Science.gov

Sample records for acute mouse hippocampal

  1. Acute inflammation alters adult hippocampal neurogenesis in a multiple sclerosis mouse model.

    PubMed

    Giannakopoulou, A; Grigoriadis, N; Bekiari, C; Lourbopoulos, A; Dori, I; Tsingotjidou, A S; Michaloudi, H; Papadopoulos, G C

    2013-07-01

    Neural precursor cells (NPCs) located in the subgranular zone (SGZ) of the dentate gyrus (DG) give rise to thousands of new cells every day, mainly hippocampal neurons, which are integrated into existing neuronal circuits. Aging and chronic degenerative disorders have been shown to impair hippocampal neurogenesis, but the consequence of inflammation is somewhat controversial. The present study demonstrates that the inflammatory environment prevailing in the brain of experimental autoimmune encephalomyelitis (EAE) mice enhances the proliferation of NPCs in SGZ of the dorsal DG and alters the proportion between radial glial cells and newborn neuroblasts. The injection protocol of the cell cycle marker bromodeoxyuridine and the immunohistochemical techniques that were employed revealed that the proliferation of NPCs is increased approximately twofold in the SGZ of the dorsal DG of EAE mice, at the acute phase of the disease. However, although EAE animals exhibited significant higher percentage of newborn radial-glia-like NPCs, the mean percentage of newborn neuroblasts rather was decreased, indicating that the robust NPCs proliferation is not followed by a proportional production of newborn neurons. Significant positive correlations were detected between the number of proliferating cells in the SGZ and the clinical score or degree of brain inflammation of diseased animals. Finally, enhanced neuroproliferation in the acute phase of EAE was not found to trigger compensatory apoptotic mechanisms. The possible causes of altered neurogenesis observed in this study emphasize the need to understand more precisely the mechanisms regulating adult neurogenesis under both normal and pathological conditions. PMID:23606574

  2. Apoptosis of hippocampal pyramidal neurons is virus independent in a mouse model of acute neurovirulent picornavirus infection.

    PubMed

    Buenz, Eric J; Sauer, Brian M; Lafrance-Corey, Reghann G; Deb, Chandra; Denic, Aleksandar; German, Christopher L; Howe, Charles L

    2009-08-01

    Many viruses, including picornaviruses, have the potential to infect the central nervous system (CNS) and stimulate a neuroinflammatory immune response, especially in infants and young children. Cognitive deficits associated with CNS picornavirus infection result from injury and death of neurons that may occur due to direct viral infection or during the immune responses to virus in the brain. Previous studies have concluded that apoptosis of hippocampal neurons during picornavirus infection is a cell-autonomous event triggered by direct neuronal infection. However, these studies assessed neuron death at time points late in infection and during infections that lead to either death of the host or persistent viral infection. In contrast, many neurovirulent picornavirus infections are acute and transient, with rapid clearance of virus from the host. We provide evidence of hippocampal pathology in mice acutely infected with the Theiler's murine encephalomyelitis picornavirus. We found that CA1 pyramidal neurons exhibited several hallmarks of apoptotic death, including caspase-3 activation, DNA fragmentation, and chromatin condensation within 72 hours of infection. Critically, we also found that many of the CA1 pyramidal neurons undergoing apoptosis were not infected with virus, indicating that neuronal cell death during acute picornavirus infection of the CNS occurs in a non-cell-autonomous manner. These observations suggest that therapeutic strategies other than antiviral interventions may be useful for neuroprotection during acute CNS picornavirus infection. PMID:19608874

  3. Ultrafast endocytosis at mouse hippocampal synapses

    NASA Astrophysics Data System (ADS)

    Watanabe, Shigeki; Rost, Benjamin R.; Camacho-Pérez, Marcial; Davis, M. Wayne; Söhl-Kielczynski, Berit; Rosenmund, Christian; Jorgensen, Erik M.

    2013-12-01

    To sustain neurotransmission, synaptic vesicles and their associated proteins must be recycled locally at synapses. Synaptic vesicles are thought to be regenerated approximately 20s after fusion by the assembly of clathrin scaffolds or in approximately 1s by the reversal of fusion pores via `kiss-and-run' endocytosis. Here we use optogenetics to stimulate cultured hippocampal neurons with a single stimulus, rapidly freeze them after fixed intervals and examine the ultrastructure using electron microscopy--`flash-and-freeze' electron microscopy. Docked vesicles fuse and collapse into the membrane within 30ms of the stimulus. Compensatory endocytosis occurs within 50 to 100ms at sites flanking the active zone. Invagination is blocked by inhibition of actin polymerization, and scission is blocked by inhibiting dynamin. Because intact synaptic vesicles are not recovered, this form of recycling is not compatible with kiss-and-run endocytosis; moreover, it is 200-fold faster than clathrin-mediated endocytosis. It is likely that `ultrafast endocytosis' is specialized to restore the surface area of the membrane rapidly.

  4. Activity-dependent plasticity of mouse hippocampal assemblies in vitro

    PubMed Central

    Keller, Martin K.; Draguhn, Andreas; Both, Martin; Reichinnek, Susanne

    2015-01-01

    Memory formation is associated with the generation of transiently stable neuronal assemblies. In hippocampal networks, such groups of functionally coupled neurons express highly ordered spatiotemporal activity patterns which are coordinated by local network oscillations. One of these patterns, sharp wave-ripple complexes (SPW-R), repetitively activates previously established groups of memory-encoding neurons, thereby supporting memory consolidation. This function implies that repetition of specific SPW-R induces plastic changes which render the underlying neuronal assemblies more stable. We modeled this repetitive activation in an in vitro model of SPW-R in mouse hippocampal slices. Weak electrical stimulation upstream of the CA3-CA1 networks reliably induced SPW-R of stereotypic waveform, thus representing re-activation of similar neuronal activity patterns. Frequent repetition of these patterns (100 times) reduced the variance of both, evoked and spontaneous SPW-R waveforms, indicating stabilization of pre-existing assemblies. These effects were most pronounced in the CA1 subfield and depended on the timing of stimulation relative to spontaneous SPW-R. Additionally, plasticity of SPW-R was blocked by application of a NMDA receptor antagonist, suggesting a role for associative synaptic plasticity in this process. Thus, repetitive activation of specific patterns of SPW-R causes stabilization of memory-related networks. PMID:26041998

  5. Hippocampal auditory gating in the hyperactive mocha mouse.

    PubMed

    Miller, C L; Burmeister, M; Stevens, K E

    1999-11-26

    The mouse mutants mocha (mh) and mocha2J (mh2J) result from separate mutations in the same gene (AP-3 delta) that arose independently on different backgrounds of inbred strains. They exhibit a neurological phenotype that includes hyperactivity, an epileptiform EEG and changes in the basic function of the hippocampus. Depth electrode recordings of hippocampal auditory evoked potentials revealed that the response to the first of two paired tones was significantly enhanced in mocha and mocha2J, as compared with littermate controls. The pronounced theta rhythm characteristic of unanesthetized mocha mice was not observed in these chloral-hydrate anesthetized mice, whereas spike discharge activity was frequently present in the recordings. PMID:10586974

  6. Rapid manifestation of reactive astrogliosis in acute hippocampal brain slices

    PubMed Central

    Takano, Takahiro; He, Wei; Han, Xiaoning; Wang, Fushun; Xu, Qiwu; Wang, Xiaohai; Oberheim Bush, Nancy Ann; Cruz, Nancy; Dienel, Gerald A.; Nedergaard, Maiken

    2014-01-01

    A flurry of studies over the past decade has shown that astrocytes play a more active role in neural function than previously recognized. Hippocampal slices prepared from young rodent pups have served as a popular model for studying the pathways by which astrocytes participate in synaptic transmission. It is, however, not known how well astrocytes tolerate traumatic injury and hypoxia, which are unavoidable when preparing acute slices. We here show that astrocytes exhibit striking changes in expression of several receptors and structural proteins, including re-expression of the developmental marker nestin within 90 min following preparation of live vibratome slices. Moreover, immunoelectron microscopy showed a 2.7-fold loss of astrocytic processes in acute hippocampal slices prepared from GFAP-GFP reporter mice. A sharp decrease in the number of mitochondria was also noted in acute slices, concurrently with an increase in mitochondrial size. Glycogen content decreased 3-fold upon slice preparation and did not recover despite stable recordings of field EPSC. Analysis of Ca2+ signaling showed that astrocytic responses to purine receptor and mGluR5 agonists differed in slice vs. in vivo. These observations suggest that the functional properties and the fine structure of astrocytes in slices may be reflective of early stages of reactive gliosis and should be confirmed in vivo when possible. PMID:24272704

  7. Rapid manifestation of reactive astrogliosis in acute hippocampal brain slices.

    PubMed

    Takano, Takahiro; He, Wei; Han, Xiaoning; Wang, Fushun; Xu, Qiwu; Wang, Xiaohai; Oberheim Bush, Nancy Ann; Cruz, Nancy; Dienel, Gerald A; Nedergaard, Maiken

    2014-01-01

    A flurry of studies over the past decade has shown that astrocytes play a more active role in neural function than previously recognized. Hippocampal slices prepared from young rodent pups have served as a popular model for studying the pathways by which astrocytes participate in synaptic transmission. It is, however, not known how well astrocytes tolerate traumatic injury and hypoxia, which are unavoidable when preparing acute slices. We here showed that astrocytes exhibit striking changes in expression of several receptors and structural proteins, including re-expression of the developmental marker nestin within 90 min following preparation of live vibratome slices. Moreover, immunoelectron microscopy showed a 2.7-fold loss of astrocytic processes in acute hippocampal slices prepared from glial fibrillary acidic protein-green fluorescent protein reporter mice. A sharp decrease in the number of mitochondria was also noted in acute slices, concurrently with an increase in mitochondrial size. Glycogen content decreased 3-fold upon slice preparation and did not recover despite stable recordings of field excitatory postsynaptic current. Analysis of Ca(2+) signaling showed that astrocytic responses to purine receptor and mGluR5 agonists differed in slice versus in vivo. These observations suggest that the functional properties and the fine structure of astrocytes in slices may be reflective of early stages of reactive gliosis and should be confirmed in vivo when possible. PMID:24272704

  8. ACUTE ETHANOL SUPPRESSES GLUTAMATERGIC NEUROTRANSMISSION THROUGH ENDOCANNABINOIDS IN HIPPOCAMPAL NEURONS

    PubMed Central

    Basavarajappa, Balapal S.; Ninan, Ipe; Arancio, Ottavio

    2008-01-01

    Ethanol exposure during fetal development is a leading cause of long-term cognitive impairments. Studies suggest that ethanol exposure have deleterious effects on the hippocampus, a brain region that is important for learning and memory. Ethanol exerts its effects, in part, via alterations in glutamatergic neurotransmission, which is critical for the maturation of neuronal circuits during development. The current literature strongly supports the growing evidence that ethanol inhibits glutamate release in the neonatal CA1 hippocampal region. However, the exact molecular mechanism responsible for this effect is not well understood. In this study, we show that ethanol enhances endocannabinoid (EC) levels in cultured hippocampal neurons, possibly through calcium pathways. Acute ethanol depresses miniature postsynaptic current (mEPSC) frequencies without affecting their amplitude. This suggests that ethanol inhibits glutamate release. The CB1 receptors (CB1Rs) present on presynaptic neurons are not altered by acute ethanol. The CB1R antagonist SR 141716A reverses ethanol-induced depression of mEPSC frequency. Drugs that are known to enhance the in vivo function of ECs occlude ethanol effects on mEPSC frequency. Chelation of postsynaptic calcium by EGTA antagonizes ethanol-induced depression of mEPSC frequency. The activation of CB1R with the selective agonist WIN55,212-2 also suppresses the mEPSC frequency. This WIN55,212-2 effect is similar to the ethanol effects and is reversed by SR141716A. In addition, tetani-induced excitatory postsynaptic currents (EPSCs) are depressed by acute ethanol. SR141716A significantly reverses ethanol effects on evoked EPSC amplitude in a dual recording preparation. These observations, taken together, suggest the participation of ECs as retrograde messengers in the ethanol-induced depression of synaptic activities. PMID:18796007

  9. Nuclear receptor TLX stimulates hippocampal neurogenesis and enhances learning and memory in a transgenic mouse model

    PubMed Central

    Murai, Kiyohito; Qu, Qiuhao; Sun, GuoQiang; Ye, Peng; Li, Wendong; Asuelime, Grace; Sun, Emily; Tsai, Guochuan E.; Shi, Yanhong

    2014-01-01

    The role of the nuclear receptor TLX in hippocampal neurogenesis and cognition has just begun to be explored. In this study, we generated a transgenic mouse model that expresses TLX under the control of the promoter of nestin, a neural precursor marker. Transgenic TLX expression led to mice with enlarged brains with an elongated hippocampal dentate gyrus and increased numbers of newborn neurons. Specific expression of TLX in adult hippocampal dentate gyrus via lentiviral transduction increased the numbers of BrdU+ cells and BrdU+NeuN+ neurons. Furthermore, the neural precursor-specific expression of the TLX transgene substantially rescued the neurogenic defects of TLX-null mice. Consistent with increased neurogenesis in the hippocampus, the TLX transgenic mice exhibited enhanced cognition with increased learning and memory. These results suggest a strong association between hippocampal neurogenesis and cognition, as well as significant contributions of TLX to hippocampal neurogenesis, learning, and memory. PMID:24927526

  10. Holographic Photolysis for Multiple Cell Stimulation in Mouse Hippocampal Slices

    PubMed Central

    Papagiakoumou, Eirini; Ventalon, Cathie; Angulo, María Cecilia; Emiliani, Valentina

    2010-01-01

    Background Advanced light microscopy offers sensitive and non-invasive means to image neural activity and to control signaling with photolysable molecules and, recently, light-gated channels. These approaches require precise and yet flexible light excitation patterns. For synchronous stimulation of subsets of cells, they also require large excitation areas with millisecond and micrometric resolution. We have recently developed a new method for such optical control using a phase holographic modulation of optical wave-fronts, which minimizes power loss, enables rapid switching between excitation patterns, and allows a true 3D sculpting of the excitation volumes. In previous studies we have used holographic photololysis to control glutamate uncaging on single neuronal cells. Here, we extend the use of holographic photolysis for the excitation of multiple neurons and of glial cells. Methods/Principal Findings The system combines a liquid crystal device for holographic patterned photostimulation, high-resolution optical imaging, the HiLo microscopy, to define the stimulated regions and a conventional Ca2+ imaging system to detect neural activity. By means of electrophysiological recordings and calcium imaging in acute hippocampal slices, we show that the use of excitation patterns precisely tailored to the shape of multiple neuronal somata represents a very efficient way for the simultaneous excitation of a group of neurons. In addition, we demonstrate that fast shaped illumination patterns also induce reliable responses in single glial cells. Conclusions/Significance We show that the main advantage of holographic illumination is that it allows for an efficient excitation of multiple cells with a spatiotemporal resolution unachievable with other existing approaches. Although this paper focuses on the photoactivation of caged molecules, our approach will surely prove very efficient for other probes, such as light-gated channels, genetically encoded photoactivatable

  11. TNF-α from hippocampal microglia induces working memory deficits by acute stress in mice.

    PubMed

    Ohgidani, Masahiro; Kato, Takahiro A; Sagata, Noriaki; Hayakawa, Kohei; Shimokawa, Norihiro; Sato-Kasai, Mina; Kanba, Shigenobu

    2016-07-01

    The role of microglia in stress responses has recently been highlighted, yet the underlying mechanisms of action remain unresolved. The present study examined disruption in working memory due to acute stress using the water-immersion resistant stress (WIRS) test in mice. Mice were subjected to acute WIRS, and biochemical, immunohistochemical, and behavioral assessments were conducted. Spontaneous alternations (working memory) significantly decreased after exposure to acute WIRS for 2h. We employed a 3D morphological analysis and site- and microglia-specific gene analysis techniques to detect microglial activity. Morphological changes in hippocampal microglia were not observed after acute stress, even when assessing ramification ratios and cell somata volumes. Interestingly, hippocampal tumor necrosis factor (TNF)-α levels were significantly elevated after acute stress, and acute stress-induced TNF-α was produced by hippocampal-ramified microglia. Conversely, plasma concentrations of TNF-α were not elevated after acute stress. Etanercept (TNF-α inhibitor) recovered working memory deficits in accordance with hippocampal TNF-α reductions. Overall, results suggest that TNF-α from hippocampal microglia is a key contributor to early-stage stress-to-mental responses. PMID:26551431

  12. Functional consequences of hippocampal neuronal ectopia in the apolipoprotein E receptor-2 knockout mouse

    PubMed Central

    Fish, Kenneth. N.; Krucker, Thomas

    2008-01-01

    Little is known about the impact ectopically located neurons have on the functional connectivity of local circuits. The ApoER2 knockout mouse has subtle cytoarchitectural disruptions, altered prepulse inhibition, and memory abnormalities. We evaluated this mouse mutant as a model to study the role ectopic neurons play in the manifestation of symptoms associated with brain diseases. We found that ectopic CA1 pyramidal and inhibitory neurons in the ApoER2 knockout hippocampus are organized into two distinct stratum pyramidale layers. In vitro analyses found that ApoER2 is not required for neurons to reach maturity in regards to dendritic arborization and synaptic structure density, and electrophysiological testing determined that neurons in both strata pyramidale are integrated into the hippocampal network. However, the presence of these two layers alters the spatiotemporal pattern of hippocampal activity, which may explain why ApoER2 knockout mice have selective cognitive dysfunctions that are revealed only under challenging conditions. PMID:18778775

  13. Hippocampal protection in mice with an attenuated inflammatory monocyte response to acute CNS picornavirus infection

    PubMed Central

    Howe, Charles L.; LaFrance-Corey, Reghann G.; Sundsbak, Rhianna S.; Sauer, Brian M.; LaFrance, Stephanie J.; Buenz, Eric J.; Schmalstieg, William F.

    2012-01-01

    Neuronal injury during acute viral infection of the brain is associated with the development of persistent cognitive deficits and seizures in humans. In C57BL/6 mice acutely infected with the Theiler's murine encephalomyelitis virus, hippocampal CA1 neurons are injured by a rapid innate immune response, resulting in profound memory deficits. In contrast, infected SJL and B6xSJL F1 hybrid mice exhibit essentially complete hippocampal and memory preservation. Analysis of brain-infiltrating leukocytes revealed that SJL mice mount a sharply attenuated inflammatory monocyte response as compared to B6 mice. Bone marrow transplantation experiments isolated the attenuation to the SJL immune system. Adoptive transfer of B6 inflammatory monocytes into acutely infected B6xSJL hosts converted these mice to a hippocampal damage phenotype and induced a cognitive deficit marked by failure to recognize a novel object. These findings show that inflammatory monocytes are the critical cellular mediator of hippocampal injury during acute picornavirus infection of the brain. PMID:22848791

  14. Hippocampal hyperexcitability underlies enhanced fear memories in TgNTRK3, a panic disorder mouse model.

    PubMed

    Santos, Mónica; D'Amico, Davide; Spadoni, Ornella; Amador-Arjona, Alejandro; Stork, Oliver; Dierssen, Mara

    2013-09-18

    Panic attacks are a hallmark in panic disorder (PAND). During the panic attack, a strong association with the surrounding context is established suggesting that the hippocampus may be critically involved in the pathophysiology of PAND, given its role in contextual processing. We previously showed that variation in the expression of the neurotrophin tyrosine kinase receptor type 3 (NTRK3) in both PAND patients and a transgenic mouse model (TgNTRK3) may have a role in PAND pathophysiology. Our study examines hippocampal function and activation of the brain fear network in TgNTRK3 mice. TgNTRK3 mice showed increased fear memories accompanied by impaired extinction, congruent with an altered activation pattern of the amygdala-hippocampus-medial prefrontal cortex fear circuit. Moreover, TgNTRK3 mice also showed an unbalanced excitation-to-inhibition ratio in the hippocampal cornu ammonis 3 (CA3)-CA1 subcircuit toward hyperexcitability. The resulting hippocampal hyperexcitability underlies the enhanced fear memories, as supported by the efficacy of tiagabine, a GABA reuptake inhibitor, to rescue fear response. The fearful phenotype appears to be the result of hippocampal hyperexcitability and aberrant fear circuit activation. We conclude that NTRK3 plays a role in PAND by regulating hippocampus-dependent fear memories. PMID:24048855

  15. Hippocampal adaptive response following extensive neuronal loss in an inducible transgenic mouse model.

    PubMed

    Myczek, Kristoffer; Yeung, Stephen T; Castello, Nicholas; Baglietto-Vargas, David; LaFerla, Frank M

    2014-01-01

    Neuronal loss is a common component of a variety of neurodegenerative disorders (including Alzheimer's, Parkinson's, and Huntington's disease) and brain traumas (stroke, epilepsy, and traumatic brain injury). One brain region that commonly exhibits neuronal loss in several neurodegenerative disorders is the hippocampus, an area of the brain critical for the formation and retrieval of memories. Long-lasting and sometimes unrecoverable deficits caused by neuronal loss present a unique challenge for clinicians and for researchers who attempt to model these traumas in animals. Can these deficits be recovered, and if so, is the brain capable of regeneration following neuronal loss? To address this significant question, we utilized the innovative CaM/Tet-DT(A) mouse model that selectively induces neuronal ablation. We found that we are able to inflict a consistent and significant lesion to the hippocampus, resulting in hippocampally-dependent behavioral deficits and a long-lasting upregulation in neurogenesis, suggesting that this process might be a critical part of hippocampal recovery. In addition, we provide novel evidence of angiogenic and vasculature changes following hippocampal neuronal loss in CaM/Tet-DTA mice. We posit that angiogenesis may be an important factor that promotes neurogenic upregulation following hippocampal neuronal loss, and both factors, angiogenesis and neurogenesis, can contribute to the adaptive response of the brain for behavioral recovery. PMID:25184527

  16. Hippocampal circuit dysfunction in the Tc1 mouse model of Down syndrome

    PubMed Central

    Popov, V.I.; Kraev, I.; Line, S.J.; Jensen, T.P.; Tedoldi, A.; Cummings, D.M.; Tybulewicz, V.L.J.; Fisher, E.M.C.; Bannerman, D.M.; Randall, A.D.; Brown, J.T.; Edwards, F.A.; Rusakov, D.A.; Stewart, M.G.; Jones, M.W.

    2015-01-01

    Hippocampal pathology is likely to contribute to cognitive disability in Down syndrome (DS), yet the neural network basis of this pathology and its contributions to different facets of cognitive impairment remain unclear. Here, we report dysfunctional connectivity between dentate gyrus (DG) and CA3 networks in the transchromosomic Tc1 mouse model of DS, demonstrating that ultrastructural abnormalities and impaired short-term plasticity at DG-CA3 excitatory synapses culminate in impaired coding of novel spatial information in CA3 and CA1 and disrupted behaviour in vivo. These results highlight the vulnerability of DG-CA3 networks to aberrant human chromosome 21 gene expression, and delineate hippocampal circuit abnormalities likely to contribute to distinct cognitive phenotypes in DS. PMID:26237367

  17. Triheptanoin in acute mouse seizure models.

    PubMed

    Thomas, Nicola K; Willis, Sarah; Sweetman, Lawrence; Borges, Karin

    2012-05-01

    Triheptanoin, the triglyceride of heptanoate, is used to treat certain hereditary metabolic diseases in USA because of its anaplerotic potential. In two chronic mouse seizure models this clear tasteless oil was found to be reproducibly anticonvulsant. Here we investigated the effects of triheptanoin feeding in C3H and CD1 mice using standard acute seizure models. Feeding 30-40% triheptanoin (caloric intake) consistently elevated blood propionyl-carnitines, but inconsistent anticonvulsant effects were observed in the fluorothyl, pentylenetetrazole and 6Hz seizure models. A 2mA consistent increase in the maximal electroshock threshold was found after 3 weeks of 35% triheptanoin feeding (p=0.018). In summary, triheptanoin shows a unique anticonvulsant profile in seizure models, compared to other treatments that are in the clinic. Therefore, despite small and/or inconsistent effects of triheptanoin in acute seizure models, triheptanoin remains of interest as a potential add-on treatment for patients with medically refractory epilepsy. PMID:22260920

  18. Phase synchronization of neuronal noise in mouse hippocampal epileptiform dynamics.

    PubMed

    Serletis, Demitre; Carlen, Peter L; Valiante, Taufik A; Bardakjian, Berj L

    2013-02-01

    Organized brain activity is the result of dynamical, segregated neuronal signals that may be used to investigate synchronization effects using sophisticated neuroengineering techniques. Phase synchrony analysis, in particular, has emerged as a promising methodology to study transient and frequency-specific coupling effects across multi-site signals. In this study, we investigated phase synchronization in intracellular recordings of interictal and ictal epileptiform events recorded from pairs of cells in the whole (intact) mouse hippocampus. In particular, we focused our analysis on the background noise-like activity (NLA), previously reported to exhibit complex neurodynamical properties. Our results show evidence for increased linear and nonlinear phase coupling in NLA across three frequency bands [theta (4-10 Hz), beta (12-30 Hz) and gamma (30-80 Hz)] in the ictal compared to interictal state dynamics. We also present qualitative and statistical evidence for increased phase synchronization in the theta, beta and gamma frequency bands from paired recordings of ictal NLA. Overall, our results validate the use of background NLA in the neurodynamical study of epileptiform transitions and suggest that what is considered "neuronal noise" is amenable to synchronization effects in the spatiotemporal domain. PMID:23273129

  19. Acute restraint stress enhances hippocampal endocannabinoid function via glucocorticoid receptor activation.

    PubMed

    Wang, Meina; Hill, Matthew N; Zhang, Longhua; Gorzalka, Boris B; Hillard, Cecilia J; Alger, Bradley E

    2012-01-01

    Exposure to behavioural stress normally triggers a complex, multilevel response of the hypothalamic-pituitary-adrenal (HPA) axis that helps maintain homeostatic balance. Although the endocannabinoid (eCB) system (ECS) is sensitive to chronic stress, few studies have directly addressed its response to acute stress. Here we show that acute restraint stress enhances eCB-dependent modulation of GABA release measured by whole-cell voltage clamp of inhibitory postsynaptic currents (IPSCs) in rat hippocampal CA1 pyramidal cells in vitro. Both Ca(2+)-dependent, eCB-mediated depolarization-induced suppression of inhibition (DSI), and muscarinic cholinergic receptor (mAChR)-mediated eCB mobilization are enhanced following acute stress exposure. DSI enhancement is dependent on the activation of glucocorticoid receptors (GRs) and is mimicked by both in vivo and in vitro corticosterone treatment. This effect does not appear to involve cyclooxygenase-2 (COX-2), an enzyme that can degrade eCBs; however, treatment of hippocampal slices with the L-type calcium (Ca(2+)) channel inhibitor, nifedipine, reverses while an agonist of these channels mimics the effect of in vivo stress. Finally, we find that acute stress produces a delayed (by 30 min) increase in the hippocampal content of 2-arachidonoylglycerol, the eCB responsible for DSI. These results support the hypothesis that the ECS is a biochemical effector of glucocorticoids in the brain, linking stress with changes in synaptic strength. PMID:21890595

  20. Hippocampal Damage in Mouse and Human Forms of Systemic Autoimmune Disease

    PubMed Central

    Ballok, David A.; Woulfe, John; Sur, Monalisa; Cyr, Michael; Sakic, Boris

    2006-01-01

    Systemic lupus erythematosus (SLE) is frequently accompanied by neuropsychiatric (NP) and cognitive deficits of unknown etiology. By using autoimmune MRL-lpr mice as an animal model of NP-SLE, we examine the relationship between autoimmunity, hippocampal damage, and behavioral dysfunction. Fluoro Jade B (FJB) staining and anti-ubiquitin (anti-Ub) immunocytochemistry were used to assess neuronal damage in young (asymptomatic) and aged (diseased) mice, while spontaneous alternation behavior (SAB) was used to estimate the severity of hippocampal dysfunction. The causal relationship between autoimmunity and neuropathology was tested by prolonged administration of the immunosuppressive drug cyclophosphamide (CY). In comparison to congenic MRL +/+ controls, SAB acquisition rates and performance in the “reversal” trial were impaired in diseased MRL-lpr mice, suggesting limited use of the spatial learning strategy. FJB-positive neurons and anti-Ub particles were frequent in the CA3 region. Conversely, CY treatment attenuated the SAB deficit and overall FJB staining. Similarly to mouse brain, the hippocampus from a patient who died from NP-SLE showed reduced neuronal density in the CA3 region and dentate gyrus, as well as increased FJB positivity in these regions. Gliosis and neuronal loss were observed in the gray matter, and T lymphocytes and stromal calcifications were common in the choroid plexus. Taken together, these results suggest that systemic autoimmunity induces significant hippocampal damage, which may underlie affective and cognitive deficits in NP-SLE. PMID:15301441

  1. Physical activity delays hippocampal neurodegeneration and rescues memory deficits in an Alzheimer disease mouse model.

    PubMed

    Hüttenrauch, M; Brauß, A; Kurdakova, A; Borgers, H; Klinker, F; Liebetanz, D; Salinas-Riester, G; Wiltfang, J; Klafki, H W; Wirths, O

    2016-01-01

    The evidence for a protective role of physical activity on the risk and progression of Alzheimer's disease (AD) has been growing in the last years. Here we studied the influence of a prolonged physical and cognitive stimulation on neurodegeneration, with special emphasis on hippocampal neuron loss and associated behavioral impairment in the Tg4-42 mouse model of AD. Tg4-42 mice overexpress Aβ4-42 without any mutations, and develop an age-dependent hippocampal neuron loss associated with a severe memory decline. We demonstrate that long-term voluntary exercise diminishes CA1 neuron loss and completely rescues spatial memory deficits in different experimental settings. This was accompanied by changes in the gene expression profile of Tg4-42 mice. Deep sequencing analysis revealed an upregulation of chaperones involved in endoplasmatic reticulum protein processing, which might be intimately linked to the beneficial effects seen upon long-term exercise. We believe that we provide evidence for the first time that enhanced physical activity counteracts neuron loss and behavioral deficits in a transgenic AD mouse model. The present findings underscore the relevance of increased physical activity as a potential strategy in the prevention of dementia. PMID:27138799

  2. Cell-Type Specific Inactivation of Hippocampal CA1 Disrupts Location-Dependent Object Recognition in the Mouse

    ERIC Educational Resources Information Center

    Haettig, Jakob; Sun, Yanjun; Wood, Marcelo A.; Xu, Xiangmin

    2013-01-01

    The allatostatin receptor (AlstR)/ligand inactivation system enables potent regulation of neuronal circuit activity. To examine how different cell types participate in memory formation, we have used this system through Cre-directed, cell-type specific expression in mouse hippocampal CA1 in vivo and examined functional effects of inactivation of…

  3. The Wobbler mouse model of amyotrophic lateral sclerosis (ALS) displays hippocampal hyperexcitability, and reduced number of interneurons, but no presynaptic vesicle release impairments.

    PubMed

    Thielsen, Karina D; Moser, Jakob M; Schmitt-John, Thomas; Jensen, Morten S; Jensen, Kimmo; Holm, Mai Marie

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease. It is a fatal degenerative disease, best recognized for its debilitating neuromuscular effects. ALS however also induces cognitive impairments in as many as 50% of affected individuals. Moreover, many ALS patients demonstrate cortical hyperexcitability, which has been shown to precede the onset of clinical symptoms. The wobbler mouse is a model of ALS, and like ALS patients the wobbler mouse displays cortical hyperexcitability. Here we investigated if the neocortical aberrations of the wobbler mouse also occur in the hippocampus. Consequently, we performed extracellular field excitatory postsynaptic potential recordings in the CA1 region of the hippocampus on acute brain slices from symptomatic (P45-P60) and presymptomatic (P17-P21) wobbler mice. Significant increased excitation of hippocampal synapses was revealed by leftward shifted input/output-curves in both symptomatic and presymptomatic wobbler mice, and substantiated by population spike occurrence analyses, demonstrating that the increased synaptic excitation precedes the onset of visible phenotypic symptoms in the mouse. Synaptic facilitation tested by paired-pulse facilitation and trains in wobbler and control mice showed no differences, suggesting the absence of presynaptic defects. Immunohistochemical staining revealed that symptomatic wobbler mice have a lower number of parvalbumin positive interneurons when compared to controls and presymptomatic mice. This study reveals that the wobbler mouse model of ALS exhibits hippocampal hyperexcitability. We suggest that the hyperexcitability could be caused by increased excitatory synaptic transmission and a concomitant reduced inhibition due to a decreased number of parvalbumin positive interneurons. Thus we substantiate that wobbler brain impairments are not confined to the motor cortex, but extend to the hippocampus. Importantly, we have revealed more details of the

  4. Genetic manipulation of adult-born hippocampal neurons rescues memory in a mouse model of Alzheimer's disease.

    PubMed

    Richetin, Kevin; Leclerc, Clémence; Toni, Nicolas; Gallopin, Thierry; Pech, Stéphane; Roybon, Laurent; Rampon, Claire

    2015-02-01

    In adult mammals, neural progenitors located in the dentate gyrus retain their ability to generate neurons and glia throughout lifetime. In rodents, increased production of new granule neurons is associated with improved memory capacities, while decreased hippocampal neurogenesis results in impaired memory performance in several memory tasks. In mouse models of Alzheimer's disease, neurogenesis is impaired and the granule neurons that are generated fail to integrate existing networks. Thus, enhancing neurogenesis should improve functional plasticity in the hippocampus and restore cognitive deficits in these mice. Here, we performed a screen of transcription factors that could potentially enhance adult hippocampal neurogenesis. We identified Neurod1 as a robust neuronal determinant with the capability to direct hippocampal progenitors towards an exclusive granule neuron fate. Importantly, Neurod1 also accelerated neuronal maturation and functional integration of new neurons during the period of their maturation when they contribute to memory processes. When tested in an APPxPS1 mouse model of Alzheimer's disease, directed expression of Neurod1 in cycling hippocampal progenitors conspicuously reduced dendritic spine density deficits on new hippocampal neurons, to the same level as that observed in healthy age-matched control animals. Remarkably, this population of highly connected new neurons was sufficient to restore spatial memory in these diseased mice. Collectively our findings demonstrate that endogenous neural stem cells of the diseased brain can be manipulated to become new neurons that could allow cognitive improvement. PMID:25518958

  5. The Chemokine MIP-1α/CCL3 impairs mouse hippocampal synaptic transmission, plasticity and memory

    PubMed Central

    Marciniak, Elodie; Faivre, Emilie; Dutar, Patrick; Alves Pires, Claire; Demeyer, Dominique; Caillierez, Raphaëlle; Laloux, Charlotte; Buée, Luc; Blum, David; Humez, Sandrine

    2015-01-01

    Chemokines are signaling molecules playing an important role in immune regulations. They are also thought to regulate brain development, neurogenesis and neuroendocrine functions. While chemokine upsurge has been associated with conditions characterized with cognitive impairments, their ability to modulate synaptic plasticity remains ill-defined. In the present study, we specifically evaluated the effects of MIP1-α/CCL3 towards hippocampal synaptic transmission, plasticity and spatial memory. We found that CCL3 (50 ng/ml) significantly reduced basal synaptic transmission at the Schaffer collateral-CA1 synapse without affecting NMDAR-mediated field potentials. This effect was ascribed to post-synaptic regulations, as CCL3 did not impact paired-pulse facilitation. While CCL3 did not modulate long-term depression (LTD), it significantly impaired long-term potentiation (LTP), an effect abolished by Maraviroc, a CCR5 specific antagonist. In addition, sub-chronic intracerebroventricular (icv) injections of CCL3 also impair LTP. In accordance with these electrophysiological findings, we demonstrated that the icv injection of CCL3 in mouse significantly impaired spatial memory abilities and long-term memory measured using the two-step Y-maze and passive avoidance tasks. These effects of CCL3 on memory were inhibited by Maraviroc. Altogether, these data suggest that the chemokine CCL3 is an hippocampal neuromodulator able to regulate synaptic plasticity mechanisms involved in learning and memory functions. PMID:26511387

  6. Long-term stimulation of mouse hippocampal slice culture on microelectrode array.

    PubMed

    van Bergen, A; Papanikolaou, T; Schuker, A; Möller, A; Schlosshauer, B

    2003-05-01

    To understand mechanisms of information processing, development and degeneration of the central nervous system, simultaneous multisite recording and stimulation have become extremely helpful. We have further developed the innovative approach to record from intact neural networks using planar microelectrode arrays (MEAs) with 60 substrate-integrated nano-columnar electrodes. To allow for long-term stimulation, mouse hippocampal tissue slices were immobilized onto MEAs and permanently moved between the gas and medium phase in a specifically designed tilting incubator that made it possible to electrically contact up to 90 MEAs with 5400 electrodes. After 2-3 weeks in vitro, histochemical staining, the intracellular microinjection of the fluorescent dye Alexa and the recording of spontaneous activity revealed in vivo-like characteristics of the organotypically cultured tissue. The feasibility of long-term stimulation during culturing was demonstrated with a low frequency paradigm. 0.003 Hz stimulation over a 16 h period resulted in a significant decline of field potentials and population spikes in two identified hippocampal subregions. Control experiments revealed that this effect was not due to tissue detachment or to induced cell death. In summary, the novel technology promises to open a new avenue for analyzing regulatory interactions of neuronal activity, cell differentiation and gene expression during development and in diseases. PMID:12738008

  7. Shank1 regulates excitatory synaptic transmission in mouse hippocampal parvalbumin-expressing inhibitory interneurons.

    PubMed

    Mao, Wenjie; Watanabe, Takuya; Cho, Sukhee; Frost, Jeffrey L; Truong, Tina; Zhao, Xiaohu; Futai, Kensuke

    2015-04-01

    The Shank genes (SHANK1, 2, 3) encode scaffold proteins highly enriched in postsynaptic densities where they regulate synaptic structure in spiny neurons. Mutations in human Shank genes are linked to autism spectrum disorder and schizophrenia. Shank1 mutant mice exhibit intriguing cognitive phenotypes reminiscent of individuals with autism spectrum disorder. However, the molecular mechanisms leading to the human pathophysiological phenotypes and mouse behaviors have not been elucidated. In this study it is shown that Shank1 protein is highly localized in parvalbumin-expressing (PV+) fast-spiking inhibitory interneurons in the hippocampus. Importantly, a lack of Shank1 in hippocampal CA1 PV+ neurons reduced excitatory synaptic inputs and inhibitory synaptic outputs to pyramidal neurons. Furthermore, it is demonstrated that hippocampal CA1 pyramidal neurons in Shank1 mutant mice exhibit a shift in the excitatory and inhibitory balance (E-I balance), a pathophysiological hallmark of autism spectrum disorder. The mutant mice also exhibit lower expression of gephyrin (a scaffold component of inhibitory synapses), supporting the dysregulation of E-I balance in the hippocampus. These results suggest that Shank1 scaffold in PV+ interneurons regulates excitatory synaptic strength and participates in the maintenance of E-I balance in excitatory neurons. PMID:25816842

  8. Genome-wide alterations in hippocampal 5-hydroxymethylcytosine links plasticity genes to acute stress.

    PubMed

    Li, Sisi; Papale, Ligia A; Zhang, Qi; Madrid, Andy; Chen, Li; Chopra, Pankaj; Keleş, Sündüz; Jin, Peng; Alisch, Reid S

    2016-02-01

    Environmental stress is among the most important contributors to increased susceptibility to develop psychiatric disorders, including anxiety and post-traumatic stress disorder. While even acute stress alters gene expression, the molecular mechanisms underlying these changes remain largely unknown. 5-hydroxymethylcytosine (5hmC) is a novel environmentally sensitive DNA modification that is highly enriched in post-mitotic neurons and is associated with active transcription of neuronal genes. Recently, we found a hippocampal increase of 5hmC in the glucocorticoid receptor gene (Nr3c1) following acute stress, warranting a deeper investigation of stress-related 5hmC levels. Here we used an established chemical labeling and affinity purification method coupled with high-throughput sequencing technology to generate the first genome-wide profile of hippocampal 5hmC following exposure to acute restraint stress and a one-hour recovery. This approach found a genome-wide disruption in 5hmC associated with acute stress response, primarily in genic regions, and identified known and potentially novel stress-related targets that have a significant enrichment for neuronal ontological functions. Integration of these data with hippocampal gene expression data from these same mice found stress-related hydroxymethylation correlated to altered transcript levels and sequence motif predictions indicated that 5hmC may function by mediating transcription factor binding to these transcripts. Together, these data reveal an environmental impact on this newly discovered epigenetic mark in the brain and represent a critical step toward understanding stress-related epigenetic mechanisms that alter gene expression and can lead to the development of psychiatric disorders. PMID:26598390

  9. Effect of acute fentanyl treatment on synaptic plasticity in the hippocampal CA1 region in rats

    PubMed Central

    Tian, Hai; Xu, Yueming; Liu, Fucun; Wang, Guowei; Hu, Sanjue

    2015-01-01

    Postoperative cognitive dysfunction (POCD), mainly characterized by short-term decline of learning and memory, occurs after operations under anesthesia. However, the underlying mechanisms are poorly understood. The μ-opioid receptors (MOR) are highly expressed in interneurons of hippocampus, and is believed to be critical for the dysfunction of synaptic plasticity between hippocampal neurons. Therefore, we investigated the effect of fentanyl, a strong agonist of MOR and often used for anesthesia and analgesia in clinical settings, on hippocampal synaptic plasticity in the Schaffer-collateral CA1 pathway during acute exposure and washout in vitro. Our results revealed that acute fentanyl exposure (0.01, 0.1, 1 μM) dose-dependently increased the field excitatory postsynaptic potentials (fEPSPs), which was prevented by pre-administration of picrotoxin (50 μM) or MOR antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Phe-Thr-NH2 (CTOP, 10 μM). While fentanyl exposure-increased fEPSPs amplitude was prevented by picrotoxin [an inhibitor of γ-aminobutyric acid receptor (GABAR)] treatment or fentanyl washout, pretreatment of picrotoxin failed to prevent the fentanyl-impaired long-term potentiation (LTP) of synaptic strength as well as the fentanyl-enhanced long-term depression (LTD). These results demonstrated that fentanyl acute exposure and washout increases hippocampal excitability in the Schaffer-collateral CA1 pathway, depending on disinhibiting interneurons after MOR activation. In addition, fentanyl acute exposure and washout modulated synaptic plasticity, but the inhibitory activation was not critical. Elucidating the detailed mechanisms for synaptic dysfunction after fentanyl exposure and washout may provide insights into POCD generation after fentanyl anesthesia. PMID:26578961

  10. A mouse model replicating hippocampal sparing cranial irradiation in humans: A tool for identifying new strategies to limit neurocognitive decline.

    PubMed

    Tomé, Wolfgang A; Gökhan, Şölen; Brodin, N Patrik; Gulinello, Maria E; Heard, John; Mehler, Mark F; Guha, Chandan

    2015-01-01

    Cancer patients undergoing cranial irradiation are at risk of developing neurocognitive impairments. Recent evidence suggests that radiation-induced injury to the hippocampi could play an important role in this cognitive decline. As a tool for studying the mechanisms of hippocampal-dependent cognitive decline, we developed a mouse model replicating the results of the recent clinical RTOG 0933 study of hippocampal sparing whole-brain irradiation. We irradiated 16-week-old female C57BL/6J mice to a single dose of 10 Gy using either whole-brain irradiation (WBRT) or hippocampal sparing irradiation (HSI). These animals, as well as sham-irradiated controls, were subjected to behavioral/cognitive assessments distinguishing between hippocampal-dependent and hippocampal-independent functions. Irradiation was well tolerated by all animals and only limited cell death of proliferating cells was found within the generative zones. Animals exposed to WBRT showed significant deficits compared to sham-irradiated controls in the hippocampal-dependent behavioral task. In contrast, HSI mice did not perform significantly different from sham-irradiated mice (control group) and performed significantly better when compared to WBRT mice. This is consistent with the results from the RTOG 0933 clinical trial, and as such this animal model could prove a helpful tool for exploring new strategies for mitigating cognitive decline in cancer patients receiving cranial irradiation. PMID:26399509

  11. A mouse model replicating hippocampal sparing cranial irradiation in humans: A tool for identifying new strategies to limit neurocognitive decline

    PubMed Central

    Tomé, Wolfgang A.; Gökhan, Şölen; Brodin, N. Patrik; Gulinello, Maria E.; Heard, John; Mehler, Mark F.; Guha, Chandan

    2015-01-01

    Cancer patients undergoing cranial irradiation are at risk of developing neurocognitive impairments. Recent evidence suggests that radiation-induced injury to the hippocampi could play an important role in this cognitive decline. As a tool for studying the mechanisms of hippocampal-dependent cognitive decline, we developed a mouse model replicating the results of the recent clinical RTOG 0933 study of hippocampal sparing whole-brain irradiation. We irradiated 16-week-old female C57BL/6J mice to a single dose of 10 Gy using either whole-brain irradiation (WBRT) or hippocampal sparing irradiation (HSI). These animals, as well as sham-irradiated controls, were subjected to behavioral/cognitive assessments distinguishing between hippocampal-dependent and hippocampal-independent functions. Irradiation was well tolerated by all animals and only limited cell death of proliferating cells was found within the generative zones. Animals exposed to WBRT showed significant deficits compared to sham-irradiated controls in the hippocampal-dependent behavioral task. In contrast, HSI mice did not perform significantly different from sham-irradiated mice (control group) and performed significantly better when compared to WBRT mice. This is consistent with the results from the RTOG 0933 clinical trial, and as such this animal model could prove a helpful tool for exploring new strategies for mitigating cognitive decline in cancer patients receiving cranial irradiation. PMID:26399509

  12. Acute stress and hippocampal output: exploring dorsal CA1 and subicular synaptic plasticity simultaneously in anesthetized rats

    PubMed Central

    MacDougall, Matthew J; Howland, John G

    2013-01-01

    The Cornu Ammonis-1 (CA1) subfield and subiculum (SUB) serve as major output structures of the hippocampal formation. Exploring forms of synaptic plasticity simultaneously within these two output regions may improve understanding of the dynamics of hippocampal circuitry and information transfer between hippocampal and cortical brain regions. Using a novel dual-channel electrophysiological preparation in urethane-anesthetized adult male Sprague-Dawley rats in vivo, we examined the effects of acute restraint stress (30 min) on short- and long-term forms of synaptic plasticity in both CA1 and SUB by stimulating the CA3 region. Paired-pulse facilitation was disrupted in SUB but not CA1 in the dual-channel experiments following exposure to acute stress. Disruptions in CA1 PPF were evident in subsequent single-channel experiments with a more anterior recording site. Acute stress disrupted long-term potentiation induced by high-frequency stimulation (10 bursts of 20 pulses at 200 Hz) in both CA1 and SUB. Low-frequency stimulation (900 pulses at 1 Hz) did not alter CA1 plasticity while a late-developing potentiation was evident in SUB that was disrupted following exposure to acute stress. These findings highlight differences in the sensitivity to acute stress for distinct forms of synaptic plasticity within synapses in hippocampal output regions. The findings are discussed in relation to normal and aberrant forms of hippocampal-cortical information processing. PMID:24303119

  13. Impact of Transient Acute Hypoxia on the Developing Mouse EEG

    PubMed Central

    Zanelli, S.; Goodkin, H.P.; Kowalski, S.; Kapur, J.

    2015-01-01

    Hypoxemic events are common in sick preterm and term infants and represent the most common cause of seizures in the newborn period. Neonatal seizures often lack clinical correlates and are only recognized by electroencephalogram (EEG). The mechanisms leading from a hypoxic/ischemic insult to acute seizures in neonates remain poorly understood. Further, the effects of hypoxia on EEG at various developmental stages have not been fully characterized in neonatal animals, in part due to technical challenges. We evaluated the impact of hypoxia on neonatal mouse EEG to define periods of increased susceptibility to seizures during postnatal development. Hippocampal and cortical electrodes were implanted stereotaxically in C57BL/6 mice from postnatal age 3 (P3) to P15. Following recovery, EEG recording were obtained during baseline, acute hypoxia (4% FiO2 for 4 min) and reoxygenation. In baseline recordings, maturation of EEG was characterized by the appearance of a more continuous background pattern that replaced alternating high and low amplitude activity. Clinical seizures during hypoxia were observed more frequently in younger animals (100% P3-4, 87.5% P5-6, 93% P7-8, 83% P9-10, 33% P11-12, 17% P15, r2=0.81) and also occurred at higher FiO2 in younger animals (11.2±1.1% P3-P6 vs. 8.9±0.8% P7-12, p<0.05). Background attenuation followed the initial hypoxemic seizure; progressive return to baseline during reoxygenation was observed in survivors. Electrographic seizures without clinical manifestations were observed during reoxygenation, again more commonly in younger animals (83% P3-4, 86% P5-6, 75% P7-8, 71% P9-10, 20% P11-12, r2=0.82). All P15 animals died with this duration and degree of hypoxia. Post-ictal abnormalities included burst attenuation and post-anoxic myoclonus and were more commonly seen in older animals. In summary, neonatal mice exposed to brief and severe hypoxia followed by rapid reoxygenation reliably develop seizures and the response to hypoxia

  14. The Effect of Acute and Chronic Social Stress on the Hippocampal Transcriptome in Mice.

    PubMed

    Stankiewicz, Adrian M; Goscik, Joanna; Majewska, Alicja; Swiergiel, Artur H; Juszczak, Grzegorz R

    2015-01-01

    Psychogenic stress contributes to the formation of brain pathology. Using gene expression microarrays, we analyzed the hippocampal transcriptome of mice subjected to acute and chronic social stress of different duration. The longest period of social stress altered the expression of the highest number of genes and most of the stress-induced changes in transcription were reversible after 5 days of rest. Chronic stress affected genes involved in the functioning of the vascular system (Alas2, Hbb-b1, Hba-a2, Hba-a1), injury response (Vwf, Mgp, Cfh, Fbln5, Col3a1, Ctgf) and inflammation (S100a8, S100a9, Ctla2a, Ctla2b, Lcn2, Lrg1, Rsad2, Isg20). The results suggest that stress may affect brain functions through the stress-induced dysfunction of the vascular system. An important issue raised in our work is also the risk of the contamination of brain tissue samples with choroid plexus. Such contamination would result in a consistent up- or down-regulation of genes, such as Ttr, Igf2, Igfbp2, Prlr, Enpp2, Sostdc1, 1500015O10RIK (Ecrg4), Kl, Clic6, Kcne2, F5, Slc4a5, and Aqp1. Our study suggests that some of the previously reported, supposedly specific changes in hippocampal gene expression, may be a result of the inclusion of choroid plexus in the hippocampal samples. PMID:26556046

  15. The Effect of Acute and Chronic Social Stress on the Hippocampal Transcriptome in Mice

    PubMed Central

    Stankiewicz, Adrian M.; Goscik, Joanna; Majewska, Alicja; Swiergiel, Artur H.; Juszczak, Grzegorz R.

    2015-01-01

    Psychogenic stress contributes to the formation of brain pathology. Using gene expression microarrays, we analyzed the hippocampal transcriptome of mice subjected to acute and chronic social stress of different duration. The longest period of social stress altered the expression of the highest number of genes and most of the stress-induced changes in transcription were reversible after 5 days of rest. Chronic stress affected genes involved in the functioning of the vascular system (Alas2, Hbb-b1, Hba-a2, Hba-a1), injury response (Vwf, Mgp, Cfh, Fbln5, Col3a1, Ctgf) and inflammation (S100a8, S100a9, Ctla2a, Ctla2b, Lcn2, Lrg1, Rsad2, Isg20). The results suggest that stress may affect brain functions through the stress-induced dysfunction of the vascular system. An important issue raised in our work is also the risk of the contamination of brain tissue samples with choroid plexus. Such contamination would result in a consistent up- or down-regulation of genes, such as Ttr, Igf2, Igfbp2, Prlr, Enpp2, Sostdc1, 1500015O10RIK (Ecrg4), Kl, Clic6, Kcne2, F5, Slc4a5, and Aqp1. Our study suggests that some of the previously reported, supposedly specific changes in hippocampal gene expression, may be a result of the inclusion of choroid plexus in the hippocampal samples. PMID:26556046

  16. ACAP3 regulates neurite outgrowth through its GAP activity specific to Arf6 in mouse hippocampal neurons.

    PubMed

    Miura, Yuki; Hongu, Tsunaki; Yamauchi, Yohei; Funakoshi, Yuji; Katagiri, Naohiro; Ohbayashi, Norihiko; Kanaho, Yasunori

    2016-09-01

    ACAP3 (ArfGAP with coiled-coil, ankyrin repeat and pleckstrin homology domains 3) belongs to the ACAP family of GAPs (GTPase-activating proteins) for the small GTPase Arf (ADP-ribosylation factor). However, its specificity to Arf isoforms and physiological functions remain unclear. In the present study, we demonstrate that ACAP3 plays an important role in neurite outgrowth of mouse hippocampal neurons through its GAP activity specific to Arf6. In primary cultured mouse hippocampal neurons, knockdown of ACAP3 abrogated neurite outgrowth, which was rescued by ectopically expressed wild-type ACAP3, but not by its GAP activity-deficient mutant. Ectopically expressed ACAP3 in HEK (human embryonic kidney)-293T cells showed the GAP activity specific to Arf6. In support of this observation, the level of GTP-bound Arf6 was significantly increased by knockdown of ACAP3 in hippocampal neurons. In addition, knockdown and knockout of Arf6 in mouse hippocampal neurons suppressed neurite outgrowth. These results demonstrate that ACAP3 positively regulates neurite outgrowth through its GAP activity specific to Arf6. Furthermore, neurite outgrowth suppressed by ACAP3 knockdown was rescued by expression of a fast cycle mutant of Arf6 that spontaneously exchanges guanine nucleotides on Arf6, but not by that of wild-type, GTP- or GDP-locked mutant Arf6. Thus cycling between active and inactive forms of Arf6, which is precisely regulated by ACAP3 in concert with a guanine-nucleotide-exchange factor(s), seems to be required for neurite outgrowth of hippocampal neurons. PMID:27330119

  17. Hippocampal and behavioral dysfunctions in a mouse model of environmental stress: normalization by agomelatine.

    PubMed

    Boulle, F; Massart, R; Stragier, E; Païzanis, E; Zaidan, L; Marday, S; Gabriel, C; Mocaer, E; Mongeau, R; Lanfumey, L

    2014-01-01

    Stress-induced alterations in neuronal plasticity and in hippocampal functions have been suggested to be involved in the development of mood disorders. In this context, we investigated in the hippocampus the activation of intracellular signaling cascades, the expression of epigenetic markers and plasticity-related genes in a mouse model of stress-induced hyperactivity and of mixed affective disorders. We also determined whether the antidepressant drug agomelatine, a MT1/MT2 melatonergic receptor agonist/5-HT2C receptor antagonist, could prevent some neurobiological and behavioral alterations produced by stress. C57BL/6J mice, exposed for 3 weeks to daily unpredictable socio-environmental stressors of mild intensity, were treated during the whole procedure with agomelatine (50 mg kg(-1) per day, intraperitoneal). Stressed mice displayed robust increases in emotional arousal, vigilance and motor activity, together with a reward deficit and a reduction in anxiety-like behavior. Neurobiological investigations showed an increased phosphorylation of intracellular signaling proteins, including Atf1, Creb and p38, in the hippocampus of stressed mice. Decreased hippocampal level of the repressive epigenetic marks HDAC2 and H3K9me2, as well as increased level of the permissive mark H3K9/14ac suggested that chronic mild stress was associated with increased gene transcription, and clear-cut evidence was further indicated by changes in neuroplasticity-related genes, including Arc, Bcl2, Bdnf, Gdnf, Igf1 and Neurod1. Together with other findings, the present data suggest that chronic ultra-mild stress can model the hyperactivity or psychomotor agitation, as well as the mixed affective behaviors often observed during the manic state of bipolar disorder patients. Interestingly, agomelatine could normalize both the behavioral and the molecular alterations induced by stress, providing further insights into the mechanism of action of this new generation antidepressant drug. PMID

  18. Neurogenic and Neurotrophic Effects of BDNF Peptides in Mouse Hippocampal Primary Neuronal Cell Cultures

    PubMed Central

    Cardenas-Aguayo, Maria del Carmen; Kazim, Syed Faraz; Grundke-Iqbal, Inge; Iqbal, Khalid

    2013-01-01

    The level of brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, is down regulated in Alzheimer’s disease (AD), Parkinson’s disease (PD), depression, stress, and anxiety; conversely the level of this neurotrophin is increased in autism spectrum disorders. Thus, modulating the level of BDNF can be a potential therapeutic approach for nervous system pathologies. In the present study, we designed five different tetra peptides (peptides B-1 to B-5) corresponding to different active regions of BDNF. These tetra peptides were found to be non-toxic, and they induced the expression of neuronal markers in mouse embryonic day 18 (E18) primary hippocampal neuronal cultures. Additionally, peptide B-5 induced the expression of BDNF and its receptor, TrkB, suggesting a positive feedback mechanism. The BDNF peptides induced only a moderate activation (phosphorylation at Tyr 706) of the TrkB receptor, which could be blocked by the Trk’s inhibitor, K252a. Peptide B-3, when combined with BDNF, potentiated the survival effect of this neurotrophin on H2O2-treated E18 hippocampal cells. Peptides B-3 and B-5 were found to work as partial agonists and as partial antagonists competing with BDNF to activate the TrkB receptor in a dose-dependent manner. Taken together, these results suggest that the described BDNF tetra peptides are neurotrophic, can modulate BDNF signaling in a partial agonist/antagonist way, and offer a novel therapeutic approach to neural pathologies where BDNF levels are dysregulated. PMID:23320097

  19. Salvianolic Acids Attenuate Rat Hippocampal Injury after Acute CO Poisoning by Improving Blood Flow Properties

    PubMed Central

    Guan, Li; Zhang, Yan-Lin; Li, Zong-Yang; Zhu, Ming-Xia; Yao, Wei-Juan; Zhao, Jin-Yuan

    2015-01-01

    Carbon monoxide (CO) poisoning causes the major injury and death due to poisoning worldwide. The most severe damage via CO poisoning is brain injury and mortality. Delayed encephalopathy after acute CO poisoning (DEACMP) occurs in forty percent of the survivors of acute CO exposure. But the pathological cause for DEACMP is not well understood. And the corresponding therapy is not well developed. In order to investigate the effects of salvianolic acid (SA) on brain injury caused by CO exposure from the view point of hemorheology, we employed a rat model and studied the dynamic of blood changes in the hemorheological and coagulative properties over acute CO exposure. Compared with the groups of CO and 20% mannitol + CO treatments, the severe hippocampal injury caused by acute CO exposure was prevented by SA treatment. These protective effects were associated with the retaining level of hematocrit (Hct), plasma viscosity, fibrinogen, whole blood viscosities and malondialdehyde (MDA) levels in red blood cells (RBCs). These results indicated that SA treatment could significantly improve the deformation of erythrocytes and prevent the damage caused by CO poisoning. Meanwhile, hemorheological indexes are good indicators for monitoring the pathological dynamic after acute CO poisoning. PMID:25705671

  20. Long-Term Potentiation by Theta-Burst Stimulation Using Extracellular Field Potential Recordings in Acute Hippocampal Slices.

    PubMed

    Abrahamsson, Therese; Lalanne, Txomin; Watt, Alanna J; Sjöström, P Jesper

    2016-01-01

    This protocol describes how to carry out theta-burst long-term potentiation (LTP) with extracellular field recordings in acute rodent hippocampal slices. This method is relatively simple and noninvasive and provides a way to sample many neurons simultaneously, making it suitable for applications requiring higher throughput than whole-cell recording. PMID:27250947

  1. Characterization of myelin pathology in the hippocampal complex of a transgenic mouse model of Alzheimer's disease.

    PubMed

    Schmued, Larry C; Raymick, James; Paule, Merle G; Dumas, Melanie; Sarkar, Sumit

    2013-01-01

    We have characterized the myelin changes observed within the hippocampal complex (HC) of a transgenic (Tg) mouse model of Alzheimer's disease (AD). Individual myelinated fibers were labeled with Black-Gold II while amyloid plaques were labeled with either Congo Red or Pan-A-beta immunofluoresence. Myelinated fibers were never seen passing through amyloid plaques in any region, while conspicuous myelin pathology was seen within, and immediately adjacent to, the amyloid plaques in the HC of the AD-Tg mouse. This pathology consisted of a complete disruption of myelinated fibers passing through the plaque and the region immediately adjacent to the plaques exhibited an edematous swelling of the fibers. This pathology was most frequently observed within the molecular and polymorph layers of the dentate gyrus and the molecular layer of Ammon's horn. The remaining layers of Ammon's horn exhibited minimal myelin pathology, while moderate myelinopathy was observed in the subiculum. Since the HC is integral for memory function, these findings may help account for the memory problems so characteristic of the disease process. Because the molecular layers of the dentate gyrus and Ammon's horn are the sites of inputs to the HC, the extensive myelin pathology observed in these regions would imply functional deafferentation of the HC. The appearance of some Black-Gold II positive debris within the plaques may reflect a possible cascade mechanism whereby the presence of plaques results in myelin degeneration, some of which is incorporated within the plaque, causing it to further expand in a self-perpetuating fashion. PMID:23157338

  2. Fractal analysis of a voltage-dependent potassium channel from cultured mouse hippocampal neurons.

    PubMed

    Liebovitch, L S; Sullivan, J M

    1987-12-01

    The kinetics of ion channels have been widely modeled as a Markov process. In these models it is assumed that the channel protein has a small number of discrete conformational states and the kinetic rate constants connecting these states are constant. In the alternative fractal model the spontaneous fluctuations of the channel protein at many different time scales are represented by a kinetic rate constant k = At1-D, where A is the kinetic setpoint and D the fractal dimension. Single-channel currents were recorded at 146 mM external K+ from an inwardly rectifying, 120 pS, K+ selective, voltage-sensitive channel in cultured mouse hippocampal neurons. The kinetics of these channels were found to be statistically self-similar at different time scales as predicted by the fractal model. The fractal dimensions were approximately 2 for the closed times and approximately 1 for the open times and did not depend on voltage. For both the open and closed times the logarithm of the kinetic setpoint was found to be proportional to the applied voltage, which indicates that the gating of this channel involves the net inward movement of approximately one negative charge when this channel opens. Thus, the open and closed times and the voltage dependence of the gating of this channel are well described by the fractal model. PMID:2447974

  3. Fractal analysis of a voltage-dependent potassium channel from cultured mouse hippocampal neurons.

    PubMed Central

    Liebovitch, L S; Sullivan, J M

    1987-01-01

    The kinetics of ion channels have been widely modeled as a Markov process. In these models it is assumed that the channel protein has a small number of discrete conformational states and the kinetic rate constants connecting these states are constant. In the alternative fractal model the spontaneous fluctuations of the channel protein at many different time scales are represented by a kinetic rate constant k = At1-D, where A is the kinetic setpoint and D the fractal dimension. Single-channel currents were recorded at 146 mM external K+ from an inwardly rectifying, 120 pS, K+ selective, voltage-sensitive channel in cultured mouse hippocampal neurons. The kinetics of these channels were found to be statistically self-similar at different time scales as predicted by the fractal model. The fractal dimensions were approximately 2 for the closed times and approximately 1 for the open times and did not depend on voltage. For both the open and closed times the logarithm of the kinetic setpoint was found to be proportional to the applied voltage, which indicates that the gating of this channel involves the net inward movement of approximately one negative charge when this channel opens. Thus, the open and closed times and the voltage dependence of the gating of this channel are well described by the fractal model. PMID:2447974

  4. Complexity and multifractality of neuronal noise in mouse and human hippocampal epileptiform dynamics.

    PubMed

    Serletis, Demitre; Bardakjian, Berj L; Valiante, Taufik A; Carlen, Peter L

    2012-10-01

    Fractal methods offer an invaluable means of investigating turbulent nonlinearity in non-stationary biomedical recordings from the brain. Here, we investigate properties of complexity (i.e. the correlation dimension, maximum Lyapunov exponent, 1/f(γ) noise and approximate entropy) and multifractality in background neuronal noise-like activity underlying epileptiform transitions recorded at the intracellular and local network scales from two in vitro models: the whole-intact mouse hippocampus and lesional human hippocampal slices. Our results show evidence for reduced dynamical complexity and multifractal signal features following transition to the ictal epileptiform state. These findings suggest that pathological breakdown in multifractal complexity coincides with loss of signal variability or heterogeneity, consistent with an unhealthy ictal state that is far from the equilibrium of turbulent yet healthy fractal dynamics in the brain. Thus, it appears that background noise-like activity successfully captures complex and multifractal signal features that may, at least in part, be used to classify and identify brain state transitions in the healthy and epileptic brain, offering potential promise for therapeutic neuromodulatory strategies for afflicted patients suffering from epilepsy and other related neurological disorders. PMID:22929878

  5. Complexity and multifractality of neuronal noise in mouse and human hippocampal epileptiform dynamics

    NASA Astrophysics Data System (ADS)

    Serletis, Demitre; Bardakjian, Berj L.; Valiante, Taufik A.; Carlen, Peter L.

    2012-10-01

    Fractal methods offer an invaluable means of investigating turbulent nonlinearity in non-stationary biomedical recordings from the brain. Here, we investigate properties of complexity (i.e. the correlation dimension, maximum Lyapunov exponent, 1/fγ noise and approximate entropy) and multifractality in background neuronal noise-like activity underlying epileptiform transitions recorded at the intracellular and local network scales from two in vitro models: the whole-intact mouse hippocampus and lesional human hippocampal slices. Our results show evidence for reduced dynamical complexity and multifractal signal features following transition to the ictal epileptiform state. These findings suggest that pathological breakdown in multifractal complexity coincides with loss of signal variability or heterogeneity, consistent with an unhealthy ictal state that is far from the equilibrium of turbulent yet healthy fractal dynamics in the brain. Thus, it appears that background noise-like activity successfully captures complex and multifractal signal features that may, at least in part, be used to classify and identify brain state transitions in the healthy and epileptic brain, offering potential promise for therapeutic neuromodulatory strategies for afflicted patients suffering from epilepsy and other related neurological disorders. This paper is based on chapter 5 of Serletis (2010 PhD Dissertation Department of Physiology, Institute of Biomaterials and Biomedical Engineering, University of Toronto).

  6. Peripheral orthopaedic surgery down-regulates hippocampal brain-derived neurotrophic factor and impairs remote memory in mouse.

    PubMed

    Fidalgo, A R; Cibelli, M; White, J P M; Nagy, I; Noormohamed, F; Benzonana, L; Maze, M; Ma, D

    2011-09-01

    Peripheral orthopaedic surgery induces a profound inflammatory response. This includes a substantial increase in cytokines and, especially, in the level of interleukin (IL)-1β in the hippocampus, which has been shown to impair hippocampal-dependent memory in mice. We have employed two tests of contextual remote memory to demonstrate that the inflammatory response to surgical insult in mice also results in impairment of remote memory associated with prefrontal cortex (PFC). We have also found that, under the conditions presented in the social interaction test, peripheral orthopaedic surgery does not increase anxiety-like behaviour in our animal model. Although such surgery induces an increase in the level of IL-1β in the hippocampus, it fails to do so in the PFC. Peripheral orthopaedic surgery also results in a reduction in the level of hippocampal brain-derived neurotrophic factor (BDNF) and this may contribute, in part, to the memory impairment found after such surgery. Our data suggest that a reduction in the level of hippocampal BDNF and an increase in the level of hippocampal IL-1β following surgery may affect the transference of fear memory in the mouse brain. PMID:21699962

  7. Investigation of Synaptic Tagging/Capture and Cross-capture using Acute Hippocampal Slices from Rodents

    PubMed Central

    Shetty, Mahesh Shivarama; Sharma, Mahima; Hui, Neo Sin; Dasgupta, Ananya; Gopinadhan, Suma; Sajikumar, Sreedharan

    2015-01-01

    Synaptic tagging and capture (STC) and cross-tagging are two important mechanisms at cellular level that explain how synapse-specificity and associativity is achieved in neurons within a specific time frame. These long-term plasticity-related processes are the leading candidate models to study the basis of memory formation and persistence at the cellular level. Both STC and cross-tagging involve two serial processes: (1) setting of the synaptic tag as triggered by a specific pattern of stimulation, and (2) synaptic capture, whereby the synaptic tag interacts with newly synthesized plasticity-related proteins (PRPs). Much of the understanding about the concepts of STC and cross-tagging arises from the studies done in CA1 region of the hippocampus and because of the technical complexity many of the laboratories are still unable to study these processes. Experimental conditions for the preparation of hippocampal slices and the recording of stable late-LTP/LTD are extremely important to study synaptic tagging/cross-tagging. This video article describes the experimental procedures to study long-term plasticity processes such as STC and cross-tagging in the CA1 pyramidal neurons using stable, long-term field-potential recordings from acute hippocampal slices of rats. PMID:26381286

  8. Investigation of Synaptic Tagging/Capture and Cross-capture using Acute Hippocampal Slices from Rodents.

    PubMed

    Shetty, Mahesh Shivarama; Sharma, Mahima; Hui, Neo Sin; Dasgupta, Ananya; Gopinadhan, Suma; Sajikumar, Sreedharan

    2015-01-01

    Synaptic tagging and capture (STC) and cross-tagging are two important mechanisms at cellular level that explain how synapse-specificity and associativity is achieved in neurons within a specific time frame. These long-term plasticity-related processes are the leading candidate models to study the basis of memory formation and persistence at the cellular level. Both STC and cross-tagging involve two serial processes: (1) setting of the synaptic tag as triggered by a specific pattern of stimulation, and (2) synaptic capture, whereby the synaptic tag interacts with newly synthesized plasticity-related proteins (PRPs). Much of the understanding about the concepts of STC and cross-tagging arises from the studies done in CA1 region of the hippocampus and because of the technical complexity many of the laboratories are still unable to study these processes. Experimental conditions for the preparation of hippocampal slices and the recording of stable late-LTP/LTD are extremely important to study synaptic tagging/cross-tagging. This video article describes the experimental procedures to study long-term plasticity processes such as STC and cross-tagging in the CA1 pyramidal neurons using stable, long-term field-potential recordings from acute hippocampal slices of rats. PMID:26381286

  9. Acute running stimulates hippocampal dopaminergic neurotransmission in rats, but has no influence on brain-derived neurotrophic factor

    PubMed Central

    Goekint, Maaike; Bos, Inge; Heyman, Elsa; Michotte, Yvette; Sarre, Sophie

    2012-01-01

    Hippocampal brain-derived neurotrophic factor (BDNF) protein is increased with exercise in rats. Monoamines seem to play a role in the regulation of BDNF, and monoamine neurotransmission is known to increase with exercise. The purpose of this study was to examine the influence of acute exercise on monoaminergic neurotransmission and BDNF protein concentrations. Hippocampal microdialysis was performed in rats that were subjected to 60 min of treadmill running at 20 m/min or rest. Two hours postexercise, the rats were killed, and the hippocampus was dissected. In experiments without microdialysis, hippocampus and serum samples were collected immediately after exercise. Exercise induced a twofold increase in hippocampal dopamine release. Noradrenaline and serotonin release were not affected. Hippocampal BDNF levels were not influenced, whether they were measured immediately or 2 h after the exercise protocol. Serum BDNF levels did not change either, but serum BDNF was negatively correlated to peripheral corticosterone concentrations, indicating a possible inhibitory reaction to the stress of running. Sixty minutes of exercise enhances dopamine release in the hippocampus of the rat in vivo. However, this increase is not associated with changes in BDNF protein levels immediately nor 2 h after the acute exercise bout. An increased corticosterone level might be the contributing factor for the absence of changes in BDNF. PMID:22134693

  10. Impaired hippocampal-dependent memory and reduced parvalbumin-positive interneurons in a ketamine mouse model of schizophrenia.

    PubMed

    Koh, Ming Teng; Shao, Yi; Sherwood, Andrew; Smith, Dani R

    2016-03-01

    The hippocampus of patients with schizophrenia displays aberrant excess neuronal activity which affects cognitive function. Animal models of the illness have recapitulated the overactivity in the hippocampus, with a corresponding regionally localized reduction of inhibitory interneurons, consistent with that observed in patients. To better understand whether cognitive function is similarly affected in these models of hippocampal overactivity, we tested a ketamine mouse model of schizophrenia for cognitive performance in hippocampal- and medial prefrontal cortex (mPFC)-dependent tasks. We found that adult mice exposed to ketamine during adolescence were impaired on a trace fear conditioning protocol that relies on the integrity of the hippocampus. Conversely, the performance of the mice was normal on a delayed response task that is sensitive to mPFC damage. We confirmed that ketamine-exposed mice had reduced parvalbumin-positive interneurons in the hippocampus, specifically in the CA1, but not in the mPFC in keeping with the behavioral findings. These results strengthened the utility of the ketamine model for preclinical investigations of hippocampal overactivity in schizophrenia. PMID:26811256

  11. Changes in Dopamine Signalling Do Not Underlie Aberrant Hippocampal Plasticity in a Mouse Model of Huntington's Disease.

    PubMed

    Dallérac, Glenn M; Cummings, Damian M; Hirst, Mark C; Milnerwood, Austen J; Murphy, Kerry P S J

    2016-03-01

    Altered dopamine receptor labelling has been demonstrated in presymptomatic and symptomatic Huntington's disease (HD) gene carriers, indicating that alterations in dopaminergic signalling are an early event in HD. We have previously described early alterations in synaptic transmission and plasticity in both the cortex and hippocampus of the R6/1 mouse model of Huntington's disease. Deficits in cortical synaptic plasticity were associated with altered dopaminergic signalling and could be reversed by D1- or D2-like dopamine receptor activation. In light of these findings we here investigated whether defects in dopamine signalling could also contribute to the marked alteration in hippocampal synaptic function. To this end we performed dopamine receptor labelling and pharmacology in the R6/1 hippocampus and report a marked, age-dependent elevation of hippocampal D1 and D2 receptor labelling in R6/1 hippocampal subfields. Yet, pharmacological inhibition or activation of D1- or D2-like receptors did not modify the aberrant synaptic plasticity observed in R6/1 mice. These findings demonstrate that global perturbations to dopamine receptor expression do occur in HD transgenic mice, similarly in HD gene carriers and patients. However, the direction of change and the lack of effect of dopaminergic pharmacological agents on synaptic function demonstrate that the perturbations are heterogeneous and region-specific, a finding that may explain the mixed results of dopamine therapy in HD. PMID:26782175

  12. Modulation of inhibitory glycine receptors in cultured embryonic mouse hippocampal neurons by zinc, thiol containing redox agents and carnosine.

    PubMed

    Thio, L L; Zhang, H X

    2006-01-01

    Modulation of inhibitory glycine receptors by zinc (Zn(2+)) and endogenous redox agents such as glutathione may alter inhibition in the mammalian brain. Despite the abundance of Zn(2+) in the hippocampus and its ability to modulate glycine receptors, few studies have examined Zn(2+) modulation of hippocampal glycine receptors. Whether redox agents modulate hippocampal glycine receptors also remains unknown. This study examined Zn(2+) and redox modulation of glycine receptor-mediated currents in cultured embryonic mouse hippocampal neurons using whole-cell recordings. Zn(2+) concentrations below 10 microM potentiated currents elicited by low glycine, beta-alanine, and taurine concentrations by 300-400%. Zn(2+) concentrations above 300 microM produced nearly complete inhibition. Potentiating Zn(2+) concentrations shifted the dose-response curves for the three agonists to the left and decreased the Hill coefficient for glycine and beta-alanine but not taurine. Inhibiting Zn(2+) concentrations shifted the dose-response curves for glycine and beta-alanine to the right but reduced the maximum taurine response. Histidine residues may participate in potentiation because diethyl pyrocarbonate and pH 5.4 diminished Zn(2+) enhancement of glycine currents. pH 5.4 diminished Zn(2+) block of glycine currents, but diethyl pyrocarbonate did not. These findings indicate that separate sites mediate Zn(2+) potentiation and inhibition. The redox agents glutathione, dithiothreitol, tris(2-carboxyethyl)phosphine, and 5,5'-dithiobis(2-nitrobenzoic acid) did not alter glycine currents by a redox mechanism. However, glutathione and dithiothreitol interfered with the effects of Zn(2+) on glycine currents by chelating it. Carnosine had similar effects. Thus, Zn(2+) and thiol containing redox agents that chelate Zn(2+) modulate hippocampal glycine receptors with the mechanism of Zn(2+) modulation being agonist dependent. PMID:16515845

  13. Decline of hippocampal stress reactivity and neuronal ensemble coherence in a mouse model of depression.

    PubMed

    Law, Jade; Ibarguen-Vargas, Yadira; Belzung, Catherine; Surget, Alexandre

    2016-05-01

    Dysregulations of stress systems, especially the hypothalamo-pituitary-adrenal (HPA) axis, have been commonly reported in major depression. Consistent results emphasized the role of the hippocampus in regulating stress systems and restoring an operative control on HPA axis following antidepressant treatments. However, very little is known about how the hippocampus integrates stress-related information and reacts to stressors beforehand. We therefore aimed to assess activations of hippocampal neuronal ensembles during stress-related experiences and evaluated the effects of a mouse model of depression, the Unpredictable Chronic Mild Stress (UCMS), and an antidepressant treatment (fluoxetine, 20mgkg(-1)day(-1), ip) in BALB/cByJ mice. The UCMS induced a depression-like syndrome characterized by a reduced weight gain, a progressive deterioration of the coat, an altered stress-coping strategy in behavioural tests and HPA axis dysregulations. Chronic fluoxetine had no effect in control non-stressed mice per se but reversed the syndrome induced by the UCMS, including an improvement of the HPA-system alterations. Neuronal activation was then assessed by immediate early-gene (c-fos) expression in different subfields of the CA3 and dentate gyrus (DG) along the dorso-ventral axis of the hippocampus, as they can support different computational functions. Our results showed that the hippocampus reacts to stressors by adjusting activations of cell ensembles. A pre-treatment with dexamethasone (DEX), a glucocorticoid receptor (GR) agonist that produced a delayed inhibition of the HPA axis activity, reduced novelty-related activations in the proximal CA3 (CA3c) and the DG of the dorsal hippocampus. All these effects were compromised by the UCMS, particularly by altering activation coherences within the dorsal CA3-DG network, but were rescued by chronic fluoxetine. Our study indicates therefore that variations of CA3-DG cell ensemble activation may contribute to stress integration

  14. Inhibition of GSK3β rescues hippocampal development and learning in a mouse model of CDKL5 disorder.

    PubMed

    Fuchs, Claudia; Rimondini, Roberto; Viggiano, Rocchina; Trazzi, Stefania; De Franceschi, Marianna; Bartesaghi, Renata; Ciani, Elisabetta

    2015-10-01

    Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in a rare neurodevelopmental disorder characterized by early-onset seizures, severe developmental delay, intellectual disability and Rett syndrome-like features. CDKL5 is highly expressed in the brain during early postnatal stages, suggesting its importance for brain maturation. Using a newly-generated Cdkl5 knockout (Cdkl5 -/Y) mouse, we recently found that loss of Cdkl5 impairs postnatal hippocampal development with a reduction in neuronal precursor survival and maturation. These defects were accompanied by increased activity of the glycogen synthase kinase 3β (GSK3β) a crucial inhibitory regulator of many neurodevelopmental processes. The goal of the current study was to establish whether inhibition of GSK3β corrects hippocampal developmental defects due to Cdkl5 loss. We found that treatment with the GSK3β inhibitor SB216763 restored neuronal precursor survival, dendritic maturation, connectivity and hippocampus-dependent learning and memory in the Cdkl5 -/Y mouse. Importantly, these effects were retained one month after treatment cessation. At present, there are no therapeutic strategies to improve the neurological defects of subjects with CDKL5 disorder. Current results point at GSK3β inhibitors as potential therapeutic tools for the improvement of abnormal brain development in CDKL5 disorder. PMID:26143616

  15. Hippocampal Neuron Loss Exceeds Amyloid Plaque Load in a Transgenic Mouse Model of Alzheimer’s Disease

    PubMed Central

    Schmitz, Christoph; Rutten, Bart P. F.; Pielen, Andrea; Schäfer, Stephanie; Wirths, Oliver; Tremp, Günter; Czech, Christian; Blanchard, Veronique; Multhaup, Gerd; Rezaie, Payam; Korr, Hubert; Steinbusch, Harry W. M.; Pradier, Laurent; Bayer, Thomas A.

    2004-01-01

    According to the “amyloid hypothesis of Alzheimer’s disease,” β-amyloid is the primary driving force in Alzheimer’s disease pathogenesis. Despite the development of many transgenic mouse lines developing abundant β-amyloid-containing plaques in the brain, the actual link between amyloid plaques and neuron loss has not been clearly established, as reports on neuron loss in these models have remained controversial. We investigated transgenic mice expressing human mutant amyloid precursor protein APP751 (KM670/671NL and V717I) and human mutant presenilin-1 (PS-1 M146L). Stereologic and image analyses revealed substantial age-related neuron loss in the hippocampal pyramidal cell layer of APP/PS-1 double-transgenic mice. The loss of neurons was observed at sites of Aβ aggregation and surrounding astrocytes but, most importantly, was also clearly observed in areas of the parenchyma distant from plaques. These findings point to the potential involvement of more than one mechanism in hippocampal neuron loss in this APP/PS-1 double-transgenic mouse model of Alzheimer’s disease. PMID:15039236

  16. miR-204 downregulates EphB2 in aging mouse hippocampal neurons.

    PubMed

    Danka Mohammed, Chand Parvez; Rhee, Hwanseok; Phee, Bong-Kwan; Kim, Kunhyung; Kim, Hee-Jin; Lee, Hyehyeon; Park, Jung Hoon; Jung, Jung Hee; Kim, Jeong Yeon; Kim, Hyoung-Chin; Park, Sang Ki; Nam, Hong Gil; Kim, Keetae

    2016-04-01

    Hippocampal synaptic function and plasticity deteriorate with age, often resulting in learning and memory deficits. As MicroRNAs (miRNAs) are important regulators of neuronal protein expression, we examined whether miRNAs may contribute to this age-associated decline in hippocampal function. We first compared the small RNA transcriptome of hippocampal tissues from young and old mice. Among 269 hippocampal miRNAs, 80 were differentially expressed (≥ twofold) among the age groups. We focused on 36 miRNAs upregulated in the old mice compared with those in the young mice. The potential targets of these 36 miRNAs included 11 critical Eph/Ephrin synaptic signaling components. The expression levels of several genes in the Eph/Ephrin pathway, including EphB2, were significantly downregulated in the aged hippocampus. EphB2 is a known regulator of synaptic plasticity in hippocampal neurons, in part by regulating the surface expression of the NMDA receptor NR1 subunit. We found that EphB2 is a direct target of miR-204 among miRNAs that were upregulated with age. The transfection of primary hippocampal neurons with a miR-204 mimic suppressed both EphB2 mRNA and protein expression and reduced the surface expression of NR1. Transfection of miR-204 also decreased the total expression of NR1. miR-204 induces senescence-like phenotype in fully matured neurons as evidenced by an increase in p16-positive cells. We suggest that aging is accompanied by the upregulation of miR-204 in the hippocampus, which downregulates EphB2 and results in reduced surface and total NR1 expression. This mechanism may contribute to age-associated decline in hippocampal synaptic plasticity and the related cognitive functions. PMID:26799631

  17. NMR based metabolomics reveals acute hippocampal metabolic fluctuations during cranial irradiation in murine model.

    PubMed

    Rana, Poonam; Gupta, Mamta; Khan, Ahmad Raza; Hemanth Kumar, B S; Roy, Raja; Khushu, Subash

    2014-07-01

    Cranial irradiation is widely used as a treatment modality or prophylactic treatment in cancer patients, but it is frequently related to neurocognitive impairment in cancer survivors. Though most of radiation-induced changes occur during early and late delayed phase of radiation sickness, recent reports have supported the evidence of impaired neurogenesis within 24-48 h of radiation exposure that may implicate changes in acute phase as well. Inspection of these acute changes could be considered important as they may have long lasting effect on cognitive development and functions. In the present study, (1)H NMR spectroscopy based metabolomic approach was used to obtain comprehensive information of hippocampus metabolic physiology during acute phase of radiation sickness in a mouse model for single dose 8 Gy cranial irradiation. The analysis demonstrated reduced metabolic activity in irradiated animals compared to controls, typically evident in citric acid cycle intermediates, glutamine/glutamate and ketone bodies metabolism thus providing strong indication that the hippocampus is metabolically responsive to radiation exposure. The data suggested reduced glucose utilization, altered intermediary and neurotransmitter metabolism in hippocampus tissue extract. To the best of our knowledge this is the first metabolomic study to document cranial irradiation induced acute metabolic changes using in vitro(1)H NMR spectroscopy. PMID:24787771

  18. Mouse models of acute exacerbations of allergic asthma.

    PubMed

    Kumar, Rakesh K; Herbert, Cristan; Foster, Paul S

    2016-07-01

    Most of the healthcare costs associated with asthma relate to emergency department visits and hospitalizations because of acute exacerbations of underlying chronic disease. Development of appropriate animal models of acute exacerbations of asthma is a necessary prerequisite for understanding pathophysiological mechanisms and assessing potential novel therapeutic approaches. Most such models have been developed using mice. Relatively few mouse models attempt to simulate the acute-on-chronic disease that characterizes human asthma exacerbations. Instead, many reported models involve relatively short-term challenge with an antigen to which animals are sensitized, followed closely by an unrelated triggering agent, so are better described as models of potentiation of acute allergic inflammation. Triggers for experimental models of asthma exacerbations include (i) challenge with high levels of the sensitizing allergen (ii) infection by viruses or fungi, or challenge with components of these microorganisms (iii) exposure to environmental pollutants. In this review, we examine the strengths and weaknesses of published mouse models, their application for investigation of novel treatments and potential future developments. PMID:26922049

  19. Baicalin promotes hippocampal neurogenesis via SGK1- and FKBP5-mediated glucocorticoid receptor phosphorylation in a neuroendocrine mouse model of anxiety/depression.

    PubMed

    Zhang, Kuo; Pan, Xing; Wang, Fang; Ma, Jie; Su, Guangyue; Dong, Yingxu; Yang, Jingyu; Wu, Chunfu

    2016-01-01

    Antidepressants increase hippocampal neurogenesis by activating the glucocorticoid receptor (GR), but excessive GR activation impairs hippocampal neurogenesis, suggesting that normal GR function is crucial for hippocampal neurogenesis. Baicalin was reported to regulate the expression of GR and facilitate hippocampal neurogenesis, but the underlying molecular mechanisms are still unknown. In this study, we used the chronic corticosterone (CORT)-induced mouse model of anxiety/depression to assess antidepressant-like effects of baicalin and illuminate possible molecular mechanisms by which baicalin affects GR-mediated hippocampal neurogenesis. We found that oral administration of baicalin (40, 80 or 160 mg/kg) for 4 weeks alleviated several chronic CORT-induced anxiety/depression-like behaviors. Baicalin also increased Ki-67- and DCX-positive cells to restore chronic CORT-induced suppression of hippocampal neurogenesis. Moreover, baicalin normalized the chronic CORT-induced decrease in GR protein levels, the increase in GR nuclear translocation and the increase in GR phosphorylation at Ser203 and Ser211. Finally, chronic CORT exposure increased the level of FK506-binding protein 51 (FKBP5) and of phosphorylated serum- and glucocorticoid-inducible kinase 1 (SGK1) at Ser422 and Thr256, whereas baicalin normalized these changes. Together, our findings suggest that baicalin improves anxiety/depression-like behaviors and promotes hippocampal neurogenesis. We propose that baicalin may normalize GR function through SGK1- and FKBP5-mediated GR phosphorylation. PMID:27502757

  20. Baicalin promotes hippocampal neurogenesis via SGK1- and FKBP5-mediated glucocorticoid receptor phosphorylation in a neuroendocrine mouse model of anxiety/depression

    PubMed Central

    Zhang, Kuo; Pan, Xing; Wang, Fang; Ma, Jie; Su, Guangyue; Dong, Yingxu; Yang, Jingyu; Wu, Chunfu

    2016-01-01

    Antidepressants increase hippocampal neurogenesis by activating the glucocorticoid receptor (GR), but excessive GR activation impairs hippocampal neurogenesis, suggesting that normal GR function is crucial for hippocampal neurogenesis. Baicalin was reported to regulate the expression of GR and facilitate hippocampal neurogenesis, but the underlying molecular mechanisms are still unknown. In this study, we used the chronic corticosterone (CORT)-induced mouse model of anxiety/depression to assess antidepressant-like effects of baicalin and illuminate possible molecular mechanisms by which baicalin affects GR-mediated hippocampal neurogenesis. We found that oral administration of baicalin (40, 80 or 160 mg/kg) for 4 weeks alleviated several chronic CORT-induced anxiety/depression-like behaviors. Baicalin also increased Ki-67- and DCX-positive cells to restore chronic CORT-induced suppression of hippocampal neurogenesis. Moreover, baicalin normalized the chronic CORT-induced decrease in GR protein levels, the increase in GR nuclear translocation and the increase in GR phosphorylation at Ser203 and Ser211. Finally, chronic CORT exposure increased the level of FK506-binding protein 51 (FKBP5) and of phosphorylated serum- and glucocorticoid-inducible kinase 1 (SGK1) at Ser422 and Thr256, whereas baicalin normalized these changes. Together, our findings suggest that baicalin improves anxiety/depression-like behaviors and promotes hippocampal neurogenesis. We propose that baicalin may normalize GR function through SGK1- and FKBP5-mediated GR phosphorylation. PMID:27502757

  1. Progressive functional impairments of hippocampal neurons in a tauopathy mouse model.

    PubMed

    Ciupek, Sarah M; Cheng, Jingheng; Ali, Yousuf O; Lu, Hui-Chen; Ji, Daoyun

    2015-05-27

    The age-dependent progression of tau pathology is a major characteristic of tauopathies, including Alzheimer's disease (AD), and plays an important role in the behavioral phenotypes of AD, including memory deficits. Despite extensive molecular and cellular studies on tau pathology, it remains to be determined how it alters the neural circuit functions underlying learning and memory in vivo. In rTg4510 mice, a Tau-P301L tauopathy model, hippocampal place fields that support spatial memories are abnormal at old age (7-9 months) when tau tangles and neurodegeneration are extensive. However, it is unclear how the abnormality in the hippocampal circuit function arises and progresses with the age-dependent progression of tau pathology. Here we show that in young (2-4 months of age) rTg4510 mice, place fields of hippocampal CA1 cells are largely normal, with only subtle differences from those of age-matched wild-type control mice. Second, high-frequency ripple oscillations of local field potentials in the hippocampal CA1 area are significantly reduced in young rTg4510 mice, and even further deteriorated in old rTg4510 mice. The ripple reduction is associated with less bursty firing and altered synchrony of CA1 cells. Together, the data indicate that deficits in ripples and neuronal synchronization occur before overt deficits in place fields in these mice. The results reveal a tau-pathology-induced progression of hippocampal functional changes in vivo. PMID:26019329

  2. Progressive Functional Impairments of Hippocampal Neurons in a Tauopathy Mouse Model

    PubMed Central

    Ciupek, Sarah M.; Cheng, Jingheng; Ali, Yousuf O.; Lu, Hui-Chen

    2015-01-01

    The age-dependent progression of tau pathology is a major characteristic of tauopathies, including Alzheimer's disease (AD), and plays an important role in the behavioral phenotypes of AD, including memory deficits. Despite extensive molecular and cellular studies on tau pathology, it remains to be determined how it alters the neural circuit functions underlying learning and memory in vivo. In rTg4510 mice, a Tau-P301L tauopathy model, hippocampal place fields that support spatial memories are abnormal at old age (7–9 months) when tau tangles and neurodegeneration are extensive. However, it is unclear how the abnormality in the hippocampal circuit function arises and progresses with the age-dependent progression of tau pathology. Here we show that in young (2–4 months of age) rTg4510 mice, place fields of hippocampal CA1 cells are largely normal, with only subtle differences from those of age-matched wild-type control mice. Second, high-frequency ripple oscillations of local field potentials in the hippocampal CA1 area are significantly reduced in young rTg4510 mice, and even further deteriorated in old rTg4510 mice. The ripple reduction is associated with less bursty firing and altered synchrony of CA1 cells. Together, the data indicate that deficits in ripples and neuronal synchronization occur before overt deficits in place fields in these mice. The results reveal a tau-pathology-induced progression of hippocampal functional changes in vivo. PMID:26019329

  3. Peripherally restricted acute phase response to a viral mimic alters hippocampal gene expression.

    PubMed

    Michalovicz, Lindsay T; Konat, Gregory W

    2014-03-01

    We have previously shown that peripherally restricted acute phase response (APR) elicited by intraperitoneal (i.p.) injection of a viral mimic, polyinosinic-polycytidylic acid (PIC), renders the brain hypersusceptible to excitotoxic insult as seen from profoundly exacerbated kainic acid (KA)-induced seizures. In the present study, we found that this hypersusceptibility was protracted for up to 72 h. RT-PCR profiling of hippocampal gene expression revealed rapid upregulation of 23 genes encoding cytokines, chemokines and chemokine receptors generally within 6 h after PIC challenge. The expression of most of these genes decreased by 24 h. However, two chemokine genes, i.e., Ccl19 and Cxcl13 genes, as well as two chemokine receptor genes, Ccr1 and Ccr7, remained upregulated for 72 h suggesting their possible involvement in the induction and sustenance of seizure hypersusceptibility. Also, 12 genes encoding proteins related to glutamatergic and GABAergic neurotransmission featured initial upregulation or downregulation followed by gradual normalization. The upregulation of the Gabrr3 gene remained upregulated at 72 h, congruent with its plausible role in the hypersusceptible phenotype. Moreover, the expression of ten microRNAs (miRs) was rapidly affected by PIC challenge, but their levels generally exhibited oscillating profiles over the time course of seizure hypersusceptibility. These results indicate that protracted seizure susceptibility following peripheral APR is associated with a robust polygenic response in the hippocampus. PMID:24363211

  4. Increased hippocampal excitability in the 3xTgAD mouse model for Alzheimer's disease in vivo.

    PubMed

    Davis, Katherine E; Fox, Sarah; Gigg, John

    2014-01-01

    Mouse Alzheimer's disease (AD) models develop age- and region-specific pathology throughout the hippocampal formation. One recently established pathological correlate is an increase in hippocampal excitability in vivo. Hippocampal pathology also produces episodic memory decline in human AD and we have shown a similar episodic deficit in 3xTg AD model mice aged 3-6 months. Here, we tested whether hippocampal synaptic dysfunction accompanies this cognitive deficit by probing dorsal CA1 and DG synaptic responses in anaesthetized, 4-6 month-old 3xTgAD mice. As our previous reports highlighted a decline in episodic performance in aged control mice, we included aged cohorts for comparison. CA1 and DG responses to low-frequency perforant path stimulation were comparable between 3xTgAD and controls at both age ranges. As expected, DG recordings in controls showed paired-pulse depression; however, paired-pulse facilitation was observed in DG and CA1 of young and old 3xTgAD mice. During stimulus trains both short-latency (presumably monosynaptic: 'direct') and long-latency (presumably polysynaptic: 're-entrant') responses were observed. Facilitation of direct responses was modest in 3xTgAD animals. However, re-entrant responses in DG and CA1 of young 3xTgAD mice developed earlier in the stimulus train and with larger amplitude when compared to controls. Old mice showed less DG paired-pulse depression and no evidence for re-entrance. In summary, DG and CA1 responses to low-frequency stimulation in all groups were comparable, suggesting no loss of synaptic connectivity in 3xTgAD mice. However, higher-frequency activation revealed complex change in synaptic excitability in DG and CA1 of 3xTgAD mice. In particular, short-term plasticity in DG and CA1 was facilitated in 3xTgAD mice, most evidently in younger animals. In addition, re-entrance was facilitated in young 3xTgAD mice. Overall, these data suggest that the episodic-like memory deficit in 3xTgAD mice could be due to the

  5. Chronic P7C3 treatment restores hippocampal neurogenesis in the Ts65Dn mouse model of Down Syndrome [Corrected].

    PubMed

    Latchney, Sarah E; Jaramillo, Thomas C; Rivera, Phillip D; Eisch, Amelia J; Powell, Craig M

    2015-03-30

    Down syndrome (DS) is the most common genetic cause of intellectual disability and developmental delay. In addition to cognitive dysfunction, DS patients are marked by diminished neurogenesis, a neuropathological feature also found in the Ts65Dn mouse model of DS. Interestingly, manipulations that enhance neurogenesis - like environmental enrichment or pharmacological agents - improve cognition in Ts65Dn mice. P7C3 is a proneurogenic compound that enhances hippocampal neurogenesis, cell survival, and promotes cognition in aged animals. However, this compound has not been tested in the Ts65Dn mouse model of DS. We hypothesized that P7C3 treatment would reverse or ameliorate the neurogenic deficits in Ts65Dn mice. To test this, adult Ts65Dn and age-matched wild-type (WT) mice were administered vehicle or P7C3 twice daily for 3 months. After 3 months, brains were examined for indices of neurogenesis, including quantification of Ki67, DCX, activated caspase-3 (AC3), and surviving BrdU-immunoreactive(+) cells in the granule cell layer (GCL) of the hippocampal dentate gyrus. P7C3 had no effect on total Ki67+, DCX+, AC3+, or surviving BrdU+ cells in WT mice relative to vehicle. GCL volume was also not changed. In keeping with our hypothesis, however, P7C3-treated Ts65Dn mice had a significant increase in total Ki67+, DCX+, and surviving BrdU+ cells relative to vehicle. P7C3 treatment also decreased AC3+ cell number but had no effect on total GCL volume in Ts65Dn mice. Our findings show 3 months of P7C3 is sufficient to restore the neurogenic deficits observed in the Ts65Dn mouse model of DS. PMID:25668489

  6. KCNQ/Kv7 channel activator flupirtine protects against acute stress-induced impairments of spatial memory retrieval and hippocampal LTP in rats.

    PubMed

    Li, C; Huang, P; Lu, Q; Zhou, M; Guo, L; Xu, X

    2014-11-01

    Spatial memory retrieval and hippocampal long-term potentiation (LTP) are impaired by stress. KCNQ/Kv7 channels are closely associated with memory and the KCNQ/Kv7 channel activator flupirtine represents neuroprotective effects. This study aims to test whether KCNQ/Kv7 channel activation prevents acute stress-induced impairments of spatial memory retrieval and hippocampal LTP. Rats were placed on an elevated platform in the middle of a bright room for 30 min to evoke acute stress. The expression of KCNQ/Kv7 subunits was analyzed at 1, 3 and 12 h after stress by Western blotting. Spatial memory was examined by the Morris water maze (MWM) and the field excitatory postsynaptic potential (fEPSP) in the hippocampal CA1 area was recorded in vivo. Acute stress transiently decreased the expression of KCNQ2 and KCNQ3 in the hippocampus. Acute stress impaired the spatial memory retrieval and hippocampal LTP, the KCNQ/Kv7 channel activator flupirtine prevented the impairments, and the protective effects of flupirtine were blocked by XE-991 (10,10-bis(4-Pyridinylmethyl)-9(10H)-anthracenone), a selective KCNQ channel blocker. Furthermore, acute stress decreased the phosphorylation of glycogen synthase kinase-3β (GSK-3β) at Ser9 in the hippocampus, and flupirtine inhibited the reduction. These results suggest that the KCNQ/Kv7 channels may be a potential target for protecting both hippocampal synaptic plasticity and spatial memory retrieval from acute stress influences. PMID:25234320

  7. Developmental mercury exposure elicits acute hippocampal cell death, reductions in neurogenesis, and severe learning deficits during puberty.

    PubMed

    Falluel-Morel, Anthony; Sokolowski, Katie; Sisti, Helene M; Zhou, Xiaofeng; Shors, Tracey J; Dicicco-Bloom, Emanuel

    2007-12-01

    Normal brain development requires coordinated regulation of several processes including proliferation, differentiation, and cell death. Multiple factors from endogenous and exogenous sources interact to elicit positive as well as negative regulation of these processes. In particular, the perinatal rat brain is highly vulnerable to specific developmental insults that produce later cognitive abnormalities. We used this model to examine the developmental effects of an exogenous factor of great concern, methylmercury (MeHg). Seven-day-old rats received a single injection of MeHg (5 microg/gbw). MeHg inhibited DNA synthesis by 44% and reduced levels of cyclins D1, D3, and E at 24 h in the hippocampus, but not the cerebellum. Toxicity was associated acutely with caspase-dependent programmed cell death. MeHg exposure led to reductions in hippocampal size (21%) and cell numbers 2 weeks later, especially in the granule cell layer (16%) and hilus (50%) of the dentate gyrus defined stereologically, suggesting that neurons might be particularly vulnerable. Consistent with this, perinatal exposure led to profound deficits in juvenile hippocampal-dependent learning during training on a spatial navigation task. In aggregate, these studies indicate that exposure to one dose of MeHg during the perinatal period acutely induces apoptotic cell death, which results in later deficits in hippocampal structure and function. PMID:17760861

  8. Deficits in hippocampal-dependent transfer generalization learning accompany synaptic dysfunction in a mouse model of amyloidosis.

    PubMed

    Montgomery, Karienn S; Edwards, George; Levites, Yona; Kumar, Ashok; Myers, Catherine E; Gluck, Mark A; Setlow, Barry; Bizon, Jennifer L

    2016-04-01

    Elevated β-amyloid and impaired synaptic function in hippocampus are among the earliest manifestations of Alzheimer's disease (AD). Most cognitive assessments employed in both humans and animal models, however, are insensitive to this early disease pathology. One critical aspect of hippocampal function is its role in episodic memory, which involves the binding of temporally coincident sensory information (e.g., sights, smells, and sounds) to create a representation of a specific learning epoch. Flexible associations can be formed among these distinct sensory stimuli that enable the "transfer" of new learning across a wide variety of contexts. The current studies employed a mouse analog of an associative "transfer learning" task that has previously been used to identify risk for prodromal AD in humans. The rodent version of the task assesses the transfer of learning about stimulus features relevant to a food reward across a series of compound discrimination problems. The relevant feature that predicts the food reward is unchanged across problems, but an irrelevant feature (i.e., the context) is altered. Experiment 1 demonstrated that C57BL6/J mice with bilateral ibotenic acid lesions of hippocampus were able to discriminate between two stimuli on par with control mice; however, lesioned mice were unable to transfer or apply this learning to new problem configurations. Experiment 2 used the APPswe PS1 mouse model of amyloidosis to show that robust impairments in transfer learning are evident in mice with subtle β-amyloid-induced synaptic deficits in the hippocampus. Finally, Experiment 3 confirmed that the same transfer learning impairments observed in APPswePS1 mice were also evident in the Tg-SwDI mouse, a second model of amyloidosis. Together, these data show that the ability to generalize learned associations to new contexts is disrupted even in the presence of subtle hippocampal dysfunction and suggest that, across species, this aspect of hippocampal

  9. RXRα, PXR and CAR xenobiotic receptors mediate the apoptotic and neurotoxic actions of nonylphenol in mouse hippocampal cells.

    PubMed

    Litwa, E; Rzemieniec, J; Wnuk, A; Lason, W; Krzeptowski, W; Kajta, M

    2016-02-01

    In the present study, we investigated the role of the retinoid X receptor (RXR), the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR), in the apoptotic and toxic effects of nonylphenol in mouse primary neuronal cell cultures. Our study demonstrated that nonylphenol activated caspase-3 and induced lactate dehydrogenase (LDH) release in hippocampal cells, which was accompanied by an increase in the mRNA expression and protein levels of RXRα, PXR and CAR. Nonylphenol stimulated Rxra, Pxr, and Car mRNA expression. These effects were followed by increase in the protein levels of particular receptors. Immunofluorescence labeling revealed the cellular distribution of RXRα, PXR and CAR in hippocampal neurons in response to nonylphenol, shortening of neurites and cytoplasmic shrinking, as indicated by MAP2 staining. It also showed NP-induced translocation of receptor-specific immunofluorescence from cytoplasm to the nucleus. The use of specific siRNAs demonstrated that Rxra-, Pxr-, and Car-siRNA-transfected cells were less vulnerable to nonylphenol-induced activation of caspase-3 and LDH, thus confirming the key involvement of RXRα/PXR/CAR signaling pathways in the apoptotic and neurotoxic actions of nonylphenol. These new data give prospects for the targeting xenobiotic nuclear receptors to protect the developing nervous system against endocrine disrupting chemicals. PMID:26643981

  10. Concordance in hippocampal and fecal Nr3c1 methylation is moderated by maternal behavior in the mouse

    PubMed Central

    Liberman, Shayna A; Mashoodh, Rahia; Thompson, Robert C; Dolinoy, Dana C; Champagne, Frances A

    2012-01-01

    Recent advances in genomic technologies now enable a reunion of molecular and evolutionary biology. Researchers investigating naturally living animal populations are thus increasingly able to capitalize upon genomic technologies to connect molecular findings with multiple levels of biological organization. Using this vertical approach in the laboratory, epigenetic gene regulation has emerged as an important mechanism integrating genotype and phenotype. To connect phenotype to population fitness, however, this same vertical approach must now be applied to naturally living populations. A major obstacle to studying epigenetics in noninvasive samples is tissue specificity of epigenetic marks. Here, using the mouse as a proof-of-principle model, we present the first known attempt to validate an epigenetic assay for use in noninvasive samples. Specifically, we compare DNA methylation of the NGFI-A (nerve growth factor-inducible protein A) binding site in the promoter of the glucocorticoid receptor (Nr3c1) gene between central (hippocampal) and peripheral noninvasive (fecal) tissues in juvenile Balb/c mice that had received varying levels of postnatal maternal care. Our results indicate that while hippocampal DNA methylation profiles correspond to maternal behavior, fecal DNA methylation levels do not. Moreover, concordance in methylation levels between these tissues within individuals only emerges after accounting for the effects of postnatal maternal care. Thus, although these findings may be specific to the Nr3c1 gene, we urge caution when interpreting DNA methylation patterns from noninvasive tissues, and offer suggestions for further research in this field. PMID:23301177

  11. Altered Kv2.1 functioning promotes increased excitability in hippocampal neurons of an Alzheimer's disease mouse model.

    PubMed

    Frazzini, V; Guarnieri, S; Bomba, M; Navarra, R; Morabito, C; Mariggiò, M A; Sensi, S L

    2016-01-01

    Altered neuronal excitability is emerging as an important feature in Alzheimer's disease (AD). Kv2.1 potassium channels are important modulators of neuronal excitability and synaptic activity. We investigated Kv2.1 currents and its relation to the intrinsic synaptic activity of hippocampal neurons from 3xTg-AD (triple transgenic mouse model of Alzheimer's disease) mice, a widely employed preclinical AD model. Synaptic activity was also investigated by analyzing spontaneous [Ca(2+)]i spikes. Compared with wild-type (Non-Tg (non-transgenic mouse model)) cultures, 3xTg-AD neurons showed enhanced spike frequency and decreased intensity. Compared with Non-Tg cultures, 3xTg-AD hippocampal neurons revealed reduced Kv2.1-dependent Ik current densities as well as normalized conductances. 3xTg-AD cultures also exhibited an overall decrease in the number of functional Kv2.1 channels. Immunofluorescence assay revealed an increase in Kv2.1 channel oligomerization, a condition associated with blockade of channel function. In Non-Tg neurons, pharmacological blockade of Kv2.1 channels reproduced the altered pattern found in the 3xTg-AD cultures. Moreover, compared with untreated sister cultures, pharmacological inhibition of Kv2.1 in 3xTg-AD neurons did not produce any significant modification in Ik current densities. Reactive oxygen species (ROS) promote Kv2.1 oligomerization, thereby acting as negative modulator of the channel activity. Glutamate receptor activation produced higher ROS levels in hippocampal 3xTg-AD cultures compared with Non-Tg neurons. Antioxidant treatment with N-Acetyl-Cysteine was found to rescue Kv2.1-dependent currents and decreased spontaneous hyperexcitability in 3xTg-AD neurons. Analogous results regarding spontaneous synaptic activity were observed in neuronal cultures treated with the antioxidant 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox). Our study indicates that AD-related mutations may promote enhanced ROS generation, oxidative

  12. Quetiapine attenuates recognition memory impairment and hippocampal oxidative stress in a transgenic mouse model of Alzheimer's disease.

    PubMed

    Luo, Gang; Liu, Min; He, Jue; Guo, Huining; Xue, Mengzhou; Wang, Xinchun; Li, Xin-Min

    2014-06-18

    Quetiapine, an atypical antipsychotic drug, may have beneficial effects in Alzheimer's disease (AD), and the effect of quetiapine on object recognition memory in AD has never been measured. The aim of the present study was to evaluate the effects of quetiapine on object recognition memory and on oxidative stress that could be involved in the AD pathogenesis in an amyloid precursor protein/presenilin-1 double transgenic mouse model of AD. Nontransgenic and transgenic mice were treated with quetiapine (0 or 5 mg/kg/day) in drinking water from the age of 2 months. After 10 months of continuous quetiapine administration, object recognition memory impairment and the increased hippocampal protein expression of nitrotyrosine, a protein marker of oxidative stress, were attenuated in the AD mice. These results suggest that quetiapine can attenuate object recognition memory impairment and brain oxidative stress in an amyloid precursor protein/presenilin-1 transgenic mouse model of AD and indicate that the antioxidative effect of early quetiapine intervention may be associated with the beneficial effect of quetiapine on memory in AD. PMID:24642954

  13. Intrinsic excitability changes induced by acute treatment of hippocampal CA1 pyramidal neurons with exogenous amyloid β peptide.

    PubMed

    Tamagnini, Francesco; Scullion, Sarah; Brown, Jon T; Randall, Andrew D

    2015-07-01

    Accumulation of beta-amyloid (Aβ) peptides in the human brain is a canonical pathological hallmark of Alzheimer's disease (AD). Recent work in Aβ-overexpressing transgenic mice indicates that increased brain Aβ levels can be associated with aberrant epileptiform activity. In line with this, such mice can also exhibit altered intrinsic excitability (IE) of cortical and hippocampal neurons: these observations may relate to the increased prevalence of seizures in AD patients. In this study, we examined what changes in IE are produced in hippocampal CA1 pyramidal cells after 2-5 h treatment with an oligomeric preparation of synthetic human Aβ 1-42 peptide. Whole cell current clamp recordings were compared between Aβ-(500 nM) and vehicle-(DMSO 0.05%) treated hippocampal slices obtained from mice. The soluble Aβ treatment did not produce alterations in sub-threshold intrinsic properties, including membrane potential, input resistance, and hyperpolarization activated "sag". Similarly, no changes were noted in the firing profile evoked by 500 ms square current supra-threshold stimuli. However, Aβ 500 nM treatment resulted in the hyperpolarization of the action potential (AP) threshold. In addition, treatment with Aβ at 500 nM depressed the after-hyperpolarization that followed both a single AP or 50 Hz trains of a number of APs between 5 and 25. These data suggest that acute exposure to soluble Aβ oligomers affects IE properties of CA1 pyramidal neurons differently from outcomes seen in transgenic models of amyloidopathy. However, in both chronic and acute models, the IE changes are toward hyperexcitability, reinforcing the idea that amyloidopathy and increased incidence in seizures might be causally related in AD patients. PMID:25515596

  14. Intrinsic excitability changes induced by acute treatment of hippocampal CA1 pyramidal neurons with exogenous amyloid β peptide

    PubMed Central

    Scullion, Sarah; Brown, Jon T.; Randall, Andrew D.

    2015-01-01

    ABSTRACT Accumulation of beta‐amyloid (Aβ) peptides in the human brain is a canonical pathological hallmark of Alzheimer's disease (AD). Recent work in Aβ‐overexpressing transgenic mice indicates that increased brain Aβ levels can be associated with aberrant epileptiform activity. In line with this, such mice can also exhibit altered intrinsic excitability (IE) of cortical and hippocampal neurons: these observations may relate to the increased prevalence of seizures in AD patients. In this study, we examined what changes in IE are produced in hippocampal CA1 pyramidal cells after 2–5 h treatment with an oligomeric preparation of synthetic human Aβ 1–42 peptide. Whole cell current clamp recordings were compared between Aβ‐(500 nM) and vehicle‐(DMSO 0.05%) treated hippocampal slices obtained from mice. The soluble Aβ treatment did not produce alterations in sub‐threshold intrinsic properties, including membrane potential, input resistance, and hyperpolarization activated “sag”. Similarly, no changes were noted in the firing profile evoked by 500 ms square current supra‐threshold stimuli. However, Aβ 500 nM treatment resulted in the hyperpolarization of the action potential (AP) threshold. In addition, treatment with Aβ at 500 nM depressed the after‐hyperpolarization that followed both a single AP or 50 Hz trains of a number of APs between 5 and 25. These data suggest that acute exposure to soluble Aβ oligomers affects IE properties of CA1 pyramidal neurons differently from outcomes seen in transgenic models of amyloidopathy. However, in both chronic and acute models, the IE changes are toward hyperexcitability, reinforcing the idea that amyloidopathy and increased incidence in seizures might be causally related in AD patients. © 2014 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:25515596

  15. Mouse hippocampal phosphorylation footprint induced by generalized seizures: Focus on ERK, mTORC1 and Akt/GSK-3 pathways.

    PubMed

    Gangarossa, Giuseppe; Sakkaki, Sophie; Lory, Philippe; Valjent, Emmanuel

    2015-12-17

    Exacerbated hippocampal activity has been associated to critical modifications of the intracellular signaling pathways. We have investigated rapid hippocampal adaptive responses induced by maximal electroshock seizure (MES). Here, we demonstrate that abnormal and exacerbated hippocampal activity induced by MES triggers specific and temporally distinct patterns of phosphorylation of extracellular signal-related kinase (ERK), mammalian target of rapamycin complex (mTORC) and Akt/glycogen synthase kinase-3 (Akt/GSK-3) pathways in the mouse hippocampus. While the ERK pathway is transiently activated, the mTORC1 cascade follows a rapid inhibition followed by a transient activation. This rebound of mTORC1 activity leads to the selective phosphorylation of p70S6K, which is accompanied by an enhanced phosphorylation of the ribosomal subunit S6. In contrast, the Akt/GSK-3 pathway is weakly altered. Finally, MES triggers a rapid upregulation of several plasticity-associated genes as a consequence exacerbated hippocampal activity. The results reported in the present study are reminiscent of the one observed in other models of generalized seizures, thus defining a common molecular footprint induced by intense and aberrant hippocampal activities. PMID:26545981

  16. Increased fronto-hippocampal connectivity in the Prrxl1 knockout mouse model of congenital hypoalgesia.

    PubMed

    Monteiro, Clara; Cardoso-Cruz, Helder; Matos, Mariana; Dourado, Margarida; Lima, Deolinda; Galhardo, Vasco

    2016-09-01

    Despite the large number of studies addressing how prolonged painful stimulation affects brain functioning, there are only a handful of studies aimed at uncovering if persistent conditions of reduced pain perception would also result in brain plasticity. Permanent hypoalgesia induced by neonatal injection of capsaicin or carrageenan has already been shown to affect learning and memory and to induce alterations in brain gene expression. In this study, we used the Prrxl1 model of congenital mild hypoalgesia to conduct a detailed study of the neurophysiological and behavioral consequences of reduced pain experience. Prrxl1 knockout animals are characterized by selective depletion of small diameter primary afferents and abnormal development of the superficial dorsal laminae of the spinal cord, resulting in diminished pain perception but normal tactile and motor behaviour. Behavioral testing of Prrxl1 mice revealed that these animals have reduced anxiety levels, enhanced memory performance, and improved fear extinction. Neurophysiological recordings from awake behaving Prrxl1 mice show enhanced altered fronto-hippocampal connectivity in the theta- and gamma-bands. Importantly, although inflammatory pain by Complete Freund Adjuvant injection caused a decrease in fronto-hippocampal connectivity in the wild-type animals, Prrxl1 mice maintained the baseline levels. The onset of inflammatory pain also reverted the differences in forebrain expression of stress- and monoamine-related genes in Prrxl1 mice. Altogether our results suggest that congenital hypoalgesia may have an effect on brain plasticity that is the inverse of what is usually observed in animal models of chronic pain. PMID:27168359

  17. Beneficial Effects of Polygonum multiflorum on Hippocampal Neuronal Cells and Mouse Focal Cerebral Ischemia.

    PubMed

    Ahn, Sung Min; Kim, Yu Ri; Kim, Ha Neui; Shin, Hwa Kyoung; Choi, Byung Tae

    2015-01-01

    Beneficial effects of the water extract of Polygonum multiflorum (WEPM) and their mechanisms were investigated in HT22 hippocampal cells and hippocampus of middle cerebral artery occlusion (MCAO) mice. In HT22 cells against glutamate-induced oxidative stress, pretreatment with WEPM resulted in significantly reduced apoptotic neuronal death. Pretreatment with WEPM resulted in the suppression of ROS accumulation in connection with cellular Ca (2+) level after exposure to glutamate. Treatment with glutamate alone led to suppressed protein level of mature brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP response element binding protein (CREB); however, pretreatment with either WEPM or anti-oxidant N-acetyl-ʟ-cysteine (NAC) resulted in the significant enhancement of levels of these proteins. In addition, levels of mature BDNF expression and CREB phosphorylation were increased by combined treatment with WEPM, NAC, and intracellular Ca (2+) inhibitor BAPTA compared to other treatment groups. In MCAO mice, we confirmed the critical role of mature BDNF expression and CREB phosphorylation by WEPM in the neurons of the hippocampus. Our results suggest that WEPM mainly exerted beneficial effects on hippocampal neurons through the suppression of ROS accumulation and up-regulation of mature BDNF expression and CREB phosphorylation. PMID:26119951

  18. HIPPOCAMPAL MOSSY FIBER LEU-ENKEPHALIN IMMUNOREACTIVITY IN FEMALE RATS IS SIGNIFICANTLY ALTERED FOLLOWING BOTH ACUTE AND CHRONIC STRESS

    PubMed Central

    Pierce, Joseph P.; Kelter, David T.; McEwen, Bruce S.; Waters, Elizabeth M.; Milner, Teresa A.

    2013-01-01

    Research indicates that responses to stress are sexually dimorphic, particularly in regard to learning and memory processes: while males display impaired cognitive performance and hippocampal CA3 pyramidal cell dendritic remodeling following chronic stress, females exhibit enhanced performance and no remodeling. Leu-enkephalin, an endogenous opioid peptide found in the hippocampal mossy fiber pathway, plays a critical role in mediating synaptic plasticity at the mossy fiber-CA3 pyramidal cell synapse. Estrogen is known to influence the expression of leu-enkephalin in the mossy fibers of females, with leu-enkephalin levels being highest at proestrus and estrus, when estrogen levels are elevated. Since stress is also known to alter the expression of leu-enkephalin in various brain regions, this study was designed to determine whether acute or chronic stress had an effect on mossy fiber leu-enkephalin levels in females or males, through the application of correlated quantitative light and electron microscopic immunocytochemistry. Both acute and chronic stress eliminated the estrogen-dependence of leu-enkephalin levels across the estrous cycle in females, but had no effect on male levels. However, following acute stress leu-enkephalin levels in females were consistently lowered to values comparable to the lowest control values, while following chronic stress they were consistently elevated to values comparable to the highest control values. Ultrastructural changes in leu-enkephalin labeled dense core vesicles paralleled light microscopic observations, with acute stress inducing a decrease in leu-enkephalin labeled dense core vesicles, and chronic stress inducing an increase in leu-enkephalin labeled dense-core vesicles in females. These findings suggest that alterations in leu-enkephalin levels following stress could play an important role in the sex-specific responses that females display in learning processes, including those important in addiction. PMID:24275289

  19. Disrupted hippocampal sharp-wave ripple-associated spike dynamics in a transgenic mouse model of dementia.

    PubMed

    Witton, Jonathan; Staniaszek, Lydia E; Bartsch, Ullrich; Randall, Andrew D; Jones, Matthew W; Brown, Jonathan T

    2014-12-01

    Neurons within the CA1 region of the hippocampus are co-activated during high frequency (100-250 Hz) sharp wave ripple (SWR) activity in a manner that likely drives synaptic plasticity and promotes memory consolidation. In this study we have used a transgenic mouse model of dementia (rTg4510 mice) which overexpresses a mutant form of tau protein, to examine the effects of tauopathy on hippocampal SWRs and associated neuronal firing. Tetrodes were used to record simultaneous extracellular action potentials and local field potentials from the dorsal CA1 pyramidal cell layer of 7-8 month old wild-type and rTg4510 mice at rest in their home cage. At this age point these mice exhibit neurofibrillary tangles, neurodegeneration and cognitive deficits. Epochs of sleep or quiet restfulness were characterised by minimal locomotor activity and a low theta/delta ratio in the local field potential power spectrum. SWRs detected off-line were significantly lower in amplitude and had an altered temporal structure in rTg4510 mice. Nevertheless, the average frequency profile and duration of the SWRs were relatively unaltered. Putative interneurons displayed significantly less temporal and phase locking to SWRs in rTg4510 mice, whilst putative pyramidal neurons showed increased temporal and phase locking to SWRs. These findings indicate there is reduced inhibitory control of hippocampal network events and points to a novel mechanism which may contribute to impairments in memory consolidation in this model of dementia. This article is protected by copyright. All rights reserved. PMID:25480798

  20. Hippocampal neurogenesis in the APP/PS1/nestin-GFP triple transgenic mouse model of Alzheimer's disease.

    PubMed

    Zeng, Q; Zheng, M; Zhang, T; He, G

    2016-02-01

    Alzheimer's disease (AD) is one of the most common causes of dementia. Although the exact mechanisms of AD are not entirely clear, the impairment in adult hippocampal neurogenesis has been reported to play a role in AD. To assess the relationship between AD and neurogenesis, we studied APP/PS1/nestin-green fluorescent protein (GFP) triple transgenic mice, a well-characterized mouse model of AD, which express GFP under the control of the nestin promoter. Different ages of AD mice and their wild-type littermates (WT) were used in our study. Immunofluorescent staining showed that neurogenesis occurred mainly in the subgranular zone (SGZ) of the dentate gyrus (DG) and subventricular zone (SVZ) of the lateral ventricles (LVs). The expression of neural stem cells (NSCs) (nestin) and neural precursors such as doublecortin (DCX) and GFAP in AD mice were decreased with age, as well as there being a reduction in 5-bromo-2-deoxyuridine (BrdU)-positive cells, when compared to WT. However, the number of maturate neurons (NeuN) was not significantly different between AD mice and wild-type controls, and NeuN changed only slightly with age. By Golgi-Cox staining, the morphologies of dendrites were observed, and significant differences existed between AD mice and wild-type controls. These results suggest that AD has a far-reaching influence on the regulation of adult hippocampal neurogenesis, leading to a gradual decrease in the generation of neural progenitors (NPCs), and inhibition of the differentiation and maturation of neurons. PMID:26639620

  1. Acute stress enhances the expression of neuroprotection- and neurogenesis-associated genes in the hippocampus of a mouse restraint model

    PubMed Central

    Sannino, Giuseppina; Pasqualini, Lorenza; Ricciardelli, Eugenia; Montilla, Patricia; Soverchia, Laura; Ruggeri, Barbara; Falcinelli, Silvia; Renzi, Alessandra; Ludka, Colleen; Kirchner, Thomas; Grünewald, Thomas G. P.; Ciccocioppo, Roberto; Ubaldi, Massimo; Hardiman, Gary

    2016-01-01

    Stress arises from an external demand placed on an organism that triggers physiological, cognitive and behavioural responses in order to cope with that request. It is thus an adaptive response useful for the survival of an organism. The objective of this study was to identify and characterize global changes in gene expression in the hippocampus in response to acute stress stimuli, by employing a mouse model of short-term restraint stress. In our experimental design mice were subjected to a one time exposure of restraint stress and the regulation of gene expression in the hippocampus was examined 3, 12 and 24 hours thereafter. Microarray analysis revealed that mice which had undergone acute restraint stress differed from non-stressed controls in global hippocampal transcriptional responses. An up-regulation of transcripts contributing directly or indirectly to neurogenesis and neuronal protection including, Ttr, Rab6, Gh, Prl, Ndufb9 and Ndufa6, was observed. Systems level analyses revealed a significant enrichment for neurogenesis, neuron morphogenesis- and cognitive functions-related biological process terms and pathways. This work further supports the hypothesis that acute stress mediates a positive action on the hippocampus favouring the formation and the preservation of neurons, which will be discussed in the context of current data from the literature. PMID:26863456

  2. ACUTE EXPOSURE TO TRIS (2-CHLOROETHYL) PHOSPHATE HIPPOCAMPAL NEURONAL LOSS AND IMPAIRS LEARNING IN RATS

    EPA Science Inventory

    Adult female, Fischer 344 rats were exposed to 275 mg/kg of tris(2- chloroethyl)phosphate (TRCP) by gavage. RCP produced consistent signs of convulsive activity within 60-90 minutes after dosing and extensive loss of CA1 hippocampal pyramidal cells when examined 7 days after dosi...

  3. Acute stress enhances adult rat hippocampal neurogenesis and activation of newborn neurons via secreted astrocytic FGF2

    PubMed Central

    Kirby, Elizabeth D; Muroy, Sandra E; Sun, Wayne G; Covarrubias, David; Leong, Megan J; Barchas, Laurel A; Kaufer, Daniela

    2013-01-01

    Stress is a potent modulator of the mammalian brain. The highly conserved stress hormone response influences many brain regions, particularly the hippocampus, a region important for memory function. The effect of acute stress on the unique population of adult neural stem/progenitor cells (NPCs) that resides in the adult hippocampus is unclear. We found that acute stress increased hippocampal cell proliferation and astrocytic fibroblast growth factor 2 (FGF2) expression. The effect of acute stress occurred independent of basolateral amygdala neural input and was mimicked by treating isolated NPCs with conditioned media from corticosterone-treated primary astrocytes. Neutralization of FGF2 revealed that astrocyte-secreted FGF2 mediated stress-hormone-induced NPC proliferation. 2 weeks, but not 2 days, after acute stress, rats also showed enhanced fear extinction memory coincident with enhanced activation of newborn neurons. Our findings suggest a beneficial role for brief stress on the hippocampus and improve understanding of the adaptive capacity of the brain. DOI: http://dx.doi.org/10.7554/eLife.00362.001 PMID:23599891

  4. Evaluation of Mitochondrial Function in the CNS of Rodent Models of Alzheimer's Disease - High Resolution Respirometry Applied to Acute Hippocampal Slices.

    PubMed

    Dias, Candida; Barbosa, Rui M; Laranjinha, Joao; Ledo, Ana

    2014-10-01

    Alzheimer's disease (AD) is a multifactorial disease characterized by extracellular deposits of amyloid plaques and intracellular neurofibrillary tangles. These hallmark alterations are preceded by synaptic deterioration, changes in neuromolecular plasticity phenomena, mitochondrial dysfunction, increase in oxidative damage to cellular constituents and decreased energy metabolism. The hippocampus is a structure of the temporal medial lobe implicated in specific forms of memory processes. It is also one of the first and most affected regions of the CNS in AD. Here we present a novel approach to the study if mitochondrial function/disfunction in 2 rodent models of AD: an acute rat model obtained by intracerebroventricular injection of the toxin streptozotocin (STZ) and a progressive triple transgenic mouse model (3TgAD) harboring PS1M146V, APPSwe, and tauP301L transgenes. Mitochondrial dysfunction has classically been assessed in such models by isolating mitochondria, synaptossoms or working with cell cultures. Anyone of these approaches destroys the intricate intercellular connectivity and cytoarchitecture of neuronal tissue. We used acute hippocampal slices obtained from the 2 models of AD and evaluated changes in mitochondrial function as a function of disease and/or age. Mitochondrial stress test were performed on the high resolution respirometry (Oroboros 2K Oxymeter). Upon analysis of oxygen consumption rates (OCR) we observed significant decreases in basal OCR, maximal respiratory capacity, ATP turnover and a tendency for decrease in sparing capacity in the STZ rat model compared to shame injected animals. Regarding the 3TgAD model we observed an age-dependent decrease in all parameters evaluated in the mitochondrial stress test, in both 3TgAD and NTg animals. However, although a tendency towards decreased OCR was observed when comparing 3TgAD and age-matched NTg animals, no statistically significant difference was observed. PMID:26461355

  5. Effects of treadmill exercise on hippocampal neurogenesis in an MPTP /probenecid-induced Parkinson’s disease mouse model

    PubMed Central

    Sung, Yun-Hee

    2015-01-01

    [Purpose] This study aimed to investigate the effect of treadmill exercise on non-motor function, specifically long-term memory, in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid-induced Parkinson’s disease mouse model. [Methods] A mouse model of Parkinson’s disease was developed by injecting 20 mg/kg of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 250 mg/kg of probenecid (P). We divided in into four groups: probenecid group, probenecid-exercise group, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid group, and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid-exercise group. Mice in the exercise groups ran on treadmill for 30 min/day, five times per week for 4 weeks. [Results] Latency in the passive avoidance test increased in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid-exercise group compared with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid group. In addition, the number of 5-bromo-2-deoxyuridine/NeuN-positive cells and 5-bromo-2-deoxyuridine/doublecortin-positive cells in the hippocampal dentate gyrus was higher in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid-exercise group than that in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid group. These changes were associated with the expression of brain-derived neurotrophic factor in the hippocampus. [Conclusion] Our results suggest that treadmill exercise may improve long-term memory in Parkinson’s disease mice by facilitating neurogenesis via increased expression of neurotrophic factors. PMID:26644675

  6. Rosiglitazone reverses memory decline and hippocampal glucocorticoid receptor down-regulation in an Alzheimer's disease mouse model

    SciTech Connect

    Escribano, Luis; Simon, Ana-Maria; Perez-Mediavilla, Alberto; Salazar-Colocho, Pablo; Rio, Joaquin Del; Frechilla, Diana

    2009-02-06

    Clinical trials with rosiglitazone, a potent agonist at peroxisome proliferator-activated receptor gamma (PPAR{gamma}) suggest an improvement of cognitive function in Alzheimer's disease (AD) patients. The mechanisms mediating this potential beneficial effect remain to be fully elucidated. In mice overexpressing mutant human amyloid precursor protein (hAPP), a model of AD, we found that memory impairment in the object recognition test was prevented and also reversed by chronic rosiglitazone treatment. Given the possible involvement of glucocorticoid receptors (GR) in the actions of PPAR{gamma}-ligands, we studied the effect of chronic rosiglitazone treatment on GR levels in the hippocampus of hAPP mice. An early down-regulation of GR, not related to elevated plasma corticosterone levels, was found in different hippocampal subfields of the transgenic mice and this decrease was prevented by rosiglitazone. In parallel with behavioural studies, rosiglitazone also normalized GR levels in older animals. This effect may contribute to explain the attenuation of memory decline by PPAR{gamma} activation in an AD mouse model.

  7. NAAG reduces NMDA receptor current in CA1 hippocampal pyramidal neurons of acute slices and dissociated neurons.

    PubMed

    Bergeron, Richard; Coyle, Joseph T; Tsai, Guochan; Greene, Robert W

    2005-01-01

    N-acetylaspartylglutamate (NAAG) is an abundant neuropeptide in the nervous system, yet its functions are not well understood. Pyramidal neurons of the CA1 sector of acutely prepared hippocampal slices were recorded using the whole-cell patch-clamp technique. At low concentrations (20 microM), NAAG reduced isolated N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic currents or NMDA-induced currents. The NAAG-induced change in the NMDA concentration/response curve suggested that the antagonism was not competitive. However, the NAAG-induced change in the concentration/response curve for the NMDAR co-agonist, glycine, indicated that glycine can overcome the NAAG antagonism. The antagonism of the NMDAR induced by NAAG was still observed in the presence of LY-341495, a potent and selective mGluR3 antagonist. Moreover, in dissociated pyramidal neurons of the CA1 region, NAAG also reduced the NMDA current and this effect was reversed by glycine. These results suggest that NAAG reduces the NMDA currents in hippocampal CA1 pyramidal neurons. PMID:15354184

  8. Gongjin-Dan Enhances Hippocampal Memory in a Mouse Model of Scopolamine-Induced Amnesia.

    PubMed

    Lee, Jin-Seok; Hong, Sung-Shin; Kim, Hyeong-Geug; Lee, Hye-Won; Kim, Won-Yong; Lee, Sam-Keun; Son, Chang-Gue

    2016-01-01

    We evaluated the neuropharmacological effects of Gongjin-Dan (GJD) on the memory impairment caused by scopolamine injection. BALB/c mice were orally treated with GJD (100, 200, or 400 mg/kg, daily) or tacrine (THA, 10 mg/kg) for 10 days, and scopolamine (2 mg/kg) was injected intraperitoneally. The radial arm maze and passive avoidance tests were performed to evaluate the animal's learning and memory. Scopolamine increased the task completing time, the number of total errors (reference and working memory error) in the radial arm maze task, and the latency time in the passive avoidance test, which were significantly ameliorated by treatment with GJD. The GJD treatment also attenuated the scopolamine-induced hyperactivation of acetylcholinesterase activity, and suppression of the expression of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and their receptors in the hippocampus. These effects of GJD were supported by both the doublecortin (DCX)-positive staining and Nissl staining, which were used to measure hippocampal neurogenesis and atrophy, respectively. These findings strongly suggest that GJD exerts a potent anti-amnesic effect, and its underlying mechanism might involve the modulation of cholinergic activity. PMID:27483466

  9. Gongjin-Dan Enhances Hippocampal Memory in a Mouse Model of Scopolamine-Induced Amnesia

    PubMed Central

    Lee, Jin-Seok; Hong, Sung-Shin; Kim, Hyeong-Geug; Lee, Hye-Won; Kim, Won-Yong; Lee, Sam-Keun; Son, Chang-Gue

    2016-01-01

    We evaluated the neuropharmacological effects of Gongjin-Dan (GJD) on the memory impairment caused by scopolamine injection. BALB/c mice were orally treated with GJD (100, 200, or 400 mg/kg, daily) or tacrine (THA, 10 mg/kg) for 10 days, and scopolamine (2 mg/kg) was injected intraperitoneally. The radial arm maze and passive avoidance tests were performed to evaluate the animal’s learning and memory. Scopolamine increased the task completing time, the number of total errors (reference and working memory error) in the radial arm maze task, and the latency time in the passive avoidance test, which were significantly ameliorated by treatment with GJD. The GJD treatment also attenuated the scopolamine-induced hyperactivation of acetylcholinesterase activity, and suppression of the expression of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and their receptors in the hippocampus. These effects of GJD were supported by both the doublecortin (DCX)-positive staining and Nissl staining, which were used to measure hippocampal neurogenesis and atrophy, respectively. These findings strongly suggest that GJD exerts a potent anti-amnesic effect, and its underlying mechanism might involve the modulation of cholinergic activity. PMID:27483466

  10. Hippocampal dysfunction in the Euchromatin histone methyltransferase 1 heterozygous knockout mouse model for Kleefstra syndrome.

    PubMed

    Balemans, Monique C M; Kasri, Nael Nadif; Kopanitsa, Maksym V; Afinowi, Nurudeen O; Ramakers, Ger; Peters, Theo A; Beynon, Andy J; Janssen, Sanne M; van Summeren, Rik C J; Eeftens, Jorine M; Eikelenboom, Nathalie; Benevento, Marco; Tachibana, Makoto; Shinkai, Yoichi; Kleefstra, Tjitske; van Bokhoven, Hans; Van der Zee, Catharina E E M

    2013-03-01

    Euchromatin histone methyltransferase 1 (EHMT1) is a highly conserved protein that catalyzes mono- and dimethylation of histone H3 lysine 9, thereby epigenetically regulating transcription. Kleefstra syndrome (KS), is caused by haploinsufficiency of the EHMT1 gene, and is an example of an emerging group of intellectual disability (ID) disorders caused by genes encoding epigenetic regulators of neuronal gene activity. Little is known about the mechanisms underlying this disorder, prompting us to study the Euchromatin histone methyltransferase 1 heterozygous knockout (Ehmt1(+/-)) mice as a model for KS. In agreement with the cognitive disturbances observed in patients with KS, we detected deficits in fear extinction learning and both novel and spatial object recognition in Ehmt1(+/-) mice. These learning and memory deficits were associated with a significant reduction in dendritic arborization and the number of mature spines in hippocampal CA1 pyramidal neurons of Ehmt1(+/-) mice. In-depth analysis of the electrophysiological properties of CA3-CA1 synapses revealed no differences in basal synaptic transmission or theta-burst induced long-term potentiation (LTP). However, paired-pulse facilitation (PPF) was significantly increased in Ehmt1(+/-) neurons, pointing to a potential deficiency in presynaptic neurotransmitter release. Accordingly, a reduction in the frequency of miniature excitatory post-synaptic currents (mEPSCs) was observed in Ehmt1(+/-) neurons. These data demonstrate that Ehmt1 haploinsufficiency in mice leads to learning deficits and synaptic dysfunction, providing a possible mechanism for the ID phenotype in patients with KS. PMID:23175442

  11. Promising low-toxicity of viologen-phosphorus dendrimers against embryonic mouse hippocampal cells.

    PubMed

    Lazniewska, Joanna; Janaszewska, Anna; Miłowska, Katarzyna; Caminade, Anne-Marie; Mignani, Serge; Katir, Nadia; El Kadib, Abdelkrim; Bryszewska, Maria; Majoral, Jean-Pierre; Gabryelak, Teresa; Klajnert-Maculewicz, Barbara

    2013-01-01

    A new class of viologen-phosphorus dendrimers (VPDs) has been recently shown to possess the ability to inhibit neurodegenerative processes in vitro. Nevertheless, in the Central Nervous Systems domain, there is little information on their impact on cell functions, especially on neuronal cells. In this work, we examined the influence of two VPD (VPD1 and VPD3) of zero generation (G0) on murine hippocampal cell line (named mHippoE-18). Extended analyses of cell responses to these nanomolecules comprised cytotoxicity test, reactive oxygen species (ROS) generation studies, mitochondrial membrane potential (ΔΨm) assay, cell death detection, cell morphology assessment, cell cycle studies, as well as measurements of catalase (CAT) activity and glutathione (GSH) level. The results indicate that VPD1 is more toxic than VPD3. However, these two tested dendrimers did not cause a strong cellular response, and induced a low level of apoptosis. Interestingly, VPD1 and VPD3 treatment led to a small decline in ROS level compared to untreated cells, which correlated with slightly increased catalase activity. This result indicates that the VPDs can indirectly lower the level of ROS in cells. Summarising, low-cytotoxicity on mHippoE-18 cells together with their ability to quench ROS, make the VPDs very promising nanodevices for future applications in the biomedical field as nanocarriers and/or drugs per se. PMID:24084024

  12. Hippocampal Transcriptomic and Proteomic Alterations in the BTBR Mouse Model of Autism Spectrum Disorder

    PubMed Central

    Daimon, Caitlin M.; Jasien, Joan M.; Wood, William H.; Zhang, Yongqing; Becker, Kevin G.; Silverman, Jill L.; Crawley, Jacqueline N.; Martin, Bronwen; Maudsley, Stuart

    2015-01-01

    Autism spectrum disorders (ASD) are complex heterogeneous neurodevelopmental disorders of an unclear etiology, and no cure currently exists. Prior studies have demonstrated that the black and tan, brachyury (BTBR) T+ Itpr3tf/J mouse strain displays a behavioral phenotype with ASD-like features. BTBR T+ Itpr3tf/J mice (referred to simply as BTBR) display deficits in social functioning, lack of communication ability, and engagement in stereotyped behavior. Despite extensive behavioral phenotypic characterization, little is known about the genes and proteins responsible for the presentation of the ASD-like phenotype in the BTBR mouse model. In this study, we employed bioinformatics techniques to gain a wide-scale understanding of the transcriptomic and proteomic changes associated with the ASD-like phenotype in BTBR mice. We found a number of genes and proteins to be significantly altered in BTBR mice compared to C57BL/6J (B6) control mice controls such as BDNF, Shank3, and ERK1, which are highly relevant to prior investigations of ASD. Furthermore, we identified distinct functional pathways altered in BTBR mice compared to B6 controls that have been previously shown to be altered in both mouse models of ASD, some human clinical populations, and have been suggested as a possible etiological mechanism of ASD, including “axon guidance” and “regulation of actin cytoskeleton.” In addition, our wide-scale bioinformatics approach also discovered several previously unidentified genes and proteins associated with the ASD phenotype in BTBR mice, such as Caskin1, suggesting that bioinformatics could be an avenue by which novel therapeutic targets for ASD are uncovered. As a result, we believe that informed use of synergistic bioinformatics applications represents an invaluable tool for elucidating the etiology of complex disorders like ASD. PMID:26635614

  13. Proteomic Profiling of Mouse Liver following Acute Toxoplasma gondii Infection.

    PubMed

    He, Jun-Jun; Ma, Jun; Elsheikha, Hany M; Song, Hui-Qun; Zhou, Dong-Hui; Zhu, Xing-Quan

    2016-01-01

    Toxoplasma gondii remains a global public health problem. However, its pathophysiology is still not-completely understood particularly the impact of infection on host liver metabolism. We performed iTRAQ-based proteomic analysis to evaluate early liver protein responses in BALB/c mice following infection with T. gondii PYS strain (genotype ToxoDB#9) infection. Our data revealed modification of protein expression in key metabolic pathways, as indicated by the upregulation of immune response and downregulation of mitochondrial respiratory chain, and the metabolism of fatty acids, lipids and xenobiotics. T. gondii seems to hijack host PPAR signaling pathway to downregulate the metabolism of fatty acids, lipids and energy in the liver. The metabolism of over 400 substances was affected by the downregulation of genes involved in xenobiotic metabolism. The top 10 transcription factors used by upregulated genes were Stat2, Stat1, Irf2, Irf1, Sp2, Egr1, Stat3, Klf4, Elf1 and Gabpa, while the top 10 transcription factors of downregulated genes were Hnf4A, Ewsr1, Fli1, Hnf4g, Nr2f1, Pparg, Rxra, Hnf1A, Foxa1 and Foxo1. These findings indicate global reprogramming of the metabolism of the mouse liver after acute T. gondii infection. Functional characterization of the altered proteins may enhance understanding of the host responses to T. gondii infection and lead to the identification of new therapeutic targets. PMID:27003162

  14. Proteomic Profiling of Mouse Liver following Acute Toxoplasma gondii Infection

    PubMed Central

    He, Jun-Jun; Ma, Jun; Elsheikha, Hany M.; Song, Hui-Qun; Zhou, Dong-Hui; Zhu, Xing-Quan

    2016-01-01

    Toxoplasma gondii remains a global public health problem. However, its pathophysiology is still not-completely understood particularly the impact of infection on host liver metabolism. We performed iTRAQ-based proteomic analysis to evaluate early liver protein responses in BALB/c mice following infection with T. gondii PYS strain (genotype ToxoDB#9) infection. Our data revealed modification of protein expression in key metabolic pathways, as indicated by the upregulation of immune response and downregulation of mitochondrial respiratory chain, and the metabolism of fatty acids, lipids and xenobiotics. T. gondii seems to hijack host PPAR signaling pathway to downregulate the metabolism of fatty acids, lipids and energy in the liver. The metabolism of over 400 substances was affected by the downregulation of genes involved in xenobiotic metabolism. The top 10 transcription factors used by upregulated genes were Stat2, Stat1, Irf2, Irf1, Sp2, Egr1, Stat3, Klf4, Elf1 and Gabpa, while the top 10 transcription factors of downregulated genes were Hnf4A, Ewsr1, Fli1, Hnf4g, Nr2f1, Pparg, Rxra, Hnf1A, Foxa1 and Foxo1. These findings indicate global reprogramming of the metabolism of the mouse liver after acute T. gondii infection. Functional characterization of the altered proteins may enhance understanding of the host responses to T. gondii infection and lead to the identification of new therapeutic targets. PMID:27003162

  15. Learning Discloses Abnormal Structural and Functional Plasticity at Hippocampal Synapses in the APP23 Mouse Model of Alzheimer's Disease

    ERIC Educational Resources Information Center

    Middei, Silvia; Roberto, Anna; Berretta, Nicola; Panico, Maria Beatrice; Lista, Simone; Bernardi, Giorgio; Mercuri, Nicola B.; Ammassari-Teule, Martine; Nistico, Robert

    2010-01-01

    B6-Tg/Thy1APP23Sdz (APP23) mutant mice exhibit neurohistological hallmarks of Alzheimer's disease but show intact basal hippocampal neurotransmission and synaptic plasticity. Here, we examine whether spatial learning differently modifies the structural and electrophysiological properties of hippocampal synapses in APP23 and wild-type mice. While…

  16. Acetylcholine release in mouse hippocampal CA1 preferentially activates inhibitory-selective interneurons via α4β2* nicotinic receptor activation

    PubMed Central

    Bell, L. Andrew; Bell, Karen A.; McQuiston, A. Rory

    2015-01-01

    Acetylcholine (ACh) release onto nicotinic receptors directly activates subsets of inhibitory interneurons in hippocampal CA1. However, the specific interneurons activated and their effect on the hippocampal network is not completely understood. Therefore, we investigated subsets of hippocampal CA1 interneurons that respond to ACh release through the activation of nicotinic receptors and the potential downstream effects this may have on hippocampal CA1 network function. ACh was optogenetically released in mouse hippocampal slices by expressing the excitatory optogenetic protein oChIEF-tdTomato in medial septum/diagonal band of Broca cholinergic neurons using Cre recombinase-dependent adeno-associated viral mediated transfection. The actions of optogenetically released ACh were assessed on both pyramidal neurons and different interneuron subtypes via whole cell patch clamp methods. Vasoactive intestinal peptide (VIP)-expressing interneurons that selectively innervate other interneurons (VIP/IS) were excited by ACh through the activation of nicotinic receptors containing α4 and β2 subunits (α4β2*). ACh release onto VIP/IS was presynaptically inhibited by M2 muscarinic autoreceptors. ACh release produced spontaneous inhibitory postsynaptic current (sIPSC) barrages blocked by dihydro-β-erythroidine in interneurons but not pyramidal neurons. Optogenetic suppression of VIP interneurons did not inhibit these sIPSC barrages suggesting other interneuron-selective interneurons were also excited by α4β2* nicotinic receptor activation. In contrast, interneurons that innervate pyramidal neuron perisomatic regions were not activated by ACh release onto nicotinic receptors. Therefore, we propose ACh release in CA1 facilitates disinhibition through activation of α4β2* nicotinic receptors on interneuron-selective interneurons whereas interneurons that innervate pyramidal neurons are less affected by nicotinic receptor activation. PMID:25918499

  17. Short- and long-term effects of neonatal pharmacotherapy with epigallocatechin-3-gallate on hippocampal development in the Ts65Dn mouse model of Down syndrome.

    PubMed

    Stagni, Fiorenza; Giacomini, Andrea; Emili, Marco; Trazzi, Stefania; Guidi, Sandra; Sassi, Martina; Ciani, Elisabetta; Rimondini, Roberto; Bartesaghi, Renata

    2016-10-01

    Cognitive disability is an unavoidable feature of Down syndrome (DS), a genetic disorder due to the triplication of human chromosome 21. DS is associated with alterations of neurogenesis, neuron maturation and connectivity that are already present at prenatal life stages. Recent evidence shows that pharmacotherapies can have a large impact on the trisomic brain provided that they are administered perinatally. Epigallocatechin-3-gallate (EGCG), the major polyphenol of green tea, performs many actions in the brain, including inhibition of DYRK1A, a kinase that is over-expressed in the DS brain and contributes to the DS phenotype. Young adults with DS treated with EGCG exhibit some cognitive benefits, although these effects disappear with time. We deemed it extremely important, however, to establish whether treatment with EGCG at the initial stages of brain development leads to plastic changes that outlast treatment cessation. In the current study, we exploited the Ts65Dn mouse model of DS in order to establish whether pharmacotherapy with EGCG during peak of neurogenesis in the hippocampal dentate gyrus (DG) enduringly restores hippocampal development and memory performance. Euploid and Ts65Dn mice were treated with EGCG from postnatal day 3 (P3) to P15. The effects of treatment were examined at its cessation (at P15) or after one month (at P45). We found that at P15 treated trisomic pups exhibited restoration of neurogenesis, total hippocampal granule cell number and levels of pre- and postsynaptic proteins in the DG, hippocampus and neocortex. However, at P45 none of these effects were still present, nor did treated Ts65Dn mice exhibit any improvement in hippocampus-dependent tasks. These findings show that treatment with EGCG carried out in the neonatal period rescues numerous trisomy-linked brain alterations. However, even during this, the most critical time window for hippocampal development, EGCG does not elicit enduring effects on the hippocampal physiology

  18. Morphine modulates mouse hippocampal progenitor cell lineages by up-regulating miR-181a level

    PubMed Central

    Xu, Chi; Zhang, Yue; Zheng, Hui; Loh, Horace H.; Law, Ping-Yee

    2014-01-01

    The mechanism by which addictive drugs such as morphine regulate adult neurogenesis remains elusive. We now demonstrate that morphine can regulate neurogenesis by control of miR-181a and subsequent hippocampal neural progenitor cell (hNPC) lineages. In the presence of morphine, hNPCs preferentially differentiated into astrocytes, an effect blocked by the specific μ-opioid receptor antagonist, Cys2-Tyr3-Orn5-Pen7-amide. This effect was mediated by the Prox1/Notch1 pathway as demonstrated by an increase in Notch1 level in the morphine- but not fentanyl-treated hNPCs, and blocked by over-expression of Notch1 siRNA. Over-expression of Prox1 siRNA up-regulated Notch1 level and potentiated the morphine-induced lineage changes. Prox1 transcript level was regulated by direct interaction between miR-181a and its 3′UTR sequence. In vitro and in vivo treatment with morphine resulted in an increase in miR-181a level in hNPCs and mouse hippocampi, respectively. Over-expression of miR-181a mimics reduced Prox1 levels, increased Notch1 levels and enhanced hNPCs differentiation into astrocytes. Meanwhile, over-expression of the miR-181a inhibitor raised Prox1 levels, decreased Notch1 levels and subsequently blocked the morphine-induced lineage changes. Thus, by modulating Prox1/Notch1 activities via miR-181a, morphine influences the fate of differentiating hNPCs differentiation and therefore the ultimate quantities of mature neurons and astrocytes. PMID:24964978

  19. Acute alterations of somatodendritic action potential dynamics in hippocampal CA1 pyramidal cells after kainate-induced status epilepticus in mice.

    PubMed

    Minge, Daniel; Bähring, Robert

    2011-01-01

    Pathophysiological remodeling processes at an early stage of an acquired epilepsy are critical but not well understood. Therefore, we examined acute changes in action potential (AP) dynamics immediately following status epilepticus (SE) in mice. SE was induced by intraperitoneal (i.p.) injection of kainate, and behavioral manifestation of SE was monitored for 3-4 h. After this time interval CA1 pyramidal cells were studied ex vivo with whole-cell current-clamp and Ca(2+) imaging techniques in a hippocampal slice preparation. Following acute SE both resting potential and firing threshold were modestly depolarized (2-5 mV). No changes were seen in input resistance or membrane time constant, but AP latency was prolonged and AP upstroke velocity reduced following acute SE. All cells showed an increase in AP halfwidth and regular (rather than burst) firing, and in a fraction of cells the notch, typically preceding spike afterdepolarization (ADP), was absent following acute SE. Notably, the typical attenuation of backpropagating action potential (b-AP)-induced Ca(2+) signals along the apical dendrite was strengthened following acute SE. The effects of acute SE on the retrograde spread of excitation were mimicked by applying the Kv4 current potentiating drug NS5806. Our data unveil a reduced somatodendritic excitability in hippocampal CA1 pyramidal cells immediately after acute SE with a possible involvement of both Na(+) and K(+) current components. PMID:22039527

  20. Acute Alterations of Somatodendritic Action Potential Dynamics in Hippocampal CA1 Pyramidal Cells after Kainate-Induced Status Epilepticus in Mice

    PubMed Central

    Minge, Daniel; Bähring, Robert

    2011-01-01

    Pathophysiological remodeling processes at an early stage of an acquired epilepsy are critical but not well understood. Therefore, we examined acute changes in action potential (AP) dynamics immediately following status epilepticus (SE) in mice. SE was induced by intraperitoneal (i.p.) injection of kainate, and behavioral manifestation of SE was monitored for 3–4 h. After this time interval CA1 pyramidal cells were studied ex vivo with whole-cell current-clamp and Ca2+ imaging techniques in a hippocampal slice preparation. Following acute SE both resting potential and firing threshold were modestly depolarized (2–5 mV). No changes were seen in input resistance or membrane time constant, but AP latency was prolonged and AP upstroke velocity reduced following acute SE. All cells showed an increase in AP halfwidth and regular (rather than burst) firing, and in a fraction of cells the notch, typically preceding spike afterdepolarization (ADP), was absent following acute SE. Notably, the typical attenuation of backpropagating action potential (b-AP)-induced Ca2+ signals along the apical dendrite was strengthened following acute SE. The effects of acute SE on the retrograde spread of excitation were mimicked by applying the Kv4 current potentiating drug NS5806. Our data unveil a reduced somatodendritic excitability in hippocampal CA1 pyramidal cells immediately after acute SE with a possible involvement of both Na+ and K+ current components. PMID:22039527

  1. Osteopontin Expression in Acute Immune Response Mediates Hippocampal Synaptogenesis and Adaptive Outcome Following Cortical Brain Injury

    PubMed Central

    Chan, Julie L.; Reeves, Thomas M.; Phillips, Linda L.

    2014-01-01

    Traumatic brain injury (TBI) produces axotomy, deafferentation and reactive synaptogenesis. Inflammation influences synaptic repair, and the novel brain cytokine osteopontin (OPN) has potential to support axon regeneration through exposure of its integrin receptor binding sites. This study explored whether OPN secretion and proteolysis by matrix metalloproteinases (MMPs) mediate the initial degenerative phase of synaptogenesis, targeting reactive neuroglia to affect successful repair. Adult rats received unilateral entorhinal cortex lesion (UEC) modeling adaptive synaptic plasticity. Over the first week postinjury, hippocampal OPN protein and mRNA were assayed and histology performed. At 1–2d, OPN protein increased up to 51 fold, and was localized within activated, mobilized glia. OPN transcript also increased over 50 fold, predominantly within reactive microglia. OPN fragments known to be derived from MMP proteolysis were elevated at 1d, consistent with prior reports of UEC glial activation and enzyme production. Postinjury minocycline immunosuppression attenuated MMP-9 gelatinase activity, which was correlated with reduction of neutrophil gelatinase-associated lipocalin (LCN2) expression, and reduced OPN fragment generation. The antibiotic also attenuated removal of synapsin-1 positive axons from the deafferented zone. OPN KO mice subjected to UEC had similar reduction of hippocampal MMP-9 activity, as well as lower synapsin-1 breakdown over the deafferented zone. MAP1B and N-cadherin, surrogates of cytoarchitecture and synaptic adhesion, were not affected. OPN KO mice with UEC exhibited time dependent cognitive deficits during the synaptogenic phase of recovery. This study demonstrates that OPN can mediate immune response during TBI synaptic repair, positively influencing synapse reorganization and functional recovery. PMID:25151457

  2. ACUTE TRIETHYLTIN EXPOSURE: EFFECTS ON THE VISUAL EVOKED POTENTIAL AND HIPPOCAMPAL AFTERDISCHARGE

    EPA Science Inventory

    Acute administration of triethyltin (TET) produces a well-described sequence of pathological events characterized by intramyelinic vacuolation, edema, and histotoxic hypoxia. Recent behavioral studies have attempted to characterize the functional consequences of TET exposures. In...

  3. Protease-activated receptor-1 negatively regulates proliferation of neural stem/progenitor cells derived from the hippocampal dentate gyrus of the adult mouse.

    PubMed

    Tanaka, Masayuki; Yoneyama, Masanori; Shiba, Tatsuo; Yamaguchi, Taro; Ogita, Kiyokazu

    2016-07-01

    Thrombin-activated protease-activated receptor (PAR)-1 regulates the proliferation of neural cells following brain injury. To elucidate the involvement of PAR-1 in the neurogenesis that occurs in the adult hippocampus, we examined whether PAR-1 regulated the proliferation of neural stem/progenitor cells (NPCs) derived from the murine hippocampal dentate gyrus. NPC cultures expressed PAR-1 protein and mRNA encoding all subtypes of PAR. Direct exposure of the cells to thrombin dramatically attenuated the cell proliferation without causing cell damage. This thrombin-induced attenuation was almost completely abolished by the PAR antagonist RWJ 56110, as well as by dabigatran and 4-(2-aminoethyl)benzenesulfonyl fluoride (AEBSF), which are selective and non-selective thrombin inhibitors, respectively. Expectedly, the PAR-1 agonist peptide (AP) SFLLR-NH2 also attenuated the cell proliferation. The cell proliferation was not affected by the PAR-1 negative control peptide RLLFT-NH2, which is an inactive peptide for PAR-1. Independently, we determined the effect of in vivo treatment with AEBSF or AP on hippocampal neurogenesis in the adult mouse. The administration of AEBSF, but not that of AP, significantly increased the number of newly-generated cells in the hippocampal subgranular zone. These data suggest that PAR-1 negatively regulated adult neurogenesis in the hippocampus by inhibiting the proliferative activity of the NPCs. PMID:27426918

  4. Acute molecular response of mouse hindlimb muscles to chronic stimulation

    PubMed Central

    Jayaraman, R. C.; Bombach, K. L.; Ankrapp, D. P.; Krill-Burger, J. M.; Sciulli, C. M.; Petrosko, P.; Wiseman, R. W.

    2009-01-01

    Stimulation of the mouse hindlimb via the sciatic nerve was performed for a 4-h period to investigate acute muscle gene activation in a model of muscle phenotype conversion. Initial force production (1.6 ± 0.1 g/g body wt) declined 45% within 10 min and was maintained for the remainder of the experiment. Force returned to initial levels upon study completion. An immediate-early growth response was present in the extensor digitorum longus (EDL) muscle (FOS, JUN, activating transcription factor 3, and musculoaponeurotic fibrosarcoma oncogene) with a similar but attenuated pattern in the soleus muscle. Transcript profiles showed decreased fast fiber-specific mRNA (myosin heavy chains 2A and 2B, fast troponins T3 and I, α-tropomyosin, muscle creatine kinase, and parvalbumin) and increased slow transcripts (myosin heavy chain-1β/slow, troponin C slow, and tropomyosin 3y) in the EDL versus soleus muscles. Histological analysis of the EDL revealed glycogen depletion without inflammatory cell infiltration in stimulated versus control muscles, whereas ultrastructural analysis showed no evidence of myofiber damage after stimulation. Multiple fiber type-specific transcription factors (tea domain family member 1, nuclear factor of activated T cells 1, peroxisome proliferator-activated receptor-γ coactivator-1α and -β, circadian locomotor output cycles kaput, and hypoxia-inducible factor-1α) increased in the EDL along with transcription factors characteristic of embryogenesis (Kruppel-like factor 4; SRY box containing 17; transcription factor 15; PBX/knotted 1 homeobox 1; and embryonic lethal, abnormal vision). No established in vivo satellite cell markers or genes activated in our parallel experiments of satellite cell proliferation in vitro (cyclins A2, B2, C, and E1 and MyoD) were differentially increased in the stimulated muscles. These results indicated that the molecular onset of fast to slow phenotype conversion occurred in the EDL within 4 h of stimulation

  5. Mouse genetic differences in voluntary wheel running, adult hippocampal neurogenesis and learning on the multi-strain-adapted plus water maze

    PubMed Central

    Merritt, Jennifer; Rhodes, Justin S.

    2014-01-01

    Moderate levels of aerobic exercise broadly enhance cognition throughout the lifespan. One hypothesized contributing mechanism is increased adult hippocampal neurogenesis. Recently, we measured the effects of voluntary wheel running on adult hippocampal neurogenesis in 12 different mouse strains, and found increased neurogenesis in all strains, ranging from 2 to 5 fold depending on the strain. The purpose of this study was to determine the extent to which increased neurogenesis from wheel running is associated with enhanced performance on the water maze for 5 of the 12 strains, chosen based on their levels of neurogenesis observed in the previous study (C57BL/6J, 129S1/SvImJ, B6129SF1/J, DBA/2J, and B6D2F1/J). Mice were housed with or without a running wheels for 30 days then tested for learning and memory on the plus water maze, adapted for multiple strains, and rotarod test of motor performance. The first 10 days, animals were injected with BrdU to label dividing cells. After behavioral testing animals were euthanized to measure adult hippocampal neurogenesis using standard methods. Levels of neurogenesis depended on strain but all mice had a similar increase in neurogenesis in response to exercise. All mice acquired the water maze but performance depended on strain. Exercise improved water maze performance in all strains to a similar degree. Rotarod performance depended on strain. Exercise improved rotarod performance only in DBA/2J and B6D2F1/J mice. Taken together, results demonstrate that despite different levels of neurogenesis, memory performance and motor coordination in these mouse strains, all strains have the capacity to increase neurogenesis and improve learning on the water maze through voluntary wheel running. PMID:25435316

  6. Altered expression of heat shock protein 110 family members in mouse hippocampal neurons following trimethyltin treatment in vivo and in vitro.

    PubMed

    Yoneyama, Masanori; Iwamoto, Naoko; Nagashima, Reiko; Sugiyama, Chie; Kawada, Koichi; Kuramoto, Nobuyuki; Shuto, Makoto; Ogita, Kiyokazu

    2008-10-01

    The heat shock protein (Hsp) 110 family is composed of HSP105, APG-1, and APG-2. As the response of these proteins to neuronal damage is not yet fully understood, in the present study, we assessed their expression in mouse hippocampal neurons following trimethyltin chloride (TMT) treatment in vivo and in vitro. Although each of these three Hsps had a distinct regional distribution within the hippocampus, a low level of all of them was observed in the granule cell layer of the dentate gyrus in naïve animals. TMT was effective in markedly increasing the level of these Hsps in the granule cell layer, at least 16h to 4days after the treatment. In the dentate granule cell layer on day 2 after TMT treatment, HSP105 was expressed mainly in the perikarya of NeuN-positive cells (intact neurons); whereas APG-1 and APG-2 were predominantly found in NeuN-negative cells (damaged neurons as evidenced by signs of cell shrinkage and condensation of chromatin). Assessments using primary cultures of mouse hippocampal neurons exposed to TMT revealed that whereas HSP105 was observed in intact neurons rather than in damaged neurons, APG-1 and APG-2 were detected in both damaged neurons and intact neurons. Taken together, our data suggest that APG-1 and APG-2 may play different roles from HSP105 in neurons damaged by TMT. PMID:18601936

  7. Acute deep brain stimulation in the thalamic reticular nucleus protects against acute stress and modulates initial events of adult hippocampal neurogenesis.

    PubMed

    Magdaleno-Madrigal, Víctor Manuel; Pantoja-Jiménez, Christopher Rodrigo; Bazaldúa, Adrián; Fernández-Mas, Rodrigo; Almazán-Alvarado, Salvador; Bolaños-Alejos, Fernanda; Ortíz-López, Leonardo; Ramírez-Rodriguez, Gerardo Bernabé

    2016-11-01

    Deep brain stimulation (DBS) is used as an alternative therapeutic procedure for pharmacoresistant psychiatric disorders. Recently the thalamic reticular nucleus (TRN) gained attention due to the description of a novel pathway from the amygdala to this nucleus suggesting that may be differentially disrupted in mood disorders. The limbic system is implicated in the regulation of these disorders that are accompanied by neuroplastic changes. The hippocampus is highly plastic and shows the generation of new neurons, process affected by stress but positively regulated by antidepressant drugs. We explored the impact of applying acute DBS to the TRN (DBS-TRN) in male Wistar rats exposed to acute stress caused by the forced-swim Porsolt's test (FST) and on initial events of hippocampal neurogenesis. After the first session of forced-swim, rats were randomly subdivided in a DBS-TRN and a Sham group. Stimulated rats received 10min of DBS, thus the depressant-like behavior reflected as immobility was evaluated in the second session of forced-swim. Locomotricity was evaluated in the open field test. Cell proliferation and doublecortin-associated cells were quantified in the hippocampus of other cohorts of rats. No effects of electrode implantation were found in locomotricity. Acute DBS-TRN reduced immobility in comparison to the Sham group (p<0.001). DBS-TRN increased cell proliferation (Ki67 or BrdU-positive cells; p=0.02, p=0.02) and the number of doublecortin-cells compared to the Sham group (p<0.02). Similar effects were found in rats previously exposed to the first session of forced-swim. Our data could suggest that TRN brain region may be a promising target for DBS to treat intractable depression. PMID:27435420

  8. Impact of Treadmill Running and Sex on Hippocampal Neurogenesis in the Mouse Model of Amyotrophic Lateral Sclerosis

    PubMed Central

    Ma, Xiaoxing; Hamadeh, Mazen J.; Christie, Brain R.; Foster, Jane A.; Tarnopolsky, Mark A.

    2012-01-01

    Hippocampal neurogenesis in the subgranular zone (SGZ) of dentate gyrus (DG) occurs throughout life and is regulated by pathological and physiological processes. The role of oxidative stress in hippocampal neurogenesis and its response to exercise or neurodegenerative diseases remains controversial. The present study was designed to investigate the impact of oxidative stress, treadmill exercise and sex on hippocampal neurogenesis in a murine model of heightened oxidative stress (G93A mice). G93A and wild type (WT) mice were randomized to a treadmill running (EX) or a sedentary (SED) group for 1 or 4 wk. Immunohistochemistry was used to detect bromodeoxyuridine (BrdU) labeled proliferating cells, surviving cells, and their phenotype, as well as for determination of oxidative stress (3-NT; 8-OHdG). BDNF and IGF1 mRNA expression was assessed by in situ hybridization. Results showed that: (1) G93A-SED mice had greater hippocampal neurogenesis, BDNF mRNA, and 3-NT, as compared to WT-SED mice. (2) Treadmill running promoted hippocampal neurogenesis and BDNF mRNA content and lowered DNA oxidative damage (8-OHdG) in WT mice. (3) Male G93A mice showed significantly higher cell proliferation but a lower level of survival vs. female G93A mice. We conclude that G93A mice show higher hippocampal neurogenesis, in association with higher BDNF expression, yet running did not further enhance these phenomena in G93A mice, probably due to a ‘ceiling effect’ of an already heightened basal levels of hippocampal neurogenesis and BDNF expression. PMID:22558322

  9. Altered Hippocampal Lipid Profile Following Acute Postnatal Exposure to Di(2-Ethylhexyl) Phthalate in Rats

    PubMed Central

    Smith, Catherine A.; Farmer, Kyle; Lee, Hyunmin; Holahan, Matthew R.; Smith, Jeffrey C.

    2015-01-01

    Slight changes in the abundance of certain lipid species in the brain may drastically alter normal neurodevelopment via membrane stability, cell signalling, and cell survival. Previous findings have demonstrated that postnatal exposure to di (2-ethylhexyl) phthalate (DEHP) disrupts normal axonal and neural development in the hippocampus. The goal of the current study was to determine whether postnatal exposure to DEHP alters the lipid profile in the hippocampus during postnatal development. Systemic treatment with 10 mg/kg DEHP during postnatal development led to elevated levels of phosphatidylcholine and sphingomyelin in the hippocampus of female rats. There was no effect of DEHP exposure on the overall abundance of phosphatidylcholine or sphingomyelin in male rats or of lysophosphatidylcholine in male or female rats. Individual analyses of each identified lipid species revealed 10 phosphatidylcholine and six sphingomyelin lipids in DEHP-treated females and a single lysophosphatidylcholine in DEHP-treated males with a two-fold or higher increase in relative abundance. Our results are congruent with previous work that found that postnatal exposure to DEHP had a near-selective detrimental effect on hippocampal development in males but not females. Together, results suggest a neuroprotective effect of these elevated lipid species in females. PMID:26516880

  10. Neuroprotective effect of acute melatonin treatment on hippocampal neurons against irradiation by inhibition of caspase-3

    PubMed Central

    LI, JIANGUO; ZHANG, GUOWEI; MENG, ZHUANGZHI; WANG, LINGZHAN; LIU, HAIYING; LIU, QIANG; BUREN, BATU

    2016-01-01

    Neuronal cell apoptosis is associated with various factors that induce neurological damage, including radiation exposure. When administered prior to exposure to radiation, a protective agent may prevent cellular and molecular injury. The present study aimed to investigate whether melatonin exerts a neuroprotective effect by inhibiting the caspase cell death pathway. Male Sprague-Dawley rats were administered melatonin (100 mg/kg body weight) 30 min prior to radiation exposure in red light during the evening. In order to elucidate whether melatonin has a neuroprotective role, immunohistochemistry, terminal deoxynucleotidyl transferase dUTP nick-end labeling, Nissl staining, reverse transcription-quantitative polymerase chain reaction, reactive oxygen species analysis and western blotting were performed. At 24 h post-melatonin treatment, caspase-3 mRNA and protein expression levels were significantly decreased. These results demonstrated that melatonin may protect hippocampal neurons via the inhibition of caspase-3 when exposed to irradiation. Therefore, caspase-3 inhibition serves a neuroprotective and antioxidant role in the interventional treatment of melatonin. The results of the present study suggested that melatonin may have a potential therapeutic effect against irradiation; however, further studies are required in order to elucidate the underlying antioxidant mechanisms. PMID:27313671

  11. Altered Hippocampal Lipid Profile Following Acute Postnatal Exposure to Di(2-Ethylhexyl) Phthalate in Rats.

    PubMed

    Smith, Catherine A; Farmer, Kyle; Lee, Hyunmin; Holahan, Matthew R; Smith, Jeffrey C

    2015-10-01

    Slight changes in the abundance of certain lipid species in the brain may drastically alter normal neurodevelopment via membrane stability, cell signalling, and cell survival. Previous findings have demonstrated that postnatal exposure to di (2-ethylhexyl) phthalate (DEHP) disrupts normal axonal and neural development in the hippocampus. The goal of the current study was to determine whether postnatal exposure to DEHP alters the lipid profile in the hippocampus during postnatal development. Systemic treatment with 10 mg/kg DEHP during postnatal development led to elevated levels of phosphatidylcholine and sphingomyelin in the hippocampus of female rats. There was no effect of DEHP exposure on the overall abundance of phosphatidylcholine or sphingomyelin in male rats or of lysophosphatidylcholine in male or female rats. Individual analyses of each identified lipid species revealed 10 phosphatidylcholine and six sphingomyelin lipids in DEHP-treated females and a single lysophosphatidylcholine in DEHP-treated males with a two-fold or higher increase in relative abundance. Our results are congruent with previous work that found that postnatal exposure to DEHP had a near-selective detrimental effect on hippocampal development in males but not females. Together, results suggest a neuroprotective effect of these elevated lipid species in females. PMID:26516880

  12. Dual Electrophysiological Recordings of Synaptically-evoked Astroglial and Neuronal Responses in Acute Hippocampal Slices

    PubMed Central

    Rouach, Nathalie

    2012-01-01

    Astrocytes form together with neurons tripartite synapses, where they integrate and modulate neuronal activity. Indeed, astrocytes sense neuronal inputs through activation of their ion channels and neurotransmitter receptors, and process information in part through activity-dependent release of gliotransmitters. Furthermore, astrocytes constitute the main uptake system for glutamate, contribute to potassium spatial buffering, as well as to GABA clearance. These cells therefore constantly monitor synaptic activity, and are thereby sensitive indicators for alterations in synaptically-released glutamate, GABA and extracellular potassium levels. Additionally, alterations in astroglial uptake activity or buffering capacity can have severe effects on neuronal functions, and might be overlooked when characterizing physiopathological situations or knockout mice. Dual recording of neuronal and astroglial activities is therefore an important method to study alterations in synaptic strength associated to concomitant changes in astroglial uptake and buffering capacities. Here we describe how to prepare hippocampal slices, how to identify stratum radiatum astrocytes, and how to record simultaneously neuronal and astroglial electrophysiological responses. Furthermore, we describe how to isolate pharmacologically the synaptically-evoked astroglial currents. PMID:23222635

  13. Resveratrol protects against oxidative injury induced by H2O2 in acute hippocampal slice preparations from Wistar rats.

    PubMed

    de Almeida, Lúcia Maria Vieira; Leite, Marina Concli; Thomazi, Ana Paula; Battu, Cíntia; Nardin, Patrícia; Tortorelli, Lucas Silva; Zanotto, Caroline; Posser, Thaís; Wofchuk, Susana Tchernin; Leal, Rodrigo Bainy; Gonçalves, Carlos-Alberto; Gottfried, Carmem

    2008-12-01

    There is a current interest in dietary compounds (such as trans-resveratrol) that can inhibit or reverse oxidative stress, the common pathway for a variety of brain disorders, including Alzheimer's disease and stroke. The objective of the present study was to investigate the effects of resveratrol, under conditions of oxidative stress induced by H(2)O(2), on acute hippocampal slices from Wistar rats. Here, we evaluated cell viability, extracellular lactate, glutathione content, ERK(MAPK) activity, glutamate uptake and S100B secretion. Resveratrol did not change the decrease in lactate levels and in cell viability (by MTT assay) induced by 1mM H(2)O(2), but prevented the increase in cell permeability to Trypan blue induced by H(2)O(2). Moreover, resveratrol per se increased total glutathione levels and prevented the decrease in glutathione induced by 1mM H(2)O(2). The reduction of S100B secretion induced by H(2)O(2) was not changed by resveratrol. Glutamate uptake was decreased in the presence of 1mM H(2)O(2) and this effect was not prevented by resveratrol. There was also a significant activation of ERK1/2 by 1mM H(2)O(2) and resveratrol was able to completely prevent this activation, leading to activity values lower than control levels. The impairments in astrocyte activities, induced by H(2)O(2), confirmed the importance of these cells as targets for therapeutic strategy in brain disorders involving oxidative stress. This study reinforces the protective role of resveratrol and indicates some possible molecular sites of activity of this compound on glial cells, in the acute damage of brain tissue during oxidative stress. PMID:18835240

  14. Losing control under ketamine: suppressed cortico-hippocampal drive following acute ketamine in rats.

    PubMed

    Moran, Rosalyn J; Jones, Matthew W; Blockeel, Anthony J; Adams, Rick A; Stephan, Klaas E; Friston, Karl J

    2015-01-01

    Systemic doses of the psychotomimetic ketamine alter the spectral characteristics of hippocampal and prefrontal cortical network activity. Using dynamic causal modeling (DCM) of cross-spectral densities, we quantify the putative synaptic mechanisms underlying ketamine effects in terms of changes in directed, effective connectivity between dorsal hippocampus and medial prefrontal (dCA1-mPFC) cortex of freely moving rats. We parameterize dose-dependent changes in spectral signatures of dCA1-mPFC local field potential recordings, using neural mass models of glutamatergic and GABAergic circuits. Optimizing DCMs of theta and gamma frequency range responses, model comparisons suggest that both enhanced gamma and depressed theta power result from a reduction in top-down connectivity from mPFC to the hippocampus, mediated by postsynaptic NMDA receptors (NMDARs). This is accompanied by an alteration in the bottom-up pathway from dCA1 to mPFC, which exhibits a distinct asymmetry: here, feed-forward drive at AMPA receptors increases in the presence of decreased NMDAR-mediated inputs. Setting these findings in the context of predictive coding suggests that NMDAR antagonism by ketamine in recurrent hierarchical networks may result in the failure of top-down connections from higher cortical regions to signal predictions to lower regions in the hierarchy, which consequently fail to respond consistently to errors. Given that NMDAR dysfunction has a central role in pathophysiological theories of schizophrenia and that theta and gamma rhythm abnormalities are evident in schizophrenic patients, the approach followed here may furnish a framework for the study of aberrant hierarchical message passing (of prediction errors) in schizophrenia-and the false perceptual inferences that ensue. PMID:25053181

  15. Acute caffeine treatment increases extracellular nucleotide hydrolysis from rat striatal and hippocampal synaptosomes.

    PubMed

    da Silva, Rosane Souza; Bruno, Alessandra Nejar; Battastini, Ana Maria Oliveira; Sarkis, João José Freitas; Lara, Diogo Rizzato; Bonan, Carla Denise

    2003-08-01

    The psychostimulant caffeine promotes behavioral effects such as hyperlocomotion, anxiety, and disruption of sleep by blockade of adenosine receptors. The availability of extracellular adenosine depends on its release by transporters or by the extracellular ATP catabolism performed by the ecto-nucleotidase pathway. This study verified the effect of caffeine on NTPDase 1 (ATP diphosphohydrolase) and 5'-nucleotidase of synaptosomes from hippocampus and striatum of rats. Caffeine and theophylline tested in vitro were unable to modify nucleotide hydrolysis. Caffeine chronically administered in the drinking water at 0.3 g/L or 1 g/L for 14 days failed to affect nucleotide hydrolysis. However, acute administration of caffeine (30 mg/kg, i.p.) produced an enhancement of ATP (50%) and ADP (32%) hydrolysis in synaptosomes of hippocampus and striatum, respectively. This activation of ATP and ADP hydrolysis after acute treatment suggests a compensatory effect to increase adenosine levels and counteract the antagonist action of caffeine. PMID:12834266

  16. Effect of Yi Gong San Decoction on Iron Homeostasis in a Mouse Model of Acute Inflammation

    PubMed Central

    Zheng, Qin; Guan, Yu; Xia, Lemin; Wang, Zhicheng; Jiang, Yiling; Zhang, Xiaofeng; Wang, Jianying; Wang, Guohua; Pu, Yiqiong; Xia, Jing; Luo, Meihong

    2016-01-01

    We investigated the effect of Yi Gong San (YGS) decoction on iron homeostasis and the possible underlying mechanisms in a mouse model of acute inflammation in this study. Our findings suggest that YGS regulates iron homeostasis by downregulating the level of HAMP mRNA, which may depend on regulation of the IL-6/STAT3 or BMP/HJV/SMAD pathway during acute inflammation. PMID:27143982

  17. Mouse models of acute, chemical itch and pain in humans

    PubMed Central

    LaMotte, Robert H.; Shimada, Steven G.; Sikand, Parul

    2011-01-01

    In psychophysical experiments, humans use different verbal responses to pruritic and algesic chemical stimuli to indicate the different qualities of sensation they feel. A major challenge for behavioral models in the mouse of chemical itch and pain in humans is to devise experimental protocols that provide the opportunity for the animal to exhibit a multiplicity of responses as well. One basic criterion is that chemicals that evoke primarily itch or pain in humans should elicit different types of responses when applied in the same way to the mouse. Meeting this criterion is complicated by the fact that the type of behavioral responses exhibited by the mouse depends in part on the site of chemical application such as the nape of the neck which evokes only scratching with the hind paw vs. the hind limb which elicits licking and biting. Here, we review to what extent mice behaviorally differentiate chemicals that elicit itch vs. pain in humans. PMID:21929688

  18. Evidence for Alzheimer's disease-linked synapse loss and compensation in mouse and human hippocampal CA1 pyramidal neurons.

    PubMed

    Neuman, Krystina M; Molina-Campos, Elizabeth; Musial, Timothy F; Price, Andrea L; Oh, Kwang-Jin; Wolke, Malerie L; Buss, Eric W; Scheff, Stephen W; Mufson, Elliott J; Nicholson, Daniel A

    2015-11-01

    Alzheimer's disease (AD) is associated with alterations in the distribution, number, and size of inputs to hippocampal neurons. Some of these changes are thought to be neurodegenerative, whereas others are conceptualized as compensatory, plasticity-like responses, wherein the remaining inputs reactively innervate vulnerable dendritic regions. Here, we provide evidence that the axospinous synapses of human AD cases and mice harboring AD-linked genetic mutations (the 5XFAD line) exhibit both, in the form of synapse loss and compensatory changes in the synapses that remain. Using array tomography, quantitative conventional electron microscopy, immunogold electron microscopy for AMPARs, and whole-cell patch-clamp physiology, we find that hippocampal CA1 pyramidal neurons in transgenic mice are host to an age-related synapse loss in their distal dendrites, and that the remaining synapses express more AMPA-type glutamate receptors. Moreover, the number of axonal boutons that synapse with multiple spines is significantly reduced in the transgenic mice. Through serial section electron microscopic analyses of human hippocampal tissue, we further show that putative compensatory changes in synapse strength are also detectable in axospinous synapses of proximal and distal dendrites in human AD cases, and that their multiple synapse boutons may be more powerful than those in non-cognitively impaired human cases. Such findings are consistent with the notion that the pathophysiology of AD is a multivariate product of both neurodegenerative and neuroplastic processes, which may produce adaptive and/or maladaptive responses in hippocampal synaptic strength and plasticity. PMID:25031178

  19. TISSUE DISPOSITION OF DIMETHYLARSINIC ACID IN THE MOUSE AFTER ACUTE ORAL ADMINISTRATION

    EPA Science Inventory

    TISSUE DISPOSITION OF DIMETHYLARSINIC ACID IN THE MOUSE
    AFTER ACUTE ORAL ADMINISTRATION

    Michael F. Hughes, Ph.D., Brenda C. Edwards, Carol T. Mitchell and Elaina M. Kenyon, Ph.D. United States Environmental Protection Agency, Office of Research and Development, Nation...

  20. Systems Genetics Analysis of a Recombinant Inbred Mouse Cell Culture Panel Reveals Wnt Pathway Member Lrp6 as a Regulator of Adult Hippocampal Precursor Cell Proliferation.

    PubMed

    Kannan, Suresh; Nicola, Zeina; Overall, Rupert W; Ichwan, Muhammad; Ramírez-Rodríguez, Gerardo; N Grzyb, Anna; Patone, Giannino; Saar, Kathrin; Hübner, Norbert; Kempermann, Gerd

    2016-03-01

    In much animal research, genetic variation is rather avoided than used as a powerful tool to identify key regulatory genes in complex phenotypes. Adult hippocampal neurogenesis is one such highly complex polygenic trait, for which the understanding of the molecular basis is fragmented and incomplete, and for which novel genetic approaches are needed. In this study, we aimed at marrying the power of the BXD panel, a mouse genetic reference population, with the flexibility of a cell culture model of adult neural precursor proliferation and differentiation. We established adult-derived hippocampal precursor cell cultures from 20 strains of the BXD panel, including the parental strains C57BL/6J and DBA/2J. The rates of cell proliferation and neuronal differentiation were measured, and transcriptional profiles were obtained from proliferating cultures. Together with the published genotypes of all lines, these data allowed a novel systems genetics analysis combining quantitative trait locus analysis with transcript expression correlation at a cellular level to identify genes linked with the differences in proliferation. In a proof-of-principle analysis, we identified Lrp6, the gene encoding the coreceptor to Frizzled in the Wnt pathway, as a potential negative regulator of precursor proliferation. Overexpression and siRNA silencing confirmed the regulatory role of Lrp6. As well as adding to our knowledge of the pathway surrounding Wnt in adult hippocampal neurogenesis, this finding allows the new appreciation of a negative regulator within this system. In addition, the resource and associated methodology will allow the integration of regulatory mechanisms at a systems level. Stem Cells 2016;34:674-684. PMID:26840599

  1. Enhanced Hippocampal Neurogenesis in APP/Ps1 Mouse Model of Alzheimer's Disease After Implantation of VEGF-loaded PLGA Nanospheres.

    PubMed

    Herran, E; Perez-Gonzalez, R; Igartua, M; Pedraz, J L; Carro, E; Hernandez, R M

    2015-01-01

    During adult life, hippocampus is an important brain region involved in neurogenesis. The generation and cell death of newly generated neuronal cells in this region have critical roles in brain maintenance and alterations in these processes are seen in Alzheimer's disease (AD). For the purpose of carrying out a neuroregenerative strategy, we propose a novel approach based on the encapsulation of vascular endothelial growth factor (VEGF) in poly (lactic co-glycolic acid) (PLGA) biodegradable nanospheres (NS) administered by craniotomy to stimulate the proliferation of neuronal precursors in a transgenic mouse model of AD. VEGF loaded nanospheres were prepared by double emulsion solvent evaporation technique, obtaining 200 nm nanospheres with a biphasic release profile. After demonstrating their efficacy in the proliferation and differentiation of neuronal cell cultures, in vivo studies were carried out. 3 months after VEGF-NS were implanted directly into the cerebral cortex of APP/Ps1 mice, the determination of BrdU(+) cells in the whole hippocampal region and specifically in the dentate gyrus, demonstrated a significantly enhanced cellular proliferation in VEGF-NS treated group. These results were also confirmed showing an increased number of DCX(+) and NeuN(+) cells. Hence, PLGA-VEGF nanospheres may be a potential strategy to modulate proliferative neuronal progenitors in the hippocampal region, and therefore, provide new insight for future therapeutic approaches in AD. PMID:26502822

  2. Loss and Gain of MeCP2 Cause Similar Hippocampal Circuit Dysfunction that Is Rescued by Deep Brain Stimulation in a Rett Syndrome Mouse Model.

    PubMed

    Lu, Hui; Ash, Ryan T; He, Lingjie; Kee, Sara E; Wang, Wei; Yu, Dinghui; Hao, Shuang; Meng, Xiangling; Ure, Kerstin; Ito-Ishida, Aya; Tang, Bin; Sun, Yaling; Ji, Daoyun; Tang, Jianrong; Arenkiel, Benjamin R; Smirnakis, Stelios M; Zoghbi, Huda Y

    2016-08-17

    Loss- and gain-of-function mutations in methyl-CpG-binding protein 2 (MECP2) underlie two distinct neurological syndromes with strikingly similar features, but the synaptic and circuit-level changes mediating these shared features are undefined. Here we report three novel signs of neural circuit dysfunction in three mouse models of MECP2 disorders (constitutive Mecp2 null, mosaic Mecp2(+/-), and MECP2 duplication): abnormally elevated synchrony in the firing activity of hippocampal CA1 pyramidal neurons, an impaired homeostatic response to perturbations of excitatory-inhibitory balance, and decreased excitatory synaptic response in inhibitory neurons. Conditional mutagenesis studies revealed that MeCP2 dysfunction in excitatory neurons mediated elevated synchrony at baseline, while MeCP2 dysfunction in inhibitory neurons increased susceptibility to hypersynchronization in response to perturbations. Chronic forniceal deep brain stimulation (DBS), recently shown to rescue hippocampus-dependent learning and memory in Mecp2(+/-) (Rett) mice, also rescued all three features of hippocampal circuit dysfunction in these mice. PMID:27499081

  3. Rhinacanthus nasutus Extracts Prevent Glutamate and Amyloid-β Neurotoxicity in HT-22 Mouse Hippocampal Cells: Possible Active Compounds Include Lupeol, Stigmasterol and β-Sitosterol

    PubMed Central

    Brimson, James M.; Brimson, Sirikalaya J.; Brimson, Christopher A.; Rakkhitawatthana, Varaporn; Tencomnao, Tewin

    2012-01-01

    The Herb Rhinacanthus nasutus (L.) Kurz, which is native to Thailand and Southeast Asia, has become known for its antioxidant properties. Neuronal loss in a number of diseases including Alzheimer’s disease is thought to result, in part, from oxidative stress. Glutamate causes cell death in the mouse hippocampal cell line, HT-22, by unbalancing redox homeostasis, brought about by a reduction in glutathione levels, and amyloid-β has been shown to induce reactive oxygen species (ROS) production. Here in, we show that ethanol extracts of R. nasutus leaf and root are capable of dose dependently attenuating the neuron cell death caused by both glutamate and amyloid-β treatment. We used free radical scavenging assays to measure the extracts antioxidant activities and as well as quantifying phenolic, flavonoid and sterol content. Molecules found in R. nasutus, lupeol, stigmasterol and β-sitosterol are protective against glutamate toxicity. PMID:22606031

  4. Modification of hippocampal markers of synaptic plasticity by memantine in animal models of acute and repeated restraint stress: implications for memory and behavior.

    PubMed

    Amin, Shaimaa Nasr; El-Aidi, Ahmed Amro; Ali, Mohamed Mostafa; Attia, Yasser Mahmoud; Rashed, Laila Ahmed

    2015-06-01

    Stress is any condition that impairs the balance of the organism physiologically or psychologically. The response to stress involves several neurohormonal consequences. Glutamate is the primary excitatory neurotransmitter in the central nervous system, and its release is increased by stress that predisposes to excitotoxicity in the brain. Memantine is an uncompetitive N-methyl D-aspartate glutamatergic receptors antagonist and has shown beneficial effect on cognitive function especially in Alzheimer's disease. The aim of the work was to investigate memantine effect on memory and behavior in animal models of acute and repeated restraint stress with the evaluation of serum markers of stress and the expression of hippocampal markers of synaptic plasticity. Forty-two male rats were divided into seven groups (six rats/group): control, acute restraint stress, acute restraint stress with Memantine, repeated restraint stress, repeated restraint stress with Memantine and Memantine groups (two subgroups as positive control). Spatial working memory and behavior were assessed by performance in Y-maze. We evaluated serum cortisol, tumor necrotic factor, interleukin-6 and hippocampal expression of brain-derived neurotrophic factor, synaptophysin and calcium-/calmodulin-dependent protein kinase II. Our results revealed that Memantine improved spatial working memory in repeated stress, decreased serum level of stress markers and modified the hippocampal synaptic plasticity markers in both patterns of stress exposure; in ARS, Memantine upregulated the expression of synaptophysin and brain-derived neurotrophic factor and downregulated the expression of calcium-/calmodulin-dependent protein kinase II, and in repeated restraint stress, it upregulated the expression of synaptophysin and downregulated calcium-/calmodulin-dependent protein kinase II expression. PMID:25680935

  5. Hippocampal increase of 5-hmC in the glucocorticoid receptor gene following acute stress

    PubMed Central

    Kintner, Douglas B.; Sabat, Grzegorz; Barrett-Wilt, Gregory A.; Cengiz, Pelin; Alisch, Reid S.

    2015-01-01

    5-hydroxymethylcytosine (5-hmC) is a novel environmentally sensitive DNA modification that is highly enriched in post-mitotic neurons and is associated with active transcription of neuronal genes. Recently, 5-hmC was functionally linked to learning and cognition and these studies revealed an accumulation of 5-hmC in the prefrontal cortex of mice undergoing fear extinction. These studies led us to hypothesize a role for 5-hmC in response to stress. To test this hypothesis, we combined immunohistochemistry, tandem mass spectrometry, and tet-assisted sodium bisulfite sequencing (TAB-seq) analyses on tissue and DNA from the hippocampus of 7-week old male mice exposed to a single thirty-minute restraint stress. After first identifying that the broad neuronal distribution of 5-hmC is not disrupted by acute stress, we used TAB-seq to find a stress-induced increase of 5-hmC in the 3’UTR of the glucocorticoid receptor gene (Nr3c1). Nr3c1 has a well-defined role in the stress pathway and these data suggest that 5-hmC contributes to these processes. Together, these data indicate that a deeper investigation of stress-related 5-hmC levels may reveal an environmental impact on this newly discovered epigenetic mark in the brain. PMID:25746451

  6. Hippocampal increase of 5-hmC in the glucocorticoid receptor gene following acute stress.

    PubMed

    Li, Sisi; Papale, Ligia A; Kintner, Douglas B; Sabat, Grzegorz; Barrett-Wilt, Gregory A; Cengiz, Pelin; Alisch, Reid S

    2015-06-01

    5-Hydroxymethylcytosine (5-hmC) is a novel environmentally sensitive DNA modification that is highly enriched in post-mitotic neurons and is associated with active transcription of neuronal genes. Recently, 5-hmC was functionally linked to learning and cognition and these studies revealed an accumulation of 5-hmC in the prefrontal cortex of mice undergoing fear extinction. These studies led us to hypothesize a role for 5-hmC in response to stress. To test this hypothesis, we combined immunohistochemistry, tandem mass spectrometry, and tet-assisted sodium bisulfite sequencing (TAB-seq) analyses on tissue and DNA from the hippocampus of 7-week old male mice exposed to a single 30-min restraint stress. After first identifying that the broad neuronal distribution of 5-hmC is not disrupted by acute stress, we used TAB-seq to find a stress-induced increase of 5-hmC in the 3'UTR of the glucocorticoid receptor gene (Nr3c1). Nr3c1 has a well-defined role in the stress pathway and these data suggest that 5-hmC contributes to these processes. Together, these data indicate that a deeper investigation of stress-related 5-hmC levels may reveal an environmental impact on this newly discovered epigenetic mark in the brain. PMID:25746451

  7. The GLP-1 Receptor Agonist Liraglutide Improves Memory Function and Increases Hippocampal CA1 Neuronal Numbers in a Senescence-Accelerated Mouse Model of Alzheimer's Disease.

    PubMed

    Hansen, Henrik H; Fabricius, Katrine; Barkholt, Pernille; Niehoff, Michael L; Morley, John E; Jelsing, Jacob; Pyke, Charles; Knudsen, Lotte Bjerre; Farr, Susan A; Vrang, Niels

    2015-01-01

    Recent studies indicate that glucagon-like peptide 1 (GLP-1) receptor agonists, currently used in the management of type 2 diabetes, exhibit neurotrophic and neuroprotective effects in amyloid-β (Aβ) toxicity models of Alzheimer's disease (AD). We investigated the potential pro-cognitive and neuroprotective effects of the once-daily GLP-1 receptor agonist liraglutide in senescence-accelerated mouse prone 8 (SAMP8) mice, a model of age-related sporadic AD not dominated by amyloid plaques. Six-month-old SAMP8 mice received liraglutide (100 or 500 μg/kg/day, s.c.) or vehicle once daily for 4 months. Vehicle-dosed age-matched 50% back-crossed as well as untreated young (4-month-old) SAMP8 mice were used as control groups for normal memory function. Vehicle-dosed 10-month-old SAMP8 mice showed significant learning and memory retention deficits in an active-avoidance T-maze, as compared to both control groups. Also, 10-month-old SAMP8 mice displayed no immunohistological signatures of amyloid-β plaques or hyperphosphorylated tau, indicating the onset of cognitive deficits prior to deposition of amyloid plaques and neurofibrillary tangles in this AD model. Liraglutide significantly increased memory retention and total hippocampal CA1 pyramidal neuron numbers in SAMP8 mice, as compared to age-matched vehicle-dosed SAMP8 mice. In conclusion, liraglutide delayed or partially halted the progressive decline in memory function associated with hippocampal neuronal loss in a mouse model of pathological aging with characteristics of neurobehavioral and neuropathological impairments observed in early-stage sporadic AD. PMID:25869785

  8. The GLP-1 Receptor Agonist Liraglutide Improves Memory Function and Increases Hippocampal CA1 Neuronal Numbers in a Senescence-Accelerated Mouse Model of Alzheimer’s Disease

    PubMed Central

    Hansen, Henrik H.; Fabricius, Katrine; Barkholt, Pernille; Niehoff, Michael L.; Morley, John E.; Jelsing, Jacob; Pyke, Charles; Knudsen, Lotte Bjerre; Farr, Susan A.; Vrang, Niels

    2015-01-01

    Abstract Recent studies indicate that glucagon-like peptide 1 (GLP-1) receptor agonists, currently used in the management of type 2 diabetes, exhibit neurotrophic and neuroprotective effects in amyloid-β (Aβ) toxicity models of Alzheimer’s disease (AD). We investigated the potential pro-cognitive and neuroprotective effects of the once-daily GLP-1 receptor agonist liraglutide in senescence-accelerated mouse prone 8 (SAMP8) mice, a model of age-related sporadic AD not dominated by amyloid plaques. Six-month-old SAMP8 mice received liraglutide (100 or 500 μg/kg/day, s.c.) or vehicle once daily for 4 months. Vehicle-dosed age-matched 50% back-crossed as well as untreated young (4-month-old) SAMP8 mice were used as control groups for normal memory function. Vehicle-dosed 10-month-old SAMP8 mice showed significant learning and memory retention deficits in an active-avoidance T-maze, as compared to both control groups. Also, 10-month-old SAMP8 mice displayed no immunohistological signatures of amyloid-β plaques or hyperphosphorylated tau, indicating the onset of cognitive deficits prior to deposition of amyloid plaques and neurofibrillary tangles in this AD model. Liraglutide significantly increased memory retention and total hippocampal CA1 pyramidal neuron numbers in SAMP8 mice, as compared to age-matched vehicle-dosed SAMP8 mice. In conclusion, liraglutide delayed or partially halted the progressive decline in memory function associated with hippocampal neuronal loss in a mouse model of pathological aging with characteristics of neurobehavioral and neuropathological impairments observed in early-stage sporadic AD. PMID:25869785

  9. Deficits in hippocampal CA1 LTP induced by TBS but not HFS in the Ts65Dn mouse: a model of Down syndrome.

    PubMed

    Costa, Alberto C S; Grybko, Michael J

    2005-07-15

    Down syndrome (DS) is the most common genetically defined cause of intellectual disabilities. Both hippocampal function and volume seem to be disproportionally reduced in individuals with DS and in at least one aneuploid murine model of DS, the Ts65Dn mouse. Two previous studies by one research group have reported deficits in long-term potentiation (LTP) induced by in vitro high-frequency stimulation (HFS) of hippocampal CA1 synapses of adult Ts65Dn mice. Here, we report on the results of our own investigation on LTP in Ts65Dn mice. This study was designed to confirm the previous findings and possibly shed some light onto potential mechanisms underlying the reported deficit in this important form of long-term synaptic plasticity in a mouse model of DS. LTP was induced in area CA1 with either theta burst stimulation (TBS) or HFS. Contrary to the previous reports, our results showed no significant difference in HFS-induced LTP between Ts65Dn and euploid littermate mice. We have found, however, a significant reduction of the amount of TBS-induced LTP in Ts65Dn mice compared to euploid controls. Because this specific LTP deficit can be rescued by bath application of picrotoxin (10 microM), we hypothesize that an increase in GABA(A)-mediated inhibition or in plasticity of the inhibitory circuitry in Ts65Dn mice may underlie the observed deficits. However, future experiments to examine the state of hippocampus CA1 GABAergic inhibition in Ts65Dn mice will be necessary to further explore these hypotheses. PMID:15925111

  10. Impaired hippocampal plasticity and altered neurogenesis in adult Ube3a maternal deficient mouse model for Angelman syndrome.

    PubMed

    Mardirossian, Sandrine; Rampon, Claire; Salvert, Denise; Fort, Patrice; Sarda, Nicole

    2009-12-01

    Angelman syndrome (AS) is a severe neurodevelopmental disorder characterized by mental retardation, seizures and sleep disturbances. It results from lack of the functional maternal allele of UBE3A gene. Ube3a maternal-deficient mice (Ube3a m-/p+), animal models for AS, are impaired in hippocampal-dependent learning tasks as compared with control (Ube3a m+/p+) mice. We first examined the basal expression of immediate early genes which expression is required for synaptic plasticity and memory formation. We found that basal expression of c-fos and Arc genes is reduced in the DG of Ube3a maternal deficient mice compared to their non-transgenic littermates. We then examined whether adult hippocampal neurogenesis, which likely serves as a mechanism toward brain plasticity, is altered in these transgenic mice. Neurogenesis occurs throughout life in mammalian dentate gyrus (DG) and recent findings suggest that newborn granule cells are involved in some forms of learning and memory. Whether maternal Ube3a deletion is detrimental on hippocampal neurogenesis is unclear. Herein, we show, using the mitotic marker Ki67, the birthdating marker 5-bromo-2'-dexoyuridine (BrdU) and the marker doublecortin (DCX) to respectively label cell proliferation, cell survival or young neuron production, that the Ube3a maternal deletion does not affect the proliferation nor the survival of newborn cells in the hippocampus. In contrast, using the postmitotic neuronal marker (NeuN), we show that Ube3a maternal deletion is associated with a lower fraction of BrdU+/NeuN+ newborn neurons among the population of surviving new cells in the hippocampus. Collectively, these findings suggest that some aspects of adult neurogenesis and plasticity are affected by Ube3a deletion and may contribute to the hippocampal dysfunction observed in AS mice. PMID:19782683

  11. Combinatorial expression of Lef1, Lhx2, Lhx5, Lhx9, Lmo3, Lmo4, and Prox1 helps to identify comparable subdivisions in the developing hippocampal formation of mouse and chicken

    PubMed Central

    Abellán, Antonio; Desfilis, Ester; Medina, Loreta

    2014-01-01

    We carried out a study of the expression patterns of seven developmental regulatory genes (Lef1, Lhx2, Lhx9, Lhx5, Lmo3, Lmo4, and Prox1), in combination with topological position, to identify the medial pallial derivatives, define its major subdivisions, and compare them between mouse and chicken. In both species, the medial pallium is defined as a pallial sector adjacent to the cortical hem and roof plate/choroid tela, showing moderate to strong ventricular zone expression of Lef1, Lhx2, and Lhx9, but not Lhx5. Based on this, the hippocampal formation (indusium griseum, dentate gyrus, Ammon's horn fields, and subiculum), the medial entorhinal cortex, and part of the amygdalo-hippocampal transition area of mouse appeared to derive from the medial pallium. In the chicken, based on the same position and gene expression profile, we propose that the hippocampus (including the V-shaped area), the parahippocampal area (including its caudolateral part), the entorhinal cortex, and the amygdalo-hippocampal transition area are medial pallial derivatives. Moreover, the combinatorial expression of Lef1, Prox1, Lmo4, and Lmo3 allowed the identification of dentate gyrus/CA3-like, CA1/subicular-like, and medial entorhinal-like comparable sectors in mouse and chicken, and point to the existence of mostly conserved molecular networks involved in hippocampal complex development. Notably, while the mouse medial entorhinal cortex derives from the medial pallium (similarly to the hippocampal formation, both being involved in spatial navigation and spatial memory), the lateral entorhinal cortex (involved in processing non-spatial, contextual information) appears to derive from a distinct dorsolateral caudal pallial sector. PMID:25071464

  12. Imaging Acute Neuromuscular Explants from Thy1 Mouse Lines.

    PubMed

    Marinković, Petar; Godinho, Leanne; Misgeld, Thomas

    2015-09-01

    Because core facilities that generate transgenic founder mice for a reasonable fee are now available at most major research institutions, generating new Thy1-XFP transgenic animals (in which XFP stands for any fluorescent protein) is an option even for relatively small laboratories. Here, we provide a protocol for screening offspring of Thy1 transgenic founders. Acute neuromuscular explants are obtained from 3-wk-old F1 mice that have been produced by crossing Thy1 transgenic founders and commercially obtained inbred mice. Thy1-driven expression is detected by fluorescence microscopy. PMID:26330628

  13. Impaired hippocampal activity at the goal zone on the place preference task in a DISC1 mouse model.

    PubMed

    Hayashi, Yuichiro; Sawa, Akira; Hikida, Takatoshi

    2016-05-01

    Learning deficit is a clinical feature of many mental disorders and is hypothesized to result from an inability to integrate information in neural systems. We showed that transgenic mice expressing a dominant-negative form of DISC1, a risk gene for neuropsychiatric disorders, exhibited impaired performance in a reward-place association task when combined with a mild isolation stress. CA1 cells in the mutant mice showed normal place cell properties, but their activity at the goal zone was diminished. This abnormality in hippocampal activity at the goal zone during the task may underlie the learning deficit observed in the DISC1 mutant mice. PMID:26497623

  14. Antidepressant drug-induced stimulation of mouse hippocampal neurogenesis is age-dependent and altered by early life stress

    PubMed Central

    Navailles, Sylvia; Hof, Patrick R.; Schmauss, Claudia

    2008-01-01

    The continuous generation of new neurons in the adult hippocampus exhibits remarkable plasticity. Decreased neurogenesis is thought to underlie depression-like behaviors, and increased neurogenesis is thought to occur following antidepressant drug treatment. Studies on different strains of mice, however, yielded contrasting results with regard to the link between behavioral modifications induced by antidepressant drugs or environmental enrichment and changes in adult hippocampal neurogenesis. Therefore, we conducted a comparative study on the inbred strains Balb/c and C57Bl/6 that differ substantially in emotionality, stress reactivity, and behavioral responses to chronic antidepressant drugs. Quantitative assessments of progenitor cell proliferation and immature neuronal differentiation in the dentate gyrus revealed that, despite significantly different basal proliferation rates between both strains, neither strain exhibited changes in adult neurogenesis after exposure to early life stress or adult chronic fluoxetine treatment. A stimulatory effect of fluoxetine on adult hippocampal neurogenesis was only detected when treatment was initiated during adolescence, and this effect was abolished in mice exposed to early life stress, a prominent risk factor for developing adult-onset depression-like behaviors. Thus, in both strains of mice, neither adult fluoxetine treatment nor adolescent fluoxetine treatment following early life stress exposure increased the proliferation and early differentiation of adult neural progenitor cells. PMID:18512685

  15. Altered Intrinsic Pyramidal Neuron Properties and Pathway-Specific Synaptic Dysfunction Underlie Aberrant Hippocampal Network Function in a Mouse Model of Tauopathy

    PubMed Central

    Booth, Clair A.; Witton, Jonathan; Nowacki, Jakub; Tsaneva-Atanasova, Krasimira; Jones, Matthew W.; Randall, Andrew D.

    2016-01-01

    The formation and deposition of tau protein aggregates is proposed to contribute to cognitive impairments in dementia by disrupting neuronal function in brain regions, including the hippocampus. We used a battery of in vivo and in vitro electrophysiological recordings in the rTg4510 transgenic mouse model, which overexpresses a mutant form of human tau protein, to investigate the effects of tau pathology on hippocampal neuronal function in area CA1 of 7- to 8-month-old mice, an age point at which rTg4510 animals exhibit advanced tau pathology and progressive neurodegeneration. In vitro recordings revealed shifted theta-frequency resonance properties of CA1 pyramidal neurons, deficits in synaptic transmission at Schaffer collateral synapses, and blunted plasticity and imbalanced inhibition at temporoammonic synapses. These changes were associated with aberrant CA1 network oscillations, pyramidal neuron bursting, and spatial information coding in vivo. Our findings relate tauopathy-associated changes in cellular neurophysiology to altered behavior-dependent network function. SIGNIFICANCE STATEMENT Dementia is characterized by the loss of learning and memory ability. The deposition of tau protein aggregates in the brain is a pathological hallmark of dementia; and the hippocampus, a brain structure known to be critical in processing learning and memory, is one of the first and most heavily affected regions. Our results show that, in area CA1 of hippocampus, a region involved in spatial learning and memory, tau pathology is associated with specific disturbances in synaptic, cellular, and network-level function, culminating in the aberrant encoding of spatial information and spatial memory impairment. These studies identify several novel ways in which hippocampal information processing may be disrupted in dementia, which may provide targets for future therapeutic intervention. PMID:26758828

  16. Blockade by sigma site ligands of high voltage-activated Ca2+ channels in rat and mouse cultured hippocampal pyramidal neurones.

    PubMed Central

    Church, J.; Fletcher, E. J.

    1995-01-01

    1. The effects of a series of structurally-dissimilar sigma site ligands were examined on high voltage-activated Ca2+ channel activity in two preparations of cultured hippocampal pyramidal neurones. 2. In mouse hippocampal neurones under whole-cell voltage-clamp, voltage-activated Ca2+ channel currents carried by barium ions (IBa) were reduced with the rank order (IC50 values in microM): 1S,2R-(-)-cis-N-methyl-N-[2-(3,4-dichlorophenyl)ethyl]- 2-(1-pyrrolidinyl)cyclohexylamine (7.8) > rimcazole (13) > haloperidol (16) > ifenprodil (18) > opipramol (32) > carbetapentane (40) = 1-benzylspiro[1,2,3,4-tetrahydronaphthalene-1,4-piperidine] (42) > caramiphen (47) > dextromethorphan (73). At the highest concentrations tested, the compounds almost abolished IBa in the absence of any other pharmacological agent. 3. The current-voltage characteristics of the whole-cell IBa were unaffected by the test compounds. The drug-induced block was rapid in onset and offset, with the exceptions of carbetapentane and caramiphen where full block was achieved only after two to three voltage-activated currents and was associated with an apparent increase in the rate of inactivation of IBa. 4. In rat hippocampal neurones loaded with the Ca(2+)-sensitive dye Fura-2, rises in intracellular free Ca2+ concentration evoked by transient exposure to 50 mM K(+)-containing medium, either in the absence or in the presence of 10 microM nifedipine (to block L-type high voltage-activated Ca2+ channels), were also reversibly attenuated by the sigma ligands. The rank order potencies for the compounds in these experimental paradigms were similar to that observed for blockade of IBa in the electrophysiological studies. 5. These results indicate that, at micromolar concentrations, the compounds tested block multiple subtypes of high voltage-activated Ca2+ channels. These actions, which do not appear to be mediated by high-affinity sigma binding sites, may play a role in some of the functional effects

  17. Blockade by sigma site ligands of N-methyl-D-aspartate-evoked responses in rat and mouse cultured hippocampal pyramidal neurones.

    PubMed Central

    Fletcher, E. J.; Church, J.; Abdel-Hamid, K.; MacDonald, J. F.

    1995-01-01

    1. The effects of a range of structurally-dissimilar compounds which possess affinity for sigma binding sites were examined on the responses of cultured hippocampal pyramidal neurones to the excitatory amino acid analogues N-methyl-D-aspartate (NMDA), kainate and (RS)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). 2. In mouse hippocampal neurones under whole-cell voltage-clamp, the compounds tested reversibly attenuated NMDA-, but not kainate- or AMPA-, evoked currents with a rank order potency (IC50 values in microM): ifenprodil (0.8) > (+)-N-allylnormetazocine (1.1) > dextromethorphan (1.8) = haloperidol (1.9) > (+)-pentazocine (7.2) > 1S,2R-(-)-cis-N-methyl-N-[2-(3, 4-dichlorophenyl) ethyl]-2-(1-pyrrolidinyl)cyclohexylamine (17) = rimcazole (18) > 1,3-di(2-tolyl)guanidine (37) > opipramol (96) > caramiphen (110) = carbetapentane (112) > > (+)-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine (485). 3. The attenuation of NMDA-evoked responses was not mediated through interactions with the agonist, glycine (except haloperidol) or polyamine (except ifenprodil) binding sites on the NMDA receptor-channel complex but, in the light of the voltage- and, in some cases, use-dependent nature of their antagonism, an interaction with the ion channel appears to be a likely mechanism of action for many of the compounds. 4. Micromolar concentrations of selected sigma site ligands also reduced NMDA-evoked rises in intracellular free calcium concentration in Fura-2-loaded cultured hippocampal neurones of the rat with the same rank order potency as observed in the electrophysiological studies. 5. The data indicate that, at micromolar concentrations, the sigma site ligands tested act as NMDA receptor antagonists, an action which does not appear to be mediated by high-affinity sigma binding site(s). The functional effects of micromolar concentrations of sigma site ligands cannot, therefore, be attributed exclusively to interactions with high-affinity sigma binding sites

  18. Differential hippocampal gene expression and pathway analysis in an etiology-based mouse model of major depressive disorder.

    PubMed

    Zubenko, George S; Hughes, Hugh B; Jordan, Rick M; Lyons-Weiler, James; Cohen, Bruce M

    2014-09-01

    We have recently reported the creation and initial characterization of an etiology-based recombinant mouse model of a severe and inherited form of Major Depressive Disorder (MDD). This was achieved by replacing the corresponding mouse DNA sequence with a 6-base DNA sequence from the human CREB1 promoter that is associated with MDD in individuals from families with recurrent, early-onset MDD (RE-MDD). In the current study, we explored the effect of the pathogenic Creb1 allele on gene expression in the mouse hippocampus, a brain region that is altered in structure and function in MDD. Mouse whole-genome profiling was performed using the Illumina MouseWG-6 v2.0 Expression BeadChip microarray. Univariate analysis identified 269 differentially-expressed genes in the hippocampus of the mutant mouse. Pathway analyses highlighted 11 KEGG pathways: the phosphatidylinositol signaling system, which has been widely implicated in MDD, Bipolar Disorder, and the action of mood stabilizers; gap junction and long-term potentiation, which mediate cognition and memory functions often impaired in MDD; cardiac muscle contraction, insulin signaling pathway, and three neurodegenerative brain disorders (Alzheimer's, Parkinson's, and Huntington's Diseases) that are associated with MDD; ribosome and proteasome pathways affecting protein synthesis/degradation; and the oxidative phosphorylation pathway that is key to energy production. These findings illustrate the merit of this congenic C57BL/6 recombinant mouse as a model of RE-MDD, and demonstrate its potential for highlighting molecular and cellular pathways that contribute to the biology of MDD. The results also inform our understanding of the mechanisms that underlie the comorbidity of MDD with other disorders. PMID:25059218

  19. Acute inflammation stimulates a regenerative response in the neonatal mouse heart

    PubMed Central

    Han, Chunyong; Nie, Yu; Lian, Hong; Liu, Rui; He, Feng; Huang, Huihui; Hu, Shengshou

    2015-01-01

    Cardiac injury in neonatal 1-day-old mice stimulates a regenerative response characterized by reactive cardiomyocyte proliferation, which is distinguished from the fibrotic repair process in adults. Acute inflammation occurs immediately after heart injury and has generally been believed to exert a negative effect on heart regeneration by promoting scar formation in adults; however, little is known about the role of acute inflammation in the cardiac regenerative response in neonatal mice. Here, we show that acute inflammation induced cardiomyocyte proliferation after apical intramyocardial microinjection of immunogenic zymosan A particles into the neonatal mouse heart. We also found that cardiac injury-induced regenerative response was suspended after immunosuppression in neonatal mice, and that cardiomyocytes could not be reactivated to proliferate after neonatal heart injury in the absence of interleukin-6 (IL-6). Furthermore, cardiomyocyte-specific deletion of signal transducer and activator of transcription 3 (STAT3), the major downstream effector of IL-6 signaling, decreased reactive cardiomyocyte proliferation after apical resection. Our results indicate that acute inflammation stimulates the regenerative response in neonatal mouse heart, and suggest that modulation of inflammatory signals might have important implications in cardiac regenerative medicine. PMID:26358185

  20. Perturbed Hippocampal Synaptic Inhibition and γ-Oscillations in a Neuroligin-4 Knockout Mouse Model of Autism.

    PubMed

    Hammer, Matthieu; Krueger-Burg, Dilja; Tuffy, Liam Patrick; Cooper, Benjamin Hillman; Taschenberger, Holger; Goswami, Sarit Pati; Ehrenreich, Hannelore; Jonas, Peter; Varoqueaux, Frederique; Rhee, Jeong-Seop; Brose, Nils

    2015-10-20

    Loss-of-function mutations in the synaptic adhesion protein Neuroligin-4 are among the most common genetic abnormalities associated with autism spectrum disorders, but little is known about the function of Neuroligin-4 and the consequences of its loss. We assessed synaptic and network characteristics in Neuroligin-4 knockout mice, focusing on the hippocampus as a model brain region with a critical role in cognition and memory, and found that Neuroligin-4 deletion causes subtle defects of the protein composition and function of GABAergic synapses in the hippocampal CA3 region. Interestingly, these subtle synaptic changes are accompanied by pronounced perturbations of γ-oscillatory network activity, which has been implicated in cognitive function and is altered in multiple psychiatric and neurodevelopmental disorders. Our data provide important insights into the mechanisms by which Neuroligin-4-dependent GABAergic synapses may contribute to autism phenotypes and indicate new strategies for therapeutic approaches. PMID:26456829

  1. Changes in mouse cognition and hippocampal gene expression observed in a mild physical- and blast-traumatic brain injury.

    PubMed

    Tweedie, David; Rachmany, Lital; Rubovitch, Vardit; Zhang, Yongqing; Becker, Kevin G; Perez, Evelyn; Hoffer, Barry J; Pick, Chaim G; Greig, Nigel H

    2013-06-01

    Warfare has long been associated with traumatic brain injury (TBI) in militarized zones. Common forms of TBI can be caused by a physical insult to the head-brain or by the effects of a high velocity blast shock wave generated by the detonation of an explosive device. While both forms of trauma are distinctly different regarding the mechanism of trauma induction, there are striking similarities in the cognitive and emotional status of survivors. Presently, proven effective therapeutics for the treatment of either form of TBI are unavailable. To be able to develop efficacious therapies, studies involving animal models of physical- and blast-TBI are required to identify possible novel or existing medicines that may be of value in the management of clinical events. We examined indices of cognition and anxiety-like behavior and the hippocampal gene transcriptome of mice subjected to both forms of TBI. We identified common behavioral deficits and gene expression regulations, in addition to unique injury-specific forms of gene regulation. Molecular pathways presented a pattern similar to that seen in gene expression. Interestingly, pathways connected to Alzheimer's disease displayed a markedly different form of regulation depending on the type of TBI. While these data highlight similarities in behavioral outcomes after trauma, the divergence in hippocampal transcriptome observed between models suggests that, at the molecular level, the TBIs are quite different. These models may provide tools to help define therapeutic approaches for the treatment of physical- and blast-TBIs. Based upon observations of increasing numbers of personnel displaying TBI related emotional and behavioral changes in militarized zones, the development of efficacious therapies will become a national if not a global priority. PMID:23454194

  2. Delayed Effects of Corticosterone on Slow After-Hyperpolarization Potentials in Mouse Hippocampal versus Prefrontal Cortical Pyramidal Neurons

    PubMed Central

    Pillai, Anup G.; Henckens, Marloes J. A. G.; Fernández, Guillén; Joëls, Marian

    2014-01-01

    The rodent stress hormone corticosterone changes neuronal activity in a slow and persistent manner through transcriptional regulation. In the rat dorsal hippocampus, corticosterone enhances the amplitude of calcium-dependent potassium currents that cause a lingering slow after-hyperpolarization (sAHP) at the end of depolarizing events. In this study we compared the putative region-dependency of the delayed effects of corticosterone (approximately 5 hrs after treatment) on sAHP as well as other active and passive properties of layer 2/3 pyramidal neurons from three prefrontal areas, i.e. the lateral orbitofrontal, prelimbic and infralimbic cortex, with the hippocampus of adult mice. In agreement with previous studies, corticosterone increased sAHP amplitude in the dorsal hippocampus with depolarizing steps of increasing amplitude. However, in the lateral orbitofrontal, prelimbic and infralimbic cortices we did not observe any modifications of sAHP amplitude after corticosterone treatment. Properties of single action potentials or % ratio of the last spike interval with respect to the first spike interval, an indicator of accommodation in an action potential train, were not significantly affected by corticosterone in all brain regions examined. Lastly, corticosterone treatment did not induce any lasting changes in passive membrane properties of hippocampal or cortical neurons. Overall, the data indicate that corticosterone slowly and very persistently increases the sAHP amplitude in hippocampal pyramidal neurons, while this is not the case in the cortical regions examined. This implies that changes in excitability across brain regions reached by corticosterone may vary over a prolonged period of time after stress. PMID:24901987

  3. Changes in mouse cognition and hippocampal gene expression observed in a mild physical- and blast-traumatic brain injury

    PubMed Central

    Tweedie, David; Rachmany, Lital; Rubovitch, Vardit; Zhang, Yongqing; Becker, Kevin G.; Perez, Evelyn; Hoffer, Barry J.; Pick, Chaim G.; Greig, Nigel H.

    2013-01-01

    Warfare has long been associated with traumatic brain injury (TBI) in militarized zones. Common forms of TBI can be caused by a physical insult to the head-brain or by the effects of a high velocity blast shock wave generated by the detonation of an explosive device. While both forms of trauma are distinctly different regarding the mechanism of trauma induction, there are striking similarities in the cognitive and emotional status of survivors. Presently, proven effective therapeutics for the treatment of either form of TBI are unavailable. To be able to develop efficacious therapies, studies involving animal models of physical- and blast-TBI are required to identify possible novel or existing medicines that may be of value in the management of clinical events. We examined indices of cognition and anxiety-like behavior and the hippocampal gene transcriptome of mice subjected to both forms of TBI. We identified common behavioral deficits and gene expression regulations, in addition to unique injury-specific forms of gene regulation. Molecular pathways presented a pattern similar to that seen in gene expression. Interestingly, pathways connected to Alzheimer’s disease displayed a markedly different form of regulation depending on the type of TBI. While these data highlight similarities in behavioral outcomes after trauma, the divergence in hippocampal transcriptome observed between models suggests that, at the molecular level, the TBIs are quite different. These models may provide tools to help define therapeutic approaches for the treatment of physical- and blast-TBIs. Based upon observations of increasing numbers of personnel displaying TBI related emotional and behavioral changes in militarized zones, the development of efficacious therapies will become a national if not a global priority. PMID:23454194

  4. Mouse models and methods for studying human disease, acute kidney injury (AKI).

    PubMed

    Ramesh, Ganesan; Ranganathan, Punithavathi

    2014-01-01

    Acute kidney injury (AKI) is serious complication in hospitalized patients with high level of mortality. There is not much progress made for the past 50 years in reducing the mortality rate despite advances in understanding disease pathology. Using variety of animal models of acute kidney injury, scientist studies the pathogenic mechanism of AKI and to test therapeutic drugs, which may reduce renal injury. Among them, renal pedicle clamping and cisplatin induced nephrotoxicity in mice are most prominently used, mainly due to the availability of gene knockouts to study specific gene functions, inexpensive and availability of the inbred strain with less genetic variability. However, ischemic mouse model is highly variable and require excellent surgical skills to reduce variation in the observation. In this chapter, we describe a detailed protocol of the mouse model of bilateral renal ischemia-reperfusion and cisplatin induced nephrotoxicity. We also discuss the protocol for the isolation and analysis of infiltrated inflammatory cell into the kidney by flow cytometry. Information provided in this chapter will help scientist who wants to start research on AKI and want to establish the mouse model for ischemic and toxic kidney injury. PMID:25064118

  5. Expression of progerin in aging mouse brains reveals structural nuclear abnormalities without detectible significant alterations in gene expression, hippocampal stem cells or behavior.

    PubMed

    Baek, Jean-Ha; Schmidt, Eva; Viceconte, Nikenza; Strandgren, Charlotte; Pernold, Karin; Richard, Thibaud J C; Van Leeuwen, Fred W; Dantuma, Nico P; Damberg, Peter; Hultenby, Kjell; Ulfhake, Brun; Mugnaini, Enrico; Rozell, Björn; Eriksson, Maria

    2015-03-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a segmental progeroid syndrome with multiple features suggestive of premature accelerated aging. Accumulation of progerin is thought to underlie the pathophysiology of HGPS. However, despite ubiquitous expression of lamin A in all differentiated cells, the HGPS mutation results in organ-specific defects. For example, bone and skin are strongly affected by HGPS, while the brain appears to be unaffected. There are no definite explanations as to the variable sensitivity to progeria disease among different organs. In addition, low levels of progerin have also been found in several tissues from normal individuals, but it is not clear if low levels of progerin contribute to the aging of the brain. In an attempt to clarify the origin of this phenomenon, we have developed an inducible transgenic mouse model with expression of the most common HGPS mutation in brain, skin, bone and heart to investigate how the mutation affects these organs. Ultrastructural analysis of neuronal nuclei after 70 weeks of expression of the LMNA c.1824C>T mutation showed severe distortion with multiple lobulations and irregular extensions. Despite severe distortions in the nuclei of hippocampal neurons of HGPS animals, there were only negligible changes in gene expression after 63 weeks of transgenic expression. Behavioral analysis and neurogenesis assays, following long-term expression of the HGPS mutation, did not reveal significant pathology. Our results suggest that certain tissues are protected from functional deleterious effects of progerin. PMID:25343989

  6. Expression of progerin in aging mouse brains reveals structural nuclear abnormalities without detectible significant alterations in gene expression, hippocampal stem cells or behavior

    PubMed Central

    Baek, Jean-Ha; Schmidt, Eva; Viceconte, Nikenza; Strandgren, Charlotte; Pernold, Karin; Richard, Thibaud J. C.; Van Leeuwen, Fred W.; Dantuma, Nico P.; Damberg, Peter; Hultenby, Kjell; Ulfhake, Brun; Mugnaini, Enrico; Rozell, Björn; Eriksson, Maria

    2015-01-01

    Hutchinson–Gilford progeria syndrome (HGPS) is a segmental progeroid syndrome with multiple features suggestive of premature accelerated aging. Accumulation of progerin is thought to underlie the pathophysiology of HGPS. However, despite ubiquitous expression of lamin A in all differentiated cells, the HGPS mutation results in organ-specific defects. For example, bone and skin are strongly affected by HGPS, while the brain appears to be unaffected. There are no definite explanations as to the variable sensitivity to progeria disease among different organs. In addition, low levels of progerin have also been found in several tissues from normal individuals, but it is not clear if low levels of progerin contribute to the aging of the brain. In an attempt to clarify the origin of this phenomenon, we have developed an inducible transgenic mouse model with expression of the most common HGPS mutation in brain, skin, bone and heart to investigate how the mutation affects these organs. Ultrastructural analysis of neuronal nuclei after 70 weeks of expression of the LMNA c.1824C>T mutation showed severe distortion with multiple lobulations and irregular extensions. Despite severe distortions in the nuclei of hippocampal neurons of HGPS animals, there were only negligible changes in gene expression after 63 weeks of transgenic expression. Behavioral analysis and neurogenesis assays, following long-term expression of the HGPS mutation, did not reveal significant pathology. Our results suggest that certain tissues are protected from functional deleterious effects of progerin. PMID:25343989

  7. Hippocampal memory enhancing activity of pine needle extract against scopolamine-induced amnesia in a mouse model

    PubMed Central

    Lee, Jin-Seok; Kim, Hyeong-Geug; Lee, Hye-Won; Han, Jong-Min; Lee, Sam-Keun; Kim, Dong-Woon; Saravanakumar, Arthanari; Son, Chang-Gue

    2015-01-01

    We evaluated the neuropharmacological effects of 30% ethanolic pine needle extract (PNE) on memory impairment caused by scopolamine injection in mice hippocampus. Mice were orally pretreated with PNE (25, 50, and 100 mg/kg) or tacrine (10 mg/kg) for 7 days, and scopolamine (2 mg/kg) was injected intraperitoneally, 30 min before the Morris water maze task on first day. To evaluate memory function, the Morris water maze task was performed for 5 days consecutively. Scopolamine increased the escape latency and cumulative path-length but decreases the time spent in target quadrant, which were ameliorated by pretreatment with PNE. Oxidant-antioxidant balance, acetylcholinesterase activity, neurogenesis and their connecting pathway were abnormally altered by scopolamine in hippocampus and/or sera, while those alterations were recovered by pretreatment with PNE. As lipid peroxidation, 4HNE-positive stained cells were ameliorated in hippocampus pretreated with PNE. Pretreatment with PNE increased the proliferating cells and immature neurons against hippocampal neurogenesis suppressed by scopolamine, which was confirmed by ki67- and DCX-positive stained cells. The expression of brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP response element-binding protein (pCREB) in both protein and gene were facilitated by PNE pretreatment. These findings suggest that PNE could be a potent neuropharmacological drug against amnesia, and its possible mechanism might be modulating cholinergic activity via CREB-BDNF pathway. PMID:25974329

  8. Decreased Myelinated Fibers in the Hippocampal Dentate Gyrus of the Tg2576 Mouse Model of Alzheimer’s Disease

    PubMed Central

    Lu, Wei; Yang, Shu; Zhang, Lei; Chen, Lin; Chao, Feng-Lei; Luo, Yan-min; Xiao, Qian; Gu, Heng-Wei; Jiang, Rong; Tang, Yong

    2016-01-01

    Alzheimer’s disease (AD), the most common cause of dementia in the elderly, is characterized by deficits in cognition and memory. Although amyloid-β (Aβ) accumulation is known to be the earliest pathological event that triggers subsequent neurodegeneration, how Aβ accumulation causes behavioral deficits remains incompletely understood. In this study, using the Morris water maze test, ELISA and stereological methods, we examined spatial learning and memory performance, the soluble Aβ concentration and the myelination of fibers in the hippocampus of 4-, 6-, 8- and 10-month-old Tg2576 AD model mice. Our results showed that spatial learning and memory performance was significantly impaired in the Tg2576 mice compared to the wild type (WT) controls and that the myelinated fiber length in the hippocampal dentate gyrus (DG) was markedly decreased from 0.33 ± 0.03 km in the WT controls to 0.17 ± 0.02 km in the Tg2576 mice at 10 months of age. However, the concentrations of soluble Aβ40 and Aβ42 were significantly increased as early as 4-6 months of age. The decreased myelinated fiber length in the DG may contribute to the spatial learning and memory deficits of Tg2576 mice. Therefore, we suggest that the significant accumulation of soluble Aβ may serve as a preclinical biomarker for AD diagnosis and that protecting myelinated fibers may represent a novel strategy for delaying the progression of early-stage AD. PMID:26971933

  9. Hippocampal memory enhancing activity of pine needle extract against scopolamine-induced amnesia in a mouse model.

    PubMed

    Lee, Jin-Seok; Kim, Hyeong-Geug; Lee, Hye-Won; Han, Jong-Min; Lee, Sam-Keun; Kim, Dong-Woon; Saravanakumar, Arthanari; Son, Chang-Gue

    2015-01-01

    We evaluated the neuropharmacological effects of 30% ethanolic pine needle extract (PNE) on memory impairment caused by scopolamine injection in mice hippocampus. Mice were orally pretreated with PNE (25, 50, and 100 mg/kg) or tacrine (10 mg/kg) for 7 days, and scopolamine (2 mg/kg) was injected intraperitoneally, 30 min before the Morris water maze task on first day. To evaluate memory function, the Morris water maze task was performed for 5 days consecutively. Scopolamine increased the escape latency and cumulative path-length but decreases the time spent in target quadrant, which were ameliorated by pretreatment with PNE. Oxidant-antioxidant balance, acetylcholinesterase activity, neurogenesis and their connecting pathway were abnormally altered by scopolamine in hippocampus and/or sera, while those alterations were recovered by pretreatment with PNE. As lipid peroxidation, 4HNE-positive stained cells were ameliorated in hippocampus pretreated with PNE. Pretreatment with PNE increased the proliferating cells and immature neurons against hippocampal neurogenesis suppressed by scopolamine, which was confirmed by ki67- and DCX-positive stained cells. The expression of brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP response element-binding protein (pCREB) in both protein and gene were facilitated by PNE pretreatment. These findings suggest that PNE could be a potent neuropharmacological drug against amnesia, and its possible mechanism might be modulating cholinergic activity via CREB-BDNF pathway. PMID:25974329

  10. Hippocampal interneuron loss in an APP/PS1 double mutant mouse and in Alzheimer’s disease

    PubMed Central

    Takahashi, Hisaaki; Brasnjevic, Ivona; Rutten, Bart P. F.; Van Der Kolk, Nicolien; Perl, Daniel P.; Bouras, Constantin; Steinbusch, Harry W. M.; Schmitz, Christoph; Hof, Patrick R.

    2011-01-01

    Hippocampal atrophy and neuron loss are commonly found in Alzheimer’s disease (AD). However, the underlying molecular mechanisms and the fate in the AD hippocampus of subpopulations of interneurons that express the calcium-binding proteins parvalbumin (PV) and calretinin (CR) has not yet been properly assessed. Using quantitative stereologic methods, we analyzed the regional pattern of age-related loss of PV- and CR-immunoreactive (ir) neurons in the hippocampus of mice that carry M233T/L235P knocked-in mutations in presenilin-1 (PS1) and overexpress a mutated human beta-amyloid precursor protein (APP), namely, the APPSL/PS1 KI mice, as well as in APPSL mice and PS1 KI mice. We found a loss of PV-ir neurons (40–50%) in the CA1-2, and a loss of CR-ir neurons (37–52%) in the dentate gyrus and hilus of APPSL/PS1 KI mice. Interestingly, comparable PV- and CR-ir neuron losses were observed in the dentate gyrus of postmortem brain specimens obtained from patients with AD. The loss of these interneurons in AD may have substantial functional repercussions on local inhibitory processes in the hippocampus. PMID:20213270

  11. The high dosage of earthworm (Eisenia andrei) extract decreases cell proliferation and neuroblast differentiation in the mouse hippocampal dentate gyrus

    PubMed Central

    Yan, Bing Chun; Yoo, Ki-Yeon; Park, Joon Ha; Lee, Choong Hyun; Choi, Jung Hoon

    2011-01-01

    Earthworm extract has shown anticancer characteristics. In the present study, we examined the effect of chronic treatment with a high dose of earthworm (Eisenia andrei) extract (EE) on cell proliferation and neuroblast differentiation in the hippocampal dentate gyrus (DG) of 3-week-old mice using 5-bromo-2'-deoxyuridine (BrdU) and Ki-67 immunohistochemistry for cell proliferation and doublecortin (DCX) immunohistochemistry for neuroblast differentiation, respectively. BrdU-, Ki-67-, and DCX-immunoreactive cells were easily detected in the subgranular zone of the DG in vehicle (saline)-treated mice. However, BrdU-, Ki-67-, and DCX-immunoreactive cells in the 500 mg/kg EE-treated mice decreased distinctively compared to those in the vehicle-treated mice. In addition, brain-derived neurotrophic factor (BDNF) immunoreactivity and its protein level decreased markedly in the DG of the EE-treated group compared to those in the vehicle-treated group. These results indicate that chronic treatment with high dose EE decreased cell proliferation and neuroblast differentiation, and that BDNF immunoreactivity decreased in the DG of EE-treated mice. PMID:22025974

  12. The high dosage of earthworm (Eisenia andrei) extract decreases cell proliferation and neuroblast differentiation in the mouse hippocampal dentate gyrus.

    PubMed

    Yan, Bing Chun; Yoo, Ki-Yeon; Park, Joon Ha; Lee, Choong Hyun; Choi, Jung Hoon; Won, Moo-Ho

    2011-09-01

    Earthworm extract has shown anticancer characteristics. In the present study, we examined the effect of chronic treatment with a high dose of earthworm (Eisenia andrei) extract (EE) on cell proliferation and neuroblast differentiation in the hippocampal dentate gyrus (DG) of 3-week-old mice using 5-bromo-2'-deoxyuridine (BrdU) and Ki-67 immunohistochemistry for cell proliferation and doublecortin (DCX) immunohistochemistry for neuroblast differentiation, respectively. BrdU-, Ki-67-, and DCX-immunoreactive cells were easily detected in the subgranular zone of the DG in vehicle (saline)-treated mice. However, BrdU-, Ki-67-, and DCX-immunoreactive cells in the 500 mg/kg EE-treated mice decreased distinctively compared to those in the vehicle-treated mice. In addition, brain-derived neurotrophic factor (BDNF) immunoreactivity and its protein level decreased markedly in the DG of the EE-treated group compared to those in the vehicle-treated group. These results indicate that chronic treatment with high dose EE decreased cell proliferation and neuroblast differentiation, and that BDNF immunoreactivity decreased in the DG of EE-treated mice. PMID:22025974

  13. Dopamine Modulates Spike Timing-Dependent Plasticity and Action Potential Properties in CA1 Pyramidal Neurons of Acute Rat Hippocampal Slices

    PubMed Central

    Edelmann, Elke; Lessmann, Volkmar

    2011-01-01

    Spike timing-dependent plasticity (STDP) is a cellular model of Hebbian synaptic plasticity which is believed to underlie memory formation. In an attempt to establish a STDP paradigm in CA1 of acute hippocampal slices from juvenile rats (P15–20), we found that changes in excitability resulting from different slice preparation protocols correlate with the success of STDP induction. Slice preparation with sucrose containing ACSF prolonged rise time, reduced frequency adaptation, and decreased latency of action potentials in CA1 pyramidal neurons compared to preparation in conventional ASCF, while other basal electrophysiological parameters remained unaffected. Whereas we observed prominent timing-dependent long-term potentiation (t-LTP) to 171 ± 10% of controls in conventional ACSF, STDP was absent in sucrose prepared slices. This sucrose-induced STDP deficit could not be rescued by stronger STDP paradigms, applying either more pre- and/or postsynaptic stimuli, or by a higher stimulation frequency. Importantly, slice preparation with sucrose containing ACSF did not eliminate theta-burst stimulation induced LTP in CA1 in field potential recordings in our rat hippocampal slices. Application of dopamine (for 10–20 min) to sucrose prepared slices completely rescued t-LTP and recovered action potential properties back to levels observed in ACSF prepared slices. Conversely, acute inhibition of D1 receptor signaling impaired t-LTP in ACSF prepared slices. No similar restoring effect for STDP as seen with dopamine was observed in response to the β-adrenergic agonist isoproterenol. ELISA measurements demonstrated a significant reduction of endogenous dopamine levels (to 61.9 ± 6.9% of ACSF values) in sucrose prepared slices. These results suggest that dopamine signaling is involved in regulating the efficiency to elicit STDP in CA1 pyramidal neurons. PMID:22065958

  14. Essential Contributions of Serotonin Transporter Inhibition to the Acute and Chronic Actions of Fluoxetine and Citalopram in the SERT Met172 Mouse.

    PubMed

    Nackenoff, Alex G; Moussa-Tooks, Alexandra B; McMeekin, Austin M; Veenstra-VanderWeele, Jeremy; Blakely, Randy D

    2016-06-01

    Depression is a common mental illness and a leading cause of disability. The most widely prescribed antidepressant medications are serotonin (5-HT) selective reuptake inhibitors (SSRIs). Although there is much support for 5-HT transporter (SERT) antagonism as a basis of antidepressant efficacy, this evidence is indirect and other targets and mechanisms have been proposed. In order to distinguish SERT-dependent and -independent effects of SSRIs, we developed a knock-in mouse model whereby high-affinity interactions of many antidepressants at SERT have been ablated via knock-in substitution (SERT Met172) without disrupting 5-HT recognition or uptake. Here we utilize the C57BL/6J SERT Met172 model to evaluate SERT dependence for the actions of two widely prescribed SSRIs, fluoxetine and citalopram, in tests sensitive to acute and chronic actions of antidepressants. In the tail suspension and forced swim tests, fluoxetine and citalopram fail to reduce immobility in SERT Met172 mice. In addition, SERT Met172 mice are insensitive to chronic fluoxetine and citalopram administration in the novelty induced hypophagia test (NIH) and fail to exhibit enhanced proliferation or survival of hippocampal stem cells. In both acute and chronic studies, SERT Met172 mice maintained sensitivity to paroxetine, an antidepressant that is unaffected by the Met172 mutation. Together, these studies provide definitive support for an essential role of SERT antagonism in the acute and chronic actions of two commonly used SSRIs in these tests, and reinforce the utility of the SERT Met172 model for isolating SERT/5-HT contributions of drug actions in vivo. PMID:26514584

  15. Variations in elemental compositions of rat hippocampal formation between acute and latent phases of pilocarpine-induced epilepsy: an X-ray fluorescence microscopy study.

    PubMed

    Chwiej, J; Dulinska, J; Janeczko, K; Appel, K; Setkowicz, Z

    2012-06-01

    There is growing experimental evidence that tracing the elements involved in brain hyperexcitability, excitotoxicity, and/or subsequent neurodegeneration could be a valuable source of data on the molecular mechanisms triggering or promoting further development of epilepsy. The most frequently used experimental model of the temporal lobe epilepsy observed in clinical practice is the one based on pilocarpine-induced seizures. In the frame of this study, the elemental anomalies occurring for the rat hippocampal tissue in acute and silent periods after injection of pilocarpine in rats were compared. X-ray fluorescence microscopy was applied for the topographic and quantitative elemental analysis. The differences in the levels of elements such as P, S, K, Ca, Fe, Cu, and Zn between the rats 3 days (SE72) and 6 h (SE6) after pilocarpine injection as well as naive controls were examined. Comparison of SE72 and control groups showed, for specific areas of the hippocampal formation, lower levels of P, K, Cu, and Zn, and an increase in Ca accumulation. These results as well as further analysis of the differences between the SE72 and SE6 groups confirmed that seizure-induced excitotoxicity as well as mossy fiber sprouting are the mechanisms involved in the neurodegenerative processes which may finally lead to spontaneous seizures in the chronic period of the pilocarpine model. Moreover, in the light of the results obtained, Cu seems to play a very important role in the pathogenesis of epilepsy in this animal model. For all areas analyzed, the levels of this element recorded in the latent period were not only lower than those for controls but were even lower than the levels found in the acute period. The decreased hippocampal accumulation of Cu in the phase of behavior and EEG stabilization, a possible inhibitory effect of this element on excitatory amino acid receptors, and enhanced seizure susceptibility in Menkes disease (an inherited Cu transport disorder leading to Cu

  16. Neuroglobin mitigates mitochondrial impairments induced by acute inhalation of combustion smoke in the mouse brain

    PubMed Central

    Gorgun, Falih Murat; Zhuo, Ming; Singh, Shilpee; Englander, Ella W.

    2014-01-01

    Context Acute inhalation of combustion smoke adversely affects brain homeostasis and energy metabolism. We previously showed that overexpressed neuroglobin (neuron specific globin protein) attenuates the formation of smoke inhalation-induced oxidative DNA damage, in vivo, in the mouse brain, while others reported protection by neuroglobin in diverse models of brain injury, mainly involving oxidative stress and hypoxic/ischemic insults. Objective To determine to what extent elevated neuroglobin ameliorates post smoke-inhalation brain bioenergetics and homeostasis in neuroglobin overexpressing transgenic mouse. Methods Smoke inhalation induced changes in bioenergetics were measured in the wild type and neuroglobin transgene mouse brain. Modulations of mitochondrial respiration were analyzed using the Seahorse XF24 flux analyzer and changes in cytoplasmic energy metabolism were assessed by measuring enzymatic activities and lactate in the course of post smoke recovery. Results Cortical mitochondria from neuroglobin transgene, better maintained ATP synthesis-linked oxygen consumption and unlike wild type mitochondria did not increase futile oxygen consumption feeding the proton leak, reflecting lesser smoke-induced mitochondrial compromise. Measurements revealed lesser reduction of mitochondrial ATP content and lesser compensatory increases in cytosolic energy metabolism, involving pyruvate kinase and lactate dehydrogenase activities as well as cytosolic lactate levels. Additionally, induction of c-Fos, the early response gene and key neuronal stress sensor, was attenuated in neuroglobin transgene compared to wild type brain after smoke. Conclusion Considered together, these differences reflect lesser perturbations produced by acute inhalation of combustion smoke in the neuroglobin overexpressing mouse, suggesting that neuroglobin mitigates mitochondrial dysfunction and neurotoxicity and raises the threshold of smoke inhalation-induced brain injury. PMID:24730682

  17. In vivo two-photon imaging of mouse hippocampal neurons in dentate gyrus using a light source based on a high-peak power gain-switched laser diode

    PubMed Central

    Kawakami, Ryosuke; Sawada, Kazuaki; Kusama, Yuta; Fang, Yi-Cheng; Kanazawa, Shinya; Kozawa, Yuichi; Sato, Shunichi; Yokoyama, Hiroyuki; Nemoto, Tomomi

    2015-01-01

    In vivo two-photon microscopy is an advantageous technique for observing the mouse brain at high resolution. In this study, we developed a two-photon microscopy method that uses a 1064-nm gain-switched laser diode-based light source with average power above 4 W, pulse width of 7.5-picosecond, repetition rate of 10-MHz, and a high-sensitivity photomultiplier tube. Using this newly developed two-photon microscope for in vivo imaging, we were able to successfully image hippocampal neurons in the dentate gyrus and obtain panoramic views of CA1 pyramidal neurons and cerebral cortex, regardless of age of the mouse. Fine dendrites in hippocampal CA1 could be imaged with a high peak-signal-to-background ratio that could not be achieved by titanium sapphire laser excitation. Finally, our system achieved multicolor imaging with neurons and blood vessels in the hippocampal region in vivo. These results indicate that our two-photon microscopy system is suitable for investigations of various neural functions, including the morphological changes undergone by neurons during physiological phenomena. PMID:25798313

  18. Characterization of altered intrinsic excitability in hippocampal CA1 pyramidal cells of the Aβ-overproducing PDAPP mouse.

    PubMed

    Kerrigan, T L; Brown, J T; Randall, A D

    2014-04-01

    Transgenic mice that accumulate Aβ peptides in the CNS are commonly used to interrogate functional consequences of Alzheimer's disease-associated amyloidopathy. In addition to changes to synaptic function, there is also growing evidence that changes to intrinsic excitability of neurones can arise in these models of amyloidopathy. Furthermore, some of these alterations to intrinsic properties may occur relatively early within the age-related progression of experimental amyloidopathy. Here we report a detailed comparison between the intrinsic excitability properties of hippocampal CA1 pyramidal neurones in wild-type (WT) and PDAPP mice. The latter is a well-established model of Aβ accumulation which expresses human APP harbouring the Indiana (V717F) mutation. At the age employed in this study (9-10 months) CNS Abeta was elevated in PDAPP mice but significant plaque pathology was absent. PDAPP mice exhibited no differences in subthreshold intrinsic properties including resting potential, input resistance, membrane time constant and sag. When CA1 cells of PDAPP mice were given depolarizing stimuli of various amplitudes they initially fired at a higher frequency than WT cells. Commensurate with this, PDAPP cells exhibited a larger fast afterdepolarizing potential. PDAPP mice had narrower spikes but action potential threshold, rate of rise and peak were not different. Thus not all changes seen in our previous studies of amyloidopathy models were present in PDAPP mice; however, narrower spikes, larger ADPs and the propensity to fire at higher frequencies were consistent with our prior work and thus may represent robust, cross-model, indices of amyloidopathy. This article is part of a Special Issue entitled 'Neurodevelopment Disorder'. PMID:24055500

  19. No effect of running and laboratory housing on adult hippocampal neurogenesis in wild caught long-tailed wood mouse

    PubMed Central

    Hauser, Thomas; Klaus, Fabienne; Lipp, Hans-Peter; Amrein, Irmgard

    2009-01-01

    Background Studies of adult hippocampal neurogenesis (AHN) in laboratory rodents have raised hopes for therapeutic interventions in neurodegenerative diseases and mood disorders, as AHN can be modulated by physical exercise, stress and environmental changes in these animals. Since it is not known whether cell proliferation and neurogenesis in wild living mice can be experimentally changed, this study investigates the responsiveness of AHN to voluntary running and to environmental change in wild caught long-tailed wood mice (Apodemus sylvaticus). Results Statistical analyses show that running had no impact on cell proliferation (p = 0.44), neurogenesis (p = 0.94) or survival of newly born neurons (p = 0.58). Likewise, housing in the laboratory has no effect on AHN. In addition, interindividual differences in the level of neurogenesis are not related to interindividual differences of running wheel performance (rs = -0.09, p = 0.79). There is a correlation between the number of proliferating cells and the number of cells of neuronal lineage (rs = 0.63, p < 0.001) and the number of pyknotic cells (rs = 0.5, p = 0.009), respectively. Conclusion Plasticity of adult neurogenesis is an established feature in strains of house mice and brown rats. Here, we demonstrate that voluntary running and environmental changes which are effective in house mice and brown rats cannot influence AHN in long-tailed wood mice. This indicates that in wild long-tailed wood mice different regulatory mechanisms act on cell proliferation and neurogenesis. If this difference reflects a species-specific adaptation or a broader adaptive strategy to a natural vs. domestic environment is unknown. PMID:19419549

  20. Neurovascular changes in acute, sub-acute and chronic mouse models of Parkinson's disease.

    PubMed

    Sarkar, Sumit; Raymick, James; Mann, Dushyant; Bowyer, John F; Hanig, Joseph P; Schmued, Larry C; Paule, Merle G; Chigurupati, Srinivasulu

    2014-02-01

    Although selective neurodegeneration of nigro-striatal dopaminergic neurons is widely accepted as a cause of Parkinson's disease (PD), the role of vascular components in the brain in PD pathology is not well understood. However, the neurodegeneration seen in PD is known to be associated with neuroinflammatory-like changes that can affect or be associated with brain vascular function. Thus, dysfunction of the capillary endothelial cell component of neurovascular units present in the brain may contribute to the damage to dopaminergic neurons that occurs in PD. An animal model of PD employing acute, sub-acute and chronic exposures of mice to methyl-phenyl-tetrahydropyridine (MPTP) was used to determine the extent to which brain vasculature may be damaged in PD. Fluoro-Turquoise gelatin labeling of microvessels and endothelial cells was used to determine the extent of vascular damage produced by MPTP. In addition, tyrosine hydroxylase (TH) and NeuN were employed to detect and quantify dopaminergic neuron damage in the striatum (CPu) and substantia nigra (SNc). Gliosis was evaluated through GFAP immunohistochemistry. MPTP treatment drastically reduced TH immunoreactive neurons in the SNc (20.68 ± 2.83 in acute; 22.98 ± 2.14 in sub-acute; 10.20 ± 2.24 in chronic vs 34.88 ± 2.91 in controls; p<0.001). Similarly, TH immunoreactive terminals were dramatically reduced in the CPu of MPTP treated mice. Additionally, all three MPTP exposures resulted in a decrease in the intensity, length, and number of vessels in both CPu and SNc. Degenerative vascular changes such as endothelial cell 'clusters' were also observed after MPTP suggesting that vasculature damage may be modifying the availability of nutrients and exposing blood cells and/or toxic substances to neurons and glia. In summary, vascular damage and degeneration could be an additional exacerbating factor in the progression of PD, and therapeutics that protect and insure vascular integrity may be novel treatments for

  1. DNA microarray-based experimental strategy for trustworthy expression profiling of the hippocampal genes by astaxanthin supplementation in adult mouse

    PubMed Central

    Yook, Jang Soo; Shibato, Junko; Rakwal, Randeep; Soya, Hideaki

    2015-01-01

    Naturally occurring astaxantin (ASX) is one of the noticeable carotenoid and dietary supplement, which has strong antioxidant and anti-inflammatory properties, and neuroprotective effects in the brain through crossing the blood–brain barrier. Specially, we are interested in the role of ASX as a brain food. Although ASX has been suggested to have potential benefit to the brain function, the underlying molecular mechanisms and events mediating such effect remain unknown. Here we examined molecular factors in the hippocampus of adult mouse fed ASX diets (0.1% and 0.5% doses) using DNA microarray (Agilent 4 × 44 K whole mouse genome chip) analysis. In this study, we described in detail our experimental workflow and protocol, and validated quality controls with the housekeeping gene expression (Gapdh and Beta-actin) on the dye-swap based approach to advocate our microarray data, which have been uploaded to Gene Expression Omnibus (accession number GSE62197) as a gene resource for the scientific community. This data will also form an important basis for further detailed experiments and bioinformatics analysis with an aim to unravel the potential molecular pathways or mechanisms underlying the positive effects of ASX supplementation on the brain, in particular the hippocampus. PMID:26981356

  2. DNA microarray-based experimental strategy for trustworthy expression profiling of the hippocampal genes by astaxanthin supplementation in adult mouse.

    PubMed

    Yook, Jang Soo; Shibato, Junko; Rakwal, Randeep; Soya, Hideaki

    2016-03-01

    Naturally occurring astaxantin (ASX) is one of the noticeable carotenoid and dietary supplement, which has strong antioxidant and anti-inflammatory properties, and neuroprotective effects in the brain through crossing the blood-brain barrier. Specially, we are interested in the role of ASX as a brain food. Although ASX has been suggested to have potential benefit to the brain function, the underlying molecular mechanisms and events mediating such effect remain unknown. Here we examined molecular factors in the hippocampus of adult mouse fed ASX diets (0.1% and 0.5% doses) using DNA microarray (Agilent 4 × 44 K whole mouse genome chip) analysis. In this study, we described in detail our experimental workflow and protocol, and validated quality controls with the housekeeping gene expression (Gapdh and Beta-actin) on the dye-swap based approach to advocate our microarray data, which have been uploaded to Gene Expression Omnibus (accession number GSE62197) as a gene resource for the scientific community. This data will also form an important basis for further detailed experiments and bioinformatics analysis with an aim to unravel the potential molecular pathways or mechanisms underlying the positive effects of ASX supplementation on the brain, in particular the hippocampus. PMID:26981356

  3. Validation of a novel, physiologic model of experimental acute pancreatitis in the mouse

    PubMed Central

    Ziegler, Kathryn M; Wade, Terence E; Wang, Sue; Swartz-Basile, Deborah A; Pitt, Henry A; Zyromski, Nicholas J

    2011-01-01

    Background: Many experimental models of acute pancreatitis suffer from lack of clinical relevance. We sought to validate a recently reported murine model of acute pancreatitis that more closely represents the physiology of human biliary pancreatitis. Methods: Mice (C57BL/6J n=6 and CF-1 n=8) underwent infusion of 50μl of 5% sodium taurocholate (NaT) or 50μl of normal saline (NaCl) directly into the pancreatic duct. Twenty-four hours later, pancreatitis severity was graded histologically by three independent observers, and pancreatic tissue concentration of interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) were determined by ELISA. Results: Twenty four hours after retrograde injection, the total pancreatitis score was significantly greater in mice infused with NaT than in those infused with NaCl (6.3 ± 1.2 vs. 1.2 ± 0.4, p<0.05). In addition, the inflammatory mediators IL-6 and MCP-1 were increased in the NaT group relative to the NaCl group. Discussion: Retrograde pancreatic duct infusion of sodium taurocholate induces acute pancreatitis in the mouse. This model is likely representative of human biliary pancreatitis pathophysiology, and therefore provides a powerful tool with which to elucidate basic mechanisms underlying the pathogenesis of acute pancreatitis. PMID:21416058

  4. Acute effects of electro-acupuncture (EA) on hippocampal long term potentiation (LTP) of perforant path-dentate gyrus granule cells synapse related to memory.

    PubMed

    He, Xiaokuo; Yan, Tiebin; Chen, Rongfa; Ran, Dongzhi

    2012-01-01

    Acupuncture, a traditional Chinese therapeutic method, has been widely used in clinical practice to treat diseases such as stroke, Bell's palsy, Alzheimer disease, Parkinson diseases, dysmenorrhea and chronic pain. Mounting lab data had suggested that electro-acupuncture could alleviate dementia and restore long term potentiation of hippocampus in rat. Clinical data also indicated that electro-acupuncture could improve electrical activity of brain in vascular dementia patients. However, its biological basis and acute effects on hippocampal long term potentiation (LTP) remain not well understood. Therefore, we sought to investigate whether acute electro-acupuncture (acupoints: ST36 and SP6; continuous wave, 2 mV, 2Hz; lasted 20 min) could enhance LTP of perforant path-dentate gyrus granule cells in anesthetized rat and explore its underlying mechanisms. We found that electro-acupuncture could significantly increase PS2/PS 1 in pair pulse test (P <0.05, inter-pulse interval: 20ms and 90ms). When compared to control group, electro-acupuncture could significantly enhance LTP to about 234% which was about 143% of that in control group (P <0.05). It suggested that electro-acupuncture could modulate the function of interneurons in hippocampus hence increase LTP. PMID:23156202

  5. Acetylcholinesterase activity in regions of mouse brain following acute and chronic treatment with a benzodiazepine inverse agonist.

    PubMed Central

    Appleyard, M. E.; Taylor, S. C.; Little, H. J.

    1990-01-01

    1. Chronic administration of the benzodiazepine inverse agonist FG 7142 has previously been shown to induce seizure activity in mice. In the present study we have investigated the effects of acute and chronic treatment with FG 7142 in mice on the levels of acetylcholinesterase activity in cortex, hippocampus, midbrain and striatum. We have also investigated the effects of acute and chronic stress in the form of handling (vehicle-injection) on acetylcholinesterase levels. 2. A single dose of FG 7142 produced a marked elevation of total acetylcholinesterase activities in the hippocampus and midbrain when compared with vehicle-injected control levels, but the levels were not different from those in unhandled animals. 3. Acute stress, in the form of vehicle-injection produced decreases in cortical and hippocampal soluble acetylcholinesterase activity but FG 7142 had no effect upon these stress-induced changes. 4. Total cortical and hippocampal acetylcholinesterase activities were increased by 56% and 16% respectively in the chronic FG 7142-treated mice that exhibited seizure activity (compared with vehicle-injected controls). 5. Soluble acetylcholinesterase activity in the midbrain was decreased to 82% of control levels only in animals that had undergone FG 7142-induced kindling. Smaller or no changes in acetylcholinesterase activity in the midbrain were observed in chronically FG 7142-treated animals that exhibited no seizure activity. 6. Mice that did not demonstrate seizure activity in response to chronic FG 7142 treatment showed alterations in the soluble acetylcholinesterase activities of the hippocampus and midbrain.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1963800

  6. Chronic Psychosocial Stress and Negative Feedback Inhibition: Enhanced Hippocampal Glucocorticoid Signaling despite Lower Cytoplasmic GR Expression

    PubMed Central

    Füchsl, Andrea M.; Reber, Stefan O.

    2016-01-01

    Chronic subordinate colony housing (CSC), a pre-clinically validated mouse model for chronic psychosocial stress, results in increased basal and acute stress-induced plasma adrenocorticotropic hormone (ACTH) levels. We assessed CSC effects on hippocampal glucocorticoid (GC) receptor (GR), mineralocorticoid receptor (MR), and FK506 binding protein (FKBP51) expression, acute heterotypic stressor-induced GR translocation, as well as GC effects on gene expression and cell viability in isolated hippocampal cells. CSC mice showed decreased GR mRNA and cytoplasmic protein levels compared with single-housed control (SHC) mice. Basal and acute stress-induced nuclear GR protein expression were comparable between CSC and SHC mice, as were MR and FKBP51 mRNA and/or cytoplasmic protein levels. In vitro the effect of corticosterone (CORT) on hippocampal cell viability and gene transcription was more pronounced in CSC versus SHC mice. In summary, CSC mice show an, if at all, increased hippocampal GC signaling capacity despite lower cytoplasmic GR protein expression, making negative feedback deficits in the hippocampus unlikely to contribute to the increased ACTH drive following CSC. PMID:27057751

  7. Potential Role of KCNQ/M-Channels in Regulating Neuronal Differentiation in Mouse Hippocampal and Embryonic Stem Cell-Derived Neuronal Cultures

    PubMed Central

    Zhou, Xin; Song, MingKe; Chen, Dongdong; Wei, Ling; Yu, Shan Ping

    2011-01-01

    Voltage-gated K+ channels are key regulators of neuronal excitability, playing major roles in setting resting membrane potential, repolarizing the cell membrane after action potentials and affecting transmitter release. The M-type channel or M-channel is a unique voltage- and ligand-regulated K+ channel. It is composed of the molecular counterparts KCNQ2 and KCNQ3 (also named Kv7.2 and Kv7.3) channels and expressed in the soma and dendrites of neurons. The present investigation examined the hypothesis that KCNQ2/3 channels played a regulatory role in neuronal differentiation and maturation. In cultured mouse embryonic stem (ES) cells undergoing neuronal differentiation and primary embryonic (E15-17) hippocampal cultures, KCNQ2 and KCNQ3 channels and underlying M-currents were identified. Blocking of KCNQ channels in these cells for 5 days using the specific channel blocker XE991 (10 μM) or linopirdine (30 μM) significantly decreased synaptophysin and syntaxin expression without affecting cell viability. Chronic KCNQ2/3 channel block reduced the expression of vesicular GABA transporter (v-GAT), but not vesicular glutamate transporter (v-GluT). Enhanced ERK1/2 phosphorylation was observed in XE991- and linopirdine-treated neural progenitor cells. In electrophysiological recordings, cells undergoing chronic block of KCNQ2/3 channels showed normal amplitude of mPSCs while the frequency of mPSCs was reduced. On the other hand, KCNQ channel opener N-Ethylmaleimide (NEM, 2 μM) increased mPSC frequency. Fluorescent imaging using fluorescent styryl-dye FM4-64 revealed that chronic blockade of KCNQ2/3 channels decreased endocytosis but facilitated exocytosis. These data indicate that KCNQ2/3 channels participate in regulation of neuronal differentiation and show a tonic regulation on pre-synaptic transmitter release and recycling in developing neuronal cells. PMID:21466805

  8. Neuroprotective action of deer bone extract against glutamate or Aβ₁₋₄₂-induced oxidative stress in mouse hippocampal cells.

    PubMed

    Kim, Cho Rong; Jeon, Hye Lyun; Shin, Suk Kyung; Kim, Hyun Jeong; Ahn, Chang-Won; Jung, Sung Ug; Park, Soo-Hyun; Kim, Mee Ree

    2014-02-01

    Water extracts of deer bone, called nokgol in Korean, and deer antlers have been traditionally used as anti-aging medicines. Deer antler extract is known to possess various activities, including anti-aging or anti-amnesic activity. However, there are no reports about the neuroprotective effect of deer bone extract (DBE). The objective of this study was to examine the neuroprotective effect of DBE on glutamate-induced cell death of mouse hippocampal cells (HT-22 cells) and to elucidate the mode of neuroprotective action of DBE. In this study, HT-22 cells was pretreated with DBE before stimulation with glutamate, and then, the effects of DBE on cell viability, oxidative stress markers, and MAP kinases were determined. Separately, the effect of DBE on H₂O₂ or amyloid beta peptide (1-42) (Aβ₁₋₄₂)-induced cytotoxicity of HT-22 cells was evaluated. DBE protected HT-22 cells from glutamate-induced cell death and prevented the increase in lactate dehydrogenase leakage in HT-22 cells. DBE also prevented glutamate-induced oxidative stress, as indicated by increased reactive oxygen species and lipid peroxidation as well as by decreases in glutathione (GSH) levels and GSH peroxidase activity. In addition, DBE inhibited glutamate-induced activation of c-Jun N-terminal kinases (JNK), p38, and extracellular signal-regulated kinase, indicators of oxidative stress-induced cell death. Furthermore, DBE also protected against H₂O₂ and Aβ₁₋₄₂-induced cytotoxicity. These results suggest that DBE may be a useful functional agent for the prevention against neurodegenerative disorders involving oxidative stress. PMID:24460377

  9. The tricyclic antidepressant desipramine inhibited the neurotoxic, kainate-induced [Ca(2+)]i increases in CA1 pyramidal cells in acute hippocampal slices.

    PubMed

    Koncz, István; Szász, Bernadett K; Szabó, Szilárd I; Kiss, János P; Mike, Arpád; Lendvai, Balázs; Sylvester Vizi, E; Zelles, Tibor

    2014-05-01

    Kainate (KA), used for modelling neurodegenerative diseases, evokes excitotoxicity. However, the precise mechanism of KA-evoked [Ca(2+)]i increase is unexplored, especially in acute brain slice preparations. We used [Ca(2+)]i imaging and patch clamp electrophysiology to decipher the mechanism of KA-evoked [Ca(2+)]i rise and its inhibition by the tricyclic antidepressant desipramine (DMI) in CA1 pyramidal cells in rat hippocampal slices and in cultured hippocampal cells. The effect of KA was dose-dependent and relied totally on extracellular Ca(2+). The lack of effect of dl-2-amino-5-phosphonopentanoic acid (AP-5) and abolishment of the response by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) suggested the involvement of non-N-methyl-d-aspartate receptors (non-NMDARs). The predominant role of the Ca(2+)-impermeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) in the initiation of the Ca(2+) response was supported by the inhibitory effect of the selective AMPAR antagonist GYKI 53655 and the ineffectiveness of 1-naphthyl acetylspermine (NASPM), an inhibitor of the Ca(2+)-permeable AMPARs. The voltage-gated Ca(2+) channels (VGCC), blocked by ω-Conotoxin MVIIC+nifedipine+NiCl2, contributed to the [Ca(2+)]i rise. VGCCs were also involved, similarly to AMPAR current, in the KA-evoked depolarisation. Inhibition of voltage-gated Na(+) channels (VGSCs; tetrodotoxin, TTX) did not affect the depolarisation of pyramidal cells but blocked the depolarisation-evoked action potential bursts and reduced the Ca(2+) response. The tricyclic antidepressant DMI inhibited the KA-evoked [Ca(2+)]i rise in a dose-dependent manner. It directly attenuated the AMPA-/KAR current, but its more potent inhibition on the Ca(2+) response supports additional effect on VGCCs, VGSCs and Na(+)/Ca(2+) exchangers. The multitarget action on decisive players of excitotoxicity holds out more promise in clinical therapy of neurodegenerative diseases. PMID:24742525

  10. Acute effects of corticosterone injection on paternal behavior in California mouse (Peromyscus californicus) fathers.

    PubMed

    Harris, Breanna N; Perea-Rodriguez, Juan Pablo; Saltzman, Wendy

    2011-11-01

    Glucocorticoids are thought to mediate the disruption of parental behavior in response to acute and chronic stress. Previous research supports their role in chronic stress; however, no study has experimentally tested the effects of acute glucocorticoid elevation on paternal behavior. We tested the prediction that acute corticosterone (CORT) increases would decrease paternal behavior in California mouse fathers and would lead to longer-term effects on reproductive success, as even short-term increases in CORT have been shown to produce lasting effects on the hypothalamic-pituitary-adrenal axis. First-time fathers were injected with 30 mg/kg CORT, 60 mg/kg CORT or vehicle, or left unmanipulated. Interactions between the male and its pup(s) were recorded 1.5-2h after injection and scored for paternal and non-paternal behavior. Treatment groups were combined into control (unmanipulated + vehicle, n = 15) and CORT (30 mg/kg + 60 mg/kg, n = 16) for analysis based on resulting plasma CORT concentrations. CORT treatment did not alter paternal or non-paternal behaviors or any long-term measures (male body mass or temperature, pup growth rate, pup survival, interbirth interval, number or mass of pups born in the second litter). Fathers showed a significant rise in body mass at day 30 postpartum, followed by a decrease in body mass after the birth of the second litter; however, this pattern did not differ between the CORT and control groups. In summary, acute elevation of plasma CORT did not alter direct paternal behavior, body mass, or reproductive outcomes, suggesting that acute CORT elevation alone does not overtly disrupt paternal care in this biparental mammal. PMID:21939660

  11. ACUTE ETHANOL DISRUPTS PHOTIC AND SEROTONERGIC CIRCADIAN CLOCK PHASE-RESETTING IN THE MOUSE

    PubMed Central

    Brager, Allison J.; Ruby, Christina L.; Prosser, Rebecca A.; Glass, J. David

    2011-01-01

    Background Alcohol abuse is associated with impaired circadian rhythms and sleep. Ethanol administration disrupts circadian clock phase-resetting, suggesting a mode for the disruptive effect of alcohol abuse on the circadian timing system. In this study, we extend previous work in C57BL/6J mice to: 1) characterize the SCN pharmacokinetics of acute systemic ethanol administration; 2) explore the effects of acute ethanol on photic and non-photic phase-resetting; and 2) determine if the SCN is a direct target for photic effects. Methods First, microdialysis was used to characterize the pharmacokinetics of acute i.p. injections of 3 doses of ethanol (0.5, 1.0 and 2.0 g/kg) in the mouse suprachiasmatic (SCN) circadian clock. Second, the effects of acute i.p. ethanol administration on photic phase-delays and serotonergic ([+]8-OH-DPAT-induced) phase-advances of the circadian activity rhythm were assessed. Third, the effects of reverse-microdialysis ethanol perfusion of the SCN on photic phase-resetting were characterized. Results Peak ethanol levels from the 3 doses of ethanol in the SCN occurred within 20–40 min post-injection with half-lives for clearance ranging from 0.6–1.8 hr. Systemic ethanol treatment dose-dependently attenuated photic and serotonergic phase-resetting. This treatment also did not affect basal SCN neuronal activity as assessed by Fos expression. Intra-SCN perfusion with ethanol markedly reduced photic phase-delays. Conclusions These results confirm that acute ethanol attenuates photic phase-delay shifts and serotonergic phase-advance shifts in the mouse. This dual effect could disrupt photic and non-photic entrainment mechanisms governing circadian clock timing. It is also significant that the SCN clock is a direct target for disruptive effects of ethanol on photic shifting. Such actions by ethanol could underlie the disruptive effects of alcohol abuse on behavioral, physiological, and endocrine rhythms associated with alcoholism. PMID:21463340

  12. Validation of a mouse xenograft model system for gene expression analysis of human acute lymphoblastic leukaemia

    PubMed Central

    2010-01-01

    Background Pre-clinical models that effectively recapitulate human disease are critical for expanding our knowledge of cancer biology and drug resistance mechanisms. For haematological malignancies, the non-obese diabetic/severe combined immunodeficient (NOD/SCID) mouse is one of the most successful models to study paediatric acute lymphoblastic leukaemia (ALL). However, for this model to be effective for studying engraftment and therapy responses at the whole genome level, careful molecular characterisation is essential. Results Here, we sought to validate species-specific gene expression profiling in the high engraftment continuous ALL NOD/SCID xenograft. Using the human Affymetrix whole transcript platform we analysed transcriptional profiles from engrafted tissues without prior cell separation of mouse cells and found it to return highly reproducible profiles in xenografts from individual mice. The model was further tested with experimental mixtures of human and mouse cells, demonstrating that the presence of mouse cells does not significantly skew expression profiles when xenografts contain 90% or more human cells. In addition, we present a novel in silico and experimental masking approach to identify probes and transcript clusters susceptible to cross-species hybridisation. Conclusions We demonstrate species-specific transcriptional profiles can be obtained from xenografts when high levels of engraftment are achieved or with the application of transcript cluster masks. Importantly, this masking approach can be applied and adapted to other xenograft models where human tissue infiltration is lower. This model provides a powerful platform for identifying genes and pathways associated with ALL disease progression and response to therapy in vivo. PMID:20406497

  13. Opposing actions of environmental enrichment and Alzheimer's disease on the expression of hippocampal microRNAs in mouse models

    PubMed Central

    Barak, B; Shvarts-Serebro, I; Modai, S; Gilam, A; Okun, E; Michaelson, D M; Mattson, M P; Shomron, N; Ashery, U

    2013-01-01

    Alzheimer's disease (AD) is the most common form of dementia in the elderly. Although there are no drugs that modify the disease process, exposure to an enriched environment (EE) can slow the disease progression. Here, we characterize the effects of AD and EE on the post-transcriptional regulators, microRNAs (miRNAs), which may contribute to the detrimental and beneficial effects of AD and EE, respectively, on synaptic plasticity-related proteins and AD pathology. We found for the first time miRNAs that were inversely regulated in AD and EE, and may affect synaptic proteins and modulators, molecular factors associated with AD pathology, and survival and neuroprotective factors. MiRNAs that were upregulated only in 3xTgAD mice model of AD compared with their control mice were localized to synapses, predicted to downregulate essential synaptic proteins and are highly associated with regulating apoptosis, AD-associated processes and axon guidance. Studying the progressive change in miRNAs modulation during aging of 3xTgAD mice, we identified miRNAs that were regulated in earlier stages of AD, suggesting them as potential AD biomarkers. Last, we characterized AD- and EE-related effects in the mouse hippocampus on tomosyn protein levels, an inhibitor of the synaptic transmission machinery. While EE reduced tomosyn levels, tomosyn levels were increased in old 3xTgAD mice, suggesting a role for tomosyn in the impairment of synaptic transmission in AD. Interestingly, we found that miR-325 regulates the expression levels of tomosyn as demonstrated by a luciferase reporter assay, and that miR-325 was downregulated in AD and upregulated following EE. These findings improve our understanding of the molecular and cellular processes in AD pathology, following EE, and the interplay between the two processes, and open new avenues for the studies of understanding and controlling AD. PMID:24022509

  14. Acute Radiation Syndrome Severity Score System in Mouse Total-Body Irradiation Model.

    PubMed

    Ossetrova, Natalia I; Ney, Patrick H; Condliffe, Donald P; Krasnopolsky, Katya; Hieber, Kevin P

    2016-08-01

    Radiation accidents or terrorist attacks can result in serious consequences for the civilian population and for military personnel responding to such emergencies. The early medical management situation requires quantitative indications for early initiation of cytokine therapy in individuals exposed to life-threatening radiation doses and effective triage tools for first responders in mass-casualty radiological incidents. Previously established animal (Mus musculus, Macaca mulatta) total-body irradiation (γ-exposure) models have evaluated a panel of radiation-responsive proteins that, together with peripheral blood cell counts, create a multiparametic dose-predictive algorithm with a threshold for detection of ~1 Gy from 1 to 7 d after exposure as well as demonstrate the acute radiation syndrome severity score systems created similar to the Medical Treatment Protocols for Radiation Accident Victims developed by Fliedner and colleagues. The authors present a further demonstration of the acute radiation sickness severity score system in a mouse (CD2F1, males) TBI model (1-14 Gy, Co γ-rays at 0.6 Gy min) based on multiple biodosimetric endpoints. This includes the acute radiation sickness severity Observational Grading System, survival rate, weight changes, temperature, peripheral blood cell counts and radiation-responsive protein expression profile: Flt-3 ligand, interleukin 6, granulocyte-colony stimulating factor, thrombopoietin, erythropoietin, and serum amyloid A. Results show that use of the multiple-parameter severity score system facilitates identification of animals requiring enhanced monitoring after irradiation and that proteomics are a complementary approach to conventional biodosimetry for early assessment of radiation exposure, enhancing accuracy and discrimination index for acute radiation sickness response categories and early prediction of outcome. PMID:27356057

  15. Quantitative Evaluation and Selection of Reference Genes for Quantitative RT-PCR in Mouse Acute Pancreatitis

    PubMed Central

    Yan, Zhaoping; Gao, Jinhang; Lv, Xiuhe; Yang, Wenjuan; Wen, Shilei; Tong, Huan; Tang, Chengwei

    2016-01-01

    The analysis of differences in gene expression is dependent on normalization using reference genes. However, the expression of many of these reference genes, as evaluated by quantitative RT-PCR, is upregulated in acute pancreatitis, so they cannot be used as the standard for gene expression in this condition. For this reason, we sought to identify a stable reference gene, or a suitable combination, for expression analysis in acute pancreatitis. The expression stability of 10 reference genes (ACTB, GAPDH, 18sRNA, TUBB, B2M, HPRT1, UBC, YWHAZ, EF-1α, and RPL-13A) was analyzed using geNorm, NormFinder, and BestKeeper software and evaluated according to variations in the raw Ct values. These reference genes were evaluated using a comprehensive method, which ranked the expression stability of these genes as follows (from most stable to least stable): RPL-13A, YWHAZ > HPRT1 > GAPDH > UBC > EF-1α > 18sRNA > B2M > TUBB > ACTB. RPL-13A was the most suitable reference gene, and the combination of RPL-13A and YWHAZ was the most stable group of reference genes in our experiments. The expression levels of ACTB, TUBB, and B2M were found to be significantly upregulated during acute pancreatitis, whereas the expression level of 18sRNA was downregulated. Thus, we recommend the use of RPL-13A or a combination of RPL-13A and YWHAZ for normalization in qRT-PCR analyses of gene expression in mouse models of acute pancreatitis. PMID:27069927

  16. Transcriptional changes of mouse splenocyte organelle components following acute infection with Toxoplasma gondii.

    PubMed

    He, Jun-Jun; Ma, Jun; Li, Fa-Cai; Song, Hui-Qun; Xu, Min-Jun; Zhu, Xing-Quan

    2016-08-01

    Toxoplasmosis is a globally spread zoonosis. The pathogen Toxoplasma gondii can hijack cellular organelles of host for replication. Although a number of important cellular life events are controlled by cell organelles, very little is known of the transcriptional changes of host cellular organelles after infection with T. gondii. Herein, we performed RNA-sequencing (RNA-seq) and bioinformatics analyses to study the global organelle component changes. It was found that many transcripts of the mouse spleen cellular organelle components were altered by acute T. gondii infection with the RH strain (Type I). Most differentially expressed transcripts of mitochondrial components were downregulated, especially those involved in biosynthetic and metabolic processes. Moreover, mitochondria based apoptosis process was downregulated. In terms of cytoskeleton, most differentially expressed transcript of cytoskeleton components were also downregulated, including septin cytoskeleton, cytoskeleton organization, centrosome and myosin. For endolysosomal system, ion transporters were downregulated at mRNA level, whereas the cytolytic components were increased, such as granzymes, Rab27a and perforin1 (Prf1). The main transcripts of Golgi apparatus components involved in sialylation or vesicle-mediated transportation were downregulated, while immune related components were upregulated. For endoplasmic reticulum (ER), posttranslational modification, drug metabolism and material transportation related transcripts were downregulated. In addition, T. gondii antigen cross-presentation by MHC-I complex could be downregulated by the downregulation of CD76 and ubiquitination related transcripts. The present study, for the first time, described the transcriptional changes of the mouse spleen cellular organelles following acute T. gondii infection, which provides a foundation to study the interaction between T. gondii and host cells at the sub-cellular level. PMID:27132051

  17. Normothermic Mouse Functional MRI of Acute Focal Thermostimulation for Probing Nociception

    PubMed Central

    Reimann, Henning Matthias; Hentschel, Jan; Marek, Jaroslav; Huelnhagen, Till; Todiras, Mihail; Kox, Stefanie; Waiczies, Sonia; Hodge, Russ; Bader, Michael; Pohlmann, Andreas; Niendorf, Thoralf

    2016-01-01

    Combining mouse genomics and functional magnetic resonance imaging (fMRI) provides a promising tool to unravel the molecular mechanisms of chronic pain. Probing murine nociception via the blood oxygenation level-dependent (BOLD) effect is still challenging due to methodological constraints. Here we report on the reproducible application of acute noxious heat stimuli to examine the feasibility and limitations of functional brain mapping for central pain processing in mice. Recent technical and procedural advances were applied for enhanced BOLD signal detection and a tight control of physiological parameters. The latter includes the development of a novel mouse cradle designed to maintain whole-body normothermia in anesthetized mice during fMRI in a way that reflects the thermal status of awake, resting mice. Applying mild noxious heat stimuli to wildtype mice resulted in highly significant BOLD patterns in anatomical brain structures forming the pain matrix, which comprise temporal signal intensity changes of up to 6% magnitude. We also observed sub-threshold correlation patterns in large areas of the brain, as well as alterations in mean arterial blood pressure (MABP) in response to the applied stimulus. PMID:26821826

  18. Normothermic Mouse Functional MRI of Acute Focal Thermostimulation for Probing Nociception

    NASA Astrophysics Data System (ADS)

    Reimann, Henning Matthias; Hentschel, Jan; Marek, Jaroslav; Huelnhagen, Till; Todiras, Mihail; Kox, Stefanie; Waiczies, Sonia; Hodge, Russ; Bader, Michael; Pohlmann, Andreas; Niendorf, Thoralf

    2016-01-01

    Combining mouse genomics and functional magnetic resonance imaging (fMRI) provides a promising tool to unravel the molecular mechanisms of chronic pain. Probing murine nociception via the blood oxygenation level-dependent (BOLD) effect is still challenging due to methodological constraints. Here we report on the reproducible application of acute noxious heat stimuli to examine the feasibility and limitations of functional brain mapping for central pain processing in mice. Recent technical and procedural advances were applied for enhanced BOLD signal detection and a tight control of physiological parameters. The latter includes the development of a novel mouse cradle designed to maintain whole-body normothermia in anesthetized mice during fMRI in a way that reflects the thermal status of awake, resting mice. Applying mild noxious heat stimuli to wildtype mice resulted in highly significant BOLD patterns in anatomical brain structures forming the pain matrix, which comprise temporal signal intensity changes of up to 6% magnitude. We also observed sub-threshold correlation patterns in large areas of the brain, as well as alterations in mean arterial blood pressure (MABP) in response to the applied stimulus.

  19. Role of astroglial connexin30 in hippocampal gap junction coupling.

    PubMed

    Gosejacob, Dominic; Dublin, Pavel; Bedner, Peter; Hüttmann, Kerstin; Zhang, Jiong; Tress, Oliver; Willecke, Klaus; Pfrieger, Frank; Steinhäuser, Christian; Theis, Martin

    2011-03-01

    The impact of connexin30 (Cx30) on interastrocytic gap junction coupling in the normal hippocampus is matter of debate; reporter gene analyses indicated a weak expression of Cx30 in the mouse hippocampus. In contrast, mice lacking connexin43 (Cx43) in astrocytes exhibited only 50% reduction in coupling. Complete uncoupling of hippocampal astrocytes in mice lacking both Cx30 and Cx43 suggested that Cx30 participates in interastrocytic gap junction coupling in the hippocampus. With comparative reporter gene assays, immunodetection, and cre/loxP-based reporter approaches we demonstrate that Cx30 is more abundant than previously thought. The specific role of Cx30 in interastrocytic coupling has never been investigated. Employing tracer coupling analyses in acute slices of Cx30 deficient mice here we show that Cx30 makes a substantial contribution to interastrocytic gap junctional communication in the mouse hippocampus. PMID:21264956

  20. Non-specific inhibitors of aquaporin-4 stimulate S100B secretion in acute hippocampal slices of rats.

    PubMed

    Zanotto, Caroline; Abib, Renata Torres; Batassini, Cristiane; Tortorelli, Lucas Silva; Biasibetti, Regina; Rodrigues, Letícia; Nardin, Patrícia; Hansen, Fernanda; Gottfried, Carmem; Leite, Marina Concli; Gonçalves, Carlos-Alberto

    2013-01-23

    Aquaporin-4 (AQP-4) is the principal brain water channel and is predominantly expressed in astrocytes suggesting its dynamic involvement in water homeostasis in brain tissue. Due to the co-localization of AQP-4 and inward rectifier K(+) channels Kir 4.1, a functional coupling between these proteins has been proposed. AQP-4 has a putative role in the physiopathology of brain disorders including epilepsy and trauma. S100B is a calcium-binding protein expressed and secreted by astrocytes, and commonly used as a parameter of astroglial activation. Here, we investigate a possible link between AQP-4 activity (and Kir 4.1) and S100B secretion in hippocampal slices of rats of different ages using non-specific inhibitors of AQP-4 (AZA, acetazolamide and TEA, tetraethylammonium) and Kir 4.1 (barium chloride). We found that blockade of AQP-4 with TEA and AZA produced an increase in S100B secretion in young rats, compatible with an astroglial activation observed in many conditions of brain injury. On the other hand, BaCl(2) induced Kir 4.1 inhibition caused a decrease in S100B secretion. Both channels, AQP-4 and Kir 4.1, exhibited a similar ontogenetic profile, in spite of the functional uncoupling, in relation to S100B secretion. Moreover, we found a significant increase in the S100B secretion basal levels with the increasing of animal age and the incubation with high levels of potassium resulted in a decrease of S100B secretion in 30 and 90-day old rats. These data, together with previous observations from gap junctions and glutamate transport of astrocytes, contribute to characterize the operational system involving astroglial activation, particularly on S100B secretion, in brain disorders. PMID:23142267

  1. Histopathologic characterization of the BTBR mouse model of autistic-like behavior reveals selective changes in neurodevelopmental proteins and adult hippocampal neurogenesis

    PubMed Central

    2011-01-01

    Background The inbred mouse strain BTBR T+ tf/J (BTBR) exhibits behavioral deficits that mimic the core deficits of autism. Neuroanatomically, the BTBR strain is also characterized by a complete absence of the corpus callosum. The goal of this study was to identify novel molecular and cellular changes in the BTBR mouse, focusing on neuronal, synaptic, glial and plasticity markers in the limbic system as a model for identifying putative molecular and cellular substrates associated with autistic behaviors. Methods Forebrains of 8 to 10-week-old male BTBR and age-matched C57Bl/6J control mice were evaluated by immunohistochemistry using free-floating and paraffin embedded sections. Twenty antibodies directed against antigens specific to neurons, synapses and glia were used. Nissl, Timm and acetylcholinesterase (AchE) stains were performed to assess cytoarchitecture, mossy fibers and cholinergic fiber density, respectively. In the hippocampus, quantitative stereological estimates for the mitotic marker bromodeoxyuridine (BrdU) were performed to determine hippocampal progenitor proliferation, survival and differentiation, and brain-derived neurotrophic factor (BDNF) mRNA was quantified by in situ hybridization. Quantitative image analysis was performed for NG2, doublecortin (DCX), NeuroD, GAD67 and Poly-Sialic Acid Neural Cell Adhesion Molecule (PSA-NCAM). Results In midline structures including the region of the absent corpus callosum of BTBR mice, the myelin markers 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and myelin basic protein (MBP) were reduced, and the oligodendrocyte precursor NG2 was increased. MBP and CNPase were expressed in small ectopic white matter bundles within the cingulate cortex. Microglia and astrocytes showed no evidence of gliosis, yet orientations of glial fibers were altered in specific white-matter areas. In the hippocampus, evidence of reduced neurogenesis included significant reductions in the number of doublecortin, PSA-NCAM and

  2. Blocking macrophage migration inhibitory factor activity alleviates mouse acute otitis media in vivo.

    PubMed

    Zhang, Jin; Xu, Min; Zheng, Qingyin; Zhang, Yan; Ma, Weijun; Zhang, Zhaoqiang

    2014-11-01

    This study was to investigate the role of macrophage migration inhibitory factor (MIF) in mouse acute otitis media (AOM), we hypothesize that blocking MIF activity will relieve mouse AOM. A mouse AOM model was constructed by injecting lipopolysaccharide (LPS) into the middle ear of C57BL/6 mice through the tympanic membrane (TM). MIF levels were measured by real-time PCR (RT-PCR) and ELISA after LPS application. Normal or AOM mice were given PBS or ISO-1 (MIF antagonist) every day for 10 days and the hearing levels were determined by measuring auditory brainstem response (ABR) threshold. After the ABR test finished, H&E staining was conducted and the inflammation was also measured by detecting interleukin (IL)-1β, tumor necrosis factor (TNF)-α and vascular endothelial growth factor (VEGF) levels with RT-PCR and ELISA. TLR-4 expression was determined by western blotting and NF-κB activation was determined by electrophoretic mobility shift assays. Compared with the normal control, MIF levels in the middle ear of LPS-induced AOM mice were significant increased. The ABR results showed that mean ABR thresholds in ISO-1 treated AOM mice were significantly reduced compared with PBS treated AOM mice since day 7, indicating that ISO-1 treatment potentially improved the hearing levels of AOM mice. H&E staining showed that ISO-1 treatment could reduce the mucosal thickness of AOM mice. In ISO-1 treated mice, TLR-4 expression and levels of IL-1β, TNF-α and VEGF were significantly lower compared with PBS treated AOM mice. ISO-1 treatment also significantly inhibited NF-κB activation in AOM mice compared with PBS treated AOM mice. These results suggested that blocking the activity of MIF by ISO-1 could reduce the inflammation in AOM mice in which process TLR-4 and NF-κB were involved. The reduction in MIF activity is conducive to alleviate mouse AOM, which may serve as a potential therapeutic target for the treatment of AOM. PMID:25108100

  3. Molecular determinants of severe acute respiratory syndrome coronavirus pathogenesis and virulence in young and aged mouse models of human disease.

    PubMed

    Frieman, Matthew; Yount, Boyd; Agnihothram, Sudhakar; Page, Carly; Donaldson, Eric; Roberts, Anjeanette; Vogel, Leatrice; Woodruff, Becky; Scorpio, Diana; Subbarao, Kanta; Baric, Ralph S

    2012-01-01

    SARS coronavirus (SARS-CoV) causes severe acute respiratory tract disease characterized by diffuse alveolar damage and hyaline membrane formation. This pathology often progresses to acute respiratory distress (such as acute respiratory distress syndrome [ARDS]) and atypical pneumonia in humans, with characteristic age-related mortality rates approaching 50% or more in immunosenescent populations. The molecular basis for the extreme virulence of SARS-CoV remains elusive. Since young and aged (1-year-old) mice do not develop severe clinical disease following infection with wild-type SARS-CoV, a mouse-adapted strain of SARS-CoV (called MA15) was developed and was shown to cause lethal infection in these animals. To understand the genetic contributions to the increased pathogenesis of MA15 in rodents, we used reverse genetics and evaluated the virulence of panels of derivative viruses encoding various combinations of mouse-adapted mutations. We found that mutations in the viral spike (S) glycoprotein and, to a much less rigorous extent, in the nsp9 nonstructural protein, were primarily associated with the acquisition of virulence in young animals. The mutations in S likely increase recognition of the mouse angiotensin-converting enzyme 2 (ACE2) receptor not only in MA15 but also in two additional, independently isolated mouse-adapted SARS-CoVs. In contrast to the findings for young animals, mutations to revert to the wild-type sequence in nsp9 and the S glycoprotein were not sufficient to significantly attenuate the virus compared to other combinations of mouse-adapted mutations in 12-month-old mice. This panel of SARS-CoVs provides novel reagents that we have used to further our understanding of differential, age-related pathogenic mechanisms in mouse models of human disease. PMID:22072787

  4. Molecular Determinants of Severe Acute Respiratory Syndrome Coronavirus Pathogenesis and Virulence in Young and Aged Mouse Models of Human Disease

    PubMed Central

    Yount, Boyd; Agnihothram, Sudhakar; Page, Carly; Donaldson, Eric; Roberts, Anjeanette; Vogel, Leatrice; Woodruff, Becky; Scorpio, Diana; Subbarao, Kanta; Baric, Ralph S.

    2012-01-01

    SARS coronavirus (SARS-CoV) causes severe acute respiratory tract disease characterized by diffuse alveolar damage and hyaline membrane formation. This pathology often progresses to acute respiratory distress (such as acute respiratory distress syndrome [ARDS]) and atypical pneumonia in humans, with characteristic age-related mortality rates approaching 50% or more in immunosenescent populations. The molecular basis for the extreme virulence of SARS-CoV remains elusive. Since young and aged (1-year-old) mice do not develop severe clinical disease following infection with wild-type SARS-CoV, a mouse-adapted strain of SARS-CoV (called MA15) was developed and was shown to cause lethal infection in these animals. To understand the genetic contributions to the increased pathogenesis of MA15 in rodents, we used reverse genetics and evaluated the virulence of panels of derivative viruses encoding various combinations of mouse-adapted mutations. We found that mutations in the viral spike (S) glycoprotein and, to a much less rigorous extent, in the nsp9 nonstructural protein, were primarily associated with the acquisition of virulence in young animals. The mutations in S likely increase recognition of the mouse angiotensin-converting enzyme 2 (ACE2) receptor not only in MA15 but also in two additional, independently isolated mouse-adapted SARS-CoVs. In contrast to the findings for young animals, mutations to revert to the wild-type sequence in nsp9 and the S glycoprotein were not sufficient to significantly attenuate the virus compared to other combinations of mouse-adapted mutations in 12-month-old mice. This panel of SARS-CoVs provides novel reagents that we have used to further our understanding of differential, age-related pathogenic mechanisms in mouse models of human disease. PMID:22072787

  5. Modulation of hippocampal neuroplasticity by Fas/CD95 regulatory protein 2 (Faim2) in the course of bacterial meningitis.

    PubMed

    Tauber, Simone C; Harms, Kristian; Falkenburger, Björn; Weis, Joachim; Sellhaus, Bernd; Nau, Roland; Schulz, Jörg B; Reich, Arno

    2014-01-01

    Fas-apoptotic inhibitory molecule 2 (Faim2) is a neuron-specific membrane protein and a member of the evolutionary conserved lifeguard apoptosis regulatory gene family. Its neuroprotective effect in acute neurological diseases has been demonstrated in an in vivo model of focal cerebral ischemia. Here we show that Faim2 is physiologically expressed in the human brain with a changing pattern in cases of infectious meningoencephalitis.In Faim2-deficient mice, there was increased caspase-associated hippocampal apoptotic cell death and an increased extracellular signal-regulated kinase pattern during acute bacterial meningitis induced by subarachnoid infection with Streptococcus pneumoniae type 3 strain. However, after rescuing the animals by antibiotic treatment, Faim2 deficiency led to increased hippocampal neurogenesis at 7 weeks after infection. This was associated with improved performance of Faim2-deficient mice compared to wild-type littermates in the Morris water maze, a paradigm for hippocampal spatial learning and memory. Thus, Faim2 deficiency aggravated degenerative processes in the acute phase but induced regenerative processes in the repair phase of a mouse model of pneumococcal meningitis. Hence, time-dependent modulation of neuroplasticity by Faim2 may offer a new therapeutic approach for reducing hippocampal neuronal cell death and improving cognitive deficits after bacterial meningitis. PMID:24335530

  6. Time-lapse imaging of neuroblast migration in acute slices of the adult mouse forebrain.

    PubMed

    Khlghatyan, Jivan; Saghatelyan, Armen

    2012-01-01

    the stationary and migratory phases is crucial for the unambiguous interpretation of results. We also performed multiple z-step acquisitions to monitor neuroblasts migration in 3D. Wide-field fluorescent imaging has been used extensively to visualize neuronal migration. Here, we describe detailed protocol for labeling neuroblasts, performing real-time video-imaging of neuroblast migration in acute slices of the adult mouse forebrain, and analyzing cell migration. While the described protocol exemplified the migration of neuroblasts in the adult RMS, it can also be used to follow cell migration in embryonic and early postnatal brains. PMID:23007608

  7. In vitro toxicity assay of cisplatin on mouse acute lymphoblastic leukaemia and spermatogonial stem cells.

    PubMed

    Shabani, R; Ashtari, K; Behnam, B; Izadyar, F; Asgari, H; Asghari Jafarabadi, M; Ashjari, M; Asadi, E; Koruji, M

    2016-06-01

    Testicular cancer is the most common cancer affecting men in reproductive age, and cisplatin is one of the major helpful chemotherapeutic agents for treatment of this cancer. In addition, exposure of testes cancer cells to cisplatin could potentially eliminate tumour cells from germ cells in patients. The aim of this study was to evaluate the effect of cisplatin on viability of mouse acute lymphoblastic leukaemia cell line (EL-4) and neonatal mouse spermatogonial cells in vitro. In this study, the isolated spermatogonial stem cells (SSC) and EL-4 were divided into six groups including control (received medium), sham (received DMSO in medium) and experimental groups which received different doses of cisplatin (0.5, 5, 10 and 15 μg ml(-1) ). Cells viability was evaluated with MTT assay. The identity of the cultured cells was confirmed by the expression of specific markers. Our finding showed that viability of both SSC and EL-4 cells was reduced with the dose of 15 μg/ml when compared to the control group (P ≤ 0.05). Also, the differences between the IC50 in doses 10 and 15 μg/ml at different time were significant (P ≤ 0.05). The number of TUNEL-positive cells was increased, and the BAX and caspase-3 expressions were upregulated in EL4 cells for group that received an effective dose of cisplatin). In conclusion, despite the dramatic effects of cisplatin on both cells, spermatogonial stem cells could form colony in culture. PMID:26428408

  8. Noggin and BMP4 co-modulate adult hippocampal neurogenesis in the APP{sub swe}/PS1{sub {Delta}E9} transgenic mouse model of Alzheimer's disease

    SciTech Connect

    Tang, Jun; Song, Min; Wang, Yanyan; Fan, Xiaotang; Xu, Haiwei; Bai, Yun

    2009-07-31

    In addition to the subventricular zone, the dentate gyrus of the hippocampus is one of the few brain regions in which neurogenesis continues into adulthood. Perturbation of neurogenesis can alter hippocampal function, and previous studies have shown that neurogenesis is dysregulated in Alzheimer disease (AD) brain. Bone morphogenetic protein-4 (BMP4) and its antagonist Noggin have been shown to play important roles both in embryonic development and in the adult nervous system, and may regulate hippocampal neurogenesis. Previous data indicated that increased expression of BMP4 mRNA within the dentate gyrus might contribute to decreased hippocampal cell proliferation in the APP{sub swe}/PS1{sub {Delta}E9} mouse AD model. However, it is not known whether the BMP antagonist Noggin contributes to the regulation of neurogenesis. We therefore studied the relative expression levels and localization of BMP4 and its antagonist Noggin in the dentate gyrus and whether these correlated with changes in neurogenesis in 6-12 mo old APP{sub swe}/PS1{sub {Delta}E9} transgenic mice. Bromodeoxyuridine (BrdU) was used to label proliferative cells. We report that decreased neurogenesis in the APP/PS1 transgenic mice was accompanied by increased expression of BMP4 and decreased expression of Noggin at both the mRNA and protein levels; statistical analysis showed that the number of proliferative cells at different ages correlated positively with Noggin expression and negatively with BMP4 expression. Intraventricular administration of a chimeric Noggin/Fc protein was used to block the action of endogenous BMP4; this resulted in a significant increase in the number of BrdU-labeled cells in dentate gyrus subgranular zone and hilus in APP/PS1 mice. These results suggest that BMP4 and Noggin co-modulate neurogenesis.

  9. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury.

    PubMed

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2016-08-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation. PMID:26617279

  10. Mouse models of human PIK3CA-related brain overgrowth have acutely treatable epilepsy

    PubMed Central

    Roy, Achira; Skibo, Jonathan; Kalume, Franck; Ni, Jing; Rankin, Sherri; Lu, Yiling; Dobyns, William B; Mills, Gordon B; Zhao, Jean J; Baker, Suzanne J; Millen, Kathleen J

    2015-01-01

    Mutations in the catalytic subunit of phosphoinositide 3-kinase (PIK3CA) and other PI3K-AKT pathway components have been associated with cancer and a wide spectrum of brain and body overgrowth. In the brain, the phenotypic spectrum of PIK3CA-related segmental overgrowth includes bilateral dysplastic megalencephaly, hemimegalencephaly and focal cortical dysplasia, the most common cause of intractable pediatric epilepsy. We generated mouse models expressing the most common activating Pik3ca mutations (H1047R and E545K) in developing neural progenitors. These accurately recapitulate all the key human pathological features including brain enlargement, cortical malformation, hydrocephalus and epilepsy, with phenotypic severity dependent on the mutant allele and its time of activation. Underlying mechanisms include increased proliferation, cell size and altered white matter. Notably, we demonstrate that acute 1 hr-suppression of PI3K signaling despite the ongoing presence of dysplasia has dramatic anti-epileptic benefit. Thus PI3K inhibitors offer a promising new avenue for effective anti-epileptic therapy for intractable pediatric epilepsy patients. DOI: http://dx.doi.org/10.7554/eLife.12703.001 PMID:26633882

  11. Treatment with 5-Azacytidine Accelerates Acute Promyelocytic Leukemia Leukemogenesis in a Transgenic Mouse Model

    PubMed Central

    Scaglioni, Pier Paolo; Cai, Lu Fan; Majid, Samia M.; Yung, Thomas M.; Socci, Nicholas D.; Kogan, Scott C.; Kopelovich, Levy; Pandolfi, Pier Paolo

    2011-01-01

    A key oncogenic force in acute promyelocytic leukemia (APL) is the ability of the promyelocytic leukemia–retinoic acid receptor α (PML-RARA) oncoprotein to recruit transcriptional repressors and DNA methyltransferases at retinoic acid–responsive elements. Pharmacological doses of retinoic acid relieve transcriptional repression inducing terminal differentiation/apoptosis of the leukemic blasts. APL blasts often harbor additional recurrent chromosomal abnormalities, and significantly, APL prevalence is increased in Latino populations. These observations suggest that multiple genetic and environmental/dietary factors are likely implicated in APL. We tested whether dietary or targeted chemopreventive strategies relieving PML-RARA transcriptional repression would be effective in a transgenic mouse model. Surprisingly, we found that 1) treatment with a demethylating agent, 5-azacytidine, results in a striking acceleration of APL; 2) a high fat, low folate/choline–containing diet resulted in a substantial but nonsignificant APL acceleration; and 3) all-trans retinoic acid (ATRA) is ineffective in preventing leukemia and results in ATRA-resistant APL. Our findings have important clinical implications because ATRA is a drug of choice for APL treatment and indicate that global demethylation, whether through dietary manipulations or through the use of a pharmacologic agent such as 5-azacytidine, may have unintended and detrimental consequences in chemopreventive regimens. PMID:21779489

  12. Mitochondrial energetic defects in muscle and brain of a Hmbs-/- mouse model of acute intermittent porphyria.

    PubMed

    Homedan, Chadi; Schmitt, Caroline; Laafi, Jihane; Gueguen, Naïg; Desquiret-Dumas, Valérie; Lenglet, Hugo; Karim, Zoubida; Gouya, Laurent; Deybach, Jean-Charles; Simard, Gilles; Puy, Hervé; Malthièry, Yves; Reynier, Pascal

    2015-09-01

    Acute intermittent porphyria (AIP), an autosomal dominant metabolic disease (MIM #176000), is due to a deficiency of hydroxymethylbilane synthase (HMBS), which catalyzes the third step of the heme biosynthetic pathway. The clinical expression of the disease is mainly neurological, involving the autonomous, central and peripheral nervous systems. We explored mitochondrial oxidative phosphorylation (OXPHOS) in the brain and skeletal muscle of the Hmbs(-/-) mouse model first in the basal state (BS), and then after induction of the disease with phenobarbital and treatment with heme arginate (HA). The modification of the respiratory parameters, determined in mice in the BS, reflected a spontaneous metabolic energetic adaptation to HMBS deficiency. Phenobarbital induced a sharp alteration of the oxidative metabolism with a significant decrease of ATP production in skeletal muscle that was restored by treatment with HA. This OXPHOS defect was due to deficiencies in complexes I and II in the skeletal muscle whereas all four respiratory chain complexes were affected in the brain. To date, the pathogenesis of AIP has been mainly attributed to the neurotoxicity of aminolevulinic acid and heme deficiency. Our results show that mitochondrial energetic failure also plays an important role in the expression of the disease. PMID:26071363

  13. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury

    NASA Astrophysics Data System (ADS)

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2016-08-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.

  14. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury

    NASA Astrophysics Data System (ADS)

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2015-11-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.

  15. Acute inflammatory response in the mouse: exacerbation by immunoneutralization of lipocortin 1.

    PubMed Central

    Perretti, M.; Ahluwalia, A.; Harris, J. G.; Harris, H. J.; Wheller, S. K.; Flower, R. J.

    1996-01-01

    1. An immuno-neutralization strategy was employed to investigate the role of endogenous lipocortin 1 (LC1) in acute inflammation in the mouse. 2. Mice were treated subcutaneously with phosphate-buffered solution (PBS), non-immune sheep serum (NSS) or with one of two sheep antisera raised against LC1 (LCS3), or its N-terminal peptide (LCPS1), three times over a period of seven days. Twenty four hours after the last injection several parameters of acute inflammation were measured including zymosan-induced inflammation in 6-day-old air-pouches, zymosan-activated serum (ZAS)-induced oedema in the skin, platelet-activating factor (PAF)-induced neutrophilia and interleukin-1 beta (IL-1 beta)-induced corticosterone (CCS) release. 3. At the 4 h time-point of the zymosan inflamed air-pouch model, treatment with LCS3 did not modify the number of polymorphonuclear leucocytes (PMN) recruited: 7.84 +/- 1.01 and 7.00 +/- 0.77 x 10(6) PMN per mouse for NSS- and LCS3 group, n = 7. However, several other parameters of cell activation including myeloperoxidase (MPO) and elastase activities were increased (2.2 fold, P < 0.05, and 6.5 fold, P < 0.05, respectively) in the lavage fluids of these mice. Similarly, a significant increase in the amount of immunoreactive prostaglandin E2 (PGE2; 1.81 fold, P < 0.05) and IL-1 alpha (2.75 fold, P < 0.05), but not tumour necrosis factor-alpha (TNF-alpha), was also observed in LCS3-treated mice. 4. The recruitment of PMN into the zymosan inflamed air-pouches by 24 h had declined substantially (4.13 +/- 0.61 x 10(6) PMN per mouse, n = 12) in the NSS-treated mice, whereas high values were still measured in those treated with LCS3 (9.35 +/- 1.20 x 10(6) PMN per mouse, n = 12, P < 0.05). A similar effect was also found following sub-chronic treatment of mice with LCPS1: 6.48 +/- 0.10 x 10(6) PMN per mouse, vs. 2.77 +/- 1.20 and 2.64 +/- 0.49 x 10(6) PMN per mouse for PBS- and NSS-treated groups (n = 7, P < 0.05). Most markers of inflammation were

  16. Fibrillar Amyloid-β Accumulation Triggers an Inflammatory Mechanism Leading to Hyperphosphorylation of the Carboxyl-Terminal End of Tau Polypeptide in the Hippocampal Formation of the 3×Tg-AD Transgenic Mouse.

    PubMed

    Ontiveros-Torres, Miguel Ángel; Labra-Barrios, María Luisa; Díaz-Cintra, Sofía; Aguilar-Vázquez, Azucena Ruth; Moreno-Campuzano, Samadhi; Flores-Rodríguez, Paola; Luna-Herrera, Claudia; Mena, Raúl; Perry, George; Florán-Garduño, Benjamín; Luna-Muñoz, José; Luna-Arias, Juan Pedro

    2016-03-22

    Alzheimer's disease (AD) is a degenerative and irreversible disorder whose progressiveness is dependent on age. It is histopathologically characterized by the massive accumulation of insoluble forms of tau and amyloid-β (Aβ) asneurofibrillary tangles and neuritic plaques, respectively. Many studies have documented that these two polypeptides suffer several posttranslational modifications employing postmortem tissue sections from brains of patients with AD. In order to elucidate the molecular mechanisms underlying the posttranslational modifications of key players in this disease, including Aβ and tau, several transgenic mouse models have been developed. One of these models is the 3×Tg-AD transgenic mouse, carrying three transgenes encoding APPSWE, S1M146V, and TauP301L proteins. To further characterize this transgenicmouse, we determined the accumulation of fibrillar Aβ as a function of age in relation to the hyperphosphorylation patterns of TauP301L at both its N- and C-terminus in the hippocampal formation by immunofluorescence and confocal microscopy. Moreover, we searched for the expression of activated protein kinases and mediators of inflammation by western blot of wholeprotein extracts from hippocampal tissue sections since 3 to 28 months as well. Our results indicate that the presence of fibrillar Aβ deposits correlates with a significant activation of astrocytes and microglia in subiculum and CA1 regions of hippocampus. Accordingly, we also observed a significant increase in the expression of TNF-α associated to neuritic plaques and glial cells. Importantly, there is an overexpression of the stress activated protein kinases SAPK/JNK and Cdk-5 in pyramidal neurons, which might phosphorylate several residues at the C-terminus of TauP301L. Therefore, the accumulation of Aβ oligomers results in an inflammatory environment that upregulates kinases involved in hyperphosphorylation of TauP301L polypeptide. PMID:27031470

  17. GABA release by hippocampal astrocytes

    PubMed Central

    Le Meur, Karim; Mendizabal-Zubiaga, Juan; Grandes, Pedro; Audinat, Etienne

    2012-01-01

    Astrocytes can directly influence neuronal activity through the release of various transmitters acting on membrane receptors expressed by neurons. However, in contrast to glutamate and ATP for instance, the release of GABA (γ-amino-butyric acid) by astrocytes is still poorly documented. Here, we used whole-cell recordings in rat acute brain slices and electron microscopy to test whether hippocampal astrocytes release the inhibitory transmitter GABA. We observed that slow transient inhibitory currents due to the activation of GABAA receptors occur spontaneously in principal neurons of the three main hippocampal fields (CA1, CA3, and dentate gyrus). These currents share characteristics with the slow NMDA receptor-mediated currents previously shown to result from astrocytic glutamate release: they occur in the absence of synaptic transmission and have variable kinetics and amplitudes as well as low frequencies. Osmotic pressure reduction, known to enhance transmitter release from astrocytes, similarly increased the frequency of non-synaptic GABA and glutamate currents. Simultaneous occurrence of slow inhibitory and excitatory currents was extremely rare. Yet, electron microscopy examination of immunostained hippocampal sections shows that about 80% of hippocampal astrocytes [positive for glial fibrillary acidic protein (GFAP)] were immunostained for GABA. Our results provide quantitative characteristics of the astrocyte-to-neuron GABAergic signaling. They also suggest that all principal neurons of the hippocampal network are under a dual, excitatory and inhibitory, influence of astrocytes. The relevance of the astrocytic release of GABA, and glutamate, on the physiopathology of the hippocampus remains to be established. PMID:22912614

  18. Acute Inflammation Loci Are Involved in Wound Healing in the Mouse Ear Punch Model

    PubMed Central

    Canhamero, Tatiane; Garcia, Ludmila Valino; De Franco, Marcelo

    2014-01-01

    Significance: Molecular biology techniques are being used to aid in determining the mechanisms responsible for tissue repair without scar formation. Wound healing is genetically determined, but there have been few studies that examine the genes responsible for tissue regeneration in mammals. Research using genetic mapping is extremely important for understanding the molecular mechanisms involved in the different phases of tissue regeneration. This process is complex, but an early inflammatory phase appears to influence lesion closure, and the present study demonstrates that acute inflammation loci influence tissue regeneration in mice in a positive manner. Recent Advances: Mapping studies of quantitative trait loci (QTL) have been undertaken in recent years to examine candidate genes that participate in the regeneration phenotype. Our laboratory has identified inflammation modifier QTL for wound healing. Mouse lines selected for the maximum (AIRmax) or minimum (AIRmin) acute inflammatory reactivity (AIR) have been used to study not only the tissue repair but also the impact of the genetic control of inflammation on susceptibility to autoimmune, neoplasic, and infectious diseases. Murphy Roths Large and AIRmax mice are exclusive in their complete epimorphic regeneration, although middle-aged inbred mice may also be capable of healing. Critical Issues: Inflammatory reactions have traditionally been described in the literature as negative factors in the process of skin injury closure. Inflammation is exacerbated due to the early release of mediators or the intense release of factors that cause cell proliferation after injury. The initial release of these factors as well as the clean-up of the lesion microenvironment are both crucial for following events. In addition, the activation and repression of some genes related to the regeneration phenotype may modulate lesion closure, demonstrating the significance of genetic studies to better understand the mechanisms

  19. Early aberrant DNA methylation events in a mouse model of acute myeloid leukemia

    PubMed Central

    2014-01-01

    Background Aberrant DNA methylation is frequently found in human malignancies including acute myeloid leukemia (AML). While most studies focus on later disease stages, the onset of aberrant DNA methylation events and their dynamics during leukemic progression are largely unknown. Methods We screened genome-wide for aberrant CpG island methylation in three disease stages of a murine AML model that is driven by hypomorphic expression of the hematopoietic transcription factor PU.1. DNA methylation levels of selected genes were correlated with methylation levels of CD34+ cells and lineage negative, CD127-, c-Kit+, Sca-1+ cells; common myeloid progenitors; granulocyte-macrophage progenitors; and megakaryocyte-erythroid progenitors. Results We identified 1,184 hypermethylated array probes covering 762 associated genes in the preleukemic stage. During disease progression, the number of hypermethylated genes increased to 5,465 in the late leukemic disease stage. Using publicly available data, we found a significant enrichment of PU.1 binding sites in the preleukemic hypermethylated genes, suggesting that shortage of PU.1 makes PU.1 binding sites in the DNA accessible for aberrant methylation. Many known AML associated genes such as RUNX1 and HIC1 were found among the preleukemic hypermethylated genes. Nine novel hypermethylated genes, FZD5, FZD8, PRDM16, ROBO3, CXCL14, BCOR, ITPKA, HES6 and TAL1, the latter four being potential PU.1 targets, were confirmed to be hypermethylated in human normal karyotype AML patients, underscoring the relevance of the mouse model for human AML. Conclusions Our study identified early aberrantly methylated genes as potential contributors to onset and progression of AML. PMID:24944583

  20. Mitochondrial Alterations and Oxidative Stress in an Acute Transient Mouse Model of Muscle Degeneration

    PubMed Central

    Ramadasan-Nair, Renjini; Gayathri, Narayanappa; Mishra, Sudha; Sunitha, Balaraju; Mythri, Rajeswara Babu; Nalini, Atchayaram; Subbannayya, Yashwanth; Harsha, Hindalahalli Chandregowda; Kolthur-Seetharam, Ullas; Bharath, Muchukunte Mukunda Srinivas

    2014-01-01

    Muscular dystrophies (MDs) and inflammatory myopathies (IMs) are debilitating skeletal muscle disorders characterized by common pathological events including myodegeneration and inflammation. However, an experimental model representing both muscle pathologies and displaying most of the distinctive markers has not been characterized. We investigated the cardiotoxin (CTX)-mediated transient acute mouse model of muscle degeneration and compared the cardinal features with human MDs and IMs. The CTX model displayed degeneration, apoptosis, inflammation, loss of sarcolemmal complexes, sarcolemmal disruption, and ultrastructural changes characteristic of human MDs and IMs. Cell death caused by CTX involved calcium influx and mitochondrial damage both in murine C2C12 muscle cells and in mice. Mitochondrial proteomic analysis at the initial phase of degeneration in the model detected lowered expression of 80 mitochondrial proteins including subunits of respiratory complexes, ATP machinery, fatty acid metabolism, and Krebs cycle, which further decreased in expression during the peak degenerative phase. The mass spectrometry (MS) data were supported by enzyme assays, Western blot, and histochemistry. The CTX model also displayed markers of oxidative stress and a lowered glutathione reduced/oxidized ratio (GSH/GSSG) similar to MDs, human myopathies, and neurogenic atrophies. MS analysis identified 6 unique oxidized proteins from Duchenne muscular dystrophy samples (n = 6) (versus controls; n = 6), including two mitochondrial proteins. Interestingly, these mitochondrial proteins were down-regulated in the CTX model thereby linking oxidative stress and mitochondrial dysfunction. We conclude that mitochondrial alterations and oxidative damage significantly contribute to CTX-mediated muscle pathology with implications for human muscle diseases. PMID:24220031

  1. Acute fasting decreases the expression of GLUT1 and glucose utilisation involved in mouse oocyte maturation and cumulus cell expansion.

    PubMed

    Han, Yingying; Yan, Jun; Zhou, Jinlian; Teng, Zhen; Bian, Fenghua; Guo, Meng; Mao, Guankun; Li, Junxia; Wang, Jianwei; Zhang, Meijia; Xia, Guoliang

    2012-01-01

    Acute fasting impairs meiotic resumption and glucose consumption in mouse cumulus cell and oocyte complexes (COCs). This study examines the effects of acute fasting on the regulation of glucose transporter 1 (GLUT1) expression and glucose consumption in oocyte maturation. Our results indicate that the restriction of glucose utilisation by 2-deoxyglucose (2-DG) mimicked the inhibitory effects of acute fasting on oocyte meiotic resumption and cumulus cell expansion, effects that were rescued by high glucose concentrations in the culture medium. GLUT1 protein levels were higher in cumulus cells compared with oocytes, and GLUT1 expression in COCs increased with FSH treatment in vitro. However, under acute fasting conditions, GLUT1 expression in COCs decreased and the response to FSH disappeared. Exposure to high glucose conditions (27.5mM and 55mM), significantly increased both glucose consumption and GLUT1 levels in COCs. Inhibition of GLUT1 function using an anti-GLUT1 antibody significantly inhibited FSH-induced oocyte meiotic resumption. Taken together, these results suggest that acute fasting decreases GLUT1 expression and glucose utilisation, inhibiting the processes of oocyte maturation and cumulus cell expansion. PMID:22697123

  2. Neutrophils and their Fcγ receptors are essential in a mouse model of transfusion-related acute lung injury

    PubMed Central

    Looney, Mark R.; Su, Xiao; Van Ziffle, Jessica A.; Lowell, Clifford A.; Matthay, Michael A.

    2006-01-01

    Transfusion-related acute lung injury (TRALI) is the most common cause of transfusion-related mortality. To explore the pathogenesis of TRALI, we developed an in vivo mouse model based on the passive transfusion of an MHC class I (MHC I) mAb (H2Kd) to mice with the cognate antigen. Transfusion of the MHC I mAb to BALB/c mice produced acute lung injury with increased excess lung water, increased lung vascular and lung epithelial permeability to protein, and decreased alveolar fluid clearance. There was 50% mortality at a 2-hour time point after Ab administration. Pulmonary histology and immunohistochemistry revealed prominent neutrophil sequestration in the lung microvasculature that occurred concomitantly with acute peripheral blood neutropenia, all within 2 hours of administration of the mAb. Depletion of neutrophils by injection of anti-granulocyte mAb Gr-1 protected mice from lung injury following MHC I mAb challenge. FcRγ–/– mice were resistant to MHC I mAb–induced lung injury, while adoptive transfer of wild-type neutrophils into the FcRγ–/– animals restored lung injury following MHC I mAb challenge. In conclusion, in a clinically relevant in vivo mouse model of TRALI using an MHC I mAb, the mechanism of lung injury was dependent on neutrophils and their Fcγ receptors. PMID:16710475

  3. Modified Extracorporeal Photopheresis with Cells from a Healthy Donor for Acute Graft-versus-Host Disease in a Mouse Model

    PubMed Central

    Budde, Holger; Kolb, Susanne; Salinas Tejedor, Laura; Wulf, Gerald; Reichardt, Holger M.; Riggert, Joachim; Legler, Tobias J.

    2014-01-01

    Background Graft-versus-host disease (GvHD) is a major challenge after hematopoietic stem cell transplantation but treatment options for patients are still limited. In many cases first-line treatment with glucocorticoids is not successful. Among second-line therapies the extracorporeal photopheresis (ECP) is frequently performed, due to induction of selective tolerance instead of general immunosuppression. However, for some patients with severe acute GvHD the leukapheresis step of the ECP procedure is physically exhausting and limits the number of ECP cycles. Methods We hypothesized that leukocytes from healthy cell donors could be used as a replacement for ECP leukocytes gained from the GvHD patient. For this purpose we used a well established mouse model of acute GvHD. The ECP therapy was based on cells with the genetic background of the initial donor of the stem cell transplantation. As a precondition we developed a protocol representing conventional ECP in mice equivalent to clinical used ECP setup. Results We could demonstrate that conventional, clinically derived ECP setup is able to alleviate acute GvHD. By using leukocytes obtained from healthy mice with the bone marrow donor’s genetic background we could not observe a statistically significant therapeutic effect. Conclusions Conventional human ECP setup is effective in the mouse model of severe acute GvHD. In addition we could not prove that ECP cells from healthy mice with bone marrow donor’s genetic background are as effective as ECP cells derived from GvHD mice. Based on our findings, new questions arise for further studies, in which the cellular characteristics for ECP mediated immune tolerance are a matter of investigation. PMID:25148404

  4. Spatial Memory Impairment is Associated with Intraneural Amyloid-β Immunoreactivity and Dysfunctional Arc Expression in the Hippocampal-CA3 Region of a Transgenic Mouse Model of Alzheimer's Disease.

    PubMed

    Morin, Jean-Pascal; Cerón-Solano, Giovanni; Velázquez-Campos, Giovanna; Pacheco-López, Gustavo; Bermúdez-Rattoni, Federico; Díaz-Cintra, Sofía

    2016-01-01

    Dysfunction of synaptic communication in cortical and hippocampal networks has been suggested as one of the neuropathological hallmarks of the early stages of Alzheimer's disease (AD). Also, several lines of evidence have linked disrupted levels of activity-regulated cytoskeletal associated protein (Arc), an immediate early gene product that plays a central role in synaptic plasticity, with AD "synaptopathy". The mapping of Arc expression patterns in brain networks has been extensively used as a marker of memory-relevant neuronal activity history. Here we evaluated basal and behavior-induced Arc expression in hippocampal networks of the 3xTg-AD mouse model of AD. The basal percentage of Arc-expressing cells in 10-month-old 3xTg-AD mice was higher than wild type in CA3 (4.88% versus 1.77% , respectively) but similar in CA1 (1.75% versus 2.75% ). Noteworthy, this difference was not observed at 3 months of age. Furthermore, although a Morris water maze test probe induced a steep (∼4-fold) increment in the percentage of Arc+ cells in the CA3 region of the 10-month-old wild-type group, no such increment was observed in age-matched 3xTg-AD, whereas the amount of Arc+ cells in CA1 increased in both groups. Further, we detected that CA3 neurons with amyloid-β were much more likely to express Arc protein under basal conditions. We propose that in 3xTg-AD mice, intraneuronal amyloid-β expression in CA3 could increase unspecific neuronal activation and subsequent Arc protein expression, which might impair further memory-stabilizing processes. PMID:26836189

  5. Blockade by ifenprodil of high voltage-activated Ca2+ channels in rat and mouse cultured hippocampal pyramidal neurones: comparison with N-methyl-D-aspartate receptor antagonist actions.

    PubMed Central

    Church, J; Fletcher, E J; Baxter, K; MacDonald, J F

    1994-01-01

    1. The block by ifenprodil of voltage-activated Ca2+ channels was investigated in intracellular free calcium concentration ([Ca2+]i) evoked by 50 mM K+ (high-[K+]o) in Fura-2-loaded rat hippocampal pyramidal neurones in culture and on currents carried by Ba2+ ions (IBa) through Ca2+ channels in mouse cultured hippocampal neurones under whole-cell voltage-clamp. The effects of ifenprodil on voltage-activated Ca2+ channels were compared with its antagonist actions on N-methyl-D-aspartate- (NMDA) evoked responses in the same neuronal preparations. 2. Rises in [Ca2+]i evoked by transient exposure to high-[K+]o in our preparation of rat cultured hippocampal pyramidal neurones are mediated predominantly by Ca2+ flux through nifedipine-sensitive Ca2+ channels, with smaller contributions from nifedipine-resistant, omega-conotoxin GVIA-sensitive Ca2+ channels and Ca2+ channels sensitive to crude funnel-web spider venom (Church et al., 1994). Ifenprodil (0.1-200 microM) reversibly attenuated high-[K+]o-evoked rises in [Ca2+]i with an IC50 value of 17 +/- 3 microM, compared with an IC50 value of 0.7 +/- 0.1 microM for the reduction of rises in [Ca2+]i evoked by 20 microM NMDA. Tested in the presence of nifedipine 10 microM, ifenprodil (1-50 microM) produced a concentration-dependent reduction of the dihydropyridine-resistant high-[K+]o-evoked rise in [Ca2+]i with an IC50 value of 13 +/- 4 microM. The results suggest that ifenprodil blocks Ca2+ flux through multiple subtypes of high voltage-activated Ca2+ channels. 3. Application of the polyamine, spermine (0.25-5 mM), produced a concentration-dependent reduction of rises in [Ca2+]i evoked by high-[K+]o.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7834201

  6. Dicholine succinate, the neuronal insulin sensitizer, normalizes behavior, REM sleep, hippocampal pGSK3 beta and mRNAs of NMDA receptor subunits in mouse models of depression

    PubMed Central

    Cline, Brandon H.; Costa-Nunes, Joao P.; Cespuglio, Raymond; Markova, Natalyia; Santos, Ana I.; Bukhman, Yury V.; Kubatiev, Aslan; Steinbusch, Harry W. M.; Lesch, Klaus-Peter; Strekalova, Tatyana

    2015-01-01

    Central insulin receptor-mediated signaling is attracting the growing attention of researchers because of rapidly accumulating evidence implicating it in the mechanisms of plasticity, stress response, and neuropsychiatric disorders including depression. Dicholine succinate (DS), a mitochondrial complex II substrate, was shown to enhance insulin-receptor mediated signaling in neurons and is regarded as a sensitizer of the neuronal insulin receptor. Compounds enhancing neuronal insulin receptor-mediated transmission exert an antidepressant-like effect in several pre-clinical paradigms of depression; similarly, such properties for DS were found with a stress-induced anhedonia model. Here, we additionally studied the effects of DS on several variables which were ameliorated by other insulin receptor sensitizers in mice. Pre-treatment with DS of chronically stressed C57BL6 mice rescued normal contextual fear conditioning, hippocampal gene expression of NMDA receptor subunit NR2A, the NR2A/NR2B ratio and increased REM sleep rebound after acute predation. In 18-month-old C57BL6 mice, a model of elderly depression, DS restored normal sucrose preference and activated the expression of neural plasticity factors in the hippocampus as shown by Illumina microarray. Finally, young naïve DS-treated C57BL6 mice had reduced depressive- and anxiety-like behaviors and, similarly to imipramine-treated mice, preserved hippocampal levels of the phosphorylated (inactive) form of GSK3 beta that was lowered by forced swimming in pharmacologically naïve animals. Thus, DS can ameliorate behavioral and molecular outcomes under a variety of stress- and depression-related conditions. This further highlights neuronal insulin signaling as a new factor of pathogenesis and a potential pharmacotherapy of affective pathologies. PMID:25767439

  7. Dicholine succinate, the neuronal insulin sensitizer, normalizes behavior, REM sleep, hippocampal pGSK3 beta and mRNAs of NMDA receptor subunits in mouse models of depression.

    PubMed

    Cline, Brandon H; Costa-Nunes, Joao P; Cespuglio, Raymond; Markova, Natalyia; Santos, Ana I; Bukhman, Yury V; Kubatiev, Aslan; Steinbusch, Harry W M; Lesch, Klaus-Peter; Strekalova, Tatyana

    2015-01-01

    Central insulin receptor-mediated signaling is attracting the growing attention of researchers because of rapidly accumulating evidence implicating it in the mechanisms of plasticity, stress response, and neuropsychiatric disorders including depression. Dicholine succinate (DS), a mitochondrial complex II substrate, was shown to enhance insulin-receptor mediated signaling in neurons and is regarded as a sensitizer of the neuronal insulin receptor. Compounds enhancing neuronal insulin receptor-mediated transmission exert an antidepressant-like effect in several pre-clinical paradigms of depression; similarly, such properties for DS were found with a stress-induced anhedonia model. Here, we additionally studied the effects of DS on several variables which were ameliorated by other insulin receptor sensitizers in mice. Pre-treatment with DS of chronically stressed C57BL6 mice rescued normal contextual fear conditioning, hippocampal gene expression of NMDA receptor subunit NR2A, the NR2A/NR2B ratio and increased REM sleep rebound after acute predation. In 18-month-old C57BL6 mice, a model of elderly depression, DS restored normal sucrose preference and activated the expression of neural plasticity factors in the hippocampus as shown by Illumina microarray. Finally, young naïve DS-treated C57BL6 mice had reduced depressive- and anxiety-like behaviors and, similarly to imipramine-treated mice, preserved hippocampal levels of the phosphorylated (inactive) form of GSK3 beta that was lowered by forced swimming in pharmacologically naïve animals. Thus, DS can ameliorate behavioral and molecular outcomes under a variety of stress- and depression-related conditions. This further highlights neuronal insulin signaling as a new factor of pathogenesis and a potential pharmacotherapy of affective pathologies. PMID:25767439

  8. Left–right dissociation of hippocampal memory processes in mice

    PubMed Central

    Shipton, Olivia A.; El-Gaby, Mohamady; Apergis-Schoute, John; Deisseroth, Karl; Bannerman, David M.; Paulsen, Ole; Kohl, Michael M.

    2014-01-01

    Left–right asymmetries have likely evolved to make optimal use of bilaterian nervous systems; however, little is known about the synaptic and circuit mechanisms that support divergence of function between equivalent structures in each hemisphere. Here we examined whether lateralized hippocampal memory processing is present in mice, where hemispheric asymmetry at the CA3–CA1 pyramidal neuron synapse has recently been demonstrated, with different spine morphology, glutamate receptor content, and synaptic plasticity, depending on whether afferents originate in the left or right CA3. To address this question, we used optogenetics to acutely silence CA3 pyramidal neurons in either the left or right dorsal hippocampus while mice performed hippocampus-dependent memory tasks. We found that unilateral silencing of either the left or right CA3 was sufficient to impair short-term memory. However, a striking asymmetry emerged in long-term memory, wherein only left CA3 silencing impaired performance on an associative spatial long-term memory task, whereas right CA3 silencing had no effect. To explore whether synaptic properties intrinsic to the hippocampus might contribute to this left–right behavioral asymmetry, we investigated the expression of hippocampal long-term potentiation. Following the induction of long-term potentiation by high-frequency electrical stimulation, synapses between CA3 and CA1 pyramidal neurons were strengthened only when presynaptic input originated in the left CA3, confirming an asymmetry in synaptic properties. The dissociation of hippocampal long-term memory function between hemispheres suggests that memory is routed via distinct left–right pathways within the mouse hippocampus, and provides a promising approach to help elucidate the synaptic basis of long-term memory. PMID:25246561

  9. Regulating hippocampal hyperexcitability through GABAB Receptors

    PubMed Central

    Lang, Min; Moradi‐Chameh, Homeira; Zahid, Tariq; Gane, Jonathan; Wu, Chiping; Valiante, Taufik; Zhang, Liang

    2014-01-01

    Abstract Disturbances of GABAergic inhibition are a major cause of epileptic seizures. GABA exerts its actions via ionotropic GABAA receptors and metabotropic G protein‐coupled GABAB receptors. Malfunction of GABAA inhibition has long been recognized in seizure genesis but the role of GABAB receptors in controlling seizure activity is still not well understood. Here, we examined the anticonvulsive, or inhibitory effects, of GABAB receptors in a mouse model of hippocampal kindling as well as mouse hippocampal slices through the use of GS 39783, a positive allosteric GABAB receptor modulator, and CGP 55845, a selective GABAB receptor antagonist. When administered via intraperitoneal injections in kindled mice, GS 39783 (5 mg/kg) did not attenuate hippocampal EEG discharges, but did reduce aberrant hippocampal spikes, whereas CGP 55845 (10 mg/kg) prolonged hippocampal discharges and increased spike incidences. When examined in hippocampal slices, neither GS 39783 at 5 μmol/L nor the GABAB receptor agonist baclofen at 0.1 μmol/L alone significantly altered repetitive excitatory field potentials, but GS 39783 and baclofen together reversibly abolished these field potentials. In contrast, CGP 55845 at 1 μmol/L facilitated induction and incidence of these field potentials. In addition, CGP 55845 attenuated the paired pulse depression of CA3 population spikes and increased the frequency of EPSCs in individual CA3 pyramidal neurons. Collectively, these data suggest that GABABB receptors regulate hippocampal hyperexcitability by inhibiting CA3 glutamatergic synapses. We postulate that positive allosteric modulation of GABAB receptors may be effective in reducing seizure‐related hyperexcitability. PMID:24771688

  10. Silibinin suppresses astroglial activation in a mouse model of acute Parkinson's disease by modulating the ERK and JNK signaling pathways.

    PubMed

    Lee, Yujeong; Chun, Hye Jeong; Lee, Kyung Moon; Jung, Young-Suk; Lee, Jaewon

    2015-11-19

    Parkinson's disease (PD) is the second-most common neurodegenerative disease after Alzheimer's disease, and is characterized by dopaminergic neuronal loss in midbrain. The MPTP-induced PD model has been well characterized by motor deficits and selective dopaminergic neuronal death accompanied by glial activation. Silibinin is a constituent of silymarin, an extract of milk thistle seeds, and has been proposed to have hepatoprotective, anti-cancer, anti-oxidative, and neuroprotective effects. In the present study, the authors studied the neuroprotective effects of silibinin in an acute MPTP model of PD. Silibinin was administered for 2 weeks, and then MPTP was administered to mice over 1 day (acute MPTP induced PD). Silibinin pretreatment effectively ameliorated motor dysfunction, dopaminergic neuronal loss, and glial activations caused by MPTP. In addition, an in vitro study demonstrated that silibinin suppressed astroglial activation and ERK and JNK phosphorylation in primary astrocytes in response to MPP(+) treatment. These findings show silibinin protected dopaminergic neurons in an acute MPTP-induced mouse model of PD, and suggest its neuroprotective effects might be mediated by the suppression of astrocyte activation via the inhibition of ERK and JNK phosphorylation. In conclusion, the study indicates silibinin should be viewed as a potential treatment for PD and other neurodegenerative diseases associated with neuroinflammation. PMID:26434409

  11. Adaptation of Microplate-based Respirometry for Hippocampal Slices and Analysis of Respiratory Capacity

    PubMed Central

    Schuh, Rosemary A.; Clerc, Pascaline; Hwang, Hyehyun; Mehrabian, Zara; Bittman, Kevin; Chen, Hegang; Polster, Brian M.

    2011-01-01

    Multiple neurodegenerative disorders are associated with altered mitochondrial bioenergetics. Although mitochondrial O2 consumption is frequently measured in isolated mitochondria, isolated synaptic nerve terminals (synaptosomes), or cultured cells, the absence of mature brain circuitry is a remaining limitation. Here we describe the development of a method that adapts the Seahorse Extracellular Flux Analyzer (XF24) for the microplate-based measurement of hippocampal slice O2 consumption. As a first evaluation of the technique, we compared whole slice bioenergetics to previous measurements made with synaptosomes or cultured neurons. We found that mitochondrial respiratory capacity and O2 consumption coupled to ATP synthesis could be estimated in cultured or acute hippocampal slices with preserved neural architecture. Mouse organotypic hippocampal slices oxidizing glucose displayed mitochondrial O2 consumption that was well-coupled, as determined by the sensitivity to the ATP synthase inhibitor oligomycin. However stimulation of respiration by uncoupler was modest (<120% of basal respiration) compared to previous measurements in cells or synaptosomes, although enhanced slightly (to ~150% of basal respiration) by the acute addition of the mitochondrial complex I-linked substrate pyruvate. These findings suggest a high basal utilization of respiratory capacity in slices and a limitation of glucose-derived substrate for maximal respiration. The improved throughput of microplate-based hippocampal respirometry over traditional O2 electrode-based methods is conducive to neuroprotective drug screening. When coupled with cell type-specific pharmacology or genetic manipulations, the ability to efficiently measure O2 consumption from whole slices should advance our understanding of mitochondrial roles in physiology and neuropathology. PMID:21520220

  12. A Specific Nutrient Combination Attenuates the Reduced Expression of PSD-95 in the Proximal Dendrites of Hippocampal Cell Body Layers in a Mouse Model of Phenylketonuria.

    PubMed

    Bruinenberg, Vibeke M; van Vliet, Danique; Attali, Amos; de Wilde, Martijn C; Kuhn, Mirjam; van Spronsen, Francjan J; van der Zee, Eddy A

    2016-01-01

    The inherited metabolic disease phenylketonuria (PKU) is characterized by increased concentrations of phenylalanine in the blood and brain, and as a consequence neurotransmitter metabolism, white matter, and synapse functioning are affected. A specific nutrient combination (SNC) has been shown to improve synapse formation, morphology and function. This could become an interesting new nutritional approach for PKU. To assess whether treatment with SNC can affect synapses, we treated PKU mice with SNC or an isocaloric control diet and wild-type (WT) mice with an isocaloric control for 12 weeks, starting at postnatal day 31. Immunostaining for post-synaptic density protein 95 (PSD-95), a post-synaptic density marker, was carried out in the hippocampus, striatum and prefrontal cortex. Compared to WT mice on normal chow without SNC, PKU mice on the isocaloric control showed a significant reduction in PSD-95 expression in the hippocampus, specifically in the granular cell layer of the dentate gyrus, with a similar trend seen in the cornus ammonis 1 (CA1) and cornus ammonis 3 (CA3) pyramidal cell layer. No differences were found in the striatum or prefrontal cortex. PKU mice on a diet supplemented with SNC showed improved expression of PSD-95 in the hippocampus. This study gives the first indication that SNC supplementation has a positive effect on hippocampal synaptic deficits in PKU mice. PMID:27102170

  13. A Specific Nutrient Combination Attenuates the Reduced Expression of PSD-95 in the Proximal Dendrites of Hippocampal Cell Body Layers in a Mouse Model of Phenylketonuria

    PubMed Central

    Bruinenberg, Vibeke M.; van Vliet, Danique; Attali, Amos; de Wilde, Martijn C.; Kuhn, Mirjam; van Spronsen, Francjan J.; van der Zee, Eddy A.

    2016-01-01

    The inherited metabolic disease phenylketonuria (PKU) is characterized by increased concentrations of phenylalanine in the blood and brain, and as a consequence neurotransmitter metabolism, white matter, and synapse functioning are affected. A specific nutrient combination (SNC) has been shown to improve synapse formation, morphology and function. This could become an interesting new nutritional approach for PKU. To assess whether treatment with SNC can affect synapses, we treated PKU mice with SNC or an isocaloric control diet and wild-type (WT) mice with an isocaloric control for 12 weeks, starting at postnatal day 31. Immunostaining for post-synaptic density protein 95 (PSD-95), a post-synaptic density marker, was carried out in the hippocampus, striatum and prefrontal cortex. Compared to WT mice on normal chow without SNC, PKU mice on the isocaloric control showed a significant reduction in PSD-95 expression in the hippocampus, specifically in the granular cell layer of the dentate gyrus, with a similar trend seen in the cornus ammonis 1 (CA1) and cornus ammonis 3 (CA3) pyramidal cell layer. No differences were found in the striatum or prefrontal cortex. PKU mice on a diet supplemented with SNC showed improved expression of PSD-95 in the hippocampus. This study gives the first indication that SNC supplementation has a positive effect on hippocampal synaptic deficits in PKU mice. PMID:27102170

  14. Hippocampal Gene Expression of Deiodinases 2 and 3 and Effects of 3,5-Diiodo-L-Thyronine T2 in Mouse Depression Paradigms

    PubMed Central

    Markova, Natalyia; Chernopiatko, Anton; Schroeter, Careen A.; Malin, Dmitry; Kubatiev, Aslan; Bachurin, Sergey; Costa-Nunes, João; Steinbusch, Harry M. W.; Strekalova, Tatyana

    2013-01-01

    Central thyroid hormone signaling is important in brain function/dysfunction, including affective disorders and depression. In contrast to 3,3′,5-triiodo-L-thyronine (T3), the role of 3,5-diiodo-L-thyronine (T2), which until recently was considered an inactive metabolite of T3, has not been studied in these pathologies. However, both T3 and T2 stimulate mitochondrial respiration, a factor counteracting the pathogenesis of depressive disorder, but the cellular origins in the CNS, mechanisms, and kinetics of the cellular action for these two hormones are distinct and independent of each other. Here, Illumina and RT PCR assays showed that hippocampal gene expression of deiodinases 2 and 3, enzymes involved in thyroid hormone regulation, is increased in resilience to stress-induced depressive syndrome and after antidepressant treatment in mice that might suggest elevated T2 and T3 turnover in these phenotypes. In a separate experiment, bolus administration of T2 at the doses 750 and 1500 mcg/kg but not 250 mcg/kg in naive mice reduced immobility in a two-day tail suspension test in various settings without changing locomotion or anxiety. This demonstrates an antidepressant-like effect of T2 that could be exploited clinically. In a wider context, the current study suggests important central functions of T2, whose biological role only lately is becoming to be elucidated. PMID:24386638

  15. Adjuvant granulocyte colony-stimulating factor therapy results in improved spatial learning and stimulates hippocampal neurogenesis in a mouse model of pneumococcal meningitis.

    PubMed

    Schmidt, Anna Kathrin; Reich, Arno; Falkenburger, Björn; Schulz, Jörg B; Brandenburg, Lars Ove; Ribes, Sandra; Tauber, Simone C

    2015-01-01

    Despite the development of new antibiotic agents, mortality of pneumococcal meningitis remains high. In addition, meningitis results in severe long-term morbidity, most prominently cognitive deficits. Granulocyte colony-stimulating factor (G-CSF) stimulates proliferation and differentiation of hematopoietic progenitor cells and increases the number of circulating neutrophil granulocytes. This study investigated the effect of adjuvant G-CSF treatment on cognitive function after pneumococcal meningitis. C57BL/6 mice were infected by subarachnoid injection of Streptococcus pneumoniae serotype 3 and treated with ceftriaxone and G-CSF subcutaneously or ceftriaxone alone for 5 days. Clinical scores, motor performance, and mortality during bacterial meningitis were unaffected by adjuvant G-CSF treatment. No effect of G-CSF treatment on production of proinflammatory cytokines or activation of microglia or astrocytes was observed. The G-CSF treatment did, however, result in hippocampal neurogenesis and improved spatial learning performance 6 weeks after meningitis. These results suggest that G-CSF might offer a new adjuvant therapeutic approach in bacterial meningitis to reduce long-term cognitive deficits. PMID:25470346

  16. Inhibition of local estrogen synthesis in the hippocampus impairs hippocampal memory consolidation in ovariectomized female mice.

    PubMed

    Tuscher, Jennifer J; Szinte, Julia S; Starrett, Joseph R; Krentzel, Amanda A; Fortress, Ashley M; Remage-Healey, Luke; Frick, Karyn M

    2016-07-01

    The potent estrogen 17β-Estradiol (E2) plays a critical role in mediating hippocampal function, yet the precise mechanisms through which E2 enhances hippocampal memory remain unclear. In young adult female rodents, the beneficial effects of E2 on memory are generally attributed to ovarian-synthesized E2. However, E2 is also synthesized in the adult brain in numerous species, where it regulates synaptic plasticity and is synthesized in response to experiences such as exposure to females or conspecific song. Although de novo E2 synthesis has been demonstrated in rodent hippocampal cultures, little is known about the functional role of local E2 synthesis in mediating hippocampal memory function. Therefore, the present study examined the role of hippocampal E2 synthesis in hippocampal memory consolidation. Using bilateral dorsal hippocampal infusions of the aromatase inhibitor letrozole, we first found that blockade of dorsal hippocampal E2 synthesis impaired hippocampal memory consolidation. We next found that elevated levels of E2 in the dorsal hippocampus observed 30min after object training were blocked by dorsal hippocampal infusion of letrozole, suggesting that behavioral experience increases acute and local E2 synthesis. Finally, aromatase inhibition did not prevent exogenous E2 from enhancing hippocampal memory consolidation, indicating that hippocampal E2 synthesis is not necessary for exogenous E2 to enhance hippocampal memory. Combined, these data are consistent with the hypothesis that hippocampally-synthesized E2 is necessary for hippocampus-dependent memory consolidation in rodents. PMID:27178577

  17. SCID mouse models of acute and relapsing chronic Toxoplasma gondii infections.

    PubMed Central

    Johnson, L L

    1992-01-01

    Lymphodeficient scid/scid (SCID) mice died from acute infection with a strain of Toxoplasma gondii that causes chronic infection with mild symptoms in immunocompetent non-SCID mice. However, most SCID mice reconstituted with spleen cells from immunocompetent mice 1 month prior to T. gondii infection survived in good health after a transient period during which they appeared ill. Unreconstituted SCID mice given sulfadiazine in their drinking water from day 10 of Toxoplasma infection onward survived the acute phase of infection and lived for many weeks without overt symptoms. Histological examination revealed Toxoplasma cysts in their brains. However, if sulfadiazine was withdrawn from the drinking water of these chronically infected SCID mice, the mice died within 1 week with large numbers of trophozoites throughout their brains. These findings establish SCID mice as a potentially useful resource with which to study various aspects of immunological control of T. gondii infection during either its acute or chronic phase. Furthermore, the ability to produce chronic infections with avirulent T. gondii in SCID mice and to cause acute relapsing infections at will suggests that SCID mice may be helpful in evaluating potential therapies for acute and chronic T. gondii infections in immunocompromised patients. Images PMID:1500181

  18. Aromatase Inhibition Attenuates Desflurane-Induced Preconditioning against Acute Myocardial Infarction in Male Mouse Heart In Vivo

    PubMed Central

    Jazbutyte, Virginija; Stumpner, Jan; Redel, Andreas; Lorenzen, Johan M.; Roewer, Norbert

    2012-01-01

    The volatile anesthetic desflurane (DES) effectively reduces cardiac infarct size following experimental ischemia/reperfusion injury in the mouse heart. We hypothesized that endogenous estrogens play a role as mediators of desflurane-induced preconditioning against myocardial infarction. In this study, we tested the hypothesis that desflurane effects local estrogen synthesis by modulating enzyme aromatase expression and activity in the mouse heart. Aromatase metabolizes testosterone to 17β- estradiol (E2) and thereby significantly contributes to local estrogen synthesis. We tested aromatase effects in acute myocardial infarction model in male mice. The animals were randomized and subjected to four groups which were pre-treated with the selective aromatase inhibitor anastrozole (A group) and DES alone (DES group) or in combination (A+DES group) for 15 minutes prior to surgical intervention whereas the control group received 0.9% NaCl (CON group). All animals were subjected to 45 minutes ischemia following 180 minutes reperfusion. Anastrozole blocked DES induced preconditioning and increased infarct size compared to DES alone (37.94±15.5% vs. 17.1±3.62%) without affecting area at risk and systemic hemodynamic parameters following ischemia/reperfusion. Protein localization studies revealed that aromatase was abundant in the murine cardiovascular system with the highest expression levels in endothelial and smooth muscle cells. Desflurane application at pharmacological concentrations efficiently upregulated aromatase expression in vivo and in vitro. We conclude that desflurane efficiently regulates aromatase expression and activity which might lead to increased local estrogen synthesis and thus preserve cellular integrity and reduce cardiac damage in an acute myocardial infarction model. PMID:22876297

  19. Characterisation of Signalling by the Endogenous GPER1 (GPR30) Receptor in an Embryonic Mouse Hippocampal Cell Line (mHippoE-18)

    PubMed Central

    Evans, Nicholas J.; Bayliss, Asha L.; Reale, Vincenzina; Evans, Peter D.

    2016-01-01

    Estrogen can modulate neuronal development and signalling by both genomic and non-genomic pathways. Many of its rapid, non-genomic effects on nervous tissue have been suggested to be mediated via the activation of the estrogen sensitive G-protein coupled receptor (GPER1 or GPR30). There has been much controversy over the cellular location, signalling properties and endogenous activators of GPER1. Here we describe the pharmacology and signalling properties of GPER1 in an immortalized embryonic hippocampal cell line, mHippoE-18. This cell line does not suffer from the inherent problems associated with the study of this receptor in native tissue or the problems associated with heterologously expression in clonal cell lines. In mHippoE-18 cells, 17β-Estradiol can mediate a dose-dependent rapid potentiation of forskolin-stimulated cyclic AMP levels but does not appear to activate the ERK1/2 pathway. The effect of 17β-Estradiol can be mimicked by the GPER1 agonist, G1, and also by tamoxifen and ICI 182,780 which activate GPER1 in a variety of other preparations. The response is not mimicked by the application of the classical estrogen receptor agonists, PPT, (an ERα agonist) or DPN, (an ERβ agonist), further suggesting that this effect of 17β-Estradiol is mediated through the activation of GPER1. However, after exposure of the cells to the GPER1 specific antagonists, G15 and G36, the stimulatory effects of the above agonists are replaced by dose-dependent inhibitions of forskolin-stimulated cyclic AMP levels. This inhibitory effect is mimicked by aldosterone in a dose-dependent way even in the absence of the GPER1 antagonists. The results are discussed in terms of possible “Biased Antagonism” whereby the antagonists change the conformation of the receptor resulting in changes in the agonist induced coupling of the receptor to different second messenger pathways. PMID:26998610

  20. Characterisation of Signalling by the Endogenous GPER1 (GPR30) Receptor in an Embryonic Mouse Hippocampal Cell Line (mHippoE-18).

    PubMed

    Evans, Nicholas J; Bayliss, Asha L; Reale, Vincenzina; Evans, Peter D

    2016-01-01

    Estrogen can modulate neuronal development and signalling by both genomic and non-genomic pathways. Many of its rapid, non-genomic effects on nervous tissue have been suggested to be mediated via the activation of the estrogen sensitive G-protein coupled receptor (GPER1 or GPR30). There has been much controversy over the cellular location, signalling properties and endogenous activators of GPER1. Here we describe the pharmacology and signalling properties of GPER1 in an immortalized embryonic hippocampal cell line, mHippoE-18. This cell line does not suffer from the inherent problems associated with the study of this receptor in native tissue or the problems associated with heterologously expression in clonal cell lines. In mHippoE-18 cells, 17β-Estradiol can mediate a dose-dependent rapid potentiation of forskolin-stimulated cyclic AMP levels but does not appear to activate the ERK1/2 pathway. The effect of 17β-Estradiol can be mimicked by the GPER1 agonist, G1, and also by tamoxifen and ICI 182,780 which activate GPER1 in a variety of other preparations. The response is not mimicked by the application of the classical estrogen receptor agonists, PPT, (an ERα agonist) or DPN, (an ERβ agonist), further suggesting that this effect of 17β-Estradiol is mediated through the activation of GPER1. However, after exposure of the cells to the GPER1 specific antagonists, G15 and G36, the stimulatory effects of the above agonists are replaced by dose-dependent inhibitions of forskolin-stimulated cyclic AMP levels. This inhibitory effect is mimicked by aldosterone in a dose-dependent way even in the absence of the GPER1 antagonists. The results are discussed in terms of possible "Biased Antagonism" whereby the antagonists change the conformation of the receptor resulting in changes in the agonist induced coupling of the receptor to different second messenger pathways. PMID:26998610

  1. The polyphenols resveratrol and epigallocatechin-3-gallate restore the severe impairment of mitochondria in hippocampal progenitor cells from a Down syndrome mouse model.

    PubMed

    Valenti, Daniela; de Bari, Lidia; de Rasmo, Domenico; Signorile, Anna; Henrion-Caude, Alexandra; Contestabile, Andrea; Vacca, Rosa Anna

    2016-06-01

    Mitochondrial dysfunctions critically impair nervous system development and are potentially involved in the pathogenesis of various neurodevelopmental disorders, including Down syndrome (DS), the most common genetic cause of intellectual disability. Previous studies from our group demonstrated impaired mitochondrial activity in peripheral cells from DS subjects and the efficacy of epigallocatechin-3-gallate (EGCG) - a natural polyphenol major component of green tea - to counteract the mitochondrial energy deficit. In this study, to gain insight into the possible role of mitochondria in DS intellectual disability, mitochondrial functions were analyzed in neural progenitor cells (NPCs) isolated from the hippocampus of Ts65Dn mice, a widely used model of DS which recapitulates many major brain structural and functional phenotypes of the syndrome, including impaired hippocampal neurogenesis. We found that, during NPC proliferation, mitochondrial bioenergetics and mitochondrial biogenic program were strongly compromised in Ts65Dn cells, but not associated with free radical accumulation. These data point to a central role of mitochondrial dysfunction as an inherent feature of DS and not as a consequence of cell oxidative stress. Further, we disclose that, besides EGCG, also the natural polyphenol resveratrol, which displays a neuroprotective action in various human diseases but never tested in DS, restores oxidative phosphorylation efficiency and mitochondrial biogenesis, and improves proliferation of NPCs. These effects were associated with the activation of PGC-1α/Sirt1/AMPK axis by both polyphenols. This research paves the way for using nutraceuticals as a potential therapeutic tool in preventing or managing some energy deficit-associated DS clinical manifestations. PMID:26964795

  2. Mouse hippocampal GABAB1 but not GABAB2 subunit-containing receptor complex levels are paralleling retrieval in the multiple-T-maze

    PubMed Central

    Falsafi, Soheil K.; Ghafari, Maryam; Miklósi, András G.; Engidawork, Ephrem; Gröger, Marion; Höger, Harald; Lubec, Gert

    2015-01-01

    GABAB receptors are heterodimeric G-protein coupled receptors known to be involved in learning and memory. Although a role for GABAB receptors in cognitive processes is evident, there is no information on hippocampal GABAB receptor complexes in a multiple T maze (MTM) task, a robust paradigm for evaluation of spatial learning. Trained or untrained (yoked control) C57BL/6J male mice (n = 10/group) were subjected to the MTM task and sacrificed 6 h following their performance. Hippocampi were taken, membrane proteins extracted and run on blue native PAGE followed by immunoblotting with specific antibodies against GABAB1, GABAB1a, and GABAB2. Immunoprecipitation with subsequent mass spectrometric identification of co-precipitates was carried out to show if GABAB1 and GABAB2 as well as other interacting proteins co-precipitate. An antibody shift assay (ASA) and a proximity ligation assay (PLA) were also used to see if the two GABAB subunits are present in the receptor complex. Single bands were observed on Western blots, each representing GABAB1, GABAB1a, or GABAB2 at an apparent molecular weight of approximately 100 kDa. Subsequently, densitometric analysis revealed that levels of GABAB1 and GABAB1a but not GABAB2- containing receptor complexes were significantly higher in trained than untrained groups. Immunoprecipitation followed by mass spectrometric studies confirmed the presence of GABAB1, GABAB2, calcium calmodulin kinases I and II, GluA1 and GluA2 as constituents of the complex. ASA and PLA also showed the presence of the two subunits of GABAB receptor within the complex. It is shown that increased levels of GABAB1 subunit-containing complexes are paralleling performance in a land maze. PMID:26539091

  3. Entrainment of the mouse circadian clock by sub-acute physical and psychological stress.

    PubMed

    Tahara, Yu; Shiraishi, Takuya; Kikuchi, Yosuke; Haraguchi, Atsushi; Kuriki, Daisuke; Sasaki, Hiroyuki; Motohashi, Hiroaki; Sakai, Tomoko; Shibata, Shigenobu

    2015-01-01

    The effects of acute stress on the peripheral circadian system are not well understood in vivo. Here, we show that sub-acute stress caused by restraint or social defeat potently altered clock gene expression in the peripheral tissues of mice. In these peripheral tissues, as well as the hippocampus and cortex, stressful stimuli induced time-of-day-dependent phase-advances or -delays in rhythmic clock gene expression patterns; however, such changes were not observed in the suprachiasmatic nucleus, i.e. the central circadian clock. Moreover, several days of stress exposure at the beginning of the light period abolished circadian oscillations and caused internal desynchronisation of peripheral clocks. Stress-induced changes in circadian rhythmicity showed habituation and disappeared with long-term exposure to repeated stress. These findings suggest that sub-acute physical/psychological stress potently entrains peripheral clocks and causes transient dysregulation of circadian clocks in vivo. PMID:26073568

  4. Transcriptional Profile of Muscle following Acute Induction of Symptoms in a Mouse Model of Kennedy's Disease/Spinobulbar Muscular Atrophy

    PubMed Central

    Halievski, Katherine; Mo, Kaiguo; Westwood, J. Timothy; Monks, Douglas A.

    2015-01-01

    Background Kennedy’s disease/Spinobulbar muscular atrophy (KD/SBMA) is a degenerative neuromuscular disease affecting males. This disease is caused by polyglutamine expansion mutations of the androgen receptor (AR) gene. Although KD/SBMA has been traditionally considered a motor neuron disease, emerging evidence points to a central etiological role of muscle. We previously reported a microarray study of genes differentially expressed in muscle of three genetically unique mouse models of KD/SBMA but were unable to detect those which are androgen-dependent or are associated with onset of symptoms. Methodology/Principal Findings In the current study we examined the time course and androgen-dependence of transcriptional changes in the HSA-AR transgenic (Tg) mouse model, in which females have a severe phenotype after acute testosterone treatment. Using microarray analysis we identified differentially expressed genes at the onset and peak of muscle weakness in testosterone-treated Tg females. We found both transient and persistent groups of differentially expressed genes and analysis of gene function indicated functional groups such as mitochondrion, ion and nucleotide binding, muscle development, and sarcomere maintenance. Conclusions/Significance By comparing the current results with those from the three previously reported models we were able to identify KD/SBMA candidate genes that are androgen dependent, and occur early in the disease process, properties which are promising for targeted therapeutics. PMID:25719894

  5. Macrophage Migration Inhibitor Factor Upregulates MCP-1 Expression in an Autocrine Manner in Hepatocytes during Acute Mouse Liver Injury

    PubMed Central

    Xie, Jieshi; Yang, Le; Tian, Lei; Li, Weiyang; Yang, Lin; Li, Liying

    2016-01-01

    Macrophage migration inhibitor factor (MIF), a multipotent innate immune mediator, is an upstream component of the inflammatory cascade in diseases such as liver disease. Monocyte chemoattractant protein-1 (MCP-1), a highly representative chemokine, is critical in liver disease pathogenesis. We investigated the role of MIF in regulating hepatocytic MCP-1 expression. MIF and MCP-1 expression were characterized by immunochemistry, RT-PCR, ELISA, and immunoblotting in CCl4-treated mouse liver and isolated hepatocytes. MIF was primarily distributed in hepatocytes, and its expression increased upon acute liver injury. Its expression was also increased in injured hepatocytes, induced by LPS or CCl4, which mimic liver injury in vitro. MIF was expressed earlier than MCP-1, strongly inducing hepatocytic MCP-1 expression. Moreover, the increase in MCP-1 expression induced by MIF was inhibited by CD74- or CD44-specific siRNAs and SB203580, a p38 MAPK inhibitor. Further, CD74 or CD44 deficiency effectively inhibited MIF-induced p38 activation. MIF inhibitor ISO-1 reduced MCP-1 expression and p38 phosphorylation in CCl4-treated mouse liver. Our results showed that MIF regulates MCP-1 expression in hepatocytes of injured liver via CD74, CD44, and p38 MAPK in an autocrine manner, providing compelling information on the role of MIF in liver injury, and implying a new regulatory mechanism for liver inflammation. PMID:27273604

  6. Effect of low-intensity focused ultrasound on the middle ear in a mouse model of acute otitis media.

    PubMed

    Noda, Kanako; Hirano, Takashi; Noda, Kenji; Kodama, Satoru; Ichimiya, Issei; Suzuki, Masashi

    2013-03-01

    We hypothesized that low-intensity focused ultrasound (LIFU) increases vessel permeability and antibacterial drug activity in the mouse middle ear. We determined appropriate settings by applying LIFU to mouse ears with the external auditory canal filled with normal saline and performed histologic and immunohistologic examination. Acute otitis media was induced in mice with nontypable Haemophilus influenzae, and they were given ampicillin (50, 10, or 2 mg/kg) intraperitoneally once daily for 3 days with or without LIFU (1.0 W/cm(2), 20% duty cycle, 30 s). In the LIFU(+) groups receiving the 2- and 10-mg/kg doses, viable bacteria counts, number of inflammatory cells and IL-1β and TNF-α levels in middle ear effusion were significantly lower than in the LIFU(-) groups on the same doses. Severity of AOM also tended to be reduced more in the LIFU(+) groups than in the LIFU(-) groups. LIFU application with antibiotics may be effective for middle ear infection. PMID:23312959

  7. In vitro and in vivo properties of human/mouse chimeric monoclonal antibody specific for common acute lymphocytic leukemia antigen

    SciTech Connect

    Saga, T.; Endo, K.; Koizumi, M.; Kawamura, Y.; Watanabe, Y.; Konishi, J.; Ueda, R.; Nishimura, Y.; Yokoyama, M.; Watanabe, T. )

    1990-06-01

    A human/mouse chimeric monoclonal antibody specific for a common acute lymphocytic leukemia antigen was efficiently obtained by ligating human heavy-chain enhancer element to the chimeric heavy- and light-chain genes. Cell binding and competitive inhibition assays of both radioiodine and indium-111- (111In) labeled chimeric antibodies demonstrated in vitro immunoreactivity identical with that of the parental murine monoclonal antibodies. The biodistribution of the radiolabeled chimeric antibody in tumor-bearing nude mice was similar to that of the parental murine antibody. Tumor accumulation of radioiodinated parental and chimeric antibodies was lower than that of {sup 111}In-labeled antibodies, probably because of dehalogenation of the radioiodinated antibodies. Indium-111-labeled chimeric antibody clearly visualized xenografted tumor. These results suggest that a human/mouse chimeric antibody can be labeled with {sup 111}In and radioiodine without the loss of its immunoreactivity, and that chimeric antibody localizes in vivo in the same way as the parental murine antibody.

  8. Acute toxicity and cytotoxicity of Bacillus thuringiensis and Bacillus sphaericus strains on fish and mouse bone marrow.

    PubMed

    Grisolia, Cesar Koppe; Oliveira-Filho, Eduardo Cyrino; Ramos, Felipe Rosa; Lopes, Madaí Cruz; Muniz, Daphne Heloisa Freitas; Monnerat, Rose Gomes

    2009-01-01

    The insecticidal properties of delta-endotoxins from Bacillus thuringiensis (Bt) serotypes kurstaki and israelensis and crystal proteins of Bacillus sphaericus (Bs) serotype H5 have been used in insect control for decades. The availability of microbial toxins in biopesticides as well as in plants with incorporated protection has been increasing the concerns about biosafety. Acute toxicity to Danio rerio and cytotoxicity on mouse bone marrow cells and peripheral erythrocytes of Oreochromis niloticus were tested with Bt israelensis, Bt kurstaki and Bs H5 strains. The concentration and dose tested were 10(6) and 10(8) spores/ml, respectively. Neither lethality nor effects on mouse bone marrow were promoted by any strain. In necrosis-apoptosis study on peripheral erythrocytes of O. niloticus an increased frequency of necrotic cells caused by exposure to strains of B. thuringiensis was found. Exposure to B. sphaericus did not show cytotoxic effects in either tested system. None of the strains studied induced apoptosis in contrast with the chemical controls. PMID:18670879

  9. Macrophage Migration Inhibitor Factor Upregulates MCP-1 Expression in an Autocrine Manner in Hepatocytes during Acute Mouse Liver Injury.

    PubMed

    Xie, Jieshi; Yang, Le; Tian, Lei; Li, Weiyang; Yang, Lin; Li, Liying

    2016-01-01

    Macrophage migration inhibitor factor (MIF), a multipotent innate immune mediator, is an upstream component of the inflammatory cascade in diseases such as liver disease. Monocyte chemoattractant protein-1 (MCP-1), a highly representative chemokine, is critical in liver disease pathogenesis. We investigated the role of MIF in regulating hepatocytic MCP-1 expression. MIF and MCP-1 expression were characterized by immunochemistry, RT-PCR, ELISA, and immunoblotting in CCl4-treated mouse liver and isolated hepatocytes. MIF was primarily distributed in hepatocytes, and its expression increased upon acute liver injury. Its expression was also increased in injured hepatocytes, induced by LPS or CCl4, which mimic liver injury in vitro. MIF was expressed earlier than MCP-1, strongly inducing hepatocytic MCP-1 expression. Moreover, the increase in MCP-1 expression induced by MIF was inhibited by CD74- or CD44-specific siRNAs and SB203580, a p38 MAPK inhibitor. Further, CD74 or CD44 deficiency effectively inhibited MIF-induced p38 activation. MIF inhibitor ISO-1 reduced MCP-1 expression and p38 phosphorylation in CCl4-treated mouse liver. Our results showed that MIF regulates MCP-1 expression in hepatocytes of injured liver via CD74, CD44, and p38 MAPK in an autocrine manner, providing compelling information on the role of MIF in liver injury, and implying a new regulatory mechanism for liver inflammation. PMID:27273604

  10. Efficient Replication of Severe Acute Respiratory Syndrome Coronavirus in Mouse Cells Is Limited by Murine Angiotensin-Converting Enzyme 2

    PubMed Central

    Li, Wenhui; Greenough, Thomas C.; Moore, Michael J.; Vasilieva, Natalya; Somasundaran, Mohan; Sullivan, John L.; Farzan, Michael; Choe, Hyeryun

    2004-01-01

    Replication of viruses in species other than their natural hosts is frequently limited by entry and postentry barriers. The coronavirus that causes severe acute respiratory syndrome (SARS-CoV) utilizes the receptor angiotensin-converting enzyme 2 (ACE2) to infect cells. Here we compare human, mouse, and rat ACE2 molecules for their ability to serve as receptors for SARS-CoV. We found that, compared to human ACE2, murine ACE2 less efficiently bound the S1 domain of SARS-CoV and supported less-efficient S protein-mediated infection. Rat ACE2 was even less efficient, at near background levels for both activities. Murine 3T3 cells expressing human ACE2 supported SARS-CoV replication, whereas replication was less than 10% as efficient in the same cells expressing murine ACE2. These data imply that a mouse transgenically expressing human ACE2 may be a useful animal model of SARS. PMID:15452268

  11. Effects of aluminum chloride on sodium current, transient outward potassium current and delayed rectifier potassium current in acutely isolated rat hippocampal CA1 neurons.

    PubMed

    Zhang, Bo; Nie, Aifang; Bai, Wei; Meng, Ziqiang

    2004-09-01

    The effects of aluminum chloride (AlCl3) on sodium current (INa), the transient outward potassium (IA) and delayed rectifier potassium currents (IK) in hippocampal CA1 neurons of rats were studied using the whole cell patch-clamp technique. AlCl3 decreased INa, IA, and IK in a partly reversible, dose and voltage-dependent manner. AlCl3 prolonged the time to peak of INa, and increased the inactivation time constants of INa and IA . In addition, 1000 microM AlCl3 shifted the voltage dependence of steady-state activation of INa, IA and IK toward positive potential, and the voltage dependence of steady-state inactivation of INa, IA toward negative potential. These results imply that AlCl3 could affect the activation and inactivation courses of sodium current and potassium current of rat hippocampal CA1 neurons, which may contribute to damage of the central nervous system by aluminum. PMID:15234075

  12. Transcriptomic analysis of global changes in cytokine expression in mouse spleens following acute Toxoplasma gondii infection.

    PubMed

    He, Jun-Jun; Ma, Jun; Song, Hui-Qun; Zhou, Dong-Hui; Wang, Jin-Lei; Huang, Si-Yang; Zhu, Xing-Quan

    2016-02-01

    Toxoplasma gondii is a global pathogen that infects a wide range of animals and humans. During T. gondii infection, the spleen plays an important role in coordinating the adaptive and innate immune responses. However, there is little information regarding the changes in global gene expression within the spleen following T. gondii infection. To address this gap in knowledge, we examined the transcriptome of the mouse spleen following T. gondii infection. We observed differential expression of 2310 transcripts under these conditions. Analysis of KEGG and GO enrichment indicated that T. gondii alters multiple immune signaling cascades. Most of differentially expressed GO terms and pathways were downregulated, while immune-related GO terms and pathways were upregulated with response to T. gondii infection in mouse spleen. Most cytokines were upregulated in infected spleens, and all differentially expressed chemokines were upregulated which enhanced the immune cells chemotaxis to promote recruitment of immune cells, such as neutrophils, eosinophils, monocytes, dendritic cells, macrophages, NK cells, basophils, B cells, and T cells. Although IFN-γ-induced IDO (Ido1) was upregulated in the present study, it may not contribute a lot to the control of T. gondii because most differentially expressed genes involved in tryptophan metabolism pathway were downregulated. Innate immunity pathways, including cytosolic nucleic acid sensing pathway and C-type lectins-Syk-Card9 signaling pathways, were upregulated. We believe our study is the first comprehensive attempt to define the host transcriptional response to T. gondii infection in the mouse spleen. PMID:26508008

  13. Hemodynamic and morphologic responses in mouse brain during acute head injury imaged by multispectral structured illumination

    NASA Astrophysics Data System (ADS)

    Volkov, Boris; Mathews, Marlon S.; Abookasis, David

    2015-03-01

    Multispectral imaging has received significant attention over the last decade as it integrates spectroscopy, imaging, tomography analysis concurrently to acquire both spatial and spectral information from biological tissue. In the present study, a multispectral setup based on projection of structured illumination at several near-infrared wavelengths and at different spatial frequencies is applied to quantitatively assess brain function before, during, and after the onset of traumatic brain injury in an intact mouse brain (n=5). For the production of head injury, we used the weight drop method where weight of a cylindrical metallic rod falling along a metal tube strikes the mouse's head. Structured light was projected onto the scalp surface and diffuse reflected light was recorded by a CCD camera positioned perpendicular to the mouse head. Following data analysis, we were able to concurrently show a series of hemodynamic and morphologic changes over time including higher deoxyhemoglobin, reduction in oxygen saturation, cell swelling, etc., in comparison with baseline measurements. Overall, results demonstrates the capability of multispectral imaging based structured illumination to detect and map of brain tissue optical and physiological properties following brain injury in a simple noninvasive and noncontact manner.

  14. EFFECT OF ACUTE MATERNAL TOXICITY ON FETAL DEVELOPMENT IN THE MOUSE

    EPA Science Inventory

    The effects of acute alterations in maternal health status upon fetal development were assessed following exposure of pregnant CD-1 mice on day 8 of gestation to one of ten chemicals at a dose calculated to be the maternal LD10 or LD40. The dams were killed on day 18 of gestation...

  15. In Vivo Assessment of Acute UVB Responses in Normal and Xeroderma Pigmentosum (XP-C) Skin-Humanized Mouse Models

    PubMed Central

    García, Marta; Llames, Sara; García, Eva; Meana, Alvaro; Cuadrado, Natividad; Recasens, Mar; Puig, Susana; Nagore, Eduardo; Illera, Nuria; Jorcano, José Luis; Del Rio, Marcela; Larcher, Fernando

    2010-01-01

    In vivo studies of UVB effects on human skin are precluded by ethical and technical arguments on volunteers and inconceivable in cancer-prone patients such as those affected with Xeroderma Pigmentosum (XP). Establishing reliable models to address mechanistic and therapeutic matters thus remains a challenge. Here we have used the skin-humanized mouse system that circumvents most current model constraints. We assessed the UVB radiation effects including the sequential changes after acute exposure with respect to timing, dosage, and the relationship between dose and degree-sort of epidermal alteration. On Caucasian-derived regenerated skins, UVB irradiation (800 J/m2) induced DNA damage (cyclobutane pyrimidine dimers) and p53 expression in exposed keratinocytes. Epidermal disorganization was observed at higher doses. In contrast, in African descent–derived regenerated skins, physiological hyperpigmentation prevented tissue alterations and DNA photolesions. The acute UVB effects seen in Caucasian-derived engrafted skins were also blocked by a physical sunscreen, demonstrating the suitability of the system for photoprotection studies. We also report the establishment of a photosensitive model through the transplantation of XP-C patient cells as part of a bioengineered skin. The inability of XP-C engrafted skin to remove DNA damaged cells was confirmed in vivo. Both the normal and XP-C versions of the skin-humanized mice proved proficient models to assess UVB-mediated DNA repair responses and provide a strong platform to test novel therapeutic strategies. PMID:20558577

  16. Pyruvate dehydrogenase kinase 2 and 4 gene deficiency attenuates nociceptive behaviors in a mouse model of acute inflammatory pain.

    PubMed

    Jha, Mithilesh Kumar; Rahman, Md Habibur; Park, Dong Ho; Kook, Hyun; Lee, In-Kyu; Lee, Won-Ha; Suk, Kyoungho

    2016-09-01

    Pyruvate dehydrogenase (PDH) kinases (PDKs) 1-4, expressed in peripheral and central tissues, regulate the activity of the PDH complex (PDC). The PDC is an important mitochondrial gatekeeping enzyme that controls cellular metabolism. The role of PDKs in diverse neurological disorders, including neurometabolic aberrations and neurodegeneration, has been described. Implications for a role of PDKs in inflammation and neurometabolic coupling led us to investigate the effect of genetic ablation of PDK2/4 on nociception in a mouse model of acute inflammatory pain. Deficiency in Pdk2 and/or Pdk4 in mice led to attenuation of formalin-induced nociceptive behaviors (flinching, licking, biting, or lifting of the injected paw). Likewise, the pharmacological inhibition of PDKs substantially diminished the nociceptive responses in the second phase of the formalin test. Furthermore, formalin-provoked paw edema formation and mechanical and thermal hypersensitivities were significantly reduced in Pdk2/4-deficient mice. Formalin-driven neutrophil recruitment at the site of inflammation, spinal glial activation, and neuronal sensitization were substantially lessened in the second or late phase of the formalin test in Pdk2/4-deficient animals. Overall, our results suggest that PDK2/4 can be a potential target for the development of pharmacotherapy for the treatment of acute inflammatory pain. © 2016 Wiley Periodicals, Inc. PMID:26931482

  17. Tanshinone IIA Attenuates Renal Fibrosis after Acute Kidney Injury in a Mouse Model through Inhibition of Fibrocytes Recruitment

    PubMed Central

    Jiang, Chunming; Shao, Qiuyuan; Jin, Bo; Zhang, Miao

    2015-01-01

    Acute kidney injury (AKI) is associated with an increased risk of developing advanced chronic kidney disease (CKD). Yet, effective interventions to prevent this conversion are unavailable for clinical practice. In this study, we examined the beneficial effects of Tanshinone IIA on renal fibrosis in a mouse model of folic acid induced AKI. We found that Tanshinone IIA treatment significantly attenuated the folic acid elicited kidney dysfunction on days 3, 14, and 28. This effect was concomitant with a much lessened accumulation of fibronectin and collagen in tubulointerstitium 28 days after folic acid injury, denoting an ameliorated renal fibrosis. The kidney protective and antifibrotic effect of Tanshinone IIA was likely attributable to an early inhibition of renal recruitment of fibrocytes positive for both CD45 and collagen I. Mechanistically, Tanshinone IIA treatment not only markedly diminished renal expression of chemoattractants for fibrocytes such as TGFβ1 and MCP-1, but also significantly reduced circulating fibrocytes at the acute phase of kidney injury. These data suggested that Tanshinone IIA might be a novel therapy for preventing progression of CKD after AKI. PMID:26885500

  18. CXCL9 and CXCL10 accelerate acute transplant rejection mediated by alloreactive memory T cells in a mouse retransplantation model

    PubMed Central

    ZHUANG, JIAWEI; SHAN, ZHONGGUI; MA, TENG; LI, CHUN; QIU, SHUIWEI; ZHOU, XIAOBIAO; LIN, LIANFENG; QI, ZHONGQUAN

    2014-01-01

    C-X-C motif chemokine ligand (CXCL) 9 and CXCL10 play key roles in the initiation and development of acute transplant rejection. Previously, higher levels of RANTES expression and secretion were demonstrated in retransplantation or T-cell memory-transfer models. In the present study, the effect of the chemokines, CXCL9 and CXCL10, were investigated in a mouse retransplantation model. BALB/c mice were used as donors, while C57BL/6 mice were used as recipients. In the experimental groups, a heterotopic heart transplantation was performed six weeks following skin grafting. In the control groups, a heterotopic heart transplantation was performed without skin grafting. Untreated mice served as blank controls. The mean graft survival time of the heterotopic heart transplantations was 7.7 days in the experimental group (n=6), as compared with 3.25 days in the control group (n=6; P<0.001). On day three following cardiac transplantation, histological evaluation of the grafts revealed a higher International Society for Heart & Lung Transplantation grade in the experimental group as compared with the control group. In addition, gene expression and serum concentrations of CXCL9, CXCL10, interferon-γ, and interleukin-2 were markedly higher in the experimental group when compared with the control group. Differences between the levels of CXCL9 and CXCL10 in the pre- and post-transplant mice indicated that the chemokines may serve as possible biomarkers to predict acute rejection. The results of the present study demonstrated that CXCL9 and CXCL10 play a critical role in transplantation and retransplantation. High levels of these cytokines during the pre-transplant period may lead to extensive acute rejection. Thus, the observations enhance the understanding of the mechanism underlying the increased expression and secretion of CXCL9 and CXCL10 by alloreactive memory T cells. PMID:24944628

  19. Multiplex immunoassay characterization and species comparison of inflammation in acute and non-acute ischemic infarcts in human and mouse brain tissue.

    PubMed

    Nguyen, Thuy-Vi V; Frye, Jennifer B; Zbesko, Jacob C; Stepanovic, Kristina; Hayes, Megan; Urzua, Alex; Serrano, Geidy; Beach, Thomas G; Doyle, Kristian P

    2016-01-01

    This study provides a parallel characterization of the cytokine and chemokine response to stroke in the human and mouse brain at different stages of infarct resolution. The study goal was to address the hypothesis that chronic inflammation may contribute to stroke-related dementia. We used C57BL/6 and BALB/c mice to control for strain related differences in the mouse immune response. Our data indicate that in both mouse strains, and humans, there is increased granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin-6 (IL-6), interleukin-12 p70 (IL-12p70), interferon gamma-induced protein-10 (IP-10), keratinocyte chemoattractant/interleukin-8 (KC/IL-8), monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α), macrophage inflammatory protein-1β (MIP-1β), regulated on activation, normal T cell expressed and secreted (RANTES), and Tumor necrosis factor-α (TNF-α) in the infarct core during the acute time period. Nevertheless, correlation and two-way ANOVA analyses reveal that despite this substantial overlap between species, there are still significant differences, particularly in the regulation of granulocyte colony-stimulating factor (G-CSF), which is increased in mice but not in humans. In the weeks after stroke, during the stage of liquefactive necrosis, there is significant resolution of the inflammatory response to stroke within the infarct. However, CD68+ macrophages remain present, and levels of IL-6 and MCP-1 remain chronically elevated in infarcts from both mice and humans. Furthermore, there is a chronic T cell response within the infarct in both species. This response is differentially polarized towards a T helper 1 (Th1) response in C57BL/6 mice, and a T helper 2 (Th2) response in BALB/c mice, suggesting that the chronic inflammatory response to stroke may follow a different trajectory in different patients. To control for the fact that the average age of the patients used in this study was 80 years, they

  20. Tanshinone I Enhances Neurogenesis in the Mouse Hippocampal Dentate Gyrus via Increasing Wnt-3, Phosphorylated Glycogen Synthase Kinase-3β and β-Catenin Immunoreactivities.

    PubMed

    Chen, Bai Hui; Park, Joon Ha; Cho, Jeong Hwi; Kim, In Hye; Lee, Jae Chul; Lee, Tae-Kyeong; Ahn, Ji Hyeon; Tae, Hyun Jin; Shin, Bich Na; Kim, Jong-Dai; Kang, Il Jun; Won, Moo-Ho; Lee, Yun Lyul

    2016-08-01

    Tanshinone I (TsI), a lipophilic diterpene extracted from Danshan (Radix Salvia miltiorrhizae), exerts neuroprotection in cerebrovascular diseases including transient ischemic attack. In this study, we examined effects of TsI on cell proliferation and neuronal differentiation in the subgranular zone (SGZ) of the mouse dentate gyrus (DG) using Ki-67, BrdU and doublecortin (DCX) immunohistochemistry. Mice were treated with 1 and 2 mg/kg TsI for 28 days. In the 1 mg/kg TsI-treated-group, distribution patterns of BrdU, Ki-67 and DCX positive ((+)) cells in the SGZ were similar to those in the vehicle-treated-group. However, in the 2 mg/kg TsI-treated-group, double labeled BrdU(+)/NeuN(+) cells, which are mature neurons, as well as Ki-67(+), DCX(+) and BrdU(+) cells were significantly increased compared with those in the vehicle-treated-group. On the other hand, immunoreactivities and protein levels of Wnt-3, β-catenin and serine-9-glycogen synthase kinase-3β (p-GSK-3β), which are related with morphogenesis, were significantly increased in the granule cell layer of the DG only in the 2 mg/kg TsI-treated-group. Therefore, these findings indicate that TsI can promote neurogenesis in the mouse DG and that the neurogenesis is related with increases of Wnt-3, p-GSK-3β and β-catenin immunoreactivities. PMID:27053301

  1. Acute mouse and chronic dog toxicity studies of danthron, dioctyl sodium sulfosuccinate, poloxalkol and combinations.

    PubMed

    Case, M T; Smith, J K; Nelson, R A

    Because of an apparent typographic error in a US patent, there has been some confusion as to the acute oral toxicity of danthron and danthron in combination with dioctyl sodium sulfosuccinate (DSS). Acute oral toxicity studies in mice revealed LD50 values of greater than 7 gm/kg for danthron, 2.64 gm/kg for DSS and 3.42 gm/kg for danthron/DSS mixture (1:2 ratio). These results indicate that the lethality of these compounds is in the gm/kg range and not in the mg/kg range. A one year chronic toxicity study of danthron, dioctyl sodium sulfosuccinate, poloxalkol and combinations in dogs failed to reveal any toxic effects. In particular, there was no evidence of hepatotoxicity or of any changes in the myenteric plexuses in the chronically treated dogs. PMID:90594

  2. Changes of hepatic lactoferrin gene expression in two mouse models of the acute phase reaction.

    PubMed

    Ahmad, Ghayyor; Sial, Gull Zareen Khan; Ramadori, Pierluigi; Dudas, Jozsef; Batusic, Danko S; Ramadori, Giuliano

    2011-12-01

    Lactoferrin (Ltf), an iron binding glycoprotein, is a pleiotropic molecule whose serum concentration increases under acute phase conditions. The physiological roles of this protein have been well elucidated, but the source and serum regulation of Ltf gene expression have not been investigated in detail as part of the acute phase reaction (APR). In the current work, the changes in hepatic Ltf-gene-expression during turpentine oil- (TO-) or LPS-induced APR were investigated. Ltf was upregulated at both the mRNA and protein levels in the liver of TO- and LPS-treated wild type (WT) mice. The pattern of induction however was different in both animal models indicating distinctive signalling patterns resulting in an acute phase reaction. Cytokines are the core regulators of APR. Among the major cytokines, IL-6 is an important signalling molecule, which also regulates iron homeostasis in response to an inflammatory situation. In this study, the administration of IL-6 induced Ltf gene expression in the liver of WT mice, in murine hepatocytes and in hepa 1-6 cells. Ltf-gene-expression was upregulated also in the liver of TO- and LPS-treated IL-6 knockout (KO) mice. The increase in serum Ltf after LPS injection was greater than after TO-injection both in WT and IL-6-KO mice. To evaluate the contribution of other acute phase cytokines in the regulation of Ltf-gene-expression in the liver, both in vitro and in vivo studies with IL-1β, TNF-α, or IFN-γ were performed. The results demonstrate that TNF-α and IFN-γ also upregulated Ltf-gene-expression, while IL-1β has no role in the regulation of Ltf-gene-expression. PMID:21963450

  3. Sub-chronic Antipsychotic Drug Administration Reverses the Expression of Neuregulin 1 and ErbB4 in a Cultured MK801-Induced Mouse Primary Hippocampal Neuron or a Neurodevelopmental Schizophrenia Model.

    PubMed

    Li, Cunyan; Tang, Yamei; Yang, Jingjing; Zhang, Xianghui; Liu, Yong; Tang, Aiguo

    2016-08-01

    It has been reported that specific environmental influences during the postpartum period might contribute to the development of schizophrenia (SZ). Administration of MK801 during early development led to persistent brain pathology. Glutamate decarboxylase 1 (GAD67) and parvalbumin (PV), and neuregulin 1 (NRG1)/ErbB4 signaling were closely associated with SZ pathology. We postulated therefore that NMDA receptor antagonists exposure during the postpartum period may be associated with expression dysregulation of some of the SZ candidate proteins. To test this, we used mouse primary hippocampal neurons and neonatal male mice treated with the NMDA receptor antagonist, MK801 at postnatal day 4 (P4) or P7, followed by the treatments of antipsychotic drugs (i.e., olanzapine, risperidone, and haloperidol). The expressions of GAD67, PV, NRG1, and ErbB4 in in vitro and in vivo SZ models were detected with Western blot analysis and immunohistochemistry, respectively. Behavioral tests (locomotion activity, social interaction, novel object recognition and prepulse inhibition) were measured. We found MK801 decreased the expression of GAD67, PV, NRG1 and ErbB4, and induced obvious behavioral alterations, while antipsychotics reversed these alterations. These results suggest that exposure to the NMDA receptor antagonist in early development may lead to long-lasting influence on the expression of specific proteins, such as GAD67, PV, NRG1, and ErbB4. Moreover, our results suggest that rescue of the activation of the NRG1/ErbB4 signaling pathway may be one of the mechanisms by which antipsychotic drugs have an antipsychotic effect. PMID:27097547

  4. Active Sulforhodamine 101 Uptake into Hippocampal Astrocytes

    PubMed Central

    Schnell, Christian; Hagos, Yohannes; Hülsmann, Swen

    2012-01-01

    Sulforhodamine 101 (SR101) is widely used as a marker of astrocytes. In this study we investigated labeling of astrocytes by SR101 in acute slices from the ventrolateral medulla and the hippocampus of transgenic mice expressing EGFP under the control of the astrocyte-specific human GFAP promoter. While SR101 efficiently and specifically labeled EGFP-expressing astrocytes in hippocampus, we found that the same staining procedure failed to label astrocytes efficiently in the ventrolateral medulla. Although carbenoxolone is able to decrease the SR101-labeling of astrocytes in the hippocampus, it is unlikely that SR101 is taken up via gap-junction hemichannels because mefloquine, a blocker for pannexin and connexin hemichannels, was unable to prevent SR101-labeling of hippocampal astrocytes. However, SR101-labeling of the hippocampal astrocytes was significantly reduced by substrates of organic anion transport polypeptides, including estron-3-sulfate and dehydroepiandrosterone sulfate, suggesting that SR101 is actively transported into hippocampal astrocytes. PMID:23189143

  5. Hippocampal Transcriptome Profile of Persistent Memory Rescue in a Mouse Model of THRA1 Mutation-Mediated Resistance to Thyroid Hormone

    PubMed Central

    Wang, Yiqiao; Fisahn, André; Sinha, Indranil; Nguyen, Dinh Phong; Sterzenbach, Ulrich; Lallemend, Francois; Hadjab, Saїda

    2016-01-01

    Hypothyroidism due to THRA1 (gene coding for thyroid hormone receptor α1) mutation-mediated Resistance to Thyroid Hormone (RTH) has been recently reported in human and is associated with memory deficits similar to those found in a mouse model for Thra1 mutation mediated RTH (Thra1+/m mice). Here, we show that a short-term treatment of Thra1+/m mice with GABAA receptor antagonist pentylenetetrazol (PTZ) completely and durably rescues their memory performance. In the CA1 region of the hippocampus, improvement of memory is associated with increased in long-term potentiation (LTP) and an augmentation of density of dendritic spines (DDS) onto the apical dendrites of pyramidal cells reflecting an increase in the local excitatory drive. Unbiased gene profiling analysis of hippocampi of treated Thra1+/+ and Thra1+/m mice were performed two weeks and three months post treatment and identified co-expression modules that include differentially expressed genes related with and predicting higher memory, LTP and DDS in the hippocampi of PTZ-treated animals. We observed that PTZ treatment changed similar sets of genes in both Thra1+/+ and Thra1+/m mice, which are known to be involved in memory consolidation and neurotransmission dynamics and could participate in the persistent effects of PTZ on memory recovery. PMID:26743578

  6. Ventral hippocampal nicotinic acetylcholine receptors mediate stress-induced analgesia in mice.

    PubMed

    Ghasemzadeh, Zahra; Rezayof, Ameneh

    2015-01-01

    Evidence suggests that various stressful procedures induce an analgesic effect in laboratory animals commonly referred to as stress-induced analgesia (SIA). The aim of the present study was to assess the role of ventral hippocampal (VH) nicotinic acetylcholine receptors (nAChRs) in SIA in adult male NMRI mice. The VHs of animals were bilaterally cannulated and nociceptive threshold was measured using infrared source in a tail-flick apparatus. Acute stress was evoked by placing the animals on an elevated platform for 10, 20 and 30 min. The results showed that exposure to 20 and 30 min acute stress produced analgesia, while exposure to 10 min stress had no effect on the pain response. Intra-VH microinjection of nicotine (0.001-0.1 μg/mouse), 5 min before an ineffective stress (10 min stress), induced analgesia, suggesting the potentiative effect of nicotine on SIA. It is important to note that bilateral intra-VH microinjections of the same doses of nicotine without stress had no effect on the tail-flick test. On the other hand, intra-VH microinjection of mecamylamine (0.5-1 μg/mouse) 5 min before 20-min stress inhibited SIA. However, bilateral intra-VH microinjections of the same doses of mecamylamine without stress had no effect on the tail-flick response. In addition, the microinjection of mecamylamine into the VH reversed the potentiative effect of nicotine on SIA. Taken together, it can be concluded that exposure to acute stress induces SIA in a time-dependent manner and the ventral hippocampal cholinergic system may be involved in SIA via nAChRs. PMID:25281932

  7. Telomerase expression confers cardioprotection in the adult mouse heart after acute myocardial infarction

    PubMed Central

    Serrano, Rosa; Tejera, Agueda; Ayuso, Eduard; Jimenez, Veronica; Formentini, Ivan; Bobadilla, Maria; Mizrahi, Jacques; de Martino, Alba; Gomez, Gonzalo; Pisano, David; Mulero, Francisca; Wollert, Kai C.; Bosch, Fatima; Blasco, Maria A.

    2016-01-01

    Coronary heart disease is one of the main causes of death in the developed world, and treatment success remains modest, with high mortality rates within 1 year after myocardial infarction (MI). Thus, new therapeutic targets and effective treatments are necessary. Short telomeres are risk factors for age-associated diseases, including heart disease. Here we address the potential of telomerase (Tert) activation in prevention of heart failure after MI in adult mice. We use adeno-associated viruses for cardiac-specific Tert expression. We find that upon MI, hearts expressing Tert show attenuated cardiac dilation, improved ventricular function and smaller infarct scars concomitant with increased mouse survival by 17% compared with controls. Furthermore, Tert treatment results in elongated telomeres, increased numbers of Ki67 and pH3-positive cardiomyocytes and a gene expression switch towards a regeneration signature of neonatal mice. Our work suggests telomerase activation could be a therapeutic strategy to prevent heart failure after MI. PMID:25519492

  8. Increased Cortical Gamma-Aminobutyric Acid Precedes Incomplete Extinction of Conditioned Fear and Increased Hippocampal Excitatory Tone in a Mouse Model of Mild Traumatic Brain Injury.

    PubMed

    Schneider, Brandy L; Ghoddoussi, Farhad; Charlton, Jennifer L; Kohler, Robert J; Galloway, Matthew P; Perrine, Shane A; Conti, Alana C

    2016-09-01

    Mild traumatic brain injury (mTBI) contributes to development of affective disorders, including post-traumatic stress disorder (PTSD). Psychiatric symptoms typically emerge in a tardive fashion post-TBI, with negative effects on recovery. Patients with PTSD, as well as rodent models of PTSD, demonstrate structural and functional changes in brain regions mediating fear learning, including prefrontal cortex (PFC), amygdala (AMYG), and hippocampus (HC). These changes may reflect loss of top-down control by which PFC normally exhibits inhibitory influence over AMYG reactivity to fearful stimuli, with HC contribution. Considering the susceptibility of these regions to injury, we examined fear conditioning (FC) in the delayed post-injury period, using a mouse model of mTBI. Mice with mTBI displayed enhanced acquisition and delayed extinction of FC. Using proton magnetic resonance spectroscopy ex vivo, we examined PFC, AMYG, and HC levels of gamma-aminobutyric acid (GABA) and glutamate as surrogate measures of inhibitory and excitatory neurotransmission, respectively. Eight days post-injury, GABA was increased in PFC, with no significant changes in AMYG. In animals receiving FC and mTBI, glutamate trended toward an increase and the GABA/glutamate ratio decreased in ventral HC at 25 days post-injury, whereas GABA decreased and GABA/glutamate decreased in dorsal HC. These neurochemical changes are consistent with early TBI-induced PFC hypoactivation facilitating the fear learning circuit and exacerbating behavioral fear responses. The latent emergence of overall increased excitatory tone in the HC, despite distinct plasticity in dorsal and ventral HC fields, may be associated with disordered memory function, manifested as incomplete extinction and enhanced FC recall. PMID:26529240

  9. 15-Deoxy-delta 12,14-prostaglandin J2 biphasically regulates the proliferation of mouse hippocampal neural progenitor cells by modulating the redox state.

    PubMed

    Katura, Takashi; Moriya, Takahiro; Nakahata, Norimichi

    2010-04-01

    The activity of neural progenitor cells (NPCs) is regulated by various humoral factors. Although prostaglandin (PG) D(2) is known to mediate various physiological brain functions such as sleep, its actions on NPCs have not been fully understood. In the process of investigating the effects of PGD(2) on NPCs, we found that 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), an endogenous metabolite of PGD(2), exhibits a novel regulation of the proliferation of NPCs derived from mouse hippocampus. 15d-PGJ(2) showed biphasic effects on epidermal growth factor-induced proliferation of NPCs; facilitation at low concentrations ( approximately 0.3 muM) and suppression at higher concentrations (0.5-10 microM) in vitro. 2-Chloro-5-nitrobenzanilide (GW9662), an inhibitor of peroxisome proliferator-activated receptor gamma, known to be a molecular target for 15d-PGJ(2), failed to abolish the effects of 15d-PGJ(2). 9,10-dihydro-15d-PGJ(2) (CAY10410), a structural analog of 15d-PGJ(2) lacking the electrophilic carbon in the cyclopentenone ring, did not show 15d-PGJ(2)-like actions. Treatment with 15d-PGJ(2) increased the levels of reactive oxygen species and decreased endogenous GSH levels. Furthermore, supplementation with a membrane-permeable analog of glutathione, GSH ethyl ester (2 mM), diminished the biphasic effects of 15d-PGJ(2). Finally, cell division in the dentate gyrus of postnatal mice was increased by injection of low-dose (1 ng i.c.v.) 15d-PGJ(2) and suppressed by high-dose (30 ng) 15d-PGJ(2). These results suggest that 15d-PGJ(2) regulates the proliferation of NPCs via its electrophilic nature, which enables covalent binding to molecules such as GSH. PMID:20086036

  10. A two-mutation model of radiation-induced acute myeloid leukemia using historical mouse data.

    PubMed

    Dekkers, Fieke; Bijwaard, Harmen; Bouffler, Simon; Ellender, Michele; Huiskamp, René; Kowalczuk, Christine; Meijne, Emmy; Sutmuller, Marjolein

    2011-03-01

    From studies of the atomic bomb survivors, it is well known that ionizing radiation causes several forms of leukemia. However, since the specific mechanism behind this process remains largely unknown, it is difficult to extrapolate carcinogenic effects at acute high-dose exposures to risk estimates for the chronic low-dose exposures that are important for radiation protection purposes. Recently, it has become clear that the induction of acute myeloid leukemia (AML) in CBA/H mice takes place through two key steps, both involving the Sfpi1 gene. A similar mechanism may play a role in human radiation-induced AML. In the present paper, a two-mutation carcinogenesis model is applied to model AML in several data sets of X-ray- and neutron-exposed CBA/H mice. The models obtained provide good fits to the data. A comparison between the predictions for neutron-induced and X-ray-induced AML yields an RBE for neutrons of approximately 3. The model used is considered to be a first step toward a model for human radiation-induced AML, which could be used to estimate risks of exposure to low doses. PMID:20842369

  11. In vivo Postnatal Electroporation and Time-lapse Imaging of Neuroblast Migration in Mouse Acute Brain Slices

    PubMed Central

    Oudin, Madeleine Julie; Doherty, Patrick; Lalli, Giovanna

    2013-01-01

    The subventricular zone (SVZ) is one of the main neurogenic niches in the postnatal brain. Here, neural progenitors proliferate and give rise to neuroblasts able to move along the rostral migratory stream (RMS) towards the olfactory bulb (OB). This long-distance migration is required for the subsequent maturation of newborn neurons in the OB, but the molecular mechanisms regulating this process are still unclear. Investigating the signaling pathways controlling neuroblast motility may not only help understand a fundamental step in neurogenesis, but also have therapeutic regenerative potential, given the ability of these neuroblasts to target brain sites affected by injury, stroke, or degeneration. In this manuscript we describe a detailed protocol for in vivo postnatal electroporation and subsequent time-lapse imaging of neuroblast migration in the mouse RMS. Postnatal electroporation can efficiently transfect SVZ progenitor cells, which in turn generate neuroblasts migrating along the RMS. Using confocal spinning disk time-lapse microscopy on acute brain slice cultures, neuroblast migration can be monitored in an environment closely resembling the in vivo condition. Moreover, neuroblast motility can be tracked and quantitatively analyzed. As an example, we describe how to use in vivo postnatal electroporation of a GFP-expressing plasmid to label and visualize neuroblasts migrating along the RMS. Electroporation of shRNA or CRE recombinase-expressing plasmids in conditional knockout mice employing the LoxP system can also be used to target genes of interest. Pharmacological manipulation of acute brain slice cultures can be performed to investigate the role of different signaling molecules in neuroblast migration. By coupling in vivo electroporation with time-lapse imaging, we hope to understand the molecular mechanisms controlling neuroblast motility and contribute to the development of novel approaches to promote brain repair. PMID:24326479

  12. Protection of Retinal Ganglion Cells and Retinal Vasculature by Lycium Barbarum Polysaccharides in a Mouse Model of Acute Ocular Hypertension

    PubMed Central

    Mi, Xue-Song; Feng, Qian; Lo, Amy Cheuk Yin; Chang, Raymond Chuen-Chung; Lin, Bin; Chung, Sookja Kim; So, Kwok-Fai

    2012-01-01

    Acute ocular hypertension (AOH) is a condition found in acute glaucoma. The purpose of this study is to investigate the protective effect of Lycium barbarum polysaccharides (LBP) and its protective mechanisms in the AOH insult. LBP has been shown to exhibit neuroprotective effect in the chronic ocular hypertension (COH) experiments. AOH mouse model was induced in unilateral eye for one hour by introducing 90 mmHg ocular pressure. The animal was fed with LBP solution (1 mg/kg) or vehicle daily from 7 days before the AOH insult till sacrifice at either day 4 or day 7 post insult. The neuroprotective effects of LBP on retinal ganglion cells (RGCs) and blood-retinal-barrier (BRB) were evaluated. In control AOH retina, loss of RGCs, thinning of IRL thickness, increased IgG leakage, broken tight junctions, and decreased density of retinal blood vessels were observed. However, in LBP-treated AOH retina, there was less loss of RGCs with thinning of IRL thickness, IgG leakage, more continued structure of tight junctions associated with higher level of occludin protein and the recovery of the blood vessel density when compared with vehicle-treated AOH retina. Moreover, we found that LBP provides neuroprotection by down-regulating RAGE, ET-1, Aβ and AGE in the retina, as well as their related signaling pathways, which was related to inhibiting vascular damages and the neuronal degeneration in AOH insults. The present study suggests that LBP could prevent damage to RGCs from AOH-induced ischemic injury; furthermore, through its effects on blood vessel protection, LBP would also be a potential treatment for vascular-related retinopathy. PMID:23094016

  13. Noninvasive In Vivo Quantification of Neutrophil Elastase Activity in Acute Experimental Mouse Lung Injury

    PubMed Central

    Kossodo, Sylvie; Zhang, Jun; Groves, Kevin; Cuneo, Garry J.; Handy, Emma; Morin, Jeff; Delaney, Jeannine; Yared, Wael; Rajopadhye, Milind; Peterson, Jeffrey D.

    2011-01-01

    We developed a neutrophil elastase-specific near-infrared fluorescence imaging agent, which, combined with fluorescence molecular tomographic imaging, allowed us to detect and quantify neutrophil elastase activity in vivo, in real time, and noninvasively in an acute model of lung injury (ALI). Significantly higher fluorescent signal was quantified in mice with LPS/fMLP-induced ALI as compared to healthy controls, correlating with increases in the number of bronchoalveolar lavage cells, neutrophils, and elastase activity. The agent was significantly activated ex vivo in lung sections from ALI but not from control mice, and this activation was ablated by the specific inhibitor sivelestat. Treatment with the specific inhibitor sivelestat significantly reduced lung signal in mice with ALI. These results underscore the unique ability of fluorescence molecular imaging to quantify specific molecular processes in vivo, crucial for understanding the mechanisms underlying disease progression and for assessing and monitoring novel pharmacological interventions. PMID:21941648

  14. New Hippocampal Neurons Mature Rapidly in Response to Ketamine But Are Not Required for Its Acute Antidepressant Effects on Neophagia in Rats123

    PubMed Central

    Soumier, Amelie; Carter, Rayna M.; Schoenfeld, Timothy J.

    2016-01-01

    Abstract Virtually all antidepressant agents increase the birth of granule neurons in the adult dentate gyrus in rodents, providing a key basis for the neurogenesis hypothesis of antidepressant action. The novel antidepressant ketamine, however, shows antidepressant activity in humans within hours, far too rapid for a mechanism involving neuronal birth. Ketamine could potentially act more rapidly by enhancing maturation of new neurons born weeks earlier. To test this possibility, we assessed the effects of S-ketamine (S-(+)-ketamine hydrochloride) injection on maturation, as well as birth and survival, of new dentate gyrus granule neurons in rats, using the immediate-early gene zif268, proliferating cell nuclear antigen, and BrdU, respectively. We show that S-ketamine has rapid effects on new neurons, increasing the proportion of functionally mature young granule neurons within 2 h. A single injection of S-ketamine also increased cell proliferation and functional maturation, and decreased depressive-like behavior, for at least 4 weeks in rats treated with long-term corticosterone administration (a depression model) and controls. However, the behavioral effects of S-ketamine on neophagia were unaffected by elimination of adult neurogenesis. Together, these results indicate that ketamine has surprisingly rapid and long-lasting effects on the recruitment of young neurons into hippocampal networks, but that ketamine has antidepressant-like effects that are independent of adult neurogenesis. PMID:27066531

  15. The effect of acute swim stress and training in the water maze on hippocampal synaptic activity as well as plasticity in the dentate gyrus of freely moving rats: revisiting swim-induced LTP reinforcement.

    PubMed

    Tabassum, Heena; Frey, Julietta U

    2013-12-01

    Hippocampal long-term potentiation (LTP) is a cellular model of learning and memory. An early form of LTP (E-LTP) can be reinforced into its late form (L-LTP) by various behavioral interactions within a specific time window ("behavioral LTP-reinforcement"). Depending on the type and procedure used, various studies have shown that stress differentially affects synaptic plasticity. Under low stress, such as novelty detection or mild foot shocks, E-LTP can be transformed into L-LTP in the rat dentate gyrus (DG). A reinforcing effect of a 2-min swim, however, has only been shown in (Korz and Frey (2003) J Neurosci 23:7281-7287; Korz and Frey (2005) J Neurosci 25:7393-7400; Ahmed et al. (2006) J Neurosci 26:3951-3958; Sajikumar et al., (2007) J Physiol 584.2:389-400) so far. We have reinvestigated these studies using the same as well as an improved recording technique which allowed the recording of field excitatory postsynaptic potentials (fEPSP) and the population spike amplitude (PSA) at their places of generation in freely moving rats. We show that acute swim stress led to a long-term depression (LTD) in baseline values of PSA and partially fEPSP. In contrast to earlier studies a LTP-reinforcement by swimming could never be reproduced. Our results indicate that 2-min swim stress influenced synaptic potentials as well as E-LTP negatively. PMID:23836535

  16. Effects of acute versus repeated cocaine exposure on the expression of endocannabinoid signaling-related proteins in the mouse cerebellum.

    PubMed

    Palomino, Ana; Pavón, Francisco-Javier; Blanco-Calvo, Eduardo; Serrano, Antonia; Arrabal, Sergio; Rivera, Patricia; Alén, Francisco; Vargas, Antonio; Bilbao, Ainhoa; Rubio, Leticia; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2014-01-01

    Growing awareness of cerebellar involvement in addiction is based on the cerebellum's intermediary position between motor and reward, potentially acting as an interface between motivational and cognitive functions. Here, we examined the impact of acute and repeated cocaine exposure on the two main signaling systems in the mouse cerebellum: the endocannabinoid (eCB) and glutamate systems. To this end, we investigated whether eCB signaling-related gene and protein expression {cannabinoid receptor type 1 receptors and enzymes that produce [diacylglycerol lipase alpha/beta (DAGLα/β) and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD)] and degrade [monoacylglycerol lipase (MAGL) and fatty acid amino hydrolase (FAAH)] eCB} were altered. In addition, we analyzed the gene expression of relevant components of the glutamate signaling system [glutamate synthesizing enzymes liver-type glutaminase isoform (LGA) and kidney-type glutaminase isoform (KGA), metabotropic glutamatergic receptor (mGluR3/5), NMDA-ionotropic glutamatergic receptor (NR1/2A/2B/2C) and AMPA-ionotropic receptor subunits (GluR1/2/3/4)] and the gene expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, because noradrenergic terminals innervate the cerebellar cortex. Results indicated that acute cocaine exposure decreased DAGLα expression, suggesting a down-regulation of 2-arachidonylglycerol (2-AG) production, as well as gene expression of TH, KGA, mGluR3 and all ionotropic receptor subunits analyzed in the cerebellum. The acquisition of conditioned locomotion and sensitization after repeated cocaine exposure were associated with an increased NAPE-PLD/FAAH ratio, suggesting enhanced anandamide production, and a decreased DAGLβ/MAGL ratio, suggesting decreased 2-AG generation. Repeated cocaine also increased LGA gene expression but had no effect on glutamate receptors. These findings indicate that acute cocaine modulates the expression of the eCB and

  17. Acute inflammation induces immunomodulatory effects on myeloid cells associated with anti-tumor responses in a tumor mouse model.

    PubMed

    Salem, Mohamed L; Attia, Zeinab I; Galal, Sohaila M

    2016-03-01

    Given the self nature of cancer, anti-tumor immune response is weak. As such, acute inflammation induced by microbial products can induce signals that result in initiation of an inflammatory cascade that helps activation of immune cells. We aimed to compare the nature and magnitude of acute inflammation induced by toll-like receptor ligands (TLRLs) on the tumor growth and the associated inflammatory immune responses. To induce acute inflammation in tumor-bearing host, CD1 mice were inoculated with intraperitoneal (i.p.) injection of Ehrlich ascites carcinoma (EAC) (5 × 10(5) cells/mouse), and then treated with i.p. injection on day 1, day 7 or days 1 + 7 with: (1) polyinosinic:polycytidylic (poly(I:C)) (TLR3L); (2) Poly-ICLC (clinical grade of TLR3L); (3) Bacillus Calmette Guerin (BCG) (coding for TLR9L); (4) Complete Freund's adjuvant (CFA) (coding for TLR9L); and (5) Incomplete Freund's Adjuvant (IFA). Treatment with poly(I:C), Poly-ICLC, BCG, CFA, or IFA induced anti-tumor activities as measured by 79.1%, 75.94%, 73.94%, 71.88% and 47.75% decreases, respectively in the total number of tumor cells collected 7 days after tumor challenge. Among the tested TLRLs, both poly(I:C) (TLR3L) and BCG (contain TLR9L) showed the highest anti-tumor effects as reflected by the decrease in the number of EAc cells. These effects were associated with a 2-fold increase in the numbers of inflammatory cells expressing the myeloid markers CD11b(+)Ly6G(+), CD11b(+)Ly6G(-), and CD11b(+)Ly6G(-). We concluded that Provision of the proper inflammatory signal with optimally defined magnitude and duration during tumor growth can induce inflammatory immune cells with potent anti-tumor responses without vaccination. PMID:26966565

  18. Effects of acute versus repeated cocaine exposure on the expression of endocannabinoid signaling-related proteins in the mouse cerebellum

    PubMed Central

    Palomino, Ana; Pavón, Francisco-Javier; Blanco-Calvo, Eduardo; Serrano, Antonia; Arrabal, Sergio; Rivera, Patricia; Alén, Francisco; Vargas, Antonio; Bilbao, Ainhoa; Rubio, Leticia; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2014-01-01

    Growing awareness of cerebellar involvement in addiction is based on the cerebellum’s intermediary position between motor and reward, potentially acting as an interface between motivational and cognitive functions. Here, we examined the impact of acute and repeated cocaine exposure on the two main signaling systems in the mouse cerebellum: the endocannabinoid (eCB) and glutamate systems. To this end, we investigated whether eCB signaling-related gene and protein expression {cannabinoid receptor type 1 receptors and enzymes that produce [diacylglycerol lipase alpha/beta (DAGLα/β) and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD)] and degrade [monoacylglycerol lipase (MAGL) and fatty acid amino hydrolase (FAAH)] eCB} were altered. In addition, we analyzed the gene expression of relevant components of the glutamate signaling system [glutamate synthesizing enzymes liver-type glutaminase isoform (LGA) and kidney-type glutaminase isoform (KGA), metabotropic glutamatergic receptor (mGluR3/5), NMDA-ionotropic glutamatergic receptor (NR1/2A/2B/2C) and AMPA-ionotropic receptor subunits (GluR1/2/3/4)] and the gene expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, because noradrenergic terminals innervate the cerebellar cortex. Results indicated that acute cocaine exposure decreased DAGLα expression, suggesting a down-regulation of 2-arachidonylglycerol (2-AG) production, as well as gene expression of TH, KGA, mGluR3 and all ionotropic receptor subunits analyzed in the cerebellum. The acquisition of conditioned locomotion and sensitization after repeated cocaine exposure were associated with an increased NAPE-PLD/FAAH ratio, suggesting enhanced anandamide production, and a decreased DAGLβ/MAGL ratio, suggesting decreased 2-AG generation. Repeated cocaine also increased LGA gene expression but had no effect on glutamate receptors. These findings indicate that acute cocaine modulates the expression of the eCB and

  19. Acute inflammation induces immunomodulatory effects on myeloid cells associated with anti-tumor responses in a tumor mouse model

    PubMed Central

    Salem, Mohamed L.; Attia, Zeinab I.; Galal, Sohaila M.

    2015-01-01

    Given the self nature of cancer, anti-tumor immune response is weak. As such, acute inflammation induced by microbial products can induce signals that result in initiation of an inflammatory cascade that helps activation of immune cells. We aimed to compare the nature and magnitude of acute inflammation induced by toll-like receptor ligands (TLRLs) on the tumor growth and the associated inflammatory immune responses. To induce acute inflammation in tumor-bearing host, CD1 mice were inoculated with intraperitoneal (i.p.) injection of Ehrlich ascites carcinoma (EAC) (5 × 105 cells/mouse), and then treated with i.p. injection on day 1, day 7 or days 1 + 7 with: (1) polyinosinic:polycytidylic (poly(I:C)) (TLR3L); (2) Poly-ICLC (clinical grade of TLR3L); (3) Bacillus Calmette Guerin (BCG) (coding for TLR9L); (4) Complete Freund’s adjuvant (CFA) (coding for TLR9L); and (5) Incomplete Freund’s Adjuvant (IFA). Treatment with poly(I:C), Poly-ICLC, BCG, CFA, or IFA induced anti-tumor activities as measured by 79.1%, 75.94%, 73.94%, 71.88% and 47.75% decreases, respectively in the total number of tumor cells collected 7 days after tumor challenge. Among the tested TLRLs, both poly(I:C) (TLR3L) and BCG (contain TLR9L) showed the highest anti-tumor effects as reflected by the decrease in the number of EAc cells. These effects were associated with a 2-fold increase in the numbers of inflammatory cells expressing the myeloid markers CD11b+Ly6G+, CD11b+Ly6G−, and CD11b+Ly6G−. We concluded that Provision of the proper inflammatory signal with optimally defined magnitude and duration during tumor growth can induce inflammatory immune cells with potent anti-tumor responses without vaccination. PMID:26966565

  20. Diffuse Optical Spectroscopy for the Quantitative Assessment of Acute Ionizing Radiation Induced Skin Toxicity Using a Mouse Model

    PubMed Central

    Chin, Lee; Korpela, Elina; Kim, Anthony; Yohan, Darren; Niu, Carolyn; Wilson, Brian C.; Liu, Stanley K.

    2016-01-01

    Acute skin toxicities from ionizing radiation (IR) are a common side effect from therapeutic courses of external beam radiation therapy (RT) and negatively impact patient quality of life and long term survival. Advances in the understanding of the biological pathways associated with normal tissue toxicities have allowed for the development of interventional drugs, however, current response studies are limited by a lack of quantitative metrics for assessing the severity of skin reactions. Here we present a diffuse optical spectroscopic (DOS) approach that provides quantitative optical biomarkers of skin response to radiation. We describe the instrumentation design of the DOS system as well as the inversion algorithm for extracting the optical parameters. Finally, to demonstrate clinical utility, we present representative data from a pre-clinical mouse model of radiation induced erythema and compare the results with a commonly employed visual scoring. The described DOS method offers an objective, high through-put evaluation of skin toxicity via functional response that is translatable to the clinical setting. PMID:27284926

  1. Molecular magnetic resonance imaging of acute vascular cell adhesion molecule-1 expression in a mouse model of cerebral ischemia.

    PubMed

    Hoyte, Lisa C; Brooks, Keith J; Nagel, Simon; Akhtar, Asim; Chen, Ruoli; Mardiguian, Sylvie; McAteer, Martina A; Anthony, Daniel C; Choudhury, Robin P; Buchan, Alastair M; Sibson, Nicola R

    2010-06-01

    The pathogenesis of stroke is multifactorial, and inflammation is thought to have a critical function in lesion progression at early time points. Detection of inflammatory processes associated with cerebral ischemia would be greatly beneficial in both designing individual therapeutic strategies and monitoring outcome. We have recently developed a new approach to imaging components of the inflammatory response, namely endovascular adhesion molecule expression on the brain endothelium. In this study, we show specific imaging of vascular cell adhesion molecule (VCAM)-1 expression in a mouse model of middle cerebral artery occlusion (MCAO), and a reduction in this inflammatory response, associated with improved behavioral outcome, as a result of preconditioning. The spatial extent of VCAM-1 expression is considerably greater than the detectable lesion using diffusion-weighted imaging (25% versus 3% total brain volume), which is generally taken to reflect the core of the lesion at early time points. Thus, VCAM-1 imaging seems to reveal both core and penumbral regions, and our data implicate VCAM-1 upregulation and associated inflammatory processes in the progression of penumbral tissue to infarction. Our findings indicate that such molecular magnetic resonance imaging (MRI) approaches could be important clinical tools for patient evaluation, acute monitoring of therapy, and design of specific treatment strategies. PMID:20087364

  2. Mucosal immunisation with novel Streptococcus pneumoniae protein antigens enhances bacterial clearance in an acute mouse lung infection model.

    PubMed

    Jomaa, Maha; Kyd, Jennelle M; Cripps, Allan W

    2005-04-01

    Streptococcus pneumoniae contains many proteins that have not been evaluated as potential protective vaccine antigens. In this study we isolated proteins from a serotype 3 strain of S. pneumoniae for use in mouse immunisation studies. Separation of the protein mix was achieved by SDS-PAGE electrophoresis followed by electro-elution to isolate individual proteins. This procedure successfully separated 21 fractions from which six proteins were selected based on purity and quantity and were initially denoted by their molecular masses: 14-, 34-, 38-, 48-, 57- and 75-kDa. The immunogenicity of these proteins was investigated in a mucosal immunisation model in mice involving a primary inoculation to the intestinal Peyer's patches followed by an intra-tracheal boost two weeks later. The immune response was assessed by enhancement of pulmonary clearance of infection, recruitment of phagocytes to the lungs and induction of an antibody response. Two of the proteins, the 14-kDa identified as a L7/L12 ribosomal protein, and the 34-kDa identified as glyceraldehyde-3-phosphate dehydrogenase resulted in up to 99% and 94%, respectively, enhanced clearance of infection within 5 h following pulmonary challenge with S. pneumoniae. This study has shown that novel pneumococcal proteins have the potential to be vaccine candidates to enhance clearance of an acute mucosal S. pneumoniae infection. PMID:15780579

  3. Diffuse Optical Spectroscopy for the Quantitative Assessment of Acute Ionizing Radiation Induced Skin Toxicity Using a Mouse Model.

    PubMed

    Chin, Lee; Korpela, Elina; Kim, Anthony; Yohan, Darren; Niu, Carolyn; Wilson, Brian C; Liu, Stanley K

    2016-01-01

    Acute skin toxicities from ionizing radiation (IR) are a common side effect from therapeutic courses of external beam radiation therapy (RT) and negatively impact patient quality of life and long term survival. Advances in the understanding of the biological pathways associated with normal tissue toxicities have allowed for the development of interventional drugs, however, current response studies are limited by a lack of quantitative metrics for assessing the severity of skin reactions. Here we present a diffuse optical spectroscopic (DOS) approach that provides quantitative optical biomarkers of skin response to radiation. We describe the instrumentation design of the DOS system as well as the inversion algorithm for extracting the optical parameters. Finally, to demonstrate clinical utility, we present representative data from a pre-clinical mouse model of radiation induced erythema and compare the results with a commonly employed visual scoring. The described DOS method offers an objective, high through-put evaluation of skin toxicity via functional response that is translatable to the clinical setting. PMID:27284926

  4. Glutathione Supplementation Attenuates Lipopolysaccharide-Induced Mitochondrial Dysfunction and Apoptosis in a Mouse Model of Acute Lung Injury

    PubMed Central

    Aggarwal, Saurabh; Dimitropoulou, Christiana; Lu, Qing; Black, Stephen M.; Sharma, Shruti

    2012-01-01

    Acute lung injury (ALI) is a life threatening condition associated with hypoxemia, diffuse alveolar damage, inflammation, and loss of lung function. Lipopolysaccharide (LPS; endotoxin) from the outer membrane of Gram-negative bacteria is a major virulence factor involved in the development of ALI. The depletion of glutathione (GSH), an essential intra- and extra-cellular protective antioxidant, by LPS is an important event that contributes to the elevation in reactive oxygen species. Whether restoring GSH homeostasis can effectively ameliorate mitochondrial dysfunction and cellular apoptosis in ALI is unknown and therefore, was the focus of this study. In peripheral lung tissue of LPS-treated mice, hydrogen peroxide and protein nitration levels were significantly increased. Pre-treatment with GSH-ethyl ester (GSH-EE) prevented this increase in oxidative stress. LPS also increased the lactate/pyruvate ratio, attenuated SOD2 protein levels, and decreased ATP levels in the mouse lung indicative of mitochondrial dysfunction. Again, GSH-EE treatment preserved the mitochondrial function. Finally, our studies showed that LPS induced an increase in the mitochondrial translocation of Bax, caspase 3 activation, and nuclear DNA fragmentation and these parameters were all prevented with GSH-EE. Thus, this study suggests that GSH-EE supplementation may reduce the mitochondrial dysfunction associated with ALI. PMID:22654772

  5. Thymus and pulmonary lymph node response to acute and subchronic ozone inhalation in the mouse

    SciTech Connect

    Dziedzic, D.; White, H.J.

    1985-12-01

    Ozone is an oxidant gas which primarily injures the centroacinar portion of the lung. While the classical lesion of oxidant-mediated lung damage is relatively well described, the effect of this form of injury on the lymphocytic arm of the pulmonary defense system is less clear. In the present experiments Cd-1 female mice were exposed to ozone at a level of 0.7 ppm for 20 hr per day for 1-28 days and the lymphocyte response was observed in the pulmonary lymph nodes and the thymus. In the mediastinal lymph nodes a marked hyperplastic response was observed that was prominent in the paracortex and was characterized by the presence of blastic forms. In contrast, the thymus underwent an atrophic response characterized by cellular loss in the cortical region. Prior surgical adrenalectomy of ozone-exposed animals eliminated part, but not all of the thymic atrophy response, indicating that adrenal-mediated stress alone did not account for all the observed effect. Thymectomy of animals prior to ozone exposure produced a 40% reduction in the mediastinal lymph node response, suggesting that a part of the node hyperplasia is thymus dependent. The results of these experiments indicate that lymphoid organs are altered following oxidant-mediated lung damage in the mouse. The changes are observed in the absence of exogenous antigenic stimulation and suggest that lymphoid cells are in integral aspect of the host response to high-level ozone inhalation.

  6. Restoring specific lactobacilli levels decreases inflammation and muscle atrophy markers in an acute leukemia mouse model.

    PubMed

    Bindels, Laure B; Beck, Raphaël; Schakman, Olivier; Martin, Jennifer C; De Backer, Fabienne; Sohet, Florence M; Dewulf, Evelyne M; Pachikian, Barbara D; Neyrinck, Audrey M; Thissen, Jean-Paul; Verrax, Julien; Calderon, Pedro Buc; Pot, Bruno; Grangette, Corinne; Cani, Patrice D; Scott, Karen P; Delzenne, Nathalie M

    2012-01-01

    The gut microbiota has recently been proposed as a novel component in the regulation of host homeostasis and immunity. We have assessed for the first time the role of the gut microbiota in a mouse model of leukemia (transplantation of BaF3 cells containing ectopic expression of Bcr-Abl), characterized at the final stage by a loss of fat mass, muscle atrophy, anorexia and inflammation. The gut microbial 16S rDNA analysis, using PCR-Denaturating Gradient Gel Electrophoresis and quantitative PCR, reveals a dysbiosis and a selective modulation of Lactobacillus spp. (decrease of L. reuteri and L. johnsonii/gasseri in favor of L. murinus/animalis) in the BaF3 mice compared to the controls. The restoration of Lactobacillus species by oral supplementation with L. reuteri 100-23 and L. gasseri 311476 reduced the expression of atrophy markers (Atrogin-1, MuRF1, LC3, Cathepsin L) in the gastrocnemius and in the tibialis, a phenomenon correlated with a decrease of inflammatory cytokines (interleukin-6, monocyte chemoattractant protein-1, interleukin-4, granulocyte colony-stimulating factor, quantified by multiplex immuno-assay). These positive effects are strain- and/or species-specific since L. acidophilus NCFM supplementation does not impact on muscle atrophy markers and systemic inflammation. Altogether, these results suggest that the gut microbiota could constitute a novel therapeutic target in the management of leukemia-associated inflammation and related disorders in the muscle. PMID:22761662

  7. Systems genetic analysis of hippocampal neuroanatomy and spatial learning in mice.

    PubMed

    Delprato, A; Bonheur, B; Algéo, M-P; Rosay, P; Lu, L; Williams, R W; Crusio, W E

    2015-11-01

    Mapping of significant quantitative trait loci for hippocampal neuroanatomical traits and numbers of errors committed in a spatial radial maze task, based on data from 53 BXD recombinant inbred mouse strains. PMID:26449520

  8. Ginsenoside Rd alleviates mouse acute renal ischemia/reperfusion injury by modulating macrophage phenotype

    PubMed Central

    Ren, Kaixi; Jin, Chao; Ma, Pengfei; Ren, Qinyou; Jia, Zhansheng; Zhu, Daocheng

    2015-01-01

    Background Ginsenoside Rd (GSRd), a main component of the root of Panax ginseng, exhibits anti-inflammation functions and decreases infarct size in many injuries and ischemia diseases such as focal cerebral ischemia. M1 Macrophages are regarded as one of the key inflammatory cells having functions for disease progression. Methods To investigate the effect of GSRd on renal ischemia/reperfusion injury (IRI) and macrophage functional status, and their regulatory role on mouse polarized macrophages in vitro, GSRd (10–100 mg/kg) and vehicle were applied to mice 30 min before renal IRI modeling. Renal functions were reflected by blood serum creatinine and blood urea nitrogen level and histopathological examination. M1 polarized macrophages infiltration was identified by flow cytometry analysis and immunofluorescence staining with CD11b+, iNOS+/interleukin-12/tumor necrosis factor-α labeling. For the in vitro study, GSRd (10–100 μg/mL) and vehicle were added in the culture medium of M1 macrophages to assess their regulatory function on polarization phenotype. Results In vivo data showed a protective role of GSRd at 50 mg/kg on Day 3. Serum level of serum creatinine and blood urea nitrogen significantly dropped compared with other groups. Reduced renal tissue damage and M1 macrophage infiltration showed on hematoxylin–eosin staining and flow cytometry and immunofluorescence staining confirmed this improvement. With GSRd administration, in vitro cultured M1 macrophages secreted less inflammatory cytokines such as interleukin-12 and tumor necrosis factor-α. Furthermore, macrophage polarization-related pancake-like morphology gradually changed along with increasing concentration of GSRd in the medium. Conclusion These findings demonstrate that GSRd possess a protective function against renal ischemia/reperfusion injury via downregulating M1 macrophage polarization. PMID:27158241

  9. PAX5 is a tumor suppressor in mouse mutagenesis models of acute lymphoblastic leukemia

    PubMed Central

    Dang, Jinjun; Wei, Lei; de Ridder, Jeroen; Su, Xiaoping; Rust, Alistair G.; Roberts, Kathryn G.; Payne-Turner, Debbie; Cheng, Jinjun; Ma, Jing; Qu, Chunxu; Wu, Gang; Song, Guangchun; Huether, Robert G.; Schulman, Brenda; Janke, Laura; Zhang, Jinghui; Downing, James R.; van der Weyden, Louise; Adams, David J.

    2015-01-01

    Alterations of genes encoding transcriptional regulators of lymphoid development are a hallmark of B-progenitor acute lymphoblastic leukemia (B-ALL) and most commonly involve PAX5, encoding the DNA-binding transcription factor paired-box 5. The majority of PAX5 alterations in ALL are heterozygous, and key PAX5 target genes are expressed in leukemic cells, suggesting that PAX5 may be a haploinsufficient tumor suppressor. To examine the role of PAX5 alterations in leukemogenesis, we performed mutagenesis screens of mice heterozygous for a loss-of-function Pax5 allele. Both chemical and retroviral mutagenesis resulted in a significantly increased penetrance and reduced latency of leukemia, with a shift to B-lymphoid lineage. Genomic profiling identified a high frequency of secondary genomic mutations, deletions, and retroviral insertions targeting B-lymphoid development, including Pax5, and additional genes and pathways mutated in ALL, including tumor suppressors, Ras, and Janus kinase-signal transducer and activator of transcription signaling. These results show that in contrast to simple Pax5 haploinsufficiency, multiple sequential alterations targeting lymphoid development are central to leukemogenesis and contribute to the arrest in lymphoid maturation characteristic of ALL. This cross-species analysis also validates the importance of concomitant alterations of multiple cellular growth, signaling, and tumor suppression pathways in the pathogenesis of B-ALL. PMID:25855603

  10. Yueju Pill Rapidly Induces Antidepressant-Like Effects and Acutely Enhances BDNF Expression in Mouse Brain

    PubMed Central

    Xue, Wenda; Zhou, Xin; Yi, Nan; Jiang, Lihua; Tao, Weiwei; Wu, Runjie; Wang, Dan; Jiang, Jingjing; Ge, Xiaoyin; Wang, Yuyue; Wu, Haoxin; Chen, Gang

    2013-01-01

    The traditional antidepressants have a major disadvantage in delayed onset of efficacy, and the emerging fast-acting antidepressant ketamine has adverse behavioral and neurotoxic effects. Yueju pill, an herb medicine formulated eight hundred years ago by Doctor Zhu Danxi, has been popularly prescribed in China for alleviation of depression-like symptoms. Although several clinical outcome studies reported the relative short onset of antidepressant effects of Yueju, this has not been scientifically investigated. We, therefore, examined the rapid antidepressant effect of Yueju in mice and tested the underlying molecular mechanisms. We found that acute administration of ethanol extract of Yueju rapidly attenuated depressive-like symptoms in learned helpless paradigm, and the antidepressant-like effects were sustained for at least 24 hours in tail suspension test in ICR mice. Additionally, Yueju, like ketamine, rapidly increased the expression of brain-derived neurotrophic factor (BDNF) in the hippocampus, whereas the BDNF mRNA expression remained unaltered. Yueju rapidly reduced the phosphorylation of eukaryotic elongation factor 2 (eEF2), leading to desuppression of BDNF synthesis. Unlike ketamine, both the BDNF expression and eEF2 phosphorylation were revered at 24 hours after Yueju administration. This study is the first to demonstrate the rapid antidepressant effects of an herb medicine, offering an opportunity to improve therapy of depression. PMID:23710213

  11. Acute effects of whole-body proton irradiation on the immune system of the mouse

    NASA Technical Reports Server (NTRS)

    Kajioka, E. H.; Andres, M. L.; Li, J.; Mao, X. W.; Moyers, M. F.; Nelson, G. A.; Slater, J. M.; Gridley, D. S.

    2000-01-01

    The acute effects of proton whole-body irradiation on the distribution and function of leukocyte populations in the spleen and blood were examined and compared to the effects of photons derived from a (60)Co gamma-ray source. Adult female C57BL/6 mice were exposed to a single dose (3 Gy at 0.4 Gy/min) of protons at spread-out Bragg peak (SOBP), protons at the distal entry (E) region, or gamma rays and killed humanely at six different times thereafter. Specific differences were noted in the results, thereby suggesting that the kinetics of the response may be variable. However, the lack of significant differences in most assays at most times suggests that the RBE for both entry and peak regions of the Bragg curve was essentially 1.0 under the conditions of this study. The greatest immunodepression was observed at 4 days postexposure. Flow cytometry and mitogenic stimulation analyses of the spleen and peripheral blood demonstrated that lymphocyte populations differ in radiosensitivity, with B (CD19(+)) cells being most sensitive, T (CD3(+)) cells being moderately sensitive, and natural killer (NK1.1(+)) cells being most resistant. B lymphocytes showed the most rapid recovery. Comparison of the T-lymphocyte subsets showed that CD4(+) T helper/inducer cells were more radiosensitive than the CD8(+) T cytotoxic/suppressor cells. These findings should have an impact on future studies designed to maximize protection of normal tissue during and after proton-radiation exposure.

  12. Exogenous Lipocalin 2 Ameliorates Acute Rejection in a Mouse Model of Renal Transplantation

    PubMed Central

    Ashraf, M. I.; Schwelberger, H. G.; Brendel, K. A.; Feurle, J.; Andrassy, J.; Kotsch, K.; Regele, H.; Pratschke, J.; Maier, H. T.

    2016-01-01

    Abstract Lipocalin 2 (Lcn2) is rapidly produced by damaged nephron epithelia and is one of the most promising new markers of renal injury, delayed graft function and acute allograft rejection (AR); however, the functional importance of Lcn2 in renal transplantation is largely unknown. To understand the role of Lcn2 in renal AR, kidneys from Balb/c mice were transplanted into C57Bl/6 mice and vice versa and analyzed for morphological and physiological outcomes of AR at posttransplantation days 3, 5, and 7. The allografts showed a steady increase in intensity of interstitial infiltration, tubulitis and periarterial aggregation of lymphocytes associated with a substantial elevation in serum levels of creatinine, urea and Lcn2. Perioperative administration of recombinant Lcn2:siderophore:Fe complex (rLcn2) to recipients resulted in functional and morphological amelioration of the allograft at day 7 almost as efficiently as daily immunosuppression with cyclosporine A (CsA). No significant differences were observed in various donor–recipient combinations (C57Bl/6 wild‐type and Lcn2−/−, Balb/c donors and recipients). Histochemical analyses of the allografts showed reduced cell death in recipients treated with rLcn2 or CsA. These results demonstrate that Lcn2 plays an important role in reducing the extent of kidney AR and indicate the therapeutic potential of Lcn2 in transplantation. PMID:26595644

  13. Vulnerability of calbindin, calretinin and parvalbumin in a transgenic/knock-in APPswe/PS1dE9 mouse model of Alzheimer disease together with disruption of hippocampal neurogenesis.

    PubMed

    Verdaguer, Ester; Brox, Susana; Petrov, Dmitry; Olloquequi, Jordi; Romero, Rafael; de Lemos, M Luisa; Camins, Antoni; Auladell, Carme

    2015-09-01

    The pathogenesis of Alzheimer disease (AD) is characterized by accumulation of β-amyloid protein in the brain (in both soluble and insoluble forms) and by the presence of intracellular neurofibrillary tangles (NFTs), leading to neurotoxicity. The exact mechanisms whereby Aβ triggers brain alterations are unclear. However, accumulating evidence suggests that a deregulation of Ca(2+) signaling may play a major role in disease progression. Calcium-buffering proteins, including calbindin-D28K (CB), calretinin (CR) and parvalbumin (PV), may offer neuroprotection by maintaining calcium homeostasis. Although marked reductions in these proteins have been observed in the brains of mice and humans with AD, their contribution to AD pathology remains unclear. The aim of the present study was to analyze distribution patterns of CB(+,) CR(+) and PV(+) interneurons in different areas of the hippocampus, a brain region that is severely affected in AD. A transgenic knock-in APPswe/PS1dE9 mouse model of familial AD was used. The data were obtained from the brains of 3- and 12-month-old animals. These ages roughly correspond to an early mature adult (prior to clinical manifestations) and a late middle-age (clinical symptoms readily detectable) phase in human AD patients. Immunostaining revealed increases in CB and PV immunoreactivity (IR) in the hippocampus of 3-month-old transgenic mice, compared to wild-type animals. Possibly, these proteins are upregulated in an attempt to control cellular homeostasis and synaptic plasticity. However, the pattern of CB-IR was reversed in 12-month-old animals, potentially indicating a loss of cellular capacity to respond to pathophysiological processes. In addition, at this age, a noticeable increase in PV-IR was observed, suggesting the presence of hippocampal network hyperactivity in older AD-like mice. Our results indicate that CaBP(+) neuronal subpopulations play a role in adult neurogenesis and in AD pathology, particularly at early disease

  14. Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia

    SciTech Connect

    Benny Klimek, Margaret E.; Aydogdu, Tufan; Link, Majik J.; Pons, Marianne; Koniaris, Leonidas G.; Zimmers, Teresa A.

    2010-01-15

    Cachexia, progressive loss of fat and muscle mass despite adequate nutrition, is a devastating complication of cancer associated with poor quality of life and increased mortality. Myostatin is a potent tonic muscle growth inhibitor. We tested how myostatin inhibition might influence cancer cachexia using genetic and pharmacological approaches. First, hypermuscular myostatin null mice were injected with Lewis lung carcinoma or B16F10 melanoma cells. Myostatin null mice were more sensitive to tumor-induced cachexia, losing more absolute mass and proportionately more muscle mass than wild-type mice. Because myostatin null mice lack expression from development, however, we also sought to manipulate myostatin acutely. The histone deacetylase inhibitor Trichostatin A has been shown to increase muscle mass in normal and dystrophic mice by inducing the myostatin inhibitor, follistatin. Although Trichostatin A administration induced muscle growth in normal mice, it failed to preserve muscle in colon-26 cancer cachexia. Finally we sought to inhibit myostatin and related ligands by administration of the Activin receptor extracellular domain/Fc fusion protein, ACVR2B-Fc. Systemic administration of ACVR2B-Fc potently inhibited muscle wasting and protected adipose stores in both colon-26 and Lewis lung carcinoma cachexia, without affecting tumor growth. Enhanced cachexia in myostatin knockouts indicates that host-derived myostatin is not the sole mediator of muscle wasting in cancer. More importantly, skeletal muscle preservation with ACVR2B-Fc establishes that targeting myostatin-family ligands using ACVR2B-Fc or related molecules is an important and potent therapeutic avenue in cancer cachexia.

  15. Characterization of a nose-only inhaled phosgene acute lung injury mouse model

    PubMed Central

    Plahovinsak, Jennifer L.; Perry, Mark R.; Knostman, Katherine A.; Segal, Robert; Babin, Michael C.

    2016-01-01

    Context Phosgene’s primary mode of action is as a pulmonary irritant characterized by its early latent phase where life-threatening, non-cardiogenic pulmonary edema is typically observed 6–24 h post-exposure. Objective To develop an inhaled phosgene acute lung injury (ALI) model in C57BL/6 mice that can be used to screen potential medical countermeasures. Methods A Cannon style nose-only inhalation exposure tower was used to expose mice to phosgene (8 ppm) or air (sham). An inhalation lethality study was conducted to determine the 8 ppm median lethal exposure (LCt50) at 24 and 48 h post-exposure. The model was then developed at 1.2 times the 24 h LCt50. At predetermined serial sacrifice time points, survivors were euthanized, body and lung weights collected, and lung tissues processed for histopathology. Additionally, post-exposure clinical observations were used to assess quality of life. Results and discussion The 24-hour LCt50 was 226ppm*min (8 ppm for 28.2 min) and the 48-hour LCt50 was 215ppm*min (8 ppm for 26.9 min). The phosgene exposed animals had a distinct progression of clinical signs, histopathological changes and increased lung/body weight ratios. Early indicators of a 1.2 times the 24-hour LCt50 phosgene exposure were significant changes in the lung-to-body weight ratios by 4 h post-exposure. The progression of clinical signs and histopathological changes were important endpoints for characterizing phosgene-induced ALI for future countermeasure studies. Conclusion An 8 ppm phosgene exposure for 34 min (1.2 × LCt50) is the minimum challenge recommended for evaluating therapeutic interventions. The predicted higher mortality in the phosgene-only controls will help demonstrate efficacy of candidate treatments and increase the probability that a change in survival rate is statistically significant PMID:26671199

  16. An Intradermal Inoculation Mouse Model for Immunological Investigations of Acute Scrub Typhus and Persistent Infection

    PubMed Central

    Rockx-Brouwer, Dedeke; Xu, Guang; Goez-Rivillas, Yenny; Drom, Claire; Shelite, Thomas R.; Valbuena, Gustavo; Walker, David H.; Bouyer, Donald H.

    2016-01-01

    Scrub typhus is a neglected tropical disease, caused by Orientia tsutsugamushi, a Gram-negative bacterium that is transmitted to mammalian hosts during feeding by Leptotrombidium mites and replicates predominantly within endothelial cells. Most studies of scrub typhus in animal models have utilized either intraperitoneal or intravenous inoculation; however, there is limited information on infection by the natural route in murine model skin or its related early host responses. Here, we developed an intradermal (i.d.) inoculation model of scrub typhus and focused on the kinetics of the host responses in the blood and major infected organs. Following ear inoculation with 6 x 104 O. tsutsugamushi, mice developed fever at 11–12 days post-infection (dpi), followed by marked hypothermia and body weight loss at 14–19 dpi. Bacteria in blood and tissues and histopathological changes were detected around 9 dpi and peaked around 14 dpi. Serum cytokine analyses revealed a mixed Th1/Th2 response, with marked elevations of MCP-1/CCL2, MIP-1α/CCL3 and IL-10 at 9 dpi, followed by increased concentrations of pro-inflammatory markers (IL-6, IL-12, IFN-γ, G-CSF, RANTES/CCL5, KC/CCL11, IL-1α/β, IL-2, TNF-α, GM-CSF), as well as modulatory cytokines (IL-9, IL-13). Cytokine levels in lungs had similar elevation patterns, except for a marked reduction of IL-9. The Orientia 47-kDa gene and infectious bacteria were detected in several organs for up to 84 dpi, indicating persistent infection. This is the first comprehensive report of acute scrub typhus and persistent infection in i.d.-inoculated C57BL/6 mice. This is a significant improvement over current murine models for Orientia infection and will permit detailed studies of host immune responses and infection control interventions. PMID:27479584

  17. An Intradermal Inoculation Mouse Model for Immunological Investigations of Acute Scrub Typhus and Persistent Infection.

    PubMed

    Soong, Lynn; Mendell, Nicole L; Olano, Juan P; Rockx-Brouwer, Dedeke; Xu, Guang; Goez-Rivillas, Yenny; Drom, Claire; Shelite, Thomas R; Valbuena, Gustavo; Walker, David H; Bouyer, Donald H

    2016-08-01

    Scrub typhus is a neglected tropical disease, caused by Orientia tsutsugamushi, a Gram-negative bacterium that is transmitted to mammalian hosts during feeding by Leptotrombidium mites and replicates predominantly within endothelial cells. Most studies of scrub typhus in animal models have utilized either intraperitoneal or intravenous inoculation; however, there is limited information on infection by the natural route in murine model skin or its related early host responses. Here, we developed an intradermal (i.d.) inoculation model of scrub typhus and focused on the kinetics of the host responses in the blood and major infected organs. Following ear inoculation with 6 x 104 O. tsutsugamushi, mice developed fever at 11-12 days post-infection (dpi), followed by marked hypothermia and body weight loss at 14-19 dpi. Bacteria in blood and tissues and histopathological changes were detected around 9 dpi and peaked around 14 dpi. Serum cytokine analyses revealed a mixed Th1/Th2 response, with marked elevations of MCP-1/CCL2, MIP-1α/CCL3 and IL-10 at 9 dpi, followed by increased concentrations of pro-inflammatory markers (IL-6, IL-12, IFN-γ, G-CSF, RANTES/CCL5, KC/CCL11, IL-1α/β, IL-2, TNF-α, GM-CSF), as well as modulatory cytokines (IL-9, IL-13). Cytokine levels in lungs had similar elevation patterns, except for a marked reduction of IL-9. The Orientia 47-kDa gene and infectious bacteria were detected in several organs for up to 84 dpi, indicating persistent infection. This is the first comprehensive report of acute scrub typhus and persistent infection in i.d.-inoculated C57BL/6 mice. This is a significant improvement over current murine models for Orientia infection and will permit detailed studies of host immune responses and infection control interventions. PMID:27479584

  18. Sesamol treatment reduces plasma cholesterol and triacylglycerol levels in mouse models of acute and chronic hyperlipidemia.

    PubMed

    Kumar, Nitesh; Mudgal, Jayesh; Parihar, Vipan K; Nayak, Pawan G; Kutty, N Gopalan; Rao, C Mallikarjuna

    2013-06-01

    The active constituents of Sesamum indicum, sesamin and sesamolin, have already been explored for hypolipidemic action. In this study we have explored the anti-dyslipidemic activity of another active component and metabolite of sesamolin (sesamol), by using acute models of hyperlipidemia viz., a fat tolerance test, a tyloxapol-induced hyperlipidemia model and a chronic model of hyperlipidemia viz., a high-fat diet-induced hyperlipidemia model in Swiss albino mice. Sesamol (100 and 200 mg/kg) significantly (P < 0.05) decreased triacylglycerol absorption in the fat tolerance test by showing a dose-dependent decrease in triacylglycerol levels. The hypolipidemic effect of sesamol at 200 mg/kg was equivalent to 10 mg/kg of orlistat. In the tyloxapol-induced hyperlipidemia model, Sesamol at 200 mg/kg reversed the elevated levels of cholesterol and triacylglycerol compared with the tyloxapol group at 12 and 24 h, which indicates its probable effect on cholesterol synthesis. Chronic hyperlipidemia in mice was produced by feeding a high-diet, a mixture of cholesterol (2 % w/w), cholic acid (1 % w/w) and coconut oil 30 % (v/w) with standard powdered standard animal chow (up to 100 g). Niacin (100 mg/kg) and sesamol (100 mg/kg) significantly (P < 0.05) reduced the elevated body weight compared with the high fat diet control group. Elevated levels of cholesterol and triacylglycerol were significantly (P < 0.05) reversed by the sesamol (50 and 100 mg/kg), implying that it might reduce the absorption and increase the excretion of cholesterol as well. PMID:23504268

  19. Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia.

    PubMed

    Benny Klimek, Margaret E; Aydogdu, Tufan; Link, Majik J; Pons, Marianne; Koniaris, Leonidas G; Zimmers, Teresa A

    2010-01-15

    Cachexia, progressive loss of fat and muscle mass despite adequate nutrition, is a devastating complication of cancer associated with poor quality of life and increased mortality. Myostatin is a potent tonic muscle growth inhibitor. We tested how myostatin inhibition might influence cancer cachexia using genetic and pharmacological approaches. First, hypermuscular myostatin null mice were injected with Lewis lung carcinoma or B16F10 melanoma cells. Myostatin null mice were more sensitive to tumor-induced cachexia, losing more absolute mass and proportionately more muscle mass than wild-type mice. Because myostatin null mice lack expression from development, however, we also sought to manipulate myostatin acutely. The histone deacetylase inhibitor Trichostatin A has been shown to increase muscle mass in normal and dystrophic mice by inducing the myostatin inhibitor, follistatin. Although Trichostatin A administration induced muscle growth in normal mice, it failed to preserve muscle in colon-26 cancer cachexia. Finally we sought to inhibit myostatin and related ligands by administration of the Activin receptor extracellular domain/Fc fusion protein, ACVR2B-Fc. Systemic administration of ACVR2B-Fc potently inhibited muscle wasting and protected adipose stores in both colon-26 and Lewis lung carcinoma cachexia, without affecting tumor growth. Enhanced cachexia in myostatin knockouts indicates that host-derived myostatin is not the sole mediator of muscle wasting in cancer. More importantly, skeletal muscle preservation with ACVR2B-Fc establishes that targeting myostatin-family ligands using ACVR2B-Fc or related molecules is an important and potent therapeutic avenue in cancer cachexia. PMID:20036643

  20. Flaxseed Mitigates Acute Oxidative Lung Damage in a Mouse Model of Repeated Radiation and Hyperoxia Exposure Associated with Space Exploration

    PubMed Central

    Pietrofesa, Ralph A.; Solomides, Charalambos C.; Christofidou-Solomidou, Melpo

    2015-01-01

    Background Spaceflight missions may require crewmembers to conduct extravehicular activities (EVA). Pre-breathe protocols in preparation for an EVA entail 100% hyperoxia exposure that may last for a few hours and be repeated 2-3 times weekly. Each EVA is associated with additional challenges such as low levels of total body cosmic/galactic radiation exposure that may present a threat to crewmember health. We have developed a mouse model of total body radiation and hyperoxia exposure and identified acute damage of lung tissues. In the current study we evaluated the usefulness of dietary flaxseed (FS) as a countermeasure agent for such double-hit exposures. Methods We evaluated lung tissue changes 2 weeks post-initiation of exposure challenges. Mouse cohorts (n=5/group) were pre-fed diets containing either 0% FS or 10% FS for 3 weeks and exposed to: a) normoxia (Untreated); b) >95% O2 (O2); c) 0.25Gy single fraction gamma radiation (IR); or d) a combination of O2 and IR (O2+IR) 3 times per week for 2 consecutive weeks, where 8-hour hyperoxia treatments were spanned by normoxic intervals. Results At 2 weeks post challenge, while control-diet fed mice developed significant lung injury and inflammation across all challenges, FS protected lung tissues by decreasing bronchoalveolar lavage fluid (BALF) neutrophils (p<0.003) and protein levels, oxidative tissue damage, as determined by levels of malondialdehyde (MDA) (p<0.008) and nitrosative stress as determined by nitrite levels. Lung hydroxyproline levels, a measure of lung fibrosis, were significantly elevated in mice fed 0% FS (p<0.01) and exposed to hyperoxia/radiation or the combination treatment, but not in FS-fed mice. FS also decreased levels of a pro-inflammatory, pro-fibrogenic cytokine (TGF-β1) gene expression levels in lung. Conclusion Flaxseed mitigated adverse effects in lung of repeat exposures to radiation/hyperoxia. This data will provide useful information in the design of countermeasures to early

  1. K(v) 7 (KCNQ) channel openers normalize central 2-deoxyglucose uptake in a mouse model of mania and increase prefrontal cortical and hippocampal serine-9 phosphorylation levels of GSK3β.

    PubMed

    Kristensen, Line V; Sandager-Nielsen, Karin; Hansen, Henrik H

    2012-05-01

    Several metabolic neuroimaging studies have indicated that bipolar patients with mania exhibit alterations in metabolic activity, suggesting that perturbations in corticolimbic function contribute to the functional deficits associated with the disease. Because pharmacological stimulation of K(v)7 channel function has shown anti-manic like efficacy in the D-amphetamine and chlordiazepoxide (AMPH+CDP) induced hyperactivity mouse model of mania, we addressed whether this effect of K(v)7 channels could be associated with changes in cerebral [¹⁴C]2-deoxyglucose (2-DG) uptake, a surrogate marker of brain metabolic activity. Acute administration of the Kv7 channel modulators, retigabine (pan K(v)7.2-K(v)7.5 channel opener) and ICA-27243 (K(v)7.2/K(v)7.3 channel-preferring opener) reduced 2-DG uptake in several mouse forebrain structures with a brain regional signature similar to the mood stabilizers, lithium and valproate. Combined administration of AMPH+CDP enhanced 2-DG uptake in the striatum, cortex and thalamus, and both retigabine and ICA-27243 fully prevented this stimulatory effect of AMPH+CDP. In addition, both K(v)7 channel openers dose-dependently increased phospho-serine-9 levels of GSK3β in the prefrontal cortex and hippocampus, a common molecular mechanism shared by anti-manic drugs. In combination, these data emphasize the potential of K(v)7 channel openers in the treatment of bipolar disorder, and suggest that heteromeric K(v)7.2/K(v)7.3 channels may present a novel anti-manic therapeutic target. PMID:22356228

  2. Acute TrkB inhibition rescues phenobarbital-resistant seizures in a mouse model of neonatal ischemia.

    PubMed

    Kang, S K; Johnston, M V; Kadam, S D

    2015-11-01

    Neonatal seizures are commonly associated with hypoxic-ischemic encephalopathy. Phenobarbital (PB) resistance is common and poses a serious challenge in clinical management. Using a newly characterized neonatal mouse model of ischemic seizures, this study investigated a novel strategy for rescuing PB resistance. A small-molecule TrkB antagonist, ANA12, used to selectively and transiently block post-ischemic BDNF-TrkB signaling in vivo, determined whether rescuing TrkB-mediated post-ischemic degradation of the K(+)-Cl(-) co-transporter (KCC2) rescued PB-resistant seizures. The anti-seizure efficacy of ANA12 + PB was quantified by (i) electrographic seizure burden using acute continuous video-electroencephalograms and (ii) post-treatment expression levels of KCC2 and NKCC1 using Western blot analysis in postnatal day (P)7 and P10 CD1 pups with unilateral carotid ligation. ANA12 significantly rescued PB-resistant seizures at P7 and improved PB efficacy at P10. A single dose of ANA12 + PB prevented the post-ischemic degradation of KCC2 for up to 24 h. As anticipated, ANA12 by itself had no anti-seizure properties and was unable to prevent KCC2 degradation at 24 h without follow-on PB. This indicates that unsubdued seizures can independently lead to KCC2 degradation via non-TrkB-dependent pathways. This study, for the first time as a proof-of-concept, reports the potential therapeutic value of KCC2 modulation for the management of PB-resistant seizures in neonates. Future investigations are required to establish the mechanistic link between ANA12 and the prevention of KCC2 degradation. PMID:26452067

  3. Increase in cocaine- and amphetamine-regulated transcript (CART) in specific areas of the mouse brain by acute caffeine administration.

    PubMed

    Cho, Jin Hee; Cho, Yun Ha; Kim, Hyo Young; Cha, Seung Ha; Ryu, Hyun; Jang, Wooyoung; Shin, Kyung Ho

    2015-04-01

    Caffeine produces a variety of behavioral effects including increased alertness, reduced food intake, anxiogenic effects, and dependence upon repeated exposure. Although many of the effects of caffeine are mediated by its ability to block adenosine receptors, it is possible that other neural substrates, such as cocaine- and amphetamine-regulated transcript (CART), may be involved in the effects of caffeine. Indeed, a recent study demonstrated that repeated caffeine administration increases CART in the mouse striatum. However, it is not clear whether acute caffeine administration alters CART in other areas of the brain. To explore this possibility, we investigated the dose- and time-dependent changes in CART immunoreactivity (CART-IR) after a single dose of caffeine in mice. We found that a high dose of caffeine (100 mg/kg) significantly increased CART-IR 2 h after administration in the nucleus accumbens shell (AcbSh), dorsal bed nucleus of the stria terminalis (dBNST), central nucleus of the amygdala (CeA), paraventricular hypothalamic nucleus (PVN), arcuate hypothalamic nucleus (Arc), and locus coeruleus (LC), and returned to control levels after 8 h. But this increase was not observed in other brain areas. In addition, caffeine administration at doses of 25 and 50 mg/kg appears to produce dose-dependent increases in CART-IR in these brain areas; however, the magnitude of increase in CART-IR observed at a dose of 50 mg/kg was similar or greater than that observed at a dose of 100 mg/kg. This result suggests that CART-IR in AcbSh, dBNST, CeA, PVN, Arc, and LC is selectively affected by caffeine administration. PMID:25820086

  4. Modeling Impaired Hippocampal Neurogenesis after Radiation Exposure.

    PubMed

    Cacao, Eliedonna; Cucinotta, Francis A

    2016-03-01

    Radiation impairment of neurogenesis in the hippocampal dentate gyrus is one of several factors associated with cognitive detriments after treatment of brain cancers in children and adults with radiation therapy. Mouse models have been used to study radiation-induced changes in neurogenesis, however the models are limited in the number of doses, dose fractions, age and time after exposure conditions that have been studied. The purpose of this study is to develop a novel predictive mathematical model of radiation-induced changes to neurogenesis using a system of nonlinear ordinary differential equations (ODEs) to represent the time, age and dose-dependent changes to several cell populations participating in neurogenesis as reported in mouse experiments exposed to low-LET radiation. We considered four compartments to model hippocampal neurogenesis and, consequently, the effects of radiation treatment in altering neurogenesis: (1) neural stem cells (NSCs), (2) neuronal progenitor cells or neuroblasts (NB), (3) immature neurons (ImN) and (4) glioblasts (GB). Because neurogenesis is decreasing with increasing mouse age, a description of the age-related dynamics of hippocampal neurogenesis is considered in the model, which is shown to be an important factor in comparisons to experimental data. A key feature of the model is the description of negative feedback regulation on early and late neuronal proliferation after radiation exposure. The model is augmented with parametric descriptions of the dose and time after irradiation dependences of activation of microglial cells and a possible shift of NSC proliferation from neurogenesis to gliogenesis reported at higher doses (∼10 Gy). Predictions for dose-fractionation regimes and for different mouse ages, and prospects for future work are then discussed. PMID:26943452

  5. Empathy in Hippocampal Amnesia

    PubMed Central

    Beadle, J. N.; Tranel, D.; Cohen, N. J.; Duff, M. C.

    2013-01-01

    Empathy is critical to the quality of our relationships with others and plays an important role in life satisfaction and well-being. The scientific investigation of empathy has focused on characterizing its cognitive and neural substrates, and has pointed to the importance of a network of brain regions involved in emotional experience and perspective taking (e.g., ventromedial prefrontal cortex, amygdala, anterior insula, cingulate). While the hippocampus has rarely been the focus of empathy research, the hallmark properties of the hippocampal declarative memory system (e.g., representational flexibility, relational binding, on-line processing capacity) make it well-suited to meet some of the crucial demands of empathy, and a careful investigation of this possibility could make a significant contribution to the neuroscientific understanding of empathy. The present study is a preliminary investigation of the role of the hippocampal declarative memory system in empathy. Participants were three patients (1 female) with focal, bilateral hippocampal (HC) damage and severe declarative memory impairments and three healthy demographically matched comparison participants. Empathy was measured as a trait through a battery of gold standard questionnaires and through on-line ratings and prosocial behavior in response to a series of empathy inductions. Patients with hippocampal amnesia reported lower cognitive and emotional trait empathy than healthy comparison participants. Unlike healthy comparison participants, in response to the empathy inductions hippocampal patients reported no increase in empathy ratings or prosocial behavior. The results provide preliminary evidence for a role for hippocampal declarative memory in empathy. PMID:23526601

  6. Hippocampal abnormalities after prolonged febrile convulsion: a longitudinal MRI study.

    PubMed

    Scott, Rod C; King, Martin D; Gadian, David G; Neville, Brian G R; Connelly, Alan

    2003-11-01

    Mesial temporal sclerosis (MTS) is the most common lesion in patients who require epilepsy surgery, and approximately 50% of patients with MTS have a history of prolonged febrile convulsion (PFC) in childhood. The latter led to the hypothesis that convulsive status epilepticus, including PFC, can cause MTS. Our recently published data on children investigated within 5 days of a PFC showed that children investigated by MRI within 48 h of a PFC had large hippocampal volumes and prolongation of T2 relaxation time. Patients investigated >48 h from a PFC had large hippocampal volumes and normal T2 relaxation time. These data are strongly suggestive of hippocampal oedema that is resolving within 5 days of a PFC, but do not exclude the possibility of a pre-existing hippocampal lesion. Fourteen children from the original study had follow-up investigations carried out 4-8 months after the acute investigations. Of the 14 patients, four have had further seizures. Two had short febrile convulsions, one had PFC and one had non-febrile seizures. There was a significant reduction in hippocampal volume and T2 relaxation time between the first and second investigations, and there is now no difference in hippocampal volume or T2 relaxation time in patients compared with a control population. Moreover, there is a significant increase in hippocampal volume asymmetry in patients at follow-up when compared with initial data. Five out of 14 patients had asymmetry outside the 95th percentile for control subjects and, of these, three had one hippocampal volume outside the lower 95% prediction limit for control subjects. A reduction in hippocampal volume or T2 relaxation time, into or below the normal range between the first and second scans, indicates that the earlier findings are temporary and are strongly suggestive of hippocampal oedema as the abnormality in the initial investigations. The change in hippocampal symmetry in the patient group is consistent with injury and neuronal loss

  7. Effects of hypoxia-induced neonatal seizures on acute hippocampal injury and later-life seizure susceptibility and anxiety-related behavior in mice.

    PubMed

    Rodriguez-Alvarez, Natalia; Jimenez-Mateos, Eva M; Dunleavy, Mark; Waddington, John L; Boylan, Geraldine B; Henshall, David C

    2015-11-01

    Seizures are common during the neonatal period, often due to hypoxic-ischemic encephalopathy and may contribute to acute brain injury and the subsequent development of cognitive deficits and childhood epilepsy. Here we explored short- and long-term consequences of neonatal hypoxia-induced seizures in 7 day old C57BL/6J mice. Seizure activity, molecular markers of hypoxia and histological injury were investigated acutely after hypoxia and response to chemoconvulsants and animal behaviour was explored at adulthood. Hypoxia was induced by exposing pups to 5% oxygen for 15 min (global hypoxia). Electrographically defined seizures with behavioral correlates occurred in 95% of these animals and seizures persisted for many minutes after restitution of normoxia. There was minimal morbidity or mortality. Pre- or post-hypoxia injection of phenobarbital (50mg/kg) had limited efficacy at suppressing seizures. The hippocampus from neonatal hypoxia-seizure mice displayed increased expression of vascular endothelial growth factor and the immediate early gene c-fos, minimal histological evidence of cell injury and activation of caspase-3 in scattered neurons. Behavioral analysis of mice five weeks after hypoxia-induced seizures detected novel anxiety-related and other behaviors, while performance in a spatial memory test was similar to controls. Seizure threshold tests with kainic acid at six weeks revealed that mice previously subject to neonatal hypoxia-induced seizures developed earlier, more frequent and longer-duration seizures. This study defines a set of electro-clinical, molecular, pharmacological and behavioral consequences of hypoxia-induced seizures that indicate short- and long-term deleterious outcomes and may be a useful model to investigate the pathophysiology and treatment of neonatal seizures in humans. PMID:26341542

  8. Involvement of BDNF/ERK signaling in spontaneous recovery from trimethyltin-induced hippocampal neurotoxicity in mice.

    PubMed

    Lee, Sueun; Yang, Miyoung; Kim, Juhwan; Son, Yeonghoon; Kim, Jinwook; Kang, Sohi; Ahn, Wooseok; Kim, Sung-Ho; Kim, Jong-Choon; Shin, Taekyun; Wang, Hongbing; Moon, Changjong

    2016-03-01

    Trimethyltin (TMT) toxicity causes histopathological damage in the hippocampus and induces seizure behaviors in mice. The lesions and symptoms recover spontaneously over time; however, little is known about the precise mechanisms underlying this recovery from TMT toxicity. We investigated changes in the brain-derived neurotrophic factor/extracellular signal-regulated kinases (BDNF/ERK) signaling pathways in the mouse hippocampus following TMT toxicity. Mice (7 weeks old, C57BL/6) administered TMT (2.6mg/kg intraperitoneally) showed acute and severe neurodegeneration with increased TUNEL-positive cells in the dentate gyrus (DG) of the hippocampus. The mRNA and protein levels of BDNF in the hippocampus were elevated by TMT treatment. Immunohistochemical analysis showed that TMT treatment markedly increased phosphorylated ERK1/2 expression in the mouse hippocampus 1-4 days after TMT treatment, although the intensity of ERK immunoreactivity in mossy fiber decreased at 1-8 days post-treatment. In addition, ERK-immunopositive cells were localized predominantly in doublecortin-positive immature progenitor neurons in the DG. In primary cultured immature hippocampal neurons (4 days in vitro), BDNF treatment alleviated TMT-induced neurotoxicity, via activation of the ERK signaling pathway. Thus, we suggest that BDNF/ERK signaling pathways may be associated with cell differentiation and survival of immature progenitor neurons, and will eventually lead to spontaneous recovery in TMT-induced hippocampal neurodegeneration. PMID:26772626

  9. Effects of different concentration and duration time of isoflurane on acute and long-term neurocognitve function of young adult C57BL/6 mouse

    PubMed Central

    Liu, Jianhui; Wang, Peijun; Zhang, Xiaoqing; Zhang, Wei; Gu, Guojun

    2014-01-01

    Postoperative cognitive dysfunction (POCD) is a decline in cognitive performance after a surgery with anaesthesia. The exact reasons of surgery and/or anaesthesia resulting in POCD are unclear. The aim of this study is to investigate the effects of different concentration and duration time of isoflurane anaesthesia on cognitive performance and cellular mechanisms involved in learning and memory function. In present work, young adult male C57BL/6 mice (age: 8 weeks) were anaesthetized by different concentration isoflurane in 100% oxygen for different duration time (Mice in group I1 received 0.7% isoflurane 0.5 h, mice in I2 received 0.7% isoflurane 2 h, mice in I3 received 1.4% isoflurane 2 h, and mice in I4 received 1.4% isoflurane 4 h). Non-anaesthetized mice served as control group (I0). Spatial learning was assessed at 10 days post-anesthesia in Morris water maze (MWM). Hippocampal protein expressions of activated caspase 3, NMDA receptor subunit NR2B, and extracellular-signal regulated kinase (ERK) 1/2 were evaluated 24 hours and 2 weeks post anesthesia. Protein expression of activated caspase3 was detected acute elevated in I3 (24 h post-anesthesia) and acute and long-term elevated in I4 (24 hours and 2 weeks post-anesthesia). There was no significant difference between I1, I2 and control group. Protein expressions of NR2B showed an acute and long-term increasement in I1 and I2, decreasement in I4, and an acute decline, then returned to normal in I3 compared to control group. The ratio of phosopho-ERK1/2 to total-ERK showed an acute increasement in I1 and I2, then came to normal 2 weeks post anesthesia compared to control group, meanwhile, we detected an acute and long-term decline in I3 and I4. In MWM test, mice in I1 and I2 showed cognitive improvement, mice in I3 showed similar to control group, while mice in I4 demonstrated cognitive impairment, which were approximately corresponding to the changes of protein expression of NR2B and activation of ERK1

  10. Behavioral despair associated with a mouse model of Crohn's disease: Role of nitric oxide pathway.

    PubMed

    Heydarpour, Pouria; Rahimian, Reza; Fakhfouri, Gohar; Khoshkish, Shayan; Fakhraei, Nahid; Salehi-Sadaghiani, Mohammad; Wang, Hongxing; Abbasi, Ata; Dehpour, Ahmad Reza; Ghia, Jean-Eric

    2016-01-01

    Crohn's disease (CD) is associated with increased psychiatric co-morbidities. Nitric oxide (NO) is implicated in inflammation and tissue injury in CD, and it may also play a central role in pathogenesis of the accompanying behavioral despair. This study investigated the role of the NO pathway in behavioral despair associated with a mouse model of CD. Colitis was induced by intrarectal (i.r.) injection of 2,4,6-trinitrobenzenesulfonic acid (10mg TNBS in 50% ethanol). Forced swimming test (FST), pharmacological studies and tissues collection were performed 72 h following TNBS administration. To address a possible inflammatory origin for the behavioral despair following colitis induction, tumor necrosis factor-alpha (TNF-α) level was measured in both the hippocampal and colonic tissue samples. In parallel, hippocampal inducible nitric oxide synthase (iNOS) and nitrite level were evaluated. Pharmacological studies targeting the NO pathway were performed 30-60 min before behavioral test. Colitis was confirmed by increased colonic TNF-α level and microscopic score. Colitic mice demonstrated a significantly higher immobility time in the FST associated to a significant increase of hippocampal TNF-α, iNOS expression and nitrite content. Acute NOS inhibition using either Nω-nitro-l-arginine methyl ester (a non-specific NOS inhibitor) or aminoguanidine hydrochloride (a specific iNOS inhibitor) decreased the immobility time in colitic groups. Moreover, acute treatment with both NOS inhibitors decreased the TNF-α level and nitrite content in the hippocampal samples. This study suggests that the NO pathway may be involved in the behavioral effects in the mouse TNBS model of CD. These findings endow new insights into the gut-brain communication during the development of colonic inflammation, which may ultimately lead to improved therapeutic strategies to combat behavior changes associated with gastrointestinal disorders. PMID:26268932

  11. Acute and Chronic Plasma Metabolomic and Liver Transcriptomic Stress Effects in a Mouse Model with Features of Post-Traumatic Stress Disorder

    PubMed Central

    Gautam, Aarti; D’Arpa, Peter; Donohue, Duncan E.; Muhie, Seid; Chakraborty, Nabarun; Luke, Brian T.; Grapov, Dmitry; Carroll, Erica E.; Meyerhoff, James L.; Hammamieh, Rasha; Jett, Marti

    2015-01-01

    Acute responses to intense stressors can give rise to post-traumatic stress disorder (PTSD). PTSD diagnostic criteria include trauma exposure history and self-reported symptoms. Individuals who meet PTSD diagnostic criteria often meet criteria for additional psychiatric diagnoses. Biomarkers promise to contribute to reliable phenotypes of PTSD and comorbidities by linking biological system alterations to behavioral symptoms. Here we have analyzed unbiased plasma metabolomics and other stress effects in a mouse model with behavioral features of PTSD. In this model, C57BL/6 mice are repeatedly exposed to a trained aggressor mouse (albino SJL) using a modified, resident-intruder, social defeat paradigm. Our recent studies using this model found that aggressor-exposed mice exhibited acute stress effects including changed behaviors, body weight gain, increased body temperature, as well as inflammatory and fibrotic histopathologies and transcriptomic changes of heart tissue. Some of these acute stress effects persisted, reminiscent of PTSD. Here we report elevated proteins in plasma that function in inflammation and responses to oxidative stress and damaged tissue at 24 hrs post-stressor. Additionally at this acute time point, transcriptomic analysis indicated liver inflammation. The unbiased metabolomics analysis showed altered metabolites in plasma at 24 hrs that only partially normalized toward control levels after stress-withdrawal for 1.5 or 4 wks. In particular, gut-derived metabolites were altered at 24 hrs post-stressor and remained altered up to 4 wks after stress-withdrawal. Also at the 4 wk time point, hyperlipidemia and suppressed metabolites of amino acids and carbohydrates in plasma coincided with transcriptomic indicators of altered liver metabolism (activated xenobiotic and lipid metabolism). Collectively, these system-wide sequelae to repeated intense stress suggest that the simultaneous perturbed functioning of multiple organ systems (e.g., brain, heart

  12. Acute administration of a small molecule p75NTR ligand does not prevent hippocampal neuron loss nor development of spontaneous seizures after pilocarpine-induced status epilepticus

    PubMed Central

    Grabenstatter, H.L.; Carlsen, J.; Raol, Y.H.; Yang, T.; Hund, D.; Del Angel, Y. Cruz; White, A.M.; Gonzalez, M.I.; Longo, F.M.; Russek, S.J.; Brooks-Kayal, A.R.

    2014-01-01

    Neurotrophins, such as brain-derived neurotrophic factor (BDNF), are initially expressed in a precursor form (e.g., proBDNF) and cleaved to form mature BDNF (mBDNF). Following pilocarpine-induced status epilepticus (SE), increases in neurotrophins regulate a wide variety of cell signaling pathways including pro-survival and cell-death machinery in a receptor-specific manner. ProBDNF preferentially binds to the p75 neurotrophin receptor (p75NTR), while mBDNF is the major ligand of the tropomyosin related kinase receptor (TrkB). To elucidate a potential role of p75NTR in acute stages of epileptogenesis, rats were injected prior to and at onset of SE with LM11A-31, a small molecule ligand that binds to p75NTR to promote survival signaling and inhibit neuronal cell death. Modulation of early p75NTR signaling and its effects on (1) electrographic SE, (2) SE-induced neurodegeneration, and (3) subsequent spontaneous seizures were examined following LM11A-31 administration. Despite an established neuroprotective effect of LM11A-31 in several animal models of neurodegenerative disorders (e.g., Alzheimer’s disease, traumatic brain injury, and spinal cord injury), high-dose LM11A-31 administration prior to and at onset of SE did not reduce the intensity of electrographic SE, prevent SE-induced neuronal cell injury, nor inhibit the progression of epileptogenesis. Further studies are required to understand the role of p75NTR activation during epileptogenesis and in seizure-induced cell injury in the hippocampus among other potential cellular pathologies contributing to the onset of spontaneous seizures. Additional studies utilizing more prolonged treatment with LM11A-31 are required to reach a definite conclusion on its potential neuroprotective role in epilepsy. PMID:24801281

  13. Effect of physical training on the age-related changes of acetylcholinesterase-positive fibers in the hippocampal formation and parietal cortex in the C57BL/6J mouse.

    PubMed

    Chen, Y C; Lei, J L; Chen, Q S; Wang, S L

    1998-05-01

    We investigated the effect of a moderate amount of prolonged physical training initiated at 3 months of age on the age-related changes of the hippocampal and cortical cholinergic fibers. A total of 80 male C57BL/6J mice were divided into five groups which were trained (including adult and old trained, AT and OT), sedentary (adult and old sedentary, AS and OS) and young (Y). From 3 months old, the mice of the trained groups were treated with a voluntary running wheel for 1 h each day, 5 days per week. AT had been trained up to 13-month-old whereas OT up to 24 months old. At the same time, the mice of the sedentary groups were put in immobilized wheels. We set the criterion for effective training in the trained mice such that the heart-to-body weight ratio should be at least 2 S.D. above the mean in the age-matched groups. Using AChE histochemistry and stereology, the AChE-positive fibers were analyzed quantitatively in the molecular layers in CA1, CA3 and the dentate gyrus of the hippocampal formation, and in III, V layers in the motor and somatosensory cortex. Comparison of Y, AS and OS (3, 13 and 24 months of age) showed minimum AChE-positive fiber density in the hippocampal formation and the cortex in OS (P < 0.01). After 10 and 21 months of running, the AChE-positive fibers in all regions examined in the trained groups were significantly increased compared to their age-matched controls (P < 0.05 or 0.01). In the hippocampal formation, the increase was about 17% in AT and 23% in OT, whereas, in the cortex, it was 13% in AT and 22% in OT. These results indicated that a moderate amount of prolonged physical training could modify the age-related loss of cholinergic fibers in the hippocampal formation and cortex, furthermore the modified loss of cholinergic fibers might be associated with the regeneration of hippocampal and cortical cholinergic fibers stimulated by chronic running. PMID:9663794

  14. Intraneuronal Aβ accumulation induces hippocampal neuron hyperexcitability through A-type K+ current inhibition mediated by activation of caspases and GSK-3

    PubMed Central

    Scala, Federico; Fusco, Salvatore; Ripoli, Cristian; Piacentini, Roberto; Li Puma, Domenica Donatella; Spinelli, Matteo; Laezza, Fernanda; Grassi, Claudio; D’Ascenzo, Marcello

    2016-01-01

    Amyloid β-protein (Aβ) pathologies have been linked to dysfunction of excitability in neurons of the hippocampal circuit, but the molecular mechanisms underlying this process are still poorly understood. Here, we applied whole-cell patch-clamp electrophysiology to primary hippocampal neurons and show that intracellular Aβ42 delivery leads to increased spike discharge and action potential broadening through downregulation of A-type K+ currents. Pharmacologic studies showed that caspases and glycogen synthase kinase 3 (GSK-3) activation are required for these Aβ42-induced effects. Extracellular perfusion and subsequent internalization of Aβ42 increase spike discharge and promote GSK-3-dependent phosphorylation of the Kv4.2 α-subunit, a molecular determinant of A-type K+ currents, at Ser-616. In acute hippocampal slices derived from an adult triple-transgenic Alzheimer’s mouse model, characterized by endogenous intracellular accumulation of Aβ42, CA1 pyramidal neurons exhibit hyperexcitability accompanied by increased phosphorylation of Kv4.2 at Ser-616. Collectively, these data suggest that intraneuronal Aβ42 accumulation leads to an intracellular cascade culminating into caspases activation and GSK-3-dependent phosphorylation of Kv4.2 channels. These findings provide new insights into the toxic mechanisms triggered by intracellular Aβ42 and offer potentially new therapeutic targets for Alzheimer’s disease treatment. PMID:25541422

  15. Acute over-the-counter pharmacological intervention does not adversely affect behavioral outcome following diffuse traumatic brain injury in the mouse.

    PubMed

    Harrison, Jordan L; Rowe, Rachel K; O'Hara, Bruce F; Adelson, P David; Lifshitz, Jonathan

    2014-09-01

    Following mild traumatic brain injury (TBI), patients may self-treat symptoms of concussion, including post-traumatic headache, taking over-the-counter (OTC) analgesics. Administering one dose of OTC analgesics immediately following experimental brain injury mimics the at-home treated population of concussed patients and may accelerate the understanding of the relationship between brain injury and OTC pharmacological intervention. In the current study, we investigate the effect of acute administration of OTC analgesics on neurological function and cortical cytokine levels after experimental diffuse TBI in the mouse. Adult, male C57BL/6 mice were injured using a midline fluid percussion (mFPI) injury model of concussion (6-10 min righting reflex time for brain-injured mice). Experimental groups included mFPI paired with either ibuprofen (60 mg/kg, i.p.; n = 16), acetaminophen (40 mg/kg, i.p.; n = 9), or vehicle (15% ethanol (v/v) in 0.9% saline; n = 13) and sham injury paired OTC medicine or vehicle (n = 7-10 per group). At 24 h after injury, functional outcome was assessed using the rotarod task and a modified neurological severity score. Following behavior assessment, cortical cytokine levels were measured by multiplex ELISA at 24 h post-injury. To evaluate efficacy on acute inflammation, cortical cytokine levels were measured also at 6 h post-injury. In the diffuse brain-injured mouse, immediate pharmacological intervention did not attenuate or exacerbate TBI-induced functional deficits. Cortical cytokine levels were affected by injury, time, or their interaction. However, levels were not affected by treatment at 6 or 24 h post-injury. These data indicate that acute administration of OTC analgesics did not exacerbate or attenuate brain-injury deficits which may inform clinical recommendations for the at-home treated mildly concussed patient. PMID:24760409

  16. Bisphenol A down-regulates rate-limiting Cyp11a1 to acutely inhibit steroidogenesis in cultured mouse antral follicles

    PubMed Central

    Peretz, Jackye; Flaws, Jodi A.

    2013-01-01

    Bisphenol A (BPA) is the backbone of polycarbonate plastic products and the epoxy resin lining of aluminum cans. Previous studies have shown that exposure to BPA decreases sex steroid hormone production in mouse antral follicles. The current study tests the hypothesis that BPA first decreases the expression levels of the steroidogenic enzyme cytochrome P450 side-chain cleavage (Cyp11a1) and steroidogenic acute regulatory protein (StAR) in mouse antral follicles, leading to a decrease in sex steroid hormone production in vitro. Further, the current study tests the hypothesis that these effects are acute and reversible after removal of BPA. Exposure to BPA (10μg/mL and 100μg/mL) significantly decreased expression of Cyp11a1 and StAR beginning at 18h and 72h, respectively, compared to controls. Exposure to BPA (10μg/mL and 100μg/mL) significantly decreased progesterone levels beginning at 24h and decreased androstenedione, testosterone, and estradiol levels at 72h and 96h compared to controls. Further, after removing BPA from the culture media at 20h, expression of Cyp11a1 and progesterone levels were restored to control levels by 48h and 72h, respectively. Additionally, expression of StAR and levels of androstenedione, testosterone, and estradiol never decreased compared to controls. These data suggest that BPA acutely decreases expression of Cyp11a1 as early as 18h and this reduction in Cyp11a1 may lead to a decrease in progesterone production by 24h, followed by a decrease in androstenedione, testosterone, and estradiol production and expression of StAR at 72h. Therefore, BPA exposure likely targets Cyp11a1 and steroidogenesis, but these effects are reversible with removal of BPA exposure. PMID:23707772

  17. Effect of Acute Swim Stress on Plasma Corticosterone and Brain Monoamine Levels in Bidirectionally Selected DxH Recombinant Inbred Mouse Strains Differing in Fear Recall and Extinction

    PubMed Central

    Browne, Caroline A.; Hanke, Joachim; Rose, Claudia; Walsh, Irene; Foley, Tara; Clarke, Gerard; Schwegler, Herbert; Cryan, John F.; Yilmazer-Hanke, Deniz

    2015-01-01

    Stress-induced changes in plasma corticosterone and central monoamine levels were examined in mouse strains that differ in fear-related behaviors. Two DxH recombinant inbred mouse strains with a DBA/2J background, which were originally bred for a high (H-FSS) and low fear-sensitized acoustic startle reflex (L-FSS), were used. Levels of noradrenaline, dopamine, and serotonin and their metabolites (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were studied in the amygdala, hippocampus, medial prefrontal cortex, striatum, hypothalamus, and brainstem. H-FSS mice exhibited increased fear levels and a deficit in fear extinction (within-session) in the auditory fear-conditioning test, and depressive-like behavior in the acute forced swim stress test. They had higher tissue noradrenaline and serotonin levels and lower dopamine and serotonin turnover under basal conditions, although they were largely insensitive to stress-induced changes in neurotransmitter metabolism. In contrast, acute swim stress increased monoamine levels but decreased turnover in the less fearful L-FSS mice. L-FSS mice also showed a trend toward higher basal and stress-induced corticosterone levels and an increase in noradrenaline and serotonin in the hypothalamus and brainstem 30 minutes after stress compared to H-FSS mice. Moreover, the dopaminergic system was activated differentially in the medial prefrontal cortex and striatum of the two strains by acute stress. Thus, H-FSS mice showed increased basal noradrenaline tissue levels compatible with a fear phenotype or chronic stressed condition. Low corticosterone levels and the poor monoamine response to stress in H-FSS mice may point to mechanisms similar to those found in principal fear disorders or posttraumatic stress disorder. PMID:25117886

  18. Effect of acute swim stress on plasma corticosterone and brain monoamine levels in bidirectionally selected DxH recombinant inbred mouse strains differing in fear recall and extinction.

    PubMed

    Browne, Caroline A; Hanke, Joachim; Rose, Claudia; Walsh, Irene; Foley, Tara; Clarke, Gerard; Schwegler, Herbert; Cryan, John F; Yilmazer-Hanke, Deniz

    2014-12-01

    Stress-induced changes in plasma corticosterone and central monoamine levels were examined in mouse strains that differ in fear-related behaviors. Two DxH recombinant inbred mouse strains with a DBA/2J background, which were originally bred for a high (H-FSS) and low fear-sensitized acoustic startle reflex (L-FSS), were used. Levels of noradrenaline, dopamine, and serotonin and their metabolites 3,4-dihydroxyphenyacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were studied in the amygdala, hippocampus, medial prefrontal cortex, striatum, hypothalamus and brainstem. H-FSS mice exhibited increased fear levels and a deficit in fear extinction (within-session) in the auditory fear-conditioning test, and depressive-like behavior in the acute forced swim stress test. They had higher tissue noradrenaline and serotonin levels and lower dopamine and serotonin turnover under basal conditions, although they were largely insensitive to stress-induced changes in neurotransmitter metabolism. In contrast, acute swim stress increased monoamine levels but decreased turnover in the less fearful L-FSS mice. L-FSS mice also showed a trend toward higher basal and stress-induced corticosterone levels and an increase in noradrenaline and serotonin in the hypothalamus and brainstem 30 min after stress compared to H-FSS mice. Moreover, the dopaminergic system was activated differentially in the medial prefrontal cortex and striatum of the two strains by acute stress. Thus, H-FSS mice showed increased basal noradrenaline tissue levels compatible with a fear phenotype or chronic stressed condition. Low corticosterone levels and the poor monoamine response to stress in H-FSS mice may point to mechanisms similar to those found in principal fear disorders or post-traumatic stress disorder. PMID:25117886

  19. Altered Hippocampal Transcript Profile Accompanies an Age-Related Spatial Memory Deficit in Mice

    ERIC Educational Resources Information Center

    Verbitsky, Miguel; Yonan, Amanda L.; Malleret, Gael; Kandel, Eric R.; Gilliam, T. Conrad; Pavlidis, Paul

    2004-01-01

    We have carried out a global survey of age-related changes in mRNA levels in the 57BL/6NIA mouse hippocampus and found a difference in the hippocampal gene expression profile between 2-month-old young mice and 15-month-old middle-aged mice correlated with an age-related cognitive deficit in hippocampal-based explicit memory formation. Middle-aged…

  20. Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline.

    PubMed

    Cho, Kyung-Ok; Lybrand, Zane R; Ito, Naoki; Brulet, Rebecca; Tafacory, Farrah; Zhang, Ling; Good, Levi; Ure, Kerstin; Kernie, Steven G; Birnbaum, Shari G; Scharfman, Helen E; Eisch, Amelia J; Hsieh, Jenny

    2015-01-01

    Acute seizures after a severe brain insult can often lead to epilepsy and cognitive impairment. Aberrant hippocampal neurogenesis follows the insult but the role of adult-generated neurons in the development of chronic seizures or associated cognitive deficits remains to be determined. Here we show that the ablation of adult neurogenesis before pilocarpine-induced acute seizures in mice leads to a reduction in chronic seizure frequency. We also show that ablation of neurogenesis normalizes epilepsy-associated cognitive deficits. Remarkably, the effect of ablating adult neurogenesis before acute seizures is long lasting as it suppresses chronic seizure frequency for nearly 1 year. These findings establish a key role of neurogenesis in chronic seizure development and associated memory impairment and suggest that targeting aberrant hippocampal neurogenesis may reduce recurrent seizures and restore cognitive function following a pro-epileptic brain insult. PMID:25808087

  1. Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline

    PubMed Central

    Cho, Kyung-Ok; Lybrand, Zane R.; Ito, Naoki; Brulet, Rebecca; Tafacory, Farrah; Zhang, Ling; Good, Levi; Ure, Kerstin; Kernie, Steven G.; Birnbaum, Shari G.; Scharfman, Helen E.; Eisch, Amelia J.; Hsieh, Jenny

    2015-01-01

    Acute seizures after a severe brain insult can often lead to epilepsy and cognitive impairment. Aberrant hippocampal neurogenesis follows the insult but the role of adult-generated neurons in the development of chronic seizures or associated cognitive deficits remains to be determined. Here we show that the ablation of adult neurogenesis before pilocarpine-induced acute seizures in mice leads to a reduction in chronic seizure frequency. We also show that ablation of neurogenesis normalizes epilepsy-associated cognitive deficits. Remarkably, the effect of ablating adult neurogenesis before acute seizures is long lasting as it suppresses chronic seizure frequency for nearly 1 year. These findings establish a key role of neurogenesis in chronic seizure development and associated memory impairment and suggest that targeting aberrant hippocampal neurogenesis may reduce recurrent seizures and restore cognitive function following a pro-epileptic brain insult. PMID:25808087

  2. A mouse model of Townes-Brocks syndrome expressing a truncated mutant Sall1 protein is protected from acute kidney injury.

    PubMed

    Hirsch, Sara; El-Achkar, Tarek; Robbins, Lynn; Basta, Jeannine; Heitmeier, Monique; Nishinakamura, Ryuichi; Rauchman, Michael

    2015-11-15

    It has been postulated that developmental pathways are reutilized during repair and regeneration after injury, but functional analysis of many genes required for kidney formation has not been performed in the adult organ. Mutations in SALL1 cause Townes-Brocks syndrome (TBS) and nonsyndromic congenital anomalies of the kidney and urinary tract, both of which lead to childhood kidney failure. Sall1 is a transcriptional regulator that is expressed in renal progenitor cells and developing nephrons in the embryo. However, its role in the adult kidney has not been investigated. Using a mouse model of TBS (Sall1TBS), we investigated the role of Sall1 in response to acute kidney injury. Our studies revealed that Sall1 is expressed in terminally differentiated renal epithelia, including the S3 segment of the proximal tubule, in the mature kidney. Sall1TBS mice exhibited significant protection from ischemia-reperfusion injury and aristolochic acid-induced nephrotoxicity. This protection from acute injury is seen despite the presence of slowly progressive chronic kidney disease in Sall1TBS mice. Mice containing null alleles of Sall1 are not protected from acute kidney injury, indicating that expression of a truncated mutant protein from the Sall1TBS allele, while causative of congenital anomalies, protects the adult kidney from injury. Our studies further revealed that basal levels of the preconditioning factor heme oxygenase-1 are elevated in Sall1TBS kidneys, suggesting a mechanism for the relative resistance to injury in this model. Together, these studies establish a functional role for Sall1 in the response of the adult kidney to acute injury. PMID:26311113

  3. Rhythms of the hippocampal network.

    PubMed

    Colgin, Laura Lee

    2016-04-01

    The hippocampal local field potential (LFP) shows three major types of rhythms: theta, sharp wave-ripples and gamma. These rhythms are defined by their frequencies, they have behavioural correlates in several species including rats and humans, and they have been proposed to carry out distinct functions in hippocampal memory processing. However, recent findings have challenged traditional views on these behavioural functions. In this Review, I discuss our current understanding of the origins and the mnemonic functions of hippocampal theta, sharp wave-ripples and gamma rhythms on the basis of findings from rodent studies. In addition, I present an updated synthesis of their roles and interactions within the hippocampal network. PMID:26961163

  4. Interictal Hippocampal Spiking Influences the Occurrence of Hippocampal Sleep Spindles

    PubMed Central

    Frauscher, Birgit; Bernasconi, Neda; Caldairou, Benoit; von Ellenrieder, Nicolás; Bernasconi, Andrea; Gotman, Jean; Dubeau, François

    2015-01-01

    Objectives: The significance of hippocampal sleep spindles and their relation to epileptic activity is still a matter of controversy. Hippocampal spindles have been considered a physiological phenomenon, an evoked response to afferent epileptic discharges, or even the expression of an epileptic manifestation. To address this question, we investigated the presence and rate of hippocampal spindles in focal pharmacoresistant epilepsy patients undergoing scalp-intracerebral electroencephalography (EEG). Design: Sleep recording with scalp-intracerebral EEG. Setting: Tertiary referral epilepsy center. Patients: Twenty-five epilepsy patients (extratemporal: n = 6, temporal: n = 15, and multifocal including the temporal lobe: n = 4). Interventions: N/A. Measurements and Results: We analyzed associations between hippocampal spindles and hippocampal electrophysiological findings (interictal spiking, seizure onset zone) and magnetic resonance imaging volumetry. Sixteen of 25 patients (64%) had hippocampal spindles (extratemporal epilepsy: 6/6; temporal epilepsy: 10/15; and multifocal epilepsy: 0/4; P = 0.005). Median spindle rate was 0.6 (range, 0.1–8.6)/min in nonrapid eye movement sleep. Highest spindle rates were found in hippocampi of patients with extratemporal epilepsy (P < 0.001). A negative association was found between hippocampal spiking activity and spindle rate (P = 0.003). We found no association between the presence (n = 21) or absence (n = 17) of hippocampal seizure onset zone and hippocampal spindle rate (P = 0.114), and between a normal (n = 30) or atrophic (n = 8) hippocampus and hippocampal spindle rate (P = 0.195). Conclusions: Hippocampal spindles represent a physiological phenomenon, with an expression that is diminished in epilepsy affecting the temporal lobe. Hippocampal spiking lowered the rate of hippocampal spindles, suggesting that epileptic discharges may at least in part be a transformation of these physiological events, similar to the

  5. Contribution of Proteus mirabilis urease to persistence, urolithiasis, and acute pyelonephritis in a mouse model of ascending urinary tract infection.

    PubMed

    Johnson, D E; Russell, R G; Lockatell, C V; Zulty, J C; Warren, J W; Mobley, H L

    1993-07-01

    Proteus mirabilis, a significant cause of bacteriuria and acute pyelonephritis in humans, produces urease. This high-molecular-weight, multimeric, cytoplasmic enzyme hydrolyzes urea to ammonia and carbon dioxide. To assess the role of urease in colonization, urolithiasis, and acute pyelonephritis in an animal model of ascending urinary tract infection, we compared a uropathogenic strain of P. mirabilis with its isogenic urease-negative mutant, containing an insertion mutation within ureC, the gene encoding the large subunit of the enzyme. Mice challenged transurethrally with the parent strain developed significant bacteriuria and urinary stones. The urease-negative mutant had a 50% infective dose of 2.7 x 10(9) CFU, a value more than 1,000-fold greater than that of the parent strain (2.2 x 10(6) CFU). The urease-positive parent strain reached significantly higher concentrations and persisted significantly longer in the bladder and kidney than did the mutant. Indeed, in the kidney, the parent strain increased in concentration while the mutant concentration fell so that, by 1 week, the parent strain concentration was 10(6) times that of the mutant. Similarly, the urease-positive parent produced significantly more severe renal pathology than the mutant. The initial abnormalities were in and around the pelvis and consisted of acute inflammation and epithelial necrosis. By 1 week, pyelitis was more severe, crystals were seen in the pelvis, and acute pyelonephritis, with acute interstitial inflammation, tubular epithelial cell necrosis, and in some cases abscesses, had developed. By 2 weeks, more animals had renal abscesses and radial bands of fibrosis. We conclude that the urease of P. mirabilis is a critical virulence determinant for colonization, urolithiasis, and severe acute pyelonephritis. PMID:8514376

  6. An Advanced Preclinical Mouse Model for Acute Myeloid Leukemia Using Patients' Cells of Various Genetic Subgroups and In Vivo Bioluminescence Imaging

    PubMed Central

    Vick, Binje; Rothenberg, Maja; Sandhöfer, Nadine; Carlet, Michela; Finkenzeller, Cornelia; Krupka, Christina; Grunert, Michaela; Trumpp, Andreas; Corbacioglu, Selim; Ebinger, Martin; André, Maya C.; Hiddemann, Wolfgang; Schneider, Stephanie; Subklewe, Marion; Metzeler, Klaus H.; Spiekermann, Karsten; Jeremias, Irmela

    2015-01-01

    Acute myeloid leukemia (AML) is a clinically and molecularly heterogeneous disease with poor outcome. Adequate model systems are required for preclinical studies to improve understanding of AML biology and to develop novel, rational treatment approaches. Xenografts in immunodeficient mice allow performing functional studies on patient-derived AML cells. We have established an improved model system that integrates serial retransplantation of patient-derived xenograft (PDX) cells in mice, genetic manipulation by lentiviral transduction, and essential quality controls by immunophenotyping and targeted resequencing of driver genes. 17/29 samples showed primary engraftment, 10/17 samples could be retransplanted and some of them allowed virtually indefinite serial transplantation. 5/6 samples were successfully transduced using lentiviruses. Neither serial transplantation nor genetic engineering markedly altered sample characteristics analyzed. Transgene expression was stable in PDX AML cells. Example given, recombinant luciferase enabled bioluminescence in vivo imaging and highly sensitive and reliable disease monitoring; imaging visualized minimal disease at 1 PDX cell in 10000 mouse bone marrow cells and facilitated quantifying leukemia initiating cells. We conclude that serial expansion, genetic engineering and imaging represent valuable tools to improve the individualized xenograft mouse model of AML. Prospectively, these advancements enable repetitive, clinically relevant studies on AML biology and preclinical treatment trials on genetically defined and heterogeneous subgroups. PMID:25793878

  7. Live cell detection of chromosome 2 deletion and Sfpi1/PU1 loss in radiation-induced mouse acute myeloid leukaemia☆

    PubMed Central

    Olme, C.-H.; Finnon, R.; Brown, N.; Kabacik, S.; Bouffler, S.D.; Badie, C.

    2013-01-01

    The CBA/H mouse model of radiation-induced acute myeloid leukaemia (rAML) has been studied for decades to bring to light the molecular mechanisms associated with multistage carcinogenesis. A specific interstitial deletion of chromosome 2 found in a high proportion of rAML is recognised as the initiating event. The deletion leads to the loss of Sfpi, a gene essential for haematopoietic development. Its product, the transcription factor PU.1 acts as a tumour suppressor in this model. Although the deletion can be detected early following ionising radiation exposure by cytogenetic techniques, precise characterisation of the haematopoietic cells carrying the deletion and the study of their fate in vivo cannot be achieved. Here, using a genetically engineered C57BL/6 mouse model expressing the GFP fluorescent molecule under the control of the Sfpi1 promoter, which we have bred onto the rAML-susceptible CBA/H strain, we demonstrate that GFP expression did not interfere with X-ray induced leukaemia incidence and that GFP fluorescence in live leukaemic cells is a surrogate marker of radiation-induced chromosome 2 deletions with or without point mutations on the remaining allele of the Sfpi1 gene. This study presents the first experimental evidence for the detection of this leukaemia initiating event in live leukemic cells. PMID:23806234

  8. An advanced preclinical mouse model for acute myeloid leukemia using patients' cells of various genetic subgroups and in vivo bioluminescence imaging.

    PubMed

    Vick, Binje; Rothenberg, Maja; Sandhöfer, Nadine; Carlet, Michela; Finkenzeller, Cornelia; Krupka, Christina; Grunert, Michaela; Trumpp, Andreas; Corbacioglu, Selim; Ebinger, Martin; André, Maya C; Hiddemann, Wolfgang; Schneider, Stephanie; Subklewe, Marion; Metzeler, Klaus H; Spiekermann, Karsten; Jeremias, Irmela

    2015-01-01

    Acute myeloid leukemia (AML) is a clinically and molecularly heterogeneous disease with poor outcome. Adequate model systems are required for preclinical studies to improve understanding of AML biology and to develop novel, rational treatment approaches. Xenografts in immunodeficient mice allow performing functional studies on patient-derived AML cells. We have established an improved model system that integrates serial retransplantation of patient-derived xenograft (PDX) cells in mice, genetic manipulation by lentiviral transduction, and essential quality controls by immunophenotyping and targeted resequencing of driver genes. 17/29 samples showed primary engraftment, 10/17 samples could be retransplanted and some of them allowed virtually indefinite serial transplantation. 5/6 samples were successfully transduced using lentiviruses. Neither serial transplantation nor genetic engineering markedly altered sample characteristics analyzed. Transgene expression was stable in PDX AML cells. Example given, recombinant luciferase enabled bioluminescence in vivo imaging and highly sensitive and reliable disease monitoring; imaging visualized minimal disease at 1 PDX cell in 10000 mouse bone marrow cells and facilitated quantifying leukemia initiating cells. We conclude that serial expansion, genetic engineering and imaging represent valuable tools to improve the individualized xenograft mouse model of AML. Prospectively, these advancements enable repetitive, clinically relevant studies on AML biology and preclinical treatment trials on genetically defined and heterogeneous subgroups. PMID:25793878

  9. Effect of acute imipramine administration on the pattern of forced swim-induced c-Fos expression in the mouse brain.

    PubMed

    Yanagida, Satoru; Motomura, Keisuke; Ohashi, Ayako; Hiraoka, Kentaro; Miura, Tomofumi; Kanba, Shigenobu

    2016-08-26

    The forced swim test (FST) has been widely used for the preclinical evaluation of antidepressant drugs. Despite considerable differences in the protocol, equivalence of the FST for rats and mice has been rarely questioned. Previous research on the FST for rats revealed that repeated administration of antidepressant drugs attenuates the c-Fos response to swim stress in the hypothalamus and limbic regions. However, few studies have made similar investigations using the FST for mice. In the present study, we explored the mouse brain through immunohistochemistry staining for c-Fos after acute administration of imipramine or saline with or without a subsequent swim session. Imipramine enhanced the c-Fos density in regions of the central extended amygdala, while forced swim stress increased c-Fos expression in some hypothalamic (the ventrolateral preoptic nucleus and dorsomedial nucleus) and brain stem regions, which is consistent with previous reports. In contrast to previous literature with rats, swim stress brought a significant increase in c-Fos expression in the lateral septal nucleus and some other regions in the hypothalamus (the intermediate hypothalamic area, the paraventricular and arcuate nucleus) only in the imipramine-pretreated group, which has not been observed previously. In the arcuate nucleus, double immunostaining revealed that c-Fos was rarely co-expressed with proopiomelanocortin or tyrosine hydroxylase regardless of imipramine treatment. The present results suggest that the activation of several regions in the lateral septum and the hypothalamus underlies antidepressant-like effect in the mouse FST. PMID:27373591

  10. Hippocampal MR volumetry

    NASA Astrophysics Data System (ADS)

    Haller, John W.; Botteron, K.; Brunsden, Barry S.; Sheline, Yvette I.; Walkup, Ronald K.; Black, Kevin J.; Gado, Mokhtar; Vannier, Michael W.

    1994-09-01

    Goal: To estimate hippocampal volumes from in vivo 3D magnetic resonance (MR) brain images and determine inter-rater and intra- rater repeatability. Objective: The precision and repeatability of hippocampal volume estimates using stereologic measurement methods is sought. Design: Five normal control and five schizophrenic subjects were MR scanned using a MPRAGE protocol. Fixed grid stereologic methods were used to estimate hippocampal volumes on a graphics workstation. The images were preprocessed using histogram analysis to standardize 3D MR image scaling from 16 to 8 bits and image volumes were interpolated to 0.5 mm3 isotropic voxels. The following variables were constant for the repeated stereologic measures: grid size, inter-slice distance (1.5 mm), voxel dimensions (0.5 mm3), number of hippocampi measured (10), total number of measurements per rater (40), and number of raters (5). Two grid sizes were tested to determine the coefficient of error associated with the number of sampled 'hits' (approximately 140 and 280) on the hippocampus. Starting slice and grid position were randomly varied to assure unbiased volume estimates. Raters were blind to subject identity, diagnosis, and side of the brain from which the image volumes were extracted and the order of subject presentation was randomized for each of the raters. Inter- and intra-rater intraclass correlation coefficients (ICC) were determined. Results: The data indicate excellent repeatability of fixed grid stereologic hippocampal volume measures when using an inter-slice distance of 1.5 mm and a 6.25 mm2 grid (inter-rater ICCs equals 0.86 - 0.97, intra- rater ICCs equals 0.85 - 0.97). One major advantage of the current study was the use of 3D MR data which significantly improved visualization of hippocampal boundaries by providing the ability to access simultaneous orthogonal views while counting stereological marks within the hippocampus. Conclusion: Stereological estimates of 3D volumes from 2D MR

  11. Recombinant expression of Bacillus anthracis lethal toxin components of Indian isolate in Escherichia coli and determination of its acute toxicity level in mouse model.

    PubMed

    Nagendra, Suryanarayana; Vanlalhmuaka; Verma, Sarika; Tuteja, Urmil; Thavachelvam, Kulanthaivel

    2015-12-15

    Bacillus anthracis lethal toxin (LeTx) is the principle factor responsible for toxaemia and anthrax related death. Lethal toxin consist of two proteins viz protective antigen (PA) and lethal factor which combines in a typical fashion similar to other toxins belonging to A-B toxin super family. The amount of LeTx required to kill a particular organism generally differs among strains owing to their geographical distributions and genetic variation. In the present study, we have cloned PA and LF genes from B. anthracis clinical isolate of Indian origin and expressed them in soluble form employing Escherichia coli expression system. Both the proteins were purified to near homogeneity level using Immobilized metal ion affinity chromatography (IMAC). Further we have used equal ratio of both the proteins to form LeTx and determined its acute toxicity level in Balb/c mice by graphical method of Miller and Tainter. The LD50 value of LeTx by intravenous (i.v) route was found to be 0.97 ± 0.634 mg kg(-1) Balb/c mice. This study highlights the expression of recombinant LeTx from E. coli and assessing its acute toxicity level in experimental mouse model. PMID:26472254

  12. Uric acid is released in the brain during seizure activity and increases severity of seizures in a mouse model for acute limbic seizures.

    PubMed

    Thyrion, Lisa; Raedt, Robrecht; Portelli, Jeanelle; Van Loo, Pieter; Wadman, Wytse J; Glorieux, Griet; Lambrecht, Bart N; Janssens, Sophie; Vonck, Kristl; Boon, Paul

    2016-03-01

    Recent evidence points at an important role of endogenous cell-damage induced pro-inflammatory molecules in the generation of epileptic seizures. Uric acid, under the form of monosodium urate crystals, has shown to have pro-inflammatory properties in the body, but less is known about its role in seizure generation. This study aimed to unravel the contribution of uric acid to seizure generation in a mouse model for acute limbic seizures. We measured extracellular levels of uric acid in the brain and modulated them using complementary pharmacological and genetic tools. Local extracellular uric acid levels increased three to four times during acute limbic seizures and peaked between 50 and 100 min after kainic acid infusion. Manipulating uric acid levels through administration of allopurinol or knock-out of urate oxidase significantly altered the number of generalized seizures, decreasing and increasing them by a twofold respectively. Taken together, our results consistently show that uric acid is released during limbic seizures and suggest that uric acid facilitates seizure generalization. PMID:26774005

  13. Running exercise-induced up-regulation of hippocampal brain-derived neurotrophic factor is CREB-dependent

    PubMed Central

    Chen, Michael J.; Russo-Neustadt, Amelia A.

    2009-01-01

    The past decade has witnessed burgeoning evidence that antidepressant medications and physical exercise increase the expression of hippocampal brain-derived neurotrophic factor (BDNF). This phenomenon has gained widespread appeal because BDNF is one of the first macromolecules observed to play a central role not only in the treatment of mood disorders, but also in neuronal survival-, growth-, and plasticity-related signaling cascades. Thus, it has become critical to understand how BDNF synthesis is regulated. Much evidence exists that changes in BDNF expression result from the activation/phosphorylation of the transcription factor, cAMP-response-element binding protein (CREB) following the administration of antidepressant medications. Utilizing a mouse model genetically engineered with an inducible CREB repressor, our current study provides evidence that increases in BDNF expression and cellular survival signaling resulting from physical exercise are also dependent upon activation of this central transcription factor. The transcription and expression of hippocampal BDNF, as well as the activation of Akt, a key survival signaling molecule, were measured following acute exercise, and also following short-term treatment with the norepinephrine re-uptake inhibitor, reboxetine. We found that both interventions led to a marked increase in hippocampal BDNF mRNA, BDNF protein and Akt phosphorylation (as well as CREB phosphorylation) in wild-type mice. As expected, activation of the CREB repressor in mutant mice sharply decreased CREB phosphorylation. In addition, all measures noted above remained at baseline levels when mutant mice exercised or received reboxetine. Increases in BDNF and phospho-Akt were also prevented when mutant mice received a combination of exercise and antidepressant treatment. The results are discussed in the context of what is currently known about BDNF signaling. PMID:19294650

  14. Bisphenol A down-regulates rate-limiting Cyp11a1 to acutely inhibit steroidogenesis in cultured mouse antral follicles

    SciTech Connect

    Peretz, Jackye; Flaws, Jodi A.

    2013-09-01

    Bisphenol A (BPA) is the backbone of polycarbonate plastic products and the epoxy resin lining of aluminum cans. Previous studies have shown that exposure to BPA decreases sex steroid hormone production in mouse antral follicles. The current study tests the hypothesis that BPA first decreases the expression levels of the steroidogenic enzyme cytochrome P450 side-chain cleavage (Cyp11a1) and steroidogenic acute regulatory protein (StAR) in mouse antral follicles, leading to a decrease in sex steroid hormone production in vitro. Further, the current study tests the hypothesis that these effects are acute and reversible after removal of BPA. Exposure to BPA (10 μg/mL and 100 μg/mL) significantly decreased expression of Cyp11a1 and StAR beginning at 18 h and 72 h, respectively, compared to controls. Exposure to BPA (10 μg/mL and 100 μg/mL) significantly decreased progesterone levels beginning at 24 h and decreased androstenedione, testosterone, and estradiol levels at 72 h and 96 h compared to controls. Further, after removing BPA from the culture media at 20 h, expression of Cyp11a1 and progesterone levels were restored to control levels by 48 h and 72 h, respectively. Additionally, expression of StAR and levels of androstenedione, testosterone, and estradiol never decreased compared to controls. These data suggest that BPA acutely decreases expression of Cyp11a1 as early as 18 h and this reduction in Cyp11a1 may lead to a decrease in progesterone production by 24 h, followed by a decrease in androstenedione, testosterone, and estradiol production and expression of StAR at 72 h. Therefore, BPA exposure likely targets Cyp11a1 and steroidogenesis, but these effects are reversible with removal of BPA exposure. - Highlights: • BPA may target Cyp11a1 to inhibit steroidogenesis in antral follicles. • BPA may decrease the expression of Cyp11a1 prior to inhibiting steroidogenesis. • The adverse effects of BPA on steroidogenesis in antral follicles are reversible.

  15. THE EFFECTS OF ACUTE 17β-ESTRADIOL TREATMENT ON GENE EXPRESSION IN THE YOUNG FEMALE MOUSE HIPPOCAMPUS

    PubMed Central

    Pechenino, Angela S.; Frick, Karyn M.

    2009-01-01

    Previous studies have demonstrated that treatment with 17β-estradiol (E2) improves both spatial and nonspatial memory in young female mice. Still unclear, however, are the molecular mechanisms underlying the beneficial effects of E2 on memory. We have previously demonstrated that a single post-training intraperitoneal (i.p.) injection of 0.2 mg/kg E2 can enhance hippocampal-dependent spatial and object memory consolidation (e.g., Gresack and Frick, 2006b). Therefore, in the present study, we performed a microarray analysis on the dorsal hippocampi of 4 month-old female mice injected i.p. with vehicle or 0.2 mg/kg E2. Genes were considered differentially expressed following E2 treatment if they showed a greater than two-fold change in RNA expression levels compared to controls. Overall, out of a total of approximately 25,000 genes represented on the array, 204 genes showed altered mRNA expression levels upon E2 treatment, with 111 up-regulated and 93 down-regulated. Of these, 17 of the up-regulated and 6 of the down-regulated genes are known to be involved in learning and memory. mRNA expression changes in 5 of the genes were confirmed by real-time quantitative PCR analysis, and protein changes in these same genes were confirmed by Western blot analysis: Hsp70, a heat shock protein known to be estrogen responsive; Igfbp2, an IGF-I binding protein; Actn4, an actin binding protein involved in protein trafficking; Tubb2a, the major component of microtubules; and Snap25, a synaptosome-specific protein required for neurotransmitter release. The types of genes altered indicate that E2 may induce changes in the structural mechanics of cells within the dorsal hippocampus that could be conducive to promoting memory consolidation. PMID:18938255

  16. Leptin counteracts the hypoxia-induced inhibition of spontaneously firing hippocampal neurons: a microelectrode array study.

    PubMed

    Gavello, Daniela; Rojo-Ruiz, Jonathan; Marcantoni, Andrea; Franchino, Claudio; Carbone, Emilio; Carabelli, Valentina

    2012-01-01

    Besides regulating energy balance and reducing body-weight, the adipokine leptin has been recently shown to be neuroprotective and antiapoptotic by promoting neuronal survival after excitotoxic and oxidative insults. Here, we investigated the firing properties of mouse hippocampal neurons and the effects of leptin pretreatment on hypoxic damage (2 hours, 3% O(2)). Experiments were carried out by means of the microelectrode array (MEA) technology, monitoring hippocampal neurons activity from 11 to 18 days in vitro (DIV). Under normoxic conditions, hippocampal neurons were spontaneously firing, either with prevailing isolated and randomly distributed spikes (11 DIV), or with patterns characterized by synchronized bursts (18 DIV). Exposure to hypoxia severely impaired the spontaneous activity of hippocampal neurons, reducing their firing frequency by 54% and 69%, at 11 and 18 DIV respectively, and synchronized their firing activity. Pretreatment with 50 nM leptin reduced the firing frequency of normoxic neurons and contrasted the hypoxia-induced depressive action, either by limiting the firing frequency reduction (at both ages) or by increasing it to 126% (in younger neurons). In order to find out whether leptin exerts its effect by activating large conductance Ca(2+)-activated K(+) channels (BK), as shown on rat hippocampal neurons, we applied the BK channel blocker paxilline (1 µM). Our data show that paxilline reversed the effects of leptin, both on normoxic and hypoxic neurons, suggesting that the adipokine counteracts hypoxia through BK channels activation in mouse hippocampal neurons. PMID:22848520

  17. Leptin Counteracts the Hypoxia-Induced Inhibition of Spontaneously Firing Hippocampal Neurons: A Microelectrode Array Study

    PubMed Central

    Gavello, Daniela; Rojo-Ruiz, Jonathan; Marcantoni, Andrea; Franchino, Claudio; Carbone, Emilio; Carabelli, Valentina

    2012-01-01

    Besides regulating energy balance and reducing body-weight, the adipokine leptin has been recently shown to be neuroprotective and antiapoptotic by promoting neuronal survival after excitotoxic and oxidative insults. Here, we investigated the firing properties of mouse hippocampal neurons and the effects of leptin pretreatment on hypoxic damage (2 hours, 3% O2). Experiments were carried out by means of the microelectrode array (MEA) technology, monitoring hippocampal neurons activity from 11 to 18 days in vitro (DIV). Under normoxic conditions, hippocampal neurons were spontaneously firing, either with prevailing isolated and randomly distributed spikes (11 DIV), or with patterns characterized by synchronized bursts (18 DIV). Exposure to hypoxia severely impaired the spontaneous activity of hippocampal neurons, reducing their firing frequency by 54% and 69%, at 11 and 18 DIV respectively, and synchronized their firing activity. Pretreatment with 50 nM leptin reduced the firing frequency of normoxic neurons and contrasted the hypoxia-induced depressive action, either by limiting the firing frequency reduction (at both ages) or by increasing it to 126% (in younger neurons). In order to find out whether leptin exerts its effect by activating large conductance Ca2+-activated K+ channels (BK), as shown on rat hippocampal neurons, we applied the BK channel blocker paxilline (1 µM). Our data show that paxilline reversed the effects of leptin, both on normoxic and hypoxic neurons, suggesting that the adipokine counteracts hypoxia through BK channels activation in mouse hippocampal neurons. PMID:22848520

  18. In Vivo Acute on Chronic Ethanol Effects in Liver: A Mouse Model Exhibiting Exacerbated Injury, Altered Metabolic and Epigenetic Responses

    PubMed Central

    Shukla, Shivendra D.; Aroor, Annayya R.; Restrepo, Ricardo; Kharbanda, Kusum K.; Ibdah, Jamal A.

    2015-01-01

    Chronic alcoholics who also binge drink (i.e., acute on chronic) are prone to an exacerbated liver injury but its mechanism is not understood. We therefore investigated the in vivo effects of chronic and binge ethanol ingestion and compared to chronic ethanol followed by three repeat binge ethanol on the liver of male C57/BL6 mice fed ethanol in liquid diet (4%) for four weeks followed by binge ethanol (intragastric administration, 3.5 g/kg body weight, three doses, 12h apart). Chronic followed by binge ethanol exacerbated fat accumulation, necrosis, decrease in hepatic SAM and SAM:SAH ratio, increase in adenosine levels, and elevated CYP2E1 levels. Histone H3 lysine acetylation (H3AcK9), dually modified phosphoacetylated histone H3 (H3AcK9/PS10), and phosphorylated H2AX increased after binge whereas phosphorylation of histone H3 ser 10 (H3S10) and H3 ser 28 (H3S28) increased after chronic ethanol-binge. Histone H3 lysine 4 and 9 dimethylation increased with a marked dimethylation in H3K9 in chronic ethanol binge group. Trimethylated histone H3 levels did not change. Nuclear levels of histone acetyl transferase GCN5 and histone deacetylase HDAC3 were elevated whereas phospho-CREB decreased in a distinctive manner. Taken together, acute on chronic ethanol ingestion caused amplification of liver injury and elicited characteristic profiles of histone modifications, metabolic alterations, and changes in nuclear protein levels. These findings demonstrate that chronic ethanol exposure renders liver more susceptible to repeat acute/binge ethanol induced acceleration of alcoholic liver disease. PMID:26610587

  19. An enzyme-linked immuno focus assay for rapid detection and enumeration, and a newborn mouse model for human non-polio enteroviruses associated with acute diarrhea.

    PubMed

    Rao, C Durga; Reddy, Harikrishna; Naidu, Jagadish R; Raghavendra, A; Radhika, N S; Karande, Anjali

    2015-11-01

    We have recently reported significant association of non-polio enteroviruses (NPEVs) with acute and persistent diarrhea (18-21% of total diarrheal cases), and non-diarrheal Increased Frequency of Bowel Movements (IFoBM-ND) (about 29% of the NPEV infections) in children and that the NPEV-associated diarrhea was as significant as rotavirus diarrhea. However, their diarrhea-causing potential is yet to be demonstrated in an animal model system. Since the determination of virus titers by the traditional plaque assay takes 4-7 days, there is a need for development of a rapid method for virus titer determination to facilitate active clinical research on enterovirus-associated diarrhea. The goal of this study is to develop a cell-based rapid detection and enumeration method and to demonstrate the diarrhea-inducing potential of purified and characterized non-polio enteroviruses, which were isolated from diarrheic children. Here we describe generation of monoclonal and polyclonal antibodies against purified strains belonging to different serotypes, and development of an enzyme-linked immuno focus assay (ELIFA) for detection and enumeration of live NPEV particles in clinical and purified virus samples, and a newborn mouse model for NPEV diarrhea. Plaque-purified NPVEs, belonging to different serotypes, isolated from children with diarrhea, were grown in cell culture and purified by isopycnic CsCl density gradient centrifugation. By ELIFA, NPEVs could be detected and enumerated within 12h post-infection. Our results demonstrated that Coxsackievirus B1 (CVB1) and CVB5 strains, isolated from diarrheic children, induced severe diarrhea in orally-inoculated 9-12 day-old mouse pups, fulfilling Koch's postulates. The methods described here would facilitate studies on NPEV-associated gastrointestinal disease. PMID:26300372

  20. FLT3 and CDK4/6 inhibitors: signaling mechanisms and tumor burden in subcutaneous and orthotopic mouse models of acute myeloid leukemia.

    PubMed

    Zhang, Yaping; Hsu, Cheng-Pang; Lu, Jian-Feng; Kuchimanchi, Mita; Sun, Yu-Nien; Ma, Ji; Xu, Guifen; Zhang, Yilong; Xu, Yang; Weidner, Margaret; Huard, Justin; D'Argenio, David Z

    2014-12-01

    FLT3(ITD) subtype acute myeloid leukemia (AML) has a poor prognosis with currently available therapies. A number of small molecule inhibitors of FLT3 and/or CDK4/6 are currently under development. A more complete and quantitative understanding of the mechanisms of action of FLT3 and CDK4/6 inhibitors may better inform the development of current and future compounds that act on one or both of the molecular targets, and thus may lead to improved treatments for AML. In this study, we investigated in both subcutaneous and orthotopic AML mouse models, the mechanisms of action of three FLT3 and/or CDK4/6 inhibitors: AMG925 (Amgen), sorafenib (Bayer and Onyx), and quizartinib (Ambit Biosciences). A composite model was developed to integrate the plasma pharmacokinetics of these three compounds on their respective molecular targets, the coupling between the target pathways, as well as the resulting effects on tumor burden reduction in the subcutaneous xenograft model. A sequential modeling approach was used, wherein model structures and estimated parameters from upstream processes (e.g. PK, cellular signaling) were fixed for modeling subsequent downstream processes (cellular signaling, tumor burden). Pooled data analysis was employed for the plasma PK and cellular signaling modeling, while population modeling was applied to the tumor burden modeling. The resulting model allows the decomposition of the relative contributions of FLT3(ITD) and CDK4/6 inhibition on downstream signaling and tumor burden. In addition, the action of AMG925 on cellular signaling and tumor burden was further studied in an orthotopic tumor mouse model more closely representing the physiologically relevant environment for AML. PMID:25326874

  1. Toxicity assessment of perfluorooctane sulfonate using acute and subchronic male C57BL/6J mouse models.

    PubMed

    Xing, Jiali; Wang, Gang; Zhao, Jichun; Wang, Eryin; Yin, Boxing; Fang, Dongsheng; Zhao, Jianxin; Zhang, Hao; Chen, Yong Q; Chen, Wei

    2016-03-01

    Perfluorooctane sulfonate (PFOS) is a principal representative and the final degradation product of several commercially produced perfluorinated compounds. However, PFOS has a high bioaccumulation potential and therefore can exert toxicity on aquatic organisms, animals, and cells. Considering the widespread concern this phenomenon has attracted, we examined the acute and subchronic toxic effects of varying doses of PFOS on adult male C57BL/6 mice. The acute oral LD50 value of PFOS in male C57BL/6J mice was 0.579 g/kg body weight (BW). Exposure to the subchronic oral toxicity of PFOS at 2.5, 5, and 10 mg PFOS/kg BW/day for 30 days disrupted the homeostasis of antioxidative systems, induced hepatocellular apoptosis (as revealed by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay), triggered liver injury (as evidenced by the increased serum levels of aspartate aminotransferase, alanine amino transferase, alkaline phosphatase, and gamma-glutamyl transpeptidase and by the altered histology), and ultimately increased the liver size and relative weight of the mice. PFOS treatment caused liver damage but only slightly affected the kidneys and spleen of the mice. This study provided insights into the toxicological effects of PFOS. PMID:26807985

  2. The effect of matrix metalloproteinase-3 deficiency on pulmonary surfactant in a mouse model of acute lung injury.

    PubMed

    Yamashita, Cory M; Cybulskie, Candice; Milos, Scott; Zuo, Yi Y; McCaig, Lynda A; Veldhuizen, Ruud A W

    2016-06-01

    The acute respiratory distress syndrome (ARDS) is characterized by arterial hypoxemia accompanied by severe inflammation and alterations to the pulmonary surfactant system. Published data has demonstrated a protective effect of matrix metalloproteinase-3 (Mmp3) deficiency against the inflammatory response associated with ARDS; however, the effect of Mmp3 on physiologic parameters and alterations to surfactant have not been previously studied. It was hypothesized that Mmp3 deficient (Mmp3(-/-)) mice would be protected against lung dysfunction associated with ARDS and maintain a functional pulmonary surfactant system. Wild type (WT) and Mmp3(-/-) mice were subjected to acid-aspiration followed by mechanical ventilation. Mmp3(-/-) mice maintained higher arterial oxygenation compared with WT mice at the completion of ventilation. Significant increase in functional large aggregate surfactant forms were observed in Mmp3(-/-) mice compared with WT mice. These findings further support a role of Mmp3 as an attractive therapeutic target for drug development in the setting of ARDS. PMID:27096327

  3. Acute Reduction of Microglia Does Not Alter Axonal Injury in a Mouse Model of Repetitive Concussive Traumatic Brain Injury

    PubMed Central

    Bennett, Rachel E.

    2014-01-01

    Abstract The pathological processes that lead to long-term consequences of multiple concussions are unclear. Primary mechanical damage to axons during concussion is likely to contribute to dysfunction. Secondary damage has been hypothesized to be induced or exacerbated by inflammation. The main inflammatory cells in the brain are microglia, a type of macrophage. This research sought to determine the contribution of microglia to axon degeneration after repetitive closed-skull traumatic brain injury (rcTBI) using CD11b-TK (thymidine kinase) mice, a valganciclovir-inducible model of macrophage depletion. Low-dose (1 mg/mL) valganciclovir was found to reduce the microglial population in the corpus callosum and external capsule by 35% after rcTBI in CD11b-TK mice. At both acute (7 days) and subacute (21 days) time points after rcTBI, reduction of the microglial population did not alter the extent of axon injury as visualized by silver staining. Further reduction of the microglial population by 56%, using an intermediate dose (10 mg/mL), also did not alter the extent of silver staining, amyloid precursor protein accumulation, neurofilament labeling, or axon injury evident by electron microscopy at 7 days postinjury. Longer treatment of CD11b-TK mice with intermediate dose and treatment for 14 days with high-dose (50 mg/mL) valganciclovir were both found to be toxic in this injury model. Altogether, these data are most consistent with the idea that microglia do not contribute to acute axon degeneration after multiple concussive injuries. The possibility of longer-term effects on axon structure or function cannot be ruled out. Nonetheless, alternative strategies directly targeting injury to axons may be a more beneficial approach to concussion treatment than targeting secondary processes of microglial-driven inflammation. PMID:24797413

  4. Alzheimer's Disease and Hippocampal Adult Neurogenesis; Exploring Shared Mechanisms

    PubMed Central

    Hollands, Carolyn; Bartolotti, Nancy; Lazarov, Orly

    2016-01-01

    New neurons incorporate into the granular cell layer of the dentate gyrus throughout life. Neurogenesis is modulated by behavior and plays a major role in hippocampal plasticity. Along with older mature neurons, new neurons structure the dentate gyrus, and determine its function. Recent data suggest that the level of hippocampal neurogenesis is substantial in the human brain, suggesting that neurogenesis may have important implications for human cognition. In support of that, impaired neurogenesis compromises hippocampal function and plays a role in cognitive deficits in Alzheimer's disease mouse models. We review current work suggesting that neuronal differentiation is defective in Alzheimer's disease, leading to dysfunction of the dentate gyrus. Additionally, alterations in critical signals regulating neurogenesis, such as presenilin-1, Notch 1, soluble amyloid precursor protein, CREB, and β-catenin underlie dysfunctional neurogenesis in Alzheimer's disease. Lastly, we discuss the detectability of neurogenesis in the live mouse and human brain, as well as the therapeutic implications of enhancing neurogenesis for the treatment of cognitive deficits and Alzheimer's disease. PMID:27199641

  5. Acute and long-term transcriptional responses in sulfur mustard-exposed SKH-1 hairless mouse skin.

    PubMed

    Vallet, V; Poyot, T; Cléry-Barraud, C; Coulon, D; Sentenac, C; Peinnequin, A; Boudry, I

    2012-03-01

    Sulfur mustard (HD) ranks among the alkylating chemical warfare agents. Skin contact with HD produces an inflammatory response that evolves into separation at the epidermal-dermal junction conducting to blistering and epidermis necrosis. Up to now, current treatment strategies of HD burns have solely consisted in symptomatic management of skin damage. Therapeutic efficacy studies are still being conducted; classically using appropriate animal skin toxicity models. In order to substantiate the use of SKH-1 hairless mouse as an appropriate model for HD-induced skin lesions, we investigate the time-dependent quantitative gene expression of various selected transcripts associated to the dorsal skin exposure to HD saturated vapors. Using quantitative real time polymerase chain reaction (RT-qPCR), the expression of interleukins (IL-1β and IL-6), tumor necrosis factor (TNF)-α, macrophage inflammatory proteins (MIP)-2α (also called Cxcl2) and MIP-1αR (also called Ccr1), matrix metalloproteases (MMP-9 and MMP-2), laminin γ2 monomer (Lamc2) and keratin (K)1 was determined up to 21 days after HD challenge in order to allow enough time for wound repair to begin. Specific transcript RT-qPCR analysis demonstrated that IL-6, IL-1β, Ccr1, Cxcl2 mRNA levels increased as early as 6 h in HD-exposed skins and remained up-regulated over a 14-day period. Topical application of HD also significantly up-regulated MMP-9, TNF-α, and Lamc2 expression at specific time points. In contrast, MMP-2 mRNA levels remained unaffected by HD over the time-period considered, whereas that long-term study revealed that K1 mRNA level significantly increased only 21 days after HD challenge. Our study hereby provides first-hand evidence to substantiate a long period variation expression in the inflammatory cytokine, MMPs and structural components following cutaneous HD exposure in hairless mouse SKH-1. Our data credit the use of SKH-1 for investigating mechanisms of HD-induced skin toxicity and for

  6. Anesthetic Sevoflurane Causes Rho-Dependent Filopodial Shortening in Mouse Neurons

    PubMed Central

    Zimering, Jeffrey H.; Dong, Yuanlin; Fang, Fang; Huang, Lining; Zhang, Yiying; Xie, Zhongcong

    2016-01-01

    Early postnatal anesthesia causes long-lasting learning and memory impairment in rodents, however, evidence for a specific neurotoxic effect on early synaptogenesis has not been demonstrated. Drebrin A is an actin binding protein whose localization in dendritic protrusions serves an important role in dendritic spine morphogenesis, and is a marker for early synaptogenesis. We therefore set out to investigate whether clinically-relevant concentrations of anesthetic sevoflurane, widely- used in infants and children, alters dendritic morphology in cultured fetal day 16 mouse hippocampal neurons. After 7 days in vitro, mouse hippocampal neurons were exposed to four hours of 3% sevoflurane in 95% air/5% CO2 or control condition (95% air/5% CO2). Neurons were fixed in 4% paraformaldehyde and stained with Alexa Fluor555-Phalloidin, and/or rabbit anti-mouse drebrin A/E antibodies which permitted subcellular localization of filamentous (F)-actin and/or drebrin immunoreactivity, respectively. Sevoflurane caused acute significant length-shortening in filopodia and thin dendritic spines in days-in-vitro 7 neurons, an effect which was completely rescued by co-incubating neurons with ten micromolar concentrations of the selective Rho kinase inhibitor Y27632. Filopodia and thin spine recovered in length two days after sevoflurane exposure. Yet cluster-type filopodia (a precursor to synaptic filopodia) were persistently significantly decreased in number on day-in-vitro 9, in part owing to preferential localization of drebrin immunoreactivity to dendritic shafts versus filopodial stalks. These data suggest that sevoflurane induces F-actin depolymerization leading to acute, reversible length-shortening in dendritic protrusions through a mechanism involving (in part) activation of RhoA/Rho kinase signaling and impairs localization of drebrin A to filopodia required for early excitatory synapse formation. PMID:27441369

  7. Atg5-dependent autophagy contributes to the development of acute myeloid leukemia in an MLL-AF9-driven mouse model.

    PubMed

    Liu, Qiang; Chen, Longgui; Atkinson, Jennifer M; Claxton, David F; Wang, Hong-Gang

    2016-01-01

    Acute myeloid leukemia (AML) is a hierarchical hematopoietic malignancy originating from leukemic stem cells (LSCs). Autophagy is a lysosomal degradation pathway that is hypothesized to be important for the maintenance of AML as well as contribute to chemotherapy response. Here we employ a mouse model of AML expressing the fusion oncogene MLL-AF9 and explore the effects of Atg5 deletion, a key autophagy protein, on the malignant transformation and progression of AML. Consistent with a transient decrease in colony-forming potential in vitro, the in vivo deletion of Atg5 in MLL-AF9-transduced bone marrow cells during primary transplantation prolonged the survival of recipient mice, suggesting that autophagy has a role in MLL-AF9-driven leukemia initiation. In contrast, deletion of Atg5 in malignant AML cells during secondary transplantation did not influence the survival or chemotherapeutic response of leukemic mice. Interestingly, autophagy was found to be involved in the survival of differentiated myeloid cells originating from MLL-AF9-driven LSCs. Taken together, our data suggest that Atg5-dependent autophagy may contribute to the development but not chemotherapy sensitivity of murine AML induced by MLL-AF9. PMID:27607576

  8. The Polycomb complex PRC2 supports aberrant self-renewal in a mouse model of MLL-AF9;NrasG12D acute myeloid leukemia

    PubMed Central

    Shi, Junwei; Wang, Eric; Zuber, Johannes; Rappaport, Amy; Taylor, Meredith; Johns, Christopher

    2014-01-01

    The Trithorax and Polycomb groups of chromatin regulators are critical for cell-lineage specification during normal development; functions that often become deregulated during tumorigenesis. As an example, oncogenic fusions of the Trithorax-related protein MLL can initiate aggressive leukemias by altering the transcriptional circuitry governing hematopoietic cell differentiation, a process that is known to require additional epigenetic pathways to implement. Here we used shRNA screening to identify chromatin regulators uniquely required in a mouse model of MLL-fusion acute myeloid leukemia, which revealed a role for the Polycomb Repressive Complex 2 (PRC2) in maintenance of this disease. shRNA-mediated suppression of PRC2 subunits Eed, Suz12, or Ezh1/Ezh2 led to proliferation-arrest and differentiation of leukemia cells, with a minimal impact on growth of several non-transformed hematopoietic cell lines. The requirement for PRC2 in leukemia is partly due to its role in direct transcriptional repression of genes that limit the self-renewal potential of hematopoietic cells, including Cdkn2a. In addition to implicating a role for PRC2 in the pathogenesis of MLL-fusion leukemia, our results suggest, more generally, that Trithorax and Polycomb group proteins can cooperate with one another to maintain aberrant lineage programs in cancer. PMID:22469984

  9. Necrotizing Enterocolitis in a mouse model leads to widespread renal inflammation, acute kidney injury and disruption of renal tight junction proteins

    PubMed Central

    Garg, Parvesh M; Tatum, Rodney; Ravisankar, Srikanth; Shekhawat, Prem S; Chen, Yan-Hua

    2015-01-01

    BACKGROUND Necrotizing enterocolitis (NEC) is a devastating condition affecting premature infants and leads to high mortality and chronic morbidity. Severe form of NEC is associated with acute renal failure, fluid imbalance, hyponatremia and acidosis. We investigated the effect of NEC on tight junction (TJ) proteins in kidneys using a NEC mouse model to investigate the basis for the observed renal dysfunction. METHODS NEC was induced in C57BL/6 mice by formula feeding and subjecting them to periods of hypoxia and cold stress. NEC was confirmed by gross and histological examination. We studied various markers of inflammation in kidneys and investigated changes in expression of several TJ proteins and AQP2 using immunofluorecent staining and Western blotting. RESULTS We found markedly increased expression of NFκB, TGFβ and ERK1/2 along with claudin-1, -2, -3, -4, -8 and AQP-2 in NEC kidneys. The membrane localization of claudin-2 was altered in the NEC kidneys and its immunostaining signal at TJ was disrupted. CONCLUSION NEC led to a severe inflammatory response not only in the gut but also the kidneys. NEC increased expression of several TJ proteins and caused disruption of claudin-2 in renal tubules. These observed changes can help explain some of the clinical findings observed in NEC. PMID:26270572

  10. Resveratrol given intraperitoneally does not inhibit the growth of high-risk t(4;11) acute lymphoblastic leukemia cells in a NOD/SCID mouse model

    PubMed Central

    ZUNINO, SUSAN J.; STORMS, DAVID H.; NEWMAN, JOHN W.; PEDERSEN, THERESA L.; KEEN, CARL L.; DUCORE, JONATHAN M.

    2012-01-01

    The efficacy of resveratrol as a preventive agent against the growth of t(4;11) acute lymphoblastic leukemia (ALL) was evaluated in NOD.CB17-Prkdcscid/J mice engrafted with the human t(4;11) ALL SEM cell line. SEM cells were injected into the tail vein and engraftment was monitored by flow cytometry. Once engraftment was observed, mice were injected intraperitoneally with resveratrol (10 mg/kg body weight) dissolved in dimethylsulfoxide (DMSO) or DMSO alone (control) every other day, or vincristine (0.5 mg/kg body weight) 3 times per week for 4 weeks (n=16 per group). Comparisons of the percent of human leukemia cells in blood and survival curves showed resveratrol did not inhibit progression of the disease. Liquid chromatography-tandem mass spectrometry analyses of mouse sera showed resveratrol was rapidly metabolized to glucuronidated and sulfated forms 1 h post-injection, with low to no resveratrol or metabolites observed in sera by 24–48 h. These data indicate that in contrast to findings in in vitro models, parenterally administered resveratrol does not have potential as a preventive agent against high risk t(4;11) ALL. PMID:22200740

  11. Skin pathology induced by snake venom metalloproteinase: acute damage, revascularization, and re-epithelization in a mouse ear model.

    PubMed

    Jiménez, Natalia; Escalante, Teresa; Gutiérrez, José María; Rucavado, Alexandra

    2008-10-01

    Viperid snakebite envenomation induces blistering and dermonecrosis. The pathological alterations induced by a snake venom metalloproteinase in the skin were investigated in a mouse ear model. Metalloproteinase BaP1, from Bothrops asper, induced rapid edema, hemorrhage, and blistering; the latter two effects were abrogated by preincubation with the metalloproteinase inhibitor batimastat. Neutrophils did not play a role in the pathology, as depletion of these cells resulted in a similar histological picture. Blisters are likely to result from the direct proteolytic activity of BaP1 of proteins at the dermal-epidermal junction, probably at the lamina lucida, as revealed by immunostaining for type IV collagen and laminin. Widespread apoptosis of keratinocytes was detected by the TUNEL assay, whereas no apoptosis of capillary endothelial cells was observed. BaP1 induced a drastic reduction in the microvessel density, revealed by immunostaining for the endothelial marker vascular endothelial growth factor receptor-2. This was followed by a rapid angiogenic response, leading to a partial revascularization. Skin damage was followed by inflammation and granulation tissue formation. Then, a successful re-epithelization process occurred, and the skin of the ear regained its normal structure by 2 weeks. Venom metalloproteinase-induced skin damage reproduces the pathological changes described in snakebitten patients. PMID:18449209

  12. Novel Inhibitors of Neurotropic Alphavirus Replication That Improve Host Survival in a Mouse Model of Acute Viral Encephalitis

    PubMed Central

    Sindac, Janice; Yestrepsky, Bryan D.; Barraza, Scott J.; Bolduc, Kyle L.; Blakely, Pennelope K.; Keep, Richard F.; Irani, David N.; Miller, David J.; Larsen, Scott D.

    2012-01-01

    Arboviral encephalitis is a potentially devastating human disease with no approved therapies that target virus replication. We previously discovered a novel class of thieno[3,2-b]pyrrole-based inhibitors active against neurotropic alphaviruses such as western equine encephalitis virus (WEEV) in cultured cells. In this report we describe initial development of these novel antiviral compounds, including bioisosteric replacement of the 4H-thieno[3,2-b]pyrrole core with indole to improve metabolic stability and the introduction of chirality to assess target enantioselectivity. Selected modifications enhanced antiviral activity while maintaining low cytotoxicity, increased stability to microsomal metabolism, and also revealed striking enantiospecific activity in cultured cells. Furthermore, we demonstrate improved outcomes (both symptoms and survival) following treatment with indole analog 9h (CCG-203926) in an in vivo mouse model of alphaviral encephalitis that closely correlate with the enantiospecific in vitro antiviral activity. These results represent a substantial advancement in the early preclinical development of a promising class of novel antiviral drugs against virulent neurotropic alphaviruses. PMID:22428985

  13. Period1 gates the circadian modulation of memory-relevant signaling in mouse hippocampus by regulating the nuclear shuttling of the CREB kinase pP90RSK.

    PubMed

    Rawashdeh, Oliver; Jilg, Antje; Maronde, Erik; Fahrenkrug, Jan; Stehle, Jörg H

    2016-09-01

    Memory performance varies over a 24-h day/night cycle. While the detailed underlying mechanisms are yet unknown, recent evidence suggests that in the mouse hippocampus, rhythmic phosphorylation of mitogen-activated protein kinase (MAPK) and cyclic adenosine monophosphate response element-binding protein (CREB) are central to the circadian (~ 24 h) regulation of learning and memory. We recently identified the clock protein PERIOD1 (PER1) as a vehicle that translates information encoding time of day to hippocampal plasticity. We here elaborate how PER1 may gate the sensitivity of memory-relevant hippocampal signaling pathways. We found that in wild-type mice (WT), spatial learning triggers CREB phosphorylation only during the daytime, and that this effect depends on the presence of PER1. The time-of-day-dependent induction of CREB phosphorylation can be reproduced pharmacologically in acute hippocampal slices prepared from WT mice, but is absent in preparations made from Per1-knockout (Per1(-/-) ) mice. We showed that the PER1-dependent CREB phosphorylation is regulated downstream of MAPK. Stimulation of WT hippocampal neurons triggered the co-translocation of PER1 and the CREB kinase pP90RSK (pMAPK-activated ribosomal S6 kinase) into the nucleus. In hippocampal neurons from Per1(-/-) mice, however, pP90RSK remained perinuclear. A co-immunoprecipitation assay confirmed a high-affinity interaction between PER1 and pP90RSK. Knocking down endogenous PER1 in hippocampal cells inhibited adenylyl cyclase-dependent CREB activation. Taken together, the PER1-dependent modulation of cytoplasmic-to-nuclear signaling in the murine hippocampus provides a molecular explanation for how the circadian system potentially shapes a temporal framework for daytime-dependent memory performance, and adds a novel facet to the versatility of the clock gene protein PER1. We provide evidence that the circadian clock gene Period1 (Per1) regulates CREB phosphorylation in the mouse hippocampus

  14. The Role of Hippocampal 5HT3 Receptors in Harmaline-Induced Memory Deficit

    PubMed Central

    Nasehi, Mohammad

    2015-01-01

    Introduction: The plethora of studies indicated that there is a cross talk relationship between harmaline and serotonergic (5-HT) system on cognitive and non-cognitive behaviors. Thus, the purpose of this study is to assess the effects of hippocampal 5-HT4 receptor on memory acquisition deficit induced by harmaline. Methods: Harmaline was injected peritoneally, while 5-HT4 receptor agonist (RS67333) and antagonist (RS23597-190) were injected intra-hippocampal. A single-trial step-down passive avoidance, open field and tail flick tasks were used for measurement of memory, locomotor activity and pain responses, respectively. Results: The data revealed that pre-training injection of higher dose of harmaline (1 mg/kg), RS67333 (0.5 ng/mouse) and RS23597-190 (0.5 ng/mouse) decreased memory acquisition process in the adult mice. Moreover, concurrent pre-training administration of subthreshold dose of RS67333 (0.005 ng/mouse) or RS23597-190 (0.005 ng/mouse) with subthreshold dose of harmaline (0.5 mg/kg, i.p.) intensify impairment of memory acquisition. All above interventions did not change locomotion and tail flick behaviors. Discussion: The results demonstrated that the synergistic effect between both hippocampal 5-HT4 receptor agonist and antagonist with impairment of memory acquisition induced by harmaline, indicating a modulatory effect for hippocampal 5HT4 receptor on Harmaline induced amnesia. PMID:26904173

  15. CXCR4 inhibitors selectively eliminate CXCR4-expressing human acute myeloid leukemia cells in NOG mouse model

    PubMed Central

    Zhang, Y; Patel, S; Abdelouahab, H; Wittner, M; Willekens, C; Shen, S; Betems, A; Joulin, V; Opolon, P; Bawa, O; Pasquier, F; Ito, M; Fujii, N; Gonin, P; Solary, E; Vainchenker, W; Coppo, P; De Botton, S; Louache, F

    2012-01-01

    The chemokine receptor CXCR4 favors the interaction of acute myeloid leukemia (AML) cells with their niche but the extent to which it participates in pathogenesis is unclear. Here, we show that CXCR4 expression at the surface of leukemic cells allowed distinguishing CXCR4high from CXCR4neg/low AML patients. When high levels of CXCR4 are expressed at the surface of AML cells, blocking the receptor function with small molecule inhibitors could promote leukemic cell death and reduce NOD/Shi-scid/IL-2Rγnull (NOG) leukemia-initiating cells (LICs). Conversely, these drugs had no efficacy when AML cells do not express CXCR4 or when they do not respond to chemokine CXC motif ligand 12 (CXCL12). Functional analysis showed a greater mobilization of leukemic cells and LICs in response to drugs, suggesting that they target the interaction between leukemic cells and their supportive bone marrow microenvironment. In addition, increased apoptosis of leukemic cells in vitro and in vivo was observed. CXCR4 expression level on AML blast cells and their migratory response to CXCL12 are therefore predictive of the response to the inhibitors and could be used as biomarkers to select patients that could potentially benefit from the drugs. PMID:23034331

  16. Acute exposure to waterpipe tobacco smoke induces changes in the oxidative and inflammatory markers in mouse lung

    PubMed Central

    Khabour, Omar F.; Alzoubi, Karem H.; Bani-Ahmad, Mohammed; Dodin, Arwa; Eissenberg, Thomas; Shihadeh, Alan

    2013-01-01

    Context Tobacco smoking represents a global public health threat, claiming approximately 5 million lives a year. Waterpipe tobacco use has become popular particularly among youth in the past decade, buttressed by the perception that the waterpipe “filters” the smoke, rendering it less harmful than cigarette smoke. Objective In this study, we examined the acute exposure of waterpipe smoking on lung inflammation and oxidative stress in mice, and compared that to cigarette smoking. Materials and methods Mice were divided into three groups; fresh air control, cigarette and waterpipe. Animals were exposed to fresh air, cigarette, or waterpipe smoke using whole body exposure system one hour daily for 7 days. Results Both cigarette and waterpipe smoke exposure resulted in elevation of total white blood cell count, as well as absolute count of neutrophils, macrophages, and lymphocytes (P < 0.01). Both exposures also elevated proinflammatory markers such as TNF-α and IL-6 in BALF (P < 0.05), and oxidative stress markers including GPx activity in lungs (P < 0.05). Moreover, waterpipe smoke increased catalase activity in the lung (P < 0.05). However, none of the treatments altered IL-10 levels. Discussion and conclusion Results of cigarette smoking confirmed previous finding. Waterpipe results indicate that, similar to cigarettes, exposure to waterpipe tobacco smoke is harmful to the lungs. PMID:22906173

  17. Hormone-Dependent Expression of a Steroidogenic Acute Regulatory Protein Natural Antisense Transcript in MA-10 Mouse Tumor Leydig Cells

    PubMed Central

    Castillo, Ana Fernanda; Fan, Jinjiang; Papadopoulos, Vassilios; Podestá, Ernesto J.

    2011-01-01

    Cholesterol transport is essential for many physiological processes, including steroidogenesis. In steroidogenic cells hormone-induced cholesterol transport is controlled by a protein complex that includes steroidogenic acute regulatory protein (StAR). Star is expressed as 3.5-, 2.8-, and 1.6-kb transcripts that differ only in their 3′-untranslated regions. Because these transcripts share the same promoter, mRNA stability may be involved in their differential regulation and expression. Recently, the identification of natural antisense transcripts (NATs) has added another level of regulation to eukaryotic gene expression. Here we identified a new NAT that is complementary to the spliced Star mRNA sequence. Using 5′ and 3′ RACE, strand-specific RT-PCR, and ribonuclease protection assays, we demonstrated that Star NAT is expressed in MA-10 Leydig cells and steroidogenic murine tissues. Furthermore, we established that human chorionic gonadotropin stimulates Star NAT expression via cAMP. Our results show that sense-antisense Star RNAs may be coordinately regulated since they are co-expressed in MA-10 cells. Overexpression of Star NAT had a differential effect on the expression of the different Star sense transcripts following cAMP stimulation. Meanwhile, the levels of StAR protein and progesterone production were downregulated in the presence of Star NAT. Our data identify antisense transcription as an additional mechanism involved in the regulation of steroid biosynthesis. PMID:21829656

  18. Mouse Models of Acute Respiratory Distress Syndrome: A Review of Analytical Approaches, Pathologic Features, and Common Measurements.

    PubMed

    Aeffner, Famke; Bolon, Brad; Davis, Ian C

    2015-12-01

    Acute respiratory distress syndrome (ARDS) is a severe pulmonary reaction requiring hospitalization, which is incited by many causes, including bacterial and viral pneumonia as well as near drowning, aspiration of gastric contents, pancreatitis, intravenous drug use, and abdominal trauma. In humans, ARDS is very well defined by a list of clinical parameters. However, until recently no consensus was available regarding the criteria of ARDS that should be evident in an experimental animal model. This lack was rectified by a 2011 workshop report by the American Thoracic Society, which defined the main features proposed to delineate the presence of ARDS in laboratory animals. These should include histological changes in parenchymal tissue, altered integrity of the alveolar capillary barrier, inflammation, and abnormal pulmonary function. Murine ARDS models typically are defined by such features as pulmonary edema and leukocyte infiltration in cytological preparations of bronchoalveolar lavage fluid and/or lung sections. Common pathophysiological indicators of ARDS in mice include impaired pulmonary gas exchange and histological evidence of inflammatory infiltrates into the lung. Thus, morphological endpoints remain a vital component of data sets assembled from animal ARDS models. PMID:26296628

  19. Strain- and Age-dependent Hippocampal Neuron Sodium Currents Correlate with Epilepsy Severity in Dravet Syndrome Mice

    PubMed Central

    Mistry, Akshitkumar M.; Thompson, Christopher H.; Miller, Alison R.; Vanoye, Carlos G.; George, Alfred L.; Kearney, Jennifer A.

    2014-01-01

    Heterozygous loss-of-function SCN1A mutations cause Dravet syndrome, an epileptic encephalopathy of infancy that exhibits variable clinical severity. We utilized a heterozygous Scn1a knockout (Scn1a+/−) mouse model of Dravet syndrome to investigate the basis for phenotype variability. These animals exhibit strain-dependent seizure severity and survival. Scn1a+/− mice on strain 129S6/SvEvTac (129.Scn1a+/−) have no overt phenotype and normal survival compared with Scn1a+/− mice bred to C57BL/6J (F1.Scn1a+/−) that have severe epilepsy and premature lethality. We tested the hypothesis that strain differences in sodium current (INa) density in hippocampal neurons contribute to these divergent phenotypes. Whole-cell voltage-clamp recording was performed on acutely-dissociated hippocampal neurons from postnatal day 21–24 (P21–24) 129.Scn1a+/− or F1.Scn1a+/− mice and wild-type littermates. INa density was lower in GABAergic interneurons from F1.Scn1a+/− mice compared to wild-type littermates, while on the 129 strain there was no difference in GABAergic interneuron INa between 129.Scn1a+/− mice and wild-type littermate controls. By contrast, INa density was elevated in pyramidal neurons from both 129.Scn1a+/− and F1.Scn1a+/− mice, and was correlated with more frequent spontaneous action potential firing in these neurons, as well as more sustained firing in F1.Scn1a+/− neurons. We also observed age-dependent differences in pyramidal neuron INa density between wild-type and Scn1a+/− animals. We conclude that preserved INa density in GABAergic interneurons contributes to the milder phenotype of 129.Scn1a+/− mice. Furthermore, elevated INa density in excitatory pyramidal neurons at P21–24 correlates with age-dependent onset of lethality in F1.Scn1a+/− mice. Our findings illustrate differences in hippocampal neurons that may underlie strain- and age-dependent phenotype severity in a Dravet syndrome mouse model, and emphasize a contribution of

  20. Optimizing Mouse Surgery with Online Rectal Temperature Monitoring and Preoperative Heat Supply. Effects on Post-Ischemic Acute Kidney Injury

    PubMed Central

    Holderied, Alexander; Anders, Hans-Joachim

    2016-01-01

    Body temperature affects outcomes of tissue injury. We hypothesized that online body core temperature recording and selective interventions help to standardize peri-interventional temperature control and the reliability of outcomes in experimental renal ischemia reperfusion injury (IRI). We recorded core temperature in up to seven mice in parallel using a Thermes USB recorder and ret-3-iso rectal probes with three different protocols. Setup A: Heating pad during ischemia time; Setup B: Heating pad from incision to wound closure; Setup C: A ventilated heating chamber before surgery and during ischemia time with surgeries performed on a heating pad. Temperature profile recording displayed significant declines upon installing anesthesia. The profile of the baseline experimental setup A revealed that <1% of the temperature readings were within the target range of 36.5 to 38.5°C. Setup B and C increased the target range readings to 34.6 ± 28.0% and 99.3 ± 1.5%, respectively. Setup C significantly increased S3 tubular necrosis, neutrophil influx, and mRNA expression of kidney injury markers. In addition, using setup C different ischemia times generated a linear correlation with acute tubular necrosis parameters at a low variability, which further correlated with the degree of kidney atrophy 5 weeks after surgery. Changing temperature control setup A to C was equivalent to 10 minutes more ischemia time. We conclude that body temperature drops quickly in mice upon initiating anesthesia. Immediate heat supply, e.g. in a ventilated heating chamber, and online core temperature monitoring can help to standardize and optimize experimental outcomes. PMID:26890071

  1. Targeted disruption of the mouse gene encoding steroidogenic acute regulatory protein provides insights into congenital lipoid adrenal hyperplasia

    PubMed Central

    Caron, Kathleen M.; Soo, Shiu-Ching; Wetsel, William C.; Stocco, Douglas M.; Clark, Barbara J.; Parker, Keith L.

    1997-01-01

    An essential component of regulated steroidogenesis is the translocation of cholesterol from the cytoplasm to the inner mitochondrial membrane where the cholesterol side-chain cleavage enzyme carries out the first committed step in steroidogenesis. Recent studies showed that a 30-kDa mitochondrial phosphoprotein, designated steroidogenic acute regulatory protein (StAR), is essential for this translocation. To allow us to explore the roles of StAR in a system amenable to experimental manipulation and to develop an animal model for the human disorder lipoid congenital adrenal hyperplasia (lipoid CAH), we used targeted gene disruption to produce StAR knockout mice. These StAR knockout mice were indistinguishable initially from wild-type littermates, except that males and females had female external genitalia. After birth, they failed to grow normally and died from adrenocortical insufficiency. Hormone assays confirmed severe defects in adrenal steroids—with loss of negative feedback regulation at hypothalamic–pituitary levels—whereas hormones constituting the gonadal axis did not differ significantly from levels in wild-type littermates. Histologically, the adrenal cortex of StAR knockout mice contained florid lipid deposits, with lesser deposits in the steroidogenic compartment of the testis and none in the ovary. The sex-specific differences in gonadal involvement support a two-stage model of the pathogenesis of StAR deficiency, with trophic hormone stimulation inducing progressive accumulation of lipids within the steroidogenic cells and ultimately causing their death. These StAR knockout mice provide a useful model system in which to determine the mechanisms of StAR’s essential roles in adrenocortical and gonadal steroidogenesis. PMID:9326645

  2. Concussive Brain Trauma in the Mouse Results in Acute Cognitive Deficits and Sustained Impairment of Axonal Function

    PubMed Central

    Creed, Jennifer A.; DiLeonardi, Ann Mae; Fox, Douglas P.; Tessler, Alan R.

    2011-01-01

    Abstract Concussive brain injury (CBI) accounts for approximately 75% of all brain-injured people in the United States each year and is particularly prevalent in contact sports. Concussion is the mildest form of diffuse traumatic brain injury (TBI) and results in transient cognitive dysfunction, the neuropathologic basis for which is traumatic axonal injury (TAI). To evaluate the structural and functional changes associated with concussion-induced cognitive deficits, adult mice were subjected to an impact on the intact skull over the midline suture that resulted in a brief apneic period and loss of the righting reflex. Closed head injury also resulted in an increase in the wet weight:dry weight ratio in the cortex suggestive of edema in the first 24 h, and the appearance of Fluoro-Jade-B-labeled degenerating neurons in the cortex and dentate gyrus of the hippocampus within the first 3 days post-injury. Compared to sham-injured mice, brain-injured mice exhibited significant deficits in spatial acquisition and working memory as measured using the Morris water maze over the first 3 days (p<0.001), but not after the fourth day post-injury. At 1 and 3 days post-injury, intra-axonal accumulation of amyloid precursor protein in the corpus callosum and cingulum was accompanied by neurofilament dephosphorylation, impaired transport of Fluoro-Gold and synaptophysin, and deficits in axonal conductance. Importantly, deficits in retrograde transport and in action potential of myelinated axons continued to be observed until 14 days post-injury, at which time axonal degeneration was apparent. These data suggest that despite recovery from acute cognitive deficits, concussive brain trauma leads to axonal degeneration and a sustained perturbation of axonal function. PMID:21299360

  3. Effect of siRNA against NF-κB on sepsis‑induced acute lung injury in a mouse model.

    PubMed

    Jin, Li-Yan; Li, Cong-Feng; Zhu, Guang-Fa; Wu, Chun-Ting; Wang, Jun; Yan, Shu-Feng

    2014-08-01

    The aim of the present study was to explore the protective effect of small interfering RNA (siRNA) against nuclear factor κB (NF-κB) p65 on sepsis-induced acute lung injury (ALI) in mice. In total, 70 male Kunming mice were randomly divided into a healthy control group, a sepsis group, a specific interfering group and a scrambled control group (Sc), and the latter three groups were divided into post-operational 6 and 12 h subgroups, each of which consisted of 10 mice. The mice were administered with NF-κB siRNA, scrambled siRNA and normal saline via tail vein injection. Following 1 h, a mouse model of septic ALI was produced by cecal ligation and puncture (CLP) in the two siRNA groups and the sepsis control group. At 6 and 12 h post‑operation, the experimental mice were sacrificed and the lung tissue samples were collected. Histopathological changes, wet/dry ratio of lung weight, NF-κB protein and NF-κB p65 mRNA levels, matrix metalloproteinase-9 (MMP-9) mRNA and protein activity were detected. Compared with the sepsis group and the Sc at the corresponding time, the expression levels of NF-κB p65 mRNA, the lung injury of experimental mice, the wet/dry ratio and the levels of MMP-9 mRNA and protein activity decreased, and significant differences were observed at 6 h post-operation (P<0.05). RNA interference against NF-κB p65 was able to decrease the expression of NF-κB and further inhibit the early phasic excessive inflammatory reaction in sepsis, which may alleviate ALI. PMID:24913772

  4. Mitochondrial alterations and oxidative stress in an acute transient mouse model of muscle degeneration: implications for muscular dystrophy and related muscle pathologies.

    PubMed

    Ramadasan-Nair, Renjini; Gayathri, Narayanappa; Mishra, Sudha; Sunitha, Balaraju; Mythri, Rajeswara Babu; Nalini, Atchayaram; Subbannayya, Yashwanth; Harsha, Hindalahalli Chandregowda; Kolthur-Seetharam, Ullas; Srinivas Bharath, Muchukunte Mukunda

    2014-01-01

    Muscular dystrophies (MDs) and inflammatory myopathies (IMs) are debilitating skeletal muscle disorders characterized by common pathological events including myodegeneration and inflammation. However, an experimental model representing both muscle pathologies and displaying most of the distinctive markers has not been characterized. We investigated the cardiotoxin (CTX)-mediated transient acute mouse model of muscle degeneration and compared the cardinal features with human MDs and IMs. The CTX model displayed degeneration, apoptosis, inflammation, loss of sarcolemmal complexes, sarcolemmal disruption, and ultrastructural changes characteristic of human MDs and IMs. Cell death caused by CTX involved calcium influx and mitochondrial damage both in murine C2C12 muscle cells and in mice. Mitochondrial proteomic analysis at the initial phase of degeneration in the model detected lowered expression of 80 mitochondrial proteins including subunits of respiratory complexes, ATP machinery, fatty acid metabolism, and Krebs cycle, which further decreased in expression during the peak degenerative phase. The mass spectrometry (MS) data were supported by enzyme assays, Western blot, and histochemistry. The CTX model also displayed markers of oxidative stress and a lowered glutathione reduced/oxidized ratio (GSH/GSSG) similar to MDs, human myopathies, and neurogenic atrophies. MS analysis identified 6 unique oxidized proteins from Duchenne muscular dystrophy samples (n = 6) (versus controls; n = 6), including two mitochondrial proteins. Interestingly, these mitochondrial proteins were down-regulated in the CTX model thereby linking oxidative stress and mitochondrial dysfunction. We conclude that mitochondrial alterations and oxidative damage significantly contribute to CTX-mediated muscle pathology with implications for human muscle diseases. PMID:24220031

  5. New molecules for hippocampal development.

    PubMed

    Skutella, T; Nitsch, R

    2001-02-01

    Pathfinding by developing axons towards their proper targets is an essential step in establishing appropriate neuronal connections. Recent work involving cell culture assays and molecular biology strategies, including knockout animals, strongly indicates that a complex network of guidance signals regulates the formation of hippocampal connections during development. Outgrowing axons are routed towards the hippocampal formation by specific expression of long-range cues, which include secreted class 3 semaphorins, netrin 1 and Slit proteins. Local membrane- or substrate-anchored molecules, such as ligands of the ephrin A subclass, provide layer-specific positional information. Understanding the molecular mechanisms that underlie axonal guidance during hippocampal development might be of importance in making therapeutic use of sprouting fibers, which are produced following the loss of afferents in CNS lesion. PMID:11164941

  6. Mistargeting hippocampal axons by expression of a truncated Eph receptor

    PubMed Central

    Yue, Yong; Chen, Zhi-Yong; Gale, Nick W.; Blair-Flynn, Jan; Hu, Tian-Jing; Yue, Xin; Cooper, Margaret; Crockett, David P.; Yancopoulos, George D.; Tessarollo, Lino; Zhou, Renping

    2002-01-01

    Topographic mapping of axon terminals is a general principle of neural architecture that underlies the interconnections among many neural structures. The Eph family tyrosine kinase receptors and their ligands, the ephrins, have been implicated in the formation of topographic projection maps. We show that multiple Eph receptors and ligands are expressed in the hippocampus and its major subcortical projection target, the lateral septum, and that expression of a truncated Eph receptor in the mouse brain results in a pronounced alteration of the hippocamposeptal topographic map. Our observations provide strong support for a critical role of Eph family guidance factors in regulating ontogeny of hippocampal projections. PMID:12124402

  7. Dipeptide Piracetam Analogue Noopept Improves Viability of Hippocampal HT-22 Neurons in the Glutamate Toxicity Model.

    PubMed

    Antipova, T A; Nikolaev, S V; Ostrovskaya, P U; Gudasheva, T A; Seredenin, S B

    2016-05-01

    Effect of noopept (N-phenylacetyl-prolylglycine ethyl ester) on viability of neurons exposed to neurotoxic action of glutamic acid (5 mM) was studied in vitro in immortalized mouse hippocampal HT-22 neurons. Noopept added to the medium before or after glutamic acid improved neuronal survival in a concentration range of 10-11-10-5 M. Comparison of the effective noopept concentrations determined in previous studies on cultured cortical and cerebellar neurons showed that hippocampal neurons are more sensitive to the protective effect of noopept. PMID:27265136

  8. Collagen XIX Is Expressed by Interneurons and Contributes to the Formation of Hippocampal Synapses

    PubMed Central

    Su, Jianmin; Gorse, Karen; Ramirez, Francesco; Fox, Michael A.

    2010-01-01

    Extracellular matrix (ECM) molecules contribute to the formation and maintenance of synapses in the mammalian nervous system. We previously discovered a family of nonfibrillar collagens that organize synaptic differentiation at the neuromuscular junction (NMJ). Although many NMJ-organizing cues contribute to central nervous system (CNS) synaptogenesis, whether similar roles for collagens exist at central synapses remained unclear. In the present study we discovered that col19a1, the gene encoding nonfibrillar collagen XIX, is expressed by subsets of hippocampal neurons. Colocalization with the interneuron-specific enzyme glutamate decarboxylase 67 (Gad67), but not other cell-type-specific markers, suggests that hippocampal expression of col19a1 is restricted to interneurons. However, not all hippocampal interneurons express col19a1 mRNA; subsets of neuropeptide Y (NPY)-, somatostatin (Som)-, and calbindin (Calb)-immunoreactive interneurons express col19a1, but those containing parvalbumin (Parv) or calretinin (Calr) do not. To assess whether collagen XIX is required for the normal formation of hippocampal synapses, we examined synaptic morphology and composition in targeted mouse mutants lacking collagen XIX. We show here that subsets of synaptotagmin 2 (Syt2)-containing hippocampal nerve terminals appear malformed in the absence of collagen XIX. The presence of Syt2 in inhibitory hippocampal synapses, the altered distribution of Gad67 in collagen XIX-deficient subiculum, and abnormal levels of gephyrin in collagen XIX-deficient hippocampal extracts all suggest inhibitory synapses are affected by the loss of collagen XIX. Together, these data not only reveal that collagen XIX is expressed by central neurons, but show for the first time that a nonfibrillar collagen is necessary for the formation of hippocampal synapses. PMID:19937713

  9. The hippocampal CA2 region is essential for social memory

    PubMed Central

    Hitti, Frederick L.; Siegelbaum, Steven A.

    2014-01-01

    Summary The hippocampus is critical for encoding declarative memory, our repository of knowledge of who, what, where, and when1. Mnemonic information is processed in the hippocampus through several parallel routes involving distinct subregions. In the classic trisynaptic pathway, information proceeds from entorhinal cortex (EC) to dentate gyrus (DG) to CA3 and then to CA1, the main hippocampal output2. Genetic lesions of EC3 and hippocampal DG4, CA35, and CA16 regions have revealed their distinct functions in learning and memory. In contrast, little is known about the role of CA2, a relatively small area interposed between CA3 and CA1 that forms the nexus of a powerful disynaptic circuit linking EC input with CA1 output7. Here, we report a novel transgenic mouse line that enabled us to selectively examine the synaptic connections and behavioral role of the CA2 region in adult mice. Genetically targeted inactivation of CA2 pyramidal neurons caused a pronounced loss of social memory, the ability of an animal to remember a conspecific, with no change in sociability or several other hippocampal-dependent behaviors, including spatial and contextual memory. These behavioral and anatomical results thus reveal CA2 as a critical hub of sociocognitive memory processing. PMID:24572357

  10. Hippocampal Sclerosis: Causes and Prevention.

    PubMed

    Walker, Matthew Charles

    2015-06-01

    Hippocampal sclerosis is the commonest cause of drug-resistant epilepsy in adults, and is associated with alterations to structures and networks beyond the hippocampus.In addition to being a cause of epilepsy, the hippocampus is vulnerable to damage from seizure activity. In particular, prolonged seizures (status epilepticus) can result in hippocampal sclerosis. The hippocampus is also vulnerable to other insults including traumatic brain injury, and inflammation. Hippocampal sclerosis can occur in association with other brain lesions; the prevailing view is that it is probably a secondary consequence. In such instances, successful surgical treatment usually involves the resection of both the lesion and the involved hippocampus. Experimental data have pointed to numerous neuroprotective strategies to prevent hippocampal sclerosis. Initial neuroprotective strategies aimed at glutamate receptors may be effective, but later, metabolic pathways, apoptosis, reactive oxygen species, and inflammation are involved, perhaps necessitating the use of interventions aimed at multiple targets. Some of the therapies that we use to treat status epilepticus may neuroprotect. However, prevention of neuronal death does not necessarily prevent the later development of epilepsy or cognitive deficits. Perhaps, the most important intervention is the early, aggressive treatment of seizure activity, and the prevention of prolonged seizures. PMID:26060898

  11. Tramadol state-dependent memory: involvement of dorsal hippocampal muscarinic acetylcholine receptors.

    PubMed

    Jafari-Sabet, Majid; Jafari-Sabet, Ali-Reza; Dizaji-Ghadim, Ali

    2016-08-01

    The effects on tramadol state-dependent memory of bilateral intradorsal hippocampal (intra-CA1) injections of physostigmine, an acetylcholinesterase inhibitor, and atropine, a muscarinic acetylcholine receptor antagonist, were examined in adult male NMRI mice. A single-trial step-down passive avoidance task was used for the assessment of memory retention. Post-training intra-CA1 administration of an atypical μ-opioid receptor agonist, tramadol (0.5 and 1 μg/mouse), dose dependently impaired memory retention. Pretest injection of tramadol (0.5 and 1 μg/mouse, intra-CA1) induced state-dependent retrieval of the memory acquired under the influence of post-training tramadol (1 μg/mouse, intra-CA1). A pretest intra-CA1 injection of physostigmine (1 μg/mouse) reversed the memory impairment induced by post-training administration of tramadol (1 μg/mouse, intra-CA1). Moreover, pretest administration of physostigmine (0.5 and 1 μg/mouse, intra-CA1) with an ineffective dose of tramadol (0.25 μg/mouse, intra-CA1) also significantly restored retrieval. Pretest administration of physostigmine (0.25, 0.5, and 1 μg/mouse, intra-CA1) by itself did not affect memory retention. A pretest intra-CA1 injection of the atropine (1 and 2 μg/mouse) 5 min before the administration of tramadol (1 μg/mouse, intra-CA1) dose dependently inhibited tramadol state-dependent memory. Pretest administration of atropine (0.5, 1, and 2 μg/mouse, intra-CA1) by itself did not affect memory retention. It can be concluded that dorsal hippocampal muscarinic acetylcholine receptor mechanisms play an important role in the modulation of tramadol state-dependent memory. PMID:27089282

  12. Amentoflavone protects hippocampal neurons: anti-inflammatory, antioxidative, and antiapoptotic effects

    PubMed Central

    Zhang, Zhen; Sun, Tao; Niu, Jian-guo; He, Zhen-quan; Liu, Yang; Wang, Feng

    2015-01-01

    Amentoflavone is a natural biflavone compound with many biological properties, including anti-inflammatory, antioxidative, and neuroprotective effects. We presumed that amentoflavone exerts a neuroprotective effect in epilepsy models. Prior to model establishment, mice were intragastrically administered 25 mg/kg amentoflavone for 3 consecutive days. Amentoflavone effectively prevented pilocarpine-induced epilepsy in a mouse kindling model, suppressed nuclear factor-κB activation and expression, inhibited excessive discharge of hippocampal neurons resulting in a reduction in epileptic seizures, shortened attack time, and diminished loss and apoptosis of hippocampal neurons. Results suggested that amentoflavone protected hippocampal neurons in epilepsy mice via anti-inflammation, antioxidation, and antiapoptosis, and then effectively prevented the occurrence of seizures. PMID:26330838

  13. Methamphetamine administration reduces hippocampal vesicular monoamine transporter-2 uptake.

    PubMed

    Rau, Kristi S; Birdsall, Elisabeth; Volz, Trent J; Riordan, James A; Baucum, Anthony J; Adair, Brian P; Bitter, Rebecca; Gibb, James W; Hanson, Glen R; Fleckenstein, Annette E

    2006-08-01

    Repeated high-dose injections of methamphetamine (METH) rapidly decrease dopamine uptake by the vesicular monoamine transporter-2 (VMAT-2) associated with dopaminergic nerve terminals, as assessed in nonmembrane-associated vesicles purified from striata of treated rats. The purpose of this study was to determine whether METH similarly affects vesicular uptake in the hippocampus; a region innervated by both serotonergic and noradrenergic neurons and profoundly affected by METH treatment. Results revealed that repeated high-dose METH administrations rapidly (within 1 h) reduced hippocampal vesicular dopamine uptake, as assessed in vesicles purified from treated rats. This reduction was likely associated with serotonergic nerve terminals because METH did not further reduce vesicular monoamine uptake in para-chloroamphetamine-lesioned animals. Pretreatment with the serotonin transporter inhibitor fluoxetine blocked both this acute effect on VMAT-2 and the decrease in serotonin content observed 7 days after METH treatment. In contrast, there was no conclusive evidence that METH affected vesicular dopamine uptake in noradrenergic neurons or caused persistent noradrenergic deficits. These findings suggest a link between METH-induced alterations in serotonergic hippocampal vesicular uptake and the persistent hippocampal serotonergic deficits induced by the stimulant. PMID:16687477

  14. DISC1-mediated dysregulation of adult hippocampal neurogenesis in rats

    PubMed Central

    Lee, Heekyung; Kang, Eunchai; GoodSmith, Douglas; Yoon, Do Yeon; Song, Hongjun; Knierim, James J.; Ming, Guo-li; Christian, Kimberly M.

    2015-01-01

    Adult hippocampal neurogenesis, the constitutive generation of new granule cells in the dentate gyrus of the mature brain, is a robust model of neural development and its dysregulation has been implicated in the pathogenesis of psychiatric and neurological disorders. Previous studies in mice have shown that altered expression of Disrupted-In-Schizophrenia 1 (Disc1), the mouse homolog of a risk gene for major psychiatric disorders, results in several distinct morphological phenotypes during neuronal development. Although there are advantages to using rats over mice for neurophysiological studies, genetic manipulations have not been widely utilized in rat models. Here, we used a retroviral-mediated approach to knockdown DISC1 expression in dividing cells in the rat dentate gyrus and characterized the morphological development of adult-born granule neurons. Consistent with earlier findings in mice, we show that DISC1 knockdown in adult-born dentate granule cells in rats resulted in accelerated dendritic growth, soma hypertrophy, ectopic dendrites, and mispositioning of new granule cells due to overextended migration. Our study thus demonstrates that the Disc1 genetic manipulation approach used in prior mouse studies is feasible in rats and that there is a conserved biological function of this gene across species. Extending gene-based studies of adult hippocampal neurogenesis from mice to rats will allow for the development of additional models that may be more amenable to behavioral and in vivo electrophysiological investigations. These models, in turn, can generate additional insight into the systems-level mechanisms of how risk genes for complex psychiatric disorders may impact adult neurogenesis and hippocampal function. PMID:26161071

  15. The role of endoplasmic reticulum stress in hippocampal insulin resistance.

    PubMed

    Sims-Robinson, Catrina; Bakeman, Anna; Glasser, Rebecca; Boggs, Janet; Pacut, Crystal; Feldman, Eva L

    2016-03-01

    Metabolic syndrome, which includes hypertension, hyperglycemia, obesity, insulin resistance, and dyslipidemia, has a negative impact on cognitive health. Endoplasmic reticulum (ER) stress is activated during metabolic syndrome, however it is not known which factor associated with metabolic syndrome contributes to this stress. ER stress has been reported to play a role in the development of insulin resistance in peripheral tissues. The role of ER stress in the development of insulin resistance in hippocampal neurons is not known. In the current study, we investigated ER stress in the hippocampus of 3 different mouse models of metabolic syndrome: the C57BL6 mouse on a high fat (HF) diet; apolipoprotein E, leptin, and apolipoprotein B-48 deficient (ApoE 3KO) mice; and the low density lipoprotein receptor, leptin, and apolipoprotein B-48 deficient (LDLR 3KO) mice. We demonstrate that ER stress is activated in the hippocampus of HF mice, and for the first time, in ApoE 3KO mice, but not LDLR 3KO mice. The HF and ApoE 3KO mice are hyperglycemic; however, the LDLR 3KO mice have normal glycemia. This suggests that hyperglycemia may play a role in the activation of ER stress in the hippocampus. Similarly, we also demonstrate that impaired insulin signaling is only present in the HF and ApoE 3KO mice, which suggests that ER stress may play a role in insulin resistance in the hippocampus. To confirm this we pharmacologically induced ER stress with thapsigargin in human hippocampal neurons. We demonstrate for the first time that thapsigargin leads to ER stress and impaired insulin signaling in human hippocampal neurons. Our results may provide a potential mechanism that links metabolic syndrome and cognitive health. PMID:26775176

  16. DISC1-mediated dysregulation of adult hippocampal neurogenesis in rats.

    PubMed

    Lee, Heekyung; Kang, Eunchai; GoodSmith, Douglas; Yoon, Do Yeon; Song, Hongjun; Knierim, James J; Ming, Guo-Li; Christian, Kimberly M

    2015-01-01

    Adult hippocampal neurogenesis, the constitutive generation of new granule cells in the dentate gyrus of the mature brain, is a robust model of neural development and its dysregulation has been implicated in the pathogenesis of psychiatric and neurological disorders. Previous studies in mice have shown that altered expression of Disrupted-In-Schizophrenia 1 (Disc1), the mouse homolog of a risk gene for major psychiatric disorders, results in several distinct morphological phenotypes during neuronal development. Although there are advantages to using rats over mice for neurophysiological studies, genetic manipulations have not been widely utilized in rat models. Here, we used a retroviral-mediated approach to knockdown DISC1 expression in dividing cells in the rat dentate gyrus and characterized the morphological development of adult-born granule neurons. Consistent with earlier findings in mice, we show that DISC1 knockdown in adult-born dentate granule cells in rats resulted in accelerated dendritic growth, soma hypertrophy, ectopic dendrites, and mispositioning of new granule cells due to overextended migration. Our study thus demonstrates that the Disc1 genetic manipulation approach used in prior mouse studies is feasible in rats and that there is a conserved biological function of this gene across species. Extending gene-based studies of adult hippocampal neurogenesis from mice to rats will allow for the development of additional models that may be more amenable to behavioral and in vivo electrophysiological investigations. These models, in turn, can generate additional insight into the systems-level mechanisms of how risk genes for complex psychiatric disorders may impact adult neurogenesis and hippocampal function. PMID:26161071

  17. PDE-4 Inhibition Rescues Aberrant Synaptic Plasticity in Drosophila and Mouse Models of Fragile X Syndrome

    PubMed Central

    Choi, Catherine H.; Schoenfeld, Brian P.; Weisz, Eliana D.; Bell, Aaron J.; Chambers, Daniel B.; Hinchey, Joseph; Choi, Richard J.; Hinchey, Paul; Kollaros, Maria; Gertner, Michael J.; Ferrick, Neal J.; Terlizzi, Allison M.; Yohn, Nicole; Koenigsberg, Eric; Liebelt, David A.; Zukin, R. Suzanne; Woo, Newton H.; Tranfaglia, Michael R.; Louneva, Natalia; Arnold, Steven E.; Siegel, Steven J.

    2015-01-01

    Fragile X syndrome (FXS) is the leading cause of both intellectual disability and autism resulting from a single gene mutation. Previously, we characterized cognitive impairments and brain structural defects in a Drosophila model of FXS and demonstrated that these impairments were rescued by treatment with metabotropic glutamate receptor (mGluR) antagonists or lithium. A well-documented biochemical defect observed in fly and mouse FXS models and FXS patients is low cAMP levels. cAMP levels can be regulated by mGluR signaling. Herein, we demonstrate PDE-4 inhibition as a therapeutic strategy to ameliorate memory impairments and brain structural defects in the Drosophila model of fragile X. Furthermore, we examine the effects of PDE-4 inhibition by pharmacologic treatment in the fragile X mouse model. We demonstrate that acute inhibition of PDE-4 by pharmacologic treatment in hippocampal slices rescues the enhanced mGluR-dependent LTD phenotype observed in FXS mice. Additionally, we find that chronic treatment of FXS model mice, in adulthood, also restores the level of mGluR-dependent LTD to that observed in wild-type animals. Translating the findings of successful pharmacologic intervention from the Drosophila model into the mouse model of FXS is an important advance, in that this identifies and validates PDE-4 inhibition as potential therapeutic intervention for the treatment of individuals afflicted with FXS. PMID:25568131

  18. Bidirectional synaptic plasticity in the dentate gyrus of the awake freely behaving mouse

    PubMed Central

    Koranda, Jessica L.; Masino, Susan A.; Blaise, J. Harry

    2008-01-01

    There is significant interest in in vivo synaptic plasticity in mice due to the many relevant genetic mutants now available. Nevertheless, use of in vivo models remains limited. To date long-term potentiation (LTP) has been studied infrequently, and long-term depression (LTD) has not been characterized in the mouse in vivo. Herein we describe protocols and improved methodologies we developed to record hippocampal synaptic plasticity reliably from the dentate gyrus of the awake freely behaving mouse. Seven days prior to recording, we implanted microelectrodes encapsulated within a lightweight, low-profile headstage assembly. On the day of recording, we induced either LTP or LTD in the awake freely behaving animal and monitored subsequent changes in population spike amplitude for at least 24 hrs. Using this protocol we attained 80% success in inducing and maintaining either LTP or LTD. Recording from a chronic implant using this improved methodology is best suited to reveal naturally occurring brain activity, and avoids both acute effects of local electrode insertion and drifts in neuronal excitability associated with anesthesia. Ultimately a reliable freely behaving mouse model of bidirectional synaptic plasticity is invaluable for full characterization of genetic models of disease states and manipulations of the mechanisms implicated in learning and memory. PMID:17875326

  19. PPARδ agonist GW0742 ameliorates Aβ1-42-induced hippocampal neurotoxicity in mice.

    PubMed

    An, Yun-Qi; Zhang, Chun Teng; Du, Yong; Zhang, Ming; Tang, Su Su; Hu, Mei; Long, Yan; Sun, Hong Bing; Hong, Hao

    2016-06-01

    Amyloid-β deposition is thought to be associated with memory deficits, neuroinflammation, apoptotic responses, and progressive neuronal death manifested in Alzheimer's disease. Peroxisome proliferator-activated receptor δ (PPARδ) is a transcription factor with potent anti-inflammatory effect. In the current study, the effect of GW0742, a selective PPARδ agonist, on Aβ1-42-induced neurotoxicity was investigated in the hippocampus of mice. Intra-hippocampal infusion of aggregated Aβ1-42 oligomer (410pmol/mouse) remarkably damaged learning and memory in the Morris water maze (MWM) and Y-maze tests, accompanied by decreased expression of PPARδ in the hippocampus as confirmed by Western blot. Intra-hippocampal infusion of GW0742 (1.06 mM/mouse) significantly improved Aβ1-42-induced memory deficits in mice, reversed Aβ1-42-induced hippocampal PPARδ down-regulation and repressed Aβ1-42-triggered neuroinflammatory and apoptotic responses, indicated by decreased nuclear NF-κB p65, TNF-α, IL-1β as well as a decrease in cleaved caspase-3 and increased ratio of Bcl-2/Bax in the hippocampus. These results suggest that PPARδ activation ameliorates Aβ1-42-induced hippocampal neurotoxicity, and it might play a crucial role in Alzheimer's disease. PMID:26864581

  20. Medial septum regulates the hippocampal spatial representation

    PubMed Central

    Mamad, Omar; McNamara, Harold M.; Reilly, Richard B.; Tsanov, Marian

    2015-01-01

    The hippocampal circuitry undergoes attentional modulation by the cholinergic medial septum. However, it is unclear how septal activation regulates the spatial properties of hippocampal neurons. We investigated here what is the functional effect of selective-cholinergic and non-selective septal stimulation on septo-hippocampal system. We show for the first time selective activation of cholinergic cells and their differential network effect in medial septum of freely-behaving transgenic rats. Our data show that depolarization of cholinergic septal neurons evokes frequency-dependent response from the non-cholinergic septal neurons and hippocampal interneurons. Our findings provide vital evidence that cholinergic effect on septo-hippocampal axis is behavior-dependent. During the active behavioral state the activation of septal cholinergic projections is insufficient to evoke significant change in the spiking of the hippocampal neurons. The efficiency of septo-hippocampal processing during active exploration relates to the firing patterns of the non-cholinergic theta-bursting cells. Non-selective septal theta-burst stimulation resets the spiking of hippocampal theta cells, increases theta synchronization, entrains the spiking of hippocampal place cells, and tunes the spatial properties in a timing-dependent manner. The spatial properties are augmented only when the stimulation is applied in the periphery of the place field or 400–650 ms before the animals approached the center of the field. In summary, our data show that selective cholinergic activation triggers a robust network effect in the septo-hippocampal system during inactive behavioral state, whereas the non-cholinergic septal activation regulates hippocampal functional properties during explorative behavior. Together, our findings uncover fast septal modulation on hippocampal network and reveal how septal inputs up-regulate and down-regulate the encoding of spatial representation. PMID:26175674

  1. Hippocampal amnesia disrupts creative thinking

    PubMed Central

    Duff, Melissa C.; Kurczek, Jake; Rubin, Rachael; Cohen, Neal J.; Tranel, Daniel

    2014-01-01

    Creativity requires the rapid combination and recombination of existing mental representations to create novel ideas and ways of thinking. The hippocampal system, through its interaction with neocortical storage sites, provides a relational database necessary for the creation, updating, maintenance, and juxtaposition of mental representations used in service of declarative memory. Given this functionality, we hypothesized that hippocampus would play a critical role in creative thinking. We examined creative thinking, as measured by verbal and figural forms of the Torrance Tests of Creative Thinking (TTCT), in a group of participants with hippocampal damage and severe declarative memory impairment as well as in a group of demographically matched healthy comparison participants. The patients with bilateral hippocampal damage performed significantly worse than comparison participants on both the verbal and figural portions of the TTCT. These findings suggest that hippocampus plays a role critical in creative thinking, adding to a growing body of work pointing to the diverse ways the hallmark processing features of hippocampus serve a variety of behaviors that require flexible cognition. PMID:24123555

  2. Estradiol replacement extends the window of opportunity for hippocampal function

    PubMed Central

    Vedder, LC; Bredemann, TM; McMahon, LL

    2014-01-01

    We previously reported that treating aged female rats, ovariectomized (OVX) as young adults, with acute proestrous levels of 17β estradiol (E2) increases CA1 spine density, NMDAR/AMPAR ratio, GluN2B-mediated NMDAR current, and LTP at CA3-CA1 synapses if administered by 15, but not at 19, months post-OVX, defining the critical window of opportunity. Importantly, when rats are aged with ovaries intact until OVX at 20 months, hippocampal E2 responsiveness is maintained, indicating the deficit at 19 months post-OVX is a consequence of the duration of hormone deprivation and not chronological age. Here, we find the beneficial effect of E2 on novel object recognition in OVX rats was constrained by the same critical window. Furthermore, chronic low level E2 replacement, commenced by 11 months post-OVX using subcutaneous capsules removed 2 weeks prior to acute proestrous E2 treatment, prevents the loss of hippocampal responsiveness at 19 months post-OVX. These data define the dynamic nature of the critical window showing that chronic replacement with physiological E2 levels within a certain period post-OVX can lengthen the window. PMID:24813636

  3. Estradiol replacement extends the window of opportunity for hippocampal function.

    PubMed

    Vedder, Lindsey C; Bredemann, Teruko M; McMahon, Lori L

    2014-10-01

    We previously reported that treating aged female rats, ovariectomized (OVX) as young adults, with acute proestrous levels of 17β estradiol (E2) increases CA1 spine density, NMDAR to AMPAR ratio, GluN2B-mediated NMDAR current, and long-term potentiation at CA3-CA1 synapses if administered by 15, but not at 19-month post-OVX, defining the critical window of opportunity. Importantly, when rats are aged with ovaries intact until OVX at 20 months, hippocampal E2 responsiveness is maintained, indicating the deficit at 19-month post-OVX is a consequence of the duration of hormone deprivation and not chronological age. Here, we find the beneficial effect of E2 on novel object recognition in OVX rats was constrained by the same critical window. Furthermore, chronic low-level E2 replacement, commenced by 11-month post-OVX using subcutaneous capsules removed 2 weeks before acute proestrous E2 treatment, prevents the loss of hippocampal responsiveness at 19-month post-OVX. These data define the dynamic nature of the critical window showing that chronic replacement with physiological E2 levels within a certain period post-OVX can lengthen the window. PMID:24813636

  4. Neonatal hypoxia, hippocampal atrophy, and memory impairment: evidence of a causal sequence.

    PubMed

    Cooper, Janine M; Gadian, David G; Jentschke, Sebastian; Goldman, Allan; Munoz, Monica; Pitts, Georgia; Banks, Tina; Chong, W Kling; Hoskote, Aparna; Deanfield, John; Baldeweg, Torsten; de Haan, Michelle; Mishkin, Mortimer; Vargha-Khadem, Faraneh

    2015-06-01

    Neonates treated for acute respiratory failure experience episodes of hypoxia. The hippocampus, a structure essential for memory, is particularly vulnerable to such insults. Hence, some neonates undergoing treatment for acute respiratory failure might sustain bilateral hippocampal pathology early in life and memory problems later in childhood. We investigated this possibility in a cohort of 40 children who had been treated neonatally for acute respiratory failure but were free of overt neurological impairment. The cohort had mean hippocampal volumes (HVs) significantly below normal control values, memory scores significantly below the standard population means, and memory quotients significantly below those predicted by their full scale IQs. Brain white matter volume also fell below the volume of the controls, but brain gray matter volumes and scores on nonmnemonic neuropsychological tests were within the normal range. Stepwise linear regression models revealed that the cohort's HVs were predictive of degree of memory impairment, and gestational age at treatment was predictive of HVs: the younger the age, the greater the atrophy. We conclude that many neonates treated for acute respiratory failure sustain significant hippocampal atrophy as a result of the associated hypoxia and, consequently, show deficient memory later in life. PMID:24343890

  5. Neonatal Hypoxia, Hippocampal Atrophy, and Memory Impairment: Evidence of a Causal Sequence

    PubMed Central

    Cooper, Janine M.; Gadian, David G.; Jentschke, Sebastian; Goldman, Allan; Munoz, Monica; Pitts, Georgia; Banks, Tina; Chong, W. Kling; Hoskote, Aparna; Deanfield, John; Baldeweg, Torsten; de Haan, Michelle; Mishkin, Mortimer; Vargha-Khadem, Faraneh

    2015-01-01

    Neonates treated for acute respiratory failure experience episodes of hypoxia. The hippocampus, a structure essential for memory, is particularly vulnerable to such insults. Hence, some neonates undergoing treatment for acute respiratory failure might sustain bilateral hippocampal pathology early in life and memory problems later in childhood. We investigated this possibility in a cohort of 40 children who had been treated neonatally for acute respiratory failure but were free of overt neurological impairment. The cohort had mean hippocampal volumes (HVs) significantly below normal control values, memory scores significantly below the standard population means, and memory quotients significantly below those predicted by their full scale IQs. Brain white matter volume also fell below the volume of the controls, but brain gray matter volumes and scores on nonmnemonic neuropsychological tests were within the normal range. Stepwise linear regression models revealed that the cohort's HVs were predictive of degree of memory impairment, and gestational age at treatment was predictive of HVs: the younger the age, the greater the atrophy. We conclude that many neonates treated for acute respiratory failure sustain significant hippocampal atrophy as a result of the associated hypoxia and, consequently, show deficient memory later in life. PMID:24343890

  6. Opposing Actions of Chronic[Deta][superscript 9] Tetrahydrocannabinol and Cannabinoid Antagonists on Hippocampal Long-Term Potentiation

    ERIC Educational Resources Information Center

    Hoffman, Alexander F.; Oz, Murat; Yang, Ruiqin; Lichtman, Aron H.; Lupica, Carl R.

    2007-01-01

    Memory deficits produced by marijuana arise partly via interaction of the psychoactive component, [Deta][superscript 9]-tetrahydrocannabinol ([Deta][superscript 9]-THC), with cannabinoid receptors in the hippocampus. Although cannabinoids acutely reduce glutamate release and block hippocampal long-term potentiation (LTP), a potential substrate for…

  7. Antenatal Glucocorticoid Treatment Affects Hippocampal Development in Mice

    PubMed Central

    Noorlander, Cornelle W.; Tijsseling, Deodata; Hessel, Ellen V. S.; de Vries, Willem B.; Derks, Jan B.

    2014-01-01

    Synthetic glucocorticoids are administered to pregnant women at risk for preterm delivery, to enhance fetal lung maturation. The benefit of this treatment is well established, however caution is necessary because of possible unwanted side effects on development of different organ systems, including the brain. Actions of glucocorticoids are mediated by corticosteroid receptors, which are highly expressed in the hippocampus, a brain structure involved in cognitive functions. Therefore, we analyzed the effects of a single antenatal dexamethasone treatment on the development of the mouse hippocampus. A clinically relevant dose of dexamethasone (0.4 mg/kg) was administered to pregnant mice at embryonic day 15.5 and the hippocampus was analyzed from embryonic day 16 until adulthood. We investigated the effects of dexamethasone treatment on anatomical changes, apoptosis and proliferation in the hippocampus, hippocampal volume and on total body weight. Our results show that dexamethasone treatment reduced body weight and hippocampal volume transiently during development, but these effects were no longer detected at adulthood. Dexamethasone treatment increased the number of apoptotic cells in the hippocampus until birth, but postnatally no effects of dexamethasone treatment on apoptosis were found. During the phase with increased apoptosis, dexamethasone treatment reduced the number of proliferating cells in the subgranular zone of the dentate gyrus. The number of proliferative cells was increased at postnatal day 5 and 10, but was decreased again at the adult stage. This latter long-term and negative effect of antenatal dexamethasone treatment on the number of proliferative cells in the hippocampus may have important implications for hippocampal network function. PMID:24465645

  8. Acute Exercise Induced Mitochondrial H2O2 Production in Mouse Skeletal Muscle: Association with p66Shc and FOXO3a Signaling and Antioxidant Enzymes

    PubMed Central

    Wang, Ping; Qi, Zhengtang; Cui, Di; Ding, Shuzhe

    2015-01-01

    Exercise induced skeletal muscle phenotype change involves a complex interplay between signaling pathways and downstream regulators. This study aims to investigate the effect of acute exercise on mitochondrial H2O2 production and its association with p66Shc, FOXO3a, and antioxidant enzymes. Male ICR/CD-1 mice were subjected to an acute exercise. Muscle tissues (gastrocnemius and quadriceps femoris) were taken after exercise to measure mitochondrial H2O2 content, expression of p66Shc and FOXO3a, and the activity of antioxidant enzymes. The results showed that acute exercise significantly increased mitochondrial H2O2 content and expressions of p66Shc and FOXO3a in a time-dependent manner, with a linear correlation between the increase in H2O2 content and p66Shc or FOXO3a expression. The activity of mitochondrial catalase was slightly reduced in the 90 min exercise group, but it was significantly higher in groups with 120 and 150 min exercise compared to that of 90 min exercise group. The activity of SOD was not significantly affected. The results indicate that acute exercise increases mitochondrial H2O2 production in the skeletal muscle, which is associated with the upregulation of p66Shc and FOXO3a. The association of p66Shc and FOXO3a signaling with exercise induced H2O2 generation may play a role in regulating cellular oxidative stress during acute exercise. PMID:25874020

  9. Enhancement of morphological plasticity in hippocampal neurons by a physically modified saline via phosphatidylinositol-3 kinase.

    PubMed

    Roy, Avik; Modi, Khushbu K; Khasnavis, Saurabh; Ghosh, Supurna; Watson, Richard; Pahan, Kalipada

    2014-01-01

    Increase of the density of dendritic spines and enhancement of synaptic transmission through ionotropic glutamate receptors are important events, leading to synaptic plasticity and eventually hippocampus-dependent spatial learning and memory formation. Here we have undertaken an innovative approach to upregulate hippocampal plasticity. RNS60 is a 0.9% saline solution containing charge-stabilized nanobubbles that are generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. RNS60, but not NS (normal saline), PNS60 (saline containing a comparable level of oxygen without the TCP modification), or RNS10.3 (TCP-modified normal saline without excess oxygen), stimulated morphological plasticity and synaptic transmission via NMDA- and AMPA-sensitive calcium influx in cultured mouse hippocampal neurons. Using mRNA-based targeted gene array, real-time PCR, immunoblot, and immunofluorescence analyses, we further demonstrate that RNS60 stimulated the expression of many plasticity-associated genes in cultured hippocampal neurons. Activation of type IA, but not type IB, phosphatidylinositol-3 (PI-3) kinase by RNS60 together with abrogation of RNS60-mediated upregulation of plasticity-related proteins (NR2A and GluR1) and increase in spine density, neuronal size, and calcium influx by LY294002, a specific inhibitor of PI-3 kinase, suggest that RNS60 upregulates hippocampal plasticity via activation of PI-3 kinase. Finally, in the 5XFAD transgenic model of Alzheimer's disease (AD), RNS60 treatment upregulated expression of plasticity-related proteins PSD95 and NR2A and increased AMPA- and NMDA-dependent hippocampal calcium influx. These results describe a novel property of RNS60 in stimulating hippocampal plasticity, which may help AD and other dementias. PMID:25007337

  10. APP Is a Context-Sensitive Regulator of the Hippocampal Presynaptic Active Zone.

    PubMed

    Laßek, Melanie; Weingarten, Jens; Wegner, Martin; Mueller, Benjamin F; Rohmer, Marion; Baeumlisberger, Dominic; Arrey, Tabiwang N; Hick, Meike; Ackermann, Jörg; Acker-Palmer, Amparo; Koch, Ina; Müller, Ulrike; Karas, Michael; Volknandt, Walter

    2016-04-01

    The hallmarks of Alzheimer's disease (AD) are characterized by cognitive decline and behavioral changes. The most prominent brain region affected by the progression of AD is the hippocampal formation. The pathogenesis involves a successive loss of hippocampal neurons accompanied by a decline in learning and memory consolidation mainly attributed to an accumulation of senile plaques. The amyloid precursor protein (APP) has been identified as precursor of Aβ-peptides, the main constituents of senile plaques. Until now, little is known about the physiological function of APP within the central nervous system. The allocation of APP to the proteome of the highly dynamic presynaptic active zone (PAZ) highlights APP as a yet unknown player in neuronal communication and signaling. In this study, we analyze the impact of APP deletion on the hippocampal PAZ proteome. The native hippocampal PAZ derived from APP mouse mutants (APP-KOs and NexCreAPP/APLP2-cDKOs) was isolated by subcellular fractionation and immunopurification. Subsequently, an isobaric labeling was performed using TMT6 for protein identification and quantification by high-resolution mass spectrometry. We combine bioinformatics tools and biochemical approaches to address the proteomics dataset and to understand the role of individual proteins. The impact of APP deletion on the hippocampal PAZ proteome was visualized by creating protein-protein interaction (PPI) networks that incorporated APP into the synaptic vesicle cycle, cytoskeletal organization, and calcium-homeostasis. The combination of subcellular fractionation, immunopurification, proteomic analysis, and bioinformatics allowed us to identify APP as structural and functional regulator in a context-sensitive manner within the hippocampal active zone network. PMID:27092780

  11. Enhancement of Morphological Plasticity in Hippocampal Neurons by a Physically Modified Saline via Phosphatidylinositol-3 Kinase

    PubMed Central

    Roy, Avik; Modi, Khushbu K.; Khasnavis, Saurabh; Ghosh, Supurna; Watson, Richard; Pahan, Kalipada

    2014-01-01

    Increase of the density of dendritic spines and enhancement of synaptic transmission through ionotropic glutamate receptors are important events, leading to synaptic plasticity and eventually hippocampus-dependent spatial learning and memory formation. Here we have undertaken an innovative approach to upregulate hippocampal plasticity. RNS60 is a 0.9% saline solution containing charge-stabilized nanobubbles that are generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. RNS60, but not NS (normal saline), PNS60 (saline containing a comparable level of oxygen without the TCP modification), or RNS10.3 (TCP-modified normal saline without excess oxygen), stimulated morphological plasticity and synaptic transmission via NMDA- and AMPA-sensitive calcium influx in cultured mouse hippocampal neurons. Using mRNA-based targeted gene array, real-time PCR, immunoblot, and immunofluorescence analyses, we further demonstrate that RNS60 stimulated the expression of many plasticity-associated genes in cultured hippocampal neurons. Activation of type IA, but not type IB, phosphatidylinositol-3 (PI-3) kinase by RNS60 together with abrogation of RNS60-mediated upregulation of plasticity-related proteins (NR2A and GluR1) and increase in spine density, neuronal size, and calcium influx by LY294002, a specific inhibitor of PI-3 kinase, suggest that RNS60 upregulates hippocampal plasticity via activation of PI-3 kinase. Finally, in the 5XFAD transgenic model of Alzheimer’s disease (AD), RNS60 treatment upregulated expression of plasticity-related proteins PSD95 and NR2A and increased AMPA- and NMDA-dependent hippocampal calcium influx. These results describe a novel property of RNS60 in stimulating hippocampal plasticity, which may help AD and other dementias. PMID:25007337

  12. APP Is a Context-Sensitive Regulator of the Hippocampal Presynaptic Active Zone

    PubMed Central

    Mueller, Benjamin F.; Rohmer, Marion; Baeumlisberger, Dominic; Arrey, Tabiwang N.; Hick, Meike; Ackermann, Jörg; Acker-Palmer, Amparo; Koch, Ina; Müller, Ulrike; Karas, Michael; Volknandt, Walter

    2016-01-01

    The hallmarks of Alzheimer’s disease (AD) are characterized by cognitive decline and behavioral changes. The most prominent brain region affected by the progression of AD is the hippocampal formation. The pathogenesis involves a successive loss of hippocampal neurons accompanied by a decline in learning and memory consolidation mainly attributed to an accumulation of senile plaques. The amyloid precursor protein (APP) has been identified as precursor of Aβ-peptides, the main constituents of senile plaques. Until now, little is known about the physiological function of APP within the central nervous system. The allocation of APP to the proteome of the highly dynamic presynaptic active zone (PAZ) highlights APP as a yet unknown player in neuronal communication and signaling. In this study, we analyze the impact of APP deletion on the hippocampal PAZ proteome. The native hippocampal PAZ derived from APP mouse mutants (APP-KOs and NexCreAPP/APLP2-cDKOs) was isolated by subcellular fractionation and immunopurification. Subsequently, an isobaric labeling was performed using TMT6 for protein identification and quantification by high-resolution mass spectrometry. We combine bioinformatics tools and biochemical approaches to address the proteomics dataset and to understand the role of individual proteins. The impact of APP deletion on the hippocampal PAZ proteome was visualized by creating protein-protein interaction (PPI) networks that incorporated APP into the synaptic vesicle cycle, cytoskeletal organization, and calcium-homeostasis. The combination of subcellular fractionation, immunopurification, proteomic analysis, and bioinformatics allowed us to identify APP as structural and functional regulator in a context-sensitive manner within the hippocampal active zone network. PMID:27092780

  13. Huperzine A promotes hippocampal neurogenesis in vitro and in vivo.

    PubMed

    Ma, Tuo; Gong, Kai; Yan, Yufang; Zhang, Lihai; Tang, Peifu; Zhang, Xiufang; Gong, Yandao

    2013-04-19

    Huperzine A (Hup A) is a lycopodium alkaloid from Huperzia serrata, which has been used as a therapeutic agent in several neurological disorders. Despite the diverse pharmacological activities Hup A has, its role in hippocampal neurogenesis remains to be established. This study showed that Hup A not only promoted the proliferation of cultured mouse embryonic hippocampal neural stem cells (NSCs), but also increased the newly generated cells in the subgranular zone (SGZ) of the hippocampus in adult mice. Furthermore, the in vitro findings indicated that low concentrations of Hup A stimulated the proliferation of cultured NSCs, whereas extremely high concentration of it decreased the cell proliferation. Hup A activated mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway, which was a well-known regulator of biological processes including cell proliferation and differentiation. ERK inhibitor dramatically inhibited the proliferative effect of Hup A on NSCs. Administration of Hup A to adult mice significantly enhanced the cell proliferation in dentate gyrus of hippocampus, and increased the remaining newborn cells 4 weeks after the drug administration. Moreover, the newly generated BrdU(+)/NeuN(+) neurons were also increased by Hup A treatment. These findings suggest a novel role of Hup A in neurogenesis and provide a new insight into its therapeutic effects in neurological disorders via a neurogenesis-related mechanism. PMID:23454433

  14. Post-embedding Immunogold Labeling of Synaptic Proteins in Hippocampal Slice Cultures

    PubMed Central

    Zhong, Ling; Brown, Joshua C.; Wells, Clive; Gerges, Nashaat Z.

    2013-01-01

    in brain and spinal cord tissues7. We have adopted this osmium-free post-embedding method to rat brain tissue and optimized the immunogold labeling technique to detect and study synaptic proteins. We present here a method to determine the ultrastructural localization of synaptic proteins in rat hippocampal CA1 pyramidal neurons. We use organotypic hippocampal cultured slices. These slices maintain the trisynaptic circuitry of the hippocampus, and thus are especially useful for studying synaptic plasticity, a mechanism widely thought to underlie learning and memory. Organotypic hippocampal slices from postnatal day 5 and 6 mouse/rat pups can be prepared as described previously8, and are especially useful to acutely knockdown or overexpress exogenous proteins. We have previously used this protocol to characterize neurogranin (Ng), a neuron-specific protein with a critical role in regulating synaptic function8,9 . We have also used it to characterize the ultrastructural localization of calmodulin (CaM) and Ca2+/CaM-dependent protein kinase II (CaMKII)10. As illustrated in the results, this protocol allows good ultrastructural preservation of dendritic spines and efficient labeling of Ng to help characterize its distribution in the spine8. Furthermore, the procedure described here can have wide applicability in studying many other proteins involved in neuronal functions. PMID:23609099

  15. Risk assessment for the combinational effects of food color additives: neural progenitor cells and hippocampal neurogenesis.

    PubMed

    Park, Mikyung; Park, Hee Ra; Kim, So Jung; Kim, Min-Sun; Kong, Kyoung Hye; Kim, Hyun Soo; Gong, Ein Ji; Kim, Mi Eun; Kim, Hyung Sik; Lee, Byung Mu; Lee, Jaewon

    2009-01-01

    In 2006, the Korea Food and Drug Administration reported that combinations of dietary colors such as allura red AC (R40), tartrazine (Y4), sunset yellow FCF (Y5), amaranth (R2), and brilliant blue FCF (B1) are widely used in food manufacturing. Although individual tar food colors are controlled based on acceptable daily intake (ADI), there is no apparent information available for how combinations of these additives affect food safety. In the current study, the potencies of single and combination use of R40, Y4, Y5, R2, and B1 were examined on neural progenitor cell (NPC) toxicity, a biomarker for developmental stage, and neurogenesis, indicative of adult central nervous system (CNS) functions. R40 and R2 reduced NPC proliferation and viability in mouse multipotent NPC, in the developing CNS model. Among several combinations tested in mouse model, combination of Y4 and B1 at 1000-fold higher than average daily intake in Korea significantly decreased numbers of newly generated cells in adult mouse hippocampus, indicating potent adverse actions on hippocampal neurogenesis. However, other combinations including R40 and R2 did not affect adult hippocampal neurogenesis in the dentate gyrus. Evidence indicates that single and combination use of most tar food colors may be safe with respect to risk using developmental NPC and adult hippocampal neurogenesis. However, the response to excessively high dose combination of Y4 and B1 is suggestive of synergistic effects to suppress proliferation of NPC in adult hippocampus. Data indicated that combinations of tar colors may adversely affect both developmental and adult hippocampal neurogenesis; thus, further extensive studies are required to assess the safety of these additive combinations. PMID:20077213

  16. Regulation of action potential delays via voltage-gated potassium Kv1.1 channels in dentate granule cells during hippocampal epilepsy

    PubMed Central

    Kirchheim, Florian; Tinnes, Stefanie; Haas, Carola A.; Stegen, Michael; Wolfart, Jakob

    2013-01-01

    Action potential (AP) responses of dentate gyrus granule (DG) cells have to be tightly regulated to maintain hippocampal function. However, which ion channels control the response delay of DG cells is not known. In some neuron types, spike latency is influenced by a dendrotoxin (DTX)-sensitive delay current (ID) mediated by unidentified combinations of voltage-gated K+ (Kv) channels of the Kv1 family Kv1.1–6. In DG cells, the ID has not been characterized and its molecular basis is unknown. The response phenotype of mature DG cells is usually considered homogenous but intrinsic plasticity likely occurs in particular in conditions of hyperexcitability, for example during temporal lobe epilepsy (TLE). In this study, we examined response delays of DG cells and underlying ion channel molecules by employing a combination of gramicidin-perforated patch-clamp recordings in acute brain slices and single-cell reverse transcriptase quantitative polymerase chain reaction (SC RT-qPCR) experiments. An in vivo mouse model of TLE consisting of intrahippocampal kainate (KA) injection was used to examine epilepsy-related plasticity. Response delays of DG cells were DTX-sensitive and strongly increased in KA-injected hippocampi; Kv1.1 mRNA was elevated 10-fold, and the response delays correlated with Kv1.1 mRNA abundance on the single cell level. Other Kv1 subunits did not show overt changes in mRNA levels. Kv1.1 immunolabeling was enhanced in KA DG cells. The biophysical properties of ID and a delay heterogeneity within the DG cell population was characterized. Using organotypic hippocampal slice cultures (OHCs), where KA incubation also induced ID upregulation, the homeostatic reversibility and neuroprotective potential for DG cells were tested. In summary, the AP timing of DG cells is effectively controlled via scaling of Kv1.1 subunit transcription. With this antiepileptic mechanism, DG cells delay their responses during hyperexcitation. PMID:24367293

  17. GENETIC MAPPING OF VOCALIZATION TO A SERIES OF INCREASING ACUTE FOOTSHOCKS USING B6.A CONSOMIC AND B6.D2 CONGENIC MOUSE STRAINS

    SciTech Connect

    Matthews, Douglas B; Chesler, Elissa J; Cook, Melloni N.; Cockroft, Judy; Philip, Vivek M; Goldowitz, Daniel

    2008-01-01

    Footshock response is used to study biological functions in mammals. However, the genetics underlying variability in footshock sensitivity are not well understood. In the current studies, a panel of B6.A consomic mouse strains, two B6.D2 congenic mouse strains and the progenitor strains were screened for footshock sensitivity as measured by audible vocalization. It was found that A/J (A) mice and C57BL/6J (B6) mice with an A Chromosome 1 (Chr 1) were less sensitive to footshock compared to B6 animals. Furthermore, the offspring of Chr 1 consomic mice crossed with B6 mice had vocalization levels that were intermediate to A/J and B6 animals. A F2 mapping panel revealed two significant QTLs for footshock vocalization centered around D1Mit490 and D1Mit206 on Chr 1. The role of these Chr 1 loci in footshock sensitivity was confirmed in B6.D2 congenic mice. These data identify genetic regions involved in footshock sensitivity and establish additional mouse resources for use in investigating complex behaviors.

  18. Resveratrol given intraperitoneally does not inhibit growth of high-risk t(4;11) acute lymphoblastic leukemia cells in NOD/SCID mouse model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficacy of the phytochemical resveratrol as a preventive agent against the growth of t(4;11) acute lymphoblastic leukemia (ALL) was evaluated in NOD.CB17-Prkdcscid/J mice engrafted with the human t(4;11) ALL line SEM. SEM cells were injected into the tail vein and engraftment was monitored by ...

  19. Restraint stress increases hemichannel activity in hippocampal glial cells and neurons

    PubMed Central

    Orellana, Juan A.; Moraga-Amaro, Rodrigo; Díaz-Galarce, Raúl; Rojas, Sebastián; Maturana, Carola J.; Stehberg, Jimmy; Sáez, Juan C.

    2015-01-01

    Stress affects brain areas involved in learning and emotional responses, which may contribute in the development of cognitive deficits associated with major depression. These effects have been linked to glial cell activation, glutamate release and changes in neuronal plasticity and survival including atrophy of hippocampal apical dendrites, loss of synapses and neuronal death. Under neuro-inflammatory conditions, we recently unveiled a sequential activation of glial cells that release ATP and glutamate via hemichannels inducing neuronal death due to activation of neuronal NMDA/P2X7 receptors and pannexin1 hemichannels. In the present work, we studied if stress-induced glia activation is associated to changes in hemichannel activity. To this end, we compared hemichannel activity of brain cells after acute or chronic restraint stress in mice. Dye uptake experiments in hippocampal slices revealed that acute stress induces opening of both Cx43 and Panx1 hemichannels in astrocytes, which were further increased by chronic stress; whereas enhanced Panx1 hemichannel activity was detected in microglia and neurons after acute/chronic and chronic stress, respectively. Moreover, inhibition of NMDA/P2X7 receptors reduced the chronic stress-induced hemichannel opening, whereas blockade of Cx43 and Panx1 hemichannels fully reduced ATP and glutamate release in hippocampal slices from stressed mice. Thus, we propose that gliotransmitter release through hemichannels may participate in the pathogenesis of stress-associated psychiatric disorders and possibly depression. PMID:25883550

  20. Hippocampal Cajal-Retzius cells project to the entorhinal cortex: retrograde tracing and intracellular labelling studies.

    PubMed

    Ceranik, K; Deng, J; Heimrich, B; Lübke, J; Zhao, S; Förster, E; Frotscher, M

    1999-12-01

    Cajal-Retzius (CR) cells are characteristic horizontally orientated, early-generated transient neurons in the marginal zones of the neocortex and hippocampus that synthesize the extracellular matrix protein reelin. They have been implicated in the pathfinding of entorhino-hippocampal axons, but their role in this process remained unclear. Here we have studied the axonal projection of hippocampal CR cells. Following injection of the carbocyanine dye DiI into the entorhinal cortex of aldehyde-fixed rat embryos and young postnatal rats, neurons in the outer molecular layer of the dentate gyrus and stratum lacunosum-moleculare of the hippocampus proper with morphological characteristics of CR cells were retrogradely labelled. In a time course analysis, the first retrogradely labelled CR cells were observed on embryonic day 17. This projection of hippocampal CR cells to the entorhinal cortex was confirmed by retrograde tracing with Fast Blue in new-born rats and by intracellular biocytin filling of CR cells in acute slices from young postnatal rat hippocampus/entorhinal cortex and in entorhino-hippocampal slice cocultures using infrared videomicroscopy in combination with the patch-clamp technique. In double-labelling experiments CR cells were identified by their immunocytochemical staining for reelin or calretinin, and their interaction with entorhino-hippocampal axons labelled by anterograde tracers was analysed. Future studies need to investigate whether this early transient projection of hippocampal CR cells to the entorhinal cortex is used as a template by the entorhinal axons growing to their target layers in the hippocampus. PMID:10594654

  1. Prenatal immune activation causes hippocampal synaptic deficits in the absence of overt microglia anomalies.

    PubMed

    Giovanoli, Sandra; Weber-Stadlbauer, Ulrike; Schedlowski, Manfred; Meyer, Urs; Engler, Harald

    2016-07-01

    Prenatal exposure to infectious or inflammatory insults can increase the risk of developing neuropsychiatric disorder in later life, including schizophrenia, bipolar disorder, and autism. These brain disorders are also characterized by pre- and postsynaptic deficits. Using a well-established mouse model of maternal exposure to the viral mimetic polyriboinosinic-polyribocytidilic acid [poly(I:C)], we examined whether prenatal immune activation might cause synaptic deficits in the hippocampal formation of pubescent and adult offspring. Based on the widely appreciated role of microglia in synaptic pruning, we further explored possible associations between synaptic deficits and microglia anomalies in offspring of poly(I:C)-exposed and control mothers. We found that prenatal immune activation induced an adult onset of presynaptic hippocampal deficits (as evaluated by synaptophysin and bassoon density). The early-life insult further caused postsynaptic hippocampal deficits in pubescence (as evaluated by PSD95 and SynGAP density), some of which persisted into adulthood. In contrast, prenatal immune activation did not change microglia (or astrocyte) density, nor did it alter their activation phenotypes. The prenatal manipulation did also not cause signs of persistent systemic inflammation. Despite the absence of overt glial anomalies or systemic inflammation, adult offspring exposed to prenatal immune activation displayed increased hippocampal IL-1β levels. Taken together, our findings demonstrate that age-dependent synaptic deficits and abnormal pro-inflammatory cytokine expression can occur during postnatal brain maturation in the absence of microglial anomalies or systemic inflammation. PMID:26408796

  2. Developmental hypothyroidism abolishes bilateral differences in sonic hedgehog gene control in the rat hippocampal dentate gyrus.

    PubMed

    Tanaka, Takeshi; Wang, Liyun; Kimura, Masayuki; Abe, Hajime; Mizukami, Sayaka; Yoshida, Toshinori; Shibutani, Makoto

    2015-03-01

    Both developmental and adult-stage hypothyroidism disrupt rat hippocampal neurogenesis. We previously showed that exposing mouse offspring to manganese permanently disrupts hippocampal neurogenesis and abolishes the asymmetric distribution of cells expressing Mid1, a molecule regulated by sonic hedgehog (Shh) signaling. The present study examined the involvement of Shh signaling on the disruption of hippocampal neurogenesis in rats with hypothyroidism. Pregnant rats were treated with methimazole (MMI) at 0 or 200 ppm in the drinking water from gestation day 10-21 days after delivery (developmental hypothyroidism). Adult male rats were treated with MMI in the same manner from postnatal day (PND) 46 to PND 77 (adult-stage hypothyroidism). Developmental hypothyroidism reduced the number of Mid1(+) cells within the subgranular zone of the dentate gyrus of offspring on PND 21, and consequently abolished the normal asymmetric predominance of Mid1(+) cells on the right side through the adult stage. In control animals, Shh was expressed in a subpopulation of hilar neurons, showing asymmetric distribution with left side predominance on PND 21; however, this asymmetry did not continue through the adult stage. Developmental hypothyroidism increased Shh(+) neurons bilaterally and abolished the asymmetric distribution pattern on PND 21. Adult hypothyroidism also disrupted the asymmetric distribution of Mid1(+) cells but did not affect the distribution of Shh(+) hilar neurons. The results suggest that the hippocampal neurogenesis disruption seen in hypothyroidism involves changes in asymmetric Shh(+) neuron distribution in developmental hypothyroidism and altered Mid1 expression in both developmental and adult-stage hypothyroidism. PMID:25539664

  3. Hippocampal neuronal subtypes develop abnormal dendritic arbors in the presence of Fragile X astrocytes.

    PubMed

    Jacobs, S; Cheng, C; Doering, L C

    2016-06-01

    Astrocytes are now recognized as key players in the neurobiology of neurodevelopmental disorders such as Fragile X syndrome. However, the nature of Fragile X astrocyte-mediated control of dendrite development in subtypes of hippocampal neurons is not yet known. We used a co-culture procedure in which wildtype primary hippocampal neurons were cultured with astrocytes from either a wildtype or Fragile X mouse, for either 7, 14 or 21days. The neurons were processed for immunocytochemistry with the dendritic marker MAP2, classified by morphological criteria into one of five neuronal subtypes, and subjected to Sholl analyses. Both linear and semi-log methods of Sholl analyses were applied to the neurons in order to provide an in depth analysis of the dendritic arborizations. We found that Fragile X astrocytes affect the development of dendritic arborization of all subtypes of wildtype hippocampal neurons. Furthermore, we show that hippocampal neurons with spiny stellate neuron morphology exhibit the most pervasive developmental delays, with significant dendritic arbor alterations persisting at 21days in culture. The results further dictate the critical role astrocytes play in governing neuronal morphology including altered dendrite development in Fragile X. PMID:26968765

  4. Abnormalities of hippocampal-cortical connectivity in temporal lobe epilepsy patients with hippocampal sclerosis

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; He, Huiguang; Lu, Jingjing; Wang, Chunheng; Li, Meng; Lv, Bin; Jin, Zhengyu

    2011-03-01

    Hippocampal sclerosis (HS) is the most common damage seen in the patients with temporal lobe epilepsy (TLE). In the present study, the hippocampal-cortical connectivity was defined as the correlation between the hippocampal volume and cortical thickness at each vertex throughout the whole brain. We aimed to investigate the differences of ipsilateral hippocampal-cortical connectivity between the unilateral TLE-HS patients and the normal controls. In our study, the bilateral hippocampal volumes were first measured in each subject, and we found that the ipsilateral hippocampal volume significantly decreased in the left TLE-HS patients. Then, group analysis showed significant thinner average cortical thickness of the whole brain in the left TLE-HS patients compared with the normal controls. We found significantly increased ipsilateral hippocampal-cortical connectivity in the bilateral superior temporal gyrus, the right cingulate gyrus and the left parahippocampal gyrus of the left TLE-HS patients, which indicated structural vulnerability related to the hippocampus atrophy in the patient group. However, for the right TLE-HS patients, no significant differences were found between the patients and the normal controls, regardless of the ipsilateral hippocampal volume, the average cortical thickness or the patterns of hippocampal-cortical connectivity, which might be related to less atrophies observed in the MRI scans. Our study provided more evidence for the structural abnormalities in the unilateral TLE-HS patients.

  5. Early synaptic deficits in the APP/PS1 mouse model of Alzheimer's disease involve neuronal adenosine A2A receptors.

    PubMed

    Viana da Silva, Silvia; Haberl, Matthias Georg; Zhang, Pei; Bethge, Philipp; Lemos, Cristina; Gonçalves, Nélio; Gorlewicz, Adam; Malezieux, Meryl; Gonçalves, Francisco Q; Grosjean, Noëlle; Blanchet, Christophe; Frick, Andreas; Nägerl, U Valentin; Cunha, Rodrigo A; Mulle, Christophe

    2016-01-01

    Synaptic plasticity in the autoassociative network of recurrent connections among hippocampal CA3 pyramidal cells is thought to enable the storage of episodic memory. Impaired episodic memory is an early manifestation of cognitive deficits in Alzheimer's disease (AD). In the APP/PS1 mouse model of AD amyloidosis, we show that associative long-term synaptic potentiation (LTP) is abolished in CA3 pyramidal cells at an early stage. This is caused by activation of upregulated neuronal adenosine A2A receptors (A2AR) rather than by dysregulation of NMDAR signalling or altered dendritic spine morphology. Neutralization of A2AR by acute pharmacological inhibition, or downregulation driven by shRNA interference in a single postsynaptic neuron restore associative CA3 LTP. Accordingly, treatment with A2AR antagonists reverts one-trial memory deficits. These results provide mechanistic support to encourage testing the therapeutic efficacy of A2AR antagonists in early AD patients. PMID:27312972

  6. Early synaptic deficits in the APP/PS1 mouse model of Alzheimer's disease involve neuronal adenosine A2A receptors

    PubMed Central

    Viana da Silva, Silvia; Haberl, Matthias Georg; Zhang, Pei; Bethge, Philipp; Lemos, Cristina; Gonçalves, Nélio; Gorlewicz, Adam; Malezieux, Meryl; Gonçalves, Francisco Q.; Grosjean, Noëlle; Blanchet, Christophe; Frick, Andreas; Nägerl, U Valentin; Cunha, Rodrigo A.; Mulle, Christophe

    2016-01-01

    Synaptic plasticity in the autoassociative network of recurrent connections among hippocampal CA3 pyramidal cells is thought to enable the storage of episodic memory. Impaired episodic memory is an early manifestation of cognitive deficits in Alzheimer's disease (AD). In the APP/PS1 mouse model of AD amyloidosis, we show that associative long-term synaptic potentiation (LTP) is abolished in CA3 pyramidal cells at an early stage. This is caused by activation of upregulated neuronal adenosine A2A receptors (A2AR) rather than by dysregulation of NMDAR signalling or altered dendritic spine morphology. Neutralization of A2AR by acute pharmacological inhibition, or downregulation driven by shRNA interference in a single postsynaptic neuron restore associative CA3 LTP. Accordingly, treatment with A2AR antagonists reverts one-trial memory deficits. These results provide mechanistic support to encourage testing the therapeutic efficacy of A2AR antagonists in early AD patients. PMID:27312972

  7. A BDNF loop-domain mimetic acutely reverses spontaneous apneas and respiratory abnormalities during behavioral arousal in a mouse model of Rett syndrome

    PubMed Central

    Kron, Miriam; Lang, Min; Adams, Ian T.; Sceniak, Michael; Longo, Frank; Katz, David M.

    2014-01-01

    Reduced levels of brain-derived neurotrophic factor (BDNF) are thought to contribute to the pathophysiology of Rett syndrome (RTT), a severe neurodevelopmental disorder caused by loss-of-function mutations in the gene encoding methyl-CpG-binding protein 2 (MeCP2). In Mecp2 mutant mice, BDNF deficits have been associated with breathing abnormalities, a core feature of RTT, as well as with synaptic hyperexcitability within the brainstem respiratory network. Application of BDNF can reverse hyperexcitability in acute brainstem slices from Mecp2-null mice, suggesting that therapies targeting BDNF or its receptor, TrkB, could be effective at acute reversal of respiratory abnormalities in RTT. Therefore, we examined the ability of LM22A-4, a small-molecule BDNF loop-domain mimetic and TrkB partial agonist, to modulate synaptic excitability within respiratory cell groups in the brainstem nucleus tractus solitarius (nTS) and to acutely reverse abnormalities in breathing at rest and during behavioral arousal in Mecp2 mutants. Patch-clamp recordings in Mecp2-null brainstem slices demonstrated that LM22A-4 decreases excitability at primary afferent synapses in the nTS by reducing the amplitude of evoked excitatory postsynaptic currents and the frequency of spontaneous and miniature excitatory postsynaptic currents. In vivo, acute treatment of Mecp2-null and -heterozygous mutants with LM22A-4 completely eliminated spontaneous apneas in resting animals, without sedation. Moreover, we demonstrate that respiratory dysregulation during behavioral arousal, a feature of human RTT, is also reversed in Mecp2 mutants by acute treatment with LM22A-4. Together, these data support the hypothesis that reduced BDNF signaling and respiratory dysfunction in RTT are linked, and establish the proof-of-concept that treatment with a small-molecule structural mimetic of a BDNF loop domain and a TrkB partial agonist can acutely reverse abnormal breathing at rest and in response to behavioral arousal

  8. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour.

    PubMed

    Snyder, Jason S; Soumier, Amélie; Brewer, Michelle; Pickel, James; Cameron, Heather A

    2011-08-25

    Glucocorticoids are released in response to stressful experiences and serve many beneficial homeostatic functions. However, dysregulation of glucocorticoids is associated with cognitive impairments and depressive illness. In the hippocampus, a brain region densely populated with receptors for stress hormones, stress and glucocorticoids strongly inhibit adult neurogenesis. Decreased neurogenesis has been implicated in the pathogenesis of anxiety and depression, but direct evidence for this role is lacking. Here we show that adult-born hippocampal neurons are required for normal expression of the endocrine and behavioural components of the stress response. Using either transgenic or radiation methods to inhibit adult neurogenesis specifically, we find that glucocorticoid levels are slower to recover after moderate stress and are less suppressed by dexamethasone in neurogenesis-deficient mice than intact mice, consistent with a role for the hippocampus in regulation of the hypothalamic-pituitary-adrenal (HPA) axis. Relative to controls, neurogenesis-deficient mice also showed increased food avoidance in a novel environment after acute stress, increased behavioural despair in the forced swim test, and decreased sucrose preference, a measure of anhedonia. These findings identify a small subset of neurons within the dentate gyrus that are critical for hippocampal negative control of the HPA axis and support a direct role for adult neurogenesis in depressive illness. PMID:21814201

  9. Hippocampal PER1: a circadian sentinel controlling RSKy activity during memory formation.

    PubMed

    Yoo, Seung-Hee; Eckel-Mahan, Kristin

    2016-09-01

    Studies have demonstrated a pronounced dependence of memory formation on circadian time; however, the numerous mechanisms underlying this reliance are only beginning to be understood. While the 24-h cellular clock controls various aspects of hippocampal memory formation, its consolidation in particular (i.e., its conversion from short-term to long-term memory), appears to be heavily dependent on circadian activity in hippocampal neurons. Hippocampal memory consolidation requires phosphorylation of the cAMP Response Element-Binding protein, CREB, which upon phosphorylation promotes the transcription of genes necessary for long-term memory formation. Rhythmic cAMP/ERK-MAPK activity upstream of CREB is a necessary component. This Editorial highlights a study by Rawashdeh and coworkers, in which the authors establish the circadian clock gene Period1 (Per1) as a regulator of CREB phosphorylation in the mouse hippocampus, and thus reveal a functional link between circadian rhythms and learning efficiency. Read the highlighted article 'Period1 gates the circadian modulation of memory-relevant signaling in mouse hippocampus by regulating the nuclear shuttling of the CREB kinase pP90RSK' on page 731. PMID:27554418

  10. Increasing Adult Hippocampal Neurogenesis is Sufficient to Reduce Anxiety and Depression-Like Behaviors.

    PubMed

    Hill, Alexis S; Sahay, Amar; Hen, René

    2015-09-01

    Adult hippocampal neurogenesis is increased by antidepressants, and is required for some of their behavioral effects. However, it remains unclear whether expanding the population of adult-born neurons is sufficient to affect anxiety and depression-related behavior. Here, we use an inducible transgenic mouse model in which the pro-apoptotic gene Bax is deleted from neural stem cells and their progeny in the adult brain, and thereby increases adult neurogenesis. We find no effects on baseline anxiety and depression-related behavior; however, we find that increasing adult neurogenesis is sufficient to reduce anxiety and depression-related behaviors in mice treated chronically with corticosterone (CORT), a mouse model of stress. Thus, neurogenesis differentially affects behavior under baseline conditions and in a model of chronic stress. Moreover, we find no effect of increased adult hippocampal neurogenesis on hypothalamic-pituitary-adrenal (HPA) axis regulation, either at baseline or following chronic CORT administration, suggesting that increasing adult hippocampal neurogenesis can affect anxiety and depression-related behavior through a mechanism independent of the HPA axis. The use of future techniques to specifically inhibit BAX in the hippocampus could be used to augment adult neurogenesis, and may therefore represent a novel strategy to promote antidepressant-like behavioral effects. PMID:25833129

  11. Structural Plasticity and Hippocampal Function

    PubMed Central

    Leuner, Benedetta; Gould, Elizabeth

    2010-01-01

    The hippocampus is a region of the mammalian brain that shows an impressive capacity for structural reorganization. Preexisting neural circuits undergo modifications in dendritic complexity and synapse number, and entirely novel neural connections are formed through the process of neurogenesis. These types of structural change were once thought to be restricted to development. However, it is now generally accepted that the hippocampus remains structurally plastic throughout life. This article reviews structural plasticity in the hippocampus over the lifespan, including how it is investigated experimentally. The modulation of structural plasticity by various experiential factors as well as the possible role it may have in hippocampal functions such as learning and memory, anxiety, and stress regulation are also considered. Although significant progress has been made in many of these areas, we highlight some of the outstanding issues that remain. PMID:19575621

  12. Dynamic mapping of normal human hippocampal development.

    PubMed

    Gogtay, Nitin; Nugent, Tom F; Herman, David H; Ordonez, Anna; Greenstein, Deanna; Hayashi, Kiralee M; Clasen, Liv; Toga, Arthur W; Giedd, Jay N; Rapoport, Judith L; Thompson, Paul M

    2006-01-01

    The hippocampus, which plays an important role in memory functions and emotional responses, has distinct subregions subserving different functions. Because the volume and shape of the hippocampus are altered in many neuropsychiatric disorders, it is important to understand the trajectory of normal hippocampal development. We present the first dynamic maps to reveal the anatomical sequence of normal human hippocampal development. A novel hippocampal mapping technique was applied to a database of prospectively obtained brain magnetic resonance imaging (MRI) scans (100 scans in 31 children and adolescents), scanned every 2 yr for 6-10 yr between ages 4 and 25. Our results establish that the structural development of the human hippocampus is remarkably heterogeneous, with significant differences between posterior (increase over time) and anterior (loss over time) subregions. These distinct developmental trajectories of hippocampal subregions may parallel differences in their functional development. PMID:16826559

  13. Acute relaxation of mouse duodenum [correction of duodenun] by estrogens. Evidence for an estrogen receptor-independent modulation of muscle excitability.

    PubMed

    Díaz, Mario; Ramírez, Cristina M; Marin, Raquel; Marrero-Alonso, Jorge; Gómez, Tomás; Alonso, Rafael

    2004-10-01

    17-beta-Estradiol, the stereoisomer 17-alpha-estradiol and the synthetic estrogen diethylstilbestrol (DES), all caused a rapid (<3 min) dose-dependent reversible relaxation of mouse duodenal spontaneous activity, reduced basal tone and depressed the responses to CaCl(2) and KCl. The steroidal antiestrogen 7alpha-[9-[(4,4,5,5,5,-pentafluoropenty)sulphinyl]nonyl]-estra-1,3,5(19)-triene-3,17beta-diol (ICI182,780) failed to either mimic or prevent the effect of 17-beta-estradiol. The effect of estrogens was unrelated to activation of nitric oxide (NO), mitogen-activated protein kinase (MAPK), protein kinase A (PKA), protein kinase G (PKG) or protein kinase C (PKC). Estrogen-induced relaxation was partially reversed by 1,4-dihydro-2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-pyridine-3-carboxilic acid methyl ester (BAY-K8644), depolarization, or by application of tetraethylammonium or 4-aminopyridine, but not by glibenclamide, apamin, charybdotoxin, paxilline or verruculogen. The effects of BAY-K8644 and K(+) channel blockers were synergistic, and allowed relaxed tissues to recover spontaneous activity and basal tone. We hypothesize that the rapid non-genomic spasmolytic effect of estrogens on mouse duodenal muscle might be triggered by an estrogen-receptor-independent mechanism likely involving activation of tetraethylamonium- and 4-aminopyridine-sensitive K(+) channels and inhibition of L-type Ca2(+) channels on the smooth muscle cells. PMID:15464075

  14. Functional up-regulation of endopeptidase neurolysin during post-acute and early recovery phases of experimental stroke in mouse brain.

    PubMed

    Rashid, Mamoon; Wangler, Naomi J; Yang, Li; Shah, Kaushik; Arumugam, Thiruma V; Abbruscato, Thomas J; Karamyan, Vardan T

    2014-04-01

    In this study, we provide evidence for the first time that membrane-bound endopeptidase neurolysin is up-regulated in different parts of mouse brain affected by focal ischemia-reperfusion in a middle cerebral artery occlusion model of stroke. Radioligand binding, enzymatic and immunoblotting experiments in membrane preparations of frontoparietal cortex, striatum, and hippocampus isolated from the ischemic hemisphere of mouse brain 24 h after reperfusion revealed statistically significant increase (≥ twofold) in quantity and activity of neurolysin compared with sham-operated controls. Cerebellar membranes isolated from the ischemic hemisphere served as negative control supporting the observations that up-regulation of neurolysin occurs in post-ischemic brain regions. This study also documents sustained functional up-regulation of neurolysin in frontoparietal cortical membranes for at least 7 days after stroke, which appears not to be transcriptionally or translationally regulated, but rather depends on translocation of cytosolic neurolysin to the membranes and mitochondria. Considering diversity of endogenous neurolysin substrates (neurotensin, bradykinin, angiotensins I/II, substance P, hemopressin, dynorphin A(1-8), metorphamide, somatostatin) and the well-documented role of these peptidergic systems in pathogenesis of stroke, resistance to ischemic injury and/or post-stroke brain recovery, our findings suggest that neurolysin may play a role in processes modulating the brain's response to stroke and its recovery after stroke. PMID:24164478

  15. Preserved semantic access in global amnesia and hippocampal damage.

    PubMed

    Giovagnoli, A R; Erbetta, A; Bugiani, O

    2001-12-01

    C.B., a right-handed 33-year-old man, presented with anterograde amnesia after acute heart block. Cognitive abilities were normal except for serious impairment of long-term episodic memory. The access to semantic information was fully preserved. Magnetic resonance showed high signal intensity and marked volume loss in the hippocampus bilaterally; the left and right parahippocampal gyrus, lateral occipito-temporal gyrus, inferior temporal gyrus, and lateral temporal cortex were normal. This case underlines that global amnesia associated with hippocampal damage does not affect semantic memory. Although the hippocampus is important in retrieving context-linked information, its role is not so crucial in retrieving semantic contents. Cortical areas surrounding the hippocampus and lateral temporal areas might guide the recall of semantic information. PMID:11935452

  16. Abnormalities in Hippocampal Functioning with Persistent Pain

    PubMed Central

    Mutso, Amelia A.; Radzicki, Daniel; Baliki, Marwan N.; Huang, Lejian; Banisadr, Ghazal; Centeno, Maria Virginia; Radulovic, Jelena; Martina, Marco; Miller, Richard J.; Apkarian, A. Vania

    2012-01-01

    Chronic pain patients exhibit increased anxiety, depression, and deficits in learning and memory. Yet how persistent pain affects the key brain area regulating these behaviors, the hippocampus, has remained minimally explored. In this study we investigated the impact of spared nerve injury (SNI) neuropathic pain in mice on hippocampal-dependent behavior and underlying cellular and molecular changes. In parallel, we measured the hippocampal volume of three groups of chronic pain patients. We found that SNI animals were unable to extinguish to contextual fear and showed increased anxiety-like behavior. Additionally, SNI mice in comparison to sham animals exhibited hippocampal 1) reduced extracellular signal-regulated kinase (ERK) expression and phosphorylation, 2) decreased neurogenesis and 3) altered short-term synaptic plasticity. In order to relate the observed hippocampal abnormalities with human chronic pain, we measured the volume of human hippocampus in chronic back pain (CBP), complex regional pain syndrome (CRPS), and osteoarthritis patients (OA). Compared to controls, CBP and CRPS, but not OA, had significantly less bilateral hippocampal volume. These results indicate that hippocampus-mediated behavior, synaptic plasticity and neurogenesis are abnormal in neuropathic rodents. The changes may be related to the reduction in hippocampal volume we see in chronic pain patients, and these abnormalities may underlie learning and emotional deficits commonly observed in such patients. PMID:22539837

  17. Brain injury-induced proteolysis is reduced in a novel calpastatin overexpressing transgenic mouse

    PubMed Central

    Schoch, Kathleen M.; von Reyn, Catherine R.; Bian, Jifeng; Telling, Glenn C.; Meaney, David F.; Saatman, Kathryn E.

    2013-01-01

    The calpain family of calcium-dependent proteases has been implicated in a variety of diseases and neurodegenerative pathologies. Prolonged activation of calpains results in proteolysis of numerous cellular substrates including cytoskeletal components and membrane receptors, contributing to cell demise despite coincident expression of calpastatin, the specific inhibitor of calpains. Pharmacological and gene knockout strategies have targeted calpains to determine their contribution to neurodegenerative pathology; however, limitations associated with treatment paradigms, drug specificity, and genetic disruptions have produced inconsistent results and complicated interpretation. Specific, targeted calpain inhibition achieved by enhancing endogenous calpastatin levels offers unique advantages in studying pathological calpain activation. We have characterized a novel calpastatin overexpressing transgenic mouse model, demonstrating a substantial increase in calpastatin expression within nervous system and peripheral tissues and associated reduction in protease activity. Experimental activation of calpains via traumatic brain injury resulted in cleavage of α-spectrin, collapsin response mediator protein-2, and voltage-gated sodium channel, critical proteins for the maintenance of neuronal structure and function. Calpastatin overexpression significantly attenuated calpain-mediated proteolysis of these selected substrates acutely following severe controlled cortical impact injury, but with no effect on acute hippocampal neurodegeneration. Augmenting calpastatin levels may be an effective method for calpain inhibition in TBI and neurodegenerative disorders. PMID:23305291

  18. Hippocampal pyramidal neurons switch from a multipolar migration mode to a novel "climbing" migration mode during development.

    PubMed

    Kitazawa, Ayako; Kubo, Ken-ichiro; Hayashi, Kanehiro; Matsunaga, Yuki; Ishii, Kazuhiro; Nakajima, Kazunori

    2014-01-22

    The hippocampus plays important roles in brain functions. Despite the importance of hippocampal functions, recent analyses of neuronal migration have mainly been performed on the cerebral neocortex, and the cellular mechanisms responsible for the formation of the hippocampus are not yet completely understood. Moreover, why a prolonged time is required for hippocampal neurons to complete their migration has been unexplainable for several decades. We analyzed the migratory profile of neurons in the developing mouse hippocampal CA1 region and found that the hippocampal pyramidal neurons generated near the ventricle became postmitotic multipolar cells and accumulated in the multipolar cell accumulation zone (MAZ) in the late stage of development. The hippocampal neurons passed through the pyramidal layer by a unique mode of migration. Their leading processes were highly branched and made contact with many radial fibers. Time-lapse imaging revealed that the migrating cells changed their scaffolds from the original radial fibers to other radial fibers, and as a result they proceed in a zigzag manner, with long intervals. The migrating cells in the hippocampus reminded us of "rock climbers" that instead of using their hands to pull up their bodies were using their leading processes to pull up their cell bodies. Because this mode of migration had never been described, we called it the "climbing" mode. The change from the "climbing" mode in the hippocampus to the "locomotion" mode in the neocortex may have contributed to the brain expansion during evolution. PMID:24453304

  19. Topographic specificity of functional connections from hippocampal CA3 to CA1

    NASA Astrophysics Data System (ADS)

    Brivanlou, Iman H.; Dantzker, Jami L. M.; Stevens, Charles F.; Callaway, Edward M.

    2004-02-01

    The hippocampus is a cortical region thought to play an important role in learning and memory. Most of our knowledge about the detailed organization of hippocampal circuitry responsible for these functions is derived from anatomical studies. These studies present an incomplete picture, however, because the functional character and importance of connections are often not revealed by anatomy. Here, we used a physiological method (photostimulation with caged glutamate) to probe the fine pattern of functional connectivity between the CA3 and CA1 subfields in the mouse hippocampal slice preparation. We recorded intracellularly from CA1 and CA3 pyramidal neurons while scanning with photostimulation across the entire CA3 subfield with high spatial resolution. Our results show that, at a given septotemporal level, nearby CA1 neurons receive synaptic inputs from neighboring CA3 neurons. Thus, the CA3 to CA1 mapping preserves neighbor relations.

  20. Membrane potential dynamics of axons in cultured hippocampal neurons probed by second-harmonic-generation imaging

    NASA Astrophysics Data System (ADS)

    Nuriya, Mutsuo; Yasui, Masato

    2010-03-01

    The electrical properties of axons critically influence the nature of communication between neurons. However, due to their small size, direct measurement of membrane potential dynamics in intact and complex mammalian axons has been a challenge. Furthermore, quantitative optical measurements of axonal membrane potential dynamics have not been available. To characterize the basic principles of somatic voltage signal propagation in intact axonal arbors, second-harmonic-generation (SHG) imaging is applied to cultured mouse hippocampal neurons. When FM4-64 is applied extracellularly to dissociated neurons, whole axonal arbors are visualized by SHG imaging. Upon action potential generation by somatic current injection, nonattenuating action potentials are recorded in intact axonal arbors. Interestingly, however, both current- and voltage-clamp recordings suggest that nonregenerative subthreshold somatic voltage changes at the soma are poorly conveyed to these axonal sites. These results reveal the nature of membrane potential dynamics of cultured hippocampal neurons, and further show the possibility of SHG imaging in physiological investigations of axons.

  1. Lysophosphatidic Acid Receptor Is a Functional Marker of Adult Hippocampal Precursor Cells

    PubMed Central

    Walker, Tara L.; Overall, Rupert W.; Vogler, Steffen; Sykes, Alex M.; Ruhwald, Susann; Lasse, Daniela; Ichwan, Muhammad; Fabel, Klaus; Kempermann, Gerd

    2016-01-01

    Summary Here, we show that the lysophosphatidic acid receptor 1 (LPA1) is expressed by a defined population of type 1 stem cells and type 2a precursor cells in the adult mouse dentate gyrus. LPA1, in contrast to Nestin, also marks the quiescent stem cell population. Combining LPA1-GFP with EGFR and prominin-1 expression, we have enabled the prospective separation of both proliferative and non-proliferative precursor cell populations. Transcriptional profiling of the isolated proliferative precursor cells suggested immune mechanisms and cytokine signaling as molecular regulators of adult hippocampal precursor cell proliferation. In addition to LPA1 being a marker of this important stem cell population, we also show that the corresponding ligand LPA is directly involved in the regulation of adult hippocampal precursor cell proliferation and neurogenesis, an effect that can be attributed to LPA signaling via the AKT and MAPK pathways. PMID:27050949

  2. Acute and chronic cocaine differentially alter the subcellular distribution of AMPA GluR1 subunits in region-specific neurons within the mouse ventral tegmental area

    PubMed Central

    Lane, D.A.; Jaferi, A.; Kreek, M.J.; Pickel, V.M.

    2010-01-01

    Cocaine administration increases AMPA GluR1 expression and receptor-mediated activation of the ventral tegmental area (VTA). Functionality is determined, however, by surface availability of these receptors in transmitter- and VTA-region-specific neurons, which may also be affected by cocaine. To test this hypothesis, we used electron microscopic immunolabeling of AMPA GluR1 subunits and tyrosine hydroxylase (TH; the enzyme needed for dopamine synthesis), in the cortical-associated parabrachial (PB) and in the limbic-associated paranigral (PN) VTA of adult male C57BL/6 mice receiving either a single injection (acute) or repeated escalating-doses for 14 days (chronic) of cocaine. Acute cocaine resulted in opposing VTA-region-specific changes in TH-containing dopaminergic dendrites. TH-labeled dendrites within the PB VTA showed increased cytoplasmic GluR1 immunogold particle density consistent with decreased AMPA receptor-mediated glutamatergic transmission. Conversely, TH-labeled dendrites within the PN VTA showed greater surface expression of GluR1 with increases in both synaptic and plasmalemmal GluR1 immunogold density after a single injection of cocaine. These changes diminished in both VTA subregions after chronic cocaine administration. In contrast, non-TH-containing (presumably GABAergic) dendrites showed VTA-region-specific changes only after repeated cocaine administration such that synaptic GluR1 decreased in the PB, but increased in the PN VTA. Taken together, these findings provide ultrastructural evidence suggesting that chronic cocaine not only reverses the respective depression and facilitation of mesocortical (PB) and mesolimbic (PN) dopaminergic neurons elicited by acute cocaine, but also differentially affects synaptic availability of these receptors in non-dopaminergic neurons of each region. These adaptations may contribute to increased cocaine seeking/relapse and decreased reward that is reported with chronic cocaine use. PMID:20553819

  3. Excitation/inhibition imbalance and impaired synaptic inhibition in hippocampal area CA3 of Mecp2 knockout mice.

    PubMed

    Calfa, Gaston; Li, Wei; Rutherford, John M; Pozzo-Miller, Lucas

    2015-02-01

    Rett syndrome (RTT) is a neurodevelopment disorder associated with intellectual disabilities and caused by loss-of-function mutations in the gene encoding the transcriptional regulator Methyl-CpG-binding Protein-2 (MeCP2). Neuronal dysfunction and changes in cortical excitability occur in RTT individuals and Mecp2-deficient mice, including hippocampal network hyperactivity and higher frequency of spontaneous multiunit spikes in the CA3 cell body layer. Here, we describe impaired synaptic inhibition and an excitation/inhibition (E/I) imbalance in area CA3 of acute slices from symptomatic Mecp2 knockout male mice (referred to as Mecp2(-/y) ). The amplitude of TTX-resistant miniature inhibitory postsynaptic currents (mIPSC) was smaller in CA3 pyramidal neurons of Mecp2(-/y) slices than in wildtype controls, while the amplitude of miniature excitatory postsynaptic currents (mEPSC) was significantly larger in Mecp2(-/y) neurons. Consistently, quantitative confocal immunohistochemistry revealed significantly lower intensity of the alpha-1 subunit of GABAA Rs in the CA3 cell body layer of Mecp2(-/y) mice, while GluA1 puncta intensities were significantly higher in the CA3 dendritic layers of Mecp2(-/y) mice. In addition, the input/output (I/O) relationship of evoked IPSCs had a shallower slope in CA3 pyramidal neurons Mecp2(-/y) neurons. Consistent with the absence of neuronal degeneration in RTT and MeCP2-based mouse models, the density of parvalbumin- and somatostatin-expressing interneurons in area CA3 was not affected in Mecp2(-/y) mice. Furthermore, the intrinsic membrane properties of several interneuron subtypes in area CA3 were not affected by Mecp2 loss. However, mEPSCs are smaller and less frequent in CA3 fast-spiking basket cells of Mecp2(-/y) mice, suggesting an impaired glutamatergic drive in this interneuron population. These results demonstrate that a loss-of-function mutation in Mecp2 causes impaired E/I balance onto CA3 pyramidal neurons, leading to a

  4. P301L tau expression affects glutamate release and clearance in the hippocampal trisynaptic pathway.

    PubMed

    Hunsberger, Holly C; Rudy, Carolyn C; Batten, Seth R; Gerhardt, Greg A; Reed, Miranda N

    2015-01-01

    Individuals at risk of developing Alzheimer's disease (AD) often exhibit hippocampal hyperexcitability. A growing body of evidence suggests that perturbations in the glutamatergic tripartite synapse may underlie this hyperexcitability. Here, we used a tau mouse model of AD (rTg(TauP301L)4510) to examine the effects of tau pathology on hippocampal glutamate regulation. We found a 40% increase in hippocampal vesicular glutamate transporter, which packages glutamate into vesicles, and has previously been shown to influence glutamate release, and a 40% decrease in hippocampal glutamate transporter 1, the major glutamate transporter responsible for removing glutamate from the extracellular space. To determine whether these alterations affected glutamate regulation in vivo, we measured tonic glutamate levels, potassium-evoked glutamate release, and glutamate uptake/clearance in the dentate gyrus, cornu ammonis 3(CA3), and cornu ammonis 1(CA1) regions of the hippocampus. P301L tau expression resulted in a 4- and 7-fold increase in potassium-evoked glutamate release in the dentate gyrus and CA3, respectively, and significantly decreased glutamate clearance in all three regions. Both release and clearance correlated with memory performance in the hippocampal-dependent Barnes maze task. Alterations in mice expressing P301L were observed at a time when tau pathology was subtle and before readily detectable neuron loss. These data suggest novel mechanisms by which tau may mediate hyperexcitability. Pre-synaptic vesicular glutamate transporters (vGLUTs) package glutamate into vesicles before exocytosis into the synaptic cleft. Once in the extracellular space, glutamate acts on glutamate receptors. Glutamate is removed from the extracellular space by excitatory amino acid transporters, including GLT-1, predominantly localized to glia. P301L tau expression increases vGLUT expression and glutamate release, while also decreasing GLT-1 expression and glutamate clearance. PMID

  5. Gene expression analysis in the hippocampal formation of tree shrews chronically treated with cortisol.

    PubMed

    Alfonso, Julieta; Agüero, Fernán; Sanchez, Daniel O; Flugge, Gabriele; Fuchs, Eberhard; Frasch, Alberto C C; Pollevick, Guido D

    2004-12-01

    Adrenal corticosteroids influence the function of the hippocampus, the brain structure in which the highest expression of glucocorticoid receptors is found. Chronic high levels of cortisol elicited by stress or through exogenous administration can cause irreversible damage and cognitive deficits. In this study, we searched for genes expressed in the hippocampal formation after chronic cortisol treatment in male tree shrews. Animals were treated orally with cortisol for 28 days. At the end of the experiments, we generated two subtractive hippocampal hybridization libraries from which we sequenced 2,246 expressed sequenced tags (ESTs) potentially regulated by cortisol. To validate this approach further, we selected some of the candidate clones to measure mRNA expression levels in hippocampus using real-time PCR. We found that 66% of the sequences tested (10 of 15) were differentially represented between cortisol-treated and control animals. The complete set of clones was subjected to a bioinformatic analysis, which allowed classification of the ESTs into four different main categories: 1) known proteins or genes (approximately 28%), 2) ESTs previously published in the database (approximately 16%), 3) novel ESTs matching only the reference human or mouse genome (approximately 5%), and 4) sequences that do not match any public database (50%). Interestingly, the last category was the most abundant. Hybridization assays revealed that several of these clones are indeed expressed in hippocampal tissue from tree shrew, human, and/or rat. Therefore, we discovered an extensive inventory of new molecular targets in the hippocampus that serves as a reference for hippocampal transcriptional responses under various conditions. Finally, a detailed analysis of the genomic localization in human and mouse genomes revealed a survey of putative novel splicing variants for several genes of the nervous system. PMID:15505804

  6. Mouse model of human RPE65 P25L hypomorph resembles wild type under normal light rearing but is fully resistant to acute light damage.

    PubMed

    Li, Yan; Yu, Shirley; Duncan, Todd; Li, Yichao; Liu, Pinghu; Gene, Erelda; Cortes-Pena, Yoel; Qian, Haohua; Dong, Lijin; Redmond, T Michael

    2015-08-01

    Human RPE65 mutations cause a spectrum of blinding retinal dystrophies from severe early-onset disease to milder manifestations. The RPE65 P25L missense mutation, though having <10% of wild-type (WT) activity, causes relatively mild retinal degeneration. To better understand these mild forms of RPE65-related retinal degeneration, and their effect on cone photoreceptor survival, we generated an Rpe65/P25L knock-in (KI/KI) mouse model. We found that, when subject to the low-light regime (∼100 lux) of regular mouse housing, homozygous Rpe65/P25L KI/KI mice are morphologically and functionally very similar to WT siblings. While mutant protein expression is decreased by over 80%, KI/KI mice retinae retain comparable 11-cis-retinal levels with WT. Consistently, the scotopic and photopic electroretinographic (ERG) responses to single-flash stimuli also show no difference between KI/KI and WT mice. However, the recovery of a-wave response following moderate visual pigment bleach is delayed in KI/KI mice. Importantly, KI/KI mice show significantly increased resistance to high-intensity (20 000 lux for 30 min) light-induced retinal damage (LIRD) as compared with WT, indicating impaired rhodopsin regeneration in KI/KI. Taken together, the Rpe65/P25L mutant produces sufficient chromophore under normal conditions to keep opsins replete and thus manifests a minimal phenotype. Only when exposed to intensive light is this hypomorphic mutation manifested physiologically, as its reduced expression and catalytic activity protects against the successive cycles of opsin regeneration underlying LIRD. These data also help define minimal requirements of chromophore for photoreceptor survival in vivo and may be useful in assessing a beneficial therapeutic dose for RPE65 gene therapy in humans. PMID:25972377

  7. Neuroprotective and Antiapoptotic Activity of Lineage-Negative Bone Marrow Cells after Intravitreal Injection in a Mouse Model of Acute Retinal Injury

    PubMed Central

    Machalińska, Anna; Pius-Sadowska, Ewa; Kawa, Miłosz P.; Paczkowska, Edyta; Rudnicki, Michał; Lejkowska, Renata; Baumert, Bartłomiej; Wiszniewska, Barbara; Machaliński, Bogusław

    2015-01-01

    We investigated effects of bone marrow-derived, lineage-negative cell (Lin−BMC) transplantation in acute retinal injury. Lin−BMCs were intravitreally injected into murine eyes at 24 h after NaIO3-induced injury. Morphology, function, and expression of apoptosis-related genes, including brain-derived neurotrophic factor (BDNF) and its receptor, were assessed in retinas at 7 days, 28 days, and 3 months after transplantation. Moreover, global gene expression at day 7 was analyzed by RNA arrays. We observed that Lin−BMCs integrated into outer retinal layers improving morphological retinal structure and induced molecular changes such as downregulation of proapoptotic caspase-3 gene, a decrease in BAX/BCL-2 gene ratio, and significant elevation of BDNF expression. Furthermore, transplanted Lin−BMCs differentiated locally into cells with a macrophage-like phenotype. Finally, Lin−BMCs treatment was associated with generation of two distinct transcriptomic patterns. The first relates to downregulated genes associated with regulation of neuron cell death and apoptosis, response to oxidative stress/hypoxia and external stimuli, and negative regulation of cell proliferation. The second relates to upregulated genes associated with neurological system processes and sensory perception. Collectively, our data demonstrate that transplanted Lin−BMCs exert neuroprotective function against acute retinal injury and this effect may be associated with their antiapoptotic properties and ability to express neurotrophic factors. PMID:25810725

  8. Knock-in of a FLT3/ITD mutation cooperates with a NUP98-HOXD13 fusion to generate acute myeloid leukemia in a mouse model

    PubMed Central

    Greenblatt, Sarah; Li, Li; Slape, Christopher; Nguyen, Bao; Novak, Rachel; Duffield, Amy; Huso, David; Desiderio, Stephen; Borowitz, Michael J.; Aplan, Peter

    2012-01-01

    Constitutive activation of FLT3 by internal tandem duplication (ITD) is one of the most common molecular alterations in acute myeloid leukemia (AML). FLT3/ITD mutations have also been observed in myelodysplastic syndrome patients both before and during progression to AML. Previous work has shown that insertion of an FLT3/ITD mutation into the murine Flt3 gene induces a myeloproliferative neoplasm, but not progression to acute leukemia, suggesting that additional cooperating events are required. We therefore combined the FLT3/ITD mutation with a model of myelodysplastic syndrome involving transgenic expression of the Nup98-HoxD13 (NHD13) fusion gene. Mice expressing both the FLT3/ITD and NHD13 transgene developed AML with 100% penetrance and short latency. These leukemias were driven by mutant FLT3 expression and were susceptible to treatment with FLT3 tyrosine kinase inhibitors. We also observed a spontaneous loss of the wild-type Flt3 allele in these AMLs, further modeling the loss of the heterozygosity phenomenon that is seen in human AML with FLT3-activating mutations. Because resistance to FLT3 inhibitors remains an important clinical issue, this model may help identify new molecular targets in collaborative signaling pathways. PMID:22323452

  9. Neuroprotective and antiapoptotic activity of lineage-negative bone marrow cells after intravitreal injection in a mouse model of acute retinal injury.

    PubMed

    Machalińska, Anna; Rogińska, Dorota; Pius-Sadowska, Ewa; Kawa, Miłosz P; Paczkowska, Edyta; Rudnicki, Michał; Lejkowska, Renata; Baumert, Bartłomiej; Wiszniewska, Barbara; Machaliński, Bogusław

    2015-01-01

    We investigated effects of bone marrow-derived, lineage-negative cell (Lin(-)BMC) transplantation in acute retinal injury. Lin(-)BMCs were intravitreally injected into murine eyes at 24 h after NaIO3-induced injury. Morphology, function, and expression of apoptosis-related genes, including brain-derived neurotrophic factor (BDNF) and its receptor, were assessed in retinas at 7 days, 28 days, and 3 months after transplantation. Moreover, global gene expression at day 7 was analyzed by RNA arrays. We observed that Lin(-)BMCs integrated into outer retinal layers improving morphological retinal structure and induced molecular changes such as downregulation of proapoptotic caspase-3 gene, a decrease in BAX/BCL-2 gene ratio, and significant elevation of BDNF expression. Furthermore, transplanted Lin(-)BMCs differentiated locally into cells with a macrophage-like phenotype. Finally, Lin(-)BMCs treatment was associated with generation of two distinct transcriptomic patterns. The first relates to downregulated genes associated with regulation of neuron cell death and apoptosis, response to oxidative stress/hypoxia and external stimuli, and negative regulation of cell proliferation. The second relates to upregulated genes associated with neurological system processes and sensory perception. Collectively, our data demonstrate that transplanted Lin(-)BMCs exert neuroprotective function against acute retinal injury and this effect may be associated with their antiapoptotic properties and ability to express neurotrophic factors. PMID:25810725

  10. Oral or parenteral administration of curcumin does not prevent the growth of high-risk t(4;11) acute lymphoblastic leukemia cells engrafted into a NOD/SCID mouse model

    PubMed Central

    ZUNINO, SUSAN J.; STORMS, DAVID H.; NEWMAN, JOHN W.; PEDERSEN, THERESA L.; KEEN, CARL L.; DUCORE, JONATHAN M.

    2013-01-01

    In this study, the efficacy of orally and parenter-ally administered curcumin was evaluated in non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice (NOD.CB17-Prkdcscid/J mice) engrafted with the human t(4;11) acute lymphoblastic leukemia line, SEM. SEM cells were injected into the tail vein and engraftment was monitored by flow cytometry. Once engraftment was observed, the chemotherapeutic potential was examined by injecting mice intraperitoneally with curcumin (5 mg/kg body weight) dissolved in dimethylsulfoxide (DMSO) or DMSO alone (control) every other day, or vincristine (0.5 mg/kg body weight) 3 times per week for 4 weeks (n=16 per group). The intraperitoneal administration of curcumin did not inhibit the growth of the leukemia cells. To determine the efficacy of oral curcumin, mice were fed a control diet or a diet containing 0.5% w/w curcumin 3 weeks prior to the injection of the leukemia cells and throughout the experimental period (n=16 per group). To determine whether dietary curcumin can enhance the efficacy of a conventional chemotherapeutic agent, vincristine was injected intraperitoneally into leukemic mice fed the different diets. Dietary curcumin did not delay the engraftment or growth of leukemia cells, or sensitize the cells to vincristine. Liquid chromatography-tandem mass spectrometry analyses of mouse sera showed that curcumin rapidly metabolized to glucuronidated and sulfated forms within 1 h post-injection and these were the major curcumin metabolites found in the sera of the mice fed the curcumin diet. In contrast to the findings in previous in vitro models, the current data indicate that orally or parenterally administered curcumin is not a potent preventive agent against high-risk t(4;11) acute lymphoblastic leukemia. PMID:23232667

  11. The dynamic impact of repeated stress on the hippocampal spatial map.

    PubMed

    Tomar, Anupratap; Polygalov, Denis; Chattarji, Sumantra; McHugh, Thomas J

    2015-01-01

    Stress alters the function of many physiological processes throughout the body, including in the brain. A neural circuit particularly vulnerable to the effects of stress is the hippocampus, a key component of the episodic and spatial memory system in both humans and rodents. Earlier studies have provided snapshots of morphological, molecular, physiological and behavioral changes in the hippocampus following either acute or repeated stress. However, the cumulative impact of repeated stress on in vivo hippocampal physiology remains unexplored. Here we report the stress-induced modulation of the spatially receptive fields of the hippocampal CA1 'place cells' as mice explore familiar and novel tracks after 5 and 10 days of immobilization stress. We find that similar to what has been observed following acute stress, five days of repeated stress results in decreased excitability of CA1 pyramidal cells. Following ten days of chronic stress, however, this decreased hippocampal excitability is no longer evident, suggesting adaptation may have occurred. In addition to these changes in neuronal excitability, we find deficient context discrimination, wherein both short-term and chronic stress impair the ability of the hippocampus to unambiguously distinguish novel and familiar environments. These results suggest that a loss of network flexibility may underlie some of the behavioral deficits accompanying chronic stress. PMID:25139366

  12. Hippocampal replay of extended experience.

    PubMed

    Davidson, Thomas J; Kloosterman, Fabian; Wilson, Matthew A

    2009-08-27

    During pauses in exploration, ensembles of place cells in the rat hippocampus re-express firing sequences corresponding to recent spatial experience. Such "replay" co-occurs with ripple events: short-lasting (approximately 50-120 ms), high-frequency (approximately 200 Hz) oscillations that are associated with increased hippocampal-cortical communication. In previous studies, rats exploring small environments showed replay anchored to the rat's current location and compressed in time into a single ripple event. Here, we show, using a neural decoding approach, that firing sequences corresponding to long runs through a large environment are replayed with high fidelity and that such replay can begin at remote locations on the track. Extended replay proceeds at a characteristic virtual speed of approximately 8 m/s and remains coherent across trains of ripple events. These results suggest that extended replay is composed of chains of shorter subsequences, which may reflect a strategy for the storage and flexible expression of memories of prolonged experience. PMID:19709631

  13. Moxibustion upregulates hippocampal progranulin expression

    PubMed Central

    Yi, Tao; Qi, Li; Li, Ji; Le, Jing-jing; Shao, Lei; Du, Xin; Dong, Jing-cheng

    2016-01-01

    In China, moxibustion is reported to be useful and has few side effects for chronic fatigue syndrome, but its mechanisms are largely unknown. More recently, the focus has been on the wealth of information supporting stress as a factor in chronic fatigue syndrome, and largely concerns dysregulation in the stress-related hypothalamic-pituitary-adrenal axis. In the present study, we aimed to determine the effect of moxibustion on behavioral symptoms in chronic fatigue syndrome rats and examine possible mechanisms. Rats were subjected to a combination of chronic restraint stress and forced swimming to induce chronic fatigue syndrome. The acupoints Guanyuan (CV4) and Zusanli (ST36, bilateral) were simultaneously administered moxibustion. Untreated chronic fatigue syndrome rats and normal rats were used as controls. Results from the forced swimming test, open field test, tail suspension test, real-time PCR, enzyme-linked immunosorbent assay, and western blot assay showed that moxibustion treatment decreased mRNA expression of corticotropin-releasing hormone in the hypothalamus, and adrenocorticotropic hormone and corticosterone levels in plasma, and markedly increased progranulin mRNA and protein expression in the hippocampus. These findings suggest that moxibustion may relieve the behavioral symptoms of chronic fatigue syndrome, at least in part, by modulating the hypothalamic-pituitary-adrenal axis and upregulating hippocampal progranulin. PMID:27212922

  14. Moxibustion upregulates hippocampal progranulin expression.

    PubMed

    Yi, Tao; Qi, Li; Li, Ji; Le, Jing-Jing; Shao, Lei; Du, Xin; Dong, Jing-Cheng

    2016-04-01

    In China, moxibustion is reported to be useful and has few side effects for chronic fatigue syndrome, but its mechanisms are largely unknown. More recently, the focus has been on the wealth of information supporting stress as a factor in chronic fatigue syndrome, and largely concerns dysregulation in the stress-related hypothalamic-pituitary-adrenal axis. In the present study, we aimed to determine the effect of moxibustion on behavioral symptoms in chronic fatigue syndrome rats and examine possible mechanisms. Rats were subjected to a combination of chronic restraint stress and forced swimming to induce chronic fatigue syndrome. The acupoints Guanyuan (CV4) and Zusanli (ST36, bilateral) were simultaneously administered moxibustion. Untreated chronic fatigue syndrome rats and normal rats were used as controls. Results from the forced swimming test, open field test, tail suspension test, real-time PCR, enzyme-linked immunosorbent assay, and western blot assay showed that moxibustion treatment decreased mRNA expression of corticotropin-releasing hormone in the hypothalamus, and adrenocorticotropic hormone and corticosterone levels in plasma, and markedly increased progranulin mRNA and protein expression in the hippocampus. These findings suggest that moxibustion may relieve the behavioral symptoms of chronic fatigue syndrome, at least in part, by modulating the hypothalamic-pituitary-adrenal axis and upregulating hippocampal progranulin. PMID:27212922

  15. The carbonic anhydrase inhibitor methazolamide prevents amyloid beta-induced mitochondrial dysfunction and caspase activation protecting neuronal and glial cells in vitro and in the mouse brain.

    PubMed

    Fossati, Silvia; Giannoni, Patrizia; Solesio, Maria E; Cocklin, Sarah L; Cabrera, Erwin; Ghiso, Jorge; Rostagno, Agueda

    2016-02-01

    Mitochondrial dysfunction has been recognized as an early event in Alzheimer's disease (AD) pathology, preceding and inducing neurodegeneration and memory loss. The presence of cytochrome c (CytC) released from the mitochondria into the cytoplasm is often detected after acute or chronic neurodegenerative insults, including AD. The carbonic anhydrase inhibitor (CAI) methazolamide (MTZ) was identified among a library of drugs as an inhibitor of CytC release and proved to be neuroprotective in Huntington's disease and stroke models. Here, using neuronal and glial cell cultures, in addition to an acute model of amyloid beta (Aβ) toxicity, which replicates by intra-hippocampal injection the consequences of interstitial and cellular accumulation of Aβ, we analyzed the effects of MTZ on neuronal and glial degeneration induced by the Alzheimer's amyloid. MTZ prevented DNA fragmentation, CytC release and activation of caspase 9 and caspase 3 induced by Aβ in neuronal and glial cells in culture through the inhibition of mitochondrial hydrogen peroxide production. Moreover, intraperitoneal administration of MTZ prevented neurodegeneration induced by intra-hippocampal Aβ injection in the mouse brain and was effective at reducing caspase 3 activation in neurons and microglia in the area surrounding the injection site. Our results, delineating the molecular mechanism of action of MTZ against Aβ-mediated mitochondrial dysfunction and caspase activation, and demonstrating its efficiency in a model of acute amyloid-mediated toxicity, provide the first combined in vitro and in vivo evidence supporting the potential of a new therapy employing FDA-approved CAIs in AD. PMID:26581638

  16. Proteomic profiling of a mouse model of acute intestinal Apc deletion leads to identification of potential novel biomarkers of human colorectal cancer (CRC).

    PubMed

    Hammoudi, Abeer; Song, Fei; Reed, Karen R; Jenkins, Rosalind E; Meniel, Valerie S; Watson, Alastair J M; Pritchard, D Mark; Clarke, Alan R; Jenkins, John R

    2013-10-25

    Colorectal cancer (CRC) is the fourth most common cause of cancer-related death worldwide. Accurate non-invasive screening for CRC would greatly enhance a population's health. Adenomatous polyposis coli (Apc) gene mutations commonly occur in human colorectal adenomas and carcinomas, leading to Wnt signalling pathway activation. Acute conditional transgenic deletion of Apc in murine intestinal epithelium (AhCre(+)Apc(fl)(/)(fl)) causes phenotypic changes similar to those found during colorectal tumourigenesis. This study comprised a proteomic analysis of murine small intestinal epithelial cells following acute Apc deletion to identify proteins that show altered expression during human colorectal carcinogenesis, thus identifying proteins that may prove clinically useful as blood/serum biomarkers of colorectal neoplasia. Eighty-one proteins showed significantly increased expression following iTRAQ analysis, and validation of nine of these by Ingenuity Pathaway Analysis showed they could be detected in blood or serum. Expression was assessed in AhCre(+)Apc(fl)(/)(fl) small intestinal epithelium by immunohistochemistry, western blot and quantitative real-time PCR; increased nucelolin concentrations were also detected in the serum of AhCre(+)Apc(fl)(/)(fl) and Apc(Min)(/)(+) mice by ELISA. Six proteins; heat shock 60kDa protein 1, Nucleolin, Prohibitin, Cytokeratin 18, Ribosomal protein L6 and DEAD (Asp-Glu-Ala-Asp) box polypeptide 5,were selected for further investigation. Increased expression of 4 of these was confirmed in human CRC by qPCR. In conclusion, several novel candidate biomarkers have been identified from analysis of transgenic mice in which the Apc gene was deleted in the intestinal epithelium that also showed increased expression in human CRC. Some of these warrant further investigation as potential serum-based biomarkers of human CRC. PMID:23998936

  17. An in vitro iron superoxide dismutase inhibitor decreases the parasitemia levels of Trypanosoma cruzi in BALB/c mouse model during acute phase

    PubMed Central

    Olmo, Francisco; Urbanová, Kristína; Rosales, Maria Jose; Martín-Escolano, Ruben; Sánchez-Moreno, Manuel; Marín, Clotilde

    2015-01-01

    In order to identify new compounds to treat Chagas disease during the acute phase with higher activity and lower toxicity than the reference drug benznidazole (Bz), two hydroxyphthalazine derivative compounds were prepared and their trypanocidal effects against Trypanosoma cruzi were evaluated by light microscopy through the determination of IC50 values. Cytotoxicity was determined by flow cytometry assays against Vero cells. In vivo assays were performed in BALB/c mice, in which the parasitemia levels were quantified by fresh blood examination; the assignment of a cure was determined by reactivation of blood parasitemia levels after immunosuppression. The mechanism of action was elucidated at metabolic and ultra-structural levels, by 1H NMR and TEM studies. Finally, as these compounds are potentially capable of causing oxidative damage in the parasites, the study was completed, by assessing their activity as potential iron superoxide dismutase (Fe-SOD) inhibitors. High-selectivity indices observed in vitro were the basis of promoting one of the tested compounds to in vivo assays. The tests on the murine model for the acute phase of Chagas disease showed better parasitemia inhibition values than those found for Bz. Compound 2 induced a remarkable decrease in the reactivation of parasitemia after immunosuppression. Compound 2 turned out to be a great inhibitor of Fe-SOD. The high antiparasitic activity and low toxicity together with the modest costs for the starting materials render this compound an appropriate molecule for the development of an affordable anti-Chagas agent. PMID:26236582

  18. Effects of particle size and coating on toxicologic parameters, fecal elimination kinetics and tissue distribution of acutely ingested silver nanoparticles in a mouse model.

    PubMed

    Bergin, Ingrid L; Wilding, Laura A; Morishita, Masako; Walacavage, Kim; Ault, Andrew P; Axson, Jessica L; Stark, Diana I; Hashway, Sara A; Capracotta, Sonja S; Leroueil, Pascale R; Maynard, Andrew D; Philbert, Martin A

    2016-01-01

    Consumer exposure to silver nanoparticles (AgNP) via ingestion can occur due to incorporation of AgNP into products such as food containers and dietary supplements. AgNP variations in size and coating may affect toxicity, elimination kinetics or tissue distribution. Here, we directly compared acute administration of AgNP of two differing coatings and sizes to mice, using doses of 0.1, 1 and 10 mg/kg body weight/day administered by oral gavage for 3 days. The maximal dose is equivalent to 2000× the EPA oral reference dose. Silver acetate at the same doses was used as ionic silver control. We found no toxicity and no significant tissue accumulation. Additionally, no toxicity was seen when AgNP were dosed concurrently with a broad-spectrum antibiotic. Between 70.5% and 98.6% of the administered silver dose was recovered in feces and particle size and coating differences did not significantly influence fecal silver. Peak fecal silver was detected between 6- and 9-h post-administration and <0.5% of the administered dose was cumulatively detected in liver, spleen, intestines or urine at 48 h. Although particle size and coating did not affect tissue accumulation, silver was detected in liver, spleen and kidney of mice administered ionic silver at marginally higher levels than those administered AgNP, suggesting that silver ion may be more bioavailable. Our results suggest that, irrespective of particle size and coating, acute oral exposure to AgNP at doses relevant to potential human exposure is associated with predominantly fecal elimination and is not associated with accumulation in tissue or toxicity. PMID:26305411

  19. Developmental Changes in Hippocampal Associative Coding

    PubMed Central

    Goldsberry, Mary E.; Kim, Jangjin

    2015-01-01

    Behavioral analyses of the ontogeny of memory have shown that hippocampus-dependent learning emerges relatively late in postnatal development compared with simple associative learning. Maturation of hippocampal mnemonic mechanisms has been hypothesized to underlie the development of the later emerging learning processes. However, the role of hippocampal maturation in learning has not been examined directly. The goal of the present study was to examine developmental changes in hippocampal neuronal coding during acquisition of a hippocampus-dependent learning task. We recorded activity from CA1 pyramidal cells in rat pups while they were trained on trace eyeblink conditioning. Trace eyeblink conditioning is a Pavlovian conditioning task that involves the association of a conditioned stimulus (CS) with an unconditioned stimulus over a stimulus-free trace interval. The inclusion of the trace interval is what makes the task hippocampus dependent. In the present study, rats were trained at 21–23, 24–26, and 31–33 d of age. Previous research from our laboratory and others shows that trace conditioning begins to emerge during the third postnatal week. The results indicate that hippocampal neurons show a substantial increase in responsiveness to task-relevant events during development. Moreover, there is an age-related increase in the proportion of neurons that respond to a combination of trial events (e.g., CS and trace). Our findings indicate that the developmental emergence of hippocampally mediated learning is related to increases in the strength and complexity of CA1 associative coding. PMID:25762670

  20. Compartmental distribution of GABAB receptor-mediated currents along the somatodendritic axis of hippocampal principal cells

    PubMed Central

    Degro, Claudius E.; Kulik, Akos; Booker, Sam A.; Vida, Imre

    2015-01-01

    Activity of cortical principal cells is controlled by the GABAergic system providing inhibition in a compartmentalized manner along their somatodendritic axis. While GABAAR-mediated inhibitory synaptic transmission has been extensively characterized in hippocampal principal cells, little is known about the distribution of postsynaptic effects of GABABRs. In the present study, we have investigated the functional localization of GABABRs and their effector inwardly rectifying potassium (Kir3) channels by combining electrophysiological recordings in acute rat hippocampal slices, high-resolution immunoelectron microscopic analysis and single cell simulations. Pharmacologically isolated slow inhibitory postsynaptic currents were elicited in the three major hippocampal principal cell types by endogenous GABA released by electrical stimulation, photolysis of caged-GABA, as well as the canonical agonist baclofen, with the highest amplitudes observed in the CA3. Spatially restricted currents were assessed along the axis of principal cells by uncaging GABA in the different hippocampal layers. GABABR-mediated currents were present along the entire somatodendritic axis of principal cells, but non-uniformly distributed: largest currents and the highest conductance densities determined in the simulations were consistently found on the distal apical dendrites. Finally, immunocytochemical localization of GABABRs and Kir3 channels showed that distributions overlap but their densities diverge, particularly on the basal dendrites of pyramidal cells. GABABRs current amplitudes and the conductance densities correlated better with Kir3 density, suggesting a bottlenecking effect defined by the effector channel. These data demonstrate a compartmentalized distribution of the GABABR-Kir3 signaling cascade and suggest differential control of synaptic transmission, dendritic integration and synaptic plasticity at afferent pathways onto hippocampal principal cells. PMID:25852540

  1. Mitogen-Activated Protein Kinase Phosphatase-2 Deletion Impairs Synaptic Plasticity and Hippocampal-Dependent Memory.

    PubMed

    Abdul Rahman, Nor Zaihana; Greenwood, Sam M; Brett, Ros R; Tossell, Kyoko; Ungless, Mark A; Plevin, Robin; Bushell, Trevor J

    2016-02-24

    Mitogen-activated protein kinases (MAPKs) regulate brain function and their dysfunction is implicated in a number of brain disorders, including Alzheimer's disease. Thus, there is great interest in understanding the signaling systems that control MAPK function. One family of proteins that contribute to this process, the mitogen-activated protein kinase phosphatases (MKPs), directly inactivate MAPKs through dephosphorylation. Recent studies have identified novel functions of MKPs in development, the immune system, and cancer. However, a significant gap in our knowledge remains in relation to their role in brain functioning. Here, using transgenic mice where the Dusp4 gene encoding MKP-2 has been knocked out (MKP-2(-/-) mice), we show that long-term potentiation is impaired in MKP-2(-/-) mice compared with MKP-2(+/+) controls whereas neuronal excitability, evoked synaptic transmission, and paired-pulse facilitation remain unaltered. Furthermore, spontaneous EPSC (sEPSC) frequency was increased in acute slices and primary hippocampal cultures prepared from MKP-2(-/-) mice with no effect on EPSC amplitude observed. An increase in synapse number was evident in primary hippocampal cultures, which may account for the increase in sEPSC frequency. In addition, no change in ERK activity was detected in both brain tissue and primary hippocampal cultures, suggesting that the effects of MKP-2 deletion were MAPK independent. Consistent with these alterations in hippocampal function, MKP-2(-/-) mice show deficits in spatial reference and working memory when investigated using the Morris water maze. These data show that MKP-2 plays a role in regulating hippocampal function and that this effect may be independent of MAPK signaling. PMID:26911683

  2. NADPH oxidase activation is required for pentylenetetrazole kindling-induced hippocampal autophagy.

    PubMed

    Zhu, Xinjian; Shen, Kai; Bai, Ying; Zhang, Aifeng; Xia, Zhengrong; Chao, Jie; Yao, Honghong

    2016-05-01

    Growing evidence indicates that alterations in autophagy are present in a variety of neurological disorders, ranging from neurodegenerative diseases to acute neurological insults. Only recently has the role of autophagy in epilepsy started to be recognized. In this study, we used pentylenetetrazole (PTZ) kindling, which provides a model of chronic epilepsy, to investigate the involvement of autophagy in the hippocampus and the possible mechanisms involved. Our western blot results showed that autophagy-related proteins were significantly increased after the mice were fully kindled. In addition, immunofluorescence studies revealed a significant increase in the punctate accumulation of LC3 in the hippocampal CA1 region of fully PTZ-kindled mice. Consistent with the upregulation of ATG proteins and punctate accumulation of LC3 in the hippocampal CA1 region, autophagosomal vacuole formation was observed by an ultrastructural analysis, verifying the presence of a hippocampal autophagic response in PTZ-kindled mice. Increased oxidative stress has been postulated to play an important role in the pathogenesis of a number of neurological diseases, including epilepsy. In this study, we demonstrate that PTZ kindling induced reactive oxygen species (ROS) production and lipid peroxidation, which were accompanied by mitochondrial ultrastructural damage due to the activation of NADPH oxidase. Pharmacological inhibition of NADPH oxidase by apocynin significantly suppressed the oxidative stress and ameliorated the hippocampal autophagy in PTZ-kindled mice. Interestingly, pharmacological induction of autophagy suppressed PTZ-kindling progress and reduced PTZ-kindling-induced oxidative stress while inhibition of autophagy accelerated PTZ kindling progress and increased PTZ-kindling-induced oxidative stress. These results suggest that the oxidative stress induced by NADPH oxidase activation may play a pivotal role in PTZ-kindling process as well as in PTZ kindling-induced hippocampal

  3. Dopaminergic lesioning impairs adult hippocampal neurogenesis by distinct modification of α-synuclein.

    PubMed

    Schlachetzki, Johannes C M; Grimm, Thomas; Schlachetzki, Zinayida; Ben Abdallah, Nada M B; Ettle, Benjamin; Vöhringer, Patrizia; Ferger, Boris; Winner, Beate; Nuber, Silke; Winkler, Jürgen

    2016-01-01

    Nonmotor symptoms of cognitive and affective nature are present in premotor and motor stages of Parkinson's disease (PD). Neurogenesis, the generation of new neurons, persists throughout the mammalian life span in the hippocampal dentate gyrus. Adult hippocampal neurogenesis may be severely affected in the course of PD, accounting for some of the neuropsychiatric symptoms such as depression and cognitive impairment. Two important PD-related pathogenic factors have separately been attributed to contribute to both PD and adult hippocampal neurogenesis: dopamine depletion and accumulation of α-synuclein (α-syn). In the acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model, altered neurogenesis has been linked merely to a reduced dopamine level. Here, we seek to determine whether a distinct endogenous α-syn expression pattern is associated, possibly contributing to the hippocampal neurogenic deficit. We observed a persistent reduction of striatal dopamine and a loss of tyrosine hydroxylase-expressing neurons in the substantia nigra pars compacta in contrast to a complete recovery of tyrosine hydroxylase-immunoreactive dopaminergic fibers within the striatum. However, dopamine levels in the hippocampus were significantly decreased. Survival of newly generated neurons was significantly reduced and paralleled by an accumulation of truncated, membrane-associated, insoluble α-syn within the hippocampus. Specifically, the presence of truncated α-syn species was accompanied by increased activity of calpain-1, a calcium-dependent protease. Our results further substantiate the broad effects of dopamine loss in PD-susceptible brain nuclei, gradually involved in the PD course. Our findings also indicate a detrimental synergistic interplay between dopamine depletion and posttranslational modification of α-syn, contributing to impaired hippocampal plasticity in PD. PMID:26451750

  4. Flupirtine attenuates chronic restraint stress-induced cognitive deficits and hippocampal apoptosis in male mice.

    PubMed

    Huang, Pengcheng; Li, Cai; Fu, Tianli; Zhao, Dan; Yi, Zhen; Lu, Qing; Guo, Lianjun; Xu, Xulin

    2015-07-15

    Chronic restraint stress (CRS) causes hippocampal neurodegeneration and hippocampus-dependent cognitive deficits. Flupirtine represents neuroprotective effects and we have previously shown that flupirtine can protect against memory impairment induced by acute stress. The present study aimed to investigate whether flupirtine could alleviate spatial learning and memory impairment and hippocampal apoptosis induced by CRS. CRS mice were restrained in well-ventilated Plexiglass tubes for 6h daily beginning from 10:00 to 16:00 for 21 consecutive days. Mice were injected with flupirtine (10mg/kg and 25mg/kg) or vehicle (10% DMSO) 30min before restraint stress for 21 days. After stressor cessation, the spatial learning and memory, dendritic spine density, injured neurons and the levels of Bcl-2, Bax, p-Akt, p-GSK-3β, p-Erk1/2 and synaptophysin of hippocampal tissues were examined. Our results showed that flupirtine significantly prevented spatial learning and memory impairment induced by CRS in the Morris water maze. In addition, flupirtine (10mg/kg and 25mg/kg) treatment alleviated neuronal apoptosis and the reduction of dendritic spine density and synaptophysin expression in the hippocampal CA1 region of CRS mice. Furthermore, flupirtine (10mg/kg and 25mg/kg) treatment significantly decreased the expression of Bax and increased the p-Akt and p-GSK-3β, and flupirtine (25mg/kg) treatment up-regulated the p-Erk1/2 in the hippocampus of CRS mice. These results suggested that flupirtine exerted protective effects on the CRS-induced cognitive impairment and hippocampal neuronal apoptosis, which is possibly associated with the activation of Akt/GSK-3β and Erk1/2 signaling pathways. PMID:25869780

  5. Tetramethylenedisulfotetramine Alters Ca2+ Dynamics in Cultured Hippocampal Neurons: Mitigation by NMDA Receptor Blockade and GABAA Receptor-Positive Modulation

    PubMed Central

    Pessah, Isaac N.

    2012-01-01

    Tetramethylenedisulfotetramine (TETS) is a potent convulsant that is considered a chemical threat agent. We characterized TETS as an activator of spontaneous Ca2+ oscillations and electrical burst discharges in mouse hippocampal neuronal cultures at 13–17 days in vitro using FLIPR Fluo-4 fluorescence measurements and extracellular microelectrode array recording. Acute exposure to TETS (≥ 2µM) reversibly altered the pattern of spontaneous neuronal discharges, producing clustered burst firing and an overall increase in discharge frequency. TETS also dramatically affected Ca2+ dynamics causing an immediate but transient elevation of neuronal intracellular Ca2+ followed by decreased frequency of Ca2+ oscillations but greater peak amplitude. The effect on Ca2+ dynamics was similar to that elicited by picrotoxin and bicuculline, supporting the view that TETS acts by inhibiting type A gamma-aminobutyric acid (GABAA) receptor function. The effect of TETS on Ca2+ dynamics requires activation of N-methyl-d-aspartic acid (NMDA) receptors, because the changes induced by TETS were prevented by MK-801 block of NMDA receptors, but not nifedipine block of L-type Ca2+ channels. Pretreatment with the GABAA receptor-positive modulators diazepam and allopregnanolone partially mitigated TETS-induced changes in Ca2+ dynamics. Moreover, low, minimally effective concentrations of diazepam (0.1µM) and allopregnanolone (0.1µM), when administered together, were highly effective in suppressing TETS-induced alterations in Ca2+ dynamics, suggesting that the combination of positive modulators of synaptic and extrasynaptic GABAA receptors may have therapeutic potential. These rapid throughput in vitro assays may assist in the identification of single agents or combinations that have utility in the treatment of TETS intoxication. PMID:22889812

  6. Ovarian cycle-linked plasticity of δ-GABAA receptor subunits in hippocampal interneurons affects γ oscillations in vivo.

    PubMed

    Barth, Albert M I; Ferando, Isabella; Mody, Istvan

    2014-01-01

    GABAA receptors containing δ subunits (δ-GABAARs) are GABA-gated ion channels with extra- and perisynaptic localization, strong sensitivity to neurosteroids (NS), and a high degree of plasticity. In selective brain regions they are expressed on specific principal cells and interneurons (INs), and generate a tonic conductance that controls neuronal excitability and oscillations. Plasticity of δ-GABAARs in principal cells has been described during states of altered NS synthesis including acute stress, puberty, ovarian cycle, pregnancy and the postpartum period, with direct consequences on neuronal excitability and network dynamics. The defining network events implicated in cognitive function, memory formation and encoding are γ oscillations (30-120 Hz), a well-timed loop of excitation and inhibition between principal cells and PV-expressing INs (PV + INs). The δ-GABAARs of INs can modify γ oscillations, and a lower expression of δ-GABAARs on INs during pregnancy alters γ frequency recorded in vitro. The ovarian cycle is another physiological event with large fluctuations in NS levels and δ-GABAARs. Stages of the cycle are paralleled by swings in memory performance, cognitive function, and mood in both humans and rodents. Here we show δ-GABAARs changes during the mouse ovarian cycle in hippocampal cell types, with enhanced expression during diestrus in principal cells and specific INs. The plasticity of δ-GABAARs on PV-INs decreases the magnitude of γ oscillations continuously recorded in area CA1 throughout several days in vivo during diestrus and increases it during estrus. Such recurring changes in γ magnitude were not observed in non-cycling wild-type (WT) females, cycling females lacking δ-GABAARs only on PV-INs (PV-Gabrd (-/-)), and in male mice during a time course equivalent to the ovarian cycle. Our findings may explain the impaired memory and cognitive performance experienced by women with premenstrual syndrome (PMS) or premenstrual dysphoric

  7. MicroRNA-674-5p/5-LO axis involved in autoimmune reaction of Concanavalin A-induced acute mouse liver injury.

    PubMed

    Su, Kunkai; Wang, Qi; Qi, Luoyang; Hua, Dasong; Tao, Jingjing; Mangan, Connor J; Lou, Yijia; Li, Lanjuan

    2016-09-01

    Autoimmune hepatitis is characterized, in part, by the pathways involving cysteinyl-leukotriene metabolites of arachidonic acid, the dynamics of which remain unclear. Here, we explored post-transcriptional regulation in the 5-lipoxygenase (5-LO) pathway of arachidonic acid in a Concanavalin A (Con A) induced mouse model. We found that Con A administration lead to 5-LO overexpression and cysteinyl-leukotriene release in early hepatic injury, which was attenuated by cyclosporin A pretreatment. Subsequent microarray and qRT-PCR analysis further showed that microRNA-674-5p (miR-674-5p) displayed a significant decrease in expression in Con A-damaged liver. Noting that miR-674-5p harbors a potential binding region for 5-LO, we further transfected hepatic cell lines with overexpressing miR-674-5p mimic and discovered a negative regulating effect of miR-674-5p on 5-LO expression in the presence of IL-6 or TNF-α. These findings suggest that miR-674-5p might be a negative regulator in 5-LO mediated autoimmune liver injury, representing a compelling avenue towards future therapeutic interventions. PMID:27313091

  8. p19ARF is a critical mediator of both cellular senescence and an innate immune response associated with MYC inactivation in mouse model of acute leukemia

    PubMed Central

    Yetil, Alper; Anchang, Benedict; Gouw, Arvin M.; Adam, Stacey J.; Zabuawala, Tahera; Parameswaran, Ramya; van Riggelen, Jan; Plevritis, Sylvia; Felsher, Dean W.

    2015-01-01

    MYC-induced T-ALL exhibit oncogene addiction. Addiction to MYC is a consequence of both cell-autonomous mechanisms, such as proliferative arrest, cellular senescence, and apoptosis, as well as non-cell autonomous mechanisms, such as shutdown of angiogenesis, and recruitment of immune effectors. Here, we show, using transgenic mouse models of MYC-induced T-ALL, that the loss of either p19ARF or p53 abrogates the ability of MYC inactivation to induce sustained tumor regression. Loss of p53 or p19ARF, influenced the ability of MYC inactivation to elicit the shutdown of angiogenesis; however the loss of p19ARF, but not p53, impeded cellular senescence, as measured by SA-beta-galactosidase staining, increased expression of p16INK4A, and specific histone modifications. Moreover, comparative gene expression analysis suggested that a multitude of genes involved in the innate immune response were expressed in p19ARF wild-type, but not null, tumors upon MYC inactivation. Indeed, the loss of p19ARF, but not p53, impeded the in situ recruitment of macrophages to the tumor microenvironment. Finally, p19ARF null-associated gene signature prognosticated relapse-free survival in human patients with ALL. Therefore, p19ARF appears to be important to regulating cellular senescence and innate immune response that may contribute to the therapeutic response of ALL. PMID:25784651

  9. Effects of reproductive status on behavioral and endocrine responses to acute stress in a biparental rodent, the California mouse (Peromyscus californicus)

    PubMed Central

    Chauke, Miyetani; Malisch, Jessica L.; Robinson, Cymphonee; de Jong, Trynke R.; Saltzman, Wendy

    2014-01-01

    In several mammalian species, lactating females show blunted neural, hormonal, and behavioral responses to stressors. It is not known whether new fathers also show stress hyporesponsiveness in species in which males provide infant care. To test this possibility, we determined the effects of male and female reproductive status on stress responsiveness in the biparental, monogamous California mouse (Peromyscus californicus).Breeding (N=8 females, 8 males), nonbreeding (N=10 females, 10 males) and virgin mice (N=12 females, 9 males) were exposed to a 5-min predator-urine stressor at two time points, corresponding to the early postpartum (5–7 days postpartum) and mid/late postpartum (19–21 days postpartum) phases, and blood samples were collected immediately afterwards. Baseline blood samples were obtained 2 days prior to each stress test. Baseline plasma corticosterone (CORT) concentrations did not differ among male or female groups. CORT responses to the stressor did not differ among female reproductive groups, and all three groups showed distinct behavioral responses to predator urine. Virgin males tended to increase their CORT response from the first to the second stress test, while breeding and nonbreeding males did not. Moreover, virgin and nonbreeding males showed significant behavioral changes in response to predator urine, whereas breeding males did not. These results suggest that adrenocortical responses to a repeated stressor in male California mice may be modulated by cohabitation with a female, whereas behavioral responses to stress may be blunted by parental status. PMID:21557946

  10. Modulation of cannabinoid signaling by hippocampal 5-HT4 serotonergic system in fear conditioning.

    PubMed

    Nasehi, Mohammad; Farrahizadeh, Maryam; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2016-09-01

    Behavioral studies have suggested a key role for the cannabinoid system in the modulation of conditioned fear memory. Likewise, much of the literature has revealed that the serotonergic system affects Pavlovian fear conditioning and extinction. A high level of functional overlap between the serotonin and cannabinoid systems has also been reported. To clarify the interaction between the hippocampal serotonin (5-HT4) receptor and the cannabinoid CB1 receptor in the acquisition of fear memory, the effects of 5-HT4 agents, arachidonylcyclopropylamide (ACPA; CB1 receptor agonist), and the combined use of these drugs on fear learning were studied in a fear conditioning task in adult male NMRI mice. Pre-training intraperitoneal administration of ACPA (0.1 mg/kg) decreased the percentage of freezing time in both context- and tone-dependent fear conditions, suggesting impairment of the acquisition of fear memory. Pre-training, intra-hippocampal (CA1) microinjection of RS67333, a 5-HT4 receptor agonist, at doses of 0.1 and 0.2 or 0.2 µg/mouse impaired contextual and tone fear memory, respectively. A subthreshold dose of RS67333 (0.005 µg/mouse) did not alter the ACPA response in either condition. Moreover, intra-CA1 microinjection of RS23597 as a 5-HT4 receptor antagonist did not alter context-dependent fear memory acquisition, but it did impair tone-dependent fear memory acquisition. However, a subthreshold dose of the RS23597 (0.01 µg/mouse) potentiated ACPA-induced fear memory impairment in both conditions. Therefore, we suggest that the blockade of hippocampal 5-HT4 serotonergic system modulates cannabinoid signaling induced by the activation of CB1 receptors in conditioned fear. PMID:27296273

  11. Habitat-specific shaping of proliferation and neuronal differentiation in adult hippocampal neurogenesis of wild rodents

    PubMed Central

    Cavegn, Nicole; van Dijk, R. Maarten; Menges, Dominik; Brettschneider, Helene; Phalanndwa, Mashudu; Chimimba, Christian T.; Isler, Karin; Lipp, Hans-Peter; Slomianka, Lutz; Amrein, Irmgard

    2013-01-01

    Daily life of wild mammals is characterized by a multitude of attractive and aversive stimuli. The hippocampus processes complex polymodal information associated with such stimuli and mediates adequate behavioral responses. How newly generated hippocampal neurons in wild animals contribute to hippocampal function is still a subject of debate. Here, we test the relationship between adult hippocampal neurogenesis (AHN) and habitat types. To this end, we compare wild Muridae species of southern Africa [Namaqua rock mouse (Micaelamys namaquensis), red veld rat (Aethomys chrysophilus), highveld gerbil (Tatera brantsii), and spiny mouse (Acomys spinosissimus)] with data from wild European Muridae [long-tailed wood mice (Apodemus sylvaticus), pygmy field mice (Apodemus microps), yellow-necked wood mice (Apodemus flavicollis), and house mice (Mus musculus domesticus)] from previous studies. The pattern of neurogenesis, expressed in normalized numbers of Ki67- and Doublecortin(DCX)-positive cells to total granule cells (GCs), is similar for the species from a southern African habitat. However, we found low proliferation, but high neuronal differentiation in rodents from the southern African habitat compared to rodents from the European environment. Within the African rodents, we observe additional regulatory and morphological traits in the hippocampus. Namaqua rock mice with previous pregnancies showed lower AHN compared to males and nulliparous females. The phylogenetically closely related species (Namaqua rock mouse and red veld rat) show a CA4, which is not usually observed in murine rodents. The specific features of the southern environment that may be associated with the high number of young neurons in African rodents still remain to be elucidated. This study provides the first evidence that a habitat can shape adult neurogenesis in rodents across phylogenetic groups. PMID:23616743

  12. Selective neuronal vulnerability of human hippocampal CA1 neurons: lesion evolution, temporal course, and pattern of hippocampal damage in diffusion-weighted MR imaging.

    PubMed

    Bartsch, Thorsten; Döhring, Juliane; Reuter, Sigrid; Finke, Carsten; Rohr, Axel; Brauer, Henriette; Deuschl, Günther; Jansen, Olav

    2015-11-01

    The CA1 (cornu ammonis) region of hippocampus is selectively vulnerable to a variety of metabolic and cytotoxic insults, which is mirrored in a delayed neuronal death of CA1 neurons. The basis and mechanisms of this regional susceptibility of CA1 neurons are poorly understood, and the correlates in human diseases affecting the hippocampus are not clear. Adopting a translational approach, the lesion evolution, temporal course, pattern of diffusion changes, and damage in hippocampal CA1 in acute neurologic disorders were studied using high-resolution magnetic resonance imaging. In patients with hippocampal ischemia (n=50), limbic encephalitis (n=30), after status epilepticus (n=17), and transient global amnesia (n=53), the CA1 region was selectively affected compared with other CA regions of the hippocampus. CA1 neurons exhibited a maximum decrease of apparent diffusion coefficient (ADC) 48 to 72 hours after the insult, irrespective of the nature of the insult. Hypoxic-ischemic insults led to a significant lower ADC suggesting that the ischemic insult results in a stronger impairment of cellular metabolism. The evolution of diffusion changes show that CA1 diffusion lesions mirror the delayed time course of the pathophysiologic cascade typically observed in animal models. Studying the imaging correlates of hippocampal damage in humans provides valuable insight into the pathophysiology and neurobiology of the hippocampus. PMID:26082014

  13. PERIOD1 coordinates hippocampal rhythms and memory processing with daytime.

    PubMed

    Rawashdeh, Oliver; Jilg, Antje; Jedlicka, Peter; Slawska, Jolanta; Thomas, Lukas; Saade, Anastasia; Schwarzacher, Stephan W; Stehle, Jörg H

    2014-06-01

    In species ranging from flies to mammals, parameters of memory processing, like acquisition, consolidation, and retrieval are clearly molded by time of day. However, mechanisms that regulate and adapt these temporal differences are elusive, with an involvement of clock genes and their protein products suggestive. Therefore, we analyzed initially in mouse hippocampus the daytime-dependent dynamics of parameters, known to be important for proper memory formation, like phosphorylation of the "memory molecule" cyclic adenosine monophosphate (cAMP) responsive element binding protein (CREB) and chromatin remodeling. Next, in an effort to characterize the mechanistic role of clock genes within hippocampal molecular dynamics, we compared the results obtained from wildtype (WT) -mice and mice deficient for the archetypical clock gene Period1 (Per1(-/-) -mice). We detected that the circadian rhythm of CREB phosphorylation in the hippocampus of WT mice disappeared completely in mice lacking Per1. Furthermore, we found that the here for the first time described profound endogenous day/night rhythms in histone modifications in the hippocampus of WT-mice are markedly perturbed in Per1(-/-) -mice. Concomitantly, both, in vivo recorded LTP, a cellular correlate for long-term memory, and hippocampal gene expression were significantly altered in the absence of Per1. Notably, these molecular perturbations in Per1(-/-) -mice were accompanied by the loss of daytime-dependent differences in spatial working memory performance. Our data provide a molecular blueprint for a novel role of PER1 in temporally shaping the daytime-dependency of memory performance, likely, by gating CREB signaling, and by coupling to downstream chromatin remodeling. PMID:24550127

  14. Sex differences in hippocampal response to endocannabinoids after exposure to severe stress.

    PubMed

    Zer-Aviv, Tomer Mizrachi; Akirav, Irit

    2016-07-01

    Women are more vulnerable to stress-related mental disorders than men and the naturally occurring fluctuation in estrogen that occur across the estrus cycle can dramatically influence the pathophysiology observed following traumatic events. It has been demonstrated that the endocannabinoid (eCB) system could represent a therapeutic target for the treatment of post-traumatic stress disorder (PTSD) in males. The current study aimed to examine the effects of exposure to a traumatic event and acute enhancement of eCB signaling on hippocampal-dependent learning and plasticity in male and female rats. Males and females were exposed to the single prolonged stress (SPS) model of PTSD (restraint, forced swim, and sedation) followed by acute administration of the fatty acid amide hydrolase (FAAH) inhibitor URB597 (0.3 mg/kg). Females were in diestrus during SPS exposure. SPS exposure impaired extinction and hippocampal plasticity tested a week later in males and females. Sex differences were observed in the effects of URB597 on hippocampal plasticity of SPS-exposed rats. Also, URB597 normalized the SPS-induced upregulation in CB1 receptor levels in the amygdala, prefrontal cortex (PFC), and hippocampus in males. In females, URB597 normalized the SPS-induced up regulation in CB1 receptors in the amygdala and PFC, but not hippocampus. Our findings support the eCB system as a therapeutic target for the treatment of disorders associated to inefficient fear coping in males and females. There are differences in the hippocampal response of males and females to the enhancement of eCB signaling after intense stress suggesting sex differences in treatment efficacy. © 2016 Wiley Periodicals, Inc. PMID:26928784

  15. Cholinergic modulation of hippocampal network function

    PubMed Central

    Teles-Grilo Ruivo, Leonor M.; Mellor, Jack R.

    2013-01-01

    Cholinergic septohippocampal projections from the medial septal area to the hippocampus are proposed to have important roles in cognition by modulating properties of the hippocampal network. However, the precise spatial and temporal profile of acetylcholine release in the hippocampus remains unclear making it difficult to define specific roles for cholinergic transmission in hippocampal dependent behaviors. This is partly due to a lack of tools enabling specific intervention in, and recording of, cholinergic transmission. Here, we review the organization of septohippocampal cholinergic projections and hippocampal acetylcholine receptors as well as the role of cholinergic transmission in modulating cellular excitability, synaptic plasticity, and rhythmic network oscillations. We point to a number of open questions that remain unanswered and discuss the potential for recently developed techniques to provide a radical reappraisal of the function of cholinergic inputs to the hippocampus. PMID:23908628

  16. Neuromorphic VLSI realization of the hippocampal formation.

    PubMed

    Aggarwal, Anu

    2016-05-01

    The medial entorhinal cortex grid cells, aided by the subicular head direction cells, are thought to provide a matrix which is utilized by the