Science.gov

Sample records for acute mouse model

  1. Effect of Yi Gong San Decoction on Iron Homeostasis in a Mouse Model of Acute Inflammation

    PubMed Central

    Zheng, Qin; Guan, Yu; Xia, Lemin; Wang, Zhicheng; Jiang, Yiling; Zhang, Xiaofeng; Wang, Jianying; Wang, Guohua; Pu, Yiqiong; Xia, Jing; Luo, Meihong

    2016-01-01

    We investigated the effect of Yi Gong San (YGS) decoction on iron homeostasis and the possible underlying mechanisms in a mouse model of acute inflammation in this study. Our findings suggest that YGS regulates iron homeostasis by downregulating the level of HAMP mRNA, which may depend on regulation of the IL-6/STAT3 or BMP/HJV/SMAD pathway during acute inflammation. PMID:27143982

  2. Resveratrol lacks protective activity against acute seizures in mouse models.

    PubMed

    Tomaciello, Francesca; Leclercq, Karine; Kaminski, Rafal M

    2016-10-01

    Resveratrol (3,4',5-stilbenetriol) is a natural product having diverse anti-inflammatory and antioxidant properties. The compound has a wide spectrum of pharmacological and metabolic activity, including cardioprotective, neuroprotective, anticarcinogenic and anti-aging effects reported in numerous studies. Some reports also suggest potential anticonvulsant properties of resveratrol. In the present study, we used in mice three different seizure models which are routinely applied in preclinical drug discovery. The protective effects of resveratrol were evaluated in the pentylenetetrazole (PTZ), maximal electroshock (MES) and 6-Hz electrical seizure models. Resveratrol (up to 300mg/kg) administered ip (5-60min pre-treatment time) remained without any protective activity against seizures induced in these models. There was only a trend towards a delay in seizure latency, which reached statistical significance after treatment with resveratrol (100mg/kg; 15min) in case of tonic convulsions induced by PTZ. Phenobarbital (PHB, ip, 45min), used as a reference compound, displayed a clear-cut and dose-dependent protection against seizures in all the models. The ED50 values obtained with PHB were as follows: 7.3mg/kg (PTZ model), 13.3mg/kg (MES model) and 29.7mg/kg (6-Hz model). The present data demonstrate that an acute treatment with resveratrol does not provide any significant protection in three seizure models which collectively are able to detect anticonvulsants with diverse mechanisms of action. However, it cannot be excluded that chronic treatment with resveratrol may offer some protection in these or other seizure models.

  3. Neurovascular changes in acute, sub-acute and chronic mouse models of Parkinson's disease.

    PubMed

    Sarkar, Sumit; Raymick, James; Mann, Dushyant; Bowyer, John F; Hanig, Joseph P; Schmued, Larry C; Paule, Merle G; Chigurupati, Srinivasulu

    2014-02-01

    Although selective neurodegeneration of nigro-striatal dopaminergic neurons is widely accepted as a cause of Parkinson's disease (PD), the role of vascular components in the brain in PD pathology is not well understood. However, the neurodegeneration seen in PD is known to be associated with neuroinflammatory-like changes that can affect or be associated with brain vascular function. Thus, dysfunction of the capillary endothelial cell component of neurovascular units present in the brain may contribute to the damage to dopaminergic neurons that occurs in PD. An animal model of PD employing acute, sub-acute and chronic exposures of mice to methyl-phenyl-tetrahydropyridine (MPTP) was used to determine the extent to which brain vasculature may be damaged in PD. Fluoro-Turquoise gelatin labeling of microvessels and endothelial cells was used to determine the extent of vascular damage produced by MPTP. In addition, tyrosine hydroxylase (TH) and NeuN were employed to detect and quantify dopaminergic neuron damage in the striatum (CPu) and substantia nigra (SNc). Gliosis was evaluated through GFAP immunohistochemistry. MPTP treatment drastically reduced TH immunoreactive neurons in the SNc (20.68 ± 2.83 in acute; 22.98 ± 2.14 in sub-acute; 10.20 ± 2.24 in chronic vs 34.88 ± 2.91 in controls; p<0.001). Similarly, TH immunoreactive terminals were dramatically reduced in the CPu of MPTP treated mice. Additionally, all three MPTP exposures resulted in a decrease in the intensity, length, and number of vessels in both CPu and SNc. Degenerative vascular changes such as endothelial cell 'clusters' were also observed after MPTP suggesting that vasculature damage may be modifying the availability of nutrients and exposing blood cells and/or toxic substances to neurons and glia. In summary, vascular damage and degeneration could be an additional exacerbating factor in the progression of PD, and therapeutics that protect and insure vascular integrity may be novel treatments for

  4. Neurovascular changes in acute, sub-acute and chronic mouse models of Parkinson's disease.

    PubMed

    Sarkar, Sumit; Raymick, James; Mann, Dushyant; Bowyer, John F; Hanig, Joseph P; Schmued, Larry C; Paule, Merle G; Chigurupati, Srinivasulu

    2014-02-01

    Although selective neurodegeneration of nigro-striatal dopaminergic neurons is widely accepted as a cause of Parkinson's disease (PD), the role of vascular components in the brain in PD pathology is not well understood. However, the neurodegeneration seen in PD is known to be associated with neuroinflammatory-like changes that can affect or be associated with brain vascular function. Thus, dysfunction of the capillary endothelial cell component of neurovascular units present in the brain may contribute to the damage to dopaminergic neurons that occurs in PD. An animal model of PD employing acute, sub-acute and chronic exposures of mice to methyl-phenyl-tetrahydropyridine (MPTP) was used to determine the extent to which brain vasculature may be damaged in PD. Fluoro-Turquoise gelatin labeling of microvessels and endothelial cells was used to determine the extent of vascular damage produced by MPTP. In addition, tyrosine hydroxylase (TH) and NeuN were employed to detect and quantify dopaminergic neuron damage in the striatum (CPu) and substantia nigra (SNc). Gliosis was evaluated through GFAP immunohistochemistry. MPTP treatment drastically reduced TH immunoreactive neurons in the SNc (20.68 ± 2.83 in acute; 22.98 ± 2.14 in sub-acute; 10.20 ± 2.24 in chronic vs 34.88 ± 2.91 in controls; p<0.001). Similarly, TH immunoreactive terminals were dramatically reduced in the CPu of MPTP treated mice. Additionally, all three MPTP exposures resulted in a decrease in the intensity, length, and number of vessels in both CPu and SNc. Degenerative vascular changes such as endothelial cell 'clusters' were also observed after MPTP suggesting that vasculature damage may be modifying the availability of nutrients and exposing blood cells and/or toxic substances to neurons and glia. In summary, vascular damage and degeneration could be an additional exacerbating factor in the progression of PD, and therapeutics that protect and insure vascular integrity may be novel treatments for

  5. Acute metabolic decompensation due to influenza in a mouse model of ornithine transcarbamylase deficiency

    PubMed Central

    McGuire, Peter J.; Tarasenko, Tatiana N.; Wang, Tony; Levy, Ezra; Zerfas, Patricia M.; Moran, Thomas; Lee, Hye Seung; Bequette, Brian J.; Diaz, George A.

    2014-01-01

    ABSTRACT The urea cycle functions to incorporate ammonia, generated by normal metabolism, into urea. Urea cycle disorders (UCDs) are caused by loss of function in any of the enzymes responsible for ureagenesis, and are characterized by life-threatening episodes of acute metabolic decompensation with hyperammonemia (HA). A prospective analysis of interim HA events in a cohort of individuals with ornithine transcarbamylase (OTC) deficiency, the most common UCD, revealed that intercurrent infection was the most common precipitant of acute HA and was associated with markers of increased morbidity when compared with other precipitants. To further understand these clinical observations, we developed a model system of metabolic decompensation with HA triggered by viral infection (PR8 influenza) using spf-ash mice, a model of OTC deficiency. Both wild-type (WT) and spf-ash mice displayed similar cytokine profiles and lung viral titers in response to PR8 influenza infection. During infection, spf-ash mice displayed an increase in liver transaminases, suggesting a hepatic sensitivity to the inflammatory response and an altered hepatic immune response. Despite having no visible pathological changes by histology, WT and spf-ash mice had reduced CPS1 and OTC enzyme activities, and, unlike WT, spf-ash mice failed to increase ureagenesis. Depression of urea cycle function was seen in liver amino acid analysis, with reductions seen in aspartate, ornithine and arginine during infection. In conclusion, we developed a model system of acute metabolic decompensation due to infection in a mouse model of a UCD. In addition, we have identified metabolic perturbations during infection in the spf-ash mice, including a reduction of urea cycle intermediates. This model of acute metabolic decompensation with HA due to infection in UCD serves as a platform for exploring biochemical perturbations and the efficacy of treatments, and could be adapted to explore acute decompensation in other types

  6. A genetic mouse model to investigate hyperoxic acute lung injury survival.

    PubMed

    Prows, Daniel R; Hafertepen, Amanda P; Gibbons, William J; Winterberg, Abby V; Nick, Todd G

    2007-08-20

    Acute lung injury (ALI) is a devastating disease that maintains a high mortality rate, despite decades of research. Hyperoxia, a universal treatment for ALI and other critically ill patients, can itself cause pulmonary damage, which drastically restricts its therapeutic potential. We stipulate that having the ability to use higher levels of supplemental O2 for longer periods would improve recovery rates. Toward this goal, a mouse model was sought to identify genes contributing to hyperoxic ALI (HALI) mortality. Eighteen inbred mouse strains were screened in continuous >95% O2. A significant survival difference was identified between sensitive C57BL/6J and resistant 129X1/SvJ strains. Although resistant, only one-fourth of 129X1/SvJ mice survived longer than any C57BL/6J mouse, demonstrating decreased penetrance of resistance. A survival time difference between reciprocal F1 mice implicated a parent-of-origin (imprinting) effect. To further evaluate imprinting and begin to delineate the genetic components of HALI survival, we generated and phenotyped offspring from all four possible intercrosses. Segregation analysis supported maternal inheritance of one or more genes but paternal inheritance of one or more contributor genes. A significant sex effect was demonstrated, with males more resistant than females for all F2 crosses. Survival time ranges and sensitive-to-resistant ratios of the different F2 crosses also supported imprinting and predicted that increased survival is due to dominant resistance alleles contributed by both the resistant and sensitive parental strains. HALI survival is multigenic with a complex mode of inheritance, which should be amenable to genetic dissection with this mouse model.

  7. Acute Radiation Syndrome Severity Score System in Mouse Total-Body Irradiation Model.

    PubMed

    Ossetrova, Natalia I; Ney, Patrick H; Condliffe, Donald P; Krasnopolsky, Katya; Hieber, Kevin P

    2016-08-01

    Radiation accidents or terrorist attacks can result in serious consequences for the civilian population and for military personnel responding to such emergencies. The early medical management situation requires quantitative indications for early initiation of cytokine therapy in individuals exposed to life-threatening radiation doses and effective triage tools for first responders in mass-casualty radiological incidents. Previously established animal (Mus musculus, Macaca mulatta) total-body irradiation (γ-exposure) models have evaluated a panel of radiation-responsive proteins that, together with peripheral blood cell counts, create a multiparametic dose-predictive algorithm with a threshold for detection of ~1 Gy from 1 to 7 d after exposure as well as demonstrate the acute radiation syndrome severity score systems created similar to the Medical Treatment Protocols for Radiation Accident Victims developed by Fliedner and colleagues. The authors present a further demonstration of the acute radiation sickness severity score system in a mouse (CD2F1, males) TBI model (1-14 Gy, Co γ-rays at 0.6 Gy min) based on multiple biodosimetric endpoints. This includes the acute radiation sickness severity Observational Grading System, survival rate, weight changes, temperature, peripheral blood cell counts and radiation-responsive protein expression profile: Flt-3 ligand, interleukin 6, granulocyte-colony stimulating factor, thrombopoietin, erythropoietin, and serum amyloid A. Results show that use of the multiple-parameter severity score system facilitates identification of animals requiring enhanced monitoring after irradiation and that proteomics are a complementary approach to conventional biodosimetry for early assessment of radiation exposure, enhancing accuracy and discrimination index for acute radiation sickness response categories and early prediction of outcome. PMID:27356057

  8. Acute Radiation Syndrome Severity Score System in Mouse Total-Body Irradiation Model.

    PubMed

    Ossetrova, Natalia I; Ney, Patrick H; Condliffe, Donald P; Krasnopolsky, Katya; Hieber, Kevin P

    2016-08-01

    Radiation accidents or terrorist attacks can result in serious consequences for the civilian population and for military personnel responding to such emergencies. The early medical management situation requires quantitative indications for early initiation of cytokine therapy in individuals exposed to life-threatening radiation doses and effective triage tools for first responders in mass-casualty radiological incidents. Previously established animal (Mus musculus, Macaca mulatta) total-body irradiation (γ-exposure) models have evaluated a panel of radiation-responsive proteins that, together with peripheral blood cell counts, create a multiparametic dose-predictive algorithm with a threshold for detection of ~1 Gy from 1 to 7 d after exposure as well as demonstrate the acute radiation syndrome severity score systems created similar to the Medical Treatment Protocols for Radiation Accident Victims developed by Fliedner and colleagues. The authors present a further demonstration of the acute radiation sickness severity score system in a mouse (CD2F1, males) TBI model (1-14 Gy, Co γ-rays at 0.6 Gy min) based on multiple biodosimetric endpoints. This includes the acute radiation sickness severity Observational Grading System, survival rate, weight changes, temperature, peripheral blood cell counts and radiation-responsive protein expression profile: Flt-3 ligand, interleukin 6, granulocyte-colony stimulating factor, thrombopoietin, erythropoietin, and serum amyloid A. Results show that use of the multiple-parameter severity score system facilitates identification of animals requiring enhanced monitoring after irradiation and that proteomics are a complementary approach to conventional biodosimetry for early assessment of radiation exposure, enhancing accuracy and discrimination index for acute radiation sickness response categories and early prediction of outcome.

  9. Isocitrate treatment of acute anemia of inflammation in a mouse model.

    PubMed

    Kim, Airie; Fung, Eileen; Parikh, Sona G; Gabayan, Victoria; Nemeth, Elizabeta; Ganz, Tomas

    2016-01-01

    Acute and severe anemia of inflammation (AI) is a common complication of various clinical syndromes, including fulminant infections, critical illness with multiorgan failure, and exacerbations of autoimmune diseases. Building on recent data showing beneficial results with isocitrate treatment for chronic low-grade AI in a rat model, we used a mouse model of acute and severe AI induced by intraperitoneal heat-killed Brucella abortus to determine if isocitrate would be effective in this more stringent application. Inflamed mice treated with isocitrate developed an early but transient improvement in hemoglobin compared to solvent-treated controls, with a robust improvement on day 7, and only a trend towards improvement by day 14. Reticulocyte counts were increased in treated mice transiently, with no significant difference by day 21. Serum erythropoietin (EPO) levels were similar in treated versus control mice, indicating that isocitrate increased sensitivity to EPO. Serum and tissue iron levels showed no significant differences between the treated and control mice, ruling out improved iron availability as the cause of the increased response to endogenous EPO. Compared to the milder rat model, much higher doses of isocitrate were required for a relatively modest benefit.

  10. BIM mediates oncogene inactivation-induced apoptosis in multiple transgenic mouse models of acute lymphoblastic leukemia

    PubMed Central

    Li, Yulin; Deutzmann, Anja; Choi, Peter S.; Fan, Alice C.; Felsher, Dean W.

    2016-01-01

    Oncogene inactivation in both clinical targeted therapies and conditional transgenic mouse cancer models can induce significant tumor regression associated with the robust induction of apoptosis. Here we report that in MYC-, RAS-, and BCR-ABL-induced acute lymphoblastic leukemia (ALL), apoptosis upon oncogene inactivation is mediated by the same pro-apoptotic protein, BIM. The induction of BIMin the MYC- and RAS-driven leukemia is mediated by the downregulation of miR-17-92. Overexpression of miR-17-92 blocked the induction of apoptosis upon oncogene inactivation in the MYC and RAS-driven but not in the BCR-ABL-driven ALL leukemia. Hence, our results provide novel insight into the mechanism of apoptosis upon oncogene inactivation and suggest that induction of BIM-mediated apoptosis may be an important therapeutic approach for ALL. PMID:27095570

  11. Homeostasis alteration within small intestinal mucosa after acute enteral refeeding in total parenteral nutrition mouse model.

    PubMed

    Feng, Yongjia; Barrett, Meredith; Hou, Yue; Yoon, Hong Keun; Ochi, Takanori; Teitelbaum, Daniel H

    2016-02-15

    Feeding strategies to care for patients who transition from enteral nutrient deprivation while on total parenteral nutrition (TPN) to enteral feedings generally proceed to full enteral nutrition once the gastrointestinal tract recovers; however, an increasing body of literature suggests that a subgroup of patients may actually develop an increased incidence of adverse events, including death. To examine this further, we studied the effects of acute refeeding in a mouse model of TPN. Interestingly, refeeding led to some beneficial effects, including prevention in the decline in intestinal epithelial cell (IEC) proliferation. However, refeeding led to a significant increase in mucosal expression of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), as well as an upregulation in Toll-like receptor 4 (TLR-4). Refeeding also failed to prevent TPN-associated increases in IEC apoptosis, loss of epithelial barrier function, and failure of the leucine-rich repeat-containing G protein-coupled receptor 5-positive stem cell expression. Transitioning from TPN to enteral feedings led to a partial restoration of the small bowel microbial population. In conclusion, while acute refeeding led to some restoration of normal gastrointestinal physiology, enteral refeeding led to a significant increase in mucosal inflammatory markers and may suggest alternative strategies to enteral refeeding should be considered.

  12. Mitochondrial Alterations and Oxidative Stress in an Acute Transient Mouse Model of Muscle Degeneration

    PubMed Central

    Ramadasan-Nair, Renjini; Gayathri, Narayanappa; Mishra, Sudha; Sunitha, Balaraju; Mythri, Rajeswara Babu; Nalini, Atchayaram; Subbannayya, Yashwanth; Harsha, Hindalahalli Chandregowda; Kolthur-Seetharam, Ullas; Bharath, Muchukunte Mukunda Srinivas

    2014-01-01

    Muscular dystrophies (MDs) and inflammatory myopathies (IMs) are debilitating skeletal muscle disorders characterized by common pathological events including myodegeneration and inflammation. However, an experimental model representing both muscle pathologies and displaying most of the distinctive markers has not been characterized. We investigated the cardiotoxin (CTX)-mediated transient acute mouse model of muscle degeneration and compared the cardinal features with human MDs and IMs. The CTX model displayed degeneration, apoptosis, inflammation, loss of sarcolemmal complexes, sarcolemmal disruption, and ultrastructural changes characteristic of human MDs and IMs. Cell death caused by CTX involved calcium influx and mitochondrial damage both in murine C2C12 muscle cells and in mice. Mitochondrial proteomic analysis at the initial phase of degeneration in the model detected lowered expression of 80 mitochondrial proteins including subunits of respiratory complexes, ATP machinery, fatty acid metabolism, and Krebs cycle, which further decreased in expression during the peak degenerative phase. The mass spectrometry (MS) data were supported by enzyme assays, Western blot, and histochemistry. The CTX model also displayed markers of oxidative stress and a lowered glutathione reduced/oxidized ratio (GSH/GSSG) similar to MDs, human myopathies, and neurogenic atrophies. MS analysis identified 6 unique oxidized proteins from Duchenne muscular dystrophy samples (n = 6) (versus controls; n = 6), including two mitochondrial proteins. Interestingly, these mitochondrial proteins were down-regulated in the CTX model thereby linking oxidative stress and mitochondrial dysfunction. We conclude that mitochondrial alterations and oxidative damage significantly contribute to CTX-mediated muscle pathology with implications for human muscle diseases. PMID:24220031

  13. MEK1/2 inhibitors reverse acute vascular occlusion in mouse models of sickle cell disease.

    PubMed

    Zhao, Yulin; Schwartz, Evan A; Palmer, Gregory M; Zennadi, Rahima

    2016-03-01

    In sickle cell disease (SCD), treatment of recurrent vasoocclusive episodes, leading to pain crises and organ damage, is still a therapeutic challenge. Vasoocclusion is caused primarily by adherence of homozygous for hemoglobin S (SS) red blood cells (SSRBCs) and leukocytes to the endothelium. We tested the therapeutic benefits of MEK1/2 inhibitors in reversing vasoocclusion in nude and humanized SCD mouse models of acute vasoocclusive episodes using intravital microscopy. Administration of 0.2, 0.3, 1, or 2 mg/kg MEK1/2 inhibitor to TNF-α-pretreated nude mice before human SSRBC infusion inhibited SSRBC adhesion in inflamed vessels, prevented the progression of vasoocclusion, and reduced SSRBC organ sequestration. By use of a more clinically relevant protocol, 0.3 or 1 mg/kg MEK1/2 inhibitor given to TNF-α-pretreated nude mice after human SSRBC infusion and onset of vasoocclusion reversed SSRBC adhesion and vasoocclusion and restored blood flow. In SCD mice, 0.025, 0.05, or 0.1 mg/kg MEK1/2 inhibitor also reversed leukocyte and erythrocyte adhesion after the inflammatory trigger of vasoocclusion and improved microcirculatory blood flow. Cell adhesion was reversed by shedding of endothelial E-selectin, P-selectin, and αvβ3 integrin, and leukocyte CD44 and β2 integrin. Thus, MEK1/2 inhibitors, by targeting the adhesive function of SSRBCs and leukocytes, could represent a valuable therapeutic intervention for acute sickle cell vasoocclusive crises.

  14. Mouse models of human PIK3CA-related brain overgrowth have acutely treatable epilepsy

    PubMed Central

    Roy, Achira; Skibo, Jonathan; Kalume, Franck; Ni, Jing; Rankin, Sherri; Lu, Yiling; Dobyns, William B; Mills, Gordon B; Zhao, Jean J; Baker, Suzanne J; Millen, Kathleen J

    2015-01-01

    Mutations in the catalytic subunit of phosphoinositide 3-kinase (PIK3CA) and other PI3K-AKT pathway components have been associated with cancer and a wide spectrum of brain and body overgrowth. In the brain, the phenotypic spectrum of PIK3CA-related segmental overgrowth includes bilateral dysplastic megalencephaly, hemimegalencephaly and focal cortical dysplasia, the most common cause of intractable pediatric epilepsy. We generated mouse models expressing the most common activating Pik3ca mutations (H1047R and E545K) in developing neural progenitors. These accurately recapitulate all the key human pathological features including brain enlargement, cortical malformation, hydrocephalus and epilepsy, with phenotypic severity dependent on the mutant allele and its time of activation. Underlying mechanisms include increased proliferation, cell size and altered white matter. Notably, we demonstrate that acute 1 hr-suppression of PI3K signaling despite the ongoing presence of dysplasia has dramatic anti-epileptic benefit. Thus PI3K inhibitors offer a promising new avenue for effective anti-epileptic therapy for intractable pediatric epilepsy patients. DOI: http://dx.doi.org/10.7554/eLife.12703.001 PMID:26633882

  15. Cold stress aggravates inflammatory responses in an LPS-induced mouse model of acute lung injury

    NASA Astrophysics Data System (ADS)

    Joo, Su-Yeon; Park, Mi-Ju; Kim, Kyun-Ha; Choi, Hee-Jung; Chung, Tae-Wook; Kim, Yong Jin; Kim, Joung Hee; Kim, Keuk-Jun; Joo, Myungsoo; Ha, Ki-Tae

    2016-08-01

    Although the relationship between environmental cold temperature and susceptibility to respiratory infection is generally accepted, the effect of ambient cold temperature on host reactivity in lung inflammation has not been fully studied. To examine the function of ambient cold temperature on lung inflammation, mice were exposed to 4 °C for 8 h each day for 14 days. In the lungs of mice exposed to cold stress, inflammatory cells in bronchoalveolar lavage (BAL) fluid and lung tissues were slightly increased by about twofold. However, the structures of pulmonary epithelial cells were kept within normal limits. Next, we examined the effect of cold stress on the inflammatory responses in a lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse model. The infiltration of neutrophils and inflammation of lung tissue determined by histology were significantly increased by exposure to ambient cold temperature. In addition, the production of pro-inflammatory cytokines including interleukin (IL)-12, IL-17, and monokine induced by gamma interferon (MIG) was elevated by exposure to cold stress. Therefore, we suggest that cold stress is a factor that exacerbates lung inflammation including ALI. To our knowledge, this is the first report on the relationship between cold stress and severity of lung inflammation.

  16. Acute pharmacokinetics of memantine in the mouse.

    PubMed

    Saab, Bechara J; Roder, John C

    2011-01-01

    The pharmacokinetics of memantine, a widely prescribed medication in the United States and the European Union for the treatment of moderate-to-severe Alzheimer's disease (AD), have not been well explored in the mouse. Memantine is a highly unspecific blocker of many channels and how memantine may be of benefit in AD remains a mystery. Therefore, the investigation of memantine in the mouse, the most commonly chosen subject for modeling AD, has strong potential to lead to better therapies. Here, we present an acute pharmacokinetic analysis of memantine in mouse brain tissue and blood serum for a variety of experimentally relevant doses. The data help shed light on the mechanism of memantine action in vivo, and demonstrate that subcutaneous doses above 10 mg/kg in the mouse are most likely not therapeutically relevant to the human.

  17. Modified Extracorporeal Photopheresis with Cells from a Healthy Donor for Acute Graft-versus-Host Disease in a Mouse Model

    PubMed Central

    Budde, Holger; Kolb, Susanne; Salinas Tejedor, Laura; Wulf, Gerald; Reichardt, Holger M.; Riggert, Joachim; Legler, Tobias J.

    2014-01-01

    Background Graft-versus-host disease (GvHD) is a major challenge after hematopoietic stem cell transplantation but treatment options for patients are still limited. In many cases first-line treatment with glucocorticoids is not successful. Among second-line therapies the extracorporeal photopheresis (ECP) is frequently performed, due to induction of selective tolerance instead of general immunosuppression. However, for some patients with severe acute GvHD the leukapheresis step of the ECP procedure is physically exhausting and limits the number of ECP cycles. Methods We hypothesized that leukocytes from healthy cell donors could be used as a replacement for ECP leukocytes gained from the GvHD patient. For this purpose we used a well established mouse model of acute GvHD. The ECP therapy was based on cells with the genetic background of the initial donor of the stem cell transplantation. As a precondition we developed a protocol representing conventional ECP in mice equivalent to clinical used ECP setup. Results We could demonstrate that conventional, clinically derived ECP setup is able to alleviate acute GvHD. By using leukocytes obtained from healthy mice with the bone marrow donor’s genetic background we could not observe a statistically significant therapeutic effect. Conclusions Conventional human ECP setup is effective in the mouse model of severe acute GvHD. In addition we could not prove that ECP cells from healthy mice with bone marrow donor’s genetic background are as effective as ECP cells derived from GvHD mice. Based on our findings, new questions arise for further studies, in which the cellular characteristics for ECP mediated immune tolerance are a matter of investigation. PMID:25148404

  18. Generation and characterization of bioluminescent xenograft mouse models of MLL-related acute leukemias and in vivo evaluation of luciferase-targeting siRNA nanoparticles.

    PubMed

    Fazzina, Raffaella; Lombardini, Lorenza; Mezzanotte, Laura; Roda, Aldo; Hrelia, Patrizia; Pession, Andrea; Tonelli, Roberto

    2012-08-01

    Chromosomal translocations involving the MLL gene on 11q23 present frequent abnormalities in pediatric, adult and therapy-related acute leukemias, and are generally associated with aggressive disease and poor prognosis. Here, we report bioluminescent acute leukemia xenograft mouse models of the most frequent and aggressive MLL-related acute leukemias (infant and adult MLL-AF9, MLL-ENL, MLL-AF4). Four acute leukemia cell lines carrying MLL-related translocations were stably transduced with a firefly luciferase transgene and injected intravenously into NOD/SCID mice. Leukemia progression was monitored by in vivo bioluminescence imaging (BLI). All mice developed MLL-related acute leukemia. The four MLL-related acute leukemia models showed a different course of infant and adult MLL-AF9 acute myeloid leukemia, and a rapid aggressiveness of MLL-ENL acute lymphoblastic leukemia and MLL-AF4 acute biphenotypic leukemia. Tissue analysis and RT-PCR of bone marrow, spleen and liver from the mice confirmed the BL results. To validate BLI for the detection of a therapeutic response, systemic treatment with an anti-luciferase-targeting siRNA (siLuc) complexed with cationic nanoparticles was administered to mice with MLL-AF4 acute lymphoblastic leukemia. The BLI signal showed a reduction following treatment with siLuc compared to the control mice. These mouse models present MLL-related acute leukemia evolution similar to the human counterparts. Moreover, they are non-invasive, rapid and sensitive models, suitable for the in vivo study of MLL-related acute leukemias. Finally, BLI showed in vivo luminescence down modulation obtained by systemic treatment with luciferase-targeting siRNA nanoparticle complexes, confirming that these MLL-related leukemia mouse models are optimal for the evaluation and selection of delivery systems for siRNA and other new biotechnological pharmaceuticals.

  19. Silibinin suppresses astroglial activation in a mouse model of acute Parkinson's disease by modulating the ERK and JNK signaling pathways.

    PubMed

    Lee, Yujeong; Chun, Hye Jeong; Lee, Kyung Moon; Jung, Young-Suk; Lee, Jaewon

    2015-11-19

    Parkinson's disease (PD) is the second-most common neurodegenerative disease after Alzheimer's disease, and is characterized by dopaminergic neuronal loss in midbrain. The MPTP-induced PD model has been well characterized by motor deficits and selective dopaminergic neuronal death accompanied by glial activation. Silibinin is a constituent of silymarin, an extract of milk thistle seeds, and has been proposed to have hepatoprotective, anti-cancer, anti-oxidative, and neuroprotective effects. In the present study, the authors studied the neuroprotective effects of silibinin in an acute MPTP model of PD. Silibinin was administered for 2 weeks, and then MPTP was administered to mice over 1 day (acute MPTP induced PD). Silibinin pretreatment effectively ameliorated motor dysfunction, dopaminergic neuronal loss, and glial activations caused by MPTP. In addition, an in vitro study demonstrated that silibinin suppressed astroglial activation and ERK and JNK phosphorylation in primary astrocytes in response to MPP(+) treatment. These findings show silibinin protected dopaminergic neurons in an acute MPTP-induced mouse model of PD, and suggest its neuroprotective effects might be mediated by the suppression of astrocyte activation via the inhibition of ERK and JNK phosphorylation. In conclusion, the study indicates silibinin should be viewed as a potential treatment for PD and other neurodegenerative diseases associated with neuroinflammation. PMID:26434409

  20. In Vivo Assessment of Acute UVB Responses in Normal and Xeroderma Pigmentosum (XP-C) Skin-Humanized Mouse Models

    PubMed Central

    García, Marta; Llames, Sara; García, Eva; Meana, Alvaro; Cuadrado, Natividad; Recasens, Mar; Puig, Susana; Nagore, Eduardo; Illera, Nuria; Jorcano, José Luis; Del Rio, Marcela; Larcher, Fernando

    2010-01-01

    In vivo studies of UVB effects on human skin are precluded by ethical and technical arguments on volunteers and inconceivable in cancer-prone patients such as those affected with Xeroderma Pigmentosum (XP). Establishing reliable models to address mechanistic and therapeutic matters thus remains a challenge. Here we have used the skin-humanized mouse system that circumvents most current model constraints. We assessed the UVB radiation effects including the sequential changes after acute exposure with respect to timing, dosage, and the relationship between dose and degree-sort of epidermal alteration. On Caucasian-derived regenerated skins, UVB irradiation (800 J/m2) induced DNA damage (cyclobutane pyrimidine dimers) and p53 expression in exposed keratinocytes. Epidermal disorganization was observed at higher doses. In contrast, in African descent–derived regenerated skins, physiological hyperpigmentation prevented tissue alterations and DNA photolesions. The acute UVB effects seen in Caucasian-derived engrafted skins were also blocked by a physical sunscreen, demonstrating the suitability of the system for photoprotection studies. We also report the establishment of a photosensitive model through the transplantation of XP-C patient cells as part of a bioengineered skin. The inability of XP-C engrafted skin to remove DNA damaged cells was confirmed in vivo. Both the normal and XP-C versions of the skin-humanized mice proved proficient models to assess UVB-mediated DNA repair responses and provide a strong platform to test novel therapeutic strategies. PMID:20558577

  1. Ischemic tissue injury in the dorsal skinfold chamber of the mouse: a skin flap model to investigate acute persistent ischemia.

    PubMed

    Harder, Yves; Schmauss, Daniel; Wettstein, Reto; Egaña, José T; Weiss, Fabian; Weinzierl, Andrea; Schuldt, Anna; Machens, Hans-Günther; Menger, Michael D; Rezaeian, Farid

    2014-11-17

    Despite profound expertise and advanced surgical techniques, ischemia-induced complications ranging from wound breakdown to extensive tissue necrosis are still occurring, particularly in reconstructive flap surgery. Multiple experimental flap models have been developed to analyze underlying causes and mechanisms and to investigate treatment strategies to prevent ischemic complications. The limiting factor of most models is the lacking possibility to directly and repetitively visualize microvascular architecture and hemodynamics. The goal of the protocol was to present a well-established mouse model affiliating these before mentioned lacking elements. Harder et al. have developed a model of a musculocutaneous flap with a random perfusion pattern that undergoes acute persistent ischemia and results in ~50% necrosis after 10 days if kept untreated. With the aid of intravital epi-fluorescence microscopy, this chamber model allows repetitive visualization of morphology and hemodynamics in different regions of interest over time. Associated processes such as apoptosis, inflammation, microvascular leakage and angiogenesis can be investigated and correlated to immunohistochemical and molecular protein assays. To date, the model has proven feasibility and reproducibility in several published experimental studies investigating the effect of pre-, peri- and postconditioning of ischemically challenged tissue.

  2. Pyruvate dehydrogenase kinase 2 and 4 gene deficiency attenuates nociceptive behaviors in a mouse model of acute inflammatory pain.

    PubMed

    Jha, Mithilesh Kumar; Rahman, Md Habibur; Park, Dong Ho; Kook, Hyun; Lee, In-Kyu; Lee, Won-Ha; Suk, Kyoungho

    2016-09-01

    Pyruvate dehydrogenase (PDH) kinases (PDKs) 1-4, expressed in peripheral and central tissues, regulate the activity of the PDH complex (PDC). The PDC is an important mitochondrial gatekeeping enzyme that controls cellular metabolism. The role of PDKs in diverse neurological disorders, including neurometabolic aberrations and neurodegeneration, has been described. Implications for a role of PDKs in inflammation and neurometabolic coupling led us to investigate the effect of genetic ablation of PDK2/4 on nociception in a mouse model of acute inflammatory pain. Deficiency in Pdk2 and/or Pdk4 in mice led to attenuation of formalin-induced nociceptive behaviors (flinching, licking, biting, or lifting of the injected paw). Likewise, the pharmacological inhibition of PDKs substantially diminished the nociceptive responses in the second phase of the formalin test. Furthermore, formalin-provoked paw edema formation and mechanical and thermal hypersensitivities were significantly reduced in Pdk2/4-deficient mice. Formalin-driven neutrophil recruitment at the site of inflammation, spinal glial activation, and neuronal sensitization were substantially lessened in the second or late phase of the formalin test in Pdk2/4-deficient animals. Overall, our results suggest that PDK2/4 can be a potential target for the development of pharmacotherapy for the treatment of acute inflammatory pain. © 2016 Wiley Periodicals, Inc. PMID:26931482

  3. An Intradermal Inoculation Mouse Model for Immunological Investigations of Acute Scrub Typhus and Persistent Infection

    PubMed Central

    Rockx-Brouwer, Dedeke; Xu, Guang; Goez-Rivillas, Yenny; Drom, Claire; Shelite, Thomas R.; Valbuena, Gustavo; Walker, David H.; Bouyer, Donald H.

    2016-01-01

    Scrub typhus is a neglected tropical disease, caused by Orientia tsutsugamushi, a Gram-negative bacterium that is transmitted to mammalian hosts during feeding by Leptotrombidium mites and replicates predominantly within endothelial cells. Most studies of scrub typhus in animal models have utilized either intraperitoneal or intravenous inoculation; however, there is limited information on infection by the natural route in murine model skin or its related early host responses. Here, we developed an intradermal (i.d.) inoculation model of scrub typhus and focused on the kinetics of the host responses in the blood and major infected organs. Following ear inoculation with 6 x 104 O. tsutsugamushi, mice developed fever at 11–12 days post-infection (dpi), followed by marked hypothermia and body weight loss at 14–19 dpi. Bacteria in blood and tissues and histopathological changes were detected around 9 dpi and peaked around 14 dpi. Serum cytokine analyses revealed a mixed Th1/Th2 response, with marked elevations of MCP-1/CCL2, MIP-1α/CCL3 and IL-10 at 9 dpi, followed by increased concentrations of pro-inflammatory markers (IL-6, IL-12, IFN-γ, G-CSF, RANTES/CCL5, KC/CCL11, IL-1α/β, IL-2, TNF-α, GM-CSF), as well as modulatory cytokines (IL-9, IL-13). Cytokine levels in lungs had similar elevation patterns, except for a marked reduction of IL-9. The Orientia 47-kDa gene and infectious bacteria were detected in several organs for up to 84 dpi, indicating persistent infection. This is the first comprehensive report of acute scrub typhus and persistent infection in i.d.-inoculated C57BL/6 mice. This is a significant improvement over current murine models for Orientia infection and will permit detailed studies of host immune responses and infection control interventions. PMID:27479584

  4. Non-viral delivery of the porphobilinogen deaminase cDNA into a mouse model of acute intermittent porphyria.

    PubMed

    Johansson, Annika; Nowak, Grzegorz; Möller, Christer; Harper, Pauline

    2004-05-01

    Acute intermittent porphyria (AIP), an inborn error of metabolism, results from the deficient activity of the third enzyme in the heme biosynthetic pathway, porphobilinogen deaminase (PBGD). Clinical symptoms of this autosomal dominant hepatic porphyria include episodic acute attacks of abdominal pain, neuropathy, and psychiatric disturbances. Current therapy based on intravenous heme administration is palliative and there is no way to prevent the attacks. Thus, efforts are focused on methods to replace the deficient activity in the liver to prevent the acute attacks of this hepatic porphyria. Here we explore the efficiency of a non-viral gene delivery to obtain PBGD expression in the liver of AIP transgenic mice. Four vectors were evaluated: naked DNA and DNA complexed to liposomes, polyethylenimine (PEI), and PEI-galactose, using a luciferase construct as reporter gene. The vectors were administered intravenously or directly into the portal vein with transient blood flow blockage. After tail vein injection of the DNA complexes, the liposome vector had the highest luciferase expression in lung and less in liver. When injected into the portal vein, the naked DNA had considerably higher hepatic reporter gene expression; 100 microg of naked DNA had the highest hepatic luciferase expression 24h after portal vein injection. When these vectors were used to deliver the PBGD gene into the AIP mouse model no enhancement of the endogenous PBGD activity in liver was detectable, despite the presence of the PBGD-plasmids as verified by PCR. Thus, more efficient non-viral vectors are needed to express sufficient PBGD activity over the endogenous hepatic level (approximately 30% of normal) in this murine system.

  5. IL-35 inhibits acute graft-versus-host disease in a mouse model.

    PubMed

    Zhang, Xiao-Hui; Zhou, Yi; Zhang, Jia-Min; Zhou, Shi-Yuan; Wang, Min; Feng, Ru; Feng, Fer-Er; Wang, Qian-Ming; Zhu, Xiao-Lu; Zhao, Xiao-Su; Lv, Meng; Kong, Yuan; Chang, Ying-Jun; Huang, Xiao-Jun

    2015-12-01

    Acute graft-versus-host disease (aGVHD) is a serious complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Our previous study found that the novel anti-inflammatory cytokine IL-35 could suppress aGVHD in patients after allo-HSCT. In this study, we used C57BL/6 (B6, H-2b) mice as donors and (B6×DBA/2) F1 (BDF1, H-2b×d) mice as recipients to create a model of aGVHD and explore the relationship between IL-35 and aGVHD. The mice receiving IL-35 survived longer than did the control mice. We observed that treatment with IL-35 and RAPA could reduce the incidence of aGVHD. Additionally, this treatment inhibited intestinal and thymic epithelial cell apoptosis and liver infiltration by the donor T-cells, thereby ameliorating the enteropathy and liver injury caused by aGVHD. We found that IL-35 and RAPA also markedly suppressed TNF-α and IL-17A expression and enhanced IFN-γ expression in the intestine and liver. We measured Tregs in spleen and found that IL-35 and RAPA treatment expanded the number of Tregs in spleen. We found that the phosphorylation of STAT1 and STAT4 were inhibited in mice with aGVHD. In contrast, STAT1 and STAT4 were phosphorylated when the mice were treated with IL-35. IL-35 may have therapeutic potential in the treatment of aGVHD after allo-HSCT. PMID:26507167

  6. IL-35 inhibits acute graft-versus-host disease in a mouse model.

    PubMed

    Zhang, Xiao-Hui; Zhou, Yi; Zhang, Jia-Min; Zhou, Shi-Yuan; Wang, Min; Feng, Ru; Feng, Fer-Er; Wang, Qian-Ming; Zhu, Xiao-Lu; Zhao, Xiao-Su; Lv, Meng; Kong, Yuan; Chang, Ying-Jun; Huang, Xiao-Jun

    2015-12-01

    Acute graft-versus-host disease (aGVHD) is a serious complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Our previous study found that the novel anti-inflammatory cytokine IL-35 could suppress aGVHD in patients after allo-HSCT. In this study, we used C57BL/6 (B6, H-2b) mice as donors and (B6×DBA/2) F1 (BDF1, H-2b×d) mice as recipients to create a model of aGVHD and explore the relationship between IL-35 and aGVHD. The mice receiving IL-35 survived longer than did the control mice. We observed that treatment with IL-35 and RAPA could reduce the incidence of aGVHD. Additionally, this treatment inhibited intestinal and thymic epithelial cell apoptosis and liver infiltration by the donor T-cells, thereby ameliorating the enteropathy and liver injury caused by aGVHD. We found that IL-35 and RAPA also markedly suppressed TNF-α and IL-17A expression and enhanced IFN-γ expression in the intestine and liver. We measured Tregs in spleen and found that IL-35 and RAPA treatment expanded the number of Tregs in spleen. We found that the phosphorylation of STAT1 and STAT4 were inhibited in mice with aGVHD. In contrast, STAT1 and STAT4 were phosphorylated when the mice were treated with IL-35. IL-35 may have therapeutic potential in the treatment of aGVHD after allo-HSCT.

  7. Protection of Retinal Ganglion Cells and Retinal Vasculature by Lycium Barbarum Polysaccharides in a Mouse Model of Acute Ocular Hypertension

    PubMed Central

    Mi, Xue-Song; Feng, Qian; Lo, Amy Cheuk Yin; Chang, Raymond Chuen-Chung; Lin, Bin; Chung, Sookja Kim; So, Kwok-Fai

    2012-01-01

    Acute ocular hypertension (AOH) is a condition found in acute glaucoma. The purpose of this study is to investigate the protective effect of Lycium barbarum polysaccharides (LBP) and its protective mechanisms in the AOH insult. LBP has been shown to exhibit neuroprotective effect in the chronic ocular hypertension (COH) experiments. AOH mouse model was induced in unilateral eye for one hour by introducing 90 mmHg ocular pressure. The animal was fed with LBP solution (1 mg/kg) or vehicle daily from 7 days before the AOH insult till sacrifice at either day 4 or day 7 post insult. The neuroprotective effects of LBP on retinal ganglion cells (RGCs) and blood-retinal-barrier (BRB) were evaluated. In control AOH retina, loss of RGCs, thinning of IRL thickness, increased IgG leakage, broken tight junctions, and decreased density of retinal blood vessels were observed. However, in LBP-treated AOH retina, there was less loss of RGCs with thinning of IRL thickness, IgG leakage, more continued structure of tight junctions associated with higher level of occludin protein and the recovery of the blood vessel density when compared with vehicle-treated AOH retina. Moreover, we found that LBP provides neuroprotection by down-regulating RAGE, ET-1, Aβ and AGE in the retina, as well as their related signaling pathways, which was related to inhibiting vascular damages and the neuronal degeneration in AOH insults. The present study suggests that LBP could prevent damage to RGCs from AOH-induced ischemic injury; furthermore, through its effects on blood vessel protection, LBP would also be a potential treatment for vascular-related retinopathy. PMID:23094016

  8. Diffuse Optical Spectroscopy for the Quantitative Assessment of Acute Ionizing Radiation Induced Skin Toxicity Using a Mouse Model

    PubMed Central

    Chin, Lee; Korpela, Elina; Kim, Anthony; Yohan, Darren; Niu, Carolyn; Wilson, Brian C.; Liu, Stanley K.

    2016-01-01

    Acute skin toxicities from ionizing radiation (IR) are a common side effect from therapeutic courses of external beam radiation therapy (RT) and negatively impact patient quality of life and long term survival. Advances in the understanding of the biological pathways associated with normal tissue toxicities have allowed for the development of interventional drugs, however, current response studies are limited by a lack of quantitative metrics for assessing the severity of skin reactions. Here we present a diffuse optical spectroscopic (DOS) approach that provides quantitative optical biomarkers of skin response to radiation. We describe the instrumentation design of the DOS system as well as the inversion algorithm for extracting the optical parameters. Finally, to demonstrate clinical utility, we present representative data from a pre-clinical mouse model of radiation induced erythema and compare the results with a commonly employed visual scoring. The described DOS method offers an objective, high through-put evaluation of skin toxicity via functional response that is translatable to the clinical setting. PMID:27284926

  9. Ventilation defects observed with hyperpolarized 3He magnetic resonance imaging in a mouse model of acute lung injury.

    PubMed

    Thomas, Abe C; Nouls, John C; Driehuys, Bastiaan; Voltz, James W; Fubara, Boma; Foley, Julie; Bradbury, J Alyce; Zeldin, Darryl C

    2011-05-01

    Regions of diminished ventilation are often evident during functional pulmonary imaging studies, including hyperpolarized gas magnetic resonance imaging (MRI), positron emission tomography, and computed tomography (CT). The objective of this study was to characterize the hypointense regions observed via (3)He MRI in a murine model of acute lung injury. LPS at doses ranging from 15-50 μg was intratracheally administered to C57BL/6 mice under anesthesia. Four hours after exposure to either LPS or saline vehicle, mice were imaged via hyperpolarized (3)He MRI. All images were evaluated to identify regions of hypointense signals. Lungs were then characterized by conventional histology, or used to obtain tissue samples from regions of normal and hypointense (3)He signals and analyzed for cytokine content. The characterization of (3)He MRI images identified three distinct types of hypointense patterns: persistent defects, atelectatic defects, and dorsal lucencies. Persistent defects were associated with the administration of LPS. The number of persistent defects depended on the dose of LPS, with a significant increase in mean number of defects in 30-50-μg LPS-dosed mice versus saline-treated control mice. Atelectatic defects predominated in LPS-dosed mice under conditions of low-volume ventilation, and could be reversed with deep inspiration. Dorsal lucencies were present in nearly all mice studied, regardless of the experimental conditions, including control animals that did not receive LPS. A comparison of (3)He MRI with histopathology did not identify tissue abnormalities in regions of low (3)He signal, with the exception of a single region of atelectasis in one mouse. Furthermore, no statistically significant differences were evident in concentrations of IL-1β, IL-6, macrophage inflammatory protein (MIP)-1α, MIP-2, chemokine (C-X-C motif) ligand 1 (KC), TNFα, and monocyte chemotactic protein (MCP)-1 between hypointense and normally ventilated lung regions in LPS

  10. PAX5 is a tumor suppressor in mouse mutagenesis models of acute lymphoblastic leukemia

    PubMed Central

    Dang, Jinjun; Wei, Lei; de Ridder, Jeroen; Su, Xiaoping; Rust, Alistair G.; Roberts, Kathryn G.; Payne-Turner, Debbie; Cheng, Jinjun; Ma, Jing; Qu, Chunxu; Wu, Gang; Song, Guangchun; Huether, Robert G.; Schulman, Brenda; Janke, Laura; Zhang, Jinghui; Downing, James R.; van der Weyden, Louise; Adams, David J.

    2015-01-01

    Alterations of genes encoding transcriptional regulators of lymphoid development are a hallmark of B-progenitor acute lymphoblastic leukemia (B-ALL) and most commonly involve PAX5, encoding the DNA-binding transcription factor paired-box 5. The majority of PAX5 alterations in ALL are heterozygous, and key PAX5 target genes are expressed in leukemic cells, suggesting that PAX5 may be a haploinsufficient tumor suppressor. To examine the role of PAX5 alterations in leukemogenesis, we performed mutagenesis screens of mice heterozygous for a loss-of-function Pax5 allele. Both chemical and retroviral mutagenesis resulted in a significantly increased penetrance and reduced latency of leukemia, with a shift to B-lymphoid lineage. Genomic profiling identified a high frequency of secondary genomic mutations, deletions, and retroviral insertions targeting B-lymphoid development, including Pax5, and additional genes and pathways mutated in ALL, including tumor suppressors, Ras, and Janus kinase-signal transducer and activator of transcription signaling. These results show that in contrast to simple Pax5 haploinsufficiency, multiple sequential alterations targeting lymphoid development are central to leukemogenesis and contribute to the arrest in lymphoid maturation characteristic of ALL. This cross-species analysis also validates the importance of concomitant alterations of multiple cellular growth, signaling, and tumor suppression pathways in the pathogenesis of B-ALL. PMID:25855603

  11. Exogenous Lipocalin 2 Ameliorates Acute Rejection in a Mouse Model of Renal Transplantation

    PubMed Central

    Ashraf, M. I.; Schwelberger, H. G.; Brendel, K. A.; Feurle, J.; Andrassy, J.; Kotsch, K.; Regele, H.; Pratschke, J.; Maier, H. T.

    2016-01-01

    Abstract Lipocalin 2 (Lcn2) is rapidly produced by damaged nephron epithelia and is one of the most promising new markers of renal injury, delayed graft function and acute allograft rejection (AR); however, the functional importance of Lcn2 in renal transplantation is largely unknown. To understand the role of Lcn2 in renal AR, kidneys from Balb/c mice were transplanted into C57Bl/6 mice and vice versa and analyzed for morphological and physiological outcomes of AR at posttransplantation days 3, 5, and 7. The allografts showed a steady increase in intensity of interstitial infiltration, tubulitis and periarterial aggregation of lymphocytes associated with a substantial elevation in serum levels of creatinine, urea and Lcn2. Perioperative administration of recombinant Lcn2:siderophore:Fe complex (rLcn2) to recipients resulted in functional and morphological amelioration of the allograft at day 7 almost as efficiently as daily immunosuppression with cyclosporine A (CsA). No significant differences were observed in various donor–recipient combinations (C57Bl/6 wild‐type and Lcn2−/−, Balb/c donors and recipients). Histochemical analyses of the allografts showed reduced cell death in recipients treated with rLcn2 or CsA. These results demonstrate that Lcn2 plays an important role in reducing the extent of kidney AR and indicate the therapeutic potential of Lcn2 in transplantation. PMID:26595644

  12. Flaxseed Mitigates Acute Oxidative Lung Damage in a Mouse Model of Repeated Radiation and Hyperoxia Exposure Associated with Space Exploration

    PubMed Central

    Pietrofesa, Ralph A.; Solomides, Charalambos C.; Christofidou-Solomidou, Melpo

    2015-01-01

    Background Spaceflight missions may require crewmembers to conduct extravehicular activities (EVA). Pre-breathe protocols in preparation for an EVA entail 100% hyperoxia exposure that may last for a few hours and be repeated 2-3 times weekly. Each EVA is associated with additional challenges such as low levels of total body cosmic/galactic radiation exposure that may present a threat to crewmember health. We have developed a mouse model of total body radiation and hyperoxia exposure and identified acute damage of lung tissues. In the current study we evaluated the usefulness of dietary flaxseed (FS) as a countermeasure agent for such double-hit exposures. Methods We evaluated lung tissue changes 2 weeks post-initiation of exposure challenges. Mouse cohorts (n=5/group) were pre-fed diets containing either 0% FS or 10% FS for 3 weeks and exposed to: a) normoxia (Untreated); b) >95% O2 (O2); c) 0.25Gy single fraction gamma radiation (IR); or d) a combination of O2 and IR (O2+IR) 3 times per week for 2 consecutive weeks, where 8-hour hyperoxia treatments were spanned by normoxic intervals. Results At 2 weeks post challenge, while control-diet fed mice developed significant lung injury and inflammation across all challenges, FS protected lung tissues by decreasing bronchoalveolar lavage fluid (BALF) neutrophils (p<0.003) and protein levels, oxidative tissue damage, as determined by levels of malondialdehyde (MDA) (p<0.008) and nitrosative stress as determined by nitrite levels. Lung hydroxyproline levels, a measure of lung fibrosis, were significantly elevated in mice fed 0% FS (p<0.01) and exposed to hyperoxia/radiation or the combination treatment, but not in FS-fed mice. FS also decreased levels of a pro-inflammatory, pro-fibrogenic cytokine (TGF-β1) gene expression levels in lung. Conclusion Flaxseed mitigated adverse effects in lung of repeat exposures to radiation/hyperoxia. This data will provide useful information in the design of countermeasures to early

  13. Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia

    SciTech Connect

    Benny Klimek, Margaret E.; Aydogdu, Tufan; Link, Majik J.; Pons, Marianne; Koniaris, Leonidas G.; Zimmers, Teresa A.

    2010-01-15

    Cachexia, progressive loss of fat and muscle mass despite adequate nutrition, is a devastating complication of cancer associated with poor quality of life and increased mortality. Myostatin is a potent tonic muscle growth inhibitor. We tested how myostatin inhibition might influence cancer cachexia using genetic and pharmacological approaches. First, hypermuscular myostatin null mice were injected with Lewis lung carcinoma or B16F10 melanoma cells. Myostatin null mice were more sensitive to tumor-induced cachexia, losing more absolute mass and proportionately more muscle mass than wild-type mice. Because myostatin null mice lack expression from development, however, we also sought to manipulate myostatin acutely. The histone deacetylase inhibitor Trichostatin A has been shown to increase muscle mass in normal and dystrophic mice by inducing the myostatin inhibitor, follistatin. Although Trichostatin A administration induced muscle growth in normal mice, it failed to preserve muscle in colon-26 cancer cachexia. Finally we sought to inhibit myostatin and related ligands by administration of the Activin receptor extracellular domain/Fc fusion protein, ACVR2B-Fc. Systemic administration of ACVR2B-Fc potently inhibited muscle wasting and protected adipose stores in both colon-26 and Lewis lung carcinoma cachexia, without affecting tumor growth. Enhanced cachexia in myostatin knockouts indicates that host-derived myostatin is not the sole mediator of muscle wasting in cancer. More importantly, skeletal muscle preservation with ACVR2B-Fc establishes that targeting myostatin-family ligands using ACVR2B-Fc or related molecules is an important and potent therapeutic avenue in cancer cachexia.

  14. Acute TrkB inhibition rescues phenobarbital-resistant seizures in a mouse model of neonatal ischemia.

    PubMed

    Kang, S K; Johnston, M V; Kadam, S D

    2015-11-01

    Neonatal seizures are commonly associated with hypoxic-ischemic encephalopathy. Phenobarbital (PB) resistance is common and poses a serious challenge in clinical management. Using a newly characterized neonatal mouse model of ischemic seizures, this study investigated a novel strategy for rescuing PB resistance. A small-molecule TrkB antagonist, ANA12, used to selectively and transiently block post-ischemic BDNF-TrkB signaling in vivo, determined whether rescuing TrkB-mediated post-ischemic degradation of the K(+)-Cl(-) co-transporter (KCC2) rescued PB-resistant seizures. The anti-seizure efficacy of ANA12 + PB was quantified by (i) electrographic seizure burden using acute continuous video-electroencephalograms and (ii) post-treatment expression levels of KCC2 and NKCC1 using Western blot analysis in postnatal day (P)7 and P10 CD1 pups with unilateral carotid ligation. ANA12 significantly rescued PB-resistant seizures at P7 and improved PB efficacy at P10. A single dose of ANA12 + PB prevented the post-ischemic degradation of KCC2 for up to 24 h. As anticipated, ANA12 by itself had no anti-seizure properties and was unable to prevent KCC2 degradation at 24 h without follow-on PB. This indicates that unsubdued seizures can independently lead to KCC2 degradation via non-TrkB-dependent pathways. This study, for the first time as a proof-of-concept, reports the potential therapeutic value of KCC2 modulation for the management of PB-resistant seizures in neonates. Future investigations are required to establish the mechanistic link between ANA12 and the prevention of KCC2 degradation. PMID:26452067

  15. Effect of low-intensity focused ultrasound on the middle ear in a mouse model of acute otitis media.

    PubMed

    Noda, Kanako; Hirano, Takashi; Noda, Kenji; Kodama, Satoru; Ichimiya, Issei; Suzuki, Masashi

    2013-03-01

    We hypothesized that low-intensity focused ultrasound (LIFU) increases vessel permeability and antibacterial drug activity in the mouse middle ear. We determined appropriate settings by applying LIFU to mouse ears with the external auditory canal filled with normal saline and performed histologic and immunohistologic examination. Acute otitis media was induced in mice with nontypable Haemophilus influenzae, and they were given ampicillin (50, 10, or 2 mg/kg) intraperitoneally once daily for 3 days with or without LIFU (1.0 W/cm(2), 20% duty cycle, 30 s). In the LIFU(+) groups receiving the 2- and 10-mg/kg doses, viable bacteria counts, number of inflammatory cells and IL-1β and TNF-α levels in middle ear effusion were significantly lower than in the LIFU(-) groups on the same doses. Severity of AOM also tended to be reduced more in the LIFU(+) groups than in the LIFU(-) groups. LIFU application with antibiotics may be effective for middle ear infection. PMID:23312959

  16. Effect of low-intensity focused ultrasound on the middle ear in a mouse model of acute otitis media.

    PubMed

    Noda, Kanako; Hirano, Takashi; Noda, Kenji; Kodama, Satoru; Ichimiya, Issei; Suzuki, Masashi

    2013-03-01

    We hypothesized that low-intensity focused ultrasound (LIFU) increases vessel permeability and antibacterial drug activity in the mouse middle ear. We determined appropriate settings by applying LIFU to mouse ears with the external auditory canal filled with normal saline and performed histologic and immunohistologic examination. Acute otitis media was induced in mice with nontypable Haemophilus influenzae, and they were given ampicillin (50, 10, or 2 mg/kg) intraperitoneally once daily for 3 days with or without LIFU (1.0 W/cm(2), 20% duty cycle, 30 s). In the LIFU(+) groups receiving the 2- and 10-mg/kg doses, viable bacteria counts, number of inflammatory cells and IL-1β and TNF-α levels in middle ear effusion were significantly lower than in the LIFU(-) groups on the same doses. Severity of AOM also tended to be reduced more in the LIFU(+) groups than in the LIFU(-) groups. LIFU application with antibiotics may be effective for middle ear infection.

  17. Acute and Chronic Plasma Metabolomic and Liver Transcriptomic Stress Effects in a Mouse Model with Features of Post-Traumatic Stress Disorder

    PubMed Central

    Gautam, Aarti; D’Arpa, Peter; Donohue, Duncan E.; Muhie, Seid; Chakraborty, Nabarun; Luke, Brian T.; Grapov, Dmitry; Carroll, Erica E.; Meyerhoff, James L.; Hammamieh, Rasha; Jett, Marti

    2015-01-01

    Acute responses to intense stressors can give rise to post-traumatic stress disorder (PTSD). PTSD diagnostic criteria include trauma exposure history and self-reported symptoms. Individuals who meet PTSD diagnostic criteria often meet criteria for additional psychiatric diagnoses. Biomarkers promise to contribute to reliable phenotypes of PTSD and comorbidities by linking biological system alterations to behavioral symptoms. Here we have analyzed unbiased plasma metabolomics and other stress effects in a mouse model with behavioral features of PTSD. In this model, C57BL/6 mice are repeatedly exposed to a trained aggressor mouse (albino SJL) using a modified, resident-intruder, social defeat paradigm. Our recent studies using this model found that aggressor-exposed mice exhibited acute stress effects including changed behaviors, body weight gain, increased body temperature, as well as inflammatory and fibrotic histopathologies and transcriptomic changes of heart tissue. Some of these acute stress effects persisted, reminiscent of PTSD. Here we report elevated proteins in plasma that function in inflammation and responses to oxidative stress and damaged tissue at 24 hrs post-stressor. Additionally at this acute time point, transcriptomic analysis indicated liver inflammation. The unbiased metabolomics analysis showed altered metabolites in plasma at 24 hrs that only partially normalized toward control levels after stress-withdrawal for 1.5 or 4 wks. In particular, gut-derived metabolites were altered at 24 hrs post-stressor and remained altered up to 4 wks after stress-withdrawal. Also at the 4 wk time point, hyperlipidemia and suppressed metabolites of amino acids and carbohydrates in plasma coincided with transcriptomic indicators of altered liver metabolism (activated xenobiotic and lipid metabolism). Collectively, these system-wide sequelae to repeated intense stress suggest that the simultaneous perturbed functioning of multiple organ systems (e.g., brain, heart

  18. Mouse models of myasthenia gravis.

    PubMed

    Ban, Joanne; Phillips, William D

    2015-01-01

    Myasthenia gravis is a muscle weakness disease characterized by autoantibodies that target components of the neuromuscular junction, impairing synaptic transmission. The most common form of myasthenia gravis involves antibodies that bind the nicotinic acetylcholine receptors in the postsynaptic membrane. Many of the remaining cases are due to antibodies against muscle specific tyrosine kinase (MuSK). Recently, autoantibodies against LRP4 (another component of the MuSK signaling complex in the postsynaptic membrane) were identified as the likely cause of myasthenia gravis in some patients. Fatiguing weakness is the common symptom in all forms of myasthenia gravis, but muscles of the body are differentially affected, for reasons that are not fully understood. Much of what we have learnt about the immunological and neurobiological aspects of the pathogenesis derives from mouse models. The most widely used mouse models involve either passive transfer of autoantibodies, or active immunization of the mouse with acetylcholine receptors or MuSK protein. These models can provide a robust replication of many of the features of the human disease. Depending upon the protocol, acute fatiguing weakness develops 2 - 14 days after the start of autoantibody injections (passive transfer) or might require repeated immunizations over several weeks (active models). Here we review mouse models of myasthenia gravis, including what they have contributed to current understanding of the pathogenic mechanisms and their current application to the testing of therapeutics.

  19. Inhibitors of ORAI1 Prevent Cytosolic Calcium-Associated Injury of Human Pancreatic Acinar Cells and Acute Pancreatitis in 3 Mouse Models

    PubMed Central

    Wen, Li; Voronina, Svetlana; Javed, Muhammad A.; Awais, Muhammad; Szatmary, Peter; Latawiec, Diane; Chvanov, Michael; Collier, David; Huang, Wei; Barrett, John; Begg, Malcolm; Stauderman, Ken; Roos, Jack; Grigoryev, Sergey; Ramos, Stephanie; Rogers, Evan; Whitten, Jeff; Velicelebi, Gonul; Dunn, Michael; Tepikin, Alexei V.; Criddle, David N.; Sutton, Robert

    2015-01-01

    Background & Aims Sustained activation of the cytosolic calcium concentration induces injury to pancreatic acinar cells and necrosis. The calcium release–activated calcium modulator ORAI1 is the most abundant Ca2+ entry channel in pancreatic acinar cells; it sustains calcium overload in mice exposed to toxins that induce pancreatitis. We investigated the roles of ORAI1 in pancreatic acinar cell injury and the development of acute pancreatitis in mice. Methods Mouse and human acinar cells, as well as HEK 293 cells transfected to express human ORAI1 with human stromal interaction molecule 1, were hyperstimulated or incubated with human bile acid, thapsigargin, or cyclopiazonic acid to induce calcium entry. GSK-7975A or CM_128 were added to some cells, which were analyzed by confocal and video microscopy and patch clamp recordings. Acute pancreatitis was induced in C57BL/6J mice by ductal injection of taurolithocholic acid 3-sulfate or intravenous' administration of cerulein or ethanol and palmitoleic acid. Some mice then were given GSK-7975A or CM_128, which inhibit ORAI1, at different time points to assess local and systemic effects. Results GSK-7975A and CM_128 each separately inhibited toxin-induced activation of ORAI1 and/or activation of Ca2+ currents after Ca2+ release, in a concentration-dependent manner, in mouse and human pancreatic acinar cells (inhibition >90% of the levels observed in control cells). The ORAI1 inhibitors also prevented activation of the necrotic cell death pathway in mouse and human pancreatic acinar cells. GSK-7975A and CM_128 each inhibited all local and systemic features of acute pancreatitis in all 3 models, in dose- and time-dependent manners. The agents were significantly more effective, in a range of parameters, when given at 1 vs 6 hours after induction of pancreatitis. Conclusions Cytosolic calcium overload, mediated via ORAI1, contributes to the pathogenesis of acute pancreatitis. ORAI1 inhibitors might be developed

  20. An advanced preclinical mouse model for acute myeloid leukemia using patients' cells of various genetic subgroups and in vivo bioluminescence imaging.

    PubMed

    Vick, Binje; Rothenberg, Maja; Sandhöfer, Nadine; Carlet, Michela; Finkenzeller, Cornelia; Krupka, Christina; Grunert, Michaela; Trumpp, Andreas; Corbacioglu, Selim; Ebinger, Martin; André, Maya C; Hiddemann, Wolfgang; Schneider, Stephanie; Subklewe, Marion; Metzeler, Klaus H; Spiekermann, Karsten; Jeremias, Irmela

    2015-01-01

    Acute myeloid leukemia (AML) is a clinically and molecularly heterogeneous disease with poor outcome. Adequate model systems are required for preclinical studies to improve understanding of AML biology and to develop novel, rational treatment approaches. Xenografts in immunodeficient mice allow performing functional studies on patient-derived AML cells. We have established an improved model system that integrates serial retransplantation of patient-derived xenograft (PDX) cells in mice, genetic manipulation by lentiviral transduction, and essential quality controls by immunophenotyping and targeted resequencing of driver genes. 17/29 samples showed primary engraftment, 10/17 samples could be retransplanted and some of them allowed virtually indefinite serial transplantation. 5/6 samples were successfully transduced using lentiviruses. Neither serial transplantation nor genetic engineering markedly altered sample characteristics analyzed. Transgene expression was stable in PDX AML cells. Example given, recombinant luciferase enabled bioluminescence in vivo imaging and highly sensitive and reliable disease monitoring; imaging visualized minimal disease at 1 PDX cell in 10000 mouse bone marrow cells and facilitated quantifying leukemia initiating cells. We conclude that serial expansion, genetic engineering and imaging represent valuable tools to improve the individualized xenograft mouse model of AML. Prospectively, these advancements enable repetitive, clinically relevant studies on AML biology and preclinical treatment trials on genetically defined and heterogeneous subgroups. PMID:25793878

  1. A mouse model of Townes-Brocks syndrome expressing a truncated mutant Sall1 protein is protected from acute kidney injury.

    PubMed

    Hirsch, Sara; El-Achkar, Tarek; Robbins, Lynn; Basta, Jeannine; Heitmeier, Monique; Nishinakamura, Ryuichi; Rauchman, Michael

    2015-11-15

    It has been postulated that developmental pathways are reutilized during repair and regeneration after injury, but functional analysis of many genes required for kidney formation has not been performed in the adult organ. Mutations in SALL1 cause Townes-Brocks syndrome (TBS) and nonsyndromic congenital anomalies of the kidney and urinary tract, both of which lead to childhood kidney failure. Sall1 is a transcriptional regulator that is expressed in renal progenitor cells and developing nephrons in the embryo. However, its role in the adult kidney has not been investigated. Using a mouse model of TBS (Sall1TBS), we investigated the role of Sall1 in response to acute kidney injury. Our studies revealed that Sall1 is expressed in terminally differentiated renal epithelia, including the S3 segment of the proximal tubule, in the mature kidney. Sall1TBS mice exhibited significant protection from ischemia-reperfusion injury and aristolochic acid-induced nephrotoxicity. This protection from acute injury is seen despite the presence of slowly progressive chronic kidney disease in Sall1TBS mice. Mice containing null alleles of Sall1 are not protected from acute kidney injury, indicating that expression of a truncated mutant protein from the Sall1TBS allele, while causative of congenital anomalies, protects the adult kidney from injury. Our studies further revealed that basal levels of the preconditioning factor heme oxygenase-1 are elevated in Sall1TBS kidneys, suggesting a mechanism for the relative resistance to injury in this model. Together, these studies establish a functional role for Sall1 in the response of the adult kidney to acute injury. PMID:26311113

  2. New mouse model of acute adult T-cell leukemia generated by transplantation of AKT, BCLxL, and HBZ-transduced T cells.

    PubMed

    Kasugai, Yumiko; Yoshida, Noriaki; Ohshima, Koichi; Matsuo, Keitaro; Seto, Masao; Tsuzuki, Shinobu

    2016-08-01

    Adult T-cell leukemia/lymphoma (ATL) develops in human T-cell leukemia virus type 1 (HTLV-1) carriers. Although the HTLV-1-encoded HBZ gene is critically involved, HBZ alone is insufficient and additional, cooperative "hits" are required for the development of ATL. Candidate cooperative hits are being defined, but methods to rapidly explore their roles in ATL development in collaboration with HBZ are lacking. Here, we present a new mouse model of acute type ATL that can be generated rapidly by transplanting in vitro-induced T cells that have been retrovirally transduced with HBZ and two cooperative genes, BCLxL and AKT, into mice. Co-transduction of HBZ and BCLxL/AKT allowed these T cells to grow in vitro in the absence of cytokines (Flt3-ligand and interleukin-7), which did not occur with any two-gene combination. Although transplanted T cells were a mixture of cells transduced with different combinations of the genes, tumors that developed in mice were composed of HBZ/BCLxL/AKT triply transduced T cells, showing the synergistic effect of the three genes. The genetic/epigenetic landscape of ATL has only recently been elucidated, and the roles of additional "hits" in ATL pathogenesis remain to be explored. Our model provides a versatile tool to examine the roles of these hits, in collaboration with HBZ, in the development of acute ATL. PMID:27223899

  3. Renal progenitors derived from human iPSCs engraft and restore function in a mouse model of acute kidney injury

    PubMed Central

    Imberti, Barbara; Tomasoni, Susanna; Ciampi, Osele; Pezzotta, Anna; Derosas, Manuela; Xinaris, Christodoulos; Rizzo, Paola; Papadimou, Evangelia; Novelli, Rubina; Benigni, Ariela; Remuzzi, Giuseppe; Morigi, Marina

    2015-01-01

    Acute kidney injury (AKI) is one of the most relevant health issues, leading to millions of deaths. The magnitude of the phenomenon remarks the urgent need for innovative and effective therapeutic approaches. Cell-based therapy with renal progenitor cells (RPCs) has been proposed as a possible strategy. Studies have shown the feasibility of directing embryonic stem cells or induced Pluripotent Stem Cells (iPSCs) towards nephrogenic intermediate mesoderm and metanephric mesenchyme (MM). However, the functional activity of iPSC-derived RPCs has not been tested in animal models of kidney disease. Here, through an efficient inductive protocol, we directed human iPSCs towards RPCs that robustly engrafted into damaged tubuli and restored renal function and structure in cisplatin-mice with AKI. These results demonstrate that iPSCs are a valuable source of engraftable cells with regenerative activity for kidney disease and create the basis for future applications in stem cell-based therapy. PMID:25744951

  4. Acute allergic skin response as a new tool to evaluate the allergenicity of whey hydrolysates in a mouse model of orally induced cow's milk allergy.

    PubMed

    van Esch, Betty C A M; Schouten, Bastiaan; Hofman, Gerard A; van Baalen, Ton; Nijkamp, Frans P; Knippels, Léon M J; Willemsen, Linette E M; Garssen, Johan

    2010-06-01

    Hypoallergenic milk formulae are used for cow's milk allergic infants and may be a good option for infants at risk. Clinical studies have shown that the protein source or the hydrolysis methodology used may influence the effectiveness in infants stressing the importance of adequate pre-clinical testing of hypoallergenic formulae in an in vivo model of orally induced cow's milk allergy. This study was undertaken to introduce a new read-out system to measure the residual allergenicity of whey hydrolysates on both the sensitization and challenge phase of orally induced cow's milk allergy in mice. Mice were sensitized orally to whey or a partial whey hydrolysate (pWH) to measure the residual sensitizing capacity. To predict the residual allergenicity of hydrolysates, whey allergic mice were challenged in the ear with pWH, extensive whey hydrolysate or an amino acid-based formula. An acute allergic skin response (ear swelling at 1 h), whey-specific serum antibodies, and local MCP-1 concentrations were measured. In contrast to whey, oral sensitization with pWH did not result in the induction of whey-specific antibodies, although a minor residual skin response to whey was observed after challenge. Skin exposure to whey hydrolysates showed a hydrolysation dependent reduction of the acute allergic skin response in whey allergic mice. In contrast to whey, skin exposure to pWH did not enhance tissue MCP-1 levels. The acute allergic skin response in mice orally sensitized to cow's milk proteins reveals a new pre-clinical tool which might provide information about the residual sensitizing capacity of hydrolysates supporting the discussion on the use of hypoallergenic formulae in high risk children. This mouse model might be a relevant model for the screening of new hypoallergenic formulae aimed to prevent or treat cow's milk allergy.

  5. Mouse Models of Acute Respiratory Distress Syndrome: A Review of Analytical Approaches, Pathologic Features, and Common Measurements.

    PubMed

    Aeffner, Famke; Bolon, Brad; Davis, Ian C

    2015-12-01

    Acute respiratory distress syndrome (ARDS) is a severe pulmonary reaction requiring hospitalization, which is incited by many causes, including bacterial and viral pneumonia as well as near drowning, aspiration of gastric contents, pancreatitis, intravenous drug use, and abdominal trauma. In humans, ARDS is very well defined by a list of clinical parameters. However, until recently no consensus was available regarding the criteria of ARDS that should be evident in an experimental animal model. This lack was rectified by a 2011 workshop report by the American Thoracic Society, which defined the main features proposed to delineate the presence of ARDS in laboratory animals. These should include histological changes in parenchymal tissue, altered integrity of the alveolar capillary barrier, inflammation, and abnormal pulmonary function. Murine ARDS models typically are defined by such features as pulmonary edema and leukocyte infiltration in cytological preparations of bronchoalveolar lavage fluid and/or lung sections. Common pathophysiological indicators of ARDS in mice include impaired pulmonary gas exchange and histological evidence of inflammatory infiltrates into the lung. Thus, morphological endpoints remain a vital component of data sets assembled from animal ARDS models.

  6. Novel Inhibitors of Neurotropic Alphavirus Replication That Improve Host Survival in a Mouse Model of Acute Viral Encephalitis

    PubMed Central

    Sindac, Janice; Yestrepsky, Bryan D.; Barraza, Scott J.; Bolduc, Kyle L.; Blakely, Pennelope K.; Keep, Richard F.; Irani, David N.; Miller, David J.; Larsen, Scott D.

    2012-01-01

    Arboviral encephalitis is a potentially devastating human disease with no approved therapies that target virus replication. We previously discovered a novel class of thieno[3,2-b]pyrrole-based inhibitors active against neurotropic alphaviruses such as western equine encephalitis virus (WEEV) in cultured cells. In this report we describe initial development of these novel antiviral compounds, including bioisosteric replacement of the 4H-thieno[3,2-b]pyrrole core with indole to improve metabolic stability and the introduction of chirality to assess target enantioselectivity. Selected modifications enhanced antiviral activity while maintaining low cytotoxicity, increased stability to microsomal metabolism, and also revealed striking enantiospecific activity in cultured cells. Furthermore, we demonstrate improved outcomes (both symptoms and survival) following treatment with indole analog 9h (CCG-203926) in an in vivo mouse model of alphaviral encephalitis that closely correlate with the enantiospecific in vitro antiviral activity. These results represent a substantial advancement in the early preclinical development of a promising class of novel antiviral drugs against virulent neurotropic alphaviruses. PMID:22428985

  7. Recombinant expression of Bacillus anthracis lethal toxin components of Indian isolate in Escherichia coli and determination of its acute toxicity level in mouse model.

    PubMed

    Nagendra, Suryanarayana; Vanlalhmuaka; Verma, Sarika; Tuteja, Urmil; Thavachelvam, Kulanthaivel

    2015-12-15

    Bacillus anthracis lethal toxin (LeTx) is the principle factor responsible for toxaemia and anthrax related death. Lethal toxin consist of two proteins viz protective antigen (PA) and lethal factor which combines in a typical fashion similar to other toxins belonging to A-B toxin super family. The amount of LeTx required to kill a particular organism generally differs among strains owing to their geographical distributions and genetic variation. In the present study, we have cloned PA and LF genes from B. anthracis clinical isolate of Indian origin and expressed them in soluble form employing Escherichia coli expression system. Both the proteins were purified to near homogeneity level using Immobilized metal ion affinity chromatography (IMAC). Further we have used equal ratio of both the proteins to form LeTx and determined its acute toxicity level in Balb/c mice by graphical method of Miller and Tainter. The LD50 value of LeTx by intravenous (i.v) route was found to be 0.97 ± 0.634 mg kg(-1) Balb/c mice. This study highlights the expression of recombinant LeTx from E. coli and assessing its acute toxicity level in experimental mouse model.

  8. Uric acid is released in the brain during seizure activity and increases severity of seizures in a mouse model for acute limbic seizures.

    PubMed

    Thyrion, Lisa; Raedt, Robrecht; Portelli, Jeanelle; Van Loo, Pieter; Wadman, Wytse J; Glorieux, Griet; Lambrecht, Bart N; Janssens, Sophie; Vonck, Kristl; Boon, Paul

    2016-03-01

    Recent evidence points at an important role of endogenous cell-damage induced pro-inflammatory molecules in the generation of epileptic seizures. Uric acid, under the form of monosodium urate crystals, has shown to have pro-inflammatory properties in the body, but less is known about its role in seizure generation. This study aimed to unravel the contribution of uric acid to seizure generation in a mouse model for acute limbic seizures. We measured extracellular levels of uric acid in the brain and modulated them using complementary pharmacological and genetic tools. Local extracellular uric acid levels increased three to four times during acute limbic seizures and peaked between 50 and 100 min after kainic acid infusion. Manipulating uric acid levels through administration of allopurinol or knock-out of urate oxidase significantly altered the number of generalized seizures, decreasing and increasing them by a twofold respectively. Taken together, our results consistently show that uric acid is released during limbic seizures and suggest that uric acid facilitates seizure generalization. PMID:26774005

  9. An enzyme-linked immuno focus assay for rapid detection and enumeration, and a newborn mouse model for human non-polio enteroviruses associated with acute diarrhea.

    PubMed

    Rao, C Durga; Reddy, Harikrishna; Naidu, Jagadish R; Raghavendra, A; Radhika, N S; Karande, Anjali

    2015-11-01

    We have recently reported significant association of non-polio enteroviruses (NPEVs) with acute and persistent diarrhea (18-21% of total diarrheal cases), and non-diarrheal Increased Frequency of Bowel Movements (IFoBM-ND) (about 29% of the NPEV infections) in children and that the NPEV-associated diarrhea was as significant as rotavirus diarrhea. However, their diarrhea-causing potential is yet to be demonstrated in an animal model system. Since the determination of virus titers by the traditional plaque assay takes 4-7 days, there is a need for development of a rapid method for virus titer determination to facilitate active clinical research on enterovirus-associated diarrhea. The goal of this study is to develop a cell-based rapid detection and enumeration method and to demonstrate the diarrhea-inducing potential of purified and characterized non-polio enteroviruses, which were isolated from diarrheic children. Here we describe generation of monoclonal and polyclonal antibodies against purified strains belonging to different serotypes, and development of an enzyme-linked immuno focus assay (ELIFA) for detection and enumeration of live NPEV particles in clinical and purified virus samples, and a newborn mouse model for NPEV diarrhea. Plaque-purified NPVEs, belonging to different serotypes, isolated from children with diarrhea, were grown in cell culture and purified by isopycnic CsCl density gradient centrifugation. By ELIFA, NPEVs could be detected and enumerated within 12h post-infection. Our results demonstrated that Coxsackievirus B1 (CVB1) and CVB5 strains, isolated from diarrheic children, induced severe diarrhea in orally-inoculated 9-12 day-old mouse pups, fulfilling Koch's postulates. The methods described here would facilitate studies on NPEV-associated gastrointestinal disease.

  10. Apoptosis of Hippocampal Pyramidal Neurons Is Virus Independent in a Mouse Model of Acute Neurovirulent Picornavirus Infection

    PubMed Central

    Buenz, Eric J.; Sauer, Brian M.; LaFrance-Corey, Reghann G.; Deb, Chandra; Denic, Aleksandar; German, Christopher L.; Howe, Charles L.

    2009-01-01

    Many viruses, including picornaviruses, have the potential to infect the central nervous system (CNS) and stimulate a neuroinflammatory immune response, especially in infants and young children. Cognitive deficits associated with CNS picornavirus infection result from injury and death of neurons that may occur due to direct viral infection or during the immune responses to virus in the brain. Previous studies have concluded that apoptosis of hippocampal neurons during picornavirus infection is a cell-autonomous event triggered by direct neuronal infection. However, these studies assessed neuron death at time points late in infection and during infections that lead to either death of the host or persistent viral infection. In contrast, many neurovirulent picornavirus infections are acute and transient, with rapid clearance of virus from the host. We provide evidence of hippocampal pathology in mice acutely infected with the Theiler’s murine encephalomyelitis picornavirus. We found that CA1 pyramidal neurons exhibited several hallmarks of apoptotic death, including caspase-3 activation, DNA fragmentation, and chromatin condensation within 72 hours of infection. Critically, we also found that many of the CA1 pyramidal neurons undergoing apoptosis were not infected with virus, indicating that neuronal cell death during acute picornavirus infection of the CNS occurs in a non–cell-autonomous manner. These observations suggest that therapeutic strategies other than antiviral interventions may be useful for neuroprotection during acute CNS picornavirus infection. PMID:19608874

  11. Apoptosis of hippocampal pyramidal neurons is virus independent in a mouse model of acute neurovirulent picornavirus infection.

    PubMed

    Buenz, Eric J; Sauer, Brian M; Lafrance-Corey, Reghann G; Deb, Chandra; Denic, Aleksandar; German, Christopher L; Howe, Charles L

    2009-08-01

    Many viruses, including picornaviruses, have the potential to infect the central nervous system (CNS) and stimulate a neuroinflammatory immune response, especially in infants and young children. Cognitive deficits associated with CNS picornavirus infection result from injury and death of neurons that may occur due to direct viral infection or during the immune responses to virus in the brain. Previous studies have concluded that apoptosis of hippocampal neurons during picornavirus infection is a cell-autonomous event triggered by direct neuronal infection. However, these studies assessed neuron death at time points late in infection and during infections that lead to either death of the host or persistent viral infection. In contrast, many neurovirulent picornavirus infections are acute and transient, with rapid clearance of virus from the host. We provide evidence of hippocampal pathology in mice acutely infected with the Theiler's murine encephalomyelitis picornavirus. We found that CA1 pyramidal neurons exhibited several hallmarks of apoptotic death, including caspase-3 activation, DNA fragmentation, and chromatin condensation within 72 hours of infection. Critically, we also found that many of the CA1 pyramidal neurons undergoing apoptosis were not infected with virus, indicating that neuronal cell death during acute picornavirus infection of the CNS occurs in a non-cell-autonomous manner. These observations suggest that therapeutic strategies other than antiviral interventions may be useful for neuroprotection during acute CNS picornavirus infection. PMID:19608874

  12. Atg5-dependent autophagy contributes to the development of acute myeloid leukemia in an MLL-AF9-driven mouse model.

    PubMed

    Liu, Qiang; Chen, Longgui; Atkinson, Jennifer M; Claxton, David F; Wang, Hong-Gang

    2016-01-01

    Acute myeloid leukemia (AML) is a hierarchical hematopoietic malignancy originating from leukemic stem cells (LSCs). Autophagy is a lysosomal degradation pathway that is hypothesized to be important for the maintenance of AML as well as contribute to chemotherapy response. Here we employ a mouse model of AML expressing the fusion oncogene MLL-AF9 and explore the effects of Atg5 deletion, a key autophagy protein, on the malignant transformation and progression of AML. Consistent with a transient decrease in colony-forming potential in vitro, the in vivo deletion of Atg5 in MLL-AF9-transduced bone marrow cells during primary transplantation prolonged the survival of recipient mice, suggesting that autophagy has a role in MLL-AF9-driven leukemia initiation. In contrast, deletion of Atg5 in malignant AML cells during secondary transplantation did not influence the survival or chemotherapeutic response of leukemic mice. Interestingly, autophagy was found to be involved in the survival of differentiated myeloid cells originating from MLL-AF9-driven LSCs. Taken together, our data suggest that Atg5-dependent autophagy may contribute to the development but not chemotherapy sensitivity of murine AML induced by MLL-AF9. PMID:27607576

  13. The Polycomb complex PRC2 supports aberrant self-renewal in a mouse model of MLL-AF9;NrasG12D acute myeloid leukemia

    PubMed Central

    Shi, Junwei; Wang, Eric; Zuber, Johannes; Rappaport, Amy; Taylor, Meredith; Johns, Christopher

    2014-01-01

    The Trithorax and Polycomb groups of chromatin regulators are critical for cell-lineage specification during normal development; functions that often become deregulated during tumorigenesis. As an example, oncogenic fusions of the Trithorax-related protein MLL can initiate aggressive leukemias by altering the transcriptional circuitry governing hematopoietic cell differentiation, a process that is known to require additional epigenetic pathways to implement. Here we used shRNA screening to identify chromatin regulators uniquely required in a mouse model of MLL-fusion acute myeloid leukemia, which revealed a role for the Polycomb Repressive Complex 2 (PRC2) in maintenance of this disease. shRNA-mediated suppression of PRC2 subunits Eed, Suz12, or Ezh1/Ezh2 led to proliferation-arrest and differentiation of leukemia cells, with a minimal impact on growth of several non-transformed hematopoietic cell lines. The requirement for PRC2 in leukemia is partly due to its role in direct transcriptional repression of genes that limit the self-renewal potential of hematopoietic cells, including Cdkn2a. In addition to implicating a role for PRC2 in the pathogenesis of MLL-fusion leukemia, our results suggest, more generally, that Trithorax and Polycomb group proteins can cooperate with one another to maintain aberrant lineage programs in cancer. PMID:22469984

  14. Stromal cell-derived factor-1 (SDF1)-dependent recruitment of bone marrow-derived renal endothelium-like cells in a mouse model of acute kidney injury

    PubMed Central

    OHNISHI, Hiroyuki; MIZUNO, Shinya; MIZUNO-HORIKAWA, Yoko; KATO, Takashi

    2015-01-01

    Ischemic acute kidney injury (AKI) is the most key pathological event for accelerating progression to chronic kidney disease through vascular endothelial injury or dysfunction. Thus, it is critical to elucidate the molecular mechanism of endothelial protection and regeneration. Emerging evidence indicates that bone marrow-derived cells (BMCs) contribute to tissue reconstitution in several types of organs post-injury, but little is known whether and how BMCs contribute to renal endothelial reconstitution, especially in an early-stage of AKI. Using a mouse model of ischemic AKI, we provide evidence that incorporation of BMCs in vascular components (such as endothelial and smooth muscle cells) becomes evident within four days after renal ischemia and reperfusion, associated with an increase in stromal cell-derived factor-1 (SDF1) in endothelium and that in CXCR4/SDF1-receptor in BMCs. Notably, anti-CXCR4 antibody decreased the numbers of infiltrated BMCs and BMC-derived endothelium-like cells, but not of BMC-derived smooth muscle cell-like cells. These results suggest that reconstitution of renal endothelium post-ischemia partially depends on a paracrine loop of SDF1-CXCR4 between resident endothelium and BMCs. Such a chemokine ligand-receptor system may be attributable for selecting a cellular lineage (s), required for renal vascular protection, repair and homeostasis, even in an earlier phase of AKI. PMID:25833353

  15. Atg5-dependent autophagy contributes to the development of acute myeloid leukemia in an MLL-AF9-driven mouse model

    PubMed Central

    Liu, Qiang; Chen, Longgui; Atkinson, Jennifer M; Claxton, David F; Wang, Hong-Gang

    2016-01-01

    Acute myeloid leukemia (AML) is a hierarchical hematopoietic malignancy originating from leukemic stem cells (LSCs). Autophagy is a lysosomal degradation pathway that is hypothesized to be important for the maintenance of AML as well as contribute to chemotherapy response. Here we employ a mouse model of AML expressing the fusion oncogene MLL-AF9 and explore the effects of Atg5 deletion, a key autophagy protein, on the malignant transformation and progression of AML. Consistent with a transient decrease in colony-forming potential in vitro, the in vivo deletion of Atg5 in MLL-AF9-transduced bone marrow cells during primary transplantation prolonged the survival of recipient mice, suggesting that autophagy has a role in MLL-AF9-driven leukemia initiation. In contrast, deletion of Atg5 in malignant AML cells during secondary transplantation did not influence the survival or chemotherapeutic response of leukemic mice. Interestingly, autophagy was found to be involved in the survival of differentiated myeloid cells originating from MLL-AF9-driven LSCs. Taken together, our data suggest that Atg5-dependent autophagy may contribute to the development but not chemotherapy sensitivity of murine AML induced by MLL-AF9. PMID:27607576

  16. In Vivo Acute on Chronic Ethanol Effects in Liver: A Mouse Model Exhibiting Exacerbated Injury, Altered Metabolic and Epigenetic Responses.

    PubMed

    Shukla, Shivendra D; Aroor, Annayya R; Restrepo, Ricardo; Kharbanda, Kusum K; Ibdah, Jamal A

    2015-11-20

    Chronic alcoholics who also binge drink (i.e., acute on chronic) are prone to an exacerbated liver injury but its mechanism is not understood. We therefore investigated the in vivo effects of chronic and binge ethanol ingestion and compared to chronic ethanol followed by three repeat binge ethanol on the liver of male C57/BL6 mice fed ethanol in liquid diet (4%) for four weeks followed by binge ethanol (intragastric administration, 3.5 g/kg body weight, three doses, 12h apart). Chronic followed by binge ethanol exacerbated fat accumulation, necrosis, decrease in hepatic SAM and SAM:SAH ratio, increase in adenosine levels, and elevated CYP2E1 levels. Histone H3 lysine acetylation (H3AcK9), dually modified phosphoacetylated histone H3 (H3AcK9/PS10), and phosphorylated H2AX increased after binge whereas phosphorylation of histone H3 ser 10 (H3S10) and H3 ser 28 (H3S28) increased after chronic ethanol-binge. Histone H3 lysine 4 and 9 dimethylation increased with a marked dimethylation in H3K9 in chronic ethanol binge group. Trimethylated histone H3 levels did not change. Nuclear levels of histone acetyl transferase GCN5 and histone deacetylase HDAC3 were elevated whereas phospho-CREB decreased in a distinctive manner. Taken together, acute on chronic ethanol ingestion caused amplification of liver injury and elicited characteristic profiles of histone modifications, metabolic alterations, and changes in nuclear protein levels. These findings demonstrate that chronic ethanol exposure renders liver more susceptible to repeat acute/binge ethanol induced acceleration of alcoholic liver disease.

  17. The effect of matrix metalloproteinase-3 deficiency on pulmonary surfactant in a mouse model of acute lung injury.

    PubMed

    Yamashita, Cory M; Cybulskie, Candice; Milos, Scott; Zuo, Yi Y; McCaig, Lynda A; Veldhuizen, Ruud A W

    2016-06-01

    The acute respiratory distress syndrome (ARDS) is characterized by arterial hypoxemia accompanied by severe inflammation and alterations to the pulmonary surfactant system. Published data has demonstrated a protective effect of matrix metalloproteinase-3 (Mmp3) deficiency against the inflammatory response associated with ARDS; however, the effect of Mmp3 on physiologic parameters and alterations to surfactant have not been previously studied. It was hypothesized that Mmp3 deficient (Mmp3(-/-)) mice would be protected against lung dysfunction associated with ARDS and maintain a functional pulmonary surfactant system. Wild type (WT) and Mmp3(-/-) mice were subjected to acid-aspiration followed by mechanical ventilation. Mmp3(-/-) mice maintained higher arterial oxygenation compared with WT mice at the completion of ventilation. Significant increase in functional large aggregate surfactant forms were observed in Mmp3(-/-) mice compared with WT mice. These findings further support a role of Mmp3 as an attractive therapeutic target for drug development in the setting of ARDS.

  18. N-acetyl cysteine improves the effects of corticosteroids in a mouse model of chlorine-induced acute lung injury.

    PubMed

    Wigenstam, Elisabeth; Koch, Bo; Bucht, Anders; Jonasson, Sofia

    2015-02-01

    Chlorine (Cl2) causes tissue damage and a neutrophilic inflammatory response in the airways manifested by pronounced airway hyperreactivity (AHR). The importance of early anti-inflammatory treatment has previously been addressed. In the previous study, both high-dose and low-dose of dexamethasone (DEX) decreased the risk of developing delayed effects, such as persistent lung injuries, while only high-dose treatment could significantly counteract acute-phase effects. One aim of this study was to evaluate whether a low-dose of DEX in combination with the antioxidant N-acetyl cysteine (NAC) and if different treatments (Triptolide, Reparixin and Rolipram) administered 1h after Cl2-exposure could improve protection against acute lung injury in Cl2-exposed mice. BALB/c mice were exposed to 300 ppm Cl2 during 15 min. Assessment of AHR and inflammatory cells in bronchoalveolar lavage was analyzed 24h post exposure. Neither of DEX nor NAC reduced the AHR and displayed only minor effects on inflammatory cell influx when given as separate treatments. When given in combination, a protective effect on AHR and a significant reduction in inflammatory cells (neutrophils) was observed. Neither of triptolide, Reparixin nor Rolipram had an effect on AHR but Triptolide had major effect on the inflammatory cell influx. Treatments did not reduce the concentration of either fibrinogen or plasminogen activator inhibitor-1 in serum, thereby supporting the theory that the inflammatory response is not solely limited to the lung. These results provide a foundation for future studies aimed at identifying new concepts for treatment of chemical-induced lung injury. Studies addressing combination of anti-inflammatory and antioxidant treatment are highly motivated.

  19. Cytotoxic Capacity of IL-15-Stimulated Cytokine-Induced Killer Cells Against Human Acute Myeloid Leukemia and Rhabdomyosarcoma in Humanized Preclinical Mouse Models

    PubMed Central

    Rettinger, Eva; Meyer, Vida; Kreyenberg, Hermann; Volk, Andreas; Kuçi, Selim; Willasch, Andre; Koscielniak, Ewa; Fulda, Simone; Wels, Winfried S.; Boenig, Halvard; Klingebiel, Thomas; Bader, Peter

    2012-01-01

    Allogeneic stem cell transplantation (allo-SCT) has become an important treatment modality for patients with high-risk acute myeloid leukemia (AML) and is also under investigation for soft tissue sarcomas. The therapeutic success is still limited by minimal residual disease (MRD) status ultimately leading to patients’ relapse. Adoptive donor lymphocyte infusions based on MRD status using IL-15-expanded cytokine-induced killer (CIK) cells may prevent relapse without causing graft-versus-host-disease (GvHD). To generate preclinical data we developed mouse models to study anti-leukemic- and anti-tumor-potential of CIK cells in vivo. Immunodeficient mice (NOD/SCID/IL-2Rγc−, NSG) were injected intravenously with human leukemic cell lines THP-1, SH-2 and with human rhabdomyosarcoma (RMS) cell lines RH41 and RH30 at minimal doses required for leukemia or tumor engraftment. Mice transplanted with THP-1 or RH41 cells were randomly assigned for analysis of CIK cell treatment. Organs of mice were analyzed by flow cytometry as well as quantitative polymerase chain reaction for engraftment of malignant cells and CIK cells. Potential of CIK cells to induce GvHD was determined by histological analysis. Tissues of the highest degree of THP-1 cell expansion included bone marrow followed by liver, lung, spleen, peripheral blood (PB), and brain. RH30 and RH41 engraftment mainly took place in liver and lung, but was also detectable in spleen and PB. In spite of delayed CIK cell expansion compared with malignant cells, CIK cells injected at equal amounts were sufficient for significant reduction of RH41 cells, whereas against fast-expanding THP-1 cells 250 times more CIK than THP-1 cells were needed to achieve comparable results. Our preclinical in vivo mouse models showed a reliable 100% engraftment of malignant cells which is essential for analysis of anti-cancer therapy. Furthermore our data demonstrated that IL-15-activated CIK cells have potent cytotoxic capacity against AML

  20. Mouse models for cancer research

    PubMed Central

    Zhang, Wei; Moore, Lynette; Ji, Ping

    2011-01-01

    Mouse models of cancer enable researchers to learn about tumor biology in complicated and dynamic physiological systems. Since the development of gene targeting in mice, cancer biologists have been among the most frequent users of transgenic mouse models, which have dramatically increased knowledge about how cancers form and grow. The Chinese Journal of Cancer will publish a series of papers reporting the use of mouse models in studying genetic events in cancer cases. This editorial is an overview of the development and applications of mouse models of cancer and directs the reader to upcoming papers describing the use of these models to be published in coming issues, beginning with three articles in the current issue. PMID:21352691

  1. Mouse Models of Gastric Carcinogenesis

    PubMed Central

    Yu, Sungsook; Yang, Mijeong

    2014-01-01

    Gastric cancer is one of the most common cancers in the world. Animal models have been used to elucidate the details of the molecular mechanisms of various cancers. However, most inbred strains of mice have resistance to gastric carcinogenesis. Helicobacter infection and carcinogen treatment have been used to establish mouse models that exhibit phenotypes similar to those of human gastric cancer. A large number of transgenic and knockout mouse models of gastric cancer have been developed using genetic engineering. A combination of carcinogens and gene manipulation has been applied to facilitate development of advanced gastric cancer; however, it is rare for mouse models of gastric cancer to show aggressive, metastatic phenotypes required for preclinical studies. Here, we review current mouse models of gastric carcinogenesis and provide our perspectives on future developments in this field. PMID:25061535

  2. Hypoxia-inducible factor 2α regulates macrophage function in mouse models of acute and tumor inflammation

    PubMed Central

    Imtiyaz, Hongxia Z.; Williams, Emily P.; Hickey, Michele M.; Patel, Shetal A.; Durham, Amy C.; Yuan, Li-Jun; Hammond, Rachel; Gimotty, Phyllis A.; Keith, Brian; Simon, M. Celeste

    2010-01-01

    Hypoxia-inducible factor 1α (HIF-1α) and HIF-2α display unique and sometimes opposing activities in regulating cellular energy homeostasis, cell fate decisions, and oncogenesis. Macrophages exposed to hypoxia accumulate both HIF-1α and HIF-2α, and overexpression of HIF-2α in tumor-associated macrophages (TAMs) is specifically correlated with high-grade human tumors and poor prognosis. However, the precise role of HIF-2α during macrophage-mediated inflammatory responses remains unclear. To fully characterize cellular hypoxic adaptations, distinct functions of HIF-1α versus HIF-2α must be elucidated. We demonstrate here that mice lacking HIF-2α in myeloid cells (Hif2aΔ/Δ mice) are resistant to lipopolysaccharide-induced endotoxemia and display a marked inability to mount inflammatory responses to cutaneous and peritoneal irritants. Furthermore, HIF-2α directly regulated proinflammatory cytokine/chemokine expression in macrophages activated in vitro. Hif2aΔ/Δ mice displayed reduced TAM infiltration in independent murine hepatocellular and colitis-associated colon carcinoma models, and this was associated with reduced tumor cell proliferation and progression. Notably, HIF-2α modulated macrophage migration by regulating the expression of the cytokine receptor M-CSFR and the chemokine receptor CXCR4, without altering intracellular ATP levels. Collectively, our data identify HIF-2α as an important regulator of innate immunity, suggesting it may be a useful therapeutic target for treating inflammatory disorders and cancer. PMID:20644254

  3. Acute radiation risk models

    NASA Astrophysics Data System (ADS)

    Smirnova, Olga

    Biologically motivated mathematical models, which describe the dynamics of the major hematopoietic lineages (the thrombocytopoietic, lymphocytopoietic, granulocytopoietic, and erythropoietic systems) in acutely/chronically irradiated humans are developed. These models are implemented as systems of nonlinear differential equations, which variables and constant parameters have clear biological meaning. It is shown that the developed models are capable of reproducing clinical data on the dynamics of these systems in humans exposed to acute radiation in the result of incidents and accidents, as well as in humans exposed to low-level chronic radiation. Moreover, the averaged value of the "lethal" dose rates of chronic irradiation evaluated within models of these four major hematopoietic lineages coincides with the real minimal dose rate of lethal chronic irradiation. The demonstrated ability of the models of the human thrombocytopoietic, lymphocytopoietic, granulocytopoietic, and erythropoietic systems to predict the dynamical response of these systems to acute/chronic irradiation in wide ranges of doses and dose rates implies that these mathematical models form an universal tool for the investigation and prediction of the dynamics of the major human hematopoietic lineages for a vast pattern of irradiation scenarios. In particular, these models could be applied for the radiation risk assessment for health of astronauts exposed to space radiation during long-term space missions, such as voyages to Mars or Lunar colonies, as well as for health of people exposed to acute/chronic irradiation due to environmental radiological events.

  4. Mouse kidney transplantation: models of allograft rejection.

    PubMed

    Tse, George H; Hesketh, Emily E; Clay, Michael; Borthwick, Gary; Hughes, Jeremy; Marson, Lorna P

    2014-01-01

    Rejection of the transplanted kidney in humans is still a major cause of morbidity and mortality. The mouse model of renal transplantation closely replicates both the technical and pathological processes that occur in human renal transplantation. Although mouse models of allogeneic rejection in organs other than the kidney exist, and are more technically feasible, there is evidence that different organs elicit disparate rejection modes and dynamics, for instance the time course of rejection in cardiac and renal allograft differs significantly in certain strain combinations. This model is an attractive tool for many reasons despite its technical challenges. As inbred mouse strain haplotypes are well characterized it is possible to choose donor and recipient combinations to model acute allograft rejection by transplanting across MHC class I and II loci. Conversely by transplanting between strains with similar haplotypes a chronic process can be elicited were the allograft kidney develops interstitial fibrosis and tubular atrophy. We have modified the surgical technique to reduce operating time and improve ease of surgery, however a learning curve still needs to be overcome in order to faithfully replicate the model. This study will provide key points in the surgical procedure and aid the process of establishing this technique.

  5. Mouse Kidney Transplantation: Models of Allograft Rejection

    PubMed Central

    Clay, Michael; Borthwick, Gary; Hughes, Jeremy; Marson, Lorna P.

    2014-01-01

    Rejection of the transplanted kidney in humans is still a major cause of morbidity and mortality. The mouse model of renal transplantation closely replicates both the technical and pathological processes that occur in human renal transplantation. Although mouse models of allogeneic rejection in organs other than the kidney exist, and are more technically feasible, there is evidence that different organs elicit disparate rejection modes and dynamics, for instance the time course of rejection in cardiac and renal allograft differs significantly in certain strain combinations. This model is an attractive tool for many reasons despite its technical challenges. As inbred mouse strain haplotypes are well characterized it is possible to choose donor and recipient combinations to model acute allograft rejection by transplanting across MHC class I and II loci. Conversely by transplanting between strains with similar haplotypes a chronic process can be elicited were the allograft kidney develops interstitial fibrosis and tubular atrophy. We have modified the surgical technique to reduce operating time and improve ease of surgery, however a learning curve still needs to be overcome in order to faithfully replicate the model. This study will provide key points in the surgical procedure and aid the process of establishing this technique. PMID:25350513

  6. Mouse Models of Rheumatoid Arthritis.

    PubMed

    Caplazi, P; Baca, M; Barck, K; Carano, R A D; DeVoss, J; Lee, W P; Bolon, B; Diehl, L

    2015-09-01

    Rheumatoid arthritis (RA) is a chronic debilitating autoimmune disorder characterized by synovitis that leads to cartilage and bone erosion by invading fibrovascular tissue. Mouse models of RA recapitulate many features of the human disease. Despite the availability of medicines that are highly effective in many patient populations, autoimmune diseases (including RA) remain an area of active biomedical research, and consequently mouse models of RA are still extensively used for mechanistic studies and validation of therapeutic targets. This review aims to integrate morphologic features with model biology and cover the key characteristics of the most commonly used induced and spontaneous mouse models of RA. Induced models emphasized in this review include collagen-induced arthritis and antibody-induced arthritis. Collagen-induced arthritis is an example of an active immunization strategy, whereas antibody- induced arthritis models, such as collagen antibody-induced arthritis and K/BxN antibody transfer arthritis, represent examples of passive immunization strategies. The coverage of spontaneous models in this review is focused on the TNFΔ (ARE) mouse, in which arthritis results from overexpression of TNF-α, a master proinflammatory cytokine that drives disease in many patients.

  7. Mouse Models of Diabetic Neuropathy

    PubMed Central

    O'Brien, Phillipe D.; Sakowski, Stacey A.; Feldman, Eva L.

    2014-01-01

    Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes and is associated with significant morbidity and mortality. DPN is characterized by progressive, distal-to-proximal degeneration of peripheral nerves that leads to pain, weakness, and eventual loss of sensation. The mechanisms underlying DPN pathogenesis are uncertain, and other than tight glycemic control in type 1 patients, there is no effective treatment. Mouse models of type 1 (T1DM) and type 2 diabetes (T2DM) are critical to improving our understanding of DPN pathophysiology and developing novel treatment strategies. In this review, we discuss the most widely used T1DM and T2DM mouse models for DPN research, with emphasis on the main neurologic phenotype of each model. We also discuss important considerations for selecting appropriate models for T1DM and T2DM DPN studies and describe the promise of novel emerging diabetic mouse models for DPN research. The development, characterization, and comprehensive neurologic phenotyping of clinically relevant mouse models for T1DM and T2DM will provide valuable resources for future studies examining DPN pathogenesis and novel therapeutic strategies. PMID:24615439

  8. Modeling metastasis in the mouse

    PubMed Central

    Bos, Paula D.; Nguyen, Don X.; Massagué, Joan

    2010-01-01

    Metastasis is a complex clinical and biological problem presently under intense study, and several model systems are in use to experimentally recapitulate and dissect the various steps of the metastatic process. Genetically engineered mouse models provide faithful renditions of events in tumor progression, angiogenesis, and local invasion that set the stage for metastasis, whereas engrafting of human or mouse tumor tissues into mouse hosts has been successfully exploited to investigate metastatic dissemination and colonization of distant organs. Real-time, high-resolution microscopy in live animals, and comprehensive genetic and molecular profiling are effective tools to interrogate diverse metastatic cancer cell phenotypes as well as the metastatic tumor microenvironment in different organs. By integrating the information obtained with these complementary approaches the field is currently obtaining an unprecedented level of understanding of the biology, molecular basis, and therapeutic vulnerabilities of metastasis. PMID:20598638

  9. Mouse models of myelodysplastic syndromes

    PubMed Central

    Beachy, Sarah H.; Aplan, Peter D.

    2010-01-01

    Synopsis Three general approaches have been used in an attempt to model myelodysplastic syndrome (MDS) in mice, including treatment with mutagens or carcinogens, xenotransplantation of human MDS cells, and genetic engineering of mouse hematopoietic cells. Xenotransplantation of cells from MDS patients has proved difficult, possibly due to the innate characteristics of the MDS clone and microenvironmental influences, including adverse effects of a host immune response. Genetic engineering of hematopoietic cells or mice has been accomplished by in vitro transfer of genes to mouse hematopoietic cells with subsequent transplantation into an irradiated host, or by modification of the mouse germline to generate mice with altered expression of genes of interest. A number of genes have been studied using these approaches, including RUNX1, Evi1, Npm1, SALL4B, NUP98-HOXD13, BCL2/NRAS, Arid4a, Polg and Dido. This review discusses the phenotypes observed in available mouse models for MDS with a concentration on a model that leads to aberrant expression of conserved homeobox (HOX) genes that are important regulators of normal hematopoiesis. Utilizing these models of MDS should allow a more complete understanding of the disease process and provide a platform for pre-clinical testing of therapeutic approaches. PMID:20359631

  10. Mouse Models of Gastric Cancer

    PubMed Central

    Hayakawa, Yoku; Fox, James G.; Gonda, Tamas; Worthley, Daniel L.; Muthupalani, Sureshkumar; Wang, Timothy C.

    2013-01-01

    Animal models have greatly enriched our understanding of the molecular mechanisms of numerous types of cancers. Gastric cancer is one of the most common cancers worldwide, with a poor prognosis and high incidence of drug-resistance. However, most inbred strains of mice have proven resistant to gastric carcinogenesis. To establish useful models which mimic human gastric cancer phenotypes, investigators have utilized animals infected with Helicobacter species and treated with carcinogens. In addition, by exploiting genetic engineering, a variety of transgenic and knockout mouse models of gastric cancer have emerged, such as INS-GAS mice and TFF1 knockout mice. Investigators have used the combination of carcinogens and gene alteration to accelerate gastric cancer development, but rarely do mouse models show an aggressive and metastatic gastric cancer phenotype that could be relevant to preclinical studies, which may require more specific targeting of gastric progenitor cells. Here, we review current gastric carcinogenesis mouse models and provide our future perspectives on this field. PMID:24216700

  11. Knock-in of a FLT3/ITD mutation cooperates with a NUP98-HOXD13 fusion to generate acute myeloid leukemia in a mouse model

    PubMed Central

    Greenblatt, Sarah; Li, Li; Slape, Christopher; Nguyen, Bao; Novak, Rachel; Duffield, Amy; Huso, David; Desiderio, Stephen; Borowitz, Michael J.; Aplan, Peter

    2012-01-01

    Constitutive activation of FLT3 by internal tandem duplication (ITD) is one of the most common molecular alterations in acute myeloid leukemia (AML). FLT3/ITD mutations have also been observed in myelodysplastic syndrome patients both before and during progression to AML. Previous work has shown that insertion of an FLT3/ITD mutation into the murine Flt3 gene induces a myeloproliferative neoplasm, but not progression to acute leukemia, suggesting that additional cooperating events are required. We therefore combined the FLT3/ITD mutation with a model of myelodysplastic syndrome involving transgenic expression of the Nup98-HoxD13 (NHD13) fusion gene. Mice expressing both the FLT3/ITD and NHD13 transgene developed AML with 100% penetrance and short latency. These leukemias were driven by mutant FLT3 expression and were susceptible to treatment with FLT3 tyrosine kinase inhibitors. We also observed a spontaneous loss of the wild-type Flt3 allele in these AMLs, further modeling the loss of the heterozygosity phenomenon that is seen in human AML with FLT3-activating mutations. Because resistance to FLT3 inhibitors remains an important clinical issue, this model may help identify new molecular targets in collaborative signaling pathways. PMID:22323452

  12. Mouse Models of Human Phenylketonuria

    PubMed Central

    Shedlovsky, A.; McDonald, J. D.; Symula, D.; Dove, W. F.

    1993-01-01

    Phenylketonuria (PKU) results from a deficiency in phenylalanine hydroxylase, the enzyme catalyzing the conversion of phenylalanine (PHE) to tyrosine. Although this inborn error of metabolism was among the first in humans to be understood biochemically and genetically, little is known of the mechanism(s) involved in the pathology of PKU. We have combined mouse germline mutagenesis with screens for hyperphenylalaninemia to isolate three mutants deficient in phenylalanine hydroxylase (PAH) activity and cross-reactive protein. Two of these have reduced PAH mRNA and display characteristics of untreated human PKU patients. A low PHE diet partially reverses these abnormalities. Our success in using high frequency random germline point mutagenesis to obtain appropriate disease models illustrates how such mutagenesis can complement the emergent power of targeted mutagenesis in the mouse. The mutants now can be used as models in studying both maternal PKU and somatic gene therapy. PMID:8375656

  13. Aging Research Using Mouse Models

    PubMed Central

    Ackert-Bicknell, Cheryl L.; Anderson, Laura; Sheehan, Susan; Hill, Warren G.; Chang, Bo; Churchill, Gary A.; Chesler, Elissa J.; Korstanje, Ron; Peters, Luanne L.

    2015-01-01

    Despite the dramatic increase in human lifespan over the past century, there remains pronounced variability in “health-span”, or the period of time in which one is generally healthy and free of disease. Much of the variability in health-span and lifespan is thought to be genetic in origin. Understanding the genetic mechanisms of aging and identifying ways to boost longevity is a primary goal in aging research. Here, we describe a pipeline of phenotypic assays for assessing mouse models of aging. This pipeline includes behavior/cognition testing, body composition analysis, and tests of kidney function, hematopoiesis, immune function and physical parameters. We also describe study design methods for assessing lifespan and health-span, and other important considerations when conducting aging research in the laboratory mouse. The tools and assays provided can assist researchers with understanding the correlative relationships between age-associated phenotypes and, ultimately, the role of specific genes in the aging process. PMID:26069080

  14. Mouse model of human RPE65 P25L hypomorph resembles wild type under normal light rearing but is fully resistant to acute light damage.

    PubMed

    Li, Yan; Yu, Shirley; Duncan, Todd; Li, Yichao; Liu, Pinghu; Gene, Erelda; Cortes-Pena, Yoel; Qian, Haohua; Dong, Lijin; Redmond, T Michael

    2015-08-01

    Human RPE65 mutations cause a spectrum of blinding retinal dystrophies from severe early-onset disease to milder manifestations. The RPE65 P25L missense mutation, though having <10% of wild-type (WT) activity, causes relatively mild retinal degeneration. To better understand these mild forms of RPE65-related retinal degeneration, and their effect on cone photoreceptor survival, we generated an Rpe65/P25L knock-in (KI/KI) mouse model. We found that, when subject to the low-light regime (∼100 lux) of regular mouse housing, homozygous Rpe65/P25L KI/KI mice are morphologically and functionally very similar to WT siblings. While mutant protein expression is decreased by over 80%, KI/KI mice retinae retain comparable 11-cis-retinal levels with WT. Consistently, the scotopic and photopic electroretinographic (ERG) responses to single-flash stimuli also show no difference between KI/KI and WT mice. However, the recovery of a-wave response following moderate visual pigment bleach is delayed in KI/KI mice. Importantly, KI/KI mice show significantly increased resistance to high-intensity (20 000 lux for 30 min) light-induced retinal damage (LIRD) as compared with WT, indicating impaired rhodopsin regeneration in KI/KI. Taken together, the Rpe65/P25L mutant produces sufficient chromophore under normal conditions to keep opsins replete and thus manifests a minimal phenotype. Only when exposed to intensive light is this hypomorphic mutation manifested physiologically, as its reduced expression and catalytic activity protects against the successive cycles of opsin regeneration underlying LIRD. These data also help define minimal requirements of chromophore for photoreceptor survival in vivo and may be useful in assessing a beneficial therapeutic dose for RPE65 gene therapy in humans.

  15. Mouse Models of Tumor Immunotherapy.

    PubMed

    Ngiow, Shin Foong; Loi, Sherene; Thomas, David; Smyth, Mark J

    2016-01-01

    Immunotherapy is now evolving into a major therapeutic option for cancer patients. Such clinical advances also promote massive interest in the search for novel immunotherapy targets, and to understand the mechanism of action of current drugs. It is projected that a series of novel immunotherapy agents will be developed and assessed for their therapeutic activity. In light of this, in vivo experimental mouse models that recapitulate human malignancies serve as valuable tools to validate the efficacy and safety profile of immunotherapy agents, before their transition into clinical trials. In this review, we will discuss the major classes of experimental mouse models of cancer commonly used for immunotherapy assessment and provide examples to guide the selection of appropriate models. We present some new data concerning the utility of a carcinogen-induced tumor model for comparing immunotherapies and combining immunotherapy with chemotherapy. We will also highlight some recent advances in experimental modeling of human malignancies in mice that are leading towards personalized therapy in patients.

  16. An in vitro iron superoxide dismutase inhibitor decreases the parasitemia levels of Trypanosoma cruzi in BALB/c mouse model during acute phase

    PubMed Central

    Olmo, Francisco; Urbanová, Kristína; Rosales, Maria Jose; Martín-Escolano, Ruben; Sánchez-Moreno, Manuel; Marín, Clotilde

    2015-01-01

    In order to identify new compounds to treat Chagas disease during the acute phase with higher activity and lower toxicity than the reference drug benznidazole (Bz), two hydroxyphthalazine derivative compounds were prepared and their trypanocidal effects against Trypanosoma cruzi were evaluated by light microscopy through the determination of IC50 values. Cytotoxicity was determined by flow cytometry assays against Vero cells. In vivo assays were performed in BALB/c mice, in which the parasitemia levels were quantified by fresh blood examination; the assignment of a cure was determined by reactivation of blood parasitemia levels after immunosuppression. The mechanism of action was elucidated at metabolic and ultra-structural levels, by 1H NMR and TEM studies. Finally, as these compounds are potentially capable of causing oxidative damage in the parasites, the study was completed, by assessing their activity as potential iron superoxide dismutase (Fe-SOD) inhibitors. High-selectivity indices observed in vitro were the basis of promoting one of the tested compounds to in vivo assays. The tests on the murine model for the acute phase of Chagas disease showed better parasitemia inhibition values than those found for Bz. Compound 2 induced a remarkable decrease in the reactivation of parasitemia after immunosuppression. Compound 2 turned out to be a great inhibitor of Fe-SOD. The high antiparasitic activity and low toxicity together with the modest costs for the starting materials render this compound an appropriate molecule for the development of an affordable anti-Chagas agent. PMID:26236582

  17. An in vitro iron superoxide dismutase inhibitor decreases the parasitemia levels of Trypanosoma cruzi in BALB/c mouse model during acute phase.

    PubMed

    Olmo, Francisco; Urbanová, Kristína; Rosales, Maria Jose; Martín-Escolano, Ruben; Sánchez-Moreno, Manuel; Marín, Clotilde

    2015-12-01

    In order to identify new compounds to treat Chagas disease during the acute phase with higher activity and lower toxicity than the reference drug benznidazole (Bz), two hydroxyphthalazine derivative compounds were prepared and their trypanocidal effects against Trypanosoma cruzi were evaluated by light microscopy through the determination of IC50 values. Cytotoxicity was determined by flow cytometry assays against Vero cells. In vivo assays were performed in BALB/c mice, in which the parasitemia levels were quantified by fresh blood examination; the assignment of a cure was determined by reactivation of blood parasitemia levels after immunosuppression. The mechanism of action was elucidated at metabolic and ultra-structural levels, by (1)H NMR and TEM studies. Finally, as these compounds are potentially capable of causing oxidative damage in the parasites, the study was completed, by assessing their activity as potential iron superoxide dismutase (Fe-SOD) inhibitors. High-selectivity indices observed in vitro were the basis of promoting one of the tested compounds to in vivo assays. The tests on the murine model for the acute phase of Chagas disease showed better parasitemia inhibition values than those found for Bz. Compound 2 induced a remarkable decrease in the reactivation of parasitemia after immunosuppression. Compound 2 turned out to be a great inhibitor of Fe-SOD. The high antiparasitic activity and low toxicity together with the modest costs for the starting materials render this compound an appropriate molecule for the development of an affordable anti-Chagas agent. PMID:26236582

  18. Genomic responses in mouse models poorly mimic human inflammatory diseases

    PubMed Central

    Seok, Junhee; Warren, H. Shaw; Cuenca, Alex G.; Mindrinos, Michael N.; Baker, Henry V.; Xu, Weihong; Richards, Daniel R.; McDonald-Smith, Grace P.; Gao, Hong; Hennessy, Laura; Finnerty, Celeste C.; López, Cecilia M.; Honari, Shari; Moore, Ernest E.; Minei, Joseph P.; Cuschieri, Joseph; Bankey, Paul E.; Johnson, Jeffrey L.; Sperry, Jason; Nathens, Avery B.; Billiar, Timothy R.; West, Michael A.; Jeschke, Marc G.; Klein, Matthew B.; Gamelli, Richard L.; Gibran, Nicole S.; Brownstein, Bernard H.; Miller-Graziano, Carol; Calvano, Steve E.; Mason, Philip H.; Cobb, J. Perren; Rahme, Laurence G.; Lowry, Stephen F.; Maier, Ronald V.; Moldawer, Lyle L.; Herndon, David N.; Davis, Ronald W.; Xiao, Wenzhong; Tompkins, Ronald G.; Abouhamze, Amer; Balis, Ulysses G. J.; Camp, David G.; De, Asit K.; Harbrecht, Brian G.; Hayden, Douglas L.; Kaushal, Amit; O’Keefe, Grant E.; Kotz, Kenneth T.; Qian, Weijun; Schoenfeld, David A.; Shapiro, Michael B.; Silver, Geoffrey M.; Smith, Richard D.; Storey, John D.; Tibshirani, Robert; Toner, Mehmet; Wilhelmy, Julie; Wispelwey, Bram; Wong, Wing H

    2013-01-01

    A cornerstone of modern biomedical research is the use of mouse models to explore basic pathophysiological mechanisms, evaluate new therapeutic approaches, and make go or no-go decisions to carry new drug candidates forward into clinical trials. Systematic studies evaluating how well murine models mimic human inflammatory diseases are nonexistent. Here, we show that, although acute inflammatory stresses from different etiologies result in highly similar genomic responses in humans, the responses in corresponding mouse models correlate poorly with the human conditions and also, one another. Among genes changed significantly in humans, the murine orthologs are close to random in matching their human counterparts (e.g., R2 between 0.0 and 0.1). In addition to improvements in the current animal model systems, our study supports higher priority for translational medical research to focus on the more complex human conditions rather than relying on mouse models to study human inflammatory diseases. PMID:23401516

  19. Cutting edge: retrobulbar inflammation, adipogenesis, and acute orbital congestion in a preclinical female mouse model of Graves' orbitopathy induced by thyrotropin receptor plasmid-in vivo electroporation.

    PubMed

    Moshkelgosha, Sajad; So, Po-Wah; Deasy, Neil; Diaz-Cano, Salvador; Banga, J Paul

    2013-09-01

    Graves' orbitopathy (GO) is a complication in Graves' disease (GD) but mechanistic insights into pathogenesis remain unresolved, hampered by lack of animal model. The TSH receptor (TSHR) and perhaps IGF-1 receptor (IGF-1R) are considered relevant antigens. We show that genetic immunization of human TSHR (hTSHR) A-subunit plasmid leads to extensive remodeling of orbital tissue, recapitulating GO. Female BALB/c mice immunized with hTSHR A-subunit or control plasmids by in vivo muscle electroporation were evaluated for orbital remodeling by histopathology and magnetic resonance imaging (MRI). Antibodies to TSHR and IGF-1R were present in animals challenged with hTSHR A-subunit plasmid, with predominantly TSH blocking antibodies and were profoundly hypothyroid. Orbital pathology was characterized by interstitial inflammation of extraocular muscles with CD3+ T cells, F4/80+ macrophages, and mast cells, accompanied by glycosaminoglycan deposition with resultant separation of individual muscle fibers. Some animals showed heterogeneity in orbital pathology with 1) large infiltrate surrounding the optic nerve or 2) extensive adipogenesis with expansion of retrobulbar adipose tissue. A striking finding that underpins the new model were the in vivo MRI scans of mouse orbital region that provided clear and quantifiable evidence of orbital muscle hypertrophy with protrusion (proptosis) of the eye. Additionally, eyelid manifestations of chemosis, including dilated and congested orbital blood vessels, were visually apparent. Immunization with control plasmids failed to show any orbital pathology. Overall, these findings support TSHR as the pathogenic antigen in GO. Development of a new preclinical model will facilitate molecular investigations on GO and evaluation of new therapeutic interventions.

  20. p19ARF is a critical mediator of both cellular senescence and an innate immune response associated with MYC inactivation in mouse model of acute leukemia

    PubMed Central

    Yetil, Alper; Anchang, Benedict; Gouw, Arvin M.; Adam, Stacey J.; Zabuawala, Tahera; Parameswaran, Ramya; van Riggelen, Jan; Plevritis, Sylvia; Felsher, Dean W.

    2015-01-01

    MYC-induced T-ALL exhibit oncogene addiction. Addiction to MYC is a consequence of both cell-autonomous mechanisms, such as proliferative arrest, cellular senescence, and apoptosis, as well as non-cell autonomous mechanisms, such as shutdown of angiogenesis, and recruitment of immune effectors. Here, we show, using transgenic mouse models of MYC-induced T-ALL, that the loss of either p19ARF or p53 abrogates the ability of MYC inactivation to induce sustained tumor regression. Loss of p53 or p19ARF, influenced the ability of MYC inactivation to elicit the shutdown of angiogenesis; however the loss of p19ARF, but not p53, impeded cellular senescence, as measured by SA-beta-galactosidase staining, increased expression of p16INK4A, and specific histone modifications. Moreover, comparative gene expression analysis suggested that a multitude of genes involved in the innate immune response were expressed in p19ARF wild-type, but not null, tumors upon MYC inactivation. Indeed, the loss of p19ARF, but not p53, impeded the in situ recruitment of macrophages to the tumor microenvironment. Finally, p19ARF null-associated gene signature prognosticated relapse-free survival in human patients with ALL. Therefore, p19ARF appears to be important to regulating cellular senescence and innate immune response that may contribute to the therapeutic response of ALL. PMID:25784651

  1. Pili play an important role in enhancing the bacterial clearance from the middle ear in a mouse model of acute otitis media with Moraxella catarrhalis.

    PubMed

    Kawano, Toshiaki; Hirano, Takashi; Kodama, Satoru; Mitsui, Marcelo Takahiro; Ahmed, Kamruddin; Nishizono, Akira; Suzuki, Masashi

    2013-03-01

    Moraxella catarrhalis is a Gram-negative aerobic diplococcus that is currently the third most frequent cause of bacterial acute otitis media (AOM) in children. In this study, we developed an experimental murine AOM model by inoculating M. catarrhalis in the middle ear bulla and studied the local response to this inoculation, and modulation of its course by the pili of M. catarrhalis. The pili-positive and pili-negative M. catarrhalis showed differences in bacterial clearance and infiltration of inflammatory cells in the middle ear. Pili-negative M. catarrhalis induced a more delayed and prolonged immune response in the middle ear than that of pili-positive M. catarrhalis. TLR2, -4, -5 and -9 mRNA expression was upregulated in neutrophils that infiltrated the middle ear cavity during AOM caused by both pili-positive and pili-negative bacteria. TLR5 mRNA expression and TLR5 protein in the neutrophils were induced more robustly by pili-positive M. catarrhalis. This immune response is likely to be related to neutrophil function such as toll-like 5-dependent phagocytosis. Our results show that mice may provide a useful AOM model for studying the role of M. catarrhalis. Furthermore, we show that pili play an important role in enhancing M. catarrhalis clearance from the middle ear that is probably mediated through neutrophil-dependent TLR5 signaling.

  2. Mouse models for liver cancer.

    PubMed

    Bakiri, Latifa; Wagner, Erwin F

    2013-04-01

    Hepatocellular carcinoma (HCC), the most common form of primary liver cancer is the third leading cause of cancer-related cell death in human and the fifth in women worldwide. The incidence of HCC is increasing despite progress in identifying risk factors, understanding disease etiology and developing anti-viral strategies. Therapeutic options are limited and survival after diagnosis is poor. Therefore, better preventive, diagnostic and therapeutic tools are urgently needed, in particular given the increased contribution from systemic metabolic disease to HCC incidence worldwide. In the last three decades, technological advances have facilitated the generation of genetically engineered mouse models (GEMMs) to mimic the alterations frequently observed in human cancers or to conduct intervention studies and assess the relevance of candidate gene networks in tumor establishment, progression and maintenance. Because these studies allow molecular and cellular manipulations impossible to perform in patients, GEMMs have improved our understanding of this complex disease and represent a source of great potential for mechanism-based therapy development. In this review, we provide an overview of the current state of HCC modeling in the mouse, highlighting successes, current challenges and future opportunities.

  3. Mouse model for sublethal Leptospira interrogans infection.

    PubMed

    Richer, Luciana; Potula, Hari-Hara; Melo, Rita; Vieira, Ana; Gomes-Solecki, Maria

    2015-12-01

    Although Leptospira can infect a wide range of mammalian species, most studies have been conducted in golden Syrian hamsters, a species particularly sensitive to acute disease. Chronic disease has been well characterized in the rat, one of the natural reservoir hosts. Studies in another asymptomatic reservoir host, the mouse, have occasionally been done and have limited infection to mice younger than 6 weeks of age. We analyzed the outcome of sublethal infection of C3H/HeJ mice older than age 10 weeks with Leptospira interrogans serovar Copenhageni. Infection led to bloodstream dissemination of Leptospira, which was followed by urinary shedding, body weight loss, hypothermia, and colonization of the kidney by live spirochetes 2 weeks after infection. In addition, Leptospira dissemination triggered inflammation in the kidney but not in the liver or lung, as determined by increased levels of mRNA transcripts for the keratinocyte-derived chemokine, RANTES, macrophage inflammatory protein 2, tumor necrosis factor alpha, interleukin-1β, inducible nitric oxide synthase, interleukin-6, and gamma interferon in kidney tissue. The acquired humoral response to Leptospira infection led to the production of IgG mainly of the IgG1 subtype. Flow cytometric analysis of splenocytes from infected mice revealed that cellular expansion was primarily due to an increase in the levels of CD4(+) and double-negative T cells (not CD8(+) cells) and that CD4(+) T cells acquired a CD44(high) CD62L(low) effector phenotype not accompanied by increases in memory T cells. A mouse model for sublethal Leptospira infection allows understanding of the bacterial and host factors that lead to immune evasion, which can result in acute or chronic disease or resistance to infection (protection).

  4. Mouse model for sublethal Leptospira interrogans infection.

    PubMed

    Richer, Luciana; Potula, Hari-Hara; Melo, Rita; Vieira, Ana; Gomes-Solecki, Maria

    2015-12-01

    Although Leptospira can infect a wide range of mammalian species, most studies have been conducted in golden Syrian hamsters, a species particularly sensitive to acute disease. Chronic disease has been well characterized in the rat, one of the natural reservoir hosts. Studies in another asymptomatic reservoir host, the mouse, have occasionally been done and have limited infection to mice younger than 6 weeks of age. We analyzed the outcome of sublethal infection of C3H/HeJ mice older than age 10 weeks with Leptospira interrogans serovar Copenhageni. Infection led to bloodstream dissemination of Leptospira, which was followed by urinary shedding, body weight loss, hypothermia, and colonization of the kidney by live spirochetes 2 weeks after infection. In addition, Leptospira dissemination triggered inflammation in the kidney but not in the liver or lung, as determined by increased levels of mRNA transcripts for the keratinocyte-derived chemokine, RANTES, macrophage inflammatory protein 2, tumor necrosis factor alpha, interleukin-1β, inducible nitric oxide synthase, interleukin-6, and gamma interferon in kidney tissue. The acquired humoral response to Leptospira infection led to the production of IgG mainly of the IgG1 subtype. Flow cytometric analysis of splenocytes from infected mice revealed that cellular expansion was primarily due to an increase in the levels of CD4(+) and double-negative T cells (not CD8(+) cells) and that CD4(+) T cells acquired a CD44(high) CD62L(low) effector phenotype not accompanied by increases in memory T cells. A mouse model for sublethal Leptospira infection allows understanding of the bacterial and host factors that lead to immune evasion, which can result in acute or chronic disease or resistance to infection (protection). PMID:26416909

  5. Mouse model of intracerebellar haemorrhage.

    PubMed

    Tijjani Salihu, Abubakar; Muthuraju, Sangu; Aziz Mohamed Yusoff, Abdul; Ahmad, Farizan; Zulkifli Mustafa, Mohd; Jaafar, Hasnan; Idris, Zamzuri; Rahman Izaini Ghani, Abdul; Malin Abdullah, Jafri

    2016-10-01

    The present study aimed to investigate the behavior and neuronal morphological changes in the perihaemorrhagic tissue of the mouse intracerebellar haemorrhage experimental model. Adult male Swiss albino mice were stereotactically infused with collagenase type VII (0.4U/μl of saline) unilaterally in to the cerebellum, following anaesthesia. Motor deficits were assessed using open field and composite score for evaluating the mouse model of cerebellar ataxia at 1, 3, 7, 14 and 21 days after collagenase infusion. The animals were sacrificed at the same time interval for evaluation of perihaematomal neuronal degeneration using haematoxylin and eosin staining and Annexin V-FITC/Propidium iodide assay. At the end of the study, it was found that infusion of 0.4U collagenase produces significant locomotor and ataxic deficit in the mice especially within the first week post surgery, and that this gradually improved within three weeks. Neuronal degeneration evident by cytoplasmic shrinkage and nuclear pyknosis was observed at the perihaematomal area after one day; especially at 3 and 7 days post haemorrhage. By 21 days, both the haematoma and degenerating neurons in the perihaematomal area were phagocytosed and the remaining neuronal cells around the scar tissue appeared normal. Moreover, Annexin-V/propidium iodide-positive cells were observed at the perihaematomal area at 3 and 7 days implying that the neurons likely die via apoptosis. It was concluded that a population of potentially salvageable neurons exist in the perihaematomal area after cerebellar haemorrhage throughout a wide time window that could be amenable to treatment. PMID:27327104

  6. Mouse Models of Diabetic Neuropathy

    PubMed Central

    Sullivan, Kelli A.; Hayes, John M.; Wiggin, Timothy D.; Backus, Carey; Oh, Sang Su; Lentz, Stephen I.; Brosius, Frank; Feldman, Eva L.

    2007-01-01

    Diabetic neuropathy (DN) is a debilitating complication of type 1 and type 2 diabetes. Rodent models of DN do not fully replicate the pathology observed in human patients. We examined DN in streptozotocin (STZ)-induced [B6] and spontaneous type 1 diabetes [B6Ins2Akita] and spontaneous type 2 diabetes [B6-db/db, BKS-db/db]. DN was defined using the criteria of the Animal Models of Diabetic Complications Consortium (http://www.amdcc.org). Despite persistent hyperglycemia, the STZ-treated B6 and B6Ins2Akita mice were resistant to the development of DN. In contrast, DN developed in both type 2 diabetes models: the B6-db/db and BKS-db/db mice. The persistence of hyperglycemia and development of DN in the B6-db/db mice required an increased fat diet while the BKS-db/db mice developed severe DN and remained hyperglycemic on standard mouse chow. Our data support the hypothesis that genetic background and diet influence the development of DN and should be considered when developing new models of DN. PMID:17804249

  7. Resveratrol given intraperitoneally does not inhibit growth of high-risk t(4;11) acute lymphoblastic leukemia cells in NOD/SCID mouse model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficacy of the phytochemical resveratrol as a preventive agent against the growth of t(4;11) acute lymphoblastic leukemia (ALL) was evaluated in NOD.CB17-Prkdcscid/J mice engrafted with the human t(4;11) ALL line SEM. SEM cells were injected into the tail vein and engraftment was monitored by ...

  8. Neuroprotective effects of VCP modulators in mouse models of glaucoma.

    PubMed

    Nakano, Noriko; Ikeda, Hanako Ohashi; Hasegawa, Tomoko; Muraoka, Yuki; Iwai, Sachiko; Tsuruyama, Tatsuaki; Nakano, Masaki; Fuchigami, Tomohiro; Shudo, Toshiyuki; Kakizuka, Akira; Yoshimura, Nagahisa

    2016-04-01

    Glaucoma is a major cause of adult blindness due to gradual death of retinal ganglion cells. Currently, no therapeutics are available for the protection of these cells from the cell death. We have recently succeeded in synthesizing novel compounds, KUSs (Kyoto University Substances), which can reduce cellular ATP consumption by specifically inhibiting the ATPase activities of VCP, a major ATPase in the cell, and we have shown that KUSs could mitigate the disease progression of rd10, a mouse model of retinitis pigmentosa, without any apparent side effects. Here we show that KUSs (e.g. KUS121 and KUS187) can prevent antimycin- and oligomycin-induced ATP depletion, endoplasmic reticulum (ER) stress, and cell death in neuronally differentiated PC12 cells. Furthermore, KUSs manifest significant efficacies on several mouse models of glaucoma. KUS administration prevented or mitigated ER stress and subsequent apoptotic cell death of retinal ganglion cells in an acute injury mouse model of retinal ganglion cell loss, which was induced with N-methyl-D-aspartate. In a mouse model of glaucoma with high intraocular pressure, KUSs prevented the typical glaucoma pathologies, i.e. enlargement of optic disc cupping and thinning of the retinal nerve fiber layer. KUSs also preserved visual functions in GLAST knockout mice, a mouse model for chronic retinal ganglion cell loss. We propose "ATP maintenance" via inhibition of ATPase activities of VCP as a promising new neuroprotective strategy for currently incurable eye diseases, such as glaucoma. PMID:27441270

  9. Proteomic Profiling of Mouse Liver following Acute Toxoplasma gondii Infection.

    PubMed

    He, Jun-Jun; Ma, Jun; Elsheikha, Hany M; Song, Hui-Qun; Zhou, Dong-Hui; Zhu, Xing-Quan

    2016-01-01

    Toxoplasma gondii remains a global public health problem. However, its pathophysiology is still not-completely understood particularly the impact of infection on host liver metabolism. We performed iTRAQ-based proteomic analysis to evaluate early liver protein responses in BALB/c mice following infection with T. gondii PYS strain (genotype ToxoDB#9) infection. Our data revealed modification of protein expression in key metabolic pathways, as indicated by the upregulation of immune response and downregulation of mitochondrial respiratory chain, and the metabolism of fatty acids, lipids and xenobiotics. T. gondii seems to hijack host PPAR signaling pathway to downregulate the metabolism of fatty acids, lipids and energy in the liver. The metabolism of over 400 substances was affected by the downregulation of genes involved in xenobiotic metabolism. The top 10 transcription factors used by upregulated genes were Stat2, Stat1, Irf2, Irf1, Sp2, Egr1, Stat3, Klf4, Elf1 and Gabpa, while the top 10 transcription factors of downregulated genes were Hnf4A, Ewsr1, Fli1, Hnf4g, Nr2f1, Pparg, Rxra, Hnf1A, Foxa1 and Foxo1. These findings indicate global reprogramming of the metabolism of the mouse liver after acute T. gondii infection. Functional characterization of the altered proteins may enhance understanding of the host responses to T. gondii infection and lead to the identification of new therapeutic targets.

  10. Proteomic Profiling of Mouse Liver following Acute Toxoplasma gondii Infection

    PubMed Central

    He, Jun-Jun; Ma, Jun; Elsheikha, Hany M.; Song, Hui-Qun; Zhou, Dong-Hui; Zhu, Xing-Quan

    2016-01-01

    Toxoplasma gondii remains a global public health problem. However, its pathophysiology is still not-completely understood particularly the impact of infection on host liver metabolism. We performed iTRAQ-based proteomic analysis to evaluate early liver protein responses in BALB/c mice following infection with T. gondii PYS strain (genotype ToxoDB#9) infection. Our data revealed modification of protein expression in key metabolic pathways, as indicated by the upregulation of immune response and downregulation of mitochondrial respiratory chain, and the metabolism of fatty acids, lipids and xenobiotics. T. gondii seems to hijack host PPAR signaling pathway to downregulate the metabolism of fatty acids, lipids and energy in the liver. The metabolism of over 400 substances was affected by the downregulation of genes involved in xenobiotic metabolism. The top 10 transcription factors used by upregulated genes were Stat2, Stat1, Irf2, Irf1, Sp2, Egr1, Stat3, Klf4, Elf1 and Gabpa, while the top 10 transcription factors of downregulated genes were Hnf4A, Ewsr1, Fli1, Hnf4g, Nr2f1, Pparg, Rxra, Hnf1A, Foxa1 and Foxo1. These findings indicate global reprogramming of the metabolism of the mouse liver after acute T. gondii infection. Functional characterization of the altered proteins may enhance understanding of the host responses to T. gondii infection and lead to the identification of new therapeutic targets. PMID:27003162

  11. The Mouse Genome Database (MGD): mouse biology and model systems.

    PubMed

    Bult, Carol J; Eppig, Janan T; Kadin, James A; Richardson, Joel E; Blake, Judith A

    2008-01-01

    The Mouse Genome Database, (MGD, http://www.informatics.jax.org/), integrates genetic, genomic and phenotypic information about the laboratory mouse, a primary animal model for studying human biology and disease. MGD data content includes comprehensive characterization of genes and their functions, standardized descriptions of mouse phenotypes, extensive integration of DNA and protein sequence data, normalized representation of genome and genome variant information including comparative data on mammalian genes. Data within MGD are obtained from diverse sources including manual curation of the biomedical literature, direct contributions from individual investigator's laboratories and major informatics resource centers such as Ensembl, UniProt and NCBI. MGD collaborates with the bioinformatics community on the development of data and semantic standards such as the Gene Ontology (GO) and the Mammalian Phenotype (MP) Ontology. MGD provides a data-mining platform that enables the development of translational research hypotheses based on comparative genotype, phenotype and functional analyses. Both web-based querying and computational access to data are provided. Recent improvements in MGD described here include the association of gene trap data with mouse genes and a new batch query capability for customized data access and retrieval.

  12. Modeling cytomegalovirus infection in mouse tumor models.

    PubMed

    Price, Richard Lee; Chiocca, Ennio Antonio

    2015-01-01

    The hypothesis that cytomegalovirus (CMV) modulates cancer is evolving. Originally discovered in glioblastoma in 2002, the number of cancers, where intratumoral CMV antigen is detected, has increased in recent years suggesting that CMV actively affects the pathobiology of certain tumors. These findings are controversial as several groups have also reported inability to replicate these results. Regardless, several clinical trials for glioblastoma are underway or have been completed that target intratumoral CMV with anti-viral drugs or immunotherapy. Therefore, a better understanding of the possible pathobiology of CMV in cancer needs to be ascertained. We have developed genetic, syngeneic, and orthotopic malignant glioma mouse models to study the role of CMV in cancer development and progression. These models recapitulate for the most part intratumoral CMV expression as seen in human tumors. Additionally, we discovered that CMV infection in Trp53(-/+) mice promotes pleomorphic rhabdomyosarcomas. These mouse models are not only a vehicle for studying pathobiology of the viral-tumor interaction but also a platform for developing and testing cancer therapeutics. PMID:25853089

  13. The Neuraminidase Inhibitor Oseltamivir Is Effective Against A/Anhui/1/2013 (H7N9) Influenza Virus in a Mouse Model of Acute Respiratory Distress Syndrome

    PubMed Central

    Baranovich, Tatiana; Burnham, Andrew J.; Marathe, Bindumadhav M.; Armstrong, Jianling; Guan, Yi; Shu, Yuelong; Peiris, Joseph Malik Sriyal; Webby, Richard J.; Webster, Robert G.; Govorkova, Elena A.

    2014-01-01

    Background. High mortality and uncertainty about the effectiveness of neuraminidase inhibitors (NAIs) in humans infected with influenza A(H7N9) viruses are public health concerns. Methods. Susceptibility of N9 viruses to NAIs was determined in a fluorescence-based assay. The NAI oseltamivir (5, 20, or 80 mg/kg/day) was administered to BALB/c mice twice daily starting 24, 48, or 72 hours after A/Anhui/1/2013 (H7N9) virus challenge. Results. All 12 avian N9 and 3 human H7N9 influenza viruses tested were susceptible to NAIs. Without prior adaptation, A/Anhui/1/2013 (H7N9) caused lethal infection in mice that was restricted to the respiratory tract and resulted in pulmonary edema and acute lung injury with hyaline membrane formation, leading to decreased oxygenation, all characteristics of human acute respiratory distress syndrome. Oseltamivir at 20 and 80 mg/kg protected 80% and 88% of mice when initiated after 24 hours, and the efficacy decreased to 70% and 60%, respectively, when treatment was delayed by 48 hours. Emergence of oseltamivir-resistant variants was not detected. Conclusions. H7N9 viruses are comparable to currently circulating influenza A viruses in susceptibility to NAIs. Based on these animal studies, early treatment is associated with improved outcomes. PMID:24133191

  14. Effects of particle size and coating on toxicologic parameters, fecal elimination kinetics and tissue distribution of acutely ingested silver nanoparticles in a mouse model.

    PubMed

    Bergin, Ingrid L; Wilding, Laura A; Morishita, Masako; Walacavage, Kim; Ault, Andrew P; Axson, Jessica L; Stark, Diana I; Hashway, Sara A; Capracotta, Sonja S; Leroueil, Pascale R; Maynard, Andrew D; Philbert, Martin A

    2016-01-01

    Consumer exposure to silver nanoparticles (AgNP) via ingestion can occur due to incorporation of AgNP into products such as food containers and dietary supplements. AgNP variations in size and coating may affect toxicity, elimination kinetics or tissue distribution. Here, we directly compared acute administration of AgNP of two differing coatings and sizes to mice, using doses of 0.1, 1 and 10 mg/kg body weight/day administered by oral gavage for 3 days. The maximal dose is equivalent to 2000× the EPA oral reference dose. Silver acetate at the same doses was used as ionic silver control. We found no toxicity and no significant tissue accumulation. Additionally, no toxicity was seen when AgNP were dosed concurrently with a broad-spectrum antibiotic. Between 70.5% and 98.6% of the administered silver dose was recovered in feces and particle size and coating differences did not significantly influence fecal silver. Peak fecal silver was detected between 6- and 9-h post-administration and <0.5% of the administered dose was cumulatively detected in liver, spleen, intestines or urine at 48 h. Although particle size and coating did not affect tissue accumulation, silver was detected in liver, spleen and kidney of mice administered ionic silver at marginally higher levels than those administered AgNP, suggesting that silver ion may be more bioavailable. Our results suggest that, irrespective of particle size and coating, acute oral exposure to AgNP at doses relevant to potential human exposure is associated with predominantly fecal elimination and is not associated with accumulation in tissue or toxicity. PMID:26305411

  15. Autophagy-Modulated Human Bone Marrow-Derived Mesenchymal Stem Cells Accelerate Liver Restoration in Mouse Models of Acute Liver Failure

    PubMed Central

    Amiri, Fatemeh; Molaei, Sedigheh; Bahadori, Marzie; Nasiri, Fatemeh; Deyhim, Mohammad Reza; Jalili, Mohammad Ali; Nourani, Mohammad Reza; Habibi Roudkenar, Mehryar

    2016-01-01

    Background: Mesenchymal stem cells (MSCs) have been recently received increasing attention for cell-based therapy, especially in regenerative medicine. However, the low survival rate of these cells restricts their therapeutic applications. It is hypothesized that autophagy might play an important role in cellular homeostasis and survival. This study aims to investigate the regenerative potentials of autophagy-modulated MSCs for the treatment of acute liver failure (ALF) in mice. Methods: ALF was induced in mice by intraperitoneal injection of 1.5 ml/kg carbon tetrachloride. Mice were intravenously infused with MSCs, which were suppressed in their autophagy pathway. Blood and liver samples were collected at different intervals (24, 48 and 72 h) after the transplantation of MSCs. Both the liver enzymes and tissue necrosis levels were evaluated using biochemical and histopathological assessments. The survival rate of the transplanted mice was also recorded during one week. Results: Biochemical and pathological results indicated that 1.5 ml/kg carbon tetrachloride induces ALF in mice. A significant reduction of liver enzymes and necrosis score were observed in autophagy-modulated MSC-transplanted mice compared to sham (with no cell therapy) after 24 h. After 72 h, liver enzymes reached their normal levels in mice transplanted with autophagy-suppressed MSCs. Interestingly, normal histology without necrosis was also observed. Conclusion: Autophagy suppression in MSCs ameliorates their liver regeneration potentials due to paracrine effects and might be suggested as a new strategy for the improvement of cell therapy in ALF. PMID:26899739

  16. Melatonin receptors: latest insights from mouse models

    PubMed Central

    Tosini, Gianluca; Owino, Sharon; Guillame, Jean-Luc; Jockers, Ralf

    2014-01-01

    Summary Melatonin, the neuro-hormone synthesized during the night, has recently seen an unexpected extension of its functional implications towards type 2 diabetes development, visual functions, sleep disturbances and depression. Transgenic mouse models were instrumental for the establishment of the link between melatonin and these major human diseases. Most of the actions of melatonin are mediated by two types of G protein-coupled receptors, named MT1 and MT2, which are expressed in many different organs and tissues. Understanding the pharmacology and function of mouse MT1 and MT2 receptors, including MT1/MT2 heteromers, will be of crucial importance to evaluate the relevance of these mouse models for future therapeutic developments. This review will critically discuss these aspects, and give some perspectives including the generation of new mouse models. PMID:24903552

  17. Roles of ASIC3, TRPV1, and NaV1.8 in the transition from acute to chronic pain in a mouse model of fibromyalgia

    PubMed Central

    2014-01-01

    Background Tissue acidosis is effective in causing chronic muscle pain. However, how muscle nociceptors contribute to the transition from acute to chronic pain is largely unknown. Results Here we showed that a single intramuscular acid injection induced a priming effect on muscle nociceptors of mice. The primed muscle nociceptors were plastic and permitted the development of long-lasting chronic hyperalgesia induced by a second acid insult. The plastic changes of muscle nociceptors were modality-specific and required the activation of acid-sensing ion channel 3 (ASIC3) or transient receptor potential cation channel V1 (TRPV1). Activation of ASIC3 was associated with increased activity of tetrodotoxin (TTX)-sensitive voltage-gated sodium channels but not protein kinase Cϵ (PKCϵ) in isolectin B4 (IB4)-negative muscle nociceptors. In contrast, increased activity of TTX-resistant voltage-gated sodium channels with ASIC3 or TRPV1 activation in NaV1.8-positive muscle nociceptors was required for the development of chronic hyperalgesia. Accordingly, compared to wild type mice, NaV1.8-null mice showed briefer acid-induced hyperalgesia (5 days vs. >27 days). Conclusion ASIC3 activation may manifest a new type of nociceptor priming in IB4-negative muscle nociceptors. The activation of ASIC3 and TRPV1 as well as enhanced NaV1.8 activity are essential for the development of long-lasting hyperalgesia in acid-induced, chronic, widespread muscle pain. PMID:24957987

  18. Mouse models for human otitis media

    PubMed Central

    Trune, Dennis R.; Zheng, Qing Yin

    2010-01-01

    Otitis media (OM) remains the most common childhood disease and its annual costs exceed $5 billion. Its potential for permanent hearing impairment also emphasizes the need to better understand and manage this disease. The pathogenesis of OM is multifactorial and includes infectious pathogens, anatomy, immunologic status, genetic predisposition, and environment. Recent progress in mouse model development is helping to elucidate the respective roles of these factors and to significantly contribute toward efforts of OM prevention and control. Genetic predisposition is recognized as an important factor in OM and increasing numbers of mouse models are helping to uncover the potential genetic bases for human OM. Furthermore, the completion of the mouse genome sequence has offered a powerful set of tools for investigating gene function and is generating a rich resource of mouse mutants for studying the genetic factors underlying OM. PMID:19272362

  19. Comparative study of protective activities of Neospora caninum bradyzoite antigens, NcBAG1, NcBSR4, NcMAG1, and NcSAG4, in a mouse model of acute parasitic infection.

    PubMed

    Uchida, Masaki; Nagashima, Kotomi; Akatsuka, Yui; Murakami, Takashi; Ito, Akira; Imai, Soichi; Ike, Kazunori

    2013-02-01

    Neospora caninum is an obligate intracellular protozoan parasite that causes severe neuromuscular diseases, repeated abortion, stillbirth, and congenital infection in livestock and companion animals. The development of an effective vaccine against neosporosis in cattle is an important issue due to the significant worldwide economic impact of this disease. We evaluated the immunogenicity of four bradyzoite antigens, NcBAG1 (first described in this study), NcBSR4, NcMAG1, and NcSAG4, using an acute infection mouse model to determine synergistic effects with the tachyzoite antigen as a candidate for vaccine production. Mice were inoculated with the recombinant vaccines (r-)NcBAG1, rNcBSR4, rNcMAG1, rNcSAG4, or phosphate-buffered saline (PBS) (adjuvant control group) in an oil-in-water emulsion with bitter gourd extract, a Th1 immune stimulator, or PBS alone as the infection control group. Mice inoculated with each vaccine developed antigen-specific IgG1 and IgG2a antibodies and isolated splenocytes from mice produced high levels of interferon-γ when infected with the N. caninum tachyzoite. The mice inoculated with rNcBAG1, rNcMAG1, or rNcSAG4 developed slight to moderate clinical symptoms but did not succumb to infection. In contrast, rNcBSR4 and both control groups developed severe disease and some mice required euthanasia. The parasitic burden in the brain tissues of vaccinated mice was assessed by N. caninum-specific real-time PCR at 5 weeks after infection. The parasite load in rNcBAG1-, rNcMAG1-, and rNcSAG4-inoculated mice was significantly lower than that in adjuvant and infection control mice. Therefore, these antigens may be useful for the production of a N. caninum-specific vaccination protocol.

  20. Pathology of Mouse Models of Accelerated Aging.

    PubMed

    Harkema, L; Youssef, S A; de Bruin, A

    2016-03-01

    Progeroid mouse models display phenotypes in multiple organ systems that suggest premature aging and resemble features of natural aging of both mice and humans. The prospect of a significant increase in the global elderly population within the next decades has led to the emergence of "geroscience," which aims at elucidating the molecular mechanisms involved in aging. Progeroid mouse models are frequently used in geroscience as they provide insight into the molecular mechanisms that are involved in the highly complex process of natural aging. This review provides an overview of the most commonly reported nonneoplastic macroscopic and microscopic pathologic findings in progeroid mouse models (eg, osteoporosis, osteoarthritis, degenerative joint disease, intervertebral disc degeneration, kyphosis, sarcopenia, cutaneous atrophy, wound healing, hair loss, alopecia, lymphoid atrophy, cataract, corneal endothelial dystrophy, retinal degenerative diseases, and vascular remodeling). Furthermore, several shortcomings in pathologic analysis and descriptions of these models are discussed. Progeroid mouse models are valuable models for aging, but thorough knowledge of both the mouse strain background and the progeria-related phenotype is required to guide interpretation and translation of the pathology data. PMID:26864891

  1. Peripheral Neuropathy in Mouse Models of Diabetes.

    PubMed

    Jolivalt, Corinne G; Frizzi, Katie E; Guernsey, Lucie; Marquez, Alex; Ochoa, Joseline; Rodriguez, Maria; Calcutt, Nigel A

    2016-01-01

    Peripheral neuropathy is a frequent complication of chronic diabetes that most commonly presents as a distal degenerative polyneuropathy with sensory loss. Around 20% to 30% of such patients may also experience neuropathic pain. The underlying pathogenic mechanisms are uncertain, and therapeutic options are limited. Rodent models of diabetes have been used for more than 40 years to study neuropathy and evaluate potential therapies. For much of this period, streptozotocin-diabetic rats were the model of choice. The emergence of new technologies that allow relatively cheap and routine manipulations of the mouse genome has prompted increased use of mouse models of diabetes to study neuropathy. In this article, we describe the commonly used mouse models of type 1 and type 2 diabetes, and provide protocols to phenotype the structural, functional, and behavioral indices of peripheral neuropathy, with a particular emphasis on assays pertinent to the human condition. © 2016 by John Wiley & Sons, Inc. PMID:27584552

  2. Physiologically based pharmacokinetic modeling of arsenic in the mouse.

    PubMed

    Gentry, P Robinan; Covington, Tammie R; Mann, Sabine; Shipp, Annette M; Yager, Janice W; Clewell, Harvey J

    2004-01-01

    A remarkable feature of the carcinogenicity of inorganic arsenic is that while human exposures to high concentrations of inorganic arsenic in drinking water are associated with increases in skin, lung, and bladder cancer, inorganic arsenic has not typically caused tumors in standard laboratory animal test protocols. Inorganic arsenic administered for periods of up to 2 yr to various strains of laboratory mice, including the Swiss CD-1, Swiss CR:NIH(S), C57Bl/6p53(+/-), and C57Bl/6p53(+/+), has not resulted in significant increases in tumor incidence. However, Ng et al. (1999) have reported a 40% tumor incidence in C57Bl/6J mice exposed to arsenic in their drinking water throughout their lifetime, with no tumors reported in controls. In order to investigate the potential role of tissue dosimetry in differential susceptibility to arsenic carcinogenicity, a physiologically based pharmacokinetic (PBPK) model for inorganic arsenic in the rat, hamster, monkey, and human (Mann et al., 1996a, 1996b) was extended to describe the kinetics in the mouse. The PBPK model was parameterized in the mouse using published data from acute exposures of B6C3F1 mice to arsenate, arsenite, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) and validated using data from acute exposures of C57Black mice. Predictions of the acute model were then compared with data from chronic exposures. There was no evidence of changes in the apparent volume of distribution or in the tissue-plasma concentration ratios between acute and chronic exposure that might support the possibility of inducible arsenite efflux. The PBPK model was also used to project tissue dosimetry in the C57Bl/6J study, in comparison with tissue levels in studies having shorter duration but higher arsenic treatment concentrations. The model evaluation indicates that pharmacokinetic factors do not provide an explanation for the difference in outcomes across the various mouse bioassays. Other possible explanations may relate

  3. Cancer mouse models: past, present and future.

    PubMed

    Khaled, Walid T; Liu, Pentao

    2014-03-01

    The development and advances in gene targeting technology over the past three decades has facilitated the generation of cancer mouse models that recapitulate features of human malignancies. These models have been and still remain instrumental in revealing the complexities of human cancer biology. However, they will need to evolve in the post-genomic era of cancer research. In this review we will highlight some of the key developments over the past decades and will discuss the new possibilities of cancer mouse models in the light of emerging powerful gene manipulating tools.

  4. Mouse models of the laminopathies

    SciTech Connect

    Stewart, Colin L. . E-mail: stewartc@ncifcrf.gov; Kozlov, Serguei; Fong, Loren G.; Young, Stephen G. . E-mail: sgyoung@mednet.ucla.edu

    2007-06-10

    The A and B type lamins are nuclear intermediate filament proteins that comprise the bulk of the nuclear lamina, a thin proteinaceous structure underlying the inner nuclear membrane. The A type lamins are encoded by the lamin A gene (LMNA). Mutations in this gene have been linked to at least nine diseases, including the progeroid diseases Hutchinson-Gilford progeria and atypical Werner's syndromes, striated muscle diseases including muscular dystrophies and dilated cardiomyopathies, lipodystrophies affecting adipose tissue deposition, diseases affecting skeletal development, and a peripheral neuropathy. To understand how different diseases arise from different mutations in the same gene, mouse lines carrying some of the same mutations found in the human diseases have been established. We, and others have generated mice with different mutations that result in progeria, muscular dystrophy, and dilated cardiomyopathy. To further our understanding of the functions of the lamins, we also created mice lacking lamin B1, as well as mice expressing only one of the A type lamins. These mouse lines are providing insights into the functions of the lamina and how changes to the lamina affect the mechanical integrity of the nucleus as well as signaling pathways that, when disrupted, may contribute to the disease.

  5. Citrobacter rodentium mouse model of bacterial infection.

    PubMed

    Crepin, Valerie F; Collins, James W; Habibzay, Maryam; Frankel, Gad

    2016-10-01

    Infection of mice with Citrobacter rodentium is a robust model to study bacterial pathogenesis, mucosal immunology, the health benefits of probiotics and the role of the microbiota during infection. C. rodentium was first isolated by Barthold from an outbreak of mouse diarrhea in Yale University in 1972 and was 'rediscovered' by Falkow and Schauer in 1993. Since then the use of the model has proliferated, and it is now the gold standard for studying virulence of the closely related human pathogens enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively). Here we provide a detailed protocol for various applications of the model, including bacterial growth, site-directed mutagenesis, mouse inoculation (from cultured cells and after cohabitation), monitoring of bacterial colonization, tissue extraction and analysis, immune responses, probiotic treatment and microbiota analysis. The main protocol, from mouse infection to clearance and analysis of tissues and host responses, takes ∼5 weeks to complete. PMID:27606775

  6. Non-invasive mouse models of post-traumatic osteoarthritis.

    PubMed

    Christiansen, B A; Guilak, F; Lockwood, K A; Olson, S A; Pitsillides, A A; Sandell, L J; Silva, M J; van der Meulen, M C H; Haudenschild, D R

    2015-10-01

    Animal models of osteoarthritis (OA) are essential tools for investigating the development of the disease on a more rapid timeline than human OA. Mice are particularly useful due to the plethora of genetically modified or inbred mouse strains available. The majority of available mouse models of OA use a joint injury or other acute insult to initiate joint degeneration, representing post-traumatic osteoarthritis (PTOA). However, no consensus exists on which injury methods are most translatable to human OA. Currently, surgical injury methods are most commonly used for studies of OA in mice; however, these methods may have confounding effects due to the surgical/invasive injury procedure itself, rather than the targeted joint injury. Non-invasive injury methods avoid this complication by mechanically inducing a joint injury externally, without breaking the skin or disrupting the joint. In this regard, non-invasive injury models may be crucial for investigating early adaptive processes initiated at the time of injury, and may be more representative of human OA in which injury is induced mechanically. A small number of non-invasive mouse models of PTOA have been described within the last few years, including intra-articular fracture of tibial subchondral bone, cyclic tibial compression loading of articular cartilage, and anterior cruciate ligament (ACL) rupture via tibial compression overload. This review describes the methods used to induce joint injury in each of these non-invasive models, and presents the findings of studies utilizing these models. Altogether, these non-invasive mouse models represent a unique and important spectrum of animal models for studying different aspects of PTOA. PMID:26003950

  7. Quantitative Evaluation and Selection of Reference Genes for Quantitative RT-PCR in Mouse Acute Pancreatitis

    PubMed Central

    Yan, Zhaoping; Gao, Jinhang; Lv, Xiuhe; Yang, Wenjuan; Wen, Shilei; Tong, Huan; Tang, Chengwei

    2016-01-01

    The analysis of differences in gene expression is dependent on normalization using reference genes. However, the expression of many of these reference genes, as evaluated by quantitative RT-PCR, is upregulated in acute pancreatitis, so they cannot be used as the standard for gene expression in this condition. For this reason, we sought to identify a stable reference gene, or a suitable combination, for expression analysis in acute pancreatitis. The expression stability of 10 reference genes (ACTB, GAPDH, 18sRNA, TUBB, B2M, HPRT1, UBC, YWHAZ, EF-1α, and RPL-13A) was analyzed using geNorm, NormFinder, and BestKeeper software and evaluated according to variations in the raw Ct values. These reference genes were evaluated using a comprehensive method, which ranked the expression stability of these genes as follows (from most stable to least stable): RPL-13A, YWHAZ > HPRT1 > GAPDH > UBC > EF-1α > 18sRNA > B2M > TUBB > ACTB. RPL-13A was the most suitable reference gene, and the combination of RPL-13A and YWHAZ was the most stable group of reference genes in our experiments. The expression levels of ACTB, TUBB, and B2M were found to be significantly upregulated during acute pancreatitis, whereas the expression level of 18sRNA was downregulated. Thus, we recommend the use of RPL-13A or a combination of RPL-13A and YWHAZ for normalization in qRT-PCR analyses of gene expression in mouse models of acute pancreatitis. PMID:27069927

  8. Evaluating an etiologically relevant platform for therapy development for temporal lobe epilepsy: effects of carbamazepine and valproic acid on acute seizures and chronic behavioral comorbidities in the Theiler's murine encephalomyelitis virus mouse model.

    PubMed

    Barker-Haliski, Melissa L; Dahle, E Jill; Heck, Taylor D; Pruess, Timothy H; Vanegas, Fabiola; Wilcox, Karen S; White, H Steve

    2015-05-01

    Central nervous system infections can underlie the development of epilepsy, and Theiler's murine encephalomyelitis virus (TMEV) infection in C57BL/6J mice provides a novel model of infection-induced epilepsy. Approximately 50-65% of infected mice develop acute, handling-induced seizures during the infection. Brains display acute neuropathology, and a high number of mice develop spontaneous, recurrent seizures and behavioral comorbidities weeks later. This study characterized the utility of this model for drug testing by assessing whether antiseizure drug treatment during the acute infection period attenuates handling-induced seizures, and whether such treatment modifies associated comorbidities. Male C57BL/6J mice infected with TMEV received twice-daily valproic acid (VPA; 200 mg/kg), carbamazepine (CBZ; 20 mg/kg), or vehicle during the infection (days 0-7). Mice were assessed twice daily during the infection period for handling-induced seizures. Relative to vehicle-treated mice, more CBZ-treated mice presented with acute seizures; VPA conferred no change. In mice displaying seizures, VPA, but not CBZ, reduced seizure burden. Animals were then randomly assigned to acute and long-term follow-up. VPA was associated with significant elevations in acute (day 8) glial fibrillary acidic protein (astrocytes) immunoreactivity, but did not affect NeuN (neurons) immunoreactivity. Additionally, VPA-treated mice showed improved motor performance 15 days postinfection (DPI). At 36 DPI, CBZ-treated mice traveled significantly less distance through the center of an open field, indicative of anxiety-like behavior. CBZ-treated mice also presented with significant astrogliosis 36 DPI. Neither CBZ nor VPA prevented long-term reductions in NeuN immunoreactivity. The TMEV model thus provides an etiologically relevant platform to evaluate potential treatments for acute seizures and disease modification.

  9. Transgenic mouse model of cutaneous adnexal tumors

    PubMed Central

    Kito, Yusuke; Saigo, Chiemi; Atsushi, Kurabayashi; Mutsuo, Furihata; Tamotsu, Takeuchi

    2014-01-01

    TMEM207 was first characterized as being an important molecule for the invasion activity of gastric signet-ring cell carcinoma cells. In order to unravel the pathological properties of TMEM207, we generated several transgenic mouse lines, designated C57BL/6-Tg (ITF-TMEM207), in which murine TMEM207 was ectopically expressed under a truncated (by ~200 bp) proximal promoter of the murine intestinal trefoil factor (ITF) gene (also known as Tff3). Unexpectedly, a C57BL/6-Tg (ITF-TMEM207) mouse line exhibited a high incidence of spontaneous intradermal tumors with histopathological features that resembled those of various human cutaneous adnexal tumors. These tumors were found in ~14% female and 13% of male 6- to 12-month-old mice. TMEM207 immunoreactivity was found in hair follicle bulge cells in non-tumorous skin, as well as in cutaneous adnexal tumors of the transgenic mouse. The ITF-TMEM207 construct in this line appeared to be inserted to a major satellite repeat sequence at chromosome 2, in which no definite coding molecule was found. In addition, we also observed cutaneous adnexal tumors in three other C57BL/6-Tg (ITF-TMEM207) transgenic mouse lines. We believe that the C57BL/6-Tg (ITF-TMEM207) mouse might be a useful model to understand human cutaneous adnexal tumors. PMID:25305140

  10. TISSUE DISPOSITION OF DIMETHYLARSINIC ACID IN THE MOUSE AFTER ACUTE ORAL ADMINISTRATION

    EPA Science Inventory

    TISSUE DISPOSITION OF DIMETHYLARSINIC ACID IN THE MOUSE
    AFTER ACUTE ORAL ADMINISTRATION

    Michael F. Hughes, Ph.D., Brenda C. Edwards, Carol T. Mitchell and Elaina M. Kenyon, Ph.D. United States Environmental Protection Agency, Office of Research and Development, Nation...

  11. Engineering a new mouse model for vitiligo.

    PubMed

    Manga, Prashiela; Orlow, Seth J

    2012-07-01

    Although the precise mechanisms that trigger vitiligo remain elusive, autoimmune responses mediate its progression. The development of therapies has been impeded by a paucity of animal models, since mice lack interfollicular melanocytes, the primary targets in vitiligo. In this issue, Harris et al. describe a mouse model in which interfollicular melanocytes are retained by Kit ligand overexpression and an immune response is initiated by transplanting melanocyte-targeting CD8+ T cells.

  12. Mouse models of dengue virus infection for vaccine testing.

    PubMed

    Sarathy, Vanessa V; Milligan, Gregg N; Bourne, Nigel; Barrett, Alan D T

    2015-12-10

    Dengue is a mosquito-borne disease caused by four serologically and genetically related viruses termed DENV-1 to DENV-4. With an annual global burden of approximately 390 million infections occurring in the tropics and subtropics worldwide, an effective vaccine to combat dengue is urgently needed. Historically, a major impediment to dengue research has been development of a suitable small animal infection model that mimics the features of human illness in the absence of neurologic disease that was the hallmark of earlier mouse models. Recent advances in immunocompromised murine infection models have resulted in development of lethal DENV-2, DENV-3 and DENV-4 models in AG129 mice that are deficient in both the interferon-α/β receptor (IFN-α/β R) and the interferon-γ receptor (IFN-γR). These models mimic many hallmark features of dengue disease in humans, such as viremia, thrombocytopenia, vascular leakage, and cytokine storm. Importantly AG129 mice develop lethal, acute, disseminated infection with systemic viral loads, which is characteristic of typical dengue illness. Infected AG129 mice generate an antibody response to DENV, and antibody-dependent enhancement (ADE) models have been established by both passive and maternal transfer of DENV-immune sera. Several steps have been taken to refine DENV mouse models. Viruses generated by peripheral in vivo passages incur substitutions that provide a virulent phenotype using smaller inocula. Because IFN signaling has a major role in immunity to DENV, mice that generate a cellular immune response are desired, but striking the balance between susceptibility to DENV and intact immunity is complicated. Great strides have been made using single-deficient IFN-α/βR mice for DENV-2 infection, and conditional knockdowns may offer additional approaches to provide a panoramic view that includes viral virulence and host immunity. Ultimately, the DENV AG129 mouse models result in reproducible lethality and offer multiple

  13. Mouse models of dengue virus infection for vaccine testing.

    PubMed

    Sarathy, Vanessa V; Milligan, Gregg N; Bourne, Nigel; Barrett, Alan D T

    2015-12-10

    Dengue is a mosquito-borne disease caused by four serologically and genetically related viruses termed DENV-1 to DENV-4. With an annual global burden of approximately 390 million infections occurring in the tropics and subtropics worldwide, an effective vaccine to combat dengue is urgently needed. Historically, a major impediment to dengue research has been development of a suitable small animal infection model that mimics the features of human illness in the absence of neurologic disease that was the hallmark of earlier mouse models. Recent advances in immunocompromised murine infection models have resulted in development of lethal DENV-2, DENV-3 and DENV-4 models in AG129 mice that are deficient in both the interferon-α/β receptor (IFN-α/β R) and the interferon-γ receptor (IFN-γR). These models mimic many hallmark features of dengue disease in humans, such as viremia, thrombocytopenia, vascular leakage, and cytokine storm. Importantly AG129 mice develop lethal, acute, disseminated infection with systemic viral loads, which is characteristic of typical dengue illness. Infected AG129 mice generate an antibody response to DENV, and antibody-dependent enhancement (ADE) models have been established by both passive and maternal transfer of DENV-immune sera. Several steps have been taken to refine DENV mouse models. Viruses generated by peripheral in vivo passages incur substitutions that provide a virulent phenotype using smaller inocula. Because IFN signaling has a major role in immunity to DENV, mice that generate a cellular immune response are desired, but striking the balance between susceptibility to DENV and intact immunity is complicated. Great strides have been made using single-deficient IFN-α/βR mice for DENV-2 infection, and conditional knockdowns may offer additional approaches to provide a panoramic view that includes viral virulence and host immunity. Ultimately, the DENV AG129 mouse models result in reproducible lethality and offer multiple

  14. On Models and Mickey Mouse

    ERIC Educational Resources Information Center

    Petherbridge, Deanna

    2005-01-01

    The re-issue of a nineteenth-century French "Drawing Course" is the occasion for an examination of issues of "models of good practice" in current art teaching. These are listed as an expanded set of student-centred pedagogical paradigms, which embrace the forceful popular imagery of electronic games and comic strips. The formalist adaptations of…

  15. Mouse models of human disease

    PubMed Central

    Perlman, Robert L.

    2016-01-01

    The use of mice as model organisms to study human biology is predicated on the genetic and physiological similarities between the species. Nonetheless, mice and humans have evolved in and become adapted to different environments and so, despite their phylogenetic relatedness, they have become very different organisms. Mice often respond to experimental interventions in ways that differ strikingly from humans. Mice are invaluable for studying biological processes that have been conserved during the evolution of the rodent and primate lineages and for investigating the developmental mechanisms by which the conserved mammalian genome gives rise to a variety of different species. Mice are less reliable as models of human disease, however, because the networks linking genes to disease are likely to differ between the two species. The use of mice in biomedical research needs to take account of the evolved differences as well as the similarities between mice and humans. PMID:27121451

  16. Digenic Inheritance in Cystinuria Mouse Model

    PubMed Central

    Espino, Meritxell; Font-Llitjós, Mariona; Vilches, Clara; Salido, Eduardo; Prat, Esther; López de Heredia, Miguel; Palacín, Manuel; Nunes, Virginia

    2015-01-01

    Cystinuria is an aminoaciduria caused by mutations in the genes that encode the two subunits of the amino acid transport system b0,+, responsible for the renal reabsorption of cystine and dibasic amino acids. The clinical symptoms of cystinuria relate to nephrolithiasis, due to the precipitation of cystine in urine. Mutations in SLC3A1, which codes for the heavy subunit rBAT, cause cystinuria type A, whereas mutations in SLC7A9, which encodes the light subunit b0,+AT, cause cystinuria type B. By crossing Slc3a1-/- with Slc7a9-/- mice we generated a type AB cystinuria mouse model to test digenic inheritance of cystinuria. The 9 genotypes obtained have been analyzed at early (2- and 5-months) and late stage (8-months) of the disease. Monitoring the lithiasic phenotype by X-ray, urine amino acid content analysis and protein expression studies have shown that double heterozygous mice (Slc7a9+/-Slc3a1+/-) present lower expression of system b0,+ and higher hyperexcretion of cystine than single heterozygotes (Slc7a9+/-Slc3a1+/+ and Slc7a9+/+Slc3a1+/-) and give rise to lithiasis in 4% of the mice, demonstrating that cystinuria has a digenic inheritance in this mouse model. Moreover in this study it has been demonstrated a genotype/phenotype correlation in type AB cystinuria mouse model providing new insights for further molecular and genetic studies of cystinuria patients. PMID:26359869

  17. Genetically Engineered Mouse Models of Pituitary Tumors

    PubMed Central

    Cano, David A.; Soto-Moreno, Alfonso; Leal-Cerro, Alfonso

    2014-01-01

    Animal models constitute valuable tools for investigating the pathogenesis of cancer as well as for preclinical testing of novel therapeutics approaches. However, the pathogenic mechanisms of pituitary-tumor formation remain poorly understood, particularly in sporadic adenomas, thus, making it a challenge to model pituitary tumors in mice. Nevertheless, genetically engineered mouse models (GEMMs) of pituitary tumors have provided important insight into pituitary tumor biology. In this paper, we review various GEMMs of pituitary tumors, highlighting their contributions and limitations, and discuss opportunities for research in the field. PMID:25136513

  18. Finding mouse models of human lymphomas and leukemia's using the Jackson laboratory mouse tumor biology database.

    PubMed

    Begley, Dale A; Sundberg, John P; Krupke, Debra M; Neuhauser, Steven B; Bult, Carol J; Eppig, Janan T; Morse, Herbert C; Ward, Jerrold M

    2015-12-01

    Many mouse models have been created to study hematopoietic cancer types. There are over thirty hematopoietic tumor types and subtypes, both human and mouse, with various origins, characteristics and clinical prognoses. Determining the specific type of hematopoietic lesion produced in a mouse model and identifying mouse models that correspond to the human subtypes of these lesions has been a continuing challenge for the scientific community. The Mouse Tumor Biology Database (MTB; http://tumor.informatics.jax.org) is designed to facilitate use of mouse models of human cancer by providing detailed histopathologic and molecular information on lymphoma subtypes, including expertly annotated, on line, whole slide scans, and providing a repository for storing information on and querying these data for specific lymphoma models. PMID:26302176

  19. Imaging Acute Neuromuscular Explants from Thy1 Mouse Lines.

    PubMed

    Marinković, Petar; Godinho, Leanne; Misgeld, Thomas

    2015-09-01

    Because core facilities that generate transgenic founder mice for a reasonable fee are now available at most major research institutions, generating new Thy1-XFP transgenic animals (in which XFP stands for any fluorescent protein) is an option even for relatively small laboratories. Here, we provide a protocol for screening offspring of Thy1 transgenic founders. Acute neuromuscular explants are obtained from 3-wk-old F1 mice that have been produced by crossing Thy1 transgenic founders and commercially obtained inbred mice. Thy1-driven expression is detected by fluorescence microscopy. PMID:26330628

  20. Experimental photoallergic contact dermatitis: a mouse model

    SciTech Connect

    Maguire, H.C. Jr.; Kaidbey, K.

    1982-09-01

    We have induced photoallergic contact dermatitis in mice to 3,3',4',5 tetrachlorosalicylanilide (TCSA), chlorpromazine and 6-methylcoumarin. These compounds are known to produce photoallergic contact dermatitis in humans. The photoallergic contact dermatitis reaction in the mouse is immunologically specific viz. mice photosensitized to TCSA react, by photochallenge, to that compound and not to chlorpromazine, and conversely. The reaction requires UVA at both sensitization and challenge. It appears to be T-cell mediated in that it can be passively transferred to syngeneic mice by lymph node cells from actively sensitized mice, the histology of the reactions resembles that of classic allergic contact dermatitis in mice, challenge reactions are seen at 24 but not at 4 hr, and photoallergic contact dermatitis can be induced in B-cell deficient mice. The availability of a mouse model for the study of photo-ACD will facilitate the identification of pertinent control mechanisms and may aid in the management of the disease. It is likely that a bioassay for photoallergens of humans can be based on this mouse model.

  1. Acute phase serum proteins in syngeneic and allogeneic mouse pregnancy.

    PubMed Central

    Waites, G T; Bell, A M; Bell, S C

    1983-01-01

    The levels of two murine acute phase proteins, serum amyloid P component (SAP) and haptoglobin, have been measured in the serum of C57BL/10 female mice during syngeneic and allogeneic pregnancy. Both syngeneic and allogeneic pregnancy resulted in alterations in the levels of these proteins as compared to those observed in virgin females. Syngeneic mating resulted in an increase in concentration of both proteins during the final 3 days of pregnancy. During allogeneic pregnancy, SAP levels, after a transient increase on day 4, rose from days 6-8 and, after remaining relatively stable, increased from day 12 to reach maximum levels on day 18 of pregnancy. Levels fell dramatically during the immediate post-partum period. In contrast, although levels of haptoglobin also increased from days 6-8, for the remainder of pregnancy these increased levels remained stable. The implications of these findings are discussed in relation to the mechanisms of regulation of acute phase reactants and the immunological relationship between the mother and fetus. PMID:6409477

  2. Selective depletion of mouse kidney proximal straight tubule cells causes acute kidney injury.

    PubMed

    Sekine, Michiko; Monkawa, Toshiaki; Morizane, Ryuji; Matsuoka, Kunie; Taya, Choji; Akita, Yoshiko; Joh, Kensuke; Itoh, Hiroshi; Hayashi, Matsuhiko; Kikkawa, Yoshiaki; Kohno, Kenji; Suzuki, Akemi; Yonekawa, Hiromichi

    2012-02-01

    The proximal straight tubule (S3 segment) of the kidney is highly susceptible to ischemia and toxic insults but has a remarkable capacity to repair its structure and function. In response to such injuries, complex processes take place to regenerate the epithelial cells of the S3 segment; however, the precise molecular mechanisms of this regeneration are still being investigated. By applying the "toxin receptor mediated cell knockout" method under the control of the S3 segment-specific promoter/enhancer, Gsl5, which drives core 2 β-1,6-N-acetylglucosaminyltransferase gene expression, we established a transgenic mouse line expressing the human diphtheria toxin (DT) receptor only in the S3 segment. The administration of DT to these transgenic mice caused the selective ablation of S3 segment cells in a dose-dependent manner, and transgenic mice exhibited polyuria containing serum albumin and subsequently developed oliguria. An increase in the concentration of blood urea nitrogen was also observed, and the peak BUN levels occurred 3-7 days after DT administration. Histological analysis revealed that the most severe injury occurred in the S3 segments of the proximal tubule, in which tubular cells were exfoliated into the tubular lumen. In addition, aquaporin 7, which is localized exclusively to the S3 segment, was diminished. These results indicate that this transgenic mouse can suffer acute kidney injury (AKI) caused by S3 segment-specific damage after DT administration. This transgenic line offers an excellent model to uncover the mechanisms of AKI and its rapid recovery.

  3. Mouse models of human AML accurately predict chemotherapy response

    PubMed Central

    Zuber, Johannes; Radtke, Ina; Pardee, Timothy S.; Zhao, Zhen; Rappaport, Amy R.; Luo, Weijun; McCurrach, Mila E.; Yang, Miao-Miao; Dolan, M. Eileen; Kogan, Scott C.; Downing, James R.; Lowe, Scott W.

    2009-01-01

    The genetic heterogeneity of cancer influences the trajectory of tumor progression and may underlie clinical variation in therapy response. To model such heterogeneity, we produced genetically and pathologically accurate mouse models of common forms of human acute myeloid leukemia (AML) and developed methods to mimic standard induction chemotherapy and efficiently monitor therapy response. We see that murine AMLs harboring two common human AML genotypes show remarkably diverse responses to conventional therapy that mirror clinical experience. Specifically, murine leukemias expressing the AML1/ETO fusion oncoprotein, associated with a favorable prognosis in patients, show a dramatic response to induction chemotherapy owing to robust activation of the p53 tumor suppressor network. Conversely, murine leukemias expressing MLL fusion proteins, associated with a dismal prognosis in patients, are drug-resistant due to an attenuated p53 response. Our studies highlight the importance of genetic information in guiding the treatment of human AML, functionally establish the p53 network as a central determinant of chemotherapy response in AML, and demonstrate that genetically engineered mouse models of human cancer can accurately predict therapy response in patients. PMID:19339691

  4. Unstressing intemperate models: how cold stress undermines mouse modeling.

    PubMed

    Karp, Christopher L

    2012-06-01

    Mus musculus enjoys pride of place at the center of contemporary biomedical research. Despite being the current model system of choice for in vivo mechanistic analysis, mice have clear limitations. The literature is littered with examples of therapeutic approaches that showed promise in mouse models but failed in clinical trials. More generally, mice often provide poor mimics of the human diseases being modeled. Available data suggest that the cold stress to which laboratory mice are ubiquitously subjected profoundly affects mouse physiology in ways that impair the modeling of human homeostasis and disease. Experimental attention to this key, albeit largely ignored, environmental variable is likely to have a broad transformative effect on biomedical research.

  5. Spontaneous acute tumor lysis syndrome in a DBA/1J mouse: a case report and review.

    PubMed

    Lovelace, Karen; vanGessel, Yvonne; Asher, Ludmila V; Vogel, Peter

    2003-01-01

    Spontaneous acute tumor lysis syndrome (ATLS) was diagnosed in a 10-month-old female DBA/1J sentinel mouse with leukemic lymphoma. The mouse was unable to maintain balance and died shortly after being observed rolling around in its cage. Disseminated neoplastic disease, including a large cranial mediastinal mass, enlarged lymph nodes and splenomegaly, was present at necropsy. Histopathologic examination revealed widespread massive necrosis of lymphoblastic tumor cells, and widely disseminated microemboli composed of nuclear and cytoplasmic cell debris. Although ATLS is widely recognized as an oncologic emergency in humans, acute lesions of ATLS have not been described. The mechanical obstruction of capillary beds by microemboli originating from disintegrating necrotic tumor cells was the likely cause of clinical signs and death in this mouse. We propose that similar microemboli may contribute to the pathogenesis of the acute renal failure and other clinical signs associated with ATLS in humans. Recognition of spontaneous ATLS in laboratory animals is especially important in studies that assess the efficacy and/or toxicity of anticancer treatments, where early deaths due to ATLS might mistakenly be attributed to a direct test article effect.

  6. MicroPET Evaluation of a Hydroxamate-Based MMP Inhibitor, [(18)F]FB-ML5, in a Mouse Model of Cigarette Smoke-Induced Acute Airway Inflammation.

    PubMed

    Matusiak, Nathalie; van Waarde, Aren; Rozeveld, Dennie; van Oosterhout, Antoon J M; Heijink, Irene H; Castelli, Riccardo; Overkleeft, Herman S; Bischoff, Rainer; Dierckx, Rudi A J O; Elsinga, Philip H

    2015-10-01

    Matrix metalloproteinases (MMPs) are the main proteolytic enzymes involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). A radiolabeled MMP inhibitor, [(18)F]FB-ML5, was prepared, and its in vivo kinetics were tested in a mouse model of pulmonary inflammation. BALB/c mice were exposed for 4 days to cigarette smoke (CS) or air. On the fifth day, a dynamic microPET scan was made with [(18)F]FB-ML5. Standardized uptake values (PET-SUVmean) were 0.19 ± 0.06 in the lungs of CS-exposed mice (n = 6) compared to 0.11 ± 0.03 (n = 5) in air-exposed controls (p < 0.05), 90 min post-injection MMP-9 levels in bronchoalveolar lavage fluid (BALF) were increased from undetectable level to 4615 ± 1963 pg/ml by CS exposure. Increased MMP expression in a COPD mouse model was shown to lead to increased retention of [(18)F]FB-ML5.

  7. Transgenic Mouse Models Enabling Photolabeling of Individual Neurons In Vivo

    PubMed Central

    Peter, Manuel; Bathellier, Brice; Fontinha, Bruno; Pliota, Pinelopi; Haubensak, Wulf; Rumpel, Simon

    2013-01-01

    One of the biggest tasks in neuroscience is to explain activity patterns of individual neurons during behavior by their cellular characteristics and their connectivity within the neuronal network. To greatly facilitate linking in vivo experiments with a more detailed molecular or physiological analysis in vitro, we have generated and characterized genetically modified mice expressing photoactivatable GFP (PA-GFP) that allow conditional photolabeling of individual neurons. Repeated photolabeling at the soma reveals basic morphological features due to diffusion of activated PA-GFP into the dendrites. Neurons photolabeled in vivo can be re-identified in acute brain slices and targeted for electrophysiological recordings. We demonstrate the advantages of PA-GFP expressing mice by the correlation of in vivo firing rates of individual neurons with their expression levels of the immediate early gene c-fos. Generally, the mouse models described in this study enable the combination of various analytical approaches to characterize living cells, also beyond the neurosciences. PMID:23626779

  8. Mouse models of intestinal inflammation and cancer.

    PubMed

    Westbrook, Aya M; Szakmary, Akos; Schiestl, Robert H

    2016-09-01

    Chronic inflammation is strongly associated with approximately one-fifth of all human cancers. Arising from combinations of factors such as environmental exposures, diet, inherited gene polymorphisms, infections, or from dysfunctions of the immune response, chronic inflammation begins as an attempt of the body to remove injurious stimuli; however, over time, this results in continuous tissue destruction and promotion and maintenance of carcinogenesis. Here, we focus on intestinal inflammation and its associated cancers, a group of diseases on the rise and affecting millions of people worldwide. Intestinal inflammation can be widely grouped into inflammatory bowel diseases (ulcerative colitis and Crohn's disease) and celiac disease. Long-standing intestinal inflammation is associated with colorectal cancer and small-bowel adenocarcinoma, as well as extraintestinal manifestations, including lymphomas and autoimmune diseases. This article highlights potential mechanisms of pathogenesis in inflammatory bowel diseases and celiac disease, as well as those involved in the progression to associated cancers, most of which have been identified from studies utilizing mouse models of intestinal inflammation. Mouse models of intestinal inflammation can be widely grouped into chemically induced models; genetic models, which make up the bulk of the studied models; adoptive transfer models; and spontaneous models. Studies in these models have lead to the understanding that persistent antigen exposure in the intestinal lumen, in combination with loss of epithelial barrier function, and dysfunction and dysregulation of the innate and adaptive immune responses lead to chronic intestinal inflammation. Transcriptional changes in this environment leading to cell survival, hyperplasia, promotion of angiogenesis, persistent DNA damage, or insufficient repair of DNA damage due to an excess of proinflammatory mediators are then thought to lead to sustained malignant transformation. With

  9. Mouse Model of Coxiella burnetii Aerosolization.

    PubMed

    Melenotte, Cléa; Lepidi, Hubert; Nappez, Claude; Bechah, Yassina; Audoly, Gilles; Terras, Jérôme; Raoult, Didier; Brégeon, Fabienne

    2016-07-01

    Coxiella burnetii is mainly transmitted by aerosols and is responsible for multiple-organ lesions. Animal models have shown C. burnetii pathogenicity, but long-term outcomes still need to be clarified. We used a whole-body aerosol inhalation exposure system to mimic the natural route of infection in immunocompetent (BALB/c) and severe combined immunodeficient (SCID) mice. After an initial lung inoculum of 10(4) C. burnetii cells/lung, the outcome, serological response, hematological disorders, and deep organ lesions were described up to 3 months postinfection. C. burnetii-specific PCR, anti-C. burnetii immunohistochemistry, and fluorescent in situ hybridization (FISH) targeting C. burnetii-specific 16S rRNA completed the detection of the bacterium in the tissues. In BALB/c mice, a thrombocytopenia and lymphopenia were first observed, prior to evidence of C. burnetii replication. In all SCID mouse organs, DNA copies increased to higher levels over time than in BALB/c ones. Clinical signs of discomfort appeared in SCID mice, so follow-up had to be shortened to 2 months in this group. At this stage, all animals presented bone, cervical, and heart lesions. The presence of C. burnetii could be attested in situ for all organs sampled using immunohistochemistry and FISH. This mouse model described C. burnetii Nine Mile strain spread using aerosolization in a way that corroborates the pathogenicity of Q fever described in humans and completes previously published data in mouse models. C. burnetii infection occurring after aerosolization in mice thus seems to be a useful tool to compare the pathogenicity of different strains of C. burnetii. PMID:27160294

  10. Acute inflammation stimulates a regenerative response in the neonatal mouse heart.

    PubMed

    Han, Chunyong; Nie, Yu; Lian, Hong; Liu, Rui; He, Feng; Huang, Huihui; Hu, Shengshou

    2015-10-01

    Cardiac injury in neonatal 1-day-old mice stimulates a regenerative response characterized by reactive cardiomyocyte proliferation, which is distinguished from the fibrotic repair process in adults. Acute inflammation occurs immediately after heart injury and has generally been believed to exert a negative effect on heart regeneration by promoting scar formation in adults; however, little is known about the role of acute inflammation in the cardiac regenerative response in neonatal mice. Here, we show that acute inflammation induced cardiomyocyte proliferation after apical intramyocardial microinjection of immunogenic zymosan A particles into the neonatal mouse heart. We also found that cardiac injury-induced regenerative response was suspended after immunosuppression in neonatal mice, and that cardiomyocytes could not be reactivated to proliferate after neonatal heart injury in the absence of interleukin-6 (IL-6). Furthermore, cardiomyocyte-specific deletion of signal transducer and activator of transcription 3 (STAT3), the major downstream effector of IL-6 signaling, decreased reactive cardiomyocyte proliferation after apical resection. Our results indicate that acute inflammation stimulates the regenerative response in neonatal mouse heart, and suggest that modulation of inflammatory signals might have important implications in cardiac regenerative medicine.

  11. Mouse Genetic Models of Human Brain Disorders.

    PubMed

    Leung, Celeste; Jia, Zhengping

    2016-01-01

    Over the past three decades, genetic manipulations in mice have been used in neuroscience as a major approach to investigate the in vivo function of genes and their alterations. In particular, gene targeting techniques using embryonic stem cells have revolutionized the field of mammalian genetics and have been at the forefront in the generation of numerous mouse models of human brain disorders. In this review, we will first examine childhood developmental disorders such as autism, intellectual disability, Fragile X syndrome, and Williams-Beuren syndrome. We will then explore psychiatric disorders such as schizophrenia and lastly, neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. We will outline the creation of these mouse models that range from single gene deletions, subtle point mutations to multi-gene manipulations, and discuss the key behavioral phenotypes of these mice. Ultimately, the analysis of the models outlined in this review will enhance our understanding of the in vivo role and underlying mechanisms of disease-related genes in both normal brain function and brain disorders, and provide potential therapeutic targets and strategies to prevent and treat these diseases. PMID:27047540

  12. Mouse Genetic Models of Human Brain Disorders

    PubMed Central

    Leung, Celeste; Jia, Zhengping

    2016-01-01

    Over the past three decades, genetic manipulations in mice have been used in neuroscience as a major approach to investigate the in vivo function of genes and their alterations. In particular, gene targeting techniques using embryonic stem cells have revolutionized the field of mammalian genetics and have been at the forefront in the generation of numerous mouse models of human brain disorders. In this review, we will first examine childhood developmental disorders such as autism, intellectual disability, Fragile X syndrome, and Williams-Beuren syndrome. We will then explore psychiatric disorders such as schizophrenia and lastly, neurodegenerative disorders including Alzheimer’s disease and Parkinson’s disease. We will outline the creation of these mouse models that range from single gene deletions, subtle point mutations to multi-gene manipulations, and discuss the key behavioral phenotypes of these mice. Ultimately, the analysis of the models outlined in this review will enhance our understanding of the in vivo role and underlying mechanisms of disease-related genes in both normal brain function and brain disorders, and provide potential therapeutic targets and strategies to prevent and treat these diseases. PMID:27047540

  13. Mouse Models of Frailty: an Emerging Field.

    PubMed

    Seldeen, K L; Pang, M; Troen, B R

    2015-10-01

    Frailty is highly prevalent in the elderly, increasing the risk of poor outcomes that include falls, incident disability, hospitalization, and mortality. Thus, a great need exists to characterize the underlying mechanisms and ultimately identify strategies that prevent, delay, and even reverse frailty. Mouse models can provide insight into molecular mechanisms of frailty by reducing variability in lifestyle and genetic factors that can complicate interpretation of human clinical data. Frailty, generally recognized as a syndrome involving reduced homeostatic reserve in response to physiologic challenges and increasing susceptibility to poor health outcomes, is predominantly assessed using two independent strategies, integrated phenotype and deficit accumulation. The integrated phenotype defines frailty by the presentation of factors affecting functional capacity such as weight loss, exhaustion, low activity levels, slow gait, and grip strength. The deficit accumulation paradigm draws parameters from a greater range of physiological systems, such as the ability to perform daily activities, coordination and gait, mental components, physiological problems, and history and presence of medical morbidities. This strategic division also applies within the emerging field of mouse frailty models, with both methodologies showing usefulness in providing insight into physiologic mechanisms and testing interventions. Our review will explore the strategies used, caveats in methodology, and future directions in the application of animal models for the study of the frailty syndrome.

  14. Mouse Genome Database: From sequence to phenotypes and disease models.

    PubMed

    Eppig, Janan T; Richardson, Joel E; Kadin, James A; Smith, Cynthia L; Blake, Judith A; Bult, Carol J

    2015-08-01

    The Mouse Genome Database (MGD, www.informatics.jax.org) is the international scientific database for genetic, genomic, and biological data on the laboratory mouse to support the research requirements of the biomedical community. To accomplish this goal, MGD provides broad data coverage, serves as the authoritative standard for mouse nomenclature for genes, mutants, and strains, and curates and integrates many types of data from literature and electronic sources. Among the key data sets MGD supports are: the complete catalog of mouse genes and genome features, comparative homology data for mouse and vertebrate genes, the authoritative set of Gene Ontology (GO) annotations for mouse gene functions, a comprehensive catalog of mouse mutations and their phenotypes, and a curated compendium of mouse models of human diseases. Here, we describe the data acquisition process, specifics about MGD's key data areas, methods to access and query MGD data, and outreach and user help facilities. PMID:26150326

  15. Insights from mouse models into human retinoblastoma

    PubMed Central

    MacPherson, David

    2008-01-01

    Novel murine models of retinoblastoma based on Rb gene deletion in concert with inactivation of Rb family members have recently been developed. These new Rb knockout models of retinoblastoma provide excellent tools for pre-clinical studies and for the exploration of the genetics of tumorigenesis driven by RB inactivation. This review focuses on the developmental consequences of Rb deletion in the retina and the genetic interactions between Rb and the two other members of the pocket protein family, p107 (Rbl1) and p130 (Rbl2). There is increasing appreciation that homozygous RB mutations are insufficient for human retinoblastoma. Identifying and understanding secondary gene alterations that cooperate with RB inactivation in tumorigenesis may be facilitated by mouse models. Recent investigation of the p53 pathway in retinoblastoma, and evidence of spatial topology to early murine retinoblastoma are also discussed in this review. PMID:18489754

  16. Pathophysiology of gene-targeted mouse models for cystic fibrosis.

    PubMed

    Grubb, B R; Boucher, R C

    1999-01-01

    Pathophysiology of Gene-Targeted Mouse Models for Cystic Fibrosis. Physiol. Rev. 79, Suppl.: S193-S214, 1999. - Mutations in the gene causing the fatal disease cystic fibrosis (CF) result in abnormal transport of several ions across a number of epithelial tissues. In just 3 years after this gene was cloned, the first CF mouse models were generated. The CF mouse models generated to date have provided a wealth of information on the pathophysiology of the disease in a variety of organs. Heterogeneity of disease in the mouse models is due to the variety of gene-targeting strategies used in the generation of the CF mouse models as well as the diversity of the murine genetic background. This paper reviews the pathophysiology in the tissues and organs (gastrointestinal, airway, hepatobiliary, pancreas, reproductive, and salivary tissue) involved in the disease in the various CF mouse models. Marked similarities to and differences from the human disease have been observed in the various murine models. Some of the CF mouse models accurately reflect the ion-transport abnormalities and disease phenotype seen in human CF patients, especially in gastrointestinal tissue. However, alterations in airway ion transport, which lead to the devastating lung disease in CF patients, appear to be largely absent in the CF mouse models. Reasons for these unexpected findings are discussed. This paper also reviews pharmacotherapeutic and gene therapeutic studies in the various mouse models. PMID:9922382

  17. Ultrastructural study of Rift Valley fever virus in the mouse model

    SciTech Connect

    Reed, Christopher; Steele, Keith E.; Honko, Anna; Shamblin, Joshua; Hensley, Lisa E.; Smith, Darci R.

    2012-09-15

    Detailed ultrastructural studies of Rift Valley fever virus (RVFV) in the mouse model are needed to develop and characterize a small animal model of RVF for the evaluation of potential vaccines and therapeutics. In this study, the ultrastructural features of RVFV infection in the mouse model were analyzed. The main changes in the liver included the presence of viral particles in hepatocytes and hepatic stem cells accompanied by hepatocyte apoptosis. However, viral particles were observed rarely in the liver; in contrast, particles were extremely abundant in the CNS. Despite extensive lymphocytolysis, direct evidence of viral replication was not observed in the lymphoid tissue. These results correlate with the acute-onset hepatitis and delayed-onset encephalitis that are dominant features of severe human RVF, but suggest that host immune-mediated mechanisms contribute significantly to pathology. The results of this study expand our knowledge of RVFV-host interactions and further characterize the mouse model of RVF.

  18. A mouse model for juvenile doxorubicin-induced cardiac dysfunction.

    PubMed

    Zhu, Wuqiang; Shou, Weinian; Payne, R Mark; Caldwell, Randall; Field, Loren J

    2008-11-01

    Doxorubicin (DOX) is a potent antitumor agent. DOX can also induce cardiotoxicity, and high cumulative doses are associated with recalcitrant heart failure. Children are particularly sensitive to DOX-induced heart failure. The ability to genetically modify mice makes them an ideal experimental system to study the molecular basis of DOX-induced cardiotoxicity. However, most mouse DOX studies rely on acute drug administration in adult animals, which typically are analyzed within 1 wk. Here, we describe a juvenile mouse model of chronic DOX-induced cardiac dysfunction. DOX treatment was initiated at 2 wk of age and continued for a period of 5 wk (25 mg/kg cumulative dose). This resulted in a decline in cardiac systolic function, which was accompanied by marked atrophy of the heart, low levels of cardiomyocyte apoptosis, and decreased growth velocity. Other animals were allowed to recover for 13 wk after the final DOX injection. Cardiac systolic function improved during this recovery period but remained depressed compared with the saline injected controls, despite the reversal of cardiac atrophy. Interestingly, increased levels of cardiomyocyte apoptosis and concomitant myocardial fibrosis were observed after DOX withdrawal. These data suggest that different mechanisms contribute to cardiac dysfunction during the treatment and recovery phases. PMID:18614963

  19. Genetically Engineered Mouse Models for Studying Inflammatory Bowel Disease

    PubMed Central

    Mizoguchi, Atsushi; Takeuchi, Takahito; Himuro, Hidetomo; Okada, Toshiyuki; Mizoguchi, Emiko

    2015-01-01

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is mediated by very complex mechanisms controlled by genetic, immune, and environmental factors. More than 74 kinds of genetically engineered mouse strains have been established since 1993 for studying IBD. Although mouse models cannot fully reflect human IBD, they have provided significant contributions for not only understanding the mechanism, but also developing new therapeutic means for IBD. Indeed, 20 kinds of genetically engineered mouse models carry the susceptibility genes identified in human IBD, and the functions of some other IBD susceptibility genes have also been dissected out using mouse models. Cutting-edge technologies such as cell-specific and inducible knockout systems, which were recently employed to mouse IBD models, have further enhanced the ability of investigators to provide important and unexpected rationales for developing new therapeutic strategies for IBD. In this review article, we briefly introduce 74 kinds of genetically engineered mouse models that spontaneously develop intestinal inflammation. PMID:26387641

  20. Geniposide, from Gardenia jasminoides Ellis, inhibits the inflammatory response in the primary mouse macrophages and mouse models.

    PubMed

    Fu, Yunhe; Liu, Bo; Liu, Jinhua; Liu, Zhicheng; Liang, Dejie; Li, Fengyang; Li, Depeng; Cao, Yongguo; Zhang, Xichen; Zhang, Naisheng; Yang, Zhengtao

    2012-12-01

    Geniposide, a main iridoid glucoside component of gardenia fruit, has been known to exhibit antibacterial, anti-inflammatory and other important therapeutic activities. The objective of this study was to investigate the protective effects of geniposide on inflammation in lipopolysaccharide (LPS) stimulated primary mouse macrophages in vitro and LPS induced lung injury model in vivo. The expression of pro-inflammatory cytokines was determined by enzyme-linked immunosorbent assay (ELISA). Nuclear factor-kappa B (NF-κB), inhibitory kappa B (IκBα) protein, p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and Toll-like receptor 4 (TLR4) were determined by Western blot. Further analysis was carried out in mTLR4 and mMD-2 co-transfected HEK293 cells. The results showed that geniposide markedly inhibited the LPS-induced TNF-α, IL-6 and IL-1β production both in vitro and in vivo. Geniposide blocked the phosphorylation of IκBα, p65, p38, ERK and JNK in LPS stimulated primary mouse macrophages. Furthermore, geniposide inhibited the expression of TLR4 in LPS stimulated primary mouse macrophages and inhibited the LPS-induced IL-8 production in HEK293-mTLR4/MD-2 cells. In vivo study, it was also observed that geniposide attenuated lung histopathologic changes in the mouse models. These results suggest that geniposide exerts an anti-inflammatory property by down-regulating the expression of TLR4 up-regulated by LPS. Geniposide is highly effective in inhibiting acute lung injury and may be a promising potential therapeutic reagent for acute lung injury treatment. PMID:22878137

  1. Gait analysis in a mouse model resembling Leigh disease.

    PubMed

    de Haas, Ria; Russel, Frans G; Smeitink, Jan A

    2016-01-01

    Leigh disease (LD) is one of the clinical phenotypes of mitochondrial OXPHOS disorders and also known as sub-acute necrotizing encephalomyelopathy. The disease has an incidence of 1 in 77,000 live births. Symptoms typically begin early in life and prognosis for LD patients is poor. Currently, no clinically effective treatments are available. Suitable animal and cellular models are necessary for the understanding of the neuropathology and the development of successful new therapeutic strategies. In this study we used the Ndufs4 knockout (Ndufs4(-/-)) mouse, a model of mitochondrial complex I deficiency. Ndusf4(-/-) mice exhibit progressive neurodegeneration, which closely resemble the human LD phenotype. When dissecting behavioral abnormalities in animal models it is of great importance to apply translational tools that are clinically relevant. To distinguish gait abnormalities in patients, simple walking tests can be assessed, but in animals this is not easy. This study is the first to demonstrate automated CatWalk gait analysis in the Ndufs4(-/-) mouse model. Marked differences were noted between Ndufs4(-/-) and control mice in dynamic, static, coordination and support parameters. Variation of walking speed was significantly increased in Ndufs4(-/-) mice, suggesting hampered and uncoordinated gait. Furthermore, decreased regularity index, increased base of support and changes in support were noted in the Ndufs4(-/-) mice. Here, we report the ability of the CatWalk system to sensitively assess gait abnormalities in Ndufs4(-/-) mice. This objective gait analysis can be of great value for intervention and drug efficacy studies in animal models for mitochondrial disease.

  2. Quantitative bioluminescence imaging of mouse tumor models.

    PubMed

    Tseng, Jen-Chieh; Kung, Andrew L

    2015-01-05

    Bioluminescence imaging (BLI) has become an essential technique for preclinical evaluation of anticancer therapeutics and provides sensitive and quantitative measurements of tumor burden in experimental cancer models. For light generation, a vector encoding firefly luciferase is introduced into human cancer cells that are grown as tumor xenografts in immunocompromised hosts, and the enzyme substrate luciferin is injected into the host. Alternatively, the reporter gene can be expressed in genetically engineered mouse models to determine the onset and progression of disease. In addition to expression of an ectopic luciferase enzyme, bioluminescence requires oxygen and ATP, thus only viable luciferase-expressing cells or tissues are capable of producing bioluminescence signals. Here, we summarize a BLI protocol that takes advantage of advances in hardware, especially the cooled charge-coupled device camera, to enable detection of bioluminescence in living animals with high sensitivity and a large dynamic range.

  3. Mouse intragastric infusion (iG) model

    PubMed Central

    Ueno, Akiko; Lazaro, Raul; Wang, Ping-Yen; Higashiyama, Reiichi; Machida, Keigo; Tsukamoto, Hidekazu

    2014-01-01

    Direct intragastric delivery of a diet, nutrient or test substance can be achieved in rodents (mice and rats) on a long-term (2–3 months) basis using a chronically implanted gastrostomy catheter and a flow-through swivel system. This rodent intragastric infusion (iG) model has broad applications in research on food intake, gastrointestinal (GI) physiology, GI neuroendocrinology, drug metabolism and toxicity, obesity and liver disease. It achieves maximal control over the rate and pattern of delivery and it can be combined with normal ad libitum feeding of solid diet if so desired. It may be adopted to achieve infusion at other sites of the GI system to test the role of a bypassed GI segment in neuroendocrine physiology, and its use in genetic mouse models facilitates the genetic analysis of a central question under investigation. PMID:22461066

  4. Molecular characterization of hepatocarcinogenesis using mouse models

    PubMed Central

    Teoh, Wei Wei; Xie, Min; Vijayaraghavan, Aadhitthya; Yaligar, Jadegoud; Tong, Wei Min; Goh, Liang Kee; Sabapathy, Kanaga

    2015-01-01

    ABSTRACT Hepatocellular carcinoma (HCC) is a deadly disease, often unnoticed until the late stages, when treatment options become limited. Thus, there is a crucial need to identify biomarkers for early detection of developing HCC, as well as molecular pathways that would be amenable to therapeutic intervention. Although analysis of human HCC tissues and serum components may serve these purposes, inability of early detection also precludes possibilities of identification of biomarkers or pathways that are sequentially perturbed at earlier phases of disease progression. We have therefore explored the option of utilizing mouse models to understand in a systematic and longitudinal manner the molecular pathways that are progressively deregulated by various etiological factors in contributing to HCC formation, and we report the initial findings in characterizing their validity. Hepatitis B surface antigen transgenic mice, which had been exposed to aflatoxin B1 at various stages in life, were used as a hepatitis model. Our findings confirm a synergistic effect of both these etiological factors, with a gender bias towards males for HCC predisposition. Time-based aflatoxin B1 treatment also demonstrated the requirement of non-quiescent liver for effective transformation. Tumors from these models with various etiologies resemble human HCCs histologically and at the molecular level. Extensive molecular characterization revealed the presence of an 11-gene HCC-expression signature that was able to discern transformed human hepatocytes from primary cells, regardless of etiology, and from other cancer types. Moreover, distinct molecular pathways appear to be deregulated by various etiological agents en route to formation of HCCs, in which common pathways converge, highlighting the existence of etiology-specific as well as common HCC-specific molecular perturbations. This study therefore highlights the utility of these mouse models, which provide a rich resource for the

  5. Wnt signaling and gastrointestinal tumorigenesis in mouse models.

    PubMed

    Taketo, M M

    2006-12-01

    The canonical Wnt signaling plays important roles in embryonic development and tumorigenesis. For the latter, induced mutations in mice have greatly contributed to our understanding of the molecular mechanisms of cancer initiation and progression. Here, I will review recent reports on gastrointestinal cancer model mice, with an emphasis on the roles of the Wnt signal pathway. They include: mouse models for familial adenomatous polyposis; modifying factors that affect mouse intestinal polyposis, including the genes that help cancer progression; Wnt target genes that affect mouse intestinal polyposis; and a mouse model of gastric cancer that mimics Helicobacter pyroli infection. PMID:17143296

  6. Three mouse models of human thalassemia.

    PubMed Central

    Martinell, J; Whitney, J B; Popp, R A; Russell, L B; Anderson, W F

    1981-01-01

    Three types of mice with globin gene mutations, called 352HB, 27HB, and Hbath-J, appear to be true animal models of human thalassemia. Expression of the alpha-globin genes in three stocks of mice, each one heterozygous for one of the alpha-globin mutations, was examined at the polypeptide, RNA, and DNA levels. alpha-Globin polypeptide chains, relative to beta-globin chains in heterozygous thalassemic mice, are present at approximately 80% of normal. The ratios of alpha-globin to beta-globin RNA sequences are also 75-80% of normal, exactly reflecting the alpha-globin to beta-globin chain ratios. In the case of mutant 352HB, at least one alpha-globin gene is deleted. Thalassemic mouse erythroid cells appear to compensate partially for the loss of half of their alpha-globin genes. Images PMID:6946454

  7. Memory B cells in mouse models.

    PubMed

    Bergmann, B; Grimsholm, O; Thorarinsdottir, K; Ren, W; Jirholt, P; Gjertsson, I; Mårtensson, I-L

    2013-08-01

    One of the principles behind vaccination, as shown by Edward Jenner in 1796, and host protection is immunological memory, and one of the cells central to this is the antigen-experienced memory B cell that responds rapidly upon re-exposure to the initiating antigen. Classically, memory B cells have been defined as progenies of germinal centre (GC) B cells expressing isotype-switched and substantially mutated B cell receptors (BCRs), that is, membrane-bound antibodies. However, it has become apparent over the last decade that this is not the only pathway to B cell memory. Here, we will discuss memory B cells in mice, as defined by (1) cell surface markers; (2) multiple layers; (3) formation in a T cell-dependent and either GC-dependent or GC-independent manner; (4) formation in a T cell-independent fashion. Lastly, we will touch upon memory B cells in; (5) mouse models of autoimmune diseases. PMID:23679222

  8. A mouse model for testing remyelinating therapies.

    PubMed

    Bai, C Brian; Sun, Sunny; Roholt, Andrew; Benson, Emily; Edberg, Dale; Medicetty, Satish; Dutta, Ranjan; Kidd, Grahame; Macklin, Wendy B; Trapp, Bruce

    2016-09-01

    Used in combination with immunomodulatory therapies, remyelinating therapies are a viable therapeutic approach for treating individuals with multiple sclerosis. Studies of postmortem MS brains identified greater remyelination in demyelinated cerebral cortex than in demyelinated brain white matter and implicated reactive astrocytes as an inhibitor of white matter remyelination. An animal model that recapitulates these phenotypes would benefit the development of remyelination therapeutics. We have used a modified cuprizone protocol that causes a consistent and robust demyelination of mouse white matter and cerebral cortex. Spontaneous remyelination occurred significantly faster in the cerebral cortex than in white matter and reactive astrocytes were more abundant in white matter lesions. Remyelination of white matter and cerebral cortex was therapeutically enhanced by daily injections of thyroid hormone triiodothyronine (T3). In summary, we describe an in vivo demyelination/remyelination paradigm that can be powered to determine efficacy of therapies that enhance white matter and cortical remyelination. PMID:27384502

  9. Preclinical fluorescent mouse models of pancreatic cancer

    NASA Astrophysics Data System (ADS)

    Bouvet, Michael; Hoffman, Robert M.

    2007-02-01

    Here we describe our cumulative experience with the development and preclinical application of several highly fluorescent, clinically-relevant, metastatic orthotopic mouse models of pancreatic cancer. These models utilize the human pancreatic cancer cell lines which have been genetically engineered to selectively express high levels of the bioluminescent green fluorescent (GFP) or red fluorescent protein (RFP). Fluorescent tumors are established subcutaneously in nude mice, and tumor fragments are then surgically transplanted onto the pancreas. Locoregional tumor growth and distant metastasis of these orthotopic implants occurs spontaneously and rapidly throughout the abdomen in a manner consistent with clinical human disease. Highly specific, high-resolution, real-time visualization of tumor growth and metastasis may be achieved in vivo without the need for contrast agents, invasive techniques, or expensive imaging equipment. We have shown a high correlation between florescent optical imaging and magnetic resonance imaging in these models. Alternatively, transplantation of RFP-expressing tumor fragments onto the pancreas of GFP-expressing transgenic mice may be used to facilitate visualization of tumor-host interaction between the pancreatic tumor fragments and host-derived stroma and vasculature. Such in vivo models have enabled us to serially visualize and acquire images of the progression of pancreatic cancer in the live animal, and to demonstrate the real-time antitumor and antimetastatic effects of several novel therapeutic strategies on pancreatic malignancy. These fluorescent models are therefore powerful and reliable tools with which to investigate human pancreatic cancer and therapeutic strategies directed against it.

  10. Mouse models for BRAF-induced cancers.

    PubMed

    Pritchard, C; Carragher, L; Aldridge, V; Giblett, S; Jin, H; Foster, C; Andreadi, C; Kamata, T

    2007-11-01

    Oncogenic mutations in the BRAF gene are detected in approximately 7% of human cancer samples with a particularly high frequency of mutation in malignant melanomas. Over 40 different missense BRAF mutations have been found, but the vast majority (>90%) represent a single nucleotide change resulting in a valine-->glutamate mutation at residue 600 ((V600E)BRAF). In cells cultured in vitro, (V600E)BRAF is able to stimulate endogenous MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase] and ERK phosphorylation leading to an increase in cell proliferation, cell survival, transformation, tumorigenicity, invasion and vascular development. Many of these hallmarks of cancer can be reversed by treatment of cells with siRNA (small interfering RNA) to BRAF or by inhibiting MEK, indicating that BRAF and MEK are attractive therapeutic targets in cancer samples with BRAF mutations. In order to fully understand the role of oncogenic BRAF in cancer development in vivo as well as to test the in vivo efficacy of anti-BRAF or anti-MEK therapies, GEMMs (genetically engineered mouse models) have been generated in which expression of oncogenic BRaf is conditionally dependent on the Cre recombinase. The delivery/activation of the Cre recombinase can be regulated in both a temporal and spatial manner and therefore these mouse models can be used to recapitulate the somatic mutation of BRAF that occurs in different tissues in the development of human cancer. The data so far obtained following Cre-mediated activation in haemopoietic tissue and the lung indicate that (V600E)BRAF mutation can drive tumour initiation and that its primary effect is to induce high levels of cyclin D1-mediated cell proliferation. However, hallmarks of OIS (oncogene-induced senescence) are evident that restrain further development of the tumour.

  11. A Neonatal Mouse Spinal Cord Compression Injury Model.

    PubMed

    Züchner, Mark; Glover, Joel C; Boulland, Jean-Luc

    2016-01-01

    Spinal cord injury (SCI) typically causes devastating neurological deficits, particularly through damage to fibers descending from the brain to the spinal cord. A major current area of research is focused on the mechanisms of adaptive plasticity that underlie spontaneous or induced functional recovery following SCI. Spontaneous functional recovery is reported to be greater early in life, raising interesting questions about how adaptive plasticity changes as the spinal cord develops. To facilitate investigation of this dynamic, we have developed a SCI model in the neonatal mouse. The model has relevance for pediatric SCI, which is too little studied. Because neural plasticity in the adult involves some of the same mechanisms as neural plasticity in early life(1), this model may potentially have some relevance also for adult SCI. Here we describe the entire procedure for generating a reproducible spinal cord compression (SCC) injury in the neonatal mouse as early as postnatal (P) day 1. SCC is achieved by performing a laminectomy at a given spinal level (here described at thoracic levels 9-11) and then using a modified Yasargil aneurysm mini-clip to rapidly compress and decompress the spinal cord. As previously described, the injured neonatal mice can be tested for behavioral deficits or sacrificed for ex vivo physiological analysis of synaptic connectivity using electrophysiological and high-throughput optical recording techniques(1). Earlier and ongoing studies using behavioral and physiological assessment have demonstrated a dramatic, acute impairment of hindlimb motility followed by a complete functional recovery within 2 weeks, and the first evidence of changes in functional circuitry at the level of identified descending synaptic connections(1). PMID:27078037

  12. A Neonatal Mouse Spinal Cord Compression Injury Model

    PubMed Central

    Züchner, Mark; Glover, Joel C.; Boulland, Jean-Luc

    2016-01-01

    Spinal cord injury (SCI) typically causes devastating neurological deficits, particularly through damage to fibers descending from the brain to the spinal cord. A major current area of research is focused on the mechanisms of adaptive plasticity that underlie spontaneous or induced functional recovery following SCI. Spontaneous functional recovery is reported to be greater early in life, raising interesting questions about how adaptive plasticity changes as the spinal cord develops. To facilitate investigation of this dynamic, we have developed a SCI model in the neonatal mouse. The model has relevance for pediatric SCI, which is too little studied. Because neural plasticity in the adult involves some of the same mechanisms as neural plasticity in early life1, this model may potentially have some relevance also for adult SCI. Here we describe the entire procedure for generating a reproducible spinal cord compression (SCC) injury in the neonatal mouse as early as postnatal (P) day 1. SCC is achieved by performing a laminectomy at a given spinal level (here described at thoracic levels 9-11) and then using a modified Yasargil aneurysm mini-clip to rapidly compress and decompress the spinal cord. As previously described, the injured neonatal mice can be tested for behavioral deficits or sacrificed for ex vivo physiological analysis of synaptic connectivity using electrophysiological and high-throughput optical recording techniques1. Earlier and ongoing studies using behavioral and physiological assessment have demonstrated a dramatic, acute impairment of hindlimb motility followed by a complete functional recovery within 2 weeks, and the first evidence of changes in functional circuitry at the level of identified descending synaptic connections1. PMID:27078037

  13. Mouse models of p53 functions.

    PubMed

    Lozano, Guillermina

    2010-04-01

    Studies in mice have yielded invaluable insight into our understanding of the p53 pathway. Mouse models with activated p53, no p53, and mutant p53 have queried the role of p53 in development and tumorigenesis. In these models, p53 is activated and stabilized via redundant posttranslational modifications. On activation, p53 initiates two major responses: inhibition of proliferation (via cell-cycle arrest, quiescence, senescence, and differentiation) and induction of apoptosis. Importantly, these responses are cell-type and tumor-type-specific. The analysis of mutant p53 alleles has established a gain-of-function role for p53 mutants in metastasis. The development of additional models that can precisely time the oncogenic events in single cells will provide further insight into the evolution of tumors, the importance of the stroma, and the cooperating events that lead to disruption of the p53 pathway. Ultimately, these models should serve to study the effects of novel drugs on tumor response as well as normal homeostasis.

  14. Generation of transgenic mouse model using PTTG as an oncogene.

    PubMed

    Kakar, Sham S; Kakar, Cohin

    2015-01-01

    The close physiological similarity between the mouse and human has provided tools to understanding the biological function of particular genes in vivo by introduction or deletion of a gene of interest. Using a mouse as a model has provided a wealth of resources, knowledge, and technology, helping scientists to understand the biological functions, translocation, trafficking, and interaction of a candidate gene with other intracellular molecules, transcriptional regulation, posttranslational modification, and discovery of novel signaling pathways for a particular gene. Most importantly, the generation of the mouse model for a specific human disease has provided a powerful tool to understand the etiology of a disease and discovery of novel therapeutics. This chapter describes in detail the step-by-step generation of the transgenic mouse model, which can be helpful in guiding new investigators in developing successful models. For practical purposes, we will describe the generation of a mouse model using pituitary tumor transforming gene (PTTG) as the candidate gene of interest. PMID:25636481

  15. Structural characterization of mouse neutrophil serine proteases and identification of their substrate specificities: relevance to mouse models of human inflammatory diseases.

    PubMed

    Kalupov, Timofey; Brillard-Bourdet, Michèle; Dadé, Sébastien; Serrano, Hélène; Wartelle, Julien; Guyot, Nicolas; Juliano, Luiz; Moreau, Thierry; Belaaouaj, Azzaq; Gauthier, Francis

    2009-12-01

    It is widely accepted that neutrophil serine proteases (NSPs) play a critical role in neutrophil-associated lung inflammatory and tissue-destructive diseases. To investigate NSP pathogenic role(s), various mouse experimental models have been developed that mimic acutely or chronically injured human lungs. We and others are using mouse exposure to cigarette smoke as a model for chronic obstructive pulmonary disease with or without exacerbation. However, the relative contribution of NSPs to lung disease processes as well as their underlying mechanisms remains still poorly understood. And the lack of purified mouse NSPs and their specific substrates have hampered advances in these studies. In this work, we compared mouse and human NSPs and generated three-dimensional models of murine NSPs based on three-dimensional structures of their human homologs. Analyses of these models provided compelling evidence that peptide substrate specificities of human and mouse NSPs are different despite their conserved cleft and close structural resemblance. These studies allowed us to synthesize for the first time novel sensitive fluorescence resonance energy transfer substrates for individual mouse NSPs. Our findings and the newly identified substrates should better our understanding about the role of NSPs in the pathogenesis of cigarette-associated chronic obstructive pulmonary disease as well as other neutrophils-associated inflammatory diseases.

  16. Transgenic Mouse Model of Chronic Beryllium Disease

    SciTech Connect

    Gordon, Terry

    2009-05-26

    Animal models provide powerful tools for dissecting dose-response relationships and pathogenic mechanisms and for testing new treatment paradigms. Mechanistic research on beryllium exposure-disease relationships is severely limited by a general inability to develop a sufficient chronic beryllium disease animal model. Discovery of the Human Leukocyte Antigen (HLA) - DPB1Glu69 genetic susceptibility component of chronic beryllium disease permitted the addition of this human beryllium antigen presentation molecule to an animal genome which may permit development of a better animal model for chronic beryllium disease. Using FVB/N inbred mice, Drs. Rubin and Zhu, successfully produced three strains of HLA-DPB1 Glu 69 transgenic mice. Each mouse strain contains a haplotype of the HLA-DPB1 Glu 69 gene that confers a different magnitude of odds ratio (OR) of risk for chronic beryllium disease: HLA-DPB1*0401 (OR = 0.2), HLA-DPB1*0201 (OR = 15), HLA-DPB1*1701 (OR = 240). In addition, Drs. Rubin and Zhu developed transgenic mice with the human CD4 gene to permit better transmission of signals between T cells and antigen presenting cells. This project has maintained the colonies of these transgenic mice and tested the functionality of the human transgenes.

  17. Mouse infection models for space flight immunology

    NASA Technical Reports Server (NTRS)

    Chapes, Stephen Keith; Ganta, Roman Reddy; Chapers, S. K. (Principal Investigator)

    2005-01-01

    Several immunological processes can be affected by space flight. However, there is little evidence to suggest that flight-induced immunological deficits lead to illness. Therefore, one of our goals has been to define models to examine host resistance during space flight. Our working hypothesis is that space flight crews will come from a heterogeneous population; the immune response gene make-up will be quite varied. It is unknown how much the immune response gene variation contributes to the potential threat from infectious organisms, allergic responses or other long term health problems (e.g. cancer). This article details recent efforts of the Kansas State University gravitational immunology group to assess how population heterogeneity impacts host health, either in laboratory experimental situations and/or using the skeletal unloading model of space-flight stress. This paper details our use of several mouse strains with several different genotypes. In particular, mice with varying MHCII allotypes and mice on the C57BL background with different genetic defects have been particularly useful tools with which to study infections by Staphylococcus aureus, Salmonella typhimurium, Pasteurella pneumotropica and Ehrlichia chaffeensis. We propose that some of these experimental challenge models will be useful to assess the effects of space flight on host resistance to infection.

  18. Mouse Models of Rare Craniofacial Disorders.

    PubMed

    Achilleos, Annita; Trainor, Paul A

    2015-01-01

    A rare disease is defined as a condition that affects less than 1 in 2000 individuals. Currently more than 7000 rare diseases have been documented, and most are thought to be of genetic origin. Rare diseases primarily affect children, and congenital craniofacial syndromes and disorders constitute a significant proportion of rare diseases, with over 700 having been described to date. Modeling craniofacial disorders in animal models has been instrumental in uncovering the etiology and pathogenesis of numerous conditions and in some cases has even led to potential therapeutic avenues for their prevention. In this chapter, we focus primarily on two general classes of rare disorders, ribosomopathies and ciliopathies, and the surprising finding that the disruption of fundamental, global processes can result in tissue-specific craniofacial defects. In addition, we discuss recent advances in understanding the pathogenesis of an extremely rare and specific craniofacial condition known as syngnathia, based on the first mouse models for this condition. Approximately 1% of all babies are born with a minor or major developmental anomaly, and individuals suffering from rare diseases deserve the same quality of treatment and care and attention to their disease as other patients. PMID:26589934

  19. Mouse models for gastric cancer: Matching models to biological questions.

    PubMed

    Poh, Ashleigh R; O'Donoghue, Robert J J; Ernst, Matthias; Putoczki, Tracy L

    2016-07-01

    Gastric cancer is the third leading cause of cancer-related mortality worldwide. This is in part due to the asymptomatic nature of the disease, which often results in late-stage diagnosis, at which point there are limited treatment options. Even when treated successfully, gastric cancer patients have a high risk of tumor recurrence and acquired drug resistance. It is vital to gain a better understanding of the molecular mechanisms underlying gastric cancer pathogenesis to facilitate the design of new-targeted therapies that may improve patient survival. A number of chemically and genetically engineered mouse models of gastric cancer have provided significant insight into the contribution of genetic and environmental factors to disease onset and progression. This review outlines the strengths and limitations of current mouse models of gastric cancer and their relevance to the pre-clinical development of new therapeutics. PMID:26809278

  20. Mouse models for gastric cancer: Matching models to biological questions.

    PubMed

    Poh, Ashleigh R; O'Donoghue, Robert J J; Ernst, Matthias; Putoczki, Tracy L

    2016-07-01

    Gastric cancer is the third leading cause of cancer-related mortality worldwide. This is in part due to the asymptomatic nature of the disease, which often results in late-stage diagnosis, at which point there are limited treatment options. Even when treated successfully, gastric cancer patients have a high risk of tumor recurrence and acquired drug resistance. It is vital to gain a better understanding of the molecular mechanisms underlying gastric cancer pathogenesis to facilitate the design of new-targeted therapies that may improve patient survival. A number of chemically and genetically engineered mouse models of gastric cancer have provided significant insight into the contribution of genetic and environmental factors to disease onset and progression. This review outlines the strengths and limitations of current mouse models of gastric cancer and their relevance to the pre-clinical development of new therapeutics.

  1. Genetically modified mouse models addressing gonadotropin function.

    PubMed

    Ratner, Laura D; Rulli, Susana B; Huhtaniemi, Ilpo T

    2014-03-01

    The development of genetically modified animals has been useful to understand the mechanisms involved in the regulation of the gonadotropin function. It is well known that alterations in the secretion of a single hormone is capable of producing profound reproductive abnormalities. Human chorionic gonadotropin (hCG) is a glycoprotein hormone normally secreted by the human placenta, and structurally and functionally it is related to pituitary LH. LH and hCG bind to the same LH/hCG receptor, and hCG is often used as an analog of LH to boost gonadotropin action. There are many physiological and pathological conditions where LH/hCG levels and actions are elevated. In order to understand how elevated LH/hCG levels may impact on the hypothalamic-pituitary-gonadal axis we have developed a transgenic mouse model with chronic hCG hypersecretion. Female mice develop many gonadal and extragonadal phenotypes including obesity, infertility, hyperprolactinemia, and pituitary and mammary gland tumors. This article summarizes recent findings on the mechanisms involved in pituitary gland tumorigenesis and hyperprolactinemia in the female mice hypersecreting hCG, in particular the relationship of progesterone with the hyperprolactinemic condition of the model. In addition, we describe the role of hyperprolactinemia as the main cause of infertility and the phenotypic abnormalities in these mice, and the use of dopamine agonists bromocriptine and cabergoline to normalize these conditions.

  2. Mouse models for radiation-induced cancers.

    PubMed

    Rivina, Leena; Davoren, Michael J; Schiestl, Robert H

    2016-09-01

    Potential ionising radiation exposure scenarios are varied, but all bring risks beyond the simple issues of short-term survival. Whether accidentally exposed to a single, whole-body dose in an act of terrorism or purposefully exposed to fractionated doses as part of a therapeutic regimen, radiation exposure carries the consequence of elevated cancer risk. The long-term impact of both intentional and unintentional exposure could potentially be mitigated by treatments specifically developed to limit the mutations and precancerous replication that ensue in the wake of irradiation The development of such agents would undoubtedly require a substantial degree of in vitro testing, but in order to accurately recapitulate the complex process of radiation-induced carcinogenesis, well-understood animal models are necessary. Inbred strains of the laboratory mouse, Mus musculus, present the most logical choice due to the high number of molecular and physiological similarities they share with humans. Their small size, high rate of breeding and fully sequenced genome further increase its value for use in cancer research. This chapter will review relevant m. musculus inbred and F1 hybrid animals of radiation-induced myeloid leukemia, thymic lymphoma, breast and lung cancers. Method of cancer induction and associated molecular pathologies will also be described for each model. PMID:27209205

  3. Mouse models for human hereditary deafness.

    PubMed

    Leibovici, Michel; Safieddine, Saaid; Petit, Christine

    2008-01-01

    Hearing impairment is a frequent condition in humans. Identification of the causative genes for the early onset forms of isolated deafness began 15 years ago and has been very fruitful. To date, approximately 50 causative genes have been identified. Yet, limited information regarding the underlying pathogenic mechanisms can be derived from hearing tests in deaf patients. This chapter describes the success of mouse models in the elucidation of some pathophysiological processes in the auditory sensory organ, the cochlea. These models have revealed a variety of defective structures and functions at the origin of deafness genetic forms. This is illustrated by three different examples: (1) the DFNB9 deafness form, a synaptopathy of the cochlear sensory cells where otoferlin is defective; (2) the Usher syndrome, in which deafness is related to abnormal development of the hair bundle, the mechanoreceptive structure of the sensory cells to sound; (3) the DFNB1 deafness form, which is the most common form of inherited deafness in Caucasian populations, mainly caused by connexin-26 defects that alter gap junction communication between nonsensory cochlear cells. PMID:19186249

  4. Mouse Models of Asthma.

    PubMed

    Debeuf, Nincy; Haspeslagh, Eline; van Helden, Mary; Hammad, Hamida; Lambrecht, Bart N

    2016-01-01

    Allergic asthma is a chronic inflammatory disease of the conducting airways characterized by the presence of allergen-specific IgE, Th2 cytokine production, eosinophilic airway inflammation, bronchial hyperreactivity, mucus overproduction, and structural changes in the airways. Investigators have tried to mimic these features of human allergic asthma in murine models. Whereas the surrogate allergen ovalbumin has been extremely valuable for unravelling underlying mechanisms of the disease, murine asthma models depend nowadays on naturally occurring allergens, such as house dust mite (HDM), cockroach, and Alternaria alternata. Here we describe a physiologically relevant model of acute allergic asthma based on sensitization and challenge with HDM extracts, and compare it with the ovalbumin/alum-induced asthma model. Moreover, we propose a detailed readout of the asthma phenotype, determining the degree of eosinophilia in bronchoalveolar lavage fluids by flow cytometry, visualizing goblet cell metaplasia, and measuring Th cytokine production by lung-draining mediastinal lymph node cells restimulated with HDM. © 2016 by John Wiley & Sons, Inc. PMID:27248433

  5. Characterization of a mouse model of headache.

    PubMed

    Huang, Dongyue; Ren, Lynn; Qiu, Chang-Shen; Liu, Ping; Peterson, Jonathan; Yanagawa, Yuchio; Cao, Yu-Qing

    2016-08-01

    Migraine and other primary headache disorders affect a large population and cause debilitating pain. Establishing animal models that display behavioral correlates of long-lasting and ongoing headache, the most common and disabling symptom of migraine, is vital for the elucidation of disease mechanisms and identification of drug targets. We have developed a mouse model of headache, using dural application of capsaicin along with a mixture of inflammatory mediators (IScap) to simulate the induction of a headache episode. This elicited intermittent head-directed wiping and scratching as well as the phosphorylation of c-Jun N-terminal kinase in trigeminal ganglion neurons. Interestingly, dural application of IScap preferentially induced FOS protein expression in the excitatory but not inhibitory cervical/medullary dorsal horn neurons. The duration of IScap-induced behavior and the number of FOS-positive neurons correlated positively in individual mice; both were reduced to the control level by the pretreatment of antimigraine drug sumatriptan. Dural application of CGRP(8-37), the calcitonin gene-related peptide (CGRP) receptor antagonist, also effectively blocked IScap-induced behavior, which suggests that the release of endogenous CGRP in the dura is necessary for IScap-induced nociception. These data suggest that dural IScap-induced nocifensive behavior in mice may be mechanistically related to the ongoing headache in humans. In addition, dural application of IScap increased resting time in female mice. Taken together, we present the first detailed study using dural application of IScap in mice. This headache model can be applied to genetically modified mice to facilitate research on the mechanisms and therapeutic targets for migraine headache. PMID:27058678

  6. Development of a novel mouse constipation model

    PubMed Central

    Liang, Chao; Wang, Kai-Yue; Yu, Zhi; Xu, Bin

    2016-01-01

    AIM: To establish a novel mouse constipation model. METHODS: Animals were randomly divided into three groups, and intragastrically administered 0-4 °C saline (ice-cold group) or 15-20 °C saline (saline control group) daily for 14 d, or were left untreated (blank control group). Stools were collected 3-24 h after treatment to record the wet and dry weights and the stool form. Intestinal propulsion experiments were carried out and defecation time was measured for six days continuously after suspending treatments. The expressions of PGP9.5 were detected by immunohistochemistry. RESULTS: Based on the percentage of stool weight changes compared with baseline (before irritation) in 9-14 d, stool weight changes were classified into three levels. Each level shows a different body state, which is state I (no change: plus or minus 5%), state II (slightly decreased: 5%-15%) and state III (decreased: 15%-25%). In state III, between day 9-14, the stool weights decreased by 15%-25% compared with the baseline, and changed at a rate > 10% compared with blank control values, and the stools became small and dry. Additionally, intestinal functions degenerated in these animals, and PGP9.5-positive expression markedly decreased in jejunum, ileum and proximal colon myenteric plexus. CONCLUSION: Irritation with ice-cold saline is a stable, repeatable method in building constipation model in mice for exploring the pathogenesis and treatment options of constipation, and the change of stool weight and size may serve as a useful tool to judge a constipation model success or not. PMID:26973418

  7. ACUTE ETHANOL DISRUPTS PHOTIC AND SEROTONERGIC CIRCADIAN CLOCK PHASE-RESETTING IN THE MOUSE

    PubMed Central

    Brager, Allison J.; Ruby, Christina L.; Prosser, Rebecca A.; Glass, J. David

    2011-01-01

    Background Alcohol abuse is associated with impaired circadian rhythms and sleep. Ethanol administration disrupts circadian clock phase-resetting, suggesting a mode for the disruptive effect of alcohol abuse on the circadian timing system. In this study, we extend previous work in C57BL/6J mice to: 1) characterize the SCN pharmacokinetics of acute systemic ethanol administration; 2) explore the effects of acute ethanol on photic and non-photic phase-resetting; and 2) determine if the SCN is a direct target for photic effects. Methods First, microdialysis was used to characterize the pharmacokinetics of acute i.p. injections of 3 doses of ethanol (0.5, 1.0 and 2.0 g/kg) in the mouse suprachiasmatic (SCN) circadian clock. Second, the effects of acute i.p. ethanol administration on photic phase-delays and serotonergic ([+]8-OH-DPAT-induced) phase-advances of the circadian activity rhythm were assessed. Third, the effects of reverse-microdialysis ethanol perfusion of the SCN on photic phase-resetting were characterized. Results Peak ethanol levels from the 3 doses of ethanol in the SCN occurred within 20–40 min post-injection with half-lives for clearance ranging from 0.6–1.8 hr. Systemic ethanol treatment dose-dependently attenuated photic and serotonergic phase-resetting. This treatment also did not affect basal SCN neuronal activity as assessed by Fos expression. Intra-SCN perfusion with ethanol markedly reduced photic phase-delays. Conclusions These results confirm that acute ethanol attenuates photic phase-delay shifts and serotonergic phase-advance shifts in the mouse. This dual effect could disrupt photic and non-photic entrainment mechanisms governing circadian clock timing. It is also significant that the SCN clock is a direct target for disruptive effects of ethanol on photic shifting. Such actions by ethanol could underlie the disruptive effects of alcohol abuse on behavioral, physiological, and endocrine rhythms associated with alcoholism. PMID:21463340

  8. Consensus Modeling of Oral Rat Acute Toxicity

    EPA Science Inventory

    An acute toxicity dataset (oral rat LD50) with about 7400 compounds was compiled from the ChemIDplus database. This dataset was divided into a modeling set and a prediction set. The compounds in the prediction set were selected so that they were present in the modeling set used...

  9. Zebrafish Models for Human Acute Organophosphorus Poisoning.

    PubMed

    Faria, Melissa; Garcia-Reyero, Natàlia; Padrós, Francesc; Babin, Patrick J; Sebastián, David; Cachot, Jérôme; Prats, Eva; Arick Ii, Mark; Rial, Eduardo; Knoll-Gellida, Anja; Mathieu, Guilaine; Le Bihanic, Florane; Escalon, B Lynn; Zorzano, Antonio; Soares, Amadeu M V M; Raldúa, Demetrio

    2015-10-22

    Terrorist use of organophosphorus-based nerve agents and toxic industrial chemicals against civilian populations constitutes a real threat, as demonstrated by the terrorist attacks in Japan in the 1990 s or, even more recently, in the Syrian civil war. Thus, development of more effective countermeasures against acute organophosphorus poisoning is urgently needed. Here, we have generated and validated zebrafish models for mild, moderate and severe acute organophosphorus poisoning by exposing zebrafish larvae to different concentrations of the prototypic organophosphorus compound chlorpyrifos-oxon. Our results show that zebrafish models mimic most of the pathophysiological mechanisms behind this toxidrome in humans, including acetylcholinesterase inhibition, N-methyl-D-aspartate receptor activation, and calcium dysregulation as well as inflammatory and immune responses. The suitability of the zebrafish larvae to in vivo high-throughput screenings of small molecule libraries makes these models a valuable tool for identifying new drugs for multifunctional drug therapy against acute organophosphorus poisoning.

  10. Zebrafish Models for Human Acute Organophosphorus Poisoning.

    PubMed

    Faria, Melissa; Garcia-Reyero, Natàlia; Padrós, Francesc; Babin, Patrick J; Sebastián, David; Cachot, Jérôme; Prats, Eva; Arick Ii, Mark; Rial, Eduardo; Knoll-Gellida, Anja; Mathieu, Guilaine; Le Bihanic, Florane; Escalon, B Lynn; Zorzano, Antonio; Soares, Amadeu M V M; Raldúa, Demetrio

    2015-01-01

    Terrorist use of organophosphorus-based nerve agents and toxic industrial chemicals against civilian populations constitutes a real threat, as demonstrated by the terrorist attacks in Japan in the 1990 s or, even more recently, in the Syrian civil war. Thus, development of more effective countermeasures against acute organophosphorus poisoning is urgently needed. Here, we have generated and validated zebrafish models for mild, moderate and severe acute organophosphorus poisoning by exposing zebrafish larvae to different concentrations of the prototypic organophosphorus compound chlorpyrifos-oxon. Our results show that zebrafish models mimic most of the pathophysiological mechanisms behind this toxidrome in humans, including acetylcholinesterase inhibition, N-methyl-D-aspartate receptor activation, and calcium dysregulation as well as inflammatory and immune responses. The suitability of the zebrafish larvae to in vivo high-throughput screenings of small molecule libraries makes these models a valuable tool for identifying new drugs for multifunctional drug therapy against acute organophosphorus poisoning. PMID:26489395

  11. Zebrafish Models for Human Acute Organophosphorus Poisoning

    PubMed Central

    Faria, Melissa; Garcia-Reyero, Natàlia; Padrós, Francesc; Babin, Patrick J.; Sebastián, David; Cachot, Jérôme; Prats, Eva; Arick II, Mark; Rial, Eduardo; Knoll-Gellida, Anja; Mathieu, Guilaine; Le Bihanic, Florane; Escalon, B. Lynn; Zorzano, Antonio; Soares, Amadeu M.V.M; Raldúa, Demetrio

    2015-01-01

    Terrorist use of organophosphorus-based nerve agents and toxic industrial chemicals against civilian populations constitutes a real threat, as demonstrated by the terrorist attacks in Japan in the 1990 s or, even more recently, in the Syrian civil war. Thus, development of more effective countermeasures against acute organophosphorus poisoning is urgently needed. Here, we have generated and validated zebrafish models for mild, moderate and severe acute organophosphorus poisoning by exposing zebrafish larvae to different concentrations of the prototypic organophosphorus compound chlorpyrifos-oxon. Our results show that zebrafish models mimic most of the pathophysiological mechanisms behind this toxidrome in humans, including acetylcholinesterase inhibition, N-methyl-D-aspartate receptor activation, and calcium dysregulation as well as inflammatory and immune responses. The suitability of the zebrafish larvae to in vivo high-throughput screenings of small molecule libraries makes these models a valuable tool for identifying new drugs for multifunctional drug therapy against acute organophosphorus poisoning. PMID:26489395

  12. Humanized Mouse Models of HIV Infection

    PubMed Central

    Denton, Paul W.; Garcia, J. Victor

    2013-01-01

    Because of the limited tropism of HIV, in vivo modeling of this virus has been almost exclusively limited to other lentiviruses such as SIV that reproduce many important characteristics of HIV infection. However, there are significant genetic and biological differences among lentiviruses and some HIV-specific interventions are not effective against other lentiviruses in non-human hosts. For these reasons much emphasis has recently been placed on developing alternative animal models that support HIV replication and recapitulate key aspects of HIV infection and pathogenesis in humans. Humanized mice, CD34+ hematopoietic progenitor cell transplanted immunodeficient mice and in particular mice also implanted with human thymic/liver tissue (BLT mice) that develop a functional human immune system, have been the focus of a great deal of attention as possible models to study virtually all aspects of HIV biology and pathogenesis. Humanized mice are systemically reconstituted with human lymphoid cells offering rapid, reliable and reproducible experimental systems for HIV research. Peripheral blood of humanized mice can be readily sampled longitudinally to assess reconstitution with human cells and to monitor HIV replication permitting the evaluation of multiple parameters of HIV infection such as viral load levels, CD4+ T cell depletion, immune activation, as well as the effects of therapeutic interventions. Of high relevance to HIV transmission is the extensive characterization and validation of the reconstitution with human lymphoid cells of the female reproductive tract and of the gastrointestinal tract of humanized BLT mice that renders them susceptible to both vaginal and rectal HIV infection. Other important attributes of all types of humanized mice include: 1) their small size and cost that make them broadly accessible; 2) multiple cohorts of humanized mice can be made from multiple human donors and each cohort has identical human cells, permitting control of

  13. Glucose-Stimulated Calcium Dynamics in Islets of Langerhans in Acute Mouse Pancreas Tissue Slices

    PubMed Central

    Stožer, Andraž; Dolenšek, Jurij; Rupnik, Marjan Slak

    2013-01-01

    In endocrine cells within islets of Langerhans calcium ions couple cell stimulation to hormone secretion. Since the advent of modern fluorimetry, numerous in vitro studies employing primarily isolated mouse islets have investigated the effects of various secretagogues on cytoplasmic calcium, predominantly in insulin-secreting beta cells. Due to technical limitations, insights of these studies are inherently limited to a rather small subpopulation of outermost cells. The results also seem to depend on various factors, like culture conditions and duration, and are not always easily reconcilable with findings in vivo. The main controversies regard the types of calcium oscillations, presence of calcium waves, and the level of synchronized activity. Here, we set out to combine the in situ acute mouse pancreas tissue slice preparation with noninvasive fluorescent calcium labeling and subsequent confocal laser scanning microscopy to shed new light on the existing controversies utilizing an innovative approach enabling the characterization of responses in many cells from all layers of islets. Our experiments reproducibly showed stable fast calcium oscillations on a sustained plateau rather than slow oscillations as the predominant type of response in acute tissue slices, and that calcium waves are the mechanistic substrate for synchronization of oscillations. We also found indirect evidence that even a large amplitude calcium signal was not sufficient and that metabolic activation was necessary to ensure cell synchronization upon stimulation with glucose. Our novel method helped resolve existing controversies and showed the potential to help answer important physiological questions, making it one of the methods of choice for the foreseeable future. PMID:23358454

  14. Novel mouse models for understanding HIV-1 pathogenesis.

    PubMed

    Joseph, Aviva; Sango, Kaori; Goldstein, Harris

    2009-01-01

    Small animal models in which in vivo HIV-1 infection, pathogenesis, and immune responses can be studied would permit both basic research on the biology of the disease, as well as a system to rapidly screen developmental therapeutics and/or vaccines. To date, the most widely-used models have been the severe combined immunodeficient (SCID)-hu (also known as the thy/liv SCID-hu) and the huPBL-SCID mouse models. Recently three new models have emerged, i.e., the intrasplenic huPBL/SPL-SCID model, the NOD/SCID/IL2Rgamma(null) mouse model, and the Rag2(-/-)gamma(c) (-/-) mouse model. Details on the construction, maintenance and HIV-1 infection of these models are discussed.

  15. Genetically modified mouse models in studies of luteinising hormone action.

    PubMed

    Huhtaniemi, Ilpo; Ahtiainen, Petteri; Pakarainen, Tomi; Rulli, Susana B; Zhang, Fu-Ping; Poutanen, Matti

    2006-06-27

    Numerous genetically modified mouse models have recently been developed for the study of the pituitary-gonadal interactions. They include spontaneous or engineered knockouts (KO) of the gonadotrophin-releasing hormone (GnRH) and its receptor, the gonadotrophin common-alpha(Calpha), luteinising hormone (LH) beta and follicle-stimulating hormone (FSH) beta subunits, and the two gonadotrophin receptors (R), LHR and FSHR. In addition, there are also transgenic (TG) mice overexpressing gonadotrophin subunits and producing supraphysiological levels of these hormones. These models have offered relevant phenocopies for similar mutations in humans and to a great extent expanded our knowledge on normal and pathological functions of the hypothalamic-pituitary-gonadal (HPG) axis. The purpose of this article is to review some of our recent findings on two such mouse models, the LHR KO mouse (LuRKO), and the hCG overexpressing TG mouse (hCG+).

  16. Oral or parenteral administration of curcumin does not prevent the growth of high-risk t(4;11) acute lymphoblastic leukemia cells engrafted into a NOD/SCID mouse model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficacy of orally and parenterally administered curcumin was evaluated in NOD.CB17-Prkdcscid/J mice engrafted with the human t(4;11) acute lymphoblastic leukemia line SEM. SEM cells were injected into the tail vein and engraftment was monitored by flow cytometry. Once engraftment was observed...

  17. Normothermic Mouse Functional MRI of Acute Focal Thermostimulation for Probing Nociception

    NASA Astrophysics Data System (ADS)

    Reimann, Henning Matthias; Hentschel, Jan; Marek, Jaroslav; Huelnhagen, Till; Todiras, Mihail; Kox, Stefanie; Waiczies, Sonia; Hodge, Russ; Bader, Michael; Pohlmann, Andreas; Niendorf, Thoralf

    2016-01-01

    Combining mouse genomics and functional magnetic resonance imaging (fMRI) provides a promising tool to unravel the molecular mechanisms of chronic pain. Probing murine nociception via the blood oxygenation level-dependent (BOLD) effect is still challenging due to methodological constraints. Here we report on the reproducible application of acute noxious heat stimuli to examine the feasibility and limitations of functional brain mapping for central pain processing in mice. Recent technical and procedural advances were applied for enhanced BOLD signal detection and a tight control of physiological parameters. The latter includes the development of a novel mouse cradle designed to maintain whole-body normothermia in anesthetized mice during fMRI in a way that reflects the thermal status of awake, resting mice. Applying mild noxious heat stimuli to wildtype mice resulted in highly significant BOLD patterns in anatomical brain structures forming the pain matrix, which comprise temporal signal intensity changes of up to 6% magnitude. We also observed sub-threshold correlation patterns in large areas of the brain, as well as alterations in mean arterial blood pressure (MABP) in response to the applied stimulus.

  18. Normothermic Mouse Functional MRI of Acute Focal Thermostimulation for Probing Nociception

    PubMed Central

    Reimann, Henning Matthias; Hentschel, Jan; Marek, Jaroslav; Huelnhagen, Till; Todiras, Mihail; Kox, Stefanie; Waiczies, Sonia; Hodge, Russ; Bader, Michael; Pohlmann, Andreas; Niendorf, Thoralf

    2016-01-01

    Combining mouse genomics and functional magnetic resonance imaging (fMRI) provides a promising tool to unravel the molecular mechanisms of chronic pain. Probing murine nociception via the blood oxygenation level-dependent (BOLD) effect is still challenging due to methodological constraints. Here we report on the reproducible application of acute noxious heat stimuli to examine the feasibility and limitations of functional brain mapping for central pain processing in mice. Recent technical and procedural advances were applied for enhanced BOLD signal detection and a tight control of physiological parameters. The latter includes the development of a novel mouse cradle designed to maintain whole-body normothermia in anesthetized mice during fMRI in a way that reflects the thermal status of awake, resting mice. Applying mild noxious heat stimuli to wildtype mice resulted in highly significant BOLD patterns in anatomical brain structures forming the pain matrix, which comprise temporal signal intensity changes of up to 6% magnitude. We also observed sub-threshold correlation patterns in large areas of the brain, as well as alterations in mean arterial blood pressure (MABP) in response to the applied stimulus. PMID:26821826

  19. System parameters for erythropoiesis control model: Comparison of normal values in human and mouse model

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The computer model for erythropoietic control was adapted to the mouse system by altering system parameters originally given for the human to those which more realistically represent the mouse. Parameter values were obtained from a variety of literature sources. Using the mouse model, the mouse was studied as a potential experimental model for spaceflight. Simulation studies of dehydration and hypoxia were performed. A comparison of system parameters for the mouse and human models is presented. Aside from the obvious differences expected in fluid volumes, blood flows and metabolic rates, larger differences were observed in the following: erythrocyte life span, erythropoietin half-life, and normal arterial pO2.

  20. Behavioral phenotypes of genetic mouse models of autism.

    PubMed

    Kazdoba, T M; Leach, P T; Crawley, J N

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism.

  1. Behavioral phenotypes of genetic mouse models of autism

    PubMed Central

    Kazdoba, T. M.; Leach, P. T.; Crawley, J. N.

    2016-01-01

    More than a hundred de novo single gene mutations and copy-number variants have been implicated in autism, each occurring in a small subset of cases. Mutant mouse models with syntenic mutations offer research tools to gain an understanding of the role of each gene in modulating biological and behavioral phenotypes relevant to autism. Knockout, knockin and transgenic mice incorporating risk gene mutations detected in autism spectrum disorder and comorbid neurodevelopmental disorders are now widely available. At present, autism spectrum disorder is diagnosed solely by behavioral criteria. We developed a constellation of mouse behavioral assays designed to maximize face validity to the types of social deficits and repetitive behaviors that are central to an autism diagnosis. Mouse behavioral assays for associated symptoms of autism, which include cognitive inflexibility, anxiety, hyperactivity, and unusual reactivity to sensory stimuli, are frequently included in the phenotypic analyses. Over the past 10 years, we and many other laboratories around the world have employed these and additional behavioral tests to phenotype a large number of mutant mouse models of autism. In this review, we highlight mouse models with mutations in genes that have been identified as risk genes for autism, which work through synaptic mechanisms and through the mTOR signaling pathway. Robust, replicated autism-relevant behavioral outcomes in a genetic mouse model lend credence to a causal role for specific gene contributions and downstream biological mechanisms in the etiology of autism. PMID:26403076

  2. Development and testing of a mouse simulated space flight model

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1987-01-01

    The development and testing of a mouse model for simulating some aspects of weightlessness that occurs during space flight, and the carrying out of immunological experiments on animals undergoing space flight is examined. The mouse model developed was an antiorthostatic, hypokinetic, hypodynamic suspension model similar to one used with rats. The study was divided into two parts. The first involved determination of which immunological parameters should be observed on animals flown during space flight or studied in the suspension model. The second involved suspending mice and determining which of those immunological parameters were altered by the suspension. Rats that were actually flown in Space Shuttle SL-3 were used to test the hypotheses.

  3. Uterine disorders and pregnancy complications: insights from mouse models

    PubMed Central

    Lim, Hyunjung Jade; Wang, Haibin

    2010-01-01

    Much of our knowledge of human uterine physiology and pathology has been extrapolated from the study of diverse animal models, as there is no ideal system for studying human uterine biology in vitro. Although it remains debatable whether mouse models are the most suitable system for investigating human uterine function(s), gene-manipulated mice are considered by many the most useful tool for mechanistic analysis, and numerous studies have identified many similarities in female reproduction between the two species. This Review brings together information from studies using animal models, in particular mouse models, that shed light on normal and pathologic aspects of uterine biology and pregnancy complications. PMID:20364098

  4. PDE-4 inhibition rescues aberrant synaptic plasticity in Drosophila and mouse models of fragile X syndrome.

    PubMed

    Choi, Catherine H; Schoenfeld, Brian P; Weisz, Eliana D; Bell, Aaron J; Chambers, Daniel B; Hinchey, Joseph; Choi, Richard J; Hinchey, Paul; Kollaros, Maria; Gertner, Michael J; Ferrick, Neal J; Terlizzi, Allison M; Yohn, Nicole; Koenigsberg, Eric; Liebelt, David A; Zukin, R Suzanne; Woo, Newton H; Tranfaglia, Michael R; Louneva, Natalia; Arnold, Steven E; Siegel, Steven J; Bolduc, Francois V; McDonald, Thomas V; Jongens, Thomas A; McBride, Sean M J

    2015-01-01

    Fragile X syndrome (FXS) is the leading cause of both intellectual disability and autism resulting from a single gene mutation. Previously, we characterized cognitive impairments and brain structural defects in a Drosophila model of FXS and demonstrated that these impairments were rescued by treatment with metabotropic glutamate receptor (mGluR) antagonists or lithium. A well-documented biochemical defect observed in fly and mouse FXS models and FXS patients is low cAMP levels. cAMP levels can be regulated by mGluR signaling. Herein, we demonstrate PDE-4 inhibition as a therapeutic strategy to ameliorate memory impairments and brain structural defects in the Drosophila model of fragile X. Furthermore, we examine the effects of PDE-4 inhibition by pharmacologic treatment in the fragile X mouse model. We demonstrate that acute inhibition of PDE-4 by pharmacologic treatment in hippocampal slices rescues the enhanced mGluR-dependent LTD phenotype observed in FXS mice. Additionally, we find that chronic treatment of FXS model mice, in adulthood, also restores the level of mGluR-dependent LTD to that observed in wild-type animals. Translating the findings of successful pharmacologic intervention from the Drosophila model into the mouse model of FXS is an important advance, in that this identifies and validates PDE-4 inhibition as potential therapeutic intervention for the treatment of individuals afflicted with FXS.

  5. What have we learned from brucellosis in the mouse model?

    PubMed Central

    2012-01-01

    Brucellosis is a zoonosis caused by Brucella species. Brucellosis research in natural hosts is often precluded by practical, economical and ethical reasons and mice are widely used. However, mice are not natural Brucella hosts and the course of murine brucellosis depends on bacterial strain virulence, dose and inoculation route as well as breed, genetic background, age, sex and physiological statu of mice. Therefore, meaningful experiments require a definition of these variables. Brucella spleen replication profiles are highly reproducible and course in four phases: i), onset or spleen colonization (first 48 h); ii), acute phase, from the third day to the time when bacteria reach maximal numbers; iii), chronic steady phase, where bacterial numbers plateaus; and iv), chronic declining phase, during which brucellae are eliminated. This pattern displays clear physiopathological signs and is sensitive to small virulence variations, making possible to assess attenuation when fully virulent bacteria are used as controls. Similarly, immunity studies using mice with known defects are possible. Mutations affecting INF-γ, TLR9, Myd88, Tγδ and TNF-β favor Brucella replication; whereas IL-1β, IL-18, TLR4, TLR5, TLR2, NOD1, NOD2, GM-CSF, IL/17r, Rip2, TRIF, NK or Nramp1 deficiencies have no noticeable effects. Splenomegaly development is also useful: it correlates with IFN-γ and IL-12 levels and with Brucella strain virulence. The genetic background is also important: Brucella-resistant mice (C57BL) yield lower splenic bacterial replication and less splenomegaly than susceptible breeds. When inoculum is increased, a saturating dose above which bacterial numbers per organ do not augment, is reached. Unlike many gram-negative bacteria, lethal doses are large (≥ 108 bacteria/mouse) and normally higher than the saturating dose. Persistence is a useful virulence/attenuation index and is used in vaccine (Residual Virulence) quality control. Vaccine candidates are also often

  6. Mouse Models for Assessing Protein Immunogenicity: Lessons and Challenges.

    PubMed

    Jiskoot, Wim; Kijanka, Grzegorz; Randolph, Theodore W; Carpenter, John F; Koulov, Atanas V; Mahler, Hanns-Christian; Joubert, Marisa K; Jawa, Vibha; Narhi, Linda O

    2016-05-01

    The success of clinical and commercial therapeutic proteins is rapidly increasing, but their potential immunogenicity is an ongoing concern. Most of the studies that have been conducted over the past few years to examine the importance of various product-related attributes (in particular several types of aggregates and particles) and treatment regimen (such as dose, dosing schedule, and route of administration) in the development of unwanted immune responses have utilized one of a variety of mouse models. In this review, we discuss the utility and drawbacks of different mouse models that have been used for this purpose. Moreover, we summarize the lessons these models have taught us and some of the challenges they present. Finally, we provide recommendations for future research utilizing mouse models to improve our understanding of critical factors that may contribute to protein immunogenicity. PMID:27044944

  7. Mouse models for understanding human developmental anomalies

    SciTech Connect

    Generoso, W.M.

    1989-01-01

    The mouse experimental system presents an opportunity for studying the nature of the underlying mutagenic damage and the molecular pathogenesis of this class of anomalies by virtue of the accessibility of the zygote and its descendant blastomeres. Such studies could contribute to the understanding of the etiology of certain sporadic but common human malformations. The vulnerability of the zygotes to mutagens as demonstrated in the studies described in this report should be a major consideration in chemical safety evaluation. It raises questions regarding the danger to human zygotes when the mother is exposed to drugs and environmental chemicals.

  8. Artificial rearing of mouse pups: development of a mouse pup in a cup model.

    PubMed

    Beierle, Elizabeth A; Chen, Mike K; Hartwich, Joseph E; Iyengar, Meera; Dai, Wei; Li, Nan; Demarco, Vince; Neu, Josef

    2004-08-01

    Artificial rearing of rat pups has been used in the investigation of the neonatal gut. We propose to adapt the model of artificially rearing rat pups for use in mouse pups, thereby allowing the use of transgenic animals for our research. We hypothesized that gastrostomy catheters may be placed successfully into neonatal mouse pups and that the pups may be artificially reared without significant alterations in their growth or intestinal development. Gastrostomy tubes are placed into 5-d-old mouse pups [artificially reared (AR); n = 32], and the mice are fed rodent milk substitute. Littermate pups [maternally reared (MR); n = 22] are used as controls. After 5 d, pups are killed and their organs are harvested. Intestinal villus measurements, protein content, and DNA content are determined. Data are reported as mean +/- SEM, compared with appropriate statistical methods, and significance is determined at P < 0.05. Initial weights and lengths are not different between the two groups, but after 5 d, MR pups weigh more than their AR counterparts (5.0 +/- 0.13 versus 4.1 +/- 0.14 g, MR versus AR; P < 0.01). However, the pups' length and the intestinal villus height-to-width ratios, protein, and DNA content are not different between the MR and AR pups. To our knowledge, this is the first report of artificially rearing mouse pups. Development of this technique will permit nutritional manipulation in neonatal mice, a mammalian model wherein the genome is sequenced and transgenic mutants are available.

  9. Mouse models of primary Sjögren’s syndrome

    PubMed Central

    Park, Young-Seok; Gauna, Adrienne E.; Cha, Seunghee

    2015-01-01

    Sjögren’s syndrome (SjS) is a chronic autoimmune disorder characterized by immune cell infiltration and progressive injury to the salivary and lacrimal glands. As a consequence, patients with SjS develop xerostomia (dry mouth) and keratoconjunctivitis sicca (dry eyes). SjS is the third most common rheumatic autoimmune disorder, affecting 4 million Americans with over 90% of patients being female. Current diagnostic criteria for SjS frequently utilize histological examinations of minor salivary glands for immune cell foci, serology for autoantibodies, and dry eye evaluation by corneal or conjunctival staining. SjS can be classified as primary or secondary SjS, depending on whether it occurs alone or in association with other systemic rheumatic conditions, respectively. Clinical manifestations typically become apparent when the disease is relatively advanced in SjS patients, which poses a challenge for early diagnosis and treatment of SjS. Therefore, SjS mouse models, because of their close resemblance to the human SjS, have been extremely valuable to identify early disease markers and to investigate underlying biological and immunological dysregulations. However, it is important to bear in mind that no single mouse model has duplicated all aspects of SjS pathogenesis and clinical features, mainly due to the multifactorial etiology of SjS that includes numerous susceptibility genes and environmental factors. As such, various mouse models have been developed in the field to try to recapitulate SjS. In this review, we focus on recent mouse models of primary SjS and describe them under three categories of spontaneous, genetically engineered, and experimentally induced development of SjS-like disease. In addition, we discuss future perspectives of SjS mouse models highlighting pros and cons of utilizing mouse models and demands for improved models. PMID:25777752

  10. Radiation Dose-Rate Effects on Gene Expression in a Mouse Biodosimetry Model

    PubMed Central

    Paul, Sunirmal; Smilenov, Lubomir B.; Elliston, Carl D.; Amundson, Sally A.

    2015-01-01

    In the event of a nuclear accident or radiological terrorist attack, there will be a pressing need for biodosimetry to triage a large, potentially exposed population and to assign individuals to appropriate treatment. Exposures from fallout are likely, resulting in protracted dose delivery that would, in turn, impact the extent of injury. Biodosimetry approaches that can distinguish such low-dose-rate (LDR) exposures from acute exposures have not yet been developed. In this study, we used the C57BL/6 mouse model in an initial investigation of the impact of low-dose-rate delivery on the transcriptomic response in blood. While a large number of the same genes responded to LDR and acute radiation exposures, for many genes the magnitude of response was lower after LDR exposures. Some genes, however, were differentially expressed (P < 0.001, false discovery rate < 5%) in mice exposed to LDR compared with mice exposed to acute radiation. We identified a set of 164 genes that correctly classified 97% of the samples in this experiment as exposed to acute or LDR radiation using a support vector machine algorithm. Gene expression is a promising approach to radiation biodosimetry, enhanced greatly by this first demonstration of its potential for distinguishing between acute and LDR exposures. Further development of this aspect of radiation biodosimetry, either as part of a complete gene expression biodosimetry test or as an adjunct to other methods, could provide vital triage information in a mass radiological casualty event. PMID:26114327

  11. Mouse Xenograft Model for Mesothelioma | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute is seeking parties interested in collaborative research to co-develop, evaluate, or commercialize a new mouse model for monoclonal antibodies and immunoconjugates that target malignant mesotheliomas. Applications of the technology include models for screening compounds as potential therapeutics for mesothelioma and for studying the pathology of mesothelioma.

  12. Generating Transgenic Mouse Models for Studying Celiac Disease.

    PubMed

    Ju, Josephine M; Marietta, Eric V; Murray, Joseph A

    2015-01-01

    This chapter provides a brief overview of current animal models for studying celiac disease, with a focus on generating HLA transgenic mouse models. Human Leukocyte Antigen class II molecules have been a particular target for transgenic mice due to their tight association with celiac disease, and a number of murine models have been developed which had the endogenous MHC class II genes replaced with insertions of disease susceptible HLA class II alleles DQ2 or DQ8. Additionally, transgenic mice that overexpress interleukin-15 (IL-15), a key player in the inflammatory cascade that leads to celiac disease, have also been generated to model a state of chronic inflammation. To explore the contribution of specific bacteria in gluten-sensitive enteropathy, the nude mouse and rat models have been studied in germ-free facilities. These reductionist mouse models allow us to address single factors thought to have crucial roles in celiac disease. No single model has incorporated all of the multiple factors that make up celiac disease. Rather, these mouse models can allow the functional interrogation of specific components of the many stages of, and contributions to, the pathogenic mechanisms that will lead to gluten-dependent enteropathy. Overall, the tools for animal studies in celiac disease are many and varied, and provide ample space for further creativity as well as to characterize the complete and complex pathogenesis of celiac disease.

  13. Influence of radiation quality on mouse chromosome 2 deletions in radiation-induced acute myeloid leukaemia.

    PubMed

    Brown, Natalie; Finnon, Rosemary; Manning, Grainne; Bouffler, Simon; Badie, Christophe

    2015-11-01

    Leukaemia is the prevailing neoplastic disorder of the hematopoietic system. Epidemiological analyses of the survivors of the Japanese atomic bombings show that exposure to ionising radiation (IR) can cause leukaemia. Although a clear association between radiation exposure and leukaemia development is acknowledged, the underlying mechanisms remain incompletely understood. A hemizygous deletion on mouse chromosome 2 (del2) is a common feature in several mouse strains susceptible to radiation-induced acute myeloid leukaemia (rAML). The deletion is an early event detectable 24h after exposure in bone marrow cells. Ultimately, 15-25% of exposed animals develop AML with 80-90% of cases carrying del2. Molecular mapping of leukaemic cell genomes identified a minimal deleted region (MDR) on chromosome 2 (chr2) in which a tumour suppressor gene, Sfpi1 is located, encoding the transcription factor PU.1, essential in haematopoiesis. The remaining copy of Sfpi1 has a point mutation in the coding sequence for the DNA-binding domain of the protein in 70% of rAML, which alters a single CpG sequence in the codon for arginine residue R235. In order to identify chr2 deletions and Sfpi.1/PU.1 loss, we performed array comparative genomic hybridization (aCGH) on a unique panel of 79rAMLs. Using a custom made CGH array specifically designed for mouse chr2, we analysed at unprecedentedly high resolution (1.4M array- 148bp resolution) the size of the MDR in low LET and high-LET induced rAMLs (32 X-ray- and 47 neutron-induced). Sequencing of Sfpi1/PU.1DNA binding domain identified the presence of R235 point mutations, showing no influence of radiation quality on R235 type or frequency. We identified for the first time rAML cases with complex del2 in a subset of neutron-induced AMLs. This study allowed us to re-define the MDR to a much smaller 5.5Mb region (still including Sfpi1/PU.1), identical regardless of radiation quality.

  14. Combined effects of social stress and liver fluke infection in a mouse model.

    PubMed

    Avgustinovich, Damira F; Marenina, Mariya K; Zhanaeva, Svetlana Ya; Tenditnik, Mikhail V; Katokhin, Alexey V; Pavlov, Konstantin S; Sivkov, Anton Yu; Vishnivetskaya, Galina B; Lvova, Maria N; Tolstikova, Tatiana G; Mordvinov, Viatcheslav A

    2016-03-01

    The effects of two influences, social stress and acute opisthorchiasis, were investigated in inbred C57BL/6J male mice. In the model of social stress, mice were repeatedly attacked and defeated by aggressive outbred ICR male mice and were in continuous sensory contact with an aggressive conspecific mouse in their home cage for 20 days. Acute opisthorchiasis was provoked by invasion of Opisthorchis felineus (50 larvae per animal) on the fourth day after the social stress was induced. Simultaneous action of both factors caused the hypertrophy of adrenal glands, as well as elevated the activity of cathepsins B and L in the spleen. This effect on the activity of the cysteine proteases in the hippocampus and hypothalamus following O. felineus invasion was the predominant result of simultaneous action with social stress. Acute opisthorchiasis, social stress, and their combination caused an increase in the level of blood IL-6 in approximately 30% of the animals. Social stress induced a more pronounced effect on mouse plus-maze behavior than O. felineus invasion. Our results suggest a more severe negative effect of the simultaneous influence of both factors on most of the parameters that were investigated. PMID:26778779

  15. Combined effects of social stress and liver fluke infection in a mouse model.

    PubMed

    Avgustinovich, Damira F; Marenina, Mariya K; Zhanaeva, Svetlana Ya; Tenditnik, Mikhail V; Katokhin, Alexey V; Pavlov, Konstantin S; Sivkov, Anton Yu; Vishnivetskaya, Galina B; Lvova, Maria N; Tolstikova, Tatiana G; Mordvinov, Viatcheslav A

    2016-03-01

    The effects of two influences, social stress and acute opisthorchiasis, were investigated in inbred C57BL/6J male mice. In the model of social stress, mice were repeatedly attacked and defeated by aggressive outbred ICR male mice and were in continuous sensory contact with an aggressive conspecific mouse in their home cage for 20 days. Acute opisthorchiasis was provoked by invasion of Opisthorchis felineus (50 larvae per animal) on the fourth day after the social stress was induced. Simultaneous action of both factors caused the hypertrophy of adrenal glands, as well as elevated the activity of cathepsins B and L in the spleen. This effect on the activity of the cysteine proteases in the hippocampus and hypothalamus following O. felineus invasion was the predominant result of simultaneous action with social stress. Acute opisthorchiasis, social stress, and their combination caused an increase in the level of blood IL-6 in approximately 30% of the animals. Social stress induced a more pronounced effect on mouse plus-maze behavior than O. felineus invasion. Our results suggest a more severe negative effect of the simultaneous influence of both factors on most of the parameters that were investigated.

  16. Mouse Models of Neurofibromatosis 1 and 21

    PubMed Central

    Gutmann, David H; Giovannini, Marco

    2002-01-01

    Abstract The neurofibromatoses represent two of the most common inherited tumor predisposition syndromes affecting the nervous system. Individuals with neurofibromatosis 1 (NF1) are prone to the development of astrocytomas and peripheral nerve sheath tumors whereas those affected with neurofibromatosis 2 (NF2) develop schwannomas and meningiomas. The development of traditional homozygous knockout mice has provided insights into the roles of the NF1 and NF2 genes during development and in differentiation, but has been less instructive regarding the contribution of NF1 and NF2 dysfunction to the pathogenesis of specific benign and malignant tumors. Recent progress employing novel mouse targeting strategies has begun to illuminate the roles of the NF1 and NF2 gene products in the molecular pathogenesis of NF-associated tumors. PMID:12082543

  17. Mouse ataxin-3 functional knock-out model.

    PubMed

    Switonski, Pawel M; Fiszer, Agnieszka; Kazmierska, Katarzyna; Kurpisz, Maciej; Krzyzosiak, Wlodzimierz J; Figiel, Maciej

    2011-03-01

    Spinocerebellar ataxia 3 (SCA3) is a genetic disorder resulting from the expansion of the CAG repeats in the ATXN3 gene. The pathogenesis of SCA3 is based on the toxic function of the mutant ataxin-3 protein, but the exact mechanism of the disease remains elusive. Various types of transgenic mouse models explore different aspects of SCA3 pathogenesis, but a knock-in humanized mouse has not yet been created. The initial aim of this study was to generate an ataxin-3 humanized mouse model using a knock-in strategy. The human cDNA for ataxin-3 containing 69 CAG repeats was cloned from SCA3 patient and introduced into the mouse ataxin-3 locus at exon 2, deleting it along with exon 3 and intron 2. Although the human transgene was inserted correctly, the resulting mice acquired the knock-out properties and did not express ataxin-3 protein in any analyzed tissues, as confirmed by western blot and immunohistochemistry. Analyses of RNA expression revealed that the entire locus consisting of human and mouse exons was expressed and alternatively spliced. We detected mRNA isoforms composed of exon 1 spliced with mouse exon 4 or with human exon 7. After applying 37 PCR cycles, we also detected a very low level of the correct exon 1/exon 2 isoform. Additionally, we confirmed by bioinformatic analysis that the structure and power of the splicing site between mouse intron 1 and human exon 2 (the targeted locus) was not changed compared with the native mouse locus. We hypothesized that these splicing aberrations result from the deletion of further splicing sites and the presence of a strong splicing site in exon 4, which was confirmed by bioinformatic analysis. In summary, we created a functional ataxin-3 knock-out mouse model that is viable and fertile and does not present a reduced life span. Our work provides new insights into the splicing characteristics of the Atxn3 gene and provides useful information for future attempts to create knock-in SCA3 models.

  18. Differential effects of acute morphine administrations on polymorphonuclear cell metabolism in various mouse strains.

    PubMed

    Di Francesco, P; Tavazzi, B; Gaziano, R; Lazzarino, G; Casalinuovo, I A; Di Pierro, D; Garaci, E

    1998-01-01

    This paper shows that an acute morphine treatment dose-dependently alters the energetic and oxidative metabolism of polymorphonuclear leukocytes obtained from BALB/c and DBA/2 mice, while phagocytic cells from C57BL/6 were not affected. In sensitive mouse strains, i.e. BALB/c and DBA/2, morphine decreased both ATP concentration and energy charge potential. At the same time, ATP catabolic products, i.e. nucleosides (inosine+adenosine) and oxypurines (hypoxanthine+xanthine+uric acid), significantly increased, indicating an imbalance between energy production and consumption. Morphine treatment also induced malondialdehyde and superoxide anions production in leukocyte cells from sensitive mice. The opiate antagonist naloxone blocked morphine-induced modifications by the lower morphine dose. The same parameters in cells from C57BL/6 mice were not affected. These findings confirm that: i) the phagocytic cells are an important target for the in vivo effects of morphine, and ii) the genotype-dependent variation influences the immunological responsiveness to opiates.

  19. Genome-Wide Analysis of Acute Endurance Exercise-Induced Translational Regulation in Mouse Skeletal Muscle

    PubMed Central

    Sako, Hiroaki; Yada, Koichi; Suzuki, Katsuhiko

    2016-01-01

    Exercise dynamically changes skeletal muscle protein synthesis to respond and adapt to the external and internal stimuli. Many studies have focused on overall protein synthesis to understand how exercise regulates the muscular adaptation. However, despite the probability that each gene transcript may have its own unique translational characteristics and would be differentially regulated at translational level, little attention has been paid to how exercise affects translational regulation of individual genes at a genome-wide scale. Here, we conducted a genome-wide translational analysis using ribosome profiling to investigate the effect of a single bout of treadmill running (20 m/min for 60 min) on mouse gastrocnemius. Global translational profiles largely differed from those in transcription even at a basal resting condition as well as immediately after exercise. As for individual gene, Slc25a25 (Solute carrier family 25, member 25), localized in mitochondrial inner membrane and maintaining ATP homeostasis and endurance performance, showed significant up-regulation at translational level. However, multiple regression analysis suggests that Slc25a25 protein degradation may also have a role in mediating Slc25a25 protein abundance in the basal and early stages after acute endurance exercise. PMID:26845575

  20. Metabolomic Analysis of Mouse Embryonic Fibroblast Cells in Response to Autophagy Induced by Acute Starvation

    PubMed Central

    Shen, Sensen; Weng, Rui; Li, Linnan; Xu, Xinyuan; Bai, Yu; Liu, Huwei

    2016-01-01

    Autophagy-related protein 7 (Atg7) is essential in the formation of the autophagophore and is indispensable for autophagy induction. Autophagy will exist in lower level or even be blocked in cells without Atg7. Even though the possible signaling pathways of Atg7 have been proposed, the metabolomic responses under acute starvation in cells with and without Atg7 have not been elucidated. This study therefore was designed and aimed to reveal the metabolomics of Atg7-dependent autophagy through metabolomic analysis of Atg7−/− mouse embryonic fibroblast cells (MEFs) and wild-type MEFs along with the starvation time. 30 significantly altered metabolites were identified in response to nutrient stress, which were mainly associated with amino acid, energy, carbohydrate, and lipid metabolism. For the wild-type MEFs, the induction of autophagy protected cell survival with some up-regulated lipids during the first two hours’ starvation, while the subsequent apoptosis resulted in the decrease of cell viability after four hours’ starvation. For the Atg7−/− MEFs, apoptosis perhaps led to the deactivation of tricarboxylic acid (TCA) cycle due to the lack of autophagy, which resulted in the immediate drop of cellular viability under starvation. These results contributed to the metabolomic study and provided new insights into the mechanism associated with Atg7-dependent autophagy. PMID:27703171

  1. Foot Pad Skin Biopsy in Mouse Models of Hereditary Neuropathy

    PubMed Central

    Dacci, Patrizia; Dina, Giorgia; Cerri, Federica; Previtali, Stefano Carlo; Lopez, Ignazio Diego; Lauria, Giuseppe; Feltri, Maria Laura; Bolino, Alessandra; Comi, Giancarlo; Wrabetz, Lawrence; Quattrini, Angelo

    2010-01-01

    Numerous transgenic and knockout mouse models of human hereditary neuropathies have become available over the past decade. We describe a simple, reproducible, and safe biopsy of mouse skin for histopathological evaluation of the peripheral nervous system (PNS) in models of hereditary neuropathies. We compared the diagnostic outcome between sciatic nerve and dermal nerves found in skin biopsy (SB) from the hind foot. A total of five animal models of different Charcot-Marie-Tooth neuropathies, and one model of congenital muscular dystrophy associated neuropathy were examined. In wild type mice, dermal nerve fibers were readily identified by immunohistochemistry, light, and electron microscopy and they appeared similar to myelinated fibers in sciatic nerve. In mutant mice, SB manifested myelin abnormalities similar to those observed in sciatic nerves, including hypomyelination, onion bulbs, myelin outfolding, redundant loops, and tomacula. In many strains, however, SB showed additional abnormalities—fiber loss, dense neurofilament packing with lower phosphorylation status, and axonal degeneration—undetected in sciatic nerve, possibly because SB samples distal nerves. SB, a reliable technique to investigate peripheral neuropathies in human beings, is also useful to investigate animal models of hereditary neuropathies. Our data indicate that SB may reveal distal axonal pathology in mouse models and permits sequential follow-up of the neuropathy in an individual mouse, thereby reducing the number of mice necessary to document pathology of the PNS. © 2010 Wiley-Liss, Inc. PMID:20878767

  2. From transplantation to transgenics: mouse models of developmental hematopoiesis.

    PubMed

    Schmitt, Christopher E; Lizama, Carlos O; Zovein, Ann C

    2014-08-01

    The mouse is integral to our understanding of hematopoietic biology. Serving as a mammalian model system, the mouse has allowed for the discovery of self-renewing multipotent stem cells, provided functional assays to establish hematopoietic stem cell identity and function, and has become a tool for understanding the differentiation capacity of early hematopoietic progenitors. The advent of genetic technology has strengthened the use of mouse models for identifying critical pathways in hematopoiesis. Full genetic knockout models, tissue-specific gene deletion, and genetic overexpression models create a system for the dissection and identification of critical cellular and genetic processes underlying hematopoiesis. However, the murine model has also introduced perplexity in understanding developmental hematopoiesis. Requisite in utero development paired with circulation has historically made defining sites of origin and expansion in the murine hematopoietic system challenging. However, the genetic accessibility of the mouse as a mammalian system has identified key regulators of hematopoietic development. Technological advances continue to generate extremely powerful tools that when translated to the murine system provide refined in vivo spatial and temporal control of genetic deletion or overexpression. Future advancements may add the ability of reversible genetic manipulation. In this review, we describe the major contributions of the murine model to our understanding of hematopoiesis.

  3. Prognostic modeling in pediatric acute liver failure.

    PubMed

    Jain, Vandana; Dhawan, Anil

    2016-10-01

    Liver transplantation (LT) is the only proven treatment for pediatric acute liver failure (PALF). However, over a period of time, spontaneous native liver survival is increasingly reported, making us wonder if we are overtransplanting children with acute liver failure (ALF). An effective prognostic model for PALF would help direct appropriate organ allocation. Only patients who would die would undergo LT, and those who would spontaneously recover would avoid unnecessary LT. Deriving and validating such a model for PALF, however, encompasses numerous challenges. In particular, the heterogeneity of age and etiology in PALF, as well as a lack of understanding of the natural history of the disease, contributed by the availability of LT has led to difficulties in prognostic model development. Several prognostic laboratory variables have been identified, and the incorporation of these variables into scoring systems has been attempted. A reliable targeted prognostic model for ALF in Wilson's disease has been established and externally validated. The roles of physiological, immunological, and metabolomic parameters in prognosis are being investigated. This review discusses the challenges with prognostic modeling in PALF and describes predictive methods that are currently available and in development for the future. Liver Transplantation 22 1418-1430 2016 AASLD. PMID:27343006

  4. Biosimulation of Acute Phonotrauma: an Extended Model

    PubMed Central

    Li, Nicole YK; Vodovotz, Yoram; Kim, Kevin H; Mi, Qi; Hebda, Patricia A; Abbott, Katherine Verdolini

    2012-01-01

    Objectives/ Hypothesis Personalized, pre-emptive and predictive medicine is a central goal of contemporary medical care. The central aim of the present study is to investigate the utility of mechanistic computational modeling of inflammation and healing in order to address personalized therapy for patients with acute phonotrauma. Study Design Computer simulation. Methods Previously reported agent-based models (ABMs) of acute phonotrauma were extended with additional inflammatory mediators as well as extracellular matrix components. The models were calibrated with empirical data for a panel of biomarkers – interleukin (IL)-1β, IL-6, IL-8, IL-10, tumor necrosis factor-α and matrix metalloproteinase-8, from individual subjects following experimentally induced phonotrauma and a randomly assigned voice treatment namely voice rest, resonant voice exercise and spontaneous speech. The models’ prediction accuracy for biomarker levels was tested for a 24-hr follow-up time point. Results The extended ABMs reproduced and predicted trajectories of biomarkers seen in experimental data. The simulation results also agreed qualitatively with various known aspects of inflammation and healing. Model prediction accuracy was generally better following individual-based calibration as compared to population-based calibration. Simulation results also suggested that the special form of vocal fold oscillation in resonant voice may accelerate acute vocal fold healing. Conclusions The calibration of inflammation/healing ABMs with subject-specific data appears to optimize the models’ prediction accuracy for individual subjects. This translational application of biosimulation might be used to predict individual healing trajectories, the potential effects of different treatment options, and most importantly, provide new understanding of health and healing in the larynx and possibly in other organs and tissues as well. Level of Evidence N/A PMID:22020892

  5. Development and testing of a mouse simulated space flight model

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.

    1985-01-01

    The development and testing of a mouse model for simulating some aspects of weightlessness that occur during space flight, and the carrying out of immunological flight experiments on animals was discussed. The mouse model is an antiorthostatic, hypokinetic, hypodynamic suspension model similar to the one used with rats. It is shown that this murine model yield similar results to the rat model of antiorthostatic suspension for simulating some aspects of weightlessness. It is also shown that mice suspended in this model have decreased interferon-alpha/beta production as compared to control, nonsuspended mice or to orthostatically suspended mice. It is suggested that the conditions occuring during space flight could possibly affect interferon production. The regulatory role of interferon in nonviral diseases is demonstrated including several bacterial and protozoan infections indicating the great significance of interferon in resistance to many types of infectious diseases.

  6. Mouse models of liver fibrosis mimic human liver fibrosis of different etiologies

    PubMed Central

    Martínez, Allyson K.; Maroni, Luca; Marzioni, Marco; Ahmed, Syed T.; Milad, Mena; Ray, Debolina; Alpini, Gianfranco; Glaser, Shannon S.

    2014-01-01

    The liver has the amazing capacity to repair itself after injury; however, the same processes that are involved in liver regeneration after acute injury can cause serious consequences during chronic liver injury. In an effort to repair damage, activated hepatic stellate cells trigger a cascade of events that lead to deposition and accumulation of extracellular matrix components causing the progressive replacement of the liver parenchyma by scar tissue, thus resulting in fibrosis. Although fibrosis occurs as a result of many chronic liver diseases, the molecular mechanisms involved depend on the underlying etiology. Since studying liver fibrosis in human subjects is complicated by many factors, mouse models of liver fibrosis that mimic the human conditions fill this void. This review summarizes the general mouse models of liver fibrosis and mouse models that mimic specific human disease conditions that result in liver fibrosis. Additionally, recent progress that has been made in understanding the molecular mechanisms involved in the fibrogenic processes of each of the human disease conditions is highlighted. PMID:25396098

  7. Nonlinear Radiation-Induced Cataract Using the Radiosensitive Ptch1(+/-) Mouse Model.

    PubMed

    De Stefano, Ilaria; Giardullo, Paola; Tanno, Barbara; Leonardi, Simona; Pasquali, Emanuela; Babini, Gabriele; Saran, Anna; Mancuso, Mariateresa

    2016-09-01

    While most of the evidence for radiation-induced late health effects relates to cancer, there has been increasing interest recently in the development of non-cancer diseases, including lens opacity, observed in populations exposed to low-dose radiation. In a recent study, we reported that mice heterozygous for the Patched1 (Ptch1) gene represented a novel and powerful animal model for this disorder, and a useful tool for investigating the mechanisms of radiogenic cataract development. Given the ongoing and considerable uncertainty in allowable lens dose levels and the existence of a threshold for the development of cataracts, we tested the effects of a decreasing range of radiation doses (2 Gy, 1 Gy and 0.5 Gy X rays) by irradiating groups of Ptch1(+/-) mice at 2 days of age. Our findings showed that at this dose range, acute exposure of this highly susceptible mouse model did not induce macroscopically detectable cataracts, and only the 2 Gy irradiated mice showed microscopic alterations of the lens. Molecular analyses performed to evaluate the induction of epithelial-mesenchymal transition (EMT) and subsequent fibrotic alterations in mouse lens cells also indicated the existence of a dose threshold for such effects in the mouse model used. The mechanisms of cataractogenesis remain unclear, and further experimental studies are essential to elucidate those mechanisms specific for cataract initiation and development after irradiation, as well as the underlying genetic factors controlling cataract susceptibility. PMID:27541824

  8. Genetically engineered humanized mouse models for preclinical antibody studies.

    PubMed

    Proetzel, Gabriele; Wiles, Michael V; Roopenian, Derry C

    2014-04-01

    The use of genetic engineering has vastly improved our capabilities to create animal models relevant in preclinical research. With the recent advances in gene-editing technologies, it is now possible to very rapidly create highly tunable mouse models as needs arise. Here, we provide an overview of genetic engineering methods, as well as the development of humanized neonatal Fc receptor (FcRn) models and their use for monoclonal antibody in vivo studies.

  9. CHARACTERIZATION OF AEROMONAS VIRULENCE USING AN IMMUNOCOMPROMISED MOUSE MODEL

    EPA Science Inventory

    An immunocompromised mouse model was used to characterize Aeromonas strains for their ability to cause opportunistic, extraintestinal infections. A total of 34 isolates of Aeromonas (A. hydrophila [n = 12]), A. veronii biotype sobria [n = 7], A. caviae [n = 4], A. enchelia [n = 4...

  10. Exploration of West Nile Virus Infection in Mouse Models.

    PubMed

    Wang, Penghua

    2016-01-01

    West Nile virus (WNV) causes neurological diseases by penetrating the central nervous system (CNS)-an immune-privileged system. Although the CNS residential cells can produce antiviral immune responses, the blood leukocytes are required to contain virus spread. However, infiltrating leukocytes may also contribute to immunopathology if they overreact. Thus analyses of WNV infectivity and leukocyte numbers in the CNS are critical for understanding of WNV pathogenesis in experimental mouse models. Here I describe two basic assays for quantification of viral titers and infiltrating leukocytes in the mouse brain after WNV infection.

  11. Imaging pheromone sensing in a mouse vomeronasal acute tissue slice preparation.

    PubMed

    Brechbühl, Julien; Luyet, Gaëlle; Moine, Fabian; Rodriguez, Ivan; Broillet, Marie-Christine

    2011-01-01

    . Here, we present an acute tissue slice preparation of the mouse VNO for performing calcium imaging investigations. This physiological approach allows observations, in the natural environment of a living tissue, of general or individual subpopulations of VSNs previously loaded with Fura-2AM, a calcium dye. This method is also convenient for studying any GFP-tagged pheromone receptor and is adaptable for the use of other fluorescent calcium probes. As an example, we use here a VG mouse line, in which the translation of the pheromone V1rb2 receptor is linked to the expression of GFP by a polycistronic strategy.

  12. Modeling fragile X syndrome in the Fmr1 knockout mouse

    PubMed Central

    Kazdoba, Tatiana M.; Leach, Prescott T.; Silverman, Jill L.; Crawley, Jacqueline N.

    2014-01-01

    Summary Fragile X Syndrome (FXS) is a commonly inherited form of intellectual disability and one of the leading genetic causes for autism spectrum disorder. Clinical symptoms of FXS can include impaired cognition, anxiety, hyperactivity, social phobia, and repetitive behaviors. FXS is caused by a CGG repeat mutation which expands a region on the X chromosome containing the FMR1 gene. In FXS, a full mutation (> 200 repeats) leads to hypermethylation of FMR1, an epigenetic mechanism that effectively silences FMR1 gene expression and reduces levels of the FMR1 gene product, fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein that is important for the regulation of protein expression. In an effort to further understand how loss of FMR1 and FMRP contribute to FXS symptomology, several FXS animal models have been created. The most well characterized rodent model is the Fmr1 knockout (KO) mouse, which lacks FMRP protein due to a disruption in its Fmr1 gene. Here, we review the behavioral phenotyping of the Fmr1 KO mouse to date, and discuss the clinical relevance of this mouse model to the human FXS condition. While much remains to be learned about FXS, the Fmr1 KO mouse is a valuable tool for understanding the repercussions of functional loss of FMRP and assessing the efficacy of pharmacological compounds in ameliorating the molecular and behavioral phenotypes relevant to FXS. PMID:25606362

  13. Current State of Animal (Mouse) Modeling in Melanoma Research

    PubMed Central

    Kuzu, Omer F.; Nguyen, Felix D.; Noory, Mohammad A.; Sharma, Arati

    2015-01-01

    Despite the considerable progress in understanding the biology of human cancer and technological advancement in drug discovery, treatment failure remains an inevitable outcome for most cancer patients with advanced diseases, including melanoma. Despite FDA-approved BRAF-targeted therapies for advanced stage melanoma showed a great deal of promise, development of rapid resistance limits the success. Hence, the overall success rate of melanoma therapy still remains to be one of the worst compared to other malignancies. Advancement of next-generation sequencing technology allowed better identification of alterations that trigger melanoma development. As development of successful therapies strongly depends on clinically relevant preclinical models, together with the new findings, more advanced melanoma models have been generated. In this article, besides traditional mouse models of melanoma, we will discuss recent ones, such as patient-derived tumor xenografts, topically inducible BRAF mouse model and RCAS/TVA-based model, and their advantages as well as limitations. Although mouse models of melanoma are often criticized as poor predictors of whether an experimental drug would be an effective treatment, development of new and more relevant models could circumvent this problem in the near future. PMID:26483610

  14. Current State of Animal (Mouse) Modeling in Melanoma Research.

    PubMed

    Kuzu, Omer F; Nguyen, Felix D; Noory, Mohammad A; Sharma, Arati

    2015-01-01

    Despite the considerable progress in understanding the biology of human cancer and technological advancement in drug discovery, treatment failure remains an inevitable outcome for most cancer patients with advanced diseases, including melanoma. Despite FDA-approved BRAF-targeted therapies for advanced stage melanoma showed a great deal of promise, development of rapid resistance limits the success. Hence, the overall success rate of melanoma therapy still remains to be one of the worst compared to other malignancies. Advancement of next-generation sequencing technology allowed better identification of alterations that trigger melanoma development. As development of successful therapies strongly depends on clinically relevant preclinical models, together with the new findings, more advanced melanoma models have been generated. In this article, besides traditional mouse models of melanoma, we will discuss recent ones, such as patient-derived tumor xenografts, topically inducible BRAF mouse model and RCAS/TVA-based model, and their advantages as well as limitations. Although mouse models of melanoma are often criticized as poor predictors of whether an experimental drug would be an effective treatment, development of new and more relevant models could circumvent this problem in the near future.

  15. Comprehensive Neurocognitive Endophenotyping Strategies for Mouse Models of Genetic Disorders

    PubMed Central

    Hunsaker, Michael R.

    2012-01-01

    There is a need for refinement of the current behavioral phenotyping methods for mouse models of genetic disorders. The current approach is to perform a behavioral screen using standardized tasks to define a broad phenotype of the model. This phenotype is then compared to what is known concerning the disorder being modeled. The weakness inherent in this approach is twofold: First, the tasks that make up these standard behavioral screens do not model specific behaviors associated with a given genetic mutation but rather phenotypes affected in various genetic disorders; secondly, these behavioral tasks are insufficiently sensitive to identify subtle phenotypes. An alternate phenotyping strategy is to determine the core behavioral phenotypes of the genetic disorder being studied and develop behavioral tasks to evaluate specific hypotheses concerning the behavioral consequences of the genetic mutation. This approach emphasizes direct comparisons between the mouse and human that facilitate the development of neurobehavioral biomarkers or quantitative outcome measures for studies of genetic disorders across species. PMID:22266125

  16. Glutathione Depletion and Recovery After Acute Ethanol Administration in the Aging Mouse

    PubMed Central

    Vogt, Barbara L.; Richie, John P.

    2007-01-01

    Glutathione (GSH) plays an important role in the detoxification of ethanol (EtOH) and acute EtOH administration leads to GSH depletion in the liver and other tissues. Aging is also associated with a progressive decline in GSH levels and impairment in GSH biosynthesis in many tissues. Thus, the present study was designed to examine the effects of aging on EtOH-induced depletion and recovery of GSH in different tissues of the C57Bl/6NNIA mouse. EtOH (2-5 g/kg) or saline was administered i.p. to mice of ages 6 mo (young), 12 mo (mature), and 24 mo (old); and GSH and cyst(e)ine concentrations were measured 0-24 hours thereafter. EtOH administration (5g/kg) depleted hepatic GSH levels >50% by 6 hr in all animals. By 24 hr, levels remained low in both young and old mice, but recovered to baseline levels in mature mice. At 6 hr, the decrease in hepatic GSH was dose-dependent up to 3 g/kg EtOH, but not at higher doses. The extent of depletion at the 3 g/kg dose was dependent upon age, with old mice demonstrating significantly lower GSH levels than mature mice (P<0.001). Altogether these results indicate that aging was associated with a greater degree of EtOH and fasting-induced GSH depletion and subsequent impaired recovery in liver. An impaired ability to recover was also observed in young animals. Further studies are required to determine if an inability to recover from GSH depletion by EtOH is associated with enhanced toxicity. PMID:17343832

  17. Mouse models for the study of fungal pneumonia

    PubMed Central

    Muhammed, Maged; Feldmesser, Marta; Shubitz, Lisa F.; Lionakis, Michail S.; Sil, Anita; Wang, Yan; Glavis-Bloom, Justin; Lewis, Russell E.; Galgiani, John N.; Casadevall, Arturo; Kontoyiannis, Dimitrios P.; Mylonakis, Eleftherios

    2012-01-01

    Mouse models have facilitated the study of fungal pneumonia. In this report, we present the working protocols of groups that are working on the following pathogens: Aspergillus, Coccidioides, Cryptococcus, Fusarium, Histoplasma and Rhizopus. We describe the experimental procedures and the detailed methods that have been followed in the experienced laboratories to study pulmonary fungal infection; we also discuss the anticipated results and technical notes, and provide the practical advices that will help the users of these models. PMID:22546902

  18. Intracytoplasmic sperm injection experiments using the mouse as a model.

    PubMed

    Yanagimachi, R

    1998-04-01

    Due to the existence of ample background information on its reproduction, embryology and genetics, the mouse is potentially an excellent animal model for intracytoplasmic sperm injection (ICSI). Normal fertile mouse offspring have been obtained by ICSI using not only mature (epididymal) and immature (testicular) spermatozoa, but also round spermatids and secondary spermatocytes. This suggests that genomic imprinting of male germ cells is complete before spermiogenesis. Mature mouse spermatozoa carry one or more factors that activate oocytes. This sperm-borne oocyte-activating factor is present in testicular spermatozoa, but not in round spermatids. Thus, at least in the mouse, it seems to appear (or become active) during spermiogenesis. Part of the factor seems to be associated with the perinuclear materials because, when freed from plasma and acrosomal membranes as well as all acrosome components, spermatozoa remain fully capable of activating oocytes by ICSI. Spermatozoa with grossly misshapen heads (e.g. those from the BALB/c mouse) are unable to fertilize oocytes under ordinary in-vivo and in-vitro conditions. However, by ICSI they can fertilize the oocytes, and the zygotes develop into fertile offspring. Inherently poorly motile spermatozoa (of male mice carrying two t haplotypes) are unable to fertilize, but through ICSI they can participate in normal fertilization and embryonic development. Examination of human sperm chromosomes after sperm injection into mouse oocytes revealed that spermatozoa with abnormal head morphology have a significantly higher incidence of chromosome abnormality than those with normal heads, yet the majority of the abnormal spermatozoa have normal chromosomal constitutions. These findings suggest that spermatozoa with aberrant morphology and/or motility are not necessarily genomically abnormal.

  19. Development of a Unilaterally-lesioned 6-OHDA Mouse Model of Parkinson's Disease

    PubMed Central

    Thiele, Sherri L.; Warre, Ruth; Nash, Joanne E.

    2012-01-01

    The unilaterally lesioned 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease (PD) has proved to be invaluable in advancing our understanding of the mechanisms underlying parkinsonian symptoms, since it recapitulates the changes in basal ganglia circuitry and pharmacology observed in parkinsonian patients1-4. However, the precise cellular and molecular changes occurring at cortico-striatal synapses of the output pathways within the striatum, which is the major input region of the basal ganglia remain elusive, and this is believed to be site where pathological abnormalities underlying parkinsonian symptoms arise3,5. In PD, understanding the mechanisms underlying changes in basal ganglia circuitry following degeneration of the nigro-striatal pathway has been greatly advanced by the development of bacterial artificial chromosome (BAC) mice over-expressing green fluorescent proteins driven by promoters specific for the two striatal output pathways (direct pathway: eGFP-D1; indirect pathway: eGFP-D2 and eGFP-A2a)8, allowing them to be studied in isolation. For example, recent studies have suggested that there are pathological changes in synaptic plasticity in parkinsonian mice9,10. However, these studies utilised juvenile mice and acute models of parkinsonism. It is unclear whether the changes described in adult rats with stable 6-OHDA lesions also occur in these models. Other groups have attempted to generate a stable unilaterally-lesioned 6-OHDA adult mouse model of PD by lesioning the medial forebrain bundle (MFB), unfortunately, the mortality rate in this study was extremely high, with only 14% surviving the surgery for 21 days or longer11. More recent studies have generated intra-nigral lesions with both a low mortality rate >80% loss of dopaminergic neurons, however expression of L-DOPA induced dyskinesia11,12,13,14 was variable in these studies. Another well established mouse model of PD is the MPTP-lesioned mouse15. Whilst this model has proven

  20. Practical use of advanced mouse models for lung cancer.

    PubMed

    Safari, Roghaiyeh; Meuwissen, Ralph

    2015-01-01

    To date a variety of non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) mouse models have been developed that mimic human lung cancer. Chemically induced or spontaneous lung cancer in susceptible inbred strains has been widely used, but the more recent genetically engineered somatic mouse models recapitulate much better the genotype-phenotype correlations found in human lung cancer. Additionally, improved orthotopic transplantation of primary human cancer tissue fragments or cells into lungs of immune-compromised mice can be valuable tools for preclinical research such as antitumor drug tests. Here we give a short overview of most somatic mouse models for lung cancer that are currently in use. We accompany each different model with a description of its practical use and application for all major lung tumor types, as well as the intratracheal injection or direct injection of fresh or freeze-thawed tumor cells or tumor cell lines into lung parenchyma of recipient mice. All here presented somatic mouse models are based on the ability to (in) activate specific alleles at a time, and in a tissue-specific cell type, of choice. This spatial-temporal controlled induction of genetic lesions allows the selective introduction of main genetic lesions in an adult mouse lung as found in human lung cancer. The resulting conditional somatic mouse models can be used as versatile powerful tools in basic lung cancer research and preclinical translational studies alike. These distinctively advanced lung cancer models permit us to investigate initiation (cell of origin) and progression of lung cancer, along with response and resistance to drug therapy. Cre/lox or FLP/frt recombinase-mediated methods are now well-used techniques to develop tissue-restricted lung cancer in mice with tumor-suppressor gene and/or oncogene (in)activation. Intranasal or intratracheal administration of engineered adenovirus-Cre or lentivirus-Cre has been optimized for introducing Cre

  1. Mouse models of liver cancer: Progress and recommendations

    PubMed Central

    He, Li; Tian, De-An; Li, Pei-Yuan; He, Xing-Xing

    2015-01-01

    To clarify the pathogenesis of hepatocellular carcinoma (HCC) and investigate the effects of potential therapies, a number of mouse models have been developed. Subcutaneous xenograft models are widely used in the past decades. Yet, with the advent of in vivo imaging technology, investigators are more and more concerned with the orthotopic models nowadays. Genetically engineered mouse models (GEM) have greatly facilitated studies of gene function in HCC development. Recently, GEM of miR-122 and miR-221 provided new approaches for better understanding of the in vivo functions of microRNA in hepatocarcinogenesis. Chemically induced liver tumors in animals share many of the morphological, histogenic, and biochemical features of human HCC. Yet, the complicated and obscure genomic alternation restricts their applications. In this review, we highlight both the frequently used mouse models and some emerging ones with emphasis on their merits or defects, and give advises for investigators to chose a “best-fit” animal model in HCC research. PMID:26259234

  2. Mouse models of ciliopathies: the state of the art

    PubMed Central

    Norris, Dominic P.; Grimes, Daniel T.

    2012-01-01

    The ciliopathies are an apparently disparate group of human diseases that all result from defects in the formation and/or function of cilia. They include disorders such as Meckel-Grüber syndrome (MKS), Joubert syndrome (JBTS), Bardet-Biedl syndrome (BBS) and Alström syndrome (ALS). Reflecting the manifold requirements for cilia in signalling, sensation and motility, different ciliopathies exhibit common elements. The mouse has been used widely as a model organism for the study of ciliopathies. Although many mutant alleles have proved lethal, continued investigations have led to the development of better models. Here, we review current mouse models of a core set of ciliopathies, their utility and future prospects. PMID:22566558

  3. Oxidative Stress in Genetic Mouse Models of Parkinson's Disease

    PubMed Central

    Varçin, Mustafa; Bentea, Eduard; Michotte, Yvette; Sarre, Sophie

    2012-01-01

    There is extensive evidence in Parkinson's disease of a link between oxidative stress and some of the monogenically inherited Parkinson's disease-associated genes. This paper focuses on the importance of this link and potential impact on neuronal function. Basic mechanisms of oxidative stress, the cellular antioxidant machinery, and the main sources of cellular oxidative stress are reviewed. Moreover, attention is given to the complex interaction between oxidative stress and other prominent pathogenic pathways in Parkinson's disease, such as mitochondrial dysfunction and neuroinflammation. Furthermore, an overview of the existing genetic mouse models of Parkinson's disease is given and the evidence of oxidative stress in these models highlighted. Taken into consideration the importance of ageing and environmental factors as a risk for developing Parkinson's disease, gene-environment interactions in genetically engineered mouse models of Parkinson's disease are also discussed, highlighting the role of oxidative damage in the interplay between genetic makeup, environmental stress, and ageing in Parkinson's disease. PMID:22829959

  4. Dissecting Alzheimer disease in Down syndrome using mouse models

    PubMed Central

    Choong, Xun Yu; Tosh, Justin L.; Pulford, Laura J.; Fisher, Elizabeth M. C.

    2015-01-01

    Down syndrome (DS) is a common genetic condition caused by the presence of three copies of chromosome 21 (trisomy 21). This greatly increases the risk of Alzheimer disease (AD), but although virtually all people with DS have AD neuropathology by 40 years of age, not all develop dementia. To dissect the genetic contribution of trisomy 21 to DS phenotypes including those relevant to AD, a range of DS mouse models has been generated which are trisomic for chromosome segments syntenic to human chromosome 21. Here, we consider key characteristics of human AD in DS (AD-DS), and our current state of knowledge on related phenotypes in AD and DS mouse models. We go on to review important features needed in future models of AD-DS, to understand this type of dementia and so highlight pathogenic mechanisms relevant to all populations at risk of AD. PMID:26528151

  5. Neuroanatomical changes in a mouse model of early life neglect.

    PubMed

    Duque, Alvaro; Coman, Daniel; Carlyle, Becky C; Bordner, Kelly A; George, Elizabeth D; Papademetris, Xenophon; Hyder, Fahmeed; Simen, Arthur A

    2012-04-01

    Using a novel mouse model of early life neglect and abuse (ENA) based on maternal separation with early weaning, George et al. (BMC Neurosci 11:123, 2010) demonstrated behavioral abnormalities in adult mice, and Bordner et al. (Front Psychiatry 2(18):1-18, 2011) described concomitant changes in mRNA and protein expression. Using the same model, here we report neuroanatomical changes that include smaller brain size and abnormal inter-hemispheric asymmetry, decreases in cortical thickness, abnormalities in subcortical structures, and white matter disorganization and atrophy most severely affecting the left hemisphere. Because of the similarities between the neuroanatomical changes observed in our mouse model and those described in human survivors of ENA, this novel animal model is potentially useful for studies of human ENA too costly or cumbersome to be carried out in primates. Moreover, our current knowledge of the mouse genome makes this model particularly suited for targeted anatomical, molecular, and pharmacological experimentation not yet possible in other species. PMID:21984312

  6. Behavioral phenotyping of mouse models of Parkinson's Disease

    PubMed Central

    Taylor, Tonya N.; Greene, James G.; Miller, Gary W.

    2010-01-01

    Parkinson's disease (PD) is a common neurodegenerative movement disorder afflicting millions of people in the United States. The advent of transgenic technologies has contributed to the development of several new mouse models, many of which recapitulate some aspects of the disease; however, no model has been demonstrated to faithfully reproduce the full constellation of symptoms seen in human PD. This may be due in part to the narrow focus on the dopamine-mediated motor deficits. As current research continues to unmask PD as a multi-system disorder, animal models should similarly evolve to include the non-motor features of the disease. This requires that typically cited behavioral test batteries be expanded. The major non-motor symptoms observed in PD patients include hyposmia, sleep disturbances, gastrointestinal dysfunction, autonomic dysfunction, anxiety, depression, and cognitive decline. Mouse behavioral tests exist for all of these symptoms and while some models have begun to be reassessed for the prevalence of this broader behavioral phenotype, the majority has not. Moreover, all behavioral paradigms should be tested for their responsiveness to L-DOPA so these data can be compared to patient response and help elucidate which symptoms are likely not dopamine-mediated. Here, we suggest an extensive, yet feasible, battery of behavioral tests for mouse models of PD aimed to better assess both non-motor and motor deficits associated with the disease. PMID:20211655

  7. Exogenous and evoked oxytocin restores social behavior in the Cntnap2 mouse model of autism

    PubMed Central

    Peñagarikano, Olga; Lázaro, María T.; Lu, Xiao-Hong; Gordon, Aaron; Dong, Hongmei; Lam, Hoa A.; Peles, Elior; Maidment, Nigel T.; Murphy, Niall P.; Yang, X. William; Golshani, Peyman; Geschwind, Daniel H.

    2015-01-01

    Mouse models of neuropsychiatric diseases provide a platform for mechanistic understanding and development of new therapies. We previously demonstrated that knockout of the mouse homologue of CNTNAP2, in which mutant forms cause Cortical Dysplasia and Focal Epilepsy syndrome (CDFE), displays many features parallel to the human disorder. Since CDFE has high penetrance for autism spectrum disorder (ASD) we performed an in vivo screen for drugs that treat abnormal social behavior in Cntnap2 mutant mice and found that acute administration of the neuropeptide oxytocin improved social deficits. We found a decrease in the number of oxytocin immunoreactive neurons in the paraventricular nucleus (PVN) of the hypothalamus in mutant mice and an overall decrease in brain oxytocin levels. Administration of a selective melanocortin receptor 4 agonist, which causes endogenous oxytocin release, also acutely rescued the social deficits, an effect blocked by an oxytocin antagonist. We confirmed that oxytocin neurons mediated the behavioral improvement by activating endogenous oxytocin neurons in the paraventricular hypothalamus with Designer Receptors Exclusively Activated by Designer Drugs (DREADD). Last, we showed that chronic early postnatal treatment with oxytocin led to more lasting behavioral recovery and restored oxytocin immunoreactivity in the PVN. These data demonstrate dysregulation of the oxytocin system in Cntnap2 knockout mice and suggest that there may be critical developmental windows for optimal treatment. PMID:25609168

  8. Murine Norovirus: An Intercurrent Variable in a Mouse Model of Bacteria-Induced Inflammatory Bowel Disease

    PubMed Central

    Lencioni, Karen Chase; Seamons, Audrey; Treuting, Piper M; Maggio-Price, Lillian; Brabb, Thea

    2008-01-01

    Murine norovirus (MNV) has recently been recognized as a widely prevalent viral pathogen in mouse colonies and causes disease and mortality in mice with impaired innate immunity. We tested the hypothesis that MNV infection would alter disease course and immune responses in mice with inflammatory bowel disease (IBD). FVB.129P2-Abcb1atm1Bor N7 (Mdr1a−/−) mice develop spontaneous IBD that is accelerated by infection with Helicobacter bilis. As compared with controls, Mdr1a−/− mice coinfected with MNV4 and H. bilis showed greater weight loss and IBD scores indicative of severe colitis, demonstrating that MNV4 can modulate the progression of IBD. Compared with controls, mice inoculated with MNV4 alone had altered levels of serum biomarkers, and flow cytometric analysis of immune cells from MNV4-infected mice showed changes in both dendritic cell (CD11c+) and other nonT cell (CD4− CD8−) populations. Dendritic cells isolated from MNV4-infected mice induced higher IFNγ production by polyclonal T cells in vitro at 2 d after infection but not at later time points, indicating that MNV4 infection enhances antigen presentation by dendritic cells early after acute infection. These findings indicate that acute infection with MNV4 is immunomodulatory and alters disease progression in a mouse model of IBD. PMID:19149409

  9. Mouse models of multiple sclerosis: lost in translation?

    PubMed

    Baker, David; Amor, Sandra

    2015-01-01

    Multiple sclerosis (MS) is a chronic neurological disorder of the central nervous system (CNS) leading to progressive accumulation of neurological deficits arising from recurrent episodes of inflammation, demyelination and neuronal degeneration. While the aetiology of the disease is unknown MS is widely considered to be the result of aberrant T cell and antibody responses to CNS antigens giving rise to the common concept that MS is an autoimmune disease or that there is an autoimmune component in the pathogenesis. This idea has lead to the development of experimental autoimmune encephalomyelitis (EAE) mouse models of MS in which immunisation with CNS antigens induces neurological and pathological signs of disease in mice. In addition to EAE models, injection with neurotropic viruses has been used to examine how infections are implicated in the disease process and how they may generate autoimmune responses in the CNS. Viral models are also crucial to investigate the impact of blocking trafficking of immune responses into the CNS since an emerging side-effect of current immunotherapeutic approaches in MS is the reactivation of viruses within the CNS. To investigate myelin damage and repair in the absence of the adaptive immune response, toxin-induced demyelination using cuprizone, ethidium bromide and lysolecithin, which rapidly leads to remyelination when the toxins are withdrawn, is also reviewed. Mice also lend themselves to the vast array of transgenic technologies to probe specific pathways as well as the use of humanised transgenic mice to examine the impact of human molecules. Despite the vast array of mouse models EAE is the most frequently exploited paradigm used to develop therapeutic approaches. However, despite over one thousand compounds used in the treatment of EAE few have become licenced for treatment of MS so far. Thus, this review also debates the reasons for these failures in mouse models as well as discusses how mouse models can be better utilised

  10. An Orthotopic Mouse Model of Spontaneous Breast Cancer Metastasis.

    PubMed

    Paschall, Amy V; Liu, Kebin

    2016-01-01

    Metastasis is the primary cause of mortality of breast cancer patients. The mechanism underlying cancer cell metastasis, including breast cancer metastasis, is largely unknown and is a focus in cancer research. Various breast cancer spontaneous metastasis mouse models have been established. Here, we report a simplified procedure to establish orthotopic transplanted breast cancer primary tumor and resultant spontaneous metastasis that mimic human breast cancer metastasis. Combined with the bioluminescence live tumor imaging, this mouse model allows tumor growth and progression kinetics to be monitored and quantified. In this model, a low dose (1 x 10(4) cells) of 4T1-Luc breast cancer cells was injected into BALB/c mouse mammary fat pad using a tuberculin syringe. Mice were injected with luciferin and imaged at various time points using a bioluminescent imaging system. When the primary tumors grew to the size limit as in the IACUC-approved protocol (approximately 30 days), mice were anesthetized under constant flow of 2% isoflurane and oxygen. The tumor area was sterilized with 70% ethanol. The mouse skin around the tumor was excised to expose the tumor which was removed with a pair of sterile scissors. Removal of the primary tumor extends the survival of the 4T-1 tumor-bearing mice for one month. The mice were then repeatedly imaged for metastatic tumor spreading to distant organs. Therapeutic agents can be administered to suppress tumor metastasis at this point. This model is simple and yet sensitive in quantifying breast cancer cell growth in the primary site and progression kinetics to distant organs, and thus is an excellent model for studying breast cancer growth and progression, and for testing anti-metastasis therapeutic and immunotherapeutic agents in vivo. PMID:27584043

  11. Further Improvements of the P. falciparum Humanized Mouse Model

    PubMed Central

    Meija, Pedro; Swetman, Claire; Gleeson, James; Pérignon, Jean-Louis; Druilhe, Pierre

    2011-01-01

    Background It has been shown previously that it is possible to obtain growth of Plasmodium falciparum in human erythrocytes grafted in mice lacking adaptive immune responses by controlling, to a certain extent, innate defences with liposomes containing clodronate (clo-lip). However, the reproducibility of those models is limited, with only a proportion of animals supporting longstanding parasitemia, due to strong inflammation induced by P. falciparum. Optimisation of the model is much needed for the study of new anti-malarial drugs, drug combinations, and candidate vaccines. Materials/Methods We investigated the possibility of improving previous models by employing the intravenous route (IV) for delivery of both human erythrocytes (huRBC) and P. falciparum, instead of the intraperitoneal route (IP), by testing various immunosuppressive drugs that might help to control innate mouse defences, and by exploring the potential benefits of using immunodeficient mice with additional genetic defects, such as those with IL-2Rγ deficiency (NSG mice). Results We demonstrate here the role of aging, of inosine and of the IL-2 receptor γ mutation in controlling P. falciparum induced inflammation. IV delivery of huRBC and P. falciparum in clo-lip treated NSG mice led to successful infection in 100% of inoculated mice, rapid rise of parasitemia to high levels (up to 40%), long-lasting parasitemia, and consistent results from mouse-to-mouse. Characteristics were closer to human infection than in previous models, with evidence of synchronisation, partial sequestration, and receptivity to various P. falciparum strains without preliminary adaptation. However, results show that a major IL-12p70 inflammatory response remains prevalent. Conclusion The combination of the NSG mouse, clodronate loaded liposomes, and IV delivery of huRBC has produced a reliable and more relevant model that better meets the needs of Malaria research. PMID:21483851

  12. Mouse models of membranous nephropathy: the road less travelled by

    PubMed Central

    Borza, Dorin-Bogdan; Zhang, Jun-Jun; Beck, Laurence H; Meyer-Schwesinger, Catherine; Luo, Wentian

    2013-01-01

    Membranous nephropathy (MN) is a major cause of idiopathic nephrotic syndrome in adults, often progressing to end-stage kidney disease. The disease is mediated by IgG antibodies that form subepithelial immune complexes upon binding to antigens expressed by podocytes or planted in the subepithelial space. Subsequent activation of the complement cascade, podocyte injury by the membrane attack complex and the expansion of the glomerular basement membrane cause proteinuria and nephrotic syndrome. The blueprint for our current understanding of the pathogenic mechanisms of MN has largely been provided by studies in rat Heymann nephritis, an excellent animal model that closely replicates human disease. However, further progress in this area has been hindered by the lack of robust mouse models of MN that can leverage the power of genetic approaches for mechanistic studies. This critical barrier has recently been overcome by the development of new mouse models that faithfully recapitulate the clinical and morphologic hallmarks of human MN. In these mouse models, subepithelial ICs mediating proteinuria and nephrotic syndrome are induced by injection of cationized bovine serum albumin, by passive transfer of heterologous anti-podocyte antibodies, or by active immunization with the NC1 domain of α3(IV) collagen. These mouse models of MN will be instrumental for addressing unsolved questions about the basic pathomechanisms of MN and also for preclinical studies of novel therapeutics. We anticipate that the new knowledge to be gained from these studies will eventually translate into much needed novel mechanism-based therapies for MN, more effective, more specific, and less toxic. PMID:23885331

  13. Nonspecific airway reactivity in a mouse model of asthma

    SciTech Connect

    Collie, D.D.; Wilder, J.A.; Bice, D.E.

    1995-12-01

    Animal models are indispensable for studies requiring an intact immune system, especially for studying the pathogenic mechanisms in atopic diseases, regulation of IgE production, and related biologic effects. Mice are particularly suitable and have been used extensively for such studies because their immune system is well characterized. Further, large numbers of mutants or inbred strains of mice are available that express deficiencies of individual immunologic processes, inflammatory cells, or mediator systems. By comparing reactions in such mice with appropriate control animals, the unique roles of individual cells or mediators may be characterized more precisely in the pathogenesis of atopic respiratory diseases including asthma. However, given that asthma in humans is characterized by the presence of airway hyperresponsiveness to specific and nonspecific stimuli, it is important that animal models of this disease exhibit similar physiologic abnormalities. In the past, the size of the mouse has limited its versatility in this regard. However, recent studies indicate the feasibility of measuring pulmonary responses in living mice, thus facilitating the physiologic evaluation of putative mouse models of human asthma that have been well charcterized at the immunologic and patholigic level. Future work will provide details of the morphometry of the methacholine-induced bronchoconstriction and will further seek to determine the relationship between cigarette smoke exposure and the development of NS-AHR in the transgenic mouse model.

  14. Mouse Models Recapitulating Human Adrenocortical Tumors: What Is Lacking?

    PubMed

    Leccia, Felicia; Batisse-Lignier, Marie; Sahut-Barnola, Isabelle; Val, Pierre; Lefrançois-Martinez, A-Marie; Martinez, Antoine

    2016-01-01

    Adrenal cortex tumors are divided into benign forms, such as primary hyperplasias and adrenocortical adenomas (ACAs), and malignant forms or adrenocortical carcinomas (ACCs). Primary hyperplasias are rare causes of adrenocorticotropin hormone-independent hypercortisolism. ACAs are the most common type of adrenal gland tumors and they are rarely "functional," i.e., producing steroids. When functional, adenomas result in endocrine disorders, such as Cushing's syndrome (hypercortisolism) or Conn's syndrome (hyperaldosteronism). By contrast, ACCs are extremely rare but highly aggressive tumors that may also lead to hypersecreting syndromes. Genetic analyses of patients with sporadic or familial forms of adrenocortical tumors (ACTs) led to the identification of potentially causative genes, most of them being involved in protein kinase A (PKA), Wnt/β-catenin, and P53 signaling pathways. Development of mouse models is a crucial step to firmly establish the functional significance of candidate genes, to dissect mechanisms leading to tumors and endocrine disorders, and in fine to provide in vivo tools for therapeutic screens. In this article, we will provide an overview on the existing mouse models (xenografted and genetically engineered) of ACTs by focusing on the role of PKA and Wnt/β-catenin pathways in this context. We will discuss the advantages and limitations of models that have been developed heretofore and we will point out necessary improvements in the development of next generation mouse models of adrenal diseases. PMID:27471492

  15. Development of a Representative Mouse Model with Nonalcoholic Steatohepatitis.

    PubMed

    Verbeek, Jef; Jacobs, Ans; Spincemaille, Pieter; Cassiman, David

    2016-06-01

    Non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease in the Western world. It represents a disease spectrum ranging from isolated steatosis to non-alcoholic steatohepatitis (NASH). In particular, NASH can evolve to fibrosis, cirrhosis, hepatocellular carcinoma, and liver failure. The development of novel treatment strategies is hampered by the lack of representative NASH mouse models. Here, we describe a NASH mouse model, which is based on feeding non-genetically manipulated C57BL6/J mice a 'Western style' high-fat/high-sucrose diet (HF-HSD). HF-HSD leads to early obesity, insulin resistance, and hypercholesterolemia. After 12 weeks of HF-HSD, all mice exhibit the complete spectrum of features of NASH, including steatosis, hepatocyte ballooning, and lobular inflammation, together with fibrosis in the majority of mice. Hence, this model closely mimics the human disease. Implementation of this mouse model will lead to a standardized setup for the evaluation of (i) underlying mechanisms that contribute to the progression of NAFLD to NASH, and (ii) therapeutic interventions for NASH. © 2016 by John Wiley & Sons, Inc.

  16. Mouse Models Recapitulating Human Adrenocortical Tumors: What Is Lacking?

    PubMed Central

    Leccia, Felicia; Batisse-Lignier, Marie; Sahut-Barnola, Isabelle; Val, Pierre; Lefrançois-Martinez, A-Marie; Martinez, Antoine

    2016-01-01

    Adrenal cortex tumors are divided into benign forms, such as primary hyperplasias and adrenocortical adenomas (ACAs), and malignant forms or adrenocortical carcinomas (ACCs). Primary hyperplasias are rare causes of adrenocorticotropin hormone-independent hypercortisolism. ACAs are the most common type of adrenal gland tumors and they are rarely “functional,” i.e., producing steroids. When functional, adenomas result in endocrine disorders, such as Cushing’s syndrome (hypercortisolism) or Conn’s syndrome (hyperaldosteronism). By contrast, ACCs are extremely rare but highly aggressive tumors that may also lead to hypersecreting syndromes. Genetic analyses of patients with sporadic or familial forms of adrenocortical tumors (ACTs) led to the identification of potentially causative genes, most of them being involved in protein kinase A (PKA), Wnt/β-catenin, and P53 signaling pathways. Development of mouse models is a crucial step to firmly establish the functional significance of candidate genes, to dissect mechanisms leading to tumors and endocrine disorders, and in fine to provide in vivo tools for therapeutic screens. In this article, we will provide an overview on the existing mouse models (xenografted and genetically engineered) of ACTs by focusing on the role of PKA and Wnt/β-catenin pathways in this context. We will discuss the advantages and limitations of models that have been developed heretofore and we will point out necessary improvements in the development of next generation mouse models of adrenal diseases. PMID:27471492

  17. A Mouse Model of Zika Virus Pathogenesis.

    PubMed

    Lazear, Helen M; Govero, Jennifer; Smith, Amber M; Platt, Derek J; Fernandez, Estefania; Miner, Jonathan J; Diamond, Michael S

    2016-05-11

    The ongoing Zika virus (ZIKV) epidemic and unexpected clinical outcomes, including Guillain-Barré syndrome and birth defects, has brought an urgent need for animal models. We evaluated infection and pathogenesis with contemporary and historical ZIKV strains in immunocompetent mice and mice lacking components of the antiviral response. Four- to six-week-old Irf3(-/-)Irf5(-/-)Irf7(-/-) triple knockout mice, which produce little interferon α/β, and mice lacking the interferon receptor (Ifnar1(-/-)) developed neurological disease and succumbed to ZIKV infection, whereas single Irf3(-/-), Irf5(-/-), and Mavs(-/-) knockout mice exhibited no overt illness. Ifnar1(-/-) mice sustained high viral loads in the brain and spinal cord, consistent with evidence that ZIKV causes neurodevelopmental defects in human fetuses. The testes of Ifnar1(-/-) mice had the highest viral loads, which is relevant to sexual transmission of ZIKV. This model of ZIKV pathogenesis will be valuable for evaluating vaccines and therapeutics as well as understanding disease pathogenesis.

  18. Magnolol inhibits the inflammatory response in mouse mammary epithelial cells and a mouse mastitis model.

    PubMed

    Wei, Wang; Dejie, Liang; Xiaojing, Song; Tiancheng, Wang; Yongguo, Cao; Zhengtao, Yang; Naisheng, Zhang

    2015-02-01

    Mastitis comprises an inflammation of the mammary gland, which is almost always linked with bacterial infection. The treatment of mastitis concerns antimicrobial substances, but not very successful. On the other hand, anti-inflammatory therapy with Chinese traditional medicine becomes an effective way for treating mastitis. Magnolol is a polyphenolic binaphthalene compound extracted from the stem bark of Magnolia sp., which has been shown to exert a potential for anti-inflammatory activity. The purpose of this study was to investigate the protective effects of magnolol on inflammation in lipopolysaccharide (LPS)-induced mastitis mouse model in vivo and the mechanism of this protective effects in LPS-stimulated mouse mammary epithelial cells (MMECs) in vitro. The damage of tissues was determined by histopathology and myeloperoxidase (MPO) assay. The expression of pro-inflammatory cytokines was determined by enzyme-linked immunosorbent assay (ELISA). Nuclear factor-kappa B (NF-κB), inhibitory kappa B (IκBα) protein, p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and Toll-like receptor 4 (TLR4) were determined by Western blot. The results showed that magnolol significantly inhibit the LPS-induced TNF-α, IL-6, and IL-1β production both in vivo and vitro. Magnolol declined the phosphorylation of IκBα, p65, p38, ERK, and JNK in LPS-stimulated MMECs. Furthermore, magnolol inhibited the expression of TLR4 in LPS-stimulated MMECs. In vivo study, it was also observed that magnolol attenuated the damage of mastitis tissues in the mouse models. These findings demonstrated that magnolol attenuate LPS-stimulated inflammatory response by suppressing TLR4/NF-κB/mitogen-activated protein kinase (MAPK) signaling system. Thereby, magnolol may be a therapeutic agent against mastitis.

  19. Genetically modified mouse models for premature ovarian failure (POF).

    PubMed

    Jagarlamudi, Krishna; Reddy, Pradeep; Adhikari, Deepak; Liu, Kui

    2010-02-01

    Premature ovarian failure (POF) is a complex disorder that affects approximately 1% of women. POF is characterized by the depletion of functional ovarian follicles before the age of 40 years, and clinically, patients may present with primary amenorrhea or secondary amenorrhea. Although some genes have been hypothesized to be candidates responsible for POF, the etiology of most of the cases is idiopathic, with the underlying causes still unidentified because of the heterogeneity of the disease. In this review, we consider some mutant mouse models that exhibit phenotypes which are comparable to human POF, and we suggest that the use of these mouse models may help us to gain a better understanding of the molecular mechanisms underlying POF in humans.

  20. Real-Time Bioluminescence Imaging of Nitroreductase in Mouse Model.

    PubMed

    Feng, Ping; Zhang, Huateng; Deng, Quankun; Liu, Wei; Yang, Linghui; Li, Guobo; Chen, Guo; Du, Lupei; Ke, Bowen; Li, Minyong

    2016-06-01

    Nitroreductase (NTR) is an endogenous reductase overexpressed in hypoxic tumors; however, its precise detection in living cells and animals remains a considerable challenge. Herein, we developed three reaction-based probes and a related bioluminescence assay for the real-time NTR detection. The high sensitivity and selectivity of probe 3, combined with its remarkable potential of bioluminescence imaging, affords a valuable approach for in vivo imaging of NTR in a tumor model mouse.

  1. Fluorescent Orthotopic Mouse Model of Pancreatic Cancer.

    PubMed

    Moreno, Jonathan A; Sanchez, Antonio; Hoffman, Robert M; Nur, Saima; Lambros, Maria P

    2016-01-01

    Pancreatic cancer remains one of the cancers for which survival has not improved substantially in the last few decades. Only 7% of diagnosed patients will survive longer than five years. In order to understand and mimic the microenvironment of pancreatic tumors, we utilized a murine orthotopic model of pancreatic cancer that allows non-invasive imaging of tumor progression in real time. Pancreatic cancer cells expressing green fluorescent protein (PANC-1 GFP) were suspended in basement membrane matrix, high concentration, (e.g., Matrigel HC) with serum-free media and then injected into the tail of the pancreas via laparotomy. The cell suspension in the high concentration basement membrane matrix becomes a gel-like substance once it reaches room temperature; therefore, it gels when it comes in contact with the pancreas, creating a seal at the injection site and preventing any cell leakage. Tumor growth and metastasis to other organs are monitored in live animals by using fluorescence. It is critical to use the appropriate filters for excitation and emission of GFP. The steps for the orthotopic implantation are detailed in this article so researchers can easily replicate the procedure in nude mice. The main steps of this protocol are preparation of the cell suspension, surgical implantation, and whole body fluorescent in vivo imaging. This orthotopic model is designed to investigate the efficacy of novel therapeutics on primary and metastatic tumors. PMID:27685334

  2. A Mouse Model of Zika Virus Pathogenesis.

    PubMed

    Lazear, Helen M; Govero, Jennifer; Smith, Amber M; Platt, Derek J; Fernandez, Estefania; Miner, Jonathan J; Diamond, Michael S

    2016-05-11

    The ongoing Zika virus (ZIKV) epidemic and unexpected clinical outcomes, including Guillain-Barré syndrome and birth defects, has brought an urgent need for animal models. We evaluated infection and pathogenesis with contemporary and historical ZIKV strains in immunocompetent mice and mice lacking components of the antiviral response. Four- to six-week-old Irf3(-/-)Irf5(-/-)Irf7(-/-) triple knockout mice, which produce little interferon α/β, and mice lacking the interferon receptor (Ifnar1(-/-)) developed neurological disease and succumbed to ZIKV infection, whereas single Irf3(-/-), Irf5(-/-), and Mavs(-/-) knockout mice exhibited no overt illness. Ifnar1(-/-) mice sustained high viral loads in the brain and spinal cord, consistent with evidence that ZIKV causes neurodevelopmental defects in human fetuses. The testes of Ifnar1(-/-) mice had the highest viral loads, which is relevant to sexual transmission of ZIKV. This model of ZIKV pathogenesis will be valuable for evaluating vaccines and therapeutics as well as understanding disease pathogenesis. PMID:27066744

  3. A mouse model of androgenetic alopecia.

    PubMed

    Crabtree, Judy S; Kilbourne, Edward J; Peano, Bryan J; Chippari, Susan; Kenney, Thomas; McNally, Christopher; Wang, Wei; Harris, Heather A; Winneker, Richard C; Nagpal, Sunil; Thompson, Catherine C

    2010-05-01

    Androgenetic alopecia (AGA), commonly known as male pattern baldness, is a form of hair loss that occurs in both males and females. Although the exact cause of AGA is not known, it is associated with genetic predisposition through traits related to androgen synthesis/metabolism and androgen signaling mediated by the androgen receptor (AR). Current therapies for AGA show limited efficacy and are often associated with undesirable side effects. A major hurdle to developing new therapies for AGA is the lack of small animal models to support drug discovery research. Here, we report the first rodent model of AGA. Previous work demonstrating that the interaction between androgen-bound AR and beta-catenin can inhibit Wnt signaling led us to test the hypothesis that expression of AR in hair follicle cells could interfere with hair growth in an androgen-dependent manner. Transgenic mice overexpressing human AR in the skin under control of the keratin 5 promoter were generated. Keratin 5-human AR transgenic mice exposed to high levels of 5alpha-dihydrotestosterone showed delayed hair regeneration, mimicking the AGA scalp. This effect is AR mediated, because treatment with the AR antagonist hydroxyflutamide inhibited the effect of dihydrotestosterone on hair growth. These results support the hypothesis that androgen-mediated hair loss is AR dependent and suggest that AR and beta-catenin mediate this effect. These mice can now be used to test new therapeutic agents for the treatment of AGA, accelerating the drug discovery process.

  4. Curcumin shows excellent therapeutic effect on psoriasis in mouse model.

    PubMed

    Kang, Di; Li, Bowen; Luo, Lei; Jiang, Wenbing; Lu, Qiumin; Rong, Mingqing; Lai, Ren

    2016-04-01

    Curcumin is an active herbal ingredient possessing surprisingly wide range of beneficial properties, including anti-inflammatory, antioxidant, chemopreventive and chemotherapeutic activity. Recently, it has been reported to exhibit inhibitory activity on potassium channel subtype Kv1.3. As Kv1.3 channels are mainly expressed in T cells and play a key role in psoriasis, the effects of curcumin were investigated on inflammatory factors secretion in T cells and psoriasis developed in keratin (K) 14-vascular endothelial growth factor (VEGF) transgenic mouse model. Results showed that, 10 μM of curcumin significantly inhibited secretion of inflammatory factors including interleukin (IL)-17,IL-22, IFN-γ, IL-2, IL-8 and TNF-α in T cells by 30-60% in vitro. Notably, more than 50% of T cells proliferation was inhibited by application of 100 μM curcumin. Compared with severe psoriatic symptoms observed in the negative control mice, all psoriasis indexes including ear redness, weight, thickness and lymph node weight were significantly improved by oral application of curcumin in treatment mouse group. Histological examination indicated that curcumin had anti-inflammatory function in the experimental animals. More than 50% level of inflammatory factors including TNF-α, IFN-γ, IL-2, IL-12, IL-22 and IL-23 in mouse serum was decreased by curcumin treatment as well as cyclosporine. Compared with renal fibrosis observed in the mouse group treated by cyclosporine, no obvious side effect in mouse kidney was found after treated by curcumin. Taken together, curcumin, with high efficacy and safety, has a great potential to treat psoriasis.

  5. Genetically Engineered Mouse Models for Drug Development and Preclinical Trials

    PubMed Central

    Lee, Ho

    2014-01-01

    Drug development and preclinical trials are challenging processes and more than 80% to 90% of drug candidates fail to gain approval from the United States Food and Drug Administration. Predictive and efficient tools are required to discover high quality targets and increase the probability of success in the process of new drug development. One such solution to the challenges faced in the development of new drugs and combination therapies is the use of low-cost and experimentally manageable in vivo animal models. Since the 1980’s, scientists have been able to genetically modify the mouse genome by removing or replacing a specific gene, which has improved the identification and validation of target genes of interest. Now genetically engineered mouse models (GEMMs) are widely used and have proved to be a powerful tool in drug discovery processes. This review particularly covers recent fascinating technologies for drug discovery and preclinical trials, targeted transgenesis and RNAi mouse, including application and combination of inducible system. Improvements in technologies and the development of new GEMMs are expected to guide future applications of these models to drug discovery and preclinical trials. PMID:25143803

  6. Connexin diversity in the heart: insights from transgenic mouse models

    PubMed Central

    Verheule, Sander; Kaese, Sven

    2013-01-01

    Cardiac conduction is mediated by gap junction channels that are formed by connexin (Cx) protein subunits. The connexin family of proteins consists of more than 20 members varying in their biophysical properties and ability to combine with other connexins into heteromeric gap junction channels. The mammalian heart shows regional differences both in connexin expression profile and in degree of electrical coupling. The latter reflects functional requirements for conduction velocity which needs to be low in the sinoatrial and atrioventricular nodes and high in the ventricular conduction system. Over the past 20 years knowledge of the biology of gap junction channels and their role in the genesis of cardiac arrhythmias has increased enormously. This review focuses on the insights gained from transgenic mouse models. The mouse heart expresses Cx30, 30.2, 37, 40, 43, 45, and 46. For these connexins a variety of knock-outs, heart-specific knock-outs, conditional knock-outs, double knock-outs, knock-ins and overexpressors has been studied. We discuss the cardiac phenotype in these models and compare Cx expression between mice and men. Mouse models have enhanced our understanding of (patho)-physiological implications of Cx diversity in the heart. In principle connexin-specific modulation of electrical coupling in the heart represents an interesting treatment strategy for cardiac arrhythmias and conduction disorders. PMID:23818881

  7. The interleukin-2-deficient mouse model.

    PubMed

    Barmeyer, C; Horak, I; Zeitz, M; Fromm, M; Schulzke, J D

    Interleukin-2-deficient (IL-2(-/-)) mice develop colitis with striking clinical and morphological similarities to ulcerative colitis. Since transport and barrier properties are impaired in ulcerative colitis, we studied transport and barrier functions in IL-2(-/-) mice in order to gain insight for the first time into the general pathomechanisms of disturbed transport and barrier function of the intestine during inflammation. Alternating current impedance analysis was used to determine tissue conductance in the inflamed proximal colon of IL-2(-/-) mice and to discriminate between pure epithelial and subepithelial conductance. Surprisingly, epithelial conductance was not increased but diminished in IL-2(-/-) mice compared to controls (20.2 +/- 1.3 versus 28.8 +/- 2.8 mS/cm(2)). Concomitantly, conductance of the subepithelial tissue layers was decreased in IL-2(-/-) mice as a result of edema and infiltration with inflammatory cells. In the distal colon, electrogenic Na(+) transport (J(Na)) mediated by the epithelial Na(+) channel (ENaC) was measured 8 h after stimulation with 3.10(-9) M aldosterone in vitro as the drop in I(SC) (short circuit current) after addition of 10(-4) M amiloride. In controls, J(Na) was 6.9 +/- 0.9 micromol x h(-1) x cm(-2), whereas it was abolished in IL-2(-/-) mice. In conclusion, the inflamed colon of IL-2(-/-) mice exhibits a severe disturbance in Na(+) uptake via the ENaC in the absence of a barrier defect. Thus, reduced expression of active absorptive transport and not a barrier defect is responsible for the diarrhea in this model of intestinal inflammation. This makes this model suitable for studying the general pathomechanisms of the inflammatory downregulation of intestinal transport proteins.

  8. Mouse models: the ketogenic diet and polyunsaturated fatty acids.

    PubMed

    Borges, Karin

    2008-11-01

    Literature on the anticonvulsant effects of the ketogenic diet (KD) in mouse seizure models is summarized. Recent data show that a KD balanced in vitamin, mineral, and antioxidant content is anticonvulsant in mice, confirming that the KD's effect in mice can be attributed to the composition of the diet and not other dietary factors. Given that the anticonvulsant mechanism of the KD is still unknown, the anticonvulsant profile of the diet in different seizure models may help to decipher this mechanism. The implications of the findings that the KD is anticonvulsant in electrical seizure models are indicated. Further, the potential involvement of polyunsaturated fatty acids (PUFA) in the KD's anticonvulsant mechanism is discussed.

  9. Validity of the MPTP-Treated Mouse as a Model for Parkinson's Disease.

    PubMed

    Klemann, Cornelius J H M; Martens, Gerard J M; Poelmans, Geert; Visser, Jasper E

    2016-04-01

    Parkinson's disease (PD) is characterized by dopaminergic (DA) neuron death in the substantia nigra (SN) and subsequent striatal adaptations. Mice treated with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrimidine (MPTP) are widely used as a model for PD. To assess the validity of the MPTP mouse model for PD pathogenesis, we here identify the biological processes that are dysregulated in both human PD and MPTP-treated mice. Gene enrichment analysis of published differentially expressed messenger RNAs (mRNAs) in the SN of PD patients and MPTP-treated mice revealed an enrichment of gene categories related to motor dysfunction and neurodegeneration. In the PD striatum, a similar enrichment was found, whereas in the striatum of MPTP mice, acute processes linked to epilepsy were selectively enriched shortly following MPTP treatment. More importantly, we integrated the proteins encoded by the differentially expressed mRNAs into molecular landscapes showing PD pathogenesis-implicated processes only in the SN, including vesicular trafficking, exocytosis, mitochondrial apoptosis, and DA neuron-specific transcription, but not in the striatum. We conclude that the current use of the MPTP mouse as a model for studying the molecular processes in PD pathogenesis is more valid for SN than striatal mechanisms in PD. This novel insight has important practical implications for future studies using this model to investigate PD pathogenesis and evaluate the efficacy of new treatments. PMID:25676140

  10. A Conceptual Model for Episodes of Acute, Unscheduled Care.

    PubMed

    Pines, Jesse M; Lotrecchiano, Gaetano R; Zocchi, Mark S; Lazar, Danielle; Leedekerken, Jacob B; Margolis, Gregg S; Carr, Brendan G

    2016-10-01

    We engaged in a 1-year process to develop a conceptual model representing an episode of acute, unscheduled care. Acute, unscheduled care includes acute illnesses (eg, nausea and vomiting), injuries, or exacerbations of chronic conditions (eg, worsening dyspnea in congestive heart failure) and is delivered in emergency departments, urgent care centers, and physicians' offices, as well as through telemedicine. We began with a literature search to define an acute episode of care and to identify existing conceptual models used in health care. In accordance with this information, we then drafted a preliminary conceptual model and collected stakeholder feedback, using online focus groups and concept mapping. Two technical expert panels reviewed the draft model, examined the stakeholder feedback, and discussed ways the model could be improved. After integrating the experts' comments, we solicited public comment on the model and made final revisions. The final conceptual model includes social and individual determinants of health that influence the incidence of acute illness and injury, factors that affect care-seeking decisions, specific delivery settings where acute care is provided, and outcomes and costs associated with the acute care system. We end with recommendations for how researchers, policymakers, payers, patients, and providers can use the model to identify and prioritize ways to improve acute care delivery. PMID:27397857

  11. Evaluation of an in vitro toxicogenetic mouse model for hepatotoxicity

    SciTech Connect

    Martinez, Stephanie M.; Bradford, Blair U.; Soldatow, Valerie Y.; Witek, Rafal; Kaiser, Robert; Stewart, Todd; Amaral, Kirsten; Freeman, Kimberly; Black, Chris; LeCluyse, Edward L.; Ferguson, Stephen S.

    2010-12-15

    Numerous studies support the fact that a genetically diverse mouse population may be useful as an animal model to understand and predict toxicity in humans. We hypothesized that cultures of hepatocytes obtained from a large panel of inbred mouse strains can produce data indicative of inter-individual differences in in vivo responses to hepato-toxicants. In order to test this hypothesis and establish whether in vitro studies using cultured hepatocytes from genetically distinct mouse strains are feasible, we aimed to determine whether viable cells may be isolated from different mouse inbred strains, evaluate the reproducibility of cell yield, viability and functionality over subsequent isolations, and assess the utility of the model for toxicity screening. Hepatocytes were isolated from 15 strains of mice (A/J, B6C3F1, BALB/cJ, C3H/HeJ, C57BL/6J, CAST/EiJ, DBA/2J, FVB/NJ, BALB/cByJ, AKR/J, MRL/MpJ, NOD/LtJ, NZW/LacJ, PWD/PhJ and WSB/EiJ males) and cultured for up to 7 days in traditional 2-dimensional culture. Cells from B6C3F1, C57BL/6J, and NOD/LtJ strains were treated with acetaminophen, WY-14,643 or rifampin and concentration-response effects on viability and function were established. Our data suggest that high yield and viability can be achieved across a panel of strains. Cell function and expression of key liver-specific genes of hepatocytes isolated from different strains and cultured under standardized conditions are comparable. Strain-specific responses to toxicant exposure have been observed in cultured hepatocytes and these experiments open new opportunities for further developments of in vitro models of hepatotoxicity in a genetically diverse population.

  12. Glycine receptor mouse mutants: model systems for human hyperekplexia

    PubMed Central

    Schaefer, Natascha; Langlhofer, Georg; Kluck, Christoph J; Villmann, Carmen

    2013-01-01

    Human hyperekplexia is a neuromotor disorder caused by disturbances in inhibitory glycine-mediated neurotransmission. Mutations in genes encoding for glycine receptor subunits or associated proteins, such as GLRA1, GLRB, GPHN and ARHGEF9, have been detected in patients suffering from hyperekplexia. Classical symptoms are exaggerated startle attacks upon unexpected acoustic or tactile stimuli, massive tremor, loss of postural control during startle and apnoea. Usually patients are treated with clonazepam, this helps to dampen the severe symptoms most probably by up-regulating GABAergic responses. However, the mechanism is not completely understood. Similar neuromotor phenotypes have been observed in mouse models that carry glycine receptor mutations. These mouse models serve as excellent tools for analysing the underlying pathomechanisms. Yet, studies in mutant mice looking for postsynaptic compensation of glycinergic dysfunction via an up-regulation in GABAA receptor numbers have failed, as expression levels were similar to those in wild-type mice. However, presynaptic adaptation mechanisms with an unusual switch from mixed GABA/glycinergic to GABAergic presynaptic terminals have been observed. Whether this presynaptic adaptation explains the improvement in symptoms or other compensation mechanisms exist is still under investigation. With the help of spontaneous glycine receptor mouse mutants, knock-in and knock-out studies, it is possible to associate behavioural changes with pharmacological differences in glycinergic inhibition. This review focuses on the structural and functional characteristics of the various mouse models used to elucidate the underlying signal transduction pathways and adaptation processes and describes a novel route that uses gene-therapeutic modulation of mutated receptors to overcome loss of function mutations. PMID:23941355

  13. Live cell detection of chromosome 2 deletion and Sfpi1/PU1 loss in radiation-induced mouse acute myeloid leukaemia☆

    PubMed Central

    Olme, C.-H.; Finnon, R.; Brown, N.; Kabacik, S.; Bouffler, S.D.; Badie, C.

    2013-01-01

    The CBA/H mouse model of radiation-induced acute myeloid leukaemia (rAML) has been studied for decades to bring to light the molecular mechanisms associated with multistage carcinogenesis. A specific interstitial deletion of chromosome 2 found in a high proportion of rAML is recognised as the initiating event. The deletion leads to the loss of Sfpi, a gene essential for haematopoietic development. Its product, the transcription factor PU.1 acts as a tumour suppressor in this model. Although the deletion can be detected early following ionising radiation exposure by cytogenetic techniques, precise characterisation of the haematopoietic cells carrying the deletion and the study of their fate in vivo cannot be achieved. Here, using a genetically engineered C57BL/6 mouse model expressing the GFP fluorescent molecule under the control of the Sfpi1 promoter, which we have bred onto the rAML-susceptible CBA/H strain, we demonstrate that GFP expression did not interfere with X-ray induced leukaemia incidence and that GFP fluorescence in live leukaemic cells is a surrogate marker of radiation-induced chromosome 2 deletions with or without point mutations on the remaining allele of the Sfpi1 gene. This study presents the first experimental evidence for the detection of this leukaemia initiating event in live leukemic cells. PMID:23806234

  14. IL-33 Aggravates DSS-Induced Acute Colitis in Mouse Colon Lamina Propria by Enhancing Th2 Cell Responses.

    PubMed

    Zhu, Junfeng; Yang, Fangli; Sang, Lixuan; Zhai, Jingbo; Zhang, Xiaoqing; Yue, Dan; Li, Shengjun; Li, Yan; Lu, Changlong; Sun, Xun

    2015-01-01

    Interleukin- (IL-) 33, a member of the IL-1 cytokine family, is an important modulator of the immune system associated with several immune-mediated diseases. IL-33 was expressed in high level on epithelial cells of intestinal tract. It suggested that IL-33 plays a potential role in inflammatory bowel diseases (IBD). We investigated the role of interleukin- (IL-) 33 in dextran sulphate sodium- (DSS-) induced acute colitis in mice using recombinant mouse IL-33 protein (rIL-33). We found that DSS-induced acute colitis was aggravated by rIL-33 treatment. rIL-33-treated DSS mice showed markedly reduced levels of interferon- (IFN-)γ and IL-17A in their colon lamina propria lymphocytes (LPL), but the levels of Th2 cytokines, such as IL-5 and IL-13, in these cells were significantly increased, compared to DSS mice treated with PBS. Our results suggested that IL-33 stimulated CD4(+)T cells and caused the cell to adopt a Th2-type response but at the same time suppressed Th17 and Th1 cell responses. Therefore, IL-33 may be involved in pathogenesis of DSS-induced acute colitis by promoting Th2 cell response in intestinal mucosa of mice. Modulation of IL-33/ST2 signaling by monoclonal antibody (mAb) could be a novel biological therapy in DSS-induced acute colitis.

  15. The novel KMO inhibitor CHDI-340246 leads to a restoration of electrophysiological alterations in mouse models of Huntington's disease.

    PubMed

    Beaumont, Vahri; Mrzljak, Ladislav; Dijkman, Ulrike; Freije, Robert; Heins, Mariette; Rassoulpour, Arash; Tombaugh, Geoffrey; Gelman, Simon; Bradaia, Amyaouch; Steidl, Esther; Gleyzes, Melanie; Heikkinen, Taneli; Lehtimäki, Kimmo; Puoliväli, Jukka; Kontkanen, Outi; Javier, Robyn M; Neagoe, Ioana; Deisemann, Heike; Winkler, Dirk; Ebneth, Andreas; Khetarpal, Vinod; Toledo-Sherman, Leticia; Dominguez, Celia; Park, Larry C; Munoz-Sanjuan, Ignacio

    2016-08-01

    Dysregulation of the kynurenine (Kyn) pathway has been associated with the progression of Huntington's disease (HD). In particular, elevated levels of the kynurenine metabolites 3-hydroxy kynurenine (3-OH-Kyn) and quinolinic acid (Quin), have been reported in the brains of HD patients as well as in rodent models of HD. The production of these metabolites is controlled by the activity of kynurenine mono-oxygenase (KMO), an enzyme which catalyzes the synthesis of 3-OH-Kyn from Kyn. In order to determine the role of KMO in the phenotype of mouse models of HD, we have developed a potent and selective KMO inhibitor termed CHDI-340246. We show that this compound, when administered orally to transgenic mouse models of HD, potently and dose-dependently modulates the Kyn pathway in peripheral tissues and in the central nervous system. The administration of CHDI-340246 leads to an inhibition of the formation of 3-OH-Kyn and Quin, and to an elevation of Kyn and Kynurenic acid (KynA) levels in brain tissues. We show that administration of CHDI-340246 or of Kyn and of KynA can restore several electrophysiological alterations in mouse models of HD, both acutely and after chronic administration. However, using a comprehensive panel of behavioral tests, we demonstrate that the chronic dosing of a selective KMO inhibitor does not significantly modify behavioral phenotypes or natural progression in mouse models of HD. PMID:27163548

  16. Transgenic mouse model of malignant skin melanoma.

    PubMed Central

    Mintz, B; Silvers, W K

    1993-01-01

    mice all make them an excellent model of the disease. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8415613

  17. ALIGNING MOUSE MODELS OF ASTHMA TO HUMAN ENDOTYPES OF DISEASE

    PubMed Central

    Martin, Rebecca A; Hodgkins, Samantha R; Dixon, Anne E; Poynter, Matthew E

    2014-01-01

    Substantial gains in understanding the pathophysiologic mechanisms underlying asthma have been made using preclinical mouse models. However, because asthma is a complex, heterogeneous syndrome that is rarely due to a single allergen and that often presents in the absence of atopy, few of the promising therapeutics that demonstrated effectiveness in mouse models have translated into new treatments for patients. This has resulted in an urgent need to characterize Th2-low, noneosinophilic subsets of asthma, to study models that are resistant to conventional treatments such as corticosteroids, and to develop therapies targeting patients with severe disease. Classifying asthma based on underlying pathophysiologic mechanisms, known as endotyping, offers a stratified approach for the development of new therapies for asthma. In preclinical research, new models of asthma are being utilized that more closely resemble the clinical features of different asthma endotypes, including the presence of IL-17 and a Th17 response, a biomarker of severe disease. These models utilize more physiologically relevant sensitizing agents, exacerbating factors, and allergens, as well as incorporate time points that better reflect the natural history and chronicity of clinical asthma. Importantly, some models better represent nonclassical asthma endotypes that facilitate the study of non-Th2 driven pathology and resemble the complex nature of clinical asthma, including corticosteroid resistance. Placing mouse asthma models into the context of human asthma endotypes will afford a more relevant approach to the understanding of pathophysiological mechanisms of disease that will afford the development of new therapies for those asthmatics that remain difficult to treat. PMID:24811131

  18. Metabolic characterization of a Sirt5 deficient mouse model.

    PubMed

    Yu, Jiujiu; Sadhukhan, Sushabhan; Noriega, Lilia G; Moullan, Norman; He, Bin; Weiss, Robert S; Lin, Hening; Schoonjans, Kristina; Auwerx, Johan

    2013-01-01

    Sirt5, localized in the mitochondria, is a member of sirtuin family of NAD⁺-dependent deacetylases. Sirt5 was shown to deacetylate and activate carbamoyl phosphate synthase 1. Most recently, Sirt5 was reported to be the predominant protein desuccinylase and demalonylase in the mitochondria because the ablation of Sirt5 enhanced the global succinylation and malonylation of mitochondrial proteins, including many metabolic enzymes. In order to determine the physiological role of Sirt5 in metabolic homeostasis, we generated a germline Sirt5 deficient (Sirt5⁻/⁻) mouse model and performed a thorough metabolic characterization of this mouse line. Although a global protein hypersuccinylation and elevated serum ammonia during fasting were observed in our Sirt5⁻/⁻ mouse model, Sirt5 deficiency did not lead to any overt metabolic abnormalities under either chow or high fat diet conditions. These observations suggest that Sirt5 is likely to be dispensable for the metabolic homeostasis under the basal conditions. PMID:24076663

  19. Metabolic Characterization of a Sirt5 deficient mouse model

    PubMed Central

    Yu, Jiujiu; Sadhukhan, Sushabhan; Noriega, Lilia G.; Moullan, Norman; He, Bin; Weiss, Robert S.; Lin, Hening; Schoonjans, Kristina; Auwerx, Johan

    2013-01-01

    Sirt5, localized in the mitochondria, is a member of sirtuin family of NAD+-dependent deacetylases. Sirt5 was shown to deacetylate and activate carbamoyl phosphate synthase 1. Most recently, Sirt5 was reported to be the predominant protein desuccinylase and demalonylase in the mitochondria because the ablation of Sirt5 enhanced the global succinylation and malonylation of mitochondrial proteins, including many metabolic enzymes. In order to determine the physiological role of Sirt5 in metabolic homeostasis, we generated a germline Sirt5 deficient (Sirt5−/−) mouse model and performed a thorough metabolic characterization of this mouse line. Although a global protein hypersuccinylation and elevated serum ammonia during fasting were observed in our Sirt5−/− mouse model, Sirt5 deficiency did not lead to any overt metabolic abnormalities under either chow or high fat diet conditions. These observations suggest that Sirt5 is likely to be dispensable for the metabolic homeostasis under the basal conditions. PMID:24076663

  20. Revisiting the mouse model of oxygen-induced retinopathy

    PubMed Central

    Kim, Clifford B; D'Amore, Patricia A; Connor, Kip M

    2016-01-01

    Abnormal blood vessel growth in the retina is a hallmark of many retinal diseases, such as retinopathy of prematurity (ROP), proliferative diabetic retinopathy, and the wet form of age-related macular degeneration. In particular, ROP has been an important health concern for physicians since the advent of routine supplemental oxygen therapy for premature neonates more than 70 years ago. Since then, researchers have explored several animal models to better understand ROP and retinal vascular development. Of these models, the mouse model of oxygen-induced retinopathy (OIR) has become the most widely used, and has played a pivotal role in our understanding of retinal angiogenesis and ocular immunology, as well as in the development of groundbreaking therapeutics such as anti-vascular endothelial growth factor injections for wet age-related macular degeneration. Numerous refinements to the model have been made since its inception in the 1950s, and technological advancements have expanded the use of the model across multiple scientific fields. In this review, we explore the historical developments that have led to the mouse OIR model utilized today, essential concepts of OIR, limitations of the model, and a representative selection of key findings from OIR, with particular emphasis on current research progress. PMID:27499653

  1. The cytoplasmic NPM mutant induces myeloproliferation in a transgenic mouse model.

    PubMed

    Cheng, Ke; Sportoletti, Paolo; Ito, Keisuke; Clohessy, John G; Teruya-Feldstein, Julie; Kutok, Jeffery L; Pandolfi, Pier Paolo

    2010-04-22

    Although NPM1 gene mutations leading to aberrant cytoplasmic expression of nucleophosmin (NPMc(+)) are the most frequent genetic lesions in acute myeloid leukemia, there is yet no experimental model demonstrating their oncogenicity in vivo. We report the generation and characterization of a transgenic mouse model expressing the most frequent human NPMc(+) mutation driven by the myeloid-specific human MRP8 promoter (hMRP8-NPMc(+)). In parallel, we generated a similar wild-type NPM trans-genic model (hMRP8-NPM). Interestingly, hMRP8-NPMc(+) transgenic mice developed myeloproliferation in bone marrow and spleen, whereas nontransgenic littermates and hMRP8-NPM transgenic mice remained disease free. These findings provide the first in vivo evidence indicating that NPMc(+) confers a proliferative advantage in the myeloid lineage. No spontaneous acute myeloid leukemia was found in hMPR8-NPMc(+) or hMRP8-NPM mice. This model will also aid in the development of therapeutic regimens that specifically target NPMc(+).

  2. Preclinical Mouse Cancer Models: A Maze of Opportunities and Challenges

    PubMed Central

    Day, Chi-Ping; Merlino, Glenn; Van Dyke, Terry

    2015-01-01

    Significant advances have been made in developing novel therapeutics for cancer treatment, and targeted therapies have revolutionized the treatment of some cancers. Despite the promise, only about five percent of new cancer drugs are approved, and most fail due to lack of efficacy. The indication is that current preclinical methods are limited in predicting successful outcomes. Such failure exacts enormous cost, both financial and in the quality of human life. This primer explores the current status, promise and challenges of preclinical evaluation in advanced mouse cancer models and briefly addresses emerging models for early-stage preclinical development. PMID:26406370

  3. A Mouse Model of Furosemide-Induced Overactive Bladder.

    PubMed

    Saporito, Michael S; Zuvich, Eva; DiCamillo, Amy

    2016-01-01

    Detailed in this unit is a mouse model of overactive bladder and urinary incontinence based on diuretic stress-induced urination. The procedure involves the use of a unique, highly sensitive, and automated urine capturing method to measure urinary latency, frequency, and void volume. Although this method was first described and validated using an anti-muscarinic drug used for treating overactive bladder, subsequent work has shown that effective non-cholinergic agents can be detected. These findings indicate good predictive value for this model regarding the possible clinical utility of test agents as treatments for overactive bladder, regardless of their site of action. © 2016 by John Wiley & Sons, Inc. PMID:27636110

  4. A Mouse Model for Imprinting of the Human Retinoblastoma Gene

    PubMed Central

    Tasiou, Vasiliki; Hiber, Michaela; Steenpass, Laura

    2015-01-01

    The human RB1 gene is imprinted due to integration of the PPP1R26P1 pseudogene into intron 2. PPP1R26P1 harbors the gametic differentially methylated region of the RB1 gene, CpG85, which is methylated in the female germ line. The paternally unmethylated CpG85 acts as promoter for the alternative transcript 2B of RB1, which interferes with expression of full-length RB1 in cis. In mice, PPP1R26P1 is not present in the Rb1 gene and Rb1 is not imprinted. Assuming that the mechanisms responsible for genomic imprinting are conserved, we investigated if imprinting of mouse Rb1 can be induced by transferring human PPP1R26P1 into mouse Rb1. We generated humanized Rb1_PPP1R26P1 knock-in mice that pass human PPP1R26P1 through the mouse germ line. We found that the function of unmethylated CpG85 as promoter for an alternative Rb1 transcript and as cis-repressor of the main Rb1 transcript is maintained in mouse tissues. However, CpG85 is not recognized as a gametic differentially methylated region in the mouse germ line. DNA methylation at CpG85 is acquired only in tissues of neuroectodermal origin, independent of parental transmission of PPP1R26P1. Absence of CpG85 methylation in oocytes and sperm implies a failure of imprint methylation establishment in the germ line. Our results indicate that site-specific integration of a proven human gametic differentially methylated region is not sufficient for acquisition of DNA methylation in the mouse germ line, even if promoter function of the element is maintained. This suggests a considerable dependency of DNA methylation induction on the surrounding sequence. However, our model is suited to determine the cellular function of the alternative Rb1 transcript. PMID:26275142

  5. Transgenic Mouse Models of Alzheimer Disease: Developing a Better Model as a Tool for Therapeutic Interventions

    PubMed Central

    Kitazawa, Masashi; Medeiros, Rodrigo; LaFerla, Frank M.

    2015-01-01

    Alzheimer disease (AD) is the leading cause of dementia among elderly. Currently, no effective treatment is available for AD. Analysis of transgenic mouse models of AD has facilitated our understanding of disease mechanisms and provided valuable tools for evaluating potential therapeutic strategies. In this review, we will discuss the strengths and weaknesses of current mouse models of AD and the contribution towards understanding the pathological mechanisms and developing effective therapies. PMID:22288400

  6. An Anisotropic Fluid-Solid Model of the Mouse Heart

    SciTech Connect

    Carson, James P.; Kuprat, Andrew P.; Jiao, Xiangmin; del Pin, Facundo; Einstein, Daniel R.

    2010-01-01

    A critical challenge in biomechanical simulations is the spatial discretization of complex fluid-solid geometries created from imaging. This is especially important when dealing with Lagrangian interfaces, as there must be at a minimum both geometric and topological compatibility between fluid and solid phases, with exact matching of the interfacial nodes being highly desirable. We have developed a solution to this problem and applied the approach to the creation of a 3D fluidsolid mesh of the mouse heart. First, a 50 micron isotropic MRI dataset of a perfusion-fixed mouse heart was segmented into blood, tissue, and background using a customized multimaterial connected fuzzy thresholding algorithm. Then, a multimaterial marching cubes algorithm was applied to produce two compatible isosurfaces, one for the blood-tissue boundary and one for the tissue-background boundary. A multimaterial smoothing algorithm that rigorously conserves volume for each phase simultaneously smoothed the isosurfaces. Next we applied novel automated meshing algorithms to generate anisotropic hybrid meshes with the number of layers and the desired element anisotropy for each material as the only input parameters. As the meshes are scale-invariant within a material and include boundary layer prisms, fluid-structure interaction computations would have a relative error equilibrated over the entire mesh. The resulting model is highly detailed mesh representation of the mouse heart, including features such as chordae and coronary vasculature, that is also maximally efficient to produce the best simulation results for the computational resources available

  7. A novel mouse model of creatine transporter deficiency

    PubMed Central

    Baroncelli, Laura; Alessandrì, Maria Grazia; Tola, Jonida; Putignano, Elena; Migliore, Martina; Amendola, Elena; Gross, Cornelius; Leuzzi, Vincenzo; Cioni, Giovanni; Pizzorusso, Tommaso

    2014-01-01

    Mutations in the creatine (Cr) transporter (CrT) gene lead to cerebral creatine deficiency syndrome-1 (CCDS1), an X-linked metabolic disorder characterized by cerebral Cr deficiency causing intellectual disability, seizures, movement  and behavioral disturbances, language and speech impairment ( OMIM #300352). CCDS1 is still an untreatable pathology that can be very invalidating for patients and caregivers. Only two murine models of CCDS1, one of which is an ubiquitous knockout mouse, are currently available to study the possible mechanisms underlying the pathologic phenotype of CCDS1 and to develop therapeutic strategies. Given the importance of validating phenotypes and efficacy of promising treatments in more than one mouse model we have generated a new murine model of CCDS1 obtained by ubiquitous deletion of 5-7 exons in the Slc6a8 gene. We showed a remarkable Cr depletion in the murine brain tissues and cognitive defects, thus resembling the key features of human CCDS1. These results confirm that CCDS1 can be well modeled in mice. This CrT −/y murine model will provide a new tool for increasing the relevance of preclinical studies to the human disease. PMID:25485098

  8. Chronic Myeloid Leukemia (CML) Mouse Model in Translational Research.

    PubMed

    Peng, Cong; Li, Shaoguang

    2016-01-01

    Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterized by increased proliferation of granulocytic cells without the loss of their capability to differentiate. CML is a clonal disease, originated at the level of Hematopoietic Stem Cells with the Philadelphia chromosome resulting from a reciprocal translocation between the chromosomes 9 and 22t(9;22)-(q34;q11). This translocation produces a fusion gene known as BCR-ABL which acquires uncontrolled tyrosine kinase activity, constantly turning on its downstream signaling molecules/pathways, and promoting proliferation of leukemia cell through anti-apoptosis and acquisition of additional mutations. To evaluate the role of each critical downstream signaling molecule of BCR-ABL and test therapeutic drugs in vivo, it is important to use physiological mouse disease models. Here, we describe a mouse model of CML induced by BCR-ABL retrovirus (MSCV-BCR-ABL-GFP; MIG-BCR-ABL) and how to use this model in translational research.Moreover, to expand the application of this retrovirus induced CML model in a lot of conditional knockout mouse strain, we modified this vector to a triple gene coexpression vector in which we can co-express BCR-ABL, GFP, and a third gene which will be tested in different systems. To apply this triple gene system in conditional gene knockout strains, we can validate the CML development in the knockout mice and trace the leukemia cell following the GFP marker. In this protocol, we also describe how we utilize this triple gene system to prove the function of Pten as a tumor suppressor in leukemogenesis. Overall, this triple gene system expands our research spectrum in current conditional gene knockout strains and benefits our CML translational research. PMID:27150093

  9. Mouse models for genes involved in impaired spermatogenesis.

    PubMed

    O'Bryan, M K; de Kretser, D

    2006-02-01

    Since the introduction of molecular biology and gene ablation technologies there have been substantial advances in our understanding of how sperm are made and fertilization occurs. There have been at least 150 different models of specifically altered gene function produced that have resulted in male infertility spanning virtually all aspects of the spermatogenic, sperm maturation and fertilization processes. While each has, or potentially will reveal, novel aspects of these processes, there is still much of which we have little knowledge. The current review is by no means a comprehensive list of these mouse models, rather it gives an overview of the potential for such models which up to this point have generally been 'knockouts'; it presents alternative strategies for the production of new models and emphasizes the importance of thorough phenotypic analysis in order to extract a maximum amount of information from each model.

  10. Platelets promote bacterial dissemination in a mouse model of streptococcal sepsis.

    PubMed

    Kahn, Fredrik; Hurley, Sinead; Shannon, Oonagh

    2013-01-01

    Platelets have been reported to contribute to inflammation and inflammatory disorders. In the present study, we demonstrate that platelets contribute to the acute response to bacterial infection in a mouse model of invasive Streptococcus pyogenes infection. Thrombocytopenia occurred rapidly in infected animals and this was associated with platelet activation, formation of platelet-neutrophil complexes and neutrophil activation. In order to assess the role of platelets during infection, platelets were depleted prior to infection. Platelet-depleted animals had significantly decreased platelet-neutrophil complex formation and neutrophil activation in response to infection. Importantly, significantly fewer bacteria disseminated to the blood, lungs, and spleen of platelet-depleted animals. Platelet-depleted animals did not decrease as significantly in weight as the infected control animals. The results demonstrate a previously unappreciated role for platelets during the pathophysiological response to infection, whereby S. pyogenes bacteria bind to platelets and platelets facilitate bacterial dissemination.

  11. Reducing GABAergic inhibition restores cognitive functions in a mouse model of Down syndrome.

    PubMed

    Potier, Marie-Claude; Braudeau, Jérôme; Dauphinot, Luce; Delatour, Benoît

    2014-02-01

    Alterations in excitatory-inhibitory balance occur in Down syndrome and could be responsible for cognitive deficits observed through the life of all individuals carrying an extra copy of chromosome 21. Excess of inhibition in the adult could produce synaptic plasticity deficits that may be a primary mechanism contributing to learning and memory impairments. In this study we discuss pharmacological treatments that could potentially alleviate neuronal inhibition and have been tested in a mouse model of Down syndrome. γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mature central nervous system that binds to GABA-benzodiazepine receptors, opens a chloride channel and reduces neuronal excitability. These receptors have been extensively studied as targets for treatment of epilepsy, anxiety, sleep, cognitive disorders and the induction of sedation. Molecules that are either antagonists or inverse agonists of the GABA-benzodiazepine receptors are able to reduce inhibitory GABAergic transmission. However modulating the excitatory-inhibitory balance towards increase of cognition without inducing seizures remains difficult particularly when using GABA antagonists. In this study we review data from the literature obtained using inverse agonists selective for the α5-subunit containing receptor. Such inverse agonists, initially developed as cognitive enhancers for treatment of memory impairments, proved to be very efficient in reversing learning and memory deficits in a Down syndrome mouse model after acute treatment.

  12. A new mouse model of metabolic syndrome and associated complications

    PubMed Central

    Wang, Yun; Zheng, Yue; Nishina, Patsy M; Naggert, Jürgen K.

    2010-01-01

    Metabolic Syndrome (MS) encompasses a clustering of risk factors for cardiovascular disease, including obesity, insulin resistance, and dyslipidemia. We characterized a new mouse model carrying a dominant mutation, C57BL/6J-Nmf15/+ (B6-Nmf15/+), which develops additional complications of MS such as adipose tissue inflammation and cardiomyopathy. A backcross was used to genetically map the Nmf15 locus. Mice were examined in the CLAMS™ animal monitoring system, and dual energy X-ray absorptiometry and blood chemistry analyses were performed. Hypothalamic LepR, SOCS1 and STAT3 phosphorylation were examined. Cardiac function was assessed by Echo- and Electro Cardiography. Adipose tissue inflammation was characterized by in situ hybridization and measurement of Jun kinase activity. The Nmf15 locus mapped to distal mouse chromosome 5 with a LOD score of 13.8. Nmf15 mice developed obesity by 12 weeks of age. Plasma leptin levels were significantly elevated in pre-obese Nmf15 mice at 8 weeks of age and an attenuated STAT3 phosphorylation in the hypothalamus suggests a primary leptin resistance. Adipose tissue from Nmf15 mice showed a remarkable degree of inflammation and macrophage infiltration as indicated by expression of the F4/80 marker and increased phosphorylation of JNK1/2. Lipidosis was observed in tubular epithelial cells and glomeruli of the kidney. Nmf15 mice demonstrate both histological and pathophysiological evidence of cardiomyopathy. The Nmf15 mouse model provides a new entry point into pathways mediating leptin resistance and obesity. It is one of few models that combine many aspects of metabolic syndrome and can be useful for testing new therapeutic approaches for combating obesity complications, particularly cardiomyopathy. PMID:19398498

  13. Venous Thrombosis and Cancer: from Mouse Models to Clinical Trials

    PubMed Central

    Hisada, Y.; Geddings, J. E.; Ay, C.; Mackman, N.

    2015-01-01

    Cancer patients have a ~4 fold increased risk of venous thromboembolism (VTE) compared with the general population and this is associated with significant morbidity and mortality. This review summarizes our current knowledge of VTE and cancer from mouse models to clinical studies. Notably, risk of VTE varies depending on the type and stage of cancer. For instance, pancreatic and brain cancer patients have a higher risk of VTE than breast and prostate cancer patients. Moreover, patients with metastatic disease have a higher risk than those with localized tumors. Tumor-derived procoagulant factors and growth factors may directly and indirectly enhance VTE. For example, increased levels of circulating tumor-derived, tissue factor-positive microvesicles may trigger VTE. In a mouse model of ovarian cancer, tumor-derived IL-6 and hepatic thrombopoietin has been linked to increased platelet production and thrombosis. In addition, mouse models of mammary and lung cancer showed that tumor-derived granulocyte colony-stimulating factor causes neutrophilia and activation of neutrophils. Activated neutrophils can release neutrophil extracellular traps (NETs) that enhance thrombosis. Cell-free DNA in the blood derived from cancer cells, NETs and treatment with cytotoxic drugs can activate the clotting cascade. These studies suggest that there are multiple mechanisms for VTE in patients with different types of cancer. Preventing and treating VTE in cancer patients is challenging; the current recommendations are to use low molecular weight heparin. Understanding the underlying mechanisms may allow the development of new therapies to safely prevent VTE in cancer patients. PMID:25988873

  14. Behavioral despair associated with a mouse model of Crohn's disease: Role of nitric oxide pathway.

    PubMed

    Heydarpour, Pouria; Rahimian, Reza; Fakhfouri, Gohar; Khoshkish, Shayan; Fakhraei, Nahid; Salehi-Sadaghiani, Mohammad; Wang, Hongxing; Abbasi, Ata; Dehpour, Ahmad Reza; Ghia, Jean-Eric

    2016-01-01

    Crohn's disease (CD) is associated with increased psychiatric co-morbidities. Nitric oxide (NO) is implicated in inflammation and tissue injury in CD, and it may also play a central role in pathogenesis of the accompanying behavioral despair. This study investigated the role of the NO pathway in behavioral despair associated with a mouse model of CD. Colitis was induced by intrarectal (i.r.) injection of 2,4,6-trinitrobenzenesulfonic acid (10mg TNBS in 50% ethanol). Forced swimming test (FST), pharmacological studies and tissues collection were performed 72 h following TNBS administration. To address a possible inflammatory origin for the behavioral despair following colitis induction, tumor necrosis factor-alpha (TNF-α) level was measured in both the hippocampal and colonic tissue samples. In parallel, hippocampal inducible nitric oxide synthase (iNOS) and nitrite level were evaluated. Pharmacological studies targeting the NO pathway were performed 30-60 min before behavioral test. Colitis was confirmed by increased colonic TNF-α level and microscopic score. Colitic mice demonstrated a significantly higher immobility time in the FST associated to a significant increase of hippocampal TNF-α, iNOS expression and nitrite content. Acute NOS inhibition using either Nω-nitro-l-arginine methyl ester (a non-specific NOS inhibitor) or aminoguanidine hydrochloride (a specific iNOS inhibitor) decreased the immobility time in colitic groups. Moreover, acute treatment with both NOS inhibitors decreased the TNF-α level and nitrite content in the hippocampal samples. This study suggests that the NO pathway may be involved in the behavioral effects in the mouse TNBS model of CD. These findings endow new insights into the gut-brain communication during the development of colonic inflammation, which may ultimately lead to improved therapeutic strategies to combat behavior changes associated with gastrointestinal disorders.

  15. Behavioral despair associated with a mouse model of Crohn's disease: Role of nitric oxide pathway.

    PubMed

    Heydarpour, Pouria; Rahimian, Reza; Fakhfouri, Gohar; Khoshkish, Shayan; Fakhraei, Nahid; Salehi-Sadaghiani, Mohammad; Wang, Hongxing; Abbasi, Ata; Dehpour, Ahmad Reza; Ghia, Jean-Eric

    2016-01-01

    Crohn's disease (CD) is associated with increased psychiatric co-morbidities. Nitric oxide (NO) is implicated in inflammation and tissue injury in CD, and it may also play a central role in pathogenesis of the accompanying behavioral despair. This study investigated the role of the NO pathway in behavioral despair associated with a mouse model of CD. Colitis was induced by intrarectal (i.r.) injection of 2,4,6-trinitrobenzenesulfonic acid (10mg TNBS in 50% ethanol). Forced swimming test (FST), pharmacological studies and tissues collection were performed 72 h following TNBS administration. To address a possible inflammatory origin for the behavioral despair following colitis induction, tumor necrosis factor-alpha (TNF-α) level was measured in both the hippocampal and colonic tissue samples. In parallel, hippocampal inducible nitric oxide synthase (iNOS) and nitrite level were evaluated. Pharmacological studies targeting the NO pathway were performed 30-60 min before behavioral test. Colitis was confirmed by increased colonic TNF-α level and microscopic score. Colitic mice demonstrated a significantly higher immobility time in the FST associated to a significant increase of hippocampal TNF-α, iNOS expression and nitrite content. Acute NOS inhibition using either Nω-nitro-l-arginine methyl ester (a non-specific NOS inhibitor) or aminoguanidine hydrochloride (a specific iNOS inhibitor) decreased the immobility time in colitic groups. Moreover, acute treatment with both NOS inhibitors decreased the TNF-α level and nitrite content in the hippocampal samples. This study suggests that the NO pathway may be involved in the behavioral effects in the mouse TNBS model of CD. These findings endow new insights into the gut-brain communication during the development of colonic inflammation, which may ultimately lead to improved therapeutic strategies to combat behavior changes associated with gastrointestinal disorders. PMID:26268932

  16. [Study of the Effect of Cholecystokinin-Induced Acute Pancreatitis on the Free-Running Rhythm of Mouse].

    PubMed

    Li, Yonghong; Yang, Xiaoping; Guo, Panpan; Liu, Yanyou; Yan, Hongli; Li, Shuaizhen; Guan, Junwen

    2016-02-01

    The present paper reports the effect of pancreatitis induced by cholecystokinin (CCK) on free-running rhythm of locomotor activity of the ICR mice, and analyzes the interaction of inflammatory diseases and acute pancreatitis with circadian rhythm system. In the study, the mice were modeled under different phases of acute pancreatitis in DD status (Double Dark, constant dark condition). By comparing of the inflammatory status and the indicators of rhythm before and after modeling of the running wheel activity group and the rest group, it was observed that the rest group showed more possibility of inflammation than the activity group did in ICR mice model of acute pancreatitis. In the rest phase model, the extension of the period is particularly longer. The results presented indicated that CCK-induced acute pancreatitis impacted free activity rhythm of ICR mice. Also in a free running model under different phase, the inflammation severity was proved significantly different. This study provides possible clues for the research of the pathogenesis of acute pancreatitis severe tendency.

  17. Humanized Mouse Model to Study Bacterial Infections Targeting the Microvasculature

    PubMed Central

    Melican, Keira; Aubey, Flore; Duménil, Guillaume

    2014-01-01

    Neisseria meningitidis causes a severe, frequently fatal sepsis when it enters the human blood stream. Infection leads to extensive damage of the blood vessels resulting in vascular leak, the development of purpuric rashes and eventual tissue necrosis. Studying the pathogenesis of this infection was previously limited by the human specificity of the bacteria, which makes in vivo models difficult. In this protocol, we describe a humanized model for this infection in which human skin, containing dermal microvessels, is grafted onto immunocompromised mice. These vessels anastomose with the mouse circulation while maintaining their human characteristics. Once introduced into this model, N. meningitidis adhere exclusively to the human vessels, resulting in extensive vascular damage, inflammation and in some cases the development of purpuric rash. This protocol describes the grafting, infection and evaluation steps of this model in the context of N. meningitidis infection. The technique may be applied to numerous human specific pathogens that infect the blood stream. PMID:24747976

  18. Mouse genetic models for temporomandibular joint development and disorders

    PubMed Central

    Suzuki, A; Iwata, J

    2016-01-01

    The temporomandibular joint (TMJ) is a synovial joint essential for hinge and sliding movements of the mammalian jaw. Temporomandibular joint disorders (TMD) are dysregulations of the muscles or the TMJ in structure, function, and physiology, and result in pain, limited mandibular mobility, and TMJ noise and clicking. Although approximately 40–70% adults in the USA have at least one sign of TMD, the etiology of TMD remains largely unknown. Here, we highlight recent advances in our understanding of TMD in mouse models. PMID:26096083

  19. Bifactor Item Response Theory Model of Acute Stress Response

    PubMed Central

    Zhang, Ying; Jiang, Yuan; Tang, Jingjing; Zhu, Xia; Miao, Danmin

    2013-01-01

    Background Better understanding of acute stress responses is important for revision of DSM-5. However, the latent structure and relationship between different aspects of acute stress responses haven’t been clarified comprehensively. Bifactor item response model may help resolve this problem. Objective The purpose of this study is to develop a statistical model of acute stress responses, based on data from earthquake rescuers using Acute Stress Response Scale (ASRS). Through this model, we could better understand acute stress responses comprehensively, and provide preliminary information for computerized adaptive testing of stress responses. Methods Acute stress responses of earthquake rescuers were evaluated using ASRS, and state/trait anxiety were assessed using State-trait Anxiety Inventory (STAI). A hierarchical item response model (bifactor model) was used to analyze the data. Additionally, we tested this hierarchical model with model fit comparisons with one-dimensional and five-dimensional models. The correlations among acute stress responses and state/trait anxiety were compared, based on both the five-dimensional and bifactor models. Results Model fit comparisons showed bifactor model fit the data best. Item loadings on general and specific factors varied greatly between different aspects of stress responses. Many symptoms (40%) of physiological responses had positive loadings on general factor, and negative loadings on specific factor of physiological responses, while other stress responses had positive loadings on both general and specific factors. After extracting general factor of stress responses using bifactor analysis, significant positive correlations between physiological responses and state/trait anxiety (r = 0.185/0.112, p<0.01) changed into negative ones (r = −0.177/−0.38, p<0.01). Conclusion Our results demonstrated bifactor structure of acute stress responses, and positive and negative correlations between physiological responses

  20. Experimental models of hepatotoxicity related to acute liver failure.

    PubMed

    Maes, Michaël; Vinken, Mathieu; Jaeschke, Hartmut

    2016-01-01

    Acute liver failure can be the consequence of various etiologies, with most cases arising from drug-induced hepatotoxicity in Western countries. Despite advances in this field, the management of acute liver failure continues to be one of the most challenging problems in clinical medicine. The availability of adequate experimental models is of crucial importance to provide a better understanding of this condition and to allow identification of novel drug targets, testing the efficacy of new therapeutic interventions and acting as models for assessing mechanisms of toxicity. Experimental models of hepatotoxicity related to acute liver failure rely on surgical procedures, chemical exposure or viral infection. Each of these models has a number of strengths and weaknesses. This paper specifically reviews commonly used chemical in vivo and in vitro models of hepatotoxicity associated with acute liver failure. PMID:26631581

  1. Experimental models of hepatotoxicity related to acute liver failure

    PubMed Central

    Maes, Michaël; Vinken, Mathieu; Jaeschke, Hartmut

    2015-01-01

    Acute liver failure can be the consequence of various etiologies, with most cases arising from drug-induced hepatotoxicity in Western countries. Despite advances in this field, the management of acute liver failure continues to be one of the most challenging problems in clinical medicine. The availability of adequate experimental models is of crucial importance to provide a better understanding of this condition and to allow identification of novel drug targets, testing the efficacy of new therapeutic interventions and acting as models for assessing mechanisms of toxicity. Experimental models of hepatotoxicity related to acute liver failure rely on surgical procedures, chemical exposure or viral infection. Each of these models has a number of strengths and weaknesses. This paper specifically reviews commonly used chemical in vivo and in vitro models of hepatotoxicity associated with acute liver failure. PMID:26631581

  2. Experimental models of hepatotoxicity related to acute liver failure.

    PubMed

    Maes, Michaël; Vinken, Mathieu; Jaeschke, Hartmut

    2016-01-01

    Acute liver failure can be the consequence of various etiologies, with most cases arising from drug-induced hepatotoxicity in Western countries. Despite advances in this field, the management of acute liver failure continues to be one of the most challenging problems in clinical medicine. The availability of adequate experimental models is of crucial importance to provide a better understanding of this condition and to allow identification of novel drug targets, testing the efficacy of new therapeutic interventions and acting as models for assessing mechanisms of toxicity. Experimental models of hepatotoxicity related to acute liver failure rely on surgical procedures, chemical exposure or viral infection. Each of these models has a number of strengths and weaknesses. This paper specifically reviews commonly used chemical in vivo and in vitro models of hepatotoxicity associated with acute liver failure.

  3. Establishment of Early Endpoints in Mouse Total-Body Irradiation Model.

    PubMed

    Koch, Amory; Gulani, Jatinder; King, Gregory; Hieber, Kevin; Chappell, Mark; Ossetrova, Natalia

    2016-01-01

    Acute radiation sickness (ARS) following exposure to ionizing irradiation is characterized by radiation-induced multiorgan dysfunction/failure that refers to progressive dysfunction of two or more organ systems, the etiological agent being radiation damage to cells and tissues over time. Radiation sensitivity data on humans and animals has made it possible to describe the signs associated with ARS. A mouse model of total-body irradiation (TBI) has previously been developed that represents the likely scenario of exposure in the human population. Herein, we present the Mouse Intervention Scoring System (MISS) developed at the Veterinary Sciences Department (VSD) of the Armed Forces Radiobiology Research Institute (AFRRI) to identify moribund mice and decrease the numbers of mice found dead, which is therefore a more humane refinement to death as the endpoint. Survival rates were compared to changes in body weights and temperatures in the mouse (CD2F1 male) TBI model (6-14 Gy, 60Co γ-rays at 0.6 Gy min-1), which informed improvements to the Scoring System. Individual tracking of animals via implanted microchips allowed for assessment of criteria based on individuals rather than by group averages. From a total of 132 mice (92 irradiated), 51 mice were euthanized versus only four mice that were found dead (7% of non-survivors). In this case, all four mice were found dead after overnight periods between observations. Weight loss alone was indicative of imminent succumbing to radiation injury, however mice did not always become moribund within 24 hours while having weight loss >30%. Only one survivor had a weight loss of greater than 30%. Temperature significantly dropped only 2-4 days before death/euthanasia in 10 and 14 Gy animals. The score system demonstrates a significant refinement as compared to using subjective assessment of morbidity or death as the endpoint for these survival studies. PMID:27579862

  4. Human mesenchymal stem cells towards non-alcoholic steatohepatitis in an immunodeficient mouse model

    SciTech Connect

    Winkler, Sandra; Borkham-Kamphorst, Erawan; Stock, Peggy; Brückner, Sandra; Dollinger, Matthias; Weiskirchen, Ralf; Christ, Bruno

    2014-08-15

    Non-alcoholic steatohepatitis (NASH) is a frequent clinical picture characterised by hepatic inflammation, lipid accumulation and fibrosis. When untreated, NASH bears a high risk of developing liver cirrhosis and consecutive hepatocellular carcinoma requiring liver transplantation in its end-stage. However, donor organ scarcity has prompted the search for alternatives, of which hepatocyte or stem cell-derived hepatocyte transplantation are regarded auspicious options of treatment. Mesenchymal stem cells (MSC) are able to differentiate into hepatocyte-like cells and thus may represent an alternative cell source to primary hepatocytes. In addition these cells feature anti-inflammatory and pro-regenerative characteristics, which might favour liver recovery from NASH. The aim of this study was to investigate the potential benefit of hepatocyte-like cells derived from human bone marrow MSC in a mouse model of diet-induced NASH. Seven days post-transplant, human hepatocyte-like cells were found in the mouse liver parenchyma. Triglyceride depositions were lowered in the liver but restored to normal in the blood. Hepatic inflammation was attenuated as verified by decreased expression of the acute phase protein serum amyloid A, inflammation-associated markers (e.g. lipocalin 2), as well as the pro-inflammatory cytokine TNFα. Moreover, the proliferation of host hepatocytes that indicate the regenerative capacity in livers receiving cell transplants was enhanced. Transplantation of MSC-derived human hepatocyte-like cells corrects NASH in mice by restoring triglyceride depositions, reducing inflammation and augmenting the regenerative capacity of the liver. - Highlights: • First time to show NASH in an immune-deficient mouse model. • Human MSC attenuate NASH and improve lipid homeostasis. • MSC act anti-fibrotic and augment liver regeneration by stimulation of proliferation. • Pre-clinical assessment of human MSC for stem cell-based therapy of NASH.

  5. Establishment of Early Endpoints in Mouse Total-Body Irradiation Model.

    PubMed

    Koch, Amory; Gulani, Jatinder; King, Gregory; Hieber, Kevin; Chappell, Mark; Ossetrova, Natalia

    2016-01-01

    Acute radiation sickness (ARS) following exposure to ionizing irradiation is characterized by radiation-induced multiorgan dysfunction/failure that refers to progressive dysfunction of two or more organ systems, the etiological agent being radiation damage to cells and tissues over time. Radiation sensitivity data on humans and animals has made it possible to describe the signs associated with ARS. A mouse model of total-body irradiation (TBI) has previously been developed that represents the likely scenario of exposure in the human population. Herein, we present the Mouse Intervention Scoring System (MISS) developed at the Veterinary Sciences Department (VSD) of the Armed Forces Radiobiology Research Institute (AFRRI) to identify moribund mice and decrease the numbers of mice found dead, which is therefore a more humane refinement to death as the endpoint. Survival rates were compared to changes in body weights and temperatures in the mouse (CD2F1 male) TBI model (6-14 Gy, 60Co γ-rays at 0.6 Gy min-1), which informed improvements to the Scoring System. Individual tracking of animals via implanted microchips allowed for assessment of criteria based on individuals rather than by group averages. From a total of 132 mice (92 irradiated), 51 mice were euthanized versus only four mice that were found dead (7% of non-survivors). In this case, all four mice were found dead after overnight periods between observations. Weight loss alone was indicative of imminent succumbing to radiation injury, however mice did not always become moribund within 24 hours while having weight loss >30%. Only one survivor had a weight loss of greater than 30%. Temperature significantly dropped only 2-4 days before death/euthanasia in 10 and 14 Gy animals. The score system demonstrates a significant refinement as compared to using subjective assessment of morbidity or death as the endpoint for these survival studies.

  6. Establishment of Early Endpoints in Mouse Total-Body Irradiation Model

    PubMed Central

    Gulani, Jatinder; King, Gregory; Hieber, Kevin; Chappell, Mark; Ossetrova, Natalia

    2016-01-01

    Acute radiation sickness (ARS) following exposure to ionizing irradiation is characterized by radiation-induced multiorgan dysfunction/failure that refers to progressive dysfunction of two or more organ systems, the etiological agent being radiation damage to cells and tissues over time. Radiation sensitivity data on humans and animals has made it possible to describe the signs associated with ARS. A mouse model of total-body irradiation (TBI) has previously been developed that represents the likely scenario of exposure in the human population. Herein, we present the Mouse Intervention Scoring System (MISS) developed at the Veterinary Sciences Department (VSD) of the Armed Forces Radiobiology Research Institute (AFRRI) to identify moribund mice and decrease the numbers of mice found dead, which is therefore a more humane refinement to death as the endpoint. Survival rates were compared to changes in body weights and temperatures in the mouse (CD2F1 male) TBI model (6–14 Gy, 60Co γ-rays at 0.6 Gy min-1), which informed improvements to the Scoring System. Individual tracking of animals via implanted microchips allowed for assessment of criteria based on individuals rather than by group averages. From a total of 132 mice (92 irradiated), 51 mice were euthanized versus only four mice that were found dead (7% of non-survivors). In this case, all four mice were found dead after overnight periods between observations. Weight loss alone was indicative of imminent succumbing to radiation injury, however mice did not always become moribund within 24 hours while having weight loss >30%. Only one survivor had a weight loss of greater than 30%. Temperature significantly dropped only 2–4 days before death/euthanasia in 10 and 14 Gy animals. The score system demonstrates a significant refinement as compared to using subjective assessment of morbidity or death as the endpoint for these survival studies. PMID:27579862

  7. Neuropathogenicity of Two Saffold Virus Type 3 Isolates in Mouse Models

    PubMed Central

    Kotani, Osamu; Naeem, Asif; Suzuki, Tadaki; Iwata-Yoshikawa, Naoko; Sato, Yuko; Nakajima, Noriko; Hosomi, Takushi; Tsukagoshi, Hiroyuki; Kozawa, Kunihisa; Hasegawa, Hideki; Taguchi, Fumihiro; Shimizu, Hiroyuki; Nagata, Noriyo

    2016-01-01

    Objective Saffold virus (SAFV), a picornavirus, is occasionally detected in children with acute flaccid paralysis, meningitis, and cerebellitis; however, the neuropathogenicity of SAFV remains undetermined. Methods The virulence of two clinical isolates of SAFV type 3 (SAFV-3) obtained from a patient with aseptic meningitis (AM strain) and acute upper respiratory inflammation (UR strain) was analyzed in neonatal and young mice utilizing virological, pathological, and immunological methods. Results The polyproteins of the strains differed in eight amino acids. Both clinical isolates were infective, exhibited neurotropism, and were mildly neurovirulent in neonatal ddY mice. Both strains pathologically infected neural progenitor cells and glial cells, but not large neurons, with the UR strain also infecting epithelial cells. UR infection resulted in longer inflammation in the brain and spinal cord because of demyelination, while the AM strain showed more infectivity in the cerebellum in neonatal ddY mice. Additionally, young BALB/c mice seroconverted following mucosal inoculation with the UR, but not the AM, strain. Conclusions Both SAFV-3 isolates had neurotropism and mild neurovirulence but showed different cell tropisms in both neonatal and young mouse models. This animal model has the potential to recapitulate the potential neuropathogenicity of SAFV-3. PMID:26828718

  8. Streptozocin-Induced Diabetic Mouse Model of Urinary Tract Infection▿

    PubMed Central

    Rosen, David A.; Hung, Chia-Suei; Kline, Kimberly A.; Hultgren, Scott J.

    2008-01-01

    Diabetics have a higher incidence of urinary tract infection (UTI), are infected with a broader range of uropathogens, and more commonly develop serious UTI sequelae than nondiabetics. To better study UTI in the diabetic host, we created and characterized a murine model of diabetic UTI using the pancreatic islet β-cell toxin streptozocin in C3H/HeN, C3H/HeJ, and C57BL/6 mouse backgrounds. Intraperitoneal injections of streptozocin were used to initiate diabetes in healthy mouse backgrounds, as defined by consecutive blood glucose levels of >250 mg/dl. UTIs caused by uropathogenic Escherichia coli (UTI89), Klebsiella pneumoniae (TOP52 1721), and Enterococcus faecalis (0852) were studied, and diabetic mice were found to be considerably more susceptible to infection. All three uropathogens produced significantly higher bladder and kidney titers than buffer-treated controls. Uropathogens did not have as large an advantage in the Toll-like receptor 4-defective C3H/HeJ diabetic mouse, arguing that the dramatic increase in colonization seen in C3H/HeN diabetic mice may partially be due to diabetic-induced defects in innate immunity. Competition experiments demonstrated that E. coli had a significant advantage over K. pneumoniae in the bladders of healthy mice and less of an advantage in diabetic bladders. In the kidneys, K. pneumoniae outcompeted E. coli in healthy mice but in diabetic mice E. coli outcompeted K. pneumoniae and caused severe pyelonephritis. Diabetic kidneys contained renal tubules laden with communities of E. coli UTI89 bacteria within an extracellular-matrix material. Diabetic mice also had glucosuria, which may enhance bacterial replication in the urinary tract. These data support that this murine diabetic UTI model is consistent with known characteristics of human diabetic UTI and can provide a powerful tool for dissecting this infection in the multifactorial setting of diabetes. PMID:18644886

  9. Characterization of a Spontaneous Retinal Neovascular Mouse Model

    PubMed Central

    Hasegawa, Eiichi; Sweigard, Harry; Husain, Deeba; Olivares, Ana M.; Chang, Bo; Smith, Kaylee E.; Birsner, Amy E.; D’Amato, Robert J.; Michaud, Norman A.; Han, Yinan; Vavvas, Demetrios G.; Miller, Joan W.; Haider, Neena B.; Connor, Kip M.

    2014-01-01

    Background Vision loss due to vascular disease of the retina is a leading cause of blindness in the world. Retinal angiomatous proliferation (RAP) is a subgroup of neovascular age-related macular degeneration (AMD), whereby abnormal blood vessels develop in the retina leading to debilitating vision loss and eventual blindness. The novel mouse strain, neoretinal vascularization 2 (NRV2), shows spontaneous fundus changes associated with abnormal neovascularization. The purpose of this study is to characterize the induction of pathologic angiogenesis in this mouse model. Methods The NRV2 mice were examined from postnatal day 12 (p12) to 3 months. The phenotypic changes within the retina were evaluated by fundus photography, fluorescein angiography, optical coherence tomography, and immunohistochemical and electron microscopic analysis. The pathological neovascularization was imaged by confocal microscopy and reconstructed using three-dimensional image analysis software. Results We found that NRV2 mice develop multifocal retinal depigmentation in the posterior fundus. Depigmented lesions developed vascular leakage observed by fluorescein angiography. The spontaneous angiogenesis arose from the retinal vascular plexus at postnatal day (p)15 and extended toward retinal pigment epithelium (RPE). By three months of age, histological analysis revealed encapsulation of the neovascular lesion by the RPE in the photoreceptor cell layer and subretinal space. Conclusions The NRV2 mouse strain develops early neovascular lesions within the retina, which grow downward towards the RPE beginning at p15. This retinal neovascularization model mimics early stages of human retinal angiomatous proliferation (RAP) and will likely be a useful in elucidating targeted therapeutics for patients with ocular neovascular disease. PMID:25188381

  10. Generation of improved humanized mouse models for human infectious diseases

    PubMed Central

    Brehm, Michael A.; Wiles, Michael V.; Greiner, Dale L.; Shultz, Leonard D.

    2014-01-01

    The study of human-specific infectious agents has been hindered by the lack of optimal small animal models. More recently development of novel strains of immunodeficient mice has begun to provide the opportunity to utilize small animal models for the study of many human-specific infectious agents. The introduction of a targeted mutation in the IL2 receptor common gamma chain gene (IL2rgnull) in mice already deficient in T and B cells led to a breakthrough in the ability to engraft hematopoietic stem cells, as well as functional human lymphoid cells and tissues, effectively creating human immune systems in immunodeficient mice. These humanized mice are becoming increasingly important as pre-clinical models for the study of human immunodeficiency virus-1 (HIV-1) and other human-specific infectious agents. However, there remain a number of opportunities to further improve humanized mouse models for the study of human-specific infectious agents. This is being done by the implementation of innovative technologies, which collectively will accelerate the development of new models of genetically modified mice, including; i) modifications of the host to reduce innate immunity, which impedes human cell engraftment; ii) genetic modification to provide human-specific growth factors and cytokines required for optimal human cell growth and function; iii) and new cell and tissue engraftment protocols. The development of “next generation” humanized mouse models continues to provide exciting opportunities for the establishment of robust small animal models to study the pathogenesis of human-specific infectious agents, as well as for testing the efficacy of therapeutic agents and experimental vaccines. PMID:24607601

  11. A Mouse Model for Meckel Syndrome Type 3

    PubMed Central

    Cook, Susan A.; Collin, Gayle B.; Bronson, Roderick T.; Naggert, Jürgen K.; Liu, Dong P.; Akeson, Ellen C.; Davisson, Muriel T.

    2009-01-01

    Meckel-Gruber syndrome type 3 (MKS3; OMIM 607361) is a severe autosomal recessive disorder characterized by bilateral polycystic kidney disease. Other malformations associated with MKS3 include cystic changes in the liver, polydactyly, and brain abnormalities (occipital encephalocele, hydrocephalus, and Dandy Walker–type cerebellar anomalies). The disorder is hypothesized to be caused by defects in primary cilia. In humans, the underlying mutated gene, TMEM67, encodes transmembrane protein 67, also called meckelin (OMIM 609884), which is an integral protein of the renal epithelial cell and membrane of the primary cilium. Here, we describe a spontaneous deletion of the mouse ortholog, Tmem67, which results in polycystic kidney disease and death by 3 wk after birth. Hydrocephalus also occurs in some mutants. We verified the mutated gene by transgenic rescue and characterized the phenotype with microcomputed tomography, histology, scanning electron microscopy, and immunohistochemistry. This mutant provides a mouse model for MKS3 and adds to the growing set of mammalian models essential for studying the role of the primary cilium in kidney function. PMID:19211713

  12. Cerebellar associative sensory learning defects in five mouse autism models

    PubMed Central

    Kloth, Alexander D; Badura, Aleksandra; Li, Amy; Cherskov, Adriana; Connolly, Sara G; Giovannucci, Andrea; Bangash, M Ali; Grasselli, Giorgio; Peñagarikano, Olga; Piochon, Claire; Tsai, Peter T; Geschwind, Daniel H; Hansel, Christian; Sahin, Mustafa; Takumi, Toru; Worley, Paul F; Wang, Samuel S-H

    2015-01-01

    Sensory integration difficulties have been reported in autism, but their underlying brain-circuit mechanisms are underexplored. Using five autism-related mouse models, Shank3+/ΔC, Mecp2R308/Y, Cntnap2−/−, L7-Tsc1 (L7/Pcp2Cre::Tsc1flox/+), and patDp(15q11-13)/+, we report specific perturbations in delay eyeblink conditioning, a form of associative sensory learning requiring cerebellar plasticity. By distinguishing perturbations in the probability and characteristics of learned responses, we found that probability was reduced in Cntnap2−/−, patDp(15q11-13)/+, and L7/Pcp2Cre::Tsc1flox/+, which are associated with Purkinje-cell/deep-nuclear gene expression, along with Shank3+/ΔC. Amplitudes were smaller in L7/Pcp2Cre::Tsc1flox/+ as well as Shank3+/ΔC and Mecp2R308/Y, which are associated with granule cell pathway expression. Shank3+/ΔC and Mecp2R308/Y also showed aberrant response timing and reduced Purkinje-cell dendritic spine density. Overall, our observations are potentially accounted for by defects in instructed learning in the olivocerebellar loop and response representation in the granule cell pathway. Our findings indicate that defects in associative temporal binding of sensory events are widespread in autism mouse models. DOI: http://dx.doi.org/10.7554/eLife.06085.001 PMID:26158416

  13. Modeling of optical quadrature microscopy for imaging mouse embryos

    NASA Astrophysics Data System (ADS)

    Warger, William C., II; DiMarzio, Charles A.

    2008-02-01

    Optical quadrature microscopy (OQM) has been shown to provide the optical path difference through a mouse embryo, and has led to a novel method to count the total number of cells further into development than current non-toxic imaging techniques used in the clinic. The cell counting method has the potential to provide an additional quantitative viability marker for blastocyst transfer during in vitro fertilization. OQM uses a 633 nm laser within a modified Mach-Zehnder interferometer configuration to measure the amplitude and phase of the signal beam that travels through the embryo. Four cameras preceded by multiple beamsplitters record the four interferograms that are used within a reconstruction algorithm to produce an image of the complex electric field amplitude. Here we present a model for the electric field through the primary optical components in the imaging configuration and the reconstruction algorithm to calculate the signal to noise ratio when imaging mouse embryos. The model includes magnitude and phase errors in the individual reference and sample paths, fixed pattern noise, and noise within the laser and detectors. This analysis provides the foundation for determining the imaging limitations of OQM and the basis to optimize the cell counting method in order to introduce additional quantitative viability markers.

  14. Liver aging and pseudocapillarization in a Werner syndrome mouse model.

    PubMed

    Cogger, Victoria C; Svistounov, Dmitri; Warren, Alessandra; Zykova, Svetlana; Melvin, Richard G; Solon-Biet, Samantha M; O'Reilly, Jennifer N; McMahon, Aisling C; Ballard, J William O; De Cabo, Rafa; Le Couteur, David G; Lebel, Michel

    2014-09-01

    Werner syndrome is a progeric syndrome characterized by premature atherosclerosis, diabetes, cancer, and death in humans. The knockout mouse model created by deletion of the RecQ helicase domain of the mouse Wrn homologue gene (Wrn(∆hel/∆hel)) is of great interest because it develops atherosclerosis and hypertriglyceridemia, conditions associated with aging liver and sinusoidal changes. Here, we show that Wrn(∆hel/∆hel) mice exhibit increased extracellular matrix, defenestration, decreased fenestration diameter, and changes in markers of liver sinusoidal endothelial cell inflammation, consistent with age-related pseudocapilliarization. In addition, hepatocytes are larger, have increased lipofuscin deposition, more frequent nuclear morphological anomalies, decreased mitochondria number, and increased mitochondrial diameter compared to wild-type mice. The Wrn(∆hel/∆hel) mice also have altered mitochondrial function and altered nuclei. Microarray data revealed that the Wrn(∆hel/∆hel) genotype does not affect the expression of many genes within the isolated hepatocytes or liver sinusoidal endothelial cells. This study reveals that Wrn(∆hel/∆hel) mice have accelerated typical age-related liver changes including pseudocapillarization. This confirms that pseudocapillarization of the liver sinusoid is a consistent feature of various aging models. Moreover, it implies that DNA repair may be implicated in normal aging changes in the liver.

  15. Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa.

    PubMed Central

    Portera-Cailliau, C; Sung, C H; Nathans, J; Adler, R

    1994-01-01

    Retinitis pigmentosa (RP) is a group of inherited human diseases in which photoreceptor degeneration leads to visual loss and eventually to blindness. Although mutations in the rhodopsin, peripherin, and cGMP phosphodiesterase genes have been identified in some forms of RP, it remains to be determined whether these mutations lead to photoreceptor cell death through necrotic or apoptotic mechanisms. In this paper, we report a test of the hypothesis that photoreceptor cell death occurs by an apoptotic mechanism in three mouse models of RP: retinal degeneration slow (rds) caused by a peripherin mutation, retinal degeneration (rd) caused by a defect in cGMP phosphodiesterase, and transgenic mice carrying a rhodopsin Q344ter mutation responsible for autosomal dominant RP. Two complementary techniques were used to detect apoptosis-specific internucleosomal DNA fragmentation: agarose gel electrophoresis and in situ labeling of apoptotic cells by terminal dUTP nick end labeling. Both methods showed extensive apoptosis of photoreceptors in all three mouse models of retinal degeneration. We also show that apoptotic death occurs in the retina during normal development, suggesting that different mechanisms can cause photoreceptor death by activating an intrinsic death program in these cells. These findings raise the possibility that retinal degenerations may be slowed by interfering with the apoptotic mechanism itself. Images PMID:8302876

  16. Novel mouse model for carcinoembryonic antigen-based therapy.

    PubMed

    Chan, Carlos H F; Stanners, Clifford P

    2004-06-01

    Many novel cancer therapies, including immunotherapy and gene therapy, are specifically targeted to tumor-associated molecules, among which carcinoembryonic antigen (CEA) represents a popular example. Discrepancies between preclinical experimental data in animal models and clinical outcome in terms of therapeutic response and toxicity, however, often arise. Preclinical testing can be compromised by the lack of CEA and other closely related human CEA family members in rodents, which lack analogous genes for most human CEA family members. Here, we report the construction of a transgenic mouse with a 187-kb human bacterial artificial chromosome (CEABAC) that contains part of the human CEA family gene cluster including complete human CEA (CEACAM5), CEACAM3, CEACAM6, and CEACAM7 genes. The spatiotemporal expression pattern of these genes in the CEABAC mice was found to be remarkably similar to that of humans. This novel mouse will ensure better assessment than previously utilized models for the preclinical testing of CEA-targeted therapies and perhaps allow the testing of CEACAM6, which is overexpressed in many solid tumors and leukemias, as a therapeutic target. Moreover, expression of CEA family genes in gastrointestinal, breast, hematopoietic, urogenital, and respiratory systems could facilitate other clinical applications, such as the development of therapeutic agents against Neisseria gonorrhoeae infections, which use CEA family members as major receptors. PMID:15194045

  17. A mouse model for Chlamydia suis genital infection.

    PubMed

    Donati, Manuela; Di Paolo, Maria; Favaroni, Alison; Aldini, Rita; Di Francesco, Antonietta; Ostanello, Fabio; Biondi, Roberta; Cremonini, Eleonora; Ginocchietti, Laura; Cevenini, Roberto

    2015-02-01

    A mouse model for Chlamydia suis genital infection was developed. Ninety-nine mice were randomly divided into three groups and intravaginally inoculated with chlamydia: 45 mice (group 1) received C. suis purified elementary bodies (EBs), 27 (group 2) were inoculated with C. trachomatis genotype E EBs and 27 mice (group 3) with C. trachomatis genotype F EBs. Additionally, 10 mice were used as a negative control. At seven days post-infection (dpi) secretory anti-C. suis IgA were recovered from vaginal swabs of all C. suis inoculated mice. Chlamydia suis was isolated from 93, 84, 71 and 33% vaginal swabs at 3, 5, 7 and 12 dpi. Chlamydia trachomatis genotype E and F were isolated from 100% vaginal swabs up to 7 dpi and from 61 and 72%, respectively, at 12 dpi. Viable C. suis and C. trachomatis organisms were isolated from uterus and tubes up to 16 and 28 dpi, respectively. The results of the present study show the susceptibility of mice to intravaginal inoculation with C. suis. A more rapid course and resolution of C. suis infection, in comparison to C. trachomatis, was highlighted. The mouse model could be useful for comparative investigations involving C. suis and C. trachomatis species.

  18. Oligomannan Prebiotic Attenuates Immunological, Clinical and Behavioral Symptoms in Mouse Model of Inflammatory Bowel Disease

    PubMed Central

    Ferenczi, Szilamér; Szegi, Krisztián; Winkler, Zsuzsanna; Barna, Teréz; Kovács, Krisztina J.

    2016-01-01

    Inflammatory bowel disease shows increasing prevalence, however its pathomechanism and treatment is not fully resolved. Prebiotics are non-digestible carbohydrates which might provide an alternative to treat inflammatory conditions in the gut due to their positive effects either on the microbiome or through their direct effect on macrophages and mucosa. To test the protective effects of an oligomannan prebiotic, yeast cell wall mannooligosaccharide (MOS) was administered in dextran-sulphate-sodium (DSS)-induced mouse model of acute colitis. MOS reduced DSS-induced clinical- (weight loss, diarrhea) and histological scores (mucosal damage) as well as sickness-related anxiety. DSS treatment resulted in changes in colon microbiome with selective increase of Coliform bacteria. MOS administration attenuated colitis-related increase of Coliforms, normalized colonic muc2 expression and attenuated local expression of proinflammatory cytokines IL-1a, IL1b, IL6, KC, G-CSF and MCP1 as well as toll-like receptor TLR4 and NLRP3 inflammasome. Some of the protective effects of MOS were likely be mediated directly through local macrophages because MOS dose-dependently inhibited IL-1b and G-CSF induction following in vitro DSS challenge and IL1a, IL1b, G-SCF-, and IL6 increases after LPS treatment in mouse macrophage cell line RAW264.7. These results highlight oligomannan prebiotics as therapeutic functional food for testing in clinical trials. PMID:27658624

  19. Human mesenchymal stem cells towards non-alcoholic steatohepatitis in an immunodeficient mouse model.

    PubMed

    Winkler, Sandra; Borkham-Kamphorst, Erawan; Stock, Peggy; Brückner, Sandra; Dollinger, Matthias; Weiskirchen, Ralf; Christ, Bruno

    2014-08-15

    Non-alcoholic steatohepatitis (NASH) is a frequent clinical picture characterised by hepatic inflammation, lipid accumulation and fibrosis. When untreated, NASH bears a high risk of developing liver cirrhosis and consecutive hepatocellular carcinoma requiring liver transplantation in its end-stage. However, donor organ scarcity has prompted the search for alternatives, of which hepatocyte or stem cell-derived hepatocyte transplantation are regarded auspicious options of treatment. Mesenchymal stem cells (MSC) are able to differentiate into hepatocyte-like cells and thus may represent an alternative cell source to primary hepatocytes. In addition these cells feature anti-inflammatory and pro-regenerative characteristics, which might favour liver recovery from NASH. The aim of this study was to investigate the potential benefit of hepatocyte-like cells derived from human bone marrow MSC in a mouse model of diet-induced NASH. Seven days post-transplant, human hepatocyte-like cells were found in the mouse liver parenchyma. Triglyceride depositions were lowered in the liver but restored to normal in the blood. Hepatic inflammation was attenuated as verified by decreased expression of the acute phase protein serum amyloid A, inflammation-associated markers (e.g. lipocalin 2), as well as the pro-inflammatory cytokine TNFα. Moreover, the proliferation of host hepatocytes that indicate the regenerative capacity in livers receiving cell transplants was enhanced. Transplantation of MSC-derived human hepatocyte-like cells corrects NASH in mice by restoring triglyceride depositions, reducing inflammation and augmenting the regenerative capacity of the liver.

  20. Neuroanatomical and Functional Characterization of CRF Neurons of the Amygdala using a Novel Transgenic Mouse Model

    PubMed Central

    De Francesco, Pablo N.; Valdivia, Spring; Cabral, Agustina; Reynaldo, Mirta; Raingo, Jesica; Sakata, Ichiro; Osborne-Lawrence, Sherri; Zigman, Jeffrey M.; Perelló, Mario

    2015-01-01

    The corticotrophin releasing factor (CRF)-producing neurons of the amygdala have been implicated in behavioral and physiological responses associated with fear, anxiety, stress, food intake and reward. To overcome the difficulties in identifying CRF neurons within the amygdala, a novel transgenic mouse line, in which the humanized Renilla reniformis green fluorescent protein (hrGFP) is under the control of the CRF promoter (CRF-hrGFP mice), was developed. First, the CRF-hrGFP mouse model was validated and the localization of CRF neurons within the amygdala was systematically mapped. Amygdalar hrGFP-expressing neurons were located primarily in the interstitial nucleus of the posterior limb of the anterior commissure, but also present in the central amygdala. Secondly, the marker of neuronal activation c-Fos was used to explore the response of amygdalar CRF neurons in CRF-hrGFP mice under different experimental paradigms. C-Fos induction was observed in CRF neurons of CRF-hrGFP mice exposed to an acute social defeat stress event, a fasting/refeeding paradigm or LPS administration. In contrast, no c-Fos induction was detected in CRF neurons of CRF-hrGFP mice exposed to restraint stress, forced swimming test, 48 h fasting, acute high fat diet (HFD) consumption, intermittent HFD consumption, ad libitum HFD consumption, HFD withdrawal, conditioned HFD aversion, ghrelin administration or melanocortin 4 receptor agonist administration. Thus, this study fully characterizes the distribution of amygdala CRF neurons in mice and suggests that they are involved in some, but not all, stress or food intake-related behaviors recruiting the amygdala. PMID:25595987

  1. Neuroanatomical and functional characterization of CRF neurons of the amygdala using a novel transgenic mouse model.

    PubMed

    De Francesco, P N; Valdivia, S; Cabral, A; Reynaldo, M; Raingo, J; Sakata, I; Osborne-Lawrence, S; Zigman, J M; Perelló, M

    2015-03-19

    The corticotropin-releasing factor (CRF)-producing neurons of the amygdala have been implicated in behavioral and physiological responses associated with fear, anxiety, stress, food intake and reward. To overcome the difficulties in identifying CRF neurons within the amygdala, a novel transgenic mouse line, in which the humanized recombinant Renilla reniformis green fluorescent protein (hrGFP) is under the control of the CRF promoter (CRF-hrGFP mice), was developed. First, the CRF-hrGFP mouse model was validated and the localization of CRF neurons within the amygdala was systematically mapped. Amygdalar hrGFP-expressing neurons were located primarily in the interstitial nucleus of the posterior limb of the anterior commissure, but also present in the central amygdala. Secondly, the marker of neuronal activation c-Fos was used to explore the response of amygdalar CRF neurons in CRF-hrGFP mice under different experimental paradigms. C-Fos induction was observed in CRF neurons of CRF-hrGFP mice exposed to an acute social defeat stress event, a fasting/refeeding paradigm or lipopolysaccharide (LPS) administration. In contrast, no c-Fos induction was detected in CRF neurons of CRF-hrGFP mice exposed to restraint stress, forced swimming test, 48-h fasting, acute high-fat diet (HFD) consumption, intermittent HFD consumption, ad libitum HFD consumption, HFD withdrawal, conditioned HFD aversion, ghrelin administration or melanocortin 4 receptor agonist administration. Thus, this study fully characterizes the distribution of amygdala CRF neurons in mice and suggests that they are involved in some, but not all, stress or food intake-related behaviors recruiting the amygdala. PMID:25595987

  2. Insights into granulosa cell tumors using spontaneous or genetically engineered mouse models

    PubMed Central

    2016-01-01

    Granulosa cell tumors (GCTs) are rare sex cord-stromal tumors that have been studied for decades. However, their infrequency has delayed efforts to research their etiology. Recently, mutations in human GCTs have been discovered, which has led to further research aimed at determining the molecular mechanisms underlying the disease. Mouse models have been important tools for studying GCTs, and have provided means to develop and improve diagnostics and therapeutics. Thus far, several genetically modified mouse models, along with one spontaneous mouse model, have been reported. This review summarizes the phenotypes of these mouse models and their applicability in elucidating the mechanisms of granulosa cell tumor development. PMID:27104151

  3. Protective effects of luteolin against acetaminophen-induced acute liver failure in mouse.

    PubMed

    Tai, Minghui; Zhang, Jingyao; Song, Sidong; Miao, RunChen; Liu, Sushun; Pang, Qing; Wu, Qifei; Liu, Chang

    2015-07-01

    Acetaminophen (APAP) is widely used as a safety analgesic and antipyretic agent. Although considered safe at therapeutic doses, overdose of APAP can cause acute liver injury that is sometimes fatal, requiring efficient pharmacological intervention. Luteolin is a naturally occurring flavonoid which is abundant in plants. The objective of this study was to investigate corresponding anti-oxidative and anti-inflammatory activities of luteolin, using acetaminophen-treated mice as a model system. Male C57BL/C mice were randomly divided into three groups (n=6 each). The control group was given phosphate buffered saline (PBS) orally. The APAP group was given APAP by intraperitoneal injection (i.p) at 300 mg/kg suspended in PBS. The luteolin-treated group was given APAP and luteolin (0-100 mg/kg/day, 1 or 3 days before APAP administration) suspended in PBS orally. 16 h after APAP administration, the liver and serum were collected to determine the liver injury. Luteolin administration significantly decreased acetaminophen-induced serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), malondialdehyde (MDA) levels, as well as glutathione (GSH) depletion and decrease of superoxide dismutase (SOD). Luteolin restored SOD, GSH and GSH-px activities and depressed the expression of pro-inflammatory factors, such as inducible nitric oxide synthase (i-NOS), TNF-α, nuclear factor kappa B (NF-κB), and IL-6, respectively. Moreover, luteolin down-regulated acetaminophen-induced nitrotyrosine (NT) formation and endoplasmic reticulum (ER) stress. These results suggest the presence of anti-oxidative, anti-inflammatory and anti-ER stress properties of luteolin in response to acetaminophen-induced liver injury in mice.

  4. Regression of retinopathy by squalamine in a mouse model.

    PubMed

    Higgins, Rosemary D; Yan, Yun; Geng, Yixun; Zasloff, Michael; Williams, Jon I

    2004-07-01

    The goal of this study was to determine whether an antiangiogenic agent, squalamine, given late during the evolution of oxygen-induced retinopathy (OIR) in the mouse, could improve retinal neovascularization. OIR was induced in neonatal C57BL6 mice and the neonates were treated s.c. with squalamine doses begun at various times after OIR induction. A system of retinal whole mounts and assessment of neovascular nuclei extending beyond the inner limiting membrane from animals reared under room air or OIR conditions and killed periodically from d 12 to 21 were used to assess retinopathy in squalamine-treated and untreated animals. OIR evolved after 75% oxygen exposure in neonatal mice with florid retinal neovascularization developing by d 14. Squalamine (single dose, 25 mg/kg s.c.) given on d 15 or 16, but not d 17, substantially improved retinal neovascularization in the mouse model of OIR. There was improvement seen in the degree of blood vessel tuft formation, blood vessel tortuosity, and central vasoconstriction with squalamine treatment at d 15 or 16. Single-dose squalamine at d 12 was effective at reducing subsequent development of retinal neovascularization at doses as low as 1 mg/kg. Squalamine is a very active inhibitor of OIR in mouse neonates at doses as low as 1 mg/kg given once. Further, squalamine given late in the course of OIR improves retinopathy by inducing regression of retinal neovessels and abrogating invasion of new vessels beyond the inner-limiting membrane of the retina. PMID:15128931

  5. The acute phase response in parasite infection. Nippostrongylus brasiliensis in the mouse.

    PubMed Central

    Lamontagne, L R; Gauldie, J; Befus, A D; McAdam, K P; Baltz, M L; Pepys, M B

    1984-01-01

    Systemic inflammatory reactions are a prominent feature of many parasitic infections and the cellular and humoral components of the acute phase reaction may have an impact on the host-parasite relationship. We examined serum changes of four acute phase reactants: alpha 1-proteinase inhibition (alpha 1Pi); complement C3; serum amyloid A protein (SAA); and serum amyloid P component (SAP), in mice undergoing a primary infection with Nippostrongylus brasiliensis. SAA and SAP showed changes within the first 2 days of infection indicating the presence of an acute phase response associated with inflammation in the lung. Alpha 1Pi and C3 serum levels were not altered. However, all four acute phase reactants were synthesized in greater amounts by primary cultures of hepatocytes taken from infected animals at this time. Subsequently, as parasite-mediated inflammatory changes occur in the gut, both serum and hepatocyte cultures demonstrate an acute inflammatory response in all four reactants. It is proposed that the early reaction between parasites and macrophage/monocyte lead to the release of a mediator of inflammation which initiates the hepatocyte response. In this infection, at least one of the APR is shown to localize to the site of inflammation influencing the host-parasite relationship. Images Figure 2 Figure 3 PMID:6204934

  6. Endogenous retrovirus induces leukemia in a xenograft mouse model for primary myelofibrosis

    PubMed Central

    Triviai, Ioanna; Ziegler, Marion; Bergholz, Ulla; Oler, Andrew J.; Stübig, Thomas; Prassolov, Vladimir; Fehse, Boris; Kozak, Christine A.; Kröger, Nicolaus; Stocking, Carol

    2014-01-01

    The compound immunodeficiencies in nonobese diabetic (NOD) inbred mice homozygous for the Prkdcscid and Il2rgnull alleles (NSG mice) permit engraftment of a wide-range of primary human cells, enabling sophisticated modeling of human disease. In studies designed to define neoplastic stem cells of primary myelofibrosis (PMF), a myeloproliferative neoplasm characterized by profound disruption of the hematopoietic microenvironment, we observed a high frequency of acute myeloid leukemia (AML) in NSG mice. AML was of mouse origin, confined to PMF-xenografted mice, and contained multiple clonal integrations of ecotropic murine leukemia virus (E-MuLV). Significantly, MuLV replication was not only observed in diseased mice, but also in nontreated NSG controls. Furthermore, in addition to the single ecotropic endogenous retrovirus (eERV) located on chromosome 11 (Emv30) in the NOD genome, multiple de novo germ-line eERV integrations were observed in mice from each of four independent NSG mouse colonies. Analysis confirmed that E-MuLV originated from the Emv30 provirus and that recombination events were not necessary for virus replication or AML induction. Pathogenicity is thus likely attributable to PMF-mediated paracrine stimulation of mouse myeloid cells, which serve as targets for retroviral infection and transformation, as evidenced by integration into the Evi1 locus, a hotspot for retroviral-induced myeloid leukemia. This study thus corroborates a role of paracrine stimulation in PMF disease progression, underlines the importance of target cell type and numbers in MuLV-induced disease, and mandates awareness of replicating MuLV in NOD immunodeficient mice, which can significantly influence experimental results and their interpretation. PMID:24912157

  7. Endogenous retrovirus induces leukemia in a xenograft mouse model for primary myelofibrosis.

    PubMed

    Triviai, Ioanna; Ziegler, Marion; Bergholz, Ulla; Oler, Andrew J; Stübig, Thomas; Prassolov, Vladimir; Fehse, Boris; Kozak, Christine A; Kröger, Nicolaus; Stocking, Carol

    2014-06-10

    The compound immunodeficiencies in nonobese diabetic (NOD) inbred mice homozygous for the Prkdc(scid) and Il2rg(null) alleles (NSG mice) permit engraftment of a wide-range of primary human cells, enabling sophisticated modeling of human disease. In studies designed to define neoplastic stem cells of primary myelofibrosis (PMF), a myeloproliferative neoplasm characterized by profound disruption of the hematopoietic microenvironment, we observed a high frequency of acute myeloid leukemia (AML) in NSG mice. AML was of mouse origin, confined to PMF-xenografted mice, and contained multiple clonal integrations of ecotropic murine leukemia virus (E-MuLV). Significantly, MuLV replication was not only observed in diseased mice, but also in nontreated NSG controls. Furthermore, in addition to the single ecotropic endogenous retrovirus (eERV) located on chromosome 11 (Emv30) in the NOD genome, multiple de novo germ-line eERV integrations were observed in mice from each of four independent NSG mouse colonies. Analysis confirmed that E-MuLV originated from the Emv30 provirus and that recombination events were not necessary for virus replication or AML induction. Pathogenicity is thus likely attributable to PMF-mediated paracrine stimulation of mouse myeloid cells, which serve as targets for retroviral infection and transformation, as evidenced by integration into the Evi1 locus, a hotspot for retroviral-induced myeloid leukemia. This study thus corroborates a role of paracrine stimulation in PMF disease progression, underlines the importance of target cell type and numbers in MuLV-induced disease, and mandates awareness of replicating MuLV in NOD immunodeficient mice, which can significantly influence experimental results and their interpretation.

  8. Neural Mechanisms Contributing to Dysphagia in Mouse Models.

    PubMed

    Hinkel, Cameron J; Sharma, Rishi; Thakkar, Mahesh M; Takahashi, Kazutaka; Hopewell, Bridget L; Lever, Teresa E

    2016-08-01

    Investigative research into curative treatments for dysphagia is hindered by our incomplete understanding of the neural mechanisms of swallowing in health and disease. Development of translational research models is essential to bridge this knowledge gap by fostering innovative methodology. Toward this goal, our laboratory has developed a translational research assessment tool to investigate the neural mechanistic control of swallowing in unrestrained, self-feeding mice. Here we describe our initial development of synchronous brainstem neural recordings with a videofluoroscopic swallow study assay in healthy mice across the life span. Refinement of this combined methodology is currently underway. Ultimately, we envision that this assessment tool will permit systematic analysis of therapeutic interventions for dysphagia in preclinical trials with numerous mouse models of human conditions that cause dysphagia, such as amyotrophic lateral sclerosis, Parkinson's disease, stroke, and advanced aging.

  9. An experimental mouse model for hepatitis C virus.

    PubMed

    Kimura, Kiminori; Kohara, Michinori

    2011-01-01

    Chronic hepatitis C virus (HCV) infection affects approximately 170 million people and is a major global health problem because infected individuals can develop liver cirrhosis and hepatocellular carcinoma. Despite significant improvements in antiviral drugs, only around 50% of treated patients with genotype 1 and 4 demonstrate HCV clearance. Unfortunately, an anti-HCV vaccine is still not available. To progress treatment of HCV, it is necessary to understand the mechanism(s) by which HCV infects hepatocytes, and how the host immune response prevents the spread of the virus. Because HCV infects only humans and chimpanzees, it is difficult to evaluate immune response mechanisms, and the effects of chemicals and new technologies on these response mechanisms. These difficulties underline the importance of establishing a small HCV-infected animal model. This review focuses on the progress made in recent years towards the development of an experimental mouse model for HCV.

  10. Endpoints for Mouse Abdominal Tumor Models: Refinement of Current Criteria

    PubMed Central

    Paster, Eden V; Villines, Kimberly A; Hickman, Debra L

    2009-01-01

    Accurate, rapid, and noninvasive health assessments are required to establish more appropriate endpoints in mouse cancer models where tumor size is not easily measured. We evaluated potential endpoints in mice with experimentally induced peritoneal lymphoma, an abdominal tumor model, by comparing body weight, body condition, and behavior with those of a control group of mice not developing lymphoma. Our hypothesis was that body weight would increase or plateau, whereas body condition and behavioral scores would decrease, as disease progressed. Results indicated that body weight did not differ significantly between the control and experimental groups, but the experimental group experienced significant decreases in both body condition and behavioral scores. Our results support the use of body condition and behavioral scoring as adjunctive assessment methods for mice involved in abdominal lymphoma tumor studies in which health may decline despite an increase or plateau in body weight. PMID:19619413

  11. Entrainment of the mouse circadian clock by sub-acute physical and psychological stress.

    PubMed

    Tahara, Yu; Shiraishi, Takuya; Kikuchi, Yosuke; Haraguchi, Atsushi; Kuriki, Daisuke; Sasaki, Hiroyuki; Motohashi, Hiroaki; Sakai, Tomoko; Shibata, Shigenobu

    2015-01-01

    The effects of acute stress on the peripheral circadian system are not well understood in vivo. Here, we show that sub-acute stress caused by restraint or social defeat potently altered clock gene expression in the peripheral tissues of mice. In these peripheral tissues, as well as the hippocampus and cortex, stressful stimuli induced time-of-day-dependent phase-advances or -delays in rhythmic clock gene expression patterns; however, such changes were not observed in the suprachiasmatic nucleus, i.e. the central circadian clock. Moreover, several days of stress exposure at the beginning of the light period abolished circadian oscillations and caused internal desynchronisation of peripheral clocks. Stress-induced changes in circadian rhythmicity showed habituation and disappeared with long-term exposure to repeated stress. These findings suggest that sub-acute physical/psychological stress potently entrains peripheral clocks and causes transient dysregulation of circadian clocks in vivo.

  12. Mouse bone marrow-derived mesenchymal stem cells inhibit leukemia/lymphoma cell proliferation in vitro and in a mouse model of allogeneic bone marrow transplant

    PubMed Central

    SONG, NINGXIA; GAO, LEI; QIU, HUIYING; HUANG, CHONGMEI; CHENG, HUI; ZHOU, HONG; LV, SHUQING; CHEN, LI; WANG, JIANMIN

    2015-01-01

    The allogeneic hematopoietic stem cell (HSC) transplantation of mesenchymal stem cells (MSCs) contributes to the reconstitution of hematopoiesis by ameliorating acute graft-versus-host disease (aGVHD). However, the role of MSCs in graft-versus-leukemia remains to be determined. In the present study, we co-cultured C57BL/6 mouse bone marrow (BM)-derived MSCs with A20 murine B lymphoma, FBL3 murine erythroleukemia and P388 murine acute lymphocytic leukemia cells. Cell proliferation, apoptosis, cell cycle progression and the amount of cytokine secretion were then measured using a Cell Counting kit-8, Annexin V/propidium iodide staining, flow cytometry and ELISA, respectively. We also established a model of allogeneic bone marrow transplantation (BMT) using BALB/c mice. Following the administration of A20 cells and MSCs, we recorded the symptoms and the survival of the mice for 4 weeks, assessed the T cell subsets present in peripheral blood, and, after the mice were sacrifice, we determined the infiltration of MSCs into the organs by histological staining. Our results revealed that the MSCs inhibited the proliferation of the mouse lymphoma and leukemia cells in vitro, leading to cell cycle arrest and reducing the secretion of interleukin (IL)-10. In our model of allogeneic BMT, the intravenous injection of MSCs into the mice injected wth A20 cells decreased the incidence of lymphoma, improved survival, increased the fraction of CD3+CD8+ T cells, decreased the fraction of CD3+CD4+ T cells and CD4+CD25+ T cells in peripheral blood, and ameliorated the manifestation of aGVHD. The results from the present study indicate that MSCs may be safe and effective when used in allogeneic BMT for the treatment of hemotological malignancies. PMID:25901937

  13. Macrophage Migration Inhibitor Factor Upregulates MCP-1 Expression in an Autocrine Manner in Hepatocytes during Acute Mouse Liver Injury

    PubMed Central

    Xie, Jieshi; Yang, Le; Tian, Lei; Li, Weiyang; Yang, Lin; Li, Liying

    2016-01-01

    Macrophage migration inhibitor factor (MIF), a multipotent innate immune mediator, is an upstream component of the inflammatory cascade in diseases such as liver disease. Monocyte chemoattractant protein-1 (MCP-1), a highly representative chemokine, is critical in liver disease pathogenesis. We investigated the role of MIF in regulating hepatocytic MCP-1 expression. MIF and MCP-1 expression were characterized by immunochemistry, RT-PCR, ELISA, and immunoblotting in CCl4-treated mouse liver and isolated hepatocytes. MIF was primarily distributed in hepatocytes, and its expression increased upon acute liver injury. Its expression was also increased in injured hepatocytes, induced by LPS or CCl4, which mimic liver injury in vitro. MIF was expressed earlier than MCP-1, strongly inducing hepatocytic MCP-1 expression. Moreover, the increase in MCP-1 expression induced by MIF was inhibited by CD74- or CD44-specific siRNAs and SB203580, a p38 MAPK inhibitor. Further, CD74 or CD44 deficiency effectively inhibited MIF-induced p38 activation. MIF inhibitor ISO-1 reduced MCP-1 expression and p38 phosphorylation in CCl4-treated mouse liver. Our results showed that MIF regulates MCP-1 expression in hepatocytes of injured liver via CD74, CD44, and p38 MAPK in an autocrine manner, providing compelling information on the role of MIF in liver injury, and implying a new regulatory mechanism for liver inflammation. PMID:27273604

  14. Chrysin, a natural flavonoid enhances steroidogenesis and steroidogenic acute regulatory protein gene expression in mouse Leydig cells.

    PubMed

    Jana, Kuladip; Yin, Xiangling; Schiffer, Randolph B; Chen, Jau-Jiin; Pandey, Akhilesh K; Stocco, Douglas M; Grammas, Paula; Wang, Xingjia

    2008-05-01

    During the aging process of males, testosterone biosynthesis declines in testicular Leydig cells resulting in decreases in various physiological functions. To explore the possibility of delaying the decline using food supplements, we have studied steroidogenic effects of a natural flavonoid, chrysin, in mouse Leydig cells. Chrysin dramatically increased cyclic AMP (cAMP)-induced steroidogenesis in MA-10 mouse Leydig tumor cells. This result was confirmed using Leydig cells isolated from mouse testes. The steroidogenic effect of chrysin is not associated with an increase in expression of the P450 side-chain cleavage enzyme, required for the conversion of cholesterol to pregnenolone. In addition, when 22(R)hydroxylcholesterol was used as a substrate, chrysin induced a non-significant increase in steroid hormone, suggesting that the majority of the observed increase in steroidogenesis was due to the increased supply of substrate cholesterol. These observations were corroborated by showing that chrysin induced a marked increase in the expression of steroidogenic acute regulatory (StAR) protein, the factor that controls mitochondrial cholesterol transfer. Also, chrysin significantly increased StAR promoter activity and StAR mRNA level. Further studies indicated that this compound depressed expression of DAX-1, a repressor in StAR gene transcription. In the absence of cAMP, chrysin did not increase steroidogenesis. However, when a sub-threshold level of cAMP was used, StAR protein and steroid hormone were increased by chrysin to the levels seen with maximal stimulation of cAMP. These results suggest that while chrysin itself is unable to induce StAR gene expression and steroidogenesis, it appears to function by increasing the sensitivity of Leydig cells to cAMP stimulation. PMID:18434361

  15. Mouse models of age-related mitochondrial neurosensory hearing loss.

    PubMed

    Han, Chul; Someya, Shinichi

    2013-07-01

    Hearing loss is the most common sensory disorder in the elderly population. Overall, 10% of the population has a hearing loss in the US, and this age-related hearing disorder is projected to afflict more than 28 million Americans by 2030. Age-related hearing loss is associated with loss of sensory hair cells (sensory hearing loss) and/or spiral ganglion neurons (neuronal hearing loss) in the cochlea of the inner ear. Many lines of evidence indicate that oxidative stress and associated mitochondrial dysfunction play a central role in age-related neurodegenerative diseases and are a cause of age-related neurosensory hearing loss. Yet, the molecular mechanisms of how oxidative stress and/or mitochondrial dysfunction lead to hearing loss during aging remain unclear, and currently there is no treatment for this age-dependent disorder. Several mouse models of aging and age-related diseases have been linked to age-related mitochondrial neurosensory hearing loss. Evaluation of these animal models has offered basic knowledge of the mechanism underlying hearing loss associated with oxidative stress, mitochondrial dysfunction, and aging. Here we review the evidence that specific mutations in the mitochondrial DNA or nuclear DNA that affect mitochondrial function result in increased oxidative damage and associated loss of sensory hair cells and/or spiral ganglion neurons in the cochlea during aging, thereby causing hearing loss in these mouse models. Future studies comparing these models will provide further insight into fundamental knowledge about the disordered process of hearing and treatments to improve the lives of individuals with communication disorders. This article is part of a Special Issue entitled 'Mitochondrial function and dysfunction in neurodegeneration'.

  16. Transgenic mouse model for the study of enterovirus 71 neuropathogenesis.

    PubMed

    Fujii, Ken; Nagata, Noriyo; Sato, Yuko; Ong, Kien Chai; Wong, Kum Thong; Yamayoshi, Seiya; Shimanuki, Midori; Shitara, Hiroshi; Taya, Choji; Koike, Satoshi

    2013-09-01

    Enterovirus 71 (EV71) typically causes mild hand-foot-and-mouth disease in children, but it can also cause severe neurological disease. Recently, epidemic outbreaks of EV71 with significant mortality have been reported in the Asia-Pacific region, and EV71 infection has become a serious public health concern worldwide. However, there is little information available concerning EV71 neuropathogenesis, and no vaccines or anti-EV71 drugs have been developed. Previous studies of this disease have used monkeys and neonatal mice that are susceptible to some EV71 strains as models. The monkey model is problematic for ethical and economical reasons, and mice that are more than a few weeks old lose their susceptibility to EV71. Thus, the development of an appropriate small animal model would greatly contribute to the study of this disease. Mice lack EV71 susceptibility due to the absence of a receptor for this virus. Previously, we identified the human scavenger receptor class B, member 2 (hSCARB2) as a cellular receptor for EV71. In the current study, we generated a transgenic (Tg) mouse expressing hSCARB2 with an expression profile similar to that in humans. Tg mice infected with EV71 exhibited ataxia, paralysis, and death. The most severely affected cells were neurons in the spinal cord, brainstem, cerebellum, hypothalamus, thalamus, and cerebrum. The pathological features in these Tg mice were generally similar to those of EV71 encephalomyelitis in humans and experimentally infected monkeys. These results suggest that this Tg mouse could represent a useful animal model for the study of EV71 infection. PMID:23959904

  17. Neurturin influences inflammatory responses and airway remodeling in different mouse asthma models.

    PubMed

    Mauffray, Marion; Domingues, Olivia; Hentges, François; Zimmer, Jacques; Hanau, Daniel; Michel, Tatiana

    2015-02-15

    Neurturin (NTN) was previously described for its neuronal activities, but recently, we have shown that this factor is also involved in asthma physiopathology. However, the underlying mechanisms of NTN are unclear. The aim of this study was to investigate NTN involvement in acute bronchial Th2 responses, to analyze its interaction with airway structural cells, and to study its implication in remodeling during acute and chronic bronchial inflammation in C57BL/6 mice. We analyzed the features of allergic airway inflammation in wild-type and NTN(-/-) mice after sensitization with two different allergens, OVA and house dust mite. We showed that NTN(-/-) dendritic cells and T cells had a stronger tendency to activate the Th2 pathway in vitro than similar wild-type cells. Furthermore, NTN(-/-) mice had significantly increased markers of airway remodeling like collagen deposition. NTN(-/-) lung tissues showed higher levels of neutrophils, cytokine-induced neutrophil chemoattractant, matrix metalloproteinase 9, TNF-α, and IL-6. Finally, NTN had the capacity to decrease IL-6 and TNF-α production by immune and epithelial cells, showing a direct anti-inflammatory activity on these cells. Our findings support the hypothesis that NTN could modulate the allergic inflammation in different mouse asthma models. PMID:25595789

  18. Reduced thermal sensitivity and increased opioidergic tone in the TASTPM mouse model of Alzheimer's disease

    PubMed Central

    Aman, Yahyah; Pitcher, Thomas; Simeoli, Raffaele; Ballard, Clive; Malcangio, Marzia

    2016-01-01

    Abstract Individuals with Alzheimer's disease (AD) are in susceptible patient groups in which pain is an important clinical issue that is often underdiagnosed. However, it is unclear whether decreased pain complaints in patients with AD result from elevated pain tolerance or an impaired ability to communicate sensations. Here, we explored if AD-related pathology is present in key regions of the pain pathway and assessed whether nociceptive thresholds to acute noxious stimulation are altered in the double-mutant APPswe × PS1.M146V (TASTPM) transgenic mouse model of AD. TASTPM mice exhibited an age-dependant cognitive deficit at the age of 6 months, but not at 4 months, a deficit that was accompanied by amyloid plaques in the cortex, hippocampus, and thalamus. In the spinal cord, β-amyloid (APP/Aβ) immunoreactivity was observed in dorsal and ventral horn neurons, and the expression of vesicular glutamate transporter 2 (VGLUT2) was significantly reduced, while the expression of the inhibitory peptides enkephalins was increased in TASTPM dorsal horn, consistent with an increased inhibitory tone. TASTPM mice displayed reduced sensitivity to acute noxious heat, which was reversed by naloxone, an opioid antagonist. This study suggests that increased inhibition and decreased excitation in the spinal cord may be responsible for the reduced thermal sensitivity associated with AD-related pathology. PMID:27306045

  19. Animal Model of Acute Deep Vein Thrombosis

    SciTech Connect

    Roy, Sumit; Laerum, Frode; Brosstad, Frank; Kvernebo, Knut; Sakariassen, Kjell S.

    1998-07-15

    Purpose: To develop an animal model of acute deep vein thrombosis (DVT). Methods: In part I of the study nine juvenile domestic pigs were used. Each external iliac vein was transluminally occluded with a balloon catheter. Thrombin was infused through a microcatheter in one leg according to one of the following protocols: (1) intraarterial (IA): 1250 U at 25 U/min in the common femoral artery (n= 3); (2) intravenous (IV): 5000 U in the popliteal vein at 500 U/min (n= 3), or at 100 U/min (n= 3). Saline was administered in the opposite leg. After the animals were killed, the mass of thrombus in the iliofemoral veins was measured. The pudendoepiploic (PEV), profunda femoris (PF), and popliteal veins (PV) were examined. Thrombosis in the tributaries of the superficial femoral vein (SFVt) was graded according to a three-point scale (0, +, ++). In part II of the study IV administration was further investigated in nine pigs using the following three regimens with 1000 U at 25 U/min serving as the control: (1) 1000 U at 100 U/min, (2) 250 U at 25 U/min, (3) 250 U at 6.25 U/min. Results: All animals survived. In part I median thrombus mass in the test limbs was 1.40 g as compared with 0.25 g in the controls (p= 0.01). PEV, PFV and PV were thrombosed in all limbs infused with thrombin. IV infusion was more effective in inducing thrombosis in both the parent veins (mass 1.32-1.78 g) and SVFt (++ in 4 of 6 legs), as compared with IA infusion (mass 0.0-1.16 g; SFVt ++ in 1 of 3 legs). In part II thrombus mass in axial veins ranged from 1.23 to 2.86 g, and showed no relationship with the dose of thrombin or the rate of infusion. Tributary thrombosis was less extensive with 250 U at 25 U/min than with the other regimens. Conclusion: Slow distal intravenous thrombin infusion in the hind legs of pigs combined with proximal venous occlusion induces thrombosis in the leg veins that closely resembles clinical DVT in distribution.

  20. The first knockin mouse model of episodic ataxia type 2.

    PubMed

    Rose, Samuel J; Kriener, Lisa H; Heinzer, Ann K; Fan, Xueliang; Raike, Robert S; van den Maagdenberg, Arn M J M; Hess, Ellen J

    2014-11-01

    Episodic ataxia type 2 (EA2) is an autosomal dominant disorder associated with attacks of ataxia that are typically precipitated by stress, ethanol, caffeine or exercise. EA2 is caused by loss-of-function mutations in the CACNA1A gene, which encodes the α1A subunit of the CaV2.1 voltage-gated Ca(2+) channel. To better understand the pathomechanisms of this disorder in vivo, we created the first genetic animal model of EA2 by engineering a mouse line carrying the EA2-causing c.4486T>G (p.F1406C) missense mutation in the orthologous mouse Cacna1a gene. Mice homozygous for the mutated allele exhibit a ~70% reduction in CaV2.1 current density in Purkinje cells, though surprisingly do not exhibit an overt motor phenotype. Mice hemizygous for the knockin allele (EA2/- mice) did exhibit motor dysfunction measurable by rotarod and pole test. Studies using Cre-flox conditional genetics explored the role of cerebellar Purkinje cells or cerebellar granule cells in the poor motor performance of EA2/- mice and demonstrate that manipulation of either cell type alone did not cause poor motor performance. Thus, it is possible that subtle dysfunction arising from multiple cell types is necessary for the expression of certain ataxia syndromes. PMID:25109669

  1. Growth plate abnormalities in a new dwarf mouse model: tich.

    PubMed

    Brown, R A; Bird, L; Blunn, G W; Archer, J R

    1994-03-01

    Growth plate cartilage calcification has been examined in a recently described mouse mutant, tich, which is co-isogenic with the A.TL strain. Long bones were studied from 1-day-old and 1-month-old mice which carried a homozygous recessive gene mutation making them short limbed and dumpy. Specimens were studied by routine histology, scanning electron microscopy and radiography. In 1-day-old tich mice the front of calcified cartilage was recessed behind the advancing periosteum and bone. No similar recess was seen in control mice. At 1 month of age, a number of the long bone growth plates were irregularly thickened, particularly in the central area. This produced a central tongue of non-calcified cartilage (particularly prominent in the proximal tibia) which gave rise to a corresponding pit in the calcified cartilage layer, in macerated specimens. This was accompanied by poor resorption of calcified cartilage. At both ages the presence of the respective defects was radiographically confirmed. At present it is not known whether this is primarily a defect of calcification or resorption but its presence, apparently from a single mutation in a genetically defined mouse strain, makes it a potentially valuable model.

  2. A transgenic mouse model of sickle cell disorder.

    PubMed

    Greaves, D R; Fraser, P; Vidal, M A; Hedges, M J; Ropers, D; Luzzatto, L; Grosveld, F

    1990-01-11

    A single base-pair mutation (beta s) in codon 6 of the human beta-globin gene, causing a single amino-acid substitution, is the cause of sickle cell anaemia. The mutant haemoglobin molecule, HbS, polymerizes when deoxygenated and causes deformation of the erythrocytes to a characteristic 'sickled' shape. Sickling of cells in small vessels causes painful crises and other life-threatening complications. Although the molecular basis for sickle cell anaemia has been known for 30 years, no definitive treatment is available. An animal model of sickle cell anaemia would not only allow a detailed analysis of the factors that initiate erythrocyte sickling in vivo and of the pathophysiology of the disease, but would also permit the development of novel approaches to the treatment of the disease. By using the dominant control region sequences from the human beta-globin locus, together with human alpha- and beta s-globin genes, we have obtained three transgenic mice with HbS levels ranging from 10 to 80% of total haemoglobin in their red cells. As observed in homozygous and heterozygous Hbs patients, the erythrocytes of this mouse sickle readily on deoxygenation. Irreversibly sickled cells, which are characteristic of sickle-cell patients homozygous for beta s, are also observed in the peripheral blood of the mouse with high levels of HbS. PMID:2296310

  3. The first knockin mouse model of episodic ataxia type 2.

    PubMed

    Rose, Samuel J; Kriener, Lisa H; Heinzer, Ann K; Fan, Xueliang; Raike, Robert S; van den Maagdenberg, Arn M J M; Hess, Ellen J

    2014-11-01

    Episodic ataxia type 2 (EA2) is an autosomal dominant disorder associated with attacks of ataxia that are typically precipitated by stress, ethanol, caffeine or exercise. EA2 is caused by loss-of-function mutations in the CACNA1A gene, which encodes the α1A subunit of the CaV2.1 voltage-gated Ca(2+) channel. To better understand the pathomechanisms of this disorder in vivo, we created the first genetic animal model of EA2 by engineering a mouse line carrying the EA2-causing c.4486T>G (p.F1406C) missense mutation in the orthologous mouse Cacna1a gene. Mice homozygous for the mutated allele exhibit a ~70% reduction in CaV2.1 current density in Purkinje cells, though surprisingly do not exhibit an overt motor phenotype. Mice hemizygous for the knockin allele (EA2/- mice) did exhibit motor dysfunction measurable by rotarod and pole test. Studies using Cre-flox conditional genetics explored the role of cerebellar Purkinje cells or cerebellar granule cells in the poor motor performance of EA2/- mice and demonstrate that manipulation of either cell type alone did not cause poor motor performance. Thus, it is possible that subtle dysfunction arising from multiple cell types is necessary for the expression of certain ataxia syndromes.

  4. A transgenic mouse model of sickle cell disorder.

    PubMed

    Greaves, D R; Fraser, P; Vidal, M A; Hedges, M J; Ropers, D; Luzzatto, L; Grosveld, F

    1990-01-11

    A single base-pair mutation (beta s) in codon 6 of the human beta-globin gene, causing a single amino-acid substitution, is the cause of sickle cell anaemia. The mutant haemoglobin molecule, HbS, polymerizes when deoxygenated and causes deformation of the erythrocytes to a characteristic 'sickled' shape. Sickling of cells in small vessels causes painful crises and other life-threatening complications. Although the molecular basis for sickle cell anaemia has been known for 30 years, no definitive treatment is available. An animal model of sickle cell anaemia would not only allow a detailed analysis of the factors that initiate erythrocyte sickling in vivo and of the pathophysiology of the disease, but would also permit the development of novel approaches to the treatment of the disease. By using the dominant control region sequences from the human beta-globin locus, together with human alpha- and beta s-globin genes, we have obtained three transgenic mice with HbS levels ranging from 10 to 80% of total haemoglobin in their red cells. As observed in homozygous and heterozygous Hbs patients, the erythrocytes of this mouse sickle readily on deoxygenation. Irreversibly sickled cells, which are characteristic of sickle-cell patients homozygous for beta s, are also observed in the peripheral blood of the mouse with high levels of HbS.

  5. EGFR-specific nanoprobe biodistribution in mouse models

    NASA Astrophysics Data System (ADS)

    Fashir, Samia A.; Castilho, Maiara L.; Hupman, Michael A.; Lee, Christopher L. D.; Raniero, Leandro J.; Alwayn, Ian; Hewitt, Kevin C.

    2015-06-01

    Nanotechnology offers a targeted approach to both imaging and treatment of cancer, the leading cause of death worldwide. Previous studies have found nanoparticles with a wide variety of coatings initiate an immune response leading to sequestration in the liver and spleen. In an effort to find a nanoparticle platform which does not elicit an immune response we created 43/44 nm gold or silver nanoparticles coated with biomolecules normally produced by the body, α-lipoic acid and the Epidermal Growth Factor (EGF), and have used mass spectroscopy to determine their biodistribution in mouse models, 24 hours following tail vein injection. Relative to controls, mouse EGF (mEGF) coated silver and gold nanoprobes are found at reduced levels in the liver and spleen. mEGF coated gold nanoprobes on the other hand do not appear to elicit any immune response, as they are found at background levels in these organs. As a result they should remain in circulation for longer and accumulate at high levels in tumors by the enhanced permeability retention (EPR) effect.

  6. Hemodynamic and morphologic responses in mouse brain during acute head injury imaged by multispectral structured illumination

    NASA Astrophysics Data System (ADS)

    Volkov, Boris; Mathews, Marlon S.; Abookasis, David

    2015-03-01

    Multispectral imaging has received significant attention over the last decade as it integrates spectroscopy, imaging, tomography analysis concurrently to acquire both spatial and spectral information from biological tissue. In the present study, a multispectral setup based on projection of structured illumination at several near-infrared wavelengths and at different spatial frequencies is applied to quantitatively assess brain function before, during, and after the onset of traumatic brain injury in an intact mouse brain (n=5). For the production of head injury, we used the weight drop method where weight of a cylindrical metallic rod falling along a metal tube strikes the mouse's head. Structured light was projected onto the scalp surface and diffuse reflected light was recorded by a CCD camera positioned perpendicular to the mouse head. Following data analysis, we were able to concurrently show a series of hemodynamic and morphologic changes over time including higher deoxyhemoglobin, reduction in oxygen saturation, cell swelling, etc., in comparison with baseline measurements. Overall, results demonstrates the capability of multispectral imaging based structured illumination to detect and map of brain tissue optical and physiological properties following brain injury in a simple noninvasive and noncontact manner.

  7. Learning delays in a mouse model of Autism Spectrum Disorder.

    PubMed

    Rendall, Amanda R; Truong, Dongnhu T; Fitch, R Holly

    2016-04-15

    Autism Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental disorder with core symptoms of atypical social interactions and repetitive behaviors. It has also been reported that individuals with ASD have difficulty with multisensory integration, and this may disrupt higher-order cognitive abilities such as learning and social communication. Impairments in the integration of sensory information could in turn reflect diminished cross-modal white matter connectivity. Moreover, the genetic contribution in ASD appears to be strong, with heritability estimates as high as 90%. However, no single gene has been identified, and over 1000 risk genes have been reported. One of these genes - contactin-associated-like-protein 2 (CNTNAP2) - was first associated with Specific Language Impairment, and more recently has been linked to ASD. CNTNAP2 encodes a cell adhesion protein regulating synaptic signal transmission. To better understand the behavioral and biological underlying mechanisms of ASD, a transgenic mouse model was created with a genetic knockout (KO) of the rodent homolog Cntnap2. Initial studies on this mouse revealed poor social interactions, behavioral perseveration, and reduced vocalizations-all strongly resembling human ASD symptoms. Cntnap2 KO mice also show abnormalities in myelin formation, consistent with a hypo-connectivity model of ASD. The current study was designed to further assess the behavioral phenotype of this mouse model, with a focus on learning and memory. Cntnap2 KO and wild-type mice were tested on a 4/8 radial arm water maze for 14 consecutive days. Error scores (total, working memory, reference memory, initial and repeated reference memory), latency and average turn angle were independently assessed using a 2×14 repeated measures ANOVA. Results showed that Cntnap2 KO mice exhibited significant deficits in working and reference memory during the acquisition period of the task. During the retention period (i.e., after asymptote in errors

  8. Novel Diabetic Mouse Models as Tools for Investigating Diabetic Retinopathy

    PubMed Central

    Kador, Peter F.; Zhang, Peng; Makita, Jun; Zhang, Zifeng; Guo, Changmei; Randazzo, James; Kawada, Hiroyoshi; Haider, Neena; Blessing, Karen

    2012-01-01

    Objective Mouse models possessing green fluorescent protein (GFP) and/or human aldose reductase (hAR) in vascular tissues have been established and crossed with naturally diabetic Akita mice to produce new diabetic mouse models. Research Design and Methods Colonies of transgenic C57BL mice expressing GFP (SMAA-GFP), hAR (SMAA-hAR) or both (SMAA-GFP-hAR) in vascular tissues expressing smooth muscle actin were established and crossbred with C57BL/6-Ins2Akita/J (AK) mice to produce naturally diabetic offspring AK-SMAA-GFP and AK-SMAA-GFP-hAR. Aldose reductase inhibitor AL1576 (ARI) was administered in chow. Retinal and lenticular sorbitol levels were determined by HPLC. Retinal functions were evaluated by electroretinography (ERGs). Growth factor and signaling changes were determined by Western Blots using commercially available antibodies. Retinal vasculatures were isolated from the neural retina by enzymatic digestion. Flat mounts were stained with PAS-hematoxylin and analyzed. Results Akita transgenics developed DM by 8 weeks of age with blood glucose levels higher in males than females. Sorbitol levels were higher in neural retinas of AK-SMAA-GFP-hAR compared to AK-SMAA-GFP mice. AK-SMAA-GFP-hAR mice also had higher VEGF levels and reduced ERG scotopic b-wave function, both of which were normalized by AL1576. AK-SMAA-GFP-hAR mice showed induction of the retinal growth factors bFGF, IGF-1, and TGFβ, as well as signaling changes in P-Akt, P-SAPK/JNK and P-44/42 MAPK that were also reduced by ARI treatment. Quantitative analysis of flat mounts in 18 week AK-SMAA-GFP-hAR mice revealed increased loss of nuclei/capillary length and a significant increase in the percentage of acellular capillaries present which was not seen in AK-SMAA-GFP-hAR treated with ARI. Conclusions/Significance These new mouse models of early onset diabetes may be valuable tools for assessing both the role of hyperglycemia and AR in the development of retinal lesions associated with diabetic

  9. BCL-2 and mutant NRAS interact physically and functionally in a mouse model of progressive myelodysplasia.

    PubMed

    Omidvar, Nader; Kogan, Scott; Beurlet, Stephanie; le Pogam, Carole; Janin, Anne; West, Robert; Noguera, Maria-Elena; Reboul, Murielle; Soulie, Annie; Leboeuf, Christophe; Setterblad, Niclas; Felsher, Dean; Lagasse, Eric; Mohamedali, Azim; Thomas, N Shaun B; Fenaux, Pierre; Fontenay, Michaela; Pla, Marika; Mufti, Ghulam J; Weissman, Irving; Chomienne, Christine; Padua, Rose Ann

    2007-12-15

    Myelodysplastic syndromes (MDS) are clonal stem cell hematologic disorders that evolve to acute myeloid leukemia (AML) and thus model multistep leukemogenesis. Activating RAS mutations and overexpression of BCL-2 are prognostic features of MDS/AML transformation. Using NRASD12 and BCL-2, we created two distinct models of MDS and AML, where human (h)BCL-2 is conditionally or constitutively expressed. Our novel transplantable in vivo models show that expression of hBCL-2 in a primitive compartment by mouse mammary tumor virus-long terminal repeat results in a disease resembling human MDS, whereas the myeloid MRP8 promoter induces a disease with characteristics of human AML. Expanded leukemic stem cell (Lin(-)/Sca-1(+)/c-Kit(+)) populations and hBCL-2 in the increased RAS-GTP complex within the expanded Sca-1(+) compartment are described in both MDS/AML-like diseases. Furthermore, the oncogenic compartmentalizations provide the proapoptotic versus antiapoptotic mechanisms, by activating extracellular signal-regulated kinase and AKT signaling, in determination of the neoplastic phenotype. When hBCL-2 is switched off with doxycycline in the MDS mice, partial reversal of the phenotype was observed with persistence of bone marrow blasts and tissue infiltration as RAS recruits endogenous mouse (m)BCL-2 to remain active, thus demonstrating the role of the complex in the disease. This represents the first in vivo progression model of MDS/AML dependent on the formation of a BCL-2:RAS-GTP complex. The colocalization of BCL-2 and RAS in the bone marrow of MDS/AML patients offers targeting either oncogene as a therapeutic strategy.

  10. Metabolomic markers for intestinal ischemia in a mouse model

    PubMed Central

    Fahrner, René; Beyoğlu, Diren; Beldi, Guido; Idle, Jeffrey R.

    2013-01-01

    Background Diagnosis of intestinal ischemia remains a clinical challenge. The aim of the present study was to use a metabolomic protocol to identify upregulated and downregulated small molecules (Mr < 500) in the serum of mice with intestinal ischemia. Such molecules could have clinical utility when evaluated as biomarkers in human studies. Methods A mouse model for intestinal ischemia was established and validated using histology and serum tumor necrosis factor α concentrations. A second mouse model of peritoneal sepsis was used as a positive control. Serial serum samples were collected from these and from sham-operated animals. Sera were analyzed by gas chromatography–mass spectrometry for 40 small molecules as their trimethylsilyl and O-methyloxime derivatives. Peak areas were normalized against an internal standard and resultant peak area ratios subjected to multivariate data analysis using unsupervised principal components analysis and supervised orthogonal projection to latent structures–discriminant analysis. Upregulated and downregulated serum molecules were identified from their correlation to the orthogonal projection to latent structures–discriminant analysis model. Results Three highly significantly upregulated (fold-change) serum molecules in intestinal ischemia were inorganic phosphate (2.4), urea (4.3), and threonic acid (2.9). Five highly significantly downregulated (fold-change) serum molecules were stearic acid (1.7), arabinose (2.7), xylose (1.6), glucose (1.4), and ribose (2.2). Lactic acid remained unchanged in intestinal ischemia. Conclusions Distinct molecular changes are reported here for the first time in intestinal ischemia. They reveal impairments of gut microbiota metabolism, intestinal absorption, and renal function, together with increased oxidative stress. In contrast to other reports, lactic acid was not significantly changed. These molecular signatures may now be evaluated in clinical studies. PMID:22947700

  11. Orthotopic non-metastatic and metastatic oral cancer mouse models.

    PubMed

    Bais, Manish V; Kukuruzinska, Maria; Trackman, Philip C

    2015-05-01

    Oral cancer is characterized by high morbidity and mortality with a predisposition to metastasize to different tissues, including lung, liver, and bone. Despite progress in the understanding of mutational profiles and deregulated pathways in oral cancer, patient survival has not significantly improved over the past decades. Therefore, there is a need to establish in vivo models that recapitulate human oral cancer metastasis to evaluate therapeutic potential of novel drugs. Here we report orthotopic tongue cancer nude mouse models to study oral cancer growth and metastasis using human metastatic (UMSCC2) and non-metastatic (CAL27) cell lines, respectively. Transduction of these cell lines with lentivirus expressing red fluorescent protein (DsRed) followed by injection into tongues of immunodeficient mice generated orthotopic tongue tumors that could be monitored for growth and metastasis by fluorescence measurement with an in vivo Imaging System (IVIS 200). The growth rates of CAL27-DsRed induced tumors were higher than UMSCC2-DsRed tumors after day 15, while UMSCC2-DsRed tumors revealed metastasis beginning on day 21. Importantly, UMSCC2 tumors metastasized to a number of tissues including the submandibular gland, lung, kidney, liver, and bone. Further, immunohistochemical analyses of tongue tumors induced by CAL27 and UMSCC2 cells revealed elevated expression of components of protumorigenic pathways deregulated in human cancers, including Cyclin D1, PCNA, Ki-67, LSD1, LOXL2, MT-MMP1, DPAGT1, E-cadherin, OCT4A, and H3K4me1/2. These orthotopic mouse models are likely to be useful tools for gaining insights into the activity and mechanisms of novel oral cancer drug candidates.

  12. Increased levels of inosine in a mouse model of inflammation

    PubMed Central

    Prestwich, Erin G; Mangerich, Aswin; Pang, Bo; McFaline, Jose L; Lonkar, Pallavi; Sullivan, Matthew R; Trudel, Laura J; Taghizedeh, Koli; Dedon, Peter C

    2013-01-01

    One possible mechanism linking inflammation with cancer involves the generation of reactive oxygen, nitrogen and halogen species by activated macrophages and neutrophils infiltrating sites of infection or tissue damage, with these chemical mediators causing damage that ultimately leads to cell death and mutation. To determine the most biologically deleterious chemistries of inflammation, we previously assessed products across the spectrum of DNA damage arising in inflamed tissues in the SJL mouse model nitric oxide over-production (Pang et al., Carcinogenesis 28: 1807–1813, 2007). Among the anticipated DNA damage chemistries, we observed significant changes only in lipid peroxidation-derived etheno adducts. We have now developed an isotope-dilution, liquid chromatography-coupled, tandem quadrupole mass spectrometric method to quantify representative species across the spectrum of RNA damage products predicted to arise at sites of inflammation, including nucleobase deamination (xanthosine, inosine), oxidation (8-oxoguanosine), and alkylation (1,N6-etheno-adenosine). Application of the method to liver, spleen, and kidney from the SJL mouse model revealed generally higher levels of oxidative background RNA damage than was observed in DNA in control mice. However, compared to control mice, RcsX treatment to induce nitric oxide overproduction resulted in significant increases only in inosine and only in the spleen. Further, the nitric oxide synthase inhibitor, N-methylarginine, did not significantly affect the levels of inosine in control and RcsX-treated mice. The differences between DNA and RNA damage in the same animal model of inflammation point to possible influences from DNA repair, RcsX-induced alterations in adenosine deaminase activity, and differential accessibility of DNA and RNA to reactive oxygen and nitrogen species as determinants of nucleic acid damage during inflammation. PMID:23506120

  13. Transgenic Mouse Models of Childhood Onset Psychiatric Disorders

    PubMed Central

    Robertson, Holly R.; Feng, Guoping

    2011-01-01

    Childhood onset psychiatric disorders, such as Attention Deficit Hyperactivity Disorder (ADHD), Autism Spectrum Disorder (ASD), Mood Disorders, Obsessive Compulsive Spectrum Disorders (OCSD), and Schizophrenia (SZ), affect many school age children leading to a lower quality of life, including difficulties in school and personal relationships that persists into adulthood. Currently, the causes of these psychiatric disorders are poorly understood resulting in difficulty diagnosing affected children, and insufficient treatment options. Family and twin studies implicate a genetic contribution for ADHD, ASD, Mood Disorders, OCSD, and SZ. Identification of candidate genes and chromosomal regions associated with a particular disorder provide targets for directed research, and understanding how these genes influence the disease state will provide valuable insights for improving the diagnosis and treatment of children with psychiatric disorders. Animal models are one important approach in the study of human diseases, allowing for the use of a variety of experimental approaches to dissect the contribution of a specific chromosomal or genetic abnormality in human disorders. While it is impossible to model an entire psychiatric disorder in a single animal model, these models can be extremely valuable in dissecting out the specific role of a gene, pathway, neuron subtype, or brain region in a particular abnormal behavior. In this review we discuss existing transgenic mouse models for childhood onset psychiatric disorders. We compare the strength and weakness of various transgenic animal models proposed for each of the common childhood onset psychiatric disorders, and discuss future directions for the study of these disorders using cutting-edge genetic tools. PMID:21309772

  14. Correlative mRNA and protein expression of middle and inner ear inflammatory cytokines during mouse acute otitis media.

    PubMed

    Trune, Dennis R; Kempton, Beth; Hausman, Frances A; Larrain, Barbara E; MacArthur, Carol J

    2015-08-01

    Although the inner ear has long been reported to be susceptible to middle ear disease, little is known of the inflammatory mechanisms that might cause permanent sensorineural hearing loss. Recent studies have shown inner ear tissues are capable of expressing inflammatory cytokines during otitis media. However, little quantitative information is available concerning cytokine gene expression in the inner ear and the protein products that result. Therefore, this study was conducted of mouse middle and inner ear during acute otitis media to measure the relationship between inflammatory cytokine genes and their protein products with quantitative RT-PCR and ELISA, respectively. Balb/c mice were inoculated transtympanically with heat-killed Haemophilus influenzae and middle and inner ear tissues collected for either quantitative RT-PCR microarrays or ELISA multiplex arrays. mRNA for several cytokine genes was significantly increased in both the middle and inner ear at 6 h. In the inner ear, these included MIP-2 (448 fold), IL-6 (126 fold), IL-1β (7.8 fold), IL-10 (10.7 fold), TNFα (1.8 fold), and IL-1α (1.5 fold). The 24 h samples showed a similar pattern of gene expression, although generally at lower levels. In parallel, the ELISA showed the related cytokines were present in the inner ear at concentrations higher by 2-122 fold higher at 18 h, declining slightly from there at 24 h. Immunohistochemistry with antibodies to a number of these cytokines demonstrated they occurred in greater amounts in the inner ear tissues. These findings demonstrate considerable inflammatory gene expression and gene products in the inner ear following acute otitis media. These higher cytokine levels suggest one potential mechanism for the permanent hearing loss seen in some cases of acute and chronic otitis media.

  15. Altered Neuroinflammation and Behavior after Traumatic Brain Injury in a Mouse Model of Alzheimer's Disease.

    PubMed

    Kokiko-Cochran, Olga; Ransohoff, Lena; Veenstra, Mike; Lee, Sungho; Saber, Maha; Sikora, Matt; Teknipp, Ryan; Xu, Guixiang; Bemiller, Shane; Wilson, Gina; Crish, Samuel; Bhaskar, Kiran; Lee, Yu-Shang; Ransohoff, Richard M; Lamb, Bruce T

    2016-04-01

    Traumatic brain injury (TBI) has acute and chronic sequelae, including an increased risk for the development of Alzheimer's disease (AD). TBI-associated neuroinflammation is characterized by activation of brain-resident microglia and infiltration of monocytes; however, recent studies have implicated beta-amyloid as a major manipulator of the inflammatory response. To examine neuroinflammation after TBI and development of AD-like features, these studies examined the effects of TBI in the presence and absence of beta-amyloid. The R1.40 mouse model of cerebral amyloidosis was used, with a focus on time points well before robust AD pathologies. Unexpectedly, in R1.40 mice, the acute neuroinflammatory response to TBI was strikingly muted, with reduced numbers of CNS myeloid cells acquiring a macrophage phenotype and decreased expression of inflammatory cytokines. At chronic time points, macrophage activation substantially declined in non-Tg TBI mice; however, it was relatively unchanged in R1.40 TBI mice. The persistent inflammatory response coincided with significant tissue loss between 3 and 120 days post-injury in R1.40 TBI mice, which was not observed in non-Tg TBI mice. Surprisingly, inflammatory cytokine expression was enhanced in R1.40 mice compared with non-Tg mice, regardless of injury group. Although R1.40 TBI mice demonstrated task-specific deficits in cognition, overall functional recovery was similar to non-Tg TBI mice. These findings suggest that accumulating beta-amyloid leads to an altered post-injury macrophage response at acute and chronic time points. Together, these studies emphasize the role of post-injury neuroinflammation in regulating long-term sequelae after TBI and also support recent studies implicating beta-amyloid as an immunomodulator.

  16. A mouse model of melanoma driven by oncogenic KRAS

    PubMed Central

    Milagre, Carla; Dhomen, Nathalie; Geyer, Felipe C; Hayward, Robert; Lambros, Maryou; Reis-Filho, Jorge S; Marais, Richard

    2010-01-01

    The small G-protein NRAS is mutated in 22% of human melanomas, whereas the related proteins, KRAS and HRAS are mutated in only 2% and 1% of melanomas respectively. We have developed a mouse models of melanoma in which Cre recombinase/loxP technology is used to drive inducible expression of G12VKRAS in the melanocytic lineage. The mice develop skin hyper-pigmentation, nevi and tumors that bear many of the cardinal histopathology features and molecular characteristics of human melanoma. These tumors invade and destroy the underlying muscles and cells derived from them can grow as subcutaneous tumors and colonise the lungs of nude mice. These data establish that oncogenic KRAS can be a founder event in melanomagenesis. PMID:20516123

  17. Sleeping Beauty mouse models identify candidate genes involved in gliomagenesis.

    PubMed

    Vyazunova, Irina; Maklakova, Vilena I; Berman, Samuel; De, Ishani; Steffen, Megan D; Hong, Won; Lincoln, Hayley; Morrissy, A Sorana; Taylor, Michael D; Akagi, Keiko; Brennan, Cameron W; Rodriguez, Fausto J; Collier, Lara S

    2014-01-01

    Genomic studies of human high-grade gliomas have discovered known and candidate tumor drivers. Studies in both cell culture and mouse models have complemented these approaches and have identified additional genes and processes important for gliomagenesis. Previously, we found that mobilization of Sleeping Beauty transposons in mice ubiquitously throughout the body from the Rosa26 locus led to gliomagenesis with low penetrance. Here we report the characterization of mice in which transposons are mobilized in the Glial Fibrillary Acidic Protein (GFAP) compartment. Glioma formation in these mice did not occur on an otherwise wild-type genetic background, but rare gliomas were observed when mobilization occurred in a p19Arf heterozygous background. Through cloning insertions from additional gliomas generated by transposon mobilization in the Rosa26 compartment, several candidate glioma genes were identified. Comparisons to genetic, epigenetic and mRNA expression data from human gliomas implicates several of these genes as tumor suppressor genes and oncogenes in human glioblastoma.

  18. Transgenerational transmission of hyperactivity in a mouse model of ADHD.

    PubMed

    Zhu, Jinmin; Lee, Kevin P; Spencer, Thomas J; Biederman, Joseph; Bhide, Pradeep G

    2014-02-19

    Attention deficit hyperactivity disorder (ADHD) is a neurobehavioral disorder affecting children and adults. Genetic and environmental factors are associated with the etiology of ADHD. Among the environmental factors, exposure of the developing brain to nicotine is considered a major risk factor. Recent evidence suggests that environmental influences on the brain and behavior may be transmitted from one generation to the next. We used a prenatal nicotine exposure (PNE) mouse model of ADHD to test the hypothesis that PNE-induced hyperactivity, a proxy for human ADHD phenotype, is transmitted from one generation to the next. Our data reveal transgenerational transmission of PNE-induced hyperactivity in mice via the maternal but not the paternal line of descent. We suggest that transgenerational transmission is a plausible mechanism for propagation of environmentally induced ADHD phenotypes in the population. PMID:24553919

  19. Transgenerational Transmission of Hyperactivity in a Mouse Model of ADHD

    PubMed Central

    Zhu, Jinmin; Lee, Kevin P.; Spencer, Thomas J.; Biederman, Joseph

    2014-01-01

    Attention deficit hyperactivity disorder (ADHD) is a neurobehavioral disorder affecting children and adults. Genetic and environmental factors are associated with the etiology of ADHD. Among the environmental factors, exposure of the developing brain to nicotine is considered a major risk factor. Recent evidence suggests that environmental influences on the brain and behavior may be transmitted from one generation to the next. We used a prenatal nicotine exposure (PNE) mouse model of ADHD to test the hypothesis that PNE-induced hyperactivity, a proxy for human ADHD phenotype, is transmitted from one generation to the next. Our data reveal transgenerational transmission of PNE-induced hyperactivity in mice via the maternal but not the paternal line of descent. We suggest that transgenerational transmission is a plausible mechanism for propagation of environmentally induced ADHD phenotypes in the population. PMID:24553919

  20. Quercetin inhibits inflammatory bone resorption in a mouse periodontitis model.

    PubMed

    Napimoga, Marcelo H; Clemente-Napimoga, Juliana T; Macedo, Cristina G; Freitas, Fabiana F; Stipp, Rafael N; Pinho-Ribeiro, Felipe A; Casagrande, Rubia; Verri, Waldiceu A

    2013-12-27

    Periodontitis is a disease that leads to bone destruction and represents the main cause of tooth loss in adults. The development of aggressive periodontitis has been associated with increased inflammatory response that is induced by the presence of a subgingival biofilm containing Aggregatibacter actinomycetemcomitans. The flavonoid quercetin (1) is widespread in vegetables and fruits and exhibits many biological properties for possible medical and clinical applications such as its anti-inflamatory and antioxidant effects. Thus, in the present study, the properties of 1 have been evaluated in bone loss and inflammation using a mouse periodontitis model induced by A. actinomycetemcomitans infection. Subcutaneous treatment with 1 reduced A. actinomycetemcomitans-induced bone loss and IL-1β, TNF-α, IL-17, RANKL, and ICAM-1 production in the gingival tissue without affecting bacterial counts. These results demonstrated that quercetin exhibits protective effects in A. actinomycetemcomitans-induced periodontitis in mice by modulating cytokine and ICAM-1 production.

  1. Osteosarcoma: mouse models, cell of origin and cancer stem cell

    PubMed Central

    Guijarro, Maria V.

    2016-01-01

    Osteosarcoma (OS) is the most common non-hematologic primary tumor of bone in children and adults. High-dose cytotoxic chemotherapy and surgical resection have improved prognosis, with long-term survival for non-metastatic disease approaching 70%. However, most OS tumors are high grade and tend to rapidly develop pulmonary metastases. Despite clinical advances, patients with metastatic disease or relapse have a poor prognosis. Here the cell biology of OS is reviewed with a special emphasis on mouse models as well as the roles of the cell of origin and cancer stem cells. A better understanding of the molecular pathogenesis of human OS is essential for the development of improved prognostic and diagnostic markers as well as targeted therapies for both primary and metastatic OS.

  2. Multiplex immunoassay characterization and species comparison of inflammation in acute and non-acute ischemic infarcts in human and mouse brain tissue.

    PubMed

    Nguyen, Thuy-Vi V; Frye, Jennifer B; Zbesko, Jacob C; Stepanovic, Kristina; Hayes, Megan; Urzua, Alex; Serrano, Geidy; Beach, Thomas G; Doyle, Kristian P

    2016-01-01

    This study provides a parallel characterization of the cytokine and chemokine response to stroke in the human and mouse brain at different stages of infarct resolution. The study goal was to address the hypothesis that chronic inflammation may contribute to stroke-related dementia. We used C57BL/6 and BALB/c mice to control for strain related differences in the mouse immune response. Our data indicate that in both mouse strains, and humans, there is increased granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin-6 (IL-6), interleukin-12 p70 (IL-12p70), interferon gamma-induced protein-10 (IP-10), keratinocyte chemoattractant/interleukin-8 (KC/IL-8), monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α), macrophage inflammatory protein-1β (MIP-1β), regulated on activation, normal T cell expressed and secreted (RANTES), and Tumor necrosis factor-α (TNF-α) in the infarct core during the acute time period. Nevertheless, correlation and two-way ANOVA analyses reveal that despite this substantial overlap between species, there are still significant differences, particularly in the regulation of granulocyte colony-stimulating factor (G-CSF), which is increased in mice but not in humans. In the weeks after stroke, during the stage of liquefactive necrosis, there is significant resolution of the inflammatory response to stroke within the infarct. However, CD68+ macrophages remain present, and levels of IL-6 and MCP-1 remain chronically elevated in infarcts from both mice and humans. Furthermore, there is a chronic T cell response within the infarct in both species. This response is differentially polarized towards a T helper 1 (Th1) response in C57BL/6 mice, and a T helper 2 (Th2) response in BALB/c mice, suggesting that the chronic inflammatory response to stroke may follow a different trajectory in different patients. To control for the fact that the average age of the patients used in this study was 80 years, they

  3. Vibrio cholerae-induced inflammation in the neonatal mouse cholera model.

    PubMed

    Bishop, Anne L; Patimalla, Bharathi; Camilli, Andrew

    2014-06-01

    Vibrio cholerae is the causative agent of the acute diarrheal disease of cholera. Innate immune responses to V. cholerae are not a major cause of cholera pathology, which is characterized by severe, watery diarrhea induced by the action of cholera toxin. Innate responses may, however, contribute to resolution of infection and must be required to initiate adaptive responses after natural infection and oral vaccination. Here we investigated whether a well-established infant mouse model of cholera can be used to observe an innate immune response. We also used a vaccination model in which immunized dams protect their pups from infection through breast milk antibodies to investigate innate immune responses after V. cholerae infection for pups suckled by an immune dam. At the peak of infection, we observed neutrophil recruitment accompanied by induction of KC, macrophage inflammatory protein 2 (MIP-2), NOS-2, interleukin-6 (IL-6), and IL-17a. Pups suckled by an immunized dam did not mount this response. Accessory toxins RtxA and HlyA played no discernible role in neutrophil recruitment in a wild-type background. The innate response to V. cholerae deleted for cholera toxin-encoding phage (CTX) and part of rtxA was significantly reduced, suggesting a role for CTX-carried genes or for RtxA in the absence of cholera toxin (CTX). Two extracellular V. cholerae DNases were not required for neutrophil recruitment, but DNase-deficient V. cholerae caused more clouds of DNA in the intestinal lumen, which appeared to be neutrophil extracellular traps (NETs), suggesting that V. cholerae DNases combat NETs. Thus, the infant mouse model has hitherto unrecognized utility for interrogating innate responses to V. cholerae infection.

  4. Imipramine Treatment and Resiliency Exhibit Similar Chromatin Regulation in the Mouse Nucleus Accumbens in Depression Models

    PubMed Central

    Wilkinson, Matthew B.; Xiao, Guanghua; Kumar, Arvind; LaPlant, Quincey; Renthal, William; Sikder, Devanjan; Kodadek, Thomas J.; Nestler, Eric J.

    2009-01-01

    Though it is a widely studied psychiatric syndrome, major depressive disorder remains a poorly understood illness, especially with regard to the disconnect between treatment initiation and the delayed onset of clinical improvement. We have recently validated chronic social defeat stress in mice as a model in which a depression-like phenotype is reversed by chronic, but not acute, antidepressant administration. Here, we use ChIP-chip assays—chromatin immunoprecipitation (ChIP) followed by genome wide promoter array analyses—to study the effects of chronic defeat stress on chromatin regulation in the mouse nucleus accumbens (NAc), a key brain reward region implicated in depression. Our results demonstrate that chronic defeat stress causes widespread and long-lasting changes in gene regulation, including alterations in repressive histone methylation and in phospho-CREB binding, in the NAc. We then show similarities and differences in this regulation to that observed in another mouse model of depression, prolonged adult social isolation. In the social defeat model, we observed further that most of the stress-induced changes in gene expression are reversed by chronic imipramine treatment, and that resilient mice—those resistant to the deleterious effects of defeat stress—show patterns of chromatin regulation in the NAc that overlap dramatically with those seen with imipramine treatment. These findings provide new insight into the molecular basis of depression-like symptoms and the mechanisms by which antidepressants exert their delayed clinical efficacy. They also raise the novel idea that certain individuals resistant to stress may naturally mount antidepressant-like adaptations in response to chronic stress. PMID:19535594

  5. Mouse models as a tool to unravel the genetic basis for human otitis media

    PubMed Central

    Zheng, Qing Yin; Hardisty-Hughes, Rachel; Brown, Steve D.M.

    2010-01-01

    The pathogenesis of otitis media (OM) is multifactorial and includes infection, anatomical factors, immunologic status, genetic predisposition, and environmental factors. OM remains the most common cause of hearing impairment in childhood. Genetic predisposition is increasingly recognized as an important factor. The completion of the mouse genome sequence has offered a powerful basket of tools for investigating gene function and can expect to generate a rich resource of mouse mutants for the elucidation of genetic factors underlying OM. We review the literature and discuss recent progresses in developing mouse models and using mouse models to uncover the genetic basis for human OM. PMID:16917982

  6. A New Model for Hendra Virus Encephalitis in the Mouse

    PubMed Central

    Dups, Johanna; Middleton, Deborah; Yamada, Manabu; Monaghan, Paul; Long, Fenella; Robinson, Rachel; Marsh, Glenn A.; Wang, Lin-Fa

    2012-01-01

    Hendra virus (HeV) infection in humans is characterized by an influenza like illness, which may progress to pneumonia or encephalitis and lead to death. The pathogenesis of HeV infection is poorly understood, and the lack of a mouse model has limited the opportunities for pathogenetic research. In this project we reassessed the role of mice as an animal model for HeV infection and found that mice are susceptible to HeV infection after intranasal exposure, with aged mice reliably developing encephalitic disease. We propose an anterograde route of neuroinvasion to the brain, possibly along olfactory nerves. This is supported by evidence for the development of encephalitis in the absence of viremia and the sequential distribution of viral antigen along pathways of olfaction in the brain of intranasally challenged animals. In our studies mice developed transient lower respiratory tract infection without progressing to viremia and systemic vasculitis that is common to other animal models. These studies report a new animal model of HeV encephalitis that will allow more detailed studies of the neuropathogenesis of HeV infection, particularly the mode of viral spread and possible sequestration within the central nervous system; investigation of mechanisms that moderate the development of viremia and systemic disease; and inform the development of improved treatment options for human patients. PMID:22808132

  7. A new model for Hendra virus encephalitis in the mouse.

    PubMed

    Dups, Johanna; Middleton, Deborah; Yamada, Manabu; Monaghan, Paul; Long, Fenella; Robinson, Rachel; Marsh, Glenn A; Wang, Lin-Fa

    2012-01-01

    Hendra virus (HeV) infection in humans is characterized by an influenza like illness, which may progress to pneumonia or encephalitis and lead to death. The pathogenesis of HeV infection is poorly understood, and the lack of a mouse model has limited the opportunities for pathogenetic research. In this project we reassessed the role of mice as an animal model for HeV infection and found that mice are susceptible to HeV infection after intranasal exposure, with aged mice reliably developing encephalitic disease. We propose an anterograde route of neuroinvasion to the brain, possibly along olfactory nerves. This is supported by evidence for the development of encephalitis in the absence of viremia and the sequential distribution of viral antigen along pathways of olfaction in the brain of intranasally challenged animals. In our studies mice developed transient lower respiratory tract infection without progressing to viremia and systemic vasculitis that is common to other animal models. These studies report a new animal model of HeV encephalitis that will allow more detailed studies of the neuropathogenesis of HeV infection, particularly the mode of viral spread and possible sequestration within the central nervous system; investigation of mechanisms that moderate the development of viremia and systemic disease; and inform the development of improved treatment options for human patients.

  8. Electronic Medical Record-Based Predictive Model for Acute Kidney Injury in an Acute Care Hospital.

    PubMed

    Laszczyńska, Olga; Severo, Milton; Azevedo, Ana

    2016-01-01

    Patients with acute kidney injury (AKI) are at risk for increased morbidity and mortality. Lack of specific treatment has meant that efforts have focused on early diagnosis and timely treatment. Advanced algorithms for clinical assistance including AKI prediction models have potential to provide accurate risk estimates. In this project, we aim to provide a clinical decision supporting system (CDSS) based on a self-learning predictive model for AKI in patients of an acute care hospital. Data of all in-patient episodes in adults admitted will be analysed using "data mining" techniques to build a prediction model. The subsequent machine-learning process including two algorithms for data stream and concept drift will refine the predictive ability of the model. Simulation studies on the model will be used to quantify the expected impact of several scenarios of change in factors that influence AKI incidence. The proposed dynamic CDSS will apply to future in-hospital AKI surveillance in clinical practice. PMID:27577501

  9. Iodine uptake and prostate cancer in the TRAMP mouse model.

    PubMed

    Olvera-Caltzontzin, Paloma; Delgado, Guadalupe; Aceves, Carmen; Anguiano, Brenda

    2013-11-08

    Iodine supplementation exerts antitumor effects in several types of cancer. Iodide (I⁻) and iodine (I₂) reduce cell proliferation and induce apoptosis in human prostate cancer cells (LNCaP and DU-145). Both chemical species decrease tumor growth in athymic mice xenografted with DU-145 cells. The aim of this study was to analyze the uptake and effects of iodine in a preclinical model of prostate cancer (transgenic adenocarcinoma of the mouse prostate [TRAMP] mice/SV40-TAG antigens), which develops cancer by 12 wks of age. ¹²⁵I⁻ and ¹²⁵I₂ uptake was analyzed in prostates from wild-type and TRAMP mice of 12 and 24 wks in the presence of perchlorate (inhibitor of the Na⁺/I⁻ symporter [NIS]). NIS expression was quantified by quantitative polymerase chain reaction (qPCR). Mice (6 wks old) were supplemented with 0.125 mg I⁻ plus 0.062 mg I₂/mouse/day for 12 or 24 wks. The weight of the genitourinary tract (GUT), the number of acini with lesions, cell proliferation (levels of proliferating cell nuclear antigen [PCNA] by immunohistochemistry), p53 and p21 expression (by qPCR) and apoptosis (relative amount of nucleosomes by enzyme-linked immunosorbent assay) were evaluated. In both age-groups, normal and tumoral prostates take up both forms of iodine, but only I⁻ uptake was blocked by perchlorate. Iodine supplementation prevented the overexpression of NIS in the TRAMP mice, but had no effect on the GUT weight, cell phenotype, proliferation or apoptosis. In TRAMP mice, iodine increased p53 expression but had no effect on p21 (a p53-dependent gene). Our data corroborate NIS involvement in I⁻ uptake and support the notion that another transporter mediates I₂ uptake. Iodine did not prevent cancer progression. This result could be explained by a strong inactivation of the p53 pathway by TAG antigens.

  10. Mouse model of Timothy syndrome recapitulates triad of autistic traits.

    PubMed

    Bader, Patrick L; Faizi, Mehrdad; Kim, Leo H; Owen, Scott F; Tadross, Michael R; Alfa, Ronald W; Bett, Glenna C L; Tsien, Richard W; Rasmusson, Randall L; Shamloo, Mehrdad

    2011-09-13

    Autism and autism spectrum disorder (ASD) typically arise from a mixture of environmental influences and multiple genetic alterations. In some rare cases, such as Timothy syndrome (TS), a specific mutation in a single gene can be sufficient to generate autism or ASD in most patients, potentially offering insights into the etiology of autism in general. Both variants of TS (the milder TS1 and the more severe TS2) arise from missense mutations in alternatively spliced exons that cause the same G406R replacement in the Ca(V)1.2 L-type calcium channel. We generated a TS2-like mouse but found that heterozygous (and homozygous) animals were not viable. However, heterozygous TS2 mice that were allowed to keep an inverted neomycin cassette (TS2-neo) survived through adulthood. We attribute the survival to lowering of expression of the G406R L-type channel via transcriptional interference, blunting deleterious effects of mutant L-type channel overactivity, and addressed potential effects of altered gene dosage by studying Ca(V)1.2 knockout heterozygotes. Here we present a thorough behavioral phenotyping of the TS2-neo mouse, capitalizing on this unique opportunity to use the TS mutation to model ASD in mice. Along with normal general health, activity, and anxiety level, TS2-neo mice showed markedly restricted, repetitive, and perseverative behavior, altered social behavior, altered ultrasonic vocalization, and enhanced tone-cued and contextual memory following fear conditioning. Our results suggest that when TS mutant channels are expressed at levels low enough to avoid fatality, they are sufficient to cause multiple, distinct behavioral abnormalities, in line with the core aspects of ASD.

  11. The composition of cigarette smoke determines inflammatory cell recruitment to the lung in COPD mouse models.

    PubMed

    John, Gerrit; Kohse, Katrin; Orasche, Jürgen; Reda, Ahmed; Schnelle-Kreis, Jürgen; Zimmermann, Ralf; Schmid, Otmar; Eickelberg, Oliver; Yildirim, Ali Önder

    2014-02-01

    COPD (chronic obstructive pulmonary disease) is caused by exposure to toxic gases and particles, most often CS (cigarette smoke), leading to emphysema, chronic bronchitis, mucus production and a subsequent decline in lung function. The disease pathogenesis is related to an abnormal CS-induced inflammatory response of the lungs. Similar to active (mainstream) smoking, second hand (sidestream) smoke exposure severely affects respiratory health. These processes can be studied in vivo in models of CS exposure of mice. We compared the acute inflammatory response of female C57BL/6 mice exposed to two concentrations [250 and 500 mg/m3 TPM (total particulate matter)] of sidestream and mainstream CS for 3 days and interpreted the biological effects based on physico-chemical differences in the gas and particulate phase composition of CS. BAL (bronchoalveolar lavage fluid) was obtained to perform differential cell counts and to measure cytokine release. Lung tissue was used to determine mRNA and protein expression of proinflammatory genes and to assess tissue inflammation. A strong acute inflammatory response characterized by neutrophilic influx, increased cytokine secretion [KC (keratinocyte chemoattractant), TNF-α (tumour necrosis factor α), MIP-2 (macrophage inflammatory protein 2), MIP-1α and MCP-1 (monocyte chemoattractant protein-1)], pro-inflammatory gene expression [KC, MIP-2 and MMP12 (matrix metalloproteinase 12)] and up-regulated GM-CSF (granulocyte macrophage colony-stimulating factor) production was observed in the mainstream model. After sidestream exposure there was a dampened inflammatory reaction consisting only of macrophages and diminished GM-CSF levels, most likely caused by elevated CO concentrations. These results demonstrate that the composition of CS determines the dynamics of inflammatory cell recruitment in COPD mouse models. Different initial inflammatory processes might contribute to COPD pathogenesis in significantly varying ways, thereby

  12. The composition of cigarette smoke determines inflammatory cell recruitment to the lung in COPD mouse models.

    PubMed

    John, Gerrit; Kohse, Katrin; Orasche, Jürgen; Reda, Ahmed; Schnelle-Kreis, Jürgen; Zimmermann, Ralf; Schmid, Otmar; Eickelberg, Oliver; Yildirim, Ali Önder

    2014-02-01

    COPD (chronic obstructive pulmonary disease) is caused by exposure to toxic gases and particles, most often CS (cigarette smoke), leading to emphysema, chronic bronchitis, mucus production and a subsequent decline in lung function. The disease pathogenesis is related to an abnormal CS-induced inflammatory response of the lungs. Similar to active (mainstream) smoking, second hand (sidestream) smoke exposure severely affects respiratory health. These processes can be studied in vivo in models of CS exposure of mice. We compared the acute inflammatory response of female C57BL/6 mice exposed to two concentrations [250 and 500 mg/m3 TPM (total particulate matter)] of sidestream and mainstream CS for 3 days and interpreted the biological effects based on physico-chemical differences in the gas and particulate phase composition of CS. BAL (bronchoalveolar lavage fluid) was obtained to perform differential cell counts and to measure cytokine release. Lung tissue was used to determine mRNA and protein expression of proinflammatory genes and to assess tissue inflammation. A strong acute inflammatory response characterized by neutrophilic influx, increased cytokine secretion [KC (keratinocyte chemoattractant), TNF-α (tumour necrosis factor α), MIP-2 (macrophage inflammatory protein 2), MIP-1α and MCP-1 (monocyte chemoattractant protein-1)], pro-inflammatory gene expression [KC, MIP-2 and MMP12 (matrix metalloproteinase 12)] and up-regulated GM-CSF (granulocyte macrophage colony-stimulating factor) production was observed in the mainstream model. After sidestream exposure there was a dampened inflammatory reaction consisting only of macrophages and diminished GM-CSF levels, most likely caused by elevated CO concentrations. These results demonstrate that the composition of CS determines the dynamics of inflammatory cell recruitment in COPD mouse models. Different initial inflammatory processes might contribute to COPD pathogenesis in significantly varying ways, thereby

  13. The composition of cigarette smoke determines inflammatory cell recruitment to the lung in COPD mouse models

    PubMed Central

    John, Gerrit; Kohse, Katrin; Orasche, Jürgen; Reda, Ahmed; Schnelle-Kreis, Jürgen; Zimmermann, Ralf; Schmid, Otmar; Eickelberg, Oliver; Yildirim, Ali Önder

    2013-01-01

    COPD (chronic obstructive pulmonary disease) is caused by exposure to toxic gases and particles, most often CS (cigarette smoke), leading to emphysema, chronic bronchitis, mucus production and a subsequent decline in lung function. The disease pathogenesis is related to an abnormal CS-induced inflammatory response of the lungs. Similar to active (mainstream) smoking, second hand (sidestream) smoke exposure severely affects respiratory health. These processes can be studied in vivo in models of CS exposure of mice. We compared the acute inflammatory response of female C57BL/6 mice exposed to two concentrations [250 and 500 mg/m3 TPM (total particulate matter)] of sidestream and mainstream CS for 3 days and interpreted the biological effects based on physico-chemical differences in the gas and particulate phase composition of CS. BAL (bronchoalveolar lavage fluid) was obtained to perform differential cell counts and to measure cytokine release. Lung tissue was used to determine mRNA and protein expression of proinflammatory genes and to assess tissue inflammation. A strong acute inflammatory response characterized by neutrophilic influx, increased cytokine secretion [KC (keratinocyte chemoattractant), TNF-α (tumour necrosis factor α), MIP-2 (macrophage inflammatory protein 2), MIP-1α and MCP-1 (monocyte chemoattractant protein-1)], pro-inflammatory gene expression [KC, MIP-2 and MMP12 (matrix metalloproteinase 12)] and up-regulated GM-CSF (granulocyte macrophage colony-stimulating factor) production was observed in the mainstream model. After sidestream exposure there was a dampened inflammatory reaction consisting only of macrophages and diminished GM-CSF levels, most likely caused by elevated CO concentrations. These results demonstrate that the composition of CS determines the dynamics of inflammatory cell recruitment in COPD mouse models. Different initial inflammatory processes might contribute to COPD pathogenesis in significantly varying ways, thereby

  14. IMQ Induced K14-VEGF Mouse: A Stable and Long-Term Mouse Model of Psoriasis-Like Inflammation.

    PubMed

    Wang, Xuguo; Sun, Jun; Hu, JinHong

    2015-01-01

    An imiquimod (IMQ) induced wild type (WT) mouse can mimic some features of psoriasis, such as thickened skin, abnormal keratinocyte-related proteins, infiltration of inflammatory cells and pro-inflammatory cytokines. This model is a prevalent model that is widely used in the study of psoriasis. However, skin inflammation decreases during the eighth day when IMQ is given to WT mice, which may result in false results when evaluating the pharmacodynamics effects of a drug. To extend the timeliness and inherit the advantages of this model, we applied IMQ to the skin of 8-week-old homozygous K14-VEGF mice to investigate whether IMQ can prolong mice ear inflammation. In our experiments, we found that, compared to the IMQ induced WT mice model, the IMQ induced K14-VEGF mice have serious skin inflammation, even on the fourteenth day. We also evaluated the stability of skin inflammation at days 8, 10, and 13, and the inflammatory situation remained stable in the skin. This research intends to improve the existing model, and we hypothesize that the IMQ induced K14-VEGF mouse will become a practical mouse model in psoriasis research. PMID:26691862

  15. Mouse Models of Brain Metastasis for Unravelling Tumour Progression.

    PubMed

    Soto, Manuel Sarmiento; Sibson, Nicola R

    2016-01-01

    Secondary tumours in the brain account for 40 % of triple negative breast cancer patients, and the percentage may be higher at the time of autopsy. The use of in vivo models allow us to recapitulate the molecular mechanisms potentially used by circulating breast tumour cells to proliferate within the brain.Metastasis is a multistep process that depends on the success of several stages including cell evasion from the primary tumour, distribution and survival within the blood stream and cerebral microvasculature, penetration of the blood-brain barrier and proliferation within the brain microenvironment. Cellular adhesion molecules are key proteins involved in all of the steps in the metastatic process. Our group has developed two different in vivo models to encompass both seeding and colonisation stages of the metastatic process: (1) haematogenous dissemination of tumour cells by direct injection into the left ventricle of the heart, and (2) direct implantation of the tumour cells into the mouse brain.This chapter describes, in detail, the practical implementation of the intracerebral model, which can be used to analyse tumour proliferation within a specific area of the central nervous system and tumour-host cell interactions. We also describe the use of immunohistochemistry techniques to identify, at the molecular scale, tumour-host cell interactions, which may open new windows for brain metastasis therapy.

  16. Photodynamic therapy of oral Candida infection in a mouse model.

    PubMed

    Freire, Fernanda; Ferraresi, Cleber; Jorge, Antonio Olavo C; Hamblin, Michael R

    2016-06-01

    Species of the fungal genus Candida, can cause oral candidiasis especially in immunosuppressed patients. Many studies have investigated the use of photodynamic therapy (PDT) to kill fungi in vitro, but this approach has seldom been reported in animal models of infection. This study investigated the effects of PDT on Candida albicans as biofilms grown in vitro and also in an immunosuppressed mouse model of oral candidiasis infection. We used a luciferase-expressing strain that allowed non-invasive monitoring of the infection by bioluminescence imaging. The phenothiazinium salts, methylene blue (MB) and new methylene blue (NMB) were used as photosensitizers (PS), combined or not with potassium iodide (KI), and red laser (660nm) at four different light doses (10J, 20J, 40J and 60J). The best in vitro log reduction of CFU/ml on biofilm grown cells was: MB plus KI with 40J (2.31 log; p<0.001); and NMB without KI with 60J (1.77 log; p<0.001). These conditions were chosen for treating the in vivo model of oral Candida infection. After 5days of treatment the disease was practically eradicated, especially using MB plus KI with 40J. This study suggests that KI can potentiate PDT of fungal infection using MB (but not NMB) and could be a promising new approach for the treatment of oral candidiasis.

  17. Using the mouse to model human disease: increasing validity and reproducibility

    PubMed Central

    Justice, Monica J.; Dhillon, Paraminder

    2016-01-01

    ABSTRACT Experiments that use the mouse as a model for disease have recently come under scrutiny because of the repeated failure of data, particularly derived from preclinical studies, to be replicated or translated to humans. The usefulness of mouse models has been questioned because of irreproducibility and poor recapitulation of human conditions. Newer studies, however, point to bias in reporting results and improper data analysis as key factors that limit reproducibility and validity of preclinical mouse research. Inaccurate and incomplete descriptions of experimental conditions also contribute. Here, we provide guidance on best practice in mouse experimentation, focusing on appropriate selection and validation of the model, sources of variation and their influence on phenotypic outcomes, minimum requirements for control sets, and the importance of rigorous statistics. Our goal is to raise the standards in mouse disease modeling to enhance reproducibility, reliability and clinical translation of findings. PMID:26839397

  18. ACUTE ETHANOL MODULATES GLUTAMATERGIC AND SEROTONERGIC PHASE SHIFTS OF THE MOUSE CIRCADIAN LOCK IN VITRO

    PubMed Central

    Prosser, Rebecca A.; Mangrum, Charles A.; Glass, J. David

    2008-01-01

    Alcohol abuse is associated with sleep problems, which are often linked to circadian rhythm disturbances. However, there is no information on the direct effects of ethanol on the mammalian circadian clock. Acute ethanol inhibits glutamate signaling, which is the primary mechanism through which light resets the mammalian clock in the suprachiasmatic nucleus (SCN). Glutamate and light also inhibit circadian clock resetting induced by non-photic signals, including serotonin. Thus, we investigated the effects of acute ethanol on both glutamatergic and serotoninergic resetting of the SCN clock in vitro. We show that ethanol dose-dependently inhibits glutamate-induced phase shifts and enhances serotonergic phase shifts. The inhibition of glutamate-induced phase shifts is not affected by excess glutamate, glycine or D-serine, but is prevented by excess brain-derived neurotrophic factor (BDNF). BDNF is known to augment glutamate signaling in the SCN and to be necessary for glutamate/light-induced phase shifts. Thus, ethanol may inhibit glutamate-induced clock resetting at least in part by blocking BDNF enhancement of glutamate signaling. Ethanol enhancement of serotonergic phase shifts is mimicked by treatments that suppress glutamate signaling in the SCN, including antagonists of glutamate receptors, BDNF signaling and nitric oxide synthase. The combined effect of ethanol with these treatments is not additive, suggesting they act through a common pathway. Our data indicate further that the interaction between serotonin and glutamate in the SCN may occur downstream from nitric oxide synthase activation. Thus, acute ethanol disrupts normal circadian clock phase regulation, which could contribute to the physiological and psychological problems associated with alcohol abuse. PMID:18313227

  19. Mathematical model of the neonatal mouse ventricular action potential

    PubMed Central

    Wang, Linda J.; Sobie, Eric A.

    2008-01-01

    Therapies for heart disease are based largely on our understanding of the adult myocardium. The dramatic differences in action potential (AP) shape between neonatal and adult cardiac myocytes, however, indicate that a different set of molecular interactions in neonatal myocytes necessitates different treatment for newborns. Computational modeling is useful for synthesizing data to determine how interactions between components lead to systems-level behavior, but this technique has not been used extensively to study neonatal heart cell function. We created a mathematical model of the neonatal (day 1) mouse myocyte by modifying, based on experimental data, the densities and/or formulations of ion transport mechanisms in an adult cell model. The new model reproduces the characteristic AP shape of neonatal cells, with a brief plateau phase and longer duration than the adult (APD80=60.1 vs. 12.6 ms). The simulation results are consistent with experimental data, including: 1) decreased density, and altered inactivation, of transient outward K+ currents, 2) increased delayed rectifier K+ currents, 3) Ca2+ entry through T-type as well as L-type Ca2+ channels, 4) increased Ca2+ influx through Na+-Ca2+ exchange, and 5) Ca2+ transients resulting from transmembrane Ca2+ entry rather than release from the sarcoplasmic reticulum (SR). Simulations performed with the model generated novel predictions, including increased SR Ca2+ leak and elevated intracellular [Na+] in neonatal compared with adult myocytes. This new model can therefore be used for testing hypotheses and obtaining a better quantitative understanding of differences between neonatal and adult physiology. PMID:18408122

  20. Acute Dietary Tryptophan Manipulation Differentially Alters Social Behavior, Brain Serotonin and Plasma Corticosterone in Three Inbred Mouse Strains

    PubMed Central

    Zhang, Wynne Q.; Smolik, Corey M.; Barba-Escobedo, Priscilla A.; Gamez, Monica; Sanchez, Jesus J.; Javors, Martin A.; Daws, Lynette C.; Gould, Georgianna G.

    2014-01-01

    Clinical evidence indicates brain serotonin (5-HT) stores and neurotransmission may be inadequate in subpopulations of individuals with autism, and this may contribute to characteristically impaired social behaviors. Findings that depletion of the 5-HT precursor tryptophan (TRP) worsens autism symptoms support this hypothesis. Yet dietetic studies show and parents report that many children with autism consume less TRP than peers. To measure the impact of dietary TRP content on social behavior, we administered either diets devoid of TRP, with standard TRP (0.2 gm%), or with 1% added TRP (1.2 gm%) overnight to three mouse strains. Of these, BTBRT+Itpr3tf/J and 129S1/SvImJ consistently exhibit low preference for social interaction relative to C57BL/6. We found that TRP depletion reduced C57BL/6 and 129S social interaction preference, while TRP enhancement improved BTBR sociability (p < 0.05; N= 8–10). Subsequent marble burying was similar regardless of grouping. After behavior tests, brain TRP levels and plasma corticosterone were higher in TRP enhanced C57BL/6 and BTBR, while 5-HT levels were reduced in all strains by TRP depletion (p <0.05; N= 4 −10). Relative hyperactivity of BTBR and hypoactivity of 129S, evident in self-grooming and chamber entries during sociability tests, were uninfluenced by dietary TRP. Our findings demonstrate mouse sociability and brain 5-HT turnover are reduced by acute TRP depletion, and can be enhanced by TRP supplementation. This outcome warrants further basic and/or clinical studies employing biomarker combinations such as TRP metabolism and 5-HT regulated hormones to characterize the conditions wherein TRP supplementation can best ameliorate sociability deficits. PMID:25445490

  1. Mouse models rarely mimic the transcriptome of human neurodegenerative diseases: A systematic bioinformatics-based critique of preclinical models.

    PubMed

    Burns, Terry C; Li, Matthew D; Mehta, Swapnil; Awad, Ahmed J; Morgan, Alexander A

    2015-07-15

    Translational research for neurodegenerative disease depends intimately upon animal models. Unfortunately, promising therapies developed using mouse models mostly fail in clinical trials, highlighting uncertainty about how well mouse models mimic human neurodegenerative disease at the molecular level. We compared the transcriptional signature of neurodegeneration in mouse models of Alzheimer׳s disease (AD), Parkinson׳s disease (PD), Huntington׳s disease (HD) and amyotrophic lateral sclerosis (ALS) to human disease. In contrast to aging, which demonstrated a conserved transcriptome between humans and mice, only 3 of 19 animal models showed significant enrichment for gene sets comprising the most dysregulated up- and down-regulated human genes. Spearman׳s correlation analysis revealed even healthy human aging to be more closely related to human neurodegeneration than any mouse model of AD, PD, ALS or HD. Remarkably, mouse models frequently upregulated stress response genes that were consistently downregulated in human diseases. Among potential alternate models of neurodegeneration, mouse prion disease outperformed all other disease-specific models. Even among the best available animal models, conserved differences between mouse and human transcriptomes were found across multiple animal model versus human disease comparisons, surprisingly, even including aging. Relative to mouse models, mouse disease signatures demonstrated consistent trends toward preserved mitochondrial function protein catabolism, DNA repair responses, and chromatin maintenance. These findings suggest a more complex and multifactorial pathophysiology in human neurodegeneration than is captured through standard animal models, and suggest that even among conserved physiological processes such as aging, mice are less prone to exhibit neurodegeneration-like changes. This work may help explain the poor track record of mouse-based translational therapies for neurodegeneration and provides a path

  2. Single-Dose Radiation-Induced Oral Mucositis Mouse Model

    PubMed Central

    Maria, Osama Muhammad; Syme, Alasdair; Eliopoulos, Nicoletta; Muanza, Thierry

    2016-01-01

    The generation of a self-resolved radiation-induced oral mucositis (RIOM) mouse model using the highest possibly tolerable single ionizing radiation (RT) dose was needed in order to study RIOM management solutions. We used 10-week-old male BALB/c mice with average weight of 23 g for model production. Mice were treated with an orthovoltage X-ray irradiator to induce the RIOM ulceration at the intermolar eminence of the animal tongue. General anesthesia was injected intraperitoneally for proper animal immobilization during the procedure. Ten days after irradiation, a single RT dose of 10, 15, 18, 20, and 25 Gy generated a RIOM ulcer at the intermolar eminence (posterior upper tongue surface) with mean ulcer floor (posterior epithelium) heights of 190, 150, 25, 10, and 10 μm, respectively, compared to 200 μm in non-irradiated animals. The mean RIOM ulcer size % of the total epithelialized upper surface of the animal tongue was RT dose dependent. At day 10, the ulcer size % was 2, 5, 27, and 31% for 15, 18, 20, and 25 Gy RT, respectively. The mean relative surface area of the total epithelialized upper surface of the tongue was RT dose dependent, since it was significantly decreased to 97, 95, 88, and 38% with 15, 18, 20, and 25 Gy doses, respectively, at day 10 after RT. Subcutaneous injection of 1 mL of 0.9% saline/6 h for 24 h yielded a 100% survival only with 18 Gy self-resolved RIOM, which had 5.6 ± 0.3 days ulcer duration. In conclusion, we have generated a 100% survival self-resolved single-dose RIOM male mouse model with long enough duration for application in RIOM management research. Oral mucositis ulceration was radiation dose dependent. Sufficient hydration of animals after radiation exposure significantly improved their survival. PMID:27446800

  3. Genetically manipulated mouse models of lung disease: potential and pitfalls

    PubMed Central

    Choi, Alexander J. S.; Owen, Caroline A.; Choi, Augustine M. K.

    2012-01-01

    Gene targeting in mice (transgenic and knockout) has provided investigators with an unparalleled armamentarium in recent decades to dissect the cellular and molecular basis of critical pathophysiological states. Fruitful information has been derived from studies using these genetically engineered mice with significant impact on our understanding, not only of specific biological processes spanning cell proliferation to cell death, but also of critical molecular events involved in the pathogenesis of human disease. This review will focus on the use of gene-targeted mice to study various models of lung disease including airways diseases such as asthma and chronic obstructive pulmonary disease, and parenchymal lung diseases including idiopathic pulmonary fibrosis, pulmonary hypertension, pneumonia, and acute lung injury. We will attempt to review the current technological approaches of generating gene-targeted mice and the enormous dataset derived from these studies, providing a template for lung investigators. PMID:22198907

  4. Acute stress increases neuropsin mRNA expression in the mouse hippocampus through the glucocorticoid pathway.

    PubMed

    Harada, Akiko; Shiosaka, Sadao; Ishikawa, Yasuyuki; Komai, Shoji

    2008-05-01

    Stress affects synaptic plasticity and may alter various types of behaviour, including anxiety or memory formation. In the present study, we examined the effects of acute stress (1 h restraint with or without tail-shock) on mRNA levels of a plasticity-related serine protease neuropsin (NP) in the hippocampus using semiquantitative RT-PCR and in situ hybridization. We found that NP mRNA expression was dramatically increased shortly after exposure to the acute restraint tail-shock stress and remained at high level for at least 24 h. The level of NP mRNA would be correlated to the elevated plasma concentration of the glucocorticoid corticosterone (CORT) and to the stress intensity. Application of CORT either onto primary cultured hippocampal neurons (5 nM) or in vivo to adrenalectomized (ADX) mice (10 mg/kg B.W., s.c.) mimicked the effect of stress and significantly elevated NP mRNA. These results suggest that the upregulation of NP mRNA after stress is CORT-dependent and point to a role for neuropsin in stress-induced neuronal plasticity.

  5. Asparaginase Potentiates Glucocorticoid-Induced Osteonecrosis in a Mouse Model.

    PubMed

    Liu, Chengcheng; Janke, Laura J; Kawedia, Jitesh D; Ramsey, Laura B; Cai, Xiangjun; Mattano, Leonard A; Boyd, Kelli L; Funk, Amy J; Relling, Mary V

    2016-01-01

    Osteonecrosis is a common dose-limiting toxicity of glucocorticoids. Data from clinical trials suggest that other medications can increase the risk of glucocorticoid-induced osteonecrosis. Here we utilized a mouse model to study the effect of asparaginase treatment on dexamethasone-induced osteonecrosis. Mice receiving asparaginase along with dexamethasone had a higher rate of osteonecrosis than those receiving only dexamethasone after 6 weeks of treatment (44% vs. 10%, P = 0.006). Similarly, epiphyseal arteriopathy, which we have shown to be an initiating event for osteonecrosis, was observed in 58% of mice receiving asparaginase and dexamethasone compared to 17% of mice receiving dexamethasone only (P = 0.007). As in the clinic, greater exposure to asparaginase was associated with greater plasma exposure to dexamethasone (P = 0.0001). This model also recapitulated other clinical risk factors for osteonecrosis, including age at start of treatment, and association with the systemic exposure to dexamethasone (P = 0.027) and asparaginase (P = 0.036). We conclude that asparaginase can potentiate the osteonecrotic effect of glucocorticoids. PMID:26967741

  6. Asparaginase Potentiates Glucocorticoid-Induced Osteonecrosis in a Mouse Model

    PubMed Central

    Liu, Chengcheng; Janke, Laura J.; Kawedia, Jitesh D.; Ramsey, Laura B.; Cai, Xiangjun; Mattano, Leonard A.; Boyd, Kelli L.; Funk, Amy J.; Relling, Mary V.

    2016-01-01

    Osteonecrosis is a common dose-limiting toxicity of glucocorticoids. Data from clinical trials suggest that other medications can increase the risk of glucocorticoid-induced osteonecrosis. Here we utilized a mouse model to study the effect of asparaginase treatment on dexamethasone-induced osteonecrosis. Mice receiving asparaginase along with dexamethasone had a higher rate of osteonecrosis than those receiving only dexamethasone after 6 weeks of treatment (44% vs. 10%, P = 0.006). Similarly, epiphyseal arteriopathy, which we have shown to be an initiating event for osteonecrosis, was observed in 58% of mice receiving asparaginase and dexamethasone compared to 17% of mice receiving dexamethasone only (P = 0.007). As in the clinic, greater exposure to asparaginase was associated with greater plasma exposure to dexamethasone (P = 0.0001). This model also recapitulated other clinical risk factors for osteonecrosis, including age at start of treatment, and association with the systemic exposure to dexamethasone (P = 0.027) and asparaginase (P = 0.036). We conclude that asparaginase can potentiate the osteonecrotic effect of glucocorticoids. PMID:26967741

  7. Dermal lymphatic dilation in a mouse model of alopecia areata.

    PubMed

    Sundberg, John P; Pratt, C Herbert; Silva, Kathleen A; Kennedy, Victoria E; Stearns, Timothy M; Sundberg, Beth A; King, Lloyd E; HogenEsch, Harm

    2016-04-01

    Mouse models of various types of inflammatory skin disease are often accompanied by increased dermal angiogenesis. The C3H/HeJ inbred strain spontaneously develops alopecia areata (AA), a cell mediated autoimmune disorder that can be controllably expanded using full thickness skin grafts to young unaffected mice. This provides a reproducible and progressive model for AA in which the vascularization of the skin can be examined. Mice receiving skin grafts from AA or normal mice were evaluated at 5, 10, 15, and 20 weeks after engraftment. Lymphatics are often overlooked as they are small slit-like structures above the hair follicle that resemble artifact-like separation of collagen bundles with some fixatives. Lymphatics are easily detected using lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1) by immunohistochemistry to label their endothelial cells. Using LYVE1, there were no changes in distribution or numbers of lymphatics although they were more prominent (dilated) in the mice with AA. Lyve1 transcripts were not significantly upregulated except at 10 weeks after skin grafting when clinical signs of AA first become apparent. Other genes involved with vascular growth and dilation or movement of immune cells were dysregulated, mostly upregulated. These findings emphasize aspects of AA not commonly considered and provide potential targets for therapeutic intervention.

  8. Dermal lymphatic dilation in a mouse model of alopecia areata.

    PubMed

    Sundberg, John P; Pratt, C Herbert; Silva, Kathleen A; Kennedy, Victoria E; Stearns, Timothy M; Sundberg, Beth A; King, Lloyd E; HogenEsch, Harm

    2016-04-01

    Mouse models of various types of inflammatory skin disease are often accompanied by increased dermal angiogenesis. The C3H/HeJ inbred strain spontaneously develops alopecia areata (AA), a cell mediated autoimmune disorder that can be controllably expanded using full thickness skin grafts to young unaffected mice. This provides a reproducible and progressive model for AA in which the vascularization of the skin can be examined. Mice receiving skin grafts from AA or normal mice were evaluated at 5, 10, 15, and 20 weeks after engraftment. Lymphatics are often overlooked as they are small slit-like structures above the hair follicle that resemble artifact-like separation of collagen bundles with some fixatives. Lymphatics are easily detected using lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1) by immunohistochemistry to label their endothelial cells. Using LYVE1, there were no changes in distribution or numbers of lymphatics although they were more prominent (dilated) in the mice with AA. Lyve1 transcripts were not significantly upregulated except at 10 weeks after skin grafting when clinical signs of AA first become apparent. Other genes involved with vascular growth and dilation or movement of immune cells were dysregulated, mostly upregulated. These findings emphasize aspects of AA not commonly considered and provide potential targets for therapeutic intervention. PMID:26960166

  9. Mouse Model of Respiratory Tract Infection Induced by Waddlia chondrophila.

    PubMed

    Pilloux, Ludovic; LeRoy, Didier; Brunel, Christophe; Roger, Thierry; Greub, Gilbert

    2016-01-01

    Waddlia chondrophila, an obligate intracellular bacterium belonging to the Chlamydiales order, is considered as an emerging pathogen. Some clinical studies highlighted a possible role of W. chondrophila in bronchiolitis, pneumonia and miscarriage. This pathogenic potential is further supported by the ability of W. chondrophila to infect and replicate within human pneumocytes, macrophages and endometrial cells. Considering that W. chondrophila might be a causative agent of respiratory tract infection, we developed a mouse model of respiratory tract infection to get insight into the pathogenesis of W. chondrophila. Following intranasal inoculation of 2 x 108 W. chondrophila, mice lost up to 40% of their body weight, and succumbed rapidly from infection with a death rate reaching 50% at day 4 post-inoculation. Bacterial loads, estimated by qPCR, increased from day 0 to day 3 post-infection and decreased thereafter in surviving mice. Bacterial growth was confirmed by detecting dividing bacteria using electron microscopy, and living bacteria were isolated from lungs 14 days post-infection. Immunohistochemistry and histopathology of infected lungs revealed the presence of bacteria associated with pneumonia characterized by an important multifocal inflammation. The high inflammatory score in the lungs was associated with the presence of pro-inflammatory cytokines in both serum and lungs at day 3 post-infection. This animal model supports the role of W. chondrophila as an agent of respiratory tract infection, and will help understanding the pathogenesis of this strict intracellular bacterium. PMID:26950066

  10. Breathing abnormalities in a female mouse model of Rett syndrome.

    PubMed

    Johnson, Christopher M; Cui, Ningren; Zhong, Weiwei; Oginsky, Max F; Jiang, Chun

    2015-09-01

    Rett syndrome (RTT) is a female neurodevelopmental disease with breathing abnormalities. To understand whether breathing defects occur in the early lives of a group of female Mecp2(+/-) mice, a mouse model of RTT, and what percentage of mice shows RTT-like breathing abnormality, breathing activity was measured by plethysmography in conscious mice. Breathing frequency variation and central apnea in a group of Mecp2(+/-) females displayed a distribution pattern similar to Mecp2(-/Y) males, while the rest resembled the wild-type mice. Similar results were obtained using the k-mean clustering statistics analysis. With two independent methods, about 20% of female Mecp2(+/-) mice showed RTT-like breathing abnormalities that began as early as 3 weeks of age in the Mecp2(+/-) mice, and were suppressed with 3% CO2. The finding that only a small proportion of Mecp2(+/-) mice develops RTT-like breathing abnormalities suggests incomplete allele inactivation in the RTT-model Mecp2(+/-) mice.

  11. A Novel Mouse Model of Penetrating Brain Injury

    PubMed Central

    Cernak, Ibolja; Wing, Ian D.; Davidsson, Johan; Plantman, Stefan

    2014-01-01

    Penetrating traumatic brain injury (pTBI) has been difficult to model in small laboratory animals, such as rats or mice. Previously, we have established a non-fatal, rat model for pTBI using a modified air-rifle that accelerates a pellet, which hits a small probe that then penetrates the experimental animal’s brain. Knockout and transgenic strains of mice offer attractive tools to study biological reactions induced by TBI. Hence, in the present study, we adapted and modified our model to be used with mice. The technical characterization of the impact device included depth and speed of impact, as well as dimensions of the temporary cavity formed in a brain surrogate material after impact. Biologically, we have focused on three distinct levels of severity (mild, moderate, and severe), and characterized the acute phase response to injury in terms of tissue destruction, neural degeneration, and gliosis. Functional outcome was assessed by measuring bodyweight and motor performance on rotarod. The results showed that this model is capable of reproducing major morphological and neurological changes of pTBI; as such, we recommend its utilization in research studies aiming to unravel the biological events underlying injury and regeneration after pTBI. PMID:25374559

  12. Pathogenesis of acute arthritis due to viable Chlamydia trachomatis (mouse pneumonitis agent) in C57Bl/6 mice.

    PubMed Central

    Hough, A. J.; Rank, R. G.

    1989-01-01

    The purpose of this investigation was to determine the natural history and pathogenesis of the acute arthritis induced by inoculation of a viable Chlamydia trachomatis biovar (mouse pneumonitis agent or MoPn) in C57Bl/6 mice. Immunologically naive (previously unsensitized) mice as well as mice immunized against Chlamydia (MoPn) by vaginal infection were employed. Both intravenous and intraarticular inoculations were employed. No arthritis developed after intravenous injections of MoPn although statistically significant antibody titers and splenic enlargement ensued. Intra-articular inoculation into knee joints produced a definite arthritis of 7 to 10 days duration marked by granulocyte and mononuclear cell infiltration of the joint and vacuolated synovial macrophages that stained heavily for chlamydial antigen by immunoperoxidase technique. Statistically significant increases in articular acute and chronic inflammation (P less than 0.02 were observed in previously sensitized, but not unsensitized, female mice at 2 but not 7 days after intra-articular chlamydial challenge. Chlamydiae were isolated from injected joints up to day 5, but not at day 10, after challenge. Chlamydial antigen disappeared rapidly from knee joints between day 10 and 15 after challenge. Electron micrographs demonstrated vacuolated synovial cells of the macrophage type, many of which contained degenerating chlamydial elementary bodies. Reticulate and intermediate bodies also were seen but were far less frequent than degenerating elementary bodies. Unaltered elementary bodies were difficult to identify beyond day 2 after articular inoculation. Thus, it appears likely that intra-articular chlamydial survival is shorter than the duration of the arthropathy. This may have important implications in attempts to identify chlamydiae in human joints in Reiter's Disease. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 Figure 8 Figure 9 Figure 10 Figure 11 PMID:2705510

  13. Immunocompromised and immunocompetent mouse models for head and neck squamous cell carcinoma

    PubMed Central

    Lei, Zhen-ge; Ren, Xiao-hua; Wang, Sha-sha; Liang, Xin-hua; Tang, Ya-ling

    2016-01-01

    Mouse models can closely mimic human oral squamous epithelial carcinogenesis, greatly expand the in vivo research possibilities, and play a critical role in the development of diagnosis, monitoring, and treatment of head and neck squamous cell carcinoma. With the development of the recent research on the contribution of immunity/inflammation to cancer initiation and progression, mouse models have been divided into two categories, namely, immunocompromised and immunocompetent mouse models. And thus, this paper will review these two kinds of models applied in head and neck squamous cell carcinoma to provide a platform to understand the complicated histological, molecular, and genetic changes of oral squamous epithelial tumorigenesis. PMID:26869799

  14. Modeling Breast Tumor Development with a Humanized Mouse Model.

    PubMed

    Arendt, Lisa M

    2016-01-01

    The tumor microenvironment plays a critical role in breast cancer growth and progression to metastasis. Here, we describe a method to examine stromal-epithelial interactions during tumor formation and progression utilizing human-derived mammary epithelial cells and breast stromal cells. This method outlines the isolation of each cell type from reduction mammoplasty tissue, the culture and genetic modification of both epithelial and stromal cells using lentiviral technology, and the method of humanizing and implantation of transformed epithelial cells into the cleared mammary fat pads of immunocompromised mice. This model system may be a useful tool to dissect signaling interactions that contribute to invasive tumor behavior and therapeutic resistance. PMID:27581027

  15. Applications of the human p53 knock-in (Hupki) mouse model for human carcinogen testing.

    PubMed

    Besaratinia, Ahmad; Pfeifer, Gerd P

    2010-08-01

    Tumor-driving mutations in the TP53 gene occur frequently in human cancers. These inactivating mutations arise predominantly from a single-point mutation in the DNA-binding domain of this tumor suppressor gene (i.e., exons 4-9). The human p53 knock-in (Hupki) mouse model was constructed using gene-targeting technology to create a mouse strain that harbors human wild-type TP53 DNA sequences in both copies of the mouse TP53 gene. Replacement of exons 4-9 of the endogenous mouse TP53 alleles in the Hupki mouse with the homologous normal human TP53 gene sequences has offered a humanized replica of the TP53 gene in a murine genetic environment. The Hupki mouse model system has proven to be an invaluable research tool for studying the underlying mechanisms of human TP53 mutagenesis. The utility of the Hupki mouse model system for exploring carcinogen-induced TP53 mutagenesis has been demonstrated in both in vivo animal experiments and in vitro cell culture experiments. Here, we highlight applications of the Hupki mouse model system for investigating mutagenesis induced by a variety of environmental carcinogens, including sunlight ultraviolet radiation, benzo[a]pyrene (a tobacco smoke-derived carcinogen), 3-nitrobenzanthrone (an urban air pollutant), aristolochic acid (a component of Chinese herbal medicine), and aflatoxin B1 (a food contaminant). We summarize the salient findings of the respective studies and discuss their relevance to human cancer etiology.

  16. Mouse models to unravel the role of inhaled pollutants on allergic sensitization and airway inflammation

    PubMed Central

    2010-01-01

    Air pollutant exposure has been linked to a rise in wheezing illnesses. Clinical data highlight that exposure to mainstream tobacco smoke (MS) and environmental tobacco smoke (ETS) as well as exposure to diesel exhaust particles (DEP) could promote allergic sensitization or aggravate symptoms of asthma, suggesting a role for these inhaled pollutants in the pathogenesis of asthma. Mouse models are a valuable tool to study the potential effects of these pollutants in the pathogenesis of asthma, with the opportunity to investigate their impact during processes leading to sensitization, acute inflammation and chronic disease. Mice allow us to perform mechanistic studies and to evaluate the importance of specific cell types in asthma pathogenesis. In this review, the major clinical effects of tobacco smoke and diesel exhaust exposure regarding to asthma development and progression are described. Clinical data are compared with findings from murine models of asthma and inhalable pollutant exposure. Moreover, the potential mechanisms by which both pollutants could aggravate asthma are discussed. PMID:20092634

  17. Antinociceptive effects of vitexin in a mouse model of postoperative pain

    PubMed Central

    Zhu, Qing; Mao, Li-Na; Liu, Cheng-Peng; Sun, Yue-Hua; Jiang, Bo; Zhang, Wei; Li, Jun-Xu

    2016-01-01

    Vitexin, a C-glycosylated flavone present in several medicinal herbs, has showed various pharmacological activities including antinociception. The present study investigated the antinociceptive effects of vitexin in a mouse model of postoperative pain. This model was prepared by making a surgical incision on the right hindpaw and von Frey filament test was used to assess mechanical hyperalgesia. Isobolographical analysis method was used to examine the interaction between vitexin and acetaminophen. A reliable mechanical hyperalgesia was observed at 2 h post-surgery and lasted for 4 days. Acute vitexin administration (3–10 mg/kg, i.p.) dose-dependently relieved this hyperalgesia, which was also observed from 1 to 3 days post-surgery during repeated daily treatment. However, repeated vitexin administration prior to surgery had no preventive value. The 10 mg/kg vitexin-induced antinociception was blocked by the opioid receptor antagonist naltrexone or the GABAA receptor antagonist bicuculline. The doses of vitexin used did not significantly suppress the locomotor activity. In addition, the combination of vitexin and acetaminophen produced an infra-additive effect in postoperative pain. Together, though vitexin-acetaminophen combination may not be useful for treating postoperative pain, vitexin exerts behaviorally-specific antinociception against postoperative pain mediated through opioid receptors and GABAA receptors, suggesting that vitexin may be useful for the control of postoperative pain. PMID:26763934

  18. A new model for non-typeable Haemophilus influenzae middle ear infection in the Junbo mutant mouse.

    PubMed

    Hood, Derek; Moxon, Richard; Purnell, Tom; Richter, Caroline; Williams, Debbie; Azar, Ali; Crompton, Michael; Wells, Sara; Fray, Martin; Brown, Steve D M; Cheeseman, Michael T

    2016-01-01

    Acute otitis media, inflammation of the middle ear, is the most common bacterial infection in children and, as a consequence, is the most common reason for antimicrobial prescription to this age group. There is currently no effective vaccine for the principal pathogen involved, non-typeable Haemophilus influenzae (NTHi). The most frequently used and widely accepted experimental animal model of middle ear infection is in chinchillas, but mice and gerbils have also been used. We have established a robust model of middle ear infection by NTHi in the Junbo mouse, a mutant mouse line that spontaneously develops chronic middle ear inflammation in specific pathogen-free conditions. The heterozygote Junbo mouse (Jbo/+) bears a mutation in a gene (Evi1, also known as Mecom) that plays a role in host innate immune regulation; pre-existing middle ear inflammation promotes NTHi middle ear infection. A single intranasal inoculation with NTHi produces high rates (up to 90%) of middle ear infection and bacterial titres (10(4)-10(5) colony-forming units/µl) in bulla fluids. Bacteria are cleared from the majority of middle ears between day 21 and 35 post-inoculation but remain in approximately 20% of middle ears at least up to day 56 post-infection. The expression of Toll-like receptor-dependent response cytokine genes is elevated in the middle ear of the Jbo/+ mouse following NTHi infection. The translational potential of the Junbo model for studying antimicrobial intervention regimens was shown using a 3 day course of azithromycin to clear NTHi infection, and its potential use in vaccine development studies was shown by demonstrating protection in mice immunized with killed homologous, but not heterologous, NTHi bacteria. PMID:26611891

  19. A new model for non-typeable Haemophilus influenzae middle ear infection in the Junbo mutant mouse

    PubMed Central

    Hood, Derek; Moxon, Richard; Purnell, Tom; Richter, Caroline; Williams, Debbie; Azar, Ali; Crompton, Michael; Wells, Sara; Fray, Martin; Brown, Steve D. M.; Cheeseman, Michael T.

    2016-01-01

    ABSTRACT Acute otitis media, inflammation of the middle ear, is the most common bacterial infection in children and, as a consequence, is the most common reason for antimicrobial prescription to this age group. There is currently no effective vaccine for the principal pathogen involved, non-typeable Haemophilus influenzae (NTHi). The most frequently used and widely accepted experimental animal model of middle ear infection is in chinchillas, but mice and gerbils have also been used. We have established a robust model of middle ear infection by NTHi in the Junbo mouse, a mutant mouse line that spontaneously develops chronic middle ear inflammation in specific pathogen-free conditions. The heterozygote Junbo mouse (Jbo/+) bears a mutation in a gene (Evi1, also known as Mecom) that plays a role in host innate immune regulation; pre-existing middle ear inflammation promotes NTHi middle ear infection. A single intranasal inoculation with NTHi produces high rates (up to 90%) of middle ear infection and bacterial titres (104-105 colony-forming units/µl) in bulla fluids. Bacteria are cleared from the majority of middle ears between day 21 and 35 post-inoculation but remain in approximately 20% of middle ears at least up to day 56 post-infection. The expression of Toll-like receptor-dependent response cytokine genes is elevated in the middle ear of the Jbo/+ mouse following NTHi infection. The translational potential of the Junbo model for studying antimicrobial intervention regimens was shown using a 3 day course of azithromycin to clear NTHi infection, and its potential use in vaccine development studies was shown by demonstrating protection in mice immunized with killed homologous, but not heterologous, NTHi bacteria. PMID:26611891

  20. Transcriptome Profiling of the Newborn Mouse Lung Response to Acute Ozone Exposure

    PubMed Central

    Loader, Joan E.; White, Carl W.; Dakhama, Azzeddine

    2014-01-01

    Ozone pollution is associated with adverse effects on respiratory health in adults and children but its effects on the neonatal lung remain unknown. This study was carried out to define the effect of acute ozone exposure on the neonatal lung and to profile the transcriptome response. Newborn mice were exposed to ozone or filtered air for 3h. Total RNA was isolated from lung tissues at 6 and 24h after exposure and was subjected to microarray gene expression analysis. Compared to filtered air-exposed littermates, ozone-exposed newborn mice developed a small but significant neutrophilic airway response associated with increased CXCL1 and CXCL5 expression in the lung. Transcriptome analysis indicated that 455 genes were down-regulated and 166 genes were up-regulated by at least 1.5-fold at 6h post-ozone exposure (t-test, p < .05). At 24h, 543 genes were down-regulated and 323 genes were up-regulated in the lungs of ozone-exposed, compared to filtered air-exposed, newborn mice (t-test, p < .05). After controlling for false discovery rate, 50 genes were identified as significantly down-regulated and only a few (RORC, GRP, VREB3, and CYP2B6) were up-regulated at 24h post-ozone exposure (q < .05). Gene ontology enrichment analysis revealed that cell cycle-associated functions including cell division/proliferation were the most impacted pathways, which were negatively regulated by ozone exposure, an adverse effect that was associated with reduced bromo-deoxyuridine incorporation. These results demonstrate that acute ozone exposure alters cell proliferation in the developing neonatal lung through a global suppression of cell cycle function. PMID:24336422

  1. Innovations in phenotyping of mouse models in the German Mouse Clinic.

    PubMed

    Fuchs, Helmut; Gailus-Durner, Valérie; Neschen, Susanne; Adler, Thure; Afonso, Luciana Caminha; Aguilar-Pimentel, Juan Antonio; Becker, Lore; Bohla, Alexander; Calzada-Wack, Julia; Cohrs, Christian; Dewert, Anna; Fridrich, Barbara; Garrett, Lillian; Glasl, Lisa; Götz, Alexander; Hans, Wolfgang; Hölter, Sabine M; Horsch, Marion; Hurt, Anja; Janas, Eva; Janik, Dirk; Kahle, Melanie; Kistler, Martin; Klein-Rodewald, Tanja; Lengger, Christoph; Ludwig, Tonia; Maier, Holger; Marschall, Susan; Micklich, Kateryna; Möller, Gabriele; Naton, Beatrix; Prehn, Cornelia; Puk, Oliver; Rácz, Ildikó; Räss, Michael; Rathkolb, Birgit; Rozman, Jan; Scheerer, Markus; Schiller, Evelyn; Schrewe, Anja; Steinkamp, Ralph; Stöger, Claudia; Sun, Minxuan; Szymczak, Wilfried; Treise, Irina; Vargas Panesso, Ingrid Liliana; Vernaleken, Alexandra M; Willershäuser, Monja; Wolff-Muscate, Annemarie; Zeh, Ramona; Adamski, Jerzy; Beckers, Johannes; Bekeredjian, Raffi; Busch, Dirk H; Eickelberg, Oliver; Favor, Jack; Graw, Jochen; Höfler, Heinz; Höschen, Christoph; Katus, Hugo; Klingenspor, Martin; Klopstock, Thomas; Neff, Frauke; Ollert, Markus; Schulz, Holger; Stöger, Tobias; Wolf, Eckhard; Wurst, Wolfgang; Yildirim, Ali Önder; Zimmer, Andreas; Hrabě de Angelis, Martin

    2012-10-01

    Under the label of the German Mouse Clinic (GMC), a concept has been developed and implemented that allows the better understanding of human diseases on the pathophysiological and molecular level. This includes better understanding of the crosstalk between different organs, pleiotropy of genes, and the systemic impact of envirotypes and drugs. In the GMC, experts from various fields of mouse genetics and physiology, in close collaboration with clinicians, work side by side under one roof. The GMC is an open-access platform for the scientific community by providing phenotypic analysis in bilateral collaborations ("bottom-up projects") and as a partner and driver in international large-scale biology projects ("top-down projects"). Furthermore, technology development is a major topic in the GMC. Innovative techniques for primary and secondary screens are developed and implemented into the phenotyping pipelines (e.g., detection of volatile organic compounds, VOCs).

  2. Effects of acute versus repeated cocaine exposure on the expression of endocannabinoid signaling-related proteins in the mouse cerebellum.

    PubMed

    Palomino, Ana; Pavón, Francisco-Javier; Blanco-Calvo, Eduardo; Serrano, Antonia; Arrabal, Sergio; Rivera, Patricia; Alén, Francisco; Vargas, Antonio; Bilbao, Ainhoa; Rubio, Leticia; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2014-01-01

    Growing awareness of cerebellar involvement in addiction is based on the cerebellum's intermediary position between motor and reward, potentially acting as an interface between motivational and cognitive functions. Here, we examined the impact of acute and repeated cocaine exposure on the two main signaling systems in the mouse cerebellum: the endocannabinoid (eCB) and glutamate systems. To this end, we investigated whether eCB signaling-related gene and protein expression {cannabinoid receptor type 1 receptors and enzymes that produce [diacylglycerol lipase alpha/beta (DAGLα/β) and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD)] and degrade [monoacylglycerol lipase (MAGL) and fatty acid amino hydrolase (FAAH)] eCB} were altered. In addition, we analyzed the gene expression of relevant components of the glutamate signaling system [glutamate synthesizing enzymes liver-type glutaminase isoform (LGA) and kidney-type glutaminase isoform (KGA), metabotropic glutamatergic receptor (mGluR3/5), NMDA-ionotropic glutamatergic receptor (NR1/2A/2B/2C) and AMPA-ionotropic receptor subunits (GluR1/2/3/4)] and the gene expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, because noradrenergic terminals innervate the cerebellar cortex. Results indicated that acute cocaine exposure decreased DAGLα expression, suggesting a down-regulation of 2-arachidonylglycerol (2-AG) production, as well as gene expression of TH, KGA, mGluR3 and all ionotropic receptor subunits analyzed in the cerebellum. The acquisition of conditioned locomotion and sensitization after repeated cocaine exposure were associated with an increased NAPE-PLD/FAAH ratio, suggesting enhanced anandamide production, and a decreased DAGLβ/MAGL ratio, suggesting decreased 2-AG generation. Repeated cocaine also increased LGA gene expression but had no effect on glutamate receptors. These findings indicate that acute cocaine modulates the expression of the eCB and

  3. Effects of acute versus repeated cocaine exposure on the expression of endocannabinoid signaling-related proteins in the mouse cerebellum.

    PubMed

    Palomino, Ana; Pavón, Francisco-Javier; Blanco-Calvo, Eduardo; Serrano, Antonia; Arrabal, Sergio; Rivera, Patricia; Alén, Francisco; Vargas, Antonio; Bilbao, Ainhoa; Rubio, Leticia; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2014-01-01

    Growing awareness of cerebellar involvement in addiction is based on the cerebellum's intermediary position between motor and reward, potentially acting as an interface between motivational and cognitive functions. Here, we examined the impact of acute and repeated cocaine exposure on the two main signaling systems in the mouse cerebellum: the endocannabinoid (eCB) and glutamate systems. To this end, we investigated whether eCB signaling-related gene and protein expression {cannabinoid receptor type 1 receptors and enzymes that produce [diacylglycerol lipase alpha/beta (DAGLα/β) and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD)] and degrade [monoacylglycerol lipase (MAGL) and fatty acid amino hydrolase (FAAH)] eCB} were altered. In addition, we analyzed the gene expression of relevant components of the glutamate signaling system [glutamate synthesizing enzymes liver-type glutaminase isoform (LGA) and kidney-type glutaminase isoform (KGA), metabotropic glutamatergic receptor (mGluR3/5), NMDA-ionotropic glutamatergic receptor (NR1/2A/2B/2C) and AMPA-ionotropic receptor subunits (GluR1/2/3/4)] and the gene expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, because noradrenergic terminals innervate the cerebellar cortex. Results indicated that acute cocaine exposure decreased DAGLα expression, suggesting a down-regulation of 2-arachidonylglycerol (2-AG) production, as well as gene expression of TH, KGA, mGluR3 and all ionotropic receptor subunits analyzed in the cerebellum. The acquisition of conditioned locomotion and sensitization after repeated cocaine exposure were associated with an increased NAPE-PLD/FAAH ratio, suggesting enhanced anandamide production, and a decreased DAGLβ/MAGL ratio, suggesting decreased 2-AG generation. Repeated cocaine also increased LGA gene expression but had no effect on glutamate receptors. These findings indicate that acute cocaine modulates the expression of the eCB and

  4. Effects of acute versus repeated cocaine exposure on the expression of endocannabinoid signaling-related proteins in the mouse cerebellum

    PubMed Central

    Palomino, Ana; Pavón, Francisco-Javier; Blanco-Calvo, Eduardo; Serrano, Antonia; Arrabal, Sergio; Rivera, Patricia; Alén, Francisco; Vargas, Antonio; Bilbao, Ainhoa; Rubio, Leticia; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2014-01-01

    Growing awareness of cerebellar involvement in addiction is based on the cerebellum’s intermediary position between motor and reward, potentially acting as an interface between motivational and cognitive functions. Here, we examined the impact of acute and repeated cocaine exposure on the two main signaling systems in the mouse cerebellum: the endocannabinoid (eCB) and glutamate systems. To this end, we investigated whether eCB signaling-related gene and protein expression {cannabinoid receptor type 1 receptors and enzymes that produce [diacylglycerol lipase alpha/beta (DAGLα/β) and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD)] and degrade [monoacylglycerol lipase (MAGL) and fatty acid amino hydrolase (FAAH)] eCB} were altered. In addition, we analyzed the gene expression of relevant components of the glutamate signaling system [glutamate synthesizing enzymes liver-type glutaminase isoform (LGA) and kidney-type glutaminase isoform (KGA), metabotropic glutamatergic receptor (mGluR3/5), NMDA-ionotropic glutamatergic receptor (NR1/2A/2B/2C) and AMPA-ionotropic receptor subunits (GluR1/2/3/4)] and the gene expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, because noradrenergic terminals innervate the cerebellar cortex. Results indicated that acute cocaine exposure decreased DAGLα expression, suggesting a down-regulation of 2-arachidonylglycerol (2-AG) production, as well as gene expression of TH, KGA, mGluR3 and all ionotropic receptor subunits analyzed in the cerebellum. The acquisition of conditioned locomotion and sensitization after repeated cocaine exposure were associated with an increased NAPE-PLD/FAAH ratio, suggesting enhanced anandamide production, and a decreased DAGLβ/MAGL ratio, suggesting decreased 2-AG generation. Repeated cocaine also increased LGA gene expression but had no effect on glutamate receptors. These findings indicate that acute cocaine modulates the expression of the eCB and

  5. Chondroprotective effects of Salubrinal in a mouse model of osteoarthritis

    PubMed Central

    Hamamura, K.; Nishimura, A.; Iino, T.; Takigawa, S.; Sudo, A.; Yokota, H.

    2015-01-01

    Objectives Salubrinal is a synthetic agent that elevates phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) and alleviates stress to the endoplasmic reticulum. Previously, we reported that in chondrocytes, Salubrinal attenuates expression and activity of matrix metalloproteinase 13 (MMP13) through downregulating nuclear factor kappa B (NFκB) signalling. We herein examine whether Salubrinal prevents the degradation of articular cartilage in a mouse model of osteoarthritis (OA). Methods OA was surgically induced in the left knee of female mice. Animal groups included age-matched sham control, OA placebo, and OA treated with Salubrinal or Guanabenz. Three weeks after the induction of OA, immunoblotting was performed for NFκB p65 and p-NFκB p65. At three and six weeks, the femora and tibiae were isolated and the sagittal sections were stained with Safranin O. Results Salubrinal suppressed the progression of OA by downregulating p-NFκB p65 and MMP13. Although Guanabenz elevates the phosphorylation level of eIF2α, it did not suppress the progression of OA. Conclusions Administration of Salubrinal has chondroprotective effects in arthritic joints. Salubrinal can be considered as a potential therapeutic agent for alleviating symptoms of OA. Cite this article: Bone Joint Res 2015;4:84–92 PMID:25977571

  6. Enzyme replacement therapy in a mouse model of aspartylglycosaminuria.

    PubMed

    Dunder, U; Kaartinen, V; Valtonen, P; Väänänen, E; Kosma, V M; Heisterkamp, N; Groffen, J; Mononen, I

    2000-02-01

    Aspartylglycosaminuria (AGU), the most common lysosomal disorder of glycoprotein degradation, is caused by deficient activity of glycosylasparaginase (AGA). AGA-deficient mice share most of the clinical, biochemical and histopathologic characteristics of human AGU disease. In the current study, recombinant human AGA administered i.v. to adult AGU mice disappeared from the systemic circulation of the animals in two phases predominantly into non-neuronal tissues, which were rapidly cleared from storage compound aspartylglucosamine. Even a single AGA injection reduced the amount of aspartylglucosamine in the liver and spleen of AGU mice by 90% and 80%, respectively. Quantitative biochemical analyses along with histological and immunohistochemical studies demonstrated that the pathophysiologic characteristics of AGU were effectively corrected in non-neuronal tissues of AGU mice during 2 wk of AGA therapy. At the same time, AGA activity increased to 10% of that in normal brain tissue and the accumulation of aspartylglucosamine was reduced by 20% in total brain of the treated animals. Immunohistochemical studies suggested that the corrective enzyme was widely distributed within the brain tissue. These findings suggest that AGU may be correctable by enzyme therapy.-Dunder, U., Kaartinen, V., Valtonen, P., Väänänen, E., Kosma, V.-M., Heisterkamp, N., Groffen, J., Mononen, I. Enzyme replacement therapy in a mouse model of aspartylglycosaminuria.

  7. Clobetasol promotes remyelination in a mouse model of neuromyelitis optica.

    PubMed

    Yao, Xiaoming; Su, Tao; Verkman, A S

    2016-01-01

    Neuromyelitis optica (NMO) is an inflammatory demyelinating disease of the central nervous system that can produce marked neurological deficit. Current NMO therapies include immunosuppressants, plasma exchange and B-cell depletion. Here, we evaluated 14 potential remyelinating drugs emerging from prior small molecule screens done to identify drugs for repurposing in multiple sclerosis and other demyelinating neurological diseases. Compounds were initially evaluated in oligodendrocyte precursor cell (OPC) and cerebellar slice cultures, and then in a mouse model of NMO produced by intracerebral injection of anti-AQP4 autoantibody (AQP4-IgG) and human complement characterized by demyelination with minimal axonal damage. The FDA-approved drug clobetasol promoted differentiation in OPC cultures and remyelination in cerebellar slice cultures and in mice. Intraperitoneal administration of 2 mg/kg/day clobetasol reduced myelin loss by ~60 %, even when clobetasol was administered after demyelination occurred. Clobetasol increased the number of mature oligodendrocytes within lesions without significantly altering initial astrocyte damage or inflammation. These results provide proof-of-concept for the potential utility of a remyelinating approach in the treatment of NMO. PMID:27117475

  8. Efficacy of Enrofloxacin in a Mouse Model of Sepsis

    PubMed Central

    Bandyopadhyay, Sheila; Francis, Kevin P; Papich, Mark G; Karolewski, Brian; Hod, Eldad A; Prestia, Kevin A

    2014-01-01

    We examined the efficacy of enrofloxacin administered by 2 different routes in a mouse model of sepsis. Male CD1 mice were infected with a bioluminescent strain of enteropathogenic Escherichia coli and treated with enrofloxacin either by injection or in drinking water. Peak serum levels were evaluated by using HPLC. Mice were monitored for signs of clinical disease, and infections were monitored by using bioluminescence imaging. Serum levels of enrofloxacin and the active metabolite ciprofloxacin were greater in the group treated by injection than in controls or the groups treated by administration in drinking water. Survival of the group treated with enrofloxacin injection was greater than that of controls and groups treated with enrofloxacin in the drinking water. Bioluminescence in the group treated with enrofloxacin injection was less than that in the groups treated with oral administration at 12 h and in the groups treated orally and the control group at 16 h. According to these findings, we recommend the use of injectable enrofloxacin at 5 mg/kg SC for mice with systemic infections. PMID:25199094

  9. Impaired angiogenesis in a transgenic mouse model of cerebral amyloidosis.

    PubMed

    Paris, Daniel; Patel, Nikunj; DelleDonne, Anthony; Quadros, Amita; Smeed, Robert; Mullan, Michael

    2004-08-01

    Abeta peptides are naturally occurring peptides, which are thought to play a key role in the pathophysiology of Alzheimer's disease (AD). In AD cases, levels of soluble and insoluble Abeta peptides increase in the brain as well as in the cerebrovasculature, a phenomenon that does not occur in extra-cranial vessels. There are frequently anomalies in the cerebrovasculature in AD, and despite increases in several pro-angiogenic factors in AD brain, evidence for increased vascularity is lacking; in fact there is evidence to the contrary. It has also been recently shown that Abeta peptides may have profound anti-angiogenic effects in vitro and in vivo. We therefore investigated whether there is evidence for altered angiogenesis in the vasculature in a transgenic mouse model of Abeta amyloidosis (Tg APPsw line 2576). In vitro, the formation of capillary-like structures on a reconstituted extracellular matrix by endothelial cells isolated from Tg APPsw is impaired. Ex vivo, the sprouting of new capillaries from arterial explants (over expressing Abeta) isolated from 9-month-old Tg APPsw is reduced compared to arterial explants isolated from control littermates. In addition, Tg APPsw mice show a reduction in vascular density in the cortex and hippocampus compared to control littermates. Altogether, our data suggest that the over expression of APPsw in the vasculature may oppose angiogenesis.

  10. Sleeping Beauty Mouse Models Identify Candidate Genes Involved in Gliomagenesis

    PubMed Central

    Vyazunova, Irina; Maklakova, Vilena I.; Berman, Samuel; De, Ishani; Steffen, Megan D.; Hong, Won; Lincoln, Hayley; Morrissy, A. Sorana; Taylor, Michael D.; Akagi, Keiko; Brennan, Cameron W.; Rodriguez, Fausto J.; Collier, Lara S.

    2014-01-01

    Genomic studies of human high-grade gliomas have discovered known and candidate tumor drivers. Studies in both cell culture and mouse models have complemented these approaches and have identified additional genes and processes important for gliomagenesis. Previously, we found that mobilization of Sleeping Beauty transposons in mice ubiquitously throughout the body from the Rosa26 locus led to gliomagenesis with low penetrance. Here we report the characterization of mice in which transposons are mobilized in the Glial Fibrillary Acidic Protein (GFAP) compartment. Glioma formation in these mice did not occur on an otherwise wild-type genetic background, but rare gliomas were observed when mobilization occurred in a p19Arf heterozygous background. Through cloning insertions from additional gliomas generated by transposon mobilization in the Rosa26 compartment, several candidate glioma genes were identified. Comparisons to genetic, epigenetic and mRNA expression data from human gliomas implicates several of these genes as tumor suppressor genes and oncogenes in human glioblastoma. PMID:25423036

  11. Mouse Models of Type 2 Diabetes Mellitus in Drug Discovery.

    PubMed

    Baribault, Helene

    2016-01-01

    Type 2 diabetes is a fast-growing epidemic in industrialized countries, associated with obesity, lack of physical exercise, aging, family history, and ethnic background. Diagnostic criteria are elevated fasting or postprandial blood glucose levels, a consequence of insulin resistance. Early intervention can help patients to revert the progression of the disease together with lifestyle changes or monotherapy. Systemic glucose toxicity can have devastating effects leading to pancreatic beta cell failure, blindness, nephropathy, and neuropathy, progressing to limb ulceration or even amputation. Existing treatments have numerous side effects and demonstrate variability in individual patient responsiveness. However, several emerging areas of discovery research are showing promises with the development of novel classes of antidiabetic drugs.The mouse has proven to be a reliable model for discovering and validating new treatments for type 2 diabetes mellitus. We review here commonly used methods to measure endpoints relevant to glucose metabolism which show good translatability to the diagnostic of type 2 diabetes in humans: baseline fasting glucose and insulin, glucose tolerance test, insulin sensitivity index, and body type composition. Improvements on these clinical values are essential for the progression of a novel potential therapeutic molecule through a preclinical and clinical pipeline.

  12. RANKL, osteopontin, and osteoclast homeostasis in a hyperocclusion mouse model

    SciTech Connect

    Walker, Cameron G.; Ito, Yoshihiro; Dangaria, Smit; Luan, Xianghong; Diekwisch, Thomas G.H.

    2009-10-21

    The biological mechanisms that maintain the position of teeth in their sockets establish a dynamic equilibrium between bone resorption and apposition. In order to reveal some of the dynamics involved in the tissue responses towards occlusal forces on periodontal ligament (PDL) and alveolar bone homeostasis, we developed the first mouse model of hyperocclusion. Swiss-Webster mice were kept in hyperocclusion for 0, 3, 6, and 9 d. Morphological and histological changes in the periodontium were assessed using micro-computed tomography (micro-CT) and ground sections with fluorescent detection of vital dye labels. Sections were stained for tartrate-resistant acid phosphatase, and the expression of receptor activator of nuclear factor-{kappa}B ligand (RANKL) and osteopontin (OPN) was analyzed by immunohistochemistry and real-time polymerase chain reaction (PCR). Traumatic occlusion resulted in enamel surface abrasion, inhibition of alveolar bone apposition, significant formation of osteoclasts at 3, 6 and 9 d, and upregulation of OPN and RANKL. Data from this study suggest that both OPN and RANKL contribute to the stimulation of bone resorption in the hyperocclusive state. In addition, we propose that the inhibition of alveolar bone apposition by occlusal forces is an important mechanism for the control of occlusal height that might work in synergy with RANKL-induced bone resorption to maintain normal occlusion.

  13. Increased Opioid Dependence in a Mouse Model of Panic Disorder

    PubMed Central

    Gallego, Xavier; Murtra, Patricia; Zamalloa, Teresa; Canals, Josep Maria; Pineda, Joseba; Amador-Arjona, Alejandro; Maldonado, Rafael; Dierssen, Mara

    2009-01-01

    Panic disorder is a highly prevalent neuropsychiatric disorder that shows co-occurrence with substance abuse. Here, we demonstrate that TrkC, the high-affinity receptor for neurotrophin-3, is a key molecule involved in panic disorder and opiate dependence, using a transgenic mouse model (TgNTRK3). Constitutive TrkC overexpression in TgNTRK3 mice dramatically alters spontaneous firing rates of locus coeruleus (LC) neurons and the response of the noradrenergic system to chronic opiate exposure, possibly related to the altered regulation of neurotrophic peptides observed. Notably, TgNTRK3 LC neurons showed an increased firing rate in saline-treated conditions and profound abnormalities in their response to met5-enkephalin. Behaviorally, chronic morphine administration induced a significantly increased withdrawal syndrome in TgNTRK3 mice. In conclusion, we show here that the NT-3/TrkC system is an important regulator of neuronal firing in LC and could contribute to the adaptations of the noradrenergic system in response to chronic opiate exposure. Moreover, our results indicate that TrkC is involved in the molecular and cellular changes in noradrenergic neurons underlying both panic attacks and opiate dependence and support a functional endogenous opioid deficit in panic disorder patients. PMID:20204153

  14. Assessing Functional Performance in the Mdx Mouse Model

    PubMed Central

    Aartsma-Rus, Annemieke; van Putten, Maaike

    2014-01-01

    Duchenne muscular dystrophy (DMD) is a severe and progressive muscle wasting disorder for which no cure is available. Nevertheless, several potential pharmaceutical compounds and gene therapy approaches have progressed into clinical trials. With improvement in muscle function being the most important end point in these trials, a lot of emphasis has been placed on setting up reliable, reproducible, and easy to perform functional tests to pre clinically assess muscle function, strength, condition, and coordination in the mdx mouse model for DMD. Both invasive and noninvasive tests are available. Tests that do not exacerbate the disease can be used to determine the natural history of the disease and the effects of therapeutic interventions (e.g. forelimb grip strength test, two different hanging tests using either a wire or a grid and rotarod running). Alternatively, forced treadmill running can be used to enhance disease progression and/or assess protective effects of therapeutic interventions on disease pathology. We here describe how to perform these most commonly used functional tests in a reliable and reproducible manner. Using these protocols based on standard operating procedures enables comparison of data between different laboratories. PMID:24747372

  15. Survival, Differentiation, and Migration of High-Purity Mouse Embryonic Stem Cell-derived Progenitor Motor Neurons in Fibrin Scaffolds after Sub-Acute Spinal Cord Injury.

    PubMed

    McCreedy, D A; Wilems, T S; Xu, H; Butts, J C; Brown, C R; Smith, A W; Sakiyama-Elbert, S E

    2014-11-01

    Embryonic stem (ES) cells can be differentiated into many neural cell types that hold great potential as cell replacement therapies following spinal cord injury (SCI). Coupling stem cell transplantation with biomaterial scaffolds can produce a unified combination therapy with several potential advantages including enhanced cell survival, greater transplant retention, reduced scarring, and improved integration at the transplant/host interface. Undesired cell types, however, are commonly present in ES-cell derived cultures due to the limited efficiency of most ES cell induction protocols. Heterogeneous cell populations can confound the interaction between the biomaterial and specific neural populations leading to undesired outcomes. In particular, biomaterials scaffolds may enhance tumor formation by promoting survival and proliferation of undifferentiated ES cells that can persist after induction. Methods for purification of specific ES cell-derived neural populations are necessary to recognize the full potential of combination therapies involving biomaterials and ES cell-derived neural populations. We previously developed a method for enriching ES cell-derived progenitor motor neurons (pMNs) induced from mouse ES cells via antibiotic selection and showed that the enriched cell populations are depleted of pluripotent stem cells. In this study, we demonstrate the survival and differentiation of enriched pMNs within three dimensional (3D) fibrin scaffolds in vitro and when transplanted into a sub-acute dorsal hemisection model of SCI into neurons, oligodendrocytes and astrocytes. PMID:25346848

  16. Alterations of lung microbiota in a mouse model of LPS-induced lung injury.

    PubMed

    Poroyko, Valeriy; Meng, Fanyong; Meliton, Angelo; Afonyushkin, Taras; Ulanov, Alexander; Semenyuk, Ekaterina; Latif, Omar; Tesic, Vera; Birukova, Anna A; Birukov, Konstantin G

    2015-07-01

    Acute lung injury (ALI) and the more severe acute respiratory distress syndrome are common responses to a variety of infectious and noninfectious insults. We used a mouse model of ALI induced by intratracheal administration of sterile bacterial wall lipopolysaccharide (LPS) to investigate the changes in innate lung microbiota and study microbial community reaction to lung inflammation and barrier dysfunction induced by endotoxin insult. One group of C57BL/6J mice received LPS via intratracheal injection (n = 6), and another received sterile water (n = 7). Bronchoalveolar lavage (BAL) was performed at 72 h after treatment. Bacterial DNA was extracted and used for qPCR and 16S rRNA gene-tag (V3-V4) sequencing (Illumina). The bacterial load in BAL from ALI mice was increased fivefold (P = 0.03). The community complexity remained unchanged (Simpson index, P = 0.7); the Shannon diversity index indicated the increase of community evenness in response to ALI (P = 0.07). Principal coordinate analysis and analysis of similarity (ANOSIM) test (P = 0.005) revealed a significant difference between microbiota of control and ALI groups. Bacteria from families Xanthomonadaceae and Brucellaceae increased their abundance in the ALI group as determined by Metastats test (P < 0.02). In concordance with the 16s-tag data, Stenotrohomonas maltophilia (Xanthomonadaceae) and Ochrobactrum anthropi (Brucellaceae) were isolated from lungs of mice from both groups. Metabolic profiling of BAL detected the presence of bacterial substrates suitable for both isolates. Additionally, microbiota from LPS-treated mice intensified IL-6-induced lung inflammation in naive mice. We conclude that the morbid transformation of ALI microbiota was attributed to the set of inborn opportunistic pathogens thriving in the environment of inflamed lung, rather than the external infectious agents.

  17. An acute dose of gamma-hydroxybutyric acid alters gene expression in multiple mouse brain regions.

    PubMed

    Schnackenberg, B J; Saini, U T; Robinson, B L; Ali, S F; Patterson, T A

    2010-10-13

    Gamma-hydroxybutyric acid (GHB) is normally found in the brain in low concentrations and may function as a neurotransmitter, although the mechanism of action has not been completely elucidated. GHB has been used as a general anesthetic and is currently used to treat narcolepsy and alcoholism. Recreational use of GHB is primarily as a "club drug" and a "date rape drug," due to its amnesic effects. For this study, the hypothesis was that behavioral and neurochemical alterations may parallel gene expression changes in the brain after GHB administration. Adult male C57/B6N mice (n=5/group) were administered a single dose of 500 mg/kg GHB (i.p.) and were sacrificed 1, 2 and 4 h after treatment. Control mice were administered saline. Brains were removed and regionally dissected on ice. Total RNA from the hippocampus, cortex and striatum was extracted, amplified and labeled. Gene expression was evaluated using Agilent whole mouse genome 4x44K oligonucleotide microarrays. Microarray data were analyzed by ArrayTrack and differentially expressed genes (DEGs) were identified using P < or = 0.01 and a fold change > or = 1.7 as the criteria for significance. Principal component analysis (PCA) and Hierarchical Cluster Analysis (HCA) showed that samples from each time point clustered into distinct treatment groups with respect to sacrifice time. Ingenuity pathways analysis (IPA) was used to identify involved pathways. The results show that GHB induces gene expression alterations in hundreds of genes in the hippocampus, cortex and striatum, and the number of affected genes increases throughout a 4-h time course. Many of these DEGs are involved in neurological disease, apoptosis, and oxidative stress.

  18. Primary and secondary genetic responses after folic acid-induced acute renal injury in the mouse.

    PubMed

    Calvet, J P; Chadwick, L J

    1994-12-01

    Folic acid-induced acute renal injury results in dramatic changes in gene expression. Among the genes affected by folic acid treatment are the primary response genes, c-fos and c-myc, which are thought to function to initiate cell cycle events. In this report, changes in the expression of three other genes in response to folic acid injury have been investigated: ornithine decarboxylase, epidermal growth factor (EGF), and sulfated glycoprotein-2 (SGP-2). Renal injury was found to cause a rapid decrease in EGF mRNA, which remained absent for several days after the initial injury, gradually returning to normal levels over an approximately 3-wk regeneration and recovery period. Ornithine decarboxylase mRNA showed a similar decrease. In contrast, folic acid caused a rapid increase in SGP-2 mRNA, which peaked several days after treatment, decreasing to normal levels over the 3-wk period. The mRNAs for the primary response genes were superinduced in the injured kidneys in the presence of the protein synthesis inhibitor cycloheximide. In contrast, the changes in EGF and SGP-2 mRNA levels were blocked by cycloheximide, indicating that these responses required new protein synthesis during the first few hours after folic acid injury. The opposite but parallel responses in the expression of the EGF and SGP-2 genes suggest that their regulation is coupled to the initial injury-induced dedifferentiation and subsequent return to the fully differentiated state.

  19. Protective effect of Jolkinolide B on LPS-induced mouse acute lung injury.

    PubMed

    Yang, Hailing; Li, Yan; Huo, Pengfei; Li, Xiao-Ou; Kong, Daliang; Mu, Wei; Fang, Wei; Li, Lingxia; Liu, Ning; Fang, Ling; Li, Hongjun; He, Chengyan

    2015-05-01

    Jolkinolide B (JB), an ent-abietane diterpenoid, isolated from the dried root of Euphorbia fischeriana, has been reported to have potent anti-tumor and anti-inflammatory activities. However, the effects of JB on acute lung injury (ALI) and underlying molecular mechanisms have not been investigated. The present study aimed to investigate the effect of JB on lipopolysaccharide (LPS)-induced ALI. Male C57BL/6 mice were pretreated with dexamethasone or JB 1h before intranasal instillation of LPS. The results showed that JB markedly attenuated LPS-induced histological alterations, lung edema, inflammatory cell infiltration, myeloperoxidase (MPO) activity as well as the production of TNF-α, IL-6 and IL-1β. Furthermore, JB also significantly inhibited LPS-induced the degradation of IκBα and phosphorylation of NF-κB p65 and MAPK. Therefore, our study provides the first line of evidence that pretreatment of JB has a protective effect on LPS-induced ALI in mice. The anti-inflammatory mechanism of JB may be attributed to its suppression of NF-κB and MAPK activation.

  20. Changes in Gene Expression and Estrogen Receptor Cistrome in Mouse Liver Upon Acute E2 Treatment.

    PubMed

    Palierne, Gaëlle; Fabre, Aurélie; Solinhac, Romain; Le Péron, Christine; Avner, Stéphane; Lenfant, Françoise; Fontaine, Coralie; Salbert, Gilles; Flouriot, Gilles; Arnal, Jean-François; Métivier, Raphaël

    2016-07-01

    Transcriptional regulation by the estrogen receptor-α (ER) has been investigated mainly in breast cancer cell lines, but estrogens such as 17β-estradiol (E2) exert numerous extrareproductive effects, particularly in the liver, where E2 exhibits both protective metabolic and deleterious thrombotic actions. To analyze the direct and early transcriptional effects of estrogens in the liver, we determined the E2-sensitive transcriptome and ER cistrome in mice after acute administration of E2 or placebo. These analyses revealed the early induction of genes involved in lipid metabolism, which fits with the crucial role of ER in the prevention of liver steatosis. Characterization of the chromatin state of ER binding sites (BSs) in mice expressing or not ER demonstrated that ER is not required per se for the establishment and/or maintenance of chromatin modifications at the majority of its BSs. This is presumably a consequence of a strong overlap between ER and hepatocyte nuclear factor 4α BSs. In contrast, 40% of the BSs of the pioneer factor forkhead box protein a (Foxa2) were dependent upon ER expression, and ER expression also affected the distribution of nucleosomes harboring dimethylated lysine 4 of Histone H3 around Foxa2 BSs. We finally show that, in addition to a network of liver-specific transcription factors including CCAAT/enhancer-binding protein and hepatocyte nuclear factor 4α, ER might be required for proper Foxa2 function in this tissue.

  1. Acute effects of Helicobacter pylori extracts on gastric mucosal blood flow in the mouse

    PubMed Central

    Henriksnäs, Johanna; Atuma, Christer; Phillipson, Mia; Sandler, Stellan; Engstrand, Lars; Holm, Lena

    2009-01-01

    AIM: To investigate the mechanisms underlying the reduction in gastric blood flow induced by a luminal water extract of Helicobacter pylori (HPE). METHODS: The stomachs of isoflurane-anesthetized mice were exteriorized, and the mucosal surface exposed. Blood flow was measured with the laser-Doppler technique, and systemic arterial blood pressure monitored. C57BL/6 mice were exposed to water extract produced from H pylori strain 88-23. To investigate the role of a nerve- or iNOS-mediated pathway, we used intraluminal lidocaine and iNOS-/- mice. Blood flow response to the endogenous nitric oxide synthase inhibitor asymmetric dimethyl arginine (ADMA) was also assessed. RESULTS: In wild-type mice, HPE decreased mucosal blood flow by approximately 30%. This reduction was abolished in iNOS-deficient mice, and by pre-treatment with lidocaine. Luminally applied ADMA resulted in reduction in blood flow similar to that observed in wild-type mice exposed to HPE. CONCLUSION: A H pylori water extract reduces gastric mucosal blood flow acutely through iNOS- and nerve-mediated pathways. PMID:19132773

  2. Acute effects of whole-body proton irradiation on the immune system of the mouse

    NASA Technical Reports Server (NTRS)

    Kajioka, E. H.; Andres, M. L.; Li, J.; Mao, X. W.; Moyers, M. F.; Nelson, G. A.; Slater, J. M.; Gridley, D. S.

    2000-01-01

    The acute effects of proton whole-body irradiation on the distribution and function of leukocyte populations in the spleen and blood were examined and compared to the effects of photons derived from a (60)Co gamma-ray source. Adult female C57BL/6 mice were exposed to a single dose (3 Gy at 0.4 Gy/min) of protons at spread-out Bragg peak (SOBP), protons at the distal entry (E) region, or gamma rays and killed humanely at six different times thereafter. Specific differences were noted in the results, thereby suggesting that the kinetics of the response may be variable. However, the lack of significant differences in most assays at most times suggests that the RBE for both entry and peak regions of the Bragg curve was essentially 1.0 under the conditions of this study. The greatest immunodepression was observed at 4 days postexposure. Flow cytometry and mitogenic stimulation analyses of the spleen and peripheral blood demonstrated that lymphocyte populations differ in radiosensitivity, with B (CD19(+)) cells being most sensitive, T (CD3(+)) cells being moderately sensitive, and natural killer (NK1.1(+)) cells being most resistant. B lymphocytes showed the most rapid recovery. Comparison of the T-lymphocyte subsets showed that CD4(+) T helper/inducer cells were more radiosensitive than the CD8(+) T cytotoxic/suppressor cells. These findings should have an impact on future studies designed to maximize protection of normal tissue during and after proton-radiation exposure.

  3. Lessons learned from mice and man: mimicking human allergy through mouse models.

    PubMed

    Graham, Michelle T; Nadeau, Kari C

    2014-11-01

    The relevance of using mouse models to represent human allergic pathologies is still unclear. Recent studies suggest the limitations of using models as a standard for assessing immune response and tolerance mechanisms, as mouse models often do not sufficiently depict human atopic conditions. Allergy is a combination of aberrant responses to innocuous environmental agents and the subsequent TH2-mediated inflammatory responses. In this review, we will discuss current paradigms of allergy - specifically, TH2-mediated and IgE-associated immune responses - and current mouse models used to recreate these TH2-mediated pathologies. Our overall goal is to highlight discrepancies that exist between mice and men by examining the advantages and disadvantages of allergic mouse models with respect to the human allergic condition.

  4. Characterization of the heterozygous glucokinase knockout mouse as a translational disease model for glucose control in type 2 diabetes

    PubMed Central

    Baker, D J; Atkinson, A M; Wilkinson, G P; Coope, G J; Charles, A D; Leighton, B

    2014-01-01

    Background and Purpose The global heterozygous glucokinase (GK) knockout (gkwt/del) male mouse, fed on a high-fat (60% by energy) diet, has provided a robust and reproducible model of hyperglycaemia. This model could be highly relevant to some facets of human type 2 diabetes (T2D). We aimed to investigate the ability of standard therapeutic agents to lower blood glucose at translational doses, and to explore the glucose-lowering potential of novel glucokinase activators (GKAs) in this model. Experimental Approach We measured the ability of insulin, metformin, glipizide, exendin-4 and sitagliptin, after acute or repeat dose administration, to lower free-feeding glucose levels in gkwt/del mice. Further, we measured the ability of novel GKAs, GKA23, GKA71 and AZD6370 to control glucose either alone or in combination with some standard agents. Key Results A single dose of insulin (1 unit·kg−1), metformin (150, 300 mg·kg−1), glipizide (0.1, 0.3 mg·kg−1), exendin-4 (2, 20 μg·kg−1) and GKAs reduced free-feeding glucose levels. Sitagliptin (10 mg·kg−1), metformin (300 mg·kg−1) and AZD6370 (30, 400 mg·kg−1) reduced glucose excursions on repeat dosing. At a supra-therapeutic dose (400 mg·kg−1), AZD6370 also lowered basal levels of glucose without inducing hypoglycaemia. Conclusion and Implications Standard glucose-lowering therapeutic agents demonstrated significant acute glucose lowering in male gkwt/del mice at doses corresponding to therapeutic free drug levels in man, suggesting the potential of these mice as a translatable model of human T2D. Novel GKAs also lowered glucose in this mouse model. PMID:24772483

  5. Porcine survival model to simulate acute upper gastrointestinal bleedings.

    PubMed

    Prosst, Ruediger L; Schurr, Marc O; Schostek, Sebastian; Krautwald, Martina; Gottwald, Thomas

    2016-06-01

    The existing animal models used for the simulation of acute gastrointestinal bleedings are usually non-survival models. We developed and evaluated a new porcine model (domestic pig, German Landrace) in which the animal remains alive and survives the artificial bleeding without any cardiovascular impairment. This consists of a bleeding catheter which is implanted into the stomach, then subcutaneously tunnelled from the abdomen to the neck where it is exteriorized and fixed with sutures. Using the injection of porcine blood, controllable and reproducible acute upper gastrointestinal bleeding can be simulated while maintaining normal gastrointestinal motility and physiology. Depending on the volume of blood applied through the gastric catheter, the bleeding intensity can be varied from traces of blood to a massive haemorrhage. This porcine model could be valuable, e.g. for testing the efficacy of new bleeding diagnostics in large animals before human use. PMID:26306615

  6. Porcine survival model to simulate acute upper gastrointestinal bleedings.

    PubMed

    Prosst, Ruediger L; Schurr, Marc O; Schostek, Sebastian; Krautwald, Martina; Gottwald, Thomas

    2016-06-01

    The existing animal models used for the simulation of acute gastrointestinal bleedings are usually non-survival models. We developed and evaluated a new porcine model (domestic pig, German Landrace) in which the animal remains alive and survives the artificial bleeding without any cardiovascular impairment. This consists of a bleeding catheter which is implanted into the stomach, then subcutaneously tunnelled from the abdomen to the neck where it is exteriorized and fixed with sutures. Using the injection of porcine blood, controllable and reproducible acute upper gastrointestinal bleeding can be simulated while maintaining normal gastrointestinal motility and physiology. Depending on the volume of blood applied through the gastric catheter, the bleeding intensity can be varied from traces of blood to a massive haemorrhage. This porcine model could be valuable, e.g. for testing the efficacy of new bleeding diagnostics in large animals before human use.

  7. Comparative Analysis of Pain Behaviours in Humanized Mouse Models of Sickle Cell Anemia.

    PubMed

    Lei, Jianxun; Benson, Barbara; Tran, Huy; Ofori-Acquah, Solomon F; Gupta, Kalpna

    2016-01-01

    Pain is a hallmark feature of sickle cell anemia (SCA) but management of chronic as well as acute pain remains a major challenge. Mouse models of SCA are essential to examine the mechanisms of pain and develop novel therapeutics. To facilitate this effort, we compared humanized homozygous BERK and Townes sickle mice for the effect of gender and age on pain behaviors. Similar to previously characterized BERK sickle mice, Townes sickle mice show more mechanical, thermal, and deep tissue hyperalgesia with increasing age. Female Townes sickle mice demonstrate more hyperalgesia compared to males similar to that reported for BERK mice and patients with SCA. Mechanical, thermal and deep tissue hyperalgesia increased further after hypoxia/reoxygenation (H/R) treatment in Townes sickle mice. Together, these data show BERK sickle mice exhibit a significantly greater degree of hyperalgesia for all behavioral measures as compared to gender- and age-matched Townes sickle mice. However, the genetically distinct "knock-in" strategy of human α and β transgene insertion in Townes mice as compared to BERK mice, may provide relative advantage for further genetic manipulations to examine specific mechanisms of pain. PMID:27494522

  8. PUMA promotes apoptosis of hematopoietic progenitors driving leukemic progression in a mouse model of myelodysplasia.

    PubMed

    Guirguis, A A; Slape, C I; Failla, L M; Saw, J; Tremblay, C S; Powell, D R; Rossello, F; Wei, A; Strasser, A; Curtis, D J

    2016-06-01

    Myelodysplastic syndrome (MDS) is characterized by ineffective hematopoiesis with resultant cytopenias. Increased apoptosis and aberrantly functioning progenitors are thought to contribute to this phenotype. As is the case for other malignancies, overcoming apoptosis is believed to be important in progression toward acute myeloid leukemia (AML). Using the NUP98-HOXD13 (NHD13) transgenic mouse model of MDS, we previously reported that overexpression of the anti-apoptotic protein BCL2, blocked apoptosis and improved cytopenias, paradoxically, delaying leukemic progression. To further understand this surprising result, we examined the role of p53 and its pro-apoptotic effectors, PUMA and NOXA in NHD13 mice. The absence of p53 or PUMA but not NOXA reduced apoptosis and expanded the numbers of MDS-repopulating cells. Despite a similar effect on apoptosis and cell numbers, the absence of p53 and PUMA had diametrically opposed effects on progression to AML: absence of p53 accelerated leukemic progression, while absence of PUMA significantly delayed progression. This may be explained in part by differences in cellular responses to DNA damage. The absence of p53 led to higher levels of γ-H2AX (indicative of persistent DNA lesions) while PUMA-deficient NHD13 progenitors resolved DNA lesions in a manner comparable to wild-type cells. These results suggest that targeting PUMA may improve the cytopenias of MDS without a detrimental effect on leukemic progression thus warranting further investigation. PMID:26742432

  9. Deletion of Herpud1 Enhances Heme Oxygenase-1 Expression in a Mouse Model of Parkinson's Disease.

    PubMed

    Le, Thuong Manh; Hashida, Koji; Ta, Hieu Minh; Takarada-Iemata, Mika; Kokame, Koichi; Kitao, Yasuko; Hori, Osamu

    2016-01-01

    Herp is an endoplasmic reticulum- (ER-) resident membrane protein that plays a role in ER-associated degradation. We studied the expression of Herp and its effect on neurodegeneration in a mouse model of Parkinson's disease (PD), in which both the oxidative stress and the ER stress are evoked. Eight hours after administering a PD-related neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), to mice, the expression of Herp increased at both the mRNA and the protein levels. Experiments using Herpud1 (+/+) and Herpud1 (-/-) mice revealed that the status of acute degeneration of nigrostriatal neurons and reactive astrogliosis was comparable between two genotypes after MPTP injection. However, the expression of a potent antioxidant, heme oxygenase-1 (HO-1), was detected to a higher degree in the astrocytes of Herpud1 (-/-) mice than in the astrocytes of Herpud1 (+/+) mice 24 h after MPTP administration. Further experiments using cultured astrocytes revealed that the stress response against MPP(+), an active form of MPTP, and hydrogen peroxide, both of which cause oxidative stress, was comparable between the two genotypes. These results suggest that deletion of Herpud1 may cause a slightly higher level of initial damage in the nigrastrial neurons after MPTP administration but is compensated for by higher induction of antioxidants such as HO-1 in astrocytes.

  10. Tau Reduction Prevents Disease in a Mouse Model of Dravet Syndrome

    PubMed Central

    Gheyara, Ania L; Ponnusamy, Ravikumar; Djukic, Biljana; Craft, Ryan J; Ho, Kaitlyn; Guo, Weikun; Finucane, Mariel M; Sanchez, Pascal E; Mucke, Lennart

    2014-01-01

    Objective Reducing levels of the microtubule-associated protein tau has shown promise as a potential treatment strategy for diseases with secondary epileptic features such as Alzheimer disease. We wanted to determine whether tau reduction may also be of benefit in intractable genetic epilepsies. Methods We studied a mouse model of Dravet syndrome, a severe childhood epilepsy caused by mutations in the human SCN1A gene encoding the voltage-gated sodium channel subunit Nav1.1. We genetically deleted 1 or 2 Tau alleles in mice carrying an Nav1.1 truncation mutation (R1407X) that causes Dravet syndrome in humans, and examined their survival, epileptic activity, related hippocampal alterations, and behavioral abnormalities using observation, electroencephalographic recordings, acute slice electrophysiology, immunohistochemistry, and behavioral assays. Results Tau ablation prevented the high mortality of Dravet mice and reduced the frequency of spontaneous and febrile seizures. It reduced interictal epileptic spikes in vivo and drug-induced epileptic activity in brain slices ex vivo. Tau ablation also prevented biochemical changes in the hippocampus indicative of epileptic activity and ameliorated abnormalities in learning and memory, nest building, and open field behaviors in Dravet mice. Deletion of only 1 Tau allele was sufficient to suppress epileptic activity and improve survival and nesting performance. Interpretation Tau reduction may be of therapeutic benefit in Dravet syndrome and other intractable genetic epilepsies. Ann Neurol 2014;76:443–456 PMID:25042160

  11. Neuroprotective effects of geniposide in the MPTP mouse model of Parkinson's disease.

    PubMed

    Chen, YiMei; Zhang, Yanfang; Li, Lin; Hölscher, Christian

    2015-12-01

    Parkinson's disease (PD) is a chronic neurodegenerative disease, and there is no cure for it at present. We tested the drug Geniposide, an active component of Gardenia jasminoides Ellis which is used in traditional Chinese medicine. Geniposide has shown neuroprotective and growth-factor like effects in several in vivo and in vitro studies. In the present study, Geniposide had been tested in an acute PD mouse model induced by four 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intraperitoneal injections. Geniposide treatment (100mg/kg ip.) for 8 days after MPTP treatment (30mg/kg ip.) improved the locomotor and exploratory activity of mice (open field), and improved bradykinesia and movement balance of mice (rotarod, swim test). Geniposide treatment also restored tyrosine hydroxylase (TH) positive dopaminergic neuron numbers in the substantia nigra pars compacta. Drug treatment also increased levels of growth factor signaling molecule Bax and reduced the apoptosis signaling molecule Bcl-2. Caspase 3 activation was also reduced in the substantia nigra. We conclude that Geniposide exerted its neuroprotective effect by enhancing growth factor signaling and the reduction of apoptosis. Geniposide is an ingredient in Chinese traditional medicine with few known side effects and shows potential as a drug treatment for Parkinson's disease. PMID:26409043

  12. Dysfunctional hippocampal inhibition in the Ts65Dn mouse model of Down syndrome.

    PubMed

    Best, Tyler K; Cramer, Nathan P; Chakrabarti, Lina; Haydar, Tarik F; Galdzicki, Zygmunt

    2012-02-01

    GABAergic dysfunction is implicated in hippocampal deficits of the Ts65Dn mouse model of Down syndrome (DS). Since Ts65Dn mice overexpress G-protein coupled inward-rectifying potassium (GIRK2) containing channels, we sought to evaluate whether increased GABAergic function disrupts the functioning of hippocampal circuitry. After confirming that GABA(B)/GIRK current density is significantly elevated in Ts65Dn CA1 pyramidal neurons, we compared monosynaptic inhibitory inputs in CA1 pyramidal neurons in response to proximal (stratum radiatum; SR) and distal (stratum lacunosum moleculare; SLM) stimulation of diploid and Ts65Dn acute hippocampal slices. Synaptic GABA(B) and GABA(A) mediated currents evoked by SR stimulation were generally unaffected in Ts65Dn CA1 neurons. However, the GABA(B)/GABA(A) ratios evoked by stimulation within the SLM of Ts65Dn hippocampus were significantly larger in magnitude, consistent with increased GABA(B)/GIRK currents after SLM stimulation. These results indicate that GIRK overexpression in Ts65Dn has functional consequences which affect the balance between GABA(B) and GABA(A) inhibition of CA1 pyramidal neurons, most likely in a pathway specific manner, and may contribute to cognitive deficits reported in these mice.

  13. PUMA promotes apoptosis of hematopoietic progenitors driving leukemic progression in a mouse model of myelodysplasia.

    PubMed

    Guirguis, A A; Slape, C I; Failla, L M; Saw, J; Tremblay, C S; Powell, D R; Rossello, F; Wei, A; Strasser, A; Curtis, D J

    2016-06-01

    Myelodysplastic syndrome (MDS) is characterized by ineffective hematopoiesis with resultant cytopenias. Increased apoptosis and aberrantly functioning progenitors are thought to contribute to this phenotype. As is the case for other malignancies, overcoming apoptosis is believed to be important in progression toward acute myeloid leukemia (AML). Using the NUP98-HOXD13 (NHD13) transgenic mouse model of MDS, we previously reported that overexpression of the anti-apoptotic protein BCL2, blocked apoptosis and improved cytopenias, paradoxically, delaying leukemic progression. To further understand this surprising result, we examined the role of p53 and its pro-apoptotic effectors, PUMA and NOXA in NHD13 mice. The absence of p53 or PUMA but not NOXA reduced apoptosis and expanded the numbers of MDS-repopulating cells. Despite a similar effect on apoptosis and cell numbers, the absence of p53 and PUMA had diametrically opposed effects on progression to AML: absence of p53 accelerated leukemic progression, while absence of PUMA significantly delayed progression. This may be explained in part by differences in cellular responses to DNA damage. The absence of p53 led to higher levels of γ-H2AX (indicative of persistent DNA lesions) while PUMA-deficient NHD13 progenitors resolved DNA lesions in a manner comparable to wild-type cells. These results suggest that targeting PUMA may improve the cytopenias of MDS without a detrimental effect on leukemic progression thus warranting further investigation.

  14. Comparative Analysis of Pain Behaviours in Humanized Mouse Models of Sickle Cell Anemia

    PubMed Central

    Lei, Jianxun; Benson, Barbara; Tran, Huy; Ofori-Acquah, Solomon F.; Gupta, Kalpna

    2016-01-01

    Pain is a hallmark feature of sickle cell anemia (SCA) but management of chronic as well as acute pain remains a major challenge. Mouse models of SCA are essential to examine the mechanisms of pain and develop novel therapeutics. To facilitate this effort, we compared humanized homozygous BERK and Townes sickle mice for the effect of gender and age on pain behaviors. Similar to previously characterized BERK sickle mice, Townes sickle mice show more mechanical, thermal, and deep tissue hyperalgesia with increasing age. Female Townes sickle mice demonstrate more hyperalgesia compared to males similar to that reported for BERK mice and patients with SCA. Mechanical, thermal and deep tissue hyperalgesia increased further after hypoxia/reoxygenation (H/R) treatment in Townes sickle mice. Together, these data show BERK sickle mice exhibit a significantly greater degree of hyperalgesia for all behavioral measures as compared to gender- and age-matched Townes sickle mice. However, the genetically distinct “knock-in” strategy of human α and β transgene insertion in Townes mice as compared to BERK mice, may provide relative advantage for further genetic manipulations to examine specific mechanisms of pain. PMID:27494522

  15. Genetic mouse models to study blood–brain barrier development and function

    PubMed Central

    2013-01-01

    The blood–brain barrier (BBB) is a complex physiological structure formed by the blood vessels of the central nervous system (CNS) that tightly regulates the movement of substances between the blood and the neural tissue. Recently, the generation and analysis of different genetic mouse models has allowed for greater understanding of BBB development, how the barrier is regulated during health, and its response to disease. Here we discuss: 1) Genetic mouse models that have been used to study the BBB, 2) Available mouse genetic tools that can aid in the study of the BBB, and 3) Potential tools that if generated could greatly aid in our understanding of the BBB. PMID:23305182

  16. Assessment of Antiviral Properties of Peramivir against H7N9 Avian Influenza Virus in an Experimental Mouse Model

    PubMed Central

    Farooqui, Amber; Huang, Linxi; Wu, Suwu; Cai, Yingmu; Su, Min; Lin, Pengzhou; Chen, Weihong; Fang, Xibin; Zhang, Li; Liu, Yisu; Zeng, Tiansheng; Paquette, Stephane G.; Khan, Adnan; Kelvin, Alyson A.

    2015-01-01

    The H7N9 influenza virus causes a severe form of disease in humans. Neuraminidase inhibitors, including oral oseltamivir and injectable peramivir, are the first choices of antiviral treatment for such cases; however, the clinical efficacy of these drugs is questionable. Animal experimental models are essential for understanding the viral replication kinetics under the selective pressure of antiviral agents. This study demonstrates the antiviral activity of peramivir in a mouse model of H7N9 avian influenza virus infection. The data show that repeated administration of peramivir at 30 mg/kg of body weight successfully eradicated the virus from the respiratory tract and extrapulmonary tissues during the acute response, prevented clinical signs of the disease, including neuropathy, and eventually protected mice against lethal H7N9 influenza virus infection. Early treatment with peramivir was found to be associated with better disease outcomes. PMID:26369969

  17. Mouse models of altered gonadotrophin action: insight into male reproductive disorders.

    PubMed

    Jonas, Kim C; Oduwole, Olayiwola O; Peltoketo, Hellevi; Rulli, Susana B; Huhtaniemi, Ilpo T

    2014-10-01

    The advent of technologies to genetically manipulate the mouse genome has revolutionised research approaches, providing a unique platform to study the causality of reproductive disorders in vivo. With the relative ease of generating genetically modified (GM) mouse models, the last two decades have yielded multiple loss-of-function and gain-of-function mutation mouse models to explore the role of gonadotrophins and their receptors in reproductive pathologies. This work has provided key insights into the molecular mechanisms underlying reproductive disorders with altered gonadotrophin action, revealing the fundamental roles of these pituitary hormones and their receptors in the hypothalamic-pituitary-gonadal axis. This review will describe GM mouse models of gonadotrophins and their receptors with enhanced or diminished actions, specifically focusing on the male. We will discuss the mechanistic insights gained from these models into male reproductive disorders, and the relationship and understanding provided into male human reproductive disorders originating from altered gonadotrophin action.

  18. Mouse Model for the Preclinical Study of Metastatic Disease | NCI Technology Transfer Center | TTC

    Cancer.gov

    The Laboratory of Cancer Biology and Genetics, National Cancer Institute seeks partners for collaborative research to co-develop a mouse model that shows preclinical therapeutic response of residual metastatic disease.

  19. Applications of the human p53 knock-in (Hupki) mouse model for human carcinogen testing

    PubMed Central

    Besaratinia, Ahmad; Pfeifer, Gerd P.

    2010-01-01

    Tumor-driving mutations in the TP53 gene occur frequently in human cancers. These inactivating mutations arise predominantly from a single-point mutation in the DNA-binding domain of this tumor suppressor gene (i.e., exons 4–9). The human p53 knock-in (Hupki) mouse model was constructed using gene-targeting technology to create a mouse strain that harbors human wild-type TP53 DNA sequences in both copies of the mouse TP53 gene. Replacement of exons 4–9 of the endogenous mouse TP53 alleles in the Hupki mouse with the homologous normal human TP53 gene sequences has offered a humanized replica of the TP53 gene in a murine genetic environment. The Hupki mouse model system has proven to be an invaluable research tool for studying the underlying mechanisms of human TP53 mutagenesis. The utility of the Hupki mouse model system for exploring carcinogen-induced TP53 mutagenesis has been demonstrated in both in vivo animal experiments and in vitro cell culture experiments. Here, we highlight applications of the Hupki mouse model system for investigating mutagenesis induced by a variety of environmental carcinogens, including sunlight ultraviolet radiation, benzo[a]pyrene (a tobacco smoke-derived carcinogen), 3-nitrobenzanthrone (an urban air pollutant), aristolochic acid (a component of Chinese herbal medicine), and aflatoxin B1 (a food contaminant). We summarize the salient findings of the respective studies and discuss their relevance to human cancer etiology.—Besaratinia, A., Pfeifer, G. P. Applications of the human p53 knock-in (Hupki) mouse model for human carcinogen testing. PMID:20371617

  20. Mouse alpha-macroglobulin. Structure, function and a molecular model.

    PubMed Central

    Hudson, N W; Kehoe, J M; Koo, P H

    1987-01-01

    Mouse alpha-macroglobulin (M-AMG) is believed to be a functional homologue of human alpha 2-macroglobulin (h-alpha 2M). The subunit composition, the tryptic cleavage pattern before and after methylamine incorporation and the two-dimensional tryptic-peptide mapping, however, indicate that these two proteins are structurally distinct. M-AMG is composed of two major types of polypeptides (Mr 163,000 and 35,000) together with a minor polypeptide (Mr 185,000), whereas h-alpha 2M has only one type of polypeptide (Mr 185,000). After incorporation of methylamine, there is no change in the normal tryptic-cleavage pattern of M-AMG; however, tryptic cleavage of h-alpha 2M is severely retarded [Hudson & Koo (1982) Biochim. Biophys. Acta 704, 290-303]. The N-terminal sequence of the 163,000-Mr polypeptide of M-AMG shows sequence homology with the N-terminal sequence of h-alpha 2M. The amino acid compositions of M-AMG and its two major polypeptide chains are compared. Thermal fragmentation studies show that the 163,000-Mr polypeptide is broken down into 125,000-Mr and 29,000-Mr fragments. Trypsin-binding studies show that M-AMG can bind two molecules of trypsin/molecule. Inactivations of the trypsin-binding property of M-AMG and h-alpha 2M with methylamine show similar kinetics of inhibition at 4 degrees C. A structural model of M-AMG is proposed, based on accumulated data. Images Fig. 3. PMID:2449173

  1. Oxalobacter formigenes Colonization and Oxalate Dynamics in a Mouse Model

    PubMed Central

    Li, Xingsheng; Ellis, Melissa L.

    2015-01-01

    Animal and human studies have provided compelling evidence that colonization of the intestine with Oxalobacter formigenes reduces urinary oxalate excretion and lowers the risk of forming calcium oxalate kidney stones. The mechanism providing protection appears to be related to the unique ability of O. formigenes to rely on oxalate as a major source of carbon and energy for growth. However, much is not known about the factors that influence colonization and host-bacterium interactions. We have colonized mice with O. formigenes OxCC13 and systematically investigated the impacts of diets with different levels of calcium and oxalate on O. formigenes intestinal densities and urinary and intestinal oxalate levels. Measurement of intestinal oxalate levels in mice colonized or not colonized with O. formigenes demonstrated the highly efficient degradation of soluble oxalate by O. formigenes relative to other microbiota. The ratio of calcium to oxalate in diets was important in determining colonization densities and conditions where urinary oxalate and fecal oxalate excretion were modified, and the results were consistent with those from studies we have performed with colonized and noncolonized humans. The use of low-oxalate purified diets showed that 80% of animals retained O. formigenes colonization after a 1-week dietary oxalate deprivation. Animals not colonized with O. formigenes excreted two times more oxalate in feces than they had ingested. This nondietary source of oxalate may play an important role in the survival of O. formigenes during periods of dietary oxalate deprivation. These studies suggest that the mouse will be a useful model to further characterize interactions between O. formigenes and the host and factors that impact colonization. PMID:25979889

  2. DNA-mediated adjuvant immunotherapy extends survival in two different mouse models of myeloid malignancies

    PubMed Central

    Le Pogam, Carole; Patel, Satyananda; Gorombei, Petra; Guerenne, Laura; Krief, Patricia; Omidvar, Nader; Tekin, Nilgun; Bernasconi, Elena; Sicre, Flore; Schlageter, Marie-Helene; Chopin, Martine; Noguera, Maria-Elena; West, Robert; Abu, Ansu; Mathews, Vikram; Pla, Marika; Fenaux, Pierre; Chomienne, Christine; Padua, Rose Ann

    2015-01-01

    We have previously shown that a specific promyelocytic leukemia-retinoic acid receptor alpha (PML-RARA) DNA vaccine combined with all-trans retinoic acid (ATRA) increases the number of long term survivors with enhanced immune responses in a mouse model of acute promyelocytic leukemia (APL). This study reports the efficacy of a non-specific DNA vaccine, pVAX14Flipper (pVAX14), in both APL and high risk myelodysplastic syndrome (HR-MDS) models. PVAX14 is comprised of novel immunogenic DNA sequences inserted into the pVAX1 therapeutic plasmid. APL mice treated with pVAX14 combined with ATRA had increased survival comparable to that obtained with a specific PML-RARA vaccine. Moreover, the survival advantage correlated with decreased PML-RARA transcript levels and increase in anti-RARA antibody production. In HR-MDS mice, pVAX14 significantly improved survival and reduced biomarkers of leukemic transformation such as phosphorylated mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) 1. In both preclinical models, pVAX14 vaccine significantly increased interferon gamma (IFNγ) production, memory T-cells (memT), reduced the number of colony forming units (CFU) and increased expression of the adapter molecule signalling to NF-κB, MyD88. These results demonstrate the adjuvant properties of pVAX14 providing thus new approaches to improve clinical outcome in two different models of myeloid malignancies, which may have potential for a broader applicability in other cancers. PMID:26378812

  3. DNA-mediated adjuvant immunotherapy extends survival in two different mouse models of myeloid malignancies.

    PubMed

    Le Pogam, Carole; Patel, Satyananda; Gorombei, Petra; Guerenne, Laura; Krief, Patricia; Omidvar, Nader; Tekin, Nilgun; Bernasconi, Elena; Sicre, Flore; Schlageter, Marie-Helene; Chopin, Martine; Noguera, Maria-Elena; West, Robert; Abu, Ansu; Mathews, Vikram; Pla, Marika; Fenaux, Pierre; Chomienne, Christine; Padua, Rose Ann

    2015-10-20

    We have previously shown that a specific promyelocytic leukemia-retinoic acid receptor alpha (PML-RARA) DNA vaccine combined with all-trans retinoic acid (ATRA) increases the number of long term survivors with enhanced immune responses in a mouse model of acute promyelocytic leukemia (APL). This study reports the efficacy of a non-specific DNA vaccine, pVAX14Flipper (pVAX14), in both APL and high risk myelodysplastic syndrome (HR-MDS) models. PVAX14 is comprised of novel immunogenic DNA sequences inserted into the pVAX1 therapeutic plasmid. APL mice treated with pVAX14 combined with ATRA had increased survival comparable to that obtained with a specific PML-RARA vaccine. Moreover, the survival advantage correlated with decreased PML-RARA transcript levels and increase in anti-RARA antibody production. In HR-MDS mice, pVAX14 significantly improved survival and reduced biomarkers of leukemic transformation such as phosphorylated mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) 1. In both preclinical models, pVAX14 vaccine significantly increased interferon gamma (IFNγ) production, memory T-cells (memT), reduced the number of colony forming units (CFU) and increased expression of the adapter molecule signalling to NF-κB, MyD88. These results demonstrate the adjuvant properties of pVAX14 providing thus new approaches to improve clinical outcome in two different models of myeloid malignancies, which may have potential for a broader applicability in other cancers.

  4. The mouse genome database (MGD): new features facilitating a model system.

    PubMed

    Eppig, Janan T; Blake, Judith A; Bult, Carol J; Kadin, James A; Richardson, Joel E

    2007-01-01

    The mouse genome database (MGD, http://www.informatics.jax.org/), the international community database for mouse, provides access to extensive integrated data on the genetics, genomics and biology of the laboratory mouse. The mouse is an excellent and unique animal surrogate for studying normal development and disease processes in humans. Thus, MGD's primary goals are to facilitate the use of mouse models for studying human disease and enable the development of translational research hypotheses based on comparative genotype, phenotype and functional analyses. Core MGD data content includes gene characterization and functions, phenotype and disease model descriptions, DNA and protein sequence data, polymorphisms, gene mapping data and genome coordinates, and comparative gene data focused on mammals. Data are integrated from diverse sources, ranging from major resource centers to individual investigator laboratories and the scientific literature, using a combination of automated processes and expert human curation. MGD collaborates with the bioinformatics community on the development of data and semantic standards, and it incorporates key ontologies into the MGD annotation system, including the Gene Ontology (GO), the Mammalian Phenotype Ontology, and the Anatomical Dictionary for Mouse Development and the Adult Anatomy. MGD is the authoritative source for mouse nomenclature for genes, alleles, and mouse strains, and for GO annotations to mouse genes. MGD provides a unique platform for data mining and hypothesis generation where one can express complex queries simultaneously addressing phenotypic effects, biochemical function and process, sub-cellular location, expression, sequence, polymorphism and mapping data. Both web-based querying and computational access to data are provided. Recent improvements in MGD described here include the incorporation of single nucleotide polymorphism data and search tools, the addition of PIR gene superfamily classifications

  5. Application and detection of (14)c-hd in two mouse models.

    PubMed

    Logan, Thomas P; Shutz, Michael; Schulz, Susan M; Railer, Roy; Ricketts, Karen M; Casillas, Robert P

    2002-01-01

    The CD1-haired mouse and the SKH-hairless mouse are two animal models that have been used to evaluate sulfur mustard (HD) exposure and protection in our laboratory. In a recent study we observed that a substance P inhibitor protected the haired mouse ear against an HD solution, but the same drug was not successful in protecting the hairless mouse against HD vapor. This experiment prompted us to compare HD exposures between these models. We determined the (14)C content in the skin after exposures to HD containing (14)C-HD. Rate curves were generated for applications of (1) HD in methylene chloride to the haired mouse ear; (2) HD in methylene chloride to the hairless mouse dorsal skin; and (3) saturated HD vapor to the hairless mouse dorsal skin for 6 min. The curves showed a reduction in (14)C disintegrations per min in animals euthanized 0 to 2 h postexposure. The largest percentage of decrease of (14)C content in skin occurred within 30 min of HD challenge for all exposures. An 8-mm skin-punch biopsy and a 14-mm annular skin section surrounding the region of the 8-mm skin punch were taken from the hairless mouse dorsal skin exposed to HD in methylene chloride. The ratio of the (14)C content in the 8-mm skin punch to that in the surrounding 14-mm annular skin section was 7.3, demonstrating that the HD application spreads beyond the initially biopsied site. A concentration/time value of 6.3 mug/cm(2)/min was determined by counting skin (14)C disintegrations per minute in animals euthanized immediately after exposure to saturated HD vapor. Determinations of the amount of HD showed that similar quantities of HD, 0.4 mg, were detected on each model. These results contribute to a better quantitative understanding of HD application in the haired and hairless mouse models.

  6. Prepubertal mouse testis growth and maturation and androgen production are acutely sensitive to di-n-butyl phthalate.

    PubMed

    Moody, Sarah; Goh, Hoey; Bielanowicz, Amanda; Rippon, Paul; Loveland, Kate L; Itman, Catherine

    2013-09-01

    Phthalates are plasticizers with widespread industrial, domestic, and medical applications. Epidemiological data indicating increased incidence of testicular dysgenesis in boys exposed to phthalates in utero are reinforced by studies demonstrating that phthalates impair fetal rodent testis development. Because humans are exposed to phthalates continuously from gestation through adulthood, it is imperative to understand what threat phthalates pose at other life stages. To determine the impact during prepuberty, we assessed the consequences of oral administration of 1 to 500 mg di-n-butyl phthalate (DBP)/kg/d in corn oil to wild-type (C57BL/6J) male mice from 4 to 14 days of age. Dose-dependent effects on testis growth correlated with reduced Sertoli cell proliferation. Histological and immunohistochemical analyses identified delayed spermatogenesis and impaired Sertoli cell maturation after exposure to 10 to 500 mg DBP/kg/d. Interference with the hypothalamic-pituitary-gonadal axis was indicated in mice fed 500 mg DBP/kg/d, which had elevated circulating inhibin but no change in serum FSH. Increased immunohistochemical staining for inhibin-α was apparent at doses of 10 to 500 mg DBP/kg/d. Serum testosterone and testicular androgen activity were lower in the 500 mg DBP/kg/d group; however, reduced anogenital distance in all DBP-treated mice suggested impaired androgen action at earlier time points. Long-term effects were evident, with smaller anogenital distance and indications of disrupted spermatogenesis in adult mice exposed prepubertally to doses from 1 mg DBP/kg/d. These data demonstrate the acute sensitivity of the prepubertal mouse testis to DBP at doses 50- to 500-fold lower than those used in rat and identify the upregulation of inhibin as a potential mechanism of DBP action.

  7. Increase in cocaine- and amphetamine-regulated transcript (CART) in specific areas of the mouse brain by acute caffeine administration.

    PubMed

    Cho, Jin Hee; Cho, Yun Ha; Kim, Hyo Young; Cha, Seung Ha; Ryu, Hyun; Jang, Wooyoung; Shin, Kyung Ho

    2015-04-01

    Caffeine produces a variety of behavioral effects including increased alertness, reduced food intake, anxiogenic effects, and dependence upon repeated exposure. Although many of the effects of caffeine are mediated by its ability to block adenosine receptors, it is possible that other neural substrates, such as cocaine- and amphetamine-regulated transcript (CART), may be involved in the effects of caffeine. Indeed, a recent study demonstrated that repeated caffeine administration increases CART in the mouse striatum. However, it is not clear whether acute caffeine administration alters CART in other areas of the brain. To explore this possibility, we investigated the dose- and time-dependent changes in CART immunoreactivity (CART-IR) after a single dose of caffeine in mice. We found that a high dose of caffeine (100 mg/kg) significantly increased CART-IR 2 h after administration in the nucleus accumbens shell (AcbSh), dorsal bed nucleus of the stria terminalis (dBNST), central nucleus of the amygdala (CeA), paraventricular hypothalamic nucleus (PVN), arcuate hypothalamic nucleus (Arc), and locus coeruleus (LC), and returned to control levels after 8 h. But this increase was not observed in other brain areas. In addition, caffeine administration at doses of 25 and 50 mg/kg appears to produce dose-dependent increases in CART-IR in these brain areas; however, the magnitude of increase in CART-IR observed at a dose of 50 mg/kg was similar or greater than that observed at a dose of 100 mg/kg. This result suggests that CART-IR in AcbSh, dBNST, CeA, PVN, Arc, and LC is selectively affected by caffeine administration.

  8. Increase in cocaine- and amphetamine-regulated transcript (CART) in specific areas of the mouse brain by acute caffeine administration.

    PubMed

    Cho, Jin Hee; Cho, Yun Ha; Kim, Hyo Young; Cha, Seung Ha; Ryu, Hyun; Jang, Wooyoung; Shin, Kyung Ho

    2015-04-01

    Caffeine produces a variety of behavioral effects including increased alertness, reduced food intake, anxiogenic effects, and dependence upon repeated exposure. Although many of the effects of caffeine are mediated by its ability to block adenosine receptors, it is possible that other neural substrates, such as cocaine- and amphetamine-regulated transcript (CART), may be involved in the effects of caffeine. Indeed, a recent study demonstrated that repeated caffeine administration increases CART in the mouse striatum. However, it is not clear whether acute caffeine administration alters CART in other areas of the brain. To explore this possibility, we investigated the dose- and time-dependent changes in CART immunoreactivity (CART-IR) after a single dose of caffeine in mice. We found that a high dose of caffeine (100 mg/kg) significantly increased CART-IR 2 h after administration in the nucleus accumbens shell (AcbSh), dorsal bed nucleus of the stria terminalis (dBNST), central nucleus of the amygdala (CeA), paraventricular hypothalamic nucleus (PVN), arcuate hypothalamic nucleus (Arc), and locus coeruleus (LC), and returned to control levels after 8 h. But this increase was not observed in other brain areas. In addition, caffeine administration at doses of 25 and 50 mg/kg appears to produce dose-dependent increases in CART-IR in these brain areas; however, the magnitude of increase in CART-IR observed at a dose of 50 mg/kg was similar or greater than that observed at a dose of 100 mg/kg. This result suggests that CART-IR in AcbSh, dBNST, CeA, PVN, Arc, and LC is selectively affected by caffeine administration. PMID:25820086

  9. Impact of Prostate Inflammation on Lesion Development in the POET3+Pten+/− Mouse Model of Prostate Carcinogenesis

    PubMed Central

    Burcham, Grant N.; Cresswell, Gregory M.; Snyder, Paul W.; Chen, Long; Liu, Xiaoqi; Crist, Scott A.; Henry, Michael D.; Ratliff, Timothy L.

    2015-01-01

    Evidence linking prostatitis and prostate cancer development is contradictory. To study this link, the POET3 mouse, an inducible model of prostatitis, was crossed with a Pten-loss model of prostate cancer (Pten+/−) containing the ROSA26 luciferase allele to monitor prostate size. Prostatitis was induced, and prostate bioluminescence was tracked over 12 months, with lesion development, inflammation, and cytokine expression analyzed at 4, 8, and 12 months and compared with mice without induction of prostatitis. Acute prostatitis led to more proliferative epithelium and enhanced bioluminescence. However, 4 months after initiation of prostatitis, mice with induced inflammation had lower grade pre-neoplastic lesions. A trend existed toward greater development of carcinoma 12 months after induction of inflammation, including one of two mice with carcinoma developing perineural invasion. Two of 18 mice at the later time points developed lesions with similarities to proliferative inflammatory atrophy, including one mouse with associated carcinoma. Pten+/− mice developed spontaneous inflammation, and prostatitis was similar among groups of mice at 8 and 12 months. Analyzed as one cohort, lesion number and grade were positively correlated with prostatitis. Specifically, amounts of CD11b+Gr1+ cells were correlated with lesion development. These results support the hypothesis that myeloid-based inflammation is associated with lesion development in the murine prostate, and previous bouts of CD8-driven prostatitis may promote invasion in the Pten+/− model of cancer. PMID:25455686

  10. Impact of prostate inflammation on lesion development in the POET3(+)Pten(+/-) mouse model of prostate carcinogenesis.

    PubMed

    Burcham, Grant N; Cresswell, Gregory M; Snyder, Paul W; Chen, Long; Liu, Xiaoqi; Crist, Scott A; Henry, Michael D; Ratliff, Timothy L

    2014-12-01

    Evidence linking prostatitis and prostate cancer development is contradictory. To study this link, the POET3 mouse, an inducible model of prostatitis, was crossed with a Pten-loss model of prostate cancer (Pten(+/-)) containing the ROSA26 luciferase allele to monitor prostate size. Prostatitis was induced, and prostate bioluminescence was tracked over 12 months, with lesion development, inflammation, and cytokine expression analyzed at 4, 8, and 12 months and compared with mice without induction of prostatitis. Acute prostatitis led to more proliferative epithelium and enhanced bioluminescence. However, 4 months after initiation of prostatitis, mice with induced inflammation had lower grade pre-neoplastic lesions. A trend existed toward greater development of carcinoma 12 months after induction of inflammation, including one of two mice with carcinoma developing perineural invasion. Two of 18 mice at the later time points developed lesions with similarities to proliferative inflammatory atrophy, including one mouse with associated carcinoma. Pten(+/-) mice developed spontaneous inflammation, and prostatitis was similar among groups of mice at 8 and 12 months. Analyzed as one cohort, lesion number and grade were positively correlated with prostatitis. Specifically, amounts of CD11b(+)Gr1(+) cells were correlated with lesion development. These results support the hypothesis that myeloid-based inflammation is associated with lesion development in the murine prostate, and previous bouts of CD8-driven prostatitis may promote invasion in the Pten(+/-) model of cancer.

  11. Optical coherence tomography for live phenotypic analysis of embryonic ocular structures in mouse models

    NASA Astrophysics Data System (ADS)

    Larina, Irina V.; Syed, Saba H.; Sudheendran, Narendran; Overbeek, Paul A.; Dickinson, Mary E.; Larin, Kirill V.

    2012-08-01

    Mouse models of ocular diseases provide a powerful resource for exploration of molecular regulation of eye development and pre-clinical studies. Availability of a live high-resolution imaging method for mouse embryonic eyes would significantly enhance longitudinal analyses and high-throughput morphological screening. We demonstrate that optical coherence tomography (OCT) can be used for live embryonic ocular imaging throughout gestation. At all studied stages, the whole eye is within the imaging distance of the system and there is a good optical contrast between the structures. We also performed OCT eye imaging in the embryonic retinoblastoma mouse model Pax6-SV40 T-antigen, which spontaneously forms lens and retinal lesions, and demonstrate that OCT allows us to clearly differentiate between the mutant and wild type phenotypes. These results demonstrate that OCTin utero imaging is a potentially useful tool to study embryonic ocular diseases in mouse models.

  12. Computational modeling of acute myocardial infarction.

    PubMed

    Sáez, P; Kuhl, E

    2016-01-01

    Myocardial infarction, commonly known as heart attack, is caused by reduced blood supply and damages the heart muscle because of a lack of oxygen. Myocardial infarction initiates a cascade of biochemical and mechanical events. In the early stages, cardiomyocytes death, wall thinning, collagen degradation, and ventricular dilation are the immediate consequences of myocardial infarction. In the later stages, collagenous scar formation in the infarcted zone and hypertrophy of the non-infarcted zone are auto-regulatory mechanisms to partly correct for these events. Here we propose a computational model for the short-term adaptation after myocardial infarction using the continuum theory of multiplicative growth. Our model captures the effects of cell death initiating wall thinning, and collagen degradation initiating ventricular dilation. Our simulations agree well with clinical observations in early myocardial infarction. They represent a first step toward simulating the progression of myocardial infarction with the ultimate goal to predict the propensity toward heart failure as a function of infarct intensity, location, and size. PMID:26583449

  13. Integrative Metabolome and Transcriptome Profiling Reveals Discordant Energetic Stress between Mouse Strains with Differential Sensitivity to Acrolein-Induced Acute Lung Injury

    PubMed Central

    Fabisiak, James P.; Medvedovic, Mario; Alexander, Danny C.; McDunn, Jonathan E.; Concel, Vincent J.; Bein, Kiflai; Jang, An Soo; Brendt, Annerose; Vuga, Louis J.; Brant, Kelly A.; Pope-Varsalona, Hannah; Dopico, Richard A.; Ganguly, Koustav; Upadhyay, Swapna; Li, Qian; Hu, Zhen; Kaminski, Naftali; Leikauf, George D.

    2012-01-01

    A respiratory irritant, acrolein is generated by overheating cooking oils or by domestic cooking using biomass fuels, and is in tobacco smoke, an occupational health hazard in the restaurant workplace. To better understand the metabolic role of the lung and to generate insights into the pathogenesis of acrolein-induced acute lung injury, SM/J (sensitive) and 129×1/SvJ (resistant) inbred mouse strains were exposed and the lung metabolome was integrated with the transcriptome profile. A total of 280 small molecules were identified and mean values (log 2 >0.58 or <−0.58, .p<0.05) were considered different for between-strain comparisons or within-strain responses to acrolein treatment. At baseline, 24 small molecules increased and 33 small molecules decreased in the SM/J mouse lung as compared to 129×1/SvJ mouse lung. Notable among the increased compounds was malonyl carnitine. Following acrolein exposure, several compounds indicative of glycolysis and branched chain amino acid metabolism increased similarly in both strains, whereas SM/J mice were less effective in generating metabolites related to fatty acid β-oxidation. These findings suggest management of energetic stress varies between these strains, and that the ability to evoke auxiliary energy generating pathways rapidly and effectively may be critical in enhancing survival during acute lung injury in mice. PMID:21823223

  14. A novel mouse xenotransplantation model of EBV-T/NK-LPD and the application of the mouse model.

    PubMed

    Imadome, Ken-Ichi

    2013-01-01

    Chronic active Epstein-Barr virus (EBV) infection (CAEBV), characterized by proliferation of EBV-infected T or NK cells, is a disease of unknown pathogenesis and requires hematopoietic stem cell transplantation for curative treatment. Here we show that intravenous injection of peripheral blood mononuclear cells (PBMCs) isolated from patients with CAEBV to NOD/Shi-scid/IL-2R γ(null) (NOG) mice leads to engraftment of EBV-infected T or NK cells. Analysis of TCR repertoire identified an identical predominant EBV-infected T-cell clone both in a patient and a mouse transplanted with his PBMCs. EBV-infected T or NK cells infiltrated to most major organs including the liver, spleen, lungs, kidneys, adrenal glands, and intestine, showing histological characteristics of CAEBV. Expression of EBNA1, LMP1, and LMP2A, but not EBNA2, in these cells indicated the latency II program of EBV gene characteristic to CAEBV. High levels of TNF-α, IFN-γ, and RANTES were detected in the peripheral blood of these mice. EBV-containing fractions of either CD8(+), γδT, or NK cell lineages failed to engraft, once they were isolated from PBMCs ; they could engraft only when CD4(+) cell fraction was transplanted in parallel. Isolated EBV-containing CD4(+) T cells, in contrast, did engraft on their own. This is the first report of an animal model of CAEBV and suggest that EBV-infected T or NK cells in CAEBV are not truly neoplastic but are dependent on CD4(+) T cells for their proliferation in vivo. PMID:24390103

  15. Mouse Model of Cervicovaginal Toxicity and Inflammation for Preclinical Evaluation of Topical Vaginal Microbicides

    PubMed Central

    Catalone, Bradley J.; Kish-Catalone, Tina M.; Budgeon, Lynn R.; Neely, Elizabeth B.; Ferguson, Maelee; Krebs, Fred C.; Howett, Mary K.; Labib, Mohamed; Rando, Robert; Wigdahl, Brian

    2004-01-01

    Clinical trials evaluating the efficacy of nonoxynol-9 (N-9) as a topical microbicide concluded that N-9 offers no in vivo protection against human immunodeficiency virus type 1 (HIV-1) infection, despite demonstrated in vitro inactivation of HIV-1 by N-9. These trials emphasize the need for better model systems to determine candidate microbicide effectiveness and safety in a preclinical setting. To that end, time-dependent in vitro cytotoxicity, as well as in vivo toxicity and inflammation, associated with N-9 exposure were characterized with the goal of validating a mouse model of microbicide toxicity. In vitro studies using submerged cell cultures indicated that human cervical epithelial cells were inherently more sensitive to N-9-mediated damage than human vaginal epithelial cells. These results correlated with in vivo findings obtained by using Swiss Webster mice in which intravaginal inoculation of 1% N-9 or Conceptrol gel (containing 4% N-9) resulted in selective and acute disruption of the cervical columnar epithelial cells 2 h postapplication accompanied by intense inflammatory infiltrates within the lamina propria. Although damage to the cervical epithelium was apparent out to 8 h postapplication, these tissues resembled control tissue by 24 h postapplication. In contrast, minimal damage and infiltration were associated with both short- and long-term exposure of the vaginal mucosa to either N-9 or Conceptrol. These analyses were extended to examine the relative toxicity of polyethylene hexamethylene biguanide (PEHMB), a polybiguanide compound under evaluation as a candidate topical microbicide. In similar studies, in vivo exposure to 1% PEHMB caused minimal damage and inflammation of the genital mucosa, a finding consistent with the demonstration that PEHMB was >350-fold less cytotoxic than N-9 in vitro. Collectively, these studies highlight the murine model of toxicity as a valuable tool for the preclinical assessment of toxicity and inflammation

  16. Two-Pore Channels: Lessons from Mutant Mouse Models

    PubMed Central

    Ruas, Margarida; Galione, Antony; Parrington, John

    2016-01-01

    Recent interest in two-pore channels (TPCs) has resulted in a variety of studies dealing with the functional role and mechanism of action of these endo-lysosomal proteins in diverse physiological processes. With the availability of mouse lines harbouring mutant alleles for Tpcnl and/or Tpcn2 genes, several studies have made use of them to validate, consolidate and discover new roles for these channels not only at the cellular level but, importantly, also at the level of the whole organism. The different mutant mouse lines that have been used were derived from distinct genetic manipulation strategies, with the aim of knocking out expression of TPC proteins. However, the expression of different residual TPC sequences predicted to occur in these mutant mouse lines, together with the varied degree to which the effects on Tpcn expression have been studied, makes it important to assess the true knockout status of some of the lines. In this review we summarize these Tpcn mutant mouse lines with regard to their predicted effect on Tpcn expression and the extent to which they have been characterized. Additionally, we discuss how results derived from studies using these Tpcn mutant mouse lines have consolidated previously proposed roles for TPCs, such as mediators of NAADP signalling, endo-lysosomal functions, and pancreatic β cell physiology. We will also review how they have been instrumental in the assignment of new physiological roles for these cation channels in processes such as membrane electrical excitability, neoangiogenesis, viral infection and brown adipose tissue and heart function, revealing, in some cases, a specific contribution of a particular TPC isoform. PMID:27330869

  17. Characterization of a Mouse Model of Oral Potassium Cyanide Intoxication.

    PubMed

    Sabourin, Patrick J; Kobs, Christina L; Gibbs, Seth T; Hong, Peter; Matthews, Claire M; Patton, Kristen M; Sabourin, Carol L; Wakayama, Edgar J

    2016-09-01

    Potassium cyanide (KCN) is an inhibitor of cytochrome C oxidase causing rapid death due to hypoxia. A well-characterized model of oral KCN intoxication is needed to test new therapeutics under the Food and Drug Administration Animal Rule. Clinical signs, plasma pH and lactate concentrations, biomarkers, histopathology, and cyanide and thiocyanate toxicokinetics were used to characterize the pathology of KCN intoxication in adult and juvenile mice. The acute oral LD50s were determined to be 11.8, 11.0, 10.9, and 9.9 mg/kg in water for adult male, adult female, juvenile male, and juvenile female mice, respectively. The time to death was rapid and dose dependent; juvenile mice had a shorter mean time to death. Juvenile mice displayed a more rapid onset and higher incidence of seizures. The time to observance of respiratory signs and prostration was rapid, but mice surviving beyond 2 hours generally recovered fully within 8 hours. At doses up to the LD50, there were no gross necropsy or microscopic findings clearly attributed to administration of KCN in juvenile or adult CD-1 mice from 24 hours to 28 days post-KCN challenge. Toxicokinetic analysis indicated rapid uptake, metabolism, and clearance of plasma cyanide. Potassium cyanide caused a rapid, dose-related decrease in blood pH and increase in serum lactate concentration. An increase in fatty acid-binding protein 3 was observed at 11.5 mg/kg KCN in adult but not in juvenile mice. These studies provide a characterization of KCN intoxication in adult and juvenile mice that can be used to screen or conduct preclinical efficacy studies of potential countermeasures.

  18. Adaptation of active tone in the mouse descending thoracic aorta under acute changes in loading.

    PubMed

    Murtada, S-I; Lewin, S; Arner, A; Humphrey, J D

    2016-06-01

    Arteries can adapt to sustained changes in blood pressure and flow, and it is thought that these adaptive processes often begin with an altered smooth muscle cell activity that precedes any detectable changes in the passive wall components. Yet, due to the intrinsic coupling between the active and passive properties of the arterial wall, it has been difficult to delineate the adaptive contributions of active smooth muscle. To address this need, we used a novel experimental-computational approach to quantify adaptive functions of active smooth muscle in arterial rings excised from the proximal descending thoracic aorta of mice and subjected to short-term sustained circumferential stretches while stimulated with various agonists. A new mathematical model of the adaptive processes was derived and fit to data to describe and predict the effects of active tone adaptation. It was found that active tone was maintained when the artery was adapted close to the optimal stretch for maximal active force production, but it was reduced when adapted below the optimal stretch; there was no significant change in passive behavior in either case. Such active adaptations occurred only upon smooth muscle stimulation with phenylephrine, however, not stimulation with KCl or angiotensin II. Numerical simulations using the proposed model suggested further that active tone adaptation in vascular smooth muscle could play a stabilizing role for wall stress in large elastic arteries.

  19. Using genetic mouse models to gain insight into glaucoma: Past results and future possibilities.

    PubMed

    Fernandes, Kimberly A; Harder, Jeffrey M; Williams, Pete A; Rausch, Rebecca L; Kiernan, Amy E; Nair, K Saidas; Anderson, Michael G; John, Simon W M; Howell, Gareth R; Libby, Richard T

    2015-12-01

    While all forms of glaucoma are characterized by a specific pattern of retinal ganglion cell death, they are clinically divided into several distinct subclasses, including normal tension glaucoma, primary open angle glaucoma, congenital glaucoma, and secondary glaucoma. For each type of glaucoma there are likely numerous molecular pathways that control susceptibility to the disease. Given this complexity, a single animal model will never precisely model all aspects of all the different types of human glaucoma. Therefore, multiple animal models have been utilized to study glaucoma but more are needed. Because of the powerful genetic tools available to use in the laboratory mouse, it has proven to be a highly useful mammalian system for studying the pathophysiology of human disease. The similarity between human and mouse eyes coupled with the ability to use a combination of advanced cell biological and genetic tools in mice have led to a large increase in the number of studies using mice to model specific glaucoma phenotypes. Over the last decade, numerous new mouse models and genetic tools have emerged, providing important insight into the cell biology and genetics of glaucoma. In this review, we describe available mouse genetic models that can be used to study glaucoma-relevant disease/pathobiology. Furthermore, we discuss how these models have been used to gain insights into ocular hypertension (a major risk factor for glaucoma) and glaucomatous retinal ganglion cell death. Finally, the potential for developing new mouse models and using advanced genetic tools and resources for studying glaucoma are discussed.

  20. A humanized mouse model for the reduced folate carrier.

    PubMed

    Patterson, David; Graham, Christine; Cherian, Christina; Matherly, Larry H

    2008-02-01

    The ubiquitously expressed reduced folate carrier (RFC) or SLC19A1 is recognized to be an essential transport system for folates in mammalian cells and tissues. In addition to its generalized role as a folate transporter, RFC provides specialized tissue functions including absorption across intestinal/colonic epithelia, transport across the basolateral membrane of renal proximal tubules, transplacental transport of folates, and folate transport across the blood-brain barrier. The human RFC (hRFC) gene is regulated by five major upstream non-coding regions (designated A1/A2, A, B, C, and D), each transcribed from a unique promoter. Altogether, at least 14 distinct hRFC transcripts can be envisaged in which different 5' untranslated regions (UTRs) are fused to a common splice acceptor region (positions -1 to -49) within the first coding exon with a common 1776bp coding sequence. The 5' non-coding regions are characterized by alternate transcription start sites, multiple splice forms, and selective tissue distributions. Alternate 5' UTRs impact mRNA stabilities and translation efficiencies, and result in synthesis of modified hRFC proteins translated from upstream AUGs. In this report, we describe production and characterization of transgenic mice (TghRFC1) containing a functional hRFC gene and of humanized mice in which the mRFC gene is inactivated and an active hRFC gene has been introduced. The mice appear to be healthy and to breed well. Analysis of tissue specificity of expression in both the TghRFC1 and humanized hRFC mice by real-time RT-PCR demonstrates that the hRFC gene is expressed with a specificity closely resembling that seen in human tissues. For the humanized hRFC mice, levels of B and A1/A2 5' UTRs predominated in all mice/tissues, thus resembling results in normal human tissues. Lower levels of A and C 5' UTRs were also detected. The availability of humanized mouse models for hRFC will permit investigators to address critical unanswered questions

  1. Live dynamic imaging and analysis of developmental cardiac defects in mouse models with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lopez, Andrew L.; Wang, Shang; Garcia, Monica; Valladolid, Christian; Larin, Kirill V.; Larina, Irina V.

    2015-03-01

    Understanding mouse embryonic development is an invaluable resource for our interpretation of normal human embryology and congenital defects. Our research focuses on developing methods for live imaging and dynamic characterization of early embryonic development in mouse models of human diseases. Using multidisciplinary methods: optical coherence tomography (OCT), live mouse embryo manipulations and static embryo culture, molecular biology, advanced image processing and computational modeling we aim to understand developmental processes. We have developed an OCT based approach to image live early mouse embryos (E8.5 - E9.5) cultured on an imaging stage and visualize developmental events with a spatial resolution of a few micrometers (less than the size of an individual cell) and a frame rate of up to hundreds of frames per second and reconstruct cardiodynamics in 4D (3D+time). We are now using these methods to study how specific embryonic lethal mutations affect cardiac morphology and function during early development.

  2. What do mouse models of muscular dystrophy tell us about the DAPC and its components?

    PubMed Central

    Whitmore, Charlotte; Morgan, Jennifer

    2014-01-01

    There are over 30 mouse models with mutations or inactivations in the dystrophin-associated protein complex. This complex is thought to play a crucial role in the functioning of muscle, as both a shock absorber and signalling centre, although its role in the pathogenesis of muscular dystrophy is not fully understood. The first mouse model of muscular dystrophy to be identified with a mutation in a component of the dystrophin-associated complex (dystrophin) was the mdx mouse in 1984. Here, we evaluate the key characteristics of the mdx in comparison with other mouse mutants with inactivations in DAPC components, along with key modifiers of the disease phenotype. By discussing the differences between the individual phenotypes, we show that the functioning of the DAPC and consequently its role in the pathogenesis is more complicated than perhaps currently appreciated. PMID:25270874

  3. Salmonella infection of gallbladder epithelial cells drives local inflammation and injury in a model of acute typhoid fever.

    PubMed

    Menendez, Alfredo; Arena, Ellen T; Guttman, Julian A; Thorson, Lisa; Vallance, Bruce A; Vogl, Wayne; Finlay, B Brett

    2009-12-01

    The gallbladder is often colonized by Salmonella during typhoid fever, yet little is known about bacterial pathogenesis in this organ. With use of a mouse model of acute typhoid fever, we demonstrate that Salmonella infect gallbladder epithelial cells in vivo. Bacteria in the gallbladder showed a unique behavior as they replicated within gallbladder epithelial cells and remained confined to those cells without translocating to the mucosa. Infected gallbladders showed histopathological damage characterized by destruction of the epithelium and massive infiltration of neutrophils, accompanied by a local increase of proinflammatory cytokines. Damage was determined by the ability of Salmonella to invade gallbladder epithelial cells and was independent of high numbers of replication-competent, although invasion-deficient, bacteria in the lumen. Our results establish gallbladder epithelial cells as a novel niche for in vivo replication of Salmonella and reveal the involvement of these cells in the pathogenesis of Salmonella in the gallbladder during the course of acute typhoid fever.

  4. Modeling inoculum dose dependent patterns of acute virus infections.

    PubMed

    Li, Yan; Handel, Andreas

    2014-04-21

    Inoculum dose, i.e. the number of pathogens at the beginning of an infection, often affects key aspects of pathogen and immune response dynamics. These in turn determine clinically relevant outcomes, such as morbidity and mortality. Despite the general recognition that inoculum dose is an important component of infection outcomes, we currently do not understand its impact in much detail. This study is intended to start filling this knowledge gap by analyzing inoculum dependent patterns of viral load dynamics in acute infections. Using experimental data for adenovirus and infectious bronchitis virus infections as examples, we demonstrate inoculum dose dependent patterns of virus dynamics. We analyze the data with the help of mathematical models to investigate what mechanisms can reproduce the patterns observed in experimental data. We find that models including components of both the innate and adaptive immune response are needed to reproduce the patterns found in the data. We further analyze which types of innate or adaptive immune response models agree with observed data. One interesting finding is that only models for the adaptive immune response that contain growth terms partially independent of viral load can properly reproduce observed patterns. This agrees with the idea that an antigen-independent, programmed response is part of the adaptive response. Our analysis provides useful insights into the types of model structures that are required to properly reproduce observed virus dynamics for varying inoculum doses. We suggest that such models should be taken as basis for future models of acute viral infections.

  5. Kynurenine–3–monooxygenase inhibition prevents multiple organ failure in rodent models of acute pancreatitis

    PubMed Central

    Mole, Damian J; Webster, Scott P; Uings, Iain; Zheng, Xiaozhong; Binnie, Margaret; Wilson, Kris; Hutchinson, Jonathan P; Mirguet, Olivier; Walker, Ann; Beaufils, Benjamin; Ancellin, Nicolas; Trottet, Lionel; Bénéton, Véronique; Mowat, Christopher G; Wilkinson, Martin; Rowland, Paul; Haslam, Carl; McBride, Andrew; Homer, Natalie ZM; Baily, James E; Sharp, Matthew GF; Garden, O James; Hughes, Jeremy; Howie, Sarah EM; Holmes, Duncan S; Liddle, John; Iredale, John P

    2015-01-01

    Acute pancreatitis (AP) is a common and devastating inflammatory condition of the pancreas that is considered to be a paradigm of sterile inflammation leading to systemic multiple organ dysfunction syndrome (MODS) and death1,2 Acute mortality from AP-MODS exceeds 20%3 and for those who survive the initial episode, their lifespan is typically shorter than the general population4. There are no specific therapies available that protect individuals against AP-MODS. Here, we show that kynurenine-3-monooxygenase (KMO), a key enzyme of tryptophan metabolism5, is central to the pathogenesis of AP-MODS. We created a mouse strain deficient for Kmo with a robust biochemical phenotype that protected against extrapancreatic tissue injury to lung, kidney and liver in experimental AP-MODS. A medicinal chemistry strategy based on modifications of the kynurenine substrate led to the discovery of GSK180 as a potent and specific inhibitor of KMO. The binding mode of the inhibitor in the active site was confirmed by X-ray co-crystallography at 3.2 Å resolution. Treatment with GSK180 resulted in rapid changes in levels of kynurenine pathway metabolites in vivo and afforded therapeutic protection against AP-MODS in a rat model of AP. Our findings establish KMO inhibition as a novel therapeutic strategy in the treatment of AP-MODS and open up a new area for drug discovery in critical illness. PMID:26752518

  6. YK-4-279 effectively antagonizes EWS-FLI1 induced leukemia in a transgenic mouse model

    PubMed Central

    Javaheri, Tahereh; Hong, Sung-Hyeok; Schlederer, Michaela; Saygideğer-Kont, Yasemin; Çelik, Haydar; Mueller, Kristina M.; Temel, Idil; Özdemirli, Metin; Kovar, Heinrich; Erkizan, Hayriye Verda; Toretsky, Jeffrey; Kenner, Lukas; Moriggl, Richard; Üren, Aykut

    2015-01-01

    Ewing sarcoma is an aggressive tumor of bone and soft tissue affecting predominantly children and young adults. Tumor-specific chromosomal translocations create EWS-FLI1 and similar aberrant ETS fusion proteins that drive sarcoma development in patients. ETS family fusion proteins and over-expressed ETS proteins are also found in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) patients. Transgenic expression of EWS-FLI1 in mice promotes high penetrance erythroid leukemia with dense hepatic and splenic infiltrations. We identified a small molecule, YK-4-279, that directly binds to EWS-FLI1 and inhibits its oncogenic activity in Ewing sarcoma cell lines and xenograft mouse models. Herein, we tested in vivo therapeutic efficacy and potential side effects of YK-4-279 in the transgenic mouse model with EWS-FLI1 induced leukemia. A two-week course of treatment with YK-4-279 significantly reduced white blood cell count, nucleated erythroblasts in the peripheral blood, splenomegaly, and hepatomegaly of erythroleukemic mice. YK-4-279 inhibited EWS-FLI1 target gene expression in neoplastic cells. Treated animals showed significantly better overall survival compared to control mice that rapidly succumbed to leukemia. YK-4-279 treated mice did not show overt toxicity in liver, spleen, or bone marrow. In conclusion, this in vivo study highlights the efficacy of YK-4-279 to treat EWS-FLI1 expressing neoplasms and support its therapeutic potential for patients with Ewing sarcoma and other ETS-driven malignancies. PMID:26462019

  7. Anxiolytic-like effects of alverine citrate in experimental mouse models of anxiety.

    PubMed

    Gupta, Deepali; Radhakrishnan, Mahesh; Kurhe, Yeshwant

    2014-11-01

    Anxiety disorders are widely spread psychiatric illnesses that are a cause of major concern. Despite a consistent increase in anxiolytics, the prevalence of anxiety is static; this necessitates the development of new compounds with potential activity and minimum unwanted effects. A serotonergic (5HT) system plays an important role in pathogenesis of anxiety and predominantly involves 5HT1A receptor action in mediating anxiety-like behavior; the antagonism of 5HT1A receptor has demonstrated to produce anxiolytic-like effects. Alverine citrate (AVC) is reported as a 5HT1A antagonist; however, its effects on anxiety-like behavior are not investigated. Thus, the present study, by utilizing a neurobehavioral approach, examined the anxiolytic-like effects of AVC in experimental mouse models of anxiety. Mice were acutely treated with AVC (5-20mg/kg, i.p.)/diazepam (DIA, 2mg/kg, i.p.) and subjected to four validated anxiety models viz. elevated plus-maze (EPM), light/dark (L/D), hole-board (HB) and marble burying (MB) tests. AVC (15-20mg/kg) and DIA significantly increased open arm activity in EPM, exploration in light chamber in L/D test, exploratory behavior in HB and reduced MB behavior in marble burying test. AVC (5mg/kg) had no effect on all behavioral tests, while AVC (10mg/kg) produced partial effects. It revealed anxiolytic-like effects of AVC. Furthermore, anxiolytic-like effects of AVC at higher doses (15-20mg/kg) were more pronounced than lower doses (10mg/kg) and were quite similar to the standard drug DIA. The present finding demonstrates, for the first time, the anxiolytic-like effects of AVC, which may be an alternative approach for management of anxiety-related disorders. PMID:25199966

  8. Imatinib attenuates inflammation and vascular leak in a clinically relevant two-hit model of acute lung injury.

    PubMed

    Rizzo, Alicia N; Sammani, Saad; Esquinca, Adilene E; Jacobson, Jeffrey R; Garcia, Joe G N; Letsiou, Eleftheria; Dudek, Steven M

    2015-12-01

    Acute lung injury/acute respiratory distress syndrome (ALI/ARDS), an illness characterized by life-threatening vascular leak, is a significant cause of morbidity and mortality in critically ill patients. Recent preclinical studies and clinical observations have suggested a potential role for the chemotherapeutic agent imatinib in restoring vascular integrity. Our prior work demonstrates differential effects of imatinib in mouse models of ALI, namely attenuation of LPS-induced lung injury but exacerbation of ventilator-induced lung injury (VILI). Because of the critical role of mechanical ventilation in the care of patients with ARDS, in the present study we pursued an assessment of the effectiveness of imatinib in a "two-hit" model of ALI caused by combined LPS and VILI. Imatinib significantly decreased bronchoalveolar lavage protein, total cells, neutrophils, and TNF-α levels in mice exposed to LPS plus VILI, indicating that it attenuates ALI in this clinically relevant model. In subsequent experiments focusing on its protective role in LPS-induced lung injury, imatinib attenuated ALI when given 4 h after LPS, suggesting potential therapeutic effectiveness when given after the onset of injury. Mechanistic studies in mouse lung tissue and human lung endothelial cells revealed that imatinib inhibits LPS-induced NF-κB expression and activation. Overall, these results further characterize the therapeutic potential of imatinib against inflammatory vascular leak.

  9. Sleep-like behavior and 24-h rhythm disruption in the Tc1 mouse model of Down syndrome.

    PubMed

    Heise, I; Fisher, S P; Banks, G T; Wells, S; Peirson, S N; Foster, R G; Nolan, P M

    2015-02-01

    Down syndrome is a common disorder associated with intellectual disability in humans. Among a variety of severe health problems, patients with Down syndrome exhibit disrupted sleep and abnormal 24-h rest/activity patterns. The transchromosomic mouse model of Down syndrome, Tc1, is a trans-species mouse model for Down syndrome, carrying most of human chromosome 21 in addition to the normal complement of mouse chromosomes and expresses many of the phenotypes characteristic of Down syndrome. To date, however, sleep and circadian rhythms have not been characterized in Tc1 mice. Using both circadian wheel-running analysis and video-based sleep scoring, we showed that these mice exhibited fragmented patterns of sleep-like behaviour during the light phase of a 12:12-h light/dark (LD) cycle with an extended period of continuous wakefulness at the beginning of the dark phase. Moreover, an acute light pulse during night-time was less effective in inducing sleep-like behaviour in Tc1 animals than in wild-type controls. In wheel-running analysis, free running in constant light (LL) or constant darkness (DD) showed no changes in the circadian period of Tc1 animals although they did express subtle behavioural differences including a reduction in total distance travelled on the wheel and differences in the acrophase of activity in LD and in DD. Our data confirm that Tc1 mice express sleep-related phenotypes that are comparable with those seen in Down syndrome patients with moderate disruptions in rest/activity patterns and hyperactive episodes, while circadian period under constant lighting conditions is essentially unaffected.

  10. Sleep-like behavior and 24-h rhythm disruption in the Tc1 mouse model of Down syndrome

    PubMed Central

    Heise, I; Fisher, S P; Banks, G T; Wells, S; Peirson, S N; Foster, R G; Nolan, P M

    2015-01-01

    Down syndrome is a common disorder associated with intellectual disability in humans. Among a variety of severe health problems, patients with Down syndrome exhibit disrupted sleep and abnormal 24-h rest/activity patterns. The transchromosomic mouse model of Down syndrome, Tc1, is a trans-species mouse model for Down syndrome, carrying most of human chromosome 21 in addition to the normal complement of mouse chromosomes and expresses many of the phenotypes characteristic of Down syndrome. To date, however, sleep and circadian rhythms have not been characterized in Tc1 mice. Using both circadian wheel-running analysis and video-based sleep scoring, we showed that these mice exhibited fragmented patterns of sleep-like behaviour during the light phase of a 12:12-h light/dark (LD) cycle with an extended period of continuous wakefulness at the beginning of the dark phase. Moreover, an acute light pulse during night-time was less effective in inducing sleep-like behaviour in Tc1 animals than in wild-type controls. In wheel-running analysis, free running in constant light (LL) or constant darkness (DD) showed no changes in the circadian period of Tc1 animals although they did express subtle behavioural differences including a reduction in total distance travelled on the wheel and differences in the acrophase of activity in LD and in DD. Our data confirm that Tc1 mice express sleep-related phenotypes that are comparable with those seen in Down syndrome patients with moderate disruptions in rest/activity patterns and hyperactive episodes, while circadian period under constant lighting conditions is essentially unaffected. PMID:25558895

  11. A model of progressive photo-oxidative degeneration and inflammation in the pigmented C57BL/6J mouse retina.

    PubMed

    Natoli, Riccardo; Jiao, Haihan; Barnett, Nigel L; Fernando, Nilisha; Valter, Krisztina; Provis, Jan M; Rutar, Matt

    2016-06-01

    Light-induced degeneration in rodent retinas is an established model for of retinal degeneration, including the roles of oxidative stress and neuroinflammatory activity. In these models, photoreceptor death is elicited via photo-oxidative stress, and is exacerbated by recruitment of subretinal macrophages and activation of immune pathways including complement propagation. Existing light damage models have relied heavily on albino rodents, and mostly using acute light stimuli. These albino models have proven valuable in uncovering the pathogenic mechanisms of such pathways in the context of retinal disease. However, their inherent albinism hinders comparability to normal retinal physiology, and also makes gene technology analysis time-consuming due to the predominance of the pigmented mouse strains in these applications. In this study, we characterise a new light damage model utilising C57BL/6J mice over a 7 day period of chronic light exposure. We use high-efficiency LED technology to deliver a sustained intensity of 100 k lux with negligible modulation of ambient temperature. We show that in the C57BL/6J mouse, chronic light exposure elicits the cardinal features of light damage including photoreceptor degeneration, atrophy of the choriocapillaris, decreased retinal function and increases in oxidative stress markers 4-HNE and 8-OHG, which emerge progressively over the 7 day period of exposure. These changes are accompanied by robust recruitment of IBA1+ and F4/80 + microglia/macrophages to the ONL and subretinal space, followed the strong up-regulation of monocyte-chemoattractants Ccl2, Ccl3, and Ccl12, as well as increases in expression of complement component C3. These findings are in agreement with prior damage models conducted in albino rodents such as Balb/c mice, and support the use of this new model in further investigating the causative features of oxidative stress and inflammation in retinal disease. PMID:27155143

  12. Combining Human Disease Genetics and Mouse Model Phenotypes towards Drug Repositioning for Parkinson's disease.

    PubMed

    Chen, Yang; Cai, Xiaoshu; Xu, Rong

    2015-01-01

    Parkinson's disease (PD) is a severe neurodegenerative disorder without effective treatments. Here, we present a novel drug repositioning approach to predict new drugs for PD leveraging both disease genetics and large amounts of mouse model phenotypes. First, we identified PD-specific mouse phenotypes using well-studied human disease genes. Then we searched all FDA-approved drugs for candidates that share similar mouse phenotype profiles with PD. We demonstrated the validity of our approach using drugs that have been approved for PD: 10 approved PD drugs were ranked within top 10% among 1197 candidates. In predicting novel PD drugs, our approach achieved a mean average precision of 0.24, which is significantly higher (pmouse phenotype data. Comparison of gene expression profiles between PD and top-ranked drug candidates indicates that quetiapine has the potential to treat PD.

  13. Ultrasonic vocalizations: a tool for behavioural phenotyping of mouse models of neurodevelopmental disorders.

    PubMed

    Scattoni, Maria Luisa; Crawley, Jacqueline; Ricceri, Laura

    2009-04-01

    In neonatal mice ultrasonic vocalizations have been studied both as an early communicative behaviour of the pup-mother dyad and as a sign of an aversive affective state. Adult mice of both sexes produce complex ultrasonic vocalization patterns in different experimental/social contexts. Vocalizations are becoming an increasingly valuable assay for behavioural phenotyping throughout the mouse life-span and alterations of the ultrasound patterns have been reported in several mouse models of neurodevelopmental disorders. Here we also show that the modulation of vocalizations by maternal cues (maternal potentiation paradigm) - originally identified and investigated in rats - can be measured in C57BL/6 mouse pups with appropriate modifications of the rat protocol and can likely be applied to mouse behavioural phenotyping. In addition we suggest that a detailed qualitative evaluation of neonatal calls together with analysis of adult mouse vocalization patterns in both sexes in social settings, may lead to a greater understanding of the communication value of vocalizations in mice. Importantly, both neonatal and adult USV altered patterns can be determined during the behavioural phenotyping of mouse models of human neurodevelopmental and neuropsychiatric disorders, starting from those in which deficits in communication are a primary symptom.

  14. Fidelity in Animal Modeling: Prerequisite for a Mechanistic Research Front Relevant to the Inflammatory Incompetence of Acute Pediatric Malnutrition

    PubMed Central

    Woodward, Bill

    2016-01-01

    Inflammatory incompetence is characteristic of acute pediatric protein-energy malnutrition, but its underlying mechanisms remain obscure. Perhaps substantially because the research front lacks the driving force of a scholarly unifying hypothesis, it is adrift and research activity is declining. A body of animal-based research points to a unifying paradigm, the Tolerance Model, with some potential to offer coherence and a mechanistic impetus to the field. However, reasonable skepticism prevails regarding the relevance of animal models of acute pediatric malnutrition; consequently, the fundamental contributions of the animal-based component of this research front are largely overlooked. Design-related modifications to improve the relevance of animal modeling in this research front include, most notably, prioritizing essential features of pediatric malnutrition pathology rather than dietary minutiae specific to infants and children, selecting windows of experimental animal development that correspond to targeted stages of pediatric immunological ontogeny, and controlling for ontogeny-related confounders. In addition, important opportunities are presented by newer tools including the immunologically humanized mouse and outbred stocks exhibiting a magnitude of genetic heterogeneity comparable to that of human populations. Sound animal modeling is within our grasp to stimulate and support a mechanistic research front relevant to the immunological problems that accompany acute pediatric malnutrition. PMID:27077845

  15. Are mouse models of human mycobacterial diseases relevant? Genetics says: ‘yes!’

    PubMed Central

    Apt, Alexander S

    2011-01-01

    Relevance and accuracy of experimental mouse models of tuberculosis (TB) are the subject of constant debate. This article briefly reviews genetic aspects of this problem and provides a few examples of mycobacterial diseases with similar or identical genetic control in mice and humans. The two species display more similarities than differences regarding both genetics of susceptibility/severity of mycobacterial diseases and the networks of protective and pathological immune reactions. In the opinion of the author, refined mouse models of mycobacterial diseases are extremely useful for modelling the corresponding human conditions, if genetic diversity is taken into account. PMID:21896006

  16. Targeting the kinase activities of ATR and ATM exhibits antitumoral activity in mouse models of MLL-rearranged AML.

    PubMed

    Morgado-Palacin, Isabel; Day, Amanda; Murga, Matilde; Lafarga, Vanesa; Anton, Marta Elena; Tubbs, Anthony; Chen, Hua-Tang; Ergan, Aysegul; Anderson, Rhonda; Bhandoola, Avinash; Pike, Kurt G; Barlaam, Bernard; Cadogan, Elaine; Wang, Xi; Pierce, Andrew J; Hubbard, Chad; Armstrong, Scott A; Nussenzweig, André; Fernandez-Capetillo, Oscar

    2016-01-01

    Among the various subtypes of acute myeloid leukemia (AML), those with chromosomal rearrangements of the MLL oncogene (AML-MLL) have a poor prognosis. AML-MLL tumor cells are resistant to current genotoxic therapies because of an attenuated response by p53, a protein that induces cell cycle arrest and apoptosis in response to DNA damage. In addition to chemicals that damage DNA, efforts have focused on targeting DNA repair enzymes as a general chemotherapeutic approach to cancer treatment. Here, we found that inhibition of the kinase ATR, which is the primary sensor of DNA replication stress, induced chromosomal breakage and death of mouse AML(MLL) cells (with an MLL-ENL fusion and a constitutively active N-RAS independently of p53. Moreover, ATR inhibition as a single agent exhibited antitumoral activity, both reducing tumor burden after establishment and preventing tumors from growing, in an immunocompetent allograft mouse model of AML(MLL) and in xenografts of a human AML-MLL cell line. We also found that inhibition of ATM, a kinase that senses DNA double-strand breaks, also promoted the survival of the AML(MLL) mice. Collectively, these data indicated that ATR or ATM inhibition represent potential therapeutic strategies for the treatment of AML, especially MLL-driven leukemias. PMID:27625305

  17. Erythropoietin stimulates spleen BMP4-dependent stress erythropoiesis and partially corrects anemia in a mouse model of generalized inflammation.

    PubMed

    Millot, Sarah; Andrieu, Valérie; Letteron, Philippe; Lyoumi, Saïd; Hurtado-Nedelec, Margarita; Karim, Zoubida; Thibaudeau, Olivier; Bennada, Samira; Charrier, Jean-Luc; Lasocki, Sigismond; Beaumont, Carole

    2010-12-23

    Mouse bone marrow erythropoiesis is homeostatic, whereas after acute anemia, bone morphogenetic protein 4 (BMP4)-dependent stress erythropoiesis develops in the spleen. The aim of this work was to compare spleen stress erythropoiesis and bone marrow erythropoiesis in a mouse model of zymosan-induced generalized inflammation, which induces long-lasting anemia and to evaluate the ability of erythropoietin (Epo) injections to correct anemia in this setting. The effects of zymosan and/or Epo injections on erythroid precursor maturation and apoptosis, serum interferon-γ levels, hematologic parameters, and spleen BMP4 expression were analyzed, as well as the effect of zymosan on red blood cell half-life. We found that bone marrow erythropoiesis is suppressed by inflammation and does not respond to Epo administration, despite repression of erythroblast apoptosis. On the contrary, a robust erythropoietic response takes place in the spleen after Epo injections in both control and zymosan-induced generalized inflammation mice. This specific response implies Epo-mediated induction of BMP4 expression by F4/80(+) spleen macrophages, proliferation of stress burst-forming units-erythroid, and increased number of spleen erythroblasts. It allows only partial recovery of anemia, probably because of peripheral destruction of mature red cells. It is not clear whether similar BMP4-dependent stress erythropoiesis can occur in human bone marrow after Epo injections.

  18. Mouse models of polyglutamine diseases: review and data table. Part I.

    PubMed

    Figiel, Maciej; Szlachcic, Wojciech J; Switonski, Pawel M; Gabka, Agnieszka; Krzyzosiak, Wlodzimierz J

    2012-10-01

    Polyglutamine (polyQ) disorders share many similarities, such as a common mutation type in unrelated human causative genes, neurological character, and certain aspects of pathogenesis, including morphological and physiological neuronal alterations. The similarities in pathogenesis have been confirmed by findings that some experimental in vivo therapy approaches are effective in multiple models of polyQ disorders. Additionally, mouse models of polyQ diseases are often highly similar between diseases with respect to behavior and the features of the disease. The common features shared by polyQ mouse models may facilitate the investigation of polyQ disorders and may help researchers explore the mechanisms of these diseases in a broader context. To provide this context and to promote the understanding of polyQ disorders, we have collected and analyzed research data about the characterization and treatment of mouse models of polyQ diseases and organized them into two complementary Excel data tables. The data table that is presented in this review (Part I) covers the behavioral, molecular, c