated in modulating different addiction cycles. At which neurogenesis stage opiates exert their action remains unresolved. We attempt to define the temporal window of morphine's inhibition effect on adult neurogenesis by using the POMC-EGFP mouse model, in which newborn granular cells (GCs) can be visualized between days 3-28 post-mitotic. The POMC-EGFP mice were trained under the 3-chambers conditioned place preference (CPP) paradigm with either saline or morphine. We observed after 4 days of CPP training with saline, the number of EGFP-labeled newborn GCs in sub-granular zone (SGZ) hippocampus significantly increased compared to mice injected with saline in their homecage. CPP training with morphine significantly decreased the number of EGFP-labeled GCs, whereas no significant difference in the number of EGFP-labeled GCs was observed with the homecage mice injected with the same dose of morphine. Using cell-type selective markers, we observed that morphine reduced the number of late stage progenitors and immature neurons such as Doublecortin (DCX) and βIII Tubulin (TuJ1) positive cells in the SGZ but did not reduce the number of early progenitors such as Nestin, SOX2, or neurogenic differentiation-1 (NeuroD1) positive cells. Analysis of co-localization between different cell markers shows that morphine reduced the number of adult-born GCs by interfering with differentiation of early progenitors, but not by inducing apoptosis. In addition, when NeuroD1 was over-expressed in DG by stereotaxic injection of lentivirus, it rescued the loss of immature neurons and prolonged the extinction of morphine-trained CPP. These results suggest that under the condition of CPP training paradigm, morphine affects the transition of neural progenitor/stem cells to immature neurons via a mechanism involving NeuroD1.

  16. Enhanced autophagy in pulmonary endothelial cells on exposure to HIV-Tat and morphine: Role in HIV-related pulmonary arterial hypertension

    PubMed Central

    Dalvi, Pranjali; Sharma, Himanshu; Chinnappan, Mahendran; Sanderson, Miles; Allen, Julie; Zeng, Ruoxi; Choi, Augustine; O'Brien-Ladner, Amy; Dhillon, Navneet K.

    2016-01-01

    ABSTRACT Intravenous drug use is one of the major risk factors for HIV-infection in HIV-related pulmonary arterial hypertension patients. We previously demonstrated exaggerated pulmonary vascular remodeling with enhanced apoptosis followed by increased proliferation of pulmonary endothelial cells on simultaneous exposure to both opioids and HIV protein(s). Here we hypothesize that the exacerbation of autophagy may be involved in the switching of endothelial cells from an early apoptotic state to later hyper-proliferative state. Treatment of human pulmonary microvascular endothelial cells (HPMECs) with both the HIV-protein Tat and morphine resulted in an oxidative stress-dependent increase in the expression of various markers of autophagy and formation of autophagosomes when compared to either Tat or morphine monotreatments as demonstrated by western blot, transmission electron microscopy and immunofluorescence. Autophagy flux experiments suggested increased formation rather than decreased clearance of autolysosomes. Inhibition of autophagy resulted in a significant increase in apoptosis and reduction in proliferation of HPMECs with combined morphine and Tat (M+T) treatment compared to monotreatments whereas stimulation of autophagy resulted in opposite effects. Significant increases in the expression of autophagy markers as well as the number of autophagosomes and autolysosomes was observed in the lungs of SIV-infected macaques and HIV-infected humans exposed to opioids. Overall our findings indicate that morphine in combination with viral protein(s) results in the induction of autophagy in pulmonary endothelial cells that may lead to an increase in severity of angio-proliferative remodeling of the pulmonary vasculature on simian and human immunodeficiency virus infection in the presence of opioids. PMID:27723373

  17. Enhanced autophagy in pulmonary endothelial cells on exposure to HIV-Tat and morphine: Role in HIV-related pulmonary arterial hypertension.

    PubMed

    Dalvi, Pranjali; Sharma, Himanshu; Chinnappan, Mahendran; Sanderson, Miles; Allen, Julie; Zeng, Ruoxi; Choi, Augustine; O'Brien-Ladner, Amy; Dhillon, Navneet K

    2016-12-01

    Intravenous drug use is one of the major risk factors for HIV-infection in HIV-related pulmonary arterial hypertension patients. We previously demonstrated exaggerated pulmonary vascular remodeling with enhanced apoptosis followed by increased proliferation of pulmonary endothelial cells on simultaneous exposure to both opioids and HIV protein(s). Here we hypothesize that the exacerbation of autophagy may be involved in the switching of endothelial cells from an early apoptotic state to later hyper-proliferative state. Treatment of human pulmonary microvascular endothelial cells (HPMECs) with both the HIV-protein Tat and morphine resulted in an oxidative stress-dependent increase in the expression of various markers of autophagy and formation of autophagosomes when compared to either Tat or morphine monotreatments as demonstrated by western blot, transmission electron microscopy and immunofluorescence. Autophagy flux experiments suggested increased formation rather than decreased clearance of autolysosomes. Inhibition of autophagy resulted in a significant increase in apoptosis and reduction in proliferation of HPMECs with combined morphine and Tat (M+T) treatment compared to monotreatments whereas stimulation of autophagy resulted in opposite effects. Significant increases in the expression of autophagy markers as well as the number of autophagosomes and autolysosomes was observed in the lungs of SIV-infected macaques and HIV-infected humans exposed to opioids. Overall our findings indicate that morphine in combination with viral protein(s) results in the induction of autophagy in pulmonary endothelial cells that may lead to an increase in severity of angio-proliferative remodeling of the pulmonary vasculature on simian and human immunodeficiency virus infection in the presence of opioids.

  18. Opioid needs of patients with advanced cancer and the morphine dose-limiting law in Egypt.

    PubMed

    Alsirafy, Samy A; El-Mesidi, Salah M; El-Sherief, Wesam A; Galal, Khaled M; Abou-Elela, Enas N; Aklan, Nahla A

    2011-01-01

    Morphine is the drug of choice for moderate to severe cancer pain management. The Egyptian Narcotics Control Law limits the amount of morphine prescribed in a single prescription to a maximum of 420 mg for tablets and 60 mg for ampoules. The usual practice in Egypt is to provide that limited amount of morphine on a weekly basis. The aim of this study is to estimate the extent to which Egyptian patients may be undertreated because of this law. We reviewed the medical records of advanced cancer patients referred to the first palliative care unit in Egypt over a seven-month period. Cancer pain was managed following the WHO guidelines. After modifying the internal institutional policy, patients received adequate amounts of the available opioids without any violations of the law. From 117 eligible advanced cancer patients, 58 (50%) patients required strong opioids, 32 (27%) required weak opioids, and 27 (23%) required no regular opioids. The mean last prescribed opioid dose for those who required strong opioids was 194 mg of oral morphine equivalent/24 h (± 180). For this group of patients, a single weekly prescription would supply enough oral morphine for only 26% of them. In the case of parenteral morphine, none of these patients would receive an adequate supply. In view of the current morphine dose-limiting law and practices in Egypt, the majority of patients suffering severe cancer pain would not have access to adequate morphine doses. That dose-limiting law and other restrictive regulations represent an obstacle to cancer pain control in Egypt and should be revised urgently.

  19. Fatty acid amide hydrolase–morphine interaction influences ventilatory response to hypercapnia and postoperative opioid outcomes in children

    PubMed Central

    Chidambaran, Vidya; Pilipenko, Valentina; Spruance, Kristie; Venkatasubramanian, Raja; Niu, Jing; Fukuda, Tsuyoshi; Mizuno, Tomoyuki; Zhang, Kejian; Kaufman, Kenneth; Vinks, Alexander A; Martin, Lisa J; Sadhasivam, Senthilkumar

    2017-01-01

    Aim: Fatty acid amide hydrolase (FAAH) degrades anandamide, an endogenous cannabinoid. We hypothesized that FAAH variants will predict risk of morphine-related adverse outcomes due to opioid–endocannabinoid interactions. Patients & methods: In 101 postsurgical adolescents receiving morphine analgesia, we prospectively studied ventilatory response to 5% CO2 (HCVR), respiratory depression (RD) and vomiting. Blood was collected for genotyping and morphine pharmacokinetics. Results: We found significant FAAH–morphine interaction for missense (rs324420) and several regulatory variants, with HCVR (p < 0.0001) and vomiting (p = 0.0339). HCVR was more depressed in patients who developed RD compared with those who did not (p = 0.0034), thus FAAH–HCVR association predicts risk of impending RD from morphine use. Conclusion: FAAH genotypes predict risk for morphine-related adverse outcomes. PMID:27977335

  20. Adult Acute Lymphoblastic Leukemia Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Adult Acute Lymphoblastic Leukemia (ALL; also called acute lymphocytic leukemia) is an aggressive cancer that can progress quickly without treatment. Treatments include chemotherapy, radiation therapy, stem cell transplant, and targeted therapy. Get detailed information about the molecular genetics, prognosis, and treatment of ALL in this clinician summary.

  1. Prolonging the duration of single-shot intrathecal labour analgesia with morphine: A systematic review.

    PubMed

    Al-Kazwini, Hadeel; Sandven, Irene; Dahl, Vegard; Rosseland, Leiv Arne

    2016-10-01

    indicate no robustness of effect. Omitting the study with highest effects size reduces the pooled effect markedly and that study suffers from inadequate concealment of treatment allocation and blinding. Trial quality was generally low, and there were too few trials to explore sources of heterogeneity in meta-regression and stratified analyses. In general, performing meta-analyses on a small number of trials are possible and may be helpful if one is aware of the limitations. As few as one more placebo-controlled trial would increase the reliability greatly. Evidence from this systematic review suggests a possible beneficial prolonging effect of adding morphine to spinal analgesia with bupivacaine+fentanyl or +sufentanil during labour. The study quality was low and heterogeneity high. No severe side effects were reported. More adequately-powered randomized trials with low bias are needed to determine the benefits and harms of adding morphine to spinal local anaesthetic analgesia during labour. Epidural analgesia is documented as the most effective method for providing pain relief during labour, but from a global perspective most women in labour have no access to epidural analgesia. Adding morphine to single shot spinal injection of low dose bupivacaine, fentanyl or sufentanil may be efficacious but needs to be investigated. Copyright © 2016 Scandinavian Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  2. Elucidation of markers for monitoring morphine and its analogs in urine adulterated with pyridinium chlorochromate.

    PubMed

    Luong, Susan; Kuzhiumparambil, Unnikrishnan; Fu, Shanlin

    2015-09-17

    Currently, procedures that identify the drugs 'destroyed' in adulterated urine specimens are very limited. This study aimed to determine the effect of pyridinium chlorochromate (PCC) on routine opiate assays and identify reaction products formed. Results/methodology: Opiate-positive urines adulterated with PCC (20 and 100 mM) were analyzed using CEDIA ® immunoassay and GC-MS. Urine and water samples spiked with 6-monoacetylmorphine, morphine and its glucuronides (10 µg/ml) and PCC (0.02-100 mM) were monitored with LC-MS, and the products characterized. PCC significantly decreased the abundance of morphine, codeine and IS. Adulterated water and urine samples containing 6-monoacetylmorphine, morphine and morphine-3-glucuronide yielded morphinone-3-glucuronide, 7,14-dihydroxy-6-monoacetylmorphine, 7,8-diketo-6-monoacetylmorphine and 7,8-diketo-morphine (tentative assignment). Reaction pathways may be different in the two matrices.

  3. Stress-opioid interactions: a comparison of morphine and methadone.

    PubMed

    Taracha, Ewa; Mierzejewski, Paweł; Lehner, Małgorzata; Chrapusta, Stanisław J; Kała, Maria; Lechowicz, Wojciech; Hamed, Adam; Skórzewska, Anna; Kostowski, Wojciech; Płaźnik, Adam

    2009-01-01

    The utility of methadone and morphine for analgesia and of methadone for substitution therapy for heroin addiction is a consequence of these drugs acting as opioid receptor agonists.We compared the cataleptogenic and antinociceptive effects of single subcutaneous doses of methadone hydrochloride (1-4 mg/kg) and morphine sulfate (2.5-10 mg/kg) using catalepsy and hot-plate tests, and examined the effects of the highest doses of the drugs on Fos protein expression in selected brain regions in male Sprague-Dawley rats. Methadone had greater cataleptogenic and analgesic potency than morphine. Fos immunohistochemistry revealed substantial effects on the Fos response of both the stress induced by the experimental procedures and of the drug exposure itself. There were three response patterns identified: 1) drug exposure, but not stress, significantly elevated Fos-positive cell counts in the caudate-putamen; 2) stress alone and stress combined with drug exposure similarly elevated Fos-positive cell counts in the nucleus accumbens and cingulate cortex; and 3) methadone and morphine (to a lesser extent) counteracted the stimulatory effect of nonpharmacological stressors on Fos protein expression in the somatosensory cortex barrel field, and Fos-positive cell counts in this region correlated negatively with both the duration of catalepsy and the latency time in the hot-plate test. The overlap between brain regions reacting to nonpharmacological stressors and those responding to exogenous opioids suggests that stress contributes to opioid-induced neuronal activation.

  4. The role of the vasopressin system and dopamine D1 receptors in the effects of social housing condition on morphine reward.

    PubMed

    Bates, M L Shawn; Hofford, Rebeca S; Emery, Michael A; Wellman, Paul J; Eitan, Shoshana

    2018-07-01

    The association with opioid-abusing individuals or even the perception of opioid abuse by peers are risk factors for the initiation and escalation of abuse. Similarly, we demonstrated that morphine-treated animals housed with only morphine-treated animals (referred to as morphine only) acquire morphine conditioned place-preference (CPP) more readily than morphine-treated animals housed with drug-naïve animals (referred to as morphine cage-mates). However, the molecular mechanisms underlying these effects are still elusive. Mice received repeated morphine or saline while housed as saline only, morphine only, or cage-mates. Then, they were examined for the expression levels of D1 dopamine receptor (D1DR), D2 dopamine receptor (D2DR), dopamine transporter (DAT), oxytocin, and Arginine-vasopressin (AVP) in the striatum using qPCR. Additionally, we examined the effects of the AVP-V1b receptor antagonist, SSR149415, on the acquisition of morphine conditioned place-preference (CPP). Increased striatal expression of D1DR and AVP was observed in morphine only animals, but not morphine cage-mates. No significant effects were observed on the striatal expression of D2DR, DAT, or oxytocin. Antagonizing the AVP-V1b receptors decreased the acquisition of morphine CPP in the morphine only mice, but did not alter the acquisition of morphine CPP in the morphine cage-mate mice. Housing with drug-naïve animals protects against the increase in striatal expression of D1DR and AVP elicited by morphine exposure. Moreover, our studies suggest that the protective effect of housing with drug-naïve animals on the acquisition of morphine reward might be, at least partially, mediated by AVP. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Lethal morphine intoxication in a patient with a sickle cell crisis and renal impairment: case report and a review of the literature.

    PubMed

    Lagas, Jurjen S; Wagenaar, Jiri F P; Huitema, Alwin D R; Hillebrand, Michel J X; Koks, Cornelis H W; Gerdes, Victor E A; Brandjes, Desiderius P M; Beijnen, Jos H

    2011-09-01

    Morphine-6-glucuronide, the active metabolite of morphine, and to a lesser extent morphine itself are known to accumulate in patients with renal failure. A number of cases on non-lethal morphine toxicity in patients with renal impairment report high plasma concentrations of morphine-6-glucuronide, suggesting that this metabolite achieves sufficiently high brain concentrations to cause long-lasting respiratory depression, despite its poor central nervous system penetration. We report a lethal morphine intoxication in a 61-year-old man with sickle cell disease and renal impairment, and we measured concentrations of morphine and morphine-6-glucuronide in blood, brain and cerebrospinal fluid. There were no measurable concentrations of morphine-6-glucuronide in cerebrospinal fluid or brain tissue, despite high blood concentrations. In contrast, the relatively high morphine concentration in the brain suggests that morphine itself was responsible for the cardiorespiratory arrest in this patient. Given the fatal outcome, we recommend to avoid repeated or continuous morphine administration in renal failure.

  6. A morphine/heroin vaccine with new hapten design attenuates behavioral effects in rats.

    PubMed

    Li, Qian-Qian; Luo, Yi-Xiao; Sun, Cheng-Yu; Xue, Yan-Xue; Zhu, Wei-Li; Shi, Hai-Shui; Zhai, Hai-Feng; Shi, Jie; Lu, Lin

    2011-12-01

    Heroin use has seriously threatened public heath in many countries, but the existing therapies continue to have many limitations. Recently, immunotherapy has shown efficacy in some clinical studies, including vaccines against nicotine and cocaine, but no opioid vaccines have been introduced in clinical studies. The development of a novel opioid antigen designed specifically for the prevention of heroin addiction is necessary. A morphine-keyhole limpet hemocyanin conjugate was prepared and administered subcutaneously in rats. Antibody titers in plasma were measured using an enzyme-linked immunosorbent assay (ELISA). Competitive ELISA was used to assess the selectivity of the antibodies. Dopamine concentrations in the nucleus accumbens in rats after vaccine administration were determined by high-performance liquid chromatography with electrochemical detection. The effects of the vaccine on the heroin-primed restatement of self-administration and locomotor sensitization were evaluated. A novel hapten, 6-glutarylmorphine, was produced, and the vaccine generated a high antibody titer response. This vaccine displayed specificity for both morphine and heroin, but the anti-morphine antibodies could not recognize dissimilar therapeutic opioid compounds, such as buprenorphine, methadone, naloxone, naltrexone, codeine, and nalorphine. The morphine antibody significantly decreased morphine-induced locomotor activity in rats after immunization. Importantly, rats immunized with this vaccine did not exhibit heroin-primed reinstatement of heroin seeking when antibody levels were sufficiently high. The vaccine reduced dopamine levels in the nucleus accumbens after morphine administration, which is consistent with its behavioral effects. These results suggest that immunization with a novel vaccine is an effective means of inducing a morphine-specific antibody response that is able to attenuate the behavioral and psychoactive effects of heroin. © 2011 The Authors. Journal of

  7. Home treatment for acute psychiatric illness.

    PubMed

    Dean, C; Gadd, E M

    1990-11-03

    To determine the factors influencing the successful outcome of community treatment for severe acute psychiatric illnesses that are traditionally treated in hospital. All patients from a single electoral ward who were either admitted to hospital or treated at home over a two year period (1 October 1987 to 30 September 1989) were included in the study and their case notes audited. The second year of the study is reported. Electoral ward of Sparkbrook, Birmingham. 99 Patients aged 16-65 with severe acute psychiatric illness. 65 Patients were managed by home treatment alone; 34 required admission to hospital. The location of treatment was significantly (all p less than 0.05) influenced by social characteristics of the patients (marital state, age (in men), ethnicity, and living alone) and by characteristics of the referral (occurring out of hours; assessment taking place at hospital or police station). DSM-III-R diagnosis was more weakly associated with outcome. Violence during the episode was significantly related to admission, although deliberate self harm was not. Home treatment is feasible for most patients with acute psychiatric illness. A 24 hour on call assessment service increases the likelihood of success because admission is determined more strongly by social characteristics of the patient and the referral than by illness factors. Admission will still be required for some patients. A locally based mental health resource centre, a 24 hour on call service, an open referral system, and an active follow up policy increase the effectiveness of a home treatment service.

  8. Home treatment for acute psychiatric illness.

    PubMed Central

    Dean, C; Gadd, E M

    1990-01-01

    OBJECTIVE--To determine the factors influencing the successful outcome of community treatment for severe acute psychiatric illnesses that are traditionally treated in hospital. DESIGN--All patients from a single electoral ward who were either admitted to hospital or treated at home over a two year period (1 October 1987 to 30 September 1989) were included in the study and their case notes audited. The second year of the study is reported. SETTING--Electoral ward of Sparkbrook, Birmingham. SUBJECTS--99 Patients aged 16-65 with severe acute psychiatric illness. RESULTS--65 Patients were managed by home treatment alone; 34 required admission to hospital. The location of treatment was significantly (all p less than 0.05) influenced by social characteristics of the patients (marital state, age (in men), ethnicity, and living alone) and by characteristics of the referral (occurring out of hours; assessment taking place at hospital or police station). DSM-III-R diagnosis was more weakly associated with outcome. Violence during the episode was significantly related to admission, although deliberate self harm was not. CONCLUSIONS--Home treatment is feasible for most patients with acute psychiatric illness. A 24 hour on call assessment service increases the likelihood of success because admission is determined more strongly by social characteristics of the patient and the referral than by illness factors. Admission will still be required for some patients. A locally based mental health resource centre, a 24 hour on call service, an open referral system, and an active follow up policy increase the effectiveness of a home treatment service. PMID:2249049

  9. Morphine Tolerance and Physical Dependence Are Altered in Conditional HIV-1 Tat Transgenic Mice.

    PubMed

    Fitting, Sylvia; Stevens, David L; Khan, Fayez A; Scoggins, Krista L; Enga, Rachel M; Beardsley, Patrick M; Knapp, Pamela E; Dewey, William L; Hauser, Kurt F

    2016-01-01

    Despite considerable evidence that chronic opiate use selectively affects the pathophysiologic consequences of human immunodeficiency virus type 1 (HIV-1) infection in the nervous system, few studies have examined whether neuro-acquired immune deficiency syndrome (neuroAIDS) might intrinsically alter the pharmacologic responses to chronic opiate exposure. This is an important matter because HIV-1 and opiate abuse are interrelated epidemics, and HIV-1 patients are often prescribed opiates as a treatment of HIV-1-related neuropathic pain. Tolerance and physical dependence are inevitable consequences of frequent and repeated administration of morphine. In the present study, mice expressing HIV-1 Tat in a doxycycline (DOX)-inducible manner [Tat(+)], their Tat(-) controls, and control C57BL/6 mice were chronically exposed to placebo or 75-mg morphine pellets to explore the effects of Tat induction on morphine tolerance and dependence. Antinociceptive tolerance and locomotor activity tolerance were assessed using tail-flick and locomotor activity assays, respectively, and physical dependence was measured with the platform-jumping assay and recording of other withdrawal signs. We found that Tat(+) mice treated with DOX [Tat(+)/DOX] developed an increased tolerance in the tail-flick assay compared with control Tat(-)/DOX and/or C57/DOX mice. Equivalent tolerance was developed in all mice when assessed by locomotor activity. Further, Tat(+)/DOX mice expressed reduced levels of physical dependence to chronic morphine exposure after a 1-mg/kg naloxone challenge compared with control Tat(-)/DOX and/or C57/DOX mice. Assuming the results seen in Tat transgenic mice can be generalized to neuroAIDS, our findings suggest that HIV-1-infected individuals may display heightened analgesic tolerance to similar doses of opiates compared with uninfected individuals and show fewer symptoms of physical dependence. Copyright © 2015 by The American Society for Pharmacology and Experimental

  10. GluR2-3Y Inhibits the Acquisition and Reinstatement of Morphine-Induced Conditioned Place Preference in Rats.

    PubMed

    Lin, Xiao-Jing; Zhang, Jian-Jun; Yu, Long-Chuan

    2016-04-01

    Accumulating evidence indicates that α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs) are involved in the relapse to abused drugs. However, the role of AMPARs containing the GluR2 subunit in opiate addiction is still unclear. GluR2-3Y, an interfering peptide, prevents the endocytosis of AMPARs containing the GluR2 subunit. In this study, we explored the effect of intravenous injection of GluR2-3Y on the acquisition, expression, and reinstatement of morphine-induced conditioned place preference (mCPP) in rats. We found that infusion of GluR2-3Y (1.5 nmol/g) one hour before morphine during the conditioning phase inhibited the acquisition of mCPP, while an identical injection one hour before the post-conditioning test had no influence on the expression of mCPP. Injection of GluR2-3Y (1.5 nmol/g) after mCPP extinction blocked the morphine-induced reinstatement of mCPP. Our results strongly support the hypothesis that inhibition of AMPAR endocytosis provides a new target for the treatment of opiate addiction.

  11. Infants and young children metabolise codeine to morphine. A study after single and repeated rectal administration.

    PubMed Central

    Quiding, H; Olsson, G L; Boreus, L O; Bondesson, U

    1992-01-01

    1. Codeine was administered rectally to thirteen infants and young children undergoing elective surgery. Nine infants (6-10 months old) received a 4 mg suppository and four children (3-4 years old) an 8 mg suppository. Codeine and its metabolite morphine were measured in plasma by GC/MS. 2. The mean concentrations of codeine at 3, 4 and 5 h after administration were 240, 163 and 123 nmol l-1 in the younger and 309, 251 and 169 nmol l-1 in the older patients. The corresponding concentrations of morphine were 8.3, 7.4 and 4.5 nmol l-1 and 6.8, 5.5 and 2.8 nmol l-1 respectively. One patient in each age group had no detectable amounts of morphine. 3. In the four children, the rectal dose was repeated 6-hourly for four doses. The plasma concentrations of codeine and morphine following the fifth dose were similar to those after the first dose. The mean AUC(0,5 h) of morphine was 1.6% that of codeine. 4. In the infants the mean plasma half-lives of codeine and morphine were 2.6 and 2.5 h. The two infants with the lowest body weights had the longest half-lives. 5. The mean morphine/codeine concentration ratio was 4.3% in the infants and 1.6% in the children, suggesting impaired glucuronidation of morphine in the former group. The hourly concentration ratios were almost identical following the first and fifth dose in the children. 6. We conclude that at the age of 6 months infants are capable of O-demethylating codeine to morphine. PMID:1540490

  12. Self-administration of morphine into the lateral hypothalamus in the mouse.

    PubMed

    Cazala, P; Darracq, C; Saint-Marc, M

    1987-07-28

    BALB/c mice were chronically and unilaterally implanted with a guide cannula, the tip of which was positioned 1 mm above the lateral hypothalamus (LH). On each experimental day, a stainless-steel injection cannula was inserted into the LH, and self-administration of morphine or vehicle in this brain area was studied by using a spatial discrimination test in a Y-maze. In a first experiment, we observed that when mice had access to morphine (0.1 microgram by injection) they rapidly discriminated the reinforced arm from the neutral arm of the maze in order to self administer, with increasing frequency, the drug into the LH. In contrast when only vehicle was present, the two arms were no longer discriminated. In a second experiment we compared the effects of 3 doses of morphine (0.1 microgram, 0.05 microgram and 0.025 microgram by injection); optimal discrimination was obtained with the lowest dose used. In a third experiment we observed that subcutaneous injections of naloxone (4 mg/kg) progressively reduced the number of self-administrations of morphine into the LH, a result which suggests that this response is dependent on an opiate receptor mechanism.

  13. Opiate receptor binding properties of morphine-, dihydromorphine-, and codeine 6-O-sulfate ester congeners.

    PubMed

    Crooks, Peter A; Kottayil, Santosh G; Al-Ghananeem, Abeer M; Byrn, Stephen R; Butterfield, D Allan

    2006-08-15

    A series of 3-O-acyl-6-O-sulfate esters of morphine, dihydromorphine, N-methylmorphinium iodide, codeine, and dihydrocodeine were prepared and evaluated for their ability to bind to mu-, delta-, kappa(1)-, kappa(2)-, and kappa(3)-opiate receptors. Several compounds exhibited good affinity for the mu-opiate receptor. Morphine-3-O-propionyl-6-O-sulfate had four times greater affinity than morphine at the mu-opiate receptor and was the most selective compound at this receptor subtype.

  14. Morphine potentiates seizures induced by GABA antagonists and attenuates seizures induced by electroshock in the rat.

    PubMed

    Foote, F; Gale, K

    1983-11-25

    In a naloxone-reversible, dose-dependent manner, morphine (10-50 mg/kg i.p.) protected against seizures induced by maximal electroshock and increased the incidence and severity of seizures induced by bicuculline, in rats. Morphine also potentiated seizures induced by isoniazid and by picrotoxin. Thus, opiate activity influences the expression of seizures in contrasting ways depending upon the mode of seizure induction. Since morphine consistently potentiated seizures induced by interference with GABA transmission, it appears that GABAergic systems may be of particular significance for the elucidation of the varied effects of morphine on seizure susceptibility.

  15. Involvement of substance P and central opioid receptors in morphine modulation of the CHS response.

    PubMed

    Nelson, C J; Lysle, D T

    2001-04-02

    Morphine administration prior to challenge with the antigen 2,4-dinitro-fluorobenzene increases the contact hypersensitivity (CHS) response in rats. The present study extended these findings by showing that central, but not systemic, administration of N-methylnaltrexone antagonized the morphine-induced enhancement of the CHS response. The importance of the neuroimmune mediator substance P was shown via the attenuation of the morphine-induced enhancement following both systemic and topical administration of the NK-1 antagonist WIN51,708. Taken together, the findings of the present study provide new data showing that central opioid receptors and peripheral substance P are involved in the morphine-induced enhancement of the CHS response.

  16. Neonatal morphine in extremely and very preterm neonates: its effect on the developing brain - a review.

    PubMed

    Schuurmans, Juliette; Benders, Manon; Lemmers, Petra; van Bel, Frank

    2015-01-01

    Preterm infants requiring intensive care experience a large number of stressful and painful procedures. Management of stress and pain is therefore an important issue. This review provides an overview of the research on the use of morphine and its neurodevelopmental effects on this vulnerable group of neonates. A structural literature search of both experimental and clinical data has been done using an electronic database (PubMed), but also relevant reference lists and related articles were used. A total of 39 sources were considered relevant for this review to elucidate the effects of morphine on the developing brain. The results showed that both animal experimental and clinical data displayed conflicting results on the effects of neonatal morphine on neurodevelopmental outcome. However, in contrast to specific short-term neurological outcomes long-term neurodevelopmental outcome does not seem to be adversely affected by morphine. After a careful review of the literature, no definite conclusions concerning the effects of neonatal morphine on the long-term neurodevelopmental outcome in extremely premature neonates can be drawn. More prospectively designed trials should be conducted using reliable and validated pain assessment scores to evaluate effects of morphine on long-term neurodevelopmental outcome to demonstrate a beneficial or adverse effect of morphine in preterm infants.

  17. The Environmental footprint of morphine: a life cycle assessment from opium poppy farming to the packaged drug

    PubMed Central

    McAlister, Scott; Ou, Yanjun; Neff, Elise; Hapgood, Karen; Story, David; Mealey, Philip; McGain, Forbes

    2016-01-01

    Objective To examine the environmental life cycle from poppy farming through to production of 100 mg in 100 mL of intravenous morphine (standard infusion bag). Design ‘Cradle-to-grave’ process-based life cycle assessment (observational). Settings Australian opium poppy farms, and facilities for pelletising, manufacturing morphine, and sterilising and packaging bags of morphine. Main outcome measures The environmental effects (eg, CO2 equivalent (‘CO2 e’) emissions and water use) of producing 100 mg of morphine. All aspects of morphine production from poppy farming, pelletising, bulk morphine manufacture through to final formulation. Industry-sourced and inventory-sourced databases were used for most inputs. Results Morphine sulfate (100 mg in 100 mL) had a climate change effect of 204 g CO2 e (95% CI 189 to 280 g CO2 e), approximating the CO2 e emissions of driving an average car 1 km. Water use was 7.8 L (95% CI 6.7– to 9.0 L), primarily stemming from farming (6.7 L). All other environmental effects were minor and several orders of magnitude less than CO2 e emissions and water use. Almost 90% of CO2 e emissions occurred during the final stages of 100 mg of morphine manufacture. Morphine's packaging contributed 95 g CO2 e, which accounted for 46% of the total CO2 e (95% CI 82 to 155 g CO2 e). Mixing, filling and sterilisation of 100 mg morphine bags added a further 86 g CO2 e, which accounted for 42% (95% CI 80 to 92 g CO2 e). Poppy farming (6 g CO2 e, 3%), pelletising and manufacturing (18 g CO2 e, 9%) made smaller contributions to CO2 emissions. Conclusions The environmental effects of growing opium poppies and manufacturing bulk morphine were small. The final stages of morphine production, particularly sterilisation and packaging, contributed to almost 90% of morphine's carbon footprint. Focused measures to improve the energy efficiency and sources for drug sterilisation and packaging could be explored as these are

  18. The Environmental footprint of morphine: a life cycle assessment from opium poppy farming to the packaged drug.

    PubMed

    McAlister, Scott; Ou, Yanjun; Neff, Elise; Hapgood, Karen; Story, David; Mealey, Philip; McGain, Forbes

    2016-10-21

    To examine the environmental life cycle from poppy farming through to production of 100 mg in 100 mL of intravenous morphine (standard infusion bag). 'Cradle-to-grave' process-based life cycle assessment (observational). Australian opium poppy farms, and facilities for pelletising, manufacturing morphine, and sterilising and packaging bags of morphine. The environmental effects (eg, CO 2 equivalent ('CO 2 e') emissions and water use) of producing 100 mg of morphine. All aspects of morphine production from poppy farming, pelletising, bulk morphine manufacture through to final formulation. Industry-sourced and inventory-sourced databases were used for most inputs. Morphine sulfate (100 mg in 100 mL) had a climate change effect of 204 g CO 2 e (95% CI 189 to 280 g CO 2 e), approximating the CO 2 e emissions of driving an average car 1 km. Water use was 7.8 L (95% CI 6.7- to 9.0 L), primarily stemming from farming (6.7 L). All other environmental effects were minor and several orders of magnitude less than CO 2 e emissions and water use. Almost 90% of CO 2 e emissions occurred during the final stages of 100 mg of morphine manufacture. Morphine's packaging contributed 95 g CO 2 e, which accounted for 46% of the total CO 2 e (95% CI 82 to 155 g CO 2 e). Mixing, filling and sterilisation of 100 mg morphine bags added a further 86 g CO 2 e, which accounted for 42% (95% CI 80 to 92 g CO 2 e). Poppy farming (6 g CO 2 e, 3%), pelletising and manufacturing (18 g CO 2 e, 9%) made smaller contributions to CO 2 emissions. The environmental effects of growing opium poppies and manufacturing bulk morphine were small. The final stages of morphine production, particularly sterilisation and packaging, contributed to almost 90% of morphine's carbon footprint. Focused measures to improve the energy efficiency and sources for drug sterilisation and packaging could be explored as these are relevant to all drugs. Comparisons of the environmental

  19. Biological profile and bioavailability of imidazoline compounds on morphine tolerance modulation.

    PubMed

    Caprioli, Giovanni; Mammoli, Valerio; Ricciutelli, Massimo; Sagratini, Gianni; Ubaldi, Massimo; Domi, Esi; Mennuni, Laura; Sabatini, Chiara; Galimberti, Chiara; Ferrari, Flora; Milia, Chiara; Comi, Eleonora; Lanza, Marco; Giannella, Mario; Pigini, Maria; Del Bello, Fabio

    2015-12-15

    Tolerance to opioid administration represents a serious medical alert in different chronic conditions. This study compares the effects of the imidazoline compounds 1, 2, and 3 on morphine tolerance in an animal model of inflammatory pain in the rat. 1, 2, and 3 have been selected in that, although bearing a common scaffold, preferentially bind to α2-adrenoceptors, imidazoline I2 receptors, or both systems, respectively. Such compounds have been tested in vivo by measuring the paw withdrawal threshold to mechanical pressure after complete Freund's adjuvant injection. To determine the ligand levels in rat plasma, an HPLC-mass spectrometry method has been developed. All the compounds significantly reduced the induction of morphine tolerance, showing different potency and duration of action. Indeed, the selective imidazoline I2 receptor interaction (2) restored the analgesic response by maintaining the same time-dependent profile observed after a single morphine administration. Differently, the selective α2C-adrenoceptor activation (1) or the combination between α2C-adrenoceptor activation and imidazoline I2 receptor engagement (3) promoted a change in the temporal profile of morphine analgesia by maintaining a mild but long lasting analgesic effect. Interestingly, the kinetics of compounds in rat plasma supported the pharmacodynamic data. Therefore, this study highlights that both peculiar biological profile and bioavailability of such ligands complement each other to modulate the reduction of morphine tolerance. Based on these observations, 1-3 can be considered useful leads in the design of new drugs able to turn off the undesired tolerance induced by opioids. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Comparative effects of cyclo-oxygenase and nitric oxide synthase inhibition on the development and reversal of spinal opioid tolerance

    PubMed Central

    Powell, Kelly J; Hosokawa, Akiko; Bell, Andrew; Sutak, Maaja; Milne, Brian; Quirion, Remi; Jhamandas, Khem

    1999-01-01

    This study examined the effects of the COX inhibitors, ketorolac and ibuprofen, and the NOS inhibitor L-NAME for their potential to both inhibit the development and reverse tolerance to the antinociceptive action of morphine. Repeated administration of intrathecal morphine (15 μg), once daily, resulted in a progressive decline of antinociceptive effect and an increase in the ED50 value in the tailflick and paw pressure tests. Co-administration of ketorolac (30 and 45 μg) or S(+) ibuprofen (10 μg) with morphine (15 μg) prevented the decline of antinociceptive effect and increase in ED50 value. Similar treatment with L-NAME (100 μg) exerted weaker effects. Administration of S(+) but not R(−) ibuprofen (10 mg kg−1) had similar effects on systemic administration of morphine (15 mg kg−1). Intrathecal or systemic administration of the COX or NOS inhibitors did not alter the baseline responses in either tests. Acute keterolac or S(+) ibuprofen also did not potentiate the acute actions of spinal or systemic morphine, but chronic intrathecal administration of these agents increased the potency of acute morphine. In animals already tolerant to intrathecal morphine, subsequent administration of ketorolac (30 μg) with morphine (15 μg) partially restored the antinociceptive effect and ED50 value of acute morphine, reflecting the reversal of tolerance. Intrathecal L-NAME (100 μg) exerted a weaker effect. These data suggest that spinal COX activity, and to a lesser extent NOS activity, contributes to the development and expression of opioid tolerance. Inhibition of COX may represent a useful approach for the prevention as well as reversal of opioid tolerance. PMID:10401553