Science.gov

Sample records for acute murine model

  1. Murine models of acute neuronopathic Gaucher disease

    PubMed Central

    Enquist, Ida Berglin; Bianco, Christophe Lo; Ooka, Andreas; Nilsson, Eva; Månsson, Jan-Eric; Ehinger, Mats; Richter, Johan; Brady, Roscoe O.; Kirik, Deniz; Karlsson, Stefan

    2007-01-01

    Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder caused by mutations in the glucosidase, beta, acid (GBA) gene that encodes the lysosomal enzyme glucosylceramidase (GCase). GCase deficiency leads to characteristic visceral pathology and, in some patients, lethal neurological manifestations. Here, we report the generation of mouse models with the severe neuronopathic form of GD. To circumvent the lethal skin phenotype observed in several of the previous GCase-deficient animals, we genetically engineered a mouse model with strong reduction in GCase activity in all tissues except the skin. These mice exhibit rapid motor dysfunction associated with severe neurodegeneration and apoptotic cell death within the brain, reminiscent of neuronopathic GD. In addition, we have created a second mouse model, in which GCase deficiency is restricted to neural and glial cell progenitors and progeny. These mice develop similar pathology as the first mouse model, but with a delayed onset and slower disease progression, which indicates that GCase deficiency within microglial cells that are of hematopoietic origin is not the primary determinant of the CNS pathology. These findings also demonstrate that normal microglial cells cannot rescue this neurodegenerative disease. These mouse models have significant implications for the development of therapy for patients with neuronopathic GD. PMID:17954912

  2. Antileukemic Efficacy of Continuous vs Discontinuous Dexamethasone in Murine Models of Acute Lymphoblastic Leukemia

    PubMed Central

    Ramsey, Laura B.; Janke, Laura J.; Payton, Monique A.; Cai, Xiangjun; Paugh, Steven W.; Karol, Seth E.; Kamdem, Landry Kamdem; Cheng, Cheng; Williams, Richard T.; Jeha, Sima; Pui, Ching-Hon; Evans, William E.; Relling, Mary V.

    2015-01-01

    Osteonecrosis is one of the most common, serious, toxicities resulting from the treatment of acute lymphoblastic leukemia. In recent years, pediatric acute lymphoblastic leukemia clinical trials have used discontinuous rather than continuous dosing of dexamethasone in an effort to reduce the incidence of osteonecrosis. However, it is not known whether discontinuous dosing would compromise antileukemic efficacy of glucocorticoids. Therefore, we tested the efficacy of discontinuous dexamethasone against continuous dexamethasone in murine models bearing human acute lymphoblastic leukemia xenografts (n = 8 patient samples) or murine BCR-ABL+ acute lymphoblastic leukemia. Plasma dexamethasone concentrations (7.9 to 212 nM) were similar to those achieved in children with acute lymphoblastic leukemia using conventional dosages. The median leukemia-free survival ranged from 16 to 59 days; dexamethasone prolonged survival from a median of 4 to 129 days in all seven dexamethasone-sensitive acute lymphoblastic leukemias. In the majority of cases (7 of 8 xenografts and the murine BCR-ABL model) we demonstrated equal efficacy of the two dexamethasone dosing regimens; whereas for one acute lymphoblastic leukemia sample, the discontinuous regimen yielded inferior antileukemic efficacy (log-rank p = 0.002). Our results support the clinical practice of using discontinuous rather than continuous dexamethasone dosing in patients with acute lymphoblastic leukemia. PMID:26252865

  3. Antileukemic Efficacy of Continuous vs Discontinuous Dexamethasone in Murine Models of Acute Lymphoblastic Leukemia.

    PubMed

    Ramsey, Laura B; Janke, Laura J; Payton, Monique A; Cai, Xiangjun; Paugh, Steven W; Karol, Seth E; Kamdem Kamdem, Landry; Cheng, Cheng; Williams, Richard T; Jeha, Sima; Pui, Ching-Hon; Evans, William E; Relling, Mary V

    2015-01-01

    Osteonecrosis is one of the most common, serious, toxicities resulting from the treatment of acute lymphoblastic leukemia. In recent years, pediatric acute lymphoblastic leukemia clinical trials have used discontinuous rather than continuous dosing of dexamethasone in an effort to reduce the incidence of osteonecrosis. However, it is not known whether discontinuous dosing would compromise antileukemic efficacy of glucocorticoids. Therefore, we tested the efficacy of discontinuous dexamethasone against continuous dexamethasone in murine models bearing human acute lymphoblastic leukemia xenografts (n = 8 patient samples) or murine BCR-ABL+ acute lymphoblastic leukemia. Plasma dexamethasone concentrations (7.9 to 212 nM) were similar to those achieved in children with acute lymphoblastic leukemia using conventional dosages. The median leukemia-free survival ranged from 16 to 59 days; dexamethasone prolonged survival from a median of 4 to 129 days in all seven dexamethasone-sensitive acute lymphoblastic leukemias. In the majority of cases (7 of 8 xenografts and the murine BCR-ABL model) we demonstrated equal efficacy of the two dexamethasone dosing regimens; whereas for one acute lymphoblastic leukemia sample, the discontinuous regimen yielded inferior antileukemic efficacy (log-rank p = 0.002). Our results support the clinical practice of using discontinuous rather than continuous dexamethasone dosing in patients with acute lymphoblastic leukemia.

  4. Antidepressant Effects of Mallotus oppositifolius in Acute Murine Models

    PubMed Central

    Kukuia, Kennedy K. E.; Mante, Priscilla K.; Ameyaw, Elvis O.; Adongo, Donatus W.

    2014-01-01

    Objective. Hydroalcoholic extract of leaves of Mallotus oppositifolius (MOE), a plant used for CNS conditions in Ghana, was investigated for acute antidepressant effects in the forced swimming (FST) and tail suspension tests (TST). Results. In both FST and TST, MOE (10, 30, and 100 mg kg−1) significantly decreased immobility periods and frequencies. A 3-day pretreatment with 200 mg kg−1, i.p., para-chlorophenylalanine (PCPA), a tryptophan hydroxylase inhibitor, reversed the decline in immobility and the increase of swimming score induced by MOE in the modified FST. Pretreatment with reserpine alone (1 mg kg−1), α-methyldopa alone (400 mg kg−1, i.p.), or a combination of both drugs failed to reverse the decline in immobility or the increase in swimming score caused by the extract in the modified FST. The extract potentiated the frequency of head twitch responses induced by 5-hydroxytryptamine. Pretreatment with d-serine (600 mg kg−1, i.p.), glycine/NMDA agonist, abolished the behavioural effects of MOE while d-cycloserine (2.5 mg kg−1, i.p.), a glycine/NMDA partial agonist, potentiated it in both TST and modified FST. Conclusion. The extract exhibited antidepressant effects in mice which is mediated by enhancement of serotoninergic neurotransmission and inhibition of glycine/NMDA receptor activation. PMID:25045543

  5. Schistosoma mansoni: a diagnostic approach to detect acute schistosomiasis infection in a murine model by PCR.

    PubMed

    Sandoval, Nidia; Siles-Lucas, Mar; Lopez Aban, Julio; Pérez-Arellano, José Luis; Gárate, Teresa; Muro, Antonio

    2006-10-01

    Schistosomiasis represents an increasing problem in non-endemic areas, due to the growing number of immigrants and to tourists contracting this disease in "off-the-beaten-track" tourism. Acute schistosomiasis is not diagnosed early due to the lack of diagnostic tools that are sufficiently sensitive enough to detect the parasite during the first weeks of infection. We have developed a diagnostic approach based on the detection of parasite DNA by polymerase chain reaction (PCR) in urine, comparing the performance of this new approach with the two currently used schistosomiasis diagnostic tools (Kato-Katz and ELISA) and the PCR in stool samples. This comparison was done in a Schistosoma mansoni murine experimental model, which permits follow up of the parasite from the acute to the chronic stage of infection. Our results suggest that this new PCR-based approach could be useful for the detection of acute schistosomiasis in easy-to-handle clinical samples such the urine.

  6. Divergent effects of RIP1 or RIP3 blockade in murine models of acute liver injury.

    PubMed

    Deutsch, M; Graffeo, C S; Rokosh, R; Pansari, M; Ochi, A; Levie, E M; Van Heerden, E; Tippens, D M; Greco, S; Barilla, R; Tomkötter, L; Zambirinis, C P; Avanzi, N; Gulati, R; Pachter, H L; Torres-Hernandez, A; Eisenthal, A; Daley, D; Miller, G

    2015-05-07

    Necroptosis is a recently described Caspase 8-independent method of cell death that denotes organized cellular necrosis. The roles of RIP1 and RIP3 in mediating hepatocyte death from acute liver injury are incompletely defined. Effects of necroptosis blockade were studied by separately targeting RIP1 and RIP3 in diverse murine models of acute liver injury. Blockade of necroptosis had disparate effects on disease outcome depending on the precise etiology of liver injury and component of the necrosome targeted. In ConA-induced autoimmune hepatitis, RIP3 deletion was protective, whereas RIP1 inhibition exacerbated disease, accelerated animal death, and was associated with increased hepatocyte apoptosis. Conversely, in acetaminophen-mediated liver injury, blockade of either RIP1 or RIP3 was protective and was associated with lower NLRP3 inflammasome activation. Our work highlights the fact that diverse modes of acute liver injury have differing requirements for RIP1 and RIP3; moreover, within a single injury model, RIP1 and RIP3 blockade can have diametrically opposite effects on tissue damage, suggesting that interference with distinct components of the necrosome must be considered separately.

  7. Divergent effects of RIP1 or RIP3 blockade in murine models of acute liver injury

    PubMed Central

    Deutsch, M; Graffeo, C S; Rokosh, R; Pansari, M; Ochi, A; Levie, E M; Van Heerden, E; Tippens, D M; Greco, S; Barilla, R; Tomkötter, L; Zambirinis, C P; Avanzi, N; Gulati, R; Pachter, H L; Torres-Hernandez, A; Eisenthal, A; Daley, D; Miller, G

    2015-01-01

    Necroptosis is a recently described Caspase 8-independent method of cell death that denotes organized cellular necrosis. The roles of RIP1 and RIP3 in mediating hepatocyte death from acute liver injury are incompletely defined. Effects of necroptosis blockade were studied by separately targeting RIP1 and RIP3 in diverse murine models of acute liver injury. Blockade of necroptosis had disparate effects on disease outcome depending on the precise etiology of liver injury and component of the necrosome targeted. In ConA-induced autoimmune hepatitis, RIP3 deletion was protective, whereas RIP1 inhibition exacerbated disease, accelerated animal death, and was associated with increased hepatocyte apoptosis. Conversely, in acetaminophen-mediated liver injury, blockade of either RIP1 or RIP3 was protective and was associated with lower NLRP3 inflammasome activation. Our work highlights the fact that diverse modes of acute liver injury have differing requirements for RIP1 and RIP3; moreover, within a single injury model, RIP1 and RIP3 blockade can have diametrically opposite effects on tissue damage, suggesting that interference with distinct components of the necrosome must be considered separately. PMID:25950489

  8. In vivo imaging of bioluminescent Pseudomonas aeruginosa in an acute murine airway infection model.

    PubMed

    Munder, Antje; Wölbeling, Florian; Klockgether, Jens; Wiehlmann, Lutz; Tümmler, Burkhard

    2014-10-01

    Non-invasive bioluminescence imaging allows the analysis of infectious diseases in small animal models. In this study, an acute airway infection of C3H/HeN mice with luxCDABE transformed Pseudomonas aeruginosa TBCF10839 and an isogenic transposon mutant was followed by optical imaging in vivo. Using the disease-causing dose of 2.0 × 10(6) CFU of the cystic fibrosis airway isolate TBCF10839, subtle luminescence of the lungs was inconsistently visible for the first hour after infection. Conversely, using a 100-fold higher dose of the strongly virulence-attenuated transposon mutant, the robust signal of bioluminescent bacteria increased over 24 h. To monitor murine airway infections with P. aeruginosa in vivo by bioluminescence, one should select an attenuated mutant of a virulent strain or a wild type strain that naturally lacks virulence determinants and/or that has acquired a low virulence persister phenotype by patho-adaptive mutations.

  9. Effect of aging on airway remodeling and muscarinic receptors in a murine acute asthma model

    PubMed Central

    Kang, Ji Young; Lee, Sook Young; Rhee, Chin Kook; Kim, Seung Joon; Kwon, Soon Seog; Kim, Young Kyoon

    2013-01-01

    Background and objectives The influence of aging on the development of asthma has not been studied thoroughly. The aim of this study was to investigate age-related airway responses involving lung histology and expression of muscarinic receptors in a murine model of acute asthma. Methods Female BALB/c mice at the ages of 6 weeks and 6, 9, and 12 months were sensitized and challenged with ovalbumin (OVA) for 1 month (n = 8–12 per group). We analyzed inflammatory cells and T-helper (Th)2 cytokines in bronchoalveolar lavage (BAL) fluid and parameters of airway remodeling and expression of muscarinic receptors in lung tissue. Results Among the OVA groups, total cell and eosinophil numbers in BAL fluid were significantly higher in the older (6-, 9-, and 12-month-old) mice than in the young (6-week-old) mice. Interleukin (IL) 4 (IL-4) concentration increased, but IL-5 and IL-13 concentrations showed a decreased tendency, with age. IL-17 concentration tended to increase with age, which did not reach statistical significance. Periodic acid-Schiff (PAS) staining area, peribronchial collagen deposition, and area of α-smooth muscle staining were significantly higher in the 6-month older OVA group than in the young OVA group. The expression of the M3 and M2 muscarinic receptors tended to increase and decrease, respectively, with age. Conclusion The aged mice showed an active and unique pattern not only on airway inflammation, but also on airway remodeling and expression of the muscarinic receptors during the development of acute asthma compared with the young mice. These findings suggest that the aging process affects the pathogenesis of acute asthma and age-specific approach might be more appropriate for better asthma control in a clinical practice. PMID:24204129

  10. Protective effects of sirtuin 3 in a murine model of sepsis-induced acute kidney injury

    PubMed Central

    Zhao, Wen-Yu; Zhang, Lei; Sui, Ming-Xing; Zhu, You-Hua; Zeng, Li

    2016-01-01

    Acute kidney injury (AKI) is a rapid loss of kidney function characterized by damage to renal tubular cells driven by mitochondrial dysregulation and oxidative stress. Here, we used a murine caecal ligation and puncture (CLP) model of sepsis-induced AKI to study the role of sirtuin 3 (SIRT3), a NAD+ dependent deacetylase critical for the maintenance of mitochondrial viability, in AKI-related renal tubular cell damage and explored the underlying mechanisms. CLP induced alterations in kidney function and morphology were associated with SIRT3 downregulation, and SIRT3 deletion exacerbated CLP-induced kidney dysfunction, renal tubular cell injury and apoptosis, mitochondrial alterations, and ROS production in a knockout mouse model. SIRT3 deletion increased the CLP-induced upregulation of the NLRP3 inflammasome and apoptosis-associated speck-like protein, resulting in the activation of oxidative stress, increased production of the proinflammatory cytokines interleukin (IL)-1β and IL-18, and the enhancement of apoptosis, and these effects were reversed by antioxidant NAC. Our results suggest that SIRT3 plays a protective role against mitochondrial damage in the kidney by attenuating ROS production, inhibiting the NRLP3 inflammasome, attenuating oxidative stress, and downregulating IL-1β and IL-18. PMID:27620507

  11. Effect of Long-Term Antiorthostatic Suspension in a Murine Model of Acute Lung Injury

    PubMed Central

    Jang, Tae Young; Jung, Ah-Yeoun; Kim, Young Hyo

    2016-01-01

    Objectives Antiorthostatic suspension (AOS) is ground-based model of simulated microgravity. There is still no study about the effect of long-term microgravity on the clinical course of acute lung injury. We evaluated the effect of simulated microgravity using AOS in a murine model of acute lung injury by lipopolysaccharide (LPS). Methods Thirty BALB/c mice were used. During 4 weeks, mice were equally allocated to control (free movement), restraint (tail suspended, but hindlimbs not unloaded), and AOS group (hindlimb unloaded). After then, mice got intranasal challenge with LPS (20 mg/kg, 50 μL). We measured: weight gain before and after AOS, the number of inflammatory cells and titers of cytokines (interleukin [IL]-1β, IL-6, IL-10, tumor necrosis factor-α, and interferon-γ) in bronchoalveolar lavage (BAL) fluid, titer of myeloperoxidase (MPO) in serum and lung homogenate, and histopathologic examination of lung tissue. Results AOS group had significant weight loss compared to control and restraint group (P<0.001). AOS group also showed significantly decreased lymphocytes (P=0.023) compared to control group. In AOS group, titer for IL-1β in BAL fluid was significantly lower than restraint group (P=0.049). Titer for serum MPO was significantly decreased in AOS group compared to restraint group (P=0.004). However, there was no significant difference of MPO titers in lung tissue between groups. Histopathologic examination of lung tissue revealed no significant difference in the degree of pulmonary infiltration between restraint and AOS group. Conclusion In spite of modest anti-inflammatory effect, prolonged AOS caused no significant change in LPS-induced pulmonary inflammation. PMID:27334509

  12. Effectiveness of spiramycin in murine models of acute and chronic toxoplasmosis.

    PubMed

    Grujić, Jelica; Djurković-Djaković, Olgica; Nikolić, Aleksandra; Klun, Ivana; Bobić, Branko

    2005-03-01

    The antitoxoplasmic activity of spiramycin (SPI) was evaluated in murine models of infection using a type-1 (RH) or type-2 (Me49) strain of Toxoplasma gondii. In mice infected with 10(2) tachyzoites of the RH strain, treatment with 100 and 200 mg SPI/kg/day had only a limited effect; despite some dose-dependent prolongation of survival, it was unable to protect mice against death. In contrast, in acute infection induced by peroral inoculation of 10, but not 20, cysts of the Me49 strain, a 3-week course of 100 mg SPI/kg/day and a 4-week course of 200 mg/kg/day significantly enhanced protection and markedly reduced brain cyst burdens at 6 months post infection (p.i.). In chronic infection established by inoculation of 10 cysts 3 months previously, a 3-week course of 200 mg SPI/kg/day resulted in significantly decreased brain cyst burdens compared with controls, both 2 weeks after treatment cessation and by 6 months p.i. Although a favourable effect on chronic infection may be specific for mice, these data merit investigation, since they may have clinical ramifications.

  13. Establishing a murine model of the hematopoietic syndrome of the acute radiation syndrome.

    PubMed

    Plett, P Artur; Sampson, Carol H; Chua, Hui Lin; Joshi, Mandar; Booth, Catherine; Gough, Alec; Johnson, Cynthia S; Katz, Barry P; Farese, Ann M; Parker, Jeffrey; MacVittie, Thomas J; Orschell, Christie M

    2012-10-01

    The authors have developed a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome (H-ARS) for efficacy testing of medical countermeasures (MCM) against radiation according to the FDA Animal Rule. Ten- to 12-wk-old male and female C57BL/6 mice were exposed to the LD50/30-LD70/30 dose of total body irradiation (TBI, (137)Cs, 0.62-0.67 Gy min(-1)) in the morning hours when mice were determined to be most radiosensitive, and they were assessed for 30-d survival and mean survival time (MST). Antibiotics were delivered in drinking water on days 4-30 post-TBI at a concentration based on the amount of water that lethally-irradiated mice were found to consume. The fluoroquinolones, ciprofloxacin and levofloxacin, as well as the tetracycline doxycycline, and aminoglycoside neomycin, all significantly increased MST of decedent mice, while ciprofloxacin (p = 0.061) and doxycycline + neomycin (p = 0.005) showed at least some efficacy to increase 30-d survival. Blood sampling (30 μL/mouse every fifth day) was found to negatively impact 30-d survival. Histopathology of tissues harvested from nonmoribund mice showed expected effects of lethal irradiation, while moribund mice were largely septicemic with a preponderance of enteric organisms. Kinetics of loss and recovery of peripheral blood cells in untreated mice and those treated with two MCM, granulocyte-colony stimulating factor and Amifostine further characterized and validated this model for use in screening studies and pivotal efficacy studies of candidate MCM for licensure to treat irradiated individuals suffering from H-ARS.

  14. Establishing a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome

    PubMed Central

    Plett, P. Artur; Sampson, Carol H.; Chua, Hui Lin; Joshi, Mandar; Booth, Catherine; Gough, Alec; Johnson, Cynthia S.; Katz, Barry P.; Farese, Ann M.; Parker, Jeffrey; MacVittie, Thomas J.; Orschell, Christie M.

    2012-01-01

    We have developed a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome (H-ARS) for efficacy testing of medical countermeasures (MCM) against radiation according to the FDA Animal Rule. Ten to 12 week old male and female C57BL/6 mice were exposed to the LD50/30-LD70/30 dose of total body irradiation (TBI, 137Cs, 0.62-0.67 Gy min-1) in the morning hours when mice were determined to be most radiosensitive, and assessed for 30 day survival and mean survival time (MST). Antibiotics were delivered in the drinking water on days 4-30 post-TBI at a concentration based on the amount of water that lethally-irradiated mice were found to consume. The fluoroquinolones, ciprofloxacin and levofloxacin, and the tetracycline doxycycline and aminoglycoside neomycin, all significantly increased MST of decedent mice, while ciprofloxacin (p=0.061) and doxycycline + neomycin (p=0.005) showed at least some efficacy to increase 30 day survival. Blood sampling (30uL/mouse every 5th day) was found to negatively impact 30 day survival. Histopathology of tissues harvested from non-moribund mice showed expected effects of lethal irradiation, while moribund mice were largely septicemic with a preponderance of enteric organisms. Kinetics of loss and recovery of peripheral blood cells in untreated mice and those treated with two MCM, granulocyte-colony stimulating factor and Amifostine, further characterized and validated our model for use in screening studies and pivotal efficacy studies of candidate MCM for licensure to treat irradiated individuals suffering from H-ARS. PMID:22929467

  15. Toxoplasma gondii: the effect of fluconazole combined with sulfadiazine and pyrimethamine against acute toxoplasmosis in murine model.

    PubMed

    Martins-Duarte, Érica S; de Souza, Wanderley; Vommaro, Rossiane C

    2013-03-01

    Toxoplasma gondii is an important opportunistic pathogen for immunocompromised patients and responsible for toxoplasmic encephalitis, which is often lethal. Treatment for this infection is limited to a restricted therapeutic arsenal. In this work we tested the combination of fluconazole with the current treatment for acute toxoplasmosis on the murine model in vivo. Different experimental groups were treated with combinations of sulfadiazine plus pyrimethamine with fluconazole and pyrimethamine with fluconazole. Fluconazole is an important antifungal triazole used against others CNS related opportunistic pathogens such as Cryptococcus neoformans and Candida spp. The combinations of fluconazole plus sulfadiazine and pyrimethamine or fluconazole plus pyrimethamine were remarkably effective against T. gondii in vivo. The 10-day treatment with 10mg/kg/day of fluconazole combined with 40/1mg/kg/day sulfadiazine and pyrimethamine resulted in 93% survival of CF1 mice acutely infected with the highly virulent T. gondii RH strain, versus 36% of mice treated with just sulfadiazine and pyrimethamine. Combinations of fluconazole with lower doses of sulfadiazine and pyrimethamine or with just pyrimethamine were also efficient in reducing the mortality of mice compared with the treatment without fluconazole. The results obtained are promising for the treatment of human toxoplasmosis and point to the need to extend these studies to other murine models.

  16. Acute renal graft-versus-host disease in a murine model of allogeneic bone marrow transplantation.

    PubMed

    Schmid, Peter M; Bouazzaoui, Abdellatif; Schmid, Karin; Birner, Christoph; Schach, Christian; Maier, Lars S; Holler, Ernst; Endemann, Dierk H

    2017-03-23

    Acute kidney injury (AKI) is a very common complication after allogeneic bone marrow transplantation (BMT) and associated with poor prognosis. Generally kidneys are assumed to be no direct target of Graft-versus-Host Disease (GvHD), and renal impairment is often attributed to several other factors occurring in the early phase after BMT. Our study aimed to prove the existence of renal GvHD in a fully MHC-mismatched model of BALB/c mice conditioned and transplanted according to two different intensity protocols. Syngeneically transplanted and untreated animals served as controls. 4 weeks after transplantation, allogeneic animals developed acute GvHD that was more pronounced in the high-intensity protocol (HIP) group than in the low-intensity protocol (LIP) group. Urea and creatinine as classic serum markers of renal function could not verify renal impairment 4 weeks after BMT. Creatinine levels were even reduced as a result of catabolic metabolism and loss of muscle mass due to acute GvHD. Proteinuria, albuminuria, and urinary N-acetyl-beta-Dglucosaminidase (NAG) levels were measured as additional renal markers before and after transplantation. Albuminuria and NAG were only significantly increased after allogeneic transplantation, correlating with disease severity between HIP and LIP animals. Histological investigations of the kidneys showed renal infiltration of T-cells and macrophages with endarteriitis, interstitial nephritis, tubulitis, and glomerulitis. T-cells consisted of CD4+, CD8+, and FoxP3+ cells. Renal expression analysis of allogeneic animals showed increases in indoleamine-2,3 dioxygenase (IDO), different cytokines (TNFα, IFN-γ, IL-1α, IL2, IL-6, and IL-10), and adhesion molecules (ICAM-1 and VCAM-1), resembling findings from other tissues in acute GvHD. In summary, our study supports the entity of renal GvHD with histological features suggestive of cell-mediated renal injury. Albuminuria and urinary NAG levels may serve as early markers of renal

  17. In vivo T2* weighted MRI visualizes cardiac lesions in murine models of acute and chronic viral myocarditis

    PubMed Central

    Helluy, Xavier; Sauter, Martina; Ye, Yu-Xiang; Lykowsky, Gunthard; Kreutner, Jakob; Yilmaz, Ali; Jahns, Roland; Boivin, Valerie; Kandolf, Reinhard; Jakob, Peter M.; Hiller, Karl-Heinz; Klingel, Karin

    2017-01-01

    Objective Acute and chronic forms of myocarditis are mainly induced by virus infections. As a consequence of myocardial damage and inflammation dilated cardiomyopathy and chronic heart failure may develop. The gold standard for the diagnosis of myocarditis is endomyocardial biopsies which are required to determine the etiopathogenesis of cardiac inflammatory processes. However, new non-invasive MRI techniques hold great potential in visualizing cardiac non-ischemic inflammatory lesions at high spatial resolution, which could improve the investigation of the pathophysiology of viral myocarditis. Results Here we present the discovery of a novel endogenous T2* MRI contrast of myocardial lesions in murine models of acute and chronic CVB3 myocarditis. The evaluation of infected hearts ex vivo and in vivo by 3D T2w and T2*w MRI allowed direct localization of virus-induced myocardial lesions without any MRI tracer or contrast agent. T2*w weighted MRI is able to detect both small cardiac lesions of acute myocarditis and larger necrotic areas at later stages of chronic myocarditis, which was confirmed by spatial correlation of MRI hypointensity in myocardium with myocardial lesions histologically. Additional in vivo and ex vivo MRI analysis proved that the contrast mechanism was due to a strong paramagnetic tissue alteration in the vicinity of myocardial lesions, effectively pointing towards iron deposits as the primary contributor of contrast. The evaluation of the biological origin of the MR contrast by specific histological staining and transmission electron microscopy revealed that impaired iron metabolism primarily in mitochondria caused iron deposits within necrotic myocytes, which induces strong magnetic susceptibility in myocardial lesions and results in strong T2* contrast. Conclusion This T2*w MRI technique provides a fast and sensitive diagnostic tool to determine the patterns and the severity of acute and chronic enteroviral myocarditis and the precise

  18. Osteopontin Is Upregulated in Human and Murine Acute Schistosomiasis Mansoni

    PubMed Central

    Pereira, Thiago Almeida; Syn, Wing-Kin; Amâncio, Frederico Figueiredo; Cunha, Pedro Henrique Diniz; Caporali, Julia Fonseca Morais; Trindade, Guilherme Vaz de Melo; Santos, Elisângela Trindade; Souza, Márcia Maria; Andrade, Zilton Araújo; Witek, Rafal P; Secor, William Evan; Pereira, Fausto Edmundo Lima; Lambertucci, José Roberto; Diehl, Anna Mae

    2016-01-01

    Background Symptomatic acute schistosomiasis mansoni is a systemic hypersensitivity reaction against the migrating schistosomula and mature eggs after a primary infection. The mechanisms involved in the pathogenesis of acute schistosomiasis are not fully elucidated. Osteopontin has been implicated in granulomatous reactions and in acute hepatic injury. Our aims were to evaluate if osteopontin plays a role in acute Schistosoma mansoni infection in both human and experimentally infected mice and if circulating OPN levels could be a novel biomarker of this infection. Methodology/Principal Findings Serum/plasma osteopontin levels were measured by ELISA in patients with acute (n = 28), hepatointestinal (n = 26), hepatosplenic (n = 39) schistosomiasis and in uninfected controls (n = 21). Liver osteopontin was assessed by immunohistochemistry in needle biopsies of 5 patients. Sera and hepatic osteopontin were quantified in the murine model of schistosomiasis mansoni during acute (7 and 8 weeks post infection, n = 10) and chronic (30 weeks post infection, n = 8) phase. Circulating osteopontin levels are increased in patients with acute schistosomiasis (p = 0.0001). The highest levels of OPN were observed during the peak of clinical symptoms (7–11 weeks post infection), returning to baseline level once the granulomas were modulated (>12 weeks post infection). The plasma levels in acute schistosomiasis were even higher than in hepatosplenic patients. The murine model mirrored the human disease. Macrophages were the major source of OPN in human and murine acute schistosomiasis, while the ductular reaction maintains OPN production in hepatosplenic disease. Soluble egg antigens from S. mansoni induced OPN expression in primary human kupffer cells. Conclusions/Significance S. mansoni egg antigens induce the production of OPN by macrophages in the necrotic-exudative granulomas characteristic of acute schistosomiasis mansoni. Circulating OPN levels are upregulated in human and

  19. A novel laser-Doppler flowmetry assisted murine model of acute hindlimb ischemia-reperfusion for free flap research.

    PubMed

    Sönmez, Tolga Taha; Al-Sawaf, Othman; Brandacher, Gerald; Kanzler, Isabella; Tuchscheerer, Nancy; Tohidnezhad, Mersedeh; Kanatas, Anastasios; Knobe, Matthias; Fragoulis, Athanassios; Tolba, René; Mitchell, David; Pufe, Thomas; Wruck, Christoph Jan; Hölzle, Frank; Liehn, Elisa Anamaria

    2013-01-01

    Suitable and reproducible experimental models of translational research in reconstructive surgery that allow in-vivo investigation of diverse molecular and cellular mechanisms are still limited. To this end we created a novel murine model of acute hindlimb ischemia-reperfusion to mimic a microsurgical free flap procedure. Thirty-six C57BL6 mice (n = 6/group) were assigned to one control and five experimental groups (subject to 6, 12, 96, 120 hours and 14 days of reperfusion, respectively) following 4 hours of complete hindlimb ischemia. Ischemia and reperfusion were monitored using Laser-Doppler Flowmetry. Hindlimb tissue components (skin and muscle) were investigated using histopathology, quantitative immunohistochemistry and immunofluorescence. Despite massive initial tissue damage induced by ischemia-reperfusion injury, the structure of the skin component was restored after 96 hours. During the same time, muscle cells were replaced by young myotubes. In addition, initial neuromuscular dysfunction, edema and swelling resolved by day 4. After two weeks, no functional or neuromuscular deficits were detectable. Furthermore, upregulation of VEGF and tissue infiltration with CD34-positive stem cells led to new capillary formation, which peaked with significantly higher values after two weeks. These data indicate that our model is suitable to investigate cellular and molecular tissue alterations from ischemia-reperfusion such as occur during free flap procedures.

  20. Acute Inhibition of MEK Suppresses Congenital Melanocytic Nevus Syndrome in a Murine Model Driven by Activated NRAS and Wnt Signaling.

    PubMed

    Pawlikowski, Jeffrey S; Brock, Claire; Chen, Sheau-Chiann; Al-Olabi, Lara; Nixon, Colin; McGregor, Fiona; Paine, Simon; Chanudet, Estelle; Lambie, Wendy; Holmes, William M; Mullin, James M; Richmond, Ann; Wu, Hong; Blyth, Karen; King, Ayala; Kinsler, Veronica A; Adams, Peter D

    2015-08-01

    Congenital melanocytic nevus (CMN) syndrome is the association of pigmented melanocytic nevi with extra-cutaneous features, classically melanotic cells within the central nervous system, most frequently caused by a mutation of NRAS codon 61. This condition is currently untreatable and carries a significant risk of melanoma within the skin, brain, or leptomeninges. We have previously proposed a key role for Wnt signaling in the formation of melanocytic nevi, suggesting that activated Wnt signaling may be synergistic with activated NRAS in the pathogenesis of CMN syndrome. Some familial pre-disposition suggests a germ-line contribution to CMN syndrome, as does variability of neurological phenotypes in individuals with similar cutaneous phenotypes. Accordingly, we performed exome sequencing of germ-line DNA from patients with CMN to reveal rare or undescribed Wnt-signaling alterations. A murine model harboring activated NRAS(Q61K) and Wnt signaling in melanocytes exhibited striking features of CMN syndrome, in particular neurological involvement. In the first model of treatment for this condition, these congenital, and previously assumed permanent, features were profoundly suppressed by acute post-natal treatment with a MEK inhibitor. These data suggest that activated NRAS and aberrant Wnt signaling conspire to drive CMN syndrome. Post-natal MEK inhibition is a potential candidate therapy for patients with this debilitating condition.

  1. The effect of intra-articular vanilloid receptor agonists on pain behavior measures in a murine model of acute monoarthritis

    PubMed Central

    Abdullah, Mishal; Mahowald, Maren L; Frizelle, Sandra P; Dorman, Christopher W; Funkenbusch, Sonia C; Krug, Hollis E

    2016-01-01

    Arthritis is the most common cause of disability in the US, and the primary manifestation of arthritis is joint pain that leads to progressive physical limitation, disability, morbidity, and increased health care utilization. Capsaicin (CAP) is a vanilloid agonist that causes substance P depletion by interacting with vanilloid receptor transient receptor potential V1 on small unmyelinated C fibers. It has been used topically for analgesia in osteoarthritis with variable success. Resiniferatoxin (RTX) is an ultra potent CAP analog. The aim of this study was to measure the analgesic effects of intra-articular (IA) administration of CAP and RTX in experimental acute inflammatory arthritis in mice. Evoked pain score (EPS) and a dynamic weight bearing (DWB) device were used to measure nociceptive behaviors in a murine model of acute inflammatory monoarthritis. A total of 56 C57B16 male mice underwent EPS and DWB testing – 24 nonarthritic controls and 32 mice with carrageenan-induced arthritis. The effects of pretreatment with 0.1% CAP, 0.0003% RTX, or 0.001% RTX were measured. Nociception was reproducibly demonstrated by increased EPS and reduced DWB measures in the affected limb of arthritic mice. Pretreatment with 0.001% RTX resulted in statistically significant improvement in EPS and DWB measures when compared with those observed in carrageenan-induced arthritis animals. Pretreatment with IA 0.0003% RTX and IA 0.01% CAP resulted in improvement in some but not all of these measures. The remaining 24 mice underwent evaluation following treatment with 0.1% CAP, 0.0003% RTX, or 0.001% RTX, and the results obtained were similar to that of naïve, nonarthritic mice. PMID:27574462

  2. Long-term hematopoietic stem cell damage in a murine model of the hematopoietic syndrome of the acute radiation syndrome.

    PubMed

    Chua, Hui Lin; Plett, P Artur; Sampson, Carol H; Joshi, Mandar; Tabbey, Rebeka; Katz, Barry P; MacVittie, Thomas J; Orschell, Christie M

    2012-10-01

    Residual bone marrow damage (RBMD) persists for years following exposure to radiation and is believed to be due to decreased self-renewal potential of radiation-damaged hematopoietic stem cells (HSC). Current literature has examined primarily sublethal doses of radiation and time points within a few months of exposure. In this study, the authors examined RBMD in mice surviving lethal doses of total body ionizing irradiation (TBI) in a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome (H-ARS). Survivors were analyzed at various time points up to 19 mo post-TBI for hematopoietic function. The competitive bone marrow (BM) repopulating potential of 150 purified c-Kit+ Sca-1+ lineage- CD150+ cells (KSLCD150+) remained severely deficient throughout the study compared to KSLCD150+ cells from non-TBI age-matched controls. The minimal engraftment from these TBI HSCs is predominantly myeloid, with minimal production of lymphocytes both in vitro and in vivo. All classes of blood cells as well as BM cellularity were significantly decreased in TBI mice, especially at later time points as mice aged. Primitive BM hematopoietic cells (KSLCD150+) displayed significantly increased cell cycling in TBI mice at all time points, which may be a physiological attempt to maintain HSC numbers in the post-irradiation state. Taken together, these data suggest that the increased cycling among primitive hematopoietic cells in survivors of lethal radiation may contribute to long-term HSC exhaustion and subsequent RBMD, exacerbated by the added insult of aging at later time points.

  3. Impact of acute undernutrition on growth, ileal morphology and nutrient transport in a murine model

    PubMed Central

    Sampaio, I.C.; Medeiros, P.H.Q.S.; Rodrigues, F.A.P.; Cavalcante, P.A.; Ribeiro, S.A.; Oliveira, J.S.; Prata, M.M.G.; Costa, D.V.S.; Fonseca, S.G.C.; Guedes, M.M.; Soares, A.M.; Brito, G.A.C.; Havt, A.; Moore, S.R.; Lima, A.A.M.

    2016-01-01

    Undernutrition represents a major public health challenge for middle- and low-income countries. This study aimed to evaluate whether a multideficient Northeast Brazil regional basic diet (RBD) induces acute morphological and functional changes in the ileum of mice. Swiss mice (∼25 g) were allocated into two groups: i) control mice were fed a standard diet and II) undernourished mice were fed the RBD. After 7 days, mice were killed and the ileum collected for evaluation of electrophysiological parameters (Ussing chambers), transcription (RT-qPCR) and protein expression (western blotting) of intestinal transporters and tight junctions. Body weight gain was significantly decreased in the undernourished group, which also showed decreased crypt depth but no alterations in villus height. Electrophysiology measurements showed a reduced basal short circuit current (I sc) in the undernourished group, with no differences in transepithelial resistance. Specific substrate-evoked I sc related to affinity and efficacy (glutamine and alanyl-glutamine) were not different between groups, except for the maximum I sc (efficacy) induced by glucose. Transcription of Sglt1 and Pept1 was significantly higher in the undernourished group, while SN-2 transcription was decreased. No changes were found in transcription of CAT-1 and CFTR, while claudin-2 and occludin transcriptions were significantly increased in the undernourished group. Despite mRNA changes, SGLT-1, PEPT-1, claudin-2 and occludin protein expression showed no difference between groups. These results demonstrate early effects of the RBD on mice, which include reduced body weight and crypt depth in the absence of significant alterations to villus morphology, intestinal transporters and tight junction expression. PMID:27737316

  4. Cannabidiol, a non-psychotropic plant-derived cannabinoid, decreases inflammation in a murine model of acute lung injury: role for the adenosine A(2A) receptor.

    PubMed

    Ribeiro, Alison; Ferraz-de-Paula, Viviane; Pinheiro, Milena L; Vitoretti, Luana B; Mariano-Souza, Domenica P; Quinteiro-Filho, Wanderley M; Akamine, Adriana T; Almeida, Vinícius I; Quevedo, João; Dal-Pizzol, Felipe; Hallak, Jaime E; Zuardi, Antônio W; Crippa, José A; Palermo-Neto, João

    2012-03-05

    Acute lung injury is an inflammatory condition for which treatment is mainly supportive because effective therapies have not been developed. Cannabidiol, a non-psychotropic cannabinoid component of marijuana (Cannabis sativa), has potent immunosuppressive and anti-inflammatory properties. Therefore, we investigated the possible anti-inflammatory effect of cannabidiol in a murine model of acute lung injury. Analysis of total inflammatory cells and differential in bronchoalveolar lavage fluid was used to characterize leukocyte migration into the lungs; myeloperoxidase activity of lung tissue and albumin concentration in the bronchoalveolar lavage fluid were analyzed by colorimetric assays; cytokine/chemokine production in the bronchoalveolar lavage fluid was also analyzed by Cytometric Bead Arrays and Enzyme-Linked Immunosorbent Assay (ELISA). A single dose of cannabidiol (20mg/kg) administered prior to the induction of LPS (lipopolysaccharide)-induced acute lung injury decreases leukocyte (specifically neutrophil) migration into the lungs, albumin concentration in the bronchoalveolar lavage fluid, myeloperoxidase activity in the lung tissue, and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) 1, 2, and 4days after the induction of LPS-induced acute lung injury. Additionally, adenosine A(2A) receptor is involved in the anti-inflammatory effects of cannabidiol on LPS-induced acute lung injury because ZM241385 (4-(2-[7-Amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol) (a highly selective antagonist of adenosine A(2A) receptor) abrogated all of the anti-inflammatory effects of cannabidiol previously described. Thus, we show that cannabidiol has anti-inflammatory effects in a murine model of acute lung injury and that this effect is most likely associated with an increase in the extracellular adenosine offer and signaling through adenosine A(2A) receptor.

  5. Trametes versicolor Protein YZP Activates Regulatory B Lymphocytes – Gene Identification through De Novo Assembly and Function Analysis in a Murine Acute Colitis Model

    PubMed Central

    Kuan, Yen-Chou; Wu, Ying-Jou; Hung, Chih-Liang; Sheu, Fuu

    2013-01-01

    Background Trametes versicolor (Yun-Zhi) is a medicinal fungus used as a chemotherapy co-treatment to enhance anti-tumor immunity. Although the efficacies of T. versicolor extracts have been documented, the active ingredients and mechanisms underlying the actions of these extracts remain uncharacterized. Results We purified a new protein, YZP, from the fruiting bodies of T. versicolor and identified the gene encoding YZP using RNA-seq and de novo assembly technologies. YZP is a 12-kDa non-glycosylated protein comprising 139 amino acids, including an 18-amino acids signal peptide. YZP induced a greater than 60-fold increase in IL-10 secretion in mice B lymphocytes; moreover, YZP specifically triggered the differentiation of CD1d+ B cells into IL-10-producing regulatory B cells (Bregs) and enhanced the expression of CD1d. YZP-induced B cells suppressed approximately 40% of the LPS-activated macrophage production of inflammatory cytokines in a mixed leukocyte reaction and significantly alleviated the disease activity and colonic inflammation in a DSS-induced acute colitis murine model. Furthermore, YZP activated Breg function via interaction with TLR2 and TLR4 and up-regulation of the TLR-mediated signaling pathway. Conclusions We purified a novel Breg-stimulating protein, YZP, from T. versicolor and developed an advanced approach combining RNA-seq and de novo assembly technologies.to clone its gene. We demonstrated that YZP activated CD1d+ Breg differentiation through TLR2/4-mediated signaling pathway, and the YZP-stimulated B cells exhibited anti-inflammatory efficacies in vitro and in murine acute colitis models. PMID:24019869

  6. DELAYED EFFECTS OF ACUTE RADIATION EXPOSURE IN A MURINE MODEL OF THE H-ARS: MULTIPLE-ORGAN INJURY CONSEQUENT TO <10 GY TOTAL BODY IRRADIATION

    PubMed Central

    Unthank, Joseph L.; Miller, Steven J.; Quickery, Ariel K.; Ferguson, Ethan L.; Wang, Meijing; Sampson, Carol H.; Chua, Hui Lin; DiStasi, Matthew R.; Feng, Hailin; Fisher, Alexa; Katz, Barry P.; Plett, P. Artur; Sandusky, George E.; Sellamuthu, Rajendran; Vemula, Sasidhar; Cohen, Eric P.; MacVittie, Thomas J.; Orschell, Christie M.

    2015-01-01

    The threat of radiation exposure from warfare or radiation accidents raises the need for appropriate animal models to study the acute and chronic effects of high dose rate radiation exposure. The goal of this study was to assess the late development of fibrosis in multiple organs (kidney, heart, and lung) in survivors of the C57BL/6 mouse model of the hematopoietic-acute radiation syndrome (H-ARS). Separate groups of mice for histological and functional studies were exposed to a single uniform total body dose between 8.53 and 8.72 Gy of gamma radiation from a 137Cs radiation source and studied 1–21 months later. Blood urea nitrogen levels were elevated significantly in the irradiated mice at 9 and 21 mo (from ~22 to 34 ± 3.8 and 69±6.0 mg/dl, p<0.01 vs non-irradiated controls) and correlated with glomerosclerosis (29±1.8% vs 64±9.7% of total glomeruli, p<0.01 vs non-irradiated controls). Glomerular tubularization and hypertrophy and tubular atrophy were also observed at 21 mo post-total body irradiation (TBI). An increase in interstitial, perivascular, pericardial and peri-bronchial fibrosis/collagen deposition was observed from ~9–21 mo post-TBI in kidney, heart and lung of irradiated mice relative to age-matched controls. Echocardiography suggested decreased ventricular volumes with a compensatory increase in left ventricular ejection fraction. The results indicate that significant delayed effects of acute radiation exposure occur in kidney, heart, and lung in survivors of the murine H-ARS TBI model which mirrors pathology detected in larger species and humans at higher radiation doses focused on specific organs. PMID:26425910

  7. Delayed Effects of Acute Radiation Exposure in a Murine Model of the H-ARS: Multiple-Organ Injury Consequent to <10 Gy Total Body Irradiation.

    PubMed

    Unthank, Joseph L; Miller, Steven J; Quickery, Ariel K; Ferguson, Ethan L; Wang, Meijing; Sampson, Carol H; Chua, Hui Lin; DiStasi, Matthew R; Feng, Hailin; Fisher, Alexa; Katz, Barry P; Plett, P Artur; Sandusky, George E; Sellamuthu, Rajendran; Vemula, Sasidhar; Cohen, Eric P; MacVittie, Thomas J; Orschell, Christie M

    2015-11-01

    The threat of radiation exposure from warfare or radiation accidents raises the need for appropriate animal models to study the acute and chronic effects of high dose rate radiation exposure. The goal of this study was to assess the late development of fibrosis in multiple organs (kidney, heart, and lung) in survivors of the C57BL/6 mouse model of the hematopoietic-acute radiation syndrome (H-ARS). Separate groups of mice for histological and functional studies were exposed to a single uniform total body dose between 8.53 and 8.72 Gy of gamma radiation from a Cs radiation source and studied 1-21 mo later. Blood urea nitrogen levels were elevated significantly in the irradiated mice at 9 and 21 mo (from ∼22 to 34 ± 3.8 and 69 ± 6.0 mg dL, p < 0.01 vs. non-irradiated controls) and correlated with glomerosclerosis (29 ± 1.8% vs. 64 ± 9.7% of total glomeruli, p < 0.01 vs. non-irradiated controls). Glomerular tubularization and hypertrophy and tubular atrophy were also observed at 21 mo post-total body irradiation (TBI). An increase in interstitial, perivascular, pericardial and peribronchial fibrosis/collagen deposition was observed from ∼9-21 mo post-TBI in kidney, heart, and lung of irradiated mice relative to age-matched controls. Echocardiography suggested decreased ventricular volumes with a compensatory increase in the left ventricular ejection fraction. The results indicate that significant delayed effects of acute radiation exposure occur in kidney, heart, and lung in survivors of the murine H-ARS TBI model, which mirrors pathology detected in larger species and humans at higher radiation doses focused on specific organs.

  8. A murine model of acute myeloid leukemia with Evi1 overexpression and autocrine stimulation by an intracellular form of GM-CSF in DA-3 cells.

    PubMed

    Cardona, Maria E; Simonson, Oscar E; Oprea, Iulian I; Moreno, Pedro M D; Silva-Lara, Maria F; Mohamed, Abdalla J; Christensson, Birger; Gahrton, Gösta; Dilber, M Sirac; Smith, C I Edvard; Arteaga, H Jose

    2016-01-01

    The poor treatment response of acute myeloid leukemia (AML) overexpressing high-risk oncogenes such as EVI1, demands specific animal models for new treatment evaluations. Evi1 is a common site of activating integrations in murine leukemia virus (MLV)-induced AML and in retroviral and lentiviral gene-modified HCS. Still, a model of overt AML induced by Evi1 has not been generated. Cell lines from MLV-induced AML are growth factor-dependent and non-transplantable. Hence, for the leukemia maintenance in the infected animals, a growth factor source such as chronic immune response has been suggested. We have investigated whether these leukemias are transplantable if provided with growth factors. We show that the Evi1(+)DA-3 cells modified to express an intracellular form of GM-CSF, acquired growth factor independence and transplantability and caused an overt leukemia in syngeneic hosts, without increasing serum GM-CSF levels. We propose this as a general approach for modeling different forms of high-risk human AML using similar cell lines.

  9. Metabolomics Investigation Reveals Metabolite Mediators Associated with Acute Lung Injury and Repair in a Murine Model of Influenza Pneumonia

    PubMed Central

    Cui, Liang; Zheng, Dahai; Lee, Yie Hou; Chan, Tze Khee; Kumar, Yadunanda; Ho, Wanxing Eugene; Chen, Jian Zhu; Tannenbaum, Steven R.; Ong, Choon Nam

    2016-01-01

    Influenza virus infection (IVI) can cause primary viral pneumonia, which may progress to acute lung injury (ALI) and respiratory failure with a potentially fatal outcome. At present, the interactions between host and influenza virus at molecular levels and the underlying mechanisms that give rise to IVI-induced ALI are poorly understood. We conducted a comprehensive mass spectrometry-based metabolic profiling of serum, lung tissue and bronchoalveolar lavage fluid (BALF) from a non-lethal mouse model with influenza A virus at 0, 6, 10, 14, 21 and 28 days post infection (dpi), representing the major stages of IVI. Distinct metabolite signatures were observed in mice sera, lung tissues and BALF, indicating the molecular differences between systematic and localized host responses to IVI. More than 100 differential metabolites were captured in mice sera, lung tissues and BALF, including purines, pyrimidines, acylcarnitines, fatty acids, amino acids, glucocorticoids, sphingolipids, phospholipids, etc. Many of these metabolites belonged to pulmonary surfactants, indicating IVI-induced aberrations of the pulmonary surfactant system might play an important role in the etiology of respiratory failure and repair. Our findings revealed dynamic host responses to IVI and various metabolic pathways linked to disease progression, and provided mechanistic insights into IVI-induced ALI and repair process. PMID:27188343

  10. Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia

    PubMed Central

    Maude, Shannon L.; Tasian, Sarah K.; Vincent, Tiffaney; Hall, Junior W.; Sheen, Cecilia; Roberts, Kathryn G.; Seif, Alix E.; Barrett, David M.; Chen, I-Ming; Collins, J. Racquel; Mullighan, Charles G.; Hunger, Stephen P.; Harvey, Richard C.; Willman, Cheryl L.; Fridman, Jordan S.; Loh, Mignon L.; Grupp, Stephan A.

    2012-01-01

    CRLF2 rearrangements, JAK1/2 point mutations, and JAK2 fusion genes have been identified in Philadelphia chromosome (Ph)–like acute lymphoblastic leukemia (ALL), a recently described subtype of pediatric high-risk B-precursor ALL (B-ALL) which exhibits a gene expression profile similar to Ph-positive ALL and has a poor prognosis. Hyperactive JAK/STAT and PI3K/mammalian target of rapamycin (mTOR) signaling is common in this high-risk subset. We, therefore, investigated the efficacy of the JAK inhibitor ruxolitinib and the mTOR inhibitor rapamycin in xenograft models of 8 pediatric B-ALL cases with and without CRLF2 and JAK genomic lesions. Ruxolitinib treatment yielded significantly lower peripheral blast counts compared with vehicle (P < .05) in 6 of 8 human leukemia xenografts and lower splenic blast counts (P < .05) in 8 of 8 samples. Enhanced responses to ruxolitinib were observed in samples harboring JAK-activating lesions and higher levels of STAT5 phosphorylation. Rapamycin controlled leukemia burden in all 8 B-ALL samples. Survival analysis of 2 representative B-ALL xenografts demonstrated prolonged survival with rapamycin treatment compared with vehicle (P < .01). These data demonstrate preclinical in vivo efficacy of ruxolitinib and rapamycin in this high-risk B-ALL subtype, for which novel treatments are urgently needed, and highlight the therapeutic potential of targeted kinase inhibition in Ph-like ALL. PMID:22955920

  11. Effects of the mTOR inhibitor everolimus and the PI3K/mTOR inhibitor NVP-BEZ235 in murine acute lung injury models.

    PubMed

    Üstün, Sevdican; Lassnig, Caroline; Preitschopf, Andrea; Mikula, Mario; Müller, Mathias; Hengstschläger, Markus; Weichhart, Thomas

    2015-09-01

    The mammalian target of rapamycin (mTOR) is a key signaling kinase associated with a variety of cellular functions including the regulation of immunological and inflammatory responses. Classic mTOR inhibitors such as rapamycin or everolimus are commonly used in transplant as well as cancer patients to prevent transplant rejection or cancer progression, respectively. Noninfectious drug-induced pneumonitis is a frequent side effect in mTOR-inhibitor-treated patients. Therefore, we tested the effects of the mTOR inhibitor everolimus and the novel dual PI3K/mTOR inhibitor NVP-BEZ235 in a murine lipopolysaccharide (LPS)-induced acute lung injury model. C57BL/6 mice were treated with either everolimus or NVP-BEZ235 on two consecutive days prior to intratracheal administration of LPS. LPS administration induced a significant increase in total cell, neutrophil and erythrocyte numbers in the bronchoalveolar lavage fluid. Histological examination revealed a serious lung injury as shown by interstitial edema, vascular congestion and mononuclear cell infiltration in these mice after 24h. Everolimus as well as NVP-BEZ235 did not noticeably affect overall histopathology of the lungs in the lung injury model. However, NVP-BEZ235 enhanced IL-6 and TNF-α expression after 24h. In contrast, everolimus did not affect IL-6 and TNF-α levels. Interestingly, both inhibitors reduced inflammatory cytokines in an LPS/oleic acid-induced lung injury model. In conclusion, the mTOR inhibitors did not worsen the overall histopathological severity, but they exerted distinct effects on proinflammatory cytokine expression in the lung depending on the lung injury model applied.

  12. Nasal IgA secretion in a murine model of acute stress. The possible role of catecholamines.

    PubMed

    Jarillo-Luna, Rosa Adriana; Rivera-Aguilar, Victor; Pacheco-Yépez, Judith; Godínez-Victoria, Marycarmen; Oros-Pantoja, Rigoberto; Miliar-García, Angel; Campos-Rodríguez, Rafael

    2015-01-15

    Stress stimuli affect the immune system of the mucosa, and in particular IgA secretion. It is well documented that intense psychological and physical stress can increase susceptibility to infection by diverse pathogens in the upper respiratory tract. Our workgroup reported that chronic stress caused by immobilization elicits a decrease in nasal IgA levels in mice. Here, we explore how acute stress (caused by 4h of immobilization) affects IgA secretion in the nasal mucosa, and the possible role of the sympathetic nervous system in this effect. Nine-week-old male CD1 mice were divided into four groups: control, chemical sympathectomy (with 6-OHDA) and treatment with nadolol (5mg/kg) or phentolamine (15mg/kg). All these groups were subdivided into stressed and unstressed animals. The parameters evaluated included plasma corticosterone and epinephrine (only in control groups), SIgA levels (by ELISA) and SIgA expression (by Western Blot) in nasal fluid, percentage of IgA+ plasma cells, and mRNA expression of heavy alpha chain, pIgR, TNFα and TGFβ in nasal mucosa. Acute stress reduced the percentage of IgA+ cells while increasing the levels of IgA, the two hormones, and the mRNA expression of heavy alpha chain, pIgR, TNFα and TGFβ, which resulted in greater synthesis and transport of IgA. The treatments with 6-OHDA and α- and β-adrenergic receptor blockers suggest that sympathetic innervation by both types of adrenergic receptors is important for the control of SIgA secretion in nasal mucosa during acute stress. The increase in this parameter depended on the cytokines involved in IgA synthesis and transport.

  13. Toxicity assessment of zinc oxide nanoparticles using sub-acute and sub-chronic murine inhalation models

    PubMed Central

    2014-01-01

    Background Although ZnO nanoparticles (NPs) are used in many commercial products and the potential for human exposure is increasing, few in vivo studies have addressed their possible toxic effects after inhalation. We sought to determine whether ZnO NPs induce pulmonary toxicity in mice following sub-acute or sub-chronic inhalation exposure to realistic exposure doses. Methods Mice (C57Bl/6) were exposed to well-characterized ZnO NPs (3.5 mg/m3, 4 hr/day) for 2 (sub-acute) or 13 (sub-chronic) weeks and necropsied immediately (0 wk) or 3 weeks (3 wks) post exposure. Toxicity was assessed by enumeration of total and differential cells, determination of total protein, lactate dehydrogenase activity and inflammatory cytokines in bronchoalveolar lavage (BAL) fluid as well as measurements of pulmonary mechanics. Generation of reactive oxygen species was assessed in the lungs. Lungs were evaluated for histopathologic changes and Zn content. Zn concentration in blood, liver, kidney, spleen, heart, brain and BAL fluid was measured. Results An elevated concentration of Zn2+ was detected in BAL fluid immediately after exposures, but returned to baseline levels 3 wks post exposure. Dissolution studies showed that ZnO NPs readily dissolved in artificial lysosomal fluid (pH 4.5), but formed aggregates and precipitates in artificial interstitial fluid (pH 7.4). Sub-acute exposure to ZnO NPs caused an increase of macrophages in BAL fluid and a moderate increase in IL-12(p40) and MIP-1α, but no other inflammatory or toxic responses were observed. Following both sub-acute and sub-chronic exposures, pulmonary mechanics were no different than sham-exposed animals. Conclusions Our ZnO NP inhalation studies showed minimal pulmonary inflammation, cytotoxicity or lung histopathologic changes. An elevated concentration of Zn in the lung and BAL fluid indicates dissolution of ZnO NPs in the respiratory system after inhalation. Exposure concentration, exposure mode and time post

  14. Bile Acid Signaling Is Involved in the Neurological Decline in a Murine Model of Acute Liver Failure

    PubMed Central

    McMillin, Matthew; Frampton, Gabriel; Quinn, Matthew; Ashfaq, Samir; de los Santos, Mario; Grant, Stephanie; DeMorrow, Sharon

    2017-01-01

    Hepatic encephalopathy is a serious neurological complication of liver failure. Serum bile acids are elevated after liver damage and may disrupt the blood-brain barrier and enter the brain. Our aim was to assess the role of serum bile acids in the neurological complications after acute liver failure. C57Bl/6 or cytochrome p450 7A1 knockout (Cyp7A1−/−) mice were fed a control, cholestyramine-containing, or bile acid–containing diet before azoxymethane (AOM)-induced acute liver failure. In parallel, mice were given an intracerebroventricular infusion of farnesoid X receptor (FXR) Vivo-morpholino before AOM injection. Liver damage, neurological decline, and molecular analyses of bile acid signaling were performed. Total bile acid levels were increased in the cortex of AOM-treated mice. Reducing serum bile acids via cholestyramine feeding or using Cyp7A1−/− mice reduced bile acid levels and delayed AOM-induced neurological decline, whereas cholic acid or deoxycholic acid feeding worsened AOM-induced neurological decline. The expression of bile acid signaling machinery apical sodium-dependent bile acid transporter, FXR, and small heterodimer partner increased in the frontal cortex, and blocking FXR signaling delayed AOM-induced neurological decline. In conclusion, circulating bile acids may play a pathological role during hepatic encephalopathy, although precisely how they dysregulate normal brain function is unknown. Strategies to minimize serum bile acid concentrations may reduce the severity of neurological complications associated with liver failure. PMID:26683664

  15. Carbohydrate-Binding Non-Peptidic Pradimicins for the Treatment of Acute Sleeping Sickness in Murine Models

    PubMed Central

    Castillo-Acosta, Víctor M.; Ruiz-Pérez, Luis M.; Reichardt, Niels C.; Igarashi, Yasuhiro; Liekens, Sandra; Balzarini, Jan

    2016-01-01

    Current treatments available for African sleeping sickness or human African trypanosomiasis (HAT) are limited, with poor efficacy and unacceptable safety profiles. Here, we report a new approach to address treatment of this disease based on the use of compounds that bind to parasite surface glycans leading to rapid killing of trypanosomes. Pradimicin and its derivatives are non-peptidic carbohydrate-binding agents that adhere to the carbohydrate moiety of the parasite surface glycoproteins inducing parasite lysis in vitro. Notably, pradimicin S has good pharmaceutical properties and enables cure of an acute form of the disease in mice. By inducing resistance in vitro we have established that the composition of the sugars attached to the variant surface glycoproteins are critical to the mode of action of pradimicins and play an important role in infectivity. The compounds identified represent a novel approach to develop drugs to treat HAT. PMID:27662652

  16. Acute cardiac support with intravenous milrinone promotes recovery from early brain injury in a murine model of severe subarachnoid hemorrhage.

    PubMed

    Mutoh, Tomoko; Mutoh, Tatsushi; Nakamura, Kazuhiro; Yamamoto, Yukiko; Tsuru, Yoshiharu; Tsubone, Hirokazu; Ishikawa, Tatsuya; Taki, Yasuyuki

    2016-12-23

    Early brain injury/ischemia (EBI) is a serious complication early after subarachnoid hemorrhage (SAH) that contributes to development of delayed cerebral ischemia (DCI). This study aimed to determine the role of inotropic cardiac support using milrinone (MIL) on restoring acute cerebral hypoperfusion attributable to EBI and improving outcomes after experimental SAH. Forty-three male C57BL/6 mice were assigned to either sham surgery (SAH-sham), SAH induced by endovascular perforation plus postconditioning with 2% isoflurane (Control), or SAH plus isoflurane combined with MIL with and without hypoxia-inducible factor inhibitor (HIF-I) pretreatment. Cardiac output (CO) during intravenous MIL infusion (0.25-0.75 μg/kg/min) between 1.5 and 2.5h after SAH induction was monitored with Doppler-echocardiography. MRI-continuous arterial spin labeling was used for quantitative CBF measurements. Neurobehavioral function was assessed daily by neurological score and open field test. DCI was analyzed 3 days later by determining infarction on MRI. Mild reduction of cardiac output (CO) and global cerebral blood flow (CBF) depression were notable early after SAH. MIL increased CO in a dose-dependent manner (P <0.001), which was accompanied by improved hypoperfusion, incidence of DCI and functional recovery than Control (P <0.05). The neuroprotective effects afforded by MIL or Control were attenuated by HIF inhibition (P <0.05). These results suggest that MIL improves acute hypoperfusion by its inotropic effect, leading to neurobehavioral improvement in mice after severe SAH, in which HIF may be acting as a critical mediator. This article is protected by copyright. All rights reserved.

  17. The Reg3α (HIP/PAP) Lectin Suppresses Extracellular Oxidative Stress in a Murine Model of Acute Liver Failure

    PubMed Central

    Moniaux, Nicolas; Darnaud, Marion; Garbin, Kévin; Dos Santos, Alexandre; Guettier, Catherine; Samuel, Didier; Amouyal, Gilles; Amouyal, Paul; Bréchot, Christian; Faivre, Jamila

    2015-01-01

    Background and Aims Acute liver failure (ALF) is a rapidly progressive heterogeneous illness with high mortality rate and no widely accessible cure. A promising drug candidate according to previous preclinical studies is the Reg3α (or HIP/PAP) lectin, which alleviates ALF through its free-radical scavenging activity. Here we study the therapeutic targets of Reg3α in order to gain information on the nature of the oxidative stress associated with ALF. Methods Primary hepatocytes stressed with the reactive oxygen species (ROS) inducers TNFα and H2O2 were incubated with a recombinant Reg3α protein. ALF was induced in C57BL/6J mice by an anti-CD95 antibody. Livers and primary hepatocytes were harvested for deoxycholate separation of cellular and extracellular fractions, immunostaining, immunoprecipitation and malondialdehyde assays. Fibrin deposition was studied by immunofluorescence in frozen liver explants from patients with ALF. Results Fibrin deposition occurs during experimental and clinical acute liver injuries. Reg3α bound the resulting transient fibrin network, accumulated in the inflammatory extracellular matrix (ECM), greatly reduced extracellular ROS levels, and improved cell viability. Hepatocyte treatment with ligands of death receptors, e.g. TNFα and Fas, resulted in a twofold increase of malondialdehyde (MDA) level in the deoxycholate-insoluble fractions. Reg3α treatment maintained MDA at a level similar to control cells and thereby increased hepatocyte survival by 35%. No antioxidant effect of Reg3α was noted in the deoxycholate-soluble fractions. Preventing fibrin network formation with heparin suppressed the prosurvival effect of Reg3α. Conclusions Reg3α is an ECM-targeted ROS scavenger that binds the fibrin scaffold resulting from hepatocyte death during ALF. ECM alteration is an important pathogenic factor of ALF and a relevant target for pharmacotherapy. PMID:25938566

  18. Protective effects of imipramine in murine endotoxin-induced acute lung injury.

    PubMed

    Yang, Jin; Qu, Jie-ming; Summah, Hanssa; Zhang, Jin; Zhu, Ying-gang; Jiang, Hong-ni

    2010-07-25

    The tricyclic antidepressant imipramine has recently emerged as a cytoprotective agent, exerting beneficial effects in inflammatory tissue injury. The present study aimed to investigate therapeutic effects of imipramine in murine model of endotoxin-induced acute lung injury. Mice were administrated intraperitoneally with LPS (lipopolysaccharide) from Escherichia coli or vehicle. Imipramine was administrated intraperitoneally 30 min before LPS challenge. Pretreatment of mice with imipramine reduced lethality. Impramine also significantly attenuated lung inflammation, lung edema, MPO (myeloperoxidase) activity, lung tissue pathological changes and nuclear factor-kappaB DNA binding activity. The results of this study suggest that imipramine can exert protective effects in endotoxin-induced acute lung injury by suppressing nuclear factor-kappaB-mediated expression of inflammatory genes. Thus, imipramine could be a potential novel therapeutic agent for the treatment for acute lung injury.

  19. Evaluation of a Murine Single-Blood-Injection SAH Model

    PubMed Central

    Sommer, Clemens; Steiger, Hans-Jakob; Schneider, Toni; Hänggi, Daniel

    2014-01-01

    The molecular pathways underlying the pathogenesis after subarachnoid haemorrhage (SAH) are poorly understood and continue to be a matter of debate. A valid murine SAH injection model is not yet available but would be the prerequisite for further transgenic studies assessing the mechanisms following SAH. Using the murine single injection model, we examined the effects of SAH on regional cerebral blood flow (rCBF) in the somatosensory (S1) and cerebellar cortex, neuro-behavioural and morphological integrity and changes in quantitative electrocorticographic and electrocardiographic parameters. Micro CT imaging verified successful blood delivery into the cisterna magna. An acute impairment of rCBF was observed immediately after injection in the SAH and after 6, 12 and 24 hours in the S1 and 6 and 12 hours after SAH in the cerebellum. Injection of blood into the foramen magnum reduced telemetric recorded total ECoG power by an average of 65%. Spectral analysis of ECoGs revealed significantly increased absolute delta power, i.e., slowing, cortical depolarisations and changes in ripples and fast ripple oscillations 12 hours and 24 hours after SAH. Therefore, murine single-blood-injection SAH model is suitable for pathophysiological and further molecular analysis following SAH. PMID:25545775

  20. Complement component C5 deficiency reduces edema formation in murine ligation-induced acute pancreatitis.

    PubMed

    Merriam, L T; Webster, C; Joehl, R J

    1997-01-01

    The complement cascade is activated in humans and animals with acute pancreatitis. Activation of complement component C5 liberates C5a, C5a-desarg, and terminal complement complexes (TCCs) that increase capillary permeability, edema, and leukocyte chemotaxis at injured sites. Complement activation plays a major role in pathogenesis of capillary leak and edema formation in severe acute pancreatitis; however, the contribution of C5 (C5a/C5a-desarg, TCCs) has not been defined. Using He gene mutant mice lacking circulating C5, the role of C5 in ligation-induced acute pancreatitis was evaluated. We performed the following experiments: C5-sufficient (Hc1/Hc1) and C5-deficient (Hc0/Hc0) mice had bile and pancreatic ducts ligated. Sham-operated mice had ducts dissected but not ligated. Mice were killed at 4, 8, and 24 hr after bilepancreatic duct ligation. Serologic and morphologic evidences of acute pancreatitis were evaluated. Pancreatic edema was assessed using analysis of pancreatic water content, histologic edema score, and determination of wet weight ratio. After 4, 8, and 24 hr of bile-pancreatic duct ligation, hyperamylasemia and histologic changes of acute pancreatitis were observed in both C5-deficient and C5-sufficient mice. Edema developed in all mice with acute pancreatitis. However, when compared to C5-sufficient mice, mice deficient in C5 developed significantly less pancreatic edema at both 8 and 24 hr of bile-pancreatic duct ligation. This difference was not observed 4 hr after induction of acute pancreatitis. We conclude that C5 contributes to edema formation in murine ligation-induced acute pancreatitis. The presence of an early C5-independent phase, in conjunction with the observation of significant edema in mice deficient in C5, suggests there are other mediators of edema formation in this acute pancreatitis model.

  1. Casticin, an active compound isolated from Vitex Fructus, ameliorates the cigarette smoke-induced acute lung inflammatory response in a murine model.

    PubMed

    Lee, Hyeonhoon; Jung, Kyung-Hwa; Lee, Hangyul; Park, Soojin; Choi, Woosung; Bae, Hyunsu

    2015-10-01

    The aim of this study was to determine of the effect of casticin, as an anti-inflammatory agent, on an acute lung inflammation in vivo model established through exposure to cigarette smoke (CS). Casticin is a phytochemical from Vitex species such as Vitex rotundifolia and Vitex agnus-castus that was recently shown to exert an anti-inflammatory effect in vivo. To demonstrate the effects of casticin, C57BL/6 mice were whole-body exposed to mainstream CS or fresh air for two weeks and treated with 1, 2, and 10mg/kg casticin via an i.p. injection. Immune cell infiltrations and cytokine productions were assessed from bronchoalveolar lavage Fluid (BALF), and lung histological analysis was performed. Treatment with casticin was observed to significantly inhibit the numbers of total cells, neutrophils, macrophages, and lymphocytes and reduce the levels of proinflammatory cytokines and chemokines in the BALF. In addition, casticin significantly decreased the infiltration of peribronchial and perivascular inflammatory cells and the epithelium thickness. The results of this study indicate that casticin has significant effects on the lung inflammation induced by CS in a mouse model. According to these outcomes, casticin may have therapeutic potential in inflammatory lung diseases, such as chronic obstructive pulmonary disease (COPD).

  2. Irradiation Design for an Experimental Murine Model

    SciTech Connect

    Ballesteros-Zebadua, P.; Moreno-Jimenez, S.; Suarez-Campos, J. E.; Celis, M. A.; Larraga-Gutierrez, J. M.; Garcia-Garduno, O. A.; Rubio-Osornio, M. C.; Custodio-Ramirez, V.; Paz, C.

    2010-12-07

    In radiotherapy and stereotactic radiosurgery, small animal experimental models are frequently used, since there are still a lot of unsolved questions about the biological and biochemical effects of ionizing radiation. This work presents a method for small-animal brain radiotherapy compatible with a dedicated 6MV Linac. This rodent model is focused on the research of the inflammatory effects produced by ionizing radiation in the brain. In this work comparisons between Pencil Beam and Monte Carlo techniques, were used in order to evaluate accuracy of the calculated dose using a commercial planning system. Challenges in this murine model are discussed.

  3. Irradiation Design for an Experimental Murine Model

    NASA Astrophysics Data System (ADS)

    Ballesteros-Zebadúa, P.; Lárraga-Gutierrez, J. M.; García-Garduño, O. A.; Rubio-Osornio, M. C.; Custodio-Ramírez, V.; Moreno-Jimenez, S.; Suarez-Campos, J. E.; Paz, C.; Celis, M. A.

    2010-12-01

    In radiotherapy and stereotactic radiosurgery, small animal experimental models are frequently used, since there are still a lot of unsolved questions about the biological and biochemical effects of ionizing radiation. This work presents a method for small-animal brain radiotherapy compatible with a dedicated 6MV Linac. This rodent model is focused on the research of the inflammatory effects produced by ionizing radiation in the brain. In this work comparisons between Pencil Beam and Monte Carlo techniques, were used in order to evaluate accuracy of the calculated dose using a commercial planning system. Challenges in this murine model are discussed.

  4. Methods for Acute and Subacute Murine Hindlimb Ischemia

    PubMed Central

    Padgett, Michael E.; McCord, Timothy J.; McClung, Joseph M.; Kontos, Christopher D.

    2016-01-01

    Peripheral artery disease (PAD) is a leading cause of cardiovascular morbidity and mortality in developed countries, and animal models that reliably reproduce the human disease are necessary to develop new therapies for this disease. The mouse hindlimb ischemia model has been widely used for this purpose, but the standard practice of inducing acute limb ischemia by ligation of the femoral artery can result in substantial tissue necrosis, compromising investigators' ability to study the vascular and skeletal muscle tissue responses to ischemia. An alternative approach to femoral artery ligation is the induction of gradual femoral artery occlusion through the use of ameroid constrictors. When placed around the femoral artery in the same or different locations as the sites of femoral artery ligation, these devices occlude the artery over 1-3 days, resulting in more gradual, subacute ischemia. This results in less substantial skeletal muscle tissue necrosis, which may more closely mimic the responses seen in human PAD. Because genetic background influences outcomes in both the acute and subacute ischemia models, consideration of the mouse strain being studied is important in choosing the best model. This paper describes the proper procedure and anatomical placement of ligatures or ameroid constrictors on the mouse femoral artery to induce subacute or acute hindlimb ischemia in the mouse. PMID:27403963

  5. Murine Bioluminescent Hepatic Tumour Model

    PubMed Central

    Rajendran, Simon; Salwa, Slawomir; Gao, Xuefeng; Tabirca, Sabin; O'Hanlon, Deirdre; O'Sullivan, Gerald C.; Tangney, Mark

    2010-01-01

    This video describes the establishment of liver metastases in a mouse model that can be subsequently analysed by bioluminescent imaging. Tumour cells are administered specifically to the liver to induce a localised liver tumour, via mobilisation of the spleen and splitting into two, leaving intact the vascular pedicle for each half of the spleen. Lewis lung carcinoma cells that constitutively express the firefly luciferase gene (luc1) are inoculated into one hemi-spleen which is then resected 10 minutes later. The other hemi-spleen is left intact and returned to the abdomen. Liver tumour growth can be monitored by bioluminescence imaging using the IVIS whole body imaging system. Quantitative imaging of tumour growth using IVIS provides precise quantitation of viable tumour cells. Tumour cell death and necrosis due to drug treatment is indicated early by a reduction in the bioluminescent signal. This mouse model allows for investigating the mechanisms underlying metastatic tumour-cell survival and growth and can be used for the evaluation of therapeutics of liver metastasis. PMID:20689502

  6. Adoptive Transfer of Treg Cells Combined with Mesenchymal Stem Cells Facilitates Repopulation of Endogenous Treg Cells in a Murine Acute GVHD Model.

    PubMed

    Lee, Eun-Sol; Lim, Jung-Yeon; Im, Keon-Il; Kim, Nayoun; Nam, Young-Sun; Jeon, Young-Woo; Cho, Seok-Goo

    2015-01-01

    Therapeutic effects of combined cell therapy with mesenchymal stem cells (MSCs) and regulatory T cells (Treg cells) have recently been studied in acute graft-versus-host-disease (aGVHD) models. However, the underlying, seemingly synergistic mechanism behind combined cell therapy has not been determined. We investigated the origin of Foxp3+ Treg cells and interleukin 17 (IL-17+) cells in recipients following allogeneic bone marrow transplantation (allo-BMT) to identify the immunological effects of combined cell therapy. Treg cells were generated from eGFP-expressing C57BL/6 mice (Tregegfp cells) to distinguish the transferred Treg cells; recipients were then examined at different time points after BMT. Systemic infusion of MSCs and Treg cells improved survival and GVHD scores, effectively downregulating pro-inflammatory Th×and Th17 cells. These therapeutic effects of combined cell therapy resulted in an increased Foxp3+ Treg cell population. Compared to single cell therapy, adoptively transferred Tregegfp cells only showed prolonged survival in the combined cell therapy group on day 21 after allogeneic BMT. In addition, Foxp3+ Treg cells, generated endogenously from recipients, significantly increased. Significantly higher levels of Tregegfp cells were also detected in aGVHD target organs in the combined cell therapy group compared to the Treg cells group. Thus, our data indicate that MSCs may induce the long-term survival of transferred Treg cells, particularly in aGVHD target organs, and may increase the repopulation of endogenous Treg cells in recipients after BMT. Together, these results support the potential of combined cell therapy using MSCs and Treg cells for preventing aGVHD.

  7. Effect of Amblyomma maculatum (Acari: Ixodidae) Saliva on the Acute Cutaneous Immune Response to Rickettsia parkeri Infection in a Murine Model

    PubMed Central

    Banajee, K. H.; Verhoeve, V. I.; Harris, E. K.; Macaluso, K. R.

    2016-01-01

    Rickettsia parkeri Luckman (Rickettsiales: Rickettsiaceae) is a pathogenic spotted fever group Rickettsia transmitted by Amblyomma maculatum Koch (Acari: Ixodidae) in the United States. The acute innate immune response to this pathogen and the effect of tick feeding or salivary components on this response is largely unknown. We hypothesized that A. maculatum saliva enhances R. parkeri infection via downregulation of the acute cellular and cytokine immune response. C3H/HeN mice were intradermally inoculated with R. parkeri both with and without A. maculatum saliva. Flow cytometry and microscopic evaluation of inoculation site skin suspensions revealed that neutrophils and macrophages predominated at 6 and 24 h post R. parkeri inoculation, respectively. This cellular influx was significantly downregulated when A. maculatum saliva was inoculated along with R. parkeri. Inflammatory cytokines (interferon γ and interleukins 6 and 10) were significantly elevated after R. parkeri inoculation. However, cytokine concentration and rickettsial load were not significantly modified by A. maculatum saliva during the acute phase of infection. These results revealed that tick saliva inhibits the cutaneous cellular influx during the acute phase of rickettsial infection. Further study is needed to determine the overall impact of this effect on the establishment of rickettsiosis in the host and development of disease. PMID:27521760

  8. A non-hepatotropic parasite infection increases mortality in the acetaminophen-induced acute liver failure murine model: possible roles for IL-5 and IL-6

    PubMed Central

    De León-Nava, Marco A; Álvarez-Delgado, Carolina; Donis-Maturano, Luis; Hernández-Ruiz, Joselin; Manjarrez-Reyna, Aaron N; Cruz-Avilés, Edgar; Leon-Cabrera, Sonia; Morales-Montor, Jorge; Fragoso, José M; Escobedo, Galileo

    2016-01-01

    We evaluated the effects of a non-hepatotropic parasite infection (Taenia crassiceps) on the outcome of acetaminophen-induced acute liver failure in mice. Uninfected and T. crassiceps infected mice orally received either 300 mg/kg acetaminophen or water as vehicle (n = 5 per group). Survival analysis, hepatocyte necrosis, alanine aminotransferase (ALT) levels, CYP2E1 protein, interleukin (IL-) 5, and IL-6 were assessed for all groups. All infected mice died within 16 h after exposure to acetaminophen (Tc+APAP group), whereas only one-third of uninfected animals exposed to acetaminophen (APAP group) died. Uninfected (Control group) and infected (Tc group) mice that received the vehicle showed no liver damage. Tc+APAP mice exhibited massive liver necrosis characterised by marked balloning degeneration of hepatocytes and higher serum ALT compared to Control, Tc, and APAP animals. Liver tissue from Tc+APAP mice also displayed increased expression of CYP2E1 protein and higher mRNA and protein levels of IL-5 and IL-6 compared to the other groups. These findings suggest that non-hepatotropic parasite infections may increase mortality following acute liver failure by promoting hepatocyte necrosis via IL-5 and IL-6-dependent CYP2E1 overproduction. This study identifies new potential risk factors associated with severe acute liver failure in patients. PMID:27812602

  9. A non-hepatotropic parasite infection increases mortality in the acetaminophen-induced acute liver failure murine model: possible roles for IL-5 and IL-6.

    PubMed

    De León-Nava, Marco A; Álvarez-Delgado, Carolina; Donis-Maturano, Luis; Hernández-Ruiz, Joselin; Manjarrez-Reyna, Aaron N; Cruz-Avilés, Edgar; Leon-Cabrera, Sonia; Morales-Montor, Jorge; Fragoso, José M; Escobedo, Galileo

    2016-12-01

    We evaluated the effects of a non-hepatotropic parasite infection (Taenia crassiceps) on the outcome of acetaminophen-induced acute liver failure in mice. Uninfected and T. crassiceps infected mice orally received either 300 mg/kg acetaminophen or water as vehicle (n = 5 per group). Survival analysis, hepatocyte necrosis, alanine aminotransferase (ALT) levels, CYP2E1 protein, interleukin (IL-) 5, and IL-6 were assessed for all groups. All infected mice died within 16 h after exposure to acetaminophen (Tc+APAP group), whereas only one-third of uninfected animals exposed to acetaminophen (APAP group) died. Uninfected (Control group) and infected (Tc group) mice that received the vehicle showed no liver damage. Tc+APAP mice exhibited massive liver necrosis characterised by marked balloning degeneration of hepatocytes and higher serum ALT compared to Control, Tc, and APAP animals. Liver tissue from Tc+APAP mice also displayed increased expression of CYP2E1 protein and higher mRNA and protein levels of IL-5 and IL-6 compared to the other groups. These findings suggest that non-hepatotropic parasite infections may increase mortality following acute liver failure by promoting hepatocyte necrosis via IL-5 and IL-6-dependent CYP2E1 overproduction. This study identifies new potential risk factors associated with severe acute liver failure in patients.

  10. Exogenous IL-33 overcomes T cell tolerance in murine acute myeloid leukemia

    PubMed Central

    Qin, Lei; Dominguez, Donye; Chen, Siqi; Fan, Jie; Long, Alan; Zhang, Minghui; Fang, Deyu; Zhang, Yi; Kuzel, Timothy M.; Zhang, Bin

    2016-01-01

    Emerging studies suggest that dominant peripheral tolerance is a major mechanism of immune escape in disseminated leukemia. Using an established murine acute myeloid leukemia (AML) model, we here show that systemic administration of recombinant IL-33 dramatically inhibits the leukemia growth and prolongs the survival of leukemia-bearing mice in a CD8+ T cell dependent manner. Exogenous IL-33 treatment enhanced anti-leukemia activity by increasing the expansion and IFN-γ production of leukemia-reactive CD8+ T cells. Moreover, IL-33 promoted dendritic cell (DC) maturation and activation in favor of its cross presentation ability to evoke a vigorous anti-leukemia immune response. Finally, we found that the combination of PD-1 blockade with IL-33 further prolonged the survival, with half of the mice achieving complete regression. Our data establish a role of exogenous IL-33 in reversing T cell tolerance, and suggest its potential clinical implication into leukemia immunotherapy. PMID:27517629

  11. Acute Murine H5N1 Influenza A Encephalitis

    PubMed Central

    Bissel, Stephanie J; Giles, Brendan M; Wang, Guoji; Olevian, Dane C.; Ross, Ted M.; Wiley, Clayton A.

    2011-01-01

    Avian influenza A virus H5N1 has the proven capacity to infect humans through cross-species transmission, but to date efficient human-to-human transmission is limited. In natural avian hosts, animal models, and sporadic human outbreaks, H5N1 infection has been associated with neurological disease. We infected BALB/c mice intranasally with H5N1 influenza A/Viet Nam/1203/2004 to study the immune response during acute encephalitis. Using immunohistochemistry and in situ hybridization, we compared the time course of viral infection with activation of immunity. By 5 days post infection (DPI), mice had lost substantial body weight and required sacrifice by 7 DPI. H5N1 influenza was detected in the lung as early as 1 DPI, while infected neurons were not observed until 4 DPI. H5N1 infection of BALB/c mice developed into severe acute panencephalitis. Infected neurons lacked evidence of a perineuronal net and exhibited signs of apoptosis. While lung influenza infection was associated with an early type I interferon response followed by a reduction in viral burden concordant with appearance of IFN-γ, the CNS environment exhibited a blunted type I interferon response. PMID:21714828

  12. The future of murine sepsis and trauma research models

    PubMed Central

    Efron, Philip A.; Mohr, Alicia M.; Moore, Frederick A.; Moldawer, Lyle L.

    2015-01-01

    Recent comparisons of the murine and human transcriptome in health and disease have called into question the appropriateness of the use of murine models for human sepsis and trauma research. More specifically, researchers have debated the suitability of mouse models of severe inflammation that is intended for eventual translation to human patients. This mini-review outlines this recent research, as well as specifically defines the arguments for and against murine models of sepsis and trauma research based on these transcriptional studies. In addition, we review newer advancements in murine models of infection and injury and define what we envision as an evolving but viable future for murine studies of sepsis and trauma. PMID:26034205

  13. Post-exposure administration of diazepam combined with soluble epoxide hydrolase inhibition stops seizures and modulates neuroinflammation in a murine model of acute TETS intoxication

    SciTech Connect

    Vito, Stephen T.; Austin, Adam T.; Banks, Christopher N.; Inceoglu, Bora; Bruun, Donald A.; Zolkowska, Dorota; Tancredi, Daniel J.; Rogawski, Michael A.; Hammock, Bruce D.; Lein, Pamela J.

    2014-12-01

    Tetramethylenedisulfotetramine (TETS) is a potent convulsant poison for which there is currently no approved antidote. The convulsant action of TETS is thought to be mediated by inhibition of type A gamma-aminobutyric acid receptor (GABA{sub A}R) function. We, therefore, investigated the effects of post-exposure administration of diazepam, a GABA{sub A}R positive allosteric modulator, on seizure activity, death and neuroinflammation in adult male Swiss mice injected with a lethal dose of TETS (0.15 mg/kg, ip). Administration of a high dose of diazepam (5 mg/kg, ip) immediately following the second clonic seizure (approximately 20 min post-TETS injection) effectively prevented progression to tonic seizures and death. However, this treatment did not prevent persistent reactive astrogliosis and microglial activation, as determined by GFAP and Iba-1 immunoreactivity and microglial cell morphology. Inhibition of soluble epoxide hydrolase (sEH) has been shown to exert potent anti-inflammatory effects and to increase survival in mice intoxicated with other GABA{sub A}R antagonists. The sEH inhibitor TUPS (1 mg/kg, ip) administered immediately after the second clonic seizure did not protect TETS-intoxicated animals from tonic seizures or death. Combined administration of diazepam (5 mg/kg, ip) and TUPS (1 mg/kg, ip, starting 1 h after diazepam and repeated every 24 h) prevented TETS-induced lethality and influenced signs of neuroinflammation in some brain regions. Significantly decreased microglial activation and enhanced reactive astrogliosis were observed in the hippocampus, with no changes in the cortex. Combining an agent that targets specific anti-inflammatory mechanisms with a traditional antiseizure drug may enhance treatment outcome in TETS intoxication. - Highlights: • Acute TETS intoxication causes delayed and persistent neuroinflammation. • Diazepam given post-TETS prevents lethal tonic seizures but not neuroinflammation. • A soluble epoxide hydrolase

  14. Diet regulates liver autophagy differentially in murine acute Trypanosoma cruzi infection.

    PubMed

    Lizardo, Kezia; Almonte, Vanessa; Law, Calvin; Aiyyappan, Janeesh Plakkal; Cui, Min-Hui; Nagajyothi, Jyothi F

    2017-02-01

    Chagas disease is a tropical parasitic disease caused by the protozoan Trypanosoma cruzi, which affects about ten million people in its endemic regions of Latin America. After the initial acute stage of infection, 60-80% of infected individuals remain asymptomatic for several years to a lifetime; however, the rest develop the debilitating symptomatic stage, which affects the nervous system, digestive system, and heart. The challenges of Chagas disease have become global due to immigration. Despite well-documented dietary changes accompanying immigration, as well as a transition to a western style diet in the Chagas endemic regions, the role of host metabolism in the pathogenesis of Chagas disease remains underexplored. We have previously used a mouse model to show that host diet is a key factor regulating cardiomyopathy in Chagas disease. In this study, we investigated the effect of a high-fat diet on liver morphology and physiology, lipid metabolism, immune signaling, energy homeostasis, and stress responses in the murine model of acute T. cruzi infection. Our results indicate that in T. cruzi-infected mice, diet differentially regulates several liver processes, including autophagy, a stress response mechanism, with corresponding implications for human Chagas disease patients.

  15. Human Alpha-1-Antitrypsin (hAAT) therapy reduces renal dysfunction and acute tubular necrosis in a murine model of bilateral kidney ischemia-reperfusion injury

    PubMed Central

    Maicas, Nuria; van der Vlag, Johan; Bublitz, Janin; Florquin, Sandrine; Bakker-van Bebber, Marinka; Dinarello, Charles A.; Verweij, Vivienne; Masereeuw, Roos; Joosten, Leo A.

    2017-01-01

    Several lines of evidence have demonstrated the anti-inflammatory and cytoprotective effects of alpha-1-antitrypsin (AAT), the major serum serine protease inhibitor. The aim of the present study was to investigate the effects of human AAT (hAAT) monotherapy during the early and recovery phase of ischemia-induced acute kidney injury. Mild renal ischemia-reperfusion (I/R) injury was induced in male C57Bl/6 mice by bilateral clamping of the renal artery and vein for 20 min. hAAT (80 mg/kg, Prolastin®) was administered daily intraperitoneally (i.p.) from day -1 until day 7 after surgery. Control animals received the same amount of human serum albumin (hAlb). Plasma, urine and kidneys were collected at 2h, 1, 2, 3, 8 and 15 days after reperfusion for histological and biochemical analysis. hAAT partially preserved renal function and tubular integrity after induction of bilateral kidney I/R injury, which was accompanied with reduced renal influx of macrophages and a significant decrease of neutrophil gelatinase-associated lipocalin (NGAL) protein levels in urine and plasma. During the recovery phase, hAAT significantly decreased kidney injury molecule-1 (KIM-1) protein levels in urine but showed no significant effect on renal fibrosis. Although the observed effect size of hAAT administration was limited and therefore the clinical relevance of our findings should be evaluated carefully, these data support the potential of this natural protein to ameliorate ischemic and inflammatory conditions. PMID:28235038

  16. Effects of the Mitochondria-Targeted Antioxidant Mitoquinone in Murine Acute Pancreatitis

    PubMed Central

    Wen, Li; Szatmary, Peter; Mukherjee, Rajarshi; Armstrong, Jane; Chvanov, Michael; Tepikin, Alexei V.; Murphy, Michael P.; Sutton, Robert; Criddle, David N.

    2015-01-01

    Although oxidative stress has been strongly implicated in the development of acute pancreatitis (AP), antioxidant therapy in patients has so far been discouraging. The aim of this study was to assess potential protective effects of a mitochondria-targeted antioxidant, MitoQ, in experimental AP using in vitro and in vivo approaches. MitoQ blocked H2O2-induced intracellular ROS responses in murine pancreatic acinar cells, an action not shared by the control analogue dTPP. MitoQ did not reduce mitochondrial depolarisation induced by either cholecystokinin (CCK) or bile acid TLCS, and at 10 µM caused depolarisation per se. Both MitoQ and dTPP increased basal and CCK-induced cell death in a plate-reader assay. In a TLCS-induced AP model MitoQ treatment was not protective. In AP induced by caerulein hyperstimulation (CER-AP), MitoQ exerted mixed effects. Thus, partial amelioration of histopathology scores was observed, actions shared by dTPP, but without reduction of the biochemical markers pancreatic trypsin or serum amylase. Interestingly, lung myeloperoxidase and interleukin-6 were concurrently increased by MitoQ in CER-AP. MitoQ caused biphasic effects on ROS production in isolated polymorphonuclear leukocytes, inhibiting an acute increase but elevating later levels. Our results suggest that MitoQ would be inappropriate for AP therapy, consistent with prior antioxidant evaluations in this disease. PMID:25878403

  17. Characterization of the dose response relationship for lung injury following acute radiation exposure in three well-established murine strains: developing an interspecies bridge to link animal models with human lung.

    PubMed

    Jackson, Isabel L; Xu, Pu-Ting; Nguyen, Giao; Down, Julian D; Johnson, Cynthia S; Katz, Barry P; Hadley, Caroline C; Vujaskovic, Zeljko

    2014-01-01

    Approval of radiation countermeasures through the FDA Animal Rule requires pivotal efficacy screening in one or more species that are expected to react with a response similar to humans (21 C.F.R. § 314.610, drugs; § 601.91, biologics). Animal models used in screening studies should reflect the dose response relationship (DRR), clinical presentation, and pathogenesis of lung injury in humans. Over the past 5 y, the authors have characterized systematically the temporal onset, dose-response relationship (DRR), and pathologic outcomes associated with acute, high dose radiation exposure in three diverse mouse strains. In these studies, C57L/J, CBA/J, and C57BL/6J mice received wide field irradiation to the whole thorax with shielding of the head, abdomen, and forelimbs. Doses were delivered at a rate of 69 cGy min using an x-ray source operated at 320 kVp with half-value layer (HVL) of 1 mm Cu. For all strains, radiation dose was associated significantly with 180 d mortality (p < 0.0001). The lethal dose for 50% of animals within the first 180 d (LD50/180) was 11.35 Gy (95% CI 11.1-11.6 Gy) for C57L/J mice, 14.17 Gy (95% CI 13.9-14.5 Gy) for CBA/J mice, and 14.10 Gy (95% CI 12.2-16.4 Gy) for C57BL/6J mice. The LD50/180 in the C57L/J strain was most closely analogous to the DRR for clinical incidence of pneumonitis in non-human primates (10.28 Gy; 95% CI 9.9-10.7 Gy) and humans (10.60 Gy; 95% CI 9.9-12.1 Gy). Furthermore, in the C57L/J strain, there was no gender-specific difference in DRR (p = 0.5578). The reliability of the murine models is demonstrated by the reproducibility of the dose-response and consistency of disease presentation across studies.Health Phys. 106(1):000-000; 2014.

  18. Murine heart gene expression during acute Chagasic myocarditis

    PubMed Central

    Henao-Martínez, Andrés F.; Parra-Henao, Gabriel

    2015-01-01

    Chagas disease is transmitted by the parasite, Trypanosoma cruzi. Acute infection is characterized by acute myocarditis, although it is largely asymptomatic. Initial cardiac insult could be a determinant to the posterior development of chronic Chagasic cardiomyopathy, usually after 10 years in only approximately 30% of chronically infected patients. Herein, we characterized the acute gene expression profiling in heart tissue of two strains of mice infected with T. cruzi (tulahuen strain) at 4 weeks and their respective controls. Gene sequence data are available at NCBI under GEO accession number: GSE63847. The output of the genes expression suggests differences in involvement of protein kinase B (AKT), NCAM1, HLA-DRA, and ubiquitin C genes networks. These gene activation differences may correlate with myocardial contractility during the acute infection. PMID:26484182

  19. Pilin Vaccination Stimulates Weak Antibody Responses and Provides No Protection in a C57Bl/6 Murine Model of Acute Clostridium difficile Infection.

    PubMed

    Maldarelli, Grace A; Matz, Hanover; Gao, Si; Chen, Kevin; Hamza, Therwa; Yfantis, Harris G; Feng, Hanping; Donnenberg, Michael S

    Clostridium difficile is the leading cause of nosocomial infections in the United States, adding billions of dollars per year to health care costs. A vaccine targeted against the bacterium would be extremely beneficial in decreasing the morbidity and mortality caused by C. difficile-associated disease; a vaccine directed against a colonization factor would hinder the spread of the bacterium as well as prevent disease. Type IV pili (T4Ps) are extracellular appendages composed of protein monomers called pilins. They are involved in adhesion and colonization in a wide variety of bacteria and archaea, and are putative colonization factors in C. difficile. We hypothesized that vaccinating mice with pilins would lead to generation of anti-pilin antibodies, and would protect against C. difficile challenge. We found that immunizing C57Bl/6 mice with various pilins, whether combined or as individual proteins, led to low anti-pilin antibody titers and no protection upon C. difficile challenge. Passive transfer of anti-pilin antibodies led to high serum anti-pilin IgG titers, but to undetectable fecal anti-pilin IgG titers and did not protect against challenge. The low antibody titers observed in these experiments may be due to the particular strain of mice used. Further experiments, possibly with a different animal model of C. difficile infection, are needed to determine if an anti-T4P vaccine would be protective against C. difficile infection.

  20. Pilin Vaccination Stimulates Weak Antibody Responses and Provides No Protection in a C57Bl/6 Murine Model of Acute Clostridium difficile Infection

    PubMed Central

    Maldarelli, Grace A; Matz, Hanover; Gao, Si; Chen, Kevin; Hamza, Therwa; Yfantis, Harris G; Feng, Hanping; Donnenberg, Michael S

    2016-01-01

    Clostridium difficile is the leading cause of nosocomial infections in the United States, adding billions of dollars per year to health care costs. A vaccine targeted against the bacterium would be extremely beneficial in decreasing the morbidity and mortality caused by C. difficile-associated disease; a vaccine directed against a colonization factor would hinder the spread of the bacterium as well as prevent disease. Type IV pili (T4Ps) are extracellular appendages composed of protein monomers called pilins. They are involved in adhesion and colonization in a wide variety of bacteria and archaea, and are putative colonization factors in C. difficile. We hypothesized that vaccinating mice with pilins would lead to generation of anti-pilin antibodies, and would protect against C. difficile challenge. We found that immunizing C57Bl/6 mice with various pilins, whether combined or as individual proteins, led to low anti-pilin antibody titers and no protection upon C. difficile challenge. Passive transfer of anti-pilin antibodies led to high serum anti-pilin IgG titers, but to undetectable fecal anti-pilin IgG titers and did not protect against challenge. The low antibody titers observed in these experiments may be due to the particular strain of mice used. Further experiments, possibly with a different animal model of C. difficile infection, are needed to determine if an anti-T4P vaccine would be protective against C. difficile infection. PMID:27375958

  1. Redistribution of adrenomedullary nicotinic acetylcholine receptor subunits and the effect on circulating epinephrine levels in a murine model of acute asthma

    PubMed Central

    Chen, Xi; Feng, Juntao; Hu, Chengping; Qin, Qingwu; Li, Yuanyuan; Qin, Ling

    2017-01-01

    The lack of circulating epinephrine (EPI) in the pathogenesis of asthma has long been attributed to the lack of adrenergic nerves in human airways. However, in this study we considered that EPI levels are regulated by EPI release in addition to synthesis. Nicotinic acetylcholine receptors (nAChRs) have been shown to control EPI release, and we hypothesized that redistribution of nAChR subunits modulates EPI release and circulating EPI levels. Using a mouse model of asthma, circulating EPI levels were measured by enzyme-linked immunosorbent assays. Changes in the expression of nAChR subunits in the adrenal medulla were observed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. Expression of phenylethanolamine N-methyltransferase, tyrosine hydroxylase and galanin was detected by RT-qPCR. Lung pathology, airway resistance (RL) and EPI levels were also assessed after treatment with an α7 nAChR agonist or antagonist. α7 nAChR mRNA expression in the adrenal medulla was increased by more than 2-fold (P<0.05), and circulating EPI levels increased rapidly after treatment with the α7 nAChR agonist. These results indicated that increased EPI release, which was caused by the overexpression of α7 nAChR, was responsible for elevated circulating EPI levels. After treatment with an agonist of α7 nAChR, RL was significantly decreased. Serum corticosterone levels in individual mice were measured to rule out glucocorticoid as the main mediator of changes in EPI levels. On the whole, redistribution of nAChR subunits, primarily α7 nAChR, occurs in the adrenal medulla in asthmatic mice. Increased α7 nAChR expression can rapidly increase serum EPI levels and decrease airway responsiveness. PMID:28035367

  2. Neuropharmacological properties of farnesol in Murine model

    PubMed Central

    Shahnouri, M.; Abouhosseini Tabari, M.; Araghi, A.

    2016-01-01

    Research on new compounds of therapeutic value for behavioral disorders has progressed recently. Several studies have reported neuropharmacological activities of plant derived terpenes. Farnesol is a sesquiterpene whose most popular source is fruits but the anxiolytic activity for farnesol is still unknown. The present study was conducted on 32 male Swiss Albino mice (8 in each group) to evaluate the neuropharmacological properties of farnesol and its effects on plasma cortisol levels. Farnesol was administered intraperitoneally at single doses of 50 and 100 mg/kg, while diazepam 2 mg/kg was used as standard anxiolytic. Thirty minutes after injections, open field test (OFT), elevated plus maze (EPM), a forced swimming test (FST), and a hot plate test (HPT) were performed for evaluation of anxiety-like behavior, depression and nociception. In OFT, farnesol at the dose of 100 mg/kg led to significant decrease in locomotor activity (P<0.01). In EPM, only farnesol 100 mg/kg led to significant increase in the number of entries to the open arms and the time spent in open arms (P<0.01). Increase in immobility time in FST was seen in farnesol 50 and 100 mg/kg (P<0.001). Farnesol 100 mg/kg exerts significant prolongation in the latency of responses to noxious heat stimuli in HPT. Like diazepam, farnesol decreased plasma levels of cortisol. Results revealed that farnesol had anxiolytic, anti-nociceptive and depressant effects in murine models. The present study provides pharmacological evidence supporting the use of farnesol as a sedative for anxiety disorders. PMID:28224010

  3. Molecular characterisation of murine acute myeloid leukaemia induced by 56Fe ion and 137Cs gamma ray irradiation

    PubMed Central

    Bacher, Jeffery W.

    2013-01-01

    Exposure to sparsely ionising gamma- or X-ray irradiation is known to increase the risk of leukaemia in humans. However, heavy ion radiotherapy and extended space exploration will expose humans to densely ionising high linear energy transfer (LET) radiation for which there is currently no understanding of leukaemia risk. Murine models have implicated chromosomal deletion that includes the hematopoietic transcription factor gene, PU.1 (Sfpi1), and point mutation of the second PU.1 allele as the primary cause of low-LET radiation-induced murine acute myeloid leukaemia (rAML). Using array comparative genomic hybridisation, fluorescence in situ hybridisation and high resolution melt analysis, we have confirmed that biallelic PU.1 mutations are common in low-LET rAML, occurring in 88% of samples. Biallelic PU.1 mutations were also detected in the majority of high-LET rAML samples. Microsatellite instability was identified in 42% of all rAML samples, and 89% of samples carried increased microsatellite mutant frequencies at the single-cell level, indicative of ongoing instability. Instability was also observed cytogenetically as a 2-fold increase in chromatid-type aberrations. These data highlight the similarities in molecular characteristics of high-LET and low-LET rAML and confirm the presence of ongoing chromosomal and microsatellite instability in murine rAML. PMID:22987027

  4. Peripheral blood monocyte-derived chemokine blockade prevents murine transfusion-related acute lung injury (TRALI).

    PubMed

    McKenzie, Christopher G J; Kim, Michael; Singh, Tarandeep K; Milev, Youli; Freedman, John; Semple, John W

    2014-05-29

    Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-related mortality and can occur with any type of transfusion. TRALI is thought to be primarily mediated by donor antibodies activating recipient neutrophils resulting in pulmonary endothelial damage. Nonetheless, details regarding the interactions between donor antibodies and recipient factors are unknown. A murine antibody-mediated TRALI model was used to elucidate the roles of the F(ab')2 and Fc regions of a TRALI-inducing immunoglobulin G anti-major histocompatibility complex (MHC) class I antibody (34.1.2s). Compared with intact antibody, F(ab')2 fragments significantly increased serum levels of the neutrophil chemoattractant macrophage inflammatory protein 2 (MIP-2); however, pulmonary neutrophil levels were only moderately increased, and no pulmonary edema or mortality occurred. Fc fragments did not modulate any of these parameters. TRALI induction by intact antibody was completely abrogated by in vivo peripheral blood monocyte depletion by gadolinium chloride (GdCl3) or chemokine blockade with a MIP-2 receptor antagonist but was restored upon repletion with purified monocytes. The results suggest a two-step process for antibody-mediated TRALI induction: the first step involves antibody binding its cognate antigen on blood monocytes, which generates MIP-2 chemokine production that is correlated with pulmonary neutrophil recruitment; the second step occurs when antibody-coated monocytes increase Fc-dependent lung damage.

  5. Acute radiation risk models

    NASA Astrophysics Data System (ADS)

    Smirnova, Olga

    Biologically motivated mathematical models, which describe the dynamics of the major hematopoietic lineages (the thrombocytopoietic, lymphocytopoietic, granulocytopoietic, and erythropoietic systems) in acutely/chronically irradiated humans are developed. These models are implemented as systems of nonlinear differential equations, which variables and constant parameters have clear biological meaning. It is shown that the developed models are capable of reproducing clinical data on the dynamics of these systems in humans exposed to acute radiation in the result of incidents and accidents, as well as in humans exposed to low-level chronic radiation. Moreover, the averaged value of the "lethal" dose rates of chronic irradiation evaluated within models of these four major hematopoietic lineages coincides with the real minimal dose rate of lethal chronic irradiation. The demonstrated ability of the models of the human thrombocytopoietic, lymphocytopoietic, granulocytopoietic, and erythropoietic systems to predict the dynamical response of these systems to acute/chronic irradiation in wide ranges of doses and dose rates implies that these mathematical models form an universal tool for the investigation and prediction of the dynamics of the major human hematopoietic lineages for a vast pattern of irradiation scenarios. In particular, these models could be applied for the radiation risk assessment for health of astronauts exposed to space radiation during long-term space missions, such as voyages to Mars or Lunar colonies, as well as for health of people exposed to acute/chronic irradiation due to environmental radiological events.

  6. Anti-CD45 radioimmunotherapy using 211At with bone marrow transplantation prolongs survival in a disseminated murine leukemia model

    SciTech Connect

    Orozco, Johnnie J.; Back, Tom; Kenoyer, Aimee L.; Balkin, Ethan R.; Hamlin, Donald K.; Wilbur, D. Scott; Fisher, Darrell R.; Frayo, Shani; Hylarides, Mark; Green, Damian J.; Gopal, Ajay K.; Press, Oliver W.; Pagel, John M.

    2013-05-15

    Anti-CD45 Radioimmunotherapy using an Alpha-Emitting Radionuclide 211At Combined with Bone Marrow Transplantation Prolongs Survival in a Disseminated Murine Leukemia Model ABSTRACT Despite aggressive chemotherapy combined with hematopoietic cell transplant (HCT), many patients with acute myeloid leukemia (AML) relapse. Radioimmunotherapy (RIT) using antibodies (Ab) labeled primarily with beta-emitting radionuclides has been explored to reduce relapse.

  7. [Experimental models of acute pancreatitis].

    PubMed

    Ceranowicz, Piotr; Cieszkowski, Jakub; Warzecha, Zygmunt; Dembiński, Artur

    2015-02-21

    Acute pancreatitis is a severe disease with high mortality. Clinical studies can bring some data about etiology, pathogenesis and the course of acute pancreatitis. However, studies concerning early events of this disease and the new concepts of treatment cannot be performed on humans, due to ethical reasons. Animal models of acute pancreatitis have been developed to solve this problem. This review presents currently used experimental models of acute pancreatitis, their properties and clinical relevance. Experimental models of acute pancreatitis can be divided into in vivo (non-invasive and invasive) and ex vivo models. The onset, development, severity and extent of acute pancreatitis, as well as the mortality, vary considerably between these different models. Animal models reproducibly produce mild, moderate or severe acute pancreatitis. One of the most commonly used models of acute pancreatitis is created by administration of supramaximal doses of cerulein, an analog of cholecystokinin. This model produces acute mild edematous pancreatitis in rats, whereas administration of cerulein in mice leads to the development of acute necrotizing pancreatitis. Acute pancreatitis evoked by retrograde administration of sodium taurocholate into the pancreatic duct is the most often used model of acute severe necrotizing pancreatitis in rats. Ex vivo models allow to eliminate the influence of hormonal and nervous factors on the development of acute pancreatitis.

  8. Intravenous Immunoglobulin Prevents Murine Antibody-Mediated Acute Lung Injury at the Level of Neutrophil Reactive Oxygen Species (ROS) Production

    PubMed Central

    Semple, John W.; Kim, Michael; Hou, Jing; McVey, Mark; Lee, Young Jin; Tabuchi, Arata; Kuebler, Wolfgang M.; Chai, Zhong-Wei; Lazarus, Alan H.

    2012-01-01

    Transfusion-related acute lung injury (TRALI) is a leading cause of transfusion-associated mortality that can occur with any type of transfusion and is thought to be primarily due to donor antibodies activating pulmonary neutrophils in recipients. Recently, a large prospective case controlled clinical study of cardiac surgery patients demonstrated that despite implementation of male donors, a high incidence of TRALI still occurred and suggested a need for additional interventions in susceptible patient populations. To examine if intravenous immunoglobulin (IVIg) may be effective, a murine model of antibody-mediated acute lung injury that approximates human TRALI was examined. When BALB/c mice were injected with the anti-major histocompatibility complex class I antibody 34-1-2s, mild shock (reduced rectal temperature) and respiratory distress (dyspnea) were observed and pre-treatment of the mice with 2 g/kg IVIg completely prevented these symptoms. To determine IVIg's usefulness to affect severe lung damage, SCID mice, previously shown to be hypersensitive to 34-1-2s were used. SCID mice treated with 34-1-2s underwent severe shock, lung damage (increased wet/dry ratios) and 40% mortality within 2 hours. Treatment with 2 g/kg IVIg 18 hours before 34-1-2s administration completely protected the mice from all adverse events. Treatment with IVIg after symptoms began also reduced lung damage and mortality. While the prophylactic IVIg administration did not affect 34-1-2s-induced pulmonary neutrophil accumulation, bone marrow-derived neutrophils from the IVIg-treated mice displayed no spontaneous ROS production nor could they be stimulated in vitro with fMLP or 34-1-2s. These results suggest that IVIg prevents murine antibody-mediated acute lung injury at the level of neutrophil ROS production and thus, alleviating tissue damage. PMID:22363629

  9. The Synthetic Triterpenoid, CDDO, Suppresses Alloreactive T Cell Responses and Reduces Murine Early Acute Graft-versus-Host Disease Mortality

    PubMed Central

    Sun, Kai; Li, Minghui; Konopleva, Marina; Konoplev, Sergej; Stephens, L. Clifton; Kornblau, Steven M.; Frolova, Olga; Wilkins, Danice E. C.; Ma, Weihong; Welniak, Lisbeth A.; Andreeff, Michael; Murphy, William J.

    2015-01-01

    Acute graft-versus-host disease (aGVHD) still remains one of the life-threatening complications following allogeneic hematopoietic stem cell transplantation (allo-HSCT). Immunomodulation of alloreactive donor T cell responses, as well as cytokine secretion is a potential therapeutic approach for the prevention of aGVHD. The synthetic triterpenoid, CDDO (2-cyano-3, 12-dioxooleana-1, 9-dien-28-oic acid), exhibits potent antitumor activity and has also been shown to mediate anti-inflammatory and immunomodulatory effects. We therefore wanted to assess the effects of CDDO on early lethal aGVHD. In this study, we found that CDDO significantly inhibited in vitro mixed lymphocyte responses and preferentially promoted the apoptosis of proliferating but not resting alloreactive T cells. Using a full major histocompatibility complex (MHC)-disparate murine aGVHD model, we found that the administration of CDDO immediately after transplantation significantly decreased liver pathology as determined by histologic assessment and prolonged survival in mice. Importantly, administration of CDDO did not adversely impair donor myeloid reconstitution as determined by peripheral blood cell count and the extent of donor chimerism. These findings indicate that CDDO has a significant immunomodulatory effects in vitro and on early lethal aGVHD development, particularly affecting the liver, in a murine allo-HSCT model. PMID:17448911

  10. Modulation of inflammatory response via α2-adrenoceptor blockade in acute murine colitis

    PubMed Central

    Bai, A; Lu, N; Guo, Y; Chen, J; Liu, Z

    2009-01-01

    Inflammatory bowel disease (IBD) is characterized by heavy production of proinflammatory cytokines such as tumour necrosis factor (TNF)-α and interleukin (IL)-1β. Interactions of the autonomic nervous system with local immune cells play an important role in the development of IBD, and the balance of autonomic nerve function is broken in IBD patients with sympathetic overactivity. However, the function of catecholamines in the progress of colitis is unclear. In this study, we examined the role of catecholamines via α2-adrenoreceptor in acute murine colitis. The expression of tyrosine hydroxylase (TH) and dopamine b-hydroxylase (DBH), two rate-limiting enzymes in catecholamine synthesis, was detected by immunohistochemistry in murine colitis. Murine colitis was induced by dextran sodium sulphate or trinitrobenzene sulphonic acid (TNBS), and the mice were administered RX821002 or UK14304, α2-adrenoceptor antagonists or agonists. Colitis was evaluated by clinical symptoms, myeloperoxidase assay, TNF-α and IL-1β production and histology. Lamina propria mononuclear cells (LPMCs) from mice with TNBS colitis were cultured in the absence or presence of RX821002 or UK14304, and stimulated further by lipopolysaccharide. TH and DBH are induced in LPMCs of inflamed colon, the evidence of catecholamine synthesis during the process of colitis. RX821002 down-regulates the production of proinflammatory cytokines from LPMCs, while UK14304 leads to exacerbation of colitis. Together, our data show a critical role of catecholamines via α2-adrenoreceptors in the progress of acute colitis, and suggest that use of the α2-adrenoceptor antagonist represents a novel therapeutic approach for the management of colitis. PMID:19250273

  11. Current Translational Research and Murine Models For Duchenne Muscular Dystrophy

    PubMed Central

    Rodrigues, Merryl; Echigoya, Yusuke; Fukada, So-ichiro; Yokota, Toshifumi

    2016-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder characterized by progressive muscle degeneration. Mutations in the DMD gene result in the absence of dystrophin, a protein required for muscle strength and stability. Currently, there is no cure for DMD. Since murine models are relatively easy to genetically manipulate, cost effective, and easily reproducible due to their short generation time, they have helped to elucidate the pathobiology of dystrophin deficiency and to assess therapies for treating DMD. Recently, several murine models have been developed by our group and others to be more representative of the human DMD mutation types and phenotypes. For instance, mdx mice on a DBA/2 genetic background, developed by Fukada et al., have lower regenerative capacity and exhibit very severe phenotype. Cmah-deficient mdx mice display an accelerated disease onset and severe cardiac phenotype due to differences in glycosylation between humans and mice. Other novel murine models include mdx52, which harbors a deletion mutation in exon 52, a hot spot region in humans, and dystrophin/utrophin double-deficient (dko), which displays a severe dystrophic phenotype due the absence of utrophin, a dystrophin homolog. This paper reviews the pathological manifestations and recent therapeutic developments in murine models of DMD such as standard mdx (C57BL/10), mdx on C57BL/6 background (C57BL/6-mdx), mdx52, dystrophin/utrophin double-deficient (dko), mdxβgeo, Dmd-null, humanized DMD (hDMD), mdx on DBA/2 background (DBA/2-mdx), Cmah-mdx, and mdx/mTRKO murine models. PMID:27854202

  12. Space radiation-associated lung injury in a murine model

    PubMed Central

    Pietrofesa, Ralph A.; Arguiri, Evguenia; Schweitzer, Kelly S.; Berdyshev, Evgeny V.; McCarthy, Maureen; Corbitt, Astrid; Alwood, Joshua S.; Yu, Yongjia; Globus, Ruth K.; Solomides, Charalambos C.; Ullrich, Robert L.; Petrache, Irina

    2014-01-01

    Despite considerable progress in identifying health risks to crewmembers related to exposure to galactic/cosmic rays and solar particle events (SPE) during space travel, its long-term effects on the pulmonary system are unknown. We used a murine risk projection model to investigate the impact of exposure to space-relevant radiation (SR) on the lung. C3H mice were exposed to 137Cs gamma rays, protons (acute, low-dose exposure mimicking the 1972 SPE), 600 MeV/u 56Fe ions, or 350 MeV/u 28Si ions at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Animals were irradiated at the age of 2.5 mo and evaluated 23.5 mo postirradiation, at 26 mo of age. Compared with age-matched nonirradiated mice, SR exposures led to significant air space enlargement and dose-dependent decreased systemic oxygenation levels. These were associated with late mild lung inflammation and prominent cellular injury, with significant oxidative stress and apoptosis (caspase-3 activation) in the lung parenchyma. SR, especially high-energy 56Fe or 28Si ions markedly decreased sphingosine-1-phosphate levels and Akt- and p38 MAPK phosphorylation, depleted anti-senescence sirtuin-1 and increased biochemical markers of autophagy. Exposure to SR caused dose-dependent, pronounced late lung pathological sequelae consistent with alveolar simplification and cellular signaling of increased injury and decreased repair. The associated systemic hypoxemia suggested that this previously uncharacterized space radiation-associated lung injury was functionally significant, indicating that further studies are needed to define the risk and to develop appropriate lung-protective countermeasures for manned deep space missions. PMID:25526737

  13. Space radiation-associated lung injury in a murine model.

    PubMed

    Christofidou-Solomidou, Melpo; Pietrofesa, Ralph A; Arguiri, Evguenia; Schweitzer, Kelly S; Berdyshev, Evgeny V; McCarthy, Maureen; Corbitt, Astrid; Alwood, Joshua S; Yu, Yongjia; Globus, Ruth K; Solomides, Charalambos C; Ullrich, Robert L; Petrache, Irina

    2015-03-01

    Despite considerable progress in identifying health risks to crewmembers related to exposure to galactic/cosmic rays and solar particle events (SPE) during space travel, its long-term effects on the pulmonary system are unknown. We used a murine risk projection model to investigate the impact of exposure to space-relevant radiation (SR) on the lung. C3H mice were exposed to (137)Cs gamma rays, protons (acute, low-dose exposure mimicking the 1972 SPE), 600 MeV/u (56)Fe ions, or 350 MeV/u (28)Si ions at the NASA Space Radiation Laboratory at Brookhaven National Laboratory. Animals were irradiated at the age of 2.5 mo and evaluated 23.5 mo postirradiation, at 26 mo of age. Compared with age-matched nonirradiated mice, SR exposures led to significant air space enlargement and dose-dependent decreased systemic oxygenation levels. These were associated with late mild lung inflammation and prominent cellular injury, with significant oxidative stress and apoptosis (caspase-3 activation) in the lung parenchyma. SR, especially high-energy (56)Fe or (28)Si ions markedly decreased sphingosine-1-phosphate levels and Akt- and p38 MAPK phosphorylation, depleted anti-senescence sirtuin-1 and increased biochemical markers of autophagy. Exposure to SR caused dose-dependent, pronounced late lung pathological sequelae consistent with alveolar simplification and cellular signaling of increased injury and decreased repair. The associated systemic hypoxemia suggested that this previously uncharacterized space radiation-associated lung injury was functionally significant, indicating that further studies are needed to define the risk and to develop appropriate lung-protective countermeasures for manned deep space missions.

  14. Dual-seq transcriptomics reveals the battle for iron during Pseudomonas aeruginosa acute murine pneumonia

    PubMed Central

    Damron, F. Heath; Oglesby-Sherrouse, Amanda G.; Wilks, Angela; Barbier, Mariette

    2016-01-01

    Determining bacterial gene expression during infection is fundamental to understand pathogenesis. In this study, we used dual RNA-seq to simultaneously measure P. aeruginosa and the murine host’s gene expression and response to respiratory infection. Bacterial genes encoding products involved in metabolism and virulence were differentially expressed during infection and the type III and VI secretion systems were highly expressed in vivo. Strikingly, heme acquisition, ferric-enterobactin transport, and pyoverdine biosynthesis genes were found to be significantly up-regulated during infection. In the mouse, we profiled the acute immune response to P. aeruginosa and identified the pro-inflammatory cytokines involved in acute response to the bacterium in the lung. Additionally, we also identified numerous host iron sequestration systems upregulated during infection. Overall, this work sheds light on how P. aeruginosa triggers a pro-inflammatory response and competes for iron with the host during infection, as iron is one of the central elements for which both pathogen and host fight during acute pneumonia. PMID:27982111

  15. Acute lethal toxicity following passive immunization for treatment of murine cryptococcosis.

    PubMed Central

    Savoy, A C; Lupan, D M; Manalo, P B; Roberts, J S; Schlageter, A M; Weinhold, L C; Kozel, T R

    1997-01-01

    Passive immunization with monoclonal antibodies (MAbs) specific for the major capsular polysaccharide of Cryptococcus neoformans alters the course of murine cryptococcosis. During studies of passive immunization for treatment of murine cryptococcosis, we noted the occurrence of an acute, lethal toxicity. Toxicity was characterized by scratching, lethargy, respiratory distress, collapse, and death within 20 to 60 min after injection of antibody. The toxic effect was observed only in mice with a cryptococcal infection and was reduced or absent in the early and late stages of disease. The clinical course and histopathology were consistent with those for shock. There was considerable variation between mouse strains in susceptibility to toxicity. Swiss Webster mice from the Charles River colony were most susceptible, followed by C3H/He, BALB/c, and C57BL/6 mice. DBA/2 mice and Swiss Webster mice from the Simonsen colony were resistant. Acute toxicity was mimicked by injection of preformed complexes of MAb and purified polysaccharide. The toxic effect was also produced by injection of MAbs into mice that were preloaded with polysaccharide. The toxic effect was not blocked by treatment of mice with chloropheniramine or anti-tumor necrosis factor alpha antibodies or by depletion of complement components via pretreatment with cobra venom factor. Toxicity was reduced by treatment of mice with high doses of epinephrine, dexamethasone, or chlorpromazine. Finally, the toxic effect was completely blocked by treatment of mice with the platelet-activating factor antagonist WEB 2170 BS or by pretreatment of mice with the liposome-encapsulated drug dichloromethylene diphosphonate, a procedure which depletes macrophages from the spleen and liver. PMID:9125564

  16. Coxsackievirus-induced chronic myocarditis in murine models.

    PubMed

    Gauntt, C J; Tracy, S M; Chapman, N; Wood, H J; Kolbeck, P C; Karaganis, A G; Winfrey, C L; Cunningham, M W

    1995-12-01

    Challenge of several murine strains with two highly myocarditic variants of coxsackievirus B3 (CVB3) induced acute and chronic myocarditis, detectable at 21 and 45 days post-inoculation (p.i.). In-situ hybridization of coronal heart sections showing chronic inflammation with a radiolabelled CVB3 probe detected viral genomic RNA at day 7 p.i. but rarely at 21 or 45 days p.i., suggesting few murine heart cells actively replicate virus during chronic myocardial inflammation. Data will be presented that favour an alternative hypothesis, i.e. autoimmune responses to shared epitopes among CVB3 proteins, cardiac myosin and myocardial cell surface proteins (molecular mimicry) can affect the severity of chronic inflammation. Mice inoculated with human cardiac myosin (HM) prior to a CVB3m challenge develop less myocarditis than mice inoculated with virus only, suggesting that antibodies stimulated by HM bind virus, reduce the virus burden and provide protection. Mice inoculated with HM only develop non-neutralizing antibodies against purified CVB3m particles. Several strains of mice inoculated with specific synthetic peptides of HM produce antibodies against CVB3m and/or develop cardiomyopathy. Thus antigen-challenged mice can produce antibodies which cross-react among CVB3m HM or cardiac cells to protect or exacerbate heart disease.

  17. Heme oxygenase-1 ameliorates dextran sulfate sodium-induced acute murine colitis by regulating Th17/Treg cell balance.

    PubMed

    Zhang, Liya; Zhang, Yanjie; Zhong, Wenwei; Di, Caixia; Lin, Xiaoliang; Xia, Zhenwei

    2014-09-26

    Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, is a group of autoimmune diseases characterized by nonspecific inflammation in the gastrointestinal tract. Recent investigations suggest that activation of Th17 cells and/or deficiency of regulatory T cells (Treg) is involved in the pathogenesis of IBD. Heme oxygenase (HO)-1 is a protein with a wide range of anti-inflammatory and immune regulatory function, which exerts significantly protective roles in various T cell-mediated diseases. In this study, we aim to explore the immunological regulation of HO-1 in the dextran sulfate sodium-induced model of experimental murine colitis. BALB/c mice were administered 4% dextran sulfate sodium orally; some mice were intraperitoneally pretreated with HO-1 inducer hemin or HO-1 inhibitor stannum protoporphyrin IX. The results show that hemin enhances the colonic expression of HO-1 and significantly ameliorates the symptoms of colitis with improved histological changes, accompanied by a decreased proportion of Th17 cells and increased number of Tregs in mesenteric lymph node and spleen. Moreover, induction of HO-1 down-regulates retinoic acid-related orphan receptor γt expression and IL-17A levels, while promoting Treg-related forkhead box p3 (Foxp3) expression and IL-10 levels in colon. Further study in vitro revealed that up-regulated HO-1 switched the naive T cells to Tregs when cultured under a Th17-inducing environment, which involved in IL-6R blockade. Therefore, HO-1 may exhibit anti-inflammatory activity in the murine model of acute experimental colitis via regulating the balance between Th17 and Treg cells, thus providing a possible novel therapeutic target in IBD.

  18. Mitochondrial ferritin protects the murine myocardium from acute exhaustive exercise injury

    PubMed Central

    Wu, Wenyue; Chang, Shiyang; Wu, Qiong; Xu, Zhifang; Wang, Peina; Li, Yaru; Yu, Peng; Gao, Guofen; Shi, Zhenhua; Duan, Xianglin; Chang, Yan-Zhong

    2016-01-01

    Mitochondrial ferritin (FtMt) is a mitochondrially localized protein possessing ferroxidase activity and the ability to store iron. FtMt overexpression in cultured cells protects against oxidative damage by sequestering redox-active, intracellular iron. Here, we found that acute exhaustive exercise significantly increases FtMt expression in the murine heart. FtMt gene disruption decreased the exhaustion exercise time and altered heart morphology with severe cardiac mitochondrial injury and fibril disorganization. The number of apoptotic cells as well as the levels of apoptosis-related proteins was increased in the FtMt−/− mice, though the ATP levels did not change significantly. Concomitant to the above was a high ‘uncommitted' iron level found in the FtMt−/− group when exposed to acute exhaustion exercise. As a result of the increase in catalytic metal, reactive oxygen species were generated, leading to oxidative damage of cellular components. Taken together, our results show that the absence of FtMt, which is highly expressed in the heart, increases the sensitivity of mitochondria to cardiac injury via oxidative stress. PMID:27853170

  19. Diagnostic imaging advances in murine models of colitis.

    PubMed

    Brückner, Markus; Lenz, Philipp; Mücke, Marcus M; Gohar, Faekah; Willeke, Peter; Domagk, Dirk; Bettenworth, Dominik

    2016-01-21

    Inflammatory bowel diseases (IBD) such as Crohn's disease and ulcerative colitis are chronic-remittent inflammatory disorders of the gastrointestinal tract still evoking challenging clinical diagnostic and therapeutic situations. Murine models of experimental colitis are a vital component of research into human IBD concerning questions of its complex pathogenesis or the evaluation of potential new drugs. To monitor the course of colitis, to the present day, classical parameters like histological tissue alterations or analysis of mucosal cytokine/chemokine expression often require euthanasia of animals. Recent advances mean revolutionary non-invasive imaging techniques for in vivo murine colitis diagnostics are increasingly available. These novel and emerging imaging techniques not only allow direct visualization of intestinal inflammation, but also enable molecular imaging and targeting of specific alterations of the inflamed murine mucosa. For the first time, in vivo imaging techniques allow for longitudinal examinations and evaluation of intra-individual therapeutic response. This review discusses the latest developments in the different fields of ultrasound, molecularly targeted contrast agent ultrasound, fluorescence endoscopy, confocal laser endomicroscopy as well as tomographic imaging with magnetic resonance imaging, computed tomography and fluorescence-mediated tomography, discussing their individual limitations and potential future diagnostic applications in the management of human patients with IBD.

  20. Murine Models of Epstein-Barr Virus-Associated Lymphomagenesis.

    PubMed

    Ahmed, Elshafa Hassan; Baiocchi, Robert A

    2016-01-01

    The Epstein-Barr virus (EBV) is a B-lymphotropic gamma herpes virus associated with a number of malignancies. Most EBV-related cancers present complex medical management challenges; thus it has been essential to develop preclinical in vivo models allowing for the study of pathogenesis, prevention, and treatment of these diseases. Early in vivo models used nonhuman primates; however, such models were limited by the inability of EBV to achieve viral latency, availability, and cost. Immunodeficient mouse strains emerged as efficient models that allow for engraftment of human mononuclear cells and controlled evaluation of EBV-driven lymphoproliferative disease (EBV-LPD). By using highly immunodeficient strains of mice such as severe combined immune deficiency (SCID) and NOD/LtSz-scid ILrg(-/-)(NOG) mice, investigators have developed efficient platforms for evaluating pathogenesis of benign (HLH) and malignant (EBV-LPD) diseases associated with EBV. Humanized murine chimeric models have been essential tools for evaluating preventive strategies with vaccine and adoptive cellular approaches, as well as development of experimental therapeutic strategies. Manipulation of the human immune cells before engraftment or mutation of viral lytic and latent genes has enhanced our understanding of the oncogenic nature of EBV and the complexity of human immune responses to EBV. In this review, we discuss how the EBV murine models have evolved to become essential tools for studying the virology of EBV as it relates to human EBV-LPD pathogenesis, the immunobiology of innate and adaptive responses, and limitations of these models.

  1. In vivo-in vitro comparison of acute respiratory tract toxicity using human 3D airway epithelial models and human A549 and murine 3T3 monolayer cell systems.

    PubMed

    Sauer, Ursula G; Vogel, Sandra; Hess, Annemarie; Kolle, Susanne N; Ma-Hock, Lan; van Ravenzwaay, Bennard; Landsiedel, Robert

    2013-02-01

    The usefulness of in vitro systems to predict acute inhalation toxicity was investigated. Nineteen substances were tested in three-dimensional human airway epithelial models, EpiAirway™ and MucilAir™, and in A549 and 3T3 monolayer cell cultures. IC(50) values were compared to rat four-hour LC(50) values classified according to EPA and GHS hazard categories. Best results were achieved with a prediction model distinguishing toxic from non-toxic substances, with satisfactory specificities and sensitivities. Using a self-made four-level prediction model to classify substances into four in vitro hazard categories, in vivo-in vitro concordance was mediocre, but could be improved by excluding substances causing pulmonary edema and emphysema in vivo. None of the test systems was outstanding, and there was no evidence that tissue or monolayer systems using respiratory tract cells provide an added value. However, the test systems only reflected bronchiole epithelia and alveolar cells and investigated cytotoxicity. Effects occurring in other cells by other mechanisms could not be recognised. Further work should optimise test protocols and expand the set of substances tested to define applicability domains. In vivo respiratory toxicity data for in vitro comparisons should distinguish different modes of action, and their relevance for human health effects should be ensured.

  2. A novel murine model of disseminated trichosporonosis.

    PubMed Central

    Gokaslan, A; Anaissie, E

    1992-01-01

    Serious infections caused by Trichosporon beigelii have been noted with increasing frequency in immuno-compromised patients. Progress in understanding the pathogenesis of this emerging infection has been limited by the lack of an animal model. We developed a CF1 mouse intravenous inoculation model of disseminated trichosporonosis to evaluate the pathogenicity of T. beigelii in transiently immunosuppressed mice. Four inocula (1 x 10(6), 1 x 10(7), 2 x 10(7), and 4 x 10(7) CFU per animal) of one clinical strain of T. beigelii 3001 were tested. Mice in groups of 10 were each injected with a single intravenous dose of one inoculum. Mortality correlated with inoculum size, as survival time was significantly shorter in mice injected with 4 x 10(7) or 2 x 10(7) CFU than in mice that received 1 x 10(7) or 1 x 10(6) CFU (P less than 0.01). Necrotizing abscesses with conidial and hyphal elements and neutrophil and macrophage infiltration were observed in all major organs examined. Resistance to infection was markedly lowered by immunosuppression with either cyclophosphamide or cortisone acetate, with a significantly shorter survival time and a greater fungal burden per organ in immunosuppressed animals than in normal animals (P less than 0.01). Nine additional strains were inoculated intravenously with around 5 x 10(6) CFU. Injection of each of these strains caused 100% mortality, in a pattern similar to that observed with strain 3001. Images PMID:1639502

  3. A Neonatal Murine Model of MRSA Pneumonia

    PubMed Central

    Shrestha, Bishwas; Siefker, David; Patel, Vivek S.; Yadav, Nikki; Jaligama, Sridhar; Cormier, Stephania A.

    2017-01-01

    Pneumonia due to methicillin-resistant Staphylococcus aureus (MRSA) is a significant cause of morbidity and mortality in infants particularly following lower respiratory tract viral infections such as Respiratory Syncytial Virus (RSV). However, the mechanisms by which co-infection of infants by MRSA and RSV cause increased lung pathology are unknown. Because the infant immune system is qualitatively and quantitatively different from adults we developed a model of infant MRSA pneumonia which will allow us to investigate the effects of RSV co-infection on disease severity. We infected neonatal and adult mice with increasing doses of MRSA and demonstrate that neonatal mice have delayed kinetics in clearing the bacteria in comparison to adult mice. There were differences in recruitment of immune cells into the lung following infection. Adult mice exhibited an increase in neutrophil recruitment that coincided with reduced bacterial titers followed by an increase in macrophages. Neonatal mice, however, exhibited an early increase in neutrophils that did not persist despite continued presence of the bacteria. Unlike the adult mice, neonatal mice failed to exhibit an increase in macrophages. Neonates exhibited a decrease in phagocytosis of MRSA suggesting that the decrease in clearance was partially due to deficient phagocytosis of the bacteria. Both neonates and adults responded with an increase in pro-inflammatory cytokines following infection. However, in contrast to the adult mice, neonates did not express constitutive levels of the anti-microbial peptide Reg3γ in the lung. Infection of neonates did not stimulate expression of the co-stimulatory molecule CD86 by dendritic cells and neonates exhibited a diminished T cell response compared to adult mice. Overall, we have developed a neonatal model of MRSA pneumonia that displays a similar delay in bacterial clearance as is observed in the neonatal intensive care unit and will be useful for performing co

  4. Clinical and Epidemiological Characteristics of Scrub Typhus and Murine Typhus among Hospitalized Patients with Acute Undifferentiated Fever in Northern Vietnam.

    PubMed

    Hamaguchi, Sugihiro; Cuong, Ngo Chi; Tra, Doan Thu; Doan, Yen Hai; Shimizu, Kenta; Tuan, Nguyen Quang; Yoshida, Lay-Myint; Mai, Le Quynh; Duc-Anh, Dang; Ando, Shuji; Arikawa, Jiro; Parry, Christopher M; Ariyoshi, Koya; Thuy, Pham Thanh

    2015-05-01

    A descriptive study on rickettsiosis was conducted at the largest referral hospital in Hanoi, Vietnam, to identify epidemiological and clinical characteristics of specific rickettsiosis. Between March 2001 and February 2003, we enrolled 579 patients with acute undifferentiated fever (AUF), excluding patients with malaria, dengue fever, and typhoid fever, and serologically tested for Orientia tsutsugamushi and Rickettsia typhi. Of the patients, 237 (40.9%) and 193 (33.3%) had scrub and murine typhus, respectively, and 149 (25.7%) had neither of them (non-scrub and murine typhus [non-ST/MT]). The proportion of murine typhus was highest among patients living in Hanoi whereas that of scrub typhus was highest in national or regional border areas. The presence of an eschar, dyspnea, hypotension, and lymphadenopathy was significantly associated with a diagnosis of scrub typhus (OR = 46.56, 10.90, 9.01, and 7.92, respectively). Patients with murine typhus were less likely to have these findings but more likely to have myalgia, rash, and relative bradycardia (OR = 1.60, 1.56, and 1.45, respectively). Scrub typhus and murine typhus were shown to be common causes of AUF in northern Vietnam although the occurrence of spotted fever group rickettsiae was not determined. Clinical and epidemiological information may help local clinicians make clinical diagnosis of specific rickettsioses in a resource-limited setting.

  5. PU.1 downregulation in murine radiation-induced acute myeloid leukaemia (AML): from molecular mechanism to human AML

    PubMed Central

    Verbiest, Tom; Bouffler, Simon; Nutt, Stephen L.; Badie, Christophe

    2015-01-01

    The transcription factor PU.1, encoded by the murine Sfpi1 gene (SPI1 in humans), is a member of the Ets transcription factor family and plays a vital role in commitment and maturation of the myeloid and lymphoid lineages. Murine studies directly link primary acute myeloid leukaemia (AML) and decreased PU.1 expression in specifically modified strains. Similarly, a radiation-induced chromosome 2 deletion and subsequent Sfpi1 point mutation in the remaining allele lead to murine radiation-induced AML. Consistent with murine data, heterozygous deletion of the SPI1 locus and mutation of the −14kb SPI1 upstream regulatory element were described previously in human primary AML, although they are rare events. Other mechanisms linked to PU.1 downregulation in human AML include TP53 deletion, FLT3-ITD mutation and the recurrent AML1-ETO [t(8;21)] and PML-RARA [t(15;17)] translocations. This review provides an up-to-date overview on our current understanding of the involvement of PU.1 in the initiation and development of radiation-induced AML, together with recommendations for future murine and human studies. PMID:25750172

  6. Optimization of murine model for Besnoitia caprae.

    PubMed

    Oryan, A; Sadoughifar, R; Namavari, M

    2016-09-01

    It has been shown that mice, particularly the BALB/c ones, are susceptible to infection by some of the apicomplexan parasites. To compare the susceptibility of the inbred BALB/c, outbred BALB/c and C57 BL/6 to Besnoitia caprae inoculation and to determine LD50, 30 male inbred BALB/c, 30 outbred BALB/c and 30 C57 BL/6 mice were assigned into 18 groups of 5 mice. Each group was inoculated intraperitoneally with 12.5 × 10(3), 25 × 10(3), 5 × 10(4), 1 × 10(5), 2 × 10(5) tachyzoites and a control inoculum of DMEM, respectively. The inbred BALB/c was found the most susceptible strain among the experienced mice strains so the LD50 per inbred BALB/c mouse was calculated as 12.5 × 10(3.6) tachyzoites while the LD50 for the outbred BALB/c and C57 BL/6 was 25 × 10(3.4) and 5 × 10(4) tachyzoites per mouse, respectively. To investigate the impact of different routes of inoculation in the most susceptible mice strain, another seventy five male inbred BALB/c mice were inoculated with 2 × 10(5) tachyzoites of B. caprae via various inoculation routes including: subcutaneous, intramuscular, intraperitoneal, infraorbital and oral. All the mice in the oral and infraorbital groups survived for 60 days, whereas the IM group showed quicker death and more severe pathologic lesions, which was then followed by SC and IP groups. Therefore, BALB/c mouse is a proper laboratory model and IM inoculation is an ideal method in besnoitiosis induction and a candidate in treatment, prevention and testing the efficacy of vaccines for besnoitiosis.

  7. Murine models of Aspergillosis: Role of collectins in host defense.

    PubMed

    Singh, Mamta; Mahajan, Lakshna; Chaudhary, Neelkamal; Kaur, Savneet; Madan, Taruna; Sarma, P Usha

    2015-11-01

    Aspergillus fumigatus, a ubiquitous fungus, causes a wide spectrum of clinical conditions ranging from allergic to invasive aspergillosis depending upon the hosts' immune status. Several animal models have been generated to mimic the human clinical conditions in allergic and invasive aspergillosis. The onset, duration and severity of the disease developed in models varied depending on the animal strain/fungal isolate, quantity and mode of administration of fungal antigens/spores, duration of the treatment, and type of immunosuppressive agent used. These models provide insight into host and pathogen factors and prove to be useful for evaluation of diagnostic markers and effective therapies. A series of studies established the protective role of collectins in murine models of Allergic Bronchopulmonary Aspergillosis and Invasive Pulmonary Aspergillosis. Collectins, namely surfactant protein A (SP-A), surfactant protein D (SP-D) and mannan binding lectin (MBL), are pattern recognition molecules regulating both innate and adaptive immune response against pathogens. In the present review, we discussed various murine models of allergic and invasive aspergillosis and the role of collectins in host defense against aspergillosis.

  8. Characterization of a Novel Murine Model to Study Zika Virus

    PubMed Central

    Rossi, Shannan L.; Tesh, Robert B.; Azar, Sasha R.; Muruato, Antonio E.; Hanley, Kathryn A.; Auguste, Albert J.; Langsjoen, Rose M.; Paessler, Slobodan; Vasilakis, Nikos; Weaver, Scott C.

    2016-01-01

    The mosquito-borne Zika virus (ZIKV) is responsible for an explosive ongoing outbreak of febrile illness across the Americas. ZIKV was previously thought to cause only a mild, flu-like illness, but during the current outbreak, an association with Guillain–Barré syndrome and microcephaly in neonates has been detected. A previous study showed that ZIKV requires murine adaptation to generate reproducible murine disease. In our study, a low-passage Cambodian isolate caused disease and mortality in mice lacking the interferon (IFN) alpha receptor (A129 mice) in an age-dependent manner, but not in similarly aged immunocompetent mice. In A129 mice, viremia peaked at ∼107 plaque-forming units/mL by day 2 postinfection (PI) and reached high titers in the spleen by day 1. ZIKV was detected in the brain on day 3 PI and caused signs of neurologic disease, including tremors, by day 6. Robust replication was also noted in the testis. In this model, all mice infected at the youngest age (3 weeks) succumbed to illness by day 7 PI. Older mice (11 weeks) showed signs of illness, viremia, and weight loss but recovered starting on day 8. In addition, AG129 mice, which lack both type I and II IFN responses, supported similar infection kinetics to A129 mice, but with exaggerated disease signs. This characterization of an Asian lineage ZIKV strain in a murine model, and one of the few studies reporting a model of Zika disease and demonstrating age-dependent morbidity and mortality, could provide a platform for testing the efficacy of antivirals and vaccines. PMID:27022155

  9. Identification of microRNAs involved in acute rejection and spontaneous tolerance in murine hepatic allografts

    PubMed Central

    Morita, Miwa; Chen, Jiajie; Fujino, Masayuki; Kitazawa, Yusuke; Sugioka, Atsushi; Zhong, Liang; Li, Xiao-Kang

    2014-01-01

    Graft acceptance without the need for immunosuppressive drugs is the ultimate goal of transplantation therapy. In murine liver transplantation, allografts are accepted across major histocompatibility antigen complex barriers without the use of immunosuppressive drugs and constitute a suitable model for research on immunological rejection and tolerance. MicroRNA (miRNA) has been known to be involved in the immunological responses. In order to identify mRNAs in spontaneous liver allograft tolerance, miRNA expression in hepatic allografts was examined using this transplantation model. According to the graft pathological score and function, miR-146a, 15b, 223, 23a, 27a, 34a and 451 were upregulated compared with the expression observed in the syngeneic grafts. In contrast, miR-101a, 101b and 148a were downregulated. Our results demonstrated the alteration of miRNAs in the allografts and may indicate the role of miRNAs in the induction of tolerance after transplantation. Furthermore, our data suggest that monitoring the graft expression of novel miRNAs may allow clinicians to differentiate between rejection and tolerance. A better understanding of the tolerance inducing mechanism observed in murine hepatic allografts may provide a therapeutic strategy for attenuating allograft rejection. PMID:25323448

  10. A novel immunocompetent murine model for replicating oncolytic adenoviral therapy

    PubMed Central

    Zhang, L; Hedjran, F; Larson, C; Perez, G L; Reid, T

    2015-01-01

    Oncolytic adenoviruses are under investigation as a promising novel strategy for cancer immunotherapeutics. Unfortunately, there is no immunocompetent mouse cancer model to test oncolytic adenovirus because murine cancer cells are generally unable to produce infectious viral progeny from human adenoviruses. We find that the murine K-ras-induced lung adenocarcinoma cell line ADS-12 supports adenoviral infection and generates infectious viral progeny. ADS-12 cells express the coxsackie and adenovirus receptor and infected ADS-12 cells express the viral protein E1A. We find that our previously described oncolytic virus, adenovirus TAV-255 (AdTAV-255), kills ADS-12 cells in a dose- and time-dependent manner. We investigated ADS-12 cells as an in-vivo model system for replicating oncolytic adenoviruses. Subcutaneous injection of ADS-12 cells into immunocompetent 129 mice led to tumor formation in all injected mice. Intratumoral injection of AdTAV-255 in established tumors causes a significant reduction in tumor growth. This model system represents the first fully immunocompetent mouse model for cancer treatment with replicating oncolytic adenoviruses, and therefore will be useful to study the therapeutic effect of oncolytic adenoviruses in general and particularly immunostimulatory viruses designed to evoke an antitumor immune response. PMID:25525035

  11. Epigenetic alterations in a murine model for chronic lymphocytic leukemia

    PubMed Central

    Chen, Shih-Shih; Sherman, Maura H; Hertlein, Erin; Johnson, Amy J; Teitell, Michael A.; Byrd, John C.; Plass, Christoph

    2010-01-01

    Early stages in the development of chronic lymphocytic leukemia (CLL) have not been explored mainly due to the inability to study normal B-cells in route to transformation. In order to determine such early events of leukemogenesis, we have used a well established mouse model for CLL. Over-expression of human TCL1, a known CLL oncogene, in murine B-cells leads to the development of mature CD19+/CD5+/IgM+ clonal leukemia with a similar disease phenotype seen in human CLL. Herein, we review our recent study using this TCL1 murine model for CLL and corresponding human CLL samples in a cross-species epigenomics approach to address the timing and relevance of epigenetic events occurring during leukemogenesis. We were able to demonstrate that the mouse model recapitulates epigenetic events very similar to what has been reported for human CLL and thus provides an exciting new tool to study early epigenetic events. Epigenetic alterations are seen at a time of three month after birth, much earlier than the phenotypically visible disease which occurs around 11 month of age. An early event in gene silencing is the inactivation of transcription factor Foxd3 expression through an NF-κB mediated process in animals with one month of age. PMID:19901553

  12. Ligand Induction of Retinoic Acid Receptors Alters an Acute Infection by Murine Cytomegalovirus†

    PubMed Central

    Angulo, Ana; Chandraratna, Roshantha A. S.; LeBlanc, James F.; Ghazal, Peter

    1998-01-01

    Here we report that administration of retinoids can alter the outcome of an acute murine cytomegalovirus (MCMV) infection. We show that a crucial viral control element, the major immediate-early enhancer, can be activated by retinoic acid (RA) via multiple RA-responsive elements (DR2) that bind retinoid X receptor-retinoic acid receptor (RAR) heterodimers with apparent dissociation constants ranging from 15 to 33 nM. Viral growth is dramatically increased upon RA treatment of infected tissue culture cells. Using synthetic retinoid receptor-specific agonists and antagonists, we provide evidence that RAR activation in cells is required for mediating the response of MCMV to RA. Oral administration of RA to infected immunocompetent mice selectively exacerbates an infection by MCMV, while cotreatment with an RAR antagonist protects against the adverse effects of RA on MCMV infection. In conclusion, these chemical genetic experiments provide evidence that an RAR-mediated pathway can modulate in vitro and in vivo infections by MCMV. PMID:9573222

  13. Murine Mycobacterium marinum Infection as a Model for Tuberculosis.

    PubMed

    Lienard, Julia; Carlsson, Fredric

    2017-01-01

    Mycobacteria are a major human health problem globally. Regarding tuberculosis the situation is worsened by the poor efficacy of current vaccine regimens and by emergence of drug-resistant strains (Manjelievskaia J et al, Trans R Soc Trop Med Hyg 110: 110, 2016; Pereira et al., Lancet Infect Dis 12:300-306, 2012; http://www.who.int/tb/publications/global_report/en/) undermining both disease-prevention and available treatments. Thus, increased basic understanding of mycobacterial-and particularly Mycobacterium tuberculosis-virulence strategies and pathogenesis is of great importance. To this end several in vivo infection models are available (Guirado and Schlesinger, Front Immunol 4:98, 2013; Leung et al., Eur J Immunol 43:2246-2254, 2013; Patel et al., J Lab Physicians 3:75-79, 2011; van Leeuwen et al., Cold Spring Harb Perspect Med 5:a018580, 2015). While these models all have their merits they also exhibit limitations, and none perfectly mimics all aspects of human tuberculosis. Thus, there is a need for multiple models that may complement each other, ultimately allowing us to gain true insight into the pathogenesis of mycobacterial infections.Here, we describe a recently developed mouse model of Mycobacterium marinum infection that allows kinetic and quantitative studies of disease progression in live animals [8]. Notably, this model exhibits features of human tuberculosis not replicated in M. tuberculosis infected mice, and may provide an important complement to the field. For example, granulomas in the M. marinum model develop central caseating necrosis (Carlsson et al., PLoS Pathog 6:e1000895, 2010), a hallmark of granulomas in human tuberculosis normally not replicated in murine M. tuberculosis infection. Moreover, while tuberculosis is heterogeneous and presents with a continuum of active and latent disease, M. tuberculosis infected mice essentially lack this dynamic range and do not replicate latency (Guirado and Schlesinger, Front Immunol 4:98, 2013

  14. CD45 phosphatase is crucial for human and murine acute myeloid leukemia maintenance through its localization in lipid rafts.

    PubMed

    Saint-Paul, Laetitia; Nguyen, Chi-Hung; Buffière, Anne; Pais de Barros, Jean-Paul; Hammann, Arlette; Landras-Guetta, Corinne; Filomenko, Rodolphe; Chrétien, Marie-Lorraine; Johnson, Pauline; Bastie, Jean-Noël; Delva, Laurent; Quéré, Ronan

    2016-10-04

    CD45 is a pan-leukocyte protein with tyrosine phosphatase activity involved in the regulation of signal transduction in hematopoiesis. Exploiting CD45 KO mice and lentiviral shRNA, we prove the crucial role that CD45 plays in acute myeloid leukemia (AML) development and maintenance. We discovered that CD45 does not colocalize with lipid rafts on murine and human non-transformed hematopoietic cells. Using a mouse model, we proved that CD45 positioning within lipid rafts is modified during their oncogenic transformation to AML. CD45 colocalized with lipid rafts on AML cells, which contributes to elevated GM-CSF signal intensity involved in proliferation of leukemic cells. We furthermore proved that the GM-CSF/Lyn/Stat3 pathway that contributes to growth of leukemic cells could be profoundly affected, by using a new plasma membrane disrupting agent, which rapidly delocalized CD45 away from lipid rafts. We provide evidence that this mechanism is also effective on human primary AML samples and xenograft transplantation. In conclusion, this study highlights the emerging evidence of the involvement of lipid rafts in oncogenic development of AML and the targeting of CD45 positioning among lipid rafts as a new strategy in the treatment of AML.

  15. CD45 phosphatase is crucial for human and murine acute myeloid leukemia maintenance through its localization in lipid rafts

    PubMed Central

    Saint-Paul, Laetitia; Nguyen, Chi-Hung; Buffière, Anne; de Barros, Jean-Paul Pais; Hammann, Arlette; Landras-Guetta, Corinne; Filomenko, Rodolphe; Chrétien, Marie-Lorraine; Johnson, Pauline; Bastie, Jean-Noël; Delva, Laurent; Quéré, Ronan

    2016-01-01

    CD45 is a pan-leukocyte protein with tyrosine phosphatase activity involved in the regulation of signal transduction in hematopoiesis. Exploiting CD45 KO mice and lentiviral shRNA, we prove the crucial role that CD45 plays in acute myeloid leukemia (AML) development and maintenance. We discovered that CD45 does not colocalize with lipid rafts on murine and human non-transformed hematopoietic cells. Using a mouse model, we proved that CD45 positioning within lipid rafts is modified during their oncogenic transformation to AML. CD45 colocalized with lipid rafts on AML cells, which contributes to elevated GM-CSF signal intensity involved in proliferation of leukemic cells. We furthermore proved that the GM-CSF/Lyn/Stat3 pathway that contributes to growth of leukemic cells could be profoundly affected, by using a new plasma membrane disrupting agent, which rapidly delocalized CD45 away from lipid rafts. We provide evidence that this mechanism is also effective on human primary AML samples and xenograft transplantation. In conclusion, this study highlights the emerging evidence of the involvement of lipid rafts in oncogenic development of AML and the targeting of CD45 positioning among lipid rafts as a new strategy in the treatment of AML. PMID:27579617

  16. Murine model of concurrent oral and vaginal Candida albicans colonisation.

    PubMed

    Rahman, Durdana; Mistry, Mukesh; Thavaraj, Selvam; Naglik, Julian R; Challacombe, Stephen J

    2012-01-01

    Investigations into the complex interaction between the fungal pathogen Candida albicans and its human host require the use of animals as in vivo models. A major advance is the creation of a low-oestrogen murine model of concurrent oral and vaginal C. albicans colonisation that resembles human candidal carriage at both mucosal sites. Weekly intramuscular (5 μg) and subcutaneous (5 μg) oestrogen administration was determined as optimal, enhancing oral colonisation but essential for vaginal colonisation. Using a clinical C. albicans oral isolate, persistent colonisation for up to 6 weeks can be achieved at both sites in two strains of mice (BALB/c and C57BL/6). This concurrent model of mucosal colonisation reduces the numbers of experimental mice by half, and opens up new avenues of research in assessing potential mucosal vaccine candidates and in studying delicate host-pathogen interactions during the most natural state of C. albicans epithelial colonisation.

  17. Transmission of murine cytomegalovirus in breast milk: a model of natural infection in neonates.

    PubMed

    Wu, Carol A; Paveglio, Sara A; Lingenheld, Elizabeth G; Zhu, Li; Lefrançois, Leo; Puddington, Lynn

    2011-05-01

    Vertical transmission of viruses in breast milk can expose neonates to infectious pathogens at a time when the capacity of their immune system to control infections is limited. We developed a mouse model to study the outcomes of acquisition of murine cytomegalovirus (MCMV) when neonates are breastfed by mothers with acute or latent infection. Breast milk leukocytes collected from lactating mice were examined for the presence of MCMV IE-1 mRNA by reverse transcription-PCR (RT-PCR) with Southern analysis. As determined by this criterion, breast milk leukocytes from both acute and latent mothers were positive for MCMV. This mimics the outcome seen in humans with latent cytomegalovirus infection, where reactivation of virus occurs specifically in the lactating mammary gland. Interestingly, intraperitoneal injection of breast milk collected from mothers with latent infection was sufficient to transfer MCMV to neonatal mice, demonstrating that breast milk was a source of virus. Furthermore, we found that MCMV was transmitted from infected mothers to breastfed neonates, with MCMV IE-1 mRNA or infectious virus present in multiple organs, including the brain. In fact, 1 day of nursing was sufficient to transmit MCMV from latent mothers to breastfed neonatal mice. Together, these data validate this mouse model of vertical transmission of MCMV from mothers with acute or latent MCMV infection to breastfed neonates. Its relevance to human disease should prove useful in future studies designed to elucidate the immunological and pathological ramifications of neonatal infection acquired via this natural route.

  18. Oral treatment with Bifidobacterium longum 51A reduced inflammation in a murine experimental model of gout.

    PubMed

    Vieira, A T; Galvão, I; Amaral, F A; Teixeira, M M; Nicoli, J R; Martins, F S

    2015-01-01

    Gout is an acute inflammatory disease characterised by the presence of uric acid crystals in the joint. This event promotes neutrophil infiltration and activation that leads to tissue damage. We investigated here whether the oral administration of the probiotic strain Bifidobacterium longum 5(1A) (BL) could ameliorate monosodium urate crystal (MSU)-induced inflammation in a murine model of gout. Mice received oral administration of BL or saline daily for 7 days and then were injected with MSU in the knee cavity. Treatment with BL significantly alleviated the inflammatory parameters, as seen by reduced hypernociception, reduced neutrophil accumulation in the joint and myeloperoxidase activity in periarticular tissue. There was inhibition of the production of CXCL1 and interleukin(IL)-1β in joints. Levels of the anti-inflammatory cytokine IL-10 were significantly higher in the knee tissue of mice treated with than control mice injected with MSU. In conclusion, oral BL treatment reduced the inflammatory response in an experimental murine model of gout, suggesting it may be useful as an adjuvant treatment in patients with gout.

  19. [Mucocutaneous diseases and murine models with death of keratinocytes induced by lichenoid tissue reaction/interface dermatitis].

    PubMed

    Okiyama, Naoko

    2015-01-01

    A set of histopathological elements with death of epidermal basal cell layer keratinocytes along with inflammatory cell infiltration distinguishes lichenoid tissue reaction (LTR)/interface dermatitis (IFD) from other inflammatory mucocutaneous diseases. The LTR/IFD can be seen in skin disorders like as lichen planus, acute graft-versus-host disease, lupus erythematosus, dermatomyositis, and toxic epidermal necrolysis/Stevesn-Johnson syndrome. Clinical and basic researches suggested that cytotoxic CD8 T cells producing interferon-γ and FasL are final effector cells to cause apoptosis of keratinocyte. Some murine models of LTR/IFD have been established, for example, LTR/IFD reactions of keratinocyte-specific ovalbumin (OVA)-transgenic mice after OVA-specific T-cell-receptor(+)CD8 T cells. By analysis of the murine model, a new class of immunosuppressant, a JAK inhibitor, has been suggested as a new candidate for treatment of LTR/IFD.

  20. RNA Profiling in Human and Murine Transplanted Hearts: Identification and Validation of Therapeutic Targets for Acute Cardiac and Renal Allograft Rejection

    PubMed Central

    Van Aelst, L. N. L.; Summer, G.; Li, S.; Gupta, S. K.; Heggermont, W.; De Vusser, K.; Carai, P.; Naesens, M.; Van Cleemput, J.; Van de Werf, F.; Vanhaecke, J.; Thum, T.; Waer, M.; Papageorgiou, A.‐P.; Schroen, B.

    2015-01-01

    Acute cellular rejection (ACR) is the adverse response of the recipient's immune system against the allogeneic graft. Using human surveillance endomyocardial biopsies (EMBs) manifesting ACR and murine allogeneic grafts, we profiled implicated microRNAs (miRs) and mRNAs. MiR profiling showed that miR‐21, ‐142‐3p, ‐142‐5p, ‐146a, ‐146b, ‐155, ‐222, ‐223, and ‐494 increased during ACR in humans and mice, whereas miR‐149‐5p decreased. mRNA profiling revealed 70 common differentially regulated transcripts, all involved in immune signaling and immune‐related diseases. Interestingly, 33 of 70 transcripts function downstream of IL‐6 and its transcription factor spleen focus forming virus proviral integration oncogene (SPI1), an established target of miR‐155, the most upregulated miR in human EMBs manifesting rejection. In a mouse model of cardiac transplantation, miR‐155 absence and pharmacological inhibition attenuated ACR, demonstrating the causal involvement and therapeutic potential of miRs. Finally, we corroborated our miR signature in acute cellular renal allograft rejection, suggesting a nonorgan specific signature of acute rejection. We concluded that miR and mRNA profiling in human and murine ACR revealed the shared significant dysregulation of immune genes. Inflammatory miRs, for example miR‐155, and transcripts, in particular those related to the IL‐6 pathway, are promising therapeutic targets to prevent acute allograft rejection. PMID:26249758

  1. A novel inexpensive murine model of oral chronic digitalization.

    PubMed

    Helber, Izo; Kanashiro, Rosemeire M; Alarcon, Ernesto A; Antonio, Ednei L; Tucci, Paulo J F

    2004-01-01

    A novel inexpensive murine model of oral administration of digitoxin (100 micro g/kg per day) added to routine chow is described. Serum digitoxin levels achieved after oral (n = 5; 116 +/- 14 ng/mL) and subcutaneous (n = 5; 124 +/- 11 ng/mL) administration were similar. A significant increase in the maximal left ventricular pressure rise of treated (n = 9) compared with control (n = 6) rats (dP/dt: 8956 +/- 233 vs 7980 +/- 234 mmHg/s, respectively; P = 0.01) characterized the positive inotropic action of digitoxin. In addition, no differences were observed in treated compared with control rats with regard to the electrocardiogram and systolic and diastolic left ventricular pressures.

  2. Epigenetic alterations in a murine model for chronic lymphocytic leukemia.

    PubMed

    Chen, Shih-Shih; Sherman, Mara H; Hertlein, Erin; Johnson, Amy J; Teitell, Michael A; Byrd, John C; Plass, Christoph

    2009-11-15

    Early stages in the development of chronic lymphocytic leukemia (CLL) have not been explored mainly due to the inability to study normal B-cells en route to transformation. In order to determine such early events of leukemogenesis, we have used a well established mouse model for CLL. Over-expression of human TCL1, a known CLL oncogene in murine B-cells leads to the development of mature CD19+/CD5+/IgM+ clonal leukemia with a disease phenotype similar to that seen in human CLL. Herein, we review our recent study using this TCL1-driven mouse model for CLL and corresponding human CLL samples in a cross-species epigenomics approach to address the timing and relevance of epigenetic events occurring during leukemogenesis. We demonstrated that the mouse model recapitulates the epigenetic events that have been reported for human CLL, affirming the power and validity of this mouse model to study early epigenetic events in cancer progression. Epigenetic alterations are detected as early as three months after birth, far before disease manifests at about 11 months of age. These mice undergo NFkappaB repressor complex mediated inactivation of the transcription factor Foxd3, whose targets become aberrantly methylated and silenced in mouse and human CLL. Overall, our data suggest the accumulated epigenetic alterations during CLL pathogenesis as a consequence of gene silencing through TCL1 and NFkappaB repressor complex, suggesting the relevance for NFkappaB as a therapeutic target in CLL.

  3. An in vitro model of murine middle ear epithelium

    PubMed Central

    Mulay, Apoorva; Akram, Khondoker M.; Williams, Debbie; Armes, Hannah; Russell, Catherine; Hood, Derek; Armstrong, Stuart; Stewart, James P.; Brown, Steve D. M.; Bingle, Lynne

    2016-01-01

    ABSTRACT Otitis media (OM), or middle ear inflammation, is the most common paediatric disease and leads to significant morbidity. Although understanding of underlying disease mechanisms is hampered by complex pathophysiology it is clear that epithelial abnormalities underpin the disease. There is currently a lack of a well-characterised in vitro model of the middle ear (ME) epithelium that replicates the complex cellular composition of the middle ear. Here, we report the development of a novel in vitro model of mouse middle ear epithelial cells (mMECs) at an air–liquid interface (ALI) that recapitulates the characteristics of the native murine ME epithelium. We demonstrate that mMECs undergo differentiation into the varied cell populations seen within the native middle ear. Proteomic analysis confirmed that the cultures secrete a multitude of innate defence proteins from their apical surface. We showed that the mMECs supported the growth of the otopathogen, nontypeable Haemophilus influenzae (NTHi), suggesting that the model can be successfully utilised to study host–pathogen interactions in the middle ear. Overall, our mMEC culture system can help to better understand the cell biology of the middle ear and improve our understanding of the pathophysiology of OM. The model also has the potential to serve as a platform for validation of treatments designed to reverse aspects of epithelial remodelling that underpin OM development. PMID:27660200

  4. An Immunocompromised Murine Model of Chronic Bartonella Infection

    PubMed Central

    Chiaraviglio, Lucius; Duong, Scott; Brown, Daniel A.; Birtles, Richard J.; Kirby, James E.

    2010-01-01

    Bartonella are ubiquitous Gram-negative pathogens that cause chronic blood stream infections in mammals. Two species most often responsible for human infection, B. henselae and B. quintana, cause prolonged febrile illness in immunocompetent hosts, known as cat scratch disease and trench fever, respectively. Fascinatingly, in immunocompromised hosts, these organisms also induce new blood vessel formation leading to the formation of angioproliferative tumors, a disease process named bacillary angiomatosis. In addition, they cause an endothelial-lined cystic disease in the liver known as bacillary peliosis. Unfortunately, there are as yet no completely satisfying small animal models for exploring these unique human pathologies, as neither species appears able to sustain infection in small animal models. Therefore, we investigated the potential use of other Bartonella species for their ability to recapitulate human pathologies in an immunodeficient murine host. Here, we demonstrate the ability of Bartonella taylorii to cause chronic infection in SCID/BEIGE mice. In this model, Bartonella grows in extracellular aggregates, embedded within collagen matrix, similar to previous observations in cat scratch disease, bacillary peliosis, and bacillary angiomatosis. Interestingly, despite overwhelming infection later in disease, evidence for significant intracellular replication in endothelial or other cell types was not evident. We believe that this new model will provide an important new tool for investigation of Bartonella–host interaction. PMID:20395436

  5. Hamster and Murine Models of Severe Destructive Lyme Arthritis

    PubMed Central

    Munson, Erik; Nardelli, Dean T.; Du Chateau, Brian K.; Callister, Steven M.; Schell, Ronald F.

    2012-01-01

    Arthritis is a frequent complication of infection in humans with Borrelia burgdorferi. Weeks to months following the onset of Lyme borreliosis, a histopathological reaction characteristic of synovitis including bone, joint, muscle, or tendon pain may occur. A subpopulation of patients may progress to a chronic, debilitating arthritis months to years after infection which has been classified as severe destructive Lyme arthritis. This arthritis involves focal bone erosion and destruction of articular cartilage. Hamsters and mice are animal models that have been utilized to study articular manifestations of Lyme borreliosis. Infection of immunocompetent LSH hamsters or C3H mice results in a transient synovitis. However, severe destructive Lyme arthritis can be induced by infecting irradiated hamsters or mice and immunocompetent Borrelia-vaccinated hamsters, mice, and interferon-gamma- (IFN-γ-) deficient mice with viable B. burgdorferi. The hamster model of severe destructive Lyme arthritis facilitates easy assessment of Lyme borreliosis vaccine preparations for deleterious effects while murine models of severe destructive Lyme arthritis allow for investigation of mechanisms of immunopathology. PMID:22461836

  6. Reduced Emergence of Isoniazid Resistance with Concurrent Use of Thioridazine against Acute Murine Tuberculosis

    PubMed Central

    Dutta, Noton K.; Pinn, Michael L.

    2014-01-01

    The repurposing of existing drugs is being pursued as a means by which to accelerate the development of novel regimens for the treatment of drug-susceptible and drug-resistant tuberculosis (TB). In the current study, we assessed the activity of the antipsychotic drug thioridazine (TRZ) in combination with the standard regimen in a well-validated murine TB model. Single-dose and steady-state pharmacokinetic studies were performed in BALB/c mice to establish human-equivalent doses of TRZ. To determine the bactericidal activity of TRZ against TB in BALB/c mice, three separate studies were performed, including a dose-ranging study of TRZ monotherapy and efficacy studies of human-equivalent doses of TRZ with and without isoniazid (INH) or rifampin (RIF). Therapeutic efficacy was assessed by the change in mycobacterial load in the lung. The human-equivalent dose of thioridazine was determined to be 25 mg/kg of body weight, which was well tolerated in mice. TRZ was found to accumulate at high concentrations in lung tissue relative to serum levels. We observed modest synergy during coadministration of TRZ with INH, and the addition of TRZ reduced the emergence of INH-resistant mutants in mouse lungs. In conclusion, this study further illustrates the opportunity to reevaluate the contribution of TRZ to the sterilizing activity of combination regimens to prevent the emergence of drug-resistant M. tuberculosis. PMID:24798290

  7. Modeling of Chronic Myeloid Leukemia: An Overview of In Vivo Murine and Human Xenograft Models

    PubMed Central

    Vellenga, Edo

    2016-01-01

    Over the past years, a wide variety of in vivo mouse models have been generated in order to unravel the molecular pathology of Chronic Myeloid Leukemia (CML) and to develop and improve therapeutic approaches. These models range from (conditional) transgenic models, knock-in models, and murine bone marrow retroviral transduction models followed by transplantation. With the advancement of immunodeficient xenograft models, it has become possible to use human stem/progenitor cells for in vivo studies as well as cells directly derived from CML patients. These models not only mimic CML but also have been instrumental in uncovering various fundamental mechanisms of CML disease progression and tyrosine kinase inhibitor (TKI) resistance. With the availability of iPSC technology, it has become feasible to derive, maintain, and expand CML subclones that are at least genetically identical to those in patients. The following review provides an overview of all murine as well as human xenograft models for CML established till date. PMID:27642303

  8. Murine Cervical Heart Transplantation Model Using a Modified Cuff Technique

    PubMed Central

    Kofler, Markus; Ritschl, Paul; Oellinger, Robert; Aigner, Felix; Sucher, Robert; Schneeberger, Stefan; Pratschke, Johann; Brandacher, Gerald; Maglione, Manuel

    2014-01-01

    Mouse models are of special interest in research since a wide variety of monoclonal antibodies and commercially defined inbred and knockout strains are available to perform mechanistic in vivo studies. While heart transplantation models using a suture technique were first successfully developed in rats, the translation into an equally widespread used murine equivalent was never achieved due the technical complexity of the microsurgical procedure. In contrast, non-suture cuff techniques, also developed initially in rats, were successfully adapted for use in mice1-3. This technique for revascularization involves two major steps I) everting the recipient vessel over a polyethylene cuff; II) pulling the donor vessel over the formerly everted recipient vessel and holding it in place with a circumferential tie. This ensures a continuity of the endothelial layer, short operating time and very high patency rates4. Using this technique for vascular anastomosis we performed more than 1,000 cervical heart transplants with an overall success rate of 95%. For arterial inflow the common carotid artery and the proximal aortic arch were anastomosed resulting in a retrograde perfusion of the transplanted heart. For venous drainage the pulmonary artery of the graft was anastomosed with the external jugular vein of the recipient5. Herein, we provide additional details of this technique to supplement the video. PMID:25350682

  9. TALEN mediated somatic mutagenesis in murine models of cancer

    PubMed Central

    Zhang, Shuyuan; Li, Lin; Kendrick, Sara L.; Gerard, Robert D.; Zhu, Hao

    2014-01-01

    Cancer genome sequencing has identified numerous somatic mutations whose biological relevance is uncertain. In this study, we used genome-editing tools to create and analyze targeted somatic mutations in murine models of liver cancer. TALEN were designed against β-catenin (Ctnnb1) and Apc, two commonly mutated genes in hepatocellular carcinoma (HCC), to generate isogenic HCC cell lines. Both mutant cell lines exhibited evidence of Wnt pathway dysregulation. We asked if these TALENs could create targeted somatic mutations after hydrodynamic transfection (HDT) into mouse liver. TALENs targeting β-catenin promoted endogenous HCC carrying the intended gain-of-function mutations. However, TALENs targeting Apc were not as efficient in inducing in vivo homozygous loss-of-function mutations. We hypothesized that hepatocyte polyploidy might be protective against TALEN-induced loss of heterozygosity (LOH), and indeed Apc gene editing was less efficient in tetraploid than in diploid hepatocytes. To increase efficiency, we administered adenoviral Apc TALENs and found that we could achieve a higher mutagenesis rate in vivo. Our results demonstrate that genome-editing tools can enable the in vivo study of cancer genes and faithfully recapitulate the mosaic nature of mutagenesis in mouse cancer models. PMID:25070752

  10. Effect of premedications in a murine model of asparaginase hypersensitivity.

    PubMed

    Fernandez, Christian A; Smith, Colton; Karol, Seth E; Ramsey, Laura B; Liu, Chengcheng; Pui, Ching-Hon; Jeha, Sima; Evans, William E; Finkelman, Fred D; Relling, Mary V

    2015-03-01

    A murine model was developed that recapitulates key features of clinical hypersensitivity to Escherichia coli asparaginase. Sensitized mice developed high levels of anti-asparaginase IgG antibodies and had immediate hypersensitivity reactions to asparaginase upon challenge. Sensitized mice had complete inhibition of plasma asparaginase activity (P = 4.2 × 10(-13)) and elevated levels of mouse mast cell protease 1 (P = 6.1 × 10(-3)) compared with nonsensitized mice. We investigated the influence of pretreatment with triprolidine, cimetidine, the platelet activating factor (PAF) receptor antagonist CV-6209 [2-(2-acetyl-6-methoxy-3,9-dioxo-4,8-dioxa-2,10-diazaoctacos-1-yl)-1-ethyl-pyridinium chloride], or dexamethasone on the severity of asparaginase-induced allergies. Combining triprolidine and CV-6209 was best for mitigating asparaginase-induced hypersensitivity compared with nonpretreated, sensitized mice (P = 1.2 × 10(-5)). However, pretreatment with oral dexamethasone was the only agent capable of mitigating the severity of the hypersensitivity (P = 0.03) and partially restoring asparaginase activity (P = 8.3 × 10(-4)). To rescue asparaginase activity in sensitized mice without requiring dexamethasone, a 5-fold greater dose of asparaginase was needed to restore enzyme activity to a similar concentration as in nonsensitized mice. Our results suggest a role of histamine and PAF in asparaginase-induced allergies and indicate that mast cell-derived proteases released during asparaginase allergy may be a useful marker of clinical hypersensitivity.

  11. Epstein-Barr virus IL-10 gene expression by a recombinant murine gammaherpesvirus in vivo enhances acute pathogenicity but does not affect latency or reactivation

    PubMed Central

    2014-01-01

    Background Many viral genes affect cytokine function within infected hosts, with interleukin 10 (IL-10) as a commonly targeted mediator. Epstein-Barr virus (EBV) encodes an IL-10 homologue (vIL-10) expressed during productive (lytic) infection and induces expression of cellular IL-10 (cIL-10) during latency. This study explored the role of vIL-10 in a murine gammaherpesvirus (MHV) model of viral infection. Methods The EBV vIL-10 gene was inserted into MHV-76, a strain which lacks the ability to induce cIL-10, by recombination in transfected mouse cells. Mice were infected intranasally with the recombinant, vIL-10-containing MHV-76 or control virus strains and assayed at various days post infection for lung virus titer, spleen cell number, percentage of latently infected spleen cells and ability to reactivate virus from spleen cells. Results Recombinant murine gammaherpesvirus expressing EBV vIL-10 rose to significantly higher titers in lungs and promoted an increase in spleen cell number in infected mice in comparison to MHV strains lacking the vIL-10 gene. However, vIL-10 expression did not alter the quantity of latent virus in the spleen or its ability to reactivate. Conclusions In this mouse model of gammaherpesvirus infection, EBV vIL-10 appears to influence acute-phase pathogenicity. Given that EBV and MHV wild-type strains contain other genes that induce cIL-10 expression in latency (e.g. LMP-1 and M2, respectively), vIL-10 may have evolved to serve the specific role in acute infection of enlarging the permissive host cell population, perhaps to facilitate initial survival and dissemination of viral-infected cells. PMID:25324959

  12. Protective Role of Interleukin-17 in Murine NKT Cell-Driven Acute Experimental Hepatitis

    PubMed Central

    Wondimu, Zenebech; Santodomingo-Garzon, Tania; Le, Tai; Swain, Mark G.

    2010-01-01

    NKT cells are highly enriched within the liver. On activation NKT cells rapidly release large quantities of different cytokines which subsequently activate, recruit, or modulate cells important for the development of hepatic inflammation. Recently, it has been demonstrated that NKT cells can also produce interleukin-17 (IL-17), a proinflammatory cytokine that is also known to have diverse immunoregulatory effects. The role played by IL-17 in hepatic inflammation is unclear. Here we show that during α-galactosylceramide (αGalCer)-induced hepatitis in mice, a model of hepatitis driven by specific activation of the innate immune system via NKT cells within the liver, NK1.1+ and CD4+ iNKT cells rapidly produce IL-17 and are the main IL-17-producing cells within the liver. Administration of IL-17 neutralizing monoclonal antibodies before αGalCer injection significantly exacerbated hepatitis, in association with a significant increase in hepatic neutrophil and proinflammatory monocyte (ie, producing IL-12, tumor necrosis factor-α) recruitment, and increased hepatic mRNA and protein expression for the relevant neutrophil and monocyte chemokines CXCL5/LIX and CCL2/MCP-1, respectively. In contrast, administration of exogenous recombinant murine IL-17 before α-GalCer injection ameliorated hepatitis and inhibited the recruitment of inflammatory monocytes into the liver. Our results demonstrate that hepatic iNKT cells specifically activated with α-GalCer rapidly produce IL-17, and IL-17 produced after α-GalCer administration inhibits the development of hepatitis. PMID:20847291

  13. A Murine Model of Muscle Training by Neuromuscular Electrical Stimulation

    PubMed Central

    Ambrosio, Fabrisia; Fitzgerald, G. Kelley; Ferrari, Ricardo; Distefano, Giovanna; Carvell, George

    2012-01-01

    Neuromuscular electrical stimulation (NMES) is a common clinical modality that is widely used to restore1, maintain2 or enhance3-5 muscle functional capacity. Transcutaneous surface stimulation of skeletal muscle involves a current flow between a cathode and an anode, thereby inducing excitement of the motor unit and the surrounding muscle fibers. NMES is an attractive modality to evaluate skeletal muscle adaptive responses for several reasons. First, it provides a reproducible experimental model in which physiological adaptations, such as myofiber hypertophy and muscle strengthening6, angiogenesis7-9, growth factor secretion9-11, and muscle precursor cell activation12 are well documented. Such physiological responses may be carefully titrated using different parameters of stimulation (for Cochrane review, see 13). In addition, NMES recruits motor units non-selectively, and in a spatially fixed and temporally synchronous manner14, offering the advantage of exerting a treatment effect on all fibers, regardless of fiber type. Although there are specified contraindications to NMES in clinical populations, including peripheral venous disorders or malignancy, for example, NMES is safe and feasible, even for those who are ill and/or bedridden and for populations in which rigorous exercise may be challenging. Here, we demonstrate the protocol for adapting commercially available electrodes and performing a NMES protocol using a murine model. This animal model has the advantage of utilizing a clinically available device and providing instant feedback regarding positioning of the electrode to elicit the desired muscle contractile effect. For the purpose of this manuscript, we will describe the protocol for muscle stimulation of the anterior compartment muscles of a mouse hindlimb. PMID:22617846

  14. A murine model of muscle training by neuromuscular electrical stimulation.

    PubMed

    Ambrosio, Fabrisia; Fitzgerald, G Kelley; Ferrari, Ricardo; Distefano, Giovanna; Carvell, George

    2012-05-09

    Neuromuscular electrical stimulation (NMES) is a common clinical modality that is widely used to restore (1), maintain (2) or enhance (3-5) muscle functional capacity. Transcutaneous surface stimulation of skeletal muscle involves a current flow between a cathode and an anode, thereby inducing excitement of the motor unit and the surrounding muscle fibers. NMES is an attractive modality to evaluate skeletal muscle adaptive responses for several reasons. First, it provides a reproducible experimental model in which physiological adaptations, such as myofiber hypertophy and muscle strengthening (6), angiogenesis (7-9), growth factor secretion (9-11), and muscle precursor cell activation (12) are well documented. Such physiological responses may be carefully titrated using different parameters of stimulation (for Cochrane review, see (13)). In addition, NMES recruits motor units non-selectively, and in a spatially fixed and temporally synchronous manner (14), offering the advantage of exerting a treatment effect on all fibers, regardless of fiber type. Although there are specified contraindications to NMES in clinical populations, including peripheral venous disorders or malignancy, for example, NMES is safe and feasible, even for those who are ill and/or bedridden and for populations in which rigorous exercise may be challenging. Here, we demonstrate the protocol for adapting commercially available electrodes and performing a NMES protocol using a murine model. This animal model has the advantage of utilizing a clinically available device and providing instant feedback regarding positioning of the electrode to elicit the desired muscle contractile effect. For the purpose of this manuscript, we will describe the protocol for muscle stimulation of the anterior compartment muscles of a mouse hindlimb.

  15. Validation of the murine aortic arch as a model to study human vascular diseases

    PubMed Central

    Casteleyn, Christophe; Trachet, Bram; Van Loo, Denis; Devos, Daniel G H; Van den Broeck, Wim; Simoens, Paul; Cornillie, Pieter

    2010-01-01

    Although the murine thoracic aorta and its main branches are widely studied to gain more insight into the pathogenesis of human vascular diseases, detailed anatomical data on the murine aorta are sparse. Moreover, comparative studies between mice and men focusing on the topography and geometry of the heart and aorta are lacking. As this hampers the validation of murine vascular models, the branching pattern of the murine thoracic aorta was examined in 30 vascular corrosion casts. On six casts the intrathoracic position of the heart was compared with that of six younger and six older men of whom contrast-enhanced computer tomography images of the thorax were three-dimensionally reconstructed. In addition, the geometry of the human thoracic aorta was compared with that of the mouse by reconstructing micro-computer tomography images of six murine casts. It was found that the right brachiocephalic trunk, left common carotid artery and left subclavian artery branched subsequently from the aortic arch in both mice and men. The geometry of the branches of the murine aortic arch was quite similar to that of men. In both species the initial segment of the aorta, comprising the ascending aorta, aortic arch and cranial/superior part of the descending aorta, was sigmoidally curved on a cranial/superior view. Although some analogy between the intrathoracic position of the murine and human heart was observed, the murine heart manifestly deviated more ventrally. The major conclusion of this study is that, in both mice and men, the ascending and descending aorta do not lie in a single vertical plane (non-planar aortic geometry). This contrasts clearly with most domestic mammals in which a planar aortic pattern is present. As the vascular branching pattern of the aortic arch is also similar in mice and men, the murine model seems valuable to study human vascular diseases. PMID:20345858

  16. Validation of the murine aortic arch as a model to study human vascular diseases.

    PubMed

    Casteleyn, Christophe; Trachet, Bram; Van Loo, Denis; Devos, Daniel G H; Van den Broeck, Wim; Simoens, Paul; Cornillie, Pieter

    2010-05-01

    Although the murine thoracic aorta and its main branches are widely studied to gain more insight into the pathogenesis of human vascular diseases, detailed anatomical data on the murine aorta are sparse. Moreover, comparative studies between mice and men focusing on the topography and geometry of the heart and aorta are lacking. As this hampers the validation of murine vascular models, the branching pattern of the murine thoracic aorta was examined in 30 vascular corrosion casts. On six casts the intrathoracic position of the heart was compared with that of six younger and six older men of whom contrast-enhanced computer tomography images of the thorax were three-dimensionally reconstructed. In addition, the geometry of the human thoracic aorta was compared with that of the mouse by reconstructing micro-computer tomography images of six murine casts. It was found that the right brachiocephalic trunk, left common carotid artery and left subclavian artery branched subsequently from the aortic arch in both mice and men. The geometry of the branches of the murine aortic arch was quite similar to that of men. In both species the initial segment of the aorta, comprising the ascending aorta, aortic arch and cranial/superior part of the descending aorta, was sigmoidally curved on a cranial/superior view. Although some analogy between the intrathoracic position of the murine and human heart was observed, the murine heart manifestly deviated more ventrally. The major conclusion of this study is that, in both mice and men, the ascending and descending aorta do not lie in a single vertical plane (non-planar aortic geometry). This contrasts clearly with most domestic mammals in which a planar aortic pattern is present. As the vascular branching pattern of the aortic arch is also similar in mice and men, the murine model seems valuable to study human vascular diseases.

  17. Murine typhus and leptospirosis as causes of acute undifferentiated fever, Indonesia.

    PubMed

    Gasem, M Hussein; Wagenaar, Jiri F P; Goris, Marga G A; Adi, Mateus S; Isbandrio, Bambang B; Hartskeerl, Rudy A; Rolain, Jean Marc; Raoult, Didier; van Gorp, Eric C M

    2009-06-01

    To investigate rickettsioses and leptospirosis among urban residents of Semarang, Indonesia, we tested the blood of 137 patients with fever. Evidence of Rickettsia typhi, the agent of murine typhus, was found in 9 patients. Another 9 patients showed inconclusive serologic results. Thirteen patients received a diagnosis of leptospirosis. No dual infections were detected.

  18. Octreotide ameliorates inflammation and apoptosis in acute and kindled murine PTZ paradigms.

    PubMed

    Al-Shorbagy, M Y; Nassar, Noha N

    2017-01-01

    In the present study, the role of octreotide (OCT) in pentylenetetrazole (PTZ) kindling as well as in acute convulsion models was evaluated. Mice were allocated in groups as (1) control saline; (2) acute PTZ (PTZ-a; 60 mg/kg, i.p.), as a single convulsive dose; and (3) kindled (PTZ-k) receiving nine subconvulsive doses of PTZ (40 mg/kg, i.p.) for 17 days. Groups 4-7 received either valproic acid (VPA) 50 mg/kg or OCT (50 μg/kg, Sandostatin®) 30 min by oral gavage before PTZ-a or PTZ-k. The median seizure stage, latency onset of first stage 4/5 seizures, and incidence of convulsing animals were recorded. Cortical dopamine (DA), tumor necrosis factor (TNF)-α, interleukin (IL)-10, caspase (Casp)-3, myeloperoxidase (MPO), and nitric oxide (NO) were assessed in addition to inducible nitric oxide synthase (iNOS) that was evaluated immunohistochemically in a different set of groups. OCT halted PTZ-induced epilepsy delaying convulsion latency via modulating MPO and TNF-α and normalizing IL-10 with both treatment regimens. In PTZ-k, it decreased Casp-3 activity, NO level, and iNOS immunoreactivity. OCT in both paradigms decreased DA concentration. The current investigation implicates a crucial role for OCT in modulating PTZ-induced kindling by regulating inflammatory and apoptotic effects.

  19. A murine model of early Pseudomonas aeruginosa lung disease with transition to chronic infection

    PubMed Central

    Bayes, H. K.; Ritchie, N.; Irvine, S.; Evans, T. J.

    2016-01-01

    Pseudomonas aeruginosa (PA) remains an important pathogen in patients with cystic fibrosis (CF) lung disease as well as non-CF bronchiectasis and chronic obstructive airways disease. Initial infections are cleared but chronic infection with mucoid strains ensues in the majority of CF patients and specific interventions to prevent this critical infection transition are lacking. The PA bead model has been widely used to study pulmonary P.aeruginosa infection but has limitations in animal husbandry and in accurately mimicking human disease. We have developed an adapted agar bead murine model using a clinical mucoid strain that demonstrates the key features of transition from transitory to chronic airways infection. Infected animals show very limited acute morbidity and mortality, but undergo infection-related weight loss and neutrophilic inflammation, development of anti-pseudomonal antibodies, variable bacterial clearance, endobronchial infection and microbial adaptation with PA small colony variants. We anticipate this model will allow research into the host and microbial factors governing this critical period in Pseudomonas aeruginosa pulmonary pathogenesis when transition to chronicity is occurring. PMID:27804985

  20. A Novel Model of Severe Gallstone Pancreatitis: Murine Pancreatic Duct Ligation Results in Systemic Inflammation and Substantial Mortality

    PubMed Central

    Samuel, Isaac; Yuan, Zuobiao; Meyerholz, David K.; Twait, Erik; Williard, Deborah E.; Kempuraj, Duraisamy

    2010-01-01

    Background Suitable experimental models of gallstone pancreatitis with systemic inflammation and mortality are limited. We developed a novel murine model of duct-ligation-induced acute pancreatitis associated with multiorgan dysfunction and severe mortality. Methods Laparotomy was done on C57/BL6 mice followed by pancreatic duct (PD) ligation, bile duct (BD) ligation without PD ligation, or sham operation. Results Only mice with PD ligation developed acute pancreatitis and had 100% mortality. Pulmonary compliance was significantly reduced after PD ligation but not BD ligation. Bronchoalveolar lavage fluid neutrophil count and interleukin-1β concentration, and the plasma creatinine level, were significantly elevated with PD ligation but not BD ligation. Pancreatic nuclear factor κB (p65) and activator protein 1 (c-Jun) were activated within 1 h of PD ligation. Conclusion PD-ligation-induced acute pancreatitis in mice is associated with systemic inflammation, acute lung injury, multiorgan dysfunction and death. The development of this novel model is an exciting and notable advance in the field. PMID:20975317

  1. Increase of Frequency and Modulation of Phenotype of Regulatory T Cells by Atorvastatin Is Associated with Decreased Lung Inflammatory Cell Infiltration in a Murine Model of Acute Allergic Asthma.

    PubMed

    Blanquiceth, Yurany; Rodríguez-Perea, Ana Lucia; Tabares Guevara, Jorge H; Correa, Luis Alfonso; Sánchez, María Dulfary; Ramírez-Pineda, José Robinson; Velilla, Paula Andrea

    2016-01-01

    Regulatory T cells (Tregs) play an important role by controlling allergic inflammation of airways. Recently, it has been shown that statins have immunomodulatory properties, probably mediated by their effects on Tregs. Therefore, we evaluated the in vivo effect of atorvastatin (ATV) on Tregs and its association with the inflammatory process in a model of allergic asthma. BALB/c mice were sensitized with ovalbumin (OVA) and then challenged with intranasal OVA. ATV (40 mg/kg) was delivered by daily intraperitoneal injection for 7 or 15 days before each OVA challenge. ATV treatment for 7 days increased the frequency of Tregs in mediastinal lymph nodes (MLN) and the interleukin (IL)-10 in lungs. After 15 days of treatment, ATV increased the percentage of glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR+) and programmed cell death protein 1 (PD-1+) Tregs in the lung, without enhancing their suppressive activity, but also increased the percentage of conventional T cells expressing GITR+, PD1+, and OX-40 (tumor necrosis factor receptor superfamily member 4). Although no significant changes were observed in the number of inflammatory cells in the bronchoalveolar lavage (BAL), OVA-specific immunoglobulin E in the serum, and type 2 helper (Th2) cytokines in the lungs, there was a significant decrease of peribronchial inflammation that negatively correlated with the Tregs in MLN and the concentration of IL-10 in the lung. These results suggest that ATV has an immunomodulatory role possibly mediated by their effects on Tregs, which could contribute to the control of inflammation during allergic asthma. Further studies are necessary to elucidate the contribution of Treg to immunomodulatory action of statins in the context of allergic asthma.

  2. Increase of Frequency and Modulation of Phenotype of Regulatory T Cells by Atorvastatin Is Associated with Decreased Lung Inflammatory Cell Infiltration in a Murine Model of Acute Allergic Asthma

    PubMed Central

    Blanquiceth, Yurany; Rodríguez-Perea, Ana Lucia; Tabares Guevara, Jorge H.; Correa, Luis Alfonso; Sánchez, María Dulfary; Ramírez-Pineda, José Robinson; Velilla, Paula Andrea

    2016-01-01

    Regulatory T cells (Tregs) play an important role by controlling allergic inflammation of airways. Recently, it has been shown that statins have immunomodulatory properties, probably mediated by their effects on Tregs. Therefore, we evaluated the in vivo effect of atorvastatin (ATV) on Tregs and its association with the inflammatory process in a model of allergic asthma. BALB/c mice were sensitized with ovalbumin (OVA) and then challenged with intranasal OVA. ATV (40 mg/kg) was delivered by daily intraperitoneal injection for 7 or 15 days before each OVA challenge. ATV treatment for 7 days increased the frequency of Tregs in mediastinal lymph nodes (MLN) and the interleukin (IL)-10 in lungs. After 15 days of treatment, ATV increased the percentage of glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR+) and programmed cell death protein 1 (PD-1+) Tregs in the lung, without enhancing their suppressive activity, but also increased the percentage of conventional T cells expressing GITR+, PD1+, and OX-40 (tumor necrosis factor receptor superfamily member 4). Although no significant changes were observed in the number of inflammatory cells in the bronchoalveolar lavage (BAL), OVA-specific immunoglobulin E in the serum, and type 2 helper (Th2) cytokines in the lungs, there was a significant decrease of peribronchial inflammation that negatively correlated with the Tregs in MLN and the concentration of IL-10 in the lung. These results suggest that ATV has an immunomodulatory role possibly mediated by their effects on Tregs, which could contribute to the control of inflammation during allergic asthma. Further studies are necessary to elucidate the contribution of Treg to immunomodulatory action of statins in the context of allergic asthma. PMID:28066430

  3. Overview of the Use of Murine Models in Leukemia and Lymphoma Research

    PubMed Central

    Kohnken, Rebecca; Porcu, Pierluigi; Mishra, Anjali

    2017-01-01

    Murine models have been adopted as a significant and powerful tool in the study of cancer. The applications of murine models of cancer are numerous: mechanism discovery, oncogenesis, molecular genetics, microenvironment, metastasis, and therapeutic efficacy. Leukemias and lymphomas are a group of highly heterogeneous hematologic malignancies that affect people of all ages and ethnicities. Leukemia and lymphoma arise from hematopoietic and immune cells and usually spread widely throughout the body. The liquid nature of many of these malignancies, as well as the complex microenvironment from which they arise and their multifaceted genetic basis, has added to the difficulty in generating appropriate and translational models to study them. Murine models of leukemia and lymphoma have made substantial contributions to our understanding of the pathobiology of these disorders in humans. However, while there are many advantages to these models, limitations remain. In this review, we discuss the mouse as a model to study leukemia and lymphoma, and the importance of choosing the correct methodology. Specific examples of murine models of leukemias and lymphomas are provided, with particular attention to those that are highly translational to their human counterpart. Finally, future applications of murine models and potential for better models are discussed. PMID:28265553

  4. Follistatin attenuates radiation-induced fibrosis in a murine model

    PubMed Central

    Forrester, Helen B.; de Kretser, David M.; Leong, Trevor; Hagekyriakou, Jim; Sprung, Carl N.

    2017-01-01

    Purpose Fibrosis can be a disabling, severe side effect of radiotherapy that can occur in patients, and for which there is currently no effective treatment. The activins, proteins which are members of the TGFβ superfamily, have a major role in stimulating the inflammatory response and subsequent fibrosis. Follistatin is an endogenous protein that binds the activins virtually irreversibly and inhibits their actions. These studies test if follistatin can attenuate the fibrotic response using a murine model of radiation-induced fibrosis. Experimental design C57BL/6 mice were subcutaneously injected with follistatin 24 hours prior to irradiation. Mice were irradiated in a 10 x 10 mm square area of the right hind leg with 35 Gy and were given follistatin 24 hours before radiation and three times a week for six months following. Leg extension was measured, and tissue was collected for histological and molecular analysis to evaluate the progression of the radiation-induced fibrosis. Results Leg extension was improved in follistatin treated mice compared to vehicle treated mice at six months after irradiation. Also, epidermal thickness and cell nucleus area of keratinocytes were decreased by the follistatin treatment compared to the cells in irradiated skin of control mice. Finally, the gene expression of transforming growth factor β1 (Tgfb1), and smooth muscle actin (Acta2) were decreased in the irradiated skin and Acta2 and inhibin βA subunit (Inhba) were decreased in the irradiated muscle of the follistatin treated mice. Conclusions Follistatin attenuated the radiation-induced fibrotic response in irradiated mice. These studies provide the data to support further investigation of the use of follistatin to reduce radiation-induced fibrosis in patients undergoing radiotherapy for cancer. PMID:28301516

  5. Skeletal muscle mitochondrial uncoupling in a murine cancer cachexia model.

    PubMed

    Tzika, A Aria; Fontes-Oliveira, Cibely Cristine; Shestov, Alexander A; Constantinou, Caterina; Psychogios, Nikolaos; Righi, Valeria; Mintzopoulos, Dionyssios; Busquets, Silvia; Lopez-Soriano, Francisco J; Milot, Sylvain; Lepine, Francois; Mindrinos, Michael N; Rahme, Laurence G; Argiles, Josep M

    2013-09-01

    Approximately half of all cancer patients present with cachexia, a condition in which disease-associated metabolic changes lead to a severe loss of skeletal muscle mass. Working toward an integrated and mechanistic view of cancer cachexia, we investigated the hypothesis that cancer promotes mitochondrial uncoupling in skeletal muscle. We subjected mice to in vivo phosphorous-31 nuclear magnetic resonance (31P NMR) spectroscopy and subjected murine skeletal muscle samples to gas chromatography/mass spectrometry (GC/MS). The mice used in both experiments were Lewis lung carcinoma models of cancer cachexia. A novel 'fragmented mass isotopomer' approach was used in our dynamic analysis of 13C mass isotopomer data. Our 31P NMR and GC/MS results indicated that the adenosine triphosphate (ATP) synthesis rate and tricarboxylic acid (TCA) cycle flux were reduced by 49% and 22%, respectively, in the cancer-bearing mice (p<0.008; t-test vs. controls). The ratio of ATP synthesis rate to the TCA cycle flux (an index of mitochondrial coupling) was reduced by 32% in the cancer-bearing mice (p=0.036; t-test vs. controls). Genomic analysis revealed aberrant expression levels for key regulatory genes and transmission electron microscopy (TEM) revealed ultrastructural abnormalities in the muscle fiber, consistent with the presence of abnormal, giant mitochondria. Taken together, these data suggest that mitochondrial uncoupling occurs in cancer cachexia and thus point to the mitochondria as a potential pharmaceutical target for the treatment of cachexia. These findings may prove relevant to elucidating the mechanisms underlying skeletal muscle wasting observed in other chronic diseases, as well as in aging.

  6. Characterization of Ferroptosis in Murine Models of Hemochromatosis.

    PubMed

    Wang, Hao; An, Peng; Xie, Enjun; Wu, Qian; Fang, Xuexian; Gao, Hong; Zhang, Zhuzhen; Li, Yuzhu; Wang, Xudong; Zhang, Jiaying; Li, Guoli; Yang, Lei; Liu, Wei; Min, Junxia; Wang, Fudi

    2017-02-13

    Ferroptosis is a recently identified iron-dependent form of non-apoptotic cell death implicated in brain, kidney, and heart pathology. However, the biological roles of iron and iron metabolism in ferroptosis remain poorly understood. Here, we studied the functional role of iron and iron metabolism in the pathogenesis of ferroptosis. We found that ferric citrate potently induces ferroptosis in murine primary hepatocytes and bone marrow-derived macrophages (BMDMs). Next, we screened for ferroptosis in mice fed a high-iron diet and in mouse models of hereditary hemochromatosis with iron overload. We found that ferroptosis occurred in mice fed a high-iron diet and in two knockout mouse lines that develop severe iron overload (Hjv(-/-) and Smad4(Alb/Alb) mice), but not in a third line that develops only mild iron overload (Hfe(-/-) mice). Moreover, we found that iron overload-induced liver damage was rescued by the ferroptosis inhibitor ferrostatin-1. To identify the genes involved in iron-induced ferroptosis, we performed microarray analyses of iron-treated BMDMs. Interestingly, Slc7a11, a known ferroptosis-related gene, was significantly upregulated in iron-treated cells compared with untreated cells. However, genetically deleting Slc7a11 expression was not sufficient to induce ferroptosis in mice. Next, we studied iron-treated hepatocytes and BMDMs isolated from Slc7a11(-/-) mice fed a high-iron diet. We found that iron treatment induced ferroptosis in Slc7a11(-/-) cells, indicating that deleting Slc7a11 facilitates the onset of ferroptosis specifically under high-iron conditions. These results provide compelling evidence that iron plays a key role in triggering Slc7a11-mediated ferroptosis. These results also suggest that ferroptosis may be a promising target for treating hemochromatosis-related tissue damage. This article is protected by copyright. All rights reserved.

  7. Epiplakin deficiency aggravates murine caerulein-induced acute pancreatitis and favors the formation of acinar keratin granules.

    PubMed

    Wögenstein, Karl L; Szabo, Sandra; Lunova, Mariia; Wiche, Gerhard; Haybaeck, Johannes; Strnad, Pavel; Boor, Peter; Wagner, Martin; Fuchs, Peter

    2014-01-01

    Epiplakin, a member of the plakin protein family, is exclusively expressed in epithelial tissues and was shown to bind to keratins. Epiplakin-deficient (EPPK-/-) mice showed no obvious spontaneous phenotype, however, EPPK-/- keratinocytes displayed faster keratin network breakdown in response to stress. The role of epiplakin in pancreas, a tissue with abundant keratin expression, was not yet known. We analyzed epiplakin's expression in healthy and inflamed pancreatic tissue and compared wild-type and EPPK-/- mice during caerulein-induced acute pancreatitis. We found that epiplakin was expressed primarily in ductal cells of the pancreas and colocalized with apicolateral keratin bundles in murine pancreatic acinar cells. Epiplakin's diffuse subcellular localization in keratin filament-free acini of K8-deficient mice indicated that its filament-associated localization in acinar cells completely depends on its binding partner keratin. During acute pancreatitis, epiplakin was upregulated in acinar cells and its redistribution closely paralleled keratin reorganization. EPPK-/- mice suffered from aggravated pancreatitis but showed no obvious regeneration phenotype. At the most severe stage of the disease, EPPK-/- acinar cells displayed more keratin aggregates than those of wild-type mice. Our data propose epiplakin to be a protective protein during acute pancreatitis, and that its loss causes impaired disease-associated keratin reorganization.

  8. Effects of different anesthetics in the murine model of EHV-1 infection.

    PubMed

    Eöry, M L; Zanuzzi, C N; Fuentealba, N A; Sguazza, G H; Gimeno, E J; Galosi, C M; Barbeito, C G

    2013-09-01

    Mice are commonly used as an experimental model to investigate the Equid herpesvirus 1 (EHV-1) infection. This model easily reproduces the disease, and the clinical signs are more or less similar to those observed in the horse, the natural host. During natural infection, the acute course of respiratory infection is mandatory for the development of adaptive immune response. Since interactions between EHV-1 and anesthetics are possible, the study investigated whether the early events of murine pulmonary immune response could be affected by different anesthetics. Therefore, mice were experimentally infected with a unique EHV-1 strain under the effects of ether, ketamine/xylazine, or isoflurane. Clinical signs and histopathological lesions in the lungs were described, and the cell death and proliferation rates of sham-inoculated or infected animals were quantified using immunohistochemistry. Clinical signs were more severe in animals anesthetized with ether. Qualitative differences in the recruited inflammatory cells were observed following application of anesthesia. The level of infection between the infected groups was not statistically significant. However, lungs from ketamine/xylazine-anesthetized animals showed the highest cell death rates, whereas those from isoflurane-anesthetized animals showed the highest proliferation rates. It has been emphasized that anesthetics alone or their interactions with EHV-1 modify the response against the infection. An appropriate selection of the anesthetic during experimental studies is relevant to minimize wrong conclusions.

  9. Neuroprotective pentapeptide CN-105 improves functional and histological outcomes in a murine model of intracerebral hemorrhage

    PubMed Central

    Lei, Beilei; James, Michael L.; Liu, Ji; Zhou, Guanen; Venkatraman, Talaignair N.; Lascola, Christopher D.; Acheson, Shawn K.; Dubois, Laura G.; Laskowitz, Daniel T.; Wang, Haichen

    2016-01-01

    Presently, no pharmacological treatments have been demonstrated to improve long-term functional outcomes following intracerebral hemorrhage (ICH). Clinical evidence associates apolipoprotein E (apoE) genotype with ICH incidence and outcome. While apoE modifies neuroinflammatory responses through its adaptive role in glial downregulation, intact apoE holoprotein is too large to cross the blood-brain barrier (BBB). Therefore, we developed a 5-amino acid peptide – CN-105 – that mimics the polar face of the apoE helical domain involved in receptor interactions. In the current study, we investigated the therapeutic potential of CN-105 in a mouse model of ICH. Three doses of CN-105 (0.05 mg/kg) was administered by tail vein injection within 24 hours after ICH induction. Functional assessment showed durable improvement in vestibulomotor performance after CN-105 treatment, as quantified by increased Rotarod latencies on Days 1–5 post-ICH, and long-term improvement in neurocognitive performance, as quantified by reduced Morris water maze latencies on Days 29–32 post-ICH. Further, brain water content was significantly reduced, neuroinflammation was decreased and hippocampal CA3 neuronal survival was increased, although hemorrhage volume was not affected by CN-105. We concluded, therefore, that pentapeptide CN-105 improved short- and long-term neurobehavioral outcomes in a murine model of ICH, suggesting therapeutic potential for patients with acute ICH. PMID:27713572

  10. The critical roles of platelet activation and reduced NO bioavailability in fatal pulmonary arterial hypertension in a murine hemolysis model

    PubMed Central

    Hu, Weiguo; Jin, Richard; Zhang, Jinyan; You, Tao; Peng, Zhihai; Ge, Xiaowen; Bronson, Roderick T.; Halperin, Jose A.; Loscalzo, Joseph

    2010-01-01

    Pulmonary arterial hypertension (PAH) is suspected to be a strong mortality determinant of hemolytic disorders. However, direct contribution of acute intravascular hemolysis to fatal PAH has not been investigated. The roles of nitric oxide (NO) insufficiency and platelet activation in hemolysis-associated fatal PAH have been suspected but not been experimentally studied. We recently generated a unique intravascular hemolysis mouse model in which the membrane toxin, intermedilysin (ILY), exclusively lyses the erythrocytes of transgenically expressing human CD59 mice (ThCD59RBC), thereby inducing ILY-dose–dependent massive hemolysis. Using this murine hemolysis model, we found that the acute increase in pulmonary arterial pressure leading to right ventricle failure caused sudden death. Reduced NO bioavailability and massive platelet activation/aggregation leading to the formation of massive thrombosis specifically in the pulmonary microvasculature played the critical roles in pathogenesis of acute hemolysis-associated fatal PAH. Therapeutic interventions enhancing NO bioactivity or inhibiting platelet activation prevented sudden death or prolonged survival time via the suppression of the acute increase in pulmonary arterial pressure and improvement of right ventricle function. These findings further highlight the importance of the inhibition of platelet activation and the enhancement of NO bioavailability for the treatment and prevention of hemolysis-associated (fatal) PAH. PMID:20511540

  11. Vascular Permeability Drives Susceptibility to Influenza Infection in a Murine Model of Sickle Cell Disease

    PubMed Central

    Karlsson, Erik A.; Oguin, Thomas H.; Meliopoulos, Victoria; Iverson, Amy; Broadnax, Alexandria; Yoon, Sun-Woo; Pestina, Tamara; Thomas, Paul; Webby, Richard; Schultz-Cherry, Stacey; Rosch, Jason W.

    2017-01-01

    Sickle cell disease (SCD) is a major global health concern. Patients with SCD experience disproportionately greater morbidity and mortality in response to influenza infection than do others. Viral infection is one contributing factor for the development of Acute Chest Syndrome (ACS), a major cause of morbidity and mortality in SCD patients. We determined whether the heightened sensitivity to influenza infection could be reproduced in the two different SCD murine models to ascertain the underlying mechanisms of increased disease severity. In agreement with clinical observations, we found that both genetic and bone marrow-transplanted SCD mice had greater mortality in response to influenza infection than did wild-type animals. Despite similar initial viral titers and inflammatory responses between wild-type and SCD animals during infection, SCD mice continued to deteriorate and failed to resolve the infection, resulting in increased mortality. Histopathology of the lung tissues revealed extensive pulmonary edema and vascular damage following infection, a finding confirmed by heightened vascular permeability following virus challenge. These findings implicate the development of exacerbated pulmonary permeability following influenza challenge as the primary factor underlying heightened mortality. These studies highlight the need to focus on prevention and control strategies against influenza infection in the SCD population. PMID:28256526

  12. Detection and monitoring of localized matrix metalloproteinase upregulation in a murine model of asthma

    PubMed Central

    Felsen, Csilla N.; Savariar, Elamprakash N.; Whitney, Michael

    2014-01-01

    Extracellular proteases including matrix metalloproteinases (MMPs) are speculated to play a significant role in chronic lung diseases, such as asthma. Although increased protease expression has been correlated with lung pathogenesis, the relationship between localized enzyme activity and disease progression remains poorly understood. We report the application of MMP-2/9 activatable cell-penetrating peptides (ACPPs) and their ratiometric analogs (RACPPs) for in vivo measurement of protease activity and distribution in the lungs of mice that were challenged with the allergen ovalbumin. MMP-2/9 activity was increased greater than twofold in whole, dissected lungs from acutely challenged mice compared with control mice (P = 1.8 × 10−4). This upregulation of MMP-2/9 activity was localized around inflamed airways with 1.6-fold higher protease-dependent ACPP uptake surrounding diseased airways compared with adjacent, pathologically normal lung parenchyma (P = 0.03). MMP-2/9 activity detected by ACPP cleavage colocalized with gelatinase activity measured with in situ dye-quenched gelatin. For comparison, neutrophil elastase activity and thrombin activity, detected with elastase- and thrombin-cleavable RACPPs, respectively, were not significantly elevated in acutely allergen-challenged mouse lungs. The results demonstrate that ACPPs, like the MMP-2/9-activated and related ACPPs, allow for real-time detection of protease activity in a murine asthma model, which should improve our understanding of protease activation in asthma disease progression and help elucidate new therapy targets or act as a mechanism for therapeutic drug delivery. PMID:24508733

  13. Quercetin liposomes protect against radiation-induced pulmonary injury in a murine model.

    PubMed

    Liu, Hao; Xue, Jian-Xing; Li, Xing; Ao, Rui; Lu, You

    2013-08-01

    In the present study, the hypothesis that quercetin liposomes are able to effectively protect against radiation-induced pulmonary injury in a murine model was tested. C57BL/6J mice receiving whole-thorax radiotherapy (16 Gy) were randomly divided into three groups: control, radiation therapy plus saline (RT+NS) and RT plus quercetin (RT+QU). At 1, 4, 8 and 24 weeks post-irradiation, lung injury was assessed by measuring oxidative damage and the extent of acute pneumonitis and late fibrosis. In the lung tissues from the RT+NS group, the malondialdehyde (MDA) levels were significantly elevated and superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activities were significantly reduced; the total cell counts and inflammatory cell proportions in the bronchoalveolar lavage fluid (BALF), plasma tumor necrosis factor (TNF)-α and transforming growth factor (TGF)-β1 concentrations and the hydroxyproline (HP) content were significantly increased. Quercetin liposome administration significantly reduced the MDA content and increased SOD and GSH-PX activities in the lung tissues, and reduced the total cell counts and inflammatory cell proportions in the BALF, plasma TNF-α and TGF-β1 concentrations and the HP content in the lung tissues. A histological examination revealed suppression of the inflammatory response and reduced TGF-β1 expression and fibrosis scores. Radiation-induced oxidative damage ranged from pneumonitis to lung fibrosis. Quercetin liposomes were shown to protect against radiation-induced acute pneumonitis and late fibrosis, potentially by reducing oxidative damage.

  14. Quercetin liposomes protect against radiation-induced pulmonary injury in a murine model

    PubMed Central

    LIU, HAO; XUE, JIAN-XING; LI, XING; AO, RUI; LU, YOU

    2013-01-01

    In the present study, the hypothesis that quercetin liposomes are able to effectively protect against radiation-induced pulmonary injury in a murine model was tested. C57BL/6J mice receiving whole-thorax radiotherapy (16 Gy) were randomly divided into three groups: control, radiation therapy plus saline (RT+NS) and RT plus quercetin (RT+QU). At 1, 4, 8 and 24 weeks post-irradiation, lung injury was assessed by measuring oxidative damage and the extent of acute pneumonitis and late fibrosis. In the lung tissues from the RT+NS group, the malondialdehyde (MDA) levels were significantly elevated and superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activities were significantly reduced; the total cell counts and inflammatory cell proportions in the bronchoalveolar lavage fluid (BALF), plasma tumor necrosis factor (TNF)-α and transforming growth factor (TGF)-β1 concentrations and the hydroxyproline (HP) content were significantly increased. Quercetin liposome administration significantly reduced the MDA content and increased SOD and GSH-PX activities in the lung tissues, and reduced the total cell counts and inflammatory cell proportions in the BALF, plasma TNF-α and TGF-β1 concentrations and the HP content in the lung tissues. A histological examination revealed suppression of the inflammatory response and reduced TGF-β1 expression and fibrosis scores. Radiation-induced oxidative damage ranged from pneumonitis to lung fibrosis. Quercetin liposomes were shown to protect against radiation-induced acute pneumonitis and late fibrosis, potentially by reducing oxidative damage. PMID:24137346

  15. A Murine Model for Escherichia coli Urinary Tract Infection

    PubMed Central

    Hannan, Thomas J.; Hunstad, David A.

    2015-01-01

    Urinary tract infections (UTI) are among the most common bacterial infections of humans. The mouse provides an excellent and tractable model system for cystitis and pyelonephritis caused by Escherichia coli and other uropathogens. Using a well-established model of experimental cystitis in which the bladders of female mice are infected via transurethral catheterization, the molecular details of the pathogenesis of bacterial cystitis have been substantially illuminated in the last decade. Uropathogenic E. coli attach to bladder epithelium (both in human and mouse) via adhesive type 1 pili, establish a replicative niche within epithelial cell cytoplasm, and form intracellular bacterial communities that are protected from antibiotic effects and immune clearance. The use of different inbred and mutant mouse strains offers the opportunity to study outcomes of infection, including resolution, formation of quiescent intracellular bacterial reservoirs, chronic bacterial cystitis, and recurrent infections. Urine, bladder, and kidney tissues can be analyzed by bacterial culture, histology, immunohistochemistry, immunofluorescent and confocal microscopy, electron microscopy, and flow cytometry, while a broad array of soluble markers (e.g., cytokines) can also be profiled in serum, urine, and tissue homogenates by ELISA, Western blotting, multiplex bead array, and other approaches. This model promises to afford continued opportunity for discovery of pathogenic mechanisms and evaluation of therapeutic and preventive strategies for acute, chronic, and recurrent UTI. PMID:26468108

  16. MN1–Fli1 oncofusion transforms murine hematopoietic progenitor cells into acute megakaryoblastic leukemia cells

    PubMed Central

    Wenge, D V; Felipe-Fumero, E; Angenendt, L; Schliemann, C; Schmidt, E; Schmidt, L H; Thiede, C; Ehninger, G; Berdel, W E; Arteaga, M-F; Mikesch, J-H

    2015-01-01

    Long-term outcome of acute megakaryoblastic leukemia (AMKL) patients without Down's syndrome remains poor. Founding mutations and chimeric oncogenes characterize various AMKL subtypes. However, for around one third of all cases the underlying mechanisms of AMKL leukemogenesis are still largely unknown. Recently, an in-frame fusion of meningeoma 1–friend leukemia virus integration 1 (MN1–Fli1) gene was detected in a child with AMKL. We intended to investigate the potential role of this oncofusion in leukemogenesis of acute myeloid leukemia. Strikingly, expression of MN1–Fli1 in murine hematopoietic progenitor cells was sufficient to induce leukemic transformation generating immature myeloid cells with cytomorphology and expression of surface markers typical for AMKL. Systematic structure function analyses revealed FLS and 3′ETS domains of Fli1 as decisive domains for the AMKL phenotype. Our data highlight an important role of MN1–Fli1 in AMKL leukemogenesis and provide a basis for research assessing the value of this oncofusion as a future diagnostic marker and/or therapeutic target in AMKL patients. PMID:26690545

  17. Acute pancreatitis as a model of SIRS.

    PubMed

    Bhatia, Madhav

    2009-01-01

    Acute pancreatitis is a common clinical condition. Excessive systemic inflammatory response syndrome (SIRS) in acute pancreatitis leads to distant organ damage and multiple organ dysfunction syndrome (MODS), which is the primary cause of morbidity and mortality in this condition. Development of in vivo experimental models of acute pancreatitis and associated systemic organ damage has enabled us to study the role played by inflammatory mediators in the pathogenesis of acute pancreatitis and associated systemic organ damage. Using these models, recent studies by us and other investigators have established the critical role played by inflammatory mediators such as TNF-a, IL-1b, IL-6, PAF, IL-10, CD40L, C5a, ICAM-1, chemokines, substance P and hydrogen sulfide in acute pancreatitis and the resultant MODS. This chapter intends to present an overview of different experimental animal models of acute pancreatitis and associated MODS and the role of inflammatory mediators in the pathogenesis of this condition.

  18. Visualization of Abscess Formation in a Murine Thigh Infection Model of Staphylococcus aureus by 19F-Magnetic Resonance Imaging (MRI)

    PubMed Central

    Kircher, Stefan; Basse-Lüsebrink, Thomas; Haddad, Daniel; Ohlsen, Knut; Jakob, Peter

    2011-01-01

    Background During the last years, 19F-MRI and perfluorocarbon nanoemulsion (PFC) emerged as a powerful contrast agent based MRI methodology to track cells and to visualize inflammation. We applied this new modality to visualize deep tissue abscesses during acute and chronic phase of inflammation caused by Staphylococcus aureus infection. Methodology and Principal Findings In this study, a murine thigh infection model was used to induce abscess formation and PFC or CLIO (cross linked ironoxides) was administered during acute or chronic phase of inflammation. 24 h after inoculation, the contrast agent accumulation was imaged at the site of infection by MRI. Measurements revealed a strong accumulation of PFC at the abscess rim at acute and chronic phase of infection. The pattern was similar to CLIO accumulation at chronic phase and formed a hollow sphere around the edema area. Histology revealed strong influx of neutrophils at the site of infection and to a smaller extend macrophages during acute phase and strong influx of macrophages at chronic phase of inflammation. Conclusion and Significance We introduce 19F-MRI in combination with PFC nanoemulsions as a new platform to visualize abscess formation in a murine thigh infection model of S. aureus. The possibility to track immune cells in vivo by this modality offers new opportunities to investigate host immune response, the efficacy of antibacterial therapies and the influence of virulence factors for pathogenesis. PMID:21455319

  19. JZL184 is anti-hyperalgesic in a murine model of cisplatin-induced peripheral neuropathy

    PubMed Central

    Khasabova Iryna, A; Yao, Xu; Paz, Justin; Lewandowski Cutler, T; Lindberg Amy, E; Coicou, Lia; Burlakova, Natasha; Simone Don, A; Seybold Virginia, S

    2014-01-01

    Cisplatin has been used effectively to treat a variety of cancers but its use is limited by the development of painful peripheral neuropathy. Because the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG) is anti-hyperalgesic in several preclinical models of chronic pain, the anti-hyperalgesic effect of JZL184, an inhibitor of 2-AG hydrolysis, was tested in a murine model of cisplatin-induced hyperalgesia. Systemic injection of cisplatin (1 mg/kg) produced mechanical hyperalgesia when administered daily for 7 days. Daily peripheral administration of a low dose of JZL184 in conjunction with cisplatin blocked the expression of mechanical hyperalgesia. Acute injection of a cannabinoid (CB)-1 but not a CB2 receptor antagonist reversed the anti-hyperalgesic effect of JZL184 indicating that downstream activation of CB1 receptors suppressed the expression of mechanical hyperalgesia. Components of endocannabinoid signaling in plantar hind paw skin and lumbar dorsal root ganglia (DRGs) were altered by treatments with cisplatin and JZL184. Treatment with cisplatin alone reduced levels of 2-AG and AEA in skin and DRGs as well as CB2 receptor protein in skin. Combining treatment of JZL184 with cisplatin increased 2-AG in DRGs compared to cisplatin alone but had no effect on the amount of 2-AG in skin. Evidence that JZL184 decreased the uptake of [3H]AEA into primary cultures of DRGs at a concentration that also inhibited the enzyme fatty acid amide hydrolase, in conjunction with data that 2-AG mimicked the effect of JZL184 on [3H]AEA uptake support the conclusion that AEA most likely mediates the anti-hyperalgesic effect of JZL184 in this model. PMID:25304184

  20. The Murine Femoral Allograft Model and a Semi-automated Histomorphometric Analysis Tool

    PubMed Central

    Dhillon, Robinder S.; Zhang, Longze; Schwarz, Edward M.; Boyce, Brendan F.; Xie, Chao

    2014-01-01

    SUMMARY Preclinical studies on bone repair remain a high priority due to the unresolved clinical problems associated with treating critical segmental defects and complications of fracture healing. Over the last decade the murine femoral allograft model has gained popularity due to its standardized surgery and potential for examining a vast array of radiographic, biomechanical and histological outcome measures. Here, we describe these methods and a novel semi-automated histomorphometric approach to quantify the amount of bone, cartilage and undifferentiated mesenchymal tissue in demineralized paraffin sections of allografted murine femurs using the VisioPharm Image Analysis Software System. PMID:24482164

  1. Anti-CD45 radioimmunotherapy using (211)At with bone marrow transplantation prolongs survival in a disseminated murine leukemia model.

    PubMed

    Orozco, Johnnie J; Bäck, Tom; Kenoyer, Aimee; Balkin, Ethan R; Hamlin, Donald K; Wilbur, D Scott; Fisher, Darrell R; Frayo, Shani L; Hylarides, Mark D; Green, Damian J; Gopal, Ajay K; Press, Oliver W; Pagel, John M

    2013-05-02

    Despite aggressive chemotherapy combined with hematopoietic stem cell transplantation (HSCT), many patients with acute myeloid leukemia (AML) relapse. Radioimmunotherapy (RIT) using monoclonal antibodies labeled with β-emitting radionuclides has been explored to reduce relapse. β emitters are limited by lower energies and nonspecific cytotoxicity from longer path lengths compared with α emitters such as (211)At, which has a higher energy profile and shorter path length. We evaluated the efficacy and toxicity of anti-CD45 RIT using (211)At in a disseminated murine AML model. Biodistribution studies in leukemic SJL/J mice showed excellent localization of (211)At-anti-murine CD45 mAb (30F11) to marrow and spleen within 24 hours (18% and 79% injected dose per gram of tissue [ID/g], respectively), with lower kidney and lung uptake (8.4% and 14% ID/g, respectively). In syngeneic HSCT studies, (211)At-B10-30F11 RIT improved the median survival of leukemic mice in a dose-dependent fashion (123, 101, 61, and 37 days given 24, 20, 12, and 0 µCi, respectively). This approach had minimal toxicity with nadir white blood cell counts >2.7 K/µL 2 weeks after HSCT and recovery by 4 weeks. These data suggest that (211)At-anti-CD45 RIT in conjunction with HSCT may be a promising therapeutic option for AML.

  2. Anti-CD45 radioimmunotherapy using 211At with bone marrow transplantation prolongs survival in a disseminated murine leukemia model

    PubMed Central

    Orozco, Johnnie J.; Bäck, Tom; Kenoyer, Aimee; Balkin, Ethan R.; Hamlin, Donald K.; Wilbur, D. Scott; Fisher, Darrell R.; Frayo, Shani L.; Hylarides, Mark D.; Green, Damian J.; Gopal, Ajay K.; Press, Oliver W.

    2013-01-01

    Despite aggressive chemotherapy combined with hematopoietic stem cell transplantation (HSCT), many patients with acute myeloid leukemia (AML) relapse. Radioimmunotherapy (RIT) using monoclonal antibodies labeled with β-emitting radionuclides has been explored to reduce relapse. β emitters are limited by lower energies and nonspecific cytotoxicity from longer path lengths compared with α emitters such as 211At, which has a higher energy profile and shorter path length. We evaluated the efficacy and toxicity of anti-CD45 RIT using 211At in a disseminated murine AML model. Biodistribution studies in leukemic SJL/J mice showed excellent localization of 211At-anti-murine CD45 mAb (30F11) to marrow and spleen within 24 hours (18% and 79% injected dose per gram of tissue [ID/g], respectively), with lower kidney and lung uptake (8.4% and 14% ID/g, respectively). In syngeneic HSCT studies, 211At-B10-30F11 RIT improved the median survival of leukemic mice in a dose-dependent fashion (123, 101, 61, and 37 days given 24, 20, 12, and 0 µCi, respectively). This approach had minimal toxicity with nadir white blood cell counts >2.7 K/µL 2 weeks after HSCT and recovery by 4 weeks. These data suggest that 211At-anti-CD45 RIT in conjunction with HSCT may be a promising therapeutic option for AML. PMID:23471305

  3. Fetal wound healing using a genetically modified murine model: the contribution of P-selectin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During early gestation, fetal wounds heal with paucity of inflammation and absent scar formation. P-selectin is an adhesion molecule that is important for leukocyte recruitment to injury sites. We used a murine fetal wound healing model to study the specific contribution of P-selectin to scarless wo...

  4. TRIMELLITIC ANHYDRIDE-INDUCED EOSINOPHILIA IN A MURINE MODEL OF OCCUPATIONAL ASTHMA

    EPA Science Inventory

    TRIMELLITIC ANHYDRIDE-INDUCED EOSINOPHILIA IN A MURINE MODEL OF OCCUPATIONAL ASTHMA. J F Regal, ME Mohrman, E Boykin and D Sailstad. Dept. of Pharmacology, University of Minnesota, Duluth, MN, USA and NHEERL, ORD, US EPA, RTP, NC, USA.
    Trimellitic anhydride (TMA) is a small m...

  5. The MET Receptor Tyrosine Kinase Confers Repair of Murine Pancreatic Acinar Cells following Acute and Chronic Injury

    PubMed Central

    Gaziova, Ivana; Jackson, Daniel; Boor, Paul J.; Carter, Dwayne; Cruz-Monserrate, Zobeida; Elferink, Cornelis J.; Joshi, Aditya D.; Kaphalia, Bhupendra; Logsdon, Craig D.; Pereira de Castro, Karen; Soong, Lynn; Tao, Xinrong; Qiu, Suimin; Elferink, Lisa A.

    2016-01-01

    Acinar cells represent the primary target in necroinflammatory diseases of the pancreas, including pancreatitis. The signaling pathways guiding acinar cell repair and regeneration following injury remain poorly understood. The purpose of this study was to determine the importance of Hepatocyte Growth Factor Receptor/MET signaling as an intrinsic repair mechanism for acinar cells following acute damage and chronic alcohol-associated injury. Here, we generated mice with targeted deletion of MET in adult acinar cells (MET-/-). Acute and repetitive pancreatic injury was induced in MET-/- and control mice with cerulein, and chronic injury by feeding mice Lieber-DeCarli diets containing alcohol with or without enhancement of repetitive pancreatic injury. We examined the exocrine pancreas of these mice histologically for acinar death, edema, inflammation and collagen deposition and changes in the transcriptional program. We show that MET expression is relatively low in normal adult pancreas. However, MET levels were elevated in ductal and acinar cells in human pancreatitis specimens, consistent with a role for MET in an adaptive repair mechanism. We report that genetic deletion of MET in adult murine acinar cells was linked to increased acinar cell death, chronic inflammation and delayed recovery (regeneration) of pancreatic exocrine tissue. Notably, increased pancreatic collagen deposition was detected in MET knockout mice following repetitive injury as well alcohol-associated injury. Finally, we identified specific alterations of the pancreatic transcriptome associated with MET signaling during injury, involved in tissue repair, inflammation and endoplasmic reticulum stress. Together, these data demonstrate the importance of MET signaling for acinar repair and regeneration, a novel finding that could attenuate the symptomology of pancreatic injury. PMID:27798657

  6. Upregulation of ICOS on CD43+ CD4+ murine small intestinal intraepithelial lymphocytes during acute reovirus infection

    SciTech Connect

    Montufar-Solis, Dina; Garza, Tomas; Teng, B.-B.; Klein, John R. . E-mail: john.r.klein@uth.tmc.edu

    2006-04-14

    Murine intestinal intraepithelial lymphocytes (IELs) can be classified according to expression of a CD43 glycoform recognized by the S7 monoclonal antibody. In this study, we examined the response of S7+ and S7- IELs in mice during acute reovirus serotype 3 (Dearing strain) infection, which was confirmed by virus-specific real-time PCR. In vivo proliferation increased significantly for both S7- and S7+ IELs on day 4 post-infection as determined by BrdU incorporation; however, expression of the inducible costimulatory (ICOS) molecule, which peaked on day 7 post-infection, was upregulated on S7+ CD4+ T cells, most of which were CD4+8- IELs. In vitro ICOS stimulation by syngeneic peritoneal macrophages induced IFN-{gamma} secretion from IELs from day 7 infected mice, and was suppressed by treatment with anti-ICOS mAb. Additionally, IFN-{gamma} mRNA increased in CD4+ IELs on day 6 post-infection. These findings indicate that S7- and S7+ IELs are differentially mobilized during the immune response to reovirus infection; that the regulated expression of ICOS is associated with S7+ IELs; and that stimulation of IELs through ICOS enhances IFN-{gamma} synthesis during infection.

  7. Clinical perspectives and murine models of lichenoid tissue reaction/interface dermatitis.

    PubMed

    Okiyama, Naoko; Fujimoto, Manabu

    2015-06-01

    A set of histopathological elements, that is death of epidermal basal cell layer keratinocytes and inflammatory cell infiltration, distinguishes lichenoid tissue reaction (LTR)/interface dermatitis (IFD) from other inflammatory mucocutaneous diseases with histological findings of superficial perivascular dermatitis. The LTR/IFD is observed in inflammatory mucocutaneous diseases such as lichen planus, Stevens-Johnson syndrome/toxic epidermal necrolysis, acute graft-versus-host disease, lupus erythematosus and dermatomyositis. Clinical and basic researches have suggested that keratinocytes are antigen-presenting cells and mediate LTR/IFD reaction via production of cytokines/chemokines and inhibitory molecules such as programmed cell death (PD)-L1, and that cytotoxic CD8(+) T cells producing cytotoxic granules, perforin, granzyme B and granulysin are final effector cells to cause keratinocyte death. Because interferon-γ and FasL, which are produced by not only CD8(+) but also CD4(+) T cells, are candidates of the pathogenic molecules in LTR/IFD, CD4(+) T cells may also play a role to develop LTR/IFD. On the other hand, CD4(+) Treg cells accelerate the remission of LTR/IFD. Some murine models of LTR/IFD have been established. For example, LTR/IFD reactions were induced in keratinocyte-specific membrane-binding ovalbumin-transgenic (mOVA Tg) mice by adoptive transfer of CD8(+) T cells with OVA-specific T-cell-receptor. It has also been shown that human CD8(+) T cells are pathogenic immune cells in human skin-xenografted mice. Various immunosuppressants are used to treat patients with mucocutaneous diseases with LTR/IFD. By analysis of the mOVA Tg mice, a JAK inhibitor was suggested to be a new candidate drug to inhibit not only pathogenic T cells but also keratinocyte death in LTR/IFD. More specific treatments for patients with LTR/IFD will be developed in future.

  8. Zinc deficiency increases organ damage and mortality in a murine model of polymicrobial sepsis

    PubMed Central

    Knoell, Daren L.; Julian, Mark W.; Bao, Shengying; Besecker, Beth; Macre, Jennifer E.; Leikauf, George D.; DiSilvestro, Robert A.; Crouser, Elliott D.

    2010-01-01

    Objective Zinc deficiency is common among populations at high risk for sepsis mortality, including elderly, alcoholic, and hospitalized patients. Zinc deficiency causes exaggerated inflammatory responses to endotoxin but has not been evaluated during bacterial sepsis. We hypothesized that subacute zinc deficiency would amplify immune responses and oxidant stress during bacterial sepsis [i.e., cecal ligation and puncture (CLP)] resulting in increased mortality and that acute nutritional repletion of zinc would be beneficial. Design Prospective, randomized, controlled animal study. Setting University medical center research laboratory. Subjects Adult male C57BL/6 mice. Interventions Ten-week-old, male, C57BL/6 mice were randomized into three dietary groups: 1) control diet, 2) zinc-deficient diet for 3 weeks, and 3) zinc-deficient diet for 3 weeks followed by oral zinc supplementation for 3 days (n = 35 per diet). Mice were then assigned to receive either CLP or sham operation (n = 15 each per diet). CLP and sham-operated treatment groups were further assigned to a 7-day survival study (n = 10 per treatment per diet) or were evaluated at 24 hours (n = 5 per treatment per diet) for signs of vital organ damage. Measurements and Main Results Sepsis mortality was significantly increased with zinc deficiency (90% vs. 30% on control diet). Zinc-deficient animals subject to CLP had higher plasma cytokines, more severe organ injury, including increased oxidative tissue damage and cell death, particularly in the lungs and spleen. None of the sham-operated animals died or developed signs of organ damage. Zinc supplementation normalized the inflammatory response, greatly diminished tissue damage, and significantly reduced mortality. Conclusions Subacute zinc deficiency significantly increases systemic inflammation, organ damage, and mortality in a murine polymicrobial sepsis model. Short-term zinc repletion provides significant, but incomplete protection despite normalization

  9. Effective Treatment of Acute and Chronic Murine Tuberculosis with Liposome-Encapsulated Clofazimine

    PubMed Central

    Adams, Linda B.; Sinha, Indu; Franzblau, Scott G.; Krahenbuhl, James L.; Mehta, Reeta T.

    1999-01-01

    The therapeutic efficacy of liposomal clofazimine (L-CLF) was studied in mice infected with Mycobacterium tuberculosis Erdman. Groups of mice were treated with either free clofazimine (F-CLF), L-CLF, or empty liposomes twice a week for five treatments beginning on day 1 (acute), day 21 (established), or day 90 (chronic) postinfection. One day after the last treatment, the numbers of CFU of M. tuberculosis in the spleen, liver, and lungs were determined. F-CLF at the maximum tolerated dose of 5 mg/kg of body weight was ineffective; however, 10-fold-higher doses of L-CLF demonstrated a dose response with significant CFU reduction in all tissues without any toxic effects. In acutely infected mice, 50 mg of L-CLF/kg reduced CFU 2 to 3 log units in all three organs. In established or chronic infection, treated mice showed no detectable CFU in the spleen or liver and 1- to 2-log-unit reduction in the lungs. A second series of L-CLF treatments cleared M. tuberculosis in all three tissues. L-CLF appears to be bactericidal in the liver and spleen, which remained negative for M. tuberculosis growth for 2 months. Thus, L-CLF could be useful in the treatment of tuberculosis. PMID:10390215

  10. Murine Models of Splenic Marginal Zone Lymphoma: A Role for Cav1?

    PubMed Central

    Patten, Chelsey L.; Cutucache, Christine E.

    2016-01-01

    Dozens of murine models of indolent and aggressive B-cell lymphomas have been generated to date. These include those manifesting chronic lymphocytic leukemia (CLL), diffuse large B-cell lymphoma (DLBCL), as well as xenografts of mantle cell lymphoma (MCL). These models have led to an improved understanding of disease etiology, B-cell biology, immunomodulation, and the importance of the tumor microenvironment. Despite these efforts in CLL, DLBCL, and MCL, considerably little progress toward a model of splenic marginal zone lymphoma (SMZL) has been accomplished. Herein, we describe the similarities and differences between CLL, MCL, and SMZL and highlight effective murine models that mimic disease in the two former, in hopes of informing a potential model of the latter. At the time of writing this review, the precise molecular events of SMZL remain to be determined and a treatment regimen remains to be identified. Therefore, based on the efforts put forth in the B-cell lymphoma field throughout the past three decades, the established role of caveolin-1 in B- and T-cell biology as an oncogene or tumor suppressor, and the recurrent deletion or loss of heterozygosity (LOH) of 7q in many cancers, we make recommendations for a murine model of SMZL. PMID:28018857

  11. Murine Models of Splenic Marginal Zone Lymphoma: A Role for Cav1?

    PubMed

    Patten, Chelsey L; Cutucache, Christine E

    2016-01-01

    Dozens of murine models of indolent and aggressive B-cell lymphomas have been generated to date. These include those manifesting chronic lymphocytic leukemia (CLL), diffuse large B-cell lymphoma (DLBCL), as well as xenografts of mantle cell lymphoma (MCL). These models have led to an improved understanding of disease etiology, B-cell biology, immunomodulation, and the importance of the tumor microenvironment. Despite these efforts in CLL, DLBCL, and MCL, considerably little progress toward a model of splenic marginal zone lymphoma (SMZL) has been accomplished. Herein, we describe the similarities and differences between CLL, MCL, and SMZL and highlight effective murine models that mimic disease in the two former, in hopes of informing a potential model of the latter. At the time of writing this review, the precise molecular events of SMZL remain to be determined and a treatment regimen remains to be identified. Therefore, based on the efforts put forth in the B-cell lymphoma field throughout the past three decades, the established role of caveolin-1 in B- and T-cell biology as an oncogene or tumor suppressor, and the recurrent deletion or loss of heterozygosity (LOH) of 7q in many cancers, we make recommendations for a murine model of SMZL.

  12. Accelerated Human Mutant Tau Aggregation by Knocking Out Murine Tau in a Transgenic Mouse Model

    PubMed Central

    Ando, Kunie; Leroy, Karelle; Héraud, Céline; Yilmaz, Zehra; Authelet, Michèle; Suain, Valèrie; De Decker, Robert; Brion, Jean-Pierre

    2011-01-01

    Many models of human tauopathies have been generated in mice by expression of a human mutant tau with maintained expression of mouse endogenous tau. Because murine tau might interfere with the toxic effects of human mutant tau, we generated a model in which a pathogenic human tau protein is expressed in the absence of wild-type tau protein, with the aim of facilitating the study of the pathogenic role of the mutant tau and to reproduce more faithfully a human tauopathy. The Tg30 line is a tau transgenic mouse model overexpressing human 1N4R double-mutant tau (P301S and G272V) that develops Alzheimer's disease-like neurofibrillary tangles in an age-dependent manner. By crossing Tg30 mice with mice invalidated for their endogenous tau gene, we obtained Tg30xtau−/− mice that express only exogenous human double-mutant 1N4R tau. Although Tg30xtau−/− mice express less tau protein compared with Tg30, they exhibit signs of decreased survival, increased proportion of sarkosyl-insoluble tau in the brain and in the spinal cord, increased number of Gallyas-positive neurofibrillary tangles in the hippocampus, increased number of inclusions in the spinal cord, and a more severe motor phenotype. Deletion of murine tau accelerated tau aggregation during aging of this mutant tau transgenic model, suggesting that murine tau could interfere with the development of tau pathology in transgenic models of human tauopathies. PMID:21281813

  13. Immunoprophylactic potential of wheat grass extract on benzene-induced leukemia: An in vivo study on murine model

    PubMed Central

    Khan, Neelofar; Ganeshpurkar, Aditya; Dubey, Nazneen; Bansal, Divya

    2015-01-01

    Objectives: Wheat grass (Triticum aestivum) is a gift of nature given to mankind. A number of scientific research on wheatgrass establishes its anticancer and antioxidant potential. Current work was focused to determine antileukemic effect of wheat grass. Materials and Methods: The commercial wheatgrass powder was extracted with 95% of methanol. Methanol extract of wheat grass was studied for acute oral toxicity as per revised Organization for Economic Cooperation and Development Guidelines number 423. Leukemia was successfully induced in Wister rats by intravenous injection of benzene. The blood was collected and analyzed for hematological parameters. Phagocytotic activity of the extract was determined. Results: Phytochemical screening revealed the presence of flavonoids, phenolics, carbohydrates, and amino acids. From acute toxicity studies, it was found that the methanol extract of wheatgrass was safe up to a dose level of 2000 mg/kg of body weight. Outcomes of hematological parameters in various experimental groups of murine model demonstrated antileukemic effect of extract. Methanol extract of wheatgrass aroused the process of phagocytosis of killed Candida albicans and also demonstrated a significant chemotactic activity at all tested concentrations. Conclusion: In the current work, methanol extract of wheat grass demonstrated antileukemic potential that might be due to the presence of flavonoids and polyphenolics in it. Further isolation, structural characterization of active constituents is necessary to extrapolate the mechanism of action. PMID:26288471

  14. Mast cells modulate acute ozone-induced inflammation of the murine lung

    SciTech Connect

    Kleeberger, S.R.; Seiden, J.E.; Levitt, R.C.; Zhang, L.Y. )

    1993-11-01

    We hypothesized that mast cells modulate lung inflammation that develops after acute ozone (O3) exposure. Two tests were done: (1) genetically mast-cell-deficient (WBB6F1-W/Wv, WCB6F1-SI/SId) and bone-marrow-transplanted W/Wv mice were exposed to O3 or filtered air, and the inflammatory responses were compared with those of mast-cell-sufficient congenic mice (WBB6F1-(+)/+, WCB6F1-(+)/+); (2) genetically O3-susceptible C57BL/6J mice were treated pharmacologically with putative mast-cell modulators or vehicle, and the O3-induced inflammatory responses were compared. Mice were exposed to 1.75 ppm O3 or air for 3 h, and lung inflammation was assessed by bronchoalveolar lavage (BAL) 6 and 24 h after exposure. Relative to O3-exposed W/Wv and SI/SId mice, the mean numbers of lavageable polymorphonuclear leukocytes (PMNs) and total BAL protein concentration (a marker of permeability) were significantly greater in the respective O3-exposed normal congenic +/+ mice (p < 0.05). Mast cells were reconstituted in W/Wv mice by transplantation of bone marrow cells from congenic +/+ mice, and O3-induced lung inflammation was assessed in the mast-cell-replete W/Wv mice. After O3 exposure, the changes in lavageable PMNs and total protein of mast-cell-replete W/Wv mice were not different from age-matched normal +/+ control mice, and they were significantly greater than those of sham-transplanted W/Wv mice (p < 0.05). Genetically susceptible C57BL/6J mice were pretreated with a mast-cell stabilizer (nedocromil sodium), secretagogue (compound 48/80), or vehicle, and the mice were exposed to O3.

  15. Usefulness of the murine model to study the immune response against Histoplasma capsulatum infection.

    PubMed

    Sahaza, Jorge H; Pérez-Torres, Armando; Zenteno, Edgar; Taylor, Maria Lucia

    2014-05-01

    The present paper is an overview of the primary events that are associated with the histoplasmosis immune response in the murine model. Valuable data that have been recorded in the scientific literature have contributed to an improved understanding of the clinical course of this systemic mycosis, which is caused by the dimorphic fungus Histoplasma capsulatum. Data must be analyzed carefully, given that misinterpretation could be generated because most of the available information is based on experimental host-parasite interactions that used inappropriate proceedings, i.e., the non-natural route of infection with the parasitic and virulent fungal yeast-phase, which is not the usual infective phase of the etiological agent of this mycosis. Thus, due to their versatility, complexity, and similarities with humans, several murine models have played a fundamental role in exploring the host-parasite interaction during H. capsulatum infection.

  16. Efficacy of orally delivered cochleates containing amphotericin B in a murine model of aspergillosis.

    PubMed

    Delmas, G; Park, S; Chen, Z W; Tan, F; Kashiwazaki, R; Zarif, L; Perlin, D S

    2002-08-01

    Cochleates containing amphotericin B (CAMB) were administered orally at doses ranging from 0 to 40 mg/kg of body weight/day for 14 days in a murine model of systemic aspergillosis. The administration of oral doses of CAMB (20 and 40 mg/kg/day) resulted in a survival rate of 70% and a reduction in colony counts of more than 2 logs in lungs, livers, and kidneys. Orally administered CAMB shows promise for the treatment of aspergillosis.

  17. Efficacy of Orally Delivered Cochleates Containing Amphotericin B in a Murine Model of Aspergillosis

    PubMed Central

    Delmas, G.; Park, S.; Chen, Z. W.; Tan, F.; Kashiwazaki, R.; Zarif, L.; Perlin, D. S.

    2002-01-01

    Cochleates containing amphotericin B (CAMB) were administered orally at doses ranging from 0 to 40 mg/kg of body weight/day for 14 days in a murine model of systemic aspergillosis. The administration of oral doses of CAMB (20 and 40 mg/kg/day) resulted in a survival rate of 70% and a reduction in colony counts of more than 2 logs in lungs, livers, and kidneys. Orally administered CAMB shows promise for the treatment of aspergillosis. PMID:12121962

  18. Growth Self-Incitement in Murine Melanoma B16: A Phenomenological Model

    NASA Astrophysics Data System (ADS)

    Bajzer, Zeljko; Pavelic, Kresimir; Vuk-Pavlovic, Stanimir

    1984-08-01

    The growing murine melanoma B16 secretes increasing quantities of a substance or substances immunologically cross-reactive with insulin. The elevated concentrations of these substances in blood are accompanied by a decrease in blood glucose concentration and release of growth hormone, which is followed by increased tumor growth. By use of a phenomenological model based on these data, we show that B16 incites its own growth by positive feedback.

  19. A new experimental murine aspergillosis model to identify strains of Aspergillus fumigatus with reduced virulence.

    PubMed

    Sarfati, J; Diaquin, M; Debeaupuis, J P; Schmidt, A; Lecaque, D; Beauvais, A; Latge, J P

    2002-01-01

    Experimental animals are an obligate screen to investigate microorganism pathogenicity. Numerous animal models have been used to analyse the virulence of the opportunistic human pathogen Aspergillus fumigatus but none of the experimental models used previously have been satisfactory. This report discuss these models and presents a murine model of pulmonary aspergillosis that is very easy and the most adapted to compare the pathogenicity of A. fumigatus strains. Strains to be tested are inoculated intranasally and synchronously to mice and strains isolated from the lung of mice killed by the infection are typed. The number of colonies recovered is directly correlated to the virulence of the strain.

  20. Expression of indoleamine 2,3-dioxygenase in a murine model of Aspergillus fumigatus keratitis

    PubMed Central

    Jiang, Nan; Zhao, Gui-Qiu; Lin, Jing; Hu, Li-Ting; Che, Cheng-Ye; Li, Cui; Wang, Qian; Xu, Qiang; Zhang, Jie; Peng, Xu-Dong

    2016-01-01

    AIM To observe the presence and expression of indoleamine 2,3-dioxygenase (IDO) during the corneal immunity to Aspergillus fumigatus (A. fumigatus) in the murine models. METHODS The murine model of fungal keratitis was established by smearing with colonies of A. fumigatus after scraping central epithelium of cornea and covering with contact lenses in C57BL/6 mice. The mice were randomly divided into control group, sham group and A. fumigatus keratitis group. The cornea was monitored daily using a slit lamp and recorded disease score after infection. Corneal lesion was detected by immunofluorescence staining. IDO mRNA and protein were also detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot. RESULTS The disease score and slit lamp photography indicated that disease severity was consistent with corneal inflammation in the murine models, and the disease scores in A. fumigatus keratitis group were obviously higher than those in the sham group. By immunofluorescence staining, IDO was mainly localized in corneal epithelium and stroma in the murine corneal tissues with A. fumigatus keratitis. Compared with the sham group, IDO mRNA expression was significantly enhanced in corneal epithelium infected by A. fumigatus. Furthermore, IDO protein expression detected by Western blot was in accord with transcript levels of IDO mRNA measured by qRT-PCR. IDO protein expression was enhanced after A. fumigatus infection compared with the sham group. CONCLUSION IDO is detected in corneal epithelium and stroma locally, which indicates IDO takes part in the pathogenesis of A. fumigatus keratitis and plays a key role in immune regulation at the early stage. PMID:27162718

  1. Consensus Modeling of Oral Rat Acute Toxicity

    EPA Science Inventory

    An acute toxicity dataset (oral rat LD50) with about 7400 compounds was compiled from the ChemIDplus database. This dataset was divided into a modeling set and a prediction set. The compounds in the prediction set were selected so that they were present in the modeling set used...

  2. Analysis of telomerase target gene expression effects from murine models in patient cohorts by homology translation and random survival forest modeling

    PubMed Central

    Bagger, Frederik Otzen; Bruedigam, Claudia; Lane, Steven W.

    2016-01-01

    Acute myeloid leukemia (AML) is an aggressive and rapidly fatal blood cancer that affects patients of any age group. Despite an initial response to standard chemotherapy, most patients relapse and this relapse is mediated by leukemia stem cell (LSC) populations. We identified a functional requirement for telomerase in sustaining LSC populations in murine models of AML and validated this requirement using an inhibitor of telomerase in human AML. Here, we describe in detail the contents, quality control and methods of the gene expression analysis used in the published study (Gene Expression Omnibus GSE63242). Additionally, we provide annotated gene lists of telomerase regulated genes in AML and R code snippets to access and analyze the data used in the original manuscript. PMID:26981425

  3. Zebrafish Models for Human Acute Organophosphorus Poisoning.

    PubMed

    Faria, Melissa; Garcia-Reyero, Natàlia; Padrós, Francesc; Babin, Patrick J; Sebastián, David; Cachot, Jérôme; Prats, Eva; Arick Ii, Mark; Rial, Eduardo; Knoll-Gellida, Anja; Mathieu, Guilaine; Le Bihanic, Florane; Escalon, B Lynn; Zorzano, Antonio; Soares, Amadeu M V M; Raldúa, Demetrio

    2015-10-22

    Terrorist use of organophosphorus-based nerve agents and toxic industrial chemicals against civilian populations constitutes a real threat, as demonstrated by the terrorist attacks in Japan in the 1990 s or, even more recently, in the Syrian civil war. Thus, development of more effective countermeasures against acute organophosphorus poisoning is urgently needed. Here, we have generated and validated zebrafish models for mild, moderate and severe acute organophosphorus poisoning by exposing zebrafish larvae to different concentrations of the prototypic organophosphorus compound chlorpyrifos-oxon. Our results show that zebrafish models mimic most of the pathophysiological mechanisms behind this toxidrome in humans, including acetylcholinesterase inhibition, N-methyl-D-aspartate receptor activation, and calcium dysregulation as well as inflammatory and immune responses. The suitability of the zebrafish larvae to in vivo high-throughput screenings of small molecule libraries makes these models a valuable tool for identifying new drugs for multifunctional drug therapy against acute organophosphorus poisoning.

  4. Zebrafish Models for Human Acute Organophosphorus Poisoning

    PubMed Central

    Faria, Melissa; Garcia-Reyero, Natàlia; Padrós, Francesc; Babin, Patrick J.; Sebastián, David; Cachot, Jérôme; Prats, Eva; Arick II, Mark; Rial, Eduardo; Knoll-Gellida, Anja; Mathieu, Guilaine; Le Bihanic, Florane; Escalon, B. Lynn; Zorzano, Antonio; Soares, Amadeu M.V.M; Raldúa, Demetrio

    2015-01-01

    Terrorist use of organophosphorus-based nerve agents and toxic industrial chemicals against civilian populations constitutes a real threat, as demonstrated by the terrorist attacks in Japan in the 1990 s or, even more recently, in the Syrian civil war. Thus, development of more effective countermeasures against acute organophosphorus poisoning is urgently needed. Here, we have generated and validated zebrafish models for mild, moderate and severe acute organophosphorus poisoning by exposing zebrafish larvae to different concentrations of the prototypic organophosphorus compound chlorpyrifos-oxon. Our results show that zebrafish models mimic most of the pathophysiological mechanisms behind this toxidrome in humans, including acetylcholinesterase inhibition, N-methyl-D-aspartate receptor activation, and calcium dysregulation as well as inflammatory and immune responses. The suitability of the zebrafish larvae to in vivo high-throughput screenings of small molecule libraries makes these models a valuable tool for identifying new drugs for multifunctional drug therapy against acute organophosphorus poisoning. PMID:26489395

  5. Therapeutic effect of the YH6 phage in a murine hemorrhagic pneumonia model.

    PubMed

    Yang, Mei; Du, Chongtao; Gong, Pengjuan; Xia, Feifei; Sun, Changjiang; Feng, Xin; Lei, Liancheng; Song, Jun; Zhang, Lei; Wang, Bin; Xiao, Feng; Yan, Xinwu; Cui, Ziyin; Li, Xinwei; Gu, Jingmin; Han, Wenyu

    2015-10-01

    The treatment, in farmed mink, of hemorrhagic pneumonia caused by multidrug-resistant Pseudomonas aeruginosa strains has become increasingly difficult. This study investigated the potential use of phages as a therapy against hemorrhagic pneumonia caused by P. aeruginosa in a murine hemorrhagic pneumonia model. An N4-like phage designated YH6 was isolated using P. aeruginosa strain D9. YH6 is a virulent phage with efficient and broad host lytic activity against P. aeruginosa. No bacterial virulence- or lysogenesis-related ORF is present in the YH6 genome, making it eligible for use in phage therapy. In our murine experiments, a single intranasal administration of YH6 (2 × 10(7) PFU) 2 h after D9 intranasal injections at double minimum lethal dose was sufficient to protect mice against hemorrhagic pneumonia. The bacterial load in the lungs of YH6-protected mice was less than 10(3) CFU/g within 24 h after challenge and ultimately became undetectable, whereas the amount of bacteria in the lung tissue derived from unprotected mice was more than 10(8) CFU/g within 24 h after challenge. In view of its protective efficacy in this murine hemorrhagic pneumonia model, YH6 may serve as an alternative treatment strategy for infections caused by multidrug-resistant P. aeruginosa.

  6. Differential Toll-Like Receptor-Signalling of Burkholderia pseudomallei Lipopolysaccharide in Murine and Human Models.

    PubMed

    Weehuizen, Tassili A F; Prior, Joann L; van der Vaart, Thomas W; Ngugi, Sarah A; Nepogodiev, Sergey A; Field, Robert A; Kager, Liesbeth M; van 't Veer, Cornelis; de Vos, Alex F; Wiersinga, W Joost

    2015-01-01

    The Gram-negative bacterium Burkholderia pseudomallei causes melioidosis and is a CDC category B bioterrorism agent. Toll-like receptor (TLR)-2 impairs host defense during pulmonary B.pseudomallei infection while TLR4 only has limited impact. We investigated the role of TLRs in B.pseudomallei-lipopolysaccharide (LPS) induced inflammation. Purified B.pseudomallei-LPS activated only TLR2-transfected-HEK-cells during short stimulation but both HEK-TLR2 and HEK-TLR4-cells after 24 h. In human blood, an additive effect of TLR2 on TLR4-mediated signalling induced by B.pseudomallei-LPS was observed. In contrast, murine peritoneal macrophages recognized B.pseudomallei-LPS solely through TLR4. Intranasal inoculation of B.pseudomallei-LPS showed that both TLR4-knockout(-/-) and TLR2x4-/-, but not TLR2-/- mice, displayed diminished cytokine responses and neutrophil influx compared to wild-type controls. These data suggest that B.pseudomallei-LPS signalling occurs solely through murine TLR4, while in human models TLR2 plays an additional role, highlighting important differences between specificity of human and murine models that may have important consequences for B.pseudomallei-LPS sensing by TLRs and subsequent susceptibility to melioidosis.

  7. Shiga Toxin Mediated Neurologic Changes in Murine Model of Disease

    PubMed Central

    Pradhan, Suman; Pellino, Christine; MacMaster, Kayleigh; Coyle, Dennis; Weiss, Alison A.

    2016-01-01

    Seizures and neurologic involvement have been reported in patients infected with Shiga toxin (Stx) producing E. coli, and hemolytic uremic syndrome (HUS) with neurologic involvement is associated with more severe outcome. We investigated the extent of renal and neurologic damage in mice following injection of the highly potent form of Stx, Stx2a, and less potent Stx1. As observed in previous studies, Stx2a brought about moderate to acute tubular necrosis of proximal and distal tubules in the kidneys. Brain sections stained with hematoxylin and eosin (H&E) appeared normal, although some red blood cell congestion was observed. Microglial cell responses to neural injury include up-regulation of surface-marker expression (e.g., Iba1) and stereotypical morphological changes. Mice injected with Stx2a showed increased Iba1 staining, mild morphological changes associated with microglial activation (thickening of processes), and increased microglial staining per unit area. Microglial changes were observed in the cortex, hippocampus, and amygdala regions, but not the nucleus. Magnetic resonance imaging (MRI) of Stx2a-treated mice revealed no hyper-intensities in the brain, although magnetic resonance spectroscopy (MRS) revealed significantly decreased levels of phosphocreatine in the thalamus. Less dramatic changes were observed following Stx1 challenge. Neither immortalized microvascular endothelial cells from the cerebral cortex of mice (bEnd.3) nor primary human brain microvascular endothelial cells were found to be susceptible to Stx1 or Stx2a. The lack of susceptibility to Stx for both cell types correlated with an absence of receptor expression. These studies indicate Stx causes subtle, but identifiable changes in the mouse brain. PMID:27747196

  8. Pre-clinical Orthotopic Murine Model of Human Prostate Cancer.

    PubMed

    Shahryari, Varahram; Nip, Hannah; Saini, Sharanjot; Dar, Altaf A; Yamamura, Soichiro; Mitsui, Yozo; Colden, Melissa; Bucay, Nathan; Tabatabai, Laura Z; Greene, Kirsten; Deng, Guoren; Tanaka, Yuichiro; Dahiya, Rajvir; Majid, Shahana

    2016-08-29

    To study the multifaceted biology of prostate cancer, pre-clinical in vivo models offer a range of options to uncover critical biological information about this disease. The human orthotopic prostate cancer xenograft mouse model provides a useful alternative approach for understanding the specific interactions between genetically and molecularly altered tumor cells, their organ microenvironment, and for evaluation of efficacy of therapeutic regimens. This is a well characterized model designed to study the molecular events of primary tumor development and it recapitulates the early events in the metastatic cascade prior to embolism and entry of tumor cells into the circulation. Thus it allows elucidation of molecular mechanisms underlying the initial phase of metastatic disease. In addition, this model can annotate drug targets of clinical relevance and is a valuable tool to study prostate cancer progression. In this manuscript we describe a detailed procedure to establish a human orthotopic prostate cancer xenograft mouse model.

  9. Adapting Human Videofluoroscopic Swallow Study Methods to Detect and Characterize Dysphagia in Murine Disease Models

    PubMed Central

    Lever, Teresa E.; Braun, Sabrina M.; Brooks, Ryan T.; Harris, Rebecca A.; Littrell, Loren L.; Neff, Ryan M.; Hinkel, Cameron J.; Allen, Mitchell J.; Ulsas, Mollie A.

    2015-01-01

    This study adapted human videofluoroscopic swallowing study (VFSS) methods for use with murine disease models for the purpose of facilitating translational dysphagia research. Successful outcomes are dependent upon three critical components: test chambers that permit self-feeding while standing unrestrained in a confined space, recipes that mask the aversive taste/odor of commercially-available oral contrast agents, and a step-by-step test protocol that permits quantification of swallow physiology. Elimination of one or more of these components will have a detrimental impact on the study results. Moreover, the energy level capability of the fluoroscopy system will determine which swallow parameters can be investigated. Most research centers have high energy fluoroscopes designed for use with people and larger animals, which results in exceptionally poor image quality when testing mice and other small rodents. Despite this limitation, we have identified seven VFSS parameters that are consistently quantifiable in mice when using a high energy fluoroscope in combination with the new murine VFSS protocol. We recently obtained a low energy fluoroscopy system with exceptionally high imaging resolution and magnification capabilities that was designed for use with mice and other small rodents. Preliminary work using this new system, in combination with the new murine VFSS protocol, has identified 13 swallow parameters that are consistently quantifiable in mice, which is nearly double the number obtained using conventional (i.e., high energy) fluoroscopes. Identification of additional swallow parameters is expected as we optimize the capabilities of this new system. Results thus far demonstrate the utility of using a low energy fluoroscopy system to detect and quantify subtle changes in swallow physiology that may otherwise be overlooked when using high energy fluoroscopes to investigate murine disease models. PMID:25866882

  10. Curcumin Ingestion Inhibits Mastocytosis and Suppresses Intestinal Anaphylaxis in a Murine Model of Food Allergy.

    PubMed

    Kinney, Shannon R M; Carlson, Logan; Ser-Dolansky, Jennifer; Thompson, Chelsea; Shah, Sagar; Gambrah, Amos; Xing, Wei; Schneider, Sallie S; Mathias, Clinton B

    2015-01-01

    IgE antibodies and mast cells play critical roles in the establishment of allergic responses to food antigens. Curcumin, the active ingredient of the curry spice turmeric, has anti-inflammatory properties, and thus may have the capacity to regulate Th2 cells and mucosal mast cell function during allergic responses. We assessed whether curcumin ingestion during oral allergen exposure can modulate the development of food allergy using a murine model of ovalbumin (OVA)-induced intestinal anaphylaxis. Herein, we demonstrate that frequent ingestion of curcumin during oral OVA exposure inhibits the development of mastocytosis and intestinal anaphylaxis in OVA-challenged allergic mice. Intragastric (i.g.) exposure to OVA in sensitized BALB/c mice induced a robust IgE-mediated response accompanied by enhanced OVA-IgE levels, intestinal mastocytosis, elevated serum mMCP-1, and acute diarrhea. In contrast, mice exposed to oral curcumin throughout the experimental regimen appeared to be normal and did not exhibit intense allergic diarrhea or a significant enhancement of OVA-IgE and intestinal mast cell expansion and activation. Furthermore, allergic diarrhea, mast cell activation and expansion, and Th2 responses were also suppressed in mice exposed to curcumin during the OVA-challenge phase alone, despite the presence of elevated levels of OVA-IgE, suggesting that curcumin may have a direct suppressive effect on intestinal mast cell activation and reverse food allergy symptoms in allergen-sensitized individuals. This was confirmed by observations that curcumin attenuated the expansion of both adoptively transferred bone marrow-derived mast cells (BMMCs), and inhibited their survival and activation during cell culture. Finally, the suppression of intestinal anaphylaxis by curcumin was directly linked with the inhibition of NF-κB activation in curcumin-treated allergic mice, and curcumin inhibited the phosphorylation of the p65 subunit of NF-κB in BMMCs. In summary, our data

  11. Ablation of the Regulatory IE1 Protein of Murine Cytomegalovirus Alters In Vivo Pro-inflammatory TNF-alpha Production during Acute Infection

    PubMed Central

    Wilhelmi, Vanessa; Lisnic, Vanda Juranic; Hsieh, Wei Yuan; Blanc, Mathieu; Livingston, Andrew; Busche, Andreas; Tekotte, Hille; Messerle, Martin; Auer, Manfred; Fraser, Iain; Jonjic, Stipan; Angulo, Ana; Reddehase, Matthias J.; Ghazal, Peter

    2012-01-01

    Little is known about the role of viral genes in modulating host cytokine responses. Here we report a new functional role of the viral encoded IE1 protein of the murine cytomegalovirus in sculpting the inflammatory response in an acute infection. In time course experiments of infected primary macrophages (MΦs) measuring cytokine production levels, genetic ablation of the immediate-early 1 (ie1) gene results in a significant increase in TNFα production. Intracellular staining for cytokine production and viral early gene expression shows that TNFα production is highly associated with the productively infected MΦ population of cells. The ie1- dependent phenotype of enhanced MΦ TNFα production occurs at both protein and RNA levels. Noticeably, we show in a series of in vivo infection experiments that in multiple organs the presence of ie1 potently inhibits the pro-inflammatory cytokine response. From these experiments, levels of TNFα, and to a lesser extent IFNβ, but not the anti-inflammatory cytokine IL10, are moderated in the presence of ie1. The ie1- mediated inhibition of TNFα production has a similar quantitative phenotype profile in infection of susceptible (BALB/c) and resistant (C57BL/6) mouse strains as well as in a severe immuno-ablative model of infection. In vitro experiments with infected macrophages reveal that deletion of ie1 results in increased sensitivity of viral replication to TNFα inhibition. However, in vivo infection studies show that genetic ablation of TNFα or TNFRp55 receptor is not sufficient to rescue the restricted replication phenotype of the ie1 mutant virus. These results provide, for the first time, evidence for a role of IE1 as a regulator of the pro-inflammatory response and demonstrate a specific pathogen gene capable of moderating the host production of TNFα in vivo. PMID:22952450

  12. Notch pathway inhibition controls myeloma bone disease in the murine MOPC315.BM model

    PubMed Central

    Schwarzer, R; Nickel, N; Godau, J; Willie, B M; Duda, G N; Schwarzer, R; Cirovic, B; Leutz, A; Manz, R; Bogen, B; Dörken, B; Jundt, F

    2014-01-01

    Despite evidence that deregulated Notch signalling is a master regulator of multiple myeloma (MM) pathogenesis, its contribution to myeloma bone disease remains to be resolved. Notch promotes survival of human MM cells and triggers human osteoclast activity in vitro. Here, we show that inhibition of Notch through the γ-secretase inhibitor XII (GSI XII) induces apoptosis of murine MOPC315.BM myeloma cells with high Notch activity. GSI XII impairs murine osteoclast differentiation of receptor activator of NF-κB ligand (RANKL)-stimulated RAW264.7 cells in vitro. In the murine MOPC315.BM myeloma model GSI XII has potent anti-MM activity and reduces osteolytic lesions as evidenced by diminished myeloma-specific monoclonal immunoglobulin (Ig)-A serum levels and quantitative assessment of bone structure changes via high-resolution microcomputed tomography scans. Thus, we suggest that Notch inhibition through GSI XII controls myeloma bone disease mainly by targeting Notch in MM cells and possibly in osteoclasts in their microenvironment. We conclude that Notch inhibition is a valid therapeutic strategy in MM. PMID:24927406

  13. Notch pathway inhibition controls myeloma bone disease in the murine MOPC315.BM model.

    PubMed

    Schwarzer, R; Nickel, N; Godau, J; Willie, B M; Duda, G N; Schwarzer, R; Cirovic, B; Leutz, A; Manz, R; Bogen, B; Dörken, B; Jundt, F

    2014-06-13

    Despite evidence that deregulated Notch signalling is a master regulator of multiple myeloma (MM) pathogenesis, its contribution to myeloma bone disease remains to be resolved. Notch promotes survival of human MM cells and triggers human osteoclast activity in vitro. Here, we show that inhibition of Notch through the γ-secretase inhibitor XII (GSI XII) induces apoptosis of murine MOPC315.BM myeloma cells with high Notch activity. GSI XII impairs murine osteoclast differentiation of receptor activator of NF-κB ligand (RANKL)-stimulated RAW264.7 cells in vitro. In the murine MOPC315.BM myeloma model GSI XII has potent anti-MM activity and reduces osteolytic lesions as evidenced by diminished myeloma-specific monoclonal immunoglobulin (Ig)-A serum levels and quantitative assessment of bone structure changes via high-resolution microcomputed tomography scans. Thus, we suggest that Notch inhibition through GSI XII controls myeloma bone disease mainly by targeting Notch in MM cells and possibly in osteoclasts in their microenvironment. We conclude that Notch inhibition is a valid therapeutic strategy in MM.

  14. Differential Secreted Proteome Approach in Murine Model for Candidate Biomarker Discovery in Colon Cancer

    PubMed Central

    Rangiah, Kannan; Tippornwong, Montri; Sangar, Vineet; Austin, David; Tétreault, Marie-Pier; Rustgi, Anil K.; Blair, Ian A.; Yu, Kenneth H.

    2009-01-01

    The complexity and heterogeneity of the plasma proteome have presented significant challenges in the identification of protein changes associated with tumor development. We used cell culture as a model system and identified differentially expressed, secreted proteins which may constitute serological biomarkers. A stable isotope labeling by amino acids in cell culture (SILAC) approach was used to label the entire secreted proteomes of the CT26 murine colon cancer cell line and normal young adult mouse colon (YAMC) cell line, thereby creating a stable isotope labeled proteome (SILAP) standard. This SILAP standard was added to unlabeled murine CT26 colon cancer cell or normal murine YAMC colon epithelial cell secreted proteome samples. A multidimensional approach combining isoelectric focusing (IEF), strong cation exchange (SCX) followed by reversed phase liquid chromatography was used for extensive protein and peptide separation. A total of 614 and 929 proteins were identified from the YAMC and CT26 cell lines, with 418 proteins common to both cell lines. Twenty highly abundant differentially expressed proteins from these groups were selected for liquid chromatography-multiple reaction monitoring/mass spectrometry (LC-MRM/MS) analysis in sera. Differential secretion into the serum was observed for several proteins when Apcmin mice were compared with control mice. These findings were then confirmed by Western blot analysis. PMID:19769411

  15. AN IN VITRO MODEL FOR MURINE URETERIC EPITHELIAL CELLS

    EPA Science Inventory

    This report presents a model developed to study growth and differentiation of primary cultures of ureteric epithelial cells from embryonic C57BL/6N mouse urinary tracts. Single cells were resuspended in medium and plated onto transwells coated with collagen IV and laminin. Basa...

  16. Astragalin Attenuates Allergic Inflammation in a Murine Asthma Model.

    PubMed

    Liu, Jiping; Cheng, Yue; Zhang, Xiaoshuang; Zhang, Xue; Chen, Shuxian; Hu, Zongmiao; Zhou, Chunmei; Zhang, Enhu; Ma, Shiping

    2015-10-01

    The present study aimed to determine the protective effects and the underlying mechanisms of astragalin (AG) on ovalbumin (OVA)-induced allergic inflammation in a mouse model of allergic asthma. Our study demonstrated that AG inhibited OVA-induced increases in eosinophil count; IL-4, IL-5, IL-13, and IgE were recovered in bronchoalveolar lavage fluid, and increased IFN-γ level in bronchoalveolar lavage fluid. Histological studies demonstrated that AG substantially inhibited OVA-induced eosinophilia in lung tissue. Western blot analysis demonstrated that AG treatments markedly inhibited OVA-induced SOCS-3 expression and enhancement of SOCS-5 expression in an asthma model. Our findings support the possible use of AG as a therapeutic drug for patients with allergic asthma.

  17. Radiation-induced myeloid leukemia in murine models

    PubMed Central

    2014-01-01

    The use of radiation therapy is a cornerstone of modern cancer treatment. The number of patients that undergo radiation as a part of their therapy regimen is only increasing every year, but this does not come without cost. As this number increases, so too does the incidence of secondary, radiation-induced neoplasias, creating a need for therapeutic agents targeted specifically towards incidence reduction and treatment of these cancers. Development and efficacy testing of these agents requires not only extensive in vitro testing but also a set of reliable animal models to accurately recreate the complex situations of radiation-induced carcinogenesis. As radiation-induced leukemic progression often involves genomic changes such as rearrangements, deletions, and changes in methylation, the laboratory mouse Mus musculus, with its fully sequenced genome, is a powerful tool in cancer research. This fact, combined with the molecular and physiological similarities it shares with man and its small size and high rate of breeding in captivity, makes it the most relevant model to use in radiation-induced leukemia research. In this work, we review relevant M. musculus inbred and F1 hybrid animal models, as well as methods of induction of radiation-induced myeloid leukemia. Associated molecular pathologies are also included. PMID:25062865

  18. Preclinical murine models of Chronic Obstructive Pulmonary Disease.

    PubMed

    Vlahos, Ross; Bozinovski, Steven

    2015-07-15

    Chronic Obstructive Pulmonary Disease (COPD) is a major incurable global health burden and is the 4th leading cause of death worldwide. It is believed that an exaggerated inflammatory response to cigarette smoke causes progressive airflow limitation. This inflammation, where macrophages, neutrophils and T lymphocytes are prominent, leads to oxidative stress, emphysema, small airway fibrosis and mucus hypersecretion. Much of the disease burden and health care utilisation in COPD is associated with the management of its comorbidities and infectious (viral and bacterial) exacerbations (AECOPD). Comorbidities, defined as other chronic medical conditions, in particular skeletal muscle wasting and cardiovascular disease markedly impact on disease morbidity, progression and mortality. The mechanisms and mediators underlying COPD and its comorbidities are poorly understood and current COPD therapy is relatively ineffective. Thus, there is an obvious need for new therapies that can prevent the induction and progression of COPD and effectively treat AECOPD and comorbidities of COPD. Given that access to COPD patients can be difficult and that clinical samples often represent a "snapshot" at a particular time in the disease process, many researchers have used animal modelling systems to explore the mechanisms underlying COPD, AECOPD and comorbidities of COPD with the goal of identifying novel therapeutic targets. This review highlights the mouse models used to define the cellular, molecular and pathological consequences of cigarette smoke exposure and the recent advances in modelling infectious exacerbations and comorbidities of COPD.

  19. Testing the Efficacy of Contrast-Enhanced Ultrasound in Detecting Transplant Rejection Using a Murine Model of Heart Transplantation.

    PubMed

    Fischer, K; Ohori, S; Meral, F C; Uehara, M; Giannini, S; Ichimura, T; Smith, R N; Jolesz, F A; Guleria, I; Zhang, Y; White, P J; McDannold, N J; Hoffmeister, K; Givertz, M M; Abdi, R

    2016-12-23

    One of the key unmet needs to improve long-term outcomes of heart transplantation is to develop accurate, noninvasive, and practical diagnostic tools to detect transplant rejection. Early intragraft inflammation and endothelial cell injuries occur prior to advanced transplant rejection. We developed a novel diagnostic imaging platform to detect early declines in microvascular perfusion (MP) of cardiac transplants using contrast-enhanced ultrasonography (CEUS). The efficacy of CEUS in detecting transplant rejection was tested in a murine model of heart transplants, a standard preclinical model of solid organ transplant. As compared to the syngeneic groups, a progressive decline in MP was demonstrated in the allografts undergoing acute transplant rejection (40%, 64%, and 92% on days 4, 6, and 8 posttransplantation, respectively) and chronic rejection (33%, 33%, and 92% on days 5, 14, and 30 posttransplantation, respectively). Our perfusion studies showed restoration of MP following antirejection therapy, highlighting its potential to help monitor efficacy of antirejection therapy. Our data suggest that early endothelial cell injury and platelet aggregation contributed to the early MP decline observed in the allografts. High-resolution MP mapping may allow for noninvasive detection of heart transplant rejection. The data presented have the potential to help in the development of next-generation imaging approaches to diagnose transplant rejection.

  20. Mycobacterium abscessus Morphotype Comparison in a Murine Model

    PubMed Central

    Caverly, Lindsay J.; Caceres, Silvia M.; Fratelli, Cori; Happoldt, Carrie; Kidwell, Kelley M.; Malcolm, Kenneth C.; Nick, Jerry A.; Nichols, David P.

    2015-01-01

    Pulmonary infections with Mycobacterium abscessus (M. abscessus) are increasingly prevalent in patients with lung diseases such as cystic fibrosis. M. abscessus exists in two morphotypes, smooth and rough, but the impact of morphotype on virulence is unclear. We developed an immune competent mouse model of pulmonary M. abscessus infection and tested the differences in host inflammatory response between the morphotypes of M. abscessus. Smooth and rough morphotypes of M. abscessus were isolated from the same American Type Culture Collection strain. Wild type and cystic fibrosis mice were intratracheally inoculated with known quantities of M. abscessus suspended in fibrin plugs. At the time of sacrifice lung and splenic tissues and bronchoalveolar lavage fluid were collected and cultured. Bronchoalveolar lavage fluid was analyzed for leukocyte count, differential and cytokine expression. Pulmonary infection with M. abscessus was present at both 3 days and 14 days post-inoculation in all groups at greater levels than systemic infection. Inoculation with M. abscessus rough morphotype resulted in more bronchoalveolar lavage fluid neutrophils compared to smooth morphotype at 14 days post-inoculation in both wild type (p = 0.01) and cystic fibrosis (p<0.01) mice. Spontaneous in vivo conversion from smooth to rough morphotype occurred in 12/57 (21%) of mice. These mice trended towards greater weight loss than mice in which morphotype conversion did not occur. In the described fibrin plug model of M. abscessus infection, pulmonary infection with minimal systemic dissemination is achieved with both smooth and rough morphotypes. In this model M. abscessus rough morphotype causes a greater host inflammatory response than the smooth based on bronchoalveolar lavage fluid neutrophil levels. PMID:25675351

  1. Murine models susceptibility to distinct Trypanosoma cruzi I genotypes infection.

    PubMed

    León, Cielo M; Montilla, Marleny; Vanegas, Ricardo; Castillo, Maria; Parra, Edgar; Ramírez, Juan David

    2017-04-01

    Chagas disease is a complex zoonosis that affects around 8 million people worldwide. This pathology is caused by Trypanosoma cruzi, a kinetoplastid parasite that shows tremendous genetic diversity evinced in six distinct Discrete Typing Units (TcI-TcVI) including a recent genotype named as TcBat and associated with anthropogenic bats. TcI presents a broad geographical distribution and has been associated with chronic cardiomyopathy. Recent phylogenetic studies suggest the existence of two genotypes (Domestic (TcIDom) and sylvatic TcI) within TcI. The understanding of the course of the infection in different mouse models by these two genotypes is not yet known. Therefore, we infected 126 animals (ICR-CD1, National Institute of Health (NIH) and Balb/c) with two TcIDom strains and one sylvatic strain for a follow-up period of 60 days. We quantified the parasitaemia, immune response and histopathology observing that the maximum day of parasitaemia was achieved at day 21 post-infection. Domestic strains showed higher parasitaemia than the sylvatic strain in the three mouse models; however in the survival curves Balb/c mice were less susceptible to infection compared with NIH and ICR-CD1. Our results suggest that the genetic background plays a fundamental role in the natural history of the infection and the sympatric TcI genotypes have relevant implications in disease pathogenesis.

  2. A New Murine Model of Endovascular Aortic Aneurysm Repair

    PubMed Central

    Rouer, Martin; Meilhac, Olivier; Delbosc, Sandrine; Louedec, Liliane; Pavon-Djavid, Graciela; Cross, Jane; Legagneux, Josette; Bouilliant-Linet, Maxime; Michel, Jean-Baptiste; Alsac, Jean-Marc

    2013-01-01

    Endovascular aneurysm exclusion is a validated technique to prevent aneurysm rupture. Long-term results highlight technique limitations and new aspects of Abdominal aortic aneurysm (AAA) pathophysiology. There is no abdominal aortic aneurysm endograft exclusion model cheap and reproducible, which would allow deep investigations of AAA before and after treatment. We hereby describe how to induce, and then to exclude with a covered coronary stentgraft an abdominal aortic aneurysm in a rat. The well known elastase induced AAA model was first reported in 19901 in a rat, then described in mice2. Elastin degradation leads to dilation of the aorta with inflammatory infiltration of the abdominal wall and intra luminal thrombus, matching with human AAA. Endovascular exclusion with small covered stentgraft is then performed, excluding any interactions between circulating blood and the aneurysm thrombus. Appropriate exclusion and stentgraft patency is confirmed before euthanasia by an angiography thought the left carotid artery. Partial control of elastase diffusion makes aneurysm shape different for each animal. It is difficult to create an aneurysm, which will allow an appropriate length of aorta below the aneurysm for an easy stentgraft introduction, and with adequate proximal and distal neck to prevent endoleaks. Lots of failure can result to stentgraft introduction which sometimes lead to aorta tear with pain and troubles to stitch it, and endothelial damage with post op aorta thrombosis. Giving aspirin to rats before stentgraft implantation decreases failure rate without major hemorrhage. Clamping time activates neutrophils, endothelium and platelets, and may interfere with biological analysis. PMID:23851958

  3. Multiscale analysis of the murine intestine for modeling human diseases

    PubMed Central

    Lyons, Jesse; Herring, Charles A.; Banerjee, Amrita; Simmons, Alan J.

    2015-01-01

    When functioning properly, the intestine is one of the key interfaces between the human body and its environment. It is responsible for extracting nutrients from our food and excreting our waste products. It provides an environment for a host of healthful microbes and serves as a first defense against pathogenic ones. These processes require tight homeostatic controls, which are provided by the interactions of a complex mix of epithelial, stromal, neural and immune cells, as well as the resident microflora. This homeostasis can be disrupted by invasive microbes, genetic lesions, and carcinogens, resulting in diseases such Clostridium difficile infection, inflammatory bowel disease (IBD) and cancer. Enormous strides have been made in understanding how this important organ functions in health and disease using everything from cell culture systems to animal models to human tissue samples. This has resulted in better therapies for all of these diseases, but there is still significant room for improvement. In the United States alone, 14000 people per year die of C. difficile, up to 1.6 million people suffer from IBD, and more than 50000 people die every year from colon cancer. Because these and other intestinal diseases arise from complex interactions between the different components of the gut ecosystem, we propose that systems approaches that address this complexity in an integrative manner may eventually lead to improved therapeutics that deliver lasting cures. This review will discuss the use of systems biology for studying intestinal diseases in vivo with particular emphasis on mouse models. Additionally, it will focus on established experimental techniques that have been used to drive this systems-level analysis, and emerging techniques that will push this field forward in the future. PMID:26040649

  4. microRNA-222 modulates liver fibrosis in a murine model of biliary atresia

    SciTech Connect

    Shen, Wen-jun; Dong, Rui; Chen, Gong Zheng, Shan

    2014-03-28

    Highlights: • The RRV infected group showed cholestasis, retardation and extrahepatic biliary atresia. • miR-222 was highly expressed, and PPP2R2A was inhibited in the murine biliary atresia model. • miR-222 profoundly modulated the process of fibrosis in the murine biliary atresia model. • miR-222 might represent a potential target for improving biliary atresia prognosis. - Abstract: microRNA-222 (miR-222) has been shown to initiate the activation of hepatic stellate cells, which plays an important role in the pathogenesis of liver fibrosis. The aim of our study was to evaluate the role of miR-22 in a mouse model of biliary atresia (BA) induced by Rhesus Rotavirus (RRV) infection. New-born Balb/c mice were randomized into control and RRV infected groups. The extrahepatic bile ducts were evaluated. The experimental group was divided into BA group and negative group based on histology. The expression of miR-222, protein phosphatase 2 regulatory subunit B alpha (PPP2R2A), proliferating cell nuclear antigen (PCNA) and phospho-Akt were detected. We found that the experimental group showed signs of cholestasis, retardation and extrahepatic biliary atresia. No abnormalities were found in the control group. In the BA group, miR-222, PCNA and Akt were highly expressed, and PPP2R2A expression was significantly inhibited. Our findings suggest that miR-222 profoundly modulated the process of fibrosis in the murine BA model, which might represent a potential target for improving BA prognosis.

  5. A Novel Murine Model for Chronic Inflammatory Alveolar Bone loss

    PubMed Central

    Oz, Helieh S; Ebersole, Jeffrey L

    2009-01-01

    Objective Chronic inflammatory bowel disease (IBD) demonstrates some similarities of dysregulated chronic immunoinflammatory lesion of periodontitis. Trinitrobenzene sulfonic acid (TNBS) and dextran sodium sulphate (DSS) administered to rodents have been shown to elicit inflammatory responses that undermine the integrity of the gut epithelium similar to IBD in humans. The objective of this study was to evaluate the ability of these chemicals to elicit periodontal inflammation as a novel model for alveolar bone loss. Methods Mice were treated by oral application of TNBS 2 times/week, or with DSS in the diet over a period of 18 weeks. Alveolar bone loss was assessed on defleshed skull using morphometric measures for area of bone resorption. Results TNBS-treated animals tolerated oral administration with no clinical symptoms and gained weight similar to normal controls. In contrast, DSS exerted a systemic response including shortening of colonic tissue and liver enzyme changes. Both TNBS and DSS caused a localized action on periodontal tissues with alveolar bone loss observed in both maxilla and mandibles with progression in a time dependent manner. Bone loss was detected as early as week 7, with more severe periodontitis increasing over the 18 weeks (p<0.001). Young (7 month) and old (12 month) SCID mice were treated with TNBS for a period of 7 weeks and did not develop significant bone loss. Conclusions These data show that oral administration of TNBS and DSS provoke alveolar bone loss in concert with the autochthonous oral microbiota. PMID:19602109

  6. Regional brain metabolism in a murine systemic lupus erythematosus model.

    PubMed

    Vo, An; Volpe, Bruce T; Tang, Chris C; Schiffer, Wynne K; Kowal, Czeslawa; Huerta, Patricio T; Uluğ, Aziz M; Dewey, Stephen L; Eidelberg, David; Diamond, Betty

    2014-08-01

    Systemic lupus erythematosus (SLE) is characterized by multiorgan inflammation, neuropsychiatric disorders (NPSLE), and anti-nuclear antibodies. We previously identified a subset of anti-DNA antibodies (DNRAb) cross-reactive with the N-methyl-D-aspartate receptor, present in 30% to 40% of patients, able to enhance excitatory post-synaptic potentials and trigger neuronal apoptosis. DNRAb+ mice exhibit memory impairment or altered fear response, depending on whether the antibody penetrates the hippocampus or amygdala. Here, we used 18F-fluorodeoxyglucose (FDG) microPET to plot changes in brain metabolism after regional blood-brain barrier (BBB) breach. In DNRAb+ mice, metabolism declined at the site of BBB breach in the first 2 weeks and increased over the next 2 weeks. In contrast, DNRAb- mice exhibited metabolic increases in these regions over the 4 weeks after the insult. Memory impairment was present in DNRAb+ animals with hippocampal BBB breach and altered fear conditioning in DNRAb+ mice with amygdala BBB breach. In DNRAb+ mice, we observed an inverse relationship between neuron number and regional metabolism, while a positive correlation was observed in DNRAb- mice. These findings suggest that local metabolic alterations in this model take place through different mechanisms with distinct time courses, with important implications for the interpretation of imaging data in SLE subjects.

  7. Persistent G. lamblia impairs growth in a murine malnutrition model

    PubMed Central

    Bartelt, Luther A.; Roche, James; Kolling, Glynis; Bolick, David; Noronha, Francisco; Naylor, Caitlin; Hoffman, Paul; Warren, Cirle; Singer, Steven; Guerrant, Richard

    2013-01-01

    Giardia lamblia infections are nearly universal among children in low-income countries and are syndemic with the triumvirate of malnutrition, diarrhea, and developmental growth delays. Amidst the morass of early childhood enteropathogen exposures in these populations, G. lamblia–specific associations with persistent diarrhea, cognitive deficits, stunting, and nutrient deficiencies have demonstrated conflicting results, placing endemic pediatric giardiasis in a state of equipoise. Many infections in endemic settings appear to be asymptomatic/subclinical, further contributing to uncertainty regarding a causal link between G. lamblia infection and developmental delay. We used G. lamblia H3 cyst infection in a weaned mouse model of malnutrition to demonstrate that persistent giardiasis leads to epithelial cell apoptosis and crypt hyperplasia. Infection was associated with a Th2-biased inflammatory response and impaired growth. Malnutrition accentuated the severity of these growth decrements. Faltering malnourished mice exhibited impaired compensatory responses following infection and demonstrated an absence of crypt hyperplasia and subsequently blunted villus architecture. Concomitantly, severe malnutrition prevented increases in B220+ cells in the lamina propria as well as mucosal Il4 and Il5 mRNA in response to infection. These findings add insight into the potential role of G. lamblia as a “stunting” pathogen and suggest that, similarly, malnourished children may be at increased risk of G. lamblia–potentiated growth decrements. PMID:23728173

  8. Regional brain metabolism in a murine systemic lupus erythematosus model

    PubMed Central

    Vo, An; Volpe, Bruce T; Tang, Chris C; Schiffer, Wynne K; Kowal, Czeslawa; Huerta, Patricio T; Uluğ, Aziz M; Dewey, Stephen L; Eidelberg, David; Diamond, Betty

    2014-01-01

    Systemic lupus erythematosus (SLE) is characterized by multiorgan inflammation, neuropsychiatric disorders (NPSLE), and anti-nuclear antibodies. We previously identified a subset of anti-DNA antibodies (DNRAb) cross-reactive with the N-methyl-D-aspartate receptor, present in 30% to 40% of patients, able to enhance excitatory post-synaptic potentials and trigger neuronal apoptosis. DNRAb+ mice exhibit memory impairment or altered fear response, depending on whether the antibody penetrates the hippocampus or amygdala. Here, we used 18F-fluorodeoxyglucose (FDG) microPET to plot changes in brain metabolism after regional blood–brain barrier (BBB) breach. In DNRAb+ mice, metabolism declined at the site of BBB breach in the first 2 weeks and increased over the next 2 weeks. In contrast, DNRAb− mice exhibited metabolic increases in these regions over the 4 weeks after the insult. Memory impairment was present in DNRAb+ animals with hippocampal BBB breach and altered fear conditioning in DNRAb+ mice with amygdala BBB breach. In DNRAb+ mice, we observed an inverse relationship between neuron number and regional metabolism, while a positive correlation was observed in DNRAb− mice. These findings suggest that local metabolic alterations in this model take place through different mechanisms with distinct time courses, with important implications for the interpretation of imaging data in SLE subjects. PMID:24824914

  9. Tissue Engineering of the Intestine in a Murine Model

    PubMed Central

    Barthel, Erik R.; Speer, Allison L.; Levin, Daniel E.; Sala, Frédéric G.; Hou, Xiaogang; Torashima, Yasuhiro; Wigfall, Clarence M.; Grikscheit, Tracy C.

    2012-01-01

    Tissue-engineered small intestine (TESI) has successfully been used to rescue Lewis rats after massive small bowel resection, resulting in return to preoperative weights within 40 days.1 In humans, massive small bowel resection can result in short bowel syndrome, a functional malabsorptive state that confers significant morbidity, mortality, and healthcare costs including parenteral nutrition dependence, liver failure and cirrhosis, and the need for multivisceral organ transplantation.2 In this paper, we describe and document our protocol for creating tissue-engineered intestine in a mouse model with a multicellular organoid units-on-scaffold approach. Organoid units are multicellular aggregates derived from the intestine that contain both mucosal and mesenchymal elements,3 the relationship between which preserves the intestinal stem cell niche.4 In ongoing and future research, the transition of our technique into the mouse will allow for investigation of the processes involved during TESI formation by utilizing the transgenic tools available in this species.5The availability of immunocompromised mouse strains will also permit us to apply the technique to human intestinal tissue and optimize the formation of human TESI as a mouse xenograft before its transition into humans. Our method employs good manufacturing practice (GMP) reagents and materials that have already been approved for use in human patients, and therefore offers a significant advantage over approaches that rely upon decellularized animal tissues. The ultimate goal of this method is its translation to humans as a regenerative medicine therapeutic strategy for short bowel syndrome. PMID:23222891

  10. CMV Infection Attenuates the Disease Course in a Murine Model of Multiple Sclerosis

    PubMed Central

    Pirko, Istvan; Cardin, Rhonda; Chen, Yi; Lohrey, Anne K.; Lindquist, Diana M.; Dunn, R. Scott; Zivadinov, Robert; Johnson, Aaron J.

    2012-01-01

    Recent evidence in multiple sclerosis (MS) suggests that active CMV infection may result in more benign clinical disease. The goal of this pilot study was to determine whether underlying murine CMV (MCMV) infection affects the course of the Theiler's murine encephalitis virus (TMEV) induced murine model of MS. A group of eight TMEV-infected mice were co-infected with MCMV at 2 weeks prior to TMEV infection while a second group of TMEV-infected mice received MCMV two weeks post TMEV. We also used 2 control groups, where at the above time points MCMV was replaced with PBS. Outcome measures included (1) monthly monitoring of disability via rotarod for 8 months; (2) in vivo MRI for brain atrophy studies and (3) FACS analysis of brain infiltrating lymphocytes at 8 months post TMEV infection. Co-infection with MCMV influenced the disease course in mice infected prior to TMEV infection. In this group, rotarod detectable motor performance was significantly improved starting 3 months post-infection and beyond (p≤0.024). In addition, their brain atrophy was close to 30% reduced at 8 months, but this was only present as a trend due to low power (p = 0.19). A significant reduction in the proportion of brain infiltrating CD3+ cells was detected in this group (p = 0.026), while the proportion of CD45+ Mac1+ cells significantly increased (p = 0.003). There was also a strong trend for a reduced proportion of CD4+ cells (p = 0.17) while CD8 and B220+ cell proportion did not change. These findings support an immunomodulatory effect of MCMV infection in this MS model. Future studies in this co-infection model will provide insight into mechanisms which modulate the development of demyelination and may be utilized for the development of novel therapeutic strategies. PMID:22393447

  11. Establishment of a murine epidermal cell line suitable for in vitro and in vivo skin modelling

    PubMed Central

    2011-01-01

    Background Skin diseases are a major health problem. Some of the most severe conditions involve genetic disorders, including cancer. Several of these human diseases have been modelled in genetically modified mice, thus becoming a highly valuable preclinical tool for the treatment of these pathologies. However, development of three-dimensional models of skin using keratinocytes from normal and/or genetically modified mice has been hindered by the difficulty to subculture murine epidermal keratinocytes. Methods We have generated a murine epidermal cell line by serially passaging keratinocytes isolated from the back skin of adult mice. We have termed this cell line COCA. Cell culture is done in fully defined media and does not require feeder cells or any other coating methods. Results COCA retained its capacity to differentiate and stratify in response to increased calcium concentration in the cell culture medium for more than 75 passages. These cells, including late passage, can form epidermis-like structures in three-dimensional in vitro models with a well-preserved pattern of proliferation and differentiation. Furthermore, these cells form epidermis in grafting assays in vivo, and do not develop tumorigenic ability. Conclusions We propose that COCA constitutes a good experimental system for in vitro and in vivo skin modelling. Also, cell lines from genetically modified mice of interest in skin biology could be established using the method we have developed. COCA keratinocytes would be a suitable control, within a similar background, when studying the biological implications of these alterations. PMID:21510892

  12. Small GSK-3 Inhibitor Shows Efficacy in a Motor Neuron Disease Murine Model Modulating Autophagy

    PubMed Central

    de Munck, Estefanía; Palomo, Valle; Muñoz-Sáez, Emma; Perez, Daniel I.; Gómez-Miguel, Begoña; Solas, M. Teresa; Gil, Carmen; Martínez, Ana; Arahuetes, Rosa M.

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron degenerative disease that has no effective treatment up to date. Drug discovery tasks have been hampered due to the lack of knowledge in its molecular etiology together with the limited animal models for research. Recently, a motor neuron disease animal model has been developed using β-N-methylamino-L-alanine (L-BMAA), a neurotoxic amino acid related to the appearing of ALS. In the present work, the neuroprotective role of VP2.51, a small heterocyclic GSK-3 inhibitor, is analysed in this novel murine model together with the analysis of autophagy. VP2.51 daily administration for two weeks, starting the first day after L-BMAA treatment, leads to total recovery of neurological symptoms and prevents the activation of autophagic processes in rats. These results show that the L-BMAA murine model can be used to test the efficacy of new drugs. In addition, the results confirm the therapeutic potential of GSK-3 inhibitors, and specially VP2.51, for the disease-modifying future treatment of motor neuron disorders like ALS. PMID:27631495

  13. Lessons from probiotic-host interaction studies in murine models of experimental colitis.

    PubMed

    Claes, Ingmar J J; De Keersmaecker, Sigrid C J; Vanderleyden, Jos; Lebeer, Sarah

    2011-10-01

    In inflammatory bowel diseases (IBD), it is known that besides genetic and environmental factors (e.g. diet, drugs, stress), the microbiota play an important role in the pathogenesis. Patients with IBD have an altered microbiota (dysbiosis) and therefore, probiotics, defined as 'live micro-organisms that when administered in adequate amounts can confer a health benefit on the host', have been suggested as nutritional supplements to restore these imbalances. The best response on probiotics among the different types of IBD appears to be in the case of ulcerative colitis. Although probiotics show promise in IBD in both clinical and animal studies, further mechanistic studies are necessary to optimize the use of probiotics as supporting therapy in IBD. Murine models of experimental colitis have been used for decades to study this pathology, and these models have been proven useful to search for new therapeutic approaches. The purpose of this review is to summarize probiotic-host interaction studies in murine models of experimental colitis and to evaluate how these models can further help in understanding these complex interactions. Unraveling the molecular mechanisms behind the beneficial effects will assist in better and possibly more efficient probiotic formulations.

  14. Small GSK-3 Inhibitor Shows Efficacy in a Motor Neuron Disease Murine Model Modulating Autophagy.

    PubMed

    de Munck, Estefanía; Palomo, Valle; Muñoz-Sáez, Emma; Perez, Daniel I; Gómez-Miguel, Begoña; Solas, M Teresa; Gil, Carmen; Martínez, Ana; Arahuetes, Rosa M

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a progressive motor neuron degenerative disease that has no effective treatment up to date. Drug discovery tasks have been hampered due to the lack of knowledge in its molecular etiology together with the limited animal models for research. Recently, a motor neuron disease animal model has been developed using β-N-methylamino-L-alanine (L-BMAA), a neurotoxic amino acid related to the appearing of ALS. In the present work, the neuroprotective role of VP2.51, a small heterocyclic GSK-3 inhibitor, is analysed in this novel murine model together with the analysis of autophagy. VP2.51 daily administration for two weeks, starting the first day after L-BMAA treatment, leads to total recovery of neurological symptoms and prevents the activation of autophagic processes in rats. These results show that the L-BMAA murine model can be used to test the efficacy of new drugs. In addition, the results confirm the therapeutic potential of GSK-3 inhibitors, and specially VP2.51, for the disease-modifying future treatment of motor neuron disorders like ALS.

  15. Characterization of the Arterial Anatomy of the Murine Hindlimb: Functional Role in the Design and Understanding of Ischemia Models

    PubMed Central

    Kochi, Takashi; Imai, Yoshimichi; Takeda, Atsushi; Watanabe, Yukiko; Mori, Shiro; Tachi, Masahiro; Kodama, Tetsuya

    2013-01-01

    Rationale Appropriate ischemia models are required for successful studies of therapeutic angiogenesis. While collateral routes are known to be present within the innate vasculature, there are no reports describing the detailed vascular anatomy of the murine hindlimb. In addition, differences in the descriptions of anatomical names and locations in the literature impede understanding of the circulation and the design of hindlimb ischemia models. To understand better the collateral circulation in the whole hindlimb, clarification of all the feeding arteries of the hindlimb is required. Objective The aim of this study is to reveal the detailed arterial anatomy and collateral routes in murine hindlimb to enable the appropriate design of therapeutic angiogenesis studies and to facilitate understanding of the circulation in ischemia models. Methods and Results Arterial anatomy in the murine hindlimb was investigated by contrast-enhanced X-ray imaging and surgical dissection. The observed anatomy is shown in photographic images and in a schema. Previously unnoticed but relatively large arteries were observed in deep, cranial and lateral parts of the thigh. The data indicates that there are three collateral routes through the medial thigh, quadriceps femoris, and the biceps femoris muscles. Furthermore, anatomical variations were found at the origins of the three feeding arteries. Conclusions The detailed arterial anatomy of murine hindlimb and collateral routes deduced from the anatomy are described. Limitations on designs of ischemia models in view of anatomical variations are proposed. These observations will contribute to the development of animal studies of therapeutic angiogenesis using murine hindlimb ischemia models. PMID:24386328

  16. Murine Models of Breast Cancer: Assessment of the Role of c-Src in Mammary Tumorigenesis

    DTIC Science & Technology

    2004-10-01

    luc) as shown along with the HSV -TK-Renilla-luciferase reporter (A to E). The fold activation for NFAT-and AP- 1 -firefly-luciferase and actual...Vo AD Award Number: DAMD17-99- 1 -9151 TITLE: Murine Models of Breast Cancer: Assessment of the Role of c-Src in Mammary Tumorigenesis PRINCIPAL...PAGE OMB No. 074-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for

  17. Fluorescence and reflectance spectral imaging system for a murine mammary window chamber model

    PubMed Central

    Leung, Hui Min; Gmitro, Arthur F.

    2015-01-01

    A spectral imaging system was developed to study the development of breast cancer xenografts in a murine mammary window chamber model. The instrument is configured to work with either a laser to excite fluorescence or a broadband light source for diffuse reflectance imaging. Two applications were demonstrated. First, spectral imaging of fluorescence signals was demonstrated with a GFP-breast cancer tumor and fluorescein injection. Second, based on the principles of broadband reflectance spectroscopy, the instrument was used to monitor dynamic changes of tissue absorbance to yield tissue oxygenation maps at different time points during tumor progression. PMID:26309753

  18. Efficacy of Ceftobiprole Medocaril against Enterococcus faecalis in a Murine Urinary Tract Infection Model

    PubMed Central

    Murray, Barbara E.

    2012-01-01

    We evaluated ceftobiprole against the well-characterized Enterococcus faecalis strain OG1RF (with and without the β-lactamase [Bla] plasmid pBEM10) in a murine urinary tract infection (UTI) model. Ceftobiprole was equally effective for Bla+ and Bla− OG1 strains, while ampicillin was moderately to markedly (depending on the inoculum) less effective against Bla+ than Bla− OG1 strains. These data illustrate an in vivo effect on ampicillin of Bla production by E. faecalis and the stability and efficacy of ceftobiprole in experimental UTI. PMID:22450988

  19. Retinal Ultrastructure of Murine Models of Dry Age-related Macular Degeneration (AMD)

    PubMed Central

    Ramkumar, Hema L.; Zhang, Jun; Chan, Chi-Chao

    2010-01-01

    Age-related macular degeneration (AMD) is the most prevalent form of irreversible blindness worldwide in the elderly population. The pathology of dry AMD consists of degeneration of photoreceptors and the RPE, lipofuscin (A2E) accumulation, and drusen formation. Mice have been widely used for generating models that simulate human AMD features for investigating the pathogenesis, treatment and prevention of the disease. Although the mouse has no macula, focal atrophy of photorecptors and RPE, lipofuscin accumulation, and increased A2E can develop in aged mouse eyes. However, drusen are rarely seen in mice because of their simpler Bruch’s membrane and different process of lipofuscin extrusion compared with humans. Thus, analyzing basal deposits at the ultrastructural level and understanding the ultrastructural pathologic differences between various mouse AMD models are critical to comprehending the significance of research findings and response to possible therapeutic options for dry AMD. Based on the multifactorial pathogenesis of AMD, murine dry AMD models can be classified into three groups. First, genetically engineered mice that target genes related to juvenile macular dystrophies are the most common models, and they include abcr−/− (Stargardt disease), transgenic ELOVL4 (Stargardt-3 dominant inheritary disease), Efemp1R345W/R345W (Doyne honeycomb retinal dystrophy), and Timp3S156C/S156C (Sorsby fundus dystrophy) mice. Other murine models target genes relevant to AMD, including inflammatory genes such as Cfh−/−, Ccl2−/−, Ccr2−/−, Cx3cr1−/−, and Ccl2−/−/cx3cr1−/−, oxidative stress associated genes such as Sod1−/− and Sod2 knockdown, metabolic pathway genes such as neprilysin −/− (amyloid β), transgenic mcd/mcd (cathepsin D), Cp−/−/Heph−/Y (ferroxidase ceruloplasmin/hepaestin, iron metabolism), and transgenic ApoE4 on high fat and high cholesterol diet (lipid metabolism). Second, mice have also been immunologically

  20. Protein Malnutrition Impairs Intestinal Epithelial Cell Turnover, a Potential Mechanism of Increased Cryptosporidiosis in a Murine Model

    PubMed Central

    Liu, J.; Bolick, D. T.; Kolling, G. L.; Fu, Z.

    2016-01-01

    Malnutrition and cryptosporidiosis form a vicious cycle and lead to acute and long-term growth impairment in children from developing countries. Insights into mechanisms underlying the vicious cycle will help to design rational therapies to mitigate this infection. We tested the effect of short-term protein malnutrition on Cryptosporidium parvum infection in a murine model by examining stool shedding, tissue burden, and histologic change and explored the mechanism underlying the interaction between malnutrition and cryptosporidiosis through immunostaining and immunoblotting. Protein malnutrition increased stool shedding and the number of intestine-associated C. parvum organisms, accompanied by significant suppression of C. parvum-induced caspase 3 activity and expression of PCNA and Ki67, but activation of the Akt survival pathway in intestinal epithelial cells. We find that even very brief periods of protein malnutrition may enhance (or intensify) cryptosporidiosis by suppressing C. parvum-induced cell turnover and caspase-dependent apoptosis of intestinal epithelial cells. This implicates a potential strategy to attenuate C. parvum's effects by modulating apoptosis and promoting regeneration in the intestinal epithelium. PMID:27736783

  1. Murine Model Imitating Chronic Wound Infections for Evaluation of Antimicrobial Photodynamic Therapy Efficacy

    PubMed Central

    Fila, Grzegorz; Kasimova, Kamola; Arenas, Yaxal; Nakonieczna, Joanna; Grinholc, Mariusz; Bielawski, Krzysztof P.; Lilge, Lothar

    2016-01-01

    It is generally acknowledged that the age of antibiotics could come to an end, due to their widespread, and inappropriate use. Particularly for chronic wounds alternatives are being thought. Antimicrobial Photodynamic Therapy (APDT) is a potential candidate, and while approved for some indications, such as periodontitis, chronic sinusitis and other niche indications, its use in chronic wounds is not established. To further facilitate the development of APDT in chronic wounds we present an easy to use animal model exhibiting the key hallmarks of chronic wounds, based on full-thickness skin wounds paired with an optically transparent cover. The moisture-retaining wound exhibited rapid expansion of pathogen colonies up to 8 days while not jeopardizing the host survival. Use of two bioluminescent pathogens; methicillin resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa permits real time monitoring of the pathogens. The murine model was employed to evaluate the performance of four different photosensitizers as mediators in Photodynamic Therapy. While all four photosensitizers, Rose Bengal, porphyrin TMPyP, New Methylene Blue, and TLD1411 demonstrated good to excellent antimicrobial efficacy in planktonic solutions at 1 to 50 μM concentrations, whereas in in vivo the growth delay was limited with 24–48 h delay in pathogen expansion for MRSA, and we noticed longer growth suppression of P. aeruginosa with TLD1411 mediated Photodynamic Therapy. The murine model will enable developing new strategies for enhancement of APDT for chronic wound infections. PMID:27555843

  2. Endogenous biosynthesis of thromboxane and prostacyclin in 2 distinct murine models of atherosclerosis.

    PubMed

    Praticò, D; Cyrus, T; Li, H; FitzGerald, G A

    2000-12-01

    Thromboxane A(2) is a potent vasoconstrictor and platelet agonist; prostacyclin is a potent platelet inhibitor and vasodilator. Altered biosynthesis of these eicosanoids is a feature of human hypercholesterolemia and atherosclerosis. This study examined whether in 2 murine models of atherosclerosis their levels are increased and correlated with the evolution of the disease. Urinary 2,3-dinor thromboxane B(2) and 2,3-dinor-6-keto prostaglandin F(1 alpha), metabolites of thromboxane and prostacyclin, respectively, were assayed in apoliprotein E (apoE)-deficient mice on chow and low-density lipoprotein receptor (LDLR)-deficient mice on chow and a Western-type diet. Atherosclerosis lesion area was measured by en face method. Both eicosanoids increased in apoE-deficient mice on chow and in LDLR-deficient mice on a high-fat diet, but not in LDLR-deficient mice on chow by the end of the study. Aspirin suppressed ex vivo platelet aggregation, serum thromboxane B(2), and 2,3-dinor thromboxane B(2), and significantly reduced the excretion of 2,3-dinor-6-keto prostaglandin F(1 alpha) in these animals. This study demonstrates that thromboxane as well as prostacyclin biosynthesis is increased in 2 murine models of atherogenesis and is secondary to increased in vivo platelet activation. Assessment of their generation in these models may afford the basis for future studies on the functional role of these eicosanoids in the evolution and progression of atherosclerosis. (Blood. 2000;96:3823-3826)

  3. A simplified murine intimal hyperplasia model founded on a focal carotid stenosis.

    PubMed

    Tao, Ming; Mauro, Christine R; Yu, Peng; Favreau, John T; Nguyen, Binh; Gaudette, Glenn R; Ozaki, C Keith

    2013-01-01

    Murine models offer a powerful tool for unraveling the mechanisms of intimal hyperplasia and vascular remodeling, although their technical complexity increases experimental variability and limits widespread application. We describe a simple and clinically relevant mouse model of arterial intimal hyperplasia and remodeling. Focal left carotid artery (LCA) stenosis was created by placing 9-0 nylon suture around the artery using an external 35-gauge mandrel needle (middle or distal location), which was then removed. The effect of adjunctive diet-induced obesity was defined. Flowmetry, wall strain analyses, biomicroscopy, and histology were completed. LCA blood flow sharply decreased by ∼85%, followed by a responsive right carotid artery increase of ∼71%. Circumferential strain decreased by ∼2.1% proximal to the stenosis in both dietary groups. At 28 days, morphologic adaptations included proximal LCA intimal hyperplasia, which was exacerbated by diet-induced obesity. The proximal and distal LCA underwent outward and negative inward remodeling, respectively, in the mid-focal stenosis (remodeling indexes, 1.10 and 0.53). A simple, defined common carotid focal stenosis yields reproducible murine intimal hyperplasia and substantial differentials in arterial wall adaptations. This model offers a tool for investigating mechanisms of hemodynamically driven intimal hyperplasia and arterial wall remodeling.

  4. Dendritic Cell-Based Vaccination in Cancer: Therapeutic Implications Emerging from Murine Models

    PubMed Central

    Mac Keon, Soledad; Ruiz, María Sol; Gazzaniga, Silvina; Wainstok, Rosa

    2015-01-01

    Dendritic cells (DCs) play a pivotal role in the orchestration of immune responses, and are thus key targets in cancer vaccine design. Since the 2010 FDA approval of the first cancer DC-based vaccine (Sipuleucel-T), there has been a surge of interest in exploiting these cells as a therapeutic option for the treatment of tumors of diverse origin. In spite of the encouraging results obtained in the clinic, many elements of DC-based vaccination strategies need to be optimized. In this context, the use of experimental cancer models can help direct efforts toward an effective vaccine design. This paper reviews recent findings in murine models regarding the antitumoral mechanisms of DC-based vaccination, covering issues related to antigen sources, the use of adjuvants and maturing agents, and the role of DC subsets and their interaction in the initiation of antitumoral immune responses. The summary of such diverse aspects will highlight advantages and drawbacks in the use of murine models, and contribute to the design of successful DC-based translational approaches for cancer treatment. PMID:26042126

  5. Safety and Efficacy of Megakaryocytes Induced from Hematopoietic Stem Cells in Murine and Nonhuman Primate Models.

    PubMed

    Guan, Xin; Qin, Meng; Zhang, Yu; Wang, Yanan; Shen, Bin; Ren, Zhihua; Ding, Xinxin; Dai, Wei; Jiang, Yongping

    2017-03-01

    Because of a lack of platelet supply and a U.S. Food and Drug Administration-approved platelet growth factor, megakaryocytes have emerged as an effective substitute for alleviating thrombocytopenia. Here, we report the development of an efficient two-stage culture system that is free of stroma, animal components, and genetic manipulations for the production of functional megakaryocytes from hematopoietic stem cells. Safety and functional studies were performed in murine and nonhuman primate models. One human cryopreserved cord blood CD34(+) cell could be induced ex vivo to produce up to 1.0 × 10(4) megakaryocytes that included CD41a(+) and CD42b(+) cells at 82.4% ± 6.1% and 73.3% ± 8.5% (mean ± SD), respectively, yielding approximately 650-fold higher cell numbers than reported previously. Induced human megakaryocytic cells were capable of engrafting and producing functional platelets in the murine xenotransplantation model. In the nonhuman primate model, transplantation of primate megakaryocytic progenitors increased platelet count nadir and enhanced hemostatic function with no adverse effects. In addition, primate platelets were released in vivo as early as 3 hours after transplantation with autologous or allogeneic mature megakaryocytes and lasted for more than 48 hours. These results strongly suggest that large-scale induction of functional megakaryocytic cells is applicable for treating thrombocytopenic blood diseases in the clinic. Stem Cells Translational Medicine 2017;6:897-909.

  6. Ube3a reinstatement identifies distinct developmental windows in a murine Angelman syndrome model.

    PubMed

    Silva-Santos, Sara; van Woerden, Geeske M; Bruinsma, Caroline F; Mientjes, Edwin; Jolfaei, Mehrnoush Aghadavoud; Distel, Ben; Kushner, Steven A; Elgersma, Ype

    2015-05-01

    Angelman syndrome (AS) is a severe neurodevelopmental disorder that results from loss of function of the maternal ubiquitin protein ligase E3A (UBE3A) allele. Due to neuron-specific imprinting, the paternal UBE3A copy is silenced. Previous studies in murine models have demonstrated that strategies to activate the paternal Ube3a allele are feasible; however, a recent study showed that pharmacological Ube3a gene reactivation in adulthood failed to rescue the majority of neurocognitive phenotypes in a murine AS model. Here, we performed a systematic study to investigate the possibility that neurocognitive rescue can be achieved by reinstating Ube3a during earlier neurodevelopmental windows. We developed an AS model that allows for temporally controlled Cre-dependent induction of the maternal Ube3a allele and determined that there are distinct neurodevelopmental windows during which Ube3a restoration can rescue AS-relevant phenotypes. Motor deficits were rescued by Ube3a reinstatement in adolescent mice, whereas anxiety, repetitive behavior, and epilepsy were only rescued when Ube3a was reinstated during early development. In contrast, hippocampal synaptic plasticity could be restored at any age. Together, these findings suggest that Ube3a reinstatement early in development may be necessary to prevent or rescue most AS-associated phenotypes and should be considered in future clinical trial design.

  7. Ube3a reinstatement identifies distinct developmental windows in a murine Angelman syndrome model

    PubMed Central

    Silva-Santos, Sara; van Woerden, Geeske M.; Bruinsma, Caroline F.; Mientjes, Edwin; Jolfaei, Mehrnoush Aghadavoud; Distel, Ben; Kushner, Steven A.; Elgersma, Ype

    2015-01-01

    Angelman syndrome (AS) is a severe neurodevelopmental disorder that results from loss of function of the maternal ubiquitin protein ligase E3A (UBE3A) allele. Due to neuron-specific imprinting, the paternal UBE3A copy is silenced. Previous studies in murine models have demonstrated that strategies to activate the paternal Ube3a allele are feasible; however, a recent study showed that pharmacological Ube3a gene reactivation in adulthood failed to rescue the majority of neurocognitive phenotypes in a murine AS model. Here, we performed a systematic study to investigate the possibility that neurocognitive rescue can be achieved by reinstating Ube3a during earlier neurodevelopmental windows. We developed an AS model that allows for temporally controlled Cre-dependent induction of the maternal Ube3a allele and determined that there are distinct neurodevelopmental windows during which Ube3a restoration can rescue AS-relevant phenotypes. Motor deficits were rescued by Ube3a reinstatement in adolescent mice, whereas anxiety, repetitive behavior, and epilepsy were only rescued when Ube3a was reinstated during early development. In contrast, hippocampal synaptic plasticity could be restored at any age. Together, these findings suggest that Ube3a reinstatement early in development may be necessary to prevent or rescue most AS-associated phenotypes and should be considered in future clinical trial design. PMID:25866966

  8. Advances in the development of enterohemorrhagic Escherichia coli vaccines using murine models of infection.

    PubMed

    Garcia-Angulo, Victor A; Kalita, Anjana; Torres, Alfredo G

    2013-07-11

    Enterohemorrhagic Escherichia coli (EHEC) strains are food borne pathogens with importance in public health. EHEC colonizes the large intestine and causes diarrhea, hemorrhagic colitis and in some cases, life-threatening hemolytic-uremic syndrome (HUS) due to the production of Shiga toxins (Stx). The lack of effective clinical treatment, sequelae after infection and mortality rate in humans supports the urgent need of prophylactic approaches, such as development of vaccines. Shedding from cattle, the main EHEC reservoir and considered the principal food contamination source, has prompted the development of licensed vaccines that reduce EHEC colonization in ruminants. Although murine models do not fully recapitulate human infection, they are commonly used to evaluate EHEC vaccines and the immune/protective responses elicited in the host. Mice susceptibility differs depending of the EHEC inoculums; displaying different mortality rates and Stx-mediated renal damage. Therefore, several experimental protocols have being pursued in this model to develop EHEC-specific vaccines. Recent candidate vaccines evaluated include those composed of virulence factors alone or as fused-subunits, DNA-based, attenuated bacteria and bacterial ghosts. In this review, we summarize progress in the design and testing of EHEC vaccines and the use of different strategies for the evaluation of novel EHEC vaccines in the murine model.

  9. Chinese herbal medicine (Tuhuai extract) exhibits topical anti-proliferative and anti-inflammatory activity in murine disease models

    PubMed Central

    Man, Mao-Qiang; Shi, Yuejun; Man, Mona; Lee, Seung Hun; Demerjian, Marianne; Chang, Sandra; Feingold, Kenneth R.; Elias, Peter M.

    2010-01-01

    While psoriasis is one of the most common skin disorders in humans, effective, safe and inexpensive treatments are still largely unavailable. Chinese herbal medicine (CHM) has been used for centuries for treating psoriasis and several reports claim that systemic administration of one such CHM, Tuhuai, mainly composed of flos sophorae, smilax glabra roxb and licorice, is effective in psoriasis. However, the mechanisms by which this CHM improves psoriasis are not yet clear. Two universal features of psoriasis are epidermal hyperplasia and inflammation. Moreover, drugs that specifically inhibit epidermal hyperplasia and/or inflammation are widely used to treat psoriasis. Here, we investigated whether topical applications of Tuhuai extract exhibit anti-proliferative and anti-inflammatory activities in two murine models of inflammatory dermatoses. To assess Tuhuai's potential anti-proliferative effect, we disrupted epidermal barrier function twice-daily for 4 days in normal hairless mice followed by topical applications of either 1% Tuhuai extract or Vehicle to both flanks immediately after each barrier perturbation. Changes in epidermal proliferation and apoptosis were evaluated by immunohistochemistry and TUNEL staining. To assess the anti-inflammatory effects of Tuhuai, both irritant (phorbol ester) and acute allergic contact dermatitis (oxazolone) models were used. Whereas topical Tuhuai extract did not alter epidermal proliferation or induce irritation in normal skin, it both reduced epidermal hyperplasia in the epidermal hyperproliferative model, and reduced inflammation in both irritant and allergic contact dermatitis models. As topical Tuhuai extract exhibits anti-proliferative and anti-inflammatory properties in a variety of human models of inflammatory dermatoses, Tuhuai could provide an effective, relatively safe and inexpensive therapeutic alternative for the treatment of inflammatory dermatoses, including psoriasis. PMID:18341576

  10. Chinese herbal medicine (Tuhuai extract) exhibits topical anti-proliferative and anti-inflammatory activity in murine disease models.

    PubMed

    Man, Mao-Qiang; Shi, Yuejun; Man, Mona; Lee, Seung Hun; Demerjian, Marianne; Chang, Sandra; Feingold, Kenneth R; Elias, Peter M

    2008-08-01

    While psoriasis is one of the most common skin disorders in humans, effective, safe and inexpensive treatments are still largely unavailable. Chinese herbal medicine (CHM) has been used for centuries for treating psoriasis and several reports claim that systemic administration of one such CHM, Tuhuai, mainly composed of flos sophorae, smilax glabra roxb and licorice, is effective in psoriasis. However, the mechanisms by which this CHM improves psoriasis are not yet clear. Two universal features of psoriasis are epidermal hyperplasia and inflammation. Moreover, drugs that specifically inhibit epidermal hyperplasia and/or inflammation are widely used to treat psoriasis. Here, we investigated whether topical applications of Tuhuai extract exhibit anti-proliferative and anti-inflammatory activities in two murine models of inflammatory dermatoses. To assess Tuhuai's potential anti-proliferative effect, we disrupted epidermal barrier function twice-daily for 4 days in normal hairless mice followed by topical applications of either 1% Tuhuai extract or Vehicle to both flanks immediately after each barrier perturbation. Changes in epidermal proliferation and apoptosis were evaluated by immunohistochemistry and TUNEL staining. To assess the anti-inflammatory effects of Tuhuai, both irritant (phorbol ester) and acute allergic contact dermatitis (oxazolone) models were used. Whereas topical Tuhuai extract did not alter epidermal proliferation or induce irritation in normal skin, it both reduced epidermal hyperplasia in the epidermal hyperproliferative model, and reduced inflammation in both irritant and allergic contact dermatitis models. As topical Tuhuai extract exhibits anti-proliferative and anti-inflammatory properties in a variety of human models of inflammatory dermatoses, Tuhuai could provide an effective, relatively safe and inexpensive therapeutic alternative for the treatment of inflammatory dermatoses, including psoriasis.

  11. Immunotherapeutic targeting of shared melanoma-associated antigens in a murine glioma model.

    PubMed

    Prins, Robert M; Odesa, Sylvia K; Liau, Linda M

    2003-12-01

    Immune-based treatments for central nervous system gliomas have traditionally lagged behind those of more immunogenic tumors such as melanoma. The relative paucity of defined glioma-associated antigens that can be targeted by the immune system may partially account for this situation. Antigens present on melanomas have been extensively characterized, both in humans and in murine preclinical models. Melanocytes and astrocytes are both derived embryologically from the neural ectoderm. Their neoplastic counterparts, malignant melanomas and gliomas, have been shown in humans to share common antigens at the RNA level. However, little is known concerning whether gliomas can be targeted by immune-based strategies that prime T cells to epitopes from melanoma-associated antigens (MAAs). In this study, we provide evidence that two common murine glioma cell lines (GL26 and GL261) express the melanoma antigens gp100 and tyrosinase-related protein 2 (TRP-2). To understand the immunogenicity of murine gliomas to CD8(+) T cells, we examined the ability of a MAA-specific CTL cell line to lyse the glioma cells, as well as the in vivo expansion of MAA-specific CD8(+) T cells in animals harboring gliomas. Both glioma cell lines were lysed by a human gp100-specific CTL cell line in vitro. Mice harboring s.c. GL26 gliomas possessed TRP-2-specific CD8(+) T cells, providing further evidence that these gliomas express the protein products in the context of MHC class I. Furthermore, MAA peptide-pulsed dendritic cells could prime T cells that specifically recognize GL26 glioma cells in vitro. Lastly, mice that were prevaccinated with human gp100 and TRP-2 peptide-pulsed dendritic cells had significantly extended survival when challenged with tumor cells in the brain, resulting in >50% long-term survival. These results suggest that shared MAAs on gliomas can be targeted immunotherapeutically, pointing the way to a new potential treatment option for patients with malignant gliomas.

  12. In vivo measurement of epidermal thickness changes associated with tumor promotion in murine models

    PubMed Central

    Phillips, Kevin G.; Samatham, Ravikant; Choudhury, Niloy; Gladish, James C.; Thuillier, Philippe; Jacques, Steven L.

    2010-01-01

    The characterization of tissue morphology in murine models of pathogenesis has traditionally been carried out by excision of affected tissues with subsequent immunohistological examination. Excision-based histology provides a limited two-dimensional presentation of tissue morphology at the cost of halting disease progression at a single time point and sacrifice of the animal. We investigate the use of noninvasive reflectance mode confocal scanning laser microscopy (rCSLM) as an alternative tool to biopsy in documenting epidermal hyperplasia in murine models exposed to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). An automated technique utilizing average axial rCSLM reflectance profiles is used to extract epidermal thickness values from rCSLM data cubes. In comparisons to epidermal thicknesses determined from hematoxylin and eosin (H&E) stained tissue sections, we find no significant correlation to rCSLM-derived thickness values. This results from method-specific artifacts: physical alterations of tissue during H&E preparation in standard histology and specimen-induced abberations in rCSLM imaging. Despite their disagreement, both histology and rCSLM methods reliably measure statistically significant thickness changes in response to TPA exposure. Our results demonstrate that in vivo rCSLM imaging provides epithelial biologists an accurate noninvasive means to monitor cutaneous pathogenesis. PMID:20799792

  13. Generation and rescue of a murine model of platelet dysfunction: the Bernard-Soulier syndrome.

    PubMed

    Ware, J; Russell, S; Ruggeri, Z M

    2000-03-14

    The human Bernard-Soulier syndrome is an autosomal recessive disorder of platelet dysfunction presenting with mild thrombocytopenia, circulating "giant" platelets and a bleeding phenotype. The bleeding in patients with the Bernard-Soulier syndrome is disproportionately more severe than suggested by the reduced platelet count and is explained by a defect in primary hemostasis owing to the absence of the platelet glycoprotein (GP) Ib-IX-V membrane receptor. However, the molecular basis for the giant platelet phenotype and thrombocytopenia have remained unresolved but assumed to be linked to an absent receptor complex. We have disrupted the gene encoding the alpha-subunit of mouse GP Ib-IX-V (GP Ibalpha) and describe a murine model recapitulating the hallmark characteristics of the human Bernard-Soulier syndrome. The results demonstrate a direct link between expression of a GP Ib-IX-V complex and normal megakaryocytopoiesis and platelet morphogenesis. Moreover, using transgenic technology the murine Bernard-Soulier phenotype was rescued by expression of a human GP Ibalpha subunit on the surface of circulating mouse platelets. Thus, an in vivo model is defined for analysis of the human GP Ib-IX-V receptor and its role in the processes performed exclusively by megakaryocytes and platelets.

  14. Attenuation of allergic airway inflammation and hyperresponsiveness in a murine model of asthma by silver nanoparticles

    PubMed Central

    Park, Hee Sun; Kim, Keun Hwa; Jang, Sunhyae; Park, Ji Won; Cha, Hye Rim; Lee, Jeong Eun; Kim, Ju Ock; Kim, Sun Young; Lee, Choong Sik; Kim, Joo Pyung; Jung, Sung Soo

    2010-01-01

    The use of silver in the past demonstrated the certain antimicrobial activity, though this has been replaced by other treatments. However, nanotechnology has provided a way of producing pure silver nanoparticles, and it shows cytoprotective activities and possible pro-healing properties. But, the mechanism of silver nanoparticles remains unknown. This study was aimed to investigate the effects of silver nanoparticles on bronchial inflammation and hyperresponsiveness. We used ovalbumin (OVA)-inhaled female C57BL/6 mice to evaluate the roles of silver nanoparticles and the related molecular mechanisms in allergic airway disease. In this study with an OVA-induced murine model of allergic airway disease, we found that the increased inflammatory cells, airway hyperresponsiveness, increased levels of IL-4, IL-5, and IL-13, and the increased NF-κB levels in lungs after OVA inhalation were significantly reduced by the administration of silver nanoparticles. In addition, we have also found that the increased intracellular reactive oxygen species (ROS) levels in bronchoalveolar lavage fluid after OVA inhalation were decreased by the administration of silver nanoparticles. These results indicate that silver nanoparticles may attenuate antigen-induced airway inflammation and hyperresponsiveness. And antioxidant effect of silver nanoparticles could be one of the molecular bases in the murine model of asthma. These findings may provide a potential molecular mechanism of silver nanoparticles in preventing or treating asthma. PMID:20957173

  15. Murine model of disseminated fusariosis: evaluation of the fungal burden by traditional CFU and quantitative PCR.

    PubMed

    González, Gloria M; Márquez, Jazmín; Treviño-Rangel, Rogelio de J; Palma-Nicolás, José P; Garza-González, Elvira; Ceceñas, Luis A; Gerardo González, J

    2013-10-01

    Systemic disease is the most severe clinical form of fusariosis, and the treatment involves a challenge due to the refractory response to antifungals. Treatment for murine Fusarium solani infection has been described in models that employ CFU quantitation in organs as a parameter of therapeutic efficacy. However, CFU counts do not precisely reproduce the amount of cells for filamentous fungi such as F. solani. In this study, we developed a murine model of disseminated fusariosis and compared the fungal burden with two methods: CFU and quantitative PCR. ICR and BALB/c mice received an intravenous injection of 1 × 10(7) conidia of F. solani per mouse. On days 2, 5, 7, and 9, mice from each mice strain were killed. The spleen and kidneys of each animal were removed and evaluated by qPCR and CFU determinations. Results from CFU assay indicated that the spleen and kidneys had almost the same fungal burden in both BALB/c and ICR mice during the days of the evaluation. In the qPCR assay, the spleen and kidney of each mouse strain had increased fungal burden in each determination throughout the entire experiment. The fungal load determined by the qPCR assay was significantly greater than that determined from CFU measurements of tissue. qPCR could be considered as a tool for quantitative evaluation of fungal burden in experimental disseminated F. solani infection.

  16. The Effects of Simulated Weightlessness on Susceptibility to Viral and Bacterial Infections Using a Murine Model

    NASA Technical Reports Server (NTRS)

    Gould, C. L.

    1985-01-01

    Certain immunological responses may be compromised as a result of changes in environmental conditions, such as the physiological adaptation to and from the weightlessness which occurs during space flight and recovery. A murine antiorthostatic model was developed to simulate weightlessness. Using this model, the proposed study will determine if differences in susceptibility to viral and bacterial infections exist among mice suspended in an antiorthostatic orientation to simulate weightlessness, mice suspended in an orthostatic orientation to provide a stressful situation without the condition of weightlessness simulation, and non-suspended control mice. Inbred mouse strains which are resistant to the diabetogenic effects of the D variant of encephalomyocarditis virus (EMC-D) and the lethal effects of Salmonella typhimurium will be evaluated. Glucose tolerance tests will be performed on all EMC-D-infected and non-infected control groups. The incidence of EMC-D-induced diabetes and the percentage survival of S. typhimurium-infected animals will be determined in each group. An additional study will determine the effects of simulated weightlessness on murine responses to exogenous interferon.

  17. Oroxylin A Inhibits Allergic Airway Inflammation in Ovalbumin (OVA)-Induced Asthma Murine Model.

    PubMed

    Zhou, De-Gang; Diao, Bao-Zhong; Zhou, Wen; Feng, Jia-Long

    2016-04-01

    Oroxylin A, a natural flavonoid isolated from the medicinal herb Scutellaria baicalensis Georgi, has been reported to have anti-inflammatory property. In this study, we aimed to investigate the protective effects and mechanism of oroxylin A on allergic inflammation in OVA-induced asthma murine model. BABL/c mice were sensitized and airway-challenged with OVA to induce asthma. Oroxylin A (15, 30, and 60 mg/kg) was administered by oral gavage 1 h before the OVA treatment on day 21 to 23. The results showed that oroxylin A attenuated OVA-induced lung histopathologic changes, airway hyperresponsiveness, and the number of inflammatory cells. Oroxylin A also inhibited the levels of IL-4, IL-5, IL-13, and OVA-specific IgE in BALF. Furthermore, oroxylin A significantly inhibited OVA-induced NF-κB activation. In conclusion, these results suggested that oroxylin A inhibited airway inflammation in OVA-induced asthma murine model by inhibiting NF-κB activation. These results suggested that oroxylin A was a potential therapeutic drug for treating allergic asthma.

  18. Activation of farnesoid X receptor attenuates hepatic injury in a murine model of alcoholic liver disease

    SciTech Connect

    Wu, Weibin; Zhu, Bo; Peng, Xiaomin; Zhou, Meiling; Jia, Dongwei; Gu, Jianxin

    2014-01-03

    Highlights: •FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. •Activation of FXR attenuated alcohol-induced liver injury and steatosis. •Activation of FXR attenuated cholestasis and oxidative stress in mouse liver. -- Abstract: Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients.

  19. Ex vivo micro-CT imaging of murine brain models using non-ionic iodinated contrast

    NASA Astrophysics Data System (ADS)

    Salas Bautista, N.; Martínez-Dávalos, A.; Rodríguez-Villafuerte, M.; Murrieta-Rodríguez, T.; Manjarrez-Marmolejo, J.; Franco-Pérez, J.; Calvillo-Velasco, M. E.

    2014-11-01

    Preclinical investigation of brain tumors is frequently carried out by means of intracranial implantation of brain tumor xenografts or allografts, with subsequent analysis of tumor growth using conventional histopathology. However, very little has been reported on the use contrast-enhanced techniques in micro-CT imaging for the study of malignant brain tumors in small animal models. The aim of this study has been to test a protocol for ex vivo imaging of murine brain models of glioblastoma multiforme (GBM) after treatment with non-ionic iodinated solution, using an in-house developed laboratory micro-CT. We have found that the best compromise between acquisition time and image quality is obtained using a 50 kVp, 0.5 mAs, 1° angular step on a 360 degree orbit acquisition protocol, with 70 μm reconstructed voxel size using the Feldkamp algorithm. With this parameters up to 4 murine brains can be scanned in tandem in less than 15 minutes. Image segmentation and analysis of three sample brains allowed identifying tumor volumes as small as 0.4 mm3.

  20. Anti-bacterial effects of enzymatically-isolated sialic acid from glycomacropeptide in a Helicobacter pylori-infected murine model

    PubMed Central

    Noh, Hye-Ji; Koh, Hong Bum; Kim, Hee-Kyoung; Cho, Hyang Hyun

    2017-01-01

    BACKGROUND/OBJECTIVES Helicobacter pylori (H. pylori) colonization of the stomach mucosa and duodenum is the major cause of acute and chronic gastroduodenal pathology in humans. Efforts to find effective anti-bacterial strategies against H. pylori for the non-antibiotic control of H. pylori infection are urgently required. In this study, we used whey to prepare glycomacropeptide (GMP), from which sialic acid (G-SA) was enzymatically isolated. We investigated the anti-bacterial effects of G-SA against H. pylori in vitro and in an H. pylori-infected murine model. MATERIALS/METHODS The anti-bacterial activity of G-SA was measured in vitro using the macrodilution method, and interleukin-8 (IL-8) production was measured in H. pylori and AGS cell co-cultures by ELISA. For in vivo study, G-SA 5 g/kg body weight (bw)/day and H. pylori were administered to mice three times over one week. After one week, G-SA 5 g/kg bw/day alone was administered every day for one week. Tumor necrosis factor-α (TNF-α), IL-1β, IL-6, and IL-10 levels were measured by ELISA to determine the anti-inflammatory effects of G-SA. In addition, real-time PCR was performed to measure the genetic expression of cytotoxin-associated gene A (cagA). RESULTS G-SA inhibited the growth of H. pylori and suppressed IL-8 production in H. pylori and in AGS cell co-cultures in vitro. In the in vivo assay, administration of G-SA reduced levels of IL-1β and IL-6 pro-inflammatory cytokines whereas IL-10 level increased. Also, G-SA suppressed the expression of cagA in the stomach of H. pylori-infected mice. CONCLUSION G-SA possesses anti-H. pylori activity as well as an anti-H. pylori-induced gastric inflammatory effect in an experimental H. pylori-infected murine model. G-SA has potential as an alternative to antibiotics for the prevention of H. pylori infection and H. pylori-induced gastric disease prevention. PMID:28194260

  1. Mechanism-based model of parasite growth and dihydroartemisinin pharmacodynamics in murine malaria.

    PubMed

    Patel, Kashyap; Batty, Kevin T; Moore, Brioni R; Gibbons, Peter L; Bulitta, Jürgen B; Kirkpatrick, Carl M

    2013-01-01

    Murine models are used to study erythrocytic stages of malaria infection, because parasite morphology and development are comparable to those in human malaria infections. Mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) models for antimalarials are scarce, despite their potential to optimize antimalarial combination therapy. The aim of this study was to develop a mechanism-based growth model (MBGM) for Plasmodium berghei and then characterize the parasiticidal effect of dihydroartemisinin (DHA) in murine malaria (MBGM-PK-PD). Stage-specific (ring, early trophozoite, late trophozoite, and schizont) parasite density data from Swiss mice inoculated with Plasmodium berghei were used for model development in S-ADAPT. A single dose of intraperitoneal DHA (10 to 100 mg/kg) or vehicle was administered 56 h postinoculation. The MBGM explicitly reflected all four erythrocytic stages of the 24-hour P. berghei life cycle. Merozoite invasion of erythrocytes was described by a first-order process that declined with increasing parasitemia. An efflux pathway with subsequent return was additionally required to describe the schizont data, thus representing parasite sequestration or trapping in the microvasculature, with a return to circulation. A 1-compartment model with zero-order absorption described the PK of DHA, with an estimated clearance and distribution volume of 1.95 liters h(-1) and 0.851 liter, respectively. Parasite killing was described by a turnover model, with DHA inhibiting the production of physiological intermediates (IC(50), 1.46 ng/ml). Overall, the MBGM-PK-PD described the rise in parasitemia, the nadir following DHA dosing, and subsequent parasite resurgence. This novel model is a promising tool for studying malaria infections, identifying the stage specificity of antimalarials, and providing insight into antimalarial treatment strategies.

  2. Pharmacological Value of Murine Delayed-type Hypersensitivity Arthritis: A Robust Mouse Model of Rheumatoid Arthritis in C57BL/6 Mice.

    PubMed

    Atkinson, Sara Marie; Nansen, Anneline

    2017-02-01

    In this MiniReview, we summarize the body of knowledge on the delayed-type hypersensitivity arthritis (DTHA) model, a recently developed arthritis model with 100% incidence, low variation and synchronized onset in C57BL/6 (B6) mice, and compare it to other murine arthritis models. It is desirable to have robust arthritis models in B6 mice, as many transgene strains are bred on this background. However, several of the most widely used mouse model of arthritis cannot be induced in B6 mice without the drawback of lower incidence, reduced severity and higher variation, if at all. DTHA is induced by modifying a classical methylated bovine serum albumin (mBSA)-induced DTH response by administering a cocktail of anti-type II collagen antibodies (anti-CII) between immunization and challenge. Arthritis affects one, predefined paw in which acute inflammation and severe arthritis rapidly develop and peak after 4-7 days. Disease is self-resolving over the course of around 3 weeks. Disease manifestations resemble those seen in other arthritis models and include bone erosion, cartilage destruction, oedema, pannus and new bone formation. Induction of DTHA is dependent on CD4(+) T cells while B cells are dispensable. The DTHA model is set apart from other murine arthritis models in that it can be induced in B6 mice with 100% incidence and with high and consistent severity. This is the clearest advantage of the model, as the mechanisms of disease and clinical manifestations can be found in other arthritis models. The model holds potential for future modifications that may improve the lack of chronicity.

  3. Models of acute and chronic pancreatitis.

    PubMed

    Lerch, Markus M; Gorelick, Fred S

    2013-06-01

    Animal models of acute and chronic pancreatitis have been created to examine mechanisms of pathogenesis, test therapeutic interventions, and study the influence of inflammation on the development of pancreatic cancer. In vitro models can be used to study early stage, short-term processes that involve acinar cell responses. Rodent models reproducibly develop mild or severe disease. One of the most commonly used pancreatitis models is created by administration of supraphysiologic concentrations of caerulein, an ortholog of cholecystokinin. Induction of chronic pancreatitis with factors thought to have a role in human disease, such as combinations of lipopolysaccharide and chronic ethanol feeding, might be relevant to human disease. Models of autoimmune chronic pancreatitis have also been developed. Most models, particularly of chronic pancreatitis, require further characterization to determine which features of human disease they include.

  4. Validation of a novel, physiologic model of experimental acute pancreatitis in the mouse

    PubMed Central

    Ziegler, Kathryn M; Wade, Terence E; Wang, Sue; Swartz-Basile, Deborah A; Pitt, Henry A; Zyromski, Nicholas J

    2011-01-01

    Background: Many experimental models of acute pancreatitis suffer from lack of clinical relevance. We sought to validate a recently reported murine model of acute pancreatitis that more closely represents the physiology of human biliary pancreatitis. Methods: Mice (C57BL/6J n=6 and CF-1 n=8) underwent infusion of 50μl of 5% sodium taurocholate (NaT) or 50μl of normal saline (NaCl) directly into the pancreatic duct. Twenty-four hours later, pancreatitis severity was graded histologically by three independent observers, and pancreatic tissue concentration of interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) were determined by ELISA. Results: Twenty four hours after retrograde injection, the total pancreatitis score was significantly greater in mice infused with NaT than in those infused with NaCl (6.3 ± 1.2 vs. 1.2 ± 0.4, p<0.05). In addition, the inflammatory mediators IL-6 and MCP-1 were increased in the NaT group relative to the NaCl group. Discussion: Retrograde pancreatic duct infusion of sodium taurocholate induces acute pancreatitis in the mouse. This model is likely representative of human biliary pancreatitis pathophysiology, and therefore provides a powerful tool with which to elucidate basic mechanisms underlying the pathogenesis of acute pancreatitis. PMID:21416058

  5. Expression of the v-mos gene alters a Mr 55,000 protein during acute infection by Moloney murine sarcoma virus.

    PubMed Central

    Singh, B; Sparrow, J T; Hedge, A M; Arlinghaus, R B

    1986-01-01

    Infection of the rat myoblast cell line, L6E9, with Moloney murine sarcoma virus (Mo-MuSV) clone 124, altered a cellular protein of Mr 55,000 (P55) within 2 days of infection. The alteration of P55 was observed as a reduction in its steady-state level in cell extracts. The reduction of P55 correlated with the appearance of p37mos in infected cells. Except for P55 and one other protein, no change was detected in the total protein pattern of infected cells compared to uninfected cells, as judged by either immunoblots of one-dimensional NaDodSO4 gels or direct two-dimensional gel analysis. P55 levels were unchanged when L6E9 cells were infected with Moloney murine leukemia virus or several different transforming retroviruses. To determine the specificity of this v-mos-induced effect on P55, L6E9 cells were acutely infected with a temperature-sensitive variant (ts110) of Mo-MuSV. When these cells were shifted from 39 degrees C to 33 degrees C, which activates the gag-mos gene product, the P55 level dropped by greater than 50% within 2-3 hr. Conversely, with a shift in temperature from 33 degrees C to 39 degrees C, the cells' P55 level returned to normal within 5 hr, starting at 30 min after shift. These results clearly show that v-mos expression in acutely infected L6E9 cells alters the cellular protein, P55. Images PMID:3012522

  6. Is murine gammaherpesvirus-68 (MHV-68) a suitable immunotoxicological model for examining immunomodulatory drug-associated viral recrudescence?

    PubMed

    Aligo, Jason; Walker, Mindi; Bugelski, Peter; Weinstock, Daniel

    2015-01-01

    Immunosuppressive agents are used for treatment of a variety of autoimmune diseases including rheumatoid arthritis (RA), systemic lupus erythematosis (SLE), and psoriasis, as well as for prevention of tissue rejection after organ transplantation. Recrudescence of herpesvirus infections, and increased risk of carcinogenesis from herpesvirus-associated tumors are related with immunosuppressive therapy in humans. Post-transplant lymphoproliferative disorder (PTLD), a condition characterized by development of Epstein Barr Virus (EBV)-associated B-lymphocyte lymphoma, and Kaposi's Sarcoma (KS), a dermal tumor associated with Kaposi Sarcoma-associated virus (KSHV), may develop in solid organ transplant patients. KS also occurs in immunosuppressed Acquired Immunodeficiency (AIDS) patients. Kaposi Sarcoma-associated virus (KSHV) is a herpes virus genetically related to EBV. Murine gammaherpes-virus-68 (MHV-68) is proposed as a mouse model of gammaherpesvirus infection and recrudescence and may potentially have relevance for herpesvirus-associated neoplasia. The pathogenesis of MHV-68 infection in mice mimics EBV/KSHV infection in humans with acute lytic viral replication followed by dissemination and establishment of persistent latency. MHV-68-infected mice may develop lymphoproliferative disease that is accelerated by disruption of the immune system. This manuscript first presents an overview of gammaherpesvirus pathogenesis and immunology as well as factors involved in viral recrudescence. A description of different types of immunodeficiency then follows, with particular focus on viral association with lymphomagenesis after immunosuppression. Finally, this review discusses different gammaherpesvirus animal models and describes a proposed MHV-68 model to further examine the interplay of immunomodulatory agents and gammaherpesvirus-associated neoplasia.

  7. Replicative Legionella pneumophila lung infection in intratracheally inoculated A/J mice. A murine model of human Legionnaires' disease.

    PubMed Central

    Brieland, J.; Freeman, P.; Kunkel, R.; Chrisp, C.; Hurley, M.; Fantone, J.; Engleberg, C.

    1994-01-01

    The role of host immune responses in the pathogenesis of Legionnaires' disease is incompletely understood, due in part to the current lack of an animal model that is both susceptible to replicative Legionella pneumophila-induced lung infection and for which species-specific immunological reagents are available. We have developed a model of replicative L. pneumophila lung infection in intratracheally inoculated A/J mice. L. pneumophila was obtained in the exponential growth phase and inoculated into the trachea of 6- to 8-week-old female A/J mice. Microbiological and histopathological evidence of infection was demonstrated in mice inoculated with 10(6) colony-forming units. Development of an acute pneumonia that resembled human Legionnaires' disease coincided with exponential growth of the bacteria in the lung 24 to 48 hours after intratracheal inoculation of L. pneumophila. This was associated with increased plasma levels of interferon-gamma at 24 hours after inoculation. After 48 hours, the bacteria were gradually eliminated from the lung over the next 5 days, corresponding with resolution of the inflammatory response in the lung, thereby mimicking the outcome frequently seen in the immunocompetent human host. Treatment of animals with anti-interferon-gamma antibody enhanced bacterial replication and disease progression, indicating an important role of host immune response in resolution of the infection. Because of the availability of murine-specific reagents, this model of replicative L. pneumophila lung infection in A/J mice after intrapulmonary inoculation of L. pneumophila potentially provides an important tool for future studies investigating the role of host immune responses in the pathogenesis of Legionnaires' disease in the immunocompetent host. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:7992856

  8. Human heart valve-derived scaffold improves cardiac repair in a murine model of myocardial infarction

    PubMed Central

    Wan, Long; Chen, Yao; Wang, Zhenhua; Wang, Weijun; Schmull, Sebastian; Dong, Jun; Xue, Song; Imboden, Hans; Li, Jun

    2017-01-01

    Cardiac tissue engineering using biomaterials with or without combination of stem cell therapy offers a new option for repairing infarcted heart. However, the bioactivity of biomaterials remains to be optimized because currently available biomaterials do not mimic the biochemical components as well as the structural properties of native myocardial extracellular matrix. Here we hypothesized that human heart valve-derived scaffold (hHVS), as a clinically relevant novel biomaterial, may provide the proper microenvironment of native myocardial extracellular matrix for cardiac repair. In this study, human heart valve tissue was sliced into 100 μm tissue sheet by frozen-sectioning and then decellularized to form the hHVS. Upon anchoring onto the hHVS, post-infarct murine BM c-kit+ cells exhibited an increased capacity for proliferation and cardiomyogenic differentiation in vitro. When used to patch infarcted heart in a murine model of myocardial infarction, either implantation of the hHVS alone or c-kit+ cell-seeded hHVS significantly improved cardiac function and reduced infarct size; while c-kit+ cell-seeded hHVS was even superior to the hHVS alone. Thus, we have successfully developed a hHVS for cardiac repair. Our in vitro and in vivo observations provide the first clinically relevant evidence for translating the hHVS-based biomaterials into clinical strategies to treat myocardial infarction. PMID:28051180

  9. Comparison of histochemical methods for murine eosinophil detection in a RSV vaccine-enhanced inflammation model

    PubMed Central

    Meyerholz, David K.; Griffin, Michelle A.; Castilow, Elaine M.; Varga, Steven M.

    2009-01-01

    A comparative study of histochemical detection of eosinophils in fixed murine tissue is lacking. Five histochemical methods previously reported for eosinophil detection were quantitatively and qualitatively compared in an established murine RSV vaccine-enhanced inflammation model. Nonspecific neutrophil staining was evaluated in tissue sections of neutrophilic soft tissue lesions and bone marrow from respective animals. Eosinophils had granular red to orange-red cytoplasmic staining, depending on the method, whereas neutrophils had, when stained, a more homogenous cytoplasmic pattern. Nonspecific background staining of similar coloration was variably seen in arterial walls and erythrocytes. Astra Blue/Vital New Red, Congo Red, Luna, Modified Hematoxylin & Eosin, and Sirius Red techniques were all effective in detecting increased eosinophil recruitment compared to controls; however, differences in eosinophil quantification significantly varied between techniques. Astra Blue/Vital New Red had the best specificity for differentiating eosinophils and neutrophils, but had a reduced ability to enumerate eosinophils and was the most time intensive. The Luna stain had excessive non specific staining of tissues and a reduced enumeration of infiltrating eosinophils making it suboptimal. For multiple parameters such as eosinophil detection, specificity, and contrast with background tissues, the Sirius Red followed by Congo Red and Modified Hematoxylin & Eosin methods were useful, each with their own staining qualities. PMID:19181630

  10. Platelet-delivered ADAMTS13 inhibits arterial thrombosis and prevents thrombotic thrombocytopenic purpura in murine models.

    PubMed

    Pickens, Brandy; Mao, Yingying; Li, Dengju; Siegel, Don L; Poncz, Mortimer; Cines, Douglas B; Zheng, X Long

    2015-05-21

    ADAMTS13 metalloprotease cleaves von Willebrand factor (VWF), thereby inhibiting platelet aggregation and arterial thrombosis. An inability to cleave ultralarge VWF resulting from hereditary or acquired deficiency of plasma ADAMTS13 activity leads to a potentially fatal syndrome, thrombotic thrombocytopenic purpura (TTP). Plasma exchange is the most effective initial therapy for TTP to date. Here, we report characterization of transgenic mice expressing recombinant human ADAMTS13 (rADAMTS13) in platelets and its efficacy in inhibiting arterial thrombosis and preventing hereditary and acquired antibody-mediated TTP in murine models. Western blotting and fluorescent resonance energy transfer assay detect full-length rADAMTS13 protein and its proteolytic activity, respectively, in transgenic (Adamts13(-/-)Plt(A13)), but not in wild-type and Adamts13(-/-), platelets. The expressed rADAMTS13 is released on stimulation with thrombin and collagen, but less with 2MesADP. Platelet-delivered rADAMTS13 is able to inhibit arterial thrombosis after vascular injury and prevent the onset and progression of Shigatoxin-2 or recombinant murine VWF-induced TTP syndrome in mice despite a lack of plasma ADAMTS13 activity resulting from the ADAMTS13 gene deletion or the antibody-mediated inhibition of plasma ADAMTS13 activity. These findings provide a proof of concept that platelet-delivered ADAMTS13 may be explored as a novel treatment of arterial thrombotic disorders, including hereditary and acquired TTP, in the presence of anti-ADAMTS13 autoantibodies.

  11. Resveratrol inhibits mucus overproduction and MUC5AC expression in a murine model of asthma.

    PubMed

    Ni, Zhen-Hua; Tang, Ji-Hong; Chen, Guo; Lai, Yi-Min; Chen, Qing-Ge; Li, Zao; Yang, Wei; Luo, Xu-Min; Wang, Xiong-Biao

    2016-01-01

    Previous in vitro studies have demonstrated that resveratrol is able to significantly inhibit the upregulation of mucin 5AC (MUC5AC), a major component of mucus; thus indicating that resveratrol may have potential in regulating mucus overproduction. However, there have been few studies regarding the resveratrol‑mediated prevention of MUC5AC overproduction in vivo, and the mechanisms by which resveratrol regulates MUC5AC expression have yet to be elucidated. In the present study, an ovalbumin (OVA)‑challenged murine model of asthma was used to assess the effects of resveratrol treatment on mucus production in vivo. The results demonstrated that resveratrol significantly inhibited OVA‑induced airway inflammation and mucus production. In addition, the mRNA and protein expression levels of MUC5AC were increased in the OVA‑challenged mice, whereas treatment with resveratrol significantly inhibited this effect. The expression levels of murine calcium‑activated chloride channel (mCLCA)3, an important key mediator of MUC5AC production, were also reduced following resveratrol treatment. Furthermore, in vitro studies demonstrated that resveratrol significantly inhibited human (h)CLCA1 and MUC5AC expression in a dose‑dependent manner. These results indicated that resveratrol was effective in preventing mucus overproduction and MUC5AC expression in vivo, and its underlying mechanism may be associated with regulation of the mCLCA3/hCLCA1 signaling pathway.

  12. Recombinant human erythropoietin increases survival and reduces neuronal apoptosis in a murine model of cerebral malaria

    PubMed Central

    Wiese, Lothar; Hempel, Casper; Penkowa, Milena; Kirkby, Nikolai; Kurtzhals, Jørgen AL

    2008-01-01

    Background Cerebral malaria (CM) is an acute encephalopathy with increased pro-inflammatory cytokines, sequestration of parasitized erythrocytes and localized ischaemia. In children CM induces cognitive impairment in about 10% of the survivors. Erythropoietin (Epo) has – besides of its well known haematopoietic properties – significant anti-inflammatory, antioxidant and anti-apoptotic effects in various brain disorders. The neurobiological responses to exogenously injected Epo during murine CM were examined. Methods Female C57BL/6j mice (4–6 weeks), infected with Plasmodium berghei ANKA, were treated with recombinant human Epo (rhEpo; 50–5000 U/kg/OD, i.p.) at different time points. The effect on survival was measured. Brain pathology was investigated by TUNEL (Terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP)-digoxigenin nick end labelling), as a marker of apoptosis. Gene expression in brain tissue was measured by real time PCR. Results Treatment with rhEpo increased survival in mice with CM in a dose- and time-dependent manner and reduced apoptotic cell death of neurons as well as the expression of pro-inflammatory cytokines in the brain. This neuroprotective effect appeared to be independent of the haematopoietic effect. Conclusion These results and its excellent safety profile in humans makes rhEpo a potential candidate for adjunct treatment of CM. PMID:18179698

  13. Complex and Multidimensional Lipid Raft Alterations in a Murine Model of Alzheimer's Disease

    PubMed Central

    Chadwick, Wayne; Brenneman, Randall; Martin, Bronwen; Maudsley, Stuart

    2010-01-01

    Various animal models of Alzheimer's disease (AD) have been created to assist our appreciation of AD pathophysiology, as well as aid development of novel therapeutic strategies. Despite the discovery of mutated proteins that predict the development of AD, there are likely to be many other proteins also involved in this disorder. Complex physiological processes are mediated by coherent interactions of clusters of functionally related proteins. Synaptic dysfunction is one of the hallmarks of AD. Synaptic proteins are organized into multiprotein complexes in high-density membrane structures, known as lipid rafts. These microdomains enable coherent clustering of synergistic signaling proteins. We have used mass analytical techniques and multiple bioinformatic approaches to better appreciate the intricate interactions of these multifunctional proteins in the 3xTgAD murine model of AD. Our results show that there are significant alterations in numerous receptor/cell signaling proteins in cortical lipid rafts isolated from 3xTgAD mice. PMID:21151659

  14. Evaluation of resveratrol and N-acetylcysteine for cancer chemoprevention in a Fanconi anemia murine model.

    PubMed

    Zhang, Qing-Shuo; Marquez-Loza, Laura; Sheehan, Andrea M; Watanabe-Smith, Kevin; Eaton, Laura; Benedetti, Eric; Major, Angela; Schubert, Kathryn; Deater, Matthew; Joseph, Eric; Grompe, Markus

    2014-04-01

    Fanconi anemia (FA) patients suffer from progressive bone marrow failure and often develop cancers. Previous studies showed that antioxidants tempol and resveratrol (RV) delayed tumor onset and reduced hematologic defects in FA murine models, respectively. Here we tested whether antioxidants N-acetylcysteine (NAC) or RV could delay cancer in tumor prone Fancd2(-/-) /Trp53(+/-) mice. Unlike tempol, neither compound had any significant chemopreventive effect in this model. We conclude that not all anti-oxidants are chemopreventive in FA. In addition, when given to Fancd2(-/-) mice, NAC helped maintain Fancd2(-/-) KSL cells in quiescence while tempol did not. The mechanisms behind the different actions of these antioxidants await further investigation.

  15. Effects of Analgesic Use on Inflammation and Hematology in a Murine Model of Venous Thrombosis

    PubMed Central

    Hish, Gerald A; Diaz, Jose A; Hawley, Angela E; Myers, Daniel D; Lester, Patrick A

    2014-01-01

    Venous thrombosis (VT) is a significant cause of morbidity and mortality in humans. Surgical animal models are crucial in studies investigating the pathogenesis of this disease and evaluating VT therapies. Because inflammation is critical to both the development and resolution of VT, analgesic medications have the potential to adversely affect multiple parameters of interest in VT research. The objective of this study was to determine how several common analgesics affect key variables in a murine ligation model of deep vein thrombosis. Male C57BL/6 mice were randomly assigned to receive either local (bupivacaine) or systemic parenteral analgesia (buprenorphine, tramadol, or carprofen) or 0.9% NaCl (control). All mice underwent laparotomy and ligation of the inferior vena cava, and treatment was continued until euthanasia at 6 or 48 h after surgery. Analysis of harvested tissues and blood included: hematology, thrombus weight, serum and vein-wall cytokines (IL1β, IL6, IL10, TNFα), soluble P-selectin, and vein-wall leukocyte infiltration. Compared with 0.9% NaCl, all of the analgesics affected multiple parameters important to VT research. Carprofen and tramadol affected the most parameters and should not be used in murine models of VT. Although they affected fewer parameters, a single dose of bupivacaine increased thrombus weight at 6 h, and buprenorphine was associated with reduced vein wall macrophages at 48 h. Although we cannot recommend the use of any of the evaluated analgesic dosages in this mouse model of VT, buprenorphine merits additional investigation to ensure the highest level of laboratory animal care and welfare. PMID:25255071

  16. Generation of a murine hepatic angiosarcoma cell line and reproducible mouse tumor model.

    PubMed

    Rothweiler, Sonja; Dill, Michael T; Terracciano, Luigi; Makowska, Zuzanna; Quagliata, Luca; Hlushchuk, Ruslan; Djonov, Valentin; Heim, Markus H; Semela, David

    2015-03-01

    Hepatic angiosarcoma (AS) is a rare and highly aggressive tumor of endothelial origin with dismal prognosis. Studies of the molecular biology of AS and treatment options are limited as animal models are rare. We have previously shown that inducible knockout of Notch1 in mice leads to spontaneous formation of hepatic AS. The aims of this study were to: (1) establish and characterize a cell line derived from this murine AS, (2) identify molecular pathways involved in the pathogenesis and potential therapeutic targets, and (3) generate a tumor transplantation model. AS cells retained specific endothelial properties such as tube formation activity, as well as expression of CD31 and Von Willebrand factor. However, electron microscopy analysis revealed signs of dedifferentiation with loss of fenestrae and loss of contact inhibition. Microarray and pathway analysis showed substantial changes in gene expression and revealed activation of the Myc pathway. Exposing the AS cells to sorafenib reduced migration, filopodia dynamics, and cell proliferation but did not induce apoptosis. In addition, sorafenib suppressed ERK phosphorylation and expression of cyclin D2. Injection of AS cells into NOD/SCID mice resulted in formation of undifferentiated tumors, confirming the tumorigenic potential of these cells. In summary, we established and characterized a murine model of spontaneous AS formation and hepatic AS cell lines as a useful in vitro tool. Our data demonstrate antitumor activity of sorafenib in AS cells with potent inhibition of migration, filopodia formation, and cell proliferation, supporting further evaluation of sorafenib as a novel treatment strategy. In addition, AS cell transplantation provides a subcutaneous tumor model useful for in vivo preclinical drug testing.

  17. The analgesic effect of orexin-A in a murine model of chemotherapy-induced neuropathic pain.

    PubMed

    Toyama, Satoshi; Shimoyama, Naohito; Shimoyama, Megumi

    2017-02-01

    Orexins are neuropeptides that are localized to neurons in the lateral and dorsal hypothalamus but its receptors are distributed to many different regions of the central nervous system. Orexins are implicated in a variety of physiological functions including sleep regulation, energy homeostats, and stress reactions. Furthermore, orexins administered exogenously have been shown to have analgesic effects in animal models. A type of intractable pain in patients is pain due to chemotherapy-induced peripheral neuropathy (CIPN). Several chemotherapeutic agents used for the treatment of malignant diseases induce dose-limiting neuropathic pain that compromises patients' quality of life. Here, we examined the analgesic effect of orexin-A in a murine model of CIPN, and compared it with the effect of duloxetine, the only drug recommended for the treatment of CIPN pain in patients. CIPN was induced in male BALB/c mice by repeated intraperitoneal injection of oxaliplatin, a platinum chemotherapeutic agent used for the treatment of advanced colorectal cancer. Neuropathic mechanical allodynia was assessed by the von Frey test, and the effect on acute thermal pain was assessed by the tail flick test. Intracerebroventricularly administered orexin-A dose-dependently attenuated oxaliplatin-induced mechanical allodynia and increased tail flick latencies. Oxaliplatin-induced mechanical allodynia was completely reversed by orexin-A at a low dose that did not increase tail flick latency. Duloxetine only partially reversed mechanical allodynia and had no effect on tail flick latency. The analgesic effect of orexin-A on oxaliplatin-induced mechanical allodynia was completely antagonized by prior intraperitoneal injection of SB-408124 (orexin type-1 receptor antagonist), but not by prior intraperitoneal injection of TCS-OX2-29 (orexin type-2 receptor antagonist). Our findings suggest that orexin-A is more potent than duloxetine in relieving pain CIPN pain and its analgesic effect is

  18. Intrastriatal Injection of Autologous Blood or Clostridial Collagenase as Murine Models of Intracerebral Hemorrhage

    PubMed Central

    Lei, Beilei; Sheng, Huaxin; Wang, Haichen; Lascola, Christopher D.; Warner, David S.; Laskowitz, Daniel T.; James, Michael L.

    2014-01-01

    Intracerebral hemorrhage (ICH) is a common form of cerebrovascular disease and is associated with significant morbidity and mortality. Lack of effective treatment and failure of large clinical trials aimed at hemostasis and clot removal demonstrate the need for further mechanism-driven investigation of ICH. This research may be performed through the framework provided by preclinical models. Two murine models in popular use include intrastriatal (basal ganglia) injection of either autologous whole blood or clostridial collagenase. Since, each model represents distinctly different pathophysiological features related to ICH, use of a particular model may be selected based on what aspect of the disease is to be studied. For example, autologous blood injection most accurately represents the brain's response to the presence of intraparenchymal blood, and may most closely replicate lobar hemorrhage. Clostridial collagenase injection most accurately represents the small vessel rupture and hematoma evolution characteristic of deep hemorrhages. Thus, each model results in different hematoma formation, neuroinflammatory response, cerebral edema development, and neurobehavioral outcomes. Robustness of a purported therapeutic intervention can be best assessed using both models. In this protocol, induction of ICH using both models, immediate post-operative demonstration of injury, and early post-operative care techniques are demonstrated. Both models result in reproducible injuries, hematoma volumes, and neurobehavioral deficits. Because of the heterogeneity of human ICH, multiple preclinical models are needed to thoroughly explore pathophysiologic mechanisms and test potential therapeutic strategies. PMID:25046028

  19. A competitive enzyme-linked immunosorbent assay specific for murine hepcidin-1: correlation with hepatic mRNA expression in established and novel models of dysregulated iron homeostasis.

    PubMed

    Gutschow, Patrick; Schmidt, Paul J; Han, Huiling; Ostland, Vaughn; Bartnikas, Thomas B; Pettiglio, Michael A; Herrera, Carolina; Butler, James S; Nemeth, Elizabeta; Ganz, Tomas; Fleming, Mark D; Westerman, Mark

    2015-02-01

    Mice have been essential for distinguishing the role of hepcidin in iron homeostasis. Currently, investigators monitor levels of murine hepatic hepcidin-1 mRNA as a surrogate marker for the bioactive hepcidin protein itself. Here, we describe and validate a competitive, enzyme-linked immunosorbent assay that quantifies hepcidin-1 in mouse serum and urine. The assay exhibits a biologically relevant lower limit of detection, high precision, and excellent linearity and recovery. We also demonstrate correlation between serum and urine hepcidin-1 values and validate the competitive enzyme-linked immunosorbent assay by analyzing plasma hepcidin response of mice to physiological challenges, including iron deficiency, iron overload, acute blood loss, and inflammation. Furthermore, we analyze multiple murine genetic models of iron dysregulation, including β-thalassemia intermedia (Hbb(th3/+)), hereditary hemochromatosis (Hfe(-/-), Hjv(-/-), and Tfr2(Y245X/Y245X)), hypotransferrinemia (Trf(hpx/hpx)), heterozygous transferrin receptor 1 deficiency (Tfrc(+/-)) and iron refractory iron deficiency anemia (Tmprss6(-/-) and Tmprss6(hem8/hem8)). Novel compound iron metabolism mutants were also phenotypically characterized here for the first time. We demonstrate that serum hepcidin concentrations correlate with liver hepcidin mRNA expression, transferrin saturation and non-heme liver iron. In some circumstances, serum hepcidin-1 more accurately predicts iron parameters than hepcidin mRNA, and distinguishes smaller, statistically significant differences between experimental groups.

  20. Plecanatide and dolcanatide, novel guanylate cyclase-C agonists, ameliorate gastrointestinal inflammation in experimental models of murine colitis

    PubMed Central

    Shailubhai, Kunwar; Palejwala, Vaseem; Arjunan, Krishna Priya; Saykhedkar, Sayali; Nefsky, Bradley; Foss, John A; Comiskey, Stephen; Jacob, Gary S; Plevy, Scott E

    2015-01-01

    AIM: To evaluate the effect of orally administered plecanatide or dolcanatide, analogs of uroguanylin, on amelioration of colitis in murine models. METHODS: The cyclic guanosine monophosphate (cGMP) stimulatory potency of plecanatide and dolcanatide was measured using a human colon carcinoma T84 cell-based assay. For animal studies all test agents were formulated in phosphate buffered saline. Sulfasalazine or 5-amino salicylic acid (5-ASA) served as positive controls. Effect of oral treatment with test agents on amelioration of acute colitis induced either by dextran sulfate sodium (DSS) in drinking water or by rectal instillation of trinitrobenzene sulfonic (TNBS) acid, was examined in BALB/c and/or BDF1 mice. Additionally, the effect of orally administered plecanatide on the spontaneous colitis in T-cell receptor alpha knockout (TCRα-/-) mice was also examined. Amelioration of colitis was assessed by monitoring severity of colitis, disease activity index and by histopathology. Frozen colon tissues were used to measure myeloperoxidase activity. RESULTS: Plecanatide and dolcanatide are structurally related analogs of uroguanylin, which is an endogenous ligand of guanylate cyclase-C (GC-C). As expected from the agonists of GC-C, both plecanatide and dolcanatide exhibited potent cGMP-stimulatory activity in T84 cells. Once-daily treatment by oral gavage with either of these analogs (0.05-0.5 mg/kg) ameliorated colitis in both DSS and TNBS-induced models of acute colitis, as assessed by body weight, reduction in colitis severity (P < 0.05) and disease activity index (P < 0.05). Amelioration of colitis by either of the drug candidates was comparable to that achieved by orally administered sulfasalazine or 5-ASA. Plecanatide also effectively ameliorated colitis in TCRα-/- mice, a model of spontaneous colitis. As dolcanatide exhibited higher resistance to proteolysis in simulated gastric and intestinal juices, it was selected for further studies. CONCLUSION: This is

  1. Evaluation of antithrombotic activity of thrombin DNA aptamers by a murine thrombosis model.

    PubMed

    Zavyalova, Elena; Samoylenkova, Nadezhda; Revishchin, Alexander; Golovin, Andrey; Pavlova, Galina; Kopylov, Alexey

    2014-01-01

    Aptamers are nucleic acid based molecular recognition elements with a high potential for the theranostics. Some of the aptamers are under development for therapeutic applications as promising antithrombotic agents; and G-quadruplex DNA aptamers, which directly inhibit the thrombin activity, are among them. RA-36, the 31-meric DNA aptamer, consists of two thrombin binding pharmacophores joined with the thymine linker. It has been shown earlier that RA-36 directly inhibits thrombin in the reaction of fibrinogen hydrolysis, and also it inhibits plasma and blood coagulation. Studies of both inhibitory and anticoagulation effects had indicated rather high species specificity of the aptamer. Further R&D of RA-36 requires exploring its efficiency in vivo. Therefore the development of a robust and adequate animal model for effective physiological studies of aptamers is in high current demand. This work is devoted to in vivo study of the antithrombotic effect of RA-36 aptamer. A murine model of thrombosis has been applied to reveal a lag and even prevention of thrombus formation when RA-36 was intravenous bolus injected in high doses of 1.4-7.1 µmol/kg (14-70 mg/kg). A comparative study of RA-36 aptamer and bivalirudin reveals that both direct thrombin inhibitors have similar antithrombotic effects for the murine model of thrombosis; though in vitro bivalirudin has anticoagulation activity several times higher compared to RA-36. The results indicate that both RA-36 aptamer and bivalirudin are direct thrombin inhibitors of different potency, but possible interactions of the thrombin-inhibitor complex with other components of blood coagulation cascade level the physiological effects for both inhibitors.

  2. Evaluation of Antithrombotic Activity of Thrombin DNA Aptamers by a Murine Thrombosis Model

    PubMed Central

    Zavyalova, Elena; Samoylenkova, Nadezhda; Revishchin, Alexander; Golovin, Andrey; Pavlova, Galina; Kopylov, Alexey

    2014-01-01

    Aptamers are nucleic acid based molecular recognition elements with a high potential for the theranostics. Some of the aptamers are under development for therapeutic applications as promising antithrombotic agents; and G-quadruplex DNA aptamers, which directly inhibit the thrombin activity, are among them. RA-36, the 31-meric DNA aptamer, consists of two thrombin binding pharmacophores joined with the thymine linker. It has been shown earlier that RA-36 directly inhibits thrombin in the reaction of fibrinogen hydrolysis, and also it inhibits plasma and blood coagulation. Studies of both inhibitory and anticoagulation effects had indicated rather high species specificity of the aptamer. Further R&D of RA-36 requires exploring its efficiency in vivo. Therefore the development of a robust and adequate animal model for effective physiological studies of aptamers is in high current demand. This work is devoted to in vivo study of the antithrombotic effect of RA-36 aptamer. A murine model of thrombosis has been applied to reveal a lag and even prevention of thrombus formation when RA-36 was intravenous bolus injected in high doses of 1.4–7.1 µmol/kg (14–70 mg/kg). A comparative study of RA-36 aptamer and bivalirudin reveals that both direct thrombin inhibitors have similar antithrombotic effects for the murine model of thrombosis; though in vitro bivalirudin has anticoagulation activity several times higher compared to RA-36. The results indicate that both RA-36 aptamer and bivalirudin are direct thrombin inhibitors of different potency, but possible interactions of the thrombin-inhibitor complex with other components of blood coagulation cascade level the physiological effects for both inhibitors. PMID:25192011

  3. Three Novel Candidate Probiotic Strains with Prophylactic Properties in a Murine Model of Cow's Milk Allergy

    PubMed Central

    Neau, Elodie; Delannoy, Johanne; Marion, Candice; Cottart, Charles-Henry; Labellie, Chantal; Holowacz, Sophie; Butel, Marie-José; Kapel, Nathalie

    2016-01-01

    Food allergies can have significant effects on morbidity and on quality of life. Therefore, the development of efficient approaches to reduce the risk of developing food allergies is of considerable interest. The aim of this study was to identify and select probiotic strains with preventive properties against allergies using a combination of in vitro and in vivo approaches. To that end, 31 strains of bifidobacteria and lactic acid bacteria were screened for their immunomodulatory properties in two cellular models, namely, human peripheral blood mononuclear cells (PBMCs) and T helper 2 (Th2)-skewed murine splenocytes. Six strains inducing a high interleukin-10 (IL-10)/IL-12p70 ratio and a low secretion of IL-4 on the two cellular models were selected, and their protective impact was tested in vivo in a murine model of food allergy to β-lactoglobulin. Three strains showed a protective impact on sensitization, with a decrease in allergen-specific IgE, and on allergy, with a decrease in mast cell degranulation. Analysis of the impact of these three strains on the T helper balance revealed different mechanisms of action. The Lactobacillus salivarius LA307 strain proved to block Th1 and Th2 responses, while the Bifidobacterium longum subsp. infantis LA308 strain induced a pro-Th1 profile and the Lactobacillus rhamnosus LA305 strain induced pro-Th1 and regulatory responses. These results demonstrate that a combination of in vitro and in vivo screening is effective in probiotic strain selection and allowed identification of three novel probiotic strains that are active against sensitization in mice. PMID:26729723

  4. Murine Motor and Behavior Functional Evaluations for Acute 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP) Intoxication

    PubMed Central

    Hutter-Saunders, Jessica A. L.; Mosley, R. Lee

    2011-01-01

    Acute intoxication with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces nigrostriatal neurodegeneration that reflects Parkinson’s disease (PD) pathobiology. The model is commonly used for rodent studies of PD pathogenesis and diagnostics and for developmental therapeutics. However, tests of motor function in MPTP-intoxicated mice have yielded mixed results. This unmet need reflects, in part, lesion severity, animal variability, and the overall test sensitivity and specificity. In attempts to standardize rodent motor function and behavioral tests, mice were trained on the rotarod or habituated in an open field test chamber, and baseline performance measurements were collected prior to MPTP intoxication. One week following MPTP intoxication, motor function and behavior were assessed and baseline measurements applied to post-MPTP measurements with normalization to PBS controls. Rotarod and open field tests assessed in this manner demonstrated significant differences between MPTP- and saline-treated mice, while tests of neuromuscular strength and endurance did not. We conclude that the rotarod and open field tests provide reliable measures of motor function for MPTP-intoxicated mice. PMID:21431472

  5. IL-10 distinguishes a unique population of activated, effector-like CD8(+) T cells in murine acute liver inflammation.

    PubMed

    Rood, Julia E; Canna, Scott W; Weaver, Lehn K; Tobias, John W; Behrens, Edward M

    2017-04-01

    Immune-mediated liver injury is a central feature of hyperinflammatory diseases, such as hemophagocytic syndromes, yet the immunologic mechanisms underlying those processes are incompletely understood. In this study, we used the toll-like receptor 9 (TLR9)-mediated model of a hemophagocytic syndrome known as macrophage activation syndrome (MAS) to dissect the predominant immune cell populations infiltrating the liver during inflammation. We identified CD8(+) T cells that unexpectedly produce interleukin-10 (IL-10) in addition to interferon-γ (IFN-γ) as a major hepatic population induced by TLR9 stimulation. Despite their ability to produce this anti-inflammatory cytokine, IL-10(+) hepatic CD8(+) T cells in TLR9-MAS mice did not resemble CD8(+) T suppressor cells. Instead, the induction of these cells occurred independently of antigen stimulation and was partially dependent on IFN-γ. IL-10(+) hepatic CD8(+) T cells demonstrated an activated phenotype and high turnover rate, consistent with an effector-like identity. Transcriptional analysis of this population confirmed a gene signature of effector CD8(+) T cells yet suggested responsiveness to liver injury-associated growth factors. Together, these findings suggest that IL-10(+) CD8(+) T cells induced by systemic inflammation to infiltrate the liver have initiated an inflammatory, rather than regulatory, program and may thus have a pathogenic role in severe, acute hepatitis.

  6. ACUTE PHASE DEATHS FROM MURINE POLYMICROBIAL SEPSIS ARE CHARACTERIZED BY INNATE IMMUNE SUPPRESSION RATHER THAN EXHAUSTION1

    PubMed Central

    Chiswick, Evan L.; Mella, Juan R.; Bernardo, John; Remick, Daniel

    2015-01-01

    Sepsis, a leading cause of death in the U.S., has poorly understood mechanisms of mortality. To address this, our model of Cecal Ligation and Puncture (CLP) induced sepsis stratifies mice as predicted to Live (Live-P) or Die (Die-P) based on plasma IL-6. Six hours post-CLP, both Live-P and Die-P groups have equivalent peritoneal bacterial colony forming units and recruitment of phagocytes. By 24hr, however, Die-P mice have increased bacterial burden, despite increased neutrophil recruitment, suggesting Die-P phagocytes have impaired bacterial killing. Peritoneal cells were used to study multiple bactericidal processes: bacterial killing, Reactive Oxygen Species (ROS) generation, and phagocytosis. Total phagocytosis and intra-phagosomal processes were determined with triple-labeled E.coli, covalently labeled with ROS and pH sensitive probes, and an ROS/pH insensitive probe for normalization. While similar proportions of Live-P and Die-P phagocytes responded to exogenous stimuli, Die-P phagocytes showed marked deficits in all parameters measured, thus suggesting immunosuppression rather than exhaustion. This contradicts the prevailing sepsis paradigm that acute phase sepsis deaths (<5 days) result from excessive inflammation, whereas chronic phase deaths (>5 days) are characterized by insufficient inflammation and immunosuppression. These data suggest that suppression of cellular innate immunity in sepsis occurs within the first six hours. PMID:26371253

  7. A MURINE MODEL FOR LOW MOLECULAR WEIGHT CHEMICALS: DIFFERENTIATION OF RESPIRATORY SENSITIZERS (TMA) FROM CONTACT SENSITIZERS (DNFB)

    EPA Science Inventory

    Exposure to low molecular weight (LMW) chemicals contributes to both dermal and respiratory sensitization and is an important occupational health problem. Our goal was to establish an in vivo murine model for hazard identification of LMW chemicals that have the potential to indu...

  8. Anti-inflammatory and anti-apoptotic effects of (RS)-glucoraphanin bioactivated with myrosinase in murine sub-acute and acute MPTP-induced Parkinson's disease.

    PubMed

    Galuppo, Maria; Iori, Renato; De Nicola, Gina Rosalinda; Bramanti, Placido; Mazzon, Emanuela

    2013-09-01

    This study was focused on the possible neuroprotective role of (RS)-glucoraphanin, bioactivated with myrosinase enzyme (bioactive RS-GRA), in an experimental mouse model of Parkinson's disease (PD). RS-GRA is one of the most important glucosinolates, a thiosaccharidic compound found in Brassicaceae, notably in Tuscan black kale seeds. RS-GRA was extracted by one-step anion exchange chromatography, further purified by gel-filtration and analyzed by HPLC. Following, pure RS-GRA was characterized by (1)H and (13)C NMR spectrometry and the purity was assayed by HPLC analysis of the desulfo-derivative according to the ISO 9167-1 method. The obtained purity has been of 99%. To evaluate the possible pharmacological efficacy of bioactive RS-GRA (administrated at the dose of 10mg/kg, ip +5μl/mouse myrosinase enzyme), C57BL/6 mice were used in two different sets of experiment (in order to evaluate the neuroprotective effects in different phases of the disease), according to an acute (2 injections·40mg/kg MPTP) and a sub-acute (5 injections·20mg/kg MPTP) model of PD. Behavioural test, body weight changes measures and immunohistochemical localization of the main PD markers were performed and post-hoc analysis has shown as bioactive RS-GRA is able to reduce dopamine transporter degradation, tyrosine hydroxylase expression, IL-1β release, as well as the triggering of neuronal apoptotic death pathway (data about Bax/Bcl-2 balance and dendrite spines loss) and the generation of radicalic species by oxidative stress (results focused on nitrotyrosine, Nrf2 and GFAP immunolocalization). These effects have been correlated with the release of neurotrophic factors, such as GAP-43, NGF and BDNF, that, probably, play a supporting role in the neuroprotective action of bioactive RS-GRA. Moreover, after PD-induction mice treated with bioactive RS-GRA are appeared more in health than animals that did not received the treatment both for phenotypic behaviour and for general condition

  9. Efficacy of Posaconazole in a Murine Model of Systemic Infection by Saprochaete capitata

    PubMed Central

    Thomson, Pamela; Guarro, Josep; Mayayo, Emilio

    2015-01-01

    The fungus Saprochaete capitata causes opportunistic human infections, mainly in immunocompromised patients with hematological malignancies. The best therapy for this severe infection is still unknown. We evaluated the in vitro killing activity and the in vivo efficacy of posaconazole at 5, 10, or 20 mg/kg twice a day (BID) in a murine neutropenic model of systemic infection with S. capitata by testing a set of six clinical isolates. Posaconazole showed fungistatic activity against all of the isolates tested. The different doses of the drug, especially the highest one, showed good efficacy, measured by prolonged survival, reduction of (1-3)-β-d-glucan levels in serum, tissue burden reduction, and histopathology. PMID:26392490

  10. Activity of two different triazoles in a murine model of paracoccidioidomycosis.

    PubMed

    Restrepo, S; Tabares, A M; Restrepo, A

    1992-01-01

    A new orally absorbable triazole (Schering 39304) with a long serum half-life in man (60 hours), was tried in a murine model of progressive paracoccidioidomycosis and compared with itraconazole, another triazole which has proven effective in this mycosis. Only 15% of the infected, untreated mice survived while 53 to 75% of the animals receiving itraconazole survived. Mice treated with Schering 39304 exhibited higher (86-100%) survival rates. Statistically, the 5 mg/kg Sch 39304 was superior to the 50 mg/kg itraconazole dose. Lung cultures showed that 20 mg/kg/day of Sch achieved sterilization of the infectious foci. These results indicate that the new triazole will have a place in the treatment of paracoccidioidomycosis.

  11. Excretory-secretory antigens: a suitable candidate for immunization against ocular toxoplasmosis in a murine model.

    PubMed

    Norouzpour Deilami, Kiumars; Daryani, Ahmad; Ahmadpour, Ehsan; Sharif, Mehdi; Dadimoghaddam, Yousef; Sarvi, Shahabeddin; Alizadeh, Ahad

    2014-12-01

    Toxoplasmosis, responsible for ocular impairment, is caused by Toxoplasma gondii. We investigated the effect of Toxoplasma excretory-secretory antigens (ESA) on parasite load and distribution in the eye tissue of a murine model. Case and control groups were immunized with ESA and PBS, respectively. Two weeks after the second immunization, the mice were challenged intraperitoneally with virulent RH strain of Toxoplasma; eye tissue samples of both groups were collected daily (days 1, 2, 3, and the last day before death). Parasite load was determined using real-time quantitative PCR targeted at the B1 gene. Compared to the control group, infected mice that received ESA vaccine presented a considerable decrease in parasite load in the eye tissue, demonstrating the effect of ESA on parasite load and distribution. Diminution of parasite load in mouse eye tissue indicated that ESA might help control disease-related complications and could be a valuable immunization candidate against ocular toxoplasmosis.

  12. Herbal Formula, PM014, Attenuates Lung Inflammation in a Murine Model of Chronic Obstructive Pulmonary Disease

    PubMed Central

    Lee, Hyojung; Kim, Youngeun; Kim, Hye Jin; Park, Soojin; Jang, Young Pyo; Jung, Sungki; Jung, Heejae; Bae, Hyunsu

    2012-01-01

    Chronic obstructive pulmonary disease (COPD), which is characterized by airway obstruction, leads to, as the two major forms of COPD, chronic bronchitis and emphysema. This study was conducted to evaluate the effects of herbal formula, PM014, in a murine model of COPD. Balb/c mice were treated once with each herb extract in PM014 or PM014 mixture via an oral injection. Lipopolysaccharide (LPS) or elastase/LPS were administrated to the mice to induce a disease that resembles COPD. PM014 treatment significantly attenuated the increased accumulation of immune cells in bronchoalveolar lavage fluid (BALF) compared to control mice. In addition, the TNF-α and IL-6 levels in BALF were decreased in the PM014 mice. Furthermore, histological analysis demonstrated that PM014 attenuated the hazardous effects of lung inflammation. These data suggest that PM014 exerts beneficial effects against forms of COPD such as lung inflammation. PMID:22778777

  13. The effects of D-penicillamine on a murine model of oxygen-induced retinopathy

    PubMed Central

    Siatkowski, R. Michael; Yanovitch, Tammy L.; Ash, John D.; Moreau, Annie

    2013-01-01

    PURPOSE To determine the effect of intraperitoneal and intravitreal D-penicillamine (DPA) on retinal neovascularization in a murine model of oxygen-induced retinopathy. METHODS On postnatal day 7, 16 mice were injected intraperitoneally with 300 mg/kg/day DPA for 3 days followed by 50 mg/kg/day for 7 days. A different group of 7 mice were injected intraperitoneally with 600 mg/kg/day DPA for 3 days followed by 100 mg/kg/day for 7 days. A third group of 14 mice were injected with 1,500 mg/kg/day DPA for 2 days; a control cohort of 17 mice received intraperitoneal phosphate-buffered saline (PBS). An additional 15 mice underwent intravitreal injection of 1 μL of 100 mg/mL DPA in the right eye and 1 μL PBS intravitreally in the left eye as a control. All groups were placed in a 75% oxygen chamber for 7 days then room air for 3 days before being sacrificed and enucleated. The retinas were stained and flat-mounted to determine the severity of retinal neovascularization by quantifying neovascular buds. RESULTS After intraperitoneal injection, the mean number of glomeruli and tubules was similar in the DPA and PBS groups (P = 1.0), regardless of DPA dosage. The dosage of 1,500 mg/kg/day proved to be uniformly lethal. After intravitreal injections, the mean number of glomeruli (P = 0.16) and tubules (P = 0.7) were similar in the DPA and PBS groups. CONCLUSIONS Neither intraperitoneal nor intravitreal injection of DPA inhibits retinal neovascularization in a murine model of oxygen-induced retinopathy. PMID:21907121

  14. Hyperglycemia impedes lung bacterial clearance in a murine model of cystic fibrosis-related diabetes.

    PubMed

    Hunt, William R; Zughaier, Susu M; Guentert, Dana E; Shenep, Melissa A; Koval, Michael; McCarty, Nael A; Hansen, Jason M

    2014-01-01

    Cystic fibrosis-related diabetes (CFRD) is the most common comorbidity associated with cystic fibrosis (CF), impacting more than half of patients over age 30. CFRD is clinically significant, portending accelerated decline in lung function, more frequent pulmonary exacerbations, and increased mortality. Despite the profound morbidity associated with CFRD, little is known about the underlying CFRD-related pulmonary pathology. Our aim was to develop a murine model of CFRD to explore the hypothesis that elevated glucose in CFRD is associated with reduced lung bacterial clearance. A diabetic phenotype was induced in gut-corrected CF transmembrane conductance regulator (CFTR) knockout mice (CFKO) and their CFTR-expressing wild-type littermates (WT) utilizing streptozotocin. Mice were subsequently challenged with an intratracheal inoculation of Pseudomonas aeruginosa (PAO1) (75 μl of 1-5 × 10(6) cfu/ml) for 18 h. Bronchoalveolar lavage fluid was collected for glucose concentration and cell counts. A portion of the lung was homogenized and cultured as a measure of the remaining viable PAO1 inoculum. Diabetic mice had increased airway glucose compared with nondiabetic mice. The ability to clear bacteria from the lung was significantly reduced in diabetic WT mice and control CFKO mice. Critically, bacterial clearance by diabetic CFKO mice was significantly more diminished compared with nondiabetic CFKO mice, despite an even more robust recruitment of neutrophils to the airways. This finding that CFRD mice boast an exaggerated, but less effective, inflammatory cell response to intratracheal PAO1 challenge presents a novel and useful murine model to help identify therapeutic strategies that promote bacterial clearance in CFRD.

  15. HIF-1α Inhibition Reduces Nasal Inflammation in a Murine Allergic Rhinitis Model

    PubMed Central

    Zhou, Han; Chen, Xi; Zhang, Wei-Ming; Zhu, Lu-Ping; Cheng, Lei

    2012-01-01

    Background Hypoxia-inducible factor 1α (HIF-1α) is an important regulator of immune and inflammatory responses. We hypothesized that nasal allergic inflammation is attenuated by HIF-1α inhibition and strengthened by HIF-1α stabilization. Objective To elucidate the role of HIF-1α in a murine model of allergic rhinitis (AR). Methods Mice were pretreated with the HIF-1α inhibitor 2-methoxyestradiol (2ME2) or the HIF-1α inducer cobalt chloride (CoCl2) in an established AR murine model using ovalbumin (OVA)-sensitized BALB/c mice. HIF-1α and vascular endothelial growth factor (VEGF) expression in nasal mucosa was measured and multiple parameters of allergic responses were evaluated. Results HIF-1α and VEGF levels were locally up-regulated in nasal mucosa during AR. Inflammatory responses to OVA challenge, including nasal symptoms, inflammatory cell infiltration, eosinophil recruitment, up-regulation of T-helper type 2 cytokines in nasal lavage fluid, and serum OVA-specific IgE levels were present in the OVA-challenged mice. 2ME2 effectively inhibited HIF-1α and VEGF expression and attenuated the inflammatory responses. Stabilization of HIF-1α by CoCl2 facilitated nasal allergic inflammation. HIF-1α protein levels in nasal airways correlated with the severity of AR in mice. Conclusions HIF-1α is intimately involved in the pathogenesis of nasal allergies, and the inhibition of HIF-1α may be useful as a novel therapeutic approach for AR. PMID:23133644

  16. In Vivo MRI Assessment of Hepatic and Splenic Disease in a Murine Model of Schistosmiasis

    PubMed Central

    Laprie, Caroline; Dessein, Helia; Bernard, Monique; Dessein, Alain; Viola, Angèle

    2015-01-01

    Background Schistosomiasis (or bilharzia), a major parasitic disease, affects more than 260 million people worldwide. In chronic cases of intestinal schistosomiasis caused by trematodes of the Schistosoma genus, hepatic fibrosis develops as a host immune response to the helminth eggs, followed by potentially lethal portal hypertension. In this study, we characterized hepatic and splenic features of a murine model of intestinal schistosomiasis using in vivo magnetic resonance imaging (MRI) and evaluated the transverse relaxation time T2 as a non-invasive imaging biomarker for monitoring hepatic fibrogenesis. Methodology/Principal Findings CBA/J mice were imaged at 11.75T two, six and ten weeks after percutaneous infection with Schistosoma mansoni. In vivo imaging studies were completed with histology at the last two time points. Anatomical MRI allowed detection of typical manifestations of the intestinal disease such as significant hepato- and splenomegaly, and dilation of the portal vein as early as six weeks, with further aggravation at 10 weeks after infection. Liver multifocal lesions observed by MRI in infected animals at 10 weeks post infection corresponded to granulomatous inflammation and intergranulomatous fibrosis with METAVIR scores up to A2F2. While most healthy hepatic tissue showed T2 values below 14 ms, these lesions were characterized by a T2 greater than 16 ms. The area fraction of increased T2 correlated (rS = 0.83) with the area fraction of Sirius Red stained collagen in histological sections. A continuous liver T2* decrease was also measured while brown pigments in macrophages were detected at histology. These findings suggest accumulation of hematin in infected livers. Conclusions/Significance Our multiparametric MRI approach confirms that this murine model replicates hepatic and splenic manifestations of human intestinal schistosomiasis. Quantitative T2 mapping proved sensitive to assess liver fibrogenesis non-invasively and may therefore

  17. A Metabolomic Analysis of Two Intravenous Lipid Emulsions in a Murine Model

    PubMed Central

    Kalish, Brian T.; Le, Hau D.; Gura, Kathleen M.; Bistrian, Bruce R.; Puder, Mark

    2013-01-01

    Background Parenteral nutrition (PN), including intravenous lipid administration, is a life-saving therapy but can be complicated by cholestasis and liver disease. The administration of intravenous soy bean oil (SO) has been associated with the development of liver disease, while the administration of intravenous fish oil (FO) has been associated with the resolution of liver disease. The biochemical mechanism of this differential effect is unclear. This study compares SO and FO lipid emulsions in a murine model of hepatic steatosis, one of the first hits in PN-associated liver disease. Methods We established a murine model of hepatic steatosis in which liver injury is induced by orally feeding mice a PN solution. C57BL/6J mice were randomized to receive PN alone (a high carbohydrate diet (HCD)), PN plus intravenous FO (Omegaven®; Fresenius Kabi AG, Bad Homburg VDH, Germany), PN plus intravenous SO (Intralipid®; Fresenius Kabi AG, Bad Homburg v.d.H., Germany, for Baxter Healthcare, Deerfield, IL), or a chow diet. After 19 days, liver tissue was harvested from all animals and subjected to metabolomic profiling. Results The administration of an oral HCD without lipid induced profound hepatic steatosis. SO was associated with macro- and microvesicular hepatic steatosis, while FO largely prevented the development of steatosis. 321 detectable compounds were identified in the metabolomic analysis. HCD induced de novo fatty acid synthesis and oxidative stress. Both FO and SO relieved some of the metabolic shift towards de novo lipogenesis, but FO offered additional advantages in terms of lipid peroxidation and the generation of inflammatory precursors. Conclusions Improved lipid metabolism combined with reduced oxidative stress may explain the protective effect offered by intravenous FO in vivo. PMID:23565157

  18. Altered gut microbiota and activity in a murine model of autism spectrum disorders.

    PubMed

    de Theije, Caroline G M; Wopereis, Harm; Ramadan, Mohamed; van Eijndthoven, Tiemen; Lambert, Jolanda; Knol, Jan; Garssen, Johan; Kraneveld, Aletta D; Oozeer, Raish

    2014-03-01

    Autism spectrum disorder (ASD) is a heterogeneous group of complex neurodevelopmental disorders with evidence of genetic predisposition. Intestinal disturbances are reported in ASD patients and compositional changes in gut microbiota are described. However, the role of microbiota in brain disorders is poorly documented. Here, we used a murine model of ASD to investigate the relation between gut microbiota and autism-like behaviour. Using next generation sequencing technology, microbiota composition was investigated in mice in utero exposed to valproic acid (VPA). Moreover, levels of short chain fatty acids (SCFA) and lactic acid in caecal content were determined. Our data demonstrate a transgenerational impact of in utero VPA exposure on gut microbiota in the offspring. Prenatal VPA exposure affected operational taxonomic units (OTUs) assigned to genera within the main phyla of Bacteroidetes and Firmicutes and the order of Desulfovibrionales, corroborating human ASD studies. In addition, OTUs assigned to genera of Alistipes, Enterorhabdus, Mollicutes and Erysipelotrichalis were especially associated with male VPA-exposed offspring. The microbial differences of VPA in utero-exposed males deviated from those observed in females and was (i) positively associated with increased levels of caecal butyrate as well as ileal neutrophil infiltration and (ii) inversely associated with intestinal levels of serotonin and social behaviour scores. These findings show that autism-like behaviour and its intestinal phenotype is associated with altered microbial colonization and activity in a murine model for ASD, with preponderance in male offspring. These results open new avenues in the scientific trajectory of managing neurodevelopmental disorders by gut microbiome modulation.

  19. Role of GADD45a in murine models of radiation- and bleomycin-induced lung injury.

    PubMed

    Mathew, Biji; Takekoshi, Daisuke; Sammani, Saad; Epshtein, Yulia; Sharma, Rajesh; Smith, Brett D; Mitra, Sumegha; Desai, Ankit A; Weichselbaum, Ralph R; Garcia, Joe G N; Jacobson, Jeffrey R

    2015-12-15

    We previously reported protective effects of GADD45a (growth arrest and DNA damage-inducible gene 45 alpha) in murine ventilator-induced lung injury (VILI) via effects on Akt-mediated endothelial cell signaling. In the present study we investigated the role of GADD45a in separate murine models of radiation- and bleomycin-induced lung injury. Initial studies of wild-type mice subjected to single-dose thoracic radiation (10 Gy) confirmed a significant increase in lung GADD45a expression within 24 h and persistent at 6 wk. Mice deficient in GADD45a (GADD45a(-/-)) demonstrated increased susceptibility to radiation-induced lung injury (RILI, 10 Gy) evidenced by increased bronchoalveolar lavage (BAL) fluid total cell counts, protein and albumin levels, and levels of inflammatory cytokines compared with RILI-challenged wild-type animals at 2 and 4 wk. Furthermore, GADD45a(-/-) mice had decreased total and phosphorylated lung Akt levels both at baseline and 6 wk after RILI challenge relative to wild-type mice while increased RILI susceptibility was observed in both Akt(+/-) mice and mice treated with an Akt inhibitor beginning 1 wk prior to irradiation. Additionally, overexpression of a constitutively active Akt1 transgene reversed RILI-susceptibility in GADD45a(-/-) mice. In separate studies, lung fibrotic changes 2 wk after treatment with bleomycin (0.25 U/kg IT) was significantly increased in GADD45a(-/-) mice compared with wild-type mice assessed by lung collagen content and histology. These data implicate GADD45a as an important modulator of lung inflammatory responses across different injury models and highlight GADD45a-mediated signaling as a novel target in inflammatory lung injury clinically.

  20. Quantifying mechanical properties in a murine fracture healing system using inverse modeling: preliminary work

    NASA Astrophysics Data System (ADS)

    Miga, Michael I.; Weis, Jared A.; Granero-Molto, Froilan; Spagnoli, Anna

    2010-03-01

    Understanding bone remodeling and mechanical property characteristics is important for assessing treatments to accelerate healing or in developing diagnostics to evaluate successful return to function. The murine system whereby mid-diaphaseal tibia fractures are imparted on the subject and fracture healing is assessed at different time points and under different therapeutic conditions is a particularly useful model to study. In this work, a novel inverse geometric nonlinear elasticity modeling framework is proposed that can reconstruct multiple mechanical properties from uniaxial testing data. To test this framework, the Lame' constants were reconstructed within the context of a murine cohort (n=6) where there were no differences in treatment post tibia fracture except that half of the mice were allowed to heal 4 days longer (10 day, and 14 day healing time point, respectively). The properties reconstructed were a shear modulus of G=511.2 +/- 295.6 kPa, and 833.3+/- 352.3 kPa for the 10 day, and 14 day time points respectively. The second Lame' constant reconstructed at λ=1002.9 +/-42.9 kPa, and 14893.7 +/- 863.3 kPa for the 10 day, and 14 day time points respectively. An unpaired Student t-test was used to test for statistically significant differences among the groups. While the shear modulus did not meet our criteria for significance, the second Lame' constant did at a value p<0.0001. Traditional metrics that are commonly used within the bone fracture healing research community were not found to be statistically significant.

  1. Role of GADD45a in murine models of radiation- and bleomycin-induced lung injury

    PubMed Central

    Mathew, Biji; Takekoshi, Daisuke; Sammani, Saad; Epshtein, Yulia; Sharma, Rajesh; Smith, Brett D.; Mitra, Sumegha; Desai, Ankit A.; Weichselbaum, Ralph R.; Garcia, Joe G. N.

    2015-01-01

    We previously reported protective effects of GADD45a (growth arrest and DNA damage-inducible gene 45 alpha) in murine ventilator-induced lung injury (VILI) via effects on Akt-mediated endothelial cell signaling. In the present study we investigated the role of GADD45a in separate murine models of radiation- and bleomycin-induced lung injury. Initial studies of wild-type mice subjected to single-dose thoracic radiation (10 Gy) confirmed a significant increase in lung GADD45a expression within 24 h and persistent at 6 wk. Mice deficient in GADD45a (GADD45a−/−) demonstrated increased susceptibility to radiation-induced lung injury (RILI, 10 Gy) evidenced by increased bronchoalveolar lavage (BAL) fluid total cell counts, protein and albumin levels, and levels of inflammatory cytokines compared with RILI-challenged wild-type animals at 2 and 4 wk. Furthermore, GADD45a−/− mice had decreased total and phosphorylated lung Akt levels both at baseline and 6 wk after RILI challenge relative to wild-type mice while increased RILI susceptibility was observed in both Akt+/− mice and mice treated with an Akt inhibitor beginning 1 wk prior to irradiation. Additionally, overexpression of a constitutively active Akt1 transgene reversed RILI-susceptibility in GADD45a−/− mice. In separate studies, lung fibrotic changes 2 wk after treatment with bleomycin (0.25 U/kg IT) was significantly increased in GADD45a−/− mice compared with wild-type mice assessed by lung collagen content and histology. These data implicate GADD45a as an important modulator of lung inflammatory responses across different injury models and highlight GADD45a-mediated signaling as a novel target in inflammatory lung injury clinically. PMID:26498248

  2. Macrophages and galectin 3 play critical roles in CVB3-induced murine acute myocarditis and chronic fibrosis.

    PubMed

    Jaquenod De Giusti, Carolina; Ure, Agustín E; Rivadeneyra, Leonardo; Schattner, Mirta; Gomez, Ricardo M

    2015-08-01

    Macrophage influx and galectin 3 production have been suggested as major players driving acute inflammation and chronic fibrosis in many diseases. However, their involvement in the pathogenesis of viral myocarditis and subsequent cardiomyopathy are unknown. Our aim was to characterise the role of macrophages and galectin 3 on survival, clinical course, viral burden, acute pathology, and chronic fibrosis in coxsackievirus B3 (CVB3)-induced myocarditis. Our results showed that C3H/HeJ mice infected with CVB3 and depleted of macrophages by liposome-encapsulated clodronate treatment compared with infected untreated mice presented higher viral titres but reduced acute myocarditis and chronic fibrosis, compared with untreated infected mice. Increased galectin 3 transcriptional and translational expression levels correlated with CVB3 infection in macrophages and in non-depleted mice. Disruption of the galectin 3 gene did not affect viral titres but reduced acute myocarditis and chronic fibrosis compared with C57BL/6J wild-type mice. Similar results were observed after pharmacological inhibition of galectin 3 with N-acetyl-d-lactosamine in C3H/HeJ mice. Our results showed a critical role of macrophages and their galectin 3 in controlling acute viral-induced cardiac injury and the subsequent fibrosis. Moreover, the fact that pharmacological inhibition of galectin 3 induced similar results to macrophage depletion regarding the degree of acute cardiac inflammation and chronic fibrosis opens up the possibility of new pharmacological strategies for viral myocarditis.

  3. A comparison of fixation methods on lung morphology in a murine model of emphysema.

    PubMed

    Braber, S; Verheijden, K A T; Henricks, P A J; Kraneveld, A D; Folkerts, G

    2010-12-01

    Emphysema is characterized by enlargement of the alveoli, which is the most important parameter to assess the presence and severity of this disease. Alveolar enlargement is primarily defined on morphological criteria; therefore, characterization of this disease with morphological parameters is a prerequisite to study the pathogenesis. For this purpose, different methods of lung fixation were evaluated in a murine model of LPS-induced lung emphysema. Five different methods of lung fixation were evaluated: intratracheal instillation of fixatives, in situ fixation, fixed-volume fixation, vascular whole body perfusion, and vacuum inflation. In addition, the effects of three different fixatives (10% formalin, Carnoy's, and agarose/10% formalin solution) and two embedding methods (paraffin and plastic) were investigated on the murine lung morphology. Mice received intranasal administration of LPS to induce alveolar wall destruction. Quantification of air space enlargement was determined by mean linear intercept analysis, and the histological sections were analyzed for the most optimal fixation method. Additionally, routine immunohistological staining was performed on lung tissue of PBS-treated mice. Intratracheal instillation of formalin or agarose/formalin solution, in situ fixation, and fixed-volume fixation provided a normal lung architecture, in contrast to the lungs fixed via whole body perfusion and vacuum inflation. Formalin-fixed lungs resulted in the most optimal lung morphology for lung emphysema analysis when embedded in paraffin, while for Carnoy's fixed lungs, plastic embedding was preferred. The histological findings, the mean linear intercept measurement, and the immunohistochemistry data demonstrated that fixation by intratracheal instillation of 10% formalin or in situ fixation with 10% formalin are the two most optimal methods to fix lungs for alveolar enlargement analysis to study lung emphysema.

  4. Superoxide dismutase 3 dysregulation in a murine model of neonatal lung injury.

    PubMed

    Poonyagariyagorn, Hataya K; Metzger, Shana; Dikeman, Dustin; Mercado, Armando Lopez; Malinina, Alla; Calvi, Carla; McGrath-Morrow, Sharon; Neptune, Enid R

    2014-09-01

    Bronchopulmonary dysplasia (BPD), a common chronic respiratory disease that occurs after premature birth, is believed to be secondary to oxidative damage from hyperoxia and inflammation, which leads to impaired alveolar formation and chronic lung dysfunction. We hypothesized that extracellular superoxide dismutase (SOD)3, an antioxidant uniquely targeted to the extracellular matrix (ECM) and alveolar fluid, might have a different response (down-regulation) to hyperoxic injury and recovery in room air (RA), thereby contributing to the persistent airspace injury and inflammation. We used a murine BPD model using postnatal hyperoxia (O2) (4 or 5 d) followed by short-term recovery (14 d) in RA, which mimics the durable effects after injury during alveolar development. This was associated with significantly increased mRNA expression for antioxidant genes mediated by nuclear factor erythroid 2-related factor (Nrf2) in the O2 (n = 4) versus RA group (n = 5). SOD3, an Nrf2-independent antioxidant, was significantly reduced in the O2-exposed mice compared with RA. Immunohistochemistry revealed decreased and disrupted SOD3 deposition in the alveolar ECM of O2-exposed mice. Furthermore, this distinct hyperoxic antioxidant and injury profile was reproducible in murine lung epithelial 12 cells exposed to O2. Overexpression of SOD3 rescued the injury measures in the O2-exposed cells. We establish that reduced SOD3 expression correlates with alveolar injury measures in the recovered neonatal hyperoxic lung, and SOD3 overexpression attenuates hyperoxic injury in an alveolar epithelial cell line. Such findings suggest a candidate mechanism for the pathogenesis of BPD that may lead to targeted interventions.

  5. A Lethal Murine Infection Model for Dengue Virus 3 in AG129 Mice Deficient in Type I and II Interferon Receptors Leads to Systemic Disease

    PubMed Central

    Sarathy, Vanessa V.; White, Mellodee; Li, Li; Gorder, Summer R.; Pyles, Richard B.; Campbell, Gerald A.; Milligan, Gregg N.

    2014-01-01

    ABSTRACT The mosquito-borne disease dengue (DEN) is caused by four serologically and genetically related viruses, termed DENV-1 to DENV-4. Infection with one DENV usually leads to acute illness and results in lifelong homotypic immunity, but individuals remain susceptible to infection by the other three DENVs. The lack of a small-animal model that mimics systemic DEN disease without neurovirulence has been an obstacle, but DENV-2 models that resemble human disease have been recently developed in AG129 mice (deficient in interferon alpha/beta and interferon gamma receptor signaling). However, comparable DENV-1, -3, and -4 models have not been developed. We utilized a non-mouse-adapted DENV-3 Thai human isolate to develop a lethal infection model in AG129 mice. Intraperitoneal inoculation of six to eight-week-old animals with strain C0360/94 led to rapid, fatal disease. Lethal C0360/94 infection resulted in physical signs of illness, high viral loads in the spleen, liver, and large intestine, histological changes in the liver and spleen tissues, and increased serum cytokine levels. Importantly, the animals developed vascular leakage, thrombocytopenia, and leukopenia. Overall, we have developed a lethal DENV-3 murine infection model, with no evidence of neurotropic disease based on a non-mouse-adapted human isolate, which can be used to investigate DEN pathogenesis and to evaluate candidate vaccines and antivirals. This suggests that murine models utilizing non-mouse-adapted isolates can be obtained for all four DENVs. IMPORTANCE Dengue (DEN) is a mosquito-borne disease caused by four DENV serotypes (DENV-1, -2, -3, and -4) that have no treatments or vaccines. Primary infection with one DENV usually leads to acute illness followed by lifelong homotypic immunity, but susceptibility to infection by the other three DENVs remains. Therefore, a vaccine needs to protect from all four DENVs simultaneously. To date a suitable animal model to mimic systemic human illness

  6. Commonly dysregulated genes in murine APL cells

    PubMed Central

    Yuan, Wenlin; Payton, Jacqueline E.; Holt, Matthew S.; Link, Daniel C.; Watson, Mark A.; DiPersio, John F.; Ley, Timothy J.

    2007-01-01

    To identify genes that are commonly dysregulated in a murine model of acute promyelocytic leukemia (APL), we first defined gene expression patterns during normal murine myeloid development; serial gene expression profiling studies were performed with primary murine hematopoietic progenitors that were induced to undergo myeloid maturation in vitro with G-CSF. Many genes were reproducibly expressed in restricted developmental “windows,” suggesting a structured hierarchy of expression that is relevant for the induction of developmental fates and/or differentiated cell functions. We compared the normal myeloid developmental transcriptome with that of APL cells derived from mice expressing PML-RARα under control of the murine cathepsin G locus. While many promyelocyte-specific genes were highly expressed in all APL samples, 116 genes were reproducibly dysregulated in many independent APL samples, including Fos, Jun, Egr1, Tnf, and Vcam1. However, this set of commonly dysregulated genes was expressed normally in preleukemic, early myeloid cells from the same mouse model, suggesting that dysregulation occurs as a “downstream” event during disease progression. These studies suggest that the genetic events that lead to APL progression may converge on common pathways that are important for leukemia pathogenesis. PMID:17008535

  7. Increased intestinal permeability and tight junction disruption by altered expression and localization of occludin in a murine graft versus host disease model

    PubMed Central

    2011-01-01

    Background Hematopoietic stem cell transplantation is increasingly performed for hematologic diseases. As a major side effect, acute graft versus host disease (GvHD) with serious gastrointestinal symptoms including diarrhea, gastrointestinal bleeding and high mortality can be observed. Because surveillance and biopsies of human gastrointestinal GvHD are difficult to perform, rare information of the alterations of the gastrointestinal barrier exists resulting in a need for systematic animal models. Methods To investigate the effects of GvHD on the intestinal barrier of the small intestine we utilized an established acute semi allogenic GvHD in C57BL/6 and B6D2F1 mice. Results By assessing the differential uptake of lactulose and mannitol in the jejunum, we observed an increased paracellular permeability as a likely mechanism for disturbed intestinal barrier function. Electron microscopy, immunohistochemistry and PCR analysis indicated profound changes of the tight-junction complex, characterized by downregulation of the tight junction protein occludin without any changes in ZO-1. Furthermore TNF-α expression was significantly upregulated. Conclusions This analysis in a murine model of GvHD of the small intestine demonstrates serious impairment of intestinal barrier function in the jejunum, with an increased permeability and morphological changes through downregulation and localization shift of the tight junction protein occludin. PMID:21977944

  8. Herpes Murine Model as a Biological Assay to Test Dialyzable Leukocyte Extracts Activity

    PubMed Central

    Salinas-Jazmín, Nohemí; Estrada-Parra, Sergio; Becerril-García, Miguel Angel; Limón-Flores, Alberto Yairh; Vázquez-Leyva, Said; Pavón, Lenin; Velasco-Velázquez, Marco Antonio; Pérez-Tapia, Sonia Mayra

    2015-01-01

    Human dialyzable leukocyte extracts (DLEs) are heterogeneous mixtures of low-molecular-weight peptides that are released on disruption of peripheral blood leukocytes from healthy donors. DLEs improve clinical responses in infections, allergies, cancer, and immunodeficiencies. Transferon is a human DLE that has been registered as a hemoderivate by Mexican health authorities and commercialized nationally. To develop an animal model that could be used routinely as a quality control assay for Transferon, we standardized and validated a murine model of cutaneous HSV-1 infection. Using this model, we evaluated the activity of 27 Transferon batches. All batches improved the survival of HSV-1-infected mice, wherein average survival rose from 20.9% in control mice to 59.6% in Transferon-treated mice. The activity of Transferon correlated with increased serum levels of IFN-γ and reduced IL-6 and TNF-α concentrations. Our results demonstrate that (i) this mouse model of cutaneous herpes can be used to examine the activity of DLEs, such as Transferon; (ii) the assay can be used as a routine test for batch release; (iii) Transferon is produced with high homogeneity between batches; (iv) Transferon does not have direct virucidal, cytoprotective, or antireplicative effects; and (v) the protective effect of Transferon in vivo correlates with changes in serum cytokines. PMID:25984538

  9. An improved syngeneic orthotopic murine model of human breast cancer progression.

    PubMed

    Rashid, Omar M; Nagahashi, Masayuki; Ramachandran, Suburamaniam; Dumur, Catherine; Schaum, Julia; Yamada, Akimitsu; Terracina, Krista P; Milstien, Sheldon; Spiegel, Sarah; Takabe, Kazuaki

    2014-10-01

    Breast cancer drug development costs nearly $610 million and 37 months in preclinical mouse model trials with minimal success rates. Despite these inefficiencies, there are still no consensus breast cancer preclinical models. Murine mammary adenocarcinoma 4T1-luc2 cells were implanted subcutaneous (SQ) or orthotopically percutaneous (OP) injection in the area of the nipple, or surgically into the chest 2nd mammary fat pad under direct vision (ODV) in Balb/c immunocompetent mice. Tumor progression was followed by in vivo bioluminescence and direct measurements, pathology and survival determined, and tumor gene expression analyzed by genome-wide microarrays. ODV produced less variable-sized tumors and was a reliable method of implantation. ODV implantation into the chest 2nd mammary pad rather than into the abdominal 4th mammary pad, the most common implantation site, better mimicked human breast cancer progression pattern, which correlated with bioluminescent tumor burden and survival. Compared to SQ, ODV produced tumors that differentially expressed genes whose interaction networks are of importance in cancer research. qPCR validation of 10 specific target genes of interest in ongoing clinical trials demonstrated significant differences in expression. ODV implantation into the chest 2nd mammary pad provides the most reliable model that mimics human breast cancer compared from subcutaneous implantation that produces tumors with different genome expression profiles of clinical significance. Increased understanding of the limitations of the different preclinical models in use will help guide new investigations and may improve the efficiency of breast cancer drug development .

  10. Herpes murine model as a biological assay to test dialyzable leukocyte extracts activity.

    PubMed

    Salinas-Jazmín, Nohemí; Estrada-Parra, Sergio; Becerril-García, Miguel Angel; Limón-Flores, Alberto Yairh; Vázquez-Leyva, Said; Medina-Rivero, Emilio; Pavón, Lenin; Velasco-Velázquez, Marco Antonio; Pérez-Tapia, Sonia Mayra

    2015-01-01

    Human dialyzable leukocyte extracts (DLEs) are heterogeneous mixtures of low-molecular-weight peptides that are released on disruption of peripheral blood leukocytes from healthy donors. DLEs improve clinical responses in infections, allergies, cancer, and immunodeficiencies. Transferon is a human DLE that has been registered as a hemoderivate by Mexican health authorities and commercialized nationally. To develop an animal model that could be used routinely as a quality control assay for Transferon, we standardized and validated a murine model of cutaneous HSV-1 infection. Using this model, we evaluated the activity of 27 Transferon batches. All batches improved the survival of HSV-1-infected mice, wherein average survival rose from 20.9% in control mice to 59.6% in Transferon-treated mice. The activity of Transferon correlated with increased serum levels of IFN-γ and reduced IL-6 and TNF-α concentrations. Our results demonstrate that (i) this mouse model of cutaneous herpes can be used to examine the activity of DLEs, such as Transferon; (ii) the assay can be used as a routine test for batch release; (iii) Transferon is produced with high homogeneity between batches; (iv) Transferon does not have direct virucidal, cytoprotective, or antireplicative effects; and (v) the protective effect of Transferon in vivo correlates with changes in serum cytokines.

  11. Quantifying lung morphology with respiratory-gated micro-CT in a murine model of emphysema

    NASA Astrophysics Data System (ADS)

    Ford, N. L.; Martin, E. L.; Lewis, J. F.; Veldhuizen, R. A. W.; Holdsworth, D. W.; Drangova, M.

    2009-04-01

    Non-invasive micro-CT imaging techniques have been developed to investigate lung structure in free-breathing rodents. In this study, we investigate the utility of retrospectively respiratory-gated micro-CT imaging in an emphysema model to determine if anatomical changes could be observed in the image-derived quantitative analysis at two respiratory phases. The emphysema model chosen was a well-characterized, genetically altered model (TIMP-3 knockout mice) that exhibits a homogeneous phenotype. Micro-CT scans of the free-breathing, anaesthetized mice were obtained in 50 s and retrospectively respiratory sorted and reconstructed, providing 3D images representing peak inspiration and end expiration with 0.15 mm isotropic voxel spacing. Anatomical measurements included the volume and CT density of the lungs and the volume of the major airways, along with the diameters of the trachea, left bronchus and right bronchus. From these measurements, functional parameters such as functional residual capacity and tidal volume were calculated. Significant differences between the wild-type and TIMP-3 knockout groups were observed for measurements of CT density over the entire lung, indicating increased air content in the lungs of TIMP-3 knockout mice. These results demonstrate retrospective respiratory-gated micro-CT, providing images at multiple respiratory phases that can be analyzed quantitatively to investigate anatomical changes in murine models of emphysema.

  12. Animal models of acute renal failure.

    PubMed

    Singh, Amrit Pal; Junemann, Anselm; Muthuraman, Arunachalam; Jaggi, Amteshwar Singh; Singh, Nirmal; Grover, Kuldeep; Dhawan, Ravi

    2012-01-01

    The animal models are pivotal for understanding the characteristics of acute renal failure (ARF) and development of effective therapy for its optimal management. Since the etiology for induction of renal failure is multifold, therefore, a large number of animal models have been developed to mimic the clinical conditions of renal failure. Glycerol-induced renal failure closely mimics the rhabdomyolysis; ischemia-reperfusion-induced ARF simulate the hemodynamic changes-induced changes in renal functioning; drug-induced such as gentamicin, cisplatin, NSAID, ifosfamide-induced ARF mimics the renal failure due to clinical administration of respective drugs; uranium, potassium dichromate-induced ARF mimics the occupational hazard; S-(1,2-dichlorovinyl)-L-cysteine-induced ARF simulate contaminated water-induced renal dysfunction; sepsis-induced ARF mimics the infection-induced renal failure and radiocontrast-induced ARF mimics renal failure in patients during use of radiocontrast media at the time of cardiac catheterization. Since each animal model has been created with specific methodology, therefore, it is essential to describe the model in detail and consequently interpret the results in the context of a specific model.

  13. Fixed Volume or Fixed Pressure: A Murine Model of Hemorrhagic Shock

    PubMed Central

    Kohut, Lauryn K.; Darwiche, Sophie S.; Brumfield, John M.; Frank, Alicia M.; Billiar, Timothy R.

    2011-01-01

    It is common knowledge that severe blood loss and traumatic injury can lead to a cascade of detrimental signaling events often resulting in mortality. 1, 2, 3, 4, 5 These signaling events can also lead to sepsis and/or multiple organ dysfunction (MOD). 6, 7, 8, 9 It is critical then to investigate the causes of suppressed immune function and detrimental signaling cascades in order to develop more effective ways to help patients who suffer from traumatic injuries. 10 This fixed pressure Hemorrhagic Shock (HS) procedure, although technically challenging, is an excellent resource for investigation of these pathophysiologic conditions. 11, 12, 13 Advances in the assessment of biological systems, i.e. Systems Biology have enabled the scientific community to further understand complex physiologic networks and cellular communication patterns. 14 Hemorrhagic Shock has proven to be a vital tool for unveiling these cellular communication patterns as they relate to immune function. 15, 16, 17, 18 This procedure can be mastered! This procedure can also be used as either a fixed volume or fixed pressure approach. We adapted this technique in the murine model to enhance research in innate and adaptive immune function. 19, 20, 21 Due to their small size HS in mice presents unique challenges. However due to the many available mouse strains, this species represents an unparalleled resource for the study of the biologic responses. The HS model is an important model for studying cellular communication patterns and the responses of systems such as hormonal and inflammatory mediator systems, and danger signals, i.e. DAMP and PAMP upregulation as it elicits distinct responses that differ from other forms of shock. 22, 23, 24, 25 The development of transgenic murine strains and the induction of biologic agents to inhibit specific signaling have presented valuable opportunities to further elucidate our understanding of the up and down regulation of signal transduction after severe blood

  14. A keratan sulfate disaccharide prevents inflammation and the progression of emphysema in murine models.

    PubMed

    Gao, Congxiao; Fujinawa, Reiko; Yoshida, Takayuki; Ueno, Manabu; Ota, Fumi; Kizuka, Yasuhiko; Hirayama, Tetsuya; Korekane, Hiroaki; Kitazume, Shinobu; Maeno, Toshitaka; Ohtsubo, Kazuaki; Yoshida, Keiichi; Yamaguchi, Yoshiki; Lepenies, Bernd; Aretz, Jonas; Rademacher, Christoph; Kabata, Hiroki; Hegab, Ahmed E; Seeberger, Peter H; Betsuyaku, Tomoko; Kida, Kozui; Taniguchi, Naoyuki

    2017-02-01

    Emphysema is a typical component of chronic obstructive pulmonary disease (COPD), a progressive and inflammatory airway disease. However, no effective treatment currently exists. Here, we show that keratan sulfate (KS), one of the major glycosaminoglycans produced in the small airway, decreased in lungs of cigarette smoke-exposed mice. To confirm the protective effect of KS in the small airway, a disaccharide repeating unit of KS designated L4 ([SO3(-)-6]Galβ1-4[SO3(-)-6]GlcNAc) was administered to two murine models: elastase-induced-emphysema and LPS-induced exacerbation of a cigarette smoke-induced emphysema. Histological and microcomputed tomography analyses revealed that, in the mouse elastase-induced emphysema model, administration of L4 attenuated alveolar destruction. Treatment with L4 significantly reduced neutrophil influx, as well as the levels of inflammatory cytokines, tissue-degrading enzymes (matrix metalloproteinases), and myeloperoxidase in bronchoalveolar lavage fluid, suggesting that L4 suppressed inflammation in the lung. L4 consistently blocked the chemotactic migration of neutrophils in vitro. Moreover, in the case of the exacerbation model, L4 inhibited inflammatory cell accumulation to the same extent as that of dexamethasone. Taken together, L4 represents one of the potential glycan-based drugs for the treatment of COPD through its inhibitory action against inflammation.

  15. 4D optical coherence tomography of aortic valve dynamics in a murine mouse model ex vivo

    NASA Astrophysics Data System (ADS)

    Schnabel, Christian; Jannasch, Anett; Faak, Saskia; Waldow, Thomas; Koch, Edmund

    2015-07-01

    The heart and its mechanical components, especially the heart valves and leaflets, are under enormous strain during lifetime. Like all highly stressed materials, also these biological components undergo fatigue and signs of wear, which impinge upon cardiac output and in the end on health and living comfort of affected patients. Thereby pathophysiological changes of the aortic valve leading to calcific aortic valve stenosis (AVS) as most frequent heart valve disease in humans are of particular interest. The knowledge about changes of the dynamic behavior during the course of this disease and the possibility of early stage diagnosis could lead to the development of new treatment strategies and drug-based options of prevention or therapy. ApoE-/- mice as established model of AVS versus wildtype mice were introduced in an ex vivo artificially stimulated heart model. 4D optical coherence tomography (OCT) in combination with high-speed video microscopy were applied to characterize dynamic behavior of the murine aortic valve and to characterize dynamic properties during artificial stimulation. OCT and high-speed video microscopy with high spatial and temporal resolution represent promising tools for the investigation of dynamic behavior and their changes in calcific aortic stenosis disease models in mice.

  16. A Murine Model of Candida glabrata Vaginitis Shows No Evidence of an Inflammatory Immunopathogenic Response

    PubMed Central

    Nash, Evelyn E.; Peters, Brian M.; Lilly, Elizabeth A.; Noverr, Mairi C.; Fidel, Paul L.

    2016-01-01

    Candida glabrata is the second most common organism isolated from women with vulvovaginal candidiasis (VVC), particularly in women with uncontrolled diabetes mellitus. However, mechanisms involved in the pathogenesis of C. glabrata-associated VVC are unknown and have not been studied at any depth in animal models. The objective of this study was to evaluate host responses to infection following efforts to optimize a murine model of C. glabrata VVC. For this, various designs were evaluated for consistent experimental vaginal colonization (i.e., type 1 and type 2 diabetic mice, exogenous estrogen, varying inocula, and co-infection with C. albicans). Upon model optimization, vaginal fungal burden and polymorphonuclear neutrophil (PMN) recruitment were assessed longitudinally over 21 days post-inoculation, together with vaginal concentrations of IL-1β, S100A8 alarmin, lactate dehydrogenase (LDH), and in vivo biofilm formation. Consistent and sustained vaginal colonization with C. glabrata was achieved in estrogenized streptozotocin-induced type 1 diabetic mice. Vaginal PMN infiltration was consistently low, with IL-1β, S100A8, and LDH concentrations similar to uninoculated mice. Biofilm formation was not detected in vivo, and co-infection with C. albicans did not induce synergistic immunopathogenic effects. This data suggests that experimental vaginal colonization of C. glabrata is not associated with an inflammatory immunopathogenic response or biofilm formation. PMID:26807975

  17. Assessing the accuracy and reproducibility of modality independent elastography in a murine model of breast cancer

    PubMed Central

    Weis, Jared A.; Flint, Katelyn M.; Sanchez, Violeta; Yankeelov, Thomas E.; Miga, Michael I.

    2015-01-01

    Abstract. Cancer progression has been linked to mechanics. Therefore, there has been recent interest in developing noninvasive imaging tools for cancer assessment that are sensitive to changes in tissue mechanical properties. We have developed one such method, modality independent elastography (MIE), that estimates the relative elastic properties of tissue by fitting anatomical image volumes acquired before and after the application of compression to biomechanical models. The aim of this study was to assess the accuracy and reproducibility of the method using phantoms and a murine breast cancer model. Magnetic resonance imaging data were acquired, and the MIE method was used to estimate relative volumetric stiffness. Accuracy was assessed using phantom data by comparing to gold-standard mechanical testing of elasticity ratios. Validation error was <12%. Reproducibility analysis was performed on animal data, and within-subject coefficients of variation ranged from 2 to 13% at the bulk level and 32% at the voxel level. To our knowledge, this is the first study to assess the reproducibility of an elasticity imaging metric in a preclinical cancer model. Our results suggest that the MIE method can reproducibly generate accurate estimates of the relative mechanical stiffness and provide guidance on the degree of change needed in order to declare biological changes rather than experimental error in future therapeutic studies. PMID:26158120

  18. High and low frequency subharmonic imaging of angiogenesis in a murine breast cancer model.

    PubMed

    Dahibawkar, Manasi; Forsberg, Mark A; Gupta, Aditi; Jaffe, Samantha; Dulin, Kelly; Eisenbrey, John R; Halldorsdottir, Valgerdur G; Forsberg, Anya I; Dave, Jaydev K; Marshall, Andrew; Machado, Priscilla; Fox, Traci B; Liu, Ji-Bin; Forsberg, Flemming

    2015-09-01

    This project compared quantifiable measures of tumor vascularity obtained from contrast-enhanced high frequency (HF) and low frequency (LF) subharmonic ultrasound imaging (SHI) to 3 immunohistochemical markers of angiogenesis in a murine breast cancer model (since angiogenesis is an important marker of malignancy and the target of many novel cancer treatments). Nineteen athymic, nude, female rats were implanted with 5×10(6) breast cancer cells (MDA-MB-231) in the mammary fat pad. The contrast agent Definity (Lantheus Medical Imaging, N Billerica, MA) was injected in a tail vein (dose: 180μl/kg) and LF pulse-inversion SHI was performed with a modified Sonix RP scanner (Analogic Ultrasound, Richmond, BC, Canada) using a L9-4 linear array (transmitting/receiving at 8/4MHz in SHI mode) followed by HF imaging with a Vevo 2100 scanner (Visualsonics, Toronto, ON, Canada) using a MS250 linear array transmitting and receiving at 24MHz. The radiofrequency data was filtered using a 4th order IIR Butterworth bandpass filter (11-13MHz) to isolate the subharmonic signal. After the experiments, specimens were stained for endothelial cells (CD31), vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2). Fractional tumor vascularity was calculated as contrast-enhanced pixels over all tumor pixels for SHI, while the relative area stained over total tumor area was calculated from specimens. Results were compared using linear regression analysis. Out of 19 rats, 16 showed tumor growth (84%) and 11 of them were successfully imaged. HF SHI demonstrated better resolution, but weaker signals than LF SHI (0.06±0.017 vs. 0.39±0.059; p<0.001). The strongest overall correlation in this breast cancer model was between HF SHI and VEGF (r=-0.38; p=0.03). In conclusion, quantifiable measures of tumor neovascularity derived from contrast-enhanced HF SHI appear to be a better method than LF SHI for monitoring angiogenesis in a murine xenograft model of breast cancer

  19. High and low frequency subharmonic imaging of angiogenesis in a murine breast cancer model

    PubMed Central

    Dahibawkar, Manasi; Forsberg, Mark A.; Gupta, Aditi; Jaffe, Samantha; Dulin, Kelly; Eisenbrey, John R.; Halldorsdottir, Valgerdur G.; Forsberg, Anya I.; Dave, Jaydev K.; Marshall, Andrew; Machado, Priscilla; Fox, Traci B.; Liu, Ji-Bin; Forsberg, Flemming

    2015-01-01

    This project compared quantifiable measures of tumor vascularity obtained from contrast-enhanced high frequency (HF) and low frequency (LF) subharmonic ultrasound imaging (SHI) to 3 immunohistochemical markers of angiogenesis in a murine breast cancer model (since angiogenesis is an important marker of malignancy and the target of many novel cancer treatments). Nineteen athymic, nude, female rats were implanted with 5×106 breast cancer cells (MDA-MB-231) in the mammary fat pad. The contrast agent Definity (Lantheus Medical Imaging, N Billerica, MA) was injected in a tail vein (dose: 180µl/kg) and low frequency pulse-inversion SHI was performed with a modified Sonix RP scanner (Analogic Ultrasound, Richmond, BC, Canada) using a L9-4 linear array (transmitting/receiving at 8/4MHz in SHI mode) followed by high frequency imaging with a Vevo 2100 scanner (Visualsonics, Toronto, ON, Canada) using a MS250 linear array transmitting and receiving at 24MHz. The radiofrequency data was filtered using a 4th order IIR Butterworth bandpass filter (11–13MHz) to isolate the subharmonic signal. After the experiments, specimens were stained for endothelial cells (CD31), vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2). Fractional tumor vascularity was calculated as contrast enhanced pixels over all tumor pixels for SHI, while the relative area stained over total tumor area was calculated from specimens. Results were compared using linear regression analysis. Out of 19 rats, 16 showed tumor growth (84%) and 11 of them were successfully imaged. HF SHI demonstrated better resolution, but weaker signals than LF SHI (0.06±0.017 vs. 0.39±0.059; p<0.001). The strongest overall correlation in this breast cancer model was between HF SHI and VEGF (r=−0.38; p=0.03). In conclusion, quantifiable measures of tumor neovascularity derived from contrast-enhanced HF SHI appear to be a better method than LF SHI for monitoring angiogenesis in a murine xenograft model of

  20. A murine model of allergy caused by American cockroach (CR), Periplaneta americana.

    PubMed

    Sookrung, Nitat; Indrawattana, Nitaya; Tungtrongchitr, Anchalee; Karuhassuwan, Charan; Chaisri, Urai; Chaicumpa, Wanpen

    2008-01-01

    An animal model resembling the human immuno-pathological features of CR allergy is needed for CR allergy research, e.g., measuring allergenicity of novel allergens, testing immunotherapeutic efficacies of drugs and vaccines. In this study we develop a murine model of American CR, P. americana allergy. BALB/c mice, 6 weeks old, were individually intraperitoneally injected with three doses (days 0, 7 and 14) of alum adjuvanted-crude extract of P. americana. On days 21 and 23, they were given crude CR extract in PBS intranasally (10 microl) and aerosolically (10 ml) via an air-pressure nebulizer, respectively. Mice received alum alone and PBS instead of the CR extract served as non-allergenic controls. All mice were bled twenty four hours after the nebulization and sacrificed. Their serum samples, broncho-alveolar lavage fluids (BALF), and lung tissues were collected. BALF of all allergen-treated mice had marked cellular infiltration notably neutrophils, eosinophils and lymphocytes. The average total cell count in BALF of the allergenic mice was 1.9 x 10(5) cells/ml which out-numbered those of the non-allergenic controls (8 x 10(4) cells/ml). The eosinophil infiltration was pronounced in lungs of the allergen-treated mice. Specific serum IgE to the CR extract elevated in serum samples of all allergen treated mice and nil in the sera of the controls. None of the mice showed detectable level of IgG2a to the CR extract. RT-PCR revealed that all allergen-treated mice had marked increase of IL-13, IL-4 and TNF-alpha gene expressions, slight increase of IL-5 gene expression, and absence of detectable IFN-gamma gene expression in comparison to the non-allergenic controls. None of the allergen-treated mice and 50% of the non-allergenic controls had IL-12 gene expression as detected by RT- PCR. One allergen treated-mouse (25%) had subpar level of the IL-18 gene expression compared to the controls. Results of the quantitative real-time PCR conformed to those of the RT-PCR. A

  1. A Conceptual Model for Episodes of Acute, Unscheduled Care.

    PubMed

    Pines, Jesse M; Lotrecchiano, Gaetano R; Zocchi, Mark S; Lazar, Danielle; Leedekerken, Jacob B; Margolis, Gregg S; Carr, Brendan G

    2016-10-01

    We engaged in a 1-year process to develop a conceptual model representing an episode of acute, unscheduled care. Acute, unscheduled care includes acute illnesses (eg, nausea and vomiting), injuries, or exacerbations of chronic conditions (eg, worsening dyspnea in congestive heart failure) and is delivered in emergency departments, urgent care centers, and physicians' offices, as well as through telemedicine. We began with a literature search to define an acute episode of care and to identify existing conceptual models used in health care. In accordance with this information, we then drafted a preliminary conceptual model and collected stakeholder feedback, using online focus groups and concept mapping. Two technical expert panels reviewed the draft model, examined the stakeholder feedback, and discussed ways the model could be improved. After integrating the experts' comments, we solicited public comment on the model and made final revisions. The final conceptual model includes social and individual determinants of health that influence the incidence of acute illness and injury, factors that affect care-seeking decisions, specific delivery settings where acute care is provided, and outcomes and costs associated with the acute care system. We end with recommendations for how researchers, policymakers, payers, patients, and providers can use the model to identify and prioritize ways to improve acute care delivery.

  2. Characterization of Burkholderia pseudomallei Strains Using a Murine Intraperitoneal Infection Model and In Vitro Macrophage Assays

    PubMed Central

    Welkos, Susan L.; Klimko, Christopher P.; Kern, Steven J.; Bearss, Jeremy J.; Bozue, Joel A.; Bernhards, Robert C.; Trevino, Sylvia R.; Waag, David M.; Amemiya, Kei; Worsham, Patricia L.; Cote, Christopher K.

    2015-01-01

    Burkholderia pseudomallei, the etiologic agent of melioidosis, is a gram-negative facultative intracellular bacterium. This bacterium is endemic in Southeast Asia and Northern Australia and can infect humans and animals by several routes. It has also been estimated to present a considerable risk as a potential biothreat agent. There are currently no effective vaccines for B. pseudomallei, and antibiotic treatment can be hampered by nonspecific symptomology, the high incidence of naturally occurring antibiotic resistant strains, and disease chronicity. Accordingly, there is a concerted effort to better characterize B. pseudomallei and its associated disease. Before novel vaccines and therapeutics can be tested in vivo, a well characterized animal model is essential. Previous work has indicated that mice may be a useful animal model. In order to develop standardized animal models of melioidosis, different strains of bacteria must be isolated, propagated, and characterized. Using a murine intraperitoneal (IP) infection model, we tested the virulence of 11 B. pseudomallei strains. The IP route offers a reproducible way to rank virulence that can be readily reproduced by other laboratories. This infection route is also useful in distinguishing significant differences in strain virulence that may be masked by the exquisite susceptibility associated with other routes of infection (e.g., inhalational). Additionally, there were several pathologic lesions observed in mice following IP infection. These included varisized abscesses in the spleen, liver, and haired skin. This model indicated that commonly used laboratory strains of B. pseudomallei (i.e., K96243 and 1026b) were significantly less virulent as compared to more recently acquired clinical isolates. Additionally, we characterized in vitro strain-associated differences in virulence for macrophages and described a potential inverse relationship between virulence in the IP mouse model of some strains and in the

  3. Characterization of Burkholderia pseudomallei Strains Using a Murine Intraperitoneal Infection Model and In Vitro Macrophage Assays.

    PubMed

    Welkos, Susan L; Klimko, Christopher P; Kern, Steven J; Bearss, Jeremy J; Bozue, Joel A; Bernhards, Robert C; Trevino, Sylvia R; Waag, David M; Amemiya, Kei; Worsham, Patricia L; Cote, Christopher K

    2015-01-01

    Burkholderia pseudomallei, the etiologic agent of melioidosis, is a gram-negative facultative intracellular bacterium. This bacterium is endemic in Southeast Asia and Northern Australia and can infect humans and animals by several routes. It has also been estimated to present a considerable risk as a potential biothreat agent. There are currently no effective vaccines for B. pseudomallei, and antibiotic treatment can be hampered by nonspecific symptomology, the high incidence of naturally occurring antibiotic resistant strains, and disease chronicity. Accordingly, there is a concerted effort to better characterize B. pseudomallei and its associated disease. Before novel vaccines and therapeutics can be tested in vivo, a well characterized animal model is essential. Previous work has indicated that mice may be a useful animal model. In order to develop standardized animal models of melioidosis, different strains of bacteria must be isolated, propagated, and characterized. Using a murine intraperitoneal (IP) infection model, we tested the virulence of 11 B. pseudomallei strains. The IP route offers a reproducible way to rank virulence that can be readily reproduced by other laboratories. This infection route is also useful in distinguishing significant differences in strain virulence that may be masked by the exquisite susceptibility associated with other routes of infection (e.g., inhalational). Additionally, there were several pathologic lesions observed in mice following IP infection. These included varisized abscesses in the spleen, liver, and haired skin. This model indicated that commonly used laboratory strains of B. pseudomallei (i.e., K96243 and 1026b) were significantly less virulent as compared to more recently acquired clinical isolates. Additionally, we characterized in vitro strain-associated differences in virulence for macrophages and described a potential inverse relationship between virulence in the IP mouse model of some strains and in the

  4. Hippocampal abnormalities and enhanced excitability in a murine model of human lissencephaly.

    PubMed

    Fleck, M W; Hirotsune, S; Gambello, M J; Phillips-Tansey, E; Suares, G; Mervis, R F; Wynshaw-Boris, A; McBain, C J

    2000-04-01

    Human cortical heterotopia and neuronal migration disorders result in epilepsy; however, the precise mechanisms remain elusive. Here we demonstrate severe neuronal dysplasia and heterotopia throughout the granule cell and pyramidal cell layers of mice containing a heterozygous deletion of Lis1, a mouse model of human 17p13.3-linked lissencephaly. Birth-dating analysis using bromodeoxyuridine revealed that neurons in Lis1+/- murine hippocampus are born at the appropriate time but fail in migration to form a defined cell layer. Heterotopic pyramidal neurons in Lis1+/- mice were stunted and possessed fewer dendritic branches, whereas dentate granule cells were hypertrophic and formed spiny basilar dendrites from which the principal axon emerged. Both somatostatin- and parvalbumin-containing inhibitory neurons were heterotopic and displaced into both stratum radiatum and stratum lacunosum-moleculare. Mechanisms of synaptic transmission were severely disrupted, revealing hyperexcitability at Schaffer collateral-CA1 synapses and depression of mossy fiber-CA3 transmission. In addition, the dynamic range of frequency-dependent facilitation of Lis1+/- mossy fiber transmission was less than that of wild type. Consequently, Lis1+/- hippocampi are prone to interictal electrographic seizure activity in an elevated [K(+)](o) model of epilepsy. In Lis1+/- hippocampus, intense interictal bursting was observed on elevation of extracellular potassium to 6.5 mM, a condition that resulted in only minimal bursting in wild type. These anatomical and physiological hippocampal defects may provide a neuronal basis for seizures associated with lissencephaly.

  5. The Hen or the Egg: Inflammatory Aspects of Murine MPN Models

    PubMed Central

    Jutzi, Jonas S.; Pahl, Heike L.

    2015-01-01

    It has been known for some time that solid tumors, especially gastrointestinal tumors, can arise on the basis of chronic inflammation. However, the role of inflammation in the genesis of hematological malignancies has not been extensively studied. Recent evidence clearly shows that changes in the bone marrow niche can suffice to induce myeloid diseases. Nonetheless, while it has been demonstrated that myeloproliferative neoplasms (MPN) are associated with a proinflammatory state, it is not clear whether inflammatory processes contribute to the induction or maintenance of MPN. More provocatively stated: which comes first, the hen or the egg, inflammation or MPN? In other words, can chronic inflammation itself trigger an MPN? In this review, we will describe the evidence supporting a role for inflammation in initiating and promoting MPN development. Furthermore, we will compare and contrast the data obtained in gastrointestinal tumors with observations in MPN patients and models, pointing out the opportunities provided by novel murine MPN models to address fundamental questions regarding the role of inflammatory stimuli in the molecular pathogenesis of MPN. PMID:26543325

  6. Cryptococcus neoformans hyperfilamentous strain is hypervirulent in a murine model of cryptococcal meningoencephalitis.

    PubMed

    Feretzaki, Marianna; Hardison, Sarah E; Wormley, Floyd L; Heitman, Joseph

    2014-01-01

    Cryptococcus neoformans is a human fungal pathogen that causes lethal infections of the lung and central nervous system in immunocompromised individuals. C. neoformans has a defined bipolar sexual life cycle with a and α mating types. During the sexual cycle, which can occur between cells of opposite mating types (bisexual reproduction) or cells of one mating type (unisexual reproduction), a dimorphic transition from yeast to hyphal growth occurs. Hyphal development and meiosis generate abundant spores that, following inhalation, penetrate deep into the lung to enter the alveoli, germinate, and establish a pulmonary infection growing as budding yeast cells. Unisexual reproduction has been directly observed only in the Cryptococcus var. neoformans (serotype D) lineage under laboratory conditions. However, hyphal development has been previously associated with reduced virulence and the serotype D lineage exhibits limited pathogenicity in the murine model. In this study we show that the serotype D hyperfilamentous strain XL280α is hypervirulent in an animal model. It can grow inside the lung of the host, establish a pulmonary infection, and then disseminate to the brain to cause cryptococcal meningoencephalitis. Surprisingly, this hyperfilamentous strain triggers an immune response polarized towards Th2-type immunity, which is usually observed in the highly virulent sibling species C. gattii, responsible for the Pacific Northwest outbreak. These studies provide a technological advance that will facilitate analysis of virulence genes and attributes in C. neoformans var. neoformans, and reveal the virulence potential of serotype D as broader and more dynamic than previously appreciated.

  7. Ascidian tunicate extracts attenuate rheumatoid arthritis in a collagen-induced murine model.

    PubMed

    Hong, Seong-Ho; Kwone, Jung-Taek; Lee, Jae-Ho; Lee, Somin; Lee, Ah Young; Cho, Won-Young; Bat-Erdene, Munkhjargal; Choi, Byeong-Dae; Cho, Myung-Haing

    2014-06-01

    Murine rheumatoid arthritis models are often used to investigate the potential therapeutic effects of candidate drugs. The present study has been conducted in order to investigate the therapeutic efficacy of ascidian tunicate extracts in a collagen-induced arthritis DBA1/J mice model. Four types of formulas, ascidian tunicate extracts (ATE), crude ascidian tunicate glycans (ATEC), ascidian tunicate extracts with licorice extracts (ATEL), and crude ascidian tunicate glycans with licorice extracts (ATECL) were orally administered into DBA/1J mice for 3 weeks and paw edema and thickness were evaluated. Changes in inflammatory proteins and cytokines levels were monitored in hind leg tissues by Western blot and quantitative PCR analysis. The oral administration of ascidian tunicate extracts alleviated paw edema and improved the histological hind leg cartilage status. The extracts also reduced the matrix metalloproteinase-9 (MMP-9) protein and prostaglandin E synthase (PGES) levels. In addition, the extracts-treated groups showed increased interleukin-10 (IL-10) levels compared with the non-treated group. These findings suggest that orally administered ascidian tunicate extracts might have potential therapeutic effects for the treatment of rheumatoid arthritis.

  8. Anti-inflammatory modulation of chronic airway inflammation in the murine house dust mite model.

    PubMed

    Ulrich, Kristina; Hincks, Jennifer S; Walsh, Roddy; Wetterstrand, E M Caroline; Fidock, Mark D; Sreckovic, Sasha; Lamb, David J; Douglas, Garry J; Yeadon, Michael; Perros-Huguet, Christelle; Evans, Steven M

    2008-08-01

    Asthma affects 300 million people worldwide and continues to be a major cause of morbidity and mortality. Disease relevant animal models of asthma are required for benchmarking of novel therapeutic mechanisms in comparison to established clinical approaches. We demonstrate that chronic exposure of mice to house dust mite (HDM) extract results in allergic airway inflammation, that can be significantly attenuated by therapeutic intervention with phosphodiesterase 4 inhibition and corticosteroid treatment. Female BALB/c mice were administered intranasally with HDM (Dermatophagoides pteronyssinus) extract daily for five weeks, and therapeutic intervention with anti-inflammatory treatment (dexamethasone 1 mg/kg subcutaneous once daily, prednisolone 10mg/kg orally twice daily, fluticasone 3, 10 and 30 microg intranasally twice daily, roflumilast 10 mg/kg orally twice daily and intranasally 10 and 30 microg twice daily) was initiated after three weeks of exposure. Chronic HDM extract exposure resulted in significant airway inflammation, demonstrated by bronchoalveolar lavage cell infiltration and lung tissue inflammatory gene expression by TaqMan low density array. Chronic steroid treatment significantly inhibited these parameters. In addition, roflumilast caused a significant reduction in airway inflammatory cell infiltration. We have demonstrated that chronic HDM-induced allergic inflammation can be significantly ameliorated by steroid treatment, and that phosphodiesterase 4 inhibition modulates inflammatory cell infiltration. Therefore, the murine HDM model may be a useful tool for evaluating new targets for the treatment of asthma.

  9. Dysregulation of Npas2 leads to altered metabolic pathways in a murine knockout model.

    PubMed

    O'Neil, Derek; Mendez-Figueroa, Hector; Mistretta, Toni-Ann; Su, Chunliu; Lane, Robert H; Aagaard, Kjersti M

    2013-11-01

    In our primate model of maternal high fat diet exposure, we have described that fetal epigenomic modifications to the peripheral circadian Npas2 are associated with persistent alterations in fetal hepatic metabolism and non-alcoholic fatty liver. As the interaction of circadian response with metabolism is not well understood, we employed a murine knockout model to characterize the molecular mechanisms with which Npas2 reprograms the fetal hepatic metabolic response. cDNA was generated from Npas2-/- and +/+ (wild type) livers at day 2 (newborn) and at 25 weeks (adult) of life. Newborn samples were analyzed by exon array (n = 3/cohort). Independent pathway analysis software determined that the primary dysregulated pathway(s) in the Npas2-/- animals uniformly converged on lipid metabolism. Of particular interest, Ppargc1a, which integrates circadian and metabolism pathways, was significantly (p < .01) over expressed in newborn (1.7 fold) and adult (1.8 fold) Npas2-/- animals. These findings are consistent with an essential role for Npas2 in programming the peripheral circadian response and hepatic metabolism, which has not been previously described.

  10. Rapamycin improves TIE2-mutated venous malformation in murine model and human subjects

    PubMed Central

    Boscolo, Elisa; Limaye, Nisha; Huang, Lan; Kang, Kyu-Tae; Soblet, Julie; Uebelhoer, Melanie; Mendola, Antonella; Natynki, Marjut; Seront, Emmanuel; Dupont, Sophie; Hammer, Jennifer; Legrand, Catherine; Brugnara, Carlo; Eklund, Lauri; Vikkula, Miikka; Bischoff, Joyce; Boon, Laurence M.

    2015-01-01

    Venous malformations (VMs) are composed of ectatic veins with scarce smooth muscle cell coverage. Activating mutations in the endothelial cell tyrosine kinase receptor TIE2 are a common cause of these lesions. VMs cause deformity, pain, and local intravascular coagulopathy, and they expand with time. Targeted pharmacological therapies are not available for this condition. Here, we generated a model of VMs by injecting HUVECs expressing the most frequent VM-causing TIE2 mutation, TIE2-L914F, into immune-deficient mice. TIE2-L914F–expressing HUVECs formed VMs with ectatic blood-filled channels that enlarged over time. We tested both rapamycin and a TIE2 tyrosine kinase inhibitor (TIE2-TKI) for their effects on murine VM expansion and for their ability to inhibit mutant TIE2 signaling. Rapamycin prevented VM growth, while TIE2-TKI had no effect. In cultured TIE2-L914F–expressing HUVECs, rapamycin effectively reduced mutant TIE2-induced AKT signaling and, though TIE2-TKI did target the WT receptor, it only weakly suppressed mutant-induced AKT signaling. In a prospective clinical pilot study, we analyzed the effects of rapamycin in 6 patients with difficult–to-treat venous anomalies. Rapamycin reduced pain, bleeding, lesion size, functional and esthetic impairment, and intravascular coagulopathy. This study provides a VM model that allows evaluation of potential therapeutic strategies and demonstrates that rapamycin provides clinical improvement in patients with venous malformation. PMID:26258417

  11. T-Cell Receptor Gene Therapy of Established Tumors in a Murine Melanoma Model

    PubMed Central

    Abad, John D.; Wrzensinski, Claudia; Overwijk, Willem; De Witte, Moniek A.; Jorritsma, Annelies; Hsu, Gary; Gattinoni, Luca; Cohen, Cyrille J.; Paulos, Chrystal M.; Palmer, Douglas C.; Haanen, John B. A. G.; Schumacher, Ton N. M.; Rosenberg, Steven A.; Restifo, Nicholas P.; Morgan, Richard A.

    2008-01-01

    Summary Adoptive cell transfer therapy using tumor-infiltrating lymphocytes for patients with metastatic melanoma has demonstrated significant objective response rates. One major limitation of these current therapies is the frequent inability to isolate tumor-reactive lymphocytes for treatment. Genetic engineering of peripheral blood lymphocytes with retroviral vectors encoding tumor antigen-specific T-cell receptors (TCRs) bypasses this restriction. To evaluate the efficacy of TCR gene therapy, a murine treatment model was developed. A retroviral vector was constructed encoding the pmel-1 TCR genes targeting the B16 melanoma antigen, gp100. Transduction of C57BL/6 lymphocytes resulted in efficient pmel-1 TCR expression. Lymphocytes transduced with this retrovirus specifically recognized gp100-pulsed target cells as measured by interferon-γ secretion assays. Upon transfer into B16 tumor-bearing mice, the genetically engineered lymphocytes significantly slowed tumor development. The effectiveness of tumor treatment was directly correlated with the number of TCR-engineered T cells administered. These results demonstrated that TCR gene therapy targeting a native tumor antigen significantly delayed the growth of established tumors. When C57BL/6 lymphocytes were added to antigen-reactive pmel-1 T cells, a reduction in the ability of pmel-1 T cell to treat B16 melanomas was seen, suggesting that untransduced cells may be deleterious to TCR gene therapy. This model may be a powerful tool for evaluating future TCR gene transfer-based strategies. PMID:18157006

  12. T-cell receptor gene therapy of established tumors in a murine melanoma model.

    PubMed

    Abad, John D; Wrzensinski, Claudia; Overwijk, Willem; De Witte, Moniek A; Jorritsma, Annelies; Hsu, Cary; Gattinoni, Luca; Cohen, Cyrille J; Paulos, Chrystal M; Palmer, Douglas C; Haanen, John B A G; Schumacher, Ton N M; Rosenberg, Steven A; Restifo, Nicholas P; Morgan, Richard A

    2008-01-01

    Adoptive cell transfer therapy using tumor-infiltrating lymphocytes for patients with metastatic melanoma has demonstrated significant objective response rates. One major limitation of these current therapies is the frequent inability to isolate tumor-reactive lymphocytes for treatment. Genetic engineering of peripheral blood lymphocytes with retroviral vectors encoding tumor antigen-specific T-cell receptors (TCRs) bypasses this restriction. To evaluate the efficacy of TCR gene therapy, a murine treatment model was developed. A retroviral vector was constructed encoding the pmel-1 TCR genes targeting the B16 melanoma antigen, gp100. Transduction of C57BL/6 lymphocytes resulted in efficient pmel-1 TCR expression. Lymphocytes transduced with this retrovirus specifically recognized gp100-pulsed target cells as measured by interferon-gamma secretion assays. Upon transfer into B16 tumor-bearing mice, the genetically engineered lymphocytes significantly slowed tumor development. The effectiveness of tumor treatment was directly correlated with the number of TCR-engineered T cells administered. These results demonstrated that TCR gene therapy targeting a native tumor antigen significantly delayed the growth of established tumors. When C57BL/6 lymphocytes were added to antigen-reactive pmel-1 T cells, a reduction in the ability of pmel-1 T cell to treat B16 melanomas was seen, suggesting that untransduced cells may be deleterious to TCR gene therapy. This model may be a powerful tool for evaluating future TCR gene transfer-based strategies.

  13. Surgical Debridement Is Superior to Sole Antibiotic Therapy in a Novel Murine Posttraumatic Osteomyelitis Model

    PubMed Central

    Wallner, Christoph; Ismer, Britta; Schira, Jessica; Abraham, Stephanie; Harati, Kamran; Lehnhardt, Marcus; Behr, Björn

    2016-01-01

    Introduction Bone infections after trauma, i.e. posttraumatic osteomyelitis, pose one of the biggest problems of orthopedic surgery. Even after sufficient clinical therapy including vast debridement of infected bone and antibiotic treatment, regeneration of postinfectious bone seems to be restricted. One explanation includes the large sized defects resulting from sufficient debridement. Furthermore, it remains unclear if inflammatory processes after bone infection do affect bone regeneration. For continuing studies in this field, an animal model is needed where bone regeneration after sufficient treatment can be studied in detail. Methods For this purpose we created a stable infection in murine tibiae by Staphylococcus aureus inoculation. Thereafter, osteomyelitic bones were debrided thoroughly and animals were subsequently treated with antibiotics. Controls included debrided, non-infected, as well as infected animals exclusively treated with antibiotics. To verify sufficient treatment of infected bone, different assessments detecting S. aureus were utilized: agar plates, histology and RT-qPCR. Results All three detection methods revealed massive reduction or eradication of S. aureus within debrided bones 1 and 2 weeks postoperatively, whereas sole antibiotic therapy could not provide sufficient treatment of osteomyelitic bones. Debrided, previously infected bones showed significantly decreased bone formation, compared to debrided, non-infected controls. Discussion Thus, the animal model presented herein provides a reliable and fascinating tool to study posttraumatic osteomyelitis for clinical therapies. PMID:26872128

  14. A paclitaxel-loaded recombinant polypeptide nanoparticle outperforms Abraxane in multiple murine cancer models

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Jayanta; Bellucci, Joseph J.; Weitzhandler, Isaac; McDaniel, Jonathan R.; Spasojevic, Ivan; Li, Xinghai; Lin, Chao-Chieh; Chi, Jen-Tsan Ashley; Chilkoti, Ashutosh

    2015-08-01

    Packaging clinically relevant hydrophobic drugs into a self-assembled nanoparticle can improve their aqueous solubility, plasma half-life, tumour-specific uptake and therapeutic potential. To this end, here we conjugated paclitaxel (PTX) to recombinant chimeric polypeptides (CPs) that spontaneously self-assemble into ~60 nm near-monodisperse nanoparticles that increased the systemic exposure of PTX by sevenfold compared with free drug and twofold compared with the Food and Drug Administration-approved taxane nanoformulation (Abraxane). The tumour uptake of the CP-PTX nanoparticle was fivefold greater than free drug and twofold greater than Abraxane. In a murine cancer model of human triple-negative breast cancer and prostate cancer, CP-PTX induced near-complete tumour regression after a single dose in both tumour models, whereas at the same dose, no mice treated with Abraxane survived for >80 days (breast) and 60 days (prostate), respectively. These results show that a molecularly engineered nanoparticle with precisely engineered design features outperforms Abraxane, the current gold standard for PTX delivery.

  15. A Paclitaxel-Loaded Recombinant Polypeptide Nanoparticle Outperforms Abraxane in Multiple Murine Cancer Models

    PubMed Central

    Bhattacharyya, Jayanta; Bellucci, Joseph J.; Weitzhandler, Isaac; McDaniel, Jonathan R.; Spasojevic, Ivan; Li, Xinghai; Lin, Chao-Chieh; Chi, Jen-Tsan Ashley; Chilkoti, Ashutosh

    2015-01-01

    Packaging clinically relevant hydrophobic drugs into a self-assembled nanoparticle can improve their aqueous solubility, plasma half-life, tumor specific uptake and therapeutic potential. To this end, here we conjugated paclitaxel (PTX) to recombinant chimeric polypeptides (CPs) that spontaneously self-assemble into ~60-nm diameter near-monodisperse nanoparticles that increased the systemic exposure of PTX by 7-fold compared to free drug and 2-fold compared to the FDA approved taxane nanoformulation (Abraxane®). The tumor uptake of the CP-PTX nanoparticle was 5-fold greater than free drug and 2-fold greater than Abraxane. In a murine cancer model of human triple negative breast cancer and prostate cancer, CP-PTX induced near complete tumor regression after a single dose in both tumor models, whereas at the same dose, no mice treated with Abraxane survived for more than 80 days (breast) and 60 days (prostate) respectively. These results show that a molecularly engineered nanoparticle with precisely engineered design features outperforms Abraxane, the current gold standard for paclitaxel delivery. PMID:26239362

  16. Insulin therapy induces changes in the inflammatory response in a murine 2-hit model.

    PubMed

    Barkhausen, Tanja; Probst, Christian; Hildebrand, Frank; Pape, Hans-Christoph; Krettek, Christian; van Griensven, Martijn

    2009-08-01

    Post-traumatic complications commonly seen on intensive care units include sepsis and associated disorders, which are accompanied by alterations in inflammatory cytokine expression patterns and in activation of neutrophils. Hyperglycaemia, often occurring after trauma and sepsis, is a further risk factor for morbidity and mortality among critically ill people. Clinical investigations have suggested that strict glycaemic control by insulin titration reduces overall mortality. This study aimed to further elucidate the pathophysiological and immunomodulative actions of insulin. Femoral fracture was induced in a murine model, followed by 1h of haemorrhage. Two days after the first hit, sepsis was induced by caecal ligation and puncture (CLP). In control animals, laparotomy only was performed. Insulin in two different concentrations (10IU or 20IU) or vehicle was administered daily. Insulin therapy was associated with improvement of clinical parameters, slightly improved survival rates and, in lungs and liver, fewer infiltrating neutrophils and reduced IL-6 and IL-10 mRNA expression. These results suggested that, in this animal model, insulin had a direct anti-inflammatory effect that was independent of modulation of blood glucose levels.

  17. Retinal expression of small non-coding RNAs in a murine model of proliferative retinopathy

    PubMed Central

    Liu, Chi-Hsiu; Wang, Zhongxiao; Sun, Ye; SanGiovanni, John Paul; Chen, Jing

    2016-01-01

    Ocular neovascularization is a leading cause of blindness in proliferative retinopathy. Small non-coding RNAs (sncRNAs) play critical roles in both vascular and neuronal development of the retina through post-transcriptional regulation of target gene expression. To identify the function and therapeutic potential of sncRNAs in retinopathy, we assessed the expression profile of retinal sncRNAs in a mouse model of oxygen-induced retinopathy (OIR) with pathologic proliferation of neovessels. Approximately 2% of all analyzed sncRNAs were significantly altered in OIR retinas compared with normoxic controls. Twenty three microRNAs with substantial up- or down-regulation were identified, including miR-351, -762, -210, 145, -155, -129-5p, -150, -203, and -375, which were further analyzed for their potential target genes in angiogenic, hypoxic, and immune response-related pathways. In addition, nineteen small nucleolar RNAs also revealed differential expression in OIR retinas compared with control retinas. A decrease of overall microRNA expression in OIR retinas was consistent with reduced microRNA processing enzyme Dicer, and increased expression of Alu element in OIR. Together, our findings elucidated a group of differentially expressed sncRNAs in a murine model of proliferative retinopathy. These sncRNAs may exert critical post-transcriptional regulatory roles in regulating pathological neovascularization in eye diseases. PMID:27653551

  18. Transcutaneous photodynamic therapy delays the onset of paralysis in a murine multiple sclerosis model

    NASA Astrophysics Data System (ADS)

    Hunt, David W. C.; Leong, Simon; Levy, Julia G.; Chan, Agnes H.

    1995-03-01

    Photodynamic therapy (PDT) using benzoporphyrin derivative (BPD, Verteporfin) and whole body irradiation, can affect the course of adoptively transferred experimental allergic (autoimmune) encephalomyelitis (EAE) in PL mice. Murine EAE is a T cell-mediated autoimmune disease which serves as a model for human multiple sclerosis. Using a novel disease induction protocol, we found that mice characteristically developed EAE within 3 weeks of receipt of myelin basic protein (MBP)-sensitized, in vitro-cultured spleen or lymph node cells. However, if animals were treated with PDT (1 mg BPD/kg bodyweight and exposed to whole body 15 Joules cm2 of LED light) 24 hours after receiving these cells, disease onset time was significantly delayed. PDT-treated mice developed disease symptoms 45 +/- 3 days following cell administration whereas untreated controls were affected within 23 +/- 2 days. In contrast, application of PDT 48 or 120 hours following injection of the pathogenic cells had no significant effect upon the development of EAE. Experiments are in progress to account for the protective effect of PDT in this animal model. These studies should provide evidence on the feasibility of PDT as a treatment for human autoimmune disease.

  19. A mammary adenocarcinoma murine model suitable for the study of cancer immunoediting

    PubMed Central

    2014-01-01

    Background Cancer immunoediting is a dynamic process composed of three phases: elimination (EL), equilibrium (EQ) and escape (ES) that encompasses the potential host-protective and tumor-sculpting functions of the immune system throughout tumor development. Animal models are useful tools for studying diseases such as cancer. The present study was designed to characterize the interaction between mammary adenocarcinoma M-406 and CBi, CBi− and CBi/L inbred mice lines. Results The mammary adenocarcinoma M-406 developed spontaneously in a CBi mouse. CBi/L and CBi− mice were artificially selected for body conformation from CBi. When CBi mice are s.c. challenged with M-406, tumor growths exponentially in 100% of animals, while in CBi− the tumor growths briefly and then begins a rejection process in 100% of the animals. In CBi/L the growth of the tumor shows the three phases: 51.6% in ES, 18.5% in EQ and 29.8% in EL. Conclusions The results obtained support the conclusion that the system M-406 plus the inbred mouse lines CBi, CBi− and CBi/L, is a good murine model to study the process of tumor immunoediting. PMID:24885995

  20. Interactome analysis of myeloid-derived suppressor cells in murine models of colon and breast cancer.

    PubMed

    Aliper, Alexander M; Frieden-Korovkina, Victoria P; Buzdin, Anton; Roumiantsev, Sergey A; Zhavoronkov, Alex

    2014-11-30

    In solid cancers, myeloid derived suppressor cells (MDSC) infiltrate (peri)tumoral tissues to induce immune tolerance and hence to establish a microenvironment permissive to tumor growth. Importantly, the mechanisms that facilitate such infiltration or a subsequent immune suppression are not fully understood. Hence, in this study, we aimed to delineate disparate molecular pathways which MDSC utilize in murine models of colon or breast cancer. Using pathways enrichment analysis, we completed interactome maps of multiple signaling pathways in CD11b+/Gr1(high/low) MDSC from spleens and tumor infiltrates of mice with c26GM colon cancer and tumor infiltrates of MDSC in 4T1 breast cancer. In both cancer models, infiltrating MDSC, but not CD11b+ splenic cells, have been found to be enriched in multiple signaling molecules suggestive of their enhanced proliferative and invasive phenotypes. The interactome data has been subsequently used to reconstruct a previously unexplored regulation of MDSC cell cycle by the c-myc transcription factor which was predicted by the analysis. Thus, this study represents a first interactome mapping of distinct multiple molecular pathways whereby MDSC sustain cancer progression.

  1. Paralysis caused by acute myelitis in Theiler's murine encephalomyelitis virus strain GD VII infection is induced by CD4+ lymphocytes infiltrating the spinal cord.

    PubMed

    Kohanawa, M; Asano, M; Min, Y; Minagawa, T; Nakane, A

    1995-09-01

    Intravenous infection by Theiler's murine encephalomyelitis virus strain GD VII causes acute encephalomyelitis and paralysis in infected mice. However, nude mice and cyclophosphamide-treated ddY mice did not show paralysis when they were able to survive until day 20 post-infection (p.i.). Of ddY mice infected with 5 x 10(7) p.f.u./mouse, 70-80% showed symptoms of paralysis on day 20 p.i. The viral titres in the brain and spinal cord in infected mice were not significantly different between paralytic and non-paralytic mice. In all of the mice infected with the virus, CD4+ lymphocytes and CD8+ lymphocytes had infiltrated the brain on days 10, 12, 14 and 20 p.i. as demonstrated by flow cytometric analysis. In contrast, few T lymphocytes infiltrated the spinal cord in the non-paralytic mice. Administration of an anti-CD4 monoclonal antibody (MAb) or anti-T cell receptor-alpha beta MAb on day 6 p.i. inhibited paralysis until day 20 p.i., though 20% of the MAb-treated mice and 80% of the control mice showed paralysis. Administration of anti-CD8 MAb was not effective in the suppression of paralysis. The MAb treatment did not significantly augment viral replication in the spinal cord, although the viral titres in the brain of the MAb-treated mice increased significantly. After the transfer of spleen cells from infected C3H mice, the recipient mice infected with a small amount of the virus showed paralysis, though uninfected mice did not. This transfer could be blocked by CD4+ lymphocyte depletion of the donor mice. These results indicate that paralysis caused by acute myelitis in Theiler's virus strain GD VII infection is induced by CD4+ lymphocytes infiltrating the spinal cord.

  2. Inhibition of soluble epoxide hydrolase contributes to the anti-inflammatory effect of antimicrobial triclocarban in a murine model

    SciTech Connect

    Liu Junyan; Qiu Hong; Morisseau, Christophe; Hwang, Sung Hee; Tsai, Hsing-Ju; Ulu, Arzu; Chiamvimonvat, Nipavan; Hammock, Bruce D.

    2011-09-01

    The increasing use of the antimicrobial triclocarban (TCC) in personal care products (PCPs) has resulted in concern regarding environmental pollution. TCC is a potent inhibitor of soluble epoxide hydrolase (sEH). Inhibitors of sEH (sEHIs) are anti-inflammatory, anti-hypertensive and cardio-protective in multiple animal models. However, the in vivo effects anticipated from a sEHI have not been reported for TCC. Here we demonstrated the anti-inflammatory effects in vivo of TCC in a murine model. TCC was employed in a lipopolysaccharide (LPS)-challenged murine model. Systolic blood pressure, plasma levels of several inflammatory cytokines and chemokine, and metabolomic profile of plasma oxylipins were determined. TCC significantly reversed LPS-induced morbid hypotension in a time-dependent manner. TCC significantly repressed the increased release of inflammatory cytokines and chemokine caused by LPS. Furthermore, TCC significantly shifted the oxylipin profile in vivo in a time-dependent manner towards resolution of inflammation as expected from a sEHI. These results demonstrated that at the doses used TCC is anti-inflammatory in the murine model. This study suggests that TCC may provide some benefits in humans in addition to its antimicrobial activities due to its potent inhibition of sEH. It may be a promising starting point for developing new low volume high value applications of TCC. However these biological effects also caution against the general over use of TCC in PCPs. - Graphical abstract: Display Omitted Research Highlights: > Anti-microbial triclocarban (TCC) is anti-inflammatory in a murine model. > TCC significantly shifted the oxylipin profile in vivo as expected from a sEHI. > TCC significantly reversed LPS-induced morbid hypotension in a time-dependent manner. > TCC significantly repressed LPS-induced increased release of inflammatory cytokines.

  3. Vasoactive intestinal peptide inhibits liver pathology in acute murine schistosomiasis mansoni and modulates IL-10, IL-12 and TNF-alpha production.

    PubMed

    Allam, Gamal

    2007-01-01

    Vasoactive intestinal peptide (VIP) exerts a broad range of biologic actions that may include modulation of hepatic granuloma formation. This study aimed to investigate the effect of VIP administration on the course of acute murine schistosomiasis mansoni. Mice were infected each with 40 Schistosoma (S.) mansoni cercariae and injected intraperitoneally with VIP at a total dose of 1mug/kg body weight. VIP treatment was very effective in diminishing worm fecundity, hepatic granuloma size and number by about 54%, 75% and 51%, respectively, and reducing liver collagen content. Serum level of interleukin (IL)-10 was increased, while level of IL-12 and tumor necrosis factor (TNF)-alpha were decreased as a result of VIP administration. Carbohydrate antigen 19.9 (CA 19.9) induced by S. mansoni infection was decreased with VIP treatment. Activities of hepatic gamma-glutamyl transferase (gamma-GT), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) in liver tissue homogenate of infected treated mice were increased. These results indicate that suitable administration of exogenous VIP can be effective in ameliorating immunopathologic damage associated with schistosomiasis.

  4. The Use of L-sIDOL Transgenic Mice as a Murine Model to Study Hypercholesterolemia and Atherosclerosis.

    PubMed

    Zerenturk, Eser J; Calkin, Anna C

    2017-01-01

    There are many advantages to the use of mice as a model to study the regulation of cholesterol metabolism. Common models of hypercholesterolemia include low-density lipoprotein receptor deficient (LDLR -/-) mice and apolipoprotein E deficient (ApoE) -/- mice. Herein, we describe the recently generated mouse model, L-sIDOL Tg mice, which express a dominant active form of Inducible Degrader Of the Low-density lipoprotein receptor (IDOL) in a liver-specific manner. This murine model offers significant advantages over previously established models for the study of hypercholesterolemia and atherosclerosis.

  5. A Cell Kinetic Model of Granulocytopoiesis Under Radiation Exposure: Extension from Murines to Canines and Humans

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Cucinotta, Francis A.

    2009-01-01

    Space radiation poses significant challenges to space travel, and it is essential to understand the possible adverse effects from space radiation exposure to the radiosensitive organ systems that are important for immediate survival of human, e.g., the hematopoietic system. In this presentation a biomathematical model of granulocytopoiesis is described and used to analyze the blood granulocyte changes seen in the blood of mammalians under continuous and acute radiation exposure. This is one of a set of hematopoietic models that have been successfully utilized to simulate and interpret the experimental data of acute and chronic radiation on rodents. We discuss the underlying implicit regulation mechanism and the biological relevance of the kinetic parameters estimation method. Extension of the model to predictions in dogs and humans systems indicates that the modeling results are consistent with the cumulative experimental and empirical data from various sources. This implies the potential to integrate the models into one united system for monitoring the hematopoietic response of various species under irradiation. Based on the evidence of threshold responses of dogs to extended periods of low daily dose exposures, we discuss the potential health risks of the space traveler under chronic stress of low-dose irradiation and the possibly encountered Solar Particle Events.

  6. Single-Limb Irradiation Induces Local and Systemic Bone Loss in a Murine Model.

    PubMed

    Wright, Laura E; Buijs, Jeroen T; Kim, Hun-Soo; Coats, Laura E; Scheidler, Anne M; John, Sutha K; She, Yun; Murthy, Sreemala; Ma, Ning; Chin-Sinex, Helen J; Bellido, Teresita M; Bateman, Ted A; Mendonca, Marc S; Mohammad, Khalid S; Guise, Theresa A

    2015-07-01

    Increased fracture risk is commonly reported in cancer patients receiving radiotherapy, particularly at sites within the field of treatment. The direct and systemic effects of ionizing radiation on bone at a therapeutic dose are not well-characterized in clinically relevant animal models. Using 20-week-old male C57Bl/6 mice, effects of irradiation (right hindlimb; 2 Gy) on bone volume and microarchitecture were evaluated prospectively by microcomputed tomography and histomorphometry and compared to contralateral-shielded bone (left hindlimb) and non-irradiated control bone. One week postirradiation, trabecular bone volume declined in irradiated tibias (-22%; p < 0.0001) and femurs (-14%; p = 0.0586) and microarchitectural parameters were compromised. Trabecular bone volume declined in contralateral tibias (-17%; p = 0.003), and no loss was detected at the femur. Osteoclast number, apoptotic osteocyte number, and marrow adiposity were increased in irradiated bone relative to contralateral and non-irradiated bone, whereas osteoblast number was unchanged. Despite no change in osteoblast number 1 week postirradiation, dynamic bone formation indices revealed a reduction in mineralized bone surface and a concomitant increase in unmineralized osteoid surface area in irradiated bone relative to contralateral and non-irradiated control bone. Further, dose-dependent and time-dependent calvarial culture and in vitro assays confirmed that calvarial osteoblasts and osteoblast-like MC3T3 cells were relatively radioresistant, whereas calvarial osteocyte and osteocyte-like MLO-Y4 cell apoptosis was induced as early as 48 hours postirradiation (4 Gy). In osteoclastogenesis assays, radiation exposure (8 Gy) stimulated murine macrophage RAW264.7 cell differentiation, and coculture of irradiated RAW264.7 cells with MLO-Y4 or murine bone marrow cells enhanced this effect. These studies highlight the multifaceted nature of radiation-induced bone loss by demonstrating direct

  7. Retinal Inhibition of CCR3 Induces Retinal Cell Death in a Murine Model of Choroidal Neovascularization

    PubMed Central

    Wang, Haibo; Han, Xiaokun; Gambhir, Deeksha; Becker, Silke; Kunz, Eric; Liu, Angelina Jingtong; Hartnett, M. Elizabeth

    2016-01-01

    Inhibition of chemokine C-C motif receptor 3 (CCR3) signaling has been considered as treatment for neovascular age-related macular degeneration (AMD). However, CCR3 is expressed in neural retina from aged human donor eyes. Therefore, broad CCR3 inhibition may be harmful to the retina. We assessed the effects of CCR3 inhibition on retina and choroidal endothelial cells (CECs) that develop into choroidal neovascularization (CNV). In adult murine eyes, CCR3 colocalized with glutamine-synthetase labeled Műller cells. In a murine laser-induced CNV model, CCR3 immunolocalized not only to lectin-stained cells in CNV lesions but also to the retina. Compared to non-lasered controls, CCR3 mRNA was significantly increased in laser-treated retina. An intravitreal injection of a CCR3 inhibitor (CCR3i) significantly reduced CNV compared to DMSO or PBS controls. Both CCR3i and a neutralizing antibody to CCR3 increased TUNEL+ retinal cells overlying CNV, compared to controls. There was no difference in cleaved caspase-3 in laser-induced CNV lesions or in overlying retina between CCR3i- or control-treated eyes. Following CCR3i, apoptotic inducible factor (AIF) was significantly increased and anti-apoptotic factor BCL2 decreased in the retina; there were no differences in retinal vascular endothelial growth factor (VEGF). In cultured human Műller cells exposed to eotaxin (CCL11) and VEGF, CCR3i significantly increased TUNEL+ cells and AIF but decreased BCL2 and brain derived neurotrophic factor, without affecting caspase-3 activity or VEGF. CCR3i significantly decreased AIF in RPE/choroids and immunostaining of phosphorylated VEGF receptor 2 (p-VEGFR2) in CNV with a trend toward reduced VEGF. In cultured CECs treated with CCL11 and/or VEGF, CCR3i decreased p-VEGFR2 and increased BCL2 without increasing TUNEL+ cells and AIF. These findings suggest that inhibition of retinal CCR3 causes retinal cell death and that targeted inhibition of CCR3 in CECs may be a safer if CCR3 inhibition

  8. Retinal Inhibition of CCR3 Induces Retinal Cell Death in a Murine Model of Choroidal Neovascularization.

    PubMed

    Wang, Haibo; Han, Xiaokun; Gambhir, Deeksha; Becker, Silke; Kunz, Eric; Liu, Angelina Jingtong; Hartnett, M Elizabeth

    2016-01-01

    Inhibition of chemokine C-C motif receptor 3 (CCR3) signaling has been considered as treatment for neovascular age-related macular degeneration (AMD). However, CCR3 is expressed in neural retina from aged human donor eyes. Therefore, broad CCR3 inhibition may be harmful to the retina. We assessed the effects of CCR3 inhibition on retina and choroidal endothelial cells (CECs) that develop into choroidal neovascularization (CNV). In adult murine eyes, CCR3 colocalized with glutamine-synthetase labeled Műller cells. In a murine laser-induced CNV model, CCR3 immunolocalized not only to lectin-stained cells in CNV lesions but also to the retina. Compared to non-lasered controls, CCR3 mRNA was significantly increased in laser-treated retina. An intravitreal injection of a CCR3 inhibitor (CCR3i) significantly reduced CNV compared to DMSO or PBS controls. Both CCR3i and a neutralizing antibody to CCR3 increased TUNEL+ retinal cells overlying CNV, compared to controls. There was no difference in cleaved caspase-3 in laser-induced CNV lesions or in overlying retina between CCR3i- or control-treated eyes. Following CCR3i, apoptotic inducible factor (AIF) was significantly increased and anti-apoptotic factor BCL2 decreased in the retina; there were no differences in retinal vascular endothelial growth factor (VEGF). In cultured human Műller cells exposed to eotaxin (CCL11) and VEGF, CCR3i significantly increased TUNEL+ cells and AIF but decreased BCL2 and brain derived neurotrophic factor, without affecting caspase-3 activity or VEGF. CCR3i significantly decreased AIF in RPE/choroids and immunostaining of phosphorylated VEGF receptor 2 (p-VEGFR2) in CNV with a trend toward reduced VEGF. In cultured CECs treated with CCL11 and/or VEGF, CCR3i decreased p-VEGFR2 and increased BCL2 without increasing TUNEL+ cells and AIF. These findings suggest that inhibition of retinal CCR3 causes retinal cell death and that targeted inhibition of CCR3 in CECs may be a safer if CCR3 inhibition

  9. An Improved Syngeneic Orthotopic Murine Model of Human Breast Cancer Progression

    PubMed Central

    Rashid, Omar M.; Nagahashi, Masayuki; Ramachandran, Suburamaniam; Dumur, Catherine; Schaum, Julia; Yamada, Akimitsu; Terracina, Krista P.; Milstien, Sheldon; Spiegel, Sarah; Takabe, Kazuaki

    2014-01-01

    Purpose Breast cancer drug development costs nearly $610 million and 37 months in preclinical mouse model trials with minimal success rates. Despite these inefficiencies, there are still no consensus breast cancer preclinical models. Methods Murine mammary adenocarcinoma 4T1-luc2 cells were implanted subcutaneous (SQ) or orthotopically percutaneous injection in the area of the nipple (OP), or surgically into the chest 2nd mammary fat pad under direct vision (ODV) in Balb/c immunocompetent mice. Tumor progression was followed by in vivo bioluminescence and direct measurements, pathology and survival determined, and tumor gene expression analyzed by genome-wide microarrays. Results ODV produced less variable sized tumors and was a reliable method of implantation. ODV implantation into the chest 2nd mammary pad rather than into the abdominal 4th mammary pad, the most common implantation site, better mimicked human breast cancer progression pattern, which correlated with bioluminescent tumor burden and survival. Compared to SQ, ODV produced tumors that differentially expressed genes whose interaction networks are of importance in cancer research. qPCR validation of 10 specific target genes of interest in ongoing clinical trials demonstrated significant differences in expression. Conclusions ODV implantation into the chest 2nd mammary pad provides the most reliable model that mimics human breast cancer compared from subcutaneous implantation that produces tumors with different genome expression profiles of clinical significance. Increased understanding of the limitations of the different preclinical models in use will help guide new investigations and may improve the efficiency of breast cancer drug development. PMID:25200444

  10. Testing the Role of p21-Activated Kinases in Schwannoma Formation Using a Novel Genetically Engineered Murine Model that Closely Phenocopies Human NF2 Disease

    DTIC Science & Technology

    2015-06-01

    Research Technician eBRAP ID: Nearest person month worked: 3 Contribution to Project: Maintains the genetically modified murine models; Conducts PCR;Assists...AD ________________ Award Number: W81XWH-14-1-0141 TITLE: PRINCIPAL INVESTIGATOR: Jonathan Chernoff, M.D., Ph.D. CONTRACTING ORGANIZATION ...Kinases in Schwannoma Formation Using a Novel Genetically Engineered Murine Model that Closely Phenocopies Human NF2 Disease The views, opinions and

  11. Gene Therapy Prolongs Survival and Restores Function in Murine and Canine Models of Myotubular Myopathy

    PubMed Central

    Childers, Martin K; Joubert, Romain; Poulard, Karine; Moal, Christelle; Grange, Robert W; Doering, Jonathan A; Lawlor, Michael W; Rider, Branden E.; Jamet, Thibaud; Danièle, Nathalie; Martin, Samia; Rivière, Christel; Soker, Thomas; Hammer, Caroline; Van Wittenberghe, Laetitia; Lockard, Mandy; Guan, Xuan; Goddard, Melissa; Mitchell, Erin; Barber, Jane; Williams, J. Koudy; Mack, David L; Furth, Mark E; Vignaud, Alban; Masurier, Carole; Mavilio, Fulvio; Moullier, Philippe; Beggs, Alan H; Buj-Bello, Anna

    2014-01-01

    Loss-of-function mutations in the myotubularin gene (MTM1) cause X-linked myotubular myopathy (XLMTM), a fatal, congenital pediatric disease that affects the entire skeletal musculature. Systemic administration of a single dose of a recombinant serotype-8 adeno-associated virus (AAV8) vector expressing murine myotubularin to Mtm1-deficient knockout mice at the onset or at late stages of the disease resulted in robust improvement in motor activity and contractile force, corrected muscle pathology and prolonged survival throughout a 6-month study. Similarly, single-dose intravascular delivery of a canine AAV8-MTM1 vector in XLMTM dogs markedly improved severe muscle weakness and respiratory impairment, and prolonged lifespan to more than one year in the absence of toxicity, humoral and cell-mediated immune response. These results demonstrate the therapeutic efficacy of AAV-mediated gene therapy for myotubular myopathy in small and large animal models, and provide proof of concept for future clinical trials in XLMTM patients. PMID:24452262

  12. Gene therapy prolongs survival and restores function in murine and canine models of myotubular myopathy.

    PubMed

    Childers, Martin K; Joubert, Romain; Poulard, Karine; Moal, Christelle; Grange, Robert W; Doering, Jonathan A; Lawlor, Michael W; Rider, Branden E; Jamet, Thibaud; Danièle, Nathalie; Martin, Samia; Rivière, Christel; Soker, Thomas; Hammer, Caroline; Van Wittenberghe, Laetitia; Lockard, Mandy; Guan, Xuan; Goddard, Melissa; Mitchell, Erin; Barber, Jane; Williams, J Koudy; Mack, David L; Furth, Mark E; Vignaud, Alban; Masurier, Carole; Mavilio, Fulvio; Moullier, Philippe; Beggs, Alan H; Buj-Bello, Anna

    2014-01-22

    Loss-of-function mutations in the myotubularin gene (MTM1) cause X-linked myotubular myopathy (XLMTM), a fatal, congenital pediatric disease that affects the entire skeletal musculature. Systemic administration of a single dose of a recombinant serotype 8 adeno-associated virus (AAV8) vector expressing murine myotubularin to Mtm1-deficient knockout mice at the onset or at late stages of the disease resulted in robust improvement in motor activity and contractile force, corrected muscle pathology, and prolonged survival throughout a 6-month study. Similarly, single-dose intravascular delivery of a canine AAV8-MTM1 vector in XLMTM dogs markedly improved severe muscle weakness and respiratory impairment, and prolonged life span to more than 1 year in the absence of toxicity or a humoral or cell-mediated immune response. These results demonstrate the therapeutic efficacy of AAV-mediated gene therapy for myotubular myopathy in small- and large-animal models, and provide proof of concept for future clinical trials in XLMTM patients.

  13. Epigenetic changes during disease progression in a murine model of human chronic lymphocytic leukemia

    PubMed Central

    Chen, Shih-Shih; Raval, Aparna; Johnson, Amy J.; Hertlein, Erin; Liu, Te-Hui; Jin, Victor X.; Sherman, Mara H.; Liu, Shu-Jun; Dawson, David W.; Williams, Katie E.; Lanasa, Mark; Liyanarachchi, Sandya; Lin, Thomas S.; Marcucci, Guido; Pekarsky, Yuri; Davuluri, Ramana; Croce, Carlo M.; Guttridge, Denis C.; Teitell, Michael A.; Byrd, John C.; Plass, Christoph

    2009-01-01

    Epigenetic alterations, including gain or loss of DNA methylation, are a hallmark of nearly every malignancy. Changes in DNA methylation can impact expression of cancer-related genes including apoptosis regulators and tumor suppressors. Because such epigenetic changes are reversible, they are being aggressively investigated as potential therapeutic targets. Here we use the Eμ-TCL1 transgenic mouse model of chronic lymphocytic leukemia (CLL) to determine the timing and patterns of aberrant DNA methylation, and to investigate the mechanisms that lead to aberrant DNA methylation. We show that CLL cells from Eμ-TCL1 mice at various stages recapitulate epigenetic alterations seen in human CLL. Aberrant methylation of promoter sequences is observed as early as 3 months of age in these animals, well before disease onset. Abnormally methylated promoter regions include binding sites for the transcription factor FOXD3. We show that loss of Foxd3 expression due to an NF-κB p50/p50:HDAC1 repressor complex occurs in TCL1-positive B cells before methylation. Therefore, specific transcriptional repression is an early event leading to epigenetic silencing of target genes in murine and human CLL. These results provide strong rationale for the development of strategies to target NF-κB components in CLL and potentially other B-cell malignancies. PMID:19666576

  14. Epigenetic changes during disease progression in a murine model of human chronic lymphocytic leukemia.

    PubMed

    Chen, Shih-Shih; Raval, Aparna; Johnson, Amy J; Hertlein, Erin; Liu, Te-Hui; Jin, Victor X; Sherman, Mara H; Liu, Shu-Jun; Dawson, David W; Williams, Katie E; Lanasa, Mark; Liyanarachchi, Sandya; Lin, Thomas S; Marcucci, Guido; Pekarsky, Yuri; Davuluri, Ramana; Croce, Carlo M; Guttridge, Denis C; Teitell, Michael A; Byrd, John C; Plass, Christoph

    2009-08-11

    Epigenetic alterations, including gain or loss of DNA methylation, are a hallmark of nearly every malignancy. Changes in DNA methylation can impact expression of cancer-related genes including apoptosis regulators and tumor suppressors. Because such epigenetic changes are reversible, they are being aggressively investigated as potential therapeutic targets. Here we use the Emu-TCL1 transgenic mouse model of chronic lymphocytic leukemia (CLL) to determine the timing and patterns of aberrant DNA methylation, and to investigate the mechanisms that lead to aberrant DNA methylation. We show that CLL cells from Emu-TCL1 mice at various stages recapitulate epigenetic alterations seen in human CLL. Aberrant methylation of promoter sequences is observed as early as 3 months of age in these animals, well before disease onset. Abnormally methylated promoter regions include binding sites for the transcription factor FOXD3. We show that loss of Foxd3 expression due to an NF-kappaB p50/p50:HDAC1 repressor complex occurs in TCL1-positive B cells before methylation. Therefore, specific transcriptional repression is an early event leading to epigenetic silencing of target genes in murine and human CLL. These results provide strong rationale for the development of strategies to target NF-kappaB components in CLL and potentially other B-cell malignancies.

  15. Culture of Murine Embryonic Metatarsals: A Physiological Model of Endochondral Ossification

    PubMed Central

    MacRae, Vicky E.; Farquharson, Colin

    2016-01-01

    The fundamental process of endochondral ossification is under tight regulation in the healthy individual so as to prevent disturbed development and/or longitudinal bone growth. As such, it is imperative that we further our understanding of the underpinning molecular mechanisms involved in such disorders so as to provide advances towards human and animal patient benefit. The mouse metatarsal organ explant culture is a highly physiological ex vivo model for studying endochondral ossification and bone growth as the growth rate of the bones in culture mimic that observed in vivo. Uniquely, the metatarsal organ culture allows the examination of chondrocytes in different phases of chondrogenesis and maintains cell-cell and cell-matrix interactions, therefore providing conditions closer to the in vivo situation than cells in monolayer or 3D culture. This protocol describes in detail the intricate dissection of embryonic metatarsals from the hind limb of E15 murine embryos and the subsequent analyses that can be performed in order to examine endochondral ossification and longitudinal bone growth. PMID:28060328

  16. Comparison of virulence of different Sporothrix schenckii clinical isolates using experimental murine model.

    PubMed

    Brito, Marcelly M S; Conceição-Silva, Fatima; Morgado, Fernanda N; Raibolt, Priscila S; Schubach, Armando; Schubach, Tania P; Schäffer, Guido M V; Borba, Cintia M

    2007-12-01

    The virulence of two strains of Sporothrix schenckii isolated from patients with lymphocutaneous or disseminated sporotrichosis were examined in BALB/c mice (Group 1 and 2, respectively). The mice were inoculated subcutaneously into the left hind footpad with 4 x 10(6) S. schenckii yeast cells in order to evaluate (i) the development of cutaneous lesions, (ii) signs of inactivity, (iii) weight loss, (iv) survival rates, (v) number of viable yeast cells in the lungs and spleen, (vi) splenic index, (vii) extent of organ lesions, and (viii) immunological responses. Comparison of the two groups showed more severe disease in Group 2 mice that developed significant weight and hair loss associated with inactivity and left hind footpad lesions that extended close to the testicular area. The histopathology and large number of viable microorganisms isolated from the spleen confirmed the higher invasive ability of this strain. Moreover, a decrease of an in vitro specific lymphoproliferative response and IFN-gamma production were observed over time in Group 2 mice. As a result, at the end of the experiment, the S. schenckii-antigen (Ss-Ag) response was considered negative with a stimulation index (SI) = 2. In contrast, Group 1 mice presented a positive response to Ss-Ag (SI = 14.1). These results confirm the existence of different virulence profiles in S. schenckii strains. In addition, the use of subcutaneous inoculation as a suitable route for verification of the pathogenicity of this fungus in the murine model was confirmed.

  17. Second-Hand Smoke Increases Bronchial Hyperreactivity and Eosinophilia in a Murine Model of Allergic Aspergillosis

    PubMed Central

    Seymour, Brian W. P.; Schelegle, Edward S.; Pinkerton, Kent E.; Friebertshauser, Kathleen E.; Peake, Janice L.; Kurup, Viswanath P.; Coffman, Robert L.; Gershwin, Laurel J.

    2003-01-01

    Involuntary inhalation of tobacco smoke has been shown to aggravate the allergic response. Antibodies to fungal antigens such as Aspergillus fumigatus (Af) cause an allergic lung disease in humans. This study was carried out to determine the effect of environmental tobacco smoke (ETS) on a murine model of allergic bronchopulmonary aspergillosis (ABPA). BALB/c mice were exposed to aged and diluted sidestream cigarette smoke to simulate 'second-hand smoke'. The concentration was consistent with that achieved in enclosed public areas or households where multiple people smoke. During exposure, mice were sensitized to Af antigen intranasally. Mice that were sensitized to Af antigen and exposed to ETS developed significantly greater airway hyperreactivity than did mice similarly sensitized to Af but housed in ambient air. The effective concentration of aerosolized acetylcholine needed to double pulmonary flow resistance was significantly lower in Af + ETS mice compared to the Af + AIR mice. Immunological data that supports this exacerbation of airway hyperresponsiveness being mediated by an enhanced type 1 hypersensitivity response include: eosinophilia in peripheral blood and lung sections. All Af sensitized mice produced elevated levels of IL4, IL5 and IL10 but no IFN-γ indicating a polarized Th2 response. Thus, ETS can cause exacerbation of asthma in ABPA as demonstrated by functional airway hyperresponsiveness and elevated levels of blood eosinophilia. PMID:14575156

  18. Optoacoustic characterization of prostate cancer in an in vivo transgenic murine model

    NASA Astrophysics Data System (ADS)

    Patterson, Michelle P.; Riley, Christopher B.; Kolios, Michael C.; Whelan, William M.

    2014-05-01

    Optoacoustic (OA) imaging was employed to distinguish normal from neoplastic tissues in a transgenic murine model of prostate cancer. OA images of five tumor-bearing mice and five age-matched controls across a 14 mm×14 mm region of interest (ROI) on the lower abdomen were acquired using a reverse-mode OA imaging system (Seno Medical Instruments Inc., San Antonio, Texas). Neoplastic prostate tissue was identified based on the OA signal amplitude in combination with spectral analysis of the OA radio frequency (RF) data. Integration of the signal amplitude images was performed to construct two-dimensional images of the ROI. The prostate tumors generated higher amplitude signals than those of the surrounding tissues, with contrast ratios ranging from 31 to 36 dB. The RF spectrum analysis showed significant differences between the tumor and the control mice. The midband fit was higher by 5 dB (62%), the intercept higher by 4 dB (57%) and the spectral slope higher by 0.4 dB/MHz (50%) for neoplastic prostate tissue compared to normal tissues in the control mice. The results demonstrate that OA offers high contrast imaging of prostate cancer in vivo.

  19. Antitumor effect of pharmacologic ascorbate in the B16 murine melanoma model.

    PubMed

    Serrano, Oscar K; Parrow, Nermi L; Violet, Pierre-Christian; Yang, Jacqueline; Zornjak, Jennifer; Basseville, Agnes; Levine, Mark

    2015-10-01

    Because 5-year survival rates for patients with metastatic melanoma remain below 25%, there is continued need for new therapeutic approaches. For some tumors, pharmacologic ascorbate treatment may have a beneficial antitumor effect and may work synergistically with standard chemotherapeutics. To investigate this possibility in melanoma, we examined the effect of pharmacologic ascorbate on B16-F10 cells. Murine models were employed to compare tumor size following treatment with ascorbate, and the chemotherapeutic agents dacarbazine or valproic acid, alone or in combination with ascorbate. Results indicated that nearly all melanoma cell lines were susceptible to ascorbate-mediated cytotoxicity. Compared to saline controls, pharmacologic ascorbate decreased tumor size in both C57BL/6 (P < 0.0001) and NOD-scid tumor bearing mice (P < 0.0001). Pharmacologic ascorbate was superior or equivalent to dacarbazine as an antitumor agent. Synergy was not apparent when ascorbate was combined with either dacarbazine or valproic acid; the latter combination may have additional toxicities. Pharmacologic ascorbate induced DNA damage in melanoma cells, as evidenced by increased phosphorylation of the histone variant, H2A.X. Differences were not evident in tumor samples from C57BL/6 mice treated with pharmacologic ascorbate compared to tumors from saline-treated controls. Together, these results suggest that pharmacologic ascorbate has a cytotoxic effect against melanoma that is largely independent of lymphocytic immune functions and that continued investigation of pharmacologic ascorbate in cancer treatment is warranted.

  20. Experimental infection of Phlebotomus perniciosus by bioluminescent Leishmania infantum using murine model and artificial feeder

    PubMed Central

    Cannet, Arnaud; Akhoundi, Mohammad; Michel, Gregory; Marty, Pierre; Delaunay, Pascal

    2016-01-01

    Leishmaniasis is a vector-borne disease that is transmitted by sandflies and caused by obligate intracellular protozoa of the genus Leishmania. In the present study, we carried out a screening on the experimental infection of Phlebotomus pernioucus by bioluminescent Leishmania infantum using murine model and artificial feeder. We developed a real-time polymerase chain reaction (RT-PCR)-based method to determine individually the number of Leishmania promastigotes fed by infected flies. Among 1840 new emerged female sand flies, 428 were fed on the infected mice. After their death, they were analysed individually by RT-PCR. Our results demonstrated just a single Leishmania positive female at sixth day post meal. A total of 1070 female sand flies were exposed in contact with artificial feeder containing the human blood with two different quantities of Leishmania parasites: 2.106/mL and 1.107/mL. A blood meal including 1.107/mL LUC-promastigotes was proposed to 270 females and 75 (28%) flies were engorged. Among them, 44 (59%) were positive by RT-PCR analysis, with a relative average of 50551 Leishmania parasites. In case of blood feeding of females with 2.106/mL promastigotes, 57 out of 800 (7%) females succeed to feed from artificial feeder which 22 (39%) were positive with a relative average of 6487 parasites. PMID:27439032

  1. Metallothionein-1 and nitric oxide expression are inversely correlated in a murine model of Chagas disease

    PubMed Central

    Gonzalez-Mejia, Martha Elba; Torres-Rasgado, Enrique; Porchia, Leonardo M; Salgado, Hilda Rosas; Totolhua, José-Luis; Ortega, Arturo; Hernández-Kelly, Luisa Clara Regina; Ruiz-Vivanco, Guadalupe; Báez-Duarte, Blanca G; Pérez-Fuentes, Ricardo

    2014-01-01

    Chagas disease, caused by Trypanosoma cruzi, represents an endemic among Latin America countries. The participation of free radicals, especially nitric oxide (NO), has been demonstrated in the pathophysiology of seropositive individuals with T. cruzi. In Chagas disease, increased NO contributes to the development of cardiomyopathy and megacolon. Metallothioneins (MTs) are efficient free radicals scavengers of NO in vitro and in vivo. Here, we developed a murine model of the chronic phase of Chagas disease using endemic T. cruzi RyCH1 in BALB/c mice, which were divided into four groups: infected non-treated (Inf), infected N-monomethyl-L-arginine treated (Inf L-NAME), non-infected L-NAME treated and non-infected vehicle-treated. We determined blood parasitaemia and NO levels, the extent of parasite nests in tissues and liver MT-I expression levels. It was observed that NO levels were increasing in Inf mice in a time-dependent manner. Inf L-NAME mice had fewer T. cruzi nests in cardiac and skeletal muscle with decreased blood NO levels at day 135 post infection. This affect was negatively correlated with an increase of MT-I expression (r = -0.8462, p < 0.0001). In conclusion, we determined that in Chagas disease, an unknown inhibitory mechanism reduces MT-I expression, allowing augmented NO levels. PMID:24676665

  2. Atovaquone Nanosuspensions Show Excellent Therapeutic Effect in a New Murine Model of Reactivated Toxoplasmosis

    PubMed Central

    Schöler, Nadja; Krause, Karsten; Kayser, Oliver; Müller, Rainer H.; Borner, Klaus; Hahn, Helmut; Liesenfeld, Oliver

    2001-01-01

    Immunocompromised patients are at risk of developing toxoplasma encephalitis (TE). Standard therapy regimens (including sulfadiazine plus pyrimethamine) are hampered by severe side effects. While atovaquone has potent in vitro activity against Toxoplasma gondii, it is poorly absorbed after oral administration and shows poor therapeutic efficacy against TE. To overcome the low absorption of atovaquone, we prepared atovaquone nanosuspensions (ANSs) for intravenous (i.v.) administration. At concentrations higher than 1.0 μg/ml, ANS did not exert cytotoxicity and was as effective as free atovaquone (i.e., atovaquone suspended in medium) against T. gondii in freshly isolated peritoneal macrophages. In a new murine model of TE that closely mimics reactivated toxoplasmosis in immunocompromised hosts, using mice with a targeted mutation in the gene encoding the interferon consensus sequence binding protein, i.v.-administered ANS doses of 10.0 mg/kg of body weight protected the animals against development of TE and death. Atovaquone was detectable in the sera, brains, livers, and lungs of mice by high-performance liquid chromatography. Development of TE and mortality in mice treated with 1.0- or 0.1-mg/kg i.v. doses of ANS did not differ from that in mice treated orally with 100 mg of atovaquone/kg. In conclusion, i.v. ANSs may prove to be an effective treatment alternative for patients with TE. PMID:11353624

  3. Pharmacokinetics-Pharmacodynamics Analysis of Bicyclic 4-Nitroimidazole Analogs in a Murine Model of Tuberculosis

    PubMed Central

    Lakshminarayana, Suresh B.; Boshoff, Helena I. M.; Cherian, Joseph; Ravindran, Sindhu; Goh, Anne; Jiricek, Jan; Nanjundappa, Mahesh; Nayyar, Amit; Gurumurthy, Meera; Singh, Ramandeep; Dick, Thomas; Blasco, Francesca; Barry, Clifton E.; Ho, Paul C.; Manjunatha, Ujjini H.

    2014-01-01

    PA-824 is a bicyclic 4-nitroimidazole, currently in phase II clinical trials for the treatment of tuberculosis. Dose fractionation pharmacokinetic-pharmacodynamic studies in mice indicated that the driver of PA-824 in vivo efficacy is the time during which the free drug concentrations in plasma are above the MIC (fT>MIC). In this study, a panel of closely related potent bicyclic 4-nitroimidazoles was profiled in both in vivo PK and efficacy studies. In an established murine TB model, the efficacy of diverse nitroimidazole analogs ranged between 0.5 and 2.3 log CFU reduction compared to untreated controls. Further, a retrospective analysis was performed for a set of seven nitroimidazole analogs to identify the PK parameters that correlate with in vivo efficacy. Our findings show that the in vivo efficacy of bicyclic 4-nitroimidazoles correlated better with lung PK than with plasma PK. Further, nitroimidazole analogs with moderate-to-high volume of distribution and Lung to plasma ratios of >2 showed good efficacy. Among all the PK-PD indices, total lung T>MIC correlated the best with in vivo efficacy (rs = 0.88) followed by lung Cmax/MIC and AUC/MIC. Thus, lung drug distribution studies could potentially be exploited to guide the selection of compounds for efficacy studies, thereby accelerating the drug discovery efforts in finding new nitroimidazole analogs. PMID:25141257

  4. Fecal Microbiota Transplantation Eliminates Clostridium difficile in a Murine Model of Relapsing Disease.

    PubMed

    Seekatz, Anna M; Theriot, Casey M; Molloy, Caitlyn T; Wozniak, Katherine L; Bergin, Ingrid L; Young, Vincent B

    2015-10-01

    Recurrent Clostridium difficile infection (CDI) is of particular concern among health care-associated infections. The role of the microbiota in disease recovery is apparent given the success of fecal microbiota transplantation (FMT) for recurrent CDI. Here, we present a murine model of CDI relapse to further define the microbiota recovery following FMT. Cefoperazone-treated mice were infected with C. difficile 630 spores and treated with vancomycin after development of clinical disease. Vancomycin treatment suppressed both C. difficile colonization and cytotoxin titers. However, C. difficile counts increased within 7 days of completing treatment, accompanied by relapse of clinical signs. The administration of FMT immediately after vancomycin cleared C. difficile and decreased cytotoxicity within 1 week. The effects of FMT on the gut microbiota community were detectable in recipients 1-day posttransplant. Conversely, mice not treated with FMT remained persistently colonized with high levels of C. difficile, and the gut microbiota in these mice persisted at low diversity. These results suggest that full recovery of colonization resistance against C. difficile requires the restoration of a specific community structure.

  5. Successful treatment of the murine model of cystinosis using bone marrow cell transplantation.

    PubMed

    Syres, Kimberly; Harrison, Frank; Tadlock, Matthew; Jester, James V; Simpson, Jennifer; Roy, Subhojit; Salomon, Daniel R; Cherqui, Stephanie

    2009-09-17

    Cystinosis is an autosomal recessive metabolic disease that belongs to the family of lysosomal storage disorders. The defective gene is CTNS encoding the lysosomal cystine transporter, cystinosin. Cystine accumulates in every organ in the body and leads to organ damage and dysfunction, including renal defects. Using the murine model for cystinosis, Ctns(-/-) mice, we performed syngeneic bone marrow cell (BMC), hematopoietic stem cell (HSC), and mesenchymal stem cell transplantation. Organ-specific cystine content was reduced by 57% to 94% in all organs tested in the BMC-treated mice. Confocal microscopy and quantitative polymerase chain reaction revealed a large quantity of transplanted BMC in all organs tested, from 5% to 19% of the total cells. Most of these cells were not from the lymphoid lineage but part of the intrinsic structure of the organ. The natural progression of renal dysfunction was prevented, and deposition of corneal cystine crystals was significantly improved in the BMC-treated mice. HSC had the same therapeutic effect as whole BMC. In contrast, mesenchymal stem cell did not integrate efficiently in any organ. This work is a proof of concept for using HSC transplantation as a therapy for cystinosis and highlights the efficiency of this strategy for a chronic, progressive degenerative disease.

  6. Efficacy of single large doses of caspofungin in a neutropenic murine model against the "psilosis" group.

    PubMed

    Berényi, Réka; Kovács, Renátó; Domán, Marianna; Gesztelyi, Rudolf; Kardos, Gábor; Juhász, Béla; Perlin, David; Majoros, László

    2014-07-01

    We compared the in vivo efficacy of single large dose of caspofungin to that of daily smaller caspofungin doses (with same cumulative doses) against C. albicans (echinocandin susceptible and resistant isolates) and the “psilosis� group in a neutropenic murine model. Seven treatment groups were formed for C. orthopsilosis, C. metapsilosis and C. albicans (no treatment, 1, 2 and 3 mg/kg caspofungin daily for five days; single 5, 10 and 15 mg/kg caspofungin doses). For C. parapsilosis there were five treatment groups (no treatment, 3 and 4 mg/kg caspofungin daily for five days; single 15 and 20 mg/kg caspofungin). Tissue burdens of C. orthopsilosis and C. parapsilosis were significantly decreased by daily 3 mg/kg and 10 or 15 mg/kg single caspofungin doses (P<0.05-0.01) and daily 4 mg/kg and by single 15 and 20 mg/kg caspofungin doses (P<0.05-0.01), respectively. Against C. metapsilosis all treatment arms except the daily 1 mg/kg were effective (P<0.05-<0.001). Against C. albicans all treatment doses were effective. Neither daily 16 mg/kg nor single 80 mg/kg were effective against the resistant C. albicans strain. Higher doses and less frequent administration of caspofungin were comparable or sometimes superior to the lower, daily-dose regimen against the “psilosis� group supporting further studies with this therapeutic strategy.

  7. Cellular and molecular etiology of hepatocyte injury in a murine model of environmentally induced liver abnormality

    PubMed Central

    Al-Griw, M.A.; Alghazeer, R.O.; Al-Azreg, S.A.; Bennour, E.M.

    2016-01-01

    Exposures to a wide variety of environmental substances are negatively associated with many biological cell systems both in humans and rodents. Trichloroethane (TCE), a ubiquitous environmental toxicant, is used in large quantities as a dissolvent, metal degreaser, chemical intermediate, and component of consumer products. This increases the likelihood of human exposure to these compounds through dermal, inhalation and oral routes. The present in vivo study was aimed to investigate the possible cellular and molecular etiology of liver abnormality induced by early exposure to TCE using a murine model. The results showed a significant increase in liver weight. Histopathological examination revealed a TCE-induced hepatotoxicity which appeared as heavily congested central vein and blood sinusoids as well as leukocytic infiltration. Mitotic figures and apoptotic changes such as chromatin condensation and nuclear fragments were also identified. Cell death analysis demonstrates hepatocellular apoptosis was evident in the treated mice compared to control. TCE was also found to induce oxidative stress as indicated by an increase in the levels of lipid peroxidation, an oxidative stress marker. There was also a significant decrease in the DNA content of the hepatocytes of the treated groups compared to control. Agarose gel electrophoresis also provided further biochemical evidence of apoptosis by showing internucleosomal DNA fragmentation in the liver cells, indicating oxidative stress as the cause of DNA damage. These results suggest the need for a complete risk assessment of any new chemical prior to its arrival into the consumer market. PMID:27800299

  8. Chrysin alleviates allergic inflammation and airway remodeling in a murine model of chronic asthma.

    PubMed

    Yao, Jing; Jiang, Mingzi; Zhang, Yunshi; Liu, Xing; Du, Qiang; Feng, Ganzhu

    2016-03-01

    Asthma is a chronic airway inflammatory disorder and progresses mainly due to airway remodeling. Chrysin, a natural flavonoid, has been reported to possess multiple biologic activities, including anti-inflammation, anti-oxidation and anti-proliferation. The present study aimed to investigate whether chrysin could relieve allergic airway inflammation and remodeling in a murine model of chronic asthma and the mechanism involved. The female BALB/c mice sensitized and challenged with ovalbumin (OVA) successfully developed airway hyperresponsiveness (AHR), inflammation and remodeling. The experimental data showed that chrysin could alleviate OVA-induced AHR. Chrysin could also reduce OVA-induced increases in the number of inflammatory cells, especially eosinophils, interleukin (IL) -4, and IL-13 in bronchoalveolar lavage fluid (BALF) and total IgE in serum. The decreased interferon-γ (IFN-γ) level in BALF was also upregulated by chrysin. In addition, inflammatory cell infiltration, goblet cell hyperplasia and the expression of α-smooth muscle actin (α-SMA) around bronchioles were suppressed by chrysin. Furthermore, the phosphorylation levels of Akt and extracellular signal-regulated kinase (ERK) could be decreased by chrysin, which are associated with airway smooth muscle cell (ASMC) proliferation. These results indicate the promising therapeutic effect of chrysin on chronic asthma, especially the progression of airway remodeling.

  9. N-acetylglucosamine increases symptoms and fungal burden in a murine model of oral candidiasis.

    PubMed

    Ishijima, Sanae A; Hayama, Kazumi; Takahashi, Miki; Holmes, Ann R; Cannon, Richard D; Abe, Shigeru

    2012-04-01

    The amino sugar N-acetylglucosamine (GlcNAc) is an in vitro inducer of the hyphal mode of growth of the opportunistic pathogen Candida albicans. The development of hyphae by C. albicans is considered to contribute to the pathogenesis of mucosal oral candidiasis. GlcNAc is also a commonly used nutritional supplement for the self-treatment of conditions such as arthritis. To date, no study has investigated whether ingestion of GlcNAc has an effect on the in vivo growth of C. albicans or the pathogenesis of a C. albicans infection. Using a murine model of oral candidiasis, we have found that administration of GlcNAc, but not glucose, increased oral symptoms of candidiasis and fungal burden. Groups of mice were given GlcNAc in either water or in a viscous carrier, i.e., 1% methylcellulose. There was a dose-dependent relationship between GlcNAc concentration and the severity of oral symptoms. Mice given the highest dose of GlcNAc, 45.2 mM, also showed a significant increase in fungal burden, and increased histological evidence of infection compared to controls given water alone. We propose that ingestion of GlcNAc, as a nutritional supplement, may have an impact on oral health in people susceptible to oral candidiasis.

  10. Longitudinal Tracking of Human Dendritic Cells in Murine Models Using Magnetic Resonance Imaging

    PubMed Central

    Briley-Saebo, Karen C.; Leboeuf, Marylene; Dickson, Stephen; Mani, Venkatesh; Fayad, Zahi A.; Palucka, A. Karolina; Banchereau, Jacques; Merad, Miriam

    2011-01-01

    Ex vivo generated dendritic cells are currently used to induce therapeutic immunity in solid tumors. Effective immune response requires dendritic cells to home and remain in lymphoid organs to allow for adequate interaction with T lymphocytes. The aim of the current study was to detect and track Feridex labeled human dendritic cells in murine models using magnetic resonance imaging. Human dendritic cells were incubated with Feridex and the effect of labeling on dendritic cells immune function was evaluated. Ex vivo dendritic cell phantoms were used to estimate sensitivity of the magnetic resonance methods and in vivo homing was evaluated after intravenous or subcutaneous injection. R2*-maps of liver, spleen, and draining lymph nodes were obtained and inductively coupled plasma mass spectrometry or relaxometry methods were used to quantify the Feridex tissue concentrations. Correlations between in vivo R2* values and iron content were then determined. Feridex labeling did not affect dendritic cell maturation or function. Phantom results indicated that it was possible to detect 125 dendritic cells within a given slice. Strong correlation between in vivo R2* values and iron deposition was observed. Importantly, Feridex-labeled dendritic cells were detected in the spleen for up to 2 weeks postintravenous injection. This study suggests that magnetic resonance imaging may be used to longitudinally track Feridex-labeled human dendritic cells for up to 2 weeks after injection. PMID:20593373

  11. Benzalkonium chloride breaks down conjunctival immunological tolerance in a murine model.

    PubMed

    Galletti, J G; Gabelloni, M L; Morande, P E; Sabbione, F; Vermeulen, M E; Trevani, A S; Giordano, M N

    2013-01-01

    The impact of topical eye drops with benzalkonium chloride (BAK) as a preservative could involve more than the reported toxic effects on the ocular surface epithelium and ultimately affect the immune balance of the conjunctiva. We found that BAK not only impairs tolerance induction in a murine model, but leads to mild systemic immunization. Contrasting with antigen only-treated mice, there was no induction of interleukin 10-producing antigen-specific CD4(+) cells in BAK-treated animals. Moreover, the tolerogenic capacity of migrating dendritic cells (DCs) was reduced, apparently involving differential conditioning by soluble epithelial factors. Accordingly, epithelial cells exposed in vitro to BAK were less suppressive and failed to induce tolerogenic DCs in culture. As this effect of BAK was dependent on epithelial nuclear factor κB pathway activation, our findings may provide new therapeutic targets. Thus, tolerance breakdown by BAK should be considered an important factor in the management of glaucoma and immune-mediated ocular surface disorders.

  12. Ruthenium-Clotrimazole complex has significant efficacy in the murine model of cutaneous leishmaniasis.

    PubMed

    Iniguez, Eva; Varela-Ramirez, Armando; Martínez, Alberto; Torres, Caresse L; Sánchez-Delgado, Roberto A; Maldonado, Rosa A

    2016-12-01

    In previous studies we reported a novel series of organometallic compounds, Ru(II) complexed with clotrimazole, displaying potent trypanosomatid activity with unnoticeable toxicity toward normal mammalian cells. In view of the promising activity of Ru-clotrimazole complexes against Leishmania major (L. major), the present work sought to investigate the anti-leishmanial activity of the AM162 complex in the murine model of cutaneous leishmaniasis. In addition, to facilitate the design of new therapeutic strategies against this disease, we investigated the mode of action of two Ru-clotrimazole complexes in L. major promastigotes. Overall, we demonstrate that AM162 significantly reduced the lesion size in mice exposed to L. major infection. In addition, Ru-clotrimazole compounds are able to induce a mitochondrial dependent apoptotic-like death in the extracellular form of the parasite based on labeling of DNA fragments, mitochondrial depolarization, cell cycle alteration profile and plasma membrane phospholipid externalization. Our findings reveal a promising efficacy of the Ru-clotrimazole AM162 complex for the treatment of cutaneous leishmaniasis, as well as pro-apoptotic activity and thus guarantees further evaluation in pre-clinical studies.

  13. A pain-mediated neural signal induces relapse in murine autoimmune encephalomyelitis, a multiple sclerosis model

    PubMed Central

    Arima, Yasunobu; Kamimura, Daisuke; Atsumi, Toru; Harada, Masaya; Kawamoto, Tadafumi; Nishikawa, Naoki; Stofkova, Andrea; Ohki, Takuto; Higuchi, Kotaro; Morimoto, Yuji; Wieghofer, Peter; Okada, Yuka; Mori, Yuki; Sakoda, Saburo; Saika, Shizuya; Yoshioka, Yoshichika; Komuro, Issei; Yamashita, Toshihide; Hirano, Toshio; Prinz, Marco; Murakami, Masaaki

    2015-01-01

    Although pain is a common symptom of various diseases and disorders, its contribution to disease pathogenesis is not well understood. Here we show using murine experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis (MS), that pain induces EAE relapse. Mechanistic analysis showed that pain induction activates a sensory-sympathetic signal followed by a chemokine-mediated accumulation of MHC class II+CD11b+ cells that showed antigen-presentation activity at specific ventral vessels in the fifth lumbar cord of EAE-recovered mice. Following this accumulation, various immune cells including pathogenic CD4+ T cells recruited in the spinal cord in a manner dependent on a local chemokine inducer in endothelial cells, resulting in EAE relapse. Our results demonstrate that a pain-mediated neural signal can be transformed into an inflammation reaction at specific vessels to induce disease relapse, thus making this signal a potential therapeutic target. DOI: http://dx.doi.org/10.7554/eLife.08733.001 PMID:26193120

  14. In utero gene therapy rescues vision in a murine model of congenital blindness.

    PubMed

    Dejneka, Nadine S; Surace, Enrico M; Aleman, Tomas S; Cideciyan, Artur V; Lyubarsky, Arkady; Savchenko, Andrey; Redmond, T Michael; Tang, Waixing; Wei, Zhangyong; Rex, Tonia S; Glover, Ernest; Maguire, Albert M; Pugh, Edward N; Jacobson, Samuel G; Bennett, Jean

    2004-02-01

    The congenital retinal blindness known as Leber congenital amaurosis (LCA) can be caused by mutations in the RPE65 gene. RPE65 plays a critical role in the visual cycle that produces the photosensitive pigment rhodopsin. Recent evidence from human studies of LCA indicates that earlier rather than later intervention may be more likely to restore vision. We determined the impact of in utero delivery of the human RPE65 cDNA to retinal pigment epithelium cells in a murine model of LCA, the Rpe65(-/-) mouse, using a serotype 2 adeno-associated virus packaged within an AAV1 capsid (AAV2/1). Delivery of AAV2/1-CMV-hRPE65 to fetuses (embryonic day 14) resulted in efficient transduction of retinal pigment epithelium, restoration of visual function, and measurable rhodopsin. The results demonstrate AAV-mediated correction of the deficit and suggest that in utero retinal gene delivery may be a useful approach for treating a variety of blinding congenital retinal diseases.

  15. Curcumin increases the pathogenicity of Salmonella enterica serovar Typhimurium in murine model.

    PubMed

    Marathe, Sandhya A; Ray, Seemun; Chakravortty, Dipshikha

    2010-07-09

    Curcumin has gained immense importance for its vast therapeutic and prophylactic applications. Contrary to this, our study reveals that it regulates the defense pathways of Salmonella enterica serovar Typhimurium (S. Typhimurium) to enhance its pathogenicity. In a murine model of typhoid fever, we observed higher bacterial load in Peyer's patches, mesenteric lymph node, spleen and liver, when infected with curcumin-treated Salmonella. Curcumin increased the resistance of S. Typhimurium against antimicrobial agents like antimicrobial peptides, reactive oxygen and nitrogen species. This increased tolerance might be attributed to the up-regulation of genes involved in resistance against antimicrobial peptides--pmrD and pmrHFIJKLM and genes with antioxidant function--mntH, sodA and sitA. We implicate that iron chelation property of curcumin have a role in regulating mntH and sitA. Interestingly, we see that the curcumin-mediated modulation of pmr genes is through the PhoPQ regulatory system. Curcumin downregulates SPI1 genes, required for entry into epithelial cells and upregulates SPI2 genes required to intracellular survival. Since it is known that the SPI1 and SPI2 system can be regulated by the PhoPQ system, this common regulator could explain curcumin's mode of action. This data urges us to rethink the indiscriminate use of curcumin especially during Salmonella outbreaks.

  16. Stimulation of Respiratory Motor Output and Ventilation in a Murine Model of Pompe Disease by Ampakines

    PubMed Central

    ElMallah, Mai K.; Pagliardini, Silvia; Turner, Sara M.; Cerreta, Anthony J.; Falk, Darin J.; Byrne, Barry J.; Greer, John J.

    2015-01-01

    Pompe disease results from a mutation in the acid α-glucosidase gene leading to lysosomal glycogen accumulation. Respiratory insufficiency is common, and the current U.S. Food and Drug Administration–approved treatment, enzyme replacement, has limited effectiveness. Ampakines are drugs that enhance α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor responses and can increase respiratory motor drive. Recent work indicates that respiratory motor drive can be blunted in Pompe disease, and thus pharmacologic stimulation of breathing may be beneficial. Using a murine Pompe model with the most severe clinical genotype (the Gaa−/− mouse), our primary objective was to test the hypothesis that ampakines can stimulate respiratory motor output and increase ventilation. Our second objective was to confirm that neuropathology was present in Pompe mouse medullary respiratory control neurons. The impact of ampakine CX717 on breathing was determined via phrenic and hypoglossal nerve recordings in anesthetized mice and whole-body plethysmography in unanesthetized mice. The medulla was examined using standard histological methods coupled with immunochemical markers of respiratory control neurons. Ampakine CX717 robustly increased phrenic and hypoglossal inspiratory bursting and reduced respiratory cycle variability in anesthetized Pompe mice, and it increased inspiratory tidal volume in unanesthetized Pompe mice. CX717 did not significantly alter these variables in wild-type mice. Medullary respiratory neurons showed extensive histopathology in Pompe mice. Ampakines stimulate respiratory neuromotor output and ventilation in Pompe mice, and therefore they have potential as an adjunctive therapy in Pompe disease. PMID:25569118

  17. The Metabolic Syndrome and Microvascular Complications in a Murine Model of Type 2 Diabetes.

    PubMed

    Hur, Junguk; Dauch, Jacqueline R; Hinder, Lucy M; Hayes, John M; Backus, Carey; Pennathur, Subramaniam; Kretzler, Matthias; Brosius, Frank C; Feldman, Eva L

    2015-09-01

    To define the components of the metabolic syndrome that contribute to diabetic polyneuropathy (DPN) in type 2 diabetes mellitus (T2DM), we treated the BKS db/db mouse, an established murine model of T2DM and the metabolic syndrome, with the thiazolidinedione class drug pioglitazone. Pioglitazone treatment of BKS db/db mice produced a significant weight gain, restored glycemic control, and normalized measures of serum oxidative stress and triglycerides but had no effect on LDLs or total cholesterol. Moreover, although pioglitazone treatment normalized renal function, it had no effect on measures of large myelinated nerve fibers, specifically sural or sciatic nerve conduction velocities, but significantly improved measures of small unmyelinated nerve fiber architecture and function. Analyses of gene expression arrays of large myelinated sciatic nerves from pioglitazone-treated animals revealed an unanticipated increase in genes related to adipogenesis, adipokine signaling, and lipoprotein signaling, which likely contributed to the blunted therapeutic response. Similar analyses of dorsal root ganglion neurons revealed a salutary effect of pioglitazone on pathways related to defense and cytokine production. These data suggest differential susceptibility of small and large nerve fibers to specific metabolic impairments associated with T2DM and provide the basis for discussion of new treatment paradigms for individuals with T2DM and DPN.

  18. Inhaled Liposomal Ciprofloxacin Protects against a Lethal Infection in a Murine Model of Pneumonic Plague

    PubMed Central

    Hamblin, Karleigh A.; Armstrong, Stuart J.; Barnes, Kay B.; Davies, Carwyn; Laws, Thomas; Blanchard, James D.; Harding, Sarah V.; Atkins, Helen S.

    2017-01-01

    Inhalation of Yersinia pestis can lead to pneumonic plague, which without treatment is inevitably fatal. Two novel formulations of liposome-encapsulated ciprofloxacin, ‘ciprofloxacin for inhalation’ (CFI, Lipoquin®) and ‘dual release ciprofloxacin for inhalation’ (DRCFI, Pulmaquin®) containing CFI and ciprofloxacin solution, are in development. These were evaluated as potential therapies for infection with Y. pestis. In a murine model of pneumonic plague, human-like doses of aerosolized CFI, aerosolized DRCFI or intraperitoneal (i.p.) ciprofloxacin were administered at 24 h (representing prophylaxis) or 42 h (representing treatment) post-challenge. All three therapies provided a high level of protection when administered 24 h post-challenge. A single dose of CFI, but not DRCFI, significantly improved survival compared to a single dose of ciprofloxacin. Furthermore, single doses of CFI and DRCFI reduced bacterial burden in lungs and spleens to below the detectable limit at 60 h post-challenge. When therapy was delayed until 42 h post-challenge, a single dose of CFI or DRCFI offered minimal protection. However, single doses of CFI or DRCFI were able to significantly reduce the bacterial burden in the spleen compared to empty liposomes. A three-day treatment regimen of ciprofloxacin, CFI, or DRCFI resulted in high levels of protection (90–100% survival). This study suggests that CFI and DRCFI may be useful therapies for Y. pestis infection, both as prophylaxis and for the treatment of plague. PMID:28220110

  19. Immunoreactivity evaluation of a new recombinant chimeric protein against Brucella in the murine model

    PubMed Central

    Abdollahi, Abbas; Mansouri, Shahla; Amani, Jafar; Fasihi-Ramandi, Mahdi; Moradi, Mohammad

    2016-01-01

    Background and Objectives: Brucellosis is an important health problem in developing countries and no vaccine is available for the prevention of infection in humans. Because of clinically infectious diseases and their economic consequences in human and animals, designing a proper vaccine against Brucella is desirable. In this study, we evaluated the immune responses induced by a designed recombinant chimera protein in murine model. Materials and Methods: Three immunodominant antigens of Brucella have been characterized as potential immunogenic and protective antigens including: trigger factor (TF), Omp31 and Bp26 were fused together by EAAAK linkers to produce a chimera (structure were designed in silico), which was synthesized, cloned, and expressed in E. coli BL21 (DE3). The purification of recombinant protein was performed using Ni-NTA agarose. SDS-PAGE and anti-His antibody was used for confirmation purified protein (Western blot). BALB/c immunization was performed by purified protein and adjuvant, and sera antibody levels were measured by ELISA. otted. Results: SDS-PAGE and Western blotting results indicated the similarity of in silico designing and in vitro experiments. ELISA result proved that the immunized sera of mice contain high levels of antibodies (IgG) against recombinant chimeric protein. Conclusion: The recombinant chimeric protein could be a potential antigen candidate for the development of a subunit vaccine against Brucella. PMID:27928487

  20. Cytokine profile of a self-healing Fonsecaea pedrosoi infection in murine model.

    PubMed

    Wang, Hong; Mu, Weidong; Ja, Qing; Zhang, Miao; Chen, Ruie; Lv, Guixia; Shen, Yongnian; Liu, Weida

    2013-11-01

    Chromoblastomycosis is a chronic infectious disease of the skin and subcutaneous tissue. However, the host-defence response to this fungal infection has not been investigated thoroughly. This study was carried out to analyse the sequential events and the change of local cytokine release in a murine model infected with Fonsecaea pedrosoi in footpad. The anti-inflammatory Th2 cytokine IL-10 demonstrated an upward trend up to 7 days post infection followed by a steady decline. The titers of TNF-α (a pro-inflammatory Th1 cytokine) increased up to 7 days post infection followed by a relatively steady-state until full recovery. The anti-inflammatory cytokine IL-4 showed a similar pattern as TNF-α. The pro-inflammatory cytokine IFN-γ did not increased until 7 days post infection, while demonstrated an upward trend up to 30 days when the mice reached a full recovery from infection.

  1. High-Dose Menaquinone-7 Supplementation Reduces Cardiovascular Calcification in a Murine Model of Extraosseous Calcification.

    PubMed

    Scheiber, Daniel; Veulemans, Verena; Horn, Patrick; Chatrou, Martijn L; Potthoff, Sebastian A; Kelm, Malte; Schurgers, Leon J; Westenfeld, Ralf

    2015-08-18

    Cardiovascular calcification is prevalent in the aging population and in patients with chronic kidney disease (CKD) and diabetes mellitus, giving rise to substantial morbidity and mortality. Vitamin K-dependent matrix Gla-protein (MGP) is an important inhibitor of calcification. The aim of this study was to evaluate the impact of high-dose menaquinone-7 (MK-7) supplementation (100 µg/g diet) on the development of extraosseous calcification in a murine model. Calcification was induced by 5/6 nephrectomy combined with high phosphate diet in rats. Sham operated animals served as controls. Animals received high or low MK-7 diets for 12 weeks. We assessed vital parameters, serum chemistry, creatinine clearance, and cardiac function. CKD provoked increased aortic (1.3 fold; p < 0.05) and myocardial (2.4 fold; p < 0.05) calcification in line with increased alkaline phosphatase levels (2.2 fold; p < 0.01). MK-7 supplementation inhibited cardiovascular calcification and decreased aortic alkaline phosphatase tissue concentrations. Furthermore, MK-7 supplementation increased aortic MGP messenger ribonucleic acid (mRNA) expression (10-fold; p < 0.05). CKD-induced arterial hypertension with secondary myocardial hypertrophy and increased elastic fiber breaking points in the arterial tunica media did not change with MK-7 supplementation. Our results show that high-dose MK-7 supplementation inhibits the development of cardiovascular calcification. The protective effect of MK-7 may be related to the inhibition of secondary mineralization of damaged vascular structures.

  2. Intraventricular injections of mesenchymal stem cells activate endogenous functional remyelination in a chronic demyelinating murine model

    PubMed Central

    Cruz-Martinez, P; González-Granero, S; Molina-Navarro, M M; Pacheco-Torres, J; García-Verdugo, J M; Geijo-Barrientos, E; Jones, J; Martinez, S

    2016-01-01

    Current treatments for demyelinating diseases are generally only capable of ameliorating the symptoms, with little to no effect in decreasing myelin loss nor promoting functional recovery. Mesenchymal stem cells (MSCs) have been shown by many researchers to be a potential therapeutic tool in treating various neurodegenerative diseases, including demyelinating disorders. However, in the majority of the cases, the effect was only observed locally, in the area surrounding the graft. Thus, in order to achieve general remyelination in various brain structures simultaneously, bone marrow-derived MSCs were transplanted into the lateral ventricles (LVs) of the cuprizone murine model. In this manner, the cells may secrete soluble factors into the cerebrospinal fluid (CSF) and boost the endogenous oligodendrogenic potential of the subventricular zone (SVZ). As a result, oligodendrocyte progenitor cells (OPCs) were recruited within the corpus callosum (CC) over time, correlating with an increased myelin content. Electrophysiological studies, together with electron microscopy (EM) analysis, indicated that the newly formed myelin correctly enveloped the demyelinated axons and increased signal transduction through the CC. Moreover, increased neural stem progenitor cell (NSPC) proliferation was observed in the SVZ, possibly due to the tropic factors released by the MSCs. In conclusion, the findings of this study revealed that intraventricular injections of MSCs is a feasible method to elicit a paracrine effect in the oligodendrogenic niche of the SVZ, which is prone to respond to the factors secreted into the CSF and therefore promoting oligodendrogenesis and functional remyelination. PMID:27171265

  3. High-Dose Menaquinone-7 Supplementation Reduces Cardiovascular Calcification in a Murine Model of Extraosseous Calcification

    PubMed Central

    Scheiber, Daniel; Veulemans, Verena; Horn, Patrick; Chatrou, Martijn L.; Potthoff, Sebastian A.; Kelm, Malte; Schurgers, Leon J.; Westenfeld, Ralf

    2015-01-01

    Cardiovascular calcification is prevalent in the aging population and in patients with chronic kidney disease (CKD) and diabetes mellitus, giving rise to substantial morbidity and mortality. Vitamin K-dependent matrix Gla-protein (MGP) is an important inhibitor of calcification. The aim of this study was to evaluate the impact of high-dose menaquinone-7 (MK-7) supplementation (100 µg/g diet) on the development of extraosseous calcification in a murine model. Calcification was induced by 5/6 nephrectomy combined with high phosphate diet in rats. Sham operated animals served as controls. Animals received high or low MK-7 diets for 12 weeks. We assessed vital parameters, serum chemistry, creatinine clearance, and cardiac function. CKD provoked increased aortic (1.3 fold; p < 0.05) and myocardial (2.4 fold; p < 0.05) calcification in line with increased alkaline phosphatase levels (2.2 fold; p < 0.01). MK-7 supplementation inhibited cardiovascular calcification and decreased aortic alkaline phosphatase tissue concentrations. Furthermore, MK-7 supplementation increased aortic MGP messenger ribonucleic acid (mRNA) expression (10-fold; p < 0.05). CKD-induced arterial hypertension with secondary myocardial hypertrophy and increased elastic fiber breaking points in the arterial tunica media did not change with MK-7 supplementation. Our results show that high-dose MK-7 supplementation inhibits the development of cardiovascular calcification. The protective effect of MK-7 may be related to the inhibition of secondary mineralization of damaged vascular structures. PMID:26295257

  4. Stimulation of Respiratory Motor Output and Ventilation in a Murine Model of Pompe Disease by Ampakines.

    PubMed

    ElMallah, Mai K; Pagliardini, Silvia; Turner, Sara M; Cerreta, Anthony J; Falk, Darin J; Byrne, Barry J; Greer, John J; Fuller, David D

    2015-09-01

    Pompe disease results from a mutation in the acid α-glucosidase gene leading to lysosomal glycogen accumulation. Respiratory insufficiency is common, and the current U.S. Food and Drug Administration-approved treatment, enzyme replacement, has limited effectiveness. Ampakines are drugs that enhance α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor responses and can increase respiratory motor drive. Recent work indicates that respiratory motor drive can be blunted in Pompe disease, and thus pharmacologic stimulation of breathing may be beneficial. Using a murine Pompe model with the most severe clinical genotype (the Gaa(-/-) mouse), our primary objective was to test the hypothesis that ampakines can stimulate respiratory motor output and increase ventilation. Our second objective was to confirm that neuropathology was present in Pompe mouse medullary respiratory control neurons. The impact of ampakine CX717 on breathing was determined via phrenic and hypoglossal nerve recordings in anesthetized mice and whole-body plethysmography in unanesthetized mice. The medulla was examined using standard histological methods coupled with immunochemical markers of respiratory control neurons. Ampakine CX717 robustly increased phrenic and hypoglossal inspiratory bursting and reduced respiratory cycle variability in anesthetized Pompe mice, and it increased inspiratory tidal volume in unanesthetized Pompe mice. CX717 did not significantly alter these variables in wild-type mice. Medullary respiratory neurons showed extensive histopathology in Pompe mice. Ampakines stimulate respiratory neuromotor output and ventilation in Pompe mice, and therefore they have potential as an adjunctive therapy in Pompe disease.

  5. Differences in Host Innate Responses among Coccidioides Isolates in a Murine Model of Pulmonary Coccidioidomycosis.

    PubMed

    Lewis, Eric R G; David, Victoria R; Doyle, Adina L; Rajabi, Khadijeh; Kiefer, Jeffrey A; Pirrotte, Patrick; Barker, Bridget M

    2015-10-01

    Coccidioides immitis and Coccidioides posadasii are soil-dwelling fungi and the causative agents of coccidioidomycosis, a mycosis endemic to certain semiarid regions in the Americas. The most common route of infection is by inhalation of airborne Coccidioides arthroconidia. Once a susceptible host inhales the conidia, a transition to mature endosporulated spherules can occur within the first 5 days of infection. For this study, we examined the host response in a murine model of coccidioidomycosis during a time period of infection that has not been well characterized. We collected lung tissue and bronchoalveolar lavage fluid (BALF) from BALB/c mice that were infected with a C. immitis pure strain, a C. immitis hybrid strain, or a C. posadasii strain as well as uninfected mice. We compared the host responses to the Coccidioides strains used in this study by assessing the level of transcription of selected cytokine genes in lung tissues and characterized host and fungal proteins present in BALF. Host response varied depending on the Coccidioides strain that was used and did not appear to be overly robust. This study provides a foundation to begin to dissect the host immune response early in infection, to detect abundant Coccidioides proteins, and to develop diagnostics that target these early time points of infection.

  6. Peptidorhamnomannan negatively modulates the immune response in a scedosporiosis murine model.

    PubMed

    Xisto, Mariana I D S; Liporagi-Lopes, Livia Cristina; Muñoz, Julián Esteban; Bittencourt, Vera C B; Santos, Giulia M P; Dias, Lucas S; Figueiredo, Rodrigo T; Pinto, Márcia R; Taborda, Carlos P; Barreto-Bergter, Eliana

    2016-11-01

    In this study, we analyzed the impact of immunization with the peptidorhamnomannan (PRM) from the cell wall of the fungus Scedosporium (Lomentospora) prolificans in a murine model of invasive scedosporiosis. Immunization with PRM decreased the survival of mice infected with S. prolificans. Immunization of mice with PRM led to decreased secretion of pro-inflammatory cytokines and chemokines but did not affect the secretion of IL-10. Mice immunized with PRM showed an increase in IgG1 secretion, which is an immunoglobulin linked to a nonprotective response. Splenocytes isolated from mice infected with S. prolificans and immunized with PRM showed no differences in the percentages of Th17 cells and no increase in the frequency of the CD4(+)CD62L(Low) T cell population. PRM-immunized mice showed a significant increase in the percentage of Treg cells. In summary, our results indicated that immunization with PRM did not assist or improve the immunological response against S. prolificans infection. PRM exacerbated the infection process by reducing the inflammatory response, thereby facilitating colonization, virulence and dissemination by the fungus.

  7. IL-10 immunomodulation of myeloid cells regulates a murine model of ovarian cancer.

    PubMed

    Hart, Kevin M; Byrne, Katelyn T; Molloy, Michael J; Usherwood, Edward M; Berwin, Brent

    2011-01-01

    Elevated levels of IL-10 in the microenvironment of human ovarian cancer and murine models of ovarian cancer are well established and correlate with poor clinical prognosis. However, amongst a myriad of immunosuppressive factors, the actual contribution of IL-10 to the ovarian tumor microenvironment, the mechanisms by which it acts, and its possible functional redundancy are unknown. We previously demonstrated that elimination of the myeloid-derived suppressor cell (MDSC) compartment within the ovarian tumor ascites inhibited tumor progression and, intriguingly, significantly decreased local IL-10 levels. Here we identify a novel pathway in which the tumor-infiltrating MDSC are the predominant producers of IL-10 and, importantly, require it to develop their immunosuppressive function in vivo. Importantly, we demonstrate that the role of IL-10 is critical, and not redundant with other immunosuppressive molecules, to in vivo tumor progression: blockade of the IL-10 signaling network results in alleviation of MDSC-mediated immunosuppression, altered T cell phenotype and activity, and improved survival. These studies define IL-10 as a fundamental modulator of both MDSC and T cells within the ovarian tumor microenvironment. Importantly, IL-10 signaling is shown to be necessary to the development and maintenance of a permissive tumor microenvironment and represents a viable target for anti-tumor strategies.

  8. Perforin gene transfer into hematopoietic stem cells improves immune dysregulation in murine models of perforin deficiency.

    PubMed

    Carmo, Marlene; Risma, Kimberly A; Arumugam, Paritha; Tiwari, Swati; Hontz, Adrianne E; Montiel-Equihua, Claudia A; Alonso-Ferrero, Maria E; Blundell, Michael P; Schambach, Axel; Baum, Christopher; Malik, Punam; Thrasher, Adrian J; Jordan, Michael B; Gaspar, H Bobby

    2015-04-01

    Defects in perforin lead to the failure of T and NK cell cytotoxicity, hypercytokinemia, and the immune dysregulatory condition known as familial hemophagocytic lymphohistiocytosis (FHL). The only curative treatment is allogeneic hematopoietic stem cell transplantation which carries substantial risks. We used lentiviral vectors (LV) expressing the human perforin gene, under the transcriptional control of the ubiquitous phosphoglycerate kinase promoter or a lineage-specific perforin promoter, to correct the defect in different murine models. Following LV-mediated gene transfer into progenitor cells from perforin-deficient mice, we observed perforin expression in mature T and NK cells, and there was no evidence of progenitor cell toxicity when transplanted into irradiated recipients. The resulting perforin-reconstituted NK cells showed partial recovery of cytotoxicity, and we observed full recovery of cytotoxicity in polyclonal CD8(+) T cells. Furthermore, reconstituted T cells with defined antigen specificity displayed normal cytotoxic function against peptide-loaded targets. Reconstituted CD8(+) lymphoblasts had reduced interferon-γ secretion following stimulation in vitro, suggesting restoration of normal immune regulation. Finally, upon viral challenge, mice with >30% engraftment of gene-modified cells exhibited reduction of cytokine hypersecretion and cytopenias. This study demonstrates the potential of hematopoietic stem cell gene therapy as a curative treatment for perforin-deficient FHL.

  9. Second-hand smoke increases bronchial hyperreactivity and eosinophilia in a murine model of allergic aspergillosis.

    PubMed

    Seymour, Brian W P; Schelegle, Edward S; Pinkerton, Kent E; Friebertshauser, Kathleen E; Peake, Janice L; Kurup, Viswanath P; Coffman, Robert L; Gershwin, Laurel J

    2003-03-01

    Involuntary inhalation of tobacco smoke has been shown to aggravate the allergic response. Antibodies to fungal antigens such as Aspergillus fumigatus (Af) cause an allergic lung disease in humans. This study was carried out to determine the effect of environmental tobacco smoke (ETS) on a murine model of allergic bronchopulmonary aspergillosis (ABPA). BALB/c mice were exposed to aged and diluted sidestream cigarette smoke to simulate 'second-hand smoke'. The concentration was consistent with that achieved in enclosed public areas or households where multiple people smoke. During exposure, mice were sensitized to Af antigen intranasally. Mice that were sensitized to Af antigen and exposed to ETS developed significantly greater airway hyperreactivity than did mice similarly sensitized to Af but housed in ambient air. The effective concentration of aerosolized acetylcholine needed to double pulmonary flow resistance was significantly lower in Af + ETS mice compared to the Af + AIR mice. Immunological data that supports this exacerbation of airway hyperresponsiveness being mediated by an enhanced type 1 hypersensitivity response include: eosinophilia in peripheral blood and lung sections. All Af sensitized mice produced elevated levels of IL4, IL5 and IL10 but no IFN-gamma indicating a polarized Th2 response. Thus, ETS can cause exacerbation of asthma in ABPA as demonstrated by functional airway hyperresponsiveness and elevated levels of blood eosinophilia.

  10. Dendritic cell immunotherapy combined with gemcitabine chemotherapy enhances survival in a murine model of pancreatic carcinoma.

    PubMed

    Ghansah, Tomar; Vohra, Nasreen; Kinney, Kathleen; Weber, Amy; Kodumudi, Krithika; Springett, Gregory; Sarnaik, Amod A; Pilon-Thomas, Shari

    2013-06-01

    Pancreatic cancer is an extremely aggressive malignancy with a dismal prognosis. Cancer patients and tumor-bearing mice have multiple immunoregulatory subsets including regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSC) that may limit the effectiveness of anti-tumor immunotherapies for pancreatic cancer. It is possible that modulating these subsets will enhance anti-tumor immunity. The goal of this study was to explore depletion of immunoregulatory cells to enhance dendritic cell (DC)-based cancer immunotherapy in a murine model of pancreatic cancer. Flow cytometry results showed an increase in both Tregs and MDSC in untreated pancreatic cancer-bearing mice compared with control. Elimination of Tregs alone or in combination with DC-based vaccination had no effect on pancreatic tumor growth or survival. Gemcitabine (Gem) is a chemotherapeutic drug routinely used for the treatment for pancreatic cancer patients. Treatment with Gem led to a significant decrease in MDSC percentages in the spleens of tumor-bearing mice, but did not enhance overall survival. However, combination therapy with DC vaccination followed by Gem treatment led to a significant delay in tumor growth and improved survival in pancreatic cancer-bearing mice. Increased MDSC were measured in the peripheral blood of patients with pancreatic cancer. Treatment with Gem also led to a decrease of this population in pancreatic cancer patients, suggesting that combination therapy with DC-based cancer vaccination and Gem may lead to improved treatments for patients with pancreatic cancer.

  11. A Versatile Murine Model of Subcortical White Matter Stroke for the Study of Axonal Degeneration and White Matter Neurobiology.

    PubMed

    Nunez, Stefanie; Doroudchi, M Mehdi; Gleichman, Amy J; Ng, Kwan L; Llorente, Irene L; Sozmen, Elif G; Carmichael, S Thomas; Hinman, Jason D

    2016-03-17

    Stroke affecting white matter accounts for up to 25% of clinical stroke presentations, occurs silently at rates that may be 5-10 fold greater, and contributes significantly to the development of vascular dementia. Few models of focal white matter stroke exist and this lack of appropriate models has hampered understanding of the neurobiologic mechanisms involved in injury response and repair after this type of stroke. The main limitation of other subcortical stroke models is that they do not focally restrict the infarct to the white matter or have primarily been validated in non-murine species. This limits the ability to apply the wide variety of murine research tools to study the neurobiology of white matter stroke. Here we present a methodology for the reliable production of a focal stroke in murine white matter using a local injection of an irreversible eNOS inhibitor. We also present several variations on the general protocol including two unique stereotactic variations, retrograde neuronal tracing, as well as fresh tissue labeling and dissection that greatly expand the potential applications of this technique. These variations allow for multiple approaches to analyze the neurobiologic effects of this common and understudied form of stroke.

  12. Impairment of the cellular immune response in acute murine toxoplasmosis: regulation of interleukin 2 production and macrophage-mediated inhibitory effects.

    PubMed Central

    Haque, S; Khan, I; Haque, A; Kasper, L

    1994-01-01

    infected and normal splenocytes. These results indicate that during acute murine toxoplasmosis, there is a well-defined period (day 7) during which both the T-cell mitogen and parasite antigen-associated lymphoproliferative response are reduced. Further, there is a reduction in the production of IL-2 and an increase in IL-10, which appear to mediate, in part, the observed downregulation of immunity to T. gondii. PMID:8005679

  13. Clinical features of bacterial vaginosis in a murine model of vaginal infection with Gardnerella vaginalis.

    PubMed

    Gilbert, Nicole M; Lewis, Warren G; Lewis, Amanda L

    2013-01-01

    Bacterial vaginosis (BV) is a dysbiosis of the vaginal flora characterized by a shift from a Lactobacillus-dominant environment to a polymicrobial mixture including Actinobacteria and gram-negative bacilli. BV is a common vaginal condition in women and is associated with increased risk of sexually transmitted infection and adverse pregnancy outcomes such as preterm birth. Gardnerella vaginalis is one of the most frequently isolated bacterial species in BV. However, there has been much debate in the literature concerning the contribution of G. vaginalis to the etiology of BV, since it is also present in a significant proportion of healthy women. Here we present a new murine vaginal infection model with a clinical isolate of G. vaginalis. Our data demonstrate that this model displays key features used clinically to diagnose BV, including the presence of sialidase activity and exfoliated epithelial cells with adherent bacteria (reminiscent of clue cells). G. vaginalis was capable of ascending uterine infection, which correlated with the degree of vaginal infection and level of vaginal sialidase activity. The host response to G. vaginalis infection was characterized by robust vaginal epithelial cell exfoliation in the absence of histological inflammation. Our analyses of clinical specimens from women with BV revealed a measureable epithelial exfoliation response compared to women with normal flora, a phenotype that, to our knowledge, is measured here for the first time. The results of this study demonstrate that G. vaginalis is sufficient to cause BV phenotypes and suggest that this organism may contribute to BV etiology and associated complications. This is the first time vaginal infection by a BV associated bacterium in an animal has been shown to parallel the human disease with regard to clinical diagnostic features. Future studies with this model should facilitate investigation of important questions regarding BV etiology, pathogenesis and associated complications.

  14. Sterilizing Activity of Second-Line Regimens Containing TMC207 in a Murine Model of Tuberculosis

    PubMed Central

    Lounis, Nacer; Andries, Koen; Jarlier, Vincent

    2011-01-01

    Rationale The sterilizing activity of the regimen used to treat multidrug resistant tuberculosis (MDR TB) has not been studied in a mouse model. Objective and Methods Swiss mice were intravenously inoculated with 6 log10 of Mycobacterium tuberculosis (TB) strain H37Rv, treated with second-line drug combinations with or without the diarylquinoline TMC207, and then followed without treatment for 3 more months to determine relapse rates (modified Cornell model). Measurements Bactericidal efficacy was assessed by quantitative lung colony-forming unit (CFU) counts. Sterilizing efficacy was assessed by measuring bacteriological relapse rates 3 months after the end of treatment. Main Results The relapse rate observed after 12 months treatment with the WHO recommended MDR TB regimen (amikacin, ethionamide, pyrazinamide and moxifloxacin) was equivalent to the relapse rate observed after 6 months treatment with the recommended drug susceptible TB regimen (rifampin, isoniazid and pyrazinamide). When TMC207 was added to this MDR TB regimen, the treatment duration needed to reach the same relapse rate dropped to 6 months. A similar relapse rate was also obtained with a 6-month completely oral regimen including TMC207, moxifloxacin and pyrazinamide but excluding both amikacin and ethionamide. Conclusions In this murine model the duration of the WHO MDR TB treatment could be reduced to 12 months instead of the recommended 18–24 months. The inclusion of TMC207 in the WHO MDR TB treatment regimen has the potential to further shorten the treatment duration and at the same time to simplify treatment by eliminating the need to include an injectable aminoglycoside. PMID:21408613

  15. Oxidative brain damage in Mecp2-mutant murine models of Rett syndrome.

    PubMed

    De Felice, Claudio; Della Ragione, Floriana; Signorini, Cinzia; Leoncini, Silvia; Pecorelli, Alessandra; Ciccoli, Lucia; Scalabrì, Francesco; Marracino, Federico; Madonna, Michele; Belmonte, Giuseppe; Ricceri, Laura; De Filippis, Bianca; Laviola, Giovanni; Valacchi, Giuseppe; Durand, Thierry; Galano, Jean-Marie; Oger, Camille; Guy, Alexandre; Bultel-Poncé, Valérie; Guy, Jacky; Filosa, Stefania; Hayek, Joussef; D'Esposito, Maurizio

    2014-08-01

    Rett syndrome (RTT) is a rare neurodevelopmental disorder affecting almost exclusively females, caused in the overwhelming majority of the cases by loss-of-function mutations in the gene encoding methyl-CpG binding protein 2 (MECP2). High circulating levels of oxidative stress (OS) markers in patients suggest the involvement of OS in the RTT pathogenesis. To investigate the occurrence of oxidative brain damage in Mecp2 mutant mouse models, several OS markers were evaluated in whole brains of Mecp2-null (pre-symptomatic, symptomatic, and rescued) and Mecp2-308 mutated (pre-symptomatic and symptomatic) mice, and compared to those of wild type littermates. Selected OS markers included non-protein-bound iron, isoprostanes (F2-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes) and 4-hydroxy-2-nonenal protein adducts. Our findings indicate that oxidative brain damage 1) occurs in both Mecp2-null (both -/y and stop/y) and Mecp2-308 (both 308/y males and 308/+ females) mouse models of RTT; 2) precedes the onset of symptoms in both Mecp2-null and Mecp2-308 models; and 3) is rescued by Mecp2 brain specific gene reactivation. Our data provide direct evidence of the link between Mecp2 deficiency, oxidative stress and RTT pathology, as demonstrated by the rescue of the brain oxidative homeostasis following brain-specifically Mecp2-reactivated mice. The present study indicates that oxidative brain damage is a previously unrecognized hallmark feature of murine RTT, and suggests that Mecp2 is involved in the protection of the brain from oxidative stress.

  16. Oxidative brain damage in Mecp2-mutant murine models of Rett syndrome

    PubMed Central

    De Felice, Claudio; Della Ragione, Floriana; Signorini, Cinzia; Leoncini, Silvia; Pecorelli, Alessandra; Ciccoli, Lucia; Scalabrì, Francesco; Marracino, Federico; Madonna, Michele; Belmonte, Giuseppe; Ricceri, Laura; De Filippis, Bianca; Laviola, Giovanni; Valacchi, Giuseppe; Durand, Thierry; Galano, Jean-Marie; Oger, Camille; Guy, Alexandre; Bultel-Poncé, Valérie; Guy, Jacky; Filosa, Stefania; Hayek, Joussef; D'Esposito, Maurizio

    2014-01-01

    Rett syndrome (RTT) is a rare neurodevelopmental disorder affecting almost exclusively females, caused in the overwhelming majority of the cases by loss-of-function mutations in the gene encoding methyl-CpG binding protein 2 (MECP2). High circulating levels of oxidative stress (OS) markers in patients suggest the involvement of OS in the RTT pathogenesis. To investigate the occurrence of oxidative brain damage in Mecp2 mutant mouse models, several OS markers were evaluated in whole brains of Mecp2-null (pre-symptomatic, symptomatic, and rescued) and Mecp2-308 mutated (pre-symptomatic and symptomatic) mice, and compared to those of wild type littermates. Selected OS markers included non-protein-bound iron, isoprostanes (F2-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes) and 4-hydroxy-2-nonenal protein adducts. Our findings indicate that oxidative brain damage 1) occurs in both Mecp2-null (both −/y and stop/y) and Mecp2-308 (both 308/y males and 308/+ females) mouse models of RTT; 2) precedes the onset of symptoms in both Mecp2-null and Mecp2-308 models; and 3) is rescued by Mecp2 brain specific gene reactivation. Our data provide direct evidence of the link between Mecp2 deficiency, oxidative stress and RTT pathology, as demonstrated by the rescue of the brain oxidative homeostasis following brain-specifically Mecp2-reactivated mice. The present study indicates that oxidative brain damage is a previously unrecognized hallmark feature of murine RTT, and suggests that Mecp2 is involved in the protection of the brain from oxidative stress. PMID:24769161

  17. A Murine Model of Lipopolysaccharide-Induced Peri-Implant Mucositis and Peri-Implantitis

    PubMed Central

    Pirih, Flavia Q.; Hiyari, Sarah; Leung, Ho-Yin; Barroso, Ana D. V.; Jorge, Adrian C. A.; Perussolo, Jeniffer; Atti, Elisa; Lin, Yi-Ling; Tetradis, Sotirios; Camargo, Paulo M.

    2015-01-01

    Introduction Dental implants are a vastly used treatment option for tooth replacement. Dental implants are however susceptible to inflammatory diseases such as peri-implant mucositis and peri-implantitis, which are highly prevalent and may lead to implant loss. Unfortunately, the understanding of the pathogenesis of peri-implant mucositis and peri-implantitis is fragmented and incomplete. Therefore, the availability of a reproducible animal model to study these inflammatory diseases would facilitate the dissection of their pathogenic mechanisms. The objective of this study is to propose a murine model of experimental peri-implant mucositis and peri-implantitis. Materials and Methods Screw-shaped titanium implants were placed in the upper healed edentulous alveolar ridges of C57BL/6J mice eight weeks after tooth extraction. Following four weeks of osseointegration, Porphyromonas gingivalis-lipolysaccharide (LPS) injections were delivered to the peri-implant soft tissues for six weeks. No-injections and vehicle injections were utilized as controls. Peri-implant mucositis and peri-implantitis were assessed clinically, radiographically (micro-CT) and histologically following LPS-treatment. Results LPS-injections resulted in a significant increase in soft tissue edema around the head of the implants as compared to the control groups. Micro-CT analysis revealed significantly greater bone loss in the LPS-treated implants. Histological analysis of the specimens demonstrated that the LPS-group had increased soft tissue vascularity, which harbored a dense mixed inflammatory cell infiltrate, and the bone exhibited noticeable osteoclast activity. Conclusion The induction of peri-implant mucositis and peri-implantitis in mice via localized delivery of bacterial LPS has been demonstrated. We anticipate that this model will contribute to the development of more effective preventive and therapeutic approaches for these two conditions. PMID:24967609

  18. Evaluation of pulsed high intensity focused ultrasound exposures on metastasis in a murine model

    PubMed Central

    Hancock, Hilary; Dreher, Matthew R.; Crawford, Nigel; Pollock, Claire B.; Shih, Jennifer; Wood, Bradford J.; Hunter, Kent; Frenkel, Victor

    2014-01-01

    High intensity focused ultrasound (HIFU) may be employed in two ways: continuous exposures for thermal ablation of tissue (>60°C), and pulsed-exposures for non-ablative effects, including low temperature hyperthermia (37–45°C), and non thermal effects (e.g. acoustic cavitation and radiation forces). Pulsed-HIFU effects may enhance the tissue's permeability for improved delivery of drugs and genes, for example, by opening up gaps between cells in the vasculature and parenchyma. Inducing these effects may improve local targeting of therapeutic agents, however; concerns exist that pulsed exposures could theoretically also facilitate dissemination of tumor cells and exacerbate metastases. In the present study, the influence of pulsed-HIFU exposures on increasing metastatic burden was evaluated in a murine model with metastatic breast cancer. A preliminary study was carried out to validate the model and determine optimal timing for treatment and growth of lung metastases. Next, the effect of pulsed-HIFU on the metastatic burden was evaluated using quantitative image processing of whole-lung histological sections. Compared to untreated controls (2/15), a greater number of mice treated with pulsed-HIFU were found to have lungs “overgrown” with metastases (7/15), where individual metastases grew together such that they could not accurately be counted. Furthermore, area fraction of lung metastases (area of metastases/area of lungs) was ~30% greater in mice treated with pulsed-HIFU; however, these differences were not statistically significant. The present study details the development of an animal model for investigating the influence of interventional techniques or exposures (such as pulsed HIFU) on metastatic burden. PMID:19517258

  19. Conventional murine gene targeting.

    PubMed

    Zimmermann, Albert G; Sun, Yue

    2013-01-01

    Murine gene knockout models engineered over the last two decades have continued to demonstrate their potential as invaluable tools in understanding the role of gene function in the context of normal human development and disease. The more recent elucidation of the human and mouse genomes through sequencing has opened up the capability to elucidate the function of every human gene. State-of-the-art mouse model generation allows, through a multitude of experimental steps requiring careful standardization, gene function to be reliably and predictably ablated in a live model system. The application of these standardized methodologies to directly target gene function through murine gene knockout has to date provided comprehensive and verifiable genetic models that have contributed tremendously to our understanding of the cellular and molecular pathways underlying normal and disease states in humans. The ensuing chapter provides an overview of the latest steps and procedures required to ablate gene function in a murine model.

  20. Evaluation of Eimeria krijgsmanni as a murine model for testing the efficacy of anti-parasitic agents.

    PubMed

    Takeo, Toshinori; Tanaka, Tetsuya; Matsubayashi, Makoto; Tsujio, Masashi; Umemiya-Shirafuji, Rika; Tsuji, Naotoshi; Fujisaki, Kozo; Matsui, Toshihiro; Matsuo, Tomohide

    2015-06-01

    Murine Eimeria spp. have been used as effective models of disease instead of large mammalian hosts such as cattle. We attempted to establish in vivo and in vitro assays using a murine intestinal protozoan, Eimeria krijgsmanni, which we previously isolated, to test anti-parasitic agents. Consequently, when mice were treated with sulfur drugs or toltrazuril, which are commercially available for livestock. Furthermore, sporulated oocysts and excysted sporozoites of E. krijgsmanni were treated with naturally occurring substances (lactoferrin, longicin, and curcumin). Although exposure to these substances did not affect oocyst infectivity, sporozoite viability decreased by 60% with longicin. However, direct injection of sporozoites treated with longicin into mice ceca did not result in any changes in the oocyst shedding pattern compared with control mice. The results suggest that E. krijgsmanni could be resistant to these anti-parasitic agents and might therefore have different characteristics to other apicomplexan parasites.

  1. Efficacy of a new fluoroquinolone, JNJ-Q2, in murine models of Staphylococcus aureus and Streptococcus pneumoniae skin, respiratory, and systemic infections.

    PubMed

    Fernandez, Jeffrey; Hilliard, Jamese J; Morrow, Brian J; Melton, John L; Flamm, Robert K; Barron, Alfred M; Lynch, A Simon

    2011-12-01

    The in vivo efficacy of JNJ-Q2, a new broad-spectrum fluoroquinolone (FQ), was evaluated in a murine septicemia model with methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) and in a Streptococcus pneumoniae lower respiratory tract infection model. JNJ-Q2 and comparators were also evaluated in an acute murine skin infection model using a community-acquired MRSA strain and in an established skin infection (ESI) model using a hospital-acquired strain, for which the selection of resistant mutants was also determined. JNJ-Q2 demonstrated activity in the MSSA septicemia model that was comparable to that moxifloxacin (JNJ-Q2 50% effective dose [ED(50)], 0.2 mg/kg of body weight administered subcutaneously [s.c.] and 2 mg/kg administered orally [p.o.]) and activity in the MRSA septicemia model that was superior to that of vancomycin (JNJ-Q2 ED(50), 1.6 mg/kg administered s.c.). In an S. pneumoniae lower respiratory tract infection model, JNJ-Q2 displayed activity (ED(50), 1.9 mg/kg administered s.c. and 7.4 mg/kg administered p.o.) that was comparable to that of gemifloxacin and superior to that of moxifloxacin. In both MRSA skin infection models, treatment with JNJ-Q2 resulted in dose-dependent reductions in bacterial titers in the skin, with the response to JNJ-Q2 at each dose exceeding the responses of the comparators ciprofloxacin, moxifloxacin, linezolid, and vancomycin. Additionally, in the ESI model, JNJ-Q2 showed a low or nondetectable propensity for ciprofloxacin resistance selection, in contrast to the selection of ciprofloxacin-resistant mutants observed for both ciprofloxacin and moxifloxacin. JNJ-Q2 demonstrated activity that was comparable or superior to the activity of fluoroquinolone or antistaphylococcal comparators in several local and systemic skin infection models performed with both S. aureus and S. pneumoniae and is currently being evaluated in phase II human clinical trials.

  2. Evaluating a murine model of endometritis using uterine isolates of Escherichia coli from postpartum buffalo

    PubMed Central

    Dar, S. H.; Qureshi, S.; Palanivelu, M.; Muthu, S.; Mehrotra, S.; Jan, M. H.; Chaudhary, G. R.; Kumar, H.; Saravanan, R.; Narayanan, K.

    2016-01-01

    Ascending infection of the uterus with Gram-negative bacteria is responsible for postpartum endometritis in cattle and buffalo and can adversely affect fertility. Development of a laboratory animal model for bovine endometritis would facilitate the understanding of the pathogenesis as it is difficult to conduct controlled experimentation in the native host. In the present study, 30 virgin Swiss Albino mice (5-8 weeks old) were used to evaluate the pathogenic potential of Escherichia coli, isolated from the normally calved postpartum buffalo to induce endometritis. Mice in the diestrus phase of the estrous cycle were randomly allotted to one of the following four intravaginal inoculation (100 μL) treatments: EG (experimental group)-1: sterile normal saline; EG-2, -3 and -4: E. coli@ 1.5 × 104, 105 and 106 CFU/ml, respectively. The animals were then scarified 36 h post-inoculation to study gross and microscopical lesions. Gross changes were confined to EG-4. Acute endometritis was recorded in 50% of the EG-3 and 66.7% of the EG-4. The rate of acute endometritis development was significantly higher in EG-4 (P<0.05) as compared to the other groups. The present study demonstrated that the animal model for bubaline endometritis can be developed in mice by intravaginal inoculation of E. coli@ 1.5 × 106 CFU/ml at diestrus. Ease of intravaginal inoculation, apparent absence of systemic involvement and high infective rate are the advantages of the model over other studies. PMID:27822246

  3. Characterisation of Neutropenia-Associated Neutrophil Elastase Mutations in a Murine Differentiation Model In Vitro and In Vivo

    PubMed Central

    Wiesmeier, Michael; Gautam, Sanjivan

    2016-01-01

    Severe congenital neutropenia (SCN) is characterised by a differentiation block in the bone marrow and low neutrophil numbers in the peripheral blood, which correlates with increased risk of bacterial infections. Several underlying gene defects have been identified in SCN patients. Mutations in the neutrophil elastase (ELANE) gene are frequently found in SCN and cyclic neutropenia. Both mislocalization and misfolding of mutant neutrophil elastase protein resulting in ER stress and subsequent induction of the unfolded protein response (UPR) have been proposed to be responsible for neutrophil survival and maturation defects. However, the detailed molecular mechanisms still remain unclear, in part due to the lack of appropriate in vitro and in vivo models. Here we used a system of neutrophil differentiation from immortalised progenitor lines by conditional expression of Hoxb8, permitting the generation of mature near-primary neutrophils in vitro and in vivo. NE-deficient Hoxb8 progenitors were reconstituted with murine and human forms of typical NE mutants representative of SCN and cyclic neutropenia, and differentiation of the cells was analysed in vitro and in vivo. ER stress induction by NE mutations could be recapitulated during neutrophil differentiation in all NE mutant-reconstituted Hoxb8 cells. Despite ER stress induction, no change in survival, maturation or function of differentiating cells expressing either murine or human NE mutants was observed. Further analysis of in vivo differentiation of Hoxb8 cells in a murine model of adoptive transfer did not reveal any defects in survival or differentiation in the mouse. Although the Hoxb8 system has been found to be useful for dissection of defects in neutrophil development, our findings indicate that the use of murine systems for analysis of NE-mutation-associated pathogenesis is complicated by differences between humans and mice in the physiology of granulopoiesis, which may go beyond possible differences in

  4. Characterisation of Neutropenia-Associated Neutrophil Elastase Mutations in a Murine Differentiation Model In Vitro and In Vivo.

    PubMed

    Wiesmeier, Michael; Gautam, Sanjivan; Kirschnek, Susanne; Häcker, Georg

    2016-01-01

    Severe congenital neutropenia (SCN) is characterised by a differentiation block in the bone marrow and low neutrophil numbers in the peripheral blood, which correlates with increased risk of bacterial infections. Several underlying gene defects have been identified in SCN patients. Mutations in the neutrophil elastase (ELANE) gene are frequently found in SCN and cyclic neutropenia. Both mislocalization and misfolding of mutant neutrophil elastase protein resulting in ER stress and subsequent induction of the unfolded protein response (UPR) have been proposed to be responsible for neutrophil survival and maturation defects. However, the detailed molecular mechanisms still remain unclear, in part due to the lack of appropriate in vitro and in vivo models. Here we used a system of neutrophil differentiation from immortalised progenitor lines by conditional expression of Hoxb8, permitting the generation of mature near-primary neutrophils in vitro and in vivo. NE-deficient Hoxb8 progenitors were reconstituted with murine and human forms of typical NE mutants representative of SCN and cyclic neutropenia, and differentiation of the cells was analysed in vitro and in vivo. ER stress induction by NE mutations could be recapitulated during neutrophil differentiation in all NE mutant-reconstituted Hoxb8 cells. Despite ER stress induction, no change in survival, maturation or function of differentiating cells expressing either murine or human NE mutants was observed. Further analysis of in vivo differentiation of Hoxb8 cells in a murine model of adoptive transfer did not reveal any defects in survival or differentiation in the mouse. Although the Hoxb8 system has been found to be useful for dissection of defects in neutrophil development, our findings indicate that the use of murine systems for analysis of NE-mutation-associated pathogenesis is complicated by differences between humans and mice in the physiology of granulopoiesis, which may go beyond possible differences in

  5. A Murine Inhalation Model to Characterize Pulmonary Exposure to Dry Aspergillus fumigatus Conidia

    PubMed Central

    Buskirk, Amanda D.; Green, Brett J.; Lemons, Angela R.; Nayak, Ajay P.; Goldsmith, W. Travis; Kashon, Michael L.; Anderson, Stacey E.; Hettick, Justin M.; Templeton, Steven P.; Germolec, Dori R.; Beezhold, Donald H.

    2014-01-01

    Most murine models of fungal exposure are based on the delivery of uncharacterized extracts or liquid conidia suspensions using aspiration or intranasal approaches. Studies that model exposure to dry fungal aerosols using whole body inhalation have only recently been described. In this study, we aimed to characterize pulmonary immune responses following repeated inhalation of conidia utilizing an acoustical generator to deliver dry fungal aerosols to mice housed in a nose only exposure chamber. Immunocompetent female BALB/cJ mice were exposed to conidia derived from Aspergillus fumigatus wild-type (WT) or a melanin-deficient (Δalb1) strain. Conidia were aerosolized and delivered to mice at an estimated deposition dose of 1×105 twice a week for 4 weeks (8 total). Histopathological and immunological endpoints were assessed 4, 24, 48, and 72 hours after the final exposure. Histopathological analysis showed that conidia derived from both strains induced lung inflammation, especially at 24 and 48 hour time points. Immunological endpoints evaluated in bronchoalveolar lavage fluid (BALF) and the mediastinal lymph nodes showed that exposure to WT conidia led to elevated numbers of macrophages, granulocytes, and lymphocytes. Importantly, CD8+ IL17+ (Tc17) cells were significantly higher in BALF and positively correlated with germination of A. fumigatus WT spores. Germination was associated with specific IgG to intracellular proteins while Δalb1 spores elicited antibodies to cell wall hydrophobin. These data suggest that inhalation exposures may provide a more representative analysis of immune responses following exposures to environmentally and occupationally prevalent fungal contaminants. PMID:25340353

  6. Mucociliary clearance defects in a murine in vitro model of pneumococcal airway infection.

    PubMed

    Fliegauf, Manfred; Sonnen, Andreas F-P; Kremer, Bernhard; Henneke, Philipp

    2013-01-01

    Mucociliary airway clearance is an innate defense mechanism that protects the lung from harmful effects of inhaled pathogens. In order to escape mechanical clearance, airway pathogens including Streptococcus pneumoniae (pneumococcus) are thought to inactivate mucociliary clearance by mechanisms such as slowing of ciliary beating and lytic damage of epithelial cells. Pore-forming toxins like pneumolysin, may be instrumental in these processes. In a murine in vitro airway infection model using tracheal epithelial cells grown in air-liquid interface cultures, we investigated the functional consequences on the ciliated respiratory epithelium when the first contact with pneumococci is established. High-speed video microscopy and live-cell imaging showed that the apical infection with both wildtype and pneumolysin-deficient pneumococci caused insufficient fluid flow along the epithelial surface and loss of efficient clearance, whereas ciliary beat frequency remained within the normal range. Three-dimensional confocal microscopy demonstrated that pneumococci caused specific morphologic aberrations of two key elements in the F-actin cytoskeleton: the junctional F-actin at the apical cortex of the lateral cell borders and the apical F-actin, localized within the planes of the apical cell sides at the ciliary bases. The lesions affected the columnar shape of the polarized respiratory epithelial cells. In addition, the planar architecture of the entire ciliated respiratory epithelium was irregularly distorted. Our observations indicate that the mechanical supports essential for both effective cilia strokes and stability of the epithelial barrier were weakened. We provide a new model, where--in pneumococcal infection--persistent ciliary beating generates turbulent fluid flow at non-planar distorted epithelial surface areas, which enables pneumococci to resist mechanical cilia-mediated clearance.

  7. Short-Course Therapy with Daily Rifapentine in a Murine Model of Latent Tuberculosis Infection

    PubMed Central

    Zhang, Tianyu; Zhang, Ming; Rosenthal, Ian M.; Grosset, Jacques H.; Nuermberger, Eric L.

    2009-01-01

    Rationale: Regimens recommended to treat latent tuberculosis infection (LTBI) are 3 to 9 months long. A 2-month rifampin+pyrazinamide regimen is no longer recommended. Shorter regimens are highly desirable. Because substituting rifapentine for rifampin in the standard regimen for active tuberculosis halves the treatment duration needed to prevent relapse in mice, we hypothesized daily rifapentine-based regimens could shorten LTBI treatment to 2 months or less. Objectives: To improve an existing model of LTBI chemotherapy and evaluate the efficacy of daily rifapentine-based regimens. Methods: Mice were immunized with a more immunogenic recombinant Bacille Calmette-Guérin strain (rBCG30) and received very low-dose aerosol infection with Mycobacterium tuberculosis to establish a stable lung bacterial burden below 104 CFU without drug treatment. Mice received a control (isoniazid alone, rifampin alone, rifampin+isoniazid, rifampin+pyrazinamide) or test (rifapentine alone, rifapentine+isoniazid, rifapentine+pyrazinamide, rifapentine+isoniazid+pyrazinamide) regimen for 8 weeks. Rifamycin doses were 10 mg/kg/d, analogous to the same human doses. Outcomes were biweekly lung CFU counts and relapse after 4 to 8 weeks of treatment. Measurements and Main Results: M. tuberculosis CFU counts remained stable around 3.65 log10 in immunized, untreated mice. Isoniazid or rifampin left all or most mice culture-positive at week 8. Rifampin+isoniazid cured 0 and 53% of mice and rifampin+pyrazinamide cured 47 and 100% of mice in 4 and 8 weeks, respectively. Rifapentine-based regimens were more active than rifampin+isoniazid and indistinguishable from rifampin+pyrazinamide. Conclusions: In this improved murine model of LTBI chemotherapy with very low lung burden, existing regimens were well represented. Daily rifapentine-based regimens were at least as active as rifampin+pyrazinamide, suggesting they could effectively treat LTBI in 6 to 8 weeks. PMID:19729664

  8. Comparative pharmacodynamics of posaconazole in neutropenic murine models of invasive pulmonary aspergillosis and mucormycosis.

    PubMed

    Lewis, Russell E; Albert, Nathaniel D; Kontoyiannis, Dimitrios P

    2014-11-01

    We used two established neutropenic murine models of pulmonary aspergillosis and mucormycosis to explore the association between the posaconazole area under the concentration-time curve (AUC)-to-MIC ratio (AUC/MIC) and treatment outcome. Posaconazole serum pharmacokinetics were verified in infected mice to ensure that the studied doses reflected human exposures with the oral suspension, delayed-release tablet, and intravenous formulations of posaconazole. Sinopulmonary infections were then induced in groups of neutropenic mice with Aspergillus fumigatus strain 293 (posaconazole MIC, 0.5 mg/liter) or Rhizopus oryzae strain 969 (posaconazole MIC, 2 mg/liter) and treated with escalating daily dosages of oral posaconazole, which was designed to achieve AUCs ranging from 1.10 to 392 mg · h/liter. After 5 days of treatment, lung fungal burden was analyzed by quantitative real-time PCR. The relationships of the total drug AUC/MIC and the treatment response were similar in both models, with 90% effective concentrations (EC90s) corresponding to an AUC/MIC threshold of 76 (95% confidence interval [CI], 46 to 102) for strain 293 versus 87 (95% CI, 66 to 101) for strain 969. Using a provisional AUC/MIC target of >100, these exposures correlated with minimum serum posaconazole concentrations (Cmins) of 1.25 mg/liter for strain 293 and 4.0 mg/liter for strain 969. The addition of deferasirox, but not liposomal amphotericin or caspofungin, improved the activity of a suboptimal posaconazole regimen (AUC/MIC, 33) in animals with pulmonary mucormycosis. However, no combination was as effective as the high-dose posaconazole monotherapy regimen (AUC/MIC, 184). Our analysis suggests that posaconazole pharmacodynamics are similar for A. fumigatus and R. oryzae when indexed to pathogen MICs.

  9. Dietary reversal of neuropathy in a murine model of prediabetes and the metabolic syndrome.

    PubMed

    Hinder, Lucy M; O'Brien, Phillipe D; Hayes, John M; Backus, Carey; Solway, Andrew P; Sims-Robinson, Catrina; Feldman, Eva L

    2017-04-05

    Patients with the metabolic syndrome, defined as obesity, dyslipidemia, hypertension, and impaired glucose tolerance (IGT), can develop the same macro- and microvascular complications as patients with type 2 diabetes, including peripheral neuropathy. In type 2 diabetes, glycemic control has little effect on the development and progression of peripheral neuropathy, suggesting that other metabolic syndrome components may contribute to the presence of neuropathy. A parallel phenomenon is observed in patients with prediabetes and the metabolic syndrome, where improvement in weight and dyslipidemia more closely correlates with restoration of nerve function than improvement in glycemic status. The goal of the current study was to develop a murine model that resembles the human condition. We examined longitudinal parameters of the metabolic syndrome and neuropathy development in six mouse strains/genotypes (BKS-wt, BKS-Lepr(db/+), B6-wt, B6-Lepr(db/+), BTBR-wt, and BTBR-Lep(ob/+)) fed a 54% high-fat diet (HFD; from lard). All HFD-fed mice developed large fiber neuropathy and IGT. Changes appeared early and consistently in B6-wt mice, and paralleled the onset of neuropathy. Terminally, B6-wt mice displayed all components of the metabolic syndrome, including obesity, IGT, hyperinsulinemia, dyslipidemia, and oxidized low density lipoproteins (oxLDL). Dietary reversal, whereby B6-wt mice fed HFD from 4-20 weeks of age were switched to standard chow for 4 weeks, completely normalized neuropathy, promoted weight loss, improved insulin sensitivity, and restored LDL-cholesterol and oxLDL by 50% compared to HFD control mice. This dietary reversal model provides the basis for mechanistic studies investigating peripheral nerve damage in the setting of the metabolic syndrome, and ultimately the development of mechanism-based therapies for neuropathy.

  10. Pharmacokinetic-Pharmacodynamic Analysis of Spiroindolone Analogs and KAE609 in a Murine Malaria Model

    PubMed Central

    Freymond, Céline; Fischli, Christoph; Yu, Jing; Weber, Sebastian; Goh, Anne; Yeung, Bryan K. S.; Ho, Paul C.; Dartois, Véronique; Diagana, Thierry T.; Rottmann, Matthias

    2014-01-01

    Limited information is available on the pharmacokinetic (PK) and pharmacodynamic (PD) parameters driving the efficacy of antimalarial drugs. Our objective in this study was to determine dose-response relationships of a panel of related spiroindolone analogs and identify the PK-PD index that correlates best with the efficacy of KAE609, a selected class representative. The dose-response efficacy studies were conducted in the Plasmodium berghei murine malaria model, and the relationship between dose and efficacy (i.e., reduction in parasitemia) was examined. All spiroindolone analogs studied displayed a maximum reduction in parasitemia, with 90% effective dose (ED90) values ranging between 6 and 38 mg/kg of body weight. Further, dose fractionation studies were conducted for KAE609, and the relationship between PK-PD indices and efficacy was analyzed. The PK-PD indices were calculated using the in vitro potency against P. berghei (2× the 99% inhibitory concentration [IC99]) as a threshold (TRE). The percentage of the time in which KAE609 plasma concentrations remained at >2× the IC99 within 48 h (%T>TRE) and the area under the concentration-time curve from 0 to 48 h (AUC0–48)/TRE ratio correlated well with parasite reduction (R2 = 0.97 and 0.95, respectively) but less so for the maximum concentration of drug in serum (Cmax)/TRE ratio (R2 = 0.88). The present results suggest that for KAE609 and, supposedly, for its analogs, the dosing regimens covering a T>TRE of 100%, AUC0–48/TRE ratio of 587, and a Cmax/TRE ratio of 30 are likely to result in the maximum reduction in parasitemia in the P. berghei malaria mouse model. This information could be used to prioritize analogs within the same class of compounds and contribute to the design of efficacy studies, thereby facilitating early drug discovery and lead optimization programs. PMID:25487807

  11. Selumetinib Attenuates Skeletal Muscle Wasting in Murine Cachexia Model through ERK Inhibition and AKT Activation.

    PubMed

    Quan-Jun, Yang; Yan, Huo; Yong-Long, Han; Li-Li, Wan; Jie, Li; Jin-Lu, Huang; Jin, Lu; Peng-Guo, Chen; Run, Gan; Cheng, Guo

    2017-02-01

    Cancer cachexia is a multifactorial syndrome affecting the skeletal muscle. Previous clinical trials showed that treatment with MEK inhibitor selumetinib resulted in skeletal muscle anabolism. However, it is conflicting that MAPK/ERK pathway controls the mass of the skeletal muscle. The current study investigated the therapeutic effect and mechanisms of selumetinib in amelioration of cancer cachexia. The classical cancer cachexia model was established via transplantation of CT26 colon adenocarcinoma cells into BALB/c mice. The effect of selumetinib on body weight, tumor growth, skeletal muscle, food intake, serum proinflammatory cytokines, E3 ligases, and MEK/ERK-related pathways was analyzed. Two independent experiments showed that 30 mg/kg/d selumetinib prevented the loss of body weight in murine cachexia mice. Muscle wasting was attenuated and the expression of E3 ligases, MuRF1 and Fbx32, was inhibited following selumetinib treatment of the gastrocnemius muscle. Furthermore, selumetinib efficiently reduced tumor burden without influencing the cancer cell proliferation, cumulative food intake, and serum cytokines. These results indicated that the role of selumetinib in attenuating muscle wasting was independent of cancer burden. Detailed analysis of the mechanism revealed AKT and mTOR were activated, while ERK, FoxO3a, and GSK3β were inhibited in the selumetinib -treated cachexia group. These indicated that selumetinib effectively prevented skeletal muscle wasting in cancer cachexia model through ERK inhibition and AKT activation in gastrocnemius muscle via cross-inhibition. The study not only elucidated the mechanism of MEK/ERK inhibition in skeletal muscle anabolism, but also validated selumetinib therapy as an effective intervention against cancer cachexia. Mol Cancer Ther; 16(2); 334-43. ©2016 AACR.

  12. Efficacy of Astaxanthin for the Treatment of Atopic Dermatitis in a Murine Model

    PubMed Central

    Yoshihisa, Yoko; Andoh, Tsugunobu; Matsunaga, Kenji; Rehman, Mati Ur; Maoka, Takashi; Shimizu, Tadamichi

    2016-01-01

    Atopic dermatitis (AD) is a common chronic inflammatory skin disease associated with various factors, including immunological abnormalities and exposure to allergens. Astaxanthin (AST) is a xanthophyll carotenoid that has recently been demonstrated to have anti-inflammatory effects and to regulate the expression of inflammatory cytokines. Thus, we investigated whether AST could improve the dermatitis and pruritus in a murine model of AD using NC/Nga mice. In addition to a behavioral evaluation, the effects of AST on the AD were determined by the clinical skin severity score, serum IgE level, histological analyses of skin, and by reverse transcription-PCR and Western blotting analyses for the expression of inflammation-related factors. AST (100 mg/kg) or vehicle (olive oil) was orally administered once day and three times a week for 26 days. When compared with vehicle-treated group, the administration of AST significantly reduced the clinical skin severity score. In addition, the spontaneous scratching in AD model mice was reduced by AST administration. Moreover, the serum IgE level was markedly decreased by the oral administration of AST compared to that in vehicle-treated mice. The number of eosinophils, total and degranulated mast cells all significantly decreased in the skin of AST-treated mice compared with vehicle-treated mice. The mRNA and protein levels of eotaxin, MIF, IL-4, IL-5 and L-histidine decarboxylase were significantly decreased in the skin of AST-treated mice compared with vehicle-treated mice. These results suggest that AST improves the dermatitis and pruritus in AD via the regulation of the inflammatory effects and the expression of inflammatory cytokines. PMID:27023003

  13. Cannabidiol increases survival and promotes rescue of cognitive function in a murine model of cerebral malaria.

    PubMed

    Campos, A C; Brant, F; Miranda, A S; Machado, F S; Teixeira, A L

    2015-03-19

    Cerebral malaria (CM) is a severe complication resulting from Plasmodium falciparum infection that might cause permanent neurological deficits. Cannabidiol (CBD) is a nonpsychotomimetic compound of Cannabis sativa with neuroprotective properties. In the present work, we evaluated the effects of CBD in a murine model of CM. Female mice were infected with Plasmodium berghei ANKA (PbA) and treated with CBD (30mg/kg/day - 3 or 7days i.p.) or vehicle. On 5th day-post-infection (dpi), at the peak of the disease), animals were treated with single or repeated doses of Artesunate, an antimalarial drug. All groups were tested for memory impairment (Novel Object Recognition or Morris Water Maze) and anxiety-like behaviors (Open field or elevated plus maze test) in different stages of the disease (at the peak or after the complete clearance of the disease). Th1/Th2 cytokines and neurotrophins (brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF)) were measured in the prefrontal cortex and hippocampus of experimental groups. PbA-infected mice displayed memory deficits and exhibited increase in anxiety-like behaviors on the 5dpi or after the clearance of the parasitemia, effects prevented by CBD treatment. On 5dpi, TNF-α and IL-6 increased in the hippocampus, while only IL-6 increased in the prefrontal cortex. CBD treatment resulted in an increase in BDNF expression in the hippocampus and decreased levels of proinflammatory cytokines in the hippocampus (TNF-α) and prefrontal cortex (IL-6). Our results indicate that CBD exhibits neuroprotective effects in CM model and might be useful as an adjunctive therapy to prevent neurological symptoms following this disease.

  14. A Histomorphometric Analysis of Radiation Damage in an Isogenic Murine Model of Distraction Osteogenesis

    PubMed Central

    Zheutlin, Alexander R.; Deshpande, Sagar S.; Nelson, Noah S.; Polyatskaya, Yekaterina; Rodriguez, Jose J.; Donneys, Alexis; Buchman, Steven R.

    2015-01-01

    Purpose The devastation radiation therapy (XRT) causes to endogenous tissue in head and neck cancer (HNC) patients can be a prohibitive obstacle in reconstruction of the mandible, demanding a better understanding of XRT-induced damage and options for reconstruction. Our study investigates the cellular damage caused by radiation in an isogenic murine model of mandibular distraction osteogenesis (DO). We posit that radiation will result in reduced osteocytes, with elevated empty lacunae and immature osteoid. Methods Twenty Lewis rats were randomly assigned to two groups: DO (n=10) and XRT/DO (n=10). Both groups underwent an osteotomy and mandibular DO across a 5.1 mm gap. XRT was administered to the XRT/DO group at a fractionated, human equivalent dose of 35 Gy prior to surgery. Animals were sacrificed on postoperative day 40 and mandibles were harvested and sectioned for histological analysis. Results Bone that underwent radiation revealed a significantly decreased osteocyte count and complementary increase in empty lacunae when compared to non-XRT bone (p=0.019, p=0.000). Additionally, XRT bone demonstrated increased immature osteoid and decreased mature woven bone when compared to non-radiated bone (p=0.001 and p=0.003, respectively). Furthermore, analysis of the ratio of immature osteoid to woven bone volume exhibited a significant increase in the XRT bone, further revealing the devastating damage brought by XRT (p=0.001). Conclusion These results clearly demonstrate the cellular diminution that occurs as a result of radiation. This foundational study provides the groundwork upon which to investigate cellular therapies in an immunoprivileged model of mandibular DO. PMID:26341682

  15. Immunization with hepatitis B vaccine accelerates SLE-like disease in a murine model.

    PubMed

    Agmon-Levin, Nancy; Arango, María-Teresa; Kivity, Shaye; Katzav, Aviva; Gilburd, Boris; Blank, Miri; Tomer, Nir; Volkov, Alex; Barshack, Iris; Chapman, Joab; Shoenfeld, Yehuda

    2014-11-01

    Hepatitis-B vaccine (HBVv) can prevent HBV-infection and associated liver diseases. However, concerns regarding its safety, particularly among patients with autoimmune diseases (i.e. SLE) were raised. Moreover, the aluminum adjuvant in HBVv was related to immune mediated adverse events. Therefore, we examined the effects of immunization with HBVv or alum on SLE-like disease in a murine model. NZBWF1 mice were immunized with HBVv (Engerix), or aluminum hydroxide (alum) or phosphate buffered saline (PBS) at 8 and 12 weeks of age. Mice were followed for weight, autoantibodies titers, blood counts, proteinuria, kidney histology, neurocognitive functions (novel object recognition, staircase, Y-maze and the forced swimming tests) and brain histology. Immunization with HBVv induced acceleration of kidney disease manifested by high anti-dsDNA antibodies (p < 0.01), early onset of proteinuria (p < 0.05), histological damage and deposition of HBs antigen in the kidney. Mice immunized with HBVv and/or alum had decreased cells counts mainly of the red cell lineage (p < 0.001), memory deficits (p < 0.01), and increased activated microglia in different areas of the brain compare with mice immunized with PBS. Anxiety-like behavior was more pronounced among mice immunized with alum. In conclusion, herein we report that immunization with the HBVv aggravated kidney disease in an animal model of SLE. Immunization with either HBVv or alum affected blood counts, neurocognitive functions and brain gliosis. Our data support the concept that different component of vaccines may be linked with immune and autoimmune mediated adverse events.

  16. Experimental Reactivation of Pulmonary Mycobacterium avium Complex Infection in a Modified Cornell-Like Murine Model

    PubMed Central

    Kim, Woo Sik; Kim, Jong-Seok; Kim, Hong Min; Kwon, Kee Woong; Cho, Sang-Nae; Shin, Sung Jae; Koh, Won-Jung

    2015-01-01

    The latency and reactivation of Mycobacterium tuberculosis infection has been well studied. However, there have been few studies of the latency and reactivation of Mycobacterium avium complex (MAC), the most common etiological non-tuberculous Mycobacterium species next to M. tuberculosis in humans worldwide. We hypothesized that latent MAC infections can be reactivated following immunosuppression after combination chemotherapy with clarithromycin and rifampicin under experimental conditions. To this end, we employed a modified Cornell-like murine model of tuberculosis and investigated six strains consisting of two type strains and four clinical isolates of M. avium and M. intracellulare. After aerosol infection of each MAC strain, five to six mice per group were euthanized at 2, 4, 10, 18, 28 and 35 weeks post-infection, and lungs were sampled to analyze bacterial burden and histopathology. One strain of each species maintained a culture-negative state for 10 weeks after completion of 6 weeks of chemotherapy, but was reactivated after 5 weeks of immunosuppression in the lungs with dexamethasone (three out of six mice in M. avium infection) or sulfasalazine (four out of six mice in both M. avium and M. intracellulare infection). The four remaining MAC strains exhibited decreased bacterial loads in response to chemotherapy; however, they remained at detectable levels and underwent regrowth after immunosuppression. In addition, the exacerbated lung pathology demonstrated a correlation with bacterial burden after reactivation. In conclusion, our results suggest the possibility of MAC reactivation in an experimental mouse model, and experimentally demonstrate that a compromised immune status can induce reactivation and/or regrowth of MAC infection. PMID:26406237

  17. Experimental models of hepatotoxicity related to acute liver failure

    PubMed Central

    Maes, Michaël; Vinken, Mathieu; Jaeschke, Hartmut

    2015-01-01

    Acute liver failure can be the consequence of various etiologies, with most cases arising from drug-induced hepatotoxicity in Western countries. Despite advances in this field, the management of acute liver failure continues to be one of the most challenging problems in clinical medicine. The availability of adequate experimental models is of crucial importance to provide a better understanding of this condition and to allow identification of novel drug targets, testing the efficacy of new therapeutic interventions and acting as models for assessing mechanisms of toxicity. Experimental models of hepatotoxicity related to acute liver failure rely on surgical procedures, chemical exposure or viral infection. Each of these models has a number of strengths and weaknesses. This paper specifically reviews commonly used chemical in vivo and in vitro models of hepatotoxicity associated with acute liver failure. PMID:26631581

  18. The influence of Flightless I on Toll-like-receptor-mediated inflammation in a murine model of diabetic wound healing.

    PubMed

    Ruzehaji, Nadira; Mills, Stuart J; Melville, Elizabeth; Arkell, Ruth; Fitridge, Robert; Cowin, Allison J

    2013-01-01

    Impaired wound healing and ulceration represent a serious complication of both type 1 and type 2 diabetes. Cytoskeletal protein Flightless I (Flii) is an important inhibitor of wound repair, and reduced Flii gene expression in fibroblasts increased migration, proliferation, and adhesion. As such it has the ability to influence all phases of wound healing including inflammation, remodelling and angiogenesis. Flii has the potential to modulate inflammation through its interaction with MyD88 which it an adaptor protein for TLR4. To assess the effect of Flii on the inflammatory response of diabetic wounds, we used a murine model of streptozocin-induced diabetes and Flii genetic mice. Increased levels of Flii were detected in Flii transgenic murine wounds resulting in impaired healing which was exacerbated when diabetes was induced. When Flii levels were reduced in diabetic wounds of Flii-deficient mice, healing was improved and decreased levels of TLR4 were observed. In contrast, increasing the level of Flii in diabetic mouse wounds led to increased TLR4 and NF- κ B production. Treatment of murine diabetic wounds with neutralising antibodies to Flii led to an improvement in healing with decreased expression of TLR4. Decreasing the level of Flii in diabetic wounds may therefore reduce the inflammatory response and improve healing.

  19. Assessment of dry eye in a GVHD murine model: Approximation through tear osmolarity measurement.

    PubMed

    Martínez-Carrasco, Rafael; Sánchez-Abarca, Luis Ignacio; Nieto-Gómez, Cristina; García, Elisabet Martín; Ramos, Teresa L; Velasco, Almudena; Sánchez-Guijo, Fermín; Aijón, José; Hernández-Galilea, Emiliano

    2017-01-01

    Dry eye disease is one of the most frequent pathological events that take place in the course of the graft versus host disease (GVHD), and is the main cause of deterioration in quality of life for patients. Thus, demonstration of dry eye signs in murine models of oGVHD is crucial for the validation of these models for the study of the disease. Given the increasing evidence that tear osmolarity is an important player of dry eye disease, our purpose in this study was to validate the use of a reliable method to assess tear osmolarity in mice: the electrical impedance method. Then, we wanted to test its utility with an oGVHD model. Tear volume assessment was also performed, using the phenol red thread test. We found differences in tear osmolarity in mice that received a transplant with cells from bone marrow and spleen (the GVHD group) when compared with mice that only received bone marrow cells (the BM group) at day 7 (362 ± 8 mOsm/l and 345 ± 9 mOsm/l respectively; P < 0.01) and day 21 (348 ± 19 mOsm/l vs. 326 ± 15 mOsm/l; P < 0.05). We found also differences in tear volume at day 14 (2.30 ± 0.61 mm in oGVHD group and 2.89 ± 0.62 mm in BM group; P = 0.06) and at day 21 (2.10 ± 0.30 mm in oGVHD group and 2.89 ± 0.32 mm in BM group; P < 0.01). Besides this, we observed reduction in epithelial thickness between the GVHD and BM groups (37.0 ± 6.2 μm and 43.6 ± 3.3 μm respectively; P < 0.05). These data show the usefulness of the electrical impedance method to measure tear osmolarity in mice. We can also conclude that this oGVHD model mimics the tear film alterations found in human dry eye disease, what contributes to give relevance to this model for the study of GVHD.

  20. A novel murine model of Fusarium solani keratitis utilizing fluorescent labeled fungi.

    PubMed

    Zhang, Hongmin; Wang, Liya; Li, Zhijie; Liu, Susu; Xie, Yanting; He, Siyu; Deng, Xianming; Yang, Biao; Liu, Hui; Chen, Guoming; Zhao, Huiwen; Zhang, Junjie

    2013-05-01

    Fungal keratitis is a common disease that causes blindness. An effective animal model for fungal keratitis is essential for advancing research on this disease. Our objective is to develop a novel mouse model of Fusarium solani keratitis through the inoculation of fluorescent-labeled fungi into the cornea to facilitate the accurate and early identification and screening of fungal infections. F. solani was used as the model fungus in this study. In in vitro experiment, the effects of Calcofluor White (CFW) staining concentration and duration on the fluorescence intensity of F. solani were determined through the mean fluorescence intensity (MFI); the effects of CFW staining on the growth of F. solani were determined by the colony diameter. In in vivo experiment, the F. solani keratitis mice were induced and divided into a CFW-unlabeled and CFW-labeled groups. The positive rate, corneal lesion score and several positive rate determination methods were measured. The MFIs of F. solani in the 30 μg/ml CFW-30 min, 90 μg/ml CFW-10 min and 90 μg/ml CFW-30 min groups were higher than that in the 10 μg/ml CFW-10 min group (P < 0.01). Compared with the 30 μg/ml CFW-30 min group, only the 90 μg/ml CFW-30 min group showed higher MFI (P < 0.05). No significant difference was observed in the colony diameter in the CFW unstained group compared with that in the 10, 30, 90, 270, or 810 μg/ml CFW groups stained for either 10 or 30 min (P > 0.05). No significant differences (P > 0.05) were observed for the positive rate or the corneal lesion scores between the CFW-unlabeled and the CFW-labeled group. On day 1 and 2, the positive rates of the infected corneas in the scraping group were lower than those in the fluorescence microscopy group (P < 0.05). On day 3, these observe methods showed no significant difference (P > 0.05). Thus, these experiments established a novel murine model of F. solani keratitis utilizing fluorescent labeled fungi. This model

  1. Inflammatory early events associated to the role of P2X7 receptor in acute murine toxoplasmosis.

    PubMed

    Corrêa, Gladys; Almeida Lindenberg, Carolina de; Moreira-Souza, Aline Cristina de Abreu; Savio, Luiz Eduardo Baggio; Takiya, Christina Maeda; Marques-da-Silva, Camila; Vommaro, Rossiane Claudia; Coutinho-Silva, Robson

    2017-04-01

    Activation of the purinergic P2X7 receptor by extracellular ATP (eATP) potentiates proinflammatory responses during infections by intracellular pathogens. Extracellular ATP triggers an antimicrobial response in macrophages infected with Toxoplasma gondii in vitro, suggesting that purinergic signaling may stimulate host defense mechanisms against toxoplasmosis. Here, we provide in vivo evidence in support of this hypothesis, by showing that P2X7(-/-) mice are more susceptible than P2X7(+/+) mice to acute infection by the RH strain of T. gondii, and that this phenomenon is associated with a deficient proinflammatory response. Four days post-infection, peritoneal washes from infected P2X7(-/-) mice had no or little increase in the levels of the proinflammatory cytokines IL-12, IL-1β, IFN-γ, and TNF-α, whose levels increased markedly in samples from infected P2X7(+/+) mice. Infected P2X7(-/-) mice displayed an increase in organ weight and histological alterations in some of the 'shock organs' in toxoplasmosis - the liver, spleen and mesenteric lymph nodes. The liver of infected P2X7(-/-) mice had smaller granulomas, but increased parasite load/granuloma. Our results confirm that the P2X7 receptor is involved in containing T. gondii spread in vivo, by stimulating inflammation.

  2. Treatment With Tetrahydrobiopterin Overcomes Brain Death–Associated Injury in a Murine Model of Pancreas Transplantation

    PubMed Central

    Oberhuber, R.; Ritschl, P.; Fabritius, C.; Nguyen, A.‐V.; Hermann, M.; Obrist, P.; Werner, E. R.; Maglione, M.; Flörchinger, B.; Ebner, S.; Resch, T.; Pratschke, J.

    2015-01-01

    Brain death (BD) has been associated with an immunological priming of donor organs and is thought to exacerbate ischemia reperfusion injury (IRI). Recently, we showed that the essential nitric oxide synthase co‐factor tetrahydrobiopterin (BH4) abrogates IRI following experimental pancreas transplantation. We therefore studied the effects of BD in a murine model of syngeneic pancreas transplantation and tested the therapeutic potential of BH4 treatment. Compared with sham‐operated controls, donor BD resulted in intragraft inflammation reflected by induced IL‐1ß, IL‐6, VCAM‐1, and P‐selectin mRNA expression levels and impaired microcirculation after reperfusion (p < 0.05), whereas pretreatment of the BD donor with BH4 significantly improved microcirculation after reperfusion (p < 0.05). Moreover, BD had a devastating impact on cell viability, whereas BH4‐treated grafts showed a significantly higher percentage of viable cells (p < 0.001). Early parenchymal damage in pancreatic grafts was significantly more pronounced in organs from BD donors than from sham or non‐BD donors (p < 0.05), but BH4 pretreatment significantly ameliorated necrotic lesions in BD organs (p < 0.05). Pretreatment of the BD donor with BH4 resulted in significant recipient survival (p < 0.05). Our data provide novel insights into the impact of BD on pancreatic isografts, further demonstrating the potential of donor pretreatment strategies including BH4 for preventing BD‐associated injury after transplantation. PMID:26104062

  3. High-dose dietary zinc promotes prostate intraepithelial neoplasia in a murine tumor induction model.

    PubMed

    Ko, Young Hwii; Woo, Yu Jeong; Kim, Jin Wook; Choi, Hoon; Kang, Seok Ho; Lee, Jeong Gu; Kim, Je Jong; Park, Hong Seok; Cheon, Jun

    2010-03-01

    To evaluate the role of high-dose dietary zinc in the process of prostate malignancy, 60 Sprague-Dawley rats were randomly divided into four groups: tumor induction with carcinogen and hormone (group 1), oral zinc administration without tumor induction (group 2), oral zinc administration with tumor induction (group 3) and a control without zinc administration or tumor induction (group 4). Zinc was supplied orally in the form of zinc sulfate heptahydrate dissolved in drinking water to groups 2 and 3 for 20 weeks. Although the serum level of zinc measured at 20 weeks was maintained similarly in each group (P = 0.082), intraprostatic zinc concentrations were statistically different. Group 1 prostates contained the least amount of zinc in both the dorsolateral and ventral lobes at levels of 36.3 and 4.8 microg g(-1), respectively. However, in group 3, zinc levels increased in both lobes to 59.3 and 12.1 microg g(-1), respectively, comparable with that of group 4 (54.5 +/- 14.6 and 14.1 +/- 2.4 microg g(-1)). In spite of these increases in zinc concentration, the prevalence of prostate intraepithelial neoplasm was rather increased in group 3 (53.3% and 46.7%) compared with group 1 (33.3% and 33.3%) in both dorsolateral and ventral prostate lobes. Although prostate intraepithelial neoplasm did not develop in any prostate in group 4, zinc administration did induce prostate intraepithelial neoplasm in group 2 (46.7% and 40.0%). Thus, although high dietary zinc increased intraprostatic zinc concentrations, it promoted, instead of preventing, prostate intraepithelial neoplasm in a murine prostate malignancy induction model.

  4. Endogenous glucocorticoids modulate neutrophil function in a murine model of haemolytic uraemic syndrome

    PubMed Central

    Gómez, S A; Fernández, G C; Camerano, G; Dran, G; Rosa, F A; Barrionuevo, P; Isturiz, M A; Palermo, M S

    2005-01-01

    Haemolytic uraemic syndrome (HUS) is caused by Shiga-toxin-producing Escherichia coli (STEC). Although, Shiga toxin type 2 (Stx2) is responsible for the renal pathogenesis observed in patients, the inflammatory response, including cytokines and polymorphonuclear neutrophils (PMN), plays a key role in the development of HUS. Previously, we demonstrated that Stx2 injection generates an anti-inflammatory reaction characterized by endogenous glucocorticoid (GC) secretion, which attenuates HUS severity in mice. Here, we analysed the effects of Stx2 on the pathogenic function of PMN and the potential role of endogenous GC to limit PMN activation during HUS development in a murine model. For this purpose we assessed the functional activity of isolated PMN after in vivo treatment with Stx2 alone or in simultaneous treatment with Ru486 (GC receptor antagonist). We found that Stx2 increased the generation of reactive oxygen intermediates (ROI) under phobol-myristate-acetate (PMA) stimulation and that the simultaneous treatment with Ru486 strengthened this effect. Conversely, both treatments significantly inhibited in vitro phagocytosis. Furthermore, Stx2 augmented in vitro PMN adhesion to fibrinogen (FGN) and bovine serum albumin (BSA) but not to collagen type I (CTI). Stx2 + Ru486 caused enhanced adhesion to BSA and CTI compared to Stx2. Whereas Stx2 significantly increased migration towards N-formyl-methionyl-leucyl-phenylalanine (fMLP), Stx2 + Ru486 treatment enhanced and accelerated this process. The percentage of apoptotic PMN from Stx2-treated mice was higher compared with controls, but equal to Stx2 + Ru486 treated mice. We conclude that Stx2 activates PMN and that the absence of endogenous GC enhances this activation suggesting that endogenous GC can, at least partially, counteract PMN inflammatory functions. PMID:15606615

  5. The influence of enrichment devices on development of osteoarthritis in a surgically induced murine model.

    PubMed

    Salvarrey-Strati, Alba; Watson, Lyna; Blanchet, Tracey; Lu, Nelson; Glasson, Sonya S

    2008-09-01

    This study measured the influence of three different environmental enrichment devices (EEDs) on the severity of osteoarthritis (OA) in a surgically induced murine model. The development of OA requires joint movement after surgical instability induced by destabilization of the medial meniscus at 10 weeks of age. We evaluated the hypothesis that animals behavioral activity levels may influence the severity of the disease by investigating the effect of different EEDs on mouse activity and correlating this to OA severity. Thirty male 129S6/SvEvTac mice were housed in groups of five and provided with nesting material and one of three different EEDs: a heavy plastic tube (CPVC), Shepherd Shack (SS), or Tecniplast Mouse House (TMH). We videorecorded the cages throughout the study and constructed an ethogram. Eight weeks after surgery we euthanized the mice and performed a histologic examination of the knees to score the severity of OA based on the different housing systems, correlating the scores with behavioral activity levels for each cage. OA was higher in the mice with CPVC and TMH devices in their cages, whereas the mice with SS devices exhibited less cartilage damage; however, although we observed increased behavioral activity in mice with the CPVC tube and TMH and less in mice with the SS, the statistical results were not significant. The histological results of OA and the ethogram correlated to support our hypothesis that the type of EED plays an indirect role in the severity of the disease by modifying the activity levels of mice. In activity-dependent studies, the impact of an EED needs to be evaluated before change the environment.

  6. Antiinflammatory Effect of Phytosterols in Experimental Murine Colitis Model: Prevention, Induction, Remission Study

    PubMed Central

    Aldini, Rita; Micucci, Matteo; Cevenini, Monica; Fato, Romana; Bergamini, Christian; Nanni, Cristina; Cont, Massimiliano; Camborata, Cecilia; Spinozzi, Silvia; Montagnani, Marco; Roda, Giulia; D'Errico-Grigioni, Antonia; Rosini, Francesca; Roda, Aldo; Mazzella, Giuseppe; Chiarini, Alberto; Budriesi, Roberta

    2014-01-01

    Phytosterols, besides hypocholesterolemic effect, present anti-inflammatory properties. Little information is available about their efficacy in Inflammatory Bowel Disease (IBD). Therefore, we have evaluated the effect of a mixture of phytosterols on prevention/induction/remission in a murine experimental model of colitis. Phytosterols were administered x os before, during and after colitis induction with Dextran Sodium Sulfate (DSS) in mice. Disease Activity Index (DAI), colon length, histopathology score, 18F-FDG microPET, oxidative stress in the intestinal tissue (ileum and colon) and gallbladder ileum and colon spontaneous and carbachol (CCh) induced motility, plasma lipids and plasma, liver and biliary bile acids (BA) were evaluated. A similar longitudinal study was performed in a DSS colitis control group. Mice treated with DSS developed severe colitis as shown by DAI, colon length, histopathology score, 18F-FDG microPET, oxidative stress. Both spontaneous and induced ileal and colonic motility were severely disturbed. The same was observed with gallbladder. DSS colitis resulted in an increase in plasma cholesterol, and a modification of the BA pattern. Phytosterols feeding did not prevent colitis onset but significantly reduced the severity of the disease and improved clinical and histological remission. It had strong antioxidant effects, almost restored colon, ileal and gallbladder motility. Plasmatic levels of cholesterol were also reduced. DSS induced a modification in the BA pattern consistent with an increase in the intestinal BA deconjugating bacteria, prevented by phytosterols. Phytosterols seem a potential nutraceutical tool for gastrointestinal inflammatory diseases, combining metabolic systematic and local anti-inflammatory effects. PMID:25268769

  7. Exposure to inhomogeneous static magnetic field beneficially affects allergic inflammation in a murine model

    PubMed Central

    Csillag, Anikó; Kumar, Brahma V.; Szabó, Krisztina; Szilasi, Mária; Papp, Zsuzsa; Szilasi, Magdolna E.; Pázmándi, Kitti; Boldogh, István; Rajnavölgyi, Éva; Bácsi, Attila; László, János F.

    2014-01-01

    Previous observations suggest that static magnetic field (SMF)-exposure acts on living organisms partly through reactive oxygen species (ROS) reactions. In this study, we aimed to define the impact of SMF-exposure on ragweed pollen extract (RWPE)-induced allergic inflammation closely associated with oxidative stress. Inhomogeneous SMF was generated with an apparatus validated previously providing a peak-to-peak magnetic induction of the dominant SMF component 389 mT by 39 T m−1 lateral gradient in the in vivo and in vitro experiments, and 192 mT by 19 T m−1 in the human study at the 3 mm target distance. Effects of SMF-exposure were studied in a murine model of allergic inflammation and also in human provoked skin allergy. We found that even a single 30-min exposure of mice to SMF immediately following intranasal RWPE challenge significantly lowered the increase in the total antioxidant capacity of the airways and decreased allergic inflammation. Repeated (on 3 consecutive days) or prolonged (60 min) exposure to SMF after RWPE challenge decreased the severity of allergic responses more efficiently than a single 30-min treatment. SMF-exposure did not alter ROS production by RWPE under cell-free conditions, while diminished RWPE-induced increase in the ROS levels in A549 epithelial cells. Results of the human skin prick tests indicated that SMF-exposure had no significant direct effect on provoked mast cell degranulation. The observed beneficial effects of SMF are likely owing to the mobilization of cellular ROS-eliminating mechanisms rather than direct modulation of ROS production by pollen NAD(P)H oxidases. PMID:24647908

  8. Protein carbonylation in a murine model for early alcoholic liver disease.

    PubMed

    Galligan, James J; Smathers, Rebecca L; Fritz, Kristofer S; Epperson, L E; Hunter, Lawrence E; Petersen, Dennis R

    2012-05-21

    Hepatic oxidative stress and subsequent lipid peroxidation are well-recognized consequences of sustained ethanol consumption. The covalent adduction of nucleophilic amino acid side-chains by lipid electrophiles is significantly increased in patients with alcoholic liver disease (ALD); a global assessment of in vivo protein targets and the consequences of these modifications, however, has not been conducted. In this article, we describe the identification of novel protein targets for covalent adduction in a 6-week murine model for ALD. Ethanol-fed mice displayed a 2-fold increase in hepatic TBARS, while immunohistochemical analysis for the reactive aldehydes 4-hydroxynonenal (4-HNE), 4-oxononenal (4-ONE), acrolein (ACR), and malondialdehyde (MDA) revealed a marked increase in the staining of modified proteins in the ethanol-treated mice. Increased protein carbonyl content was confirmed utilizing subcellular fractionation of liver homogenates followed by biotin-tagging through hydrazide chemistry, where approximately a 2-fold increase in modified proteins was observed in microsomal and cytosolic fractions. To determine targets of protein carbonylation, a secondary hydrazide method coupled to a highly sensitive 2-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS or MuDPIT) technique was utilized. Our results have identified 414 protein targets for modification by reactive aldehydes in ALD. The presence of novel in vivo sites of protein modification by 4-HNE (2), 4-ONE (4) and ACR (2) was also confirmed in our data set. While the precise impact of protein carbonylation in ALD remains unknown, a bioinformatic analysis of the data set has revealed key pathways associated with disease progression, including fatty acid metabolism, drug metabolism, oxidative phosphorylation, and the TCA cycle. These data suggest a major role for aldehyde adduction in the pathogenesis of ALD.

  9. Antiinflammatory effect of phytosterols in experimental murine colitis model: prevention, induction, remission study.

    PubMed

    Aldini, Rita; Micucci, Matteo; Cevenini, Monica; Fato, Romana; Bergamini, Christian; Nanni, Cristina; Cont, Massimiliano; Camborata, Cecilia; Spinozzi, Silvia; Montagnani, Marco; Roda, Giulia; D'Errico-Grigioni, Antonia; Rosini, Francesca; Roda, Aldo; Mazzella, Giuseppe; Chiarini, Alberto; Budriesi, Roberta

    2014-01-01

    Phytosterols, besides hypocholesterolemic effect, present anti-inflammatory properties. Little information is available about their efficacy in Inflammatory Bowel Disease (IBD). Therefore, we have evaluated the effect of a mixture of phytosterols on prevention/induction/remission in a murine experimental model of colitis. Phytosterols were administered x os before, during and after colitis induction with Dextran Sodium Sulfate (DSS) in mice. Disease Activity Index (DAI), colon length, histopathology score, 18F-FDG microPET, oxidative stress in the intestinal tissue (ileum and colon) and gallbladder ileum and colon spontaneous and carbachol (CCh) induced motility, plasma lipids and plasma, liver and biliary bile acids (BA) were evaluated. A similar longitudinal study was performed in a DSS colitis control group. Mice treated with DSS developed severe colitis as shown by DAI, colon length, histopathology score, 18F-FDG microPET, oxidative stress. Both spontaneous and induced ileal and colonic motility were severely disturbed. The same was observed with gallbladder. DSS colitis resulted in an increase in plasma cholesterol, and a modification of the BA pattern. Phytosterols feeding did not prevent colitis onset but significantly reduced the severity of the disease and improved clinical and histological remission. It had strong antioxidant effects, almost restored colon, ileal and gallbladder motility. Plasmatic levels of cholesterol were also reduced. DSS induced a modification in the BA pattern consistent with an increase in the intestinal BA deconjugating bacteria, prevented by phytosterols. Phytosterols seem a potential nutraceutical tool for gastrointestinal inflammatory diseases, combining metabolic systematic and local anti-inflammatory effects.

  10. Targeting geranylgeranylation reduces adrenal gland tumor burden in a murine model of prostate cancer metastasis.

    PubMed

    Reilly, Jacqueline E; Neighbors, Jeffrey D; Tong, Huaxiang; Henry, Michael D; Hohl, Raymond J

    2015-08-01

    The isoprenoid biosynthetic pathway (IBP) is critical for providing substrates for the post-translational modification of proteins key in regulating malignant cell properties, including proliferation, invasion, and migration. Inhibitors of the IBP, including statins and nitrogenous bisphosphonates, are used clinically for the treatment of hypercholesterolemia and bone disease respectively. The statins work predominantly in the liver, while the nitrogenous bisphosphonates are highly sequestered to bone. Inhibition of the entire IBP is limited by organ specificity and side effects resulting from depletion of all isoprenoids. We have developed a novel compound, disodium [(6Z,11E,15E)-9-[bis(sodiooxy)phosphoryl]-17-hydroxy-2,6,12,16-tetramethyheptadeca-2,6,11,15-tetraen-9-yl]phosphonate (GGOHBP), which selectively targets geranylgeranyl diphosphate synthase, reducing post-translational protein geranylgeranylation. Intracardiac injection of luciferase-expressing human-derived 22Rv1 PCa cells into SCID mice resulted in tumor development in bone (100 %), adrenal glands (72 %), mesentery (22 %), liver (17 %), and the thoracic cavity (6 %). Three weeks after tumor inoculation, daily subcutaneous (SQ) injections of 1.5 mg/kg GGOHBP or the vehicle were given for one month. Dissected tumors revealed a reduction in adrenal gland tumors corresponding to a 54 % (P < 0.005) reduction in total adrenal gland tumor weight of the treated mice as compared to vehicle-treated controls. Western blot analysis of the harvested tissues showed a reduction in Rap1A geranylgeranylation in adrenal glands and mesenteric tumors of the treated mice while non-tumorous tissues and control mice showed no Rap1A alteration. Our findings detail a novel bisphosphonate compound capable of preferentially altering the IBP in tumor-burdened adrenal glands of a murine model of PCa metastasis.

  11. Effects of lysed Enterococcus faecalis FK-23 on experimental allergic rhinitis in a murine model

    PubMed Central

    Zhu, Luping; Shimada, Takashi; Chen, Ruoxi; Lu, Meiping; Zhang, Qingzhao; Lu, Wenmin; Yin, Min; Enomoto, Tadao; Cheng, Lei

    2012-01-01

    In the current study, we sought to investigate whether lysed Enterococcus faecalis FK-23 (LFK), a heat-killed probiotic preparation, attenuated eosinophil influx into the upper airway and had immunomodulatory activity in a murine allergic rhinitis model. Eighteen BALB/c mice were divided into three groups; the ovalbumin (OVA)-sensitized/challenged group, which received saline orally for 6 weeks (OVA group), the OVA-sensitized/challenged group, which received LFK orally for 6 weeks (LFK-fed group), and the non-sensitized group, which received saline for 6 weeks (saline control group). Nasal rubbing and sneezing were monitored during the study. After the final challenge, interleukin (IL)-4, interferon (IFN)-γ, and OVA-specific IgE levels in the sera and splenocyte culture supernatants were determined, eosinophilic infiltrate into the upper airway was quantified, and splenic CD4+CD25+ regulatory T cells (Tregs) were examined by flow cytometry. We found that nasal rubbing was significantly reduced in LFK-fed mice compared to the OVA group on d 27 and 35, and sneezing was significantly inhibited by LFK administration for 35 d. LFK-fed mice had significantly less eosinophil influx into the nasal mucosa than the OVA group. There were no significant differences between the LFK-fed group and OVA group in the serum and splenocyte culture supernatant levels of IL-4, IFN-γ, and OVA-specific IgE. Interestingly, the LFK-fed mice had a significantly greater percentage of splenic CD4+CD25+ Tregs than OVA group. Our results indicate that oral administration of LFK may alleviate nasal symptoms, reduce nasal eosinophilia, and increase the percentage of CD4+CD25+ Tregs in experimental allergic rhinitis. PMID:23554753

  12. Sphingosine Kinase 1 Deficiency Confers Protection against Hyperoxia-Induced Bronchopulmonary Dysplasia in a Murine Model

    PubMed Central

    Harijith, Anantha; Pendyala, Srikanth; Reddy, Narsa M.; Bai, Tao; Usatyuk, Peter V.; Berdyshev, Evgeny; Gorshkova, Irina; Huang, Long Shuang; Mohan, Vijay; Garzon, Steve; Kanteti, Prasad; Reddy, Sekhar P.; Raj, J. Usha; Natarajan, Viswanathan

    2014-01-01

    Bronchopulmonary dysplasia of the premature newborn is characterized by lung injury, resulting in alveolar simplification and reduced pulmonary function. Exposure of neonatal mice to hyperoxia enhanced sphingosine-1-phosphate (S1P) levels in lung tissues; however, the role of increased S1P in the pathobiological characteristics of bronchopulmonary dysplasia has not been investigated. We hypothesized that an altered S1P signaling axis, in part, is responsible for neonatal lung injury leading to bronchopulmonary dysplasia. To validate this hypothesis, newborn wild-type, sphingosine kinase1−/− (Sphk1−/−), sphingosine kinase 2−/− (Sphk2−/−), and S1P lyase+/− (Sgpl1+/−) mice were exposed to hyperoxia (75%) from postnatal day 1 to 7. Sphk1−/−, but not Sphk2−/− or Sgpl1+/−, mice offered protection against hyperoxia-induced lung injury, with improved alveolarization and alveolar integrity compared with wild type. Furthermore, SphK1 deficiency attenuated hyperoxia-induced accumulation of IL-6 in bronchoalveolar lavage fluids and NADPH oxidase (NOX) 2 and NOX4 protein expression in lung tissue. In vitro experiments using human lung microvascular endothelial cells showed that exogenous S1P stimulated intracellular reactive oxygen species (ROS) generation, whereas SphK1 siRNA, or inhibitor against SphK1, attenuated hyperoxia-induced S1P generation. Knockdown of NOX2 and NOX4, using specific siRNA, reduced both basal and S1P-induced ROS formation. These results suggest an important role for SphK1-mediated S1P signaling–regulated ROS in the development of hyperoxia-induced lung injury in a murine neonatal model of bronchopulmonary dysplasia. PMID:23933064

  13. Exposure to inhomogeneous static magnetic field beneficially affects allergic inflammation in a murine model.

    PubMed

    Csillag, Anikó; Kumar, Brahma V; Szabó, Krisztina; Szilasi, Mária; Papp, Zsuzsa; Szilasi, Magdolna E; Pázmándi, Kitti; Boldogh, István; Rajnavölgyi, Éva; Bácsi, Attila; László, János F

    2014-06-06

    Previous observations suggest that static magnetic field (SMF)-exposure acts on living organisms partly through reactive oxygen species (ROS) reactions. In this study, we aimed to define the impact of SMF-exposure on ragweed pollen extract (RWPE)-induced allergic inflammation closely associated with oxidative stress. Inhomogeneous SMF was generated with an apparatus validated previously providing a peak-to-peak magnetic induction of the dominant SMF component 389 mT by 39 T m(-1) lateral gradient in the in vivo and in vitro experiments, and 192 mT by 19 T m(-1) in the human study at the 3 mm target distance. Effects of SMF-exposure were studied in a murine model of allergic inflammation and also in human provoked skin allergy. We found that even a single 30-min exposure of mice to SMF immediately following intranasal RWPE challenge significantly lowered the increase in the total antioxidant capacity of the airways and decreased allergic inflammation. Repeated (on 3 consecutive days) or prolonged (60 min) exposure to SMF after RWPE challenge decreased the severity of allergic responses more efficiently than a single 30-min treatment. SMF-exposure did not alter ROS production by RWPE under cell-free conditions, while diminished RWPE-induced increase in the ROS levels in A549 epithelial cells. Results of the human skin prick tests indicated that SMF-exposure had no significant direct effect on provoked mast cell degranulation. The observed beneficial effects of SMF are likely owing to the mobilization of cellular ROS-eliminating mechanisms rather than direct modulation of ROS production by pollen NAD(P)H oxidases.

  14. Evidence for impaired neurovascular transmission in a murine model of Duchenne muscular dystrophy

    PubMed Central

    Bagher, Pooneh; Duan, Dongsheng

    2011-01-01

    Duchenne muscular dystrophy (DMD) is a muscle-wasting disease caused by mutations in the dystrophin gene. Little is known about how blood flow control is affected in arteriolar networks supplying dystrophic muscle. We tested the hypothesis that mdx mice, a murine model for DMD, exhibit defects in arteriolar vasomotor control. The cremaster muscle was prepared for intravital microscopy in pentobarbital sodium-anesthetized mdx and C57BL/10 control mice (n ≥ 5 per group). Spontaneous vasomotor tone increased similarly with arteriolar branch order in both mdx and C57BL/10 mice [pooled values: first order (1A), 6%; second order (2A), 56%; and third order (3A), 61%] with no difference in maximal diameters between groups measured during equilibration with topical 10 μM sodium nitroprusside (pooled values: 1A, 70 ± 3 μm; 2A, 31 ± 3 μm; and 3A, 19 ± 3 μm). Concentration-response curves to acetylcholine (ACh) and norepinephrine added to the superfusion solution did not differ between mdx and C57BL/10 mice, nor did constriction to elevated (21%) oxygen. In response to local stimulation from a micropipette, conducted vasodilation to ACh and conducted vasoconstriction to KCl were also not different between groups; however, constriction decayed with distance (P < 0.05) whereas dilation did not. Remarkably, arteriolar constriction to perivascular nerve stimulation (PNS) at 2, 4, and 8 Hz was reduced by ∼25–30% in mdx mice compared with C57BL/10 mice (P < 0.05). With intact arteriolar reactivity to agonists, attenuated constriction to perivascular nerve stimulation indicates impaired neurovascular transmission in arterioles controlling blood flow in mdx mice. PMID:21109597

  15. Repeated Microneedle Stimulation Induces Enhanced Hair Growth in a Murine Model

    PubMed Central

    Kim, Yoon Seob; Jeong, Kwan Ho; Kim, Jung Eun; Woo, Young Jun; Kim, Beom Joon

    2016-01-01

    Background Microneedle is a method that creates transdermal microchannels across the stratum corneum barrier layer of skin. No previous study showed a therapeutic effect of microneedle itself on hair growth by wounding. Objective The aim of this study is to investigate the effect of repeated microwound formed by microneedle on hair growth and hair growth-related genes in a murine model. Methods A disk microneedle roller was applied to each group of mice five times a week for three weeks. First, to identify the optimal length and cycle, microneedles of lengths of 0.15 mm, 0.25 mm, 0.5 mm, and 1 mm and cycles of 3, 6, 10, and 13 cycles were applied. Second, the effect of hair growth and hair-growth-related genes such as Wnt3a, β-catenin, vascular endothelial growth factor (VEGF), and Wnt10b was observed using optimized microneedle. Outcomes were observed using visual inspection, real-time polymerase chain reaction, and immunohistochemistry. Results We found that the optimal length and cycle of microneedle treatment on hair growth was 0.25 mm/10 cycles and 0.5 mm/10 cycles. Repeated microneedle stimulation promoted hair growth, and it also induced the enhanced expression of Wnt3a, β-catenin, VEGF, and Wnt10b. Conclusion Our study provides evidence that microneedle stimulation can induce hair growth via activation of the Wnt/β-catenin pathway and VEGF. Combined with the drug delivery effect, we believe that microneedle stimulation could lead to new approaches for alopecia. PMID:27746638

  16. Hematopoietic Stem and Progenitor Cell Migration After Hypofractionated Radiation Therapy in a Murine Model

    SciTech Connect

    Kane, Jonathan; Krueger, Sarah A.; Dilworth, Joshua T.; Torma, John T.; Wilson, George D.; Marples, Brian; Madlambayan, Gerard J.

    2013-12-01

    Purpose: To characterize the recruitment of bone marrow (BM)-derived hematopoietic stem and progenitor cells (HSPCs) within tumor microenvironment after radiation therapy (RT) in a murine, heterotopic tumor model. Methods and Materials: Lewis lung carcinoma tumors were established in C57BL/6 mice and irradiated with 30 Gy given as 2 fractions over 2 days. Tumors were imaged with positron emission tomography/computed tomography (PET/CT) and measured daily with digital calipers. The HSPC and myelomonocytic cell content was assessed via immunofluorescent staining and flow cytometry. Functionality of tumor-associated HSPCs was verified in vitro using colony-forming cell assays and in vivo by rescuing lethally irradiated C57BL/6 recipients. Results: Irradiation significantly reduced tumor volumes and tumor regrowth rates compared with nonirradiated controls. The number of CD133{sup +} HSPCs present in irradiated tumors was higher than in nonirradiated tumors during all stages of regrowth. CD11b{sup +} counts were similar. PET/CT imaging and growth rate analysis based on standardized uptake value indicated that HSPC recruitment directly correlated to the extent of regrowth and intratumor cell activity after irradiation. The BM-derived tumor-associated HSPCs successfully formed hematopoietic colonies and engrafted irradiated mice. Finally, targeted treatment with a small animal radiation research platform demonstrated localized HSPC recruitment to defined tumor subsites exposed to radiation. Conclusions: Hypofractionated irradiation resulted in a pronounced and targeted recruitment of BM-derived HSPCs, possibly as a mechanism to promote tumor regrowth. These data indicate for the first time that radiation therapy regulates HSPC content within regrowing tumors.

  17. Superior protection elicited by live-attenuated vaccines in the murine model of paratuberculosis.

    PubMed

    Ghosh, Pallab; Shippy, Daniel C; Talaat, Adel M

    2015-12-16

    Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) causes Johne's disease, a chronic enteric infection in ruminants with severe economic impact on the dairy industry in the USA and worldwide. Currently, available vaccines have limited protective efficacy against disease progression and does not prevent spread of the infection among animals. Because of their ability to elicit wide-spectrum immune responses, we adopted a live-attenuated vaccine approach based on a sigH knock-out strain of M. paratuberculosis (ΔsigH). Earlier analysis of the ΔsigH mutant in mice indicated their inadequate ability to colonize host tissues, unlike the isogenic wild-type strain, validating the role of this sigma factor in M. paratuberculosis virulence. In the present study, we evaluated the performance of the ΔsigH mutant compared to inactivated vaccine constructs in a vaccine/challenge model of murine paratuberculosis. The presented analysis indicated that ΔsigH mutant with or without QuilA adjuvant is capable of eliciting strong immune responses (such as interferon gamma-γ, IFN-γ) suggesting their immunogenicity and ability to potentially initiate effective vaccine-induced immunity. Following a challenge with virulent strains of M. paratuberculosis, ΔsigH conferred protective immunity as indicated by the reduced bacterial burden accompanied with reduced lesions in main body organs (liver, spleen and intestine) usually infected with M. paratuberculosis. More importantly, our data indicated better ability of the ΔsigH vaccine to confer protection compared to the inactivated vaccine constructs even with the presence of oil-adjuvant. Overall, our approach provides a rational basis for using live-attenuated mutant strains to develop improved vaccines that elicit robust immunity against this chronic infection.

  18. Evaluation of antiobesity and cardioprotective effect of Gymnema sylvestre extract in murine model

    PubMed Central

    Kumar, Vinay; Bhandari, Uma; Tripathi, Chakra Dhar; Khanna, Geetika

    2012-01-01

    Objective: Obesity plays a central role in the insulin resistance syndrome, which is associated with hyperinsulinemia, hypertension, hyperlipidemia, type 2 diabetes mellitus, and an increased risk of atherosclerotic cardiovascular disease. The present study was done to assess the effect of Gymnema sylvestre extract (GSE) in the high fat diet (HFD)-induced cellular obesity and cardiac damage in Wistar rats. Materials and Methods: Adult male Wistar rats (150–200 g body weight) were used in this study. HFD was used to induce obesity. Body mass index, hemodynamic parameters, serum leptin, insulin, glucose, lipids, apolipoprotein levels, myocardial apoptosis, and antioxidant enzymes were assessed. Organ and visceral fat pad weights and histopathological studies were also carried out. Results: Oral feeding of HFD (20 g/day) for a period of 28 days resulted in a significant increase in body mass index, organ weights, visceral fat pad weight, cardiac caspase-3, cardiac DNA laddering (indicating apoptotic inter-nucleosomal DNA fragment), and lipid peroxide levels of cardiac tissues of rats. Further, mean arterial blood pressure, heart rate, serum leptin, insulin, LDH, LDL-C, total cholesterol, triglycerides, and apolipoprotein-B levels were enhanced significantly, whereas serum HDL-C, apoliporotein-A1 levels, and cardiac Na+ K+ ATPase, antioxidant enzymes levels were significantly decreased. Furthermore, treatment with standardized ethanolic GSE (200 m/kg/p.o.) for a period of 28 days resulted in significant reversal of above mentioned changes in the obese Wistar rats. Conclusion: The present study has demonstrated the significant antiobesity potential of GSE in murine model of obesity. PMID:23112423

  19. Osteoblast function and bone histomorphometry in a murine model of Rett syndrome.

    PubMed

    Blue, Mary E; Boskey, Adele L; Doty, Stephen B; Fedarko, Neal S; Hossain, Mir Ahamed; Shapiro, Jay R

    2015-07-01

    Rett syndrome (RTT) is an X-linked neurodevelopmental disorder due to mutations affecting the neural transcription factor MeCP2. Approximately 50% of affected females have decreased bone mass. We studied osteoblast function using a murine model of RTT. Female heterozygote (HET) and male Mecp2-null mice were compared to wild type (WT) mice. Micro-CT of tibia from 5 week-old Mecp2-null mice showed significant alterations in trabecular bone including reductions in bone volume fraction (-29%), number (-19%), thickness (-9%) and connectivity density (-32%), and increases in trabecular separation (+28%) compared to WT. We also found significant reductions in cortical bone thickness (-18%) and in polar moment of inertia (-45%). In contrast, cortical and trabecular bone from 8 week-old WT and HET female mice were not significantly different. However, mineral apposition rate, mineralizing surface and bone formation rate/bone surface were each decreased in HET and Mecp2-null mice compared to WT mice. Histomorphometric analysis of femurs showed decreased numbers of osteoblasts but similar numbers of osteoclasts compared to WT, altered osteoblast morphology and decreased tissue synthesis of alkaline phosphatase in Mecp2-null and HET mice. Osteoblasts cultured from Mecp2-null mice, which unlike WT osteoblasts did not express MeCP2, had increased growth rates, but reductions in mRNA expression of type I collagen, Runx2 and Osterix compared to WT osteoblasts. These results indicate that MeCP2 deficiency leads to altered bone growth. Osteoblast dysfunction was more marked in Mecp2-null male than in HET female mice, suggesting that expression of MeCP2 plays a critical role in bone development.

  20. Hyperoxygenation Attenuated a Murine Model of Atopic Dermatitis through Raising Skin Level of ROS

    PubMed Central

    Choi, Eun-Jeong; Lee, Yeo Kyong; Kie, Jeong-Hae; Jang, Myoung Ho; Seoh, Ju-Young

    2014-01-01

    Atopic dermatitis (AD) is a chronic inflammatory skin disease resulting from excessive stimulation of immune cells. Traditionally, reactive oxygen species (ROS) have been implicated in the progression of inflammatory diseases, but several opposing observations suggest the protective role of ROS in inflammatory disease. Recently, we demonstrated ROS prevented imiquimod-induced psoriatic dermatitis through enhancing regulatory T cell function. Thus, we hypothesized AD might also be attenuated in elevated levels of ROS through tissue hyperoxygenation, such as by hyperbaric oxygen therapy (HBOT) or applying an oxygen-carrying chemical, perfluorodecalin (PFD). Elevated levels of ROS in the skin have been demonstrated directly by staining with dihydroethidum as well as indirectly by immunohistochemistry (IHC) for indoleamine 2,3-dioxygenase (IDO). A murine model of AD was developed by repeated application of a chemical irritant (1% 2,4-dinitrochlorobenzene) and house dust mite (Dermatophagoide farinae) extract on one ear of BALB/c mice. The results showed treatment with HBOT or PFD significantly attenuated AD, comparably with 0.1% prednicarbate without any signs of side effects, such as telangiectasia. The expressions of interleukin-17A and interferon-γ were also decreased in the AD lesions by treatment with HBOT or PFD. Enhanced expression of IDO and reduced level of hypoxia-inducible factor-1α, in association with increased frequency of FoxP3+ regulatory T cells in the AD lesions, might be involved in the underlying mechanism of oxygen therapy. Taken together, it was suggested that tissue hyperoxygenation, by HBOT or treatment with PFD, might attenuate AD through enhancing skin ROS level. PMID:25275529

  1. The Murine Model of Mucopolysaccharidosis IIIB Develops Cardiopathies over Time Leading to Heart Failure

    PubMed Central

    De Pasquale, Valeria; Cocchiaro, Pasquale; Paciello, Orlando; Avallone, Luigi; Belfiore, Maria Paola; Iacobellis, Francesca; Di Napoli, Daniele; Magliulo, Fabio; Perrino, Cinzia; Trimarco, Bruno; Esposito, Giovanni; Di Natale, Paola; Pavone, Luigi Michele

    2015-01-01

    Mucopolysaccharidosis (MPS) IIIB is a lysosomal disease due to the deficiency of the enzyme α-N-acetylglucosaminidase (NAGLU) required for heparan sulfate (HS) degradation. The disease is characterized by mild somatic features and severe neurological disorders. Very little is known on the cardiac dysfunctions in MPS IIIB. In this study, we used the murine model of MPS IIIB (NAGLU knockout mice, NAGLU-/-) in order to investigate the cardiac involvement in the disease. Echocardiographic analysis showed a marked increase in left ventricular (LV) mass, reduced cardiac function and valvular defects in NAGLU-/- mice as compared to wild-type (WT) littermates. The NAGLU-/- mice exhibited a significant increase in aortic and mitral annulus dimension with a progressive elongation and thickening of anterior mitral valve leaflet. A severe mitral regurgitation with reduction in mitral inflow E-wave-to-A-wave ratio was observed in 32-week-old NAGLU-/- mice. Compared to WT mice, NAGLU-/- mice exhibited a significantly lower survival with increased mortality observed in particular after 25 weeks of age. Histopathological analysis revealed a significant increase of myocardial fiber vacuolization, accumulation of HS in the myocardial vacuoles, recruitment of inflammatory cells and collagen deposition within the myocardium, and an increase of LV fibrosis in NAGLU-/- mice compared to WT mice. Biochemical analysis of heart samples from affected mice showed increased expression levels of cardiac failure hallmarks such as calcium/calmodulin-dependent protein kinase II, connexin43, α-smooth muscle actin, α-actinin, atrial and brain natriuretic peptides, and myosin heavy polypeptide 7. Furthermore, heart samples from NAGLU-/- mice showed enhanced expression of the lysosome-associated membrane protein-2 (LAMP2), and the autophagic markers Beclin1 and LC3 isoform II (LC3-II). Overall, our findings demonstrate that NAGLU-/- mice develop heart disease, valvular abnormalities and cardiac

  2. Particle-size dependent effects in the Balb/c murine model of inhalational melioidosis

    PubMed Central

    Thomas, Richard J.; Davies, C.; Nunez, A.; Hibbs, S.; Eastaugh, L.; Harding, S.; Jordan, J.; Barnes, K.; Oyston, P.; Eley, S.

    2012-01-01

    Deposition of Burkholderia pseudomallei within either the lungs or nasal passages of the Balb/c murine model resulted in different infection kinetics. The infection resulting from the inhalation of B. pseudomallei within a 12 μm particle aerosol was prolonged compared to a 1 μm particle aerosol with a mean time-to-death (MTD) of 174.7 ± 14.9 h and 73.8 ± 11.3 h, respectively. Inhalation of B. pseudomallei within 1 μm or 12 μm particle aerosols resulted in a median lethal dose (MLD) of 4 and 12 cfu, respectively. The 12 μm particle inhalational infection was characterized by a marked involvement of the nasal mucosa and extension of bacterial colonization and inflammatory lesions from the olfactory epithelium through the olfactory nerves (or tracts) to the olfactory bulb (100%), culminating in abscessation of the brain (33%). Initial involvement of the upper respiratory tract lymphoid tissues (nasal-associated lymphoid tissue (NALT) and cervical lymph nodes) was observed in both the 1 and 12 μm particle inhalational infections (80–85%). Necrotising alveolitis and bronchiolitis were evident in both inhalational infections, however, lung pathology was greater after inhalation of the 1 μm particle aerosol with pronounced involvement of the mediastinal lymph node (50%). Terminal disease was characterized by bacteraemia in both inhalational infections with dissemination to the spleen, liver, kidneys, and thymus. Treatment with co-trimoxazole was more effective than treatment with doxycycline irrespective of the size of the particles inhaled. Doxycycline was more effective against the 12 μm particle inhalational infection as evidenced by increased time to death. However, both treatment regimes exhibited significant relapse when therapy was discontinued with massive enlargement and abscessation of the lungs, spleen, and cervical lymph nodes observed. PMID:22919690

  3. Nanoshell-mediated photothermal therapy improves survival in a murine glioma model.

    PubMed

    Day, Emily S; Thompson, Patrick A; Zhang, Linna; Lewinski, Nastassja A; Ahmed, Nabil; Drezek, Rebekah A; Blaney, Susan M; West, Jennifer L

    2011-08-01

    We are developing a novel treatment for high-grade gliomas using near infrared-absorbing silica-gold nanoshells that are thermally activated upon exposure to a near infrared laser, thereby irreversibly damaging cancerous cells. The goal of this work was to determine the efficacy of nanoshell-mediated photothermal therapy in vivo in murine xenograft models. Tumors were induced in male IcrTac:ICR-Prkdc(SCID) mice by subcutaneous implantation of Firefly Luciferase-labeled U373 human glioma cells and biodistribution and survival studies were performed. To evaluate nanoparticle biodistribution, nanoshells were delivered intravenously to tumor-bearing mice and after 6, 24, or 48 h the tumor, liver, spleen, brain, muscle, and blood were assessed for gold content by inductively coupled plasma-mass spectrometry (ICP-MS) and histology. Nanoshell concentrations in the tumor increased for the first 24 h and stabilized thereafter. Treatment efficacy was evaluated by delivering saline or nanoshells intravenously and externally irradiating tumors with a near infrared laser 24 h post-injection. Success of treatment was assessed by monitoring tumor size, tumor luminescence, and survival time of the mice following laser irradiation. There was a significant improvement in survival for the nanoshell treatment group versus the control (P < 0.02) and 57% of the mice in the nanoshell treatment group remained tumor free at the end of the 90-day study period. By comparison, none of the mice in the control group survived beyond 24 days and mean survival was only 13.3 days. The results of these studies suggest that nanoshell-mediated photothermal therapy represents a promising novel treatment strategy for malignant glioma.

  4. Targeting geranylgeranylation reduces adrenal gland tumor burden in a murine model of prostate cancer metastasis

    PubMed Central

    Reilly, Jacqueline E; Neighbors, Jeffrey D; Tong, Huaxiang; Henry, Michael D; Hohl, Raymond J

    2016-01-01

    The isoprenoid biosynthetic pathway (IBP) is critical for providing substrates for the post-translational modification of proteins key in regulating malignant cell properties, including proliferation, invasion, and migration. Inhibitors of the IBP, including statins and nitrogenous bisphosphonates, are used clinically for the treatment of hypercholesterolemia and bone disease respectively. The statins work predominantly in the liver, while the nitrogenous bisphosphonates are highly sequestered to bone. Inhibition of the entire IBP is limited by organ specificity and side effects resulting from depletion of all isoprenoids. We have developed a novel compound, disodium [(6Z,11E,15E)-9-[bis(sodiooxy)phosphoryl]-17-hydroxy-2,6,12,16-tetramethyheptadeca-2,6,11,15-tetraen-9-yl]phosphonate (GGOHBP), which selectively targets geranylgeranyl diphosphate synthase (GGDPS), reducing post-translational protein geranylgeranylation. Intracardiac injection of luciferase-expressing human-derived 22Rv1 PCa cells into SCID mice resulted in tumor development in bone (100%), adrenal glands (72%), mesentery (22%), liver (17%), and the thoracic cavity (6%). Three weeks after tumor inoculation, daily subcutaneous (SQ) injections of 1.5 mg/kg GGOHBP or the vehicle were given for one month. Dissected tumors revealed areduction in adrenal gland tumors corresponding to a 54% (P < 0.005) reduction in total adrenal gland tumor weight of the treated mice as compared to vehicle-treated controls. Western blot analysis of the harvested tissues showed a reduction in Rap1A geranylgeranylation in adrenal glands and mesenteric tumors of the treated mice while non-tumorous tissues and control mice showed no Rap1A alteration. Our findings detail a novel bisphosphonate compound capable of preferentially altering the IBP in tumor-burdened adrenal glands of a murine model of PCa metastasis. PMID:26070429

  5. Size dependent skin penetration of nanoparticles in murine and porcine dermatitis models.

    PubMed

    Try, Céline; Moulari, Brice; Béduneau, Arnaud; Fantini, Oscar; Pin, Didier; Pellequer, Yann; Lamprecht, Alf

    2016-03-01

    A major limitation in the current topical treatment of inflammatory skin diseases is the inability to selectively deliver the drug to the inflammation site. Recently, smart drug delivery systems such as nanocarriers are being investigated to enhance the selective deposition of anti-inflammatory drugs in inflamed areas of the skin to achieve higher therapeutic efficacy with minimal side effects. Of such systems, polymeric nanoparticles are considered very efficient carriers for the topical drug delivery. In the current work, poly(l-lactide-co-glycolide) nanoparticles of nominal sizes of 70nm (NP70) and 300nm (NP300) were studied for their intra-epidermal distribution in murine and pig atopic dermatitis models over time against the respective healthy controls. Confocal laser scanning microscopical examination of skin biopsies was utilized for the qualitative and semi-quantitative analyses of nanoparticles skin deposition and penetration depth. While no skin penetration was found for any of the particles in healthy skin, the accumulation of NP70 was significantly higher than NP300 in inflamed skin (15-fold in mice, 5-fold in pigs). Penetration depth of NP70 decreased over time in mice from 55±3μm to 20±2μm and similar tendencies were observed for the other formulations. In inflamed pig skin, a similar trend was found for the penetration depth (NP70: 46±12μm versus NP300: 23±3μm); however, the NP amount remained constant for the whole analyzed period. Their ability to penetrate specifically into inflamed skin combined with minimal effects on healthy skin underlines small polymeric nanoparticles' potential as selective drug carriers in future treatment of chronic inflammatory skin diseases such as atopic dermatitis.

  6. Interleukin-6 receptor alpha blockade improves skin lesions in a murine model of systemic lupus erythematosus.

    PubMed

    Birner, Peter; Heider, Susanne; Petzelbauer, Peter; Wolf, Peter; Kornauth, Christoph; Kuroll, Madeleine; Merkel, Olaf; Steiner, Günter; Kishimoto, Tadamitsu; Rose-John, Stefan; Soleiman, Afschin; Moriggl, Richard; Kenner, Lukas

    2016-04-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease, characterized by antinuclear autoantibodies (ANA) and immunocomplexes, commonly affecting kidneys, skin, heart, lung or even the brain. We have shown that JunB(Δep) mice develop a SLE phenotype linked to increased epidermal Interleukin (IL)-6 secretion. Blocking of IL-6 receptor alpha (IL-6Rα) is considered as therapeutic strategy for the treatment of SLE. JunB(Δep) and wild-type mice were treated for short (5 weeks) or long term (21 weeks) with the IL-6Rα-blocking antibody MR16-1. Skin and kidney of mice were investigated by histology and immunofluorescence, and in addition, kidneys were analysed by electron microscopy. Furthermore, soluble IL-6R (sIL-6R), antihistone and antinucleosome antibodies levels were measured and associated with disease parameters. Treatment with MR16-1 resulted in significant improvement of SLE-like skin lesions in JunB(Δep) mice, compared to untreated mice. The sIL-6R amount upon long-term treatment with MR16-1 was significantly higher in JunB(Δep) versus untreated JunB(Δep) (P = 0.034) or wild-type mice (P = 0.034). MR16-1 treatment over these time spans did not significantly improve kidney pathology of immunoglobulin deposits causing impaired function. Significantly higher antihistone (P = 0.028) and antinucleosome antibody levels (P = 0.028) were measured in MR16-1-treated JunB(Δep) mice after treatment compared to levels before therapy. In conclusion, blockade of IL-6Rα improves skin lesions in a murine SLE model, but does not have a beneficial effect on autoimmune-mediated kidney pathology. Inhibition of IL-6R signalling might be helpful in lupus cases with predominant skin involvement, but combinatorial treatment might be required to restrain autoantibodies.

  7. B-Cell Depletion Reduces the Maturation of Cerebral Cavernous Malformations in Murine Models.

    PubMed

    Shi, Changbin; Shenkar, Robert; Zeineddine, Hussein A; Girard, Romuald; Fam, Maged D; Austin, Cecilia; Moore, Thomas; Lightle, Rhonda; Zhang, Lingjiao; Wu, Meijing; Cao, Ying; Gunel, Murat; Louvi, Angeliki; Rorrer, Autumn; Gallione, Carol; Marchuk, Douglas A; Awad, Issam A

    2016-06-01

    Cerebral cavernous malformations (CCMs) are relatively common vascular malformations, characterized by increased Rho kinase (ROCK) activity, vascular hyper-permeability and the presence of blood degradation products including non-heme iron. Previous studies revealed robust inflammatory cell infiltration, selective synthesis of IgG, in situ antigen driven B-cell clonal expansion, and deposition of immune complexes and complement proteins within CCM lesions. We aimed to evaluate the impact of suppressing the immune response on the formation and maturation of CCM lesions, as well as lesional iron deposition and ROCK activity. Two murine models of heterozygous Ccm3 (Pdcd10), which spontaneously develop CCM lesions with severe and milder phenotypes, were either untreated or received anti-mouse BR3 to deplete B cells. Brains from anti-mouse BR3-treated mice exhibited significantly fewer mature CCM lesions and smaller lesions compared to untreated mice. B cell depletion halted the progression of lesions into mature stage 2 lesions but did not prevent their genesis. Non-heme iron deposition and ROCK activity was decreased in lesions of B cell depleted mice. This represents the first report of the therapeutic benefit of B-cell depletion in the development and progression of CCMs, and provides a proof of principle that B cells play a critical role in CCM lesion genesis and maturation. These findings add biologics to the list of potential therapeutic agents for CCM disease. Future studies would characterize the putative antigenic trigger and further define the mechanism of immune response in the lesions.

  8. An Intradermal Inoculation Mouse Model for Immunological Investigations of Acute Scrub Typhus and Persistent Infection

    PubMed Central

    Rockx-Brouwer, Dedeke; Xu, Guang; Goez-Rivillas, Yenny; Drom, Claire; Shelite, Thomas R.; Valbuena, Gustavo; Walker, David H.; Bouyer, Donald H.

    2016-01-01

    Scrub typhus is a neglected tropical disease, caused by Orientia tsutsugamushi, a Gram-negative bacterium that is transmitted to mammalian hosts during feeding by Leptotrombidium mites and replicates predominantly within endothelial cells. Most studies of scrub typhus in animal models have utilized either intraperitoneal or intravenous inoculation; however, there is limited information on infection by the natural route in murine model skin or its related early host responses. Here, we developed an intradermal (i.d.) inoculation model of scrub typhus and focused on the kinetics of the host responses in the blood and major infected organs. Following ear inoculation with 6 x 104 O. tsutsugamushi, mice developed fever at 11–12 days post-infection (dpi), followed by marked hypothermia and body weight loss at 14–19 dpi. Bacteria in blood and tissues and histopathological changes were detected around 9 dpi and peaked around 14 dpi. Serum cytokine analyses revealed a mixed Th1/Th2 response, with marked elevations of MCP-1/CCL2, MIP-1α/CCL3 and IL-10 at 9 dpi, followed by increased concentrations of pro-inflammatory markers (IL-6, IL-12, IFN-γ, G-CSF, RANTES/CCL5, KC/CCL11, IL-1α/β, IL-2, TNF-α, GM-CSF), as well as modulatory cytokines (IL-9, IL-13). Cytokine levels in lungs had similar elevation patterns, except for a marked reduction of IL-9. The Orientia 47-kDa gene and infectious bacteria were detected in several organs for up to 84 dpi, indicating persistent infection. This is the first comprehensive report of acute scrub typhus and persistent infection in i.d.-inoculated C57BL/6 mice. This is a significant improvement over current murine models for Orientia infection and will permit detailed studies of host immune responses and infection control interventions. PMID:27479584

  9. Reproduction and Growth in a Murine Model of Early Life-Onset Inflammatory Bowel Disease

    PubMed Central

    Nagy, Eniko; Rodriguiz, Ramona M.; Wetsel, William C.; MacIver, Nancie J.; Hale, Laura P.

    2016-01-01

    Studies in transgenic murine models have provided insight into the complexity underlying inflammatory bowel disease (IBD), a disease hypothesized to result from an injurious immune response against intestinal microbiota. We recently developed a mouse model of IBD that phenotypically and histologically resembles human childhood-onset ulcerative colitis (UC), using mice that are genetically modified to be deficient in the cytokines TNF and IL-10 (“T/I” mice). Here we report the effects of early life onset of colon inflammation on growth and reproductive performance of T/I mice. T/I dams with colitis often failed to get pregnant or had small litters with pups that failed to thrive. Production was optimized by breeding double homozygous mutant T/I males to females homozygous mutant for TNF deficiency and heterozygous for deficiency of IL-10 (“T/I-het” dams) that were not susceptible to spontaneous colon inflammation. When born to healthy (T/I-het) dams, T/I pups initially gained weight similarly to wild type (WT) pups and to their non-colitis-susceptible T/I-het littermates. However, their growth curves diverged between 8 and 13 weeks, when most T/I mice had developed moderate to severe colitis. The observed growth failure in T/I mice occurred despite a significant increase in their food consumption and in the absence of protein loss in the stool. This was not due to TNF-induced anorexia or altered food consumption due to elevated leptin levels. Metabolic studies demonstrated increased consumption of oxygen and water and increased production of heat and CO2 in T/I mice compared to their T/I-het littermates, without differences in motor activity. Based on the clinical similarities of this early life onset model of IBD in T/I mice to human IBD, these results suggest that mechanisms previously hypothesized to explain growth failure in children with IBD require re-evaluation. The T/I mouse model may be useful for further investigation of such mechanisms and for

  10. Isavuconazole pharmacodynamic target determination for Candida species in an in vivo murine disseminated candidiasis model.

    PubMed

    Lepak, Alexander J; Marchillo, Karen; VanHecker, Jamie; Diekema, Daniel; Andes, David R

    2013-11-01

    Pharmacodynamic (PD) studies with triazoles in the neutropenic murine disseminated candidiasis model have been performed extensively for Candida albicans. They have consistently shown that the pharmacodynamic index most closely correlated with efficacy is the ratio of the 24-h area under the concentration-time curve (AUC) to the MIC, and a target 24-h free-drug AUC/MIC ratio near 25 is associated with 50% of maximal microbiologic efficacy. We utilized this model to investigate the pharmacodynamics of isavuconazole. Isavuconazole pharmacokinetics were linear over the dose range studied. Oral-gastric doses of 640, 160, 40, and 10 mg of prodrug/kg of body weight produced peak levels of 0.51 to 25.4 mg/liter, an elimination half-life of 1 to 5 h, and an AUC from 0 h to infinity (AUC0-∞) of 0.9 to 287 mg · h/liter. The AUC/MIC ratio was the pharmacodynamic index that correlated best with efficacy (R(2), 0.84). Pharmacodynamic target studies were performed using 4 C. albicans isolates with both a 24-h and a 96-h treatment duration. The strains were chosen to include previously characterized fluconazole-resistant strains. The mean 50% effective doses (ED50) (expressed in mg/kg of body weight/12 h) and associated 24-h free-drug AUC/MIC ratios were 89.3 ± 46.7 and 67.7 ± 35 for the 24-h treatment and 59.6 ± 22 and 33.3 ± 25.5 for the 96-h treatment. These differences were not statistically significant. Pharmacodynamic targets for two non-albicans Candida species were also explored. The mean ED50 (expressed in mg/kg/12 h) and associated 24-h free-drug AUC/MIC ratios were 31.2 and 6.2 for Candida tropicalis (n = 1) and 50.5 and 1.6 for Candida glabrata (n = 2). These PD targets were significantly different from C. albicans targets (P, 0.04). Isavuconazole PD targets for C. albicans are similar to those observed in this model with other triazoles. However, the PD targets for non-albicans Candida species were more than 10-fold lower than those for C. albicans (P, 0

  11. Remote ischemic postconditioning: harnessing endogenous protection in a murine model of vascular cognitive impairment.

    PubMed

    Khan, Mohammad Badruzzaman; Hoda, Md Nasrul; Vaibhav, Kumar; Giri, Shailendra; Wang, Philip; Waller, Jennifer L; Ergul, Adviye; Dhandapani, Krishnan M; Fagan, Susan C; Hess, David C

    2015-02-01

    We previously reported that remote limb ischemic conditioning (RLIC; PERconditioning) during acute stroke confers neuroprotection, possibly due to increased cerebral blood flow (CBF). Vascular cognitive impairment (VCI) is a growing threat to public health without any known treatment. The bilateral common carotid artery stenosis (BCAS) mouse model is regarded as the most valid model for VCI. We hypothesized that RLIC (postconditioning; RIPostC) will augment CBF during chronic cerebral hypoperfusion (CCH) and prevent cognitive impairment in the BCAS model. BCAS using customized microcoil was performed in C57/B6 male mice to establish CCH. A week after the BCAS surgery, mice were treated with RIPostC-therapy once daily for 2 weeks. CBF was measured with laser speckle contrast imager at different time points. Cognitive testing was performed at 4-week post-BCAS, and brain tissue was harvested for biochemistry. BCAS led to chronic hypoperfusion resulting into impaired cognitive function as tested by novel object recognition (NOR). Histological examinations revealed that BCAS triggered inflammatory responses and caused frequent vacuolization and cell death. BCAS also increased the generation and accumulation of amyloid beta protein (Aβ), resulting into the loss of white matter (WM) and myelin basic protein (MBP). RIPostC-therapy showed both acute increase as well as sustained improvement in CBF even after the cessation of therapy for a week. RIPostC improved cognitive function, inhibited inflammatory responses, prevented the cell death, reduced the generation and accumulation of Aβ, and protected WM integrity. RIPostC is effective in the BCAS model and could be an attractive low-cost conventional therapy for aged individuals with VCI. The mechanisms by which RIPostC improves CBF and attenuates tissue damage need to be investigated in the future.

  12. A simple quantitative model of macromolecular crowding effects on protein folding: Application to the murine prion protein(121-231)

    NASA Astrophysics Data System (ADS)

    Bergasa-Caceres, Fernando; Rabitz, Herschel A.

    2013-06-01

    A model of protein folding kinetics is applied to study the effects of macromolecular crowding on protein folding rate and stability. Macromolecular crowding is found to promote a decrease of the entropic cost of folding of proteins that produces an increase of both the stability and the folding rate. The acceleration of the folding rate due to macromolecular crowding is shown to be a topology-dependent effect. The model is applied to the folding dynamics of the murine prion protein (121-231). The differential effect of macromolecular crowding as a function of protein topology suffices to make non-native configurations relatively more accessible.

  13. Anti-Lipid IgG Antibodies Are Produced via Germinal Centers in a Murine Model Resembling Human Lupus

    PubMed Central

    Wong-Baeza, Carlos; Reséndiz-Mora, Albany; Donis-Maturano, Luis; Wong-Baeza, Isabel; Zárate-Neira, Luz; Yam-Puc, Juan Carlos; Calderón-Amador, Juana; Medina, Yolanda; Wong, Carlos; Baeza, Isabel; Flores-Romo, Leopoldo

    2016-01-01

    Anti-lipid IgG antibodies are produced in some mycobacterial infections and in certain autoimmune diseases [such as anti-phospholipid syndrome, systemic lupus erythematosus (SLE)]. However, few studies have addressed the B cell responses underlying the production of these immunoglobulins. Anti-lipid IgG antibodies are consistently found in a murine model resembling human lupus induced by chlorpromazine-stabilized non-bilayer phospholipid arrangements (NPA). NPA are transitory lipid associations found in the membranes of most cells; when NPA are stabilized they can become immunogenic and induce specific IgG antibodies, which appear to be involved in the development of the mouse model of lupus. Of note, anti-NPA antibodies are also detected in patients with SLE and leprosy. We used this model of lupus to investigate in vivo the cellular mechanisms that lead to the production of anti-lipid, class-switched IgG antibodies. In this murine lupus model, we found plasma cells (Gr1−, CD19−, CD138+) producing NPA-specific IgGs in the draining lymph nodes, the spleen, and the bone marrow. We also found a significant number of germinal center B cells (IgD−, CD19+, PNA+) specific for NPA in the draining lymph nodes and the spleen, and we identified in situ the presence of NPA in these germinal centers. By contrast, very few NPA-specific, extrafollicular reaction B cells (B220+, Blimp1+) were found. Moreover, when assessing the anti-NPA IgG antibodies produced during the experimental protocol, we found that the affinity of these antibodies progressively increased over time. Altogether, our data indicate that, in this murine model resembling human lupus, B cells produce anti-NPA IgG antibodies mainly via germinal centers. PMID:27746783

  14. Development of a murine model for aerosolized ebolavirus infection using a panel of recombinant inbred mice.

    PubMed

    Zumbrun, Elizabeth E; Abdeltawab, Nourtan F; Bloomfield, Holly A; Chance, Taylor B; Nichols, Donald K; Harrison, Paige E; Kotb, Malak; Nalca, Aysegul

    2012-12-03

    Countering aerosolized filovirus infection is a major priority of biodefense research. Aerosol models of filovirus infection have been developed in knock-out mice, guinea pigs and non-human primates; however, filovirus infection of immunocompetent mice by the aerosol route has not been reported. A murine model of aerosolized filovirus infection in mice should be useful for screening vaccine candidates and therapies. In this study, various strains of wild-type and immunocompromised mice were exposed to aerosolized wild-type (WT) or mouse-adapted (MA) Ebola virus (EBOV). Upon exposure to aerosolized WT-EBOV, BALB/c, C57BL/6 (B6), and DBA/2 (D2) mice were unaffected, but 100% of severe combined immunodeficiency (SCID) and 90% of signal transducers and activators of transcription (Stat1) knock-out (KO) mice became moribund between 7-9 days post-exposure (dpe). Exposure to MA-EBOV caused 15% body weight loss in BALB/c, but all mice recovered. In contrast, 10-30% lethality was observed in B6 and D2 mice exposed to aerosolized MA-EBOV, and 100% of SCID, Stat1KO, interferon (IFN)-γ KO and Perforin KO mice became moribund between 7-14 dpe. In order to identify wild-type, inbred, mouse strains in which exposure to aerosolized MA-EBOV is uniformly lethal, 60 BXD (C57BL/6 crossed with DBA2) recombinant inbred (RI) and advanced RI (ARI) mouse strains were exposed to aerosolized MA-EBOV, and monitored for disease severity. A complete spectrum of disease severity was observed. All BXD strains lost weight but many recovered. However, infection was uniformly lethal within 7 to 12 days post-exposure in five BXD strains. Aerosol exposure of these five BXD strains to 10-fold less MA-EBOV resulted in lethality ranging from 0% in two strains to 90-100% lethality in two strains. Analysis of post-mortem tissue from BXD strains that became moribund and were euthanized at the lower dose of MA-EBOV, showed liver damage in all mice as well as lung lesions in two of the three strains. The two

  15. Treatment with intranasal iloprost reduces disease manifestations in a murine model of previously established COPD

    PubMed Central

    Ghonim, Mohamed A.; Pyakurel, Kusma; Naura, Amarjit S; Ibba, Salome V.; Davis, Christian J.; Okpechi, Samuel C.; Happel, Kyle I.; deBoisblanc, Bennett P.; Shellito, Judd; Boulares, A. Hamid

    2016-01-01

    Pulmonary endothelial prostacyclin appears to be involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). The effect of treatment with a prostacyclin analog in animal models of previously established COPD is unknown. We evaluated the short- and long-term effect of iloprost on inflammation and airway hyperresponsiveness (AHR) in a murine model of COPD. Nineteen mice were exposed to LPS/elastase, followed by either three doses of intranasal iloprost or saline. In the long-term treatment experiment, 18 mice were exposed to LPS/elastase and then received 6 wk of iloprost or were left untreated as controls. In the short-term experiment, iloprost did not change AHR but significantly reduced serum IL-5 and IFN-γ. Long-term treatment with iloprost for both 2 and 6 wk significantly improved AHR. After 6 wk of iloprost, there was a reduction in bronchoalveolar lavage (BALF) neutrophils, serum IL-1β (30.0 ± 9.2 vs. 64.8 ± 7.4 pg/ml, P = 0.045), IL-2 (36.5 ± 10.6 vs. 83.8 ± 0.4 pg/ml, P = 0.01), IL-10 (75.7 ± 9.3 vs. 96.5 ± 3.5 pg/ml, P = 0.02), and nitrite (15.1 ± 5.4 vs. 30.5 ± 10.7 μmol, P = 0.01). Smooth muscle actin (SMA) in the lung homogenate was also significantly reduced after iloprost treatment (P = 0.02), and SMA thickness was reduced in the small and medium blood vessels after iloprost (P < 0.001). In summary, short- and long-term treatment with intranasal iloprost significantly reduced systemic inflammation in an LPS/elastase COPD model. Long-term iloprost treatment also reduced AHR, serum nitrite, SMA, and BALF neutrophilia. These data encourage future investigations of prostanoid therapy as a novel treatment for COPD patients. PMID:26851260

  16. Effects of Murine Norovirus Infection on a Mouse Model of Diet-Induced Obesity and Insulin Resistance

    PubMed Central

    Paik, Jisun; Fierce, Yvette; Drivdahl, Rolf; Treuting, Piper M; Seamons, Audrey; Brabb, Thea; Maggio-Price, Lillian

    2010-01-01

    Murine norovirus (MNV) is prevalent in SPF mouse facilities in the United States, and we currently lack sufficient data to determine whether it should be eliminated. It is generally accepted that the virus does not cause clinical symptoms in immunocompetent mice. However, we previously reported that MNV infection alters the phenotype of a mouse model of bacteria-induced inflammatory bowel disease in part through its effects on dendritic cells. The tropism of MNV toward macrophages and dendritic cells makes MNV a potential intercurrent variable in murine models of macrophage-driven inflammatory diseases, such as obesity, insulin resistance, and atherosclerosis. Therefore, we determined whether MNV infection altered obesity and insulin resistance phenotypes in C57BL/6 mice, a widely used model of diet-induced obesity. We found that MNV did not alter weight gain, food intake, and glucose metabolism in this model, but it did induce subtle changes in lymphoid tissue. Further studies using other models of metabolic diseases are needed to provide additional information on the potential role this ‘subclinical’ virus might have on disease progression in mouse models of inflammatory diseases. PMID:20579433

  17. Combination Treatment With Meropenem Plus Levofloxacin Is Synergistic Against Pseudomonas aeruginosa Infection in a Murine Model of Pneumonia

    PubMed Central

    Louie, Arnold; Liu, Weiguo; VanGuilder, Michael; Neely, Michael N.; Schumitzky, Alan; Jelliffe, Roger; Fikes, Steven; Kurhanewicz, Stephanie; Robbins, Nichole; Brown, David; Baluya, Dodge; Drusano, George L.

    2015-01-01

    Background. Meropenem plus levofloxacin treatment was shown to be a promising combination in our in vitro hollow fiber infection model. We strove to validate this finding in a murine Pseudomonas pneumonia model. Methods. A dose-ranging study with meropenem and levofloxacin alone and in combination against Pseudomonas aeruginosa was performed in a granulocytopenic murine pneumonia model. Meropenem and levofloxacin were administered to partially humanize their pharmacokinetic profiles in mouse serum. Total and resistant bacterial populations were estimated after 24 hours of therapy. Pharmacokinetic profiling of both drugs was performed in plasma and epithelial lining fluid, using a population model. Results. Meropenem and levofloxacin penetrations into epithelial lining fluid were 39.3% and 64.3%, respectively. Both monotherapies demonstrated good exposure responses. An innovative combination-therapy analytic approach demonstrated that the combination was statistically significantly synergistic (α = 2.475), as was shown in the hollow fiber infection model. Bacterial resistant to levofloxacin and meropenem was seen in the control arm. Levofloxacin monotherapy selected for resistance to itself. No resistant subpopulations were observed in any combination therapy arm. Conclusions. The combination of meropenem plus levofloxacin was synergistic, producing good bacterial kill and resistance suppression. Given the track record of safety of each agent, this combination may be worthy of clinical trial. PMID:25362196

  18. Possible Immune Regulation of Natural Killer T Cells in a Murine Model of Metal Ion-Induced Allergic Contact Dermatitis.

    PubMed

    Kumagai, Kenichi; Horikawa, Tatsuya; Shigematsu, Hiroaki; Matsubara, Ryota; Kitaura, Kazutaka; Eguchi, Takanori; Kobayashi, Hiroshi; Nakasone, Yasunari; Sato, Koichiro; Yamada, Hiroyuki; Suzuki, Satsuki; Hamada, Yoshiki; Suzuki, Ryuji

    2016-01-12

    Metal often causes delayed-type hypersensitivity reactions, which are possibly mediated by accumulating T cells in the inflamed skin, called irritant or allergic contact dermatitis. However, accumulating T cells during development of a metal allergy are poorly characterized because a suitable animal model is unavailable. We have previously established novel murine models of metal allergy and found accumulation of both metal-specific T cells and natural killer (NK) T cells in the inflamed skin. In our novel models of metal allergy, skin hypersensitivity responses were induced through repeated sensitizations by administration of metal chloride and lipopolysaccharide into the mouse groin followed by metal chloride challenge in the footpad. These models enabled us to investigate the precise mechanisms of the immune responses of metal allergy in the inflamed skin. In this review, we summarize the immune responses in several murine models of metal allergy and describe which antigen-specific responses occur in the inflamed skin during allergic contact dermatitis in terms of the T cell receptor. In addition, we consider the immune regulation of accumulated NK T cells in metal ion-induced allergic contact dermatitis.

  19. The retinoic acid binding protein CRABP2 is increased in murine models of degenerative joint disease

    PubMed Central

    Welch, Ian D; Cowan, Matthew F; Beier, Frank; Underhill, Tully M

    2009-01-01

    Introduction Osteoarthritis (OA) is a debilitating disease with poorly defined aetiology. Multiple signals are involved in directing the formation of cartilage during development and the vitamin A derivatives, the retinoids, figure prominently in embryonic cartilage formation. In the present study, we examined the expression of a retinoid-regulated gene in murine models of OA. Methods Mild and moderate forms of an OA-like degenerative disease were created in the mouse stifle joint by meniscotibial transection (MTX) and partial meniscectomy (PMX), respectively. Joint histopathology was scored using an Osteoarthritis Research Society International (OARSI) system and gene expression (Col1a1, Col10a1, Sox9 and Crabp2) in individual joints was determined using TaqMan quantitative PCR on RNA from microdissected articular knee cartilage. Results For MTX, there was a significant increase in the joint score at 10 weeks (n = 4, p < 0.001) in comparison to sham surgeries. PMX surgery was slightly more severe and produced significant changes in joint score at six (n = 4, p < 0.01), eight (n = 4, p < 0.001) and 10 (n = 4, p < 0.001) weeks. The expression of Col1a1 was increased in both surgical models at two, four and six weeks post-surgery. In contrast, Col10a1 and Sox9 for the most part showed no significant difference in expression from two to six weeks post-surgery. Crabp2 expression is induced upon activation of the retinoid signalling pathway. At two weeks after surgery in the MTX and PMX animals, Crabp2 expression was increased about 18-fold and about 10-fold over the sham control, respectively. By 10 weeks, Crabp2 expression was increased about three-fold (n = 7, not significant) in the MTX animals and about five-fold (n = 7, p < 0.05) in the PMX animals in comparison to the contralateral control joint. Conclusions Together, these findings suggest that the retinoid signalling pathway is activated early in the osteoarthritic process and is sustained during the course of

  20. Inflammation is independent of steatosis in a murine model of steatohepatitis.

    PubMed

    Wang, Wei; Xu, Ming-Jiang; Cai, Yan; Zhou, Zhou; Cao, Haixia; Mukhopadhyay, Partha; Pacher, Pal; Zheng, Shusen; Gonzalez, Frank J; Gao, Bin

    2017-02-21

    Obesity and alcohol consumption synergistically promote steatohepatitis, and neutrophil infiltration is believed to be associated with steatosis. However, the underlying mechanisms remain obscure. Peroxisome proliferator-activated receptor-gamma (PPARγ) plays a complex role in lipid metabolism and inflammation, therefore, the purpose of this study was to dissect its role in regulating steatosis and neutrophil infiltration in a clinically relevant mouse steatohepatitis model of 3-month high-fat diet (HFD) feeding plus a binge of ethanol (HFD -plus-binge ethanol). Hepatocyte-specific Pparg disruption reduced liver steatosis, but surprisingly increased hepatic neutrophil infiltration after HFD-plus-binge ethanol. Knockout or knockdown of the PPARγ target gene, fat-specific protein 27 (Fsp27), reduced steatosis without affecting neutrophil infiltration in this model. Moreover, hepatocyte-specific deletion of the Pparg gene but not the Fsp27 gene markedly upregulated hepatic levels of Cxcl1 (a chemokine for neutrophil infiltration) in HFD-plus-binge ethanol-fed mice. In vitro, deletion of the Pparg gene also highly augmented palmitic acid or TNF-α induction of Cxcl1 in mouse hepatocytes. In contrast, activation of PPARγ with a PPARγ agonist attenuated Cxcl1 expression in hepatocytes. Palmitic acid also upregulated IL-8 (a key chemokine for human neutrophil recruitment) expression in human hepatocytes, which was attenuated and enhanced by co-treatment with a PPARγ agonist and antagonist, respectively. Finally, acute ethanol binge markedly attenuated HFD-induced hepatic PPARγ activation, which contributed to the upregulation of hepatic Cxcl1 expression post HFD-plus-bigne ethanol. In conclusion, hepatic PPARγ plays an opposing role in controlling steatosis and neutrophil infiltration, leading to dissociation between steatosis and inflammation. Acute ethanol gavage attenuates hepatic PPARγ activation and subsequently upregulates hepatic CXCL1/IL-8 expression